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ABSTRACT 

 

Kafirin is a prolamin protein of value for novel biomaterial development. Kafirin 

is recoverable from sorghum grain seeds, but its hydrophobicity currently limits its 

industrial production in a food-compatible form. A liquid-solid circulating fluidised 

bed (LSCFB) system may allow high throughput kafirin purification to be possible 

by simultaneously performing its adsorption and desorption allowing for a 

continuous operation. A typical LSCFB ion-exchange system consists of a downer 

and a riser, integrating adsorption and desorption operations simultaneously. The 

LSCFB system dynamics are complex and influenced by many parameters. A 

computational model to quantitatively describe such a system is thus highly 

desirable.  

 

In this study, the concept of LSCFB was introduced and applied for continuous 

purification of kafirin using ion exchanger matrices. A general purpose, extensible 

and dynamic model based on the tanks-in-series framework was developed. The 

model was validated with previously published data on the extraction of bovine 

serum albumin as the model protein. Studies regarding the kinetics and equilibrium 

characteristics of kafirin adsorption onto the ion exchangers have been conducted to 

better understand the mass transfer, adsorption capacity and affinity of kafirin 

adsorption onto ion exchangers. The parameters derived from equilibrium and kinetic 

experiments, and from empirical correlations were incorporated into the model 

validated earlier. Model predictions for kafirin purification in the LSCFB ion-

exchange system were conducted under different operating conditions, including the 

degree of mixing, the solids circulation rate, the liquid velocities in circulating 

fluidised beds, and the feed concentration. The kafirin production rate, the fraction of 

kafirin recovered, and the resin inventory required, were indicative of the LSCFB 

performance.  

 

A close scrutiny of the sensitivity study revealed that some of the operating 

parameters tested previously acted in a conflicting manner in which none of the 

system performance rating could be raised without degrading some of the other 

performance ratings. With these parameters influencing the LSCFB differently, it can 

be expected that the system to have discontinuous, or non-smooth performance 

ratings. The elitist non-dominated sorting genetic algorithm was used to optimize the 

two most important LSCFB ratings, the production rate and overall recovery. The 

Pareto frontier solution was generated to capture the interaction between the system 

parameters, and to provide some insight of their operability range, amongst which a 

suitable operating point could be selected based on the specific requirements in the 

LSCFB system.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 INTRODUCTION 

The sorghum grain protein, kafirin, has potential as a biomaterial for coatings, 

biodegradable films, bioplastics, and controlled-release microspheres for food and 

medical purposes (Buchner 2006, 88; da Silva and Taylor 2005, 9; Elkhalifa et al. 

2009, 159; Park et al. 2002, 318; Pérez-Gago 2012, 13; Taylor et al. 2009, 7523). 

Kafirins which are highly cross-linked hydrophobic prolamins, account for more than 

68% of the total protein content of whole sorghum grains, and no less than 77% of 

the endosperm (de Mesa-Stonestreet, Alavi and Bean 2010, 91; Hamaker et al. 1995, 

583). Under reducing conditions, the individual polypeptides of kafirin range in size 

from 15 to nearing 30 kDa and are classified into α-, β-, and γ-kafirins by differences 

in molecular weight, solubility, and structure (Belton et al. 206, 272; Lasztity 1996, 

227). Reports of kafirin separation date back as far as 1916 when Johns and Brewster 

(1916, 59) first extracted kafirin using aqueous ethanol from the sorghum variety 

Dwarf kafir. Since then kafirins have been separated from sorghum grains, brans, and 

endosperms by aqueous ethanol at elevated temperature or tertiary butanol at ambient 

temperature (Johns and Brewster 1916, 59; Taylor, Schüssler, and van der Walt 

1984, 151). Until present, most extraction studies on kafirin have focused primarily 

on batch laboratory-scale separation, for the kafirin hydrophobicity having restrained 

the establishment of an economical, food-compatible, and non-toxic industrial-scale 

extraction process. 

 

From a practical viewpoint, studies carried out on aqueous ethanol extraction of 

kafirin can serve as framework to establish kafirin production at industrial scale. A 

batch semi-industrial kafirin extraction process has been modified from an existing 

laboratory-scale process by the Council for Scientific and Industrial Research, South 

Africa (Kaser 2003). In this process, aqueous ethanol plus sodium metabisulphite and 

sodium hydroxide were used as the solvent (Erasmus 2003; Kaser 2003). This semi-

industrial batchwise process, although simple and easy to control, suffered from two 

major drawbacks. Firstly, although the process adapts conditions which are effective 
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when used in laboratory scale extractions, the process is not considered effective 

since large amounts of fresh solvent is required and the final kafirin solution is very 

dilute and necessitates downstream solvent evaporation and precipitation to further 

separate the kafirin. Secondly, the extraction process does not yield kafirin of high 

purity. In addition, the complex batch process involving multiple steps is difficult to 

optimize leading to increased production costs and affect the final product quality. 

Therefore, a continuous system is highly preferable for industrial-scale kafirin 

production. Liquid-solid circulating fluidised bed (LSCFB) using ion exchangers 

may be a potential approach for large scale kafirin purification, which can overcome 

the drawbacks of the previously reported batch process. In addition to the generic 

benefits of fluidisation, including low and stable pressure drops across the fluidised 

beds, LSCFB has extra advantages. These include higher throughput, higher heat and 

mass transfer rates, enhanced interfacial contact, reduced backmixing and improved 

handling of particles of different sizes and densities, all of which lead to a much 

more effective production.  

 

The LSCFB systems have emerged in recent years as one of the most promising 

mass contactor of industrial importance due to their wide applications in processing 

technology, such as in wastewater treatment, phenol polymerization and lactic acid 

production (Cui et al. 2004, 699; Trivedi, Bassi and Zhu 2006, 61; Patel et al. 2008, 

821). The arrangement and recirculation connections of the LSCFB reactor used 

were fabricated such that the two fluidised beds were interconnected and were 

running as anoxic and aerobic beds for simultaneous nitrification and denitrificatoin 

processes (Cui et al . 2004, 699). Feng et al. (2003, 235) studied caesium separation 

from high radioactive liquid waste in LSCFB system wherein the riser operated in 

circulating fluidising region and the downer in the state of slow-moving packed bed. 

The effects of system dimension on the hydrodynamics behaviour of the LSCFB 

were also investigated. LSCFB was used in the continuous polymerization reaction 

of phenol by Trivedi, Bassi and Zhu (2006, 61). In the riser polymerization reaction 

was carried out and in the downer the regeneration of immobilised enzyme particles 

(Trivedi, Bassi and Zhu 2006, 61). Reliability and commercial viability analysis on a 

pilot-scale LSCFB were conducted for a leachate treatment process, and the study 

result proved that the LSCFB has effectively removed biological nutrients from 

landfill leachate (Eldyasti et al. 2010, 289). Patel et al. (2008, 821) have conducted 
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simultaneous fermentative and extractive production of lactic acid from whey. The 

production and adsorption of lactic acid was carried out in the downer, while 

recovery or desorption was carried out in the riser.  

 

As mentioned earlier the current semi-industrial kafirin production suffered from 

low product production volume and purity issues. Therefore a purification method 

that produces kafirin of high purity consistently, such as the LSCFB, would be highly 

desirable. The LSCFB adapting ion-exchange chromatography and adsorption have 

been satisfactorily used for recovery of a variety of plant and animal proteins such as 

bovine serum albumin (BSA), whey and soy protein indicating that it might be a 

suitable for purification of kafirin. The research group established by Professor Zhu 

at the University of Western Ontario studied the effects of important operating 

parameters on the hydrodynamic behaviour of LSCFB and potential applications for 

the continuous recovery of BSA, whey and soy protein (Lan et al. 2000, 858; Lan et 

al. 2001, 157; Mazumder et al. 2009a, 111; Prince et al. 2012, 157). However, a 

systematic understanding of adsorption and desorption mass transfer processes from 

a phenomenological perspective is required for successful application of LSCFB for 

process design and scale-up.  

 

1.2 SIGNIFICANCE AND OBJECTIVES 

Kafirin extraction and purification processes are important when considering 

kafirin-based product commercialization, which not only targets at production at 

large quantities of purified kafirin but also with high purity for desired applications 

as biomaterial for coatings, biodegradable films, bioplastics, and controlled-release 

microspheres for food and medical purposes. Critical to kafirin separation process 

and the subject of most protein extraction studies are presence of biological broth 

(Lan et al. 2000, 858; Lan et al. 2001, 157; Nfor et al. 2008, 124). Inefficient protein 

elicitation from such feed liquor could result in low product yield and increase the 

potential risks of fouling and plugging in downstream operations. Furthermore, large 

volumes of sorghum grains must be treated for industrial kafirin purification, 

implicating domination of the operating expenditure over the overall production cost. 

Therefore, development of a highly efficient kafirin purification process is of 

genuine commercial interests. A highly efficient continuous process like the LSCFB 
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has obviously offered an attractive approach for industrial scale kafirin purification 

from sorghum grains. The essential concept is that sorghum protein adsorption and 

desorption processes are conducted in continuous mode.  

 

It is the objective of this study to introduce the concepts of recovering sorghum 

protein using viable protein extraction and purification process scheme on LSCFB 

system. Specifically phenomenological modeling and optimisation methods are 

applied to simulate and optimise the continuous purification process on LSCFB. The 

LSCFB comprises of two fluidised beds, integrating adsorption (in the downer) and 

desorption (in the riser) simultaneously. A comprehensive model based on the tanks-

in-series framework is developed considering the hydrodynamics, mass transfer, and 

kinetics. Both sensitivity analysis of process operating parameters and optimisation 

for multiple objective functions is carried out to gain insight and improve process 

understanding. Therefore the specific objectives of this study are model 

development, mass transfer and kinetics, model adaptation, followed by sensitivity 

studies and optimisation. The flow of the study is clearly presented in Figure 1.1. 

 

1.3 THESIS STRUCTURE 

A comprehensive literature review is presented in Chapter 2. In particular, 

sorghum literature data on seed protein kafirin regarding its properties, uses and 

processes implemented for its extraction is presented. After this, a review of 

adsorption-based ion exchange chromatography and its principles are given. 

Continuous systems adapting ion exchange chromatography are also reviewed, with 

the emphasis on the applications of these systems in continuous kafirin purification. 

A brief review of phenomenological modeling of  ion exchange chromatography 

systems along with the fluid dynamic correlations for these systems is also presented.  

 

In Chapter 3, a general purpose, extensible, and dynamic model for LSCFB is 

presented. The model is written based on the tanks-in-series framework. The model 

allows for adjusting the backmixing degree in the liquid phase and solid phase for the 

fluidised beds in the system. The model is validated with the literature data on BSA 

extraction as the model protein. The interaction between the fluidised beds is 

captured with the sensitivity analysis using the validated model.  
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Figure 1.1 Flow diagram of research methodology. 
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In Chapter 4, the isotherm and kinetic studies of kafirin adsorption on anion- and 

cation exchangers for practical applications in preparative-scale chromatography are 

presented. Isotherm parameters such as adsorbent loading capacity and dissociation 

constant are determined for Langmuir isotherm, and adsorptive capacity and affinity 

constant for Freundlich isotherm. Batch uptake kinetics for kafirin adsorption on 

these ion exchangers are also carried out and critical parameters including the 

diffusion coefficient, film mass transfer coefficient, and Biot’s number for diffusion 

model are calculated. Both the isotherm and the kinetic parameters are considered for 

selection of appropriate ion exchanger for kafirin purification.  

 

In Chapter 5, the validated model described in Chapter 3 using LSCFB is 

simulated to predict the behaviour of the system for continuous purification of 

kafirin. Appropriate modifications are carried out to adopt the model for kafirin 

purification. Simplified mass transfer models are used, particularly, the lumped 

adsorption model and second-order desorption model. Continuous kafirin 

purification in the LSCFB ion exchange system is simulated out under different 

degree of mixing and operating conditions.  

 

In Chapter 6, multiobjective optimisation study is reported to optimize two 

performance indicators of the LSCFB model. Important process conditions are 

chosen as the process decision variables in the study. The controlled elitist genetic 

algorithm is used in order to obtain a set of Pareto optimal solutions capturing the 

trade-off between the objective functions over a wide range of non-dominated 

solutions. The Pareto set solution offers useful insights in deciding the optimal 

solution for the LSCFB model operation.  

 

Finally, Chapter 7 summarizes the major findings of this study and presents some 

recommendations for continuous improvement of this novel technology.  
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CHAPTER 2  

LITERATURE REVIEW  

 

2.1  INTRODUCTION 

2.1.1  Sorghum Seed Protein Kafirin  

Sorghum is an important staple food for the human population. Details of the 

world sorghum consumption and sorghum utilization of United States are listed in 

Table 2.1 and Table 2.2, accordingly (USDA 2014a, 2014b). The use of sorghum 

thus far has been limited in feed and food products. Few value-added applications 

have been derived for sorghum in other areas. Grain sorghum (Sorghum bicolor (L.) 

Moench) has protein content varying from 6-18%, averaged at 11% (Park and Bean 

2003, 7050). Kafirin, the major storage protein in sorghum, is classified as prolamin, 

and as such, contains high levels of proline and glutamine and is soluble in nonpolar 

solvents such as aqueous alcohols (Shewry and Tatham 1990, 1). Kafirin account for 

68-73% of total protein in whole sorghum grain and 77-82% in sorghum endosperm, 

whereas non-prolamin proteins such as albumins, globulins, and glutelins account for 

30% of total proteins (Belton et al. 2006, 272). The relative molecular mass and 

isoelectric point (pI) is Mr~ 23,000 and pI~ 6.0 for kafirin (Shull, Watterson, and 

Kirleis 1991, 83; Anyango, de Kock, and Taylor 2011, 2126). Kafirin have been 

categorised into different subclasses, namely α-, β-, and γ-kafirins, on basis of the 

molecular weight, solubility, and structure. Sorghum endosperm constitute of about 

66-84% α-kafirin, 8-13% β-kafirin, and 9-21% γ-kafirin (Park and Bean 2003, 7050). 

Overall, kafirin subclasses are usually loaded with glutamic acid and nonpolar amino 

acids namely proline, leucine, and alanine, but almost absent with the essential amino 

acid lysine (Belton et al. 2006, 272).  

 

2.1.2  Kafirin Extraction 

Prolamin separations from sorghum have been difficult due to insolubility of 

prolamins. Aqueous alcohol was first used to extract the prolamin, named as kafirin 

soon after, from the sorghum variety Dwarf kafir (Johns and Brewster 1916, 59). 

Virupaksha and Sastry (1968, 199) firstly separated proteins from sorghum 

endosperms, corresponding to a modification of the classic Osborne and Mendel  
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Table 2.1 United States sorghum production and utilization statistics. 
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Table 2.2 World sorghum production and consumption statistics by different countries. 
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(1914, 1) procedure hitherto used for extraction of maize proteins. This method 

separated proteins into water-soluble albumins, salt-soluble globulins, alcohol-

soluble prolamins, and acid- or base-soluble glutelins (Virupaksha and Sastry 1968, 

199; Taylor, Schüssler, and van der Walt 1984, 149). This sequential technique, 

however, has resulted in significant overlapping of protein fractions due to the 

inefficient separation. Significantly small kafirin amounts were yielded using the 

same Osborne-Mendel method by Skogh et al. (1970, 472), indicating the 

insolubility issue of sorghum prolamin when the classic Osborne-Mendel solvent 

systems and techniques were used. Using the same method, gelling issues that caused 

the failure to work with sorghum prolamins were reported (Jones and Beckwith 

1970, 33; Haikerwal and Mathieson 1971, 142).  

 

A systematic protein separation scheme first suggested for corn maize by Landry 

and Moureaux (1970, quoted in Taylor, Schüssler and van der Walt 1984, 149) was 

later adapted for sorghum prolamin. This procedure separated the prolamins into 

Prolamin I that is extractable in aqueous alcohol alone and Prolamin II that is 

extractable in aqueous alcohol plus a reducing agent (Taylor, Schüssler, and van der 

Walt 1984, 149; de Mesa-Stonestreet, Alavi, and Bean 2010, 96). Since then 

reducing agents such as 2-mercaptoethanol and dithiothreitol, were often employed 

to assist kafirin separation from sorghum (Jambunathan and Mertz 1973, 692; Paulis 

and Wall 1979, 20; Wu and Wall 1980, 455).  

 

 These changes improved the prolamin extraction from sorghum significantly and 

enhanced the kafirin yield from Landry-Moureaux method compared to the Osborne- 

Mendel (Skogh et al. 1970, 480; Jambunathan and Mertz 1973, 692). Hamaker et al.  

(1995, 584), though, adapted a more efficient extraction method used to extract 

maize proteins previously by Wallace et al. (1990, 192). Higher kafirin yield in 

whole grain flours and endosperms was obtained from this method. It circumvents 

the complicated and cumbersome classification procedures used beforehand wherein 

sorghum prolamins are divided into different solubility fractions, despite that there is 

no obvious reasoning for the prolamins subdivision based on solubility differences. 

Non-prolamins are differentiated from prolamins in this simple method, through the 

use of a basic buffer, plus additives such as detergent and reducing agent (Hamaker 

et al. 1995, 586; Park and Bean 2003, 7050). 
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Kafirin extraction process from different sorghum fractions such as whole 

sorghum grains, sorghum endosperms, sorghum brans, and sorghum distillers dried 

grains and solubles has been reported. Sorghum bran is a byproduct of sorghum dry-

milling, while sorghum distillers dried grains and solubles is the dried byproduct of 

alcohol manufacture from sorghum grains (Wang et al. 2009, 8366). Extraction 

buffer in the presence of additives has been used to extract kafirin from sorghum. 

While most of the kafirin extraction procedures developed proved that for effective 

separation either aqueous alcohols at elevated temperature (ethanol) or ambient 

temperature (tertiary butanol) (Jambunathan and Mertz 1973, 693; Taylor, Schüssler, 

and van der Walt 1984, 151), or basic buffer containing sodium metabisulphite 

followed by aqueous tertiary butanol (Hamaker et al. 1995, 584) are needed. While 

most of the kafirin separation procedures performed up until now has been developed 

based on the conventional techniques discussed earlier, there have been some 

advances in the solvent systems used for kafirin separation recently. For example, 

efforts have been made to replace solvents that may not be suitable for consumption 

or required extreme process conditions with food-compatible solvents with moderate 

operation conditions. Pioneering work in this area has been done by Taylor et al. 

(2005, 485) and Bean et al. (2006, 99). Glacial acetic acid was suggested to replace 

tertiary butanol, while food-compatible reducing agents such as sodium 

metabisulphite, glutathione, and cysteine were tested to replace dithiothreitol and 2-

mercaptoethanol. The solvent systems functioned as expected, except that to improve 

kafirin yield, pre-soaking step is required for the combined glacial acetic acid and 

SMS system.  

 

Sonication has been utilised to improve kafirin extraction. Bean et al. (2006, 99) 

investigated the effects of various extraction and precipitation conditions, including 

the use of ultrasound, on recovery and purity of kafirins. Ethanol extraction was 

performed on whole ground sorghum flour, with and without reducing agents, and 

with 4 min sonication. Park et al. (2006, 611) also used sonication for extraction of 

kafirin from sorghum flour. Various extraction buffers containing sodium borate 

buffer, SDS and different reducing agents were mixed with the sorghum flour, and 

then sonicated. It is thought that sonication helped to reduce the molecular weight of 

large proteins by reducing covalent bonds through shear degradation (de Mesa-

Stonestreet, Alavi, and Bean 2010, 96). Zhao et al. (2008, 946) also used sonication 
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to extract kafirin from sorghum. Sorghum meal slurry containing sodium borate and 

SDS was sonicated for 30 sec to obtain the kafirin. A summary of all the extraction 

procedures discussed above is shown in Table 2.3. 

 

2.1.3  Uses of Kafirin  

Application of kafirin is limited, apart from the difficulty of a consistent kafirin 

supply. Nevertheless, over the past decade, some potential applications of kafirin 

have been demonstrated. The narrow range of applicability concerning kafirin may 

be due to the difficulty in extracting kafirin hence the limited work in finding 

possible applications for this prolamin. Thus far the kafirin extraction procedures 

developed and applied in laboratories operate at batch scale, and are particularly 

cumbersome and difficult to scale up. These consequently results in considerable 

investment in terms of time and money, with little or no return at all. Nonetheless, 

kafirin may be considered as a possible substitute for some applications of zein, a 

maize prolamin homologous to kafirin. Kafirin is much similar to zein in molecular 

weight, solubility, structure, and amino acid composition (DeRose et al. 1989, 245; 

Shull, Watterson, and Kirleis 1991, 83; Belton et al. 2006, 272). In fact, kafirin is 

more hydrophobic and less digestible than zein, so kafirin may be a better 

biomaterial compared to zein (Taylor, Belton and Minnaar 2009, 7523). This section 

focuses on major kafirin uses that originated from zein, namely biopolymer films and 

coatings, and kafirin microparticles, (Buffo, Weller, and Gennadios 1997, 473; Da 

Silva and Taylor 2005, 9; Taylor et al. 2005, 491; Elkhalifa et al. 2009, 159; Taylor, 

Belton and Minnaar 2009, 7523). 

 

Biopolymer Films and Coatings  

The film forming properties of plant proteins, particularly zein of maize, have been 

used in the industries since early in the last century to address deficiency of shellac in 

lacquers, varnishes, and coatings in industries after the start of World War II (Lawton 

2002, 1). Kafirin, being the most hydrophobic of the cereal prolamins, with low 

digestibility and non-allergenic, may be an alternative to zein in making biopolymers 

(Duodu et al. 2003, 117; Belton et al. 2006, 272). The terms “coatings” and “films” 

are often used interchangeably because there is no distinct difference between these 

two terms. Still, Gennadios and Weller (1990, 63) defined the two separately in 

which edible coatings are thin layers of edible material directly applied and formed 
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on the substance surface, while edible films are thin sheet preformed from edible 

materials before applied to the substance (Gennadios and Weller 1990, 63).  

 

Buffo, Gennadios, and Weller (1997, 473) casted biopolymer films from 

sorghum gluten meal, a byproduct obtained from wet-milling of sorghum, using the 

formulation described by Park et al. (1994, 916). Ethanol was used as solvent, while 

glycerol and polyethylene glycol are plasticizers used to impart adequate flexibility 

and to obtain free-standing kafirin films (Buffo, Gennadios and Weller 1997, 473). 

The kafirin films water vapour permeability (WVP) values did not differed much 

from commercial zein films made plasticised in similar manner. The WVP is a 

measure of ease with which a film or coating can be permeated by water vapour. A 

lower WVP value indicates better film performance (McHugh and Krochta 1994, 

139). Sorghum dry milling fractions such as flour and bran fractions also used to cast 

films by da Silva and Taylor (2005, 9). Taylor et al. (2005, 401) suggested glacial 

acetic acid to replace aqueous ethanol as kafirin film casting solvent in which the 

films casted from both solvents were decent and with identical mechanical properties 

(Cuq, Gontard, and Guillbert 1998, 1). Other studies on the kafirin film modification 

were done by chemical cross-linking with condensed tannins, and by microwaving to 

improve the kafirin films functional properties (Emmambux, Stading and Taylor 

2004, 127; Byaruhanga et al. 2007, 167).  
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Table 2.3 Kafirin extraction procedures and solvents used. 
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Table 2.3 Kafirin extraction procedures and solvents used (continued). 
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From previous section, it can be realised that kafirin has the potential to cast 

edible films and coatings. These kafirin products are not only biodegradable, they are 

also effective inhibitors of moisture, oxygen, aroma and oil, carriers of antioxidants, 

antimicrobials, flavours, colours and nutrients, while improving mechanical integrity 

and sensory quality of the products (Krochta 2002, 4). Khan (2004, 23) and Buchner 

et al. (2006, 110) demonstrated that kafirin coatings were effective in preserving the 

quality of pears, litchi and cashew nuts. The kafirin coatings were found to be highly 

functional, low detectability and acceptable by consumer test panels that were used 

to fresh fruits and nuts.  

 

Kafirin Microparticles  

Microparticles of plant proteins have been studied since the last two decades, 

particularly for zein. Predominant uses for prolamin microparticles are in the 

pharmaceutical field with some success reported for zein, soy protein isolates, whey 

proteins  microparticles to deliver pharmaceuticals (Parris, Cooke and Hicks 2005, 

4788; Chen, Remondetto, and Subirade 2006, 272; Chen et al. 2008, 3750; Zhong 

and Jin 2009, 2886; Lau et al. 2012, 706; Lau et al. 2013, 277). Prolamin 

microparticles have been popular in this field for their high specificity and potency, 

and that almost any ingredient can be encapsulated, despite of its hydrophobic, 

hydrophilic, or even microbiol nature.  

 

Taylor et al. (2009a, 99) reported a novel approach to prepare microparticles 

from kafirin by phase separation. Different solvents were tested for use as the 

solvent, and results showed that organic acids such as glacial acetic acid, lactic acid, 

and propionic acid formed many internal holes or vacuoles on kafirin microparticles. 

The larger internal surface areas of these organic acid derived microparticles were 

believed to be useful to encapsulate pharmaceuticals. Comparison with 

microparticles formed by similar manner using aqueous ethanol has shown few 

internal holes. The surface properties of the micorparticles explained that the holes 

were formed from air bubbles entrapped in the microparticles during formation since 

ethanol is known as a powerful degasser. Using kafirin microparticles made by phase 

separation from organic acid, Taylor et al. (2009b, 7523) proved the potential to 

encapsulation of phenolic antioxidants within these microparticles. Experimental 

results suggested progressive release profiles for these microparticles. This 
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observation was supported by the other sustained release application of kafirin 

microparticles caffeine as a model drug, with the drug release being observed 

progressively for a few hours (Elkhalifa et al. 2009, 159).   

 

2.2  PREPARATIVE ION EXCHANGE CHROMATOGRAPHY  

A major disadvantage of Kafirin extraction processes discussed in Section 2.1.2 

is the low purity of the different kafirin preparations, which often affected the 

properties of the kafirin products. For example, kafirin films were reported to have 

different thickness which is unquestionably due to low purity kafirin preparations 

which casted films with higher levels of total solids, compared to films from high 

purity kafirin preparations (Da Silva 2003, 7). Besides this, films and coatings casted 

from lower purity kafirin preparations were usually slightly cloudy because of the 

impurities co-extracted with kafirin (Taylor and Taylor 2013). This will undoubtedly 

affect the applications of kafirin products previously discussed in Section 2.1.3. For 

example, kafirin films and coatings to preserve fruits and nuts must be transparent so 

that the sensory quality of the products is not affected. Kafirin microparticles used to 

encapsulate pharmaceutical products also require high purity of kafirin for human 

consumption. Therefore the need arises to design a purification method that produces 

kafirin of high purity with high consistency, which is the focus of this section. 

 

In 1903, Tswett first described the fundamentals of chlorophyll substances 

separation technique which linked to the term “chromatography” in his article 

(McNaire and Miller 1998, 1). Protein separation may be preparative, or analytical. 

Preparative separation, which is also the focus of this research, is carried out to 

obtain high throughput of purified protein for subsequent uses (Ward 2012, 3). 

Analytical purification produces a relatively small amount of desired protein for a 

variety of research or analytical purposes. Protein separation has been dominated by 

adsorption based chromatography since the early history of chromatography (Pfund 

1987; Bonnerjea et al. 1988, 357). Details about several common separation methods 

that can be applied to protein purification are listed in Table 2.4 (Polykarpon 2011; 

GE Healthcare 2013; Pall Corporation 2013). Of these, the ion exchange adsorption 

and chromatography, based on net surface charges between the ion exchangers and 

molecules from aqueous solution, is the most widely accepted techniques for protein 
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purification, for both laboratory and process scales (Bonnerjera et al. 1986, 954 

quoted in Khan 2012, 331). The ion exchange chromatography is most commonly 

used for protein purification due to the many advantages associated with it. First of 

all, the ion exchange chromatography is controllable by the buffer pH, salt 

concentration and the ion exchanger, thus serving as a concentration step for 

recovering proteins from a dilute solution (Stanton 2004, 23). This is a useful 

characteristic in instances where demands on protein quality are robust particularly 

for intended use in pharmaceutical applications.  Besides, the ion exchange 

chromatography offers high throughput and high selectivity attributable to its high 

resolving ability for molecules with small charge differences. Furthermore, this 

technique is non-denaturing which is often compatible with processes coupled with 

further downstream chromatographic systems.  

 

2.2.1 Principles of Ion Exchange Chromatography 

Some commonly used ion exchangers and their properties are listed in Table 2.5. 

Most commercial ion exchangers can be classified according to their solid support 

types into cellulose, dextran, agarose, and polystyrene based ion exchangers. The 

cellulose, dextran, and agarose ion exchangers are derived from natural polymers, 

and used for protein separation for their low, non-specific adsorption. These ion 

exchangers are extremely hydrophilic and proteins do not adhere to them (Jungbauer 

and Machold 2004, 669). The advantage of dextran and agarose ion exchangers over 

cellulose is the better flow behaviour since the loose structure of cellulose ion 

exchangers often limits the flowrate achievable in column chromatography. The 

polystyrene based ion exchangers are made of synthetic polymer to sustain pH 

extremes and oxidizing environments. The accessibility of the charged functional 

groups and stability of ion exchangers are determined by the structure of the matrix 

(Roos 1999, 3).  

 

Negatively or positively charged functional groups are covalently bound to 

matrix supports to produce either a cation or anion exchanger, respectively (Ahmed 

1959, 150). Cation and anion exchangers are classified in terms of their ability to 

exchange positively or negatively charged species. Strongly acidic cation (SAC) and 

strongly basic anion (SBA) exchangers are ionised and thus are effective at nearly all 

pH values. Weakly acidic cation (WAC) exchangers are typically effective in the  
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Table 2.4 Adsorption based chromatographic principles and uses. 
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Table 2.5 Commonly used ion exchangers for proteins separation. 
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Table 2.5 Commonly used ion exchangers for proteins separation (continued). 
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range of pH 5 to 14, and weakly basic anion (WBA) exchangers are effective in the 

range of pH 0 to 9. The differences in the binding affinity and effective pH ranges of 

ion exchangers are strongly affected by their functional groups. For example, SAC 

and SBA usually carry sulfonic acid groups and quaternary amine groups, or 

corresponding salts, respectively (Wheaton and Lefevre 1981, 678). While WAC 

contains acrylic or methacrylic acid groups, WBA with primary-, secondary, or 

ternary-amine groups (Wheaton and Lefevre 1981, 678; Thermax 2013). Charged 

protein molecules are adsorbed and retained by an oppositely charged ion exchanger, 

while molecules with neutral or similar charge as the ion exchanger flow through the 

void volume and elute from the feed solution. Ion exchange chromatography is 

primarily affected by the pH and salt concentration of buffer solutions. The binding 

of charged molecules is reversible, and elution is achieved by selectively decreasing 

the affinity of the molecules for the charged functional groups on the ion exchangers 

by continuously changing either the buffer pH or ionic strength, which is termed as 

the gradient elution. The pI of a molecule is the pH at which the molecules are 

neutral or with net zero surface charge. The molecules are negatively charged at a pH 

above their pI value, and vice versa. Subsequently, anion exchange chromatography 

is applied above the pI of the protein in order to promote elution of bound protein 

molecules, whereas cation exchange chromatography is carried out with pH below 

the pI value.  

 

2.2.2 Characteristics of Ion Exchangers 

Adsorption Equilibrium  

The adsorption isotherm, which describes the phase equilibrium relationship, is 

of interests of many researchers. Study on the equilibrium behaviour of an ion 

exchange chromatography provides important information associated to the 

adsorption mechanism and equilibrium parameters required for process-scale 

chromatography modeling. A variety of isotherm models has been developed, and 

can be grouped into linear and nonlinear models, depending on the protein loading 

state. Protein samples used in analytical chromatographic runs are typically very 

dilute, and hence the chromatographic parameters generally remained within the 

linear isotherm range and independent of the sample loading (Jonsson 1996, 1591). 

In contrast to the dilute sample loading associated to linear isotherms, the nonlinear 

isotherms are usually used to characterise preparative chromatography which operate 
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under overloaded conditions. Nonlinear isotherm models commonly used to 

represent protein ion exchange equilibrium are Langmuir isotherm (Lan et al. 2000a, 

858; Özdural et al. 2004, 77; Li et al. 2007, 2419; Chen et al. 2008, 3750; Mazumder 

et al. 2009a, 111) and Freundlich isotherm models (Boyer and Hsu 1990, 61; Finette, 

Mao and Hearn 1997, 71; Bayramoğlu et al. 2007, 68).  

 

The Langmuir isotherm is the first theoretically developed adsorption isotherm 

by Langmuir (1916, 2221; 1917, 1848) to describe gas-solid phase adsorption onto 

activated carbon. Several assumptions were made in the derivation of the isotherm 

model. Firstly, the adsorption can only occur at finite number of definite localised 

sites. Second, each site accommodates only one adsorbed molecule. Thirdly, the 

energy state of each molecule is similar at all adsorption sites on the surface 

independent of the surface coverage. Therefore, the Langmuir isotherm model, also 

called localised model, assumes uniform and homogeneous adsorption surface and 

negligible lateral interactions between the adsorbed molecules. The Langmuir 

isotherm can be expressed in terms of adsorption capacity of adsorbent, qm (Eq. 2.1) 

and dissociation coefficient related to the binding affinity, Kd (Kinniburgh 1986, 895; 

Ho 2006, 81; Foo and Hameed 2010, 2). An essential feature of the Langmuir 

isotherm may be expressed in terms of a dimensionless equilibrium constant, RL (Eq. 

2.2) to indicate the favourability of the adsorption nature (Weber and Chakravorti 

1974, 228; Chairat et al. 2005, 231). The values of RL indicate the type of isotherm to 

be irreversible (RL=0), favourable (0<RL<1), linear (RL=1), or unfavourable (RL>1).  
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The Freundlich isotherm, which is an empirical correlation between adsorbent 

loading and liquid concentration, is a limiting form of the Langmuir isotherm at 

medium pressures (Freundlich 1906, 385). Similar to the Langmuir isotherm, the 

Freundlich isotherm (Eq. 2.3) is expressed in terms two constants, the dimensionless 

exponent nf and the adsorbent adsorption capacity, qf. 1/nf is a function of adsorption 

intensity. The values of 1/n indicate normal adsorption (1/nf <1), cooperative  



   

24 

 

 

Figure 2.1 Macroscopic schematic of protein molecules in bulk solution showing the 

locations of mass transfer and dispersive mechanisms. 1. liquid transport; 2. film diffusion, 

3a. pore diffusion; 3b. surface diffusion; 4. surface reaction at phase boundary. 

 

adsorption (1/nf >1), and negligible effects of liquid concentration (1/nf =1) 

(Haghseresht and Lu 1998, 1100).   

f1/n
f cqqe   (2.3) 

 

Ion Exchange Mass Transfer 

For large molecules like proteins, the mass transport process might be much 

slower than smaller molecules because of the resistances limiting the mass transport 

of proteins inside and outside the ion-exchange particles. Protein mass transport onto 

the binding sites of a chromatographic adsorbent entails the following macroscopic 

steps which are, the transport of protein molecule in bulk liquid (liquid dispersion 

and convection), diffusion from bulk liquid across the laminar boundary layer around 

the adsorbent particle (liquid film transport), diffusion within the pores (pore and 

surface diffusions), and, the interaction at the surface site (adsorption equilibrium or 

adsorption kinetics), as illustrated in Figure 2.1 (Crittenden and Weber 1978, 185; 
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Crittenden et al. 1986, 271). A number of theoretical models have been developed 

based on the assumption that one specific step limits the mass transport while the 

effects of other steps are negligible. These include the kinetic rate models and 

diffusion based models.  

Diffusion resistances such as pore diffusion, surface diffusion or a combination 

of both have been considered in theoretical models of ion exchange chromatography. 

For example, Hunter and Cartar (2000, 81) predicted the recovery of bovine serum 

albumin (BSA) and proactive enzyme uptake on BRX-Q and BRX-QP anion 

exchangers, and BRX-S cation exchanger considering both surface and pore 

diffusion effects in the adsorbent particle mass balance. Bruce and Chase (2002, 

3087), though, accounted the sole effect of pore diffusion on Streamline DEAE and 

Streamline SP on BSA and lysozyme (LYS) recovery, respectively. Differential mass 

balance with both pore and surface diffusions (Eq. 2.4) and pore diffusion of particle 

phase (Eq. 2.5), are showed below (Masamune and Smith 1964, 246; Masamune and 

Smith 1965, 41; Xu, Cai and Pan 2013, 155).  
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Though the assumption of a rate-determining kinetic step might seem unrealistic 

for some adsorption chromatography since this step is generally much faster than 

other influencing effects, when considering ion exchange chromatography, this 

simplification may be justified due to the fast mass transports (Ruthven 1984, 255; 

Lan et al. 2000b, 858; Guiochon et al. 2006, 295). For instance, the desorption mass 

transport in separations of BSA and whey protein using Diaion HPA25 anion 

exchanger were rapid and represented well by the simple forward first-order kinetic 

model (Lan et al. 2000a, 858; Mazumder 2009a, 111). Kinetic mass transports of 

protein are usually well represented by first- and second-order rate models, such as 

the forward first-order, forward second-order, reversible, pseudo-first-order, pseudo-

second-order kinetic models. The first-order (Eq. 2.6), second-order (Eq. 2.7) and 

reversible (Eq. 2.8) kinetic models are the simplest forms of rate model. The pseudo-

first-order kinetic model (Eq. 2.9) was suggested by Lagergren (1898, 1), expressed 
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in terms of a pseudo-first-order adsorption coefficient. The pseudo-second-order 

model (Eq. 2.10) assumed a second-order ion exchange interaction between the 

protein molecule and adsorbent particle (Ho and McKay 2000, 189).   
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2.3  ADSORPTION BASED CHROMATOGRAPHY SYSTEMS 

Kafirin hydrophobicity restrains the establishment of an economical, food-

compatible, and non-toxic industrial-scale extraction process. From a practical 

viewpoint, studies done on aqueous ethanol extraction of kafirin could serve as 

framework to establish process-scale kafirin production. A batch semi-industrial 

scale kafirin extraction has been modified from an existing laboratory-scale process 

by the Council for Scientific and Industrial Research, South Africa (Kaser 2003). 

Aqueous ethanol plus SMS and sodium hydroxide have been used in the solvent 

system (Erasmus 2003; Kaser 2003). The semi-industrial batch process, although 

simple and easy to control, suffers from several inherent disadvantages associated 

with batch processing. Despite its proximity to laboratory conditions, the batch 

process is ineffective after upscale for the excessive increase in solvent evaporation 

temperature and waiting time before freeze drying (Erasmus and Taylor 2003, Kaser 

2003). One essential consideration for any process-scale production is the procedures 

and time required. The batch approach involves a series of cumbersome, time-

consuming batch procedures. The complicated process steps incur significant capital 

and recurrent expenditures. Besides these, significant kafirin yield loss and quality 

deterioration might happen during the batch-to-batch transfer. Further losses of 

kafirin might also occur due to denaturation due to prolonged operation time.  
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Adsorptive, preparative ion exchange chromatography of protein, discussed in 

Section 2.2.2, may be performed in either fed-batch, semi-continuous, or continuous 

processes. As interest undergoes a transition from research bench towards product 

commercialization, cost reductions in process development and process-scale protein 

purification are emerging as major factors for commercial success. In a protein 

purification process development, the overall process economics is typically 

dominated by the protein purification cost. Consistent with the above mentioned 

objectives are continuous protein purification process. Continuous processes 

inherently provide higher throughput, more consistent quality, smaller equipment, 

and reduced cost than that possible with corresponding batch processes. Besides, 

continuous processes are commonly more flexible both for controlling and 

optimisation, two essential attributes for process-scale applications. Also, continuous 

purification processes are more naturally integrated into full continuous process 

systems. These benefits allowed continuous processes to become the norm rather 

than the exception in the process industry. Some examples and their characteristics 

are discussed below, and summarised as in Table 2.6. 

 

2.3.1  Fixed-Bed Chromatography 

Conventional fixed bed operating format is a stationary bed of chromatographic 

adsorbents. Fixed-bed chromatography, commonly known as column 

chromatography, is ubiquitous in the preparative chromatography of proteins (Chase 

1994, 296; Przybycien, Pujar and Steele 2004, 469). A schematic representation of 

the fixed bed is shown in Figure 2.2a. In late 1970s, column chromatography was 

introduced for proteins separation in the industry (de Wit 2001, 30). Process scale 

column chromatography of whey protein from milk was carried out continuously 

using anion exchanger, with the patent licensed to Rhone-Poulenc Industries (1980). 

The license holder also patented IEC of other common proteins (Rhone-Poulenc 

Industries 1978). From then, research on column chromatography of protein has been 

continuing, for both cation and anion exchange chromatography. For example, 

McCreath et al. (1977, 73) recovered LYS from egg white and homogenenate 

enzyme protein from clarified yeast using SP-PVA-FEP cation exchanger and Q- 

PVA-FEP anion exchanger, respectively. Hahn et al. (1998, 277) used Macro-Prep 

High S, S-Sepharose FF, S-HyperD-F, and Fracogel EMD SO3
-
 650 cation 

exchangers on preparative purification of bovine whey protein from cow milk. Other  
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Figure 2.2 Schematic diagrams of (a) fixed-bed chromatography, and (b) fluidised-bed 

chromatography. 

 

examples of fixed-bed based anion exchange chromatography using include Q and S 

HyperD for purification of Escherichia coli and BSA (Horvath et al. 1994, 

11).Rodrigues et al. (1995, 233) also conducted separation of BSA on fixed bed with 

POROS Q/M and Q HyperD.  Couriol et al. (2000, 465) purified a protein mixture to 

meet human consumption requirements on a preparative scale fixed bed of Q 

HyperD/F.  

 

All these studies showed that the fixed bed chromatography is effective for 

protein recovery. However, this system is not suitable to process feedstocks with 

suspended particulates, as particulates become trapped in the voids of the bed (Chase 

1994, 296). This results in the formation of trapped solids near the bed inlet and 

eventually to a complete clogging of the bed, often after bed compression. Even 

though most downstream processing is equipped with solid clarification operation,  
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Table 2.6 Continuous chromatographic systems and their characteristics. 
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this incurs extra capital and recurrent expenditure. Besides the effectiveness depends 

on the nature of suspended solids, for instance some might be extremely difficult to 

remove by centrifugation and filtration. Also, all these might result in considerable 

product yield reduction, and further product losses through denaturation due to time 

spent on the mandatory pretreatment of feedstocks. Finally, a separated unit 

operation is required to regenerate the chromatographic adsorbents. Such a system is 

similar to the liquid-solid circulating fluidised bed, discussed later. 

 

2.3.2  Fluidised-Bed Chromatography 

Fluidised bed circumvents the need for the compulsory feedstock preclarification 

of fixed-bed chromatography (Chase 1994, 296; Anspach et al. 1999, 129). A subset 

of fluidised bed, the expanded bed, addresses situations with low superficial 

velocities close to the minimum fluidisation velocity. For most chromatographic 

adsorbents the expanded-bed adsorption is typically applicable only to bed 

expansions of less than two times the settled bed height. Nevertheless, the expanded-

bed and fluidised-bed adsorption chromatography uses the similar setup as fixed-bed 

chromatography with minor difference in bed expansion characteristics. Thus, for 

protein chromatography adsorption over a large range of bed expansions, including 

high expansions, the term “fluidised-bed chromatography” includes those of 

expanded-bed as well. In fluidised-bed system, the adsorbents are allowed to rise 

from their settled state, which increases the space in between the adsorbents to allow 

unwanted suspended solids from crude feedstock to pass through without the risk of 

blocking the bed. The difference between fluidised bed and fixed bed expansion is 

clearly illustrated in Figure 2.2. For its advantages of direct purification of proteins, 

the fluidised-bed chromatography has been used for proteins of different origins and 

applications. For example, a pilot-scale purification of recombinant human placental 

anticoagulant protein from Escherichia coli homogenate was carried out using 

fluidised-bed chromatography packed with Streamline DEAE anion exchanger 

(Barnfield Frej, Hjorth, and Hammarstrom 1994, 922). And, scale-up of fluidised bed 

based chromatography was applied on phycobiliprotein purification utilizing 

Streamline DEAE (Bermejo, Ruiz, and Acien 2007, 927).  

 

However, the presence of suspended particulate matter during operation was 

found to have a potential impact on the operation of the fluidised bed. Sometimes, 
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the particulate-adsorbent interactions led to a deteriorated stability of the fluidised 

bed and in turn to a reduced chromatographic efficiency. For example, Chase and 

Draeger (1992, 2021) studied Q-Sepharose FF anion exchanger and S-Sepharose FF 

cation exchanger on purification of BSA. The experiment results suggested that the 

fluidised bed efficiency was affected by the particulate-adsorbent interaction, with 

the anion exchanger affected the most. Feuser et al. (1999, 99) performed the same 

study, and similar observation was stated. The particulates, therefore, have to be 

treated as an integral part of the system and potential interactions between suspended 

solids and expanded adsorbents should be evaluated carefully. Other studies were 

carried out for assessing the fluidised-bed chromatography efficiency. Johansson, 

Jagersten, and Shiloach (1996, 9), for example,  performed process-scale purification 

of recombinant protein from Escherichia coli homogenate was tested on fluidised bed 

packed with Streamline DEAE, with final protein three times more concentrated. 

This was supported by separation of extracellular inulinase purification with final 

product ten times more concentrated (Kalil, Maugeri-Filho, and Rodrigues 2005, 

581). A seven-fold increase in the antibody concentration was achieved from 

recovery of whole mammalian cell culture broth as well (Balt, Yabannavar, and 

Singh 1995, 41).  

 

2.3.3  Simulated Moving Bed Chromatography 

Simulated moving bed (SMB) chromatography is of rising interest in protein 

separation. The SMB offers a promising solution to the adsorbent circulation 

problems associated with fixed-bed and fluidised-bed systems (Silva, Gandi, and 

Rodrigues 2007, 82). The SMB is also much more suitable to process-scale 

production due to its reduced solvent consumption, high productivity and final 

purities. The SMB as its name indicates, the movement of the stationary adsorbent 

phase is simulated. This is achieved by connecting multiple fixed beds to make a 

circulation loop, and periodically switching the feed and withdrawal points from one 

bed to the other. A schematic representation of an SMB is portrayed in Figure 2.3. 

The SMB typically consists of four different sections, the first section is located 

between the eluent and extract streams, the second section between the extract and 

feed streams, the third section between the feed and raffinate streams, and the fourth 

section between the raffinate and eluent (Silva, Gandi, and Rodrigues 2007, 82; 

Suvarov, Wouwer, and Kienle 2012). The principles of SMB based chromatography  
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Figure 2.3 Schematic diagram of simulated moving bed chromatography. 

 

 

Figure 2.4 Schematic diagram of simulated moving bed chromatography principle.  slow-

moving liquid flow,  fast-moving liquid flow. 
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is as shown in Figure 2.4. The feedstock containing two components to be separated 

is injected between the second and third section. The less adsorbed component is 

collected at the raffinate port and the more adsorbed component at the extract port. 

The separations of components are performed in the second and third sections, 

whereas the first and fourth sections are dedicated to adsorbent regeneration and 

solvent recycling, respectively.   

 

Current applications of the SMB originated from Universal Oil Products 

(Broughton 1968, 60; Brouthton 1984, 723). The first patent of SMB application was 

licensed as the Sorbex process and issued for a number of process-scale separations 

in the chemical process industry (Universal Oil Products 1962). Purifications of 

protein on SMB have, to date, only rarely been carried out. Huang et al. (1986, 291) 

first attempted to isolate trypsin enzyme from an extract of porcine pancreas by 

devising an SMB made of six affinity beds. Another example is the separation of 

human serum albumin on two SMB connected in series, with the removals of less  

adsorbent components and more strongly adsorbed components carried out in the 

first and second SMB, respectively (Houwing 1996 quoted in Blehaut and Nicoud 

1998, 60). The results were validated experimentally by Li, Xiu, and Rodrigues 

(2007, 2419) on a four-section SMB packed. Myoglobulin and LYS proteins were 

also separated on an eight-staged SMB (Nicoud 1996). In addition, SMB has also 

been applied to recover monoclonal antibodies from Escherichia coli, by adding two 

extra purge steps the two-section SMB managed to achieve greater yield (Gottschlich 

and Kasche 1996, 201). Gueorguieva et al. (2011, 6402) also tested recombinant 

streptokinase protein separation on a three-section open loop SMB, with some 

experiment runs reported relatively high purity. Besides, in separation of bovine milk 

proteins from whey protein concentrate, pilot-scale SMB gave higher productivity, 

and higher product purity while consuming less solvent in comparison to column 

chromatography (Andersson and Mattiasson 2006, 88). An ion exchanger typically 

used in packed beds, Streamline-SP, was used in these experiments. Despite all 

these, SMB suffers from pressure drop problems associated with packed beds. High 

effluent flows in the first section can result in excessive pressure drops and the SMB 

can be clogged by suspended solids in the feed (Liang et al. 2013, 1).  
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Figure 2.5 Schematic diagram of rotating annular chromatography. 

 

2.3.4  Continuous Annular Chromatography  

Continuous annular chromatography (CAC) has been developed for preparative 

multi-components separation (Byers et al. 1989, 635). The schematic of a CAC is 

portrayed in Figure 2.5. The CAC consists of two packed concentric annulus 

gradually rotating along a stationary feed and solvent ports (Sengupta and Sengupta 

2001, 89; Silveston, Hashimoto, and Kawase 2012, 590). Such as system accepts a 

continuous feed at one rotating point and separate it into a series of constituent 

streams that appear as separate helical bands in the annulus. The retention time 

differences of the components of the feed based on interaction with the stationary 

adsorbent phase, resulting in individual withdrawal of each component. Between 

1970s and 1990s most of the research on CAC was performed in the Oak Ridge 

National Laboratories (Begovich and Sisson 1981; Begovich and Sisson 1981, 11; 

Byers et al. 1989, 635). More recently, S-Sepharose, a strong acidic cation exchanger 

was used in the CAC for separation of a mixture of albumin, haemoglobin, and 

cytochrome c (Bloomingburg et al. 1991, 1061). Other than that, the use of CAC for 

separation of myoglobulin and hemoglobulin proteins was also studied by others 

(Takahashi and Goto 1992, 403). Reissner et al. (1997, 49) desalted BSA from a 
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mixture of phosphate, sodium chloride, and potassium chloride, and gained highly 

purified final product.  

 

While CAC is promising continuous chromatographic process, its operation is 

complex. Though the CAC is capable of resolving multi-component from continuous 

feedstocks, in most process-scale separations, recovery of only one product is 

needed. Additionally, CAC faces fouling problems easily. A study by Buchacher et 

al. (2001, 14) reported fouling for separation of concentrated immunoglobulin 

concentration, which have prohibited the continuous CAC based chromatography. 

Other than that, the performance of CAC reduced to that of a batch chromatography 

when dealing with crude protein feed, such as the green fluorescent protein 

(Uretschlager, Einhauer, and Jungbauer 2001, 243). All these necessitate 

pretreatment of the feedstocks. The CAC system is continuous only in applications 

where cycling between feed application, adsorption, elution and regeneration is not 

required. Since most IEC separations require a change of elution conditions, the 

advantages of continuous separation cannot be realised using CAC (Gordon, Moore, 

and Cooney 1990, 741). 

 

2.3.5  Liquid-Solid Circulating Fluidised Bed Chromatography 

Liquid-solid circulating fluidised bed (LSCFB) chromatography may be a 

potential approach for process-scale protein separation, which could overcome the 

drawbacks of the other chromatographic systems discussed earlier. Given the 

advantages of fluidised beds for these systems have included such factors as the 

capability of operating with small adsorbents which in turn leads to better utilization 

of the surface area of the particles hence high effectiveness factors, increased contact 

efficiency between the adsorbents surface area and the carrying fluid due to 

increased slip between the adsorbent and solvent phase, and ability to withdraw and 

input adsorbents continuously (Grace 1990, 1956; Yang et al. 1993, 85). The high 

velocities operations also gave higher throughput of product and rapid mass transport 

between different phases (Grace 1990, 1956). Liquid-solid circulating fluidised bed 

(LSCFB) has been rapidly applied in adsorption based chromatographic processes 

recently. These processes are primarily used industrially in metal recovery from 

hydrometallurgical leach liquors, and decontamination of water, aqueous solutions 

and petroleum products (Liang et al. 1995, 98; Cui et al. 2004, 699; Trivedi, Bassi,  
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Figure 2.6 Schematic diagram of liquid-solid circulating fluidised bed chromatography. 
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and Zhu 2006, 61; Patel et al. 2008, 821). These continuous systems must be coupled 

with regeneration of chromatographic adsorbent, and often with washing as well. 

Washing for removal of residual solution within the intraparticle pores and the 

intraparticle voids of the adsorbents can be attained quite effectively by fluidisation 

of the adsorbents with the required solvent.  

 

Current applications of the LSCFB based protein purification originated from a 

pilot-scale of such system fabricated at the University of Western Ontario, 

schematically shown in Figure 2.6. The LSCFB consists of two liquid-solid fluidised 

beds, downer and riser, to carry out protein adsorption and elution, respectively. 

These fluidised beds are connected to circulate chromatographic adsorbents so that 

continuous process is made possible. Lan et al. (2000a, 859; 2002, 252) 

demonstrated the ability of LSCFB to separate BSAs using Diaion HPA25 anion 

exchanger. Results showed that the LSCFB chromatography is excellent for recovery 

of proteins, with high throughput and end product recovery. Other than that, the 

LSCFB is also capable of handling unclarified feedstocks. Lan et al. (2001, 157) 

successfully separated whey proteins from whole broth, and reported high overall 

protein recovery and yield. Overall the LSCFB offers advantage of economy. 

Considering all these, it is concluded that the LSCFB chromatography is suitable for 

continuous protein separation. More details associated to the LSCFB are discussed in 

Chapter 3. 

 

2.4  MODELING CONTINUOUS CHROMATOGRAPHIC 

SYSTEMS  

Several theoretical models have been developed to describe chromatographic 

protein in in continuous chromatographic columns. For example, Wiblin et al. (1995, 

81) adapted the well-established packed bed simple kinetic model by Cowan, 

Gosling and Sweetenham (1989, 187) to simulate the antibody separation in 

expanded- and fluidised beds, taking into account the liquid film transport, axial 

dispersion and pore diffusion effects. In fact, the stirred tank model was applied 

wherein the continuous beds were discretised into a number of tanks of equal volume 

to predict the process performance. Owen and Chase (1998, 3771) consulted to 

identical models of McCreath et al. (1992, 189) and Gordon and Cooney (1990, 120) 
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in development of the stirred tank model for protein purification. The theoretical 

model, considered the lumped mass transfer with an artificially decreased liquid film 

coefficient, required seventeen tanks to simulate performance of expanded bed 

chromatography. Later, Bruce and Chase (2002, 3087) used the same software 

package reported by Wiblin et al. (1995, 81) to predict breakthrough curves of LYS 

and BSA by including the liquid dispersion, pore diffusion and liquid film transport. 

Deviations between the experimental and simulated results were observed and were 

attributed to the negligence of axial variation in particle size, bed void fraction, liquid 

dispersion and film transport. Hunter and Cartar (2000, 81) conducted experiments 

on BSA and proactive enzyme uptake and used the general rate model to compare 

the transport rates for adsorbents having different structures as well as their 

adsorption equilibrium characteristics. Wright and Glasser (2001, 474) developed a 

model for protein recovery in fluidised bed and investigated the effect of operating 

parameters on the process dynamic. Axial dispersion and mass transport effects were 

accounted for in the model, and close estimations for both pore and surface diffusion 

models were obtained for experiment results. Tong et al. (2002, 117) considered the 

pore diffusion effect to predict the LYS breakthrough performance in expanded bed. 

The theoretical model was modified to consider the axial particle size distribution 

and discovered less axial dispersion for the small-sized, dense adsorbent used in the 

expanded bed. Li, Xiu and Rodrigues (2004, 3838) proposed a three-zone 

mathematical model for estimating the breakthrough curves from literature. The 

simulation results closely approximated experimental data in the literature by 

accounting for the bed voidage and particle size axial distribution other than pore 

diffusion, film transport, and axial dispersion in the phases. Other than these 

adsorption chromatographic models, some theoretical models have also been 

developed for continuous adsorption and elution processes and agreed well with the 

experimental data on purification of BSA (Lan et al. 2000, 858; Mazumder et al. 

2009a, 111). 

 

It can be seen that the literature on the theoretical studies of protein 

chromatographic based adsorption and elution have significantly evolved over the 

past decade. Therefore this effort is made to summarize different models applied in 

continuous bed chromatography contributed in this field. In these chromatographic 

columns, the variation of the protein amount loaded to the column over a period of 
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time is known as the breakthrough curve. Prediction of the breakthrough curve gives 

one of the solutions to modeling the continuous bed dynamics and effects of process 

parameters on the overall performance, which needs knowledge of the equilibrium 

behaviour as described by adsorption isotherm and mass transport characteristics 

from the bulk liquid to the adsorbent particles. A summary of some of the modeling 

studies mentioned above are presented in Table 2.7. 

 

2.4.1  Mass Transport Models  

Typically, the theoretical models describing chromatographic mass transport 

processes consists of the bulk liquid phase and the stationary adsorbent phase, which 

have to be accounted for separately. Amongst the different model approaches for 

chromatography, the general rate models, the lumped rate models, and the stirred 

tank models are most commonly applied for continuous protein separations on 

chromatographic beds. These are discussed in detail as follow. 

 

General Rate Models 

The general rate models are the most detailed models. In addition to axial 

dispersion, Dax they are characterised by a minimum of two other parameters 

describing mass transport effects in chromatographic columns. These two parameters 

may combine mass transfer in the liquid film, kf and inside the pores, Dp as well as 

surface diffusion, Ds and adsorption kinetics in various kinds. Radial mass transport 

inside the particle pores of stationary adsorbent phase is also taken into account, 

which results in concentration ∂cp/∂r and loading distributions ∂q/∂r along the 

particle radius. The mass transfer in the bulk liquid phase (Eq. 2.11) includes 

accumulation within the bulk liquid, convection, axial dispersion, and external film 

transport outside the particles (Hunter and Carta 2000, 81). The differential mass 

balance of adsorbent phase accounts for the intraparticle diffusion resistances such as 

pore diffusion (Eq. 2.12), surface diffusion or a combination of both (Eq. 2.13).   
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Boundary conditions for the stationary adsorbent phase are necessary in addition 

to the conditions of the chromatographic column inlet and outlet. The following is 

restricted to the form of the boundary condition derived by Ma et al. (1996, 1244) for 

a general rate model. Owing to particle symmetry, the concentration and loading 

gradients vanish at the centre of the particle (Eq. 2.14). The links between liquid, 

pore and solid phase are given by mass balances at the particle boundary (Eq. 2.15).  
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A system of partial differential and algebraic equations is obtained for all models. 

For the solution of these systems initial and boundary conditions for the 

chromatographic column are essential. The initial conditions and concentration as 

well as the loading specify their values at the onset of simulation run, t=0 (Eq. 2.16). 

Generally, zero values are assumed. 
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Lumped Rate Models 

The lumped rate models characterised by a second parameter describing rate 

limitations apart from axial dispersion, Dax were applied in studies on continuous 

chromatography of a variety of proteins. The second parameter subdivides the 

models into those where either mass transport or kinetic terms are rate limiting. In 

the mass transport limiting lumped rate models, the concentration inside the 

adsorbent pores is identical to the bulk liquid phase concentration, cp=c. A lumped 

film transfer coefficient, kf is used to denote the internal and external mass transport 
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resistances. The mass transport term is also defined by the linear driving force 

approach, which described the external mass transfer as a linear function of the 

concentration difference between the concentration in the bulk liquid phase and on 

the adsorbent surface separated by a film boundary layer (Xu, Cai and Pan 2013, 

155). Therefore, the lumped rate model consists of the balance equations in the bulk 

liquid phase written with the pore concentration (Eq. 2.17) as well as in the 

stationary adsorbent phase (Eq. 2.18).  

    




















t

q
ε1

t

c
εε1

z

c
U

t

c
ε

z

c
Dε i

p
i,p

p
i

l
i

2

i
2

ax
∂

 ∂

∂

 ∂

∂
 (2.17) 

   i,pi
p

f
i

p
i,p

p cc
r

3
k

t

q
ε1

t

c
ε 



∂

 ∂

∂
 (2.18) 

 

Like the mass transfer coefficient in the transport lumped rate models, the 

adsorption, kads and desorption, kdes rate constants are considered as effective lumped 

parameters. Though the assumption of a rate-determining kinetic step might seem 

unrealistic for some adsorption chromatography since this step is generally much 

faster than other influencing effects, when considering ion exchange chromatography 

this simplification may be justified due to the fast mass transport rates (Guiochon et 

al. 2006, 295; Ruthven 1984, 255; Lan et al. 2000, 858). Since no film transfer 

resistance exists, concentration inside the particle pores is the same as the bulk liquid 

phase concentration, cp=c. The model can be described by the bulk liquid phase (Eq. 

2.19) and adsorbent phase (Eq. 2.20) mass balances (Lan et al. 2000, 858). Shown 

here is a simple reversible kinetic model. Other kinetic rate models are discussed in 

Section 2.2.2. 
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Tanks-In-Series Models 

An entirely different approach to describe a chromatographic column dynamics 

leads to the stirred tanks-in-series models. Instead of dynamic microscopic balance, 

the continuous chromatographic column is modelled as a sequence of a finite number  
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Table 2.7 Mass transport models of chromatographic protein separation. 
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N of similar tanks. Each tank is filled with liquid and solid that is completely mixed. 

The tanks-in-series model was introduced by Martin and Synge (1941, 1358) and is 

equal to the concept of stirred tank in series typically used in reaction processes. A 

constant flow of bulk liquid through a cascade of N ideally stirred tanks is assumed, 

each tank having a total volume equal to the total volume divided by N, V=Vsys/N. 

Inside each tank, a fraction is occupied by the solid phase and the concentration 

inside the liquid is similar in the bulk phase and in the pore phase. This leads to the 

following mass balance (Eq. 2.21) for the i-th tank, where accumulation is equal to 

difference between the inlet and the outlet stream. The adsorbent phase mass balance 

including mass transport resistance can also be developed (Eq. 2.22) as follow 

(Schmidt-Traub and Strube 1996, 641). 
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2.4.2  Fluid Dynamics  

Fluid dynamics of the chromatographic fluidised beds can be expected to play 

important roles in predicting breakthrough curves and performance of such systems. 

Once the mass transport and equilibrium aspects have been analysed, the key 

concepts of particle and fluidised bed hydrodynamics are explored.  

 

Particle Drag Coefficient 

The drag coefficient, CD is defined as the ratio of the force on the particle and the 

fluid dynamic pressure caused by the fluid times the area projected by the particles 

(Eq. 2.23). Stokes (1851, 8) first derived an expression for drag force describing the 

motion of a spherical particle moving through a viscous fluid. The equation is based 

primarily on the radius of particle, rp and the viscosity of fluid, μ. For creeping flow 

conditions, where the Navier-Stokes inertial effects were assumed to be negligible, 

the drag correlation for steady state spherical particle motion was derived (Eq. 2.24). 

The drag equation is a function of the particle Reynolds number, Rep (Eq. 2.25). 

However, the Stokes law is only valid for Reynolds number less than 0.1. 
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Stokes drag correlation showed no wake through disregarding of inertial effects. 

Oseen (1910, 1) considered these effects approximately and derived a correction to 

the Stokes drag correlation. The improvement in predictions due to the correction of 

Oseen motivated further formulations to be added to the traditional Oseen (1910, 1) 

approximation. These drag correlations were mainly proposed by Schiller and 

Naumann (1933, 318), Fair and Geyer (1954,), Proudman and Pearson (1957, 237), 

Clift, Grace and Weber (1978, 33), Flemmer and Banks (1986, 217), Turton and 

Levenspiel (1986, 83), Khan and Richardson (1987, 135) and Haider and Levenspiel 

(1989, 63). These are summarised in Table 2.8 (Eqs. 2.2 to 2.34), respectively, along 

with the range of applicability claimed by the authors.   

 

Particle Terminal Velocity 

The upper limit for operating a fluidised bed is given by the terminal (settling) 

velocity of the particles, Ut. The terminal velocity is defined as the velocity reached 

by a free-falling particle in a stagnant fluid under steady-state conditions. The 

terminal velocity depends primarily on the physical properties of the fluid and 

particle. The calculation of the particle terminal velocity used to be an iterative 

process. Further development allowed for direct calculations without trial-and-error. 

Many of terminal velocity formulations were based on the well-accepted terminal 

settling velocity known as the Stokes settling velocity (Eq. 2.35), which is valid for 

Reynolds numbers less than 0.1 (Stokes 1851, 8). This correlation was derived by 

equating the drag force and the gravitational force for a spherical particle (Eqs. 2.36 

to 2.37). 
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Nonetheless, Eq. 2.35 was valid for describing free-falling velocity of spherical 

particles. Other forms of terminal velocity correlations can be applied to the specific 

range of applicability by combining Eq. 2.35 and the recommended drag coefficient 

correlations listed in Table 2.8.  

 

Fluidised Bed Expansion 

Many studies have been carried out to study the extension properties of fluidised 

beds (Richardson and Zaki 1954, 35; Rowe 1961, 175; Wen and Yu 1966, 100; 

Garside and Al-Dibouni 1977, 206; Khan and Richardson 1989, 111). Experimental 

data demonstrate that the voidage and terminal velocity relationship is independent 

of the total mass of solid particles in a liquid-solid fluidised bed. The different 

relationships between the superficial fluid velocity, Ul, the terminal velocity, Ut and 

the bed voidage, εl have been developed. Richardson and Zaki (1954, 35), based on a 

dimensional analysis, proposed the fluidised bed expansion correlation (Eq. 2.38). 

The correlation was derived in terms of voidage and the superficial fluid velocity as 

the bed voidage approaches unity (Eq. 2.39) (Karamanev and Nikolov 1992, 1916). 

The bed expansion index, n in the correlation is a function of terminal Reynolds 

number of particles, Ret based on bed expansion data and can be defined into four 

separate equations with each spanning over a limited range of Reynolds number. 
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The Richardson and Zaki correlation is generally applicable to voidage around 

0.8 to 0.9, except for heavy and/or large particles. A better correlation for the bed 

expansion index (Eq. 2.37) than the Richardson-Zaki correlation was developed by 

Khan and Richardson (1989, 111). Similar to the former correlation, this correlation  
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Table 2.8 Drag correlations and proposed range of applicability. 

Range of Rep Correlation Ref. Eq. 
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Table 2.9 Bed expansion correlations of chromatographic systems. 

Expansion correlation  Voidage correlation Range Ref. Eq. 
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is valid in certain range of applicability as well. These two correlations and other 

popular correlations for spherical particles are summarised in Table 2.9 (Eqs.2.40 to 

2.45). Some correlations are expressed as a function of dimensionless parameters, 

such as the Galileo, Ga and Archimedes, Ar numbers (Eqs. 2.46 to 2.47). 
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2.5  CONCLUSION 

In this chapter, the sorghum seed protein kafirin was reviewed, regarding its 

physical properties, applications, and methods applied for its extraction. The batch 

extractions of kafirin were limited by low kafirin yield and purity, therefore requiring 

for kafirin purification. Ion exchange adsorption and chromatography was selected 

for purification of kafirin due to its wide application in protein purification, for both 

laboratory and industrial purposes. The principles of ion exchange chromatography 

were discussed, followed by a review of the different applications of ion exchange 

processes. Different adsorption based ion exchange systems were reviewed, with the 

emphasis on the application of the systems in continuous kafirin purification. 

Phenomenological modeling work done on ion exchange chromatographic systems 

were also summarised, followed by a review on the correlations to represent the fluid 

dynamics of these systems.  
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CHAPTER 3  

LIQUID-SOLID CIRCULATING FLUIDISED BED 

SYSTEM: DESCRIPTION AND MODELING 

 

3.1  INTRODUCTION 

The inability of current generation processes to produce purified kafirin is clearly 

illustrated in the last chapter. Therefore, further purification using ion exchange 

chromatography can prove to be ideal. Continuous liquid solid circulating bed 

(LSCFB) offers distinct advantages over other ion exchange systems.  

 

In order to develop a protein purification system based on the LSCFB, it is 

important to understand the effect of various operating parameters on its operations. 

A phenomenological model can ideally provide such understanding. A typical 

LSCFB system consists of downer and riser, integrating two different operations 

simultaneously. This chapter presents a general purpose, extensible, and dynamic 

model based on the tanks-in-series framework. The model allows adjusting the 

degree of backmixing in each phase for both fluidised beds. The model is validated 

with previously published data on extraction of BSA as model protein. Detailed 

dynamic analysis is performed on the ion exchange chromatographic based protein 

recovery. The interaction between the riser and downer are captured. Parametric 

studies on protein recovery in LSCFB system are carried out using the validated 

model to better understand the system behaviour.  

 

3.2  LSCFB CHROMATOGRAPHIC SYSTEM 

A typical LSCFB system is shown in Figure 3.1. The LSCFB systems consists of 

a pair of fluidised beds, liquid-solids separator, washing section below the separator, 

top solids return pipe between the separator and the downer, washing section below 

the downer, and bottom solids return pipe between the riser and the downer at the 

bottom (Lan et al. 2000, 858; Zhu et al. 2000, 83; Lan et al. 2002b, 252). Details of 

the dimensions and design characteristics of the whole LSCFB chromatographic 

system are reported in Table 3.1, and served as the foundation in this study.  
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Figure 3.1 Schematic of the liquid-solid circulating fluidised bed system containing ion 

exchange particles. 
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Table 3.1 Liquid-solid circulating fluidised bed dimensions and design specifications. 

D
es

ig
n
 s

p
ec

if
ic

at
io

n
s 

U
se

d
 f

o
r 

ad
so

rp
ti

o
n
 c

h
ro

m
at

o
g

ra
p

h
y

. 

C
y
li

n
d
ri

ca
l 

v
er

ti
ca

l,
 c

ir
cu

la
r 

cr
o

ss
 s

ec
ti

o
n
 f

lu
id

is
ed

 b
ed

 m
ad

e 
o

f 
ac

ry
li

c.
 

P
ar

ti
cl

es
 e

n
te

r 
b
el

o
w

 r
af

fi
n
at

e 
o

u
tl

et
 t

o
 c

re
at

e 
fr

ee
b

o
a
rd

 f
re

e 
o

f 
p

ar
ti

cl
es

 b
el

o
w

 

th
e 

o
u
tl

et
. 

U
se

d
 f

o
r 

re
g
en

er
at

io
n
 (

el
u
ti

o
n

) 
o

f 
ad

so
rb

en
t 

o
r 

io
n
 e

x
ch

an
g

e 
p

ar
ti

cl
es

. 

C
y
li

n
d
ri

ca
l 

v
er

ti
ca

l,
 c

ir
cu

la
r 

cr
o

ss
 s

ec
ti

o
n
 f

lu
id

is
ed

 b
ed

 m
ad

e 
o

f 
P

le
x

ig
la

s.
  
 

U
se

d
 m

ai
n
ly

 f
o
r 

ra
d
ia

l 
v
el

o
ci

ty
 d

is
tr

ib
u

ti
o
n

. 

T
u
b
u
la

r 
ri

n
g
 o

f 
p
er

fo
ra

te
d
 s

ta
in

le
ss

 s
te

el
 p

ip
e.

 

U
se

d
 m

ai
n
ly

 f
o
r 

ra
d
ia

l 
v
el

o
ci

ty
 d

is
tr

ib
u

ti
o
n

. 

P
ri

m
ar

y
 s

tr
ea

m
 a

n
d
 s

o
li

d
s 

en
te

r 
at

 t
h

e 
sa

m
e 

el
ev

at
io

n
 a

t 
b

as
e 

o
f 

ri
se

r.
 

U
se

d
 m

ai
n
ly

 f
o
r 

ra
d
ia

l 
v
el

o
ci

ty
 d

is
tr

ib
u

ti
o
n

. 

A
u
x
il

ia
ry

 p
er

fo
ra

te
 p

la
te

 d
is

tr
ib

u
to

r 
co

v
er

ed
 w

it
h
 s

ta
in

le
ss

 s
te

el
 m

es
h
. 

H
y
d
ra

u
li

c 
cy

cl
o
n
e 

m
ad

e 
o
f 

ac
ry

li
c;

 s
ta

in
le

ss
 s

te
el

 m
es

h
 o

n
 e

x
tr

ac
t 

o
u
tl

et
. 

E
x
tr

ac
t 

o
u
tl

et
 a

t 
sa

m
e 

le
v
el

 a
s 

ra
ff

in
at

e 
o

u
tl

et
 o

n
 t

o
p

 o
f 

d
o

w
n

er
. 

L
ar

g
e-

to
p
, 

sm
al

l-
b
o
tt

o
m

 f
u
n

n
el

; 
w

as
h
 w

at
er

 d
is

ch
ar

g
ed

 a
t 

ex
tr

ac
t 

o
u

tl
et

. 

F
u
n
n
el

 b
o
tt

o
m

 o
f 

d
o
w

n
er

 a
n
d
 v

er
ti

ca
l 

p
ip

e;
 w

as
h

 w
at

er
 d

is
ch

ar
g

ed
 a

t 
ra

ff
in

at
e 

o
u
tl

et
. 

In
cl

in
ed

 p
ip

e 
co

n
n
ec

ti
n
g
 l

iq
u
id

-s
o

li
d

s 
se

p
ar

at
o

r 
an

d
 t

o
p
 o

f 
d

o
w

n
er

. 

M
ai

n
ta

in
ed

 a
t 

m
o
v
in

g
 p

ac
k
ed

 b
ed

 r
eg

io
n

; 
es

se
n

ti
al

 f
o

r 
d

y
n

am
ic

 s
ea

l.
 

In
cl

in
ed

 p
ip

e 
co

n
n
ec

ti
n
g
 d

o
w

n
er

 a
n

d
 r

is
er

 a
t 

th
e 

b
o
tt

o
m

. 

M
ai

n
ta

in
ed

 a
t 

m
o
v
in

g
 p

ac
k
ed

 b
ed

 r
eg

io
n

; 
es

se
n

ti
al

 f
o

r 
d

y
n

am
ic

 s
ea

l.
 

D
im

en
si

o
n
 

1
2

0
 m

m
 I

.D
.,
 2

.5
 m

 h
ei

g
h
t.

 

3
8

 m
m

 I
.D

.,
 3

.0
 m

 h
ei

g
h
t.

 

1
2

0
 m

m
 I

.D
. 

1
1

 m
m

 I
.D

.,
 8

6
 m

m
 l

en
g
th

 

3
8

 m
m

 I
.D

. 

1
2

0
 m

m
 I

.D
.,
 2

0
0
 m

m
 h

ei
g
h
t.

 

4
0

 m
m

 I
.D

.,
 2

0
0
 m

m
 h

ei
g
h
t 

4
0

 m
m

 I
.D

.,
 2

0
0
 m

m
 h

ei
g
h
t.

 

3
5

 m
m

 I
.D

.,
 5

0
0
 m

m
 l

en
g
th

. 

3
5

 m
m

 I
.D

.,
 8

0
0
 m

m
 l

en
g
th

. 

 D
o
w

n
er

 f
lu

id
is

ed
 b

ed
. 

R
is

er
 f

lu
id

is
ed

 b
ed

. 

D
o
w

n
er

 d
is

tr
ib

u
to

r 

R
is

er
 p

ri
m

ar
y

 d
is

tr
ib

u
to

r 

R
is

er
 a

u
x

il
ia

ry
 d

is
tr

ib
u
to

r 

L
iq

u
id

-s
o

li
d
s 

se
p

ar
at

o
r.

 

R
is

er
 w

as
h

in
g
 s

ec
ti

o
n
 

D
o
w

n
er

 w
as

h
in

g
 s

ec
ti

o
n
 

T
o
p

 s
o

li
d

s 
re

tu
rn

 p
ip

e 

B
o
tt

o
m

 s
o
li

d
s 

re
tu

rn
 p

ip
e 



   

52 

 

The first liquid-fluidised bed is a conventional counter-current flow downer 

fluidised bed in which the ion exchange particles enter through the inlet adjacent to 

the top of the downer by gravitational force from top solids return pipe and move 

downward to the bottom of the downer. The first fluidising liquid, the feed solution, 

enters the downer at the bottom end and flows upward in counter current with the 

particles. The second fluidised bed is a riser wherein the particles settle at the bottom 

of downer fluidised bed fall to the inlet adjacent to the bottom of riser from the 

bottom solid return pipe, after being rinsed by the washing section below the downer 

fluidised bed, and flow upward in co-current relation with a second fluidising liquid, 

the extracting buffer, which enters the riser from the bottom and flows upward 

through the riser carrying the particles along its flow. 

 

3.2.1  Standard Protein and Ion Exchanger  

Most chromatographic systems require the use of a reference standard. BSA is 

most commonly used as a standard for the determination of protein concentration as 

well as for other analytical methods (Lundblad 2012, 83). A number of researchers 

therefore used BSA as the model protein for the development of continuous 

processes involving ion exchange chromatography. Hunter and Cartar (2000, 81) 

used the BSA as a standard for comparison of proactive enzyme uptake on BRX-Q 

and BRX-QP anion exchangers, and BRX-S cation exchanger. Bruce and Chase 

(2002, 3087) used it as a model protein together with lysozyme (LYS) for evaluating 

performance of Streamline DEAE and Streamline SP, respectively. The molecular 

mass and isoelectric point is Mr~65000 and pI~5 for BSA (Righetti and Tudor 1981, 

115).  

 

Diaion HPA25, a strongly basic highly porous anion exchanger, is selected as the 

most suitable for use in the pilot-scale LSCFB chromatographic system (Lan et al. 

2000, 858; Lan et al. 2002b, 252). The BSA adsorption capacity of Diaion HPA25 is 

94.93 kg/m
3
, which is satisfactory for the LSCFB process. The average diameter of 

Diaion HPA25 particles is 320 μm, and the wet density 1.08 g/ml, which makes the 

terminal velocity of Diaion HPA 25 in water equivalent to 4.5 mm/s, sufficient for 

the LSCFB ion exchange chromatography. Anion exchange chromatography with 

Diaion HPA25 allows the recovery of BSA from neutral solution with a pH around 

7.0, therefore giving a mild pH condition to maintain the BSA integrity. Also, Diaion 
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HPA25 is economical amongst other commercial ion exchangers, which is very 

important for process-scale applications.  

 

3.2.2  Fluidised Beds 

Liquid-solids adsorptive chromatographic systems are used for proteins recovery 

for decades. For the ion exchange chromatographic system of this study, cylindrical 

vertical circulating fluidised beds with circular cross section are applied. 

Hydrodynamics of these fluidised beds are the major interest of Section 3.3, so this 

section presents only the dimension and design specifications of these fluidised beds. 

The downer fluidised bed is made from Plexiglass with the height being 2.5 m and 

inner diameter of 120 mm (Lan et al. 2000, 858; Zhu et al. 2000, 83; Lan et al. 

2002b, 252). Ion exchange particles are introduced into the downer about 0.82 m 

below the raffinate outlet so sufficient residence time is provided for the transfer of 

regenerated ion exchange particles, from the washing section below the liquid-solids 

separator into the bottom solids return pipe, by gravity, and to provide a part of the 

downer wherein a freeboard free of the particles is maintained under the raffinate 

outlet of sufficient height to substantially eliminate carryover of particles through the 

outlet while the raffinate is drained.  

 

The riser is an acrylic column with the height being 3 m and inner diameter of 38 

mm (Lan et al. 2000, 858; Zhu et al. 2000, 83; Lan et al. 2002b, 252). The extract 

outlet on the liquid-solids separator connected to the riser is at the equivalent 

elevation as that of the raffinate outlet on the top of the downer fluidised bed. Such 

design stabilizes the LSCFB within a satisfactory range by maintaining the pressure 

balance between these circulating fluidised beds.  

 

3.2.3  Distributors 

Distributors are installed in the circulating fluidised beds with intentions to 

induce as radially uniform and stable liquid velocity distribution across the entire 

fluidised beds cross sections as possible, in conjunction with the calming or 

homogenizing regions usually located upstream of the distributors, thus eliminating 

or at least minimising any tendency toward channelling or bulk circulation. Other 

functions of the distributors are to prevent non-fluidised regions upstream of the 

distributors, and to support the fluidised beds during system start-up and shutdown.  
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Figure 3.2 Schematic of the distributors in the liquid-fluidised beds system. (a) downer 

distributor; (b) riser distributor. 

 

A schematic representation of the downer distributor is as shown in Figure 3.2(a). 

The distributor is a tubular ring of perforated stainless steel pipe, in which the 

particles are allowed to fall through the bottom solids return pipe while the feed 

liquor is introduced to the lower of the bed (Lan et al. 2000, 858; Zhu et al. 2000, 83; 

Lan et al. 2002b, 252). Also, for prevention of direct loss of solid particles while the 

extract is withdrawn, a stainless steel mesh is used to cover the extract outlet.  
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The distributor of the riser fluidised bed divides the entering extracting buffer 

into the primary stream and the auxiliary stream, as shown in Figure 3.2(b) (Lan et 

al. 2000, 858; Zhu et al. 2000, 83; Lan et al. 2002b, 252). The primary stream enters 

through a tubing of 11 mm inner diameter extending 36 mm into the riser, and 

therefore at the same elevation as that of the ion exchange particles entrance adjacent 

to the bottom of the riser through the bottom solids return pipe. This design helps to 

increase the pressure drop across the bottom solids return pipe and the stability of the 

system through the dynamic seal between the circulating fluidised beds. Description 

about the dynamic seal is covered in a later section. The auxiliary stream, on the 

other hand, is introduced to the lower of the riser through a perforated plate inlet 

covered by a stainless steel mesh. The auxiliary stream functions to induce stirring of 

particles settled at the bottom of the riser to be entrained upward to the top by the 

combination of the primary and auxiliary streams.   

 

3.2.4  Liquid-Solids Separator and Washing Sections 

A hydraulic cyclone connects directly to the riser fluidised bed functions as the 

liquid-solids separator for separation of the ion exchange particles from the extract 

outlet (Lan et al. 2000, 858; Lan et al. 2002b, 252). The cyclone has the advantages 

for not having any internal rotating parts, its low construction and maintenance costs, 

and low pressure drops. The separator has a liquid-solids inlet that was much larger 

than that of the riser to reduce the liquid velocity to lower than the particles terminal 

velocity to let gravity assist in the particles separation by differences in density and 

particle size, an axial liquid outlet, a solids outlet for the collected solid particles, and 

a stainless steel mesh covering the extract outlet. The mesh is necessary to avoid 

blockages of ion exchange particles circulation when the liquid-solids separator 

operated at relatively high liquid velocity. 

 

Ion exchange and regeneration (elution) of ion exchange particles are coupled 

with washing of the particles before the particles are transferred from one bed to the 

other. Residual liquid trapped within the intraparticle pores and the intraparticle 

voids of the particles is removed for preventing the residual liquid from one column 

to contaminate the main stream in the other column. The top washing section is 

configured by the funnel bottom of the liquid-solids separator discussed earlier and 

the solids return pipe made of acrylic with diameter being 40 mm and height of 200 
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mm (Lan et al. 2000, 858; Lan et al. 2002b, 252). A schematic illustration of the 

combined separator and top washing section is depicted in Figure 3.3(a). Wash water 

is introduced at an elevation slightly higher than the top solids return pipe, and went 

upward. The wash water slows down the falling particles, created a solids layer in the 

funnel bottom of the separator, and rinses the particles before their falling into the 

top solids return pipe. The wash water also minimises the intermixing between the 

extract in the riser and the deionised feed solution at the top of the downer. The wash 

water combines with the extract at the top of the riser, and exits from the extract 

outlet with minimal dilution effect due to substantial flowrate differences between 

these liquids. This design nonetheless simplifies the control of the LSCFB system.  

 

The bottom washing section of the downer is comprised of the funnel bottom of 

the bed and a vertical pipe of 40 mm inner diameter and 200 mm height wherein the 

wash water enters from the base of the bed. A schematic diagram of the washing 

section is shown in Figure 3.3(b). The upward wash water travels counter current to 

and washes the ion exchange particles before they leave to the riser. The wash water 

dilutes the deionised feed solution and exits from the top of the downer through the 

raffinate outlet. 

 

3.2.5  Solids Return Pipes 

Two main streams with different properties, the feed solution of low ionic 

strength and high concentration of solute, and the pure extract of high ionic strength 

and low concentration of solute, are involved in the downer and the riser, separately. 

Thus a dynamic seal between these fluidised beds to prevent intermixing of these 

main streams while allowing for a stable circulation of particles is critical for smooth 

operation of the LSCFB system. The dynamic seal is achieved by keeping the 

particles in the solids return pipes operating as packed moving beds to form a particle 

plug splitting the two primary streams of different properties (Lan et al. 2000, 858; 

Lan et al. 2001, 159; Lan et al. 2002b, 252).  

 

Formation and maintenance of the particle plugs in the whole liquid-solid system 

of interest depends on the flow of particles within the solids returning pipes. Control 

of the latter is accomplished by the butterfly valve. Butterfly valves are quarter-turn 

valves used to regulate flow, incorporating a rotational disk to control the flowing  
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Figure 3.3 Schematic of the dynamic seals in a liquid-solid circulating fluidised beds 

system. (a) liquid-solids separator, top washing section and dynamic seal; (b) bottom 

washing section and dynamic seal. 
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fluid in the process. The disk is positioned perpendicular to the flow in the closed 

position, and rotates one quarter of a turn to be parallel to the flow in the fully 

opened position. Intermediate rotations allow regulation of the fluid flow. The 

butterfly valve is preferred over other valves because of the low density of ion 

exchange particles which proves to be difficult for some valves. Another credit to the 

butterfly valve is that it enhanced the pressure drop across the solids return pipe, 

which is critical for forming and maintaining the dynamic seal between the fluidised 

beds and the stabilization of the whole system.  

 

The dynamic seal introduced through the top solids return pipe, 500 mm long and 

35 mm in diameter, in between the liquid-solids separator and the top of downer is 

shown in Figure 3.3(a) (Mazumder et al. 2009a, 113). Mixing of the de-ionised feed 

solution and extract is prevented wherein the wash water introduced from the bottom 

of the separator is forced upward to the top washing section. Complete mixing is 

initiated by the system design comprised of a smaller wash water inlet than the 

separator bottom pipe and the pipe is smaller than the funnel bottom. When the top 

solids return pipe works in the packed moving bed region, when particle plug is 

maintained, mixing between the deionised feed solution and the extract is 

successfully avoided. The wash water exits via the extract outlet, slightly diluting the 

extract but not enough to affect the carrying fluid velocity in the riser fluidised bed. 

 

The bottom solids return pipe is 800 mm long and 35 mm in diameter, between 

the bottoms of the downer and the riser fluidised beds, is based on similar ideals as 

the bottom solids return pipe, as discussed above (Mazumder et al. 2009a, 113). A 

schematic diagram of the bottom solids return pipe and washing section to illustrate 

the dynamic seal is shown in Figure 3.3(b) (Lan et al. 2000, 858; Lan et al. 2001, 

159; Lan et al. 2002b, 252). Wash water introduced from the base of the downer is 

forced upward into the bottom washing section to initiate perfect mixing of the 

phases due to the smaller wash water pipe compared to the lower of the washing 

section in addition to the large top, small bottom-funnel to help deliver different 

velocities in different parts, and thus the efficiency of mixing and rinsing of particles. 

The wash water is discharged from the raffinate outlet with minor dilution effect to 

simplify the LSCFB system control for not requiring for a dynamic seal between the 

downer and the bottom washing section.  
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3.3  LSCFB HYDRODYNAMIC REGIONS AND TRANSITIONS 

3.3.1  Downer Hydrodynamics 

In the downer, a counter-current flow of liquid and solid phases is attained as the 

feed solution moves upward and ion exchange particles flow downward. Fluidisation 

region and flow characteristics in the LSCFB determine the particles residence time 

and mass transport essential in LSCFB hydrodynamic modeling. There is a common 

agreement in many simulation and modeling studies which divides the downer into 

three hydrodynamically differing regions based on solids holdup distribution. These 

are called the freeboard at the top, the dilute region in the middle, and the dense 

phase region at the bottom of the downer (Lan et al. 2000, 858). The freeboard is 

essential to prevent loss of particles into the raffinate while the dense phase region is 

the most vital region for adsorption in the downer as the solids holdup in this region 

is much higher than the freeboard and dilute regions.  Liquid phase protein 

concentration in the more dilute regions at upper section of the downer is found to be 

very low. So the extent of protein adsorption in this region is assumed to be 

negligible. The effective downer bed height, hd,eff (Eqs. 3.1 and 3.2) investigated is 

therefore the height of the dense phase region calculated from solids holdups from 

different parts of the LSCFB  system (Zheng et al. 1999, 284; Lan et al. 2000, 858; 

Lan et al. 2002b, 252).  

   '1'VhhA
S

Ah 2sr2r1sr1rr
a

dsdeff,d 


   (3.1) 

     bbbtttsepsepsep 1AL1ALAh
3

4
'1'V    (3.2) 

 

Downer dense phase region operates in conventional fluidisation region, where 

the particles are in full suspension and uniformly distributed within this region 

(Kwauk, 1963, 587; Lan et al. 2000, 858). Figure 3.4 shows the counter-current 

contact between the two phases in the dense phase region. The modified Richardson 

and Zaki equation (Eq. 3.3), as proposed by Kwauk (1963, 587), has been employed 

to compute for bed voidage, εd. This model is valid for conventional liquid-solid 

particulate fluidisation, in other words, there is uniform flow structure distribution.  

n
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εU
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The bed expansion index, n (Eq. 3.4) in the correlation is expressed as a function 

of terminal Reynolds number of particles, Ret (Eq. 3.5) based on bed expansion data 

(Lan et al. 2002b, 252). The terminal settling velocity, Ut correlation employed is 

known as the Stokes settling velocity (Eq. 3.6), derived by equating the drag and 

gravitational forces for a spherical particle, and valid for Ret between 1 and 200 

(Stokes 1851, 8).  
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The correlation proposed by Khan and Richardson (1989, 111), Eq. 3.7, is 

applied to obtain Ui, the superficial liquid velocity at bed voidage, ε = 1.  
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Entrained particles from the liquid-solids separator then transfer into the downer 

through the return pipe by gravity. Assuming the solids velocity, Usd equivalent to 

the particles terminal settling velocity, Ut, the voidage in the top solids return pipe 

and separator, εt (Eq. 3.8) and εsep (Eq. 3.9), can be estimated (Zheng et al. 1999, 

284).   
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3.3.2  Riser Hydrodynamics 

The riser operates in liquid-solid circulating fluidisation region, and provides 

excellent interfacial mass transfer between the two phases above and beyond that of 

conventional fluidisation. To maintain fast fluidisation region, the superficial liquid 
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Figure 3.4 Flow diagram of the liquid-solid circulating fluidised beds. Segregation of the 

downer in Md number of solid phase tanks and Nd number of liquid phase subtanks per solid 

tank. 
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velocity Ulr must exceed particle terminal velocity Ut, so that significant amount of 

the particles is entrained upwards to the top of the riser, and separated by a liquid-

solids cylindrical separator. Co-current contact between the liquid and solid phase is 

shown in Figure 3.5.  

 

Existence of a lower distributor region of an extensively higher solids holdup and 

an upper region in the dilute-phase flow are common in fast fluidised beds (Karri and 

Knowlton 1991, 67; Zheng et al. 1999, 284; Monazam and Shadle 2004, 89). The 

solids holdup distribution described the extent of different regions. Despite its 

comparatively little height, the distributor region is of importance because of the 

higher solids holdup distribution and thus assumed to obey Richardson-Zaki 

correlation (Richardson and Zaki 1952, 35). Hydrodynamics of the riser distributor 

region is well defined by the voidage by the voidage, εr1 acquired by the modified 

correlation of Richardson and Zaki by Kwauk (1963, 587), Eq. 3.10, for co-current 

flows. The bed expansion index, n and the superficial liquid velocity, Ui at ε = 1 in 

the distributor region are obtained from Eqs. 3.4 to 3.7. 

n
1ri

1r

1rsr
lr ε=U

ε1

εU
U   (3.10) 

 

A transition from conventional fluidisation region in the distributor region into 

circulating fluidisation region in the upper dilute region has been observed for low 

density ion-exchange particles (Zheng et al. 1999, 284; Monazam and Shadle 2004, 

89). This transition happens so sharply for ion-exchange particles with low densities 

that the transition is hardly over a range, but a single point in the liquid velocity. The 

upper dilute region is described by a uniform axial voidage, εr2 profile along the riser 

(Liang et al. 1995, 259; Zheng et al. 1999, 284; Zhu et al. 2000, 82; Monazam and 

Shadle 2004, 89). An empirical correlation for solids holdup in the upper dilute 

region, εsr2 is proposed by Mazumder et al. (2009a, 111) as a function of superficial 

liquid velocity and solids circulation rate (Eq. 3.11). The use of this correlation has 

obtained good agreement between the predicted and experimentally obtained results 

reported by Lan et al. (2002, 252).  
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Figure 3.5 Flow diagram of the liquid-solid circulating fluidised beds. Segregation of the 

riser in Mr1 number of solid phase tanks and Nr1 number of liquid phase subtanks per solid 

tank in freeboard region, and Mr2 number of solid phase tanks and Nr2 number of liquid 

phase subtanks per solid tank in upper dilute region. 
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3.4  MODEL DEVELOPMENT 

The performance of the LSCFB depends closely on the hydrodynamics and the 

distribution of different phases in the downer and riser. Therefore, a model that 

allows describing the hydrodynamics in a flexible manner is desirable. The tanks-in-

series framework allows adjusting the backmixing degree in each of the phase 

independently. Additionally it allows flexibility in adjusting the residence time 

distribution of different phases. Therefore, it is chosen as the basis of the model.  

 

A schematic diagram of the LSCFB system is shown in Figure 3.1. The mixing 

patterns in these fluidised beds are represented by a series of ideally mixed tanks. 

The tank-in-series framework is chosen because it not only allowed easy integration 

with the mass transport model, but also offered a straightforward comparison of the 

tanks-in-series system performance with that of a plug flow system reported 

previously (Lan et al. 2000, 858; Mazumder et al. 2009a, 111). Each of the fluidised 

beds in the LSCFB is divided into two series of ideally mixed stirred tanks, 

illustrated schematically in Figure 3.4 and Figure 3.5; one corresponding to liquid 

phase, while the other to solid phase. Diaion HPA25 anion exchanger is referred to 

as the solid phase in the diagram. In the current model, the solid phase is formed by 

M equally size ideally mixed stirred tanks, arranged in series, and each solid tank is 

then further subdivided into a series of N ideally mixed subtanks of liquid phase. 

 

The predicted results have been examined for fitting with reported data in Lan et 

al. (2000, 858) and Mazumder et al. (2009a, 111) by performing the simulation with 

different numbers of M and N for downer and riser. Optimum fitting results are found 

for the case with downer dense phase region Md=20 and Nd=1, riser upper dilute 

phase region Mr1=1 and Nr1=3, and riser distributor region Mr2=9 and Nr2=3. In the 

LSCFB, entrained ion exchange particles do not flow convectively through the 

downer and riser in contrast to liquid flows. Subsequently, mixing in solid phase is 

relatively extensive than that in liquid phase. Thus, the solids phase is represented by 

fewer tanks than the liquid phase. The tanks-in-series model for the various phases in 

the LSCFB fluidised beds are numbered upwards. 
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3.4.1  Model Assumptions  

Governing equations for recovery of protein in LSCFB system are derived on 

basis of the research results on equilibrium isotherm and hydrodynamics of the 

various phases (Lan et al. 2000, 858; Lan et al. 2002b, 252; Mazumder et al. 2009a, 

111). In deriving the model equations, some assumptions are made and listed as 

followed: 

o Adsorption rate is limited by intra-particle diffusional resistance and mass transfer 

resistance in the laminar boundary layer surrounding an individual particle. 

o Surface adsorption is instantaneous and thus a local equilibrium is established at 

the particle surface between protein concentrations in the two existing phases. The 

equilibrium adsorption behaviour is well-described by the Langmuir isotherm.  

o Ion exchange particles are spherical and uniform in size with a mean particle 

radius. These particles are relatively immobile.  

o Protein concentrations in liquid solution of the freeboard and dilute phase region 

in downer are very low, thus adsorption in these regions are negligible compared 

to that of the dense region.  

o Uniform distributions of particle concentration and solids holdup in the system.  

o Effects of liquid axial dispersion and solid backmixing in each tank are negligible.  

o Thermal effects are negligible, i.e., the system operates isothermally.  

 

On the basis of these assumptions, transient model equations for the downer and 

riser are derived. In order to close the model equations, information on various 

hydrodynamic parameters are required. The framework is flexible in selecting 

correlations for these parameters. The correlations used in this study are previously 

discussed in Section 3.3. 

 

3.4.2  Formulation of Downer  

Protein mass balance in liquid and solids phase is applied to develop ordinary 

different equations to describe protein concentrations in different phase. The 

effective downer height investigated is the height of dense phase region due to 

negligible protein adsorption in the dilute phase region. For id-th subtank represented 

by Figure 3.6(a), where 1<id<MdNd, the protein mass transfer balance (Eq. 3.12) is 

derived. Corresponding mass transfer balance for solid phase (Eq. 3.13) is also 

developed, for 1<jd<Md  as described in Figure 3.7(a). 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.6 Schematic representations of liquid-phase (a) id-th subtank, (b) 1st subtank, and 

(c) MdNd-th subtank in the downer. 
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The feed solution, with protein concentration, cod enters the 1st liquid subtank in 

Figure 3.6(b), and exits the system at ced from MdNd-th subtank described in Figure 

3.6(c). Liquid phase mass balance (Eq. 3.12) is rewritten as Eq. 3.15. 

c1,d_in = cod (3.14) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.7 Schematic representations of solid-phase (a) jd-th tank, (b) 1st tank, and (c) Md-th 

tank in the downer. 
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In writing the solid phase mass balance for protein, the dynamic seal between the 

riser and downer is considered, as intermixing does not occur between the two 

phases in the solids feed pipe meaning no adsorption has taken place. Mass balances 

for the solid phase are then written so as to make the protein concentration at the 

outlet of downer, qed equivalent to that at the inlet of riser, qor. The corresponding 

boundary conditions (Eq. 3.16) are as described. Solid phase balance of downer is 

therefore rewritten in Eq. 3.17.  
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qM,d_in = qod = qer 
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To solve the coupled mass balances, initial and boundary conditions are required. 

In the beginning, zero protein concentration and loading (Eq. 3.18) are assumed in 

the downer liquid subtanks and solid tanks.  

0c
0td,i 


 (3.18) 

0q
0td,j 


 

 

It is reasonable to simplify the system by assuming that the downer operates in 

plug flow, since liquid-solid system is fluidised homogeneously. As the downer 

operates at very low liquid velocity, the effect of liquid dispersion and solids 

backmixing are negligible. Again, the lumped mass transfer rate coefficient, KL can 

be expressed as a product of the film mass transfer coefficient, kf and a constant 

factor considering intraparticle diffusion effect, ψ (Eq. 3.19).  

 fL kK   (3.19) 

 

The kf in the downer dense phase region (Eq. 3.20) is calculated as a function of 

solids holdup, εsd and particle Reynolds number, Rep in the downer using the 

correlation reported by Fan, Yang and Wen (1960, 482).  

    33.05.0
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mD
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In the downer of the LSCFB system, both the liquid and solid phases are moving 

and Rep is expressed in terms of the superficial slip velocity, Uslip in the downer (Eq. 

3.21). For counter-current flow arrangement, the actual slip velocity accounts for 

both the feed solution and particles superficial velocities (Eq. 3.22) (Mazumder et al. 

2009a, 111). 
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Table 3.2 Liquid-solid circulating fluidised bed operating parameters. 

 Value 

Constant factor for intraparticle diffusion, ψ 0.003944 
3.9336 Gs

 

Langmuir dissociation constant, Kd (kg/m
3
) 0.25 

Desorption rate constant of riser distributor region, kr1 (m/s) 0.005253 

Desorption rate constant of riser upper dilute region, kr2 (m/s) 0.0006 

Feed concentration, cod (kg/m
3
) 2 

Solids circulation rate, Gs (kg/m
2
/s) 1.24 

Downer superficial liquid velocity, Uld (m/s) 0.0006 

Riser superficial liquid velocity, Ulr (m/s) 0.0113 

Solid particles inventory, S (kg) 3 

 

d1
sdU

d

ldU
slipU

 
  (3.22) 

 

BSA adsorption onto the anion exchanger Diaion HPA25 obeys the Langmuir 

isotherm model. This experimental observation has been stated in literature (Lan et 

al. 2000, 858). Therefore, the equilibrium liquid-phase protein concentration at the 

liquid-solids interface, ceq is predicted (Eq. 3.23). 
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qq
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3.4.3 Formulation of Riser 

Protein mass balances in liquid (Eq. 3.24) and solid phase (Eq. 3.25) are written, 

for the flow arrangement shown in Figure 3.8(a) and Figure 3.9(a). Elution in riser is 

very fast. The riser is composed of two distinct regions, the distributor region and 

upper dilute region. From experiment, protein elution rate from ion exchange 

particles surface is higher in the distributor region due to the higher solids holdup in 

this region.  In the distributor region kr1 differs from that of the upper dilute region 

kr2, as presented in Table 3.2. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.8 Schematic representations of liquid-phase (a) ir-th subtank, (b) 1st subtank, and 

(c) MrNr-th subtank in the riser. 

 

The extracting buffer with initial protein concentration cor enters the 1st liquid 

subtank shown in Figure 3.8(b), and then exits the system at cer from MrNr-th subtank 

described by Figure 3.8(c).  

 

Liquid phase mass balance (Eq. 3.24) is rewritten as Eq. 3.27. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.9 Schematic representations of solid-phase (a) tank-jr, (b) tank-1, and (c) tank-Mr in 

the riser. 

 

The corresponding boundary conditions (Eq. 3.28) as described by the dynamic 

seal, is incorporated into the solid phase balance rewritten in Eq. 3.29.  

q1,r_in = qod = qed (3.28) 
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To solve the coupled mass balances, initial and boundary conditions are required. 

Similar assumptions are made in the riser, in which zero protein concentration and 

loading (Eq. 3.30) are assumed in the riser liquid subtanks and solid tanks.  
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0c
0tr,i 


 (3.30) 

0q
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3.5  NUMERICAL SIMULATION 

Figure 3.10 presents the schematic diagram of LSCFB, while Table 3.2 

summaries the parameters used in the current numerical simulation.  Computational 

algorithm outlined in Figure 3.10 is a step-by-step procedure for solving the initial 

value problem in coupled ordinary differential equations for simulating the system 

performance. MATLAB
®
 R2010a code

 
is incorporated into this model. Two model 

parameters specified at the outset of the simulation are, the number of tanks-in-series 

in each phase used to assemble the two entrained fluidised beds. The mixing 

behaviour in particles is considerably extensive than liquid phase, thus the former  

is represented by fewer tanks than the latter. Initially, the liquid phase superficial 

velocities and solid circulation rate are given, and the particle superficial velocities 

are calculated. Bed voidage in the downer dense region εd, riser distributor region εr1, 

and upper dilute region εr1 are solved (Eqs. 3.3, 3.10, and 3.11) accordingly. 

Effective height of the downer hd,eff is computed as a function of the solids holdup in 

different LSCFB sections (Eqs. 3.8 and 3.9), from Eqs. 3.1 and 3.2. At time t=0, the 

system initial conditions are set (Eqs. 3.18 and 3.30).  

 

In this study, the built-in numerical solver ODE45 in MATLAB
®
 R2010a is used 

to solve the system ordinary differential equations. The set of coupled ordinary 

differential equations (Eqs. 3.12 and 3.13) that integrated the liquid and solid phase 

mass transfer interaction in downer are solved simultaneously using the initial values 

of ci,d and qj,d in the tanks. The calculated protein concentration profile along the 

downer is assigned to ci,d and qj,d. Protein concentration in the solid phase leaving at 

the bottom of the downer qed is calculated, which equivalent to that entering the riser 

qor. Next, using the value of qor, the coupled ordinary differential equations for the 

riser (Eqs. 3.24 and 3.25) are solved simultaneously, to find the protein concentration 

profile along the riser regions. As mentioned previously, a dynamic seal is 

maintained between the columns. The concentration in solid particles at the top of 

the riser qer is thus used as the new value of qod as no adsorption occurred inside 

solids feed pipe. Subsequently, the second cycle commences with the calculated  
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Figure 3.10 Algorithm for simulating the liquid-solid circulating fluidised bed system by 

tanks-in-series model. 

Start 

Read model input values: 

Column dimensions: Dd, Dr, Hr, Hr1, Hr2 
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values of ced and qod, and the set of ordinary differential equations are solved 

repeatedly in similar manner. Based on this iteration, the ODE45 solver iterates over 

the next time step until ced and qod have arrived to convergence. 

 

3.6  MODEL VALIDATION 

Model predicted results are compared against experimental data for the liquid 

phase protein concentration profiles reported in the literature (Lan et al. 2000, 858; 

Lan et al. 2002b, 252), with variations in some critical operating parameters, e.g., 

solids circulation rate, Gs  represented by Figure 3.11(a), superficial liquid velocity in 

the downer, Uld in Figure 3.11(b), and superficial liquid velocity in the riser, Ulr in 

Figure 3.11(c). Other parameters are kept at their base case values, as listed in Table 

3.2. It can be observed that both magnitude and trends of the model predictions are in 

reasonably good agreement with the reported data over almost all the range. One 

clear difference however, is that the predicted values are slightly higher than 

experimental data at lower end of the downer, i.e., less than 30% of hd,eff. The main 

reason for this difference is probably due to the rapid initial particles acceleration 

upon entering the system, because of the fluid drag forces interaction with other 

particles in the entrance near to the distributors, and then more gradually further 

down the downer. At the same time, the flow structure develops accordingly from 

non-uniform distribution into a more uniform distribution. Rapid initial solids 

acceleration has brought to higher tendencies of solids backmixing in regions near to 

the liquid distributors. While this could be adapted into the current modeling 

framework by altering the number of tanks in the section near to the solids entrance, 

no special effort is made to adjust it as residence time distribution profiles are not 

available. 

 

3.7  RESULTS AND DISCUSSION 

With the numerical model validated, parametric sensitivity analysis of some key 

parameters is conducted to obtain a better understanding of mass transfer and 

hydrodynamics in the system. At a given inventory of solid particles, the 

simultaneous adsorption and elution behaviour of protein at steady state depends 

primarily on: solids circulation rate Gs, superficial liquid velocity in downer Uld , 

superficial liquid velocity in riser Ulr, and entering feed solution concentration cod. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.11 Experimental and theoretical liquid phase protein concentration profiles under 

different (a) solids circulation rate, Gs, (b) superficial liquid velocity in the downer, Uld, (c) 

superficial liquid velocity in the riser, Ulr. Symbols and solid lines correspond to 

experimental and predicted curves, respectively. 

 

Since many key parameters are interrelated, individual contributions of each 

parameter could not be uncoupled in the simulation setup. A way to uncouple and 

study the contribution of each parameter on the LSCFB system is through a 
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parameters are kept constant at base case values. In this study, the base case 

conditions are the experimental conditions used in model validation, as the predicted 

protein concentration profiles demonstrated relatively good agreement with the 

experimental results reported by Lan et al. (2000, 858; 2002, 252). This parametric 

study allowed ratings of the protein production rate, P (Eq. 3.26) and overall protein 

recovery, R (Eq. 3.27) of the system. 

Protein production rate, P 

 = Extract flowrate × Protein concentration in extract = Ulr Ar cer  (3.26) 

 

Overall protein recovery, R 

= Protein production rate / Protein loading rate = Ulr Ar cer / Uld Ad cod (3.27) 

 

3.7.1  Effects of Solids Circulation Rate  

Effects of solids circulation rate, Gs in the downer are shown in Figure 3.12(a). 

The auxiliary liquid velocity is adjusted to yield variations in Gs. As shown in Figure 

3.12(a), protein concentration in the raffinate, ced decreases with Gs, results in a 

decreasing concentration gradient. Table 3.3 verifies that the effective bed height of 

downer hd,eff increases with Gs, indicating an enhanced dynamic adsorption capacity, 

as more interfacial contact area become available. Furthermore, higher Gs increase 

the liquid-solid slip velocity; thereby, high liquid-solid interfacial contact efficiency 

is expected for improved mass transfer coefficient KLa in the dense phase region. At 

the same time, the solids holdup εsd decreases with Gs, as higher auxiliary liquid flow 

rate yields higher particle velocity, and the solid phase residence time in the downer 

is reduced. Therefore, steeper concentration profiles are observed at higher Gs values. 

 

Figure 3.12(b) shows the expected riser concentration profiles at different Gs. 

Solid phase is denser in the distributor region and relatively dilute further down the 

riser. Even so, non-uniformity of solids distribution increases with Gs, results in a 

slight drop of solids holdup gradient and reduced riser elution capacity. The flow 

structure characteristic suggested that the liquid-solid mixing along the riser is more 

likely to be non-uniform near the distributor but developed uniformly further down 

the riser. Referring to Table 3.3, protein production rate increases from 37.68 g/h to 

41.54 g/h, and protein recovery from 77.19% to 85.10%. It can thus be assured that 

higher Gs is useful for system performance. 
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Table 3.3 Simulation results under different solids circulation rate, Gs (cod =2kg/m
3
;
 
Uld 

=0.6m/s; Ulr =11.3mm/s; S=3kg). 

Solids circulation rate, Gs (kg/m
2
/s) 1.06 1.24 1.42 

Downer solids holdup, εsd 0.3249 0.3167 0.3083 

Riser distributor region solids holdup, εsr1 0.1026 0.1158 0.1284 

Riser upper dilute region solids holdup, εsr2 0.0328 0.0383 0.0438 

Downer effective bed height, hd,eff (m) 0.7683 0.7942 0.8225 

Molecular dispersion constant, 10
11

 Dm (m
2
/s) 6.13 6.13 6.13 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 3.70 7.50 15.10 

Downer raffinate concentration, ced (kg/m
3
) 0.5379 0.205 0.0962 

Riser extract concentration, cer (kg/m
3
) 0.8197 0.8509 0.9037 

Downer solid outlet concentration, qed (kg/m
3
) 49.93 44.79 41.53 

Riser solid outlet concentration, qer (kg/m
3
) 27.39 25.21 24.03 

Protein production rate, P (g/h) 37.68 39.11 41.54 

Fraction of protein recovery, R 0.7719 0.8013 0.8510 

 

(a) 

 

(b) 

 

Figure 3.12 Liquid phase protein concentration profile in (a) the downer, and (b) the riser 

under different solids circulation rate, Gs (cod =2kg/m
3
; Uld =0.6mm/s; Ulr =11.3mm/s; S 

=3kg).  
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3.7.2  Effects of Superficial Liquid Velocity in Downer  

Significant effects of superficial liquid velocity in the downer, Ulld are shown in 

Figure 3.13. Protein concentration in the raffinate, ced are found to increase steeply 

with increasing Uld, suggesting more protein is lost at higher Uld. This could be 

explained by shorter liquid phase residence time in the downer due to increasing Uld, 

and hence reduced time for protein adsorption. From Table 3.4, it can be observed 

that hd,eff increases with Uld, and thereby reduced solids holdup in the downer. The 

mass transfer coefficient KLa increases slightly with Uld. One possibility to this trend 

may be the increase in solid-liquid slip velocity. Despite that, the effect of mass 

transfer is small compared to those by liquid phase residence time and solids holdup.  

 

Since the protein loading rate and downer dense region height increase with Uld, 

significantly higher amount of adsorbed protein are being carried along with the 

particles into the riser, as indicated by increasing qed. Referring to Table 3.4, increase 

in both production rate, i.e., from 14.43 g/h to 67.06 g/h, and protein recovery, i.e., 

from 80.13% to 82.42% are accomplished. It should be noted, however, that when 

Uld is too high, the total amount of protein in the liquid phase will eventually exceed 

the adsorption capacity of the solid particles, causing more protein lost into the 

raffinate.   

 

3.7.3  Effects of Superficial Liquid Velocity in Riser 

Results of the variation of both adsorption and elution capacities of LSCFB with 

change in the superficial liquid velocity in the riser, Ulr are shown in Figure 3.14. 

With the solids circulation rate kept constant, it is realised that the higher the Ulr, the 

lesser the protein concentration in extract, cer. Drag force exerted by the upward 

flowing liquid increases with Ulr, reducing the residence time available for elution. 

Consequently, the riser elution capacity deteriorated. More particles are transferred 

into the downer at higher Ulr, reducing the solids holdup in riser and therefore 

increase in the effective height of the downer hd,eff. Nonetheless, increase in hd,eff is 

compensated by decrease of downer adsorption capacity due to relegation in riser 

elution capacity as more protein remained in the regenerated particles. Referring to 

Table 3.5, a slight improvement can be noticed in the protein production, i.e., from 

39.11 g/h to 39.77 g/h, and recovery, i.e., from 80.13% to 81.47%. 
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Table 3.4 Simulation results under different downer liquid superficial liquid velocity, Uld 

(cod =2kg/m
3
; Gs =1.24kg/m

2
/s; Ulr =11.3mm/s; S=3kg). 

Downer superficial liquid velocity, Uld (mm/s) 0.60 0.80 1.00 

Downer solids holdup, εsd 0.3167 0.2749 0.2390 

Riser distributor region solids holdup, εsr1 0.1158 0.1158 0.1158 

Riser upper dilute region solids holdup, εsr2 0.0383 0.0383 0.0383 

Downer effective bed height, hd,eff (m) 0.7942 0.9151 1.0523 

Molecular dispersion constant, 10
11

 Dm (m
2
/s) 6.13 6.13 6.13 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 14.5 14.9 15.2 

Downer raffinate concentration, ced (kg/m
3
) 0.2050 0.3600 0.5824 

Riser extract concentration, cer (kg/m
3
) 0.8509 1.1649 1.4588 

Downer solid outlet concentration, qed (kg/m
3
) 44.79 61.14 76.05 

Riser solid outlet concentration, qer (kg/m
3
) 25.21 34.46 43.00 

Protein production rate, P (g/h) 39.11 53.55 67.06 

Fraction of protein recovery, R 0.8013 0.8227 0.8242 

 

(a) 

 

(b) 

 

Figure 3.13 Liquid phase protein concentration profile in (a) the downer, and (b) the riser 

under different superficial liquid velocity in the downer ,Uld (cod =2kg/m3; Gs =1.24kg/m
2
/s; 

Ulr =11.3mm/s; S=3kg). 
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Table 3.5 Simulation results under different riser superficial liquid velocity, Ulr (cod 

=2kg/m3; Gs =1.24kg/m2/s; Uld =0.60mm/s; S =3kg). 

Riser superficial liquid velocity,  Ulr (mm/s) 11.3 14.9 18.7 

Downer solids holdup, εsd 0.3167 0.3167 0.3167 

Riser distributor region solids holdup, εsr1 0.1158 0.0875 0.0690 

Riser upper dilute region solids holdup, εsr2 0.0383 0.0245 0.0170 

Downer effective bed height, hd,eff (m) 0.7942 0.8088 0.8169 

Molecular dispersion constant, 10
11

 Dm (m
2
/s) 6.13 6.13 6.13 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 14.5 14.5 14.5 

Downer raffinate concentration, ced (kg/m
3
) 0.2050 0.2615 0.3723 

Riser extract concentration, cer (kg/m
3
) 0.8509 0.6466 0.5228 

Downer solid outlet concentration, qed (kg/m
3
) 44.79 54.70 66.60 

Riser solid outlet concentration, qer (kg/m
3
) 25.21 35.79 48.00 

Protein production rate, P (g/h) 39.11 39.19 39.77 

Fraction of protein recovery, R 0.8013 0.8028 0.8147 

 

(a) 

 

(b) 

 

Figure 3.14 Liquid phase protein concentration profile in (a) the downer, and (b) the riser 

under different superficial liquid velocity in the riser, Ulr (cod =2kg/m3; Gs =1.24kg/m
2
/s; Uld 

=0.60mm/s; S =3kg). 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

c i
,d
 /

c o
d

 

hld /hd,eff 

Ulr  

(mm/s) 

11.3
14.9
18.7

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

c i
,r
 (

k
g
/m

3
) 

hlr /Hr 

Ulr  

(mm/s) 

11.3
14.9
18.7



   

81 

 

3.7.4  Effects of Feed Concentration 

Effects of protein concentration in feed solution, cod are studied and the results 

are shown in Figure 3.15. When maintaining other parameters at fixed values, protein 

concentration in raffinate ced increases with cod as presented in Table 3.6. Higher cod 

signifies higher protein loading rate onto the solid particles. Despite the constant 

solids circulation rate Gs, protein concentration in the extract cer increases steeply 

with cod. Referring to Table 3.6, increases in both the protein production rate, i.e., 

from 17.01 g/h to 59.90 g/h, and overall recovery, i.e., from 69.69% to 81.81%, have 

been obtained with increase in cod.  

 

3.8  CONCLUSION 

A general purpose, extensible, and dynamic theoretical compartmental model 

based upon a tanks-in-series framework incorporating the equilibrium and 

hydrodynamics of liquids and solid particles has been developed for continuous 

protein recovery in LSCFB systems. The model is used to simulate the recovery of 

aqueous BSA solution onto Diaion HPA25 anion exchanger. The model allows 

adjusting for the degree of backmixing in each phase for the riser and the downer, 

while make possible easy integration with the kinetics model and offer a 

straightforward comparison of the reactor performance with that of a plug flow 

reactor. The simulated results compare well with the experimental results obtained 

from the laboratory-scale BSA recovery. A systematic study of the effect of several 

key operating parameters is performed. The analysis revealed that both the BSA 

production rate and recovery increase with increasing solids circulation rate while 

both decrease with increasing superficial liquid velocity in the riser. With the 

increase in superficial liquid velocity in the downer and feed BSA concentration, the 

rate of BSA production increases, but the overall recovery decreases. The model 

derived in this work is flexible and can use different forms of ion exchange mass 

transport models and can simulate different hydrodynamic behaviour in order to gain 

insight into protein recovery processes.  The very nature of the model makes it a 

useful tool in learning other protein recovery operations for plant and animal 

proteins. It can also be utilised for further multi-objective optimisation studies to 

optimize LSCFB systems. 
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Table 3.6 Simulation results under different initial protein concentration, cod (Gs 

=1.24kg/m
2
/s; Uld =0.60mm/s; Ulr =11.3mm/s; S =3kg). 

Initial feed concentration,  cod (kg/m
3
) 1.00 2.00 3.00 

Bulk solution density, ρ (kg/m
3
) 999.6 999.2 998.8 

Bulk solution viscosity, μ 0.9471 0.9526 0.9582 

Molecular dispersion constant, 10
11

 Dm (m
2
/s) 6.13 6.13 6.13 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 14.5 14.5 14.5 

Downer raffinate concentration, ced (kg/m
3
) 0.0870 0.2050 0.3597 

Riser extract concentration, cer (kg/m
3
) 0.3700 0.8509 1.3031 

Downer solid outlet concentration, qed (kg/m
3
) 19.74 44.79 68.35 

Riser solid outlet concentration, qer (kg/m
3
) 11.04 25.21 38.54 

Protein production rate, P (g/h) 17.01 39.11 59.90 

Fraction of protein recovery, R 0.6969 0.8013 0.8181 

 

(a) 

 

(b) 

 

Figure 3.15 Liquid phase protein concentration profile in the downer under different feed 

concentration, cod (Gs =1.24kg/m
2
/s; Uld =0.60mm/s; Ulr =11.3mm/s; S =3kg). 
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CHAPTER 4  

KAFIRIN ADSORPTION CHROMATOGRAPHY: 

ISOTHERM AND KINETIC ANALYSIS 

 

4.1  INTRODUCTION 

In order to use the model developed in previous chapter, it is important that 

equilibrium and kinetic data on kafirin adsorption onto various adsorbents is 

available. Such data is not available in the literature; therefore, experiments are 

carried out to determine the adsorption behaviour of kafirin onto various ion 

exchangers. This study is the first scientific insight into the isotherm and kinetic 

studies of kafirin adsorption on basic anion- and acidic cation-exchangers for 

practical applications in preparative-scale chromatography. Adsorption isotherms are 

determined for a total of five anion-exchangers and two cation-exchangers in batch 

systems with different kafirin initial concentrations at a constant temperature. 

Isotherm parameters such as adsorbent loading capacity and dissociation constant are 

determined for Langmuir isotherm, and adsorptive capacity and affinity constant for 

Freundlich isotherm. Both these isotherms are found to fit the adsorption equilibrium 

data well. Batch uptake kinetics for kafirin adsorption on these ion exchangers are 

also carried out and critical parameters including the diffusion coefficient, film mass 

transfer coefficient, and Biot’s number for diffusion model are calculated. Both the 

isotherm and the kinetic parameters are considered for selection of appropriate ion 

exchangers for kafirin purification. Bio-Rad UNOsphere Q and Toyopearl SuperQ-

650M are found to offer better kafirin adsorption capacities and interaction strength 

with excellent uptake kinetics under moderate operating conditions. The data 

presented in this chapter is valuable for designing process-scale preparative 

adsorptive chromatographic kafirin purification systems such as liquid-solid 

circulating fluidised bed.  

 

4.2  EXPERIMENTAL 

4.2.1  Materials  

The ion exchangers used in this adsorption equilibrium study consists of five 

base anion exchangers UNOsphere Q, ReliSorb QA400, Tulsion A-36MP, Toyopearl 
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QAE-550C, and Toyopearl SuperQ-650M, and two acidic cation exchangers 

Toyopearl SP-550C and Toyopearl SP-650M. UNOsphere Q is purchased from Bio-

Rad Laboratories (Gladesville, New South Wales, Australia). ReliSorb QA-400 is 

purchased from Mitsubishi Chemical (Gurgaon, Haryana, India). Tulsion A-36MP is 

purchased from Thermax (Pune, India). All Toyopearl ion exchangers are purchased 

from Tosoh Bioscience (Redland Bay, Queensland, Australia). Specifications of 

these ion exchangers are summarised in Table 4.1 (Resindion 2011; Tosoh 

Bioscience 2011a; Tosoh Bioscience 2011b; Tosoh Bioscience 2011c; Bio-Rad 

2014; Thermax 2014). Strong ion exchangers are used because kafirin has higher 

solubility in acidic range of 0.5 to 2.0, and in basic pH range of 9.0 and above 

(Kumar et al. 2014). All aqueous solutions are made from distilled water. All other 

chemicals used are analytical-grade and purchased from Sigma Aldrich (Castle Hill, 

New South Wales, Australia).  

 

Sorghum endosperm is obtained by steeping and fractionation of sorghum seeds 

(De Mesa-Stonestreet, Alavi, and Bean 2010, 90). Kafirin extract is prepared from 

sorghum endosperm as described by Emmambux and Taylor (2003, 402). The 

extracted kafirin is further purified to 99% on dry weight basis by multiple 

precipitations followed by hexane extraction to remove oil fraction. A sample feed 

solution of 20 mg/ml is prepared by dissolving pure kafirin in 100 ml 65% (v/v) 

aqueous ethanol. Solution pH is adjusted to 9.0 with 1.0 M NaOH as necessary. 

Kafirin is left to solubilize at 50°C with mild shaking until solubilisation is complete, 

which took approximately 2 hours. The solution is then centrifuged at 12000 x g for 

20 min at room temperature to remove any suspended particulate matter. Soluble 

kafirin in the clear supernatant is used for adsorption equilibrium studies on anion 

exchangers. The feed solution for cation exchangers is prepared using similar 

method, but with pH adjusted to 1.5 using 1.0 M HCl.  

 

4.2.2  Adsorption Equilibrium Experiments 

All ion exchangers are pre-treated prior to experiments. The ion exchangers are 

washed with distilled water to remove all traces of preservative agents. All washed 

ion exchangers are degassed and equilibrated. For anion exchangers, equilibration is 

carried out using 65% (v/v) aqueous ethanol (pH 9.0) solution under mild stirring 

condition for 15 min. The same equilibration solution at pH 1.5 is used for cation  
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Table 4.1 Specifications of ion exchangers. 
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exchangers. The equilibrated ion exchangers are kept in the respective equilibration 

solutions until use. 

 

For anion exchangers, adsorption equilibrium experiments are carried out by 

batch adsorption method in 65% (v/v) aqueous ethanol (pH 9.0). Fixed amount 

(500µL) of pre-equilibrated anion exchangers are transferred into each of the falcon 

tubes and contacted with 3 ml of kafirin solution with different initial bulk phase 

concentrations (1-20 mg/ml). The falcon tubes are then kept on rocker shaker to 

attain equilibrium for 3 h at 25°C, which is confirmed by kinetic adsorption studies 

for all ion exchangers used to be sufficient to reach adsorption equilibrium under all 

the conditions studied. Upon reaching the equilibrium, the ion exchanger is allowed 

to settle and the supernatants from each tube are sampled and analysed by 

spectrophotometry at 276 nm. For cation exchangers, similar steps are followed in 

which kafirin extract (pH1.5) at different bulk phase concentrations (1-20 mg/ml) are 

loaded into each of the ion exchangers in falcon tubes, followed by analysis of 

supernatant after equilibrium is attained.  

 

For the batch equilibrium experiments, the measurement of kafirin concentration 

in the supernatant solutions before and after adsorption is carried out by means of 

modified Landry method using ultraviolet-visible spectrophotometry (Landry, Paulis, 

and Wall 1987, 51). The kafirin content in 65% (v/v) aqueous ethanol is determined 

at its maximum absorbance wavelength (λ) of 276 nm. All experiments are 

performed in triplicate and the mean values are reported. The ion exchangers loading 

at the equilibrium are calculated by a simple mass balance for batch system (Eq. 4.1). 

The isotherms of kafirin adsorption on anion- and cation-exchangers are analysed 

using Langmuir isotherm (Eq. 4.2) and Freundlich isotherm (Eq. 4.3) models. All the 

constants in the isotherm models are evaluated by nonlinear regression using 

MATLAB R2011a (MathWorks, Inc.). 
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4.2.3  Kinetic Uptake Experiments 

All ion exchangers are pre-treated prior to experiments. The ion exchangers are 

washed with distilled water to remove all traces of preservative agents. All washed 

ion exchangers are degassed and equilibrated. For anion exchangers, equilibration is 

carried out using 65% (v/v) aqueous ethanol (pH 9.0) solution under mild stirring 

condition for 15 min. The same equilibration solution at pH 1.5 is used for cation 

exchanger. The equilibrated ion exchangers are kept in the respective equilibration 

solutions until use.  

 

Kafirin uptake kinetic experiments are conducted in 65% (v/v) aqueous ethanol 

using the stirred batch adsorption method. A fixed amount (5 ml) of pre-equilibrated 

ion exchanger is placed in a 50 ml glass beaker and then contacted with 25 ml of 

kafirin solution with initial concentration of 20 mg/ml. The beaker is kept under mild 

stirring condition at 25°C to suspend the ion-exchange particles. Fixed-volume (100 

µl) of samples are withdrawn at specified time intervals using micropipette and 

diluted to appropriate concentration with equilibration solution of pH 9.0 for anion 

exchangers and pH 1.5 for cation exchanger. These samples are then centrifuged at 

12000 x g for 20 min before analysis by spectrophotometry. The total reduction in 

solution volume due to sampling is less than 5% for all experiments, so that 

adsorption rates are essentially measured under constant batch volume.  

 

For uptake kinetic experiments, a similar approach as the adsorption equilibrium 

experiments is adopted to measure the kafirin concentration in the supernatant 

solutions. The ion exchangers loading at the anytime during the adsorption are 

calculated by a simple mass balance for batch system (Eq. 4.4).  
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The diffusion model is used to model the kafirin uptake kinetics by the ion 

exchangers. The pore diffusion model assumed that the radial diffusion in ion-

exchange particles occurs in liquid-filled pores, which could be expressed in terms of 

the pore-liquid concentration gradient (Wright, Muzzio, and Glasser 1998, 913; Chu 

and Hung 2010, 351). Generally, the dual-resistance models are insensitive to the 

film diffusion effects in almost all well-mixed, batch systems (Do and Rice 1990, 
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1419; Pignatello and Xing 1996, 1; Wright, Muzzio, and Glasser 1998, 913). The 

following discussion assumes that the pore diffusion governs the rates of solute 

adsorption interaction with the particles. Some typical assumptions made in this 

model include: spherical particles, isothermal conditions and fast intrinsic adsorption 

kinetics, resulting in the adsorbed solute to be in equilibrium with the pore-liquid at 

each radial position within the particle, represented by an equilibrium isotherm 

relationship (Chu and Hung 2010, 351). For the adsorption of solute, under transient 

conditions, the mass transport balance over a volume element of a particle yields the 

Fick’s second law in spherical geometry (Eq. 4.5).  
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The mass transport balance (Eq. 4.5) can be simplified by differentiating the 

equilibrium isotherm mathematical expression and substituting for qs,I term 

representing the intraparticle solute concentration on a pore-free basis. This 

substitution is valid if the rate of dissociation at the pore wall is fast in relative to the 

rate of diffusion through the pore-liquid, i.e., if the local equilibrium between 

adsorbed solute and pore-liquid is valid at each radial position inside the particle. 

The equilibrium relationship is described using the nonlinear Langmuir isotherm 

model (Eq. 4.2). 

 

An external boundary condition for Eq. 4.5 comprising a well-mixed, bulk liquid 

of fixed volume will produce an initial adsorption rate equivalent to the early stages 

of particle surface boundary conditions. Nonetheless, as the liquid phase solute 

concentration approaches equilibrium, the pore-liquid concentration gradient, and 

therefore the overall adsorption rate, is greatly reduced in relative to the initial 

conditions. The bulk-liquid concentration for a stirred, batch system (Eq. 4.6) can be 

evaluated at the particle surface, i.e. r=rp in constant batch liquid volume. 
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4.2.4  Model Fitting Routine 

The parameter estimations are based on the nonlinear least-squares method. The 

method minimises the sum of the squares of the residuals between the experimental 
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data and model predictions. Convergence on the residual sum of squares is selected 

because studies have shown that convergence criterion which accounted for squares 

residual returned much smaller standard deviation of the average error compared to 

convergence based on parameters (McCullough 2012, 149). To obtain the model 

predictions, in order to calculate the residuals between the model result and 

experimental data, the models are simulated. Only theoretical data points ci 

corresponding to the sample intervals of the experimental data points ĉi are used. All 

estimations are made with nonlinear least-squares fitting algorithm, 

LSQCURVEFIT, in MATLAB®. The LSQCURVEFIT algorithm requires an initial 

estimate for model from which the local minima is estimated. To increase the 

likelihood of locating the global minimum, the MATLAB® MULTISTART approach 

is employed where a set of starting points is initiated and LSQCURVEFIT algorithm 

is called to locate the corresponding local minima. The data point with the lowest 

objective value and is feasible is chosen to be the global minimum. 

 

4.3  RESULTS AND DISCUSSION 

4.3.1  Equilibrium Adsorption Analysis 

The equilibrium data from batch adsorption equilibrium experiments of kafirin at 

different initial bulk phase concentrations are plotted for each of the ion exchangers 

in Figure 4.1. According to the classification of Giles et al. (1960, 3973), it can be 

observed from the adsorption isotherm for ion exchangers follows the Langmuir-

type, indicating a non-competitive adsorption (Hinz 2001, 225). For comparison of 

single-solute isotherm results in a quantitative manner, the isotherms are described 

by the Langmuir isotherm (Eq. 4.2) and the Freundlich isotherm (Eq. 4.3) models. 

Best-fitting values according to these isotherm models are listed in Table 4.2.The 

coefficient of determination gives the variance explained by a model, so it is used to 

evaluate the goodness of fit. High values of coefficients of determination shows that 

both models are suitable to describe the adsorption behaviour of kafirin. Further 

analysis of the isotherm coefficients is done to emphasize their physical significance, 

such as the maximum adsorption capacities which are useful for ion exchanger 

selection. Polymeric ion exchangers such as UNOsphere Q, ReliSorb QA-400, 

Toyopearl QAE-550C, Toyopearl SuperQ-650M, Toyopearl SP-550C, and 

Toyopearl SP-650M are found to more mechanically stable compared to Tulsion A- 
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Table 4.2 Summary of results from Langmuir and Freundlich isotherm models. 
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(e) 

 

(f) 

 

(g) 

 

Figure 4.1 Experimental and theoretical results for kafirin adsorption equilibrium on (a) 

UNOsphere Q, (b) ReliSorb QA-400, (c) Tulsion A-36MP, (d) Toyopearl QAE-550C, (e) 

Toyopearl SuperQ-650M, (f)  Toyopearl SP-550C, (g) Toyopearl SP-650M. Symbols and 

solid lines correspond to experimental and isotherm curves, respectively. 

 

36MP which easily disintegrated due to attrition during adsorption experiments thus 

producing fine particles. The particle fines also interfere with the spectrophotometric 

method for kafirin analysis thereby necessitating their removal from analytical 

samples using microfiltration or high speed centrifugation. 
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4.3.2  Langmuir Isotherm Model 

The Langmuir equilibrium constant, RL=1/(1+co/Kd) (Eq. 4.7), a critical 

parameter of the Langmuir isotherm model is calculated to decide the nature of 

kafirin adsorption on the ion exchangers (Weber and Chakravorti 1974, 228; Chairat 

et al. 2005, 231). The RL constants obtained from the equilibrium results are in the 

range of zero to one over the entire range of initial bulk phase concentration 

investigated, indicating favourable adsorption. The Langmuir adsorbent loading 

capacity, qm indicates the quantity of kafirin required for formation of a single 

monolayer on the ion exchanger surface, and it is relatively proportional to the ion 

exchanger specific surface area. It is thus anticipated that ion exchangers with higher 

specific surface area provide more adsorption sites for monolayer adsorption of the 

kafirin. The ion exchangers have been arranged in an order of magnitude based on 

their calculated Langmuir binding capacities, qm (Table 4.2), in which the resulting 

sequence matches with adsorption of BSA (Table 4.1). This confirms that monolayer 

adsorption is the most probable mechanism involved in the kafirin adsorption 

process. The adsorption capacity of ReliSorb QA-400 and Tulsion A-36MP are not 

found in the literature thus far. Significantly lower qm values are found for these ion 

exchangers compared to others used in the batch equilibrium experiments. This 

might be due to the lower specific surface area of ion exchanger available for kafirin 

adsorption, hence the lower adsorption capacity. 

 

The dissociation coefficient, Kd is another important Langmuir constant, 

indicative of the interaction affinity between kafirin and the interacting ligands on 

ion exchanger surface. Kd values for ion exchangers are typically between 10
-8

M and 

10
-2

M (Yang 2008, 78). Kd higher than this range indicates the interaction may be too 

weak for chromatography purpose and is not suitable for equilibrium analysis. 

Smaller Kd shows that the binding interaction could be too strong to be disrupted in 

elution process (Hooper 1999, 217). Ideally, the binding should be reversible so that 

the adsorbed kafirin can be eluted without denaturation. From the equilibrium 

analysis, fitted Kd values are within the operating window stated above. Kd values 

calculated for anion exchangers are comparatively less than those of the cation 

exchangers, showing stronger binding strength of kafirin with the former. This is 

desirable for kafirin adsorption because impurities in kafirin extract can be 

effectively removed by washing without disrupting the specific binding between 
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kafirin and ion exchanger. The higher binding affinity with anion exchangers could 

be described by the higher electrostatic potentials developed on kafirin due to pH 

difference. More specifically, adsorption is conducted at pH 9.0 for anion exchangers 

and pH 1.5 for cation exchangers, which is 3 and 4.5 pH units above and below the 

isoelectric point of kafirin respectively. In such environment it can be argued that at 

pH 9.0 more intense surface charges are developed on kafirin to interact with the 

oppositely charged adsorption sites on the anion exchangers, resulting into higher 

amount and affinity of kafirin adsorbed. Also, pH 9.0 is relatively near-neutral pH as 

compared to pH 1.5, giving a mild condition to maintain kafirin integrity for practical 

chromatographic purpose in kafirin purification.  

 

4.3.3 Freundlich Isotherm Model 

The dimensionless constant, nf, in the Freundlich isotherm model, is calculated to 

obtain the adsorption favourability of kafirin on the ion exchangers. It is suggested 

that a smaller value of 1/nf is a sign of a better adsorption and formation of stronger 

binding interaction (Freundlich 1906, 385). 1/nf values, listed in Table 4.2, further 

supports that the adsorption of kafirin on the ion exchangers are indeed favourable 

with the 1/nf of more than zero and less than unity. Relatively smaller 1/nf values are 

found for anion exchangers compared to that of the cation exchangers, suggesting 

greater affinity of binding between the former and kafirin. This observation is 

consistent with the analysis using Langmuir isotherm model. 

 

The Freundlich loading capacity coefficient, qf is another important parameter in 

the Freundlich isotherm model which implies the loading capacity of ion exchangers 

on either monolayer (chemisorption) or multilayer (physisorption) heterogeneous 

surface. In contrast to the Langmuir loading capacity, the calculated qf for the ion 

exchangers when arranged in the order of magnitude, disagrees with those reported 

for the BSA adsorption on same ion exchangers. The disagreement between the 

predicted qf and the reported loading capacity sequence suggests that kafirin 

adsorption on the ion exchangers is probably not as well described by the Freundlich 

isotherm model compared to the Langmuir isotherm model, despite the high values 

of coefficient of determination. Also, the values of the interaction affinity factor, nf, 

deduced from 1/nf, for all ion exchangers are found to be greater than unity stating 

that kafirin adsorption on these ion exchangers used is a monolayer-chemisorption 
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Figure 4.2 Experimental results for kafirin adsorption equilibrium on ion exchangers at 

different initial kafirin solution concentrations. 

 

process. This further validates the use of Langmuir isotherm model for describing 

adsorption equilibrium for kafirin purification with chromatographic method.  

 

4.3.4 Ion Exchanger Selection 

Equilibrium concentration of kafirin at different initial bulk phase concentrations 

is plotted in Figure 4.2. Lower equilibrium concentration indicates higher adsorption 

on the ion exchanger. Overall, the anion exchangers, i.e., UNOsphere Q, Toyopearl 

QAE-550C, and Toyopearl SuperQ-650M showed relatively good performance in 

terms of adsorption efficiency compared to cation exchangers across the entire range 

of concentrations studied. Although cation exchangers have comparatively larger 

adsorption capacities than some of anion exchangers, other factors determining 

adsorption efficiency of kafirin cannot be neglected. The primary factor would be the 

solvent pH which intensified the surface charge on kafirin as well as cation 

exchangers leading to better adsorption efficiency at pH 9.0, a milder condition for 

upholding kafirin integrity. Other contributing factors are the ion-exchange particle 

size, solid support, functional group, and pH stability range. Of all exchangers 

studied, UNOsphere Q and Toyopearl SuperQ-650M showed higher adsorption 
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efficiency followed by Toyopearl QAE-550C, Toyopearl SP-550C, and least by 

Toyopearl SP-650M. The other anion exchangers, namely, ReliSorb QA-400 and 

Tulsion A-36MP are thought to be unviable for this purpose due to their low 

adsorption capacities. 

 

4.3.5  Uptake Kinetic Analysis 

For the adsorption of kafirin to ion exchangers, the Langmuir equilibrium 

parameter, RL values (Eq. 4.7), previously calculated in Section 4.3.2, are in the 

range of zero to one over the solute concentration range used, which supports 

favourable adsorption (Chairat et al. 2005, 231). Taking the Langmuir isotherm 

expressed on a pore-free volume basis, the mass transport model is in terms of the 

pore-liquid concentration (Eq. 4.8). 
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The isotherm relationship between the adsorbed solute and pore-liquid at each of 

particle radial position is found to be nonlinear, i.e., Langmuir isotherm, with Section 

4.3.2 reports the best-fitted parameters from previous adsorption equilibrium studies, 

a numerical solution for Eqs. 4.5 and 4.7 is thus required. To solve the coupled 

equations, a homogeneous von Neumann condition is introduced at the particle 

centre (r=0) (Eq. 4.9), in which a finite concentration, i.e., derivative is zero is 

assumed. On the other hand, the particle surface (r=rp) takes the form of Robin 

boundary condition (Eq. 4.10). These conditions subjected to the initial conditions 

(Eq. 4.11), for spherical particles of radius rp, in a closed batch system. 
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Previous studies which incorporated the numerical Crank-Nicholson method to 

solve Eqs. 4.6 and 4.8 reported stability problems when resolving Eq. 4.8 (McKay 

1984, 294). A more stable method evolved and applied in this study by using a 

dimensionless solution of Eq. 4.8, hence avoiding a direct numerical solution of Eq. 

4.8. The independent variables in the above equations are transformed into 

dimensionless variables (Eq. 4.12). 
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Subsequent change of variable and rearrangement yielded the dimensionless pore 

diffusion equations (Eqs. 4.13 and 4.14) subjected to the dimensionless conditions 

(Eqs. 4.15 to 4.17).  
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The χ=ξ
2
 transformation is applied to eliminate Eq. 4.13 as well as the two-point 

nature of the boundary condition (Eq. 4.16)  (Pedersen et al. 1985, 961). These 

equations are reduced (Eqs. 4.18 and 4.19) and solved with the given boundary 

conditions (Eqs. 4.16 and 4.17). 
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The system (Eqs.4.18 and 4.19) are coupled partial differential equations that 

could be resolved  numerically by first discretizing in space by using finite difference 

method, to transform the partial differential equations into a large set of ordinary 

differential equations. This is carried out by dividing the particle radius domain into 

a number of discretization points sufficiently large that changing the number would 

not have any impact on the numerical results, in particular 100 discretization points 

are used in the particle radius domain. The discretization is based on second-order 

central difference approximation method. Following this, a computer program is 

developed on MATLAB
®
 R2010a (MathWorks, Inc.) to execute the time integration 

method for the resulting ordinary differential equations to advance in the time 

domain. A multistep ordinary differential equation solver, ODE15S, an implicit 

variable order solver in MATLAB
®
, is used. The spherical diffusion model is 

coupled with a fitting routine which determined the value of the effective pore 

diffusion coefficient, Dp external film mass transfer coefficient, kf and external 

volume fraction of particle, εp. The fitting routine details are discussed in Section 

4.2.4. 

 

The diffusion model (Eqs. 4.18 and 4.19) are solved to fit the experimental 

adsorption data. Parameters are determined with a nonlinear regression method, 

described in Section 4.2.4. These parameters are used to describe the kinetics of 

kafirin adsorption on ion exchangers with the best-fitting results summarised in 

Table 4.3. The linear and nonlinear regression error analyses results for the pore-

diffusion parameters indicated that the fit of experimental data is good. In detail, the 

error functions of the pore-diffusion based model gives coefficient of determination 

0.952 and 0.998. The best-fitted ion exchanger is Relisorb QA-400 while the worst is 

Toyopearl SuperQ-650M.  The kinetics of kafirin adsorption on ion exchangers at 

initial bulk phase concentration of 20 mg/ml is plotted in Figure 4.3.  

 

From the previous analysis UNOsphere Q is found to have the best adsorption 

performance. The pore diffusion model could help in further understanding the pore-  
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(e) 

 

(f) 

 

(g) 

 

Figure 4.3 Experimental and theoretical results for kafirin adsorption to (a) UNOsphere Q, 

(b) ReliSorb QA-400, (c) Tulsion A-36MP, (d) Toyopearl QAE-550C, (e) Toyopearl 

SuperQ-650M, (f)  Toyopearl SP-550C, (g) Toyopearl SP-650M. Symbols and solid line 

correspond to experimental and theoretical curve, respectively. 

 

liquid concentrations profiles inside a particle. Theoretical temporal evolution of 

kafirin concentration in the adsorbed- and pore-liquid-phase in a single UNOsphere 

Q ion-exchange particle at different radial positions is shown in Figure 4.4. It could 

be observed that the concentration of kafirin on the particle surface increases rapidly 

towards the pore-liquid phase concentration. When saturation on the particle surface  
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occurs, the concentrations in the inner particle region began to rise progressively 

until an equilibrium concentration is achieved. Theoretically the diffusion model 

assumed the adsorbed kafirin to be in equilibrium with the inner particle pore-liquid, 

which is best represented by the Langmuir isotherm. The pore-liquid concentration is 

thus related to its adsorbed concentration on the pore surface. Theoretical 

concentration profile of kafirin adsorbed phase of UNOsphere Q at different time 

points is shown in Figure 4.5. A very steep intraparticle concentration gradient 

existed in the beginning but reduced gradually as time advanced when more kafirin 

becomes available for adsorption in the inner particle region. Complete saturation of 

the particle surface is observed within 25 minutes. 

 

As indicated in Table 4.3, the relationship between the pore diffusivity, Dp values 

computed for an initial 20mg/ml kafirin concentration are found to inversely 

correlate to the external film resistance, kf values. This complied with the stagnant 

film theory which proposed a hypothetical stagnant film near the liquid-particle 

interface within which the mass transport is governed essentially by diffusion (Beck 

and Schultz 1972, 273). This is supported by some authors that reported though the  

kf is included in diffusion models, its effects on the uptake curves are often negligible 

in almost all practical cases since, in practical, the Biot number, Bi= rpkf /Dp (Eq. 

4.20), computed is typically very large (Do and Rice 1990, 1419; Wright, Muzzio, 

and Glasser 1998, 9113). This is justified by referring to the large Biot numbers 

(Bi>10) reported in Table 4.3, indicative of the high contribution of Dp on the uptake 

kinetic curves. The estimated Dp and kf values are 1.911×10
-8

 cm
2
/s and 5.940×10

-5
 

cm/s for UNOsphere Q, 1.757×10
-8

 cm
2
/s and 4.049×10

-5
 cm/s for Relisorb QA-400, 

9.230×10
-9

 cm
2
/s and 3.088×10

-5
 cm/s for Toyopearl QAE-550C, 3.525×10

-9
 cm

2
/s 

and 1.760×10
-5

 cm/s for Toyopearl SuperQ-650M, 9.087×10
-9

 cm
2
/s and 1.820×10

-5
 

cm/s for Toyopearl SP-550C. Highest Dp and kf values are found for UNOsphere Q, 

in accord with the highest kafirin adsorption capacity observed from experiments. 

Further analyses of these parameters are conducted to understand the potential factor 

that affects the adsorptive uptake. Particle size, for instance, is found to have 

significantly affected Dp and kf values. High values of these parameters are found for 

large particle sizes. This, however, proves that kafirin adsorption is not controlled by 

diffusion. For diffusion-based adsorption, smaller particles contain less intraparticle 

volume through which the adsorbing molecules must diffuse. It is construed that  
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Figure 4.4 Pore-liquid concentration profiles for kafirin adsorption at different radial 

position in UNOsphere Q particle. 

 

 

Figure 4.5 Pore-liquid concentration profiles for kafirin adsorption on UNOsphere Q at 

different time step. 
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Table 4.3 Summary of results from film-pore diffusion model for adsorption kinetics 

experiments. 
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kafirin adsorption is limited by surface reaction-based kinetic process because larger 

particle size provides more adsorption sites and hence higher kinetic rate. 

 

4.4  CONCLUSION 

In the present study, the binding and mass transfer of kafirin on ion exchangers 

with different pore structure and surface chemistry is investigated. Differences in 

particle chemistry, its hydrodynamic design and surface charge of kafirin with 

respect to the environment in batch equilibrium experiments and uptake kinetic 

experiments are found to contribute significantly in the adsorption behavior. Five 

strong basis anion-exchangers and two strong acidic cation-exchangers are studied. 

Modified Landry method using an ultraviolet-visible spectrophotometer is used to 

measure the kafirin concentration in the supernatant solutions before and after 

adsorption. It is found that the Langmuir adsorption isotherm and the film-pore 

diffusion model described the experimental data well with high regression constants. 

The film mass transfer has a significant effect on kafirin uptake rate specifically on 

UNOSphere Q and Toyopearl SuperQ-650M. The values of pore diffusivity and film 

resistance agree well with the published literature for nonviscous solutions. The best 

adsorbing ion exchangers are found to be UNOsphere Q and Toyopearl SuperQ-

650M. The data presented here is essential for designing and scale up of adsorptive 

chromatographic purification systems or processes for kafirin. 
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CHAPTER 5  

LIQUID-SOLID CIRCULATING FLUIDISED BED 

SYSTEM: MODELING CONTINOUS KAFIRIN 

PURIFICATION  

 

5.1  INTRODUCTION 

Detailed equilibrium and kinetic analyses have been performed on the adsorption 

and desorption of kafirin in Chapter 4. It is the purpose of this study to introduce the 

concepts of using an LSCFB for continuous purification of kafirin and to apply the 

validated LSCFB model in Chapter 3 to predict the behaviour of the system. 

Simplified mass transfer models are proposed: lumped adsorption model and second-

order desorption model, using parameters derived either from empirical correlations 

or batch equilibrium and kinetic experiments. Model predictions for kafirin 

purification in the LSCFB ion-exchange system are conducted under different 

operating conditions, including the degree of mixing, the solids circulation rate, the 

liquid velocities in circulating fluidised beds, and the feed concentration. The kafirin 

production rate, the fraction of kafirin recovered, and the ion exchanger inventory 

required, are indicative of the LSCFB performance. This model allows the use of 

various forms of ion-exchange kinetic models and can simulate different 

hydrodynamic behaviours of a continuous ion-exchange LSCFB. It is also useful for 

providing insights for the design and optimisation of LSCFB systems for recovery 

and purification processes of other proteins. 

 

5.2  SIMULATION OF LSCFB FOR CONTINUOUS KAFIRIN 

PURIFICATION  

5.2.1  Modeling Basis 

Different operating regions exist in the LSCFB ion exchange system. Each of the 

riser, downer, standpipes etc. can have different residence time distribution as well as 

flow configuration. Moreover, adsorption, desorption, mass transfer, and 

hydrodynamics all have disparate time and length scales. A unified model to 

simultaneously accommodate all these phenomena is therefore difficult and 
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computationally intensive. A modular and highly configurable dynamic model to 

simulate protein purification in LSCFB systems is reported in Chapter 3. A similar 

modeling approach is used in this chapter. Briefly, each different operating region of 

the LSCFB is modelled as a set of ideal tanks connected in series. The solid phase 

and the liquid phase are individually modelled and their interaction is considered via 

interphase mass transfer. Based on this concept, the LSCFB is divided into two major 

parts, the downer and the riser, as shown in Figure 5.1 and Figure 5.2, respectively. 

Ion-exchange particles are envisioned as point particles with adsorbed concentration 

equal to the volume average concentration over the particles. Also, from 

experiments, it is observed that the particles mix more extensively in contrast to the 

fluidising liquid. To mimic this behaviour, the solid phase is divided into M number 

of tanks. Each of the M tanks is further divided into N number of liquid phase 

subtanks to achieve lower degree of mixing in the liquid phase.  

 

5.2.2  Model Equations and Solution  

Balance equations are written for each individual tank in the network using the 

assumptions listed in Chapter 3. A material balance is applied to the kafirin carried 

by the liquid phase in the id-th liquid subtank, including lumped mass transfer 

resistance, KL at the solid-liquid interface (Eq. 5.1). The equilibrium is represented 

by a Langmuir isotherm. The material balance equation is applied to the kafirin 

adsorbed in solid phase for the jd-th solid tank, assuming instantaneous equilibrium 

between the liquid phase and the adjacent solid phase (Eq. 5.2).  

    
d

eqd,idL

dld

d,id,1ildd,i cc1aK

h

ccU

dt

dc














 (5.1) 

 
 

  
d

eqd,idL

dsd

d,jd,1jsdd,j cc1aK

1h

qqU

dt

dq

















 (5.2) 

 

Desorption of kafirin from the ion-exchanger particles is often very fast 

compared to adsorption. For simplification, kafirin desorption kinetics in the riser 

fluidised bed is represented by the second-order forward rate model. The riser is 

divided into two hydrodynamically different regions. For the jr-th solid tank, the 

mass balance is applied to the adsorbed kafirin carried over by the solid phase (Eq. 

5.3) where kr represents kr,1 in the distributor region and kr,2 in the upper dilute  
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Figure 5.1 Flow diagram of the liquid-solid circulating fluidised beds. Segregation of the 

downer in Md number of solid phase tanks and Nd number of liquid phase subtanks per solid 

tank. 
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Figure 5.2 Flow diagram of the liquid-solid circulating fluidised beds. Segregation of the 

riser in Mr1 number of solid phase tanks and Nr1 number of liquid phase subtanks per solid 

tank in freeboard region, and Mr2 number of solid phase tanks and Nr2 number of liquid 

phase subtanks per solid tank in upper dilute region. 
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region. Similarly, for the ir-th liquid subtank, the material balance equation is applied 

to the kafirin eluted to the liquid adjacent to the solid phase (Eq. 5.4).  

   

r

r
2

r,jr

rlr

r,ir,1ilrr,i 1qk

h

ccU

dt

dc














 (5.3) 

 
 

 

r

r
2

r,jr

rsr

r,jr,1jsrr,j
1qk

1h

qqU

dt

dq

















 (5.4) 

 

Together, these equations result in a system of simultaneous first order ordinary 

differential equations (ODEs). The system of ODEs is solved using MATLAB
®

 

R2010b. Appropriate initial conditions are applied to these equations and the ODEs 

are solved repeatedly until the convergence criteria are met.  

 

5.2.3  Isotherm and Kinetic Data 

For realistic model predictions, it is essential to obtain accurate equilibrium and 

kinetic data between the kafirin and the ion-exchange particles. The application of 

adsorption isotherm is very useful to evaluate interactions between kafirin and the 

ion-exchange particles. The Langmuir (1916, 2221) isotherm equation (Eq. 5.5) is 

used to analyse the equilibrium kafirin adsorption data (Lau et al. 2013b, 113). The 

Langmuir isotherm model, initially developed to explain the gas-solid dual-phase 

adsorption on activated carbon, has traditionally been used for quantification and 

assessment of the performance of various adsorbents (Foo and Hameed 2010, 4). The 

parameters obtained from the Langmuir isotherm equation, qm and Kd relate to the 

maximum adsorption capacity and dissociation coefficient, respectively, and provide 

important information on the adsorption mechanisms and the surface properties and 

affinities of the ion-exchange particles. 

eqd

eqm
eq

cK

cq
=q


 (5.5) 

  

To understand the systems dynamic behaviour as well as to examine the 

mechanism and rate-controlling steps, lumped kinetic equation and second-order rate 

equation are used to model the kafirin adsorption and desorption kinetic data, 

respectively. In the linear driving force model (Eq. 5.6), the lumped parameter KL 

(Eq. 5.7) is related to intraparticle diffusion through kf and dispersion effects, Ψ.  
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 eqL cca=K
dt

dq
  (5.6) 

fL kK   (5.7) 

 

Empirical correlation (Eq. 5.8), reported by Fan, Yang and Wen (1960, 484), is 

for the chosen kf as this correlation accounts for changes in the film mass transfer as 

a function of bed voidage, εd, and solution viscosity, μ, and does not need adjustable 

proportionality constants that may be system specific. The film mass transfer 

parameter, kf (Eq. 5.8) is in close agreement with previous results obtained from 

batch adsorption simulation of the ion-exchangers (Lau et al. 2013b, 133).   

    
p

33.05.0
psdm

f
d

ScReε03.1+2D
=k  (5.8) 

 

As observed from the desorption experiment, the desorption of kafirin is very fast 

and the rates of desorption from ion-exchangers are assumed to obey a simple 

second-order rate equation (Eq. 5.9). Second-order rate equations are originally 

developed to describe mineral sorption and desorption by soils (Griffin and Jurinak 

1973, 869). The second-order model assumes that there is only one type of site on the 

adsorbent surface and that the rate is proportional to the square of the number of 

adsorbate filled sites.  

2
2 qk=

dt

dq
  (5.9) 

 

All model parameters are estimated by employing the non-linear least-squares 

method. Following McCullough (2012, 150), the least square method is done by the 

minimisation of sum of squares of the residuals (RSS) between the experimental data 

and predicted values. Firstly the model equations are simulated to obtain theoretical 

data points according to the sample intervals of the experimental data points. This is 

followed by model parameter estimations employing the non-linear least-squares 

method on MATLAB
®
 R2010b.  

 

5.3  RESULTS AND DISCUSSION 

5.3.1  Selection of Ion Exchangers 



   

111 

 

All ion exchangers used are of commercial grades, with details given in Table 

5.1. Strong basic anion exchangers (SBA) used are as follows: UNOsphere Q from 

Bio-Rad Laboratories (Gladesville, NSW Australia), Relisorb QA-400 from 

Mitsubishi Chemical India (Gurgaon, HAR India), Toyopearl QAE-550C and 

Toyopearl SuperQ-650M from Kinesis Australia (Redland Bay, QLD Australia). 

Toyopearl SP-550C bought from Kinesis Australia is the only strong acidic cation 

exchanger (SAC) tested. 

 

These ion exchangers are selected for their adsorption capacities for kafirin, fluid 

flow characteristics, and pH conditions required. The maximum kafirin adsorption 

capacities, qm of the ion exchangers is tested to be satisfactory (58.20 – 87.08 

mg/mL) for this system, with reference to Chapter 4. Although, the ion-exchange 

particles had different sizes, dp (65 – 120 μm) and wet densities, ρw (1.26 – 1.96 

g/mL), their terminal velocities, Ut (0.002 – 0.003 m/s) are sufficient enough to 

operate the kafirin purification LSCFB system. Kafirin has an isoelectric point (pI) of 

6, the selected SBAs allowed the kafirin to be purified from an aqueous solution 

adjusted to pH around 9 hence reducing usage of acidic solvent at pH 1.5 associated 

with use of cation exchangers (Anyango, de Kock, and Taylor 2011, 2132). The SAC 

is used to examine the effects of pH on the LSCFB efficiency.  

 

5.3.2  Estimation of Model Parameters 

The parameters for the Langmuir isotherm and desorption kinetics are obtained 

by batch experiments described in Chapter 4, correspondingly. The comparison 

between the experimental data and model for batch adsorption and desorption on 

UNOsphere Q is shown in Figure 5.3. Concentration points measured at equilibrium 

for various concentrations of kafirin aqueous solution at experimental onset are 

plotted in Figure 5.3(a) whereas the elution profile is shown in Figure 5.3(b). Both 

adsorption and desorption are very closely predicted by the model with coefficient of 

determination of 0.999 and 0.984 respectively. Similar close fit is observed for all 

other ion exchangers. The kinetic data for all other ion exchangers is summarised in 

Table 5.2. The kafirin adsorption capacities followed the reference protein adsorption 

capacities given by the manufacturers. The adsorption capacity of ion-exchange is 

affected by the particle surface area available for ionic interaction. Larger pore sizes 

contributed to higher adsorption capacities. Consequently, ion- 
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Table 5.1 Characteristics of the commercial ion exchangers evaluated. 
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(a) 

 

(b) 

 

Figure 5.3 Concentration profiles analysis of the kafirin purification data on UNOsphere Q 

(a) equilibrium data, (b) desorption data. Symbols and solid line correspond to experimental 

and predicted curve, respectively. 

 

exchangers with macropores (500-2000Å) showed greater adsorption capacity 

compared to ion exchangers with mesopores (60 – 500Å). The dissociation constant 

(1/Kd) is higher for SBAs than SAC due to the pH difference between anion- and 

cation-chromatography where the ionic interaction between the kafirin and SBAs are 

suggested to be more intense than interaction with SAC.  

 

Two distinct regions are observed in the elution profile in Figure 5.3(b), initially, 

a very fast desorption, followed by a slow region. A single rate constant model tends 

to overestimate desorption rate initially and underestimate desorption rate in slow 

region. Thus the two distinct regions are fitted with two different desorption rate 

constants kr1 and kr2 independently. These constants are given in Table 5.2. The rate 

constant for the fast region is an order of magnitude higher than the slow region.  
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Table 5.2 Parameter estimates used in the isotherm and second-order equations. 
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Table 5.3 Process conditions for base case steady-state simulation runs. 

 Value 

Feed concentration, cod (kg/m
3
) 2.00 

Solids circulation rate, Gs (kg/m
2
/s) 1.24 

Downer superficial liquid velocity, Uld (mm/s) 0.60 

Riser superficial liquid velocity, Ulr (mm/s) 5.28 

Downer solid-phase tanks in dense region, Md 20 

Downer liquid-phase subtank per solid tank in dense region, Nd 1 

Riser solid-phase tanks in distributor region, Mr1 1 

Riser liquid-phase subtank per solid tank in distributor region, Nr1 2 

Riser solid-phase tanks in upper dilute region, Mr2 9 

Riser liquid-phase subtank per solid tank in upper dilute region, Nr2 2 

 

5.3.3  Performance of Ion Exchangers in LSCFB  

Before investigating the operational aspects of the LSCFB, ion exchanger 

selection is made by comparing the performance of the ion exchanges in the LSCFB 

model. The model output for different ion exchangers is compared on basis of the 

production rate, P (Eq. 5.10), fraction of recovery, R (Eq. 5.11), and the solids 

inventory required, S (Eq. 5.12). These simulations are performed at constant 

operating, design and model parameters as given in Table 5.3.  

Protein production rate, P 

 = Extract flowrate × Kafirin concentration in extract = Ulr Ar cer  (5.10) 

 

Overall protein recovery, R 

= Protein production rate / Kafirin loading rate = Ulr Ar cer / Uld Ad cod (5.11) 

 

Solids inventory required, S 

= Sum of solids inventory in different sections of LSCFB 

= hd,eff Ad εsd + hr Ar εsr + hr2 Ar εsr2 + Vp(1-εp) (5.12) 

 

The detailed results are given in Table 5.4. It is found that Toyopearl QAE-550C 

produced and recovered most kafirin from feed, than the other ion exchangers. This 

is attributed by the maximum adsorption capacity, qm, lumped mass transfer 

coefficient, KLa, and desorption coefficients, kr1 and kr2. Albeit Toyopearl SP-550C 

has similar solids holdup in the LSCFB as Toyopearl QAE-550C, it produced and 
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Table 5.4 Steady-state liquid-solid circulating fluidised bed performance of different ion 

exchangers at base case conditions. 
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recovered less kafirin than the latter because of the significantly larger mass transfer 

coefficients of the latter, which governed the LSCFB performance. UNOsphere Q 

followed Toyopearl SP-550C closely in terms of production and recovery. Due to its 

higher qm for kafirin, it has better adsorption in the downer than the Toyopearl SP-

550C despite its slightly smaller KLa and downer solids holdup, εsd values. 

Nonetheless, since Toyopearl SP-550C has a higher desorption coefficient kr2, it 

performed better in eluting kafirin. Therefore, higher production rate and fraction of 

recovery are obtained with Toyopearl SP-550C compared to UNOsphere Q. 

Amongst all the ion exchagners tested, Relisorb QA-400 has the highest desorption 

coefficients. Thus one would expect better performance from these ion exchangers. 

However, these ion exchagners have smaller εsd, KLa, and qm hence they show very 

poor mass transfer characteristics affecting their performance. On the other hand, 

Toyopearl SuperQ-650M has a high value of KLa, however, it has lowest solids 

holdup and low desorption coefficients therefore its performance is the poorest. In 

the following discussion, we use UNOsphere Q as a sample ion exchanger as it 

provides an average of all the ion exchangers tested in terms of performance.  

 

5.3.4  Start-Up Dynamics of LSCFB 

To understand the start-up dynamics of the LSCFB, the model is solved for 

process conditions and model parameters listed in Table 5.3. UNOsphere Q is used 

as the ion exchanger. The adsorption parameters are estimated from experiments and 

listed in Table 5.2. Figure 5.4 shows the liquid phase kafirin concentration profile in 

the downer as well as in the riser for different cycles starting from the initial 

conditions. The first portion of each cycle is the liquid phase kafirin concentration 

profile in the downer while the second portion is the riser profile. The ending of the 

downer concentration profile is the raffinate concentration, expressed as ced, while 

the ending of the riser profile is the extract concentration, expressed as cer. The value 

of both ced and cer increased with cycles because the amount of kafirin being 

adsorbed in downer would not be equivalent to the amount eluted in the riser, and 

thus kafirin remained bound to binding sites on the particle surface. This reduced the 

adsorption and desorption capacities of the ion-exchange particles. Nonetheless, the 

system arrived to a pseudo steady state value after about 7 cycles of operation, which 

is approximately 4 h for Gs equivalent to 1.24 kg/m
2
/s. 
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Figure 5.4 Dynamic profiles of kafirin concentration during liquid-solid circulating fluidised 

bed start-up. (a) Downer dynamic profile, (b) Riser dynamic profile of dimensionless kafirin 

concentration for UNOsphere Q.  

 

5.3.5  LSCFB Flow Configuration 

In a LSCFB, the flow behaviour in various section is designed to mimic ideal 

(plug flow or mixed) behaviour. However, in reality, the extent of mixing deviates 

between these flow patterns. The tanks-in-series model readily allows adjusting the 

degree of mixing. By changing the number of M solid phase tanks, and N liquid 

subtanks per solid tank the present model can easily change the flow behaviour of 

various sections in the LSCFB. In order to tailor the flow, it is essential to understand 

the effects of flow patterns on the LSCFB kafirin purification process. Base case 

values reported in Table 5.3 are used to simulate and compare various flow patterns. 

Kafirin production rate (Eq. 5.10) and fractional kafirin recovery (Eq. 5.11) are 

calculated from the simulation results.  

 

Downer Mixing Behaviour 

The effect of the flow pattern is simulated at different combinations between 

perfect mixing and plug flow for the solid and liquid phase in downer. The results are 

presented in Table 5.5 and are compared on the basis of equal residence time in each 

phase and total height (hd,eff =0.8 m). When both the liquid phase (Nd=1) and the solid 

phase (Md=1) are perfectly mixed, a production rate of 19.71 g/h and a fractional 

recovery of 0.4037 are found. Improved production rate and fractional recovery 

(29.17 g/h and 0.5976 respectively) are obtained when both solid and liquid phases 
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Table 5.5 Steady-state performance of UNOsphere Q at different hydraulics of downer 

dense region. 

Solid-phase flow 
configuration 

Perfect 
mixing 

Md=1 

Perfect mixing 
with backmixing 

Md=1 

Plug 
flow 

Md=20 

Plug flow with 
backmixing 

Md=20 

Liquid-phase  flow 
configuration 

Perfect 
mixing 

Nd=1 

Plug flow 

Nd=20 

Plug 
flow 

Nd=1 

Plug flow 

Nd=20 

Downer raffinate conc., 

ced (kg/m
3
) 

0.8762 1.8764 0.3362 1.875 

Downer solid outlet conc., 

qed (kg/m
3
) 

21.08 37.62 28.34 38.98 

Riser extract conc., cer 
(kg/m

3
) 

0.9175 1.9487 1.3582 2.0394 

Riser solid outlet conc., 

qer (kg/m
3
) 

8.91 11.66 10.29 11.84 

Protein production rate, P 
(g/h) 

19.71 41.86 29.17 43.81 

Fraction of protein 

recovery, R 

0.4037 0.9139 0.5976 0.9572 

 

are near plug flow behaviour without involving solids backmixing (Md=20; Nd=1). 

Nonetheless, keeping the solid phase completely mixed with backmixing by the near 

plug flow behaviour of the liquid phase (Md=1, Nd=20) resulted in obvious increase 

in production rate and fractional recovery (41.86 kg/h and 0.9139 respectively). It 

should be noted that the values of ced is higher despite more kafirin being carried 

over into the riser, for consistent feeding rate and solids circulation rate in the 

system. This showed although the LSCFB is more efficient with backmixing, the 

existing feed loading rate is too rapid for the solid particles to adsorb the kafirin from 

feed. Changing the flow behaviour for solids to near plug flow with backmixing by 

plug flow liquid (Md=20, Nd=20) only marginally improved production rate and 

fractional recovery (43.81 g/h and 0.9572 respectively). It should be noted that when 

there is no solids backmixing, even with near plug flow behaviour of solid phase, the 

production rate and fractional recovery are comparatively poorer. For a fixed number 

of solid tanks, increasing solids backmixing performed better in LSCFB. In fact, the 

configuration of plug flow liquid and solids phases incorporating solids backmixing 

provided the most efficient LSCFB kafirin recovery. 
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Table 5.6 Steady-state performance of UNOsphere Q at different hydraulics of riser 

distributor region. 

Solid-phase flow 
configuration 

Perfect 
mixing 

Mr1=1 

Perfect mixing 
with backmixing 

Mr1=1 

Plug 
flow 

Mr1=20 

Plug flow with 
backmixing 

Mr1=20 

Liquid-phase  flow 
configuration 

Perfect 
mixing 

Nr1=1 

Plug flow 

Nr1=20 

Plug 
flow 

Nr1=1 

Plug flow 

Nr1=20 

Downer raffinate conc., 

ced (kg/m
3
) 

0.4866 0.2068 0.4044 0.0911 

Downer solid outlet conc., 

qed (kg/m
3
) 

30.58 26.06 29.4 23.45 

Riser extract conc., cer 
(kg/m

3
) 

2.137 0.351 2.346 0.311 

Riser solid outlet conc., 

qer (kg/m
3
) 

14.15 6.60 12.09 3.00 

Protein production rate, P 
(g/h) 

45.89 7.53 50.39 6.67 

Fraction of protein 

recovery, R 

0.9401 0.1543 0.9999 0.1367 

 

Riser Mixing Behaviour 

The circulating fluidised bed riser comprises of the distributor region, and upper 

dilute region. Different flow configurations are simulated for riser. Generally, the 

distributor region has high solids holdup and behaves like a perfectly mixed tank, 

while in the upper dilute region, both the solid and liquid phases are in near plug 

flow configuration. The various flow patterns of the two phases in riser examined are 

summarised in Table 5.6 for the distributor region and Table 5.7 for upper dilute 

region. The simulation results are compared for these combinations on basis of equal 

phase residence time and height for riser distributor region (hr1 =0.3 m) and upper 

dilute region (hr2 = 2.7 m). Well-mixed solid phase (Mr1=1) performed better than 

plug-flow solid phase (Mr1=10) in the riser distributor region. The best overall 

combination in the riser distributor region is the well-mixed liquid and solid phase, 

with no solids backmixing configuration, resulting in the highest values of 

production rate and fractional recovery. This is because of the small values of 

desorption coefficients of UNOsphere Q requiring for longer residence time in the 

riser for sufficient elution. It should also be noted that for configuration with solids 

backmixing, for well-mixed and plug flow of solids, the LSCFB behaved poorly in  
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Table 5.7 Steady-state performance of UNOsphere Q at different hydraulics of riser upper 

dilute region. 

Solid-phase flow 
configuration 

Perfect 
mixing 

Mr1=1 

Perfect 
mixing with 

backmixing 

Mr1=1 

Plug 
flow 

Mr1=20 

Plug flow with 
backmixing 

Mr1=20 

Liquid-phase  flow 

configuration 

Perfect 

mixing 

Nr1=1 

Plug flow 

Nr1=20 

Plug 

flow 

Nr1=1 

Plug flow 

Nr1=20 

Downer raffinate conc., ced 
(kg/m

3
) 

0.3840 0.2295 0.3796 0.1835 

Downer solid outlet conc., 

qed (kg/m
3
) 

29.10 26.46 29.03 25.55 

Riser extract conc., cer 

(kg/m
3
) 

1.4120 1.1364 1.4260 1.1062 

Riser solid outlet conc., qer 

(kg/m
3
) 

11.56 7.28 11.44 5.91 

Protein production rate, P 

(g/h) 

30.33 24.41 30.63 23.76 

Fraction of protein 
recovery, R 

0.6213 0.5000 0.6274 0.4867 

 

relative to those without backmixing. This can be explained as the adverse result of 

incorporating solids backmixing without first modifying the extracting buffer 

flowrate and solids circulation rate. With the latters remained constant, the increase 

in backmixing degree though improved the interphase mass transfer, the cer 

deteriorated. This can be explained as the effect of loading the extracting buffer too 

rapidly into the riser which causes the kafirin outlet concentration to decrease, and 

also excess of the extracting buffer. Overall, the well-mixed liquid and solid phase 

configuration with no solids backmixing is the most efficient configuration. 

 

Well-mixed solid phase (Mr2=1) for both perfect mixing (Nr1=1) and plug flow 

(Nr2=10) of liquid phase are more efficient than that of plug-flow-like solids 

(Mr2=10), in the riser upper dilute region. This is as shown in Table 5.7. The Mr2 and 

Nr2 affected the overall performance of LSCFB similarly to that of Mr1 and Nr1, 

although the effects of mixing parameters are less evident than the former because 

the desorption coefficient in the riser upper dilute region, kr2 is smaller than the 

desorption coefficient in the riser distributor region, kr1. The best flow pattern 
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obtained for the upper dilute region is well-mixed solid phase with no backmixing, 

with well-mixed liquid phase for highest production rate and fractional recovery of 

the LSCFB system.  

 

5.3.6  Effects of LSCFB Operating Parameters 

Four important parameters, namely, the solids circulation rate, Gs, downer liquid 

velocity, Uld, riser liquid velocity, Ulr and feed concentration, cod affect the 

performance of LSCFB significantly. The effect of these parameters on the LSCFB 

performance using UNOsphere Q as the ion exchanger is investigated. Performance 

ratings such as the kafirin production rate, P, fraction of kafirin recovered, R, and 

solids inventory required, S, are calculated from the simulation results. These 

analyses are performed by keeping the other process conditions at base case steady-

state values reported in Table 5.3.  

 

Solids Circulation Rate 

Solids circulation rate, Gs is an indication of the mass flow rate of the ion-

exchange particles circulating between the fluidised beds of LSCFB under steady-

state conditions. The effect of Gs on the LSCFB performance is shown in Figure 5.5. 

Gs are varied between 1.06 to 1.36 kg/m
2
/s for these simulations. The Gs directly 

affects the residence time of the solid phase in the circulating fluidised beds. This in 

turn affects the solids holdup in the fluidised beds as the holdup is closely correlated 

to the solid phase velocity in the downer, Usd and the riser, Usr. 

 

The value of ced is an indication of the amount of kafirin lost into the raffinate at 

the outlet of downer. As depicted in Figure 5.5(a), steeper concentration profiles are 

observed in the downer for higher values of Gs. This may be due to higher lumped 

mass transfer coefficients at higher Gs, refer to Table 5.8, causing more kafirin to be 

adsorbed and hence reduced ced. Thus, with higher Gs, effectively smaller downer 

bed is required before the system approaches equilibrium. Figure 5.5(b) illustrates 

the concentration profiles in the riser simulated for various Gs values. From Table 

5.8, the solids holdup in the riser increased with Gs. However, the increase in solids 

holdup is compensated by the slow desorption rates in the two hydrodynamically 

different regions. For t less than or at the fast desorption period, the kr1 is used as 

desorption constant spanning over the riser distributor region and a small portion of 
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Table 5.8 .Steady-state performance of UNOsphere Q at various solids circulation rate, Gs 

(cod =2kg/m
3
; Uld =0.6mm/s; Ulr =5.28mm/s; hd,eff =0.8m). 

Solids circulation rate, Gs (kg/m2/s) 1.06 1.24 1.36 

Downer solids holdup, εsd 0.2407 0.2276 0.218 

Riser distributor region solids holdup, εsr1 0.1723 0.1912 0.203 

Riser upper dilute region solids holdup, εsr2 0.1458 0.1639 0.176 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 4.361 8.43 13.08 

Downer raffinate concentration, ced (kg/m
3
) 0.4735 0.3362 0.3112 

Riser extract concentration, cer (kg/m
3
) 1.5093 1.3582 1.2112 

Downer solid outlet concentration, qed (kg/m
3
) 35.06 24.11 24.17 

Riser solid outlet concentration, qer (kg/m
3
) 10.85 5.59 9.746 

Protein production rate, P (g/h) 32.42 29.17 26.01 

Fraction of protein recovery, R 0.6641 0.5976 0.5329 

Solids inventory, S (kg) 2.012 2.019 2.018 

 

(a) 

 

(b) 

 

Figure 5.5 Concentration profiles analysis of (a) downer steady-state adsorption profile, (b) 

riser steady-state desorption profile for UNOsphere Q on the effects of changes in the solids 

circulation rate, Gs (cod =2kg/m
3
; Uld =0.6mm/s; Ulr =5.28mm/s; hd,eff =0.8m). 
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the upper dilute region. The kr2 is used in the remaining portion of the riser. The slow 

desorption rate in riser led to longer residence time required for solids phase to elute 

the adsorbed kafirin into the eluent. Consequently, lower amount of kafirin is eluted 

at higher Gs and higher concentration of kafirin is observed at smaller Gs, thus 

yielding higher production rate and recovery at lower solids inventory. Therefore, 

smaller Gs is beneficial to the LSCFB overall performance.  

 

Downer Liquid Velocity 

The effects of liquid velocity in the downer, Uld are shown in Figure 5.6. Similar to 

the solids circulation rate, the influence of Uld on the LSCFB can be identified in 

many aspects. First of all, Uld directly affects the residence time of the liquid phase in 

downer. Secondly, it influences the downer solids holdup, εsd. Thirdly, for a given 

solids circulation rate, a change in the Uld modifies the kafirin feeding rate to the 

LSCFB and thus changes the mass balance of kafirin in the downer. As depicted in 

Figure 5.6(a), steeper profiles are observed with Uld increase; yet, the difference 

between the outlet concentrations, ced is not significant. From Table 5.9, it can be 

noted that the ced increases slightly with Uld. This is affected by the change in 

residence time and solids holdup in the downer with different Uld. Though the 

changes in the downer liquid velocity, Uld on the effects of lumped mass transfer 

increases slightly with Uld this increase is offset by more significant changes in other 

factors mentioned previously. Figure 5.6(b) illustrates the kafirin concentration 

profiles in riser at various Uld. When Uld is increased, the profiles became much 

steeper yielding greater amount of kafirin in eluent, cer. Since the kafirin feeding rate 

increases with Uld, much more kafirin is carried to the riser via kafirin-loaded solid 

particles. The Uld does not affect the riser performance where the solids holdup 

remains constant. Taking all these into account, the highest kafirin production and 

recovery are obtained for the largest Uld. Also, solids amount required decreases with 

Uld supporting that higher Uld are beneficial to kafirin purification on LSCFB. 

 

Riser Liquid Velocity 

The effect of liquid velocity in the riser, Ulr is shown in Figure 5.7. Ulr affects the 

system by altering the liquid phase residence time in riser, solids holdup in riser 

distributor region, εsr1 and riser upper dilute region, εsr2. For a fixed solids circulating 

rate, Ulr also controls the eluent entering flowrate to the riser and thus the kafirin 
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Table 5.9 .Steady-state performance of UNOsphere Q at various downer liquid velocity, Uld 

(cod =2kg/m3; Gs =1.24kg/m
2
/s; Ulr =5.28mm/s; hd,eff =0.8m). 

Downer superficial liquid velocity, Uld (mm/s) 0.40 0.50 0.60 

Downer solids holdup, εsd 0.29 0.2573 0.2276 

Riser distributor region solids holdup, εsr1 0.1912 0.1912 0.1912 

Riser upper dilute region solids holdup, εsr2 0.1639 0.1639 0.1639 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 8.08 8.29 8.43 

Downer raffinate concentration, ced (kg/m
3
) 0.2748 0.307 0.3362 

Riser extract concentration, cer (kg/m
3
) 0.8686 1.1288 1.3582 

Downer solid outlet concentration, qed (kg/m
3
) 20.25 24.61 24.11 

Riser solid outlet concentration, qer (kg/m
3
) 8.73 9.622 5.59 

Protein production rate, P (g/h) 20.25 24.24 29.17 

Fraction of protein recovery, R 0.5733 0.596 0.5976 

Solids inventory, S (kg) 2.388 2.194 2.019 

 

(a) 

 

(b) 

 

Figure 5.6 Concentration profiles analysis of (a) downer steady-state adsorption profile, (b) 

riser steady-state desorption profile for UNOsphere Q on the effects of changes in the 

downer liquid velocity, Uld (cod =2kg/m3; Gs =1.24kg/m
2
/s; Ulr =5.28mm/s; hd,eff =0.8m). 
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Table 5.10 Steady-state performance of UNOsphere Q at various riser liquid velocity, Ulr 

(cod =2kg/m3; Gs =1.24kg/m
2
/s; Uld =0.60mm/s; hd,eff =0.8m). 

Riser superficial liquid velocity, Ulr (mm/s) 5.28 6.96 8.64 

Downer solids holdup, εsd 0.2276 0.2276 0.2276 

Riser distributor region solids holdup, εsr1 0.1912 0.1502 0.1228 

Riser upper dilute region solids holdup, εsr2 0.1639 0.0897 0.0603 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 8.43 8.43 8.43 

Downer raffinate concentration, ced (kg/m
3
) 0.3362 0.4503 0.5354 

Riser extract concentration, cer (kg/m
3
) 1.3582 1.0054 0.7839 

Downer solid outlet concentration, qed (kg/m
3
) 24.11 30.01 31.22 

Riser solid outlet concentration, qer (kg/m
3
) 5.59 13.26 15.32 

Protein production rate, P (g/h) 29.17 28.47 27.55 

Fraction of protein recovery, R 0.5976 0.5831 0.5644 

Solids inventory, S (kg) 2.019 1.861 1.796 

 

(a) 

 

(b) 

 

Figure 5.7 Concentration profiles analysis of (a) downer steady-state adsorption profile, (b) 

riser steady-state desorption profile for UNOsphere Q on the effects of changes in the riser 

liquid velocity, Ulr (cod =2kg/m3; Gs =1.24kg/m
2
/s; Uld =0.60mm/s; hd,eff =0.8m). 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

c i
,d

 /
c o

d
 

hld /hd,eff 

5.28

6.96

8.64

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

c i
,r

 /
c o

d
 

hlr /Hr 

5.28
6.96
8.64

Ulr 

(mm/s) 

Ulr 

(mm/s) 



   

127 

 

Table 5.11 .Steady-state performance of UNOsphere Q at various initial feed concentration, 

cod (Gs =1.24kg/m
2
/s; Uld =0.60mm/s; Ulr =5.28mm/s; hd,eff =0.8m). 

Initial feed concentration,  cod (kg/m
3
) 1 2 3 

Downer solids holdup, εsd 0.2276 0.2276 0.2276 

Riser distributor region solids holdup, εsr1 0.1912 0.1912 0.1912 

Riser upper dilute region solids holdup, εsr2 0.1639 0.1639 0.1639 

Lumped mass transfer constant, 10
3
 KLa (s

-1
) 8.43 8.43 8.43 

Downer raffinate concentration, ced (kg/m
3
) 0.2401 0.3362 0.4075 

Riser extract concentration, cer (kg/m
3
) 0.6214 1.3582 2.1098 

Downer solid outlet concentration, qed (kg/m
3
) 15.91 24.11 40.19 

Riser solid outlet concentration, qer (kg/m
3
) 7.675 5.59 11.98 

Protein production rate, P (g/h) 13.35 29.17 45.32 

Fraction of protein recovery, R 0.5469 0.5976 0.6189 

Solids inventory, S (kg) 2.019 2.019 2.019 

 

(a) 

 

(b) 

 

Figure 5.8 Concentration profiles analysis of (a) downer steady-state adsorption profile, (b) 

riser steady-state desorption profile for UNOsphere Q on the effects of changes in the initial 

feed concentration, cod (Gs =1.24kg/m
2
/s; Uld =0.60mm/s; Ulr =5.28mm/s; hd,eff =0.8m). 
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production and mass balance in the riser. The concentration profiles of riser at 

different Ulr are shown in Figure 5.7(b). The steepest increase in concentration is 

found for the lowest Ulr in simulation. This is especially apparent for distributor 

region. Much more kafirin is desorbed from solid particles into the eluent at smaller 

Ulr value since the solid phase residence time allows sufficient time for desorption. 

Desorption capacity of solid particles reduces as Ulr increased as more kafirin remain 

inside them due to less residence time for elution process in the riser. This can be 

observed from Figure 5.7(b) in which at low Ulr values, steeper concentration 

profiles are obtained. Hence, for a given downer dense region height, the ced values 

increases with Ulr to indicate greater adsorption for smaller Ulr, as given in Table 

5.10. Thus, smaller values of Ulr are required for higher production rate and recovery 

of kafirin with a slight increase in the solids inventory requirement.  

 

Feed Concentration 

As illustrated in Figure 5.8, the simulation results show that the kafirin 

concentration in the extract increases with the initial kafirin concentration at the 

downer inlet, cod. But, an increase of the cod without being balanced by decrease of 

the downer liquid flowrate, Uld causes an increase in loading rate of kafirin to the 

LSCFB. From Table 5.11, the kafirin production rate increases almost proportionally 

with the increase in cod. However, a higher cod values, kafirin recovery does not 

increase as significantly as the kafirin production rate. For this, it is critical to operate  

the LSCFB at kafirin loading rate below the adsorption capacity of system to reduce 

loss of kafirin into raffinate. 

 

5.4 CONCLUSION 

A first-principle model employing the tanks-in-series approach is developed for a 

continuous purification of kafirin in the LSCFB. Batch experiments are conducted 

for a five commercially available ion exchangers to obtain equilibrium and kinetic 

data for kafirin adsorption and desorption on these ion exchangers. The Langmuir 

isotherm showed the best fit for describing the equilibrium relationship of solid-

liquid interaction for all ion exchangers. Kafirin adsorption rate is expressed by a 

lumped mass transfer coefficient correlated to the previously validated intraparticle 
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diffusion and dispersion factor to closely represent the adsorption rate. Kafirin 

desorption is rapid and the rate is modelled by a second-order equation.  

 

The performance of the LSCFB is compared using the five ion exchangers. It is 

observed that mass transfer as well as desorption kinetics plays an important role in 

dictating the performance of the ion exchanger. Toyopearl QAE-550C is the most 

efficient in recovering kafirin from feed solution, while Toyopearl SuperQ-650M is 

least efficient. To obtain a fair overview of the behaviour of ion exchangers in the 

system, an average performing ion exchanger, the UNOsphere Q, is selected for 

further analysis.  

 

Unsteady state simulations are carried out to understand the dynamics of the 

LSCFB system. It is observed that the system arrives at pseudo steady state condition 

after 7 cycles, approximately 4 h of operation. The tanks-in-series model provides 

great flexibility in manipulating the flow behaviour of individual sections in LSCFB. 

The flow behaviour of the solid phase and liquid phase, with and without 

incorporating the solids backmixing is examined. Better performance is obtained 

with solid backmixing w.r.t. liquid phase in the downer. In the riser, however, the 

well-mixed liquid-solid flow with no backmixing effect in both the riser distributor 

and upper dilute regions are the most efficient. These results are valuable in 

designing new LSCFB systems.  

 

Effects of critical operating parameters namely, solid circulation rate, riser and 

downer liquid velocities, and initial kafirin concentration in the feed are assessed. 

Both the production rate and fractional recovery of kafirin in the LSCFB deteriorated 

with the increase in solids circulation rate and riser liquid velocity, while the 

recovery and production rate increased with downer liquid velocity and initial kafirin 

concentration in feed. A close scrutiny of the simulation results showed that each 

operating parameters affected the system in different manners, and that there exist 

optimum values of the process conditions. This work not only provides useful 

insights for multi-parameter optimisation of the LSCFB of kafirin, but also for other 

protein recovery operations. 
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CHAPTER 6  

LIQUID-SOLID CIRCULATING FLUIDISED BED 

SYSTEM: MULTIOBJECTIVE OPTIMISATION 

FOR CONTINUOS KAFIRIN PURIFICATION 

 

6.1  INTRODUCTION 

Multiobjective optimisation (MOO) is used increasingly to optimize chemical 

engineering applications for conflicting objectives such as conversion, selectivity and 

yield besides economic criteria. In Chapter 5, the previously validated LSCFB  

model is successfully applied for continuous purification of kafirin. A close scrutiny 

of the sensitivity study in Chapter 5 also reveals that some of the operating 

parameters such as the solids circulation rate, liquid velocity in the downer, liquid 

velocity in the riser, and feed concentration have significant effects on kafirin 

recovery and production rate. In some circumstances, these also act in a conflicting 

manner. It is thus the aim of this chapter to perform MOO to maximise both the 

production rate and fractional recovery of kafirin. Five process decision variables are 

studied, specifically downer liquid velocity, solids circulation rate, riser liquid 

velocity, kafirin concentration of feed and effective height of the downer. The MOO 

problems of the LSCFB model are solved by the MATLAB® multiobjective function 

GAMULTIOBJ function, which is a variant of the Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II). In particular, the MOO is performed to find a range of 

better operating conditions for improving kafirin purification process in LSCFB, and 

also to provide insights on the interaction between the different decision variables of 

the system. 

 

6.2  FORMULATION OF MULTIOBJECTIVE PROBLEMS 

The MOO problem is solved for the experimentally validated LSCFB model for 

continuous kafirin purification. In Chapter 5, the effects of different operating 

conditions on the LSCFB are evaluated for anion exchanger UNOsphere Q on basis 

of kafirin production rate, P, and fraction of kafirin recovered, R. Results of these 

sensitivity studies shown that each of these operating parameters affected the ion-
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exchange LSCFB differently, and that there exist a set of optimal process conditions. 

This study is a continuation of the Chapter 5, and is focused on the maximisation of 

P (Eq. 6.1) and R (Eq. 6.2) for two-objective optimisation.  

Maximise protein production rate, P 

 = Extract flowrate × Kafirin concentration in extract = Ulr Ar cer  (6.1) 

 

Maximise overall protein recovery, R 

= Protein production rate / Kafirin loading rate = Ulr Ar cer / Uld Ad cod (6.2) 

 

For optimising the performance of the LSCFB model for continuous purification 

of kafirin, five process decision variables are available. These and their bounds are as 

listed in Eqs. 6.3 to 6.7, as followed.  

0.6 kg/m
2
s ≤ Gs ≤ 1.5 kg/m

2
s (6.3) 

0.40 mm/s ≤ Uld ≤ 0.94 mm/s (6.4) 

5.0 mm/s ≤ Ulr ≤ 11.0 mm/s (6.5) 

0.5 kg/m
3
 ≤ cod ≤ 2.0 kg/m

3
  (6.6) 

0.4 m ≤ hd,eff ≤ 1.0 m (6.7) 

 

The lower and upper bounds of these decision variables are selected based on the 

feasibility of parameters in the mass transfer equations as well as experimental 

stability of the LSCFB system as reported by Lan et al. (2000, 858; 2001, 157; 

2002b, 252). Solids circulation rate, Gs is the mass flow rate of the ion-exchange 

particles circulating between the downer and riser. Gs is an important parameter as 

kafirin desorption decreased with the increase in Gs because the relatively slow 

desorption rate in the riser led to longer residence time required for the solid particles 

for efficient elution of the adsorbed kafirin into the extracting buffer. From the 

sensitivity analysis in Chapter 5, it is revealed that Gs is a non-conflicting operation 

parameter. Both production rate and fractional recovery decreased with the increase 

in Gs. Therefore, the lower the Gs value, the better the performance of the LSCFB 

would be. Nevertheless, the influence of Gs on the solids holdups in the distributor 

and upper dilute regions of riser restricted the minimum value to be used. The lower 

bound of the Gs is chosen to ensure sufficient voidage in all regions of the riser. The 

liquid velocity in the downer, Uld directly affected the feed residence time in downer, 

and hence the feed loading rate to the LSCFB. Uld also influenced the downer solids 
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holdup, εsd, thus changed the kafirin mass balance in downer. From sensitivity study, 

increased production rate and fractional recovery resulted with the increase in Uld. 

However, the increase in fractional recovery almost reached a plateau at higher value 

of Uld, despite the consistent increase in P. More kafirin is carried over to the riser at 

higher kafirin loading rate, thus the increased P. Nonetheless, the increase in Uld, 

without being balanced by Gs, caused more kafirin remained unadsorbed and 

therefore the R has reached a plateau as Uld increased to certain boundary. The lower 

bound of Uld is chosen to achieve sufficient voidage in the downer dense phase 

region. The upper bound of Uld is limited by the ion-exchange particles terminal 

settling velocity, Ut at 3.00 mm/s as the downer operated in conventional fluidisation 

region. It should be emphasised that the Uld should be in such a magnitude to 

maintain a freeboard region above the dense phase region to prevent the loss of ion-

exchange particles through the raffinate outlet.  

 

The liquid velocity in riser, Ulr affected the LSCFB performance by altering the 

residence time of extracting buffer in the fluidised bed, the solids holdup in the riser 

distributor region, εsr1 and the upper dilute region, εsr2. For a given Gs the Ulr also 

controlled the flowrate of extracting buffer in riser and thus the riser mass balance. 

The Ulr is learnt to be a non-conflicting parameter. Both the production rate and 

fractional recovery decreased with the increase in Ulr. Thus, the lower the Ulr value, 

the better the performance of the LSCFB would be. It is critical that Ur is kept above 

the Ut so the Gs became independent of the liquid velocity. An operating 

hydrodynamic region known as the fully developed circulating fluidisation region is 

thus attained in the riser (Lan et al. (2002, 252). The upper bound of the Ulr is chosen 

as such to provide sufficient voidage in the riser. The kafirin concentration in feed, 

cod is kept at lower range as the protein content in biological broth is usually very 

low. The bounds of the downer dense region height, hd,eff are chosen considering the 

height of the downer up to the top return pipe and the extent of the dilute phase in the 

downer bed.  

 

The aim is to gain a set of equally good solutions, i.e., a set of Pareto optimal 

solutions. This captured the trade-off between the objective functions over a broad 

range of non-dominated solutions, in which none of the objective function values 

could be raised without degrading some of the other objective values. Two-objective 
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functions optimisation problem is formulated and solved to locate the optimal 

LSCFB system operating conditions. Through narrowing down the choices, the 

Pareto set offered a useful guidance in deciding the best solution, amongst the set of 

Pareto optimal solutions, rather than from an extensive number of possibilities. Other 

than that, the MOO is useful in providing useful insights on the interaction between 

the different decision variables of the system. The MOO procedure used in this work 

is generic and can find application in either designing or revamping of LSCFB 

systems. 

 

6.3  ELITIST NON-DOMINATED SORTING GENETIC 

ALGORITHM SOLVER 

All decision variables selected in Section 6.2 affected the LSCFB performance in 

different manners. For example, production rate and fractional recovery decreased 

with the increase in Gs and Ulr, whereas the increase in fractional recovery reached a 

plateau at higher value of Uld and production rate increased consistently with Uld. 

With these decision variables influencing the LSCFB differently, it can be expected 

that the system to have discontinuous, or non-smooth performance for the production 

rate and overall recovery. Traditional derivative-based optimisation methods are 

designed to solve smooth problems as they use derivatives to determine the direction 

of descent. But, these often are not effective when problems lack smoothness, such 

as problems with discontinuous objective functions. When faced with solving non-

smooth problems, like the LSCFB system in our study, the genetic algorithm (GA) is 

an effective alternative. The LSCFB model is coupled with the multiobjective GA 

solver GAMULTIOBJ of MATLAB® to solve the problem formulated with two-

objective functions described in Section 6.2. The GAMULTIOBJ solver uses a 

controlled elitist genetic algorithm, a variant of the elitist non-dominated sorting 

genetic algorithm (NSGA-II) to solve non-smooth MOO problems (Deb et al. 2002, 

182). The main difference between the controlled elitist GA and GA is that it sorts 

individuals, in this context these are the candidate solutions, according to their level 

of non-domination, so that the non-dominated individuals are always sorted above 

dominated individuals, and elite individuals are therefore selected automatically. In 

GA, non-domination refers to an individual being better in at least one objective than 

the other individual (Mazumder et al. 2009b, 873). The non-dominating sorting is 
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Table 6.1 Parameters used in elitist non-dominated sorting genetic algorithm solver and their 

values. 

NSGA-II parameter Value   

Population options Double vector Population type 

 50 Population size 

 Uniform Creation function 

Selection options Stochastic uniform Selection function 

Reproduction options 0.7 Crossover fraction 

Mutation options Adaptive feasible Mutation function 

Migration options Forward Migration direction 

 20 Migration interval 

 0.2 Migration fraction 

Multiobjective options Distance crowding Distance measure function 

 0.35 Pareto fraction 

Stopping criteria options 50 Generations 

 

done by assigning non-dominance ranks to each individual in the population. Higher 

ranking individuals are chosen such that they dominate over the remaining 

individuals of the population but do not dominate one another. Individuals belonging 

to inferior rank are chosen such that they do not dominate individuals ranked higher 

than them, but dominate the others. This ranking process is continued until all 

individuals in the population are exhausted. For diversity, the elitist GA adapts 

multiobjective parameters called the distance measure function and Pareto fraction 

(MathWork 2013; Deb et al. 2002, 182). The distance function assigns a distance 

measure to each individual with respect to its neighbours. As will be clear later in the 

next section, the further the individual on the front, the better its chances are to be 

selected into the next generation. The other parameter, the Pareto fraction is a 

number between 0 and 1 that specifies the fraction of the population on the best 

Pareto frontier to be kept during the MOO. 

 

6.3.1  Input Parameters  

All input parameters to the elitist GA performed onto the LSCFB model are listed 

in Table 6.1 (MathWorks 2013). Parameters of the population such as the population 

type, population size, creation function, and initial population are specified to 

generate the initial population randomly at the onset of MOO simulation. The 
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population type is set to double vector for the MOO problems. 50 individuals are 

generated in each generation, instead of a smaller population size in order to obtain 

global optimum instead of local optimum values. The same number of individuals is 

used in the MOO study of an industrial styrene reactor with the results covered 

extensive range of optimal operating conditions (Yee, Ray and Rangaiah 2003, 111). 

A random initial population of 50 with a uniform distribution is then created with the 

default bounds shifted and scaled to match the existing upper and lower bounds of 

the decision variables. The selection function elects individuals to be parents. The 

default selection stochastic uniform is applied. The reproduction parameters control 

the mechanism to create the next generation. Specifically, a crossover fraction of 0.7 

is specified to create fraction of individuals in the next generation that are made up of 

crossover, while the rest generated by mutation. Mutations are applied to create small 

random changes in individuals in the existing population to create mutation children. 

It provided genetic algorithm and increased possibility of obtaining global optimal. 

The adaptive feasible mutation function is specified to randomly generate directions 

adaptive to the previous successful or unsuccessful generations.   

 

Crossover parameters are important GA operator that has the basic function of 

forming a crossover child in a reproduction process (MathWorks 2013). Intermediate 

crossover function is selected to create children by taking a weighted average of the 

parents. Migration parameters gave the movement of individuals between 

subpopulations, a form of parallel processing for the GA. In subpopulations, each 

worker hosted a number of individuals. These individuals are a subpopulation. The 

worker evolved the subpopulation independent of other workers, with the exception 

when migration caused some individuals to travel between the workers. Migration 

took place toward the last subpopulation, and wrapped at the subpopulation ends. For 

an interval of 20, migration took place every 20 generations. Besides, the fraction of 

individuals migrating between subpopulations is determined at 0.20, so the product 

of the migration fraction and the number of individuals of the smaller of the two 

subpopulations would migrate into denser subpopulation. Finally, the optimisation 

criterion of 50 generations is specified. The optimisation criteria are referred to as 

stopping criteria in the GA algorithm.  
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6.3.2  Flow Diagram 

Figure 6.1 is a flow diagram for the NSGA-II through which the model of 

LSCFB from previous chapter and the elitist GA solver operated to find an optimal 

solution. The MOO process began with specifying the input parameters in the GA 

solver, shown in Table 6.1. Following this, a random set of parent population with 50 

individuals is generated without violating the upper and lower bounds in the decision 

variable space (Eqs. 6.3 to 6.7). All the individuals are analysed by the LSCFB 

model. The estimated kafirin concentration profiles from the downer and riser are 

computed by the LSCFB model. The kafirin production rate, P (Eq. 6.1) and fraction 

of kafirin recovered, R (Eq. 6.2) values are returned to the GA solver. The population 

is then sorted into different non-domination ranks based on their objective function 

values. Once the ranks are assigned, the population underwent the GA processes of 

selection, crossover and mutation to generate the child population. These processes 

are similar to GA except that the selection is performed using the ranks instead of 

their scaled objective fitness values (Deb et al. 2002, 182; Mittal 2010, 26).   

 

Following mutation, the elitist GA differed from traditional GA by the invocation 

of elitism to choose the new population of individuals out of the parents and their 

mutated children. For elitism, the elitist GA took the parent and the child population 

and combined them into a single population with the total size of the child and parent 

population. The new population is then sorted into different non-domination ranks, 

following this; new individuals out of the combined population are selected. First all 

individuals belonging to higher rank are chosen followed by individuals from slightly 

inferior rank, and this continued until a stage is reached where all members 

belonging to the given rank could not be accommodated to fill up the rest of the 

remaining slots. To fill up the remaining of the individuals of the given rank, they are 

chosen in descending order of their distance measure function values. Thus, the 

individuals that are further away at the front are first selected and so on until all the 

slots are completely filled up. These are limited by the Pareto fraction set at the elitist 

GA onset. Gaining a new set of population out of the combined population via 

elitism is called the advancement of the population from one generation to the next. 

Once the new generation is created, it again went through the selection, crossover, 

mutation and elitism processes, and these repeated until a pre-defined stopping 

criterion, namely the number of generation, is reached. Note that the non-dominated  
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Figure 6.1 Flowchart explaining the multiobjective optimisation process by elitist non-

dominated sorting genetic algorithm solver. 
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Table 6.2 Decision variables and objective functions for point A to C in the Pareto-optimal 

frontier plot. 

Optimal solution Point C Point B Point A 

Protein production rate, P (g/hr) 27.0722 32.0572 29.173 

Protein overall recovery, R 0.7419 0.6931 0.5976 

Solids inventory required, S (kg) 2.4857 2.3616 2.0189 

Solids circulation rate, Gs (kg/m
2
/s) 0.9379 1.0155 1.24 

Downer superficial liquid velocity, Uld (mm/s) 0.489 0.5698 0.6 

Riser superficial liquid velocity, Ulr (mm/s) 5.2766 5.6847 5.28 

Feed concentration, cod (kg/m
3
) 1.8329 1.9937 2 

Downer effective bed height, hd,eff (m) 0.9414 0.9892 0.8 

 

sorting and assigning ranks to each individual and computing the distance function as 

well as the fraction of population at the best Pareto frontier are primary mechanisms 

that NSGA-II controlled in the estimation of the Pareto-optimal set of solutions. The 

non-dominated sorting ensured that the best set of solutions is spread through the 

generations, and at the same time, the distance function attempted to maintain 

diversity within these solutions so that a premature convergence is avoided.  

 

6.4  RESULTS AND DISCUSSION  

In this section, optimisation results of the LSCFB system for continuous kafirin 

purification are presented and discussed. The objective functions and the associated 

decision variables are plotted, and compared with the corresponding base case values 

previously computed in Chapter 5. Figure 6.2(a) shows the Pareto-optimal set 

obtained for simultaneous maximisation of the kafirin production rate, P and overall 

fraction of kafirin recovery, R. Table 6.2 reports the values of the decision variables 

and the two objective functions for the base case solution, point A and two extreme 

points of the non-dominated solutions, point B (at maximum production rate) and 

point C (at maximum fractional recovery). Shifting from left to right from point B to 

point C in Figure 6.2(a) shows conflicting behaviour between R and P, in which 

fractional recovery increased at the cost of reduced production rate. 

 

Figure 6.2(a), thus, represents a set of non-dominated solutions, with equally 

good points in which the preferred LSCFB operating point would have to be decided  
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(e) 

 

(f) 

 

Figure 6.2 Results for maximisation of P and R. (a) Set of Pareto-optimal solutions, (b-f) 

Values of decision variables corresponding to the Pareto-optimal solutions shown in (a). 

Symbol × indicates base case operating point. 

 

by the process designer from among these points. The maximum possible production 

rate is around 32 g/hr while the maximum possible overall recovery is about 0.74; 

however, both did not occurred simultaneously. Each point on the Pareto-optimal 

frontier plot corresponds to a set of decision variables, which are plotted in Figure 

6.2(b-f) against the overall recovery. The maximum and minimum values of the 

vertical axis in these figures are associated to the boundaries of the respective 

decision variables. It is noteworthy to mention that the MOO results presented in this 

study differed from the sensitivity analysis carried out earlier in Chapter 5. The latter 

predicted the effect of one parameter at a time in a steady-state LSCFB setup. 

Nevertheless, it has not described the interaction between the system parameters, an 

aspect which is critical because in a real-life situation there would be unforeseeable 

changes in multiple operating parameters. So this study is meant to illustrate the 

interaction of these parameters in their corresponding ranges of operability. 
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 It is clear from Figure 6.2(b) that as the solids circulation rate, Gs decreased from 

point B to C, the overall recovery of kafirin improved but with a reduced production 

rate. This is because of the effects of Gs which adsorbed and hence eluted more 

kafirin at higher Gs, but on the other hand the reduced solids residence time in riser 

has reduced the extent of kafirin desorption for a given amount of kafirin loading rate 

hence the decline overall recovery. As Gs shifted from point B to C, the superficial 

liquid velocity in downer, Uld also reduced accordingly as depicted in Figure 6.2(c). 

The Uld is known to have an effect on the feed loading rate into the LSCFB as well as 

the residence time of the feed liquor in downer. As the system shifted from point B 

and moved towards pointC, the Uld has decreased to prevent more kafirin loss into 

the raffinate due to the limited adsorption capability of the ion exchange particles at 

lower Gs values. Figure 6.2(d) illustrates the superficial liquid velocity in the riser, 

Ulr of points in the Pareto-optimal frontier. As Gs and Uld operated at higher values, 

point B in particular, it is anticipated that more kafirin is being carried over into the 

riser for elution. To achieve maximum possible production rate and recovery, the 

riser desorption capacity must be increased. This is achievable via increasing the 

extracting buffer flowrate, i.e. the superficial liquid velocity in the riser, Ulr. As the 

system shifted from point B towards point C, lesser kafirin is being adsorbed and 

hence carried over into the riser. Therefore the Ulr is adjusted to a lower operating 

point. Similarly as the decision variables discussed earlier changed their operating 

ranges, the initial feed concentration, cod into the LSCFB has to be adjusted as shown 

in Figure 6.2(e). 

 

When operated at point B with comparatively higher kafirin mass transfer 

capabilities in the riser and downer, the system is capable of recovering as much 

kafirin as possible. Nevertheless as the system switched to point C, the other extreme 

operating point, the system adsorption and desorption capabilities is reduced. Smaller 

cod is thus required to cope with the reduced desorption capacity of the riser. Though 

this might have reduced the production rate, smaller cod is needed as the reduced 

desorption capacity would led to reduced adsorption capacity in the downer. So to 

minimise the kafirin lost into the raffinate, smaller cod is used. Similar trend is 

observable for the effective height of downer, hd,eff in Figure 6.2(f). This variable is 

responsible in providing for adsorption in the downer, where higher hd,eff meant 

greater length for adsorption and longer residence time for liquid and solid phases. It  
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Table 6.3 Process conditions for base case steady-state simulation runs. 

 Value  

Solids circulation rate, Gs (kg/m
2
/s) 1.24 

Downer superficial liquid velocity, Uld (mm/s) 0.6 

Riser superficial liquid velocity, Ulr (mm/s) 5.28 

Feed concentration, cod (kg/m
3
) 2 

Effective height in downer, hd,eff (m) 0.8 

 

Is found that higher hd,eff is needed when the LSCFB operated at point B, but reduced 

to accommodate the operation changes at point C. This is due to the greater 

adsorption capacity required at the former operating condition where more kafirin is 

loaded into the LSCFB.  

 

Figure 6.2(a-f) also shows the current operating point at point A at base case 

conditions, as reported in Table 6.3. All the points on the Pareto frontier in Figure 

6.2(a) are much better than the current operating point. Also, to see the amount of 

solids inventory required, S corresponding to the Pareto frontier plot, the production 

rate and overall recovery are plotted against the calculated values of S in Figure 6.3. 

To operate the LSCFB at its maximum production rate at 32.06 g/hr (point B), a feed 

of 46.25 g/hr is required. Taking the base case as the calculation basis, this indicates 

an increase of5.33% feeding rate to the downer to achieve 9.90% increase in 

production and 15.90% decrease in recovery. Comparing to the base case, higher 

solid inventory is required, meaning increased capital cost with a slightly reduced 

pumping cost of the auxiliary stream to achieve the desirable Gs, feed and extract. On 

the other hand, for the LSCFB to operate at its maximum recovery (point C) means a 

decrease of 25.31% in feed loading requirement, and increase of 24.07% recovery. A 

total of 7.19% decrease in production is also resulted though. With this set of 

operating condition, a great reduction in the pumping cost can be achieved through 

the reduced auxiliary flowrate, feed loading rate, and extracting buffer flowrate. 

Considering all these factors, it can be understood that the selection of a operating 

cost, which depends on the site and time. Therefore the more important objective 

function between the production rate and overall recovery depends on these factors. 

Nevertheless Figure 6.2(a-f) provides a wide range of competing options for the 

improvement over the base case operating conditions of the LSCFB. 
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Figure 6.3 Calculated amount of the solids inventory required corresponding to the Pareto-

optimal solutions for maximisation of kafirin production rate and overall recovery. Kafirin 

production rate (o) and recovery (Δ) against amount of the solids required. 

 

6.5 CONCLUSION 

MOO studies of the LSCFB model for continuous kafirin purification are 

performed using an adaptation of the NSGA-II. The validated LSCFB model from 

Chapter 5 is implemented in this study. The MOO involved five decision variables 

and the upper and lower bounds of these decision variables are selected based on the 

model stability and sensitivity. A two-objective function optimisation is carried out 

using the most important objectives in kafirin purification process, i.e. production 

rate and fractional recovery, which are contradictory in the sense that the optimal of 

these two could not occurred simultaneously. From the decision variables values, the 

interaction between the decision variables are explained, and the complex nature of 

the LSCFB is revealed. This is because of the non-smooth nature of the objective 

functions in which changing one decision variable will alter the value of the other 

variables to arrive at the maximum achievable production rate or overall recovery. 

One point corresponding for maximum production rate but minimal recovery, and 

another at minimum production rate but maximum recovery from the Pareto frontier 

are also selected for detailed analysis. It is shown that operating at the former will 

induce extra capital and material cost but achieving better production rate, while the 

latter will reduce in terms of material and operating cost and higher recovery but at a 

lower production rate. The optimal operating point of the LSCFB depends on these 

factors, which are location and site specific. Therefore, one must choose carefully in 

order to draw the optimal performance out of the system.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATION 

 

7.1  CONCLUSIONS 

The concepts of LSCFB system is introduced for the recovery sorghum protein 

kafirin using viable protein extraction and purification process scheme. Specifically 

phenomenological modeling and optimisation methods are applied to develop and 

optimise the purification process on LSCFB. The LSCFB protein purification system 

is described while a phenomenological model based on compartmental framework is 

developed, and validated with the experimental results reported for a model protein 

extraction in the literature. Both isotherm and kinetic studies of kafirin adsorption are 

carried out on anion and cation exchangers for practical applications in preparative-

scale chromatography. These serve as the substance for selection of ion exchanger to 

use in kafirin purification. This is followed by simulation of the previously validated 

phenomenological model to predict the performance of kafirin purification in LSCFB 

under different flow configurations and operating conditions of critical parameters in 

the LSCFB. Finally, maximisation of both production rate and fractional recovery of 

the kafirin are carried out by manipulating critical decision variables that affected the 

LSCFB performance most significantly. The sections below gives conclusions from 

each individual chapters in the thesis.  

 

7.1.1  Liquid-Solid Circulating Fluidised Bed System: Description and 

Modeling  

An LSCFB ion-exchange system, is basically consists of a pair of fluidised beds, 

liquid-solids separator, washing section below the separator, top solids return pipe 

between the separator and the downer, washing section below the downer, and 

bottom solids return pipe between the riser and the downer at the bottom, equipped 

with ion-exchange particles. The most significant advantages associated with the 

LSCFB system include the following: 

o capability of operating with small ion-exchange particles for better utilization of 

particle surface area hence high effectiveness factors, increased contact efficiency 

between particle surface area and solvent due to increased phase-slip. 
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o ability to withdraw and input ion-exchange particles continuously  

o high velocities operations give higher product throughput and rapid mass transport 

between different phases.  

o has been rapidly applied in adsorption based chromatographic processes recently. 

 

A general purpose, extensible and dynamic theoretical model based upon a tanks-

in-series framework incorporating the equilibrium and hydrodynamics of liquids and 

ion-exchange particles has been developed for LSCFB continuous protein recovery 

system. The model is used to simulate the recovery of BSA from feed solution onto 

surface of Diaion HPA25 particles. The model is developed based on simplification 

assumptions such as diffusion mass transfer and first-order reaction kinetic for 

protein adsorption and desorption, respectively. The design equations are derived 

from practical guidelines for the design of an LSCFB system. 

 

The simulated results compare well with the experimental results obtained from a 

laboratory-scale BSA recovery in LSCFB with 84% recovery at a throughput of 21.5 

g/hr. Systematic study of the effects of key operating parameters such as the downer 

liquid velocity, riser operating velocity, solids circulation rate and feed concentration 

is performed. The analysis revealed that both the BSA production rate and recovery 

increase with increasing solids circulation rate, while both decrease with increasing 

superficial liquid velocity in the riser. With the increase in superficial liquid velocity 

in the downer and feed BSA concentration, the rate of BSA production increases, but 

the overall recovery decreases.  

 

7.1.2 Kafirin Adsorption Chromatography: Isotherm and Kinetic Analysis 

Mass transfer parameters in the first-principle model are essential for designing 

and upscale of kafirin adsorptive chromatography systems. Kafirin binding and mass 

transfer on ion exchangers with different pore structure and surface chemistry is 

investigated.  Differences in particle chemistry, its hydrodynamic design and surface 

charge of kafirin with respect to the environment in batch equilibrium experiments 

and uptake kinetic experiments are found to contribute significantly to the kafirin 

adsorption behavior onto the surface of ion-exchange particles. Five basic anion-

exchangers and two acidic cation-exchangers are studied.  
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Data-fitting with Langmuir adsorption isotherm model gave high coefficients of 

determination for all ion exchangers. The fitted dissociation coefficients have values 

between 10
-8

M and 10
-2

M, indicating reversible binding between kafirin molecules 

and ligands on the ion-exchange particle surface suitable kafirin desorption without 

denaturation. Of all the ion exchangers investigated, UNOsphere Q and Toyopearl 

SuperQ-650M showed highest adsorption efficiency. The film-pore diffusion model 

described the batch uptake experimental results well. Effects film mass transfer are 

significant on kafirin uptake rates for UNOSphere Q and Toyopearl SuperQ-650M. 

Fitted values of both pore diffusivity and film resistance agree well with literature 

data.  

 

7.1.3  Liquid-Solid Circulating Fluidised Bed System: Modeling Continuous 

Kafirin Purification  

First-principle model of the LSCFB continuous ion-exchange system previously 

validated with BSA recovery data is modified to model kafirin purification system. 

Simplification assumptions are made about the system mass transfer, for instance, the 

Langmuir isotherm model for equilibrium relationship of liquid-solid interaction, the 

lumped mass transfer coefficient accounted for intraparticle diffusion and dispersion 

effect for kafirin adsorption, and second-order reaction kinetic for kafirin desorption. 

Five ion exchangers are compared for their performances in LSCFB. It is observed 

that the mass transfer parameters affect the extents of adsorption and desorption of 

kafirin much. The most efficient ion exchanger in recovery of kafirin is Toyopearl 

QAE-550C. Nevertheless further analysis is carried out on an average performing ion 

exchanger, i.e. UNOsphere Q, for judicious overview of ion exchanger performance 

in the system. In unsteady state simulations, the dynamics of the LSCFB continuous 

kafirin purification system is observed to achieve a pseudo steady-state condition 

after approximately 4 operational hours. 

 

Liquid-solid flow configurations in the LSCFB ion-exchange system with and 

without backmixing are examined. Solid backmixing with respect to the liquid phase 

in the downer gives better performance. In the riser, however, the well-mixed liquid-

solid flow with no backmixing effect in riser distributor and upper dilute regions are 

the most efficient in recovery kafirin. Effects of critical operating parameters namely, 

solid circulation rate, riser and downer liquid velocities, and initial kafirin feed 
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concentration are assessed. Both kafirin production rate and fractional recovery of 

the system deteriorate with increase in solids circulation rate and riser liquid velocity, 

while both increase with increase in initial kafirin concentration in feed and downer 

liquid velocity.  

 

7.1.4  Liquid-Solid Circulating Fluidised Bed System: Multiobjective 

Optimisation for Continuous Kafirin Purification 

Sensitivity analysis revealed that some parameters affect the system performance 

in conflicting and different manners. To solve the non-smooth system performance 

problem, the MOO studies on the first-principle model for LSCFB ion-exchange 

system for kafirin purification are carried out using an adaptation of the NSGA-II. 

Five process decision variables are included, while the upper bound and lower bound 

values are selected on basis of the model stability and sensitivity. A two-objective 

function optimisation is carried out using the two most important objectives, i.e., 

maximisation of kafirin production rate and maximisation of kafirin fractional 

recovery, These are contradictory in the sense that the optimal of these two could not 

occurred simultaneously.  

 

Interaction between the decision variables are explained from the values of the 

decision variables. In other words, changing one decision variable will alter the value 

of the other variable to arrive at the maximum production rate or fractional recovery 

due to the non-smooth nature of the objective functions. Different points indicative 

of the system performance are highlighted on the Pareto frontier for detailed analysis. 

A point produces maximum production rate but minimum recovery at the expense of 

additional capital and material costs. Another point gives minimum production rate 

but maximum recovery saves material and operational costs but at the expense of the 

process production rate. Operational points of the LSCFB continuous ion-exchange 

system subject to the interaction between decision variables. One must thus choose 

operating points carefully to draw the optimal performance out of the system.  

 

7.2  RECOMMENDATIONS FOR FUTURE WORK 

This study provides comprehensive systematic understanding on the concepts of 

recovering sorghum protein using viable protein extraction and purification process 

scheme on LSCFB system. In particular, model development, mass transfer and 
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kinetics, model adaptation, followed by sensitivity studies and optimisation are 

performed. Nevertheless, there are still some areas where further research is needed. 

 

The LSCFB system modelled is rated on three major performance parameters, 

namely the production rate, overall recovery, and solids inventory requirement. With 

the currently available simulation data of the downer and riser concentration profiles, 

the purity of the kafirin produced could be included into the sensitivity and 

optimisation studies. Other than that, this study validated the model by the literature 

data on BSA recovery. It would be recommended to conduct kafirin purification on a 

LSCFB in the laboratory to obtain the profiles in the fluidised beds in order to 

examine the credibility of the model. Finally, the study only focused on the macro 

scale modeling of the LSCFB. To examine the effects of hydrodynamics parameters, 

it would be useful to perform a computational fluid dynamic simulation and 

incorporate the result into the phenomenological model of LSCFB.  
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