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Abstract

Genomics is a major scientific revolution in this century. High-throughput

genomic data provides an opportunity for identifying genes and SNPs (single-

nucleotide polymorphism) that are related to various clinical phenotypes. To

deal with the sheer volume of genetic data being produced, it requires ad-

vanced methodological development in biostatistics that is lagging behind the

technical capability to generate genomic data. SNPs have great importance

in biomedical research for comparing regions of the genome between cohorts

(such as case-control studies). Within a population, SNPs can be assigned a

minor allele frequency, the lowest allele frequency at a locus that is observed

in a particular population, and be recoded to binary datasets. Therefore,

it is important to develop suitable statistical methods for SNPs analysis of

genome alteration with the goal of contributing to the understanding of com-

plex human diseases or traits such as mental health.

In this thesis, we develop new statistical methodologies for the analysis

of schizophrenia genomic data from the WA Genetic Epidemiology Resource
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(WAGER). The motivation is driven by the schizophrenia class prediction,

(i.e. the prediction of individuals’ disease status through their genotype and

quantitative traits). In general, individual’s disease status is a nominal vari-

able, while genotypes can be converted into ordinal variables but are of high

dimension. Note that the usual nonparametric regression that is developed

for continuous variables cannot be applied here. There are some methodolo-

gies, such as the tree-based logistic Non-parametric Pathway-based Regres-

sion model (NPR) proposed by Wei and Li (2007)available in the literature.

However, it is found that this model does not well adapt to the data set

that we are analyzing. It is even worse than the (generalized) linear logistic

regression model. Using logistic discrimination rule, together with adding

quantitative traits, some important results have been obtained. However,

some shortcomings remain. Firstly, the generalized linear logistic model has

a high type I error rate for schizophrenia classification. Secondly, quantitative

traits required for schizophrenia class prediction are performance assessments

which demand several hours on-site participation by both assessor and as-

sessee. These traits are generally quite difficult to reach even for a medium

size sample. Meanwhile, though the laboratory analyzing cost is high, a

person’s genotype can be obtained by merely collecting a drop of blood.

Thus, two kinds of nonlinear models are proposed to capture the nonlinear

effects in SNP datasets, which are categorical. The main contributions of this

thesis are summarized as follows:
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• Two kinds of nonlinear threshold index logistic regression models are

proposed to capture the nonlinear effects by applying the idea of thresh-

old models (Tong (1983, 1990)) which are parametric and therefore

applicable to the categorical data.

One of the proposed models, which is called the partially linear thresh-

old index logistic regression (PL-TILoR) model, is given by

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= αααTXi + g(βββTXi), (0.1)

where Yi is the disease status of the ith person under case-control study,

taking on values of 1 (case) or 0 (control), Xi is the vector of geno-

type variables, which is p-dimensional, and the superscript T stands

for transpose of a vector or matrix. Here, ααα and βββ are p-dimensional

unknown parameters with βββ being an index vector used for the reduc-

tion of dimension, satisfying ‖βββ‖ = 1 and αααTβββ = 0 for model identifia-

bility, and g is, therefore, a one-dimensional nonlinear function, which

is modelled as stepwise linear function through threshold effect (Tong,

1990), given below.

g(z) = (b1z + b2)I{z≤c} + (b3z + b4)I{z>c}, (0.2)

where bi’s and c are unknown parameters to be estimated and IA is an
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indicator function of the set A.

In practice, the first component in model (0.1) could also be nonlinear.

In this case, model (0.1) becomes

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= g1(ααα

TXi) + g2(βββ
TXi), (0.3)

where ‖ααα‖ = 1, ‖βββ‖ = 1 and αααTβββ = 0 for model identifiability, and g1

and g2 are two one-dimensional nonlinear functions which are modelled

by stepwise linear functions through threshold effects as follows:

gk(z) = (bk1z + bk2)I{z≤ck} + (bk3z + bk4)I{z>ck}, k = 1, 2, (0.4)

where bki’s and ck’s are unknown parameters to be estimated. Thus,

(0.3) and (0.4) form an additive threshold index logistic regression (A-

TILoR) model.

• A maximum likelihood methodology is developed to estimate the un-

known parameters in the PL-TILoR and A-TILoR models. Simulation

studies have found that the proposed methodology works well for finite

size samples.

• Empirical studies of the proposed models applied to the analysis of

schizophrenia genomic data from the WA Genetic Epidemiology Re-

source (WAGER) have shown that A-TILoR model is very successful
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in reducing the type I error rate in schizophrenia classification without

even using quantitative traits. It outperforms the generalized linear

logistic model that is widely used in the literature.

7



Contents

Declaration 1

Acknowledgments 2

1 Background: Literature and Problems 16

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Schizophrenia genomic data and classification literature review 18

1.3 Objectives of This Study . . . . . . . . . . . . . . . . . . . . . 26

1.4 Significance of This Study . . . . . . . . . . . . . . . . . . . . 28

2 Analysing schizophrenia data: nonparametric pathway-based

regression and linear logistic regression 32

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Preliminary data handling . . . . . . . . . . . . . . . . . . . . 33

2.3 Analysis by nonparametric pathway-based regression model . 35

2.4 Linear logistic discriminant rule based on preliminary analysis 44

8



3 Threshold index nonlinear logistic regression 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Threshold Index nonlinear logistic regression models . . . . . . 48

3.3 Maximum likelihood estimation . . . . . . . . . . . . . . . . . 54

3.4 Simulation studies: Finite sample performance . . . . . . . . . 57

3.4.1 Simulation model . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Bootstrapping method for estimating the standard deviations

of the estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Analysing schizophrenia data with threshold index logistic

regression model 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Estimated models . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 General schizophrenia SNP dataset with A-TILoR model 71

4.2.2 CD subtype schizophrenia SNP dataset with A-TILoR

model . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Cross-validation performance . . . . . . . . . . . . . . . . . . 80

4.3.1 Comparison between GLM and TLR based on resub-

stitution estimates . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Comparison between TLR and GLM based on cross-

validation prediction . . . . . . . . . . . . . . . . . . . 86

9



5 Conclusions and outlook 98

10



List of Figures

3.1 Boxplot of the estimates of the parameters in g1, α, g2 and β

based on 100 simulations: n = 200. . . . . . . . . . . . . . . . 63

3.2 Boxplot of the estimates of the parameters in g1, α, g2 and β

based on 100 simulations: n = 323. . . . . . . . . . . . . . . . 64

3.3 Boxplot of the absolute errors (AEs) of the estimates of the

parameters in g1, α, g2 and β based on 100 simulations: n = 200. 65

3.4 Boxplot of the absolute errors (AEs) of the estimates of the

parameters in g1, α, g2 and β based on 100 simulations: n = 323. 66

4.1 A-TILoR model for general schizophrenia: The kernel density

for the indices of αTXi’s and βTXi’s with dashed lines for the

thresholds c1 and c2, respectively. . . . . . . . . . . . . . . . . 76

4.2 A-TILoR model for general schizophrenia: The plot of the

functions g1 and g2, respectively. . . . . . . . . . . . . . . . . 77

11



4.3 A-TILoR model for CD subtype schizophrenia: The kernel

density for the indices of αTXi’s and βTXi’s with dashed lines

for the thresholds c1 and c2, respectively. . . . . . . . . . . . 81

4.4 A-TILoR model for CD subtype schizophrenia: The plot of

the functions g1 and g2, respectively. . . . . . . . . . . . . . . 82

12



List of Tables

2.1 Pathway assumptions for the WAFSS schizophrenia data set . 40

2.2 Pathway’s importance ranking for the WAFSS schizophrenia

CD subtype data set . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 SNP importance score of CD subtype for the WAFSS schizophre-

nia data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Important SNPs for schizophrenia selected by NPR model . . 43

2.5 Comparison of class prediction by the NPR model with the

linear logistic model(referred to GLM below) for the WAFSS

schizophrenia data set . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Estimated coefficients b1, b2 and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia data set . . . . . . . . . . . . . . . . . . 73

4.2 Estimated coefficients α , β and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia data set (1) . . . . . . . . . . . . . . . . 90

13



4.3 Estimated coefficients α , β and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia data set (2) . . . . . . . . . . . . . . . . 91

4.4 Estimated coefficients c1, c2 and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia data set . . . . . . . . . . . . . . . . . . 91

4.5 A-TILoR model for general schizophrenia: The components of

α and β whose absolute values are greater than 0.2. . . . . . . 92

4.6 Estimated coefficients b1, b2 and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia CD subtype data set . . . . . . . . . . . 92

4.7 Estimated coefficients α , β and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia CD subtype data set (1) . . . . . . . . 93

4.8 Estimated coefficients α , β and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia CD subtype data set (2) . . . . . . . . 94

4.9 Estimated coefficients c1, c2 and their standard deviations

calculated by bootstrap method in A-TILoR model for the

WAFSS schizophrenia CD subtype data set . . . . . . . . . . . 94

4.10 A-TILoR model for CD subtype schizophrenia: The compo-

nents of α and β whose absolute values are greater than 0.2. . 95

14



4.11 Comparison between GLM and TLR for the general schizophre-

nia data set: Resubstitution Type I and Type II error rates. . 95

4.12 Comparison between GLM and TLR for the CD subtype schizophre-

nia: Resubstitution Type I and Type II error rates. . . . . . . 96

4.13 Comparison between GLM and TLR for the general schizophre-

nia: Cross-validation estimate of schizophrenia predictive ac-

curacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.14 Comparison between GLM and TLR for the general schizophre-

nia: Cross-validation Type I and Type II error rates. . . . . . 96

4.15 Comparison between GLM and TLR for the CD subtype of

schizophrenia: Cross-validation estimate of predictive accu-

racy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.16 Comparison between GLM and TLR for the CD subtype of

schizophrenia: Cross-validation Type I and Type II error rates.

97

4.17 Comparison betwen TLR and GLM for the general schizophre-

nia and the CD subtype: Cross-validation prediction of speci-

ficity and sensitivity. . . . . . . . . . . . . . . . . . . . . . . . 97

15



Chapter 1

Background: Literature and

Problems

1.1 Introduction

Genomics is a major scientific revolution in this century. It is the study of

all the genes of a cell or tissue at the DNA, mRNA or protein levels. High-

throughput genomic data provides an opportunity for identifying pathways

and genes that are related to various clinical phenotypes. To deal with the

sheer volume of genetic data being produced, it requires advanced method-

ological development in biostatistics that is lagging behind the technical ca-

pability to generate genomic data.

In modern molecular biology and genetics, the genome is the entirety
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of an organism’s hereditary information. It is encoded either in DNA or,

for many types of virus, in RNA. The genome includes both the genes and

non-coding sequences of the DNA. A single-nucleotide polymorphism (SNP)

is a DNA sequence variation occurring when a single nucleotide (A, T, C,

or G) differs between members of species. Within a population, SNPs can

be assigned a minor allele frequency — a lesser allele frequency at a locus is

observed in a particular population. In order to conduct quantitative analysis

of SNP variables, SNP data must be first coded as 0-1-2 (or 0/1), depending

on the number of the minor allele frequency (or have/have not the minor

allele frequency), which is a kind of categorical data. In this study, we use

the SNP variables with recoding format of 0-1-2, where 0-1-2 represents the

number of the minor allele frequency on a locus. We will be particularly

concerned with the analysis of schizophrenia genomic data.

In this research, we will focus on data mining of high-dimensional SNP

data sets and developing new methodologies of classification. We will apply

the statistical methodologies developed to the analysis of the schizophrenia

SNP data, empirically investigating the performance of the new classifica-

tion models. Before doing this, we first review some related background

knowledge and literature.
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1.2 Schizophrenia genomic data and classifi-

cation literature review

Schizophrenia is a mental disorder characterized by a disintegration of thought

processes and of emotional responsiveness. It is accompanied by significant

social or occupational dysfunction. The onset of symptoms typically occurs

in adolescence or young adulthood. With a lifetime risk of about 1%, over

50% of those affected develop chronic disabilities and nearly all experience

a diminished quality of life. The current diagnosis procedure is based on

observed behavior and the patient’s reported experiences (ICD-10 and DSM-

IV). Schizophrenia is one of the genetically complex disorders, with heri-

tability at about 80% and likely multiple genes of small to moderate effect,

as well as a host of enironmental influences. Notwithstanding availability

of powerful techniques of genetic analsis, such as whole-genome association

studies, the basic problem of “connecting phenotype with the genotype” in

schizophrenia remains unresolved. The argument about whether schizophre-

nia is a single disease or a collection of pathogenetically distinct subtypes

goes back to the inception of the diagnostic concept at the turn of the 20th

century. E. Bleuler (1920) emphasized that “It is not a disease in the strict

sense, but appears to be a group of disease. Therefore, we should speak of

schizophrenias in the plural.”
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WAFSS (Western Australian Family Study of Schizophrenia) endorses

the hypothesis that the syndrome of schizophrenia comprises several sub-

types that could be delineated by objective endophenotype measurements of

brain function and by exploring their genetic underpinnings. A core aim of

the Western Australian Family Study of Schizophrenia (WAFSS), since its

inception in 1996, is to address the problem of heterogeneity in Schizophrenia.

The WAFSS case-control study has been lasting more than a decade.

The study is still continuing today. WAFSS study population includes 496

Western Australians of European descent. There are 325 members affected by

schizophrenia (cases), and 171 population controls. The controls, recruited

from a list of Red Cross blood donors or by random sampling from local

telephone directories, were screened for psychopathology. For those if they

or any of their first-degree relatives had been diagnosed with schizophrenia or

bipolar affective disorder, they were excluded. Written informed consent was

obtained from every participant. The study has complied with the ethics

guidelines of the institutions involved. Genotyping was conducted on 23

selected genes according to neurological knowledge and research interests. A

total of 1022 SNPs was found, which means that the data set volume reaches

1022*500. Through WAFSS’s co-operations with the Welcome Trust in the

UK to expand genotyping into whole genome, the number of genomic data

will soon be doubled.

In 2005, WAFSS identifies a homogeneous familial subtype of the disease,
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referred to as “cognitive deficit” (CD) subtype. Another markedly contrast-

ing subtype, “cognitively spared” (CS), exhibits high performance on ma-

jority of cognitive tasks. WAFSS uses grade of membership (GoM) analysis

(Woodbury et al. 1978; Manton et al. 1994) to analyze the test results,

with control individuals providing the baseline data. GoM is a form of la-

tent structure analysis, directed at defining a parsimonious number of latent

groups or patterns of responses (representing, e.g., biological phenotypes)

from complex data sets, and allowing individuals to resemble each group to

varying degrees (rather than classifying them into mutually exclusive clus-

ters, as done in standard latent class analysis). Using the individual-level

GoM coefficients, they classify the schizophrenia into three subtypes: CD,

CS and non-CD/CS. Although CD subtype is originally identified via pheno-

types, further genotype studies like whole-genome scan and linkage analysis

suggest this subtype characterizes a genetically distinct schizophrenia sub-

type that accounts for the linkage of schizophrenia to chromosome 6p25-24

region (see Hallmayer et al. 2005). In their study, CD subtype constitutes

up to 50% of sample population.

An important part of the WAFSS project is statistical analysis of schizophre-

nia SNP dataset. WAFSS uses the generalized linear model-based method

to examine each SNP for association with disease outcome at the genotype

level. Risk is expressed as odds ratio (OR), which is a useful measure of as-

sociation between some risk factor and disease (see Thomas, 2004, page 70),
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with 95% confidence limit and associated p-value. The logistic regression is

used to identify SNPs combinations within each gene to predict schizophrenia

outcome and CD trait variation. Shortcoming of the individual gene analysis

will be discussed in Section 3 of this Chapter.

A medical diagnosis is an attempt at classification. In statistics, classi-

fication methods can be dated back as early as 1930’s. It was first applied

in eugenics in 1935 by M. Barnard at the suggestion of R.A. Fisher. Fisher

linear discriminant analysis (FLDA) is based on ratios of between-groups to

within-groups sum of squares. This criterion is intuitively appealing. How-

ever, because genomic data has small number of sample but a fairly large

number of genes, the matrices of between-groups and within-groups sum of

squares may be quite unstable, leading to poor estimates of the corresponding

population quantities. See Dudoit et al. 2002.

Other classical multivariate statistical discrimination approaches include

the nearest neighbour classification and the Maximum likelihood discriminant

rule. Both of them are known to perform well for the classification of tumours

using gene expression data (Dudoit et. al. 2002). The nearest neighbour

classification is a popular nonlinear classifier, which is developed for the

measure of distance between observations. The K-nearest neighbour rule (Fix

and Hodge (1951)) first finds K nearest neighbours of the unknown vector

from the training vectors. Then, the unknown vector is assigned to the class

which appears most frequently in the vectors identified in the previous step.
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The maximum likelihood classifier (ML) predicts the class of an obser-

vation X such that the largest likelihood to X is obtained. If we assume

that the conditional density for each class is multivariate Gaussian, then the

ML discriminant rule reduces to the Quadratic discriminant analysis (QDA).

Depending on the character of covariance matrices, there are two variants of

the QDA——the Diagonal quadratic discriminant analysis (DQDA) and the

Diagonal linear discriminant analysis (DLDA). Golub et al. (1999) propose

a “weighted gene voting scheme” which turns out to be a variant of a special

case of DLDA by Dudoit et al. (2002). It is worth mentioning that the work

of Golub et al. (1999) is the first application of a discriminant rule to gene

expression data, separating out two different but clinically indistinguishable

types of leukaemia, ALL and AML. Modern machine learning algorithms pro-

vide sophisticated approaches to estimate the decision boundary or the distri-

bution parameters. By treating the data mechanism as unknown, algorithmic

modelling created another culture in the use of statistical modelling to reach

conclusions from data (Breiman 2001). Recursive Partitioning is a statisti-

cal technique that forms the basis for two classes of nonparametric regression

methods: classification and regression trees (CART) (see Breiman, Friedman

etc. (1984)), and Multivariate Adaptive Regression Splines (MARS). CART

consists of three main aspects to the tree construction: (a) selection of the

splits, so that the data in each of the descendant subsets are “purer” than the

data in the parent subset; (b) the decision to declare a node terminal, which
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is done using cross-validation to “prune” the tree; and (c) the assignment

of each terminal node to a class. Breiman (1996, 1998) finds that gains in

accuracy could be obtained by aggregating predictors built from perturbed

versions of the learning set. There are two main classes of methods for gen-

erating perturbed versions of the learning set: bagging ( L. Breiman. 1996)

and boosting (Freund et. al. 1997). They have gained popularity in building

predictive models and identifying genes that are related to clinical pheno-

types (Dettling et al. 2003; Li and Luan, 2005). Random forest (Breiman,

2001) consists of a large number of randomly constructed trees, each voting

for a class. The forest is grown by perturbing the training set, growing a

tree on the perturbed training set, perturbing the training set again, grow-

ing another tree, etc. It is a more accurate predictor than CART, but less

interpretable. Other popular machine learning approaches include support

vector machines (SVM) (Guyon et al. 2002; Mclachan et al., 2004), near-

est shrunken centroids (NSC) (Tibshirani et al., 2002, 2003; Sharma et al.,

2005) and neural networks (Khan et al. 2001). They are used in building

predictive models, and studies often suggest lists of the genes likely to be

involved in a disease. Medical diagnosis is a particularly fruitful area of ap-

plication for statistical classification (Hand D.J. 1981). The methods have

been applied to the assessment of the prognostic value of tests of lung func-

tion in miner with pneumoconiosis, to predicting Ischaemic heart disease, to

predicting relapse in pulmonary tuberculosis sufferers, etc. With new high-
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throughput genomic data now available, the discriminant analysis is useful in

a new variety of settings. Also, class predictors can be constructed for known

pathological categories and provide diagnostic confirmation or clarify unusual

cases. Most importantly, the technique of class prediction can be applied to

distinctions relating to future clinical outcome. For instance, Hedenfalk et

al.(2001) compared gene expression profiles for two types of hereditary breast

cancer (BRCA1 mutation and BRCA2 mutation) and found that distinctly

different groups of genes are expressed by the two types, suggesting that a

heritable mutation affects the gene expression profile of the cancer.

To dissect genetic predisposition to phenotypic traits, many studies as-

semble hundreds of SNPs in a panel of candidate genes presumably involved

in regulating the underlying biologic mechanism. Involvement of multiple

genes in each pathway suggests the importance of studying both main effects

and interactions.

Wei and Li (2007) propose a novel nonparametric pathway-based regres-

sion model (NPR) for the analysis of genomic data. They assume that

the phenotype is related to the total activity level across multiple pathways

through an additive model,

F (x) =
K∑

k=1

Fk(x
(k)), (1.1)

where Fk(x
(k)) can be interpreted as the activity level associated with the
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kth pathway as determined by the genomic measurements of the pk genes

in this pathway. For a binary phenotype such as disease status or normal

versus cancerous tissues, they assume a logistic model for Y ,

Pr(Y = 1|x, Z) =
exp(2(F (x) + γZ))

1 + exp(2(F (x) + γZ))
, (1.2)

where Y = 1 for diseased individual and Y = −1 for normal individual, while

Z is the vector of other patient-specific covariates which is modelled paramet-

rically with coefficient γ. To obtain an additive model in the form of (1.1),

they propose to use regression trees as base learners, and a pathway-based

gradient descent technique (Friedman, 2001) as the boosting algorithm. In

such an NPR model, known biological pathways are treated as first-level re-

gression units, which provide a nice biological interpretation of the resulting

regression models. More importantly, using real breast cancer gene expres-

sion datasets, this model outperforms several other well-known classifiers

including SVM, Logistic regression, Random Forest, Bagging, Nave Bayes

and Neural Network.

In the WAFSS proposal of the year 2007, it was written: “We will use

the nonparametric pathway regression approach of Wei and Li in addition

to the methods described above. The method explicitly incorporates bio-

logical pathway information and combines both regression tree and boosting

approaches to generate association models, with gene-specific and pathway-
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specific importance scores.” This will be discussed in Chapter 2.2.

1.3 Objectives of This Study

In this thesis, following the idea suggested in the analysis of functional mod-

ules proposed by WAFSS, we consider a new way of predicting schizophrenia

outcome and CD trait variation. Although WAFSS’s proposal and Wei and

Li’s approach are reasonable judging from the datasets they have analysed,

their methods still suffer from some obvious shortcomings:

• Firstly, schizophrenia is a genetically complex disease, meaning that

multiple genes have small to moderate effects on the determination of

schizophrenia. Therefore, the individual gene analysis that is currently

used in WAFSS study is not suitable for the classification of schizophre-

nia and CD trait variation.

• Secondly, to characterize the genetically complex features, Wei and Li

(2007) propose to use the regression-tree-based nonparametric pathway

regression (NPR) model. It has been examined using simulated SNP

datasets and real gene expression datasets, but not real schizophre-

nia SNP datasets. Because of its ordinal/categorical characteristics, a

SNP dataset is totally different from gene expression data sets, which

are naturally continuous. Also, in their original paper, the perfor-

mance of NPR model used in SNP selection was compared with other
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machine learning methodologies only. We will show that Wei and Li’s

NPR model does not characterise well the genetically complex nature of

schizophrenia SNP datasets. It performs even worse than the classical

linear logistic regression model (see Chapter 2).

• Thirdly, linear logistic regression is a widely used approach to handling

binary outcome datasets. Obviously, it cannot characterise the nonlin-

ear features of genetical complexity. Based on logistic transformation,

it is important to propose a new model that can capture the complex

characters of SNP datasets. This is what we are pursuing.

In this thesis, our main objectives are to investigate SNPs, leading to

the determination of schizophrenia and the prediction of the possibility of a

person who may develop schizophrenia or schizophrenia CD subtype purely

according to his/her genotype information. More specifically, we are con-

cerned with the following points:

• What is the performance of the NPR model on the schizophrenia SNP

datasets? Does it characterise well the nonlinear complexity of the

schizophrenia from the perspective of prediction? If not, could we

develop more efficient and effective models for such an objective?

We will show, in Chapter 2, that the performance of Wei and Li’s NPR

model is even worse than the linear logistic regression model on the

schizophrenia SNP datasets. We will propose a new class of nonlin-
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ear logistic regression models, called threshold index logistic regression

(TILoR), in Section 3.2 of Chapter 3.

• How do we estimate the unknown parameters in the newly proposed

models? This is a fundamentally important question in applications. A

maximum likelihood estimation procedure will be suggested in Section

3.3 of Chapter 3. The performance of the estimators will be investigated

via Monte Carlo simulation in Section 3.4 of Chapter 3.

• What benefits can be achieved by establishing a TILoR statistical ap-

proach to the schizophrenia SNP datasets? Empirical experiment will

be carried out in Chapter 4, using the schizophrenia SNP data. Com-

parison with the linear logistic regression model will be addressed in

Chapter 4.

We concluded with some suggestions for future research directions in

Chapter 5.

1.4 Significance of This Study

To date, schizophrenia diagnosis procedure is based on observed behav-

ior, patient and doctor SCAN interview, and the patient’s reported expe-

riences (ICD-10 and DSM-IV). Using the TILoR models we develop, we will

show that cross-validation predictive accuracy rates of about 70% for gen-
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eral schizophrenia and 80% for schizophrenia CD subtype can be achieved

by utilising only the genotype information (see Chapter 4). Some significant

points of our research are summarised as follows.

• In this thesis, we will extend the idea of threshold (auto)regression that

was suggest by Tong (1983,1990) in nonlinear time series analysis to

the nonlinear genomic analysis of SNP data that are of categorical na-

ture. On this basis, we propose a new class of threshold index logistic

regression (TILoR) models. Using this new framework of logistic re-

gression with schizophrenia data sets, we find that the TILoR models

can well capture the genetically complex features of the schizophrenia

SNP datasets in terms of the cross-validation predictive accuracy rates.

• Our TILoR schizophrenia prediction is based on SNP genotype data

alone, meaning that only a drop of blood taken from a case or control

participant will be sufficient for genotyping used in our model. The final

TILoR model involves about 40 SNPs on 12 genes, which dramatically

reduces the costs of genotype and therefore, the costs of the prediction.

• The result of 70% accuracy of the cross-validation prediction with our

TILoR models for general schizophrenia is quite close to the 80% broad

heritability of schizophrenia, which, according to the experts’ view from

WAFSS, is an upper limit of the prediction accuracy using genotype

data alone. Also, using our TILoR models, the specificity and sensi-
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tivity for general schizophrenia prediction are 67.84% and 71.3%, re-

spectively. Note that sensitivity and specificity are statistical measures

of the performance of a binary classification test, and sensitivity mea-

sures the percentage of sick people who are correctly identified as hav-

ing the condition while specificity measures the percentage of healthy

people who are correctly identified as not having the condition (c.f.,

http://en.wikipedia.org/wiki/Sensitivity and specificity). As to newly

discovered schizophrenia CD subtype, it is a more genetically signifi-

cant subtype with severe cognitive deficit. Although there is no med-

ical research findings about the broad heritability for CD subtype, it

is expected that the figure would be higher than 80%. Our research

findings corroborate this expectation. The results of our TILoR mod-

els for CD subtype are about 10% better than general schizophrenia:

cross-validation predictive accuracy 81.93%, specificity 87.14% and sen-

sitivity 76%. It should be emphasized that specificity and sensitivity

accuracy figures are more important than the overall accuracy of pre-

diction in medical practice. If a classification model have good results

for both specificity and sensitivity, it will certainly have a good predic-

tion accuracy rate. However, a not bad prediction accuracy rate can

not guarantee acceptable specificity and sensitivity accuracy rates. All

the comparisons from the perspective of these quantities show that our

proposed TILoR models have made significant improvement over the
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logistic linear regression and the NPR model of Wei and Li (2007) in

the schizophrenia prediction based on SNPs from 23 genes.

Our new findings have the potential to become a part of medical diag-

nostic process. It should be noticed that medical diagnosis in psychiatry is

problematic. Apart from the fact that there are differing theoretical views

toward mental conditions, there are few lab tests available for various ma-

jor disorders. Being a readily available and relatively low cost lab test in

genotyping, our findings are outstandingly accurate.
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Chapter 2

Analysing schizophrenia data:

nonparametric pathway-based

regression and linear logistic

regression

2.1 Introduction

In this chapter, we first examine the performance of the analysis of the

schizophrenia data sets that we introduced in Chapter 1 by applying the

nonparametric pathway-based regression (NPR) model proposed by Wei and

Li (2007) and the popular generalized linear (logistic) regression model. Al-
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though NPR is a kind of tree-based nonlinear model, we will show that it

cannot well capture the nonlinear features existed in the schizophrenia data

sets. In fact, we will note that the popular generalized linear (logistic) re-

gression model outperforms the NPR model in analysing the schizophrenia

data sets.

2.2 Preliminary data handling

The research on statistical analysis of genomic data in this thesis focuses on

a large comprehensive schizophrenia dataset. The whole dataset (WAFSS)

was collected in WA over a period of more than 10 years, originally as a

family study but later changed to a case-control study. A comprehensive

examination of the role of the genetic variation of this dataset is a four-year

project of WAFSS, which has already lab genotyped more than half a million

genetic data, and through co-operations with the Welcome Trust in the UK,

the genomic data is expected to be doubled.

After having access to the original dataset, it is required to “clean” and

recode it before any further analysis can be carried out. This means that

we need to eliminate the samples that are not genotyped and group sub-

jects according to their phenotypes. After that, a sample consisting of 496

individuals (325 cases and 171 controls) is obtained. For each individual,

this research focuses on 1022 single nucleotide polymorphisms (SNPs) data
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in 23 genes. Then, we calculate the allele frequency of each SNP in the con-

trol population and decide which allele is the minor allele for each SNP in

WAFSS population. We numerically recode genotypes into three categories,

named 0, 1, 2, according to the number of minor allele frequency of a SNP

for all the samples. Occasionally for some very few individuals, some SNPs

can not be detected. In that case, we replace them with category 0. This

replacing is basically reasonable for ease of the analysis of the data sets. The

reasons are as follows. Firstly, 0 is the most probable status among the three

SNP categories. Secondly, the ratio of the number of the missing values in

the data sets analysed is very low. For example, the general schizophrenia

data set analysed in Chapter 4 has only 11 missing values, the missing ratio

of which is as low as 0.0005544355, and the CD subtype there has only 7

missing values with the missing ratio 0.0005556879.

We start our research from OR (odds ratio) χ2 test for 1022 SNPs. Odds

ratio is a useful measurement of association between risk factor and disease.

In our case, the risk factor is the absence or presence of a minor allele (SNP

recoded as zero or not zero accordingly). And the disease is schizophrenia or

schizophrenia CD subtype. If the odds ratio of an individual SNP equal to

one, that equivalents to the independence between the SNP and the disease.

For details, the reader is referred to Pages 70–71 of Thomas (2004). A

very significant OR P-value is a criterion that is widely used in Biology and

Medical science. Biologists start from OR test then proceed to other Genetic
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Epidemiology studies like Genome-wide association study. In this research,

we start from the OR analysis then proceed to statistical model building. We

make a preliminary selection of significant SNPs according to the p-value of

the OR for schizophrenia and schizophrenia CD subtype. Then the selected

SNPs are used in our proposed TILoR model and linear logistic regression

model.

2.3 Analysis by nonparametric pathway-based

regression model

Nonparametric pathway-based regression model (NPR model) proposed by

Zhi Wei and Hongzhe Li in 2007 (Li et.al. 2007) is a novel approach that the

WAFSS group is particularly interested in. The WAFSS group is attracted

by the NPR method because it can explicitly incorporates biological path-

way information. The model combines both regression tree and boosting

approaches to generate association models, with gene-specific and pathway-

specific importance scores.

NPR model assumes that phenotype is related to the total activity level

across multiple pathways through an additive model,

F (x) =
K∑

k=1

Fk(x
(k)), (2.1)
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where Fk(x
(k)) : Rpk 7→ R can be interpreted as the activity level associated

with the kth pathway as determined by the genomic measurements of the pk

genes in this pathway. For a binary phenotype such as disease status (for

example, normal versus cancerous tissues), they assume a logistic model for

Y , i.e.,

Pr(Y = 1|x, Z) =
exp(2(F (x) + γZ))

1 + exp(2(F (x) + γZ))
, (2.2)

where Y = 1 for diseased individual and Y = −1 for normal individual, Z is

the vector of other patient-specific covariates which is modelled parametri-

cally with coefficient γ. To obtain an additive model with the form of (2.1),

Wei and Li (2007) propose to use the regression trees as base learners, and a

pathway-based gradient descent technique (Friedman, 2001) as the boosting

algorithm. The goal is to estimate the function F : Rp 7→ R, minimizing an

expected loss function E[`(Y, F (X))], where `(·, ·) is a loss function and p is

the dimension of X that is less than or equal to
∑K

k=1 pk. Estimation of such

an F (·) from data, {(yi, xi), i = 1, 2, · · · , n}, can be done via a constrained

minimization of the empirical loss

n−1
n∑

i=1

`(yi, F (xi)), (2.3)

by functional gradient descent, where `(yi, F (xi)) is the loss function for the

ith observation (yi, xi). For binary disease status, the loss function is defined
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as (c.f., Wei and Li, 2007)

L(y, F (x)) =
n∑

i=1

`(yi, F (xi)) =
n∑

i=1

log(1 + exp(−2yiF (xi))). (2.4)

Pathways-based gradient descent boosting (GDB) procedure reads as follows:

1. Initialization: F (0)(x) = 0, F
(0)
k (xk) = 0, k = 1, 2, · · · , K

Repeat boosting steps for m = 1 to M , do:

2. calculating the gradients

ỹi = 2yi/(1 + exp(2yiF
(m−1)(xi)));

3. Fitting trees to the gradient vector using x(k): let hk(x
(k)
i ; α) be the

base learner procedure,

(α(k), β(k)) = arg min
α,β

n∑

i=1

[ỹi − βhk(x
(k)
i ; α)]2, k = 1, · · · , K;

let k∗ = arg mink
∑n

i=1[ỹi − β(k)hk(x
(k)
i ; α(k))]2.

4. Line search over ρ for the pathway k∗ selected in Step 3,

ρm = arg min
ρ

n∑

i=1

L(yi, F
(m−1)(xi) + ρhk(x

(k∗)
i ; α(k∗))).
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5. Updating the function with ν being the learning rate,

F
(m)
k∗ (x(k∗)) = F

(m−1)
k∗ (x(k∗)) + νρmhk∗(x

(k∗)
i ; α(k∗))),

F (m)(x) = F (m−1)(x) + F
(m)
k∗ (x(k∗)).

Wei and Li (2007) propose to apply the cross-validation on the error rates

for the logistic model to determine the number of boosting steps M . After

M is determined and the function F (·) (a linear combination of trees) is

estimated, the issue of identifying important pathways and genes is assessed

by calculating the importance scores.

First, for the influence of each gene, the importance score using the trees

constructed on the kth pathway is:

Îlk =
1

Mk

Mk∑

m=1

I2
l (Tmk), (2.5)

where Mk is the number of times that the kth pathway was selected in Step 3

of the proposed pathway-based boosting algorithm, and Tmk is the mth tree

built based on the kth pathway. Here I2
l (T ), for a single tree T , is defined in

the form (Breiman et al. 1984)

I2
l (T ) =

J−1∑

t=1

î2t I(v(t) = l),
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as a measurement of relevance for each predictor variable Xl for the tree T

with J nodes, where the sum is over the J − 1 internal nodes, I(·) is an

indicator function and v(t) is the splitting variable associated with the tth

node, and î2t is the empirical improvement in squared error risk as a result

of a split at node t over the J − 1 internal notes of the tree; see Wei and Li

(2007, section 3.2) for details.

Second, for each pathway, the average of importance scores for genes

selected within a pathway, Wei and Li (2007) assign it as the pathway im-

portance score used as a measure of importance of the pathway to the phe-

notype. The most influential variable or pathway is given a score of 1, and

the estimated importance scores of others are scaled accordingly.

Professor Luba Kalaydjieva from the Western Australian Institute for

Medical research suggests the following biological pathway assumption for

the WAFSS data set: Schizophrenia, specifically patients with a cognitive

deficit, may result from impaired brain development (neuronal migration and

synapse development) and/or impaired function of the adult synapse (plas-

ticity) and that our network, containing a large number of genes encoding

physically interacting proteins may be involved in schizophrenia pathogenesis

- in terms of individual gene effects or multiple effects and interactions, to-

gether with three pathways showing the biological interactions between these

genes. We rewrite these pathway information/assumptions in Table 2.1 be-

low.
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Table 2.1: Pathway assumptions for the WAFSS schizophrenia data set

Synaptic Plasticity Neuronal SNP
organization migration number

ApoE 1 1 0 4
ApoER2 1 1 1 31
ATF4 1 0 0 5
ATF5 1 0 0 8
BDNF 1 1 0 10
CDK5 0 0 1 4

CITRON 1 0 0 30
DAB1 1 1 1 271
DCX 0 0 1 2

DISC1 1 1 1 125
DLG2 1 1 0 173
DLG4 1 1 0 9
FEZ1 1 0 0 13
LIS1 0 0 1 8

MAP1A 1 0 0 3
NUDE 0 0 1 10
NUDEL 0 0 1 6
PDE4B 0 1 0 77
RELN 1 1 1 170

VLDLR 1 1 1 29
Sum 14 10 10 988
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As listed in Table 2.1, the names of the three pathways are synaptic

organization, plasticity, and neuronal migration. If a gene is considered

as part of some pathway, it will be assigned as 1, otherwise 0. The total

SNP numbers involved in the three pathways are 988. From Li’s website

(http://www.cceb.upenn.edu/ hli/NPR), the R codes for implementing the

NPR model can be downloaded.

We start from schizophrenia CD subtype. After customizing the R codes

for the WAFSS schizophrenia CD subtype data and the Luba’s pathways

assumption, we obtain:

1. Pathway’s importance ranking, given in Table 2.2.

Table 2.2: Pathway’s importance ranking for the WAFSS schizophrenia CD
subtype data set

Pathway Relative Importance
Synaptic organization 1

Plasticity 0.942699
Neuronal migration 0.353067

From Table 2.2, we see that synaptic organization is the pathway that

is most associated with schizophrenia CD subtype. According to Pro-

fessor Luba’s view (personal communication), the result obtained is

reasonable and helpful in the understanding of the CD subtype path-

ways.
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Table 2.3: SNP importance score of CD subtype for the WAFSS schizophre-
nia data set

Gene SNP RI score
DISC1 rs999710 1
DAB1 rs486706 0.777193
DLG2 rs790379 0.633021
DAB1 rs694060 0.467058
DISC1 rs2772122 0.418253
DAB1 rs852773 0.412278
DISC1 rs2806465 0.263882
DLG2 rs485199 0.255886
RELN rs2283029 0.244975
RELN rs2711881 0.228626
DAB1 rs534455 0.22041
DISC1 rs4658890 0.203394
BDNF rs283531 0.199595
APOE rs439401 0.14177
DLG4 rs17203281 0.126849
RELN rs802787 0.122482
RELN rs661575 0.116015

VLDLR rs1454626 0.112308
ApoER2 rs3737983 0.104825

2. SNP importance score for CD subtype, given in Table 2.3.

In Table 2.3, SNPs:rs999710, rs2806465, rs439401, rs17203281, rs1454626

and rs3737983 are cited by other medical research papers as related to

various diseases (not necessary schizophrenia alone). We can see that

NPR model does select some “hot” SNPs from a pool of 988 SNPs.

We then proceed from CD subtype to schizophrenia. Similar results have
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Table 2.4: Important SNPs for schizophrenia selected by NPR model

Gene SNP Gene SNP
APOE rs439401 CITRON rs2991515

APOER2 rs2297660 DISC1 rs999708
CITRON rs1077451 DLG2 rs790379
CITRON rs7960673 DLG4 rs1165023
CITRON rs534455 RELN rs1024805
CITRON rs694060 RELN rs1149612
CITRON rs267647 VLDLR rs1454626

been obtained. The synaptic organization pathway is the pathway most asso-

ciated with schizophrenia and the plasticity pathway comes second. Impor-

tant SNPs for schizophrenia selected by NPR model are listed in Table 2.4:

The analysis carried out using the NPR model as mentioned above does

give biologists the pathway importance assessment and the SNP selection

that they are interested in. However, the final estimate of the function F (·)
in (2.1) is a linear combination of regression trees. It is very much like a

”black box”: we know the input and the output, but we do not know what

the black box is. Biologists in WAFSS are not satisfied with the black box

F (·).
Classification is the central topic of this thesis. It is closely linked to

medical diagnosis. If we select the most-associated 12 SNPs (RI score from

1 to 0.2033 in Table 2.3) using the linear logistic model (i.e.F (·) in (2.2) is

taken as linear) for CD subtype class prediction, the sensitivity is calculated
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to be 58.55%, while specificity is 41.52%. A theoretical optimal prediction

aims to achieve 100% sensitivity and 100% specificity. Therefore, using SNPs

selected by NPR model in Table 2.3 as a group to explain schizophrenia is

quite disappointing because specificity is even under 50%, while sensitivity

is only slightly over 50%. The results for general schizophrenia prediction

seem a bit better. Using important SNPs for schizophrenia selected by NPR

model in Table 2.4, the sensitivity is 89.23% but specificity is 32.75%, which

is still too low. See Table 2.5 for the details.

Although the NPR model successfully selects some important SNPs, the

combination of these important SNPs used in disease status prediction is

not satisfactory. How to select a group of SNPs that can give a reasonable

prediction of schizophrenia risk remains unsolved.

2.4 Linear logistic discriminant rule based on

preliminary analysis

As mentioned before, we have calculated the odds ratio for all 1022 SNPs

using our R codes written at the preliminary analysis stage. Further research

has been done based on reducing the number of variables by SNPs selection.

In the sense of Biology, if a SNP is selected in the regression model without

meeting the criterion of the OR p-value being less than 0.05, then it is hardly

convincing at all. For the schizophrenia and the CD subtype, 40 respective

44



SNPs are selected and they are used as regression variables.

We then use stepwise linear logistic regression via backward elimination

(i.e. F (·) in (2.2) is taken as linear) procedure to further reduce the number

of variables. In order to compare with the NPR model on CD subtype disease

status prediction, we stop the variable selection when there are 12 variables

(SNPs) being selected in the logistic model. Based on such a selected model,

the sensitivity of the prediction is calculated, yielding 65.7%, while specificity

is 73%. These represent a significant improvement over the NPR model,

where the sensitivity is 58.55% and the specificity is 41.52%.

We further proceed to apply the stepwise logistic regression method on

general schizophrenia. Again, we stop the variable selection when the number

of variables is reduced to 12 variables. The sensitivity of the schizophrenia

prediction obtained is 89.53% and the specificity is 35.67%. See Table 2.5

for the details.

Table 2.5: Comparison of class prediction by the NPR model with the linear
logistic model(referred to GLM below) for the WAFSS schizophrenia data
set

Data Measure NPR GLM
CD subtype Sensitivity 58.55% 65.7%

Specificity 41.52% 73%
general schizophrenia Sensitivity 89.23% 89.53%

Specificity 32.75% 35.67%
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In Table 2.5, we can see that the linear logistic discriminant rule(GLM)

outperforms the NPR model on disease status prediction using SNP geno-

type. However, it is noted that the specificity of the linear logistic discrimi-

nant rule on general schizophrenia prediction is only 35.67%, even less than

50%. Therefore, it is still not a satisfactory predictor. This motivates us to

propose a new model for class prediction. It is called the threshold index

models and it will be discussed in the next chapter.
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Chapter 3

Threshold index nonlinear

logistic regression

3.1 Introduction

As indicated in Chapter 2, Wei and Li (2007)’s NPR model cannot char-

acterise satisfactorily the genetically complex nature of schizophrenia SNP

datasets. It performs even worse than the linear logistic regression model.

Obviously, the linear logistic regression cannot characterise the nonlinear fea-

tures of genetical complexity. Therefore, it is important to propose a new

model that can capture the complex characters of SNP datasets.

In this chapter, a new class of threshold index logistic regression (TILoR)

models, including partially linear and additive TILoR models, is proposed.
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This model aims at capturing the nonlinear effects from SNP data. For SNP

data, we shall determine which SNP should enter into the regime indices of

the model and what nonlinear form should be used in the model through

threshold approximation. This nonlinear model for SNP selection is gener-

ally verifiable and is also much easier to obtain than using the combination

of the phenotype and genotype variables. This happens because the pheno-

type requires participants to answer many complicated and time-consuming

questionnaires.

The new models will be introduced in Section 3.2, the maximum like-

lihood estimation for the proposed models is provided in Section 3.3, and

the finite sample performance of the suggested estimators for the proposed

models is studied in Section 3.4.

3.2 Threshold Index nonlinear logistic regres-

sion models

Logistic linear regression models are based on a fundamental assumption that

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= a + bTXi, (3.1)

which is a linear function of the p regressor variables Xi = (Xi1, · · · , Xip)
T .

It has been shown that this class of models is useful in modelling the main
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effects of the gene expression data. However, it cannot capture the complex

nonlinear interaction effects among the genes. General tree regression mod-

els belong to a class of nonlinear models which is used in the biostatistics

literature (see, for example, Zhang and Singer, 1999) to characterise such

nonlinear interactions. However, this class of models is too general to re-

veal specific relationships that are available. This is particularly so when the

dimension, p, of X is very high.

Different from the linear models, many semiparametric nonlinear models

have been proposed to approximate the nonlinear case when the regressor

variables are continuous. See, for example, Fan and Gijbels (1996). As

an example, let X = (X1,X2), where X2 consists of continuous random

variables. Thus, we consider a partially linear logistic regression model in

the form of

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= α̃ααTX1,i + g̃(X2,i). (3.2)

Partially linear regression is very popular in many applications; see e.g.,

Hardle, Liang and Gao (2000) and You and Zhou (2007). In model (3.2),

X1 and X2, which are the sub-vectors of X, are of dimensions p1 and p2,

respectively, and α̃αα is a parameter vector of dimension p1, and g̃ is a p2-

dimensional nonlinear function which is estimated by some nonparametric

methods. If the dimension p2 is greater than 3, it may still suffer from the

curse of dimensionality and some further semiparametric structure can be
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applied. Fan et al. (1997) propose the generalised partially linear index

models, which are in the form of the logistic case given below (see also Yi et

al., 2009),

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= α̃ααTX1,i + g̃(β̃ββ

T
X2,i), (3.3)

where β̃ββ is an index vector of dimension p2 satisfying ‖β̃ββ‖ = 1 for model

identifiability, and g̃ becomes a one-dimensional nonlinear function circum-

venting the curse of dimensionality. These models allow us to more effectively

deal with nonlinear behaviour for the continuous X2. The variables taking

discrete values are categorised into X1 modelled in the linear form. This

means that for categorial regressor variables like SNP data, we can not apply

the above models to capture the nonlinear interaction effects in the SNPs.

In this chapter, we therefore propose two kinds of nonlinear models, where

the nonlinear effects for SNP data that are categorial are to be captured.

In models (3.2) and (3.3) it is assumed in advance that which regressor

variables will enter the models in the form of linear function and nonlinear

function, respectively. In our models, variables which are to enter in the

form of a nonlinear function so as to capture the nonlinear effects in categorial

regressors are determined by data, and the nonlinear function in the stepwise

linear form is also determined from the data. We will model the nonlinear

effects by applying the idea of the threshold models of Tong (1990). One of

the proposed models, which is referred to as partially linear threshold index
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logistic regression (PL-TILoR) model, is as follows:

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= αααTXi + g(βββTXi), (3.4)

where ααα and βββ are p-dimensional unknown parameters with βββ being an index

vector satisfying ‖βββ‖ = 1. Suppose that Xi is a continuous random vector.

In this case, the model could be seen as a generalized version of the extended

partially linear single-index model of Xia et al. (1999), with αααTβββ = 0 for

model identifiability, where g is estimated nonparametrically. However, we

note that the SNP data is categorical, i.e., Xi is not a continuous random

vector, rather its components are all categorical (for details, see Chapter 4).

Thus, the methodology developed by Xia et al. (1999) cannot be applied here.

It is differently from the traditional tree regression for which it is directly

applicable to the regressor vector Xi (c.f., Wei and Li 2007; Zhang and Singer

1999). However, the traditional tree regression may suffer from the curse of

dimensionality and may perform even worse than the linear model as showed

in Chapter 2. we propose to apply the idea of tree regression to the function g

in (3.4), which is a one-dimensional nonlinear function. More specifically, we

model g as a stepwise linear function through threshold effect (Tong, 1990)

given by

g(z) = (b1z + b2)I{z≤c} + (b3z + b4)I{z>c}, (3.5)

where bi’s and c are unknown parameters, which are to be estimated, and IA
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is an indicator function of the set A. Therefore, model (3.4) can be expressed

as:

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= αααTXi + (b1βββ

TXi + b2)I{βββT Xi≤c}

+ (b3βββ
TXi + b4)I{βββT Xi>c}, (3.6)

with ‖βββ‖ = 1, αααTβββ = 0, and the first non-zero component of βββ being positive,

for model identifiability.

In practice, the first component could also be nonlinear. In this case,

model (3.4) becomes

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= g1(ααα

TXi) + g2(βββ
TXi), (3.7)

where ‖ααα‖ = 1, ‖βββ‖ = 1, αααTβββ = 0, and the first non-zero components

of ααα and βββ are positive, for model identifiability, and g1 and g2 are two

one-dimensional nonlinear functions which are modelled by stepwise linear

functions through threshold effects as follows:

gk(z) = (bk1z + bk2)I{z≤ck} + (bk3z + bk4)I{z>ck}, k = 1, 2, (3.8)

where bki’s and ck’s are unknown parameters, which are to be estimated.

Thus, (3.7) and (3.8) form an additive threshold index logistic regression
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(A-TILoR) model

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}

= (b11ααα
TXi + b12)I{αααT Xi≤c1} + (b13ααα

TXi + b14)I{αααT Xi>c1}

+ (b21βββ
TXi + b22)I{βββT Xi≤c2} + (b23βββ

TXi + b24)I{βββT Xi>c2}, (3.9)

with ‖ααα‖ = 1, ‖βββ‖ = 1, αααTβββ = 0, and the first non-zero components of ααα

and βββ being positive. Obviously, the A-TILoR model (3.9) is more general

than the PL-TILoR model (3.6).

We shall show in Chapter 4 that model (3.9) performs quite well in

analysing schizophrenia data; it beats the linear logistic regression model,

and hence the NPR model of Wei and Li (2007), as demonstrated in Chapter

2. An intuitive reason why the A-TILoR model can performs better than the

NPR model for the WAFSS schizophrenia SNP datasets is as follows. The

A-TILoR model appears similar to the tree-regression based NPR model in

that both have stepwise constant or linear function over each of the parti-

tioned regressor areas, and thus well capture the nonlinearity feature of real

datasets. But if the dimension p of the covariate vector X is high (e.g., p = 40

as considered in Chapter 4), then the NPR model suffers from severe curse

of dimensionality due to its area partition based on each of the individual

covariate, while our proposed A-TILoR model in the above does overcome

this drawback of the NPR owing to its area partition based on the index
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variables αααTXi and βββTXi only, well capturing the nonlinearity feature of the

WAFSS schizophrenia SNP datasets.

It may seem tempting to extend model (3.9) by adding more stepwise

linear functions along other more directions of the covariate vector X of

dimension p. If this is the case, then how to choose the number of the

stepwise linear functions is important in practice, which can be solved by

applying the Akaike (1973)’s information criterion (AIC), with the model of

the smallest AIC value being chosen. However, further extension of model

(3.9) will greatly increase the number of unknown parameters in the model

for a large p, e.g., p = 40 as considered in Chapter 4. It leads to the rejection

of the more extended model for the WAFSS schizophrenia SNP datasets by

the Akaike (1973)’s information criterion (AIC). We therefore do not pursue

such a straightforward extension here.

3.3 Maximum likelihood estimation

In this section, we propose a maximum likelihood methodology to estimate

the unknown parameters in (3.6) and (3.9).

First of all, we look at the PL-TILoR model (3.6). Let

θθθ = (αααT , b1, b2, b3, b4,βββ
T , c)T
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and

φi(θθθ) = αααTXi + (b1βββ
TXi + b2)I{βββT Xi≤c} + (b3βββ

TXi + b4)I{βββT Xi>c}.

From model (3.6), it follows that

P (Yi = 1|Xi) =
exp {φi(θθθ)}

1 + exp {φi(θθθ)} . (3.10)

Therefore, the likelihood can be expressed as:

L(θθθ) =
n∏

i=1

[P (Yi = 1|Xi)]
Yi [1− P (Yi = 1|Xi)]

1−Yi

=
n∏

i=1




[
exp {φi(θθθ)}

1 + exp {φi(θθθ)}

]Yi
[

1

1 + exp {φi(θθθ)}

]1−Yi

 . (3.11)

So, the log-likelihood can be written as:

`(θθθ) = log L(θθθ)

=
n∑

i=1

Yi log

[
exp {φi(θθθ)}

1 + exp {φi(θθθ)}

]

+
n∑

i=1

(1− Yi) log

[
1

1 + exp {φi(θθθ)}

]
. (3.12)

Maximizing the log-likelihood (3.12) with respect to

θθθ = (αααT , b1, b2, b3, b4,βββ
T , c)T
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subject to ‖βββ‖ = 1 and αααTβββ = 0 leads to the MLE (maximum likelihood

estimator) θ̂θθ of θθθ.

Similarly, we construct the MLE for the A-TILoR model (3.9). Let

ϑϑϑ = (b11, b12, b13, b14, ,ααα
T , b21, b22, b23, b24,βββ

T , c1, c2)
T

and

ϕi(ϑϑϑ) = (b11ααα
TXi + b12)I{αααT Xi≤c1} + (b13ααα

TXi + b14)I{αααT Xi>c1}

+ (b21βββ
TXi + b22)I{βββT Xi≤c2} + (b23βββ

TXi + b24)I{βββT Xi>c2}.

The log-likelihood can be expressed as:

`A(ϑϑϑ) = log LA(ϑϑϑ)

=
n∑

i=1

Yi log

[
exp {ϕi(ϑϑϑ)}

1 + exp {ϕi(ϑϑϑ)}

]

+
n∑

i=1

(1− Yi) log

[
1

1 + exp {ϕi(ϑϑϑ)}

]
. (3.13)

Maximizing the log-likelihood (3.13) with respect to

ϑϑϑ = (b11, b12, b13, b14, ,ααα
T , b21, b22, b23, b24,βββ

T , c1, c2)
T

subject to ‖ααα‖ = 1, ‖βββ‖ = 1 and αααTβββ = 0 leads to the MLE ϑ̂ϑϑ of ϑϑϑ.

Note that the log-likelihood (3.12) is not differentiable with respect to c
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and ααα, and the log-likelihood (3.13) is not differentiable with respect to c1

and c2 as well as ααα and βββ. Therefore the widely used iteration procedure

in optimization such as Newton-Raphson algorithm does not work here. We

apply the downhill simplex method for the maximization of the log-likelihood

(3.12) or (3.13), which does not require the multi-dimensional objective func-

tion of the optimisation to be differentiable; for details, the reader is referred

to Press et al. (2002, page 413) on the method and code.

In our numerical experiments, we used the R version of the standard

downhill simplex method, translated from the C code of Press et al. (2002,

page 413). According to our experiences, this algorithm works rather stably

in convergence with well specified (D + 1) initial values of the vector θθθ or ϑϑϑ

(where D denotes for the dimension of θθθ or ϑϑϑ), for which we need experimen-

tal tries to achieve a global maximum as done in using other optimisation

algorithms.

3.4 Simulation studies: Finite sample perfor-

mance

In order to examine the finite sample performance of the proposed maximum

likelihood estimate of the unknown parameters in the A-TILOR model, we

carry out some experiments via Monte Carlo simulations. In this section, we

report the results with the setting of the model similar to that in our real
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data analysis in the next chapter.

3.4.1 Simulation model

In real application of genomic data analysis, the dimension p of the regressor

vector is quite large, and the regressor variables are categorical data repre-

senting different types of gene expression. To accommodate these scenarios,

we consider the A-TILOR model, used for simulation, of the form (3.9) with

p = 39. Let X = (X1, X2, · · · , Xp), with Xj ∼ Binomial(2, qj), and let

qi = (1 + (j − 1)/p)/2, for j = 1, 2, · · · , p. Assume that Xj’s are linearly

independent with each other. We also take the parameters in the model to
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be equal to the estimated values for the CD data in Chapter 4, that is

b1 =(b11b12, b13, b14) = (0.1451343,−0.4199375, 2.1645830, 0.3385306),

c1 =0.1817811,

α =(0.160532828, 0.145342634,−0.105307522, 0.080778184, 0.213884518,

− 0.050812375, 0.330436703,−0.128131250, 0.129550296,−0.192552871,

− 0.026473093,−0.006149899, 0.068069191,−0.288425609, 0.009740996,

0.123212627,−0.015222646, 0.170128772,−0.087436472,−0.143557690,

0.046833668,−0.023903015,−0.215940820,−0.063833874,−0.234875792,

0.173082853, 0.259160282, 0.072185675, 0.073419002,−0.444332340,

− 0.020977710,−0.149498653, 0.126362136, 0.108406749,−0.057101111,

0.061013646,−0.123298587, 0.015689519, 0.244328756),

b2 =(b21b22, b23, b24) = (0.6700960, 1.0459350,−1.6852746,−0.7785389),

c2 =0.2594507,
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β =(0.15020062,−0.13162367,−0.46794802, 0.01625887, 0.12274019,

0.15892854, 0.13511445, 0.14823644, 0.24054483, 0.01113274,

− 0.29986520,−0.15894115, 0.02485366,−0.02145778, 0.28276706,

− 0.12458040, 0.13349062,−0.11010719, 0.15720584,−0.06474037,

− 0.04085526,−0.09366944,−0.08138479, 0.07599860, 0.17990750,

0.03596593, 0.11245335,−0.09818820, 0.15916573, 0.17548150,

0.16646456, 0.02726669,−0.20494686, 0.05136877,−0.05899783,

− 0.02131067, 0.13939863,−0.28623061, 0.13580588).

We consider the simulated sample of size n = 200 and n = 323, respec-

tively, where n = 323 is the sample size of the CD data set that we will

analyse in Chapter 4. We first simulate the random vector Xi with its jth

component Xi,j ∼ Bin(2, qj). Then, we calculate P (Yi = 1|Xi) according to

(3.9). Thus, we simulate Yi from the Bernoulli trial with probability equal to

P (Yi = 1|Xi). For each simulated sample, we apply the suggested maximum

likelihood method to estimate the parameters. We repeat the simulation 100

times for each of the two cases with sample sizes n = 200 and n = 323.

3.4.2 Results

In Figures 3.1 and 3.2, the boxplots of the estimates of the parameters in

g1, α, g2 and β based on 100 simulations are displayed for the cases with
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sample sizes n = 200 and n = 323, respectively. In order to assess the

precision of the estimate for each of the parameters, the absolute errors of

the estimates of the parameters based on 100 simulations are depicted in

boxplot in Figures 3.3 and 3.4 for the cases with sample sizes corresponding

to those in Figures 3.1 and 3.2, respectively.

From these figures, we may conclude that

• Obviously, as the sample size increases, the absolute error of the esti-

mate decreases. Comparing Figure 3.2 with Figure 3.1, we see that the

boxplot becomes much narrower for each parameter in Figure 3.2 than

those in Figure 3.1. This also clearly follows by comparing Figure 3.4

with Figure 3.3. It seems quite apparent that the sample size n = 323

used in Figure 3.2 and Figure 3.4 is acceptable for the model even with

the regressor vector of the dimension p = 39.

• From all the figures, it is clear that both threshold parameters c1 and

c2 can be estimated rather precisely, even for the case with sample size

n = 200.

• It is also clear that the parameters of the vectors α and β can be

estimated more precisely than the parameters b1j’s and b2j’s in g1 and

g2, respectively. In Figures 3.1 and 3.3, the estimators of the parameters

in g1 and g2 could be quite poor in some simulations. However, with

n = 323, the accuracy of the estimators of these parameters are much
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improved as seen in Figures 3.2 and 3.4.

Overall, the simulation results provide a strong support to our real schizophre-

nia data analysis to be carried out in Chapter 4, with the proposed A-TILOR

model (3.9) applied for the case where the sample size n = 323 and the num-

ber of unknown parameters is up to 2× (p + 4) = 86 when p = 39.

3.5 Bootstrapping method for estimating the

standard deviations of the estimates

In many applications, we need to evaluate whether the estimated value of

an unknown parameter is significantly away from zero or not, i.e., testing

whether we can reject the null hypothesis that the estimated parameter is

equal to zero. This requires the knowledge of the standard deviation of the

estimator of each parameter.

One way to estimate the standard deviation of the estimator of each

unknown parameter is through estimating the asymptotic variance of the es-

timator of the parameter, which can be established by following the argument

of Chan (1993). However, asymptotic variance is based on the assumption

that the sample size tends to infinity, which is difficult to apply in many

situations in practice such as in our schizophrenia analysis. For example,

in Chapter 4, we have up to 86 unknown parameters but we only have a

sample with size roughly about 300–500. Clearly, the sample size may not
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Figure 3.1: Boxplot of the estimates of the parameters in g1, α, g2 and β
based on 100 simulations: n = 200.
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Figure 3.2: Boxplot of the estimates of the parameters in g1, α, g2 and β
based on 100 simulations: n = 323.
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Figure 3.3: Boxplot of the absolute errors (AEs) of the estimates of the
parameters in g1, α, g2 and β based on 100 simulations: n = 200.
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Figure 3.4: Boxplot of the absolute errors (AEs) of the estimates of the
parameters in g1, α, g2 and β based on 100 simulations: n = 323.
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be sufficiently large against the number of unknown parameters in such an

application.

In this section, we therefore suggest an estimate of the standard devia-

tion of the estimator of each parameter by proposing a bootstrap procedure

to obtain a finite-sample based estimation of the standard deviation of the

parameter estimate.

We only state the bootstrap procedure for model (3.9), which will be ap-

plied in the next chapter. For model (3.9), given the observations {(Xi, Yi)}n
i=1,

we assume that the unknown parameters of the MLE (see Section 3.3) are

denoted by

ϑ̂ϑϑ = (b̂11, b̂12, b̂13, b̂14, , α̂αα
T , b̂21, b̂22, b̂23, b̂24, β̂ββ

T
, ĉ1, ĉ2)

T .

Then, the bootstrap procedure reads as follows:

1) Generate a bootstrap sample of size n:

a) For the i-th observation Xi, calculate

B̂i = (b̂11α̂αα
TXi + b̂12)I{α̂ααT Xi≤ĉ1} + (b̂13α̂αα

TXi + b̂14)I{α̂ααT Xi>ĉ1}

+ (b̂21β̂ββ
T
Xi + b̂22)I{β̂ββT

Xi≤ĉ2} + (b̂23β̂ββ
T
Xi + b̂24)I{β̂ββT

Xi>ĉ2},

and

p̂i = P̂ (Yi = 1|Xi) =
eB̂i

1 + eB̂i
.
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b) Generate the i-th bootstrap observation Y ∗
i from a binomial distribu-

tion Binorm(1, p̂i).

c) For i = 1, 2, · · · , n in Steps a) and b), a bootstrap sample of size n,

{(Xi, Y
∗
i )}n

i=1, is generated.

2) Obtain a bootstrap MLE of ϑϑϑ using the bootstrap sample of size n,

{(Xi, Y
∗
i )}n

i=1:

The estimation is calculated by using the method provided in Section

3.3, where we use ϑ̂ϑϑ as the initial values of the parameters in the max-

imum likelihood procedure for the bootstrap sample {(Xi, Y
∗
i )}n

i=1. We

denote the unknown parameters of the bootstrap MLE by

ϑ̂ϑϑ
∗

= (b̂∗11, b̂
∗
12, b̂

∗
13, b̂

∗
14, , α̂αα

∗T , b̂∗21, b̂
∗
22, b̂

∗
23, b̂

∗
24, β̂ββ

∗T , ĉ∗1, ĉ
∗
2)

T .

3) Repeat Steps 1) and 2) B times, where B is called the size of the boot-

strap, which is usually quite large as required.

We denote the B bootstrap estimates of ϑϑϑ by

ϑ̂ϑϑ
∗(j)

, j = 1, 2, · · · , B.

4) Calculate the bootstrap standard deviations of the MLE ϑ̂ϑϑ:

The standard deviation of the k-th component of ϑ̂ϑϑ, can be calculated
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as

std(ϑ̂k) =

√√√√√ 1

B

B∑

j=1

(
ϑ̂
∗(j)
k − ϑ̄∗k

)2
,

where ϑ̂
∗(j)
k is the k-th component of ϑ̂ϑϑ

∗(j)
obtained in Step 3), and

ϑ̄∗k = 1
B

∑B
j=1 ϑ̂

∗(j)
k .

The main burden of computation in the above bootstrap procedure lies in

Step 2). Here the maximisation of the likelihood for each bootstrap sample

by using the downhill simplex method, given at the end of Section 3.3, needs

well specified (D + 1) initial values of the vector ϑϑϑ (here D stands for the

dimension of ϑϑϑ), which may require a bit time-consuming experimental tries

in general if we have no information on the actual value of the vector ϑϑϑ.

Luckily, in the bootstrap, a simple way to reduce this computation burden

is to fully utilise the estimator ϑ̂ϑϑ because the bootstrap sample is generated

based on this data-based estimator, and therefore we can well specify the

(D + 1) initial values of the vector ϑϑϑ in Step 2) by adding (D + 1) small

randomly-generated (vector) values to ϑ̂ϑϑ. In this way, the above bootstrap

method works quite well in our experiences. We will use this method to

estimate the standard deviation of the estimators of the model parameters

in Chapter 4 (section 4.2).
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Chapter 4

Analysing schizophrenia data

with threshold index logistic

regression model

4.1 Introduction

In Chapter 2, we have analysed the schizophrenia SNP datasets by using

Wei and Li (2007)’s NPR models and the linear logistic regression models.

It is found that the linear logistic regression models perform better than the

NPR models. In this chapter, we are applying the model and methodology

suggested in Chapter 3 to analysing the schizophrenia data. We will show

that our proposed TILoR models will capture the nonlinearity feature of the
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genetical complexity of the schizophrenia SNP datasets. Consequently, it

will perform much better than the linear logistic regression models in terms

of cross-validation prediction.

We will report the analysis for the datasets of the general schizophrenia

and the CD subtype schizophrenia, respectively, in Section 4.2. The cross-

validation results with 3 randomly selected folds for each dataset are reported

in Sections 4.3.

4.2 Estimated models

We will examine the two datasets of schizophrenia SNPs by applying our

proposed TILoR models. Note that the PL-TILoR is a special A-TILoR

model. So our analysis of the schizophrenia SNP datasets will only be carried

out with A-TILoR model.

4.2.1 General schizophrenia SNP dataset with A-TILoR

model

We first look at the general schizophrenia SNP dataset, which includes 171

controls and 325 cases of different subtypes (CD subtype, CS subtype, non-
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CD non-CS subtype), with A-TILoR model

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}

= (b11ααα
TXi + b12)I{αααT Xi≤c1} + (b13ααα

TXi + b14)I{αααT Xi>c1}

+ (b21βββ
TXi + b22)I{βββT Xi≤c2} + (b23βββ

TXi + b24)I{βββT Xi>c2}, (4.1)

where the first components of α and β are nonnegative for identifiability. In

Chapter 2, we applied the OR (odds ratio) principle to choose important

SNPs, from which p = 40 SNPs are selected at the significance level (i.e,

Type I error rate) of 5%:

rs8074995, rs439401, rs10774517, rs7960673, rs6490272, rs534455,

rs486706, rs694060, rs12128305, rs11207007, rs6687842, rs10047071,

rs17424216, rs2991515, rs11581152, rs852787, rs9432024, rs11122357,

rs877984, rs1400316, rs1399622, rs17507049, rs7121214, rs7928038,

rs10501563, rs1940078, rs1943699, rs6592211, rs17203281, rs1615640,

rs11220082, rs931671, rs17281921, rs1978198, rs2711881, rs2528865,

rs10248053, rs2283029, rs1454626, rs1022307.

So we use these SNPs as our regressors, denoted as:

Xi = (Xi,1, Xi,2, · · · , Xi,40).
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The estimated coefficients in model (4.1) and their standard deviations (s.d.)

calculated by bootstrap method (bootstrap sample size=100) are reported in

table 4.1, table 4.2, table 4.3 and table 4.4.

Table 4.1: Estimated coefficients b1, b2 and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
data set

b1=(b11,b12,b13,b14) 0.0274 0.4358 -2.7377 1.3744
s.d. (bootstrap) 0.0139 0.0873 0.0561 0.0547

b2=(b21,b22,b23,b24) 0.0260 -0.0748 2.4239 0.4685
s.d. (bootstrap) 0.0281 0.0875 0.0629 0.0553

From the results mentioned above for the fitted model, we can draw some

interesting conclusions as follows:

• 1) In genetic analysis, it is a common sense to note that the individ-

ual SNPs make contributions through interactions. Our indices in the

TILoR model confirm that the individual SNPs’ contributions are made

through such regime indices α and β. Let’s look at the components of

the index vectors α and β and their bootstrap standard deviations(table

4.2, table 4.3). Quite clearly, all the components of the index vectors

α and β, except the coefficients of Xi,1 (SNP rs8074995) in α and that

of Xi,27 (SNP rs1943699) in β, are significantly different from zero at

the significance level (that is, the allowed Type I testing error rate) of

both 5% and even 1%, or equivalently at the confidence level of both
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95% and 99%, respectively. Hence all the 40 SNPs selected by the odds

ratio test in Chapter 2 play some part in forming the regime indices

α and β (although most of them may only make relatively slight con-

tributions). As mentioned in Chapter 1, schizophrenia is a complex

disorder. There are multiple susceptibility genes, each with small to

modest effects that interact with each other and environmental factors

to influence susceptibility for this disease. It is accepted that for each

gene, more than one SNP shows association with schizophrenia, but

rarely are data from individual SNPs highly significant(Harrison and

Owen,2003). The combination of table 4.2 and table 4.3provides an ex-

plicit quantitative proof to this biological understanding of schizophre-

nia using proposed threshold index logistic regression model. We fur-

ther notice that there are 8 components of α whose absolute values

are greater than 0.2, while for β, there are 7 components of β whose

absolute values are greater than 0.2. For the components of α and β

whose absolute values are greater than 0.2, those components selected

are listed in table 4.5. Obviously, it is clear from table 4.5 that the

SNPs selected in these two indices are quite different, implying different

sub-regimes may underlie the interaction mechanisms. These findings

are of potential important, because the SNPs selected in table 4.5 could

be more influential diagnostic indicators of schizophrenia.

• 2) On the thresholds(see table 4.4), the values c1 = −0.09512598 and
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c2 = 0.09161813 appear near 0, but they are still very significant, as the

confidence intervals c1 and c2 plus their three times standard deviations

calculated by bootstrap method in table 4.4 still do not include 0.

• 3) We plotted the kernel density of the indices of αTXi’s and βTXi’s,

respectively, in Figure 4.1, with dashed lines for the thresholds c1 and

c2. It follows that under the α-regime, there is a high empirical proba-

bility (90.32258%) that the values of the index variables are less than

the threshold c1, while under the β-regime, the empirical probability of

the index variable less than the threshold c2 is 66.33065%.

By looking at the functions g1 and g2(Chapter 3, equation(3.8)), plotted

in Figure 4.2, it is apparent that when the regime indices are lower than

the corresponding thresholds, the impacts of the regimes are stable, but

when indices are greater than the thresholds, the impacts are viably

more significant. If combine with the fact the majority of the index

variables are less than the two thresholds (with reference to Figure 4.1),

it follows that the impacts of most of the index variables are small,

only if the regime indices are greater than the corresponding thresholds

then they will have significant impact, but that probability is relatively

lower. Figure 4.2 also provides a visual exhibition of the nonlinear

feature of schizophrenia SNP data sets.
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Figure 4.1: A-TILoR model for general schizophrenia: The kernel density for
the indices of αTXi’s and βTXi’s with dashed lines for the thresholds c1 and
c2, respectively.
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Figure 4.2: A-TILoR model for general schizophrenia: The plot of the func-
tions g1 and g2, respectively.
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4.2.2 CD subtype schizophrenia SNP dataset with A-

TILoR model

We now look at the CD subtype schizophrenia SNP dataset, which includes

171 controls and 152 cases of CD subtype, with A-TILoR model (4.1). In

Chapter 2, we apply the OR (odds ratio) principle to choose important SNPs,

by which p = 39 SNPs are selected, for this dataset, at the significance level

of 5%:

rs220599, rs439401, rs738288, rs10889023, rs534455, rs486706,

rs10789045, rs7548633, rs694060, rs595513, rs267638, rs11207007,

rs6687842, rs1778032, rs2991515, rs17115797, rs3131726, rs7534106,

rs2224823, rs11122324, rs7534681, rs9432024, rs11122357, rs967433,

rs2772122, rs7533169, rs790369, rs2054023, rs4944481, rs17734854,

rs1615640, rs11220082, rs931671, rs4542192, rs7412571, rs6664618,

rs1572680, rs2283029, rs1454626.

So here we use these SNPs as our regressors, denoted as

Xi = (Xi,1, Xi,2, · · · , Xi,39).
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The estimated coefficients in A-TILoR model(4.1) are listed in table 4.6,

table 4.7, table 4.8 and table 4.9.

From the above results for the fitted model, we can draw some interesting

observations quite similar to general schizophrenia as follows:

• 1) For CD subtype, quite clearly, the coefficients of the indices α and

β are nearly all significant at the significance level of either 5% or even

1%, except the coefficients of Xi,12 (SNP rs11207007) and Xi,15 (SNP

rs2991515) in α and those of Xi,4 (SNP rs10889023) and Xi,10 (SNP

rs595513) in β. Hence all the 39 SNPs selected by the odds ratio test

in Chapter 2 play some part in forming the regime indices α and β

(although most of them may only make relatively slight contributions).

As mentioned in last section, schizophrenia is a complex disorder, and

rarely are data from individual SNPs highly significant. If we look

at the components of α and β whose absolute values are greater than

0.2, then the components selected are in table 4.10. Obviously, the

main SNPs selected in these two indices for the CD subtype are quite

different, implying different sub-regimes may underlie the interaction

mechanisms.

• 2) On the thresholds for the CD subtype, in table 4.9, the values

c1 = 0.1817811 and c2 = 0.2594507 are away from 0 and very sig-

nificant. We plotted the kernel density of the indices of αTXi’s and
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βTXi’s, respectively, in Figure 4.3, with dashed lines for the thresholds

c1 and c2. It follows that under the α-regime, the empirical proba-

bility of the values of the index variable less than the threshold c1 is

65.94427%, while under the β-regime, there is a high empirical prob-

ability of 80.18576% that the values of the index variable is less than

the threshold c2.

• 3) By looking at the nonlinear functions g1 and g2 plotted in Figure 4.4,

for the CD subtype, with reference to Figure 4.3, it is apparent that only

when the regime indices are greater than the thresholds, the impacts

of the regimes are more significant, but that chance seems relatively

lower.

4.3 Cross-validation performance

In this section, we are going to examine the performance of our proposed

model of threshold index logistic regression (denoted by A-TILoR, or for

simplicity by TLR below) compared with the linear logistic regression model

estimated through generalised linear model in R (GLM is referred to the

linear logistic regression below). We will demonstrate that our proposed TLR

method performs viably better than the GLM method with the analysis of

the schizophrenia datasets. Note that we have shown in Chapter 2 that the

GLM method performs better than Wei and Li’s (2007) NPR method.
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Figure 4.3: A-TILoR model for CD subtype schizophrenia: The kernel den-
sity for the indices of αTXi’s and βTXi’s with dashed lines for the thresholds
c1 and c2, respectively.
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We have carried out the comparison through cross-validation testing by

partition the whole datasets of the general schizophrenia and the CD subtype,

respectively, into some sub-folds.

It is known that the resubstitution estimate of predictive accuracy, de-

rived by direct application of model predictions to the data from which the

regression relationship is derived, gives, in general, an optimistic assessment.

Because there is a mutual dependence between the model prediction and the

data used to derive that prediction, an ideal is to assess the performance of

the model on a new data set. The data that are used to develop the model

from the training set, while the data on which predictions are tested form

the test set. Cross-validation extends the training/test set approach. The

data are divided into k sets (or folds), where k is typically in the range of 3

to 10. Each of the k sets becomes in turn the test set, with the remaining

data forming the training set. The predictive accuracy assessments from the

k folds are combined to give a measure of the predictive performance of the

model. This may be done for several different measures of predictive perfor-

mance. Here we use a 3-fold validation with special considerations based on

the case-control character.

For the general schizophrenia data set (325 cases and 171 controls), we

use a random number sampling system to divide the case data into three

equal groups, and control data into three equal groups. Then we combine

the case groups and the control group to form three folds. For each of the
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three folds, it is set aside as the test data, with the remaining data making

up the training data. In each time, there are 108 cases and 57 controls in

the test set, and 217 cases and 114 controls in the training set. We do the

same for the CD subtype data set (152 cases and 171 controls), where in each

time, there are 50 cases and 57 controls in the test set, and 102 cases and

114 controls in the training set.

Schizophrenia’s broad heritability is about 80%. Therefore, 80% is nat-

urally the approximate upper limit of accuracy of models using genotypes

only. In other words, without using other information such as phenotypes,

whatever modelling technique applies, the accuracy rate is not supposed to

be higher than 80%. If we consider 50% as a model-worthy lower limit ac-

curacy, the interval (50%-80%) gives an idea what the accuracy rate will be

in. Corresponding error rate will be between 20% to 50%. That gives us an

idea about what to expect.

4.3.1 Comparison between GLM and TLR based on

resubstitution estimates

Before we look at the performance through the cross-validation out-of-sample

prediction, we first take a simple checking of the performance of GLM and

TLR methods based on resubstitution estimates (i.e., in-sample prediction)

for each fold.

For a given fold left for testing set, we also use the other two folds as
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training set to estimate the models. We list the resubstitution estimates for

training set in Tables 4.11 and 4.12 for the general schizophrenia and the CD

subtype, respectively. Here note that the resubstitution for Fold 1 means the

in-sample prediction of the other two folds (i.e., Folds 2 and 3) that are used

as the training set in estimating the model. Also, note that in these tables

and below, Type I error rate is the percentage of people wrongly classified as

with schizophrenia among people without schizophrenia, while Type II error

rate is the percentage of people wrongly classified as without schizophrenia

among people with schizophrenia.

From tables 4.11 and 4.12, we clearly see that our TLR method per-

forms quite stable for both the general schizophrenia and the CD subtype

schizophrenia in the in-sample prediction. For the Type II error rate, GLM

appears better than the TLR. However notice that the average Type I error

rate of the GLM for the general schizophrenia is as high as 50.58%, which is

obviously unacceptable from the model estimation perspective. For the CD

subtype, the Type II error rates for these two methods are quite close, while

our TLR method has much lower Type I error rate than the GLM. Overall,

our TLR method is acceptable for both the general schizophrenia and the

CD subtype schizophrenia in the in-sample prediction.
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4.3.2 Comparison between TLR and GLM based on

cross-validation prediction

Now we turn to the comparison between the TLR and the GLM based on

the cross-validation out-of-sample prediction, which is more important in

applications.

In tables 4.13 and 4.14, we report the comparison between the GLM and

the TLR from the predictive accuracy and the Type I and Type II error rates

for the general schizophrenia. In tables 4.15 and 4.16, these comparisons are

made for the CD subtype schizophrenia.

Comparing the above tables, we may summarise:

• 1. From the predictive accuracy perspective, the TLR obviously per-

forms better than the GLM for general schizophrenia and CD subtype

in both Tables 4.13 and 4.15. For the general schizophrenia, the cross

validation predictive accuracy for the TLR and the GLM is 70.10% and

66.26%, respectively. Schizophrenia’s broad heritability is about 80%.

In our case, whatever modelling technique applies, the accuracy rate

for general schizophrenia is not supposed to be higher than 80%. If

we consider 50% as a model-worthy lower limit accuracy, it seems that

both the GLM and the TLR are acceptable in tables 4.13 and TLM

performs better.

Schizophrenia CD subtype is proposed by WAFSS in 2005. WAFSS’s
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research has found that Schizophrenia can be divided into three sub-

groups based on seven phenotype trait tests: general cognitive ability,

sustained attention, executive function, verbal memory, speed of infor-

mation processing, neurobehavioral features and personality factors.

These seven tests represent seven domains of the neurocognitive func-

tion. The three schizophrenia subgroups are: CD (cognitive deficit), CS

(cognitive spared), and non-CD/CS. The group CD subtype accounts

for up to 45% of the schizophrenia population and has the most severe

symptom of mental disorders among all schizophrenia groups. The ge-

netic basis of CD subtype is still under investigation. WAFSS group

suggested that this subtype has a distinct genetic basis(Hallmayer, J.F.

etc. 2005). For the CD subtype, the TLR has the predictive accuracy

of 81.93% vs. that of 61.68% for the GLM in table 4.15. Because the

TLR cross validation predictive accuracy is over the 80% upper limit

of general schizophrenia predictive accuracy, this does suggest CD sub-

type is genetically more significant.

• 2. For the prediction of general schizophrenia, from the perspective

of the Type I and Type II error rates, the problem with the GLM is

that it has a too ideal type II error (12.44% for resubstitution error and

19.75% cross-validation error ) but far too worse type I error (50.58% for

resubstitution error and 60.23% cross-validation error) in table 4.11 and

table 4.14. The bad performance on type II error has made GLM itself
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unsuitable to be used as a practical model for general schizophrenia.

In contrast, in same tables, using TLR, both the type I error (33.33%

for resubstitution and 32.16% for cross-validation error) and type II

error (27.8% for resubstitution and 28.70% for cross-validation error)

are stable and close to the 20% ideal lower error rate limit, which makes

it an eligible and nice predictor for schizophrenia classification.

• 3.For the prediction of CD subtype, from the prespective of the type

I and type error, further than the TLR is a bit better than the GLM

in the performance of resubstitution in table 4.12, the TLR has much

better Type I and Type II error rates than the GLM in the performance

of cross validation in table 4.16. The TLR has the cross validation type

I error of 12.86% vs that of 32.75% for the GLM. For the type II error,

the cross validation error rate for the TLR and the GLM is 24% and

44.67%, respectively.

• 4. The threshold index nonlinear logistic regression model has much

superior prediction ability to the logistic model regarding specificity

and sensitivity for both general schizophrenia and CD subtype. Speci-

ficity and sensitivity are two indexes that biologists are particularly

interested in. Specificity measures the percentage of healthy people

who are correctly identified as not having the condition while sensitiv-

ity measures the percentage of sick people who are correctly identified
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as having the condition. In table 4.17, for general schizophrenia, the

TLR has a balanced cross validation results of sensitivity 71.3% and

specificity 67.84%, vs. that of 80.25% and 39.77% for the GLM. The

GLM specificity result of 39.77% makes itself unacceptable as a mod-

elling technique for general schizophrenia. In chapter two, the poor

performance of GLM on specificity prediction for general schizophrenia

is the motivation drives us to propose a new model. Now the proposed

TLR model not only has successfully solved the specificity problem

for general schizophrenia, but also has much superior results for CD

subtype. TLR is about 20% better in both sensitivity and specificity

results compare to GLM for CD subtype.

In table 2.5, the linear logistic model regressors is selected from regres-

sors in table 4.17 until the regressor number reaches the same number as

in NPR model using step by step method. Also, the prediction of sen-

sitivity and specificity are calculated based on resubstitution method.

Therefore, it is not surprising that the GLM results in table 2.5 are

slightly better than that in table 4.17. But even so, they are still much

worse than the TLR results.
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Table 4.2: Estimated coefficients α , β and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
data set (1)

SNP α α s.d(bootstrap) β β s.d(bootstrap)
Xi,1(rs8074995) 0.0058 0.0042 0.1393 0.0050
Xi,2(rs439401) 0.3166 0.0052 0.1727 0.0051

Xi,3(rs10774517) -0.0797 0.0041 -0.1082 0.0044
Xi,4(rs7960673) -0.0161 0.0043 -0.0541 0.0044
Xi,5(rs6490272) 0.0004 0.0048 0.1058 0.0042
Xi,6(rs534455) 0.1194 0.0042 0.1804 0.0047
Xi,7(rs486706) -0.0343 0.0055 0.0503 0.0047
Xi,8(rs694060) -0.0905 0.0047 0.0630 0.0042

Xi,9(rs12128305) -0.1112 0.0042 0.0810 0.0048
Xi,10(rs11207007) 0.1359 0.0036 -0.0288 0.0054
Xi,11(rs6687842) -0.0203 0.0040 -0.0993 0.0050
Xi,12(rs10047071) -0.0531 0.0051 -0.2190 0.0054
Xi,13(rs17424216) -0.2258 0.0059 0.0227 0.0040
Xi,14(rs2991515) -0.0350 0.0047 0.0800 0.0048
Xi,15(rs11581152) 0.1220 0.0051 0.0241 0.0042
Xi,16(rs852787) -0.1378 0.0060 0.0976 0.0039
Xi,17(rs9432024) -0.2081 0.0056 0.1916 0.0043
Xi,18(rs11122357) 0.0368 0.0056 -0.3270 0.0042
Xi,19(rs877984) 0.1109 0.0046 0.0651 0.0046
Xi,20(rs1400316) -0.0826 0.0050 -0.2375 0.0049

90



Table 4.3: Estimated coefficients α , β and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
data set (2)

SNP α α s.d(bootstrap) β β s.d(bootstrap)
Xi,21(rs1399622) -0.0473 0.0036 -0.0544 0.0052
Xi,22(rs17507049) -0.2784 0.0050 0.1464 0.0046
Xi,23(rs7121214) 0.1016 0.0052 -0.0622 0.0049
Xi,24(rs7928038) 0.1064 0.0045 -0.3077 0.0042
Xi,25(rs10501563) -0.1824 0.0050 -0.1235 0.0048
Xi,26(rs1940078) -0.0405 0.0060 -0.4768 0.0041
Xi,27(rs1943699) 0.2444 0.0049 -0.0024 0.0051
Xi,28(rs6592211) -0.1094 0.0048 -0.1192 0.0035
Xi,29(rs17203281) -0.5100 0.0053 -0.0415 0.0050
Xi,30(rs1615640) -0.1139 0.0047 0.0162 0.0047
Xi,31(rs11220082) -0.0795 0.0050 -0.1194 0.0047
Xi,32(rs931671) -0.2502 0.0048 0.1427 0.0048

Xi,33(rs17281921) 0.0332 0.0043 -0.0568 0.0039
Xi,34(rs1978198) 0.0342 0.0055 0.2519 0.0048
Xi,35(rs2711881) -0.0555 0.0048 -0.1884 0.0045
Xi,36(rs2528865) 0.0770 0.0051 -0.0204 0.0051
Xi,37(rs10248053) -0.1033 0.0056 0.1180 0.0058
Xi,38(rs2283029) 0.0845 0.0049 0.2366 0.0050
Xi,39(rs1454626) -0.3238 0.0045 0.0979 0.0043
Xi,40(rs1022307) 0.0410 0.0043 -0.0302 0.0047

Table 4.4: Estimated coefficients c1, c2 and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
data set

c1 c1 s.d(bootstrap) c2 c2 s.d(bootstrap)
-0.0951 0.0005 0.09162 0.0004
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Table 4.5: A-TILoR model for general schizophrenia: The components of α
and β whose absolute values are greater than 0.2.

Component of Xi (Gene:SNP) Component of α
Xi,2 (APOE:rs439401) 0.3166165734
Xi,13 (DAB:rs17424216) -0.2257977475
Xi,17 (DISC1:rs9432024) -0.2080899519
Xi,22 (DLG2:rs17507049) -0.2784461531
Xi,27 (DLG2:rs1943699) 0.2443957136
Xi,29 (DLG4:rs17203281) -0.5098565580
Xi,32 (NUDEL:rs931671) -0.2502394725
Xi,39 (VLDLR:rs1454626) -0.3237843665

Component of Xi (Gene:SNP) Component of β
Xi,12 (DAB:rs10047071) -0.219001605
Xi,18 (DISC1:rs11122357) -0.326981794
Xi,20 (DLG2:rs1400316) -0.237457527
Xi,24 (DLG2:rs7928038) -0.307667557
Xi,26 (DLG2:rs1940078) -0.476838576
Xi,34 (RELN:rs1978198) 0.251949608
Xi,38 (RELN:rs2283029) 0.236604681

Table 4.6: Estimated coefficients b1, b2 and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
CD subtype data set

b1=(b11,b12,b13,b14) 0.1451 -0.4199 2.1646 0.3385
s.d. (bootstrap) 0.0485 0.0403 0.0470 0.0395

b2=(b21,b22,b23,b24) 0.6701 1.0459 -1.6853 -0.7785
s.d. (bootstrap) 0.0555 0.0445 0.0435 0.0329
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Table 4.7: Estimated coefficients α , β and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
CD subtype data set (1)

SNP α α s.d(bootstrap) β β s.d(bootstrap)
Xi,1(rs220599) 0.1605 0.0067 0.1502 0.0103
Xi,2(rs439401) 0.1453 0.0080 -0.1316 0.0097
Xi,3(rs738288) -0.1053 0.0064 -0.4679 0.0089

Xi,4(rs10889023) 0.0808 0.0061 0.0163 0.0107
Xi,5(rs534455) 0.2139 0.0067 0.1227 0.0096
Xi,6(rs486706) -0.0508 0.0089 0.1589 0.0123

Xi,7(rs10789045) 0.3304 0.0068 0.1351 0.0111
Xi,8(rs7548633) -0.1281 0.0073 0.1482 0.0100
Xi,9(rs694060) 0.1296 0.0073 0.2405 0.0115
Xi,10(rs595513) -0.1926 0.0067 0.0111 0.0117
Xi,11(rs267638) -0.0265 0.0072 -0.2999 0.0104

Xi,12(rs11207007) -0.0061 0.0071 -0.1589 0.0102
Xi,13(rs6687842) 0.0681 0.0078 0.0249 0.0093
Xi,14(rs1778032) -0.2884 0.0070 -0.0215 0.0109
Xi,15(rs2991515) 0.0097 0.0061 0.2828 0.0111
Xi,16(rs17115797) 0.1232 0.0065 -0.1246 0.0095
Xi,17(rs3131726) -0.0152 0.0076 0.1335 0.0103
Xi,18(rs7534106) 0.1701 0.0069 -0.1101 0.0091
Xi,19(rs2224823) -0.0874 0.0071 -0.1572 0.0109
Xi,20(rs11122324) -0.1436 0.0069 -0.0647 0.0117
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Table 4.8: Estimated coefficients α , β and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
CD subtype data set (2)

SNP α α s.d(bootstrap) β β s.d(bootstrap)
Xi,21(rs7534681) 0.0468 0.0070 -0.0409 0.0099
Xi,22(rs9432024) -0.0239 0.0067 -0.0937 0.0099
Xi,23(rs11122357) -0.2159 0.0075 -0.0814 0.0095
Xi,24(rs967433) -0.0638 0.0071 0.0760 0.0086
Xi,25(rs2772122) -0.2349 0.0074 0.1799 0.0099
Xi,26(rs7533169) 0.1731 0.0073 0.0360 0.0104
Xi,27(rs790369) 0.2592 0.0074 0.1125 0.0106
Xi,28(rs2054023) 0.07219 0.0067 -0.0982 0.0102
Xi,29(rs4944481) 0.0734 0.0068 0.1592 0.0106
Xi,30(rs17734854) -0.4443 0.0056 0.1755 0.0100
Xi,31(rs1615640) -0.0210 0.0076 -0.1665 0.0095
Xi,32(rs11220082) -0.1495 0.0067 0.0273 0.0102
Xi,33(rs931671) 0.1264 0.0072 -0.2049 0.0099
Xi,34(rs4542192) 0.1084 0.0057 0.0514 0.0091
Xi,35(rs7412571) -0.0571 0.0075 -0.0590 0.0101
Xi,36(rs6664618) 0.0610 0.0074 -0.0213 0.0089
Xi,37(rs1572680) -0.1233 0.0068 -0.1394 0.0096
Xi,38(rs2283029) 0.0157 0.0074 -0.2862 0.0095
Xi,39(rs1454626) 0.2443 0.0073 0.1358 0.0105

Table 4.9: Estimated coefficients c1, c2 and their standard deviations calcu-
lated by bootstrap method in A-TILoR model for the WAFSS schizophrenia
CD subtype data set

c1 c1 s.d(bootstrap) c2 c2 s.d(bootstrap)
0.1818 0.0014 0.2595 0.0028
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Table 4.10: A-TILoR model for CD subtype schizophrenia: The components
of α and β whose absolute values are greater than 0.2.

Component of Xi (Gene:SNP) Component of α
Xi,5 (DAB:rs534455) 0.213884518
Xi,7 (DAB:rs10789045) 0.330436703
Xi,14 (DAB:rs1778032) -0.288425609
Xi,23 (DISC1:rs11122357) -0.215940820
Xi,25 (DISC1:rs2772122) -0.234875792
Xi,27 (DLG2:rs790369) 0.259160282
Xi,30 (DLG2:rs17734854) -0.444332340
Xi,39 (VLDLR:rs1454626) 0.244328756

Component of Xi (Gene:SNP) Component of β
Xi,3 (ATF4:rs738288) -0.46794802
Xi,9 (DAB:rs694060) 0.24054483
Xi,11 (DAB:rs267638) -0.29986520
Xi,15 (DAB:rs2991515) 0.28276706
Xi,33 (NUDEL:rs931671) -0.20494686
Xi,38 (RELN:rs2283029) -0.28623061

Table 4.11: Comparison between GLM and TLR for the general schizophre-
nia data set: Resubstitution Type I and Type II error rates.

Type Fold1 Fold2 Fold3 Average
GLM I 52.63% 45.61% 53.50% 50.58%

II 11.05% 13.36% 12.90% 12.44%
TLR I 34.21% 24.56% 41.23 % 33.33%

II 24.88% 28.11% 30.41 % 27.8%
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Table 4.12: Comparison between GLM and TLR for the CD subtype
schizophrenia: Resubstitution Type I and Type II error rates.

Type Fold1 Fold2 Fold3 Average
GLM I 21.05% 18.42% 17.54% 19%

II 24.51% 21.57% 22.55% 22.87%
TLR I 16.67% 12.28% 7.9 % 12.28%

II 24.51% 19.6% 27.45 % 23.85%

Table 4.13: Comparison between GLM and TLR for the general schizophre-
nia: Cross-validation estimate of schizophrenia predictive accuracy

Fold1 Fold2 Fold3 Average
GLM 66.67% 66.67% 65.45 % 66.26%
TLR 69.69% 66.67% 73.94 % 70.10%

Table 4.14: Comparison between GLM and TLR for the general schizophre-
nia: Cross-validation Type I and Type II error rates.

Type Fold1 Fold2 Fold3 Average
GLM I 52.63% 57.89% 70.17% 60.23%

II 23.14% 20.37% 15.74% 19.75%
TLR I 38.59% 36.84% 21.05 % 32.16%

II 25.92% 31.48% 28.70 % 28.70%
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Table 4.15: Comparison between GLM and TLR for the CD subtype of
schizophrenia: Cross-validation estimate of predictive accuracy.

Fold1 Fold2 Fold3 Average
GLM 59.81% 63.55% 61.68 % 61.68%
TLR 85.05% 80.37% 80.37 % 81.93%

Table 4.16: Comparison between GLM and TLR for the CD subtype of
schizophrenia: Cross-validation Type I and Type II error rates.

Type Fold1 Fold2 Fold3 Average
GLM I 36.84% 26.32% 35.09% 32.75%

II 44% 48% 42% 44.67%
TLR I 15.79% 17.54% 5.26 % 12.86%

II 14% 22% 36 % 24%

Table 4.17: Comparison betwen TLR and GLM for the general schizophrenia
and the CD subtype: Cross-validation prediction of specificity and sensitivity.

Data Measure TLR GLM
CD subtype Sensitivity 76% 55.33%

Specificity 87.14% 67.25%
general schizophrenia Sensitivity 71.3% 80.25%

Specificity 67.84% 39.77%
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Chapter 5

Conclusions and outlook

In this thesis, we have proposed a new class of threshold index logistic regres-

sion(TILoR) models, including partially linear and additive TILoR models.

We have provided a maximum likelihood methodology to estimate the un-

known parameters and studied the finite sample performance of the suggested

estimators for the TILoR models. Empirical study by applying TILoR model

to schizophrenia SNP data has found that our TILoR model outperforms lin-

ear logistic model and Nonparametric pathway-based regression model(NPR

model) proposed by Zhi Wei and Hongzhe Li in 2007. In fact, TILoR model is

the only model that is practically worthy among these three models. TILoR

model has achieved the cross-validation predictive accuracy rates of about

70% for the general schizophrenia and 80% for the schizophrenia CD subtype

by utilising only the genotype information in Chapter 4. In summary,
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• We have extended the idea of threshold (auto)regression that was sug-

gest by Tong (1983,1990) in nonlinear time series analysis to the nonlin-

ear genomic analysis of SNP data which are categorical, and proposed a

new class of threshold index logistic regression (TILoR) models. Based

on this new framework of logistic regression with schizophrenia data

sets, we have demonstrated that the TILoR models can well catch

the genetically complex features of the schizophrenia SNP datasets in

terms of the cross-validation predictive accuracy rates, specificity and

sensitivity.

• The result of 70% accuracy of the cross-validation prediction with our

TILoR models for general schizophrenia is quite close to the 80% broad

heritability of schizophrenia, which, according to the experts’ view from

WAFSS(Western Australian Family Study of Schizophrenia), is an up-

per limit of prediction accuracy using genotype data alone. Using our

TILoR models, the specificity for general schizophrenia prediction is

67.84%, sensitivity 71.3%. There are two possible reasons to explain

the 10% prediction error gap. First, our empirical study is based on

WAFSS schizophrenia data. The WAFSS group selected 23 genes which

they assumed are most relevant to schizophrenia and genotyped them.

It is possible that there are other schizophrenia genes that was not

included in the WAFSS data. Second, like any classification model,

prediction error is inevitable for TILoR model. It is not clear so far
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among these two reasons, which one plays a more important role. To

investigate the data reason, SNP data on the whole genome will be an

ideal resource. Actually, through cooperation with the Welcome Trust,

WAFSS is working through this direction. To investigate the model

reason, we will put TILoR model into other empirical tests, which we

leave that for future work.

• Schizophrenia CD subtype accounts for about 40% of the schizophre-

nia population and has the most severe symptom of mental disorders

among all schizophrenia subgroups. Patients belong to this group have

endured greatest life difficulties because of cognitive deficiency. There-

fore, any breakthrough on this subtype will be particularly meaningful.

Using TILoR model, for CD subtype, the cross-validation prediction

accuracy rate is 81.93%, specificity 87.14% and sensitivity 76%. Our

findings support the WAFSS view that CD subtype is genetically more

significant and suggest that the broad heritability of schizophrenia may

well above 80%.

• Schizophrenia is a complex disorder which means there are multiple

susceptibility genes, each with small to modest effects that interact

with each other and environmental factors to influence susceptibility

for this disease. For each gene, more than one SNP shows association

with schizophrenia, but rarely are individual SNPs highly significant.
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The detailed analysis of our TILoR model results in Chapter 4 given

a mathematical illustration of these biological understandings. Using

TILoR model, two groups (15 and 14) SNPs have been selected for

schizophrenia and CD subtype respectively, according to their compo-

nents of α and β whose absolute values are greater. Among these two

groups of SNPs, three SNPs: rs439401(APOE), rs17203281(DLG4),

rs1454626(VLDLR) have already been widely reported associated with

schizophrenia, cardiovascular risk factors and other diseases by med-

ical studies around the world. Apart from these three ”hot” SNPs,

there are another three SNPs:rs11122357(DISC1), rs2283029(RELN),

rs931671(NUDEL). They have been selected in both the schizophrenia

group and the CD subtype group in our study, which suggests they are

somehow special.These three genes(DISC1, RELN, NUDEL) have long

been considered ”schizophrenia” genes. The neurological mechanism

study of these three polymorphisms is left to neurologists.

• Our TILoR schizophrenia prediction is based on the SNP genotype

data alone, meaning that only a drop of blood taken from a participant

will be sufficient for genotying. The final TILoR model involves about

40 SNPs on 12 genes, which dramatically reduces the cost of genotype

and therefore, the cost of the prediction. It has the potential to be-

coming a part of medical diagnostic process. The medical diagnosis in

psychiatry is problematic. Apart from the fact that there are differ-
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ing theoretical views toward mental conditions, there are few lab tests

available for various disorders. Being a readily available and relatively

low cost lab test in genotyping sense, our findings appear promising by

its accuracy. In particular, for children coming from a schizophrenia

family, our findings can provide a disease risk reference to their life

style chosen. For example, late adolescence and early adulthood are

peak periods for the onset of schizophrenia. At this stage, avoiding en-

vironmental disadvantageous influences will be a sensible and rational

way to better manage disease risk.

We have studied a rather promising new class of TILOR models for ge-

nomic data. Obviously, along the direction, there are lots of work worth

doing. For example, we can extend the idea of the TILOR models to pro-

pose various new models for the categorial data with nonlinearity complexity

and curse of dimensionality taken into account. Through the canonical link

function, a threshold varying-coefficient logistic regression model could be

suggested as:

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= a(Ui) + b(Ui)

TXi. (5.1)

Here, X is still a p− dimensional covariate, and Ui a covariate of scalar.
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A multi-threshold logistic regression model could be expressed as:

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
=

K∑

k=1

I{ck−1≤βββT Xi<ck}{ak + bT
k Xi}, (5.2)

where −∞ = c0 < c1 < c2 · · · < cK−1 < cK = ∞ are the thresholds,

βββ = (β1, · · · , βp)
T ∈ Rp with ‖βββ‖ = (β2

1 + · · ·+ β2
p)

1/2 = 1 for identifiability.

Also models (5.2) can be expressed as:

log

{
P (Yi = 1|Xi)

1− P (Yi = 1|Xi)

}
= a(βββTXi) + b(βββTXi)

TXi, (5.3)

with

a(βββTXi) =
K∑

k=1

I{ck−1≤βββT Xi<ck}ak

and

b(βββTXi) =
K∑

k=1

I{ck−1≤βββT Xi<ck}bk,

of looks similar to a kind of generalised adaptive varying-coefficient models

proposed by Fan, Yao and Cai (2003); see also Lu, Tjøstheim (2007) and Lu et

al. (2009). But they are essentially different. In Fan, Yao and Cai (2003), Xi

consists of continuous random variables, with nonparametric functions a and

b in the form specified in (5.3). However, in the SNP data, Xi is a random

vector of discrete categorial variables, and the nonparametric methodologies

developed in Fan, Yao and Cai (2003) cannot apply here. Note that model

(5.2) is parametric threshold logistic regression models, which could be well
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applied to the SNP data. Model (5.2) could be called a class of adaptive

threshold nonlinear logistic regression models. Other extension could also

be made. In addition, the above models could be extended with genotyping

errors taken into account (c.f., Zou, et al., 2008). We here only list a few for

an appreciation. We leave these for future work.
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