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Abstract	

In the past decades, applications of advanced oxidation processes (AOPs) for persistent 

organic pollutants (POPs) treatment in wastewater have been thoroughly investigated. The 

AOPs can improve biodegradability of pollutants and they are useful for cleaning biologically 

toxic and non-degradable materials in waste water. Among these processes, the sulfate 

radical-based reaction has been employed as a low-cost, environmentally-friendly and 

sustainable technique to purify wastewater. 

The aim of this work is to synthesize different magnetic nanocatalysts by a hydrothermal 

method which can present high activity and good magnetic performance in the oxidation of 

phenol solutions. Three types of catalysts were synthesized with either one-pot or two-step 

hydrothermal method. All of these synthesized catalysts were examined for 

peroxymonosulfate (PMS, Oxone) activation for the decomposition of phenol. 

In all the catalysts, the magnetic carbon nanospheres supported Mn nanoparticles which were 

synthesized by a one-pot hydrothermal method and self-reduction in N2 atmosphere with the 

carbon from hexamethylenetetramine (HMTA) showed the best oxidizing ability which could 

give effectively phenol decomposition in about 42 minutes.
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1.	 Introduction	and	Overview 
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1.1 Motivation	

During the last several years, how to reduce environmental pollutants has been a serious 

issue1. To deal with this problem, a lot of researchers have shown interest in the production of 

environmentally-friendly materials and treatment techniques2. Normally, the pollutants 

include two kinds of contaminations: water and solid pollution3, which can not only reduce 

the availability of fertile land for agricultural use but also pose a risk to public health4, food 

system5 and groundwater6. As one kind of most serious pollutant, persistent organic 

pollutants (POPs) have attracted particular concern for their long life-time, toxicity and 

resistance against nature attenuation7. 

To provide satisfied POPs degradation, advanced oxidation processes (AOPs) have been 

considered to be one of the most effective treatments due to their ability of fully degradation 

of  POPs8. They also support a new path for novel technology. Numerous studies have been 

reported to use magnetic catalysts to activate OXONE (potassium monopersuphate) for 

oxidation of POPs in soil and water9. The magnetic catalysts have attracted great attention 

due to their high specific surface area10, unique size11 and morphology-dependent physical 

and chemical properties12. 

1.2 Objectives	of	thesis	

The main objective of this research is to synthesize a new kind of magnetic nanocatalyst by  a 

novel hydrothermal method which can appear high activity and good magnetic performance 

in the reaction of oxidizing phenol solutions. 
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1.3 Thesis	organization	

Chapter one briefly introduced the major technique for removal of persistent organic 

pollutants. Chapter two presented a comprehensive literature review on pollutant removal 

techniques in four aspects: the methods of water pollution control, the classification of AOPs, 

the classification of catalysts and the introduction of magnetic nanocatalysts. Chapter three 

described a one-pot hydrothermal method to synthesize the carbon nanospheres supported by 

Mn catalysts with glucose to supply the carbon elementary substances. Chapter four showed a 

two-step hydrothermal method to synthesize the carbon nanospheres supported by Mn 

catalysts with glucose to supply the carbon elementary substances. Chapter five showed a 

one-pot hydrothermal method to synthesize the carbon nanospheres supported by Mn 

catalysts with hexamethylenetetramine to supply the carbon elementary substances. Chapter 

six summarized the overall thesis and discussed the performance of all the materials which 

were synthesized during the research work for organic degradation. The final part of this 

chapter was devoted to the possible suggestions and future work. 
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2.1 Introduction	

Due to increasingly fast pace of global industrialization and lacking in the awareness of 

environmental protection, water and soil contamination has become a critical issue worldwide. 

The contaminated sites not only reduce the availability of fertile land for agricultural use but 

also pose a risk to public health, food system and groundwater. Among the pollutants 

discharged from industrial sites, contaminants in terms of persistent organic pollutants (POPs) 

have attracted particular concern owing to their long life-time, toxicity, and resistance against 

nature attenuation1 . The chemical characteristics of POPs are generally recognised as 

carcinogenic polycyclic aromatic hydrocarbons (PAHs) and certain brominated flame-

retardants, as well as some organo-metallic compounds such as tributyltin (TBT). Therefore, 

in order to protect the safety of both animals and human beings’ as well as to prevent 

deterioration of water quality, it is crucial and imperative to treat wastewater and eliminate 

these organic contaminates before its discharging to the environment. Being hydrophobic, 

these POPs adsorb strongly on soil texture, making them very difficult to treat, especially in 

low permeable clayey soil2. As a result, conventional wastewater treatment techniques based 

on the primary and secondary treating such as activating sludge treatment fail to achieve a 

satisfied POPs degradation rate. In addition, conventional mechanical-biological purification 

no longer suffices and must be supplemented by additional stages of processing. 

To provide satisfied POPs degradation, advanced treatment processes have been developed, 

including advanced oxidation processes (AOPs), wet air oxidation (WAO) and membrane 

processes, such as ultra-filtration, nano-filtration, and hyper-filtration, in which physical 

processes can only transfer the pollutants from one phase to another. However, these methods 

significantly depend on pH (Fenton reaction), energy input (Ozone-UV, ultrasound, 

electrokinetic, supercritical oxidation process (SCWO), and thermal treatment), and operating 
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period (bioremediation and photo-remediation).3 There is an urgent need to develop novel 

technologies to treat water and soil contaminated by POPs.  

Recently, nanotechnologies have shown their great potential for treatment of waste water, 

contaminated soil, and air pollution. The available nanomaterials that have been applied in 

the treatment of POPs include nano zero-valent iron (ZVI) as permeable soil barriers (PRBs)4, 

mesoporous nanomaterials as adsorbents5, and nanosized photocatalysts for AOPs6. 

Nevertheless, the main barrier of nanotechnologies hindering their large-scale application is 

the recovery approach of used nanomaterials7, especially in soil remediation cases in which 

the only choice of centrifugation is no longer practical due to the co-sedimentation nature of 

soil. Moreover, if not well recovered, the catalysts would bring secondary contamination to 

water or soil which could be more serious than the primary one.  

A promising strategy for resolving the problem is recovery by magnetic separation. 

Nanoparticles (or quantum dots) can be fabricated on a magnetically separable support to 

make the nanocatalysts separable by a magnetic field8. γ-Fe2O3 or magnetite Fe3O4 in 10 – 20 

nm exhibits a special form of magnetism called superparamagnetism. Inert barrier materials 

(< 100 nm) can be fabricated to encapsulate the γ-Fe2O3 or magnetite Fe3O4 for protecting the 

ferromagnetic nanoparticles, and then loaded with catalysts for applying reaction and the 

magnetic platform.  

The application of Fenton reaction requires a low pH (~3), which in turn creates other issues 

to deal with the acid solution. Sulfate radicals which could be produced by sulfate based 

oxidants have been suggested as an alternative due to their higher oxidation potential9. More 

importantly, the generation of sulfate radical will also be superior to Fenton reaction by the 

potentials applied in a wide range of pHs for the generation of sulfate radical10. The prepared 
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magnetically separable catalysts will be used to activate OXONE (potassium monopersuphate) 

for oxidation of POPs in soil and water.  

It has been found that cobalt ions are effective for oxone activation to provide sulfate radicals. 

The radical generation and organic degradation processes can be described as below. 

Co!! +  HSO!!  →  Co!! +  SO!•! +  OH!                                                     (1) 

SO!•! +  H!O →   SO!!! +  OH• +  H!                                                            (2)  

SO!•! +  organics →   
!"#"$%& !"#$!

  CO! +  H!O                                           (3) 

However, the major issue confronting cobalt based oxidation technique is the toxicity of 

cobalt ion. Cobalt is recognized as a priority pollutant in water, which leads to several health 

problems such as asthma, pneumonia and other lung problems. In order to restrict the 

discharge of cobalt ions, it has been proposed to employ a heterogeneous cobalt catalyst by 

supporting the cobalt ions on a solid surface for oxidation. Previously, several types of 

heterogeneous Co catalyst including Co oxides11 , Co composites12 and supported Co 

catalysts have been investigated13.   

In addition to cobalt-based catalysts, recent studies also reveal that graphene which is a form 

of nanocarbons, can effectively activate PMS for producing sulphate radicals. The activity of 

graphene is higher than graphite powder (GP), activated carbon (AC), carbon nanotube 

(CNT), and graphene oxide (GO). Moreover, graphene is able to degrade phenol, 

dichlorophenol (DCP) and methylene blue (MB) more efficiency than a typical cobalt 

catalyst, Co3O4 nanoparticles14. It is suggested that the chemical properties of graphene is 

exceptionally sensitive to the lattice imperfections15,16. And numerous simulations indicate 

that hydroxyl, carboxyl, or other groups can easily be attached to vacancy-type defects. 

Simulations also show that reconstructed defects without dangling bonds such as SW defects 

or reconstructed vacancies locally change the density of electrons and may also increase the 
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local reactivity. And it can be inferred that these defects can act as catalytic centres for PMS 

activation reaction. 

Recently, it has been found that nanoscale ZVI could show a higher activity in reduction 

reactions, when compared to conventional microscale ZVI particles17, 18 and 19. Nano scaled 

Fe0 generally offers high surface-area-to-volume ratios, high specific surface area, and high 

surface reactivity. Instead of using the expensive borohydride salt as the reducing agent, 

Hoch et al.20reported that ZVI nanoparticles could be prepared by the reduction of carbon 

black, which was also used as a support material, under Ar flow at a calcination of above 

600 °C. Since ZVI nanoparticles favour strong aggregation into microscale particles due to 

the high surface energy and intrinsic magnetic interaction, support such as polystyrene resin21, 

alumina22, bentonite23, kaolinite24, zeolite25, carbon black20, activated carbon26, carbon 

nanotubes27, and carbon spheres is required for better Fe0 distribution. Another concern of 

nano-Fe0 is its instability in air. Due to high surface energy, ZVI nanoparticles can easily 

react with the oxygen within the air and form more stable iron oxide. Encapsulation of nano-

Fe0 into porous carbon spheres is suggested to be a promising way for enhancement of 

transportation, suspension, and stability of nanoscaled ZVI without significantly sacrificing 

activity. 

Hausmannite (Mn3O4) has drawn particular research attention because of its distinctive 

structure and physicochemical properties, which are of great interest in energy conversion, 

magnetics, and catalysis, etc.28,29. Despite the high catalytic performance of Mn3O4 

nanoparticles (NPs), its poor chemical and thermal stabilities, which could lead to 

aggregation of NPs, not only decreases the catalytic efficiency but limits its wider application. 

To solve this, carbonaceous materials with high electrical conductivity and buffer matrix 

have been widely employed as supports for Mn3O4-based catalysts to improve their 

conductivity and stability30.  



11	
	

Besides hausmannite, other form of manganese oxide-MnO2 also shows its potential as a 

catalyst in wastewater treatment. Previously, MnO2 was usually used for the Fenton-like 

reaction for production of hydroxyl radicals from H2O2 and oxidation of organic compounds. 

Anipsitakis and Dionysiou31 studied nine transition metal ions for the activation of three 

oxidants and the generation of sulfate, peroxymonosulfate, and hydroxyl radicals. They 

suggested that the conjunction of Mn2+ ions were capable of generation of sulfate radicals by 

activation of peroxymonosulfate. 

2.2 The	overview	of	water	pollutions	

During the last decades, water environment has suffered from the increasingly heavy 

pollution burden caused by population increase and economic development. After the water 

has been polluted, it affects people’s life. According to the World Health Organization 

(WHO), 1.8 million people died by drinking the polluted water. To be exact, probably 1/6 of 

the world’s population is suffering from unsafe water, especially in the developing 

countries28.  

Chemical products are one of the most dangerous pollutants which have caused a large 

number of water-pollution accidents32. For example, as one of the most famous river, 

Songhua River experienced a serious accident caused by benzene and nitrobenzene 

products31. Among the pollutants discharged from industrial sites, contaminants in terms of 

persistent organic pollutants (POPs) have attracted particular concern owing to their long life-

time, toxicity, and resistance against nature attenuation1. The chemical characteristics of 

POPs are generally recognised as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and 

certain brominated flame-retardants, as well as some organo-metallic compounds such as 

tributyltin (TBT)33.  
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2.3 	The	methods	of	water	pollution	control	

In order to protect the human being’s safety, a huge number of researches have been devoted 

to achieving a reasonable solution to protect the water environment. As a viable method, 

influence factors and economy should be two important points which can value the benefits 

of the projects34, such as the agricultural water pollution control’s applications35, water 

supply system’s technology innovation36, and comprehensive economic assessment’s water 

environmental model37.  

Besides the previous approaches, the advanced oxidation processes (AOPs) have been 

considered to be one of the most effective treatments because of the ability of fully 

degradation of the POPs38.  The AOPs can improve the pollutants’ biodegradability and they 

are useful for cleaning biologically toxic and non-degradable materials such as aromatics, 

petroleum constituents and volatile organic compounds in waste water39.  

2.4 	The	classification	of	AOPs	

Advanced oxidation processes, to put it simple, refer to a series of chemical treatment 

procedures which are designed to remove organic or inorganic materials in waste water by 

supplying hydroxyl radicals with high oxidizability40. According to the methods of producing 

free radicals and difference of reaction conditions, the AOPs can be classified as six aspects: 

photochemical oxidation, catalytic wet-air oxidation, acoustic chemical oxidation, ozone 

oxidation, electrochemical oxidation and Fenton oxidation.  

Photochemical oxidation is the reaction of a chemical change in a substance which caused it 

to lose electrons initiated by light41. A common example is photochemical smog which is 

caused by hydrocarbons and NOx reacting under the influence of UV light42. It can be used in 

contaminated water, air and solids treatments for its high oxidizing ability and gentle reaction 
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conditions43. However, photochemical oxidation is easy to produce aromatic compounds 

which can lead to organics’ halfway degradation for its limitation of reaction conditions, this 

problem is the one which should overcome first44. 

The method of catalytic wet-air oxidation is a process which can decompose the organic 

pollutants to carbon dioxide and nitrogen by activating oxygen species which can take place 

of high temperatures and pressures45. It is known for its capacities which can break 

biologically refractory compounds to simpler treated materials before they are being 

released46. However, drawbacks do exist for its inability to get deeply mineralization of 

organics pollutants because of certain low molecular weight oxygenated compounds, such as 

acetic, propionic and acetaldehyde can present in waste water during the process of oxidation, 

which are hard to further transform to carbon dioxide46. For example, when the temperature is 

lower than 573K, it is hard to remove acetic acid from waste water47. 

The method of acoustic chemical oxidation is a process of using ultrasonic wave to speed up 

the reaction or activate new reaction in order to increase chemical efficiency48. It is well 

known for good applicability49 and development in combining with other technologies50. The 

disadvantages of this method are high cost51 and low energy efficiency52.   

The method of ozone oxidation is an oxidation process which is achieved by two approaches: 

direct	reaction53 and indirect reaction54. Direct reaction is efficiency for unsaturated aliphatic 

hydrocarbons and aromatic hydrocarbons by the reaction of ozone and organics55. Indirect 

reaction is a process which ozone can decompose –OH to react with organics56. Ozone 

oxidation is well known for its high ability of decolourization57 and organic pollutions 

removal58. However, drawbacks do exist. The high cost59 and easily to decompose 

intermediate products60 which can stop the oxidating process of ozone are two main 

disadvantages. Therefore, there is big boundedness for this method to treat in organic 

pollutions degradation.  
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The method of electrochemical oxidation is an oxidation process which is achieved by 

oxidating electrode reaction to the purification of waste water61. It can divide into two 

sections as well: direct reaction62 and indirect reaction63. Direct action can purify the waste 

water by releasing –OH to adsorb the organics64. Indirect reaction can purify the waste water 

by the oxidation of C12 and C10 in the solution65. This method is well known for its good 

efficiency of removal of COD and NH3-N from the waste water66. The main disadvantage is 

that there will be large energy consumption for this method operating67. 

The method of Fenton oxidation is an advanced oxidation technology, this method can 

oxidate a huge number of toxic and refractory organics by using the strong oxidizing –OH 

which formed by the reaction of Fe and H2O2
68. The influence factors are pH68, the input of 

H2O2 and ferric chloride69. It is efficient for the oxidation of  refractory organics70. However, 

drawbacks do exist. The main disadvantages are high cost71 and difficulty of catalyst 

reactivation72.  

2.5 The	classification	of	catalysts	

A catalyst is a material which can speed up a reaction’s rate73. With a catalyst, reactions can 

be faster with less energy74. Catalysts are one of the most important chemicals as it only 

requires less energy to reach the transition rate75. A catalyst works by supporting an 

alternative reaction pathway to the reaction product. The catalysts can be classified in three 

aspects: heterogeneous catalysts, homogeneous catalysts and biocatalysts76. 

Heterogeneous catalysts can be used in different phase than the reactants which means the 

reactants under catalysis are in different states77.  For example, when producing the butter, 

unsaturated vegetable oil and nitrogen can be transformed to saturated fat by using the 

catalyst of solid nickel78. Solid nickel is one kind of heterogeneous catalysts, and the 

reactants which are catalysed are vegetable oil and nitrogen79.   
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Heterogeneous catalysts are typically "supported," which means that the catalyst is dispersed 

on a second material that enhances the effectiveness or minimizes their cost. Supports prevent 

or reduce agglomeration and sintering of the small catalyst particles, exposing more surface 

area, thus catalysts have a higher specific activity (per gram) on a support80. Sometimes the 

support is merely a surface on which the catalyst spread to increase the surface area. More 

often, the support and the catalyst interact, affecting the catalytic reaction. Supports are 

porous materials with a high surface area, most commonly alumina, zeolites or various kinds 

of activated carbon81. Specialized supports include silicon dioxide, titanium dioxide, calcium 

carbonate, and barium sulfate82. 

When the catalysts and reactants are in the same phase, and there is no reaction on the phase 

boundary, we call it homogeneous reaction, and the catalysts are homogeneous catalysts83. It 

includes liquid acid and alkali, ksetra-ksetrajna solid acid and alkali and soluble transition 

metal compounds84. Homogeneous catalysts are reacted independently by molecules or ions, 

their advantages are flat active centre, high activity and high selectivity85. 

The biocatalysts are catalytic organics which are produced by plants, animals and microbial86. 

Biocatalysts can be thought of as intermediate between homogeneous and heterogeneous 

catalysts87. The activities of biocatalysts can be affected by a lot of factors which include 

temperature88, pH89, substrate90 and concentration of enzyme91. Water is one of the most 

important reagents in biocatalysts reactions, because water is the product of many bond-

forming reactions and many bond-breaking processes’ reactant92. 

 Catalysts play important roles in producing chemical products, such as chemical fertilizer, 

pesticide and chemical raw materials93. From the Boltzmann distribution and energy profile 

diagram, we can find that, catalysts can activate reactions with less activation energy in the 

situation that reactants are unchangeable94.  

Catalysts can be useful with little amount, it is better to use mixed catalysts95. Because most 
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of inorganic acid and alkali catalysts are corrosion and poisonous96, for the organic catalysts, 

most of them are inflammable, flammable and poisonous97.  For example, boron trifluoride- 

ethylether complex is highly toxic organic catalyst, it is important to store and use it safely98. 

Among the various of catalysts, magnetic nanocatalysts attract much more focus99. The 

magnetic nanocatalyst is one kind of catalyst which is loaded to magnetic media, it is easy to 

recycle and reuse100. In the following chapter, I will show you more details of magnetic 

nanocatalysts. 

2.6	The	literature	review	of	magnetic	nanocatalysts	

In this chapter, I will show you an overview of the development of magnetic nanocatalysts in 

several areas, such as oxidation catalysis, esterification reaction catalysis, photocatalysis and 

so on. The purpose is discussing the preparation methods of magnetic nanocatalysts and 

presenting the problems during the practical application. 

2.6.1	The	features	of	magnetic	nanocatalysts	

The main features of magnetic nanocatalysts are as follows:  

1) The specific surface area of magnetic nanocatalyst is high. With the increase of 

specific surface area,  the particle surface function group, density of active sites and 

the ability of preferential adsorption are increase as well, which will give rise to 

higher loading capacity on catalytic activity groups101. 

2) The magnetic nanocatalysts’ catalytic active sites can be uniform distributed on the 

surface of the nanoparticles, which can avoid the diffused the carrier pores of the 

general catalysts102. 

3) The magnetic nanocatalysts can disperse uniformly in the liquid phase because their 

tiny sizes. Therefore, the catalytic activity groups on the surface of the particles can 

react with the reactants easier103. 
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4) The magnetic nanocatalysts have the feature of magnetic responsiveness, with the 

external magnetic field, they can be easily separate and recycle104. 

5) The magnetic nanocatalysts have higher stability in most reaction systems105.	

2.6.2	 The	 application	 of	 magnetic	 nanocatalysts	 in	 oxidizing	

reactions	

Alcohols and olefins’ oxidizing reaction is one of the most important reactions, the reaction 

products are important raw materials of fine chemicals106. As a perfect catalyst in oxidizing 

reaction, magnetic nanocatalyst is good for its small particle size107, big specific surface 

area108, good dispersivity109 and good contact with reactants.  Mohsen et.al used urea-

hydrogen peroxide as the oxidizing agent and Ni on MCM-41 as catalyst to oxidize sulphides 

to sulfoxides; this method could successfully oxidize a variety of aromatic and aliphatic 

sulphides and thiols with short reaction time at room temperature105.  

2.6.3	 The	 application	 of	 magnetic	 catalysts	 in	 esterification	

reactions	

In the last several years, with the development of the research of solid acid catalysis, 

magnetic solid acid catalysts have the features of easily recycle and separate110. Jing et.al 

synthesized three component magnetic solid nanocatalysts TiO2-Al2O3-Fe3O4, CeO2-Al2O3-

Fe3O4 and ZrO2-Al2O3-CeO2-Fe3O4 with a method of co-precipitation, these three catalysts 

demonstrated good catalytic activity111. 

2.6.4	The	application	of	magnetic	catalysts	in	photocatalysis	

As a technology to treat the pollution, heterogeneous photocatalytic semiconductor attract 

more and more attention112. Yu et.al used a solvent evaporation combined with a facile inner-

pore hydrolysis to decorate mesoporous silica, and then preloaded the gamma-Fe2O3 
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nanoparticles to SBA-15113. The composites remain comparable and adsorption in the second 

use, demonstrating the perfect stability of the composites113.  

2.6.5	The	significance	and	development	of	magnetic	nanocatalysts	

From the previous chapters, we can find magnetic nanocatalysts are better than traditional 

catalysts in several aspects, such as activity114, conversion ratio115 and selectivity116. 

Nowadays, the research of magnetic nanocatalysts is still in the early days. For example, the 

effects of preparation conditions on surface properties of the carrier117, saturated 

magnetization and the stability of catalytic activity groups still need further study80.  For this 

thesis, it will present a new method to synthesize different magnetic nanocatalysts by a 

hydrothermal method that can present high activity and good magnetic performance in the 

oxidation of phenol solutions. 
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3	Synthesis	of	magnetic	carbon	nanosphere	supported	

manganese	catalysts	with	a	one-pot	hydrothermal	method	

A B S T R A C T 

Magnetic carbon nanospheres supported Mn nanoparticles were synthesized by a one-pot 

hydrothermal method with the carbon supplied by glucose. The samples were characterized 

by field emission scanning electron microscopy (FE-SEM), X-Ray diffraction (XRD), 

thermogravimetric analysis/differential temperature gradient (TGA/DTG) and Fourier 

transform infrared spectrscopy (FT-IR). The catalysts were evaluated for phenol degradation, 

which could be effectively decomposed in 180 minutes. 
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3.1	Introduction	

Due to the increasingly faster pace of global industrialization and people’s lacking of 

awareness of environmental protection, water and soil contamination has become a critical 

issue worldwide1. The contaminated sites not only reduce the availability of fertile land for 

agricultural use but also pose a risk to public health, food system and ground water2. Among 

the pollutants discharged from industrial sites, contaminants of persistent organic pollutants 

(POPs) have attracted particular concern owing to their long life-time3, toxicity4 and 

resistance5 against natural attenuation. In recent years, advanced oxidation processes (AOPs) 

have been proved to be useful for their ability of complete degradation of the POPs6. Among 

AOPs, Fenton system has proved to be an effective one because of its low cost7 and toxicity8. 

However, it also suffers from some drawbacks, such as high cost9 and it tends to form 

aggregates10. 

Hausmannite (Mn3O4) has drawn particular research attention because of its distinctive 

structure11 and physicochemical properties8, which are of great interest in energy conversion, 

magnetics, and catalysis12. Despite the high catalytic performance of Mn3O4 nanoparticles 

(NPs), its poor chemical13 and thermal stabilities14, which could lead to aggregation of NPs, 

not only decrease the catalytic efficiency but limits its wider application15. To solve this 

problem, carbonaceous materials with high electrical conductivity and buffer matrix have 

been widely employed as supports for Mn3O4-based catalysts to improve their conductivity 

and stability16. Besides hausmannite, the other form of manganese oxide-MnO2 also shows its 

potential as a catalyst in wastewater treatment17. Previously, MnO2 was usually used for the 

Fenton-like reaction for production of hydroxyl radicals from H2O2 and oxidation of organic 

compounds8, 18. Anipsitakis and Dionysiou19 studied nine transition metal ions for the 

activation of three oxidants and the generation of sulfate, peroxymonosulfate, and hydroxyl 
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radicals. They suggested that the conjunction of Mn2+ ions were capable of generation of 

sulfate radicals by activation of peroxymonosulfate. However, the nanosized manganese 

oxides can bring secondary contamination to water which can be more critical than persistent 

organic pollutants if the oxides are not being well recovered14.  To solve this problem, 

Fe3O4/C nanoparticles have attracted huge attention for their special unique magnetic reaction, 

low toxicity and high modifiable surface20. 

In this chapter, a unique synthesis of magnetic carbon nanospheres supported by Mn catalysts 

with a one-pot hydrothermal method will be presented. The prepared catalysts showed high 

activity and good magnetic performance in the reaction of oxidizing phenol solutions. 

3.2	Experimental	

3.2.1	Chemicals	

Iron (II) chloride tetrahydrate, iron (III) hexahydrate (99.9%), potassium permanganate 

(99.8%), D-glucose (99.9%) and ammonia solution (28%) were purchased from Sigma –

Aldrich.  Hydrochloric acid (37%) was received from Fluka.  High purity nitrogen gas 

(99.999%) was obtained from BOC. All chemicals mentioned above were used as received 

without any further purification. 

3.2.2	Synthesis	of	magnetic	carbon	nanospheres	(MCS-one)	

In a modified hydrothermal method to synthesize magnetic carbon nanospheres, firstly, 0.02 

mol iron (III) hexahydrate (99.9%), 0.01mol iron (II) chloride tetrahydrate and 0.02 mol D-

glucose were dissolved in 50 mL ultrapure water, followed by 25 minutes stirring with a 

magnetic rotor. Secondly, nitrogen bubbling was performed (40 mL/min) in 10 minutes, 28% 

ammonia solution was added with a rate of 1 mL/min to make solution pH=10 for synthesis 

of magnetic nanoparticles. Thirdly, nitrogen bubbling was continued for 20 minutes with 
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stirring and then the solution was transferred into a Teflon-lined autoclave (120 mL) and put 

in an oven at 160 ℃ for 18h. After cooled down to room temperature, the resultant was 

filtered and washed by ethanol for three times. Finally, the precipitate was put in the oven at 

60 ℃ for 12h for drying. The final sample was named as MCS-one. 

3.2.3	Synthesis	of	MCS	supported	Mn	catalysts	(Mn/MCS-one)	

In a typical procedure, firstly, 0.25 g MCS-one was dissolved in 50 mL ultrapure water, 

followed by 10 min sonicating. Secondly, 0.5 g potassium permanganate was added into the 

above solution and stirred for 10 minutes. Thirdly, 1 ml hydrochloric acid (37%) was added 

to the above mixture solution and stirred for 20 minutes. After that, the solution was 

transferred into a Teflon-lined autoclave (120 mL) and put in an oven at 50 ℃. After cool 

down to room temperature, the resultants were filtered and washed by ethanol for three times. 

Finally, the precipitates were put in the oven at 60 ℃ for 12h. The final sample was named as 

Mn/MCS-one. 

3.2.4	Characterization	of	materials	

Several techniques were used to identify the physicochemical properties of previous samples. 

The field emission scanning electron microscopy (FE-SEM, Zeiss Neon 40EsB）was used to 

test its morphological, size and texture information. The X-ray diffraction (XRD) was used to 

study crystallographic structures.  The XRD was obtained using a Bruker D8-Advance X-Ray 

diffractometer with Cu Kα radiation (λ = 1.5418 Å) operated at 40 kV and 30 mA, 

respectively. The thermogravimetric analysis/differential temperature gradient (TGA/DTG) 

was used to test the manganese content and thermal stability of Mn/MCS-one. The 

TGA/DTG was carried out on a TGA/DSC 1 instrument of Mettler-Toledo under an air flow 

at a heating rate of 10 ºC/min. The Fourier transform infrared spectroscopy (FT-IR) analysis 

was performed on a Perkin-Elmer Model FTIR-100 with a MIR detector.  
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3.2.5	Catalytic	oxidation	of	phenol	solutions	

The activeness of the samples was investigated by oxidation of phenol solutions.  The batch 

experiments were carried out in a 250 mL conical flask which contained 20 ppm phenol 

solution. The conical flask was put in a water bath at temperature of 25 ℃. Firstly, 0.04 g 

Mn/MCS-one catalysts were added to the phenol solution, after stirring for one minute until 

adsorption-desorption equilibrium on the catalyst was achieved. 0.4 g of oxone was added to 

the previously mixed solution to activate the reaction. The reaction kept running for 180 

minutes. At predetermined time intervals, 1 mL sample was withdrawn with a syringe and 

filtered into a high performance liquid chromatography (HPLC) vial, after that, 0.5 mL of 

methanol was added into the vial to quench the reaction.  The water samples were analyzed 

with a high performance liquid chromatography (HPLC), whose UV detector was set at a 

wavelength of 270 nm. The mobile phase was made with 30% CH3CN and 70% deionized 

water and the flow rate was 1 mL/min. In order to evaluate the catalysts’ ability, the annealed 

catalysts were recycled with magnetic field and washed with ultrapure water for three times. 

3.3	Results	and	discussion	

3.3.1	Characterization	of	the	composites	

Fig.3.1 shows SEM images, which demonstrate the morphology and composition of the 

Mn/MCS-one. The size of the nanoparticle is around 20 nm. Mn particles were expected to 

homogeneously distribute on the spheres. 

Fig.3.2 shows TGA results, which can determine the content of each element in the hybrids. 

The test was acted in air with a heating rate of 10 ℃/min. There are two weight loss 

procedures. It presents a huge step/peak in the range from about 50 to 150℃ for the TG/DTG 

curves. It can be assigned to the evaporation of adsorbed water elements21. A slight weight 
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loss occurred between 150 to 550℃ which can be assigned to the decomposition of carbon 

skeleton for the carbon coated on Fe3O4
22

.  There was no more weight loss after 560℃. 

Fig.3.3 shows FT-IR results which are used to analyse the functional groups on the Mn/MCS-

one. The bands at 3449, 1669, 1381, 579 cm-1 were assigned to –OH, C=O, C-C and Fe-O, 

respectively. 

Fig.3.4 shows N2 adsorption-desorption isotherms and Fig.3.5 shows the pore size 

distributions of the Mn/MCS-one. The hysteresis loops in P/P0 = 0.43-0.98 indicated the 

mesoporous structure of the sample. Furthermore, the appearance of the H2-type hysteresis 

loop suggested a porous material with relatively high uniform channel like pores23. The 

specific surface area, pore volume and pore size were 342 m2/g, 0.266 cm3/g and 3.1nm, 

respectively. 

 

Fig.3.6 shows XRD of the crystalline structure of the final samples. The results demonstrate 

the diffraction peaks at 2θ=30.1°, 35.4°, 43.05°, 56.92° and 62.51°, which present the crystal 

lanes Fe3O4 (220), (311), (400), (422) and (440), respectively. Peaks in Mn/MCS-one were 

consistent with the standard XRD data for the inverse spinel structure Fe3O4 with lattice 

constants of a = 8.397 Å (JCPDS No.65-3107)24. The Fe3O4 nanoparticles’ average grain size 

was 20 nm calculated with the Scherrer’s formula25. On the other hand, the peaks of Mn were 

too weak to recognise for the reason of low Mn level. 
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Fig.3.1.	SEM	images	of	Mn/MCS-one.	
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Fig.3.2.	TGA	and	DTG	curves	of	Mn/MCS-one.	
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Fig.3.3.	FT-IR	spectra	of	Mn/MCS-one.	
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Fig.3.4.	N2	sorption	isotherms	of	Mn/MCS-one. 
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Fig.3.5. Pore size distributions of Mn/MCS-one. 
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Fig.3.6.	XRD	patterns	of	Mn/MCS-one.	

3.3.2	Adsorption	and	heterogeneous	phenol	degradation		

The catalytic oxidation of phenol solutions was carried out and the results are shown in 

Fig.3.7, which demonstrates the phenol decomposition at different conditions. For the 

reaction without a catalyst, the final phenol removal rate was about 2% in 180 minutes, which 

demonstrates PMS itself in homogeneous solution could not induce phenol oxidation. For the 

adsorption reaction using Mn/MCS-one only, the final phenol removal rate was about 3% in 

180 minutes, suggesting that phenol adsorption on Mn/MCS-one is negligible.  For the MCS-

one loading with PMS for phenol degradation, the final phenol removal rate is about 17% in 

180 minutes and for the Mn/MCS-one, the final phenol removal rate can reach nearly 100% 

in about 180 minutes, suggesting that MCS using as a carrier of manganese oxide will make a 

more significant contribution to phenol degradation. 
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Fig.3.7.	Control	experiments	for	phenol	removal	in	different	conditions. 

 

3.3.2	 Effects	 of	 reaction	 parameters	 on	 phenol	 degradation	 and	

stability	of	the	catalysts	

In heterogeneous catalytic oxidation of phenol, a lot of conditions can influence the final 

phenol degradation rate to different extents. This section will show some results of the 

reaction temperature’ effect on phenol degradation. 

Fig.3.8 shows the performance of Mn/MCS-one catalysts for heterogeneous oxidation of 

phenol at varying temperatures. It is seen that reaction temperature dramatically affected 

oxidation efficiency and degradation rate. When reaction took place at 25 ℃, 35 ℃ and 45 ℃, 

phenol removal rate can reach to 100% in 180 minutes, 90 minutes and 60 minutes, 

respectively, suggesting that higher temperature can make a more significant contribution to 

phenol degradation. Based on reaction rate at different temperatures, the apparent activation 

energy of Mn/MCS-one was calculated as 12.6 kJ/mol. 
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It is known that the stability of the catalysts is very important in practical application. Fig.3.9 

shows the stability of the Mn/MCS-one catalysts. In the second time, the phenol degradation 

rate was 80% in 180 minutes, while in the third run; the phenol degradation rate was 60% in 

180 minutes, suggesting that the catalytic activities decreased in recycled tests. The decrease 

in catalytic activity might be attributed to the attachment of reaction intermediates on the 

catalyst surface which deactivates the correspondent active sites. 
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Fig.3.8.	Phenol	removal	at	different	temperatures.	
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Fig.3.9.	Reusability	tests	of	Mn/MCS-one	catalyst.	
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3.4	Summary	

The one-pot hydrothermal method has been successfully adopted to synthesize magnetic 

nanocatalysts. The catalysts demonstrated to be effective for activation of PMS in producing 

oxidative radicals for degradation of phenol. The apparent activation energy of Mn/MCS-one 

was calculated as 12.6 kJ/mol. This chapter provided a feasible approach for removal of 

organic pollutants by magnetically separable catalysts via advanced material design. 
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4	Synthesis	of	magnetic	carbon	nanosphere	supported	

manganese	catalysts	for	phenol	degradation	

A B S T R A C T 

Magnetic carbon nanospheres supported Mn nanoparticles were synthesized by a two-step 

method with the carbon supplied by glucose. The samples were characterized by field 

emission scanning electron microscopy (FE-SEM), X-Ray diffraction (XRD), 

thermogravimetric analysis/differential temperature gradient (TGA/DTG) and Fourier 

transform infrared spectroscopy (FT-IR). The catalysts were evaluated for phenol degradation, 

and achieved the phenol removal at 80% in 180 minutes. 
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4.1	Introduction	

During the past few years, porous carbon materials have attracted a lot of researchers’ 

interests for their applications such as catalyst supports1, drug delivery2 and steal defence 

system3.  Porous carbon materials with desired morphology can be used to meet the different 

requirements4. Recently, spherical porous carbon materials are receiving increasing attention 

in carbon field for their unique physicochemical properties5. 

The treatment and disposal of hazardous organic pollutants in refinery wastewater is one of 

the most serious environmental problems worldwide6. The porous activated carbon is one of 

the most widely studied and used adsorbents for environmental pollution control7. The 

process of adsorption on activated carbon materials is very efficient to remove dyes from 

water. A number of industries are using activated carbon to remove phenols occurred in 

waste water, such as high-temperature8, coal conversion9, petroleum resin and plastics10. 

However, drawbacks do exist, in practical application for dispersing media11.  

In this chapter, a unique synthesis of magnetic carbon nanospheres supported Mn catalysts 

with a two-step hydrothermal method will be presented. The prepared catalysts showed high 

activity and good magnetic performance in the oxidation of phenol solutions. 

4.2.	Experimental	

4.2.1.	Chemicals	

Iron (II) chloride tetrahydrate, iron (III) hexahydrate (99.9%), potassium permanganate 

(99.8%), D-glucose (99.9%) and ammonia solution (28%) were purchased from Sigma –

Aldrich.  Hydrochloric acid (37%) was received from Fluka.  High purity nitrogen gas 
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(99.999%) was obtained from BOC. All chemicals mentioned above were used as received 

without any further purification. 

4.2.2.	Synthesis	of	magnetic	carbon	nanospheres	(MCS-sep)	

The first step was to prepare Fe3O4 nanoparticles. Firstly, 0.02 mol iron (III) hexahydrate 

(99.9%), and 0.01mol iron (II) chloride tetrahydrate were put in 50 mL ultrapure water and 

stirred for 20 minutes by a magnet rotor until the mixed solids were deeply dissolved. 

Secondly, nitrogen bubbling was performed (40 mL/min), in 10 minutes, and then 28% 

ammonia solution was added with a rate of 1 mL/min to make solution pH=10 for synthesis 

of Fe3O4 nanoparticles. After that, nitrogen bubbling was continued for 1 hour (40 mL/min) 

with stirring and then the resultant was filtered and dried in an oven at 60 ℃ for 12 hours.  

The second step was to synthesise the magnetic carbon nanospheres with adding glucose on 

the previous Fe3O4 nanoparticles. The specific procedures are as follows: firstly, 0.25 g Fe3O4 

particles were put in a beaker, 80mL ultrapure water were added in and followed by 15 

minutes’ sonicating; secondly, 3.62 g glucose were put to the previous mixture solution with 

stirring for 10 minutes and then the solution was transferred into a Teflon-lined autoclave 

(120 ml) and put in an oven at 160 ℃ for 18h. After cooled down to room temperature, the 

resultant was filtered and washed by ethanol for three times. Finally, the precipitate was put 

in the oven at 60 ℃ for 12h for drying. The final sample was named as MCS-sep. 

4.2.3.	Synthesis	of	MCS	supported	Mn	catalysts	(Mn/MCS-sep)	

In a typical procedure, firstly, 0.25 g MCS-sep was put in 50 mL ultrapure water, followed by 

10 min’ sonicating. Secondly, 0.5 g potassium permanganate was added into the above 

solution and stirred for 10 minutes. Thirdly, 1 ml hydrochloric acid (37%) was added to the 

above mixture solution and stirred for 20 minutes. After that, the solution was transferred into 
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a Teflon-lined autoclave (120 mL) and put in an oven at 50 ℃ for 10h. After cooling down to 

room temperature, the resultant was filtered and washed by ethanol for three times. Finally, 

the precipitate was put in the oven at 60 ℃ for 12h. The final sample was named as 

Mn/MCS-sep. 

4.2.4.	Characterization	of	materials	

Several techniques were used to identify the physicochemical properties of Mn/MCS-sep. 

The field emission scanning electron microscopy (FE-SEM, Zeiss Neon 40EsB）was used to 

test its morphological, size and texture information. X-ray diffraction (XRD) was used to 

study crystallographic structures.  The XRD was obtained using a Bruker D8-Advance X-Ray 

diffractometer with Cu Kα radiation (λ = 1.5418 Å) operated at 40 kV and 30 mA, 

respectively. The thermogravimetric analysis/differential temperature gradient (TGA/DTG) 

was used to test the manganese content and thermal stability of Mn/MCS-sep. The TGA/DTG 

was carried out on a TGA/DSC 1 instrument of Mettler-Toledo under an air flow at a heating 

rate of 10 ºC/min. The Fourier transform infrared spectroscopy (FT-IR) analysis was 

performed on a Perkin-Elmer Model FTIR-100 with a MIR detector.  

4.2.5.	Catalytic	oxidation	of	phenol	solutions	

The reaction was investigated by oxidation of phenol solutions.  The batch experiments were 

carried out in a 250 mL conical flask which contained 20 ppm phenol solution. The conical 

flask was put in a water bath at temperature of 25 ℃. Firstly, 0.04 g Mn/MCS–sep catalysts 

were added to the phenol solution, after stirring for one minute until adsorption-desorption 

equilibrium on the catalyst was achieved. 0.4 g of oxone was added to the previously mixed 

solution to activate the reaction. The reaction kept running for 180 minutes. At predetermined 

time intervals, 1 mL sample was withdrawn with a syringe and filtered into a high 

performance liquid chromatography (HPLC) vial, after that, 0.5 mL of methanol was added 
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into the vial to quench the reaction.  The water samples were analyzed with a high 

performance liquid chromatography (HPLC), whose UV detector was set at a wavelength of 

270 nm. The mobile phase was made with 30% CH3CN and 70% deionized water; the flow 

rate was 1 mL/min. In order to evaluate the catalysts’ ability, the catalysts were recycled with 

magnetic field and washed with ultrapure water for three times.  

4.3	Results	and	discussion	

4.3.1	Characterization	of	the	composites		

Fig.4.1 shows SEM images, which demonstrate the morphology and composition of the 

Mn/MCS-sep. The size of the nanoparticle is around 25 nm. Mn particles were expected to 

homogeneously distribute on the spheres. 

Fig.4.2 shows TGA results, which can determine the content of each element in the hybrids. 

There are three weight loss processes. A slight loss below about 120 ℃ can be assigned to the 

evaporation of adsorbed water molecules12. The TG/DSC curves of the nanocomposites 

present a characteristic step/peak in the range from 120 to 400 ℃ which can be assigned to 

the removal of the labile oxygen-containing functional groups on the carbon surface such as –

OH and C=O13. Then a slight loss occurs from 400 to 590 ℃ which can be assigned to the 

decomposition of carbon skeleton for the carbon coated on the Fe3O4
14. After the temperature 

reached 590 ℃, there was no more weight loss. 

Fig.4.3 shows FT-IR results, which are used to analyze the functional groups on the 

Mn/MCS-sep. The bands at 3232, 1744, 1508 and 579cm-1 were assigned to –OH, C=O, C-C 

and Fe-O, respectively15.  

Fig.4.4 shows N2 adsorption-desorption isotherms and Fig.4.5 shows the pore size 

distributions of the Mn/MCS-sep. The hysteresis loops in P/P0 = 0.39-0.99 indicated the 
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mesoporous structure of the sample. Furthermore, the appearance of H2-type hysteresis loop 

suggested a porous material with relatively high uniform channel like pores. The specific 

surface area, pore volume and pore size were 142 m2/g, 0.12 cm3/g and 3.4 nm, respectively. 

Fig.4.6 shows XRD of the crystalline structure of the final samples. The results demonstrate 

the diffraction peaks at 2θ=30.2°, 35.6°, 43.8°, 57.18° and 63.14°, which present the crystal 

lanes Fe3O4 (220), (311), (400), (422) and (440)16, respectively. Peaks in Mn/MCS-sep were 

consistent with the standard XRD data for the inverse spinel structure Fe3O4 with lattice 

constants of a = 8.397 Å (JCPDS No.65-3107)17. The Fe3O4 nanoparticles’ average grain size 

was 25 nm calculated with the Scherrer’s formula18. On the other hand, the peaks of Mn were 

too weak to recognise due to low Mn level. 

 

	

Fig.4.1.	SEM	images	of	Mn/MCS-sep.	
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Fig.4.2.	TGA	and	DTG	curves	of	Mn/MCS-sep.	
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Fig.4.3.	FT-IR	spectra	of	Mn/MCS-sep.	
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Fig.4.4.	N2	sorption	isotherms	of	Mn/MCS-sep.	
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Fig.4.5.	Pore	size	distributions	of	Mn/MCS-sep.	
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Fig.4.6.	XRD	patterns	of	Mn/MCS-sep.	

4.3.2	Adsorption	and	heterogeneous	phenol	degradation		

The catalytic oxidation of phenol is shown in Fig.4.7, which demonstrates the phenol 

decomposition at different conditions. For the reaction without a catalyst, the final phenol 

removal rate was about 3% in 180 minutes, which demonstrates PMS itself in homogeneous 

solution could not induce phenol oxidation. For the adsorption reaction using Mn/MCS-sep 

only, the final phenol removal rate was less than 1% in 180 minutes, suggesting that phenol 

adsorption on Mn/MCS-sep is negligible.  For the MCS-sep loading with PMS for phenol 

degradation, the final phenol removal rate was about 10% in 180 minutes and for the 

Mn/MCS-one, the final phenol removal rate could reach more than 80% in about 180 minutes, 

suggesting that MCS using as a carrier of manganese oxide will make a more significant 

contribution to phenol degradation. 
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Fig.4.7.	Control	experiments	for	phenol	removal	in	different	conditions.	

4.3.2	 Effects	 of	 reaction	 parameters	 on	 phenol	 degradation	 and	

stability	of	the	catalysts	

Fig.4.8 shows the performance of Mn/MCS-sep catalysts for heterogeneous oxidation of 

phenol at varying temperatures. It is seen that reaction temperature dramatically affected 

oxidation efficiency and degradation rate. When reaction took place at 25 ℃, 35 ℃ and 45 ℃, 

phenol removal rate could reach to 80%, 86% and 99% in 180 minutes, respectively, 

suggesting that higher temperature can make a more significant contribution to phenol 

degradation. 

It is known that the stability of the catalysts is very important in practical application. Fig.4.9 

shows the stability of the Mn/MCS-sep catalysts. In the second time, the phenol degradation 

rate was 60% in 180 minutes, while in the third run; the phenol degradation rate was less than 

40% in 180 minutes, suggesting that the catalytic activities decreased in recycled tests. The 

decrease in catalytic activity might be attributed to the attachment of reaction intermediates 

on the catalyst surface which deactivates the correspondent active sites. 
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Fig.4.8.	Phenol	removal	at	different	temperatures.	
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Fig.4.9.	Reusability	of	Mn/MCS-sep	catalysts.	

        4.4	Summary	

A two-step hydrothermal method has been successfully adopted to synthesize the magnetic 

nanocarbon supported Mn nanoparticles, and the catalysts demonstrated to be effective for 
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activation of PMS in producing oxidative radicals for degradation of phenol. However, 

compared with the Mn/MCS-one, the Mn/MCS-sep presented worse performance, for the 

Mn/MCS-one, the final phenol removal rate in 180 minutes at 25 ℃ could reach to 100%, 

however, for the Mn/MCS-sep, the final phenol removal rate in 180 minutes at 25 ℃ could 

reach to 80% which presented worse performance. This chapter provided a feasible approach 

for removal of organic pollutants by magnetically separable catalysts via advanced material 

design. 
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5	Magnetic	mesoporous	Fe/carbon	aerogel	structures	with	

enhanced	phenol	removal	efficiency	

A B S T R A C T 

In this study, magnetic carbon nanospheres supported Mn nanoparticles were synthesized by 

a one-pot hydrothermal method and self-reduction in N2 atmosphere with the carbon supplied 

by hexamethylenetetramine (HMTA). The samples were thoroughly investigated by field 

emission scanning electron microscopy (FE-SEM), X-Ray diffraction (XRD), 

thermogravimetric analysis/differential temperature gradient (TGA/DTG) and Fourier 

transform infrared spectroscopy (FT-IR). The catalysts were evaluated for phenol degradation, 

which could give effectively phenol decomposition in about 42 minutes. 
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5.1	Introduction	

In recent years, the noble metal nanoparticles have attracted much attention due to their 

potential1 and practical applications2. Among these materials, Fe3O4 nanoparticle is a 

common magnetic iron oxide3 that has a cubic inverse spinel structure with oxygen forming a 

face-centered cubic closed packing4 and iron cations occupying interstitial sites5 and 

octahedral sites6. The Fe3O4 nanoparticles have drawn much attention for their excellent 

responses to externally applied magnetic fields while in solution7.  Therefore, these magnetic 

nanomaterials can be easily removed from solution with applied external magnetic field8, 

avoiding the problems associated with poor separation9. However, drawbacks do exist, the 

Fe3O4 nanoparticles are still easily to form aggregates which can decrease their surface area10. 

To solve this problem, the magnetic carbon materials with high surface areas can avoid the 

aggregation of the nanomaterials. Wu et al. prepared mesoporous magnetic Fe2O3@C which 

shows excellent performance for arsenic capture with remarkable adsorption capacity, easy 

magnetic separation and good cyclic stability11. In addition, Sun et al. successfully 

synthesized mesoporous Ni/graphitic carbon structures with a specific surface area up to 918 

m2/g12. 

In previous two chapters, we reported that the one-pot hydrothermal method produced better 

catalysts than the two-step one. In this chapter, we still used the one-pot hydrothermal 

method; however, we changed the carbon supplier from glucose to hexamethylenetetramine 

(HMTA). Yi et al. developed the mesoporous Fe/CA structures with carbon supplied from 

HMTA with high specific surface areas and an excellent response to an applied external 

magnetic field to provide a feasible approach for wastewater treatment including the removal 

of arsenic ions13. The final catalysts obtained in this process presented higher activity and 
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better magnetic performance in the reaction of oxidizing phenol solutions than the previous 

two catalysts. 

5.2.	Experimental	

5.2.1.	Chemicals	

Ferrous sulfate, hexamethylenetetramines (HMTA) and phenol were purchased from Sigma –

Aldrich.  High purity nitrogen gas (99.999%) was obtained from BOC. All chemicals 

mentioned above were used as received without any further purification. 

5.2.2.	Synthesis	of	magnetic	carbon	nanospheres	(MCS-HMTA)	

In a modified hydrothermal method to synthesize magnetic carbon nanospheres, firstly, 1.1 g 

ferrous sulfate, 0.187 g hexamethylenetetramine and 0.502 g phenol were put into a conical 

flask with 60 mL ultrapure water and dissolved completely.  Secondly, the mixed solution 

was transferred to a Teflon-lined autoclave (120 mL) and put in an oven at 140 ℃ for 12h 

after stirred for 1 minute. Thirdly, the product was washed with ethanol for several times and 

put in the oven at 60 ℃ for 12h for drying. Lastly, under a nitrogen atmosphere, the as-

prepared product was further annealed at 400 ℃ in the tube furnace.  The final sample was 

named as MCS-HMTA. 

5.2.3.	Synthesis	of	magnetic	nanocatalysts	supported	Mn	catalysts	

(Mn/MCS-HMTA)	

In a typical procedure, firstly, 0.25 g MCS-HMTA was dissolved in 50 mL ultrapure water, 

followed by 10 min’ sonicating. Secondly, 0.5 g potassium permanganate was added into the 

above solution and stirred for 10 minutes. Thirdly, 1mL hydrochloric acid (37%) was added 

to the above mixture solution and stirred for 20 minutes. After that, the solution was 
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transferred into a Teflon-lined autoclave (120 mL) and put in an oven at 50 ℃ for 10h. After 

cooling down to room temperature, the resultant material was filtered and washed by ethanol 

for three times. Finally, the precipitate was put in the oven at 60 ℃ for 12h. The final sample 

was named as Mn/MCS-HMTA. 

5.2.4.	Characterization	of	materials	

Several techniques were used to identify the physicochemical properties of Mn/MCS-HMTA. 

The field emission scanning electron microscopy (FE-SEM, Zeiss Neon 40EsB）was used to 

test its morphological, size and texture information. The X-ray diffraction (XRD) was used to 

study crystallographic structures.  The XRD was obtained using a Bruker D8-Advance X-Ray 

diffractometer with Cu Kα radiation (λ = 1.5418 Å) operated at 40 kV and 30 mA, 

respectively. The thermogravimetric analysis/differential temperature gradient (TGA/DTG) 

was used to test the manganese content and thermal stability of Mn/MCS-HMTA. The 

TGA/DTG was carried out on a TGA/DSC 1 instrument of Mettler-Toledo under an air flow 

at a heating rate of 10 ºC/min. The Fourier transform infrared spectroscopy (FT-IR) analysis 

was performed on a Perkin-Elmer Model FTIR-100 with a MIR detector.  

5.2.5.	Catalytic	oxidation	of	phenol	solutions	

The effectiveness of the Mn/MCS-HMTA was investigated by oxidation of phenol solutions.  

The batch experiments were carried out in a 250 mL conical flask which contained 20 ppm 

phenol solution. The conical flask was put in a water bath at temperature of 25 ℃. Firstly, 

0.04 g Mn/MCS-HMTA catalysts were added to the phenol solution, after stirring for one 

minute until adsorption-desorption equilibrium on the catalyst was achieved, 0.4 g of oxone 

was added to the previously mixed solution to activate the reaction. The reaction was kept 

running for 180 minutes. At predetermined time intervals, 1 mL sample was withdrawn with 

a syringe and filtered into a high performance liquid chromatography (HPLC) vial, after that, 
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0.5 mL of methanol was added into the vial to quench the reaction.  The water samples were 

analyzed with a high performance liquid chromatography (HPLC), whose UV detector was 

set at a wavelength of 270 nm. The mobile phase was made with 30% CH3CN and 70% 

deionized water and the flow rate was 1 mL/min. In order to evaluate the catalysts’ ability, 

the annealed catalysts were recycled with magnetic field and washed with ultrapure water for 

three times. 

5.3	Results	and	discussion	

5.3.1	Characterization	of	the	composites	

Fig.5.1 shows SEM images, which demonstrate the morphology and composition of the 

Mn/MCS-HMTA. The size of the nanoparticle is around 1-2 um. Mn particles were expected 

to be fully covered on the spheres which were better than the previous two samples. And it 

was observed that 2D sheet-like MnOx covered the carbon spheres. 

Fig.5.2 shows TGA results, which can determine the content of each element in the hybrids. 

There are five weight loss steps. It presents a slight loss below about 120 ℃ being assigned to 

the evaporation of adsorbed water molecules14. The TGA curve of the nanocomposites 

present a characteristic step/peak in the range from 120 to 300 ℃ which can be assigned to 

the removal of the labile oxygen-containing functional groups on the carbon surface such as –

OH and C=O15.  The third weight loss stage is in the range from 300 to 400 ℃ which can be 

assigned to the decomposition of the carbon skeleton. The fourth weight loss stage is in the 

range from 400 to 510 ℃ which can be possible assigned to a transformation from MnO2 to 

more stable Mn2O3. Then a slight loss occurs from 510 to 560 ℃ which can be assigned to a 

transformation from Fe3O4 to more stable Fe2O3
16. After the temperature reached 560 ℃, 
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there was no more weight loss. According to the TGA results, carbon content included in this 

as-synthesized Mn/MCS-HMTA sample was calculated to be around 16%.  

Fig.5.3 shows the FT-IR results, which are used to analyse the functional groups on the 

Mn/MCS-HMTA. The bands at 3333, 1613, 1544 and 579cm-1 were assigned to –OH, C=O, 

C-C and Fe-O17, respectively.  

Fig.5.4 shows N2 adsorption-desorption isotherms and Fig.5.5 shows the pore size 

distributions of the Mn/MCS-HMTA. The hysteresis loop in P/P0 = 0.46-0.99 indicated the 

mesoporous structure of the sample. Furthermore, the appearance of the H2-type hysteresis 

loop suggested a porous material with relatively high uniform channel like pores. The 

specific surface area, pore volume and pore size were 56 m2/g, 0.27 cm3/g and 12.3 nm, 

respectively. In terms of pore size distribution, the sample demonstrated a single mode of 

pore size centering at 7.5 nm. 

 

Fig.5.6 shows the results of XRD of the final samples. The diffraction peaks at 2θ=12.1°, 25° 

and 37.1°,are referred to the crystal lanes of (001), (002) and (111)18, respectively. The XRD 

pattern of Mn/MCS-HMTA was identified to the pure layered birnessite-type MnO2 (JCPDS 

No. 80-1098, monoclinic, C2/m, a = 5.15 Å, b = 2.84 Å, c = 7.17 Å). There are no obvious 

peaks for Fe3O4, it is possible that the peaks of MnO2 covered the peaks of Fe3O4. 
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Fig.5.1.	SEM	images	of	Mn/MCS-HMTA.	
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Fig.5.2.	TGA	curve	of	Mn/MCS-HMTA.	
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Fig.5.3.	FT-IR	spectra	of	Mn/MCS-HMTA.	
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Fig.5.4.	N2	sorption	isotherms	of	Mn/MCS-HMTA.	
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Fig.5.5.	Pore	size	distributions	of	Mn/MCS-HMTA.	
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Fig.5.6.	XRD	patterns	of	Mn/MCS-HMTA.	

5.3.2	Adsorption	and	heterogeneous	phenol	degradation		

The catalytic oxidation of phenol solutions was carried out and the results are shown in Fig. 

5.7, which demonstrates the phenol decomposition at different conditions. For the reaction 

without a catalyst, the final phenol removal rate was about 3% in 180 minutes, which 

demonstrates PMS itself in homogeneous solution could not induce phenol oxidation. For the 

adsorption using Mn/MCS-HMTA only, the final phenol removal rate was less than 4% in 

180 minutes, suggesting that phenol adsorption on Mn/MCS-HMTA is negligible.  For the 

MCS-HMTA loading with PMS for phenol degradation, the final phenol removal rate was 

about 20% in 180 minutes and for the Mn/MCS-HMTA, the final phenol removal rate could 

reach to 100% in about 42 minutes, suggesting that MCS using as a carrier of manganese 

oxide will make a more significant contribution to phenol degradation. 
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Fig.5.7.	Control	experiments	for	phenol	removal	in	different	conditions.	

5.3.2	 Effects	 of	 reaction	 parameters	 on	 phenol	 degradation	 and	

stability	of	the	catalysts	

In heterogeneous catalytic oxidation of phenol, a lot of conditions can influence the final 

phenol degradation rate to different extents. This section will show some results of the 

reaction temperature’s effect on phenol degradation. 

Fig.5.8 shows the performance of Mn/MCS-HMTA catalysts for heterogeneous oxidation of 

phenol at varying temperatures. It is seen that reaction temperature dramatically affected 

oxidation efficiency and degradation rate. When reaction took place at 25 ℃, 35 ℃ and 45 ℃, 

phenol removal rate could reach to 100% in about 42, 30 and 20 minutes, respectively, 

suggesting that higher temperature can make a more significant contribution to phenol 

degradation. 

It is known that the stability of the catalysts is very important in practical application. Fig.5.9 

shows the stability of the Mn/MCS-HMTA catalysts. In the second time, the phenol 

degradation rate was about 85% in 180 minutes, while in the third run; the phenol 
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degradation rate was about 45% in 180 minutes, suggesting that the catalytic activities 

decreased in recycled tests. The decrease in catalytic activity might be attributed to the 

attachment of reaction intermediates on the catalyst surface which deactivates the 

correspondent active sites. 
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Fig.5.8.	Phenol	removal	at	different	temperatures	
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Fig.5.9.	Reusability	tests	of	Mn/MCS-HMTA	catalysts.	
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5.4	Summary	

Magnetic Mn catalysts were prepared using Fe3O4 as the magnetic core with carbon shells 

supplied by HMTA as a barrier. The Mn/MCS-HMTA is more effective than the Mn/MCS-

one and Mn/MCS-sep to activate the PMS in producing oxidative radicals for degradation of 

phenol, the phenol removal rate of Mn/MCS-HMTA could reach to 100% in 42 minutes, for 

the Mn/MCS-one, the final phenol removal rate in 180 minutes at 25 ℃ could reach to 100%, 

however, for the Mn/MCS-sep, the final phenol removal rate in 180 minutes at 25 ℃ could 

reach to 80%. This chapter provided a feasible approach for removal of organic pollutants by 

magnetically separable catalysts via advanced material design. 
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6.	Conclusion	and	Future	work	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

	

	

	



88	
	

6.1	Concluding	comments	

The major objective of this research is to synthesize novel magnetic nanocatalysts to degrade 

organics via advanced oxidation processes. Several kinds of magnetic nanocatalysts were 

synthesized with a one-pot or a two-step hydrothermal method, and used for degradation of 

phenol in aqueous phase. All the catalysts were based on manganese oxide nanoparticles. The 

magnetic coating of Mn/MCS-one and Mn/MCS-sep was supplied with carbon from glucose, 

and the coating of Mn/MCS-HMTA was supplied with carbon from hexamethylenetetramine 

(HMTA). The catalysts of Mn/MCS-one and Mn/MCS-HMTA were synthesized by a one pot 

hydrothermal method, and the Mn/MCS-sep catalysts were synthesized by a separated 

hydrothermal method. All of these synthesized catalysts were examined for 

peroxymonosulfate (PMS, Oxone) activation in the decomposition of phenol. The major 

outcomes of this research thesis are outlined as below. 

6.2	The	one-pot	hydrothermal	method	

Magnetic carbon nanocatalysts with high oxidizing performance have been successfully 

prepared by a one pot hydrothermal method. The Mn/MCS-HMTA can effectively 

decompose phenol in less than 42 minutes; on the other hand, the Mn/MCS-sep can achieve 

the phenol removal at only 80% in 180 minutes.  

6.3	Effect	of	Mn	on	magnetic	carbon	nanocatalysts	

Mn nanoparticles can improve the magnetic carbon nanocatalysts’ conductivity and stability 

to some extent, and oxidizing efficiency of Mn/MCS on phenol decomposition can be much 

higher than MCS. 
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6.4	Effect	of	temperature	on	phenol	degradation	of	the	catalysts	

The higher temperature can make a more significant contribution to phenol degradation than 

the lower temperature. For the Mn/MCS-HMTA, the phenol removal rate could reach 100% 

in more than 20 minutes shorter at 45 ℃ than the reaction occurred at 25 ℃.  

6.5	Recommendation	for	future	work	

All the studies focused on the catalytic degradation of phenol in aqueous phase. The results of 

this study showed that phenol can be successfully oxidized by peroxymonosulfate (PMS) as 

oxidant. However, detailed study is further required for more comprehensive solutions of 

removal of organic compounds in wastewater. The recommendations for future research are 

as follows: 

(1) Unexpected toxic intermediates are the main reasons which cause the secondary 

pollution in wastewater treatment processes. Detailed testing route is highly required to 

be investigated to determine the intermediates and their adsorption on the catalyst 

surface. 

(2) It is widely accepted that cobalt nanoparticles can improve the magnetic carbon 

nanocatalysts’ stability and efficiency, as a result, in the future research work, the 

magnetic carbon nanospheres supported Co nanoparticles should be synthesized. 

(3) In our study, we only worked on the influence of the temperature on the phenol 

degradation rate in aqueous solution; however, many studies indicate that the 

concentrations of PMS and the catalysts concentration can affect the phenol degradation 

rate as well. Therefore, detailed testing route is highly required to test the effects of 

other reaction parameters on phenol degradation in the future study. 

  


