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ABSTRACT 
 

This thesis focuses on the monitoring of land use/cover (LULC) changes and 

urban heat island (UHI) effects with temporal and spatial variation, using 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

and Landsat Thematic Mapper (TM) data, in order to examine the development of 

urban green space.  The study area was located in the central urban area of Bali 

including southern coastal areas that have been experiencing pressures from 

various human activities, leading to the rapid LULC changes and UHI effects. 

This study would be useful for providing a comprehensive foundation for 

understanding relationships and interactions between human and natural resources 

to better manage and use the natural resources, in formulating urban green space, 

as well as in LULC management and planning.  For detecting LULC and Land 

Surface Temperature (LST) changes over three different periods, Landsat TM of 

1995 and two ASTER images of 2003 and 2013 were collected.  LULC change 

was determined using an object-based image classification method. Built-up 

areas, paddy fields and vegetation were the main LULC types, and these have all 

changed through time. Urban areas, associated with built-up areas, were mainly 

formed by intensive conversion of vegetation and paddy fields, and the increase of 

built-up areas was related to the factors of economic growth, population, land 

value and new roads to urban and suburban centers. To visualize the UHI, LST 

was retrieved from thermal bands of ASTER (band 10-15) and Landsat TM (band 

6).  Detection of the UHI effects from 1995 to 2013 show that the UHI effects 

(defined as LST of over 29 ºC) were found to be centralized in downtown 

Denpasar and spreading to the some surrounding areas. It was particularly caused 

by built-up areas; areas such as these have high density building, residents, 

transportation and roads.  The areas with lowest LST were found in swamp and 

mangrove areas, while others included paddy fields, vegetation, mangrove, and 

water bodies. Some separate samples of regions were selected to represent three 

different types of urban areas. Mean LSTs used as a comparison among urban 

areas. The density of urban areas has been proven to have influence on the UHI 



iv 
 
 
 

effects that create a limitless array of energy balance and microclimate systems. 

This can be seen from examining the LST of diversity of LULC types in the very 

dense urban areas, where the temperature was higher than temperatures in other 

urban areas. The higher mean LST in very dense urban areas was also related to a 

lower NDVI.  The density of urban areas, NDVI, and LST was used to determine 

priority zones for green spaces. The thesis concludes that Landsat TM and 

ASTER imagery provide efficient, relatively low-cost techniques for studying 

LULC changes and locating UHIs for a typical small tropical island. Moreover, 

satellite RS can facilitate local and micro level UHI detection and implementing 

low-cost UHI mitigation. 
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1 INTRODUCTION 

1.1 Background Information 

1.1.1 Land use and land cover change 

The earth’s surface has changed significantly around the world over recent 

decades. Urbanization is one of the most important global changes and has led to 

profound changes in land use and land cover (LULC). These considerable LULC 

changes have involved a decrease in rural areas and an expansion of urban areas 

through development. Urbanization is usually triggered by the increase in land 

demand for diverse urban activities, which is caused by the rise in urban 

population levels. The migration of people from rural areas to the cities triggers 

the high population growth.  

 

Much urbanization has occurred recently in East-Southeast Asia, including 

Indonesia, which has become one of the world’s fastest growing urbanizing areas. 

In addition, large-scale human development and movement have taken place not 

only in inland areas but also in coastal areas, which are typically more sensitive 

and fragile to deleterious changes than inland areas. This is because they are 

located between land and sea, and are likely to receive more diverse disturbances 

from both land and sea.  About 14 of the 17 largest cities in the world are on the 

coastline of the Asia Pacific (Mimura, 2008). Despite occupying less than 15% of 

the earth’s land surface, this area accommodates more than 60% of the population 

of the world (Tibbetts, 2002). Moreover, peri-urbanization and a chaotic mixture 

of rural and urban LULC have become a major feature of Asian urbanizing areas 

(McGee, 1991; Murakami et.al., 2005).  Peri-urbanization refers to the urban 

growth process in an area located between rural and urban areas that has mixed 

urban and rural characteristics in physical, economic, and social terms.  
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The patterns and rates of change of the massive LULC transition currently 

occurring need to be monitored. They are critical factors of global changes that 

impact human life in terms of hydrological balance, landslide risks, air and water 

pollution levels, habitat disturbance, as well as the livelihoods and vulnerability of 

populations in the region. Therefore, the quantification of spatial and temporal 

change in LULC is important not only to reflect the underlying human processes 

in the environment but also to understand interactions between human activities 

and the environment in urban and sub-urban landscapes. Furthermore, information 

about the rate and pattern of LULC change can also be used to manage the 

pressures of human activity and development on urban areas, and thus, this 

information acts as a baseline plan that can determine the future direction of urban 

land utilization. 

1.1.2 The effects of LULC change on increasing land surface temperatures 

Due to rapid population growth and the growth of urbanizing areas worldwide, 

more attention is being paid of late to urban climate change at both local and 

regional scales. This is because growing urbanizing areas have caused tremendous 

replacements of soil and vegetation by impervious surface materials that have 

profound impacts on the local surface energy balance. These materials lead to 

increased land surface temperatures (LST) (Yuen and Kong, 2009), which is an 

important index for examining the behavior of the urban thermal regime. LST is 

determined by energy fluxes between the surface and the atmosphere (Voogt & 

Oke, 2003). Therefore, the measurement of LST driven by LULC changes can 

provide indications about the extension of thermal distribution related to LULC 

patterns and human-related changes. 

 

Increasing LST in urban areas leads to the formation of Urban Heat Islands 

(UHIs), where urban areas show higher LST than the surrounding rural areas 

(Buyantuyev and Wu, 2009). UHIs are a direct outcome of a degraded urban 

environment. Moreover, UHIs are also associated with a deterioration of air 



 

3 
 
 
 

quality, negative effects on public health and welfare, and secondary effects on 

local meteorology, including transforming micro-wind patterns, developing cloud 

and fog, and increasing humidity and the rate of precipitation (Arizona Board of 

Regents, 2007; Kim, 2007). 

 

The increased human activity that potentially escalates UHIs’ effects indicates an 

important need to measure the impact of LULC change on UHI effects. 

Information on the impact of LULC change on LST is of interest, as the amount 

of human pressure and the impact on LST is unique in each area. This is due to 

the fact that UHI phenomena are determined by the characteristics of local 

conditions and human activities. In addition, understanding both past and ongoing 

phenomena by monitoring the urbanizing area processes enables an early response 

to address the anticipated increase in UHI effects and to reduce other deleterious 

UHI impacts on the environment caused by LULC changes. 

1.1.3 Use of spatial data and spatial analysis 

Remote sensing (RS) has proven useful for characterizing LULC changes. 

Integration with Geographic Information Systems (GIS) is a cost effective and 

increasingly used technique for updating urban LULC at high spatial and temporal 

frequency (Selcuk et al., 2003). Satellite RS collects multi-spectral and multi-

temporal spatial data and changes them into valuable information for monitoring  

and understanding urban LULC while GIS, a computer-based system, enables 

collecting, maintaining, storing, analyzing, and displaying spatially organized 

information (Weng, 2001).  

 

Application of RS and GIS is an appropriate solution for this study of the thermal 

effect of LULC change, as these technologies can provide consistent and detailed 

spatial information about LULC, LST and changes in suburban and urban areas. 

This subsequently improves representation and understanding of heterogeneous 

urban areas and the urban development’s impact on the surrounding environment. 
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Although a large amount of research has been conducted using satellite-derived 

LULC data, only a few efforts have been made to explore LULC change and its 

effect on LST in tropical areas. In addition, research that is conducted using RS in 

tropical urban areas often faces challenges since detailed monitoring of urban 

LULC change remains expensive, problems exist due to the highly heterogeneous 

city land use leading to spectral similarity among LULC types, and a lack of 

cloud-free data. The basic premise of this study is to quantify LST change driven 

by LULC change through the use of RS and GIS.  This study is enabled by the 

availability of LST data from remotely sensed thermal imagery and the distinctive 

differences in the temperature of LULC characters. 

1.2 Research Objectives 

The primary aim of this research is to explore the spatio-temporal dynamics and 

changes in LULC in the southern part of the island of Bali and to analyze the 

impact of these changes on LST as an aid to developing strategies for urban green 

space planning and management. This study is conducted through time series 

analysis of medium spatial-resolution satellite imagery for the period between 

1995 and 2013. Its aims are reached through the following sub-objectives:  

a) To determine the trend, rate, location and magnitude of LULC and LST 

that represents typically tropical climatic conditions.  

b) To analyse and verify the relationship between changes in LULC and LST. 

c) To investigate the driving factors of UHI effects in order to generate a 

theoretical basis for mitigating the effect of UHI through urban green 

space. 

1.3 Significance of the Research 

Analyzing the spatio-temporal characteristics of LULC and the interrelationships 

between biophysical factors and LST is necessary to provide the required 

information on the change of the rate, pattern, and growth process of urban 

expansion. Information about UHI formation is useful to improve understanding 
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not only of the urban climate and its dynamics, but also the effects of LULC 

decisions on the microclimates of urban areas. Moreover, an understanding of the 

spatiotemporal pattern of LST has important implications for further planning in 

many other tropical coastal cities, as Bali is one of fastest urbanizing areas in 

Indonesia. It is also useful to understand the fluctuations of UHIs’ effects and LST 

distribution for a typical small tropical island. 

 

As has been stated above, although the spatial patterns of urban thermal condition 

may have been extensively studied, a comprehensive understanding of the LULC 

heterogeneity that affects LST distributions in temporal change on a typical small 

island in a humid tropical area is still limited. Moreover, there is still little 

information about LST that would eventually be applied to help determine 

comprehensive green space management to effectively mitigate UHIs.  Therefore, 

the outcome of this study can be used as a considered reference for professionals 

such as landscape architects, environmental engineers, and urban planners for 

urban green space management that mitigates the effects of UHIs and works 

towards sustainable development. 

1.4 Overview of Thesis 

This thesis consists of eight chapters with the general research design is 

summarized in Table 1.1.  Chapter 1 introduces the expansion of urban areas that 

leads to UHI effects. The research objectives are defined, as are the expected 

outcomes and the benefits of the study. Both of chapter 2 and chapter 3 review 

relevant literature and methodologies required to reach the study objectives. The 

chapter 2 focuses in discussing the LULC dynamics, the system of UHI effects 

and the mitigation strategy using green spaces. The chapter 3 begins with the role 

of remote sensing for mapping LULC and LST. The background information for 

selecting the appropriate source of RS data, the correct interpretation and mapping 

of spatially complex urban LULC and LST, and the principles of spatial methods 

for measurement are discussed. This chapter also extensively discusses existing 
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RS and GIS approaches and techniques employed in LULC and LST 

quantification. Chapter 4 describes the remotely sensed datasets used and the 

study site’s characteristics. Chapter 5 analyses LULC change rates and patterns in 

1995, 2003 and 2013 over the 240 km2 study site using a temporal series of 

multispectral RS images. This chapter also demonstrates the usefulness of object-

based image analysis in deriving LULC classification. This type of information is 

important for updating spatial data for urban management and determining the 

past and current levels of LULC and change rate for LULC monitoring.  Chapter 

6 analyses the LST over the capital city of Bali and the surrounding area and 

compares the trend and average value of LST as it varies from year to year. This 

chapter also describes how LULC classes and urban development are related to 

LST changes and quantifies the relationship between LST and biophysical 

parameters (LULC and NDVI). The analysis of the relationship between 

temperature, LULC, and NDVI and driving factors would provide the basis for 

mitigation of UHI effects and improving city living conditions. Chapter 7 

examines the application of resulted dataset (LST, NDVI, urban area types) to 

determine block plan or priority areas for green space planning. The local scale of 

LST mapping was fragmented into samples of the smaller thermal pattern of “hot 

and cool spots” at the micro-scale of the heat island that was taken from three 

types of urban areas to assess their LST difference. This chapter also describes 

detection of the micro level heat islands in three types of urban areas. Chapter 8 is 

a summary of these studies described with recommendations for planning, 

management, and future study. 
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Table 1.1  Summary of research design 
 

Main research 
objectives 

To explore the spatio-temporal dynamics and evolution of LULC in a 
rapidly expanding tropical urban area and its impact on LST in developing 
strategies of urban green space management 

Specific 
objectives 

To measure temporal change in LULC and identify LST distribution 
To analyse the relationship between changes in LULC and LST 
To investigate the driving factors of UHIs in order to generate optimal 
allocation of urban green space 

Sub-objectives Respective research question Techniques 
of analysis 

Data and 
software 

To analyse the 
proportion of 
LULC and the 
change over the 
period 1995-
2013 

• What are the composition, proposition, 
and distribution of LULC types in 
southern Bali? 

• What are the LULC changes? 
• Can RS and GIS assess the LULC 

changes? 

RS and 
GIS 
analysis  

Literatures, 
Landsat and 
Aster imagery, 
ArcMap, 
ENVI, 
SPSS, 
Microsoft 
Excel 

To analyse the 
spatial 
distribution of 
LST and the 
change over the 
period 1995-
2013 

• What is the spatial pattern of LST in 
southern Bali? 

• What are the LST changes? 
• Can RS and GIS provide an efficient 

method in analyzing spatial thermal 
patterns? 

RS and 
GIS 
analysis 
 

Literature 
review, 
SPSS, 
Microsoft 
Excel 
 

To analyse the 
relationship 
between LULC 
and LST and its 
change 

• Is there a correlation between the spatial 
temporal characteristics of the LST 
pattern and LULC? 

• Which LULC types have obvious 
impacts on MUHI? 

• Do anthropogenic activities on LULC 
types influence UHI effects? 

• What is the influence of the various 
types of LULC and the change in urban 
LST? 

Statistical 
analysis 

 

To analyse the 
relationship 
between LST 
and biophysical 
factors (NDVI) 

• Are there any correlations between 
characteristics of LST and NDVI? 

 

Statistical 
analysis 

 

To determine 
the possible 
future location 
of green space 

• What is the Balinese local cultural 
concept of green space? 

• Where areas should be most planted with 
vegetation/trees?  

• What implications do the outcomes have 
for green space plans? 

Micro 
urban heat 
island 
(MUHI) 
analysis  

Green space 
planning and 
management 
data 
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2 REVIEW OF LAND USE, LAND COVER AND UBAN 
HEAT ISLAND 

Many theories and methodologies have been proposed to examine and explain the 

dynamics of land use and land cover (LULC) and how they relate to urban heat 

islands (UHIs).  Since this thesis may be read by people without a remote sensing 

background (e.g. planner, landscape architects), some initial introductory reviews 

relating to those two topics were required.  This review will focus on nine major 

themes, although the literature covers a broad range of such theories. The themes 

to be covered are, urban LULC dynamics, UHI, green space planning for UHI 

mitigation, the impact of vegetation change on surface temperature, choice of RS 

imagery for measuring LULC and LST, previous UHI studies, choice of RS and 

GIS pre-processing, selecting a system of LULC classification and image 

classification. Those themes are discussed throughout the following two chapters. 

2.1 Urban land use and land cover dynamics 

Changes to the land surface are a result of both natural and human forces. 

Generally, the description of land surfaces is divided into two categories; land 

cover and land use. Land cover relates the physical state of the land surface (i.e. 

forest, vegetation, building and wet land) (Cheng et al., 2008). Land use denotes 

the human employment of land such as farm land, parks, settlements and 

cultivation. Given the close relationship of LU and LC, they are often used 

interchangeably (Verburg et al., 2009).  A change of LULC is defined as the 

transformation of one LULC type on Earth’s surface to another (Petit & Lambin, 

2002). 

 

Urbanized areas consist of mixed, complex interactions of social and economic 

development and regional resource exploitation that continuously support 

productivity levels and regional standards of living. Increasing human activity 

within the urban area brings massive changes in LULC patterns and has an 



 

9 
 
 
 

obvious effect on changes to urban ecosystems that make urban areas fragile 

(Weng, 2001; Yu, 2016). It has the effect of significant degradation in urban 

environmental conditions (Herold et al., 2003). These detrimental disturbances of 

environment are linked to global environmental and climate change due to their 

interactions with global carbon cycles, ecosystem processes, biogeochemical 

cycles, bio-diversity and human activities (Xiao et al. 2006; Yin et al., 2011).  

 

As urban areas are strongly affected by population pressures and human activities, 

their size has constantly increased and turned them into highly dynamic regions.  

It has been projected that most of the world’s mega cities are going to be in 

developing countries by the year 2017 (United Nations, 2007).  Understanding the 

impact of surface processes requires long-term historical reconstructions at local 

and global levels and investigation of urban LULC can provide a viewpoint of the 

change trajectory from the past to the present. This information is useful for 

developing plans to reduce the deleterious effects on the environment linked to 

urban growth and to keep ecosystems functioning optimally (Serra et al., 2008). 

Spatiotemporal LULC information is important to develop rational economic, 

environmental and social policies (Long et al., 2007) and for understanding the 

impacts of various human activities on the overall urban environment. 

2.2 Urban heat island 

The term UHI commonly refers to the appearance of several micro and meso-

scale climates that are warmer than the original climate at that scale, and that of 

surrounding areas (Zhou & Wang, 2011).  Voogt (2004) refers to UHI as closed 

isotherms indicating areas at the surface or near the ground (canopy layer) that 

have relatively warmer air temperatures and are commonly associated with areas 

of human disturbance such as cities and towns. The UHI effect often decreases as 

city size decreases (Roth, 2013) and the precise size and form of this UHI effects 

varies in space and time as a result of meteorological, regional and city 

http://www.sciencedirect.com.dbgw.lis.curtin.edu.au/science/article/pii/S0143622809000058#bib72
http://www.sciencedirect.com.dbgw.lis.curtin.edu.au/science/article/pii/S0143622809000058#bib60
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characteristics. This means UHI formation is strongly influenced by the 

characteristics of LULC of each city. 

2.2.1 Spatial structure of UHI effects 

The size of a UHI is more related to the amount and type of city development than 

to the actual size of the city or the population (Xian & Crane, 2006). This means 

that fast growing, smaller megacities in developing countries may be have more 

UHI than bigger and older cities situated in developed countries (Weng, 2009). 

Urban locations with ongoing urbanization trends experience dramatic increases 

in temperature due to the decrease in surface moisture and fractional vegetation 

cover (Owen et al., 1998; Srivanit et al., 2012).  UHI occurs at various levels of 

the atmosphere and surface of the urban environment and have slightly different 

underlying mechanisms (Mitchell, 2011). Generally, there are two basic UHI 

types; atmospheric UHI that exists at urban canopy layer (UCL) and urban 

boundary layer (UBL), as well as surface UHI (SUHI) (Voogt & Oke, 2003).  

Those UHI types are different in the process of their formation, the techniques 

applied to measure them, their impacts and, the methods available to mitigate 

them (Oke, 1988).  Figure 2.1 shows the spatial structures of the various UHI 

effects. 

2.2.1.1 Boundary layer of UHI 

An increase in urban air temperature at the urban boundary layer (UBL) (Fig. 

2.1(a)) generates a dome of air that extends downwind of the city, with the 

warmer air dome often changed to a plume shape by wind (Voogt, 2004). As air 

flows from rural to urban areas, the boundary layer of UHI is largest under light 

winds when strong rural surface inversions exist. Conversely, the boundary layer 

of UHI is smallest under strong winds when the vertical air temperature 

distribution is more uniform. Moreover, the boundary-layer heat island is a local-

to-meso scale phenomenon (Roth, 2013). 
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Figure 2.1   Spatial vertical structure of the city atmosphere on (a) a whole city 

(mesoscale), (b) a LULC area (local scale) and c) a street canyon 
(microscale). The three UHI types linking to each scale is located on 
red shaded areas (thick line following surface in (b)) (Oke, 1988; 
Voogt & Oke, 2003; Roth, 2013). 

 

 

c. Micro scale 

 

        Micro scale 

b) Local scale 
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2.2.1.2 Canopy-layer heat island 

The urban canopy-layer (UCL) heat island is a local-scale phenomenon that is 

located in the area that starts from the ground, or just above the land surface, and 

extends to about the height of the trees and buildings or the roof-top level (Voogt 

& Oke, 2003).  In addition, the canopy-layer heat island expresses the surface 

energy balance and it influences air volume inside the urban street canyon (Roth, 

2013).  The urban street canyon can be understood as the space between two 

parallel rows of buildings that are separated by a street and is the primary unit in 

new cities (Syrios & Hunt, 2008).  Changes in street canyon temperature occur 

mainly through sensible heat transfer from the surface (Roth, 2013). The airflow 

processes known as ducting and trapping, as well as multiple reflections of 

radiation, occur within the UCL of UHI (Collier, 2006). Above the UCL, there is 

a turbulent wake layer called a roughness sub-layer (Figure 2.1 (b)) within which 

occur the wakes and urban boundary layers from individual buildings, groups of 

buildings, plumes of heat, pollutants and humidity (Collier, 2006).  

 

Differences of rural-urban air temperature that are measured in the canopy-layer 

show remarkable temporal and spatial variation within a city and vary from one 

city to another. In addition, the diurnal variability of the canopy-layer heat island 

is highly pronounced (Roth, 2013). The most intense UHI often occurs on summer 

nights because impermeable construction surfaces absorb high amounts of solar 

radiation during the day and have a higher thermal conductivity and capacity for 

releasing heat stored at night (Xian & Crane, 2006), while most rural surfaces 

have cooled down. During the day, the sun’s energy is absorbed by both rural and 

urban surfaces, heating rural vegetated surfaces more slowly, thus causing a 

difference in surface temperature between the two areas.  

 

In the vertical dimension at meso and local scales of urban atmosphere, the 

atmospheric UHI presents significant variations between UCL (urban canopy-

layer) and UBL (urban boundary-layer).  The atmospheric UHI that is recorded at 
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canopy-layer may exhibit higher spatiotemporal variations because of the thermal 

properties of built-up surfaces that modify neighboring air temperatures. In 

contrast, UHI variations at the UBL may remain more stable as they are less 

influenced by the city structure (Voogt, 2004). Figure 2.2 shows the fluctuations 

in intensity that UHIs have over different LULC areas. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2  Fluctuations in intensity of UHIs vary over different LULC areas and 

at different times of the day (Roth et al., 1989; Voogt & Oke, 2003). 

2.2.1.3 Surface UHI 

Even though surface temperature is not equal to air temperature, it is the primary 

causal factor of ground temperature and is a critical factor that controls the urban 

thermal environment (Sun & Pinker, 2003; Mitchel, 2011).  SUHI describes the 

heat island which can be detected from land surface temperature (LST) (Voogt 

and Oke, 2003).  The SUHI exists over the entire three dimension (3-D) envelope 

of the surface and is recognized as a surface energy balance phenomenon that 

involves all city features (i.e., roads, roofs, walls, trees) (Roth, 2013).  The surface 

temperatures in a micro-scale phenomenon commonly known as Micro Urban 

Heat Island (MUHI) are characterized by small SUHIs associated with the 

temperature of individual structures or groups of structures (Mitchell, 2011).  The 
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spatial micro scale often occurs from sub-metre to 1 km scale and the spatial local 

scale occurs from 100 m up to 50 km (Oke, 1988; Roth, 2013).  Thus, an overlap 

between the two scales is created. Consequently, to study SUHI at the micro scale, 

the lowest resolution of available thermal imagery from 90 m up to 1 km can be 

used.  The same SUHI study at the micro scale was employed on the local scale 

extending from 1 km up to 20 km (Mitchell, 2011).  

 

The patterns of MUHI are strongly governed by the orientation of the surface 

features to the sky and the sun and their thermal characteristics, such as heat 

capacity and reflective properties (albedo) (Voogt, 2004; Roth, 2013).  Due to 

those conditions, and the strong heterogeneity of surface structures (i.e., 

vegetation, buildings, open soil), LST becomes a non-constant phenomenon and 

often displays rapid variations that fluctuate in intensity and spatial distribution 

over time. Moreover, the temporal fluctuations are diurnal, weekly and seasonal 

with the seasonal variability depending on latitude, daily warming pattern and 

cloud cover in the area (Oke, 1988).  

 

LST in a given location is influenced by surface radiation and energy interchange 

and is often strongest during the daytime due to large differences in the response 

of solar heating between vegetated surfaces and roof or pavement surfaces (Roth, 

2013). The amount of solar radiation absorbed and reflected back to the 

atmosphere is greatly affected by the surface material. Some materials absorb 

more energy while other materials reflect more energy. For example, vegetation 

absorbs more energy than open soil; the forest is normally cooler than an open 

field. At night, some of the processes are reduced, and therefore, urban-rural 

differences of LST are smaller than during the day (Roth et al., 1989) (Figure 2.2).  

2.2.2 UHI assessment 

Traditionally, atmospheric temperature data for UHI study are directly measured 

from climatology stations or collected along mobile traverses by thermometers. It 
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is inconvenient to obtain detailed spatial distribution of temperature because of 

limited locations for atmospheric temperature quantification (Zhang & Wang, 

2008).  However, a direct assessment of atmospheric UHI through RS is still 

possible.  RS sensors can only assess surface temperature at course scale 

(Colombi et al., 2007) and higher altitudes or at the boundary-layer (Voogt and 

Oke, 2003). Besides being used to measure air temperature, RS sensors with the 

thermal remotely sensed data are also used to acquire UHI temperature 

distribution at the surface because RS sensors usually observe thermal radiation 

on the surface.  This is a type of indirect measurement of UHI as UHI is actually a 

phenomenon of atmospheric air temperature.   

  

The air temperature tends to be lower than surface temperature and the daytime 

correlation between LST and LULC is much stronger than that for air temperature 

(Roth, 2013).  Relating LST and air temperatures is complicated and their 

variability is difficult to predict and depends on such factors as albedo, emissivity, 

thermal capacity of the surface, wind speed and moisture level of the atmosphere 

(Roth, 2013). Moreover, there is no simple general relationship available 

(Mitchell, 2011). As a result, it is easy to misinterpret canopy-layer heat islands 

using assessments of LST without examining the differing source areas for the 

two assessments and atmospheric effects that affect air temperatures (Roth, 2013).  

To deal with these problems and considering the nature of LULC, extracted LST 

of remotely sensed data using Plank’s function requires adjustment for spectral 

emissivity (Artis & Carnahan, 1982). The emissivity corrected LSTs can be 

applied by estimating land surface emissivity that can be obtained using NDVI 

threshold (Sobrino et al., 2004; Oltra- Carrio et al., 2012).  Moreover, in order to 

correct the different year and seasonal factors of multi-temporal datasets, 

standardization of LST is also needed. It is necessary to accommodate the 

temporal consistency and spatial comprehensiveness of the dataset comparison 

(Salama et al., 2012).  Table 2.1 shows the summary of characteristics of surface 

and atmospheric UHI. 
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Table 2.1  Characteristics of surface and atmospheric UHI (Voogt & Oke, 1997) 
 

Feature Atmospheric UHI Surface UHI 
Typical identification 
method 

Direct measurement 
• Fixed climatology stations 
• Mobile traverses 

Indirect measurement:  
RS analysis 

Typical representation • Isotherm map 
• Temperature graph 

Thermal map 

Peak intensity Less variation: 
Day : (-1 -3ºC) 
Night: (7-12ºC) 

More spatial and temporal 
variation: 
Day: (10-15ºC) 
Night: (5-10ºC) 

Temporal 
development 

• Small/non-existent during the 
day 

• Most intense at 
night/predawn/winter 

• Appear at all times of the day 
and night 

• Most intense in the summer 
and during the day 

2.2.3 Impacts of UHI 

The global average LST increased by about 0.6 ºC in the 20th century (IPCC, 

2007). It is predicted that by 2050 it will be 1-2°C warmer than in 1980-99 

(Meehl, 2007).  There has been rising concern about the impact of the increase of 

temperatures on urban environments and the interaction with UHIs (Coutts et al., 

2010) that can have serious detrimental effects on human health, economic 

activity and environmental well-being. 

a) Health 

UHI intensity peaks often can cause fatalities due to thermal stress on 

cardiovascular and respiratory systems. The elderly and people with medical 

problems are most at risk (US EPA, 2009).  Extreme heat can lead to heat 

related stresses such as heat stroke, sun burn, heat cramps, dehydration and 

heat-related mortality. India experienced a severe heat wave in the summer of 

2015 resulting in more than 2,000 deaths (United Nations, 2015) and heat 

stroke can continue to affect inhabitants up to two years after the event as 

identified by Argaud et al. (2007). 

b) Economic  

Increasing heat islands leads to an increase of energy consumption as air 

conditioners work against a large heat gradient to maintain optimal 

temperature of buildings.  Uncomfortably hot conditions increase electricity 
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costs per year. The increase of energy demand and costs may induce 

significant economic impacts. 

c) Environmental 

UHIs can cause a host of environmental problems. The overall energy 

consumption for cooling impacts CO2 levels and thermal pollution. 

Stormwater that falls in the city often runs across impermeable surfaces (i.e.; 

pavement and rooftop) that transfer excess heat to the runoff.  This heated 

storm water also picks up additional dust and chemical loads before it drains 

into sewers.  Higher water temperatures affect the life cycles of organisms 

living in the waterways (Krause et al., 2004).  In terms of meteorological 

impacts, UHIs are associated with smog formation, induction of precipitation 

and thunderstorms, reduction of snowfall frequency and intensity and 

modification of the diurnal and seasonal range of freezing temperatures 

(Bornstein & Lin, 2000). UHIs also affect surrounding wildlife and 

ecosystems. Changing precipitation patterns and increased UHIs can mean 

that species move outside their thermal tolerance range and that vegetation is 

more prone to fire (Valle-Díaz et al., 2009). With all of these negative impacts 

of UHIs, learning and controlling factors that influence them is required. 

2.3 Influencing factors of UHI formation  

Many factors contribute to the spatial characteristics of UHI formation that also 

can be linked to UHI mitigation efforts. Figure 2.3 shows these factors with solar 

energy as the key driving energy of UHIs. These factors can be generally divided 

into controllable factors that are influenced by features of urban areas and 

uncontrollable factors (Harman & Belcher, 2006; Rizwan et al., 2008; Aguiar, 

2012). The detailed processes of these influencing factors in creating UHI effects 

should be explained together with the physical properties of the controllable 

factors. This is because mitigation efforts focused on altering controllable factors, 

mainly through increasing green spaces, are the most feasible in developing 
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countries where most green space around the existing infrastructure is still open 

and the structural elements of the city is still able to be changed.  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.3   Influencing factors created UHI (modified from Oke, 1997; Rizwan et 
al., 2008; Aguiar, 2012). 

 

2.3.1 Surface energy balance  

UHI formation is strongly sensitive to the flows of energy and water in order to 

balance the surface energy budget.  An equation that measures the balance of 

outgoing and incoming energy flows is given by a surface energy budget. The 

surface energy budgets between urban and rural areas are different because of 

differences in LULC, level of human activity and surface characteristics (USA 

EPA, 2009).  These differences influence the production and flow of heat that 

leads to different air temperature and LST in cities versus rural areas.   

 
Figure 2.4 illustrates the surface energy balance system that is influenced by 

physical properties of surfaces particularly vegetative and soil surfaces and creates 

an impact on local temperature. The short wave radiation refers to radiant energy 

within the wavelengths of 0.1 µm and 5.0 µm in the visible (VIS), near-ultraviolet 

(UV), and near-infrared (NIR) spectra and the long-wave radiation is the energy 

radiating from the Earth as infrared radiation at low energy to Space (Sundstrom, 
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2014).  Both the incoming short-wave energy and the emitted long-wave energy 

have to be balanced through the process of radiating energy, conduction of heat 

and evaporation.  Particular surfaces' properties, including albedo, emissivity and 

soil moisture, determine the amount of energy that is available for latent heat, 

emitted or reflected (USA EPA, 2009). When surfaces hold more energy than 

their surroundings, they give off sensible heat (Iguski and Jackson, 2008) and the 

hotter the surface, the more energy it radiates (USA EPA, 2009).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Energy balance system and physical properties of surfaces that 
influence the local temperature (modified from Iguski and Jackson, 
2008). 

2.3.2 Vegetative surfaces in UHI formation  

Vegetation can influence the amount and type of energy exchanged between the 

land and the atmosphere because vegetation takes in carbon dioxide for 

photosynthesis and gives off water in a process called evapotranspiration and thus, 
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can reduce local surface and air temperature and alleviate UHI effects. In order to 

balance the energy budget, a change in the incoming energy and/or evaporation 

leads to a change of surface temperature.  In vegetative surfaces, evaporation 

occurs during the conversion of water from a liquid to a gas in the surrounding 

soil of vegetation. Vegetation regulates its temperature using absorbed energy 

with stomatal conductance and transpiration (Igusky & Jackson, 2008), 

meanwhile, moisture on the soil's surface affects the availability of latent heat to 

control evaporation (Kessler & Jaeger, 1999; Godfrey et al., 2007).  Water vapor 

that is given off through evaporation stores latent heat that, when released, 

condenses in the atmosphere and gives off water, reducing the air temperature 

(Kessler & Jaeger, 1999). Latent heat is usually detached to the atmosphere when 

water is evaporated and the latent heat transforms to sensible heat when water 

alters phase from water vapour to liquid water (FAO, 2005). Flux refers to the rate 

of flow at which energy is moved and the net energy flux of each surface is 

affected by physical properties of the land surface (Snyder et al., 2005) that vary 

between different LULC types. 

 

In addition to evapotranspiration (ET), the ability of vegetative surfaces to 

influence temperature is mostly influenced by surface albedo and roughness (Kim, 

2007; Igusky & Jackson, 2008; Chen et al., 2013). The surface’s solar reflectance 

or albedo determines the amount of short-wave radiation that is reflected or 

absorbed. Since the color of vegetation influences its capability to absorb different 

amounts of energy it also influences albedo. Light-colored surfaces that have high 

albedo reflect shortwave radiation and dark-colored surfaces that have low albedo 

absorb shortwave radiation (Portier et al, 2010)  For example, compared to 

grasses, trees are darker and commonly have a lower albedo. Thus, trees absorb 

more solar radiation than grasses and crops at the surface.  The roughness of 

vegetative surface also can affect near-surface wind leading to varying impacts on 

fluxes of water and energy from the land surface. The rougher the surface, the 

more it slows the winds down (Igusky & Jackson, 2008). All these tree 
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capabilities give more benefits in tropical areas, such as the study area, since they 

only have a dry and rainy season and are mostly covered by evergreen trees. 

 

The surface’s emissivity determines the amount of long-wave radiation that is 

emitted and exiting to clouds that absorb or re-emit this radiation (Kessler and 

Jaeger, 1999). In the tropics that commonly consists of persistent clouds.  The 

process of evaporation also leads to cloud formation. Clouds absorb both short-

wave radiation and long-wave radiation although absorption by clouds is very 

small that are reflected from the surface of the Earth. Some energy is emitted as 

atmospheric long-wave radiation and the remaining energy is re-emitted to the 

Earth’s surface where it is absorbed and becomes heat energy (US EPA, 2009). 

2.3.3 Impervious surfaces and UHI formation 

Compared to vegetation that mostly cover rural areas, impervious surfaces in 

urban areas, such as rooftops, buildings, and parking lots emit less long-wave 

radiation back to the atmosphere. More solar radiation that contributes to higher 

air temperature is absorbed by impervious surfaces. As a result, thermal storage 

increases in cities. Thermal storage is governed by the thermal properties of urban 

geometry and building material properties as shown below: 

a) Building material properties 

The materials of buildings' surfaces are important in determining the 

interaction between the surface and incoming solar radiation. The physical 

properties of building material (i.e. albedo, solar reflectance, emissivity, heat 

capacity, thermal conductivity) influence UHI formation. These properties are 

responsible for heating surfaces (Golden & Kaloush, 2006) and determine the 

amount of solar radiation that is reflected, emitted and absorbed (US EPA, 

2009).  

 

Building surfaces with high solar reflectance can emit most of the incoming 

heat energy.  Therefore, less heat is absorbed and stored in the object and vice 
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versa. With more impervious surfaces, absorbed heat increases surface 

temperatures and contributes to the formation of surface and atmospheric 

UHIs.  Solar reflectance is strongly correlated with a material’s color because 

most solar energy comes in visible wavelengths. Darker buildings tend to have 

lower solar reflectance and albedo than lighter buildings. Hence, light-colored 

materials reflect more of the incoming energy of the sun than dark objects that 

absorb most of the incoming energy (Chudnovsky et al., 2004).  Therefore, 

roofs may be designed to reduce the amount of heat that is transferred directly 

to the building by employing the use of materials and colors that have a high 

albedo (Aguiar, 2012). A dark roof, which absorbs most of the incoming solar 

radiation, heats the house and surrounding area and increases energy 

consumption required for cooling.  

 

Parker and Barkaszi (1997) found that applying high albedo coatings to a 

building’s roof results in reduction of air conditioning energy use by 2%  - 

43% in the homes. However, some materials have a high solar absorption even 

when light-colored, such as asphalt (Bretz et al. 1998; US EPA, 2009). Cool 

roads reduce the absorption of asphalt by using highly reflective aggregate in 

the asphalt (Aguiar, 2012). Some dark colored materials also have the ability 

to reflect short-wave radiation due to the use of special materials that have a 

solar reflectance close to that of white or light-colored materials (US EPA, 

2009). Figure 2.5 shows the impact of the difference of colored materials and 

roughness of material surfaces on LST.  Surface temperatures are measured on 

different roof colors in an ambient temperature of 35ºC. 

 

Besides solar reflectance, emissivity, heat capacity and albedo also play 

important roles in the determination of a material’s LST. Thermal emissivity 

is a descriptor of surface capability to store heat or emit infrared radiation. 

High emissivity can keep a surface cool because the heat will be released 

immediately. Most construction materials have high thermal emittance values 

with the exception of metal. A material’s heat capacity refers to its capability 
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to store heat. For example, a surface that is constructed of steel and stone in 

cities typically absorbs and stores more of the sun’s energy as heat than does a 

surface composed of soil (US EPA, 2009).  

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5  The impact of roof surface colors and materials on the LST (modified 

from cooltexasbuildings, 2015). 
 
 
b) Urban geometry 

Urban geometry describes the dimensions and spacing of buildings within a 

city and influences UHI formation mainly at night.  It determines wind flows 

and influences the solar radiation that can be received and absorbed as well as 

emitted back to atmosphere as long-wave radiation (US EPA, 2009). 

 

The urban canyon, as explained above, is one aspect of urban geometry 

(Sundara Kumar et. al., 2012). Urban geometry can lead to incoming short-

wave radiation being reflected on close surfaces, such as vertical walls within 

the urban canyon. The reflected short-wave radiation then is absorbed or 

stored rather than emitted to the atmosphere as long-wave radiation or heat.  
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As a result, buildings tend to have high daytime surface temperatures. In this 

process, the wind that reaches the inner city tends to flow slower and leads to 

turbulence within the street canyon.  

 

At night, because of the dense buildings in developed cities with low sky view 

factor (SVF) (see Figure 2.6), the stored long-wave radiation cannot easily be 

released to the atmosphere.  This trapped heat then contributes to the UHI.  

The air temperature above downtown areas particularly at night is warmer 

than air temperature over rural areas (US EPA, 2009). Furthermore, the 

incoming short-wave radiation absorbed by ground surfaces such as roads and 

pavement is not easily released out of the urban region because there is only a 

small “sky view” from the ground.  Therefore, physical objects absorb most of 

the emitted heat from the ground, keeping the heat within the city (Sailor & 

Fan, 2002). In a well-planned city, to reduce the formation of UHI, urban 

street canyons are constructed in such a way as to allow good airflow between 

buildings, thus enabling surfaces to release radiation more readily into the 

atmosphere. 

2.3.4 Anthropogenic heat and pollutants  

Anthropogenic heat and pollutants are considered as secondary contributors (Li & 

Zhao, 2012) that affect atmospheric UHI (Ferreira et al. 2010). Anthropogenic 

heat refer to the heat produced from human activity such as from industrial 

facilities, motor vehicles, air conditioners, and various other human sources which 

contribute to the energy budget.  Athropogenic heat varies by urban activity and 

infrastructure and it typically contributes to UHI formation in dense urban areas.  

Reduction of waste heat through reducing the use of electrical sources is a 

possible effort to mitigate UHI effects. For example, Kikegawa et al. (2003) found 

that a reduction in the waste heat of air conditioners could result in a temperature 

decrease of 1°C and an efficiency increase of 6%.   
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Figure 2.6  The impacts of impervious surfaces on UHI formation (Voogt and 
Oke, 2003). 

2.4 Green Space Planning for UHI Mitigation 

Green space plays an important role in controlling temperatures, particularly in 

urban areas. Green spaces can be understood as areas that are covered by planted 

and natural vegetation in built-up and planned areas and consist of permeable 

surfaces (i.e grass, open soil, bush, and tree).  Urban green spaces exist as semi-

natural areas, such as managed gardens and parks provided by separated 

vegetative pockets linked to roads and subsidiary places (Jim and Chen, 2003; 

M’Ikiugu et al., 2012).    

 

In Indonesia, law 26 on spatial planning of the year 2007 defines green space as 

an open area for plants, both naturally and intentionally planted, to grow.  Types 

of urban green spaces include recreational areas, green belts at a riverbank or 

along a beach, agricultural land, urban forests, botanical gardens, nurseries and 

residential parks. This law also rules that, in order to control human activity and 

urban development, at least 30% of the urban area should be established as open 

green space (Indonesia Ministry of Public Works, 2010). Because green spaces 
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have been proven to reduce UHI directly (Feizizadeh et al., 2013) a causal link 

between LST and green space changes is required in order to plan and manage 

green space. It is also in accordance with the study purpose to reduce UHI effects 

using the potential information from spatiotemporal distribution of LSTs and 

spatial variability of LULC elements which consists of vegetation. 

2.4.1 Characteristics of green space 

Numerous studies have shown that an increase in the proportion of vegetation 

cover can significantly decrease LST because the increasing size of green space 

affects enhanced ET of vegetation that can cool daytime surface temperature 

(Hamada and Ohta, 2010). Moreover, it is necessary to carefully consider the 

location of tree planting to achieve potential climatic benefits. Information about 

vegetation characteristics is required to understand a surface’s energy budget and 

the effect on the local and regional climate.  The minimum area (size) and 

structure (i.e population, size, and type of selected plant) of green space are 

essential characteristics in optimizing green space planning for local climate 

amelioration (Indonesia Ministry of Public Work, 2010).   

 

According to Matthews (2015), the planning, design and management of green 

space infrastructure for adapting climate change should recognize multiple 

rationales linked to green infrastructure. They include the scale of the area 

available for greening (i.e. rooftop, building wall, and a city block), history of site, 

soil compaction, drainage problems, structural engineering, geological concerns 

and the climatic zone (i.e. temperature, precipitation, wind effects). The choice of 

vegetation used is also important, including its structure, growth form and 

tolerance limits. For instance, groundcovers require different water, light, nutrient, 

temperature and root-mass compared to broad-leaf trees.  Each vegetation type 

has different rates of growth, levels of disease resistance, and capacities to provide 

biogenic services (e.g. sequestering carbon, filtering water, lowering ambient 

temperatures). Thus, in order to have a maximum greening result, those 
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biophysical factors of vegetation to be used for urban greening should be 

considered. Despite biophysical factors, the successful green space infrastructure 

for mitigating climate change was determined by agency and institutional 

capacities that are often ignored while they have essential roles for decision-

making and cross-departmental coordination in making effective green space 

infrastructure interventions (Matthews, 2015).  Figure 2.7 shows the measurement 

concept of green infrastructure for adapting cities to climate change that should 

have to be taken into account (Matthews, 2015).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7  Capacity of green space in climate adaptation (Matthews, 2015).  
 

The effects of green space in order to reduce UHI effects can also be achieved by 

suitable composition and configuration of green space (Li et al., 2012; Li et al., 

2013, Maimaitiyiming et al., 2014).  Composition of green space refers to the 

form and structure of vegetation that determine the capability of the vegetation to 

lower the air temperature (Igusky and Jackson, 2008; Chen et al., 2013), while 

configuration of green space places emphasis on the green space distributions.  

Irwan (2008) reported that a spreading form of stratified urban forest can reduce 

air temperature by 2.28%, while a clustered form of stratified urban forest can 
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reduce air temperature by 3.04%.  In addition, compared to evergreen forests, 

deciduous or mixed forests appear to have lower LST over the evergreen forest 

canopy as they have higher albedo (Igusky and Jackson, 2008).  This is due to the 

relative amounts of transpiration from each forest and the energy budget of the 

vegetative surfaces (Igusky and Jackson, 2008). Therefore, for tropical areas that 

only have dry and rainy seasons, selection of evergreen structure for the vegetated 

areas would give greater long-term benefits in reducing LST. 

2.4.2 Vegetation cover indices to represent vegetation condition and the impacts 

on surface temperature 

More vegetated areas have a higher level of latent heat exchange, while sensible 

heat exchange is more favored by sparsely vegetated areas (Oke, 1982). This 

finding encourages study of the relationship between vegetation abundance and 

LST (Weng et al., 2003; Salah 2011).  It is known that vegetation indices such as 

NDVI obtained from RS images are able to be used for assessing vegetation cover 

and are ideal to represent the condition of vegetation (Tian and Xiangjun, 1998; 

Chen et al., 2006).  Soil background and shadow, plant species, and leaf area 

contribute to the NDVI variability (Jasinski, 1990). It is also possible to use NDVI 

to characterizing the LULC types thus establishing the relationships between 

NDVI and LST. NDVI measurement is a function of the near-infrared and visible 

reflectance from plant with Eq. (2.1) and is generally used to express the density 

of vegetation (Rouse et al., 1974).  

 

 NDVI = (NIR – R)/(NIR + R) (2.1) 

2.5 The Impact of Vegetation Change on Surface Temperature 

Vegetative surfaces utilize solar radiation for transpiration and release water 

vapour that contributes to a reduction in air temperature. However, urban 

impervious surfaces typically replace vegetation throughout the city. As 

vegetative surfaces have different properties, any alteration to them not only 
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changes the physical properties of the surface, but also changes local climatic 

conditions such as wind speed, humidity, and air temperature (Rost and Mayer, 

2006), potentially increasing the chance of surface heat.  Figure 2.8 shows the 

different impact between green space and impervious surfaces on ET, infiltration 

and run off processes. 

 
 

Figure 2.8   Reduced green space and impacts of impervious surface on UHI (US 
EPA, 2009). 

 

Afforestation should provide a cooling effect.  The increase of vegetation cover 

affects the surface energy budget, LST and air temperature by redistributing 

surface energy (Ma et al. 2013).  Ma et al., (2013) state that the effect of a change 

of vegetation cover on short term climate showed that annual mean LST 

significantly decreased by 0.93 ºC in response to afforestation. Another study 

shows afforestation can decrease LST by about 1.1 ± 0.5 ºC (mean ± 1 SD), on 

average (Peng et al., 2014). On the other hand, the loss of trees replaced by 

impervious surfaces can significantly increase LST in neighborhoods (Rogan, 

2013). A decreased or fragmented vegetative area causes a decrease in surface 

evaporation that leads to an increase in LST (Deo, 2011).  

 

A study by Tursilowati et al. (2012) combining modelling of LULC and air 

temperature data concluded that significant reduction of UHI area can be achieved 

by the addition of widespread grassland.  However, another comparison study by 
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Swann et al., (2010) shows that compared to grassland, forest (linked to woody 

trees), can provide a greater advantage in terms of direct surface cooling effects.  

Forest that was converted to grassland and crop land also shows a surface 

temperature increase of 3-5 ºC (Hollinger et al., 2010).  The color of woody trees 

is darker than grassland (lower albedo) causing them to absorb more solar energy 

to be used for transpiration and creation of more water vapor (Swann et al., 2010).   

Thus, it has also been noted that the cooling effect of vegetation is mainly driven 

by enhanced ET produced by increased vegetation cover.  Figure 2.9 shows the 

impact of afforestation on surface temperature properties.  

 

 

 

 

 
 
 
 
 
 
 
 

 
Figure 2.9  The impact of afforestation on surface temperature. 
 
The ability of trees to provide more indirect cooling also comes through their 

shadows, an effect that cannot be provided by grassland. The shade of a tree can 

reduce the LST of grass by 4 ºC and the LST of concrete surfaces by 12 ºC 

(Armson et al., 2012).  The lower LST of forest as compared to grasslands is also 

due to forest being rougher and thus, able to exchange sensible heat more 

effectively and transpire more across a smaller temperature gradient (Balddochi & 

Ma, 2013). As a result, forests provide less run-off for stream flow (Marc & 

Robinson, 2007) and recharge less groundwater (Kim & Jackson, 2012). 
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2.6 Chapter Summary 

The purpose of this review was to examine some aspects of LULC dynamics and 

spatial characteristics of UHI effects, and planning urban green space 

infrastructure. It is important to evaluate the relationship between these themes 

given UHIs effects on environment quality, human health and energy use.  UHI 

formation is sensitive to different flows of energy and water between urban and 

rural areas that are caused by differences in LULC, level of human activity and 

surface characteristics. Those differences influence the production and flow of 

heat that leads to different air temperature and LST in cities versus rural areas. 

Controllable factors (vegetation, building material, urban geometry, 

anthropogenic heat and pollutants) and uncontrollable factors (time, synoptic 

weather and geographical location) contribute to the spatial characteristics of UHI 

formation. There is no doubt that the main impact of UHI phenomena are from the 

very considerable replacement of vegetation cover.  However, as the precise size 

and form of UHIs effects varies in space and time and depends on controllable 

urban surface characteristics and surface properties, the linkage between local-

micro LULC change and the level of UHI effects, particularly in developing 

tropical areas, still requires deeper study. 
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3 REVIEW OF RS IMAGERY AND GIS PROCESSING FOR 
MEASURING LULC AND LST 

3.1 Choice of RS Imagery for Measuring LULC and LST 

Studies of UHI effects have shown that the partitioning of latent heat and sensible 

fluxes, and the resulting surface temperature response, is a function of varying 

water content, soil surface, and vegetation cover (Weng et al., 2006).  The latest 

multi complex ability of RS and spatial analysis technology has made information 

on spatial pattern and condition available. “The development of RS and GIS 

technology has not only led to greater understanding of the spatial relationship 

between different uses of the land, but also facilitates the recording of emitted 

energy from throughout the electromagnetic spectrum and provides historical 

evidence at particular times”(Loveland & Defries, 2013). Moreover, RS imagery 

is also valuable in assessing both LULC and enabling detailed mapping of LST at 

the same time.  The thermal data made available by RS sensors offer the ability to 

produce accurate models of urban climatic phenomena, such as UHI effects, 

correlating and modeling LST with LULC types and vegetation, in addition to 

being a useful tool for monitoring the increasing urbanization and environmental 

effects of regional climate change (Quattrochi et al., 2000, Taubenbock et al., 

2011, Aduah et al., 2012; Tursilowati, 2012). The availability of LST data from 

remotely sensed thermal imagery over a whole city makes it possible to see 

distinct differences in the temperature of multiple LULC characteristics at once 

(Voogt & Oke, 2003; Yuan & Bauer, 2007;).  

3.1.1 Characteristics of RS imagery 

The increased availability of satellite imagery offers repetitive data coverage at a 

range of spatial, radiometric, spectral, and temporal resolutions (Stoney, 2006). 

The exact resolution to be used is decided by the type of mission and sensor 

characteristics. Choosing the appropriate RS sensor for any study requires 
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consideration of the study objectives, image costs and the technical processes that 

are involved in image analysis and interpretation. 

a) Spatial resolution 

The spatial resolution of an RS sensor describes the minimum area or size of 

detail of a feature and pattern that can be identified on an image and it is 

generally divided into three categories: coarse, moderate and fine resolution 

(Loveland & Defries, 2013). Fine spatial resolution of RS data reduces the 

size of the gap between field and remotely sensed data perceived with coarse 

resolution satellites (Rocchini, 2007). Sensors with spatial resolutions of 5 

m/pixel or less are considered to be very fine resolution. Spatial resolutions 

greater than 5 m/pixel and up to 30 m/pixel are considered moderate and 

sensors with greater than 30m/pixel ground resolution are considered coarse 

resolution (Stefanov et al., 2004).  A lot of effort has been put into delineating 

LULC from a local scale to global scale by applying different multi-temporal 

and multi-source remotely sensed data. Moderate-fine resolution data is useful 

to detect the changes in classes and is most accurate when distinguishing 

LULC types in a heterogeneous, complex urban area (Loveland & Defries, 

2013).  

 

Moderate resolution satellite imagery such as Landsat is the most common 

data type for monitoring and mapping LULC changes. It has been successfully 

utilized for assessing LULC changes, especially in land areas that have been 

affected by human activities to varying degrees.  For example, Pan et al., 

(2013) used Landsat Multi-Spectral Sensor (MSS), Landsat Thematic mapper 

(TM) and Enhanced Thematic Mapper (ETM+) for detecting LULC changes 

in the Eastern Gulf coastal between 1985 and 2005.  Reis (2008) used Landsat 

MSS and Landsat ETM+ images for detecting LULC in Turkey.  However, 

the relatively coarse-medium spatial resolution image often is not able to meet 

specific project requirements of a complex LULC classification, especially in 

a complex urban rural landscape (Lu & Weng, 2005). Even though the utility 

of coarse-medium spatial resolution images may not be good for working at 
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urban and local scale, it is useful while working at regional, metropolitan and 

higher scales. 

 

The use of high spatial resolution sensor data, such as SPOT, IKONOS and 

Quickbird, enables highly detailed detection of LULC of urban and rural areas 

and impervious surface mapping in urban areas (Wang et al., 2004; Lu and 

Weng, 2005).  The highest available resolution of satellite imagery is desirable 

when used for land applications, urban vegetative information, detecting open 

spaces, streets and individual buildings in the urban environment (Yüksel et 

al., 2008).  A major advantage of these high spatial resolution images is that 

such data greatly reduce the mixed-pixel problem (Lu & Weng, 2005), 

providing a greater potential to extract much more detailed information on 

LULC structures than medium or coarse spatial resolution data. However,  

when using high spatial resolution images some new problems emerge, 

notably the shadows caused by topography, tall buildings, and trees (Zhou et 

al., 2008), and high spectral variation within the same LULC class. These 

disadvantages may lower classification accuracy if the classification method 

cannot effectively deal with those problems (Moran, 2010). A high spatial 

resolution image is also much more expensive compared to the coarse-

medium resolution images that are often freely available.  Moreover, the 

utility of higher spatial resolution images at the regional level is complicated 

by the cost of how long they take to analyze.  It can also prove to be 

impractical as it provides too much detail for the level of generalization 

appropriate to decision making.  

 

RS techniques in LULC mapping principally uses passive (optical) RS sensors 

which work during daylight hours as their optical sensors record reflected 

radiation in the electromagnetic spectrum. Passive RS can be ineffective in a 

humid tropical area with persistent cloud cover, as is often the case in 

Indonesia. Therefore, radar as an active RS would be a good alternative source 

because it can penetrate the persistent clouds.  Synthetic aperture radar (SAR) 
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has an advantage over optical data (high, medium and low-resolution images) 

and is able to acquire data both day and night (IPCC, 2003). The increasing 

availability of SAR data from satellites has also contributed to urban studies in 

the areas of urban feature mapping and LULC classification (Dell’Acqua et al., 

2003).  However, SAR data is from commercial systems that tend to be more 

expensive relative to government built and operated programs. Thus, the use 

of SAR in a large study area has an impact on the study costs which is a 

significant issue in developing countries. Moreover, it also has less spectral 

information and a problem with speckle noise that makes detection of 

heterogeneous LULC challenging (Chen, 2008). The characteristics of the 

most common sources of remotely sensed data are shown in Table 3.1 . 

b) Spectral resolution 

Spectral resolution refers to the number and width of spectral bands of a 

particular sensor. The spectral resolution achievable is categorized into three 

types; multispectral, panchromatic, and hyper spectral sensors. Multispectral 

imagery is a powerful tool for discriminating LULC by utilizing several 

bands. However, as the bandwidths of these sensors are generally quite large, 

subtle differences between LULC types are hard to recognize. A panchromatic 

channel is available in some satellites such as SPOT and Landsat ETM+.  

Both multispectral and panchromatic sensors are sensitive to radiation across 

several wavelengths from the visible to near infrared portions of the spectrum. 

Hyper spectral sensors have many more bands of imagery than multispectral 

sensors at narrower bandwidths but hyper spectral sensors have a much higher 

cost. Precise information may enable the distinguishing of more subtle 

differences in LULC. To reliably identify a particular object, the spectral 

resolution of the sensor must match to the spectral reflectance curve of the 

particular object in question. Spectral coverage of high spatial resolution 

images data is often limited to the near infrared and visible wavelengths 

(Jensen, 2000; Stefanov, 2004). Moreover, the lack of thermal bands and 

relatively short-period archives limits their effective use for the multiple 

applications of the spatial temporal study of LULC and LST information.  
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Characteristics of the spectral resolution of orbital sensor systems can be seen 

in Table 3.2. 

 

Table 3.1 Characteristics of the most common sources of remotely sensed data 
(modified from Loveland and Defries, 2013)* 

 
Type Sensor/product Spatial 

resolution 
Date of 

observation 
Temporal 
resolution 

Cost 

Coarse 
resolution 
satellite 
sensor (100 
to >1 km)  

NOAA-TIROS 1.1 km 1978-
present 1 day 

Free 

SPOT 
VEGETATION 

1.15 km 1998-
present 26 days 

Free 

ADEOS II 7 km x 6 km, 
250 m -250 
km 

2002-2003 

10 days 

 

EOS AM and 
PM (MODIS) 

250-1000 m, 
275 m 

1999-
present 2 day-1 

Free 

Envisat 350-1200 m,  
150-1000 m 

2002-
present 35 days 

Not free and 
free 

Moderate 
Resolution 
Satellite 
sensor (10-
100 m) 

SPOT 20 m; 10 m 1986-
present 26 days 

Not free 

ERS 30 m 1995-
present 30 days 

Not free and 
free 

Radarsat 10-100 m 1995-
present 24 days 

Not free 

Landsat 30 m 1984-
present 16 days 

Free 

Landsat 15-100 m 2013 16 days Free 
EOS  15-90 m 1999-

present 16 days 
Not free and 
free 

JERS 18 m, 18 m x 
24 

1992-1998 
41 days 

Not free 

High 
resolution 
satellite 
sensor (<10 
m) 

IKONOS 1 m 
panchromatic 

2000-
present 3-5 days 

Not free 

4 m 
multispectral  

 

QuickBird 0.61 m 
panchromatic; 
2.44 m 
multispectral 

2001-
present 

3-7 days 

Not free 

Geo eye* 34 cm 
panchromatic;  

2008 
< 3 days 

Not free 

1.36 m 
multispectral  

 

RADAR (ALOS 
PALSAR)* 

10 m 2006 2 days Not free 

*The availability of data at the start of the project work in 2011 
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c) Radiometric resolution 

Radiometric resolution means the number of digital quantification levels used 

to store the data.  The greater the number of digital quantification levels the 

greater the detail of the information collected by the sensor. 

 

d) Temporal resolution 

Temporal resolution denotes to the revisit rate of the sensor. To see the 

specific change of LULC and LST, accurate mapping depends upon acquiring 

imagery at a specific time of year.  Landsat data is the most common data used 

due to its long history of space-based data collection at a global scale (Morran; 

2010).  

Table 3.2 Characteristics of spectral resolution of orbital sensor systems 
(Stefanov et al., 2004; Powell, 2007) 

 
Sensor Spatial resolution Wavelength (bands) Temporal coverage 
TM 30/120 VSWIR (6) 1984- 
  TIR (1)  
ETM+ 15/30/60 PanVNIR (1) 1999- 
  VSWIR (6)  
  TIR (1)  
ASTER 15/30/90 VNIR (3) 1999-now 
  SWIR (6)  
  TIR (5)  
SPOT HRV 
(Visible high-
resolution) 

10/20 Pan VNIR (1) 1986-1996 

SPOT HRVIR 
(Visible and 
infrared high-
resolution) 

10/20 VNIR (3) or 
VSWIR (4) 

1998-2013 

IKONOS 1/4 Pan VNIR (1) 1999-2015 
  VNIR (4)  
Quickbird 0.6/70 Pan VNIR (1) 2001- 
 2.4/2.8 VNIR (4)  
RADARSAT 10-100 5.7 cm (C-band) 1995- 

3.1.2 Choice of imagery for detecting UHI effects and LULC 

Traditionally, LST data for UHI study are collected from fixed climatology 

stations. Acquisition of detailed spatial distribution information of the temperature 

is difficult because of limited locations for temperature measurement (Zhang & 
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Wang, 2008). Another way to comparatively assess simultaneously across a wide 

area is by using a RS satellite platform. It offers a way to capture data regarding 

detailed quantitative LST across the LULC categories recorded by sensors in the 

thermal infrared (TIR) spectral range.  TIR sensors capture the radiance of the top 

of the atmosphere (TOA) (Zhang & Wang, 2008). 

 

Previous comparisons have shown that the results of TIR observations are in close 

agreement with direct measurements (Mallick & Rahman, 2012). However, 

radiation recorded by the sensor is often influenced by atmospheric constituents. 

In order to obtain realistic values, this original data needs to be corrected for 

emissivity and atmospheric effects.  Radiometric corrected temperature can be 

used to calculate LST in Kelvin or Celsius degrees (Voogt et al., 2003; Weng, 

2009). 

 

Early studies of UHI effects using satellite-derived LST measurements were 

conducted primarily using NOAA's Advanced Very High Resolution Radiometer 

(AVHRR) data for mapping of regional-scale LST (Streutker, 2003; Roth, 2013).  

Recently, other satellite data such as Landsat and MODIS have also been used to 

examine both LULC and LST simultaneously.  Among all these satellites, Landsat 

is the best-known for its frequent and high quality data. 

 

Landsat spectral bands have been identified as effective tools not only for 

identifying LULC and the extent of urbanization (Koutsias and Karteris, 2003), 

but also for measuring changes in LST, vegetation cover and for global hotspot 

analysis (Loveland & Defries, 2013).  Landsat TM and ETM+ thermal infrared 

data (band 6) with 120 m and 60 m spatial resolutions, respectively, provide a 

spatial resolution that is adequate for UHI effect studies and a reasonably accurate 

method for measuring LST.  Those have been utilized for local-scale studies of 

UHI effects and for analysis of SUHI at a local (city-wide) and micro (large 

structure) levels (Yuan & Bauer, 2007).   
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Landsat's main limitations are centered around providing moderate-resolution 

images and the fixed acquisition schedule sometimes needed in a particular place 

at a specific time. Nevertheless, the huge archive of Landsat data from Landsat 1 

which starts from 1972 to Landsat 8 which starts from 2013, is ideal for use in 

long-term monitoring. On 1 March 1984, Landsat 5 was launched that carried 

multispectral Scanner System (MSS) and Thematic Mapper (TM) instruments. 

However, from1995 only Landsat 5 TM was functioning well. Landsat 6 was then 

launched on 5 October 1993 but failed to achieve orbit. On 15 April 1999 Landsat 

7 ETM+ was then successfully launched. However, from 2003 Landsat 7 ETM+ 

shows linear gaps due to the failure of the scan-line corrector. As a result, from 

2003 only Landsat TM was still available to provide better images, but it stopped 

functioning in 2011 due to a rapidly degrading electronic component. The linear 

gaps of Landsat 7 ETM+ were then replaced with the launch of Landsat 8 on 11 

February 2013 (NASA, 2015).  Figure 3.1 shows a Landsat timeline. 

 

 

 

 

 

 

 

 

Figure 3.1  A Landsat timeline (NASA, 2015). 

 

A combination of data from other satellite sources for the specific times is needed 

to overcome the unavailability of good RS image from the same sensor. Several 

researchers have worked to combine different sensor data for temporal monitoring 

of LULC and LST changes.  Wen (2011) used a combination of Landsat MSS and 

Quick Bird data. Zoran and Anderson (2006) used multi-spectral and multi-

temporal satellite data from ASTER, MODIS, SAR ERS, Landsat MSS, TM, and 

ETM.  The use of NOAA’s AVHRR and MODIS satellites was found suitable 
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only for meso-scale mapping of LST as their coarse spatial resolutions with 1 and 

1.1 km/pixel, respectively limit their use for examining relationships between 

LULC and LST at both local and micro scale level. Another satellite instrument, 

ASTER, provides higher spatial resolution data that can be combined with 

Landsat, as was done in a study conducted by Liu and Zhang (2011). ASTER 

operates over a wider spectral region with 14 bands ranging from a thermal band 

at 90 m per pixel and multispectral bands at 15 m and 30 m per pixel with 

coverage from the year 2000 until the present (Abrams, 2000; NASA, 2015). Both 

Landsat and ASTER have 16 day ground coverage cycles that can ensure 

consistent period histories.  The moderate resolution satellite imagery of both 

Landsat and ASTER are ideal when monitoring LULC changes (Franklin and 

Wulder, 2002; Powell at al., 2007).  

 

ASTER imagery is valuable to assess not only LULC maps, but also for relating 

detailed, simultaneous mapping of LST. ASTER’s spatial resolution allows us to 

distinguish more and various surface materials mainly for sub-urban and urban 

areas which have a typically complex surface structure. The principal 

disadvantage of ASTER is that the SWIR bands of 4, 5, and 6 have not been 

useable since April 2008 due to saturation of values and severe striping (ASTER 

Science Office, 2009). 

3.2 Previous UHI Studies 

Incorporating RS and GIS analysis using thermal RS technology enables the study 

of UHI and LST distribution over urban areas. Analysis of UHI using GIS to 

obtain more detailed information of SUHI has been used widely.  Lo et al. (1997) 

utilized data from a thermal infrared sensor to study UHI and found that it was 

helpful to clarify the distribution of the location of the UHI through additions to 

the GIS data layers such as paths, roads, streams and distribution of buildings.  

Liu and Zhang (2011) studied LST changes using GIS tools in Hongkong. Weng 
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(2003) conducted a fractal analysis of SUHI in the city of Guangzhou for the 

years of 1989, 1996 and 1997 by using Landsat TM data.   

 

Other studies have examined the impact of SUHI and found many related factors 

that affected SUHI, such as the roughness properties of the land surface and soil 

moisture (Ahmad and Hashim, 2007; Liu and Zhang, 2011) and population 

density (Malick and Rahman, 2012). In some research, much attention has been 

paid to the relationship between vegetation abundance and LST (Weng 2003; 

Amiri et al., 2009; Dewan and Corner 2014; Weng et al., 2007) studied the 

relationship between LST and urban fragmentation in Indianapolis, Weng (2001) 

and Solecki et al. (2005) showed the impact of urban expansion on LST resulting 

in constructive suggestions concerning management in New Jersey.  It is clear that 

UHI effects vary at different times of day and seasons.  Kazimierz and Krzysztof 

(1999) and Liu and Weng (2008) found that the greatest differences of UHI 

effects occurred when the sky was clear during summer nights.  

 
Researchers have also investigated the relationship between spatiotemporal UHI 

and LULC in various places.  Notably resources have been devoted to the study of 

UHI effects mostly in the U.S and the mid-latitude regions of Europe (Poland) 

(Kazimierz and Krzysztof, 1999; Walawender et al., 2014), and in Mexico 

(García-Cueto et al. 2007). Studies in developing tropical countries often received 

less attention due to lack of financial, scientific and technical resources. Recently, 

study and measurement of tropical UHI is receiving more emphasis due to the 

large population increases expected in the developing regions of the world.  

Dewan and Corner (2014) have looked at this issue in Bangladesh. In Indonesia, 

assessment of LST changes in major cities such as Bandung, Bogor, and 

Semarang have been conducted (Tursilowati, 2005; Tursilowati, 2007).  Effendy 

(2007) focused on the effects of green open spaces on UHI phenomenon in the 

greater Jakarta area.  However, the study area of tropical regions still remains 

insufficiently covered (Mitchell, 2011). 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Klysik,+K&fullauthor=K%c5%82ysik,%20Kazimierz&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Fortuniak,+K&fullauthor=Fortuniak,%20Krzysztof&charset=UTF-8&db_key=PHY
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3.3 Choice of RS and GIS Pre-processing Method 

Successfully identifying LULC change from RS imagery is not only determined 

by the choice of appropriate imaging systems but also by the methodology used 

and by the understanding of landscape features.  Before the main data analysis and 

extraction, two major corrections are required: geometric correction and 

atmospheric correction.  

3.3.1 Geometric correction 

Raw RS imagery is not directly useable for LULC identification because it still 

contains geometric errors. There are two main errors; systematic and 

unsystematic.  Most errors are predictable and systematic errors that come from 

external distortion caused by external parameters other than the sensor (i.e. 

topographic relief, position of platform, variation of attitude, and Earth curvature).  

This type of error can be accounted for by accurate modeling of the sensor and 

platform motion, as well as the geometric relationship of the platform to the Earth. 

Unsystematic or random errors are caused by the sensor (variation of sampling 

rate, lens distortion, improper arrangement of detectors,) which cannot be 

modeled and corrected (Murai, 1998; Hermann, 2007). Compensating these 

distortions is geometric correction's purpose so that the geometric representation 

of the imagery is as close as possible to the real world (Lillesand et al., 2008). 

Landsat TM level 1 from U.S. Geological Survey has been geometrically 

corrected, however topography and/or cloud cover situations that are dominant in 

the study area may result in some pixel-to-pixel mismatches and/or have a degree 

of accuracy that is relatively low. Thus, as the purpose of this research to make a 

time series of LULC changes using different remote sensing data, geometric 

correction of Landsat TM is required.   

Geometric registration can be carried out by using image-to-image registration or 

image-to-map. In image-to-image registration, instead of to geographic 
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coordinates, images are registered to another image (Figure 3.2).  The process of 

image-to-map or image registration is made according to the following steps: 

a) Step 1: Identify the image coordinates (column and row) of some clear 

points in the distorted image or ground control point (GCP).   

b) Step 2: Match them to their true positions in ground coordinates (latitude, 

longitude) of the map. 

c) Step 3: When GCP pairs have been identified and the coordinate 

information is processed, the proper transformation equations are 

determined and then applied to transform the original map/image 

coordinates into their new ground coordinates.  

 

 

 

 

 

 

 

 

 

Figure 3.2 The transformation in geometric correction processes (Murai, 1998). 
 

In order to geometrically correct the original distorted image, a re-sampling 

procedure is applied to calculate pixel values for the rectified grid from the 

original data grid. There are three common methods for re-sampling; nearest 
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neighbor, bilinear interpolation and cubic convolution (Canada Centre for 

Mapping and Earth Observation, 2015): 

a) Nearest neighbor re-sampling takes the digital number (DN) from the pixel 

in the original image nearest to the new pixel location in the corrected 

image. Nearest neighbor re-sampling does not alter the original values and 

is the simplest method and does not alter the original values. However, this 

process can result in a blocky or disjointed image appearance, some 

duplication and loss of pixel values. 

b) Bilinear interpolation re-sampling uses a weighted average of four pixels 

in the original image nearest the new pixel location. As a result, an entirely 

new DN in the output image is created as the original DN is altered.  This 

may be undesirable for further LULC classification analysis that is based 

on spectral response. Thus, re-sampling should be applied after the 

classification process if this method is used for LULC classification.  

c) Cubic convolution re-sampling measures a distance-weighted average of a 

block of 16 pixels from the original image that surround the new output 

pixel location. This method also creates totally new pixel values. 

However, the appearance of the created image using both bilinear 

interpolation and cubic convolution methods is much sharper and less 

blocky in appearance than from using the nearest neighbor method and 

becomes the advantage of these methods. 

3.3.2 Atmospheric Correction 

Remote sensors require solar radiation to pass through the atmosphere to record 

electromagnetic radiation from Earth’s surface.  During travel from Earth’s 

surface to the RS sensors, electromagnetic radiation signals are modified by gases 

and aerosols. As a result, the value recorded at any pixel location on RS images 

also includes information about the atmosphere and does not represent the true 

ground level radiance at that point (Hadjimitsis and Clayton, 2008). Thus, 

removing the influence of the atmosphere is critical in many applications of RS 
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analysis that involves classification and change detection over time to put multi-

temporal data on the same radiometric scale. The purpose of atmospheric 

correction is to produce more accurate surface reflectance values and to 

potentially improve the extraction of surface parameters from satellite images 

(Chrysoulakis, 2010). Since May 2013, a new Landsat TM 5 and ETM surface 

reflectance products (level 2A) have been freely available through the Climate 

Data Record (CDR) (U.S. Geological Survey, 2016). Since atmospherically 

corrected Landsat was not available at the start of this project in 2011, 

atmospheric correction for Landsat TM used in this study is required.  Moreover, 

although the list of existing reflectance products is continuously updated, CDR 

product distribution from the USGS archive is currently not complete because the 

scenes from the National Landsat Archive Processing System (NLAPS) are not 

fully processed yet (Pons et al., 2014).   

 

Two main approaches for atmospheric correction are the relative approach 

(Image-based method) and the absolute approach (Radiative Transfer Modeling) 

(Kayadibi, 2011). The relative approach uses atmospheric modeling (e.g. 

Emperical Line, Flat Field, Log Residual and IAR Reflectance) while the absolute 

approach often retrieves target reflectance with a relatively high accuracy using 

ground data during satellite overpass (e.g. FLAASH, ATCOR, and ACORN) 

(Kayadibi, 2011).  However, these models need the atmosphere information at the 

time of satellite overflight, for example the spectral optical thickness of several 

atmospheric elements (Hadjimitsis and Clayton, 2008) that are sometimes difficult 

to obtain (Kayadibi, 2011). Researchers have made atmospheric correction studies 

on different RS images by using many methods of atmospheric correction.  

Kayadibi (2011) applied and compared four atmospheric correction methods for 

Landsat 7 ETM + and ASTER images.  The comparison showed that the models 

fast line-of-sight atmospheric analysis of hyper-cubes (FLAASH) and 

Atmospheric correction (ATCOR) achieved ideal results and were better than the 

relative methods of atmospheric corrections.  

 

http://dl.acm.org/author_page.cfm?id=81453630220&CFID=712403792&CFTOKEN=20167825
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The FLAASH method is designed to correct wavelengths in the visible, near-

infrared and short-wave infrared spectral areas (ENVI, 2009). The principle of 

FLAASH in performing its atmospheric correction model is based on an 

atmospheric radiative transfer mode that incorporates MODTRAN (moderate 

spectral resolution atmospheric transmittance) calculations. In addition, FLAASH 

can remove most of the influence which the air, light and other factors have on 

reflectance to gain accurate parameters of reflectivity, emissivity, surface 

temperature and other real physical models of surface features (ENVI, 2009).  

Therefore, FLAASH's approach can be used in local level applications related to 

LULC.  Manakos et al., (2011) investigated the effects of atmospheric correction 

on LULC classification and found that FLAASH outperformed the atmospheric 

and topographic correction (ATCOR) module.   

3.4 Selecting a System of LULC Classification 

The selection of an LULC classification scheme plays an essential role as it 

influences results and interpretations.  According to Jensen (2000) a good 

classification system should be informative, exhaustive and separable.  In 

proposing the USGS classification system, Anderson et.al (1976) stated that an 

effective LULC classification system should meet the following criteria: 

a) The lowest level of interpretation accuracy in LULC categories is at least 

85%.  However, Monserud and Leemans (1992) state that an overall kappa 

statistic of 0.55 for the sample error matrix suggests a good overall 

classification. 

b) The class accuracies should be about equal. 

c) Obtain repeatable results from different interpreters and RS imaging time. 

d) Applicable classification system across an extensive area. 

e) The categorization system should permit LULC types to be used as 

substitutes for activity. 

f) Suitable to be used for different times of the year. 
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g) Effective use of subcategories that is able to be obtained from ground 

surveys. 

h) Possibility to use larger scale or enhanced RS data and to aggregate 

categories. 

i) Possibility to compare with future LULC and to recognize multiple uses of 

land. 

 

In the LULC classification system used by USGS for urban/built up areas, the 

standard categories are characterized by buildings, concrete, parks and streets.  

The urban/built-up category can be broken into classification such as residential, 

commercial, industrial, transportation, mixed built-up and recreational land 

(USGS, 2012). This classification system has the flexibility for breaking down 

into more detailed LULC classification to meet a specific purpose at the third and 

fourth levels.  The classification levels of USGS' system are decided by the spatial 

resolution of the image.  Maximum resolution for classification at level 3 is 0.9 m, 

level 2 is 2.5 m, and level 1 is 80 m. In the LULC classification system of NLCD 

92, Anderson’s LULC classification is modified and has 21 LULC classes 

(USGS, 2012). 

 
Table 3.3 shows the USGS’ and NLCD’s LULC classification system.  Since this 

research studies non-homogeneous areas of relative spectral complexity, a more 

detailed, imagery-based LULC classification might give better clarity of dynamic 

spatial patterns and distribution of LST.  In addition, a greater understanding of 

the influence of anthropogenic activities on UHI dynamics may be achieved.  

Some prior research has generated LULC maps that were applied for monitoring 

UHI in big cities across the world and the LULC types of classification used in 

these were varied.  Zhou et al. (2014) classified the main urban LULC types into 

water, barren land, developed low, developed medium, developed high, developed 

open space, cropland, forest, shrub, grassland, pasture, and wetland.  
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Table 3.3  Land classification of USGS in urban area and NLCD 92 
 

LULC 
classification 

system 

Level 1 Level 2 Level 3 

USGS Urban/built up 
development 

Residential High density 
residential 

 Low density 
residential 

 Commercial and services  
 Industrial  
 Transportation, communications 

and services 
 

 Industrial and commercial 
complexes 

 

 Mixed urban/build-up land  
 Other urban/built-up land  
NLCD 92 Water  Open water  
  Snow  
 Developed areas low intensity residential  
  high intensity residential  
  commercial/industry/transportati

on 
 

 Barren bare rock/sandy/clay  
  gravel pits  
  transitional  
 Forested upland deciduous forest  
  evergreen forest  
  mixed forest  
 Shrub land shrub land  
 Non-natural woody orchard/vineyard/other  
 Herbaceous upland grassland/herbaceous  
 Planted/cultivated pasture/hay  
  row crops  
  small grain  
  fallow  
  urban/recreational grasses  
 wetland woody wetlands  
  emergent herbaceous wetland  

 

Looking at the LULC mapping in South East Asian countries like Malaysia and 

Singapore reveals they use six similar LULC types.  These are urban, forest, 

permanent crop, grass, and bare soil (Bin Md Hashim et al., 2007).  Other LULC 

and LST studies in Malaysia used the following classes; infrastructure and 

utilities, residential, commercial, transportation, industry, open space and 

recreation, forest, agriculture, institution and public utilities, as well as water 

bodies (Bin Jamaludin, 2010).   
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In Indonesia, the LULC classification system used has been standardized based on 

the Indonesian National Standard (National Standardization Agency of Indonesia, 

2010).  However, most prior studies of urban mapping in Indonesia used a variety 

of LULC types.  For example LULC mapping in Semarang City, to detect LST 

distribution, classified urban LULC into forest, plantation, paddy field, settlement, 

industry, open space, water bodies and clouds.  Baja et al. (2011) classified a city 

in South Sulawesi into forest, mixed agriculture, grassland, water bodies, 

plantation, settlement, paddy field, seasonal agriculture and open land. In Jakarta, 

the capital city of Indonesia, Prasasti et al. (2014) defined the LULC classes as 

being forest, bush land, grass land, mining area, paddy field, industry, and dry 

land, plantation, mixed garden, water bodies, settlement and open land.  Previous 

LULC mapping in Bali showed that there were 15 major of LULC types in the 

study site which were bare land (open land), building, bushes, dry land, fishpond, 

fresh water, grass, irrigated paddy field, mangrove, plantation, residential, sand, 

sand beach, swamp and unirrigated paddy field (JICA, 2005; As-syakur, 2011). In 

accordance with the purpose of this study and the available image data, the 

classification system used will adapt both the previous study in Bali and the SNI. 

Table 3.4 shows LULC types of a previous study in Bali and SNI. 

3.5 Image Classification  

Obtaining thematic LULC maps from the satellite images requires classification 

of the images.  Image classification techniques group pixels to represent LULC 

classes.  Image classification methods can be applied either to the varying spectral 

data of a series of multi-date images or to the spectral data of a single date image.  
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Table 3.4 LULC classes from previous studies in Bali and Indonesian National 
Standard  

 
JICA (2005) Indonesian National Standard 

(National Standardization 
Agency of Indonesia, 2010) 

As-syakur (2011) 

Bare land Irrigated paddy field Water bodies 
Building Unirrigated paddy field Built-up area 
Bushes Polder Forest 
Dry land Dry farm land Dry farm land 
Fishpond Plantation Mangrove 
Freshwater Mixed plantation Beach sand 
Grass Mixed garden Sandy land 
Irrigated paddy field Dry forest  Settlement 
Mangrove Wet forest Salty land 
Unirrigated paddy field Bush land Grass land 
Plantation/yard Grass land Irrigated paddy field 
Residential Savannah Unirrigated paddy field 
Sand Swam area Fishpond 
Sand beach Open space Open space 
Swamp Beach sand Plantation 
 River sediment Bush land 
 Sandy land  
 Built-up area  
 Unbuilt-up area  
 Lake  
 Fishpond  
 Freshwater  
 Salty pond  
 River  
 Irrigation network  

3.5.1 Methods of image classification 

There are three common image classification techniques; supervised 

classification, unsupervised classification and object based analysis. The 

supervised classification method needs the collection of both validation and 

training data to retrieve thematic maps of features of interest (e.g. wetland, 

agriculture) ground truth data in the form of sample sets (Sudhakar & 

Kameshwara, 2010). Well representative training samples for each LULC 

category are necessary to identify the LULC classes across the image. The 

classification is run based on the spectral signature defined in the training set then 

each class is determined based on what it resembles most in the training set.  In 

the unsupervised classification method, only spectral features without the use of 

ground truth data are required.  Pixels are grouped in clusters, based on their 

reflectance properties.  In the object-based classification method, objects of 
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different shape and scale are generated via segmentation, and homogenous image 

objects are then created by the grouping of pixels.  The classification algorithms 

that are used to classify depend on the spectral characteristics and availability of 

ground truth data (Murai, 1998) as shown in Figure 3.3. 

a) Ratioing: a classification for non-vegetation and vegetation classes. 

b) Box classifier: a simple method using level slicing where accuracy levels 

tend to be low.  

c) Discriminant function: the method is good to be applied for classification 

with few LULC classes. 

d) Clustering: an unsupervised classification method where the spectral value 

regroups into a few clusters with spectral similarity. 

e) Minimum distance method: determines the classes required by some 

statistical distance measures. 

f) Maximum likelihood classifier: one of the typical supervised classification 

methods and the most popular method for LULC mapping with multi  

spectral images due to its robustness, simplicity and relatively good 

accuracy level. However, some errors occur if the number of 

training/sample data points is not sufficient. In this case, the distribution 

does not follow normal distribution or the categories have lots of overlap 

in their distribution (Perumal & Bhaskaran, 2010).  The training data are 

known areas that are demarcated on the digital image (Richards, 2012).   
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Figure 3.3  Typical classification methods (Murai, 1998). 
 

A number of known training pixels are required for the maximum likelihood 

classifier to allow representative signatures to be developed for each information 

category (Richards, 2012). The training data sets should meet the general 

requirements including homogeneity, having a sufficient number of pixels 

representing a normal distribution and should be dispersed widely over the whole 

image. The training data also should be collected preferably for all categories in 

the segment of the image to be classified and at least for all categories of interest 

(Richards, 2012). The training data that is not fully representative can be solved 

by applying thresholds on the discriminant functions that is imposed in maximum 

likelihood classification (Richards, 2012). Another way is by limiting a 

classification. Therefore, poor quality pixels in the image, as characterized by the 

training data, will not be classified to identify the weakness in the selection of 

training data that can be rectified.  Unrepresentative pixels in the training data can 

be excluded in a trial classification (Richards, 2012).   
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3.5.2 Pixel-based classification versus object-based classification method 

In the past, pixel-based classification played a role of great importance mainly in 

classifying low-resolution images (Yüksel et al., 2008).  However, it is often 

difficult to obtain satisfactory results using a finer spatial and spectral resolution 

in mapping heterogeneous urban LULC as high spectral variations within the 

same LULC category often occur (Rozenstein and Karnieli, 2011). When per-

pixel spectral-based classification is applied for LULC classification, each pixel is 

grouped into a certain category.  However, due to high spatial frequency, the 

results will be noisy and resulting in inaccuracies in LULC classification (Riggan 

and Weih, 2009). In addition, spectral heterogeneity of the LULC reduces the 

separability between classes (Nichols, 2012) and can thus lead to a ‘salt and 

pepper’ effect or rogue pixels appearing within classes (Shan and Hussain, 2010).   

 
In order to alleviate the confusion of these heterogeneity problems, different 

human pattern-recognition capabilities, absent in automated classifiers, have been 

examined by many researchers.  Two examples of such capabilities are the use of 

textures in classification and object-based classifiers. Object-based image analysis 

(OBIA) was suggested as an effective solution to the high spectral variation 

problem within the same LULC types (Benz et al., 2004; Zhou et al., 2008; 

Galletti and Myint, 2014).  ENVI 5.3, available from Exelis Visual Information 

Solution is one example of a recent software product for performing OBIA 

(Exelis, 2015). 

 

OBIA can provide finer LULC classification results than per-pixel spectral-based 

classification methods, especially from medium to high spatial resolution RS data 

(Mallinis et al., 2008). It offers an improvement in separability between most of 

the spectrally similar classes and thus, improves the accuracy of the final LULC 

classification.  The thematic map produced is also qualitatively clearer, more 

homogenous and visually appealing (Shan and Hussain, 2010). The advantage of 

OBIA is that it does not only offer a meaningful statistical calculation, but also 
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topological features. In addition, the close relationship between real world objects 

and images is one of OBIA's benefits that are not addressed by pixel-based 

approaches (Benz et al., 2004). The correlation among those benefits indicates 

that OBIA is able to delineate and classify LULC more efficiently.  

 

Although OBIA offers good outcomes, fast, consistent and less subjective 

monitoring, some disadvantages, particularly in the stage of segmentation, persist 

(Omran, 2012). However, the OBIA approach has been used successfully to 

delineate urban areas throughout the world and produce large scale maps and fine 

quantitative information. It also has successfully been used to map urban and 

agriculture areas using ASTER (Galletti and Myint, 2014). While this review 

provides significant potential for OBIA of classification in change detection, this 

concept has not yet been used in the Bali area. Image segmentation and 

classification are two main stages that are involved in an object-oriented 

classification (Baatz et al., 2008). In the image segmentation processes, pixels are 

combined into objects and instead of using individual pixels, a classification is 

then carried out based on those objects. The classification is considered as a 

supervised classifier because it often requires training data in the analysis process. 

 

Segmentation is the process of partitioning an image into segments by grouping 

neighboring pixels with similar feature values (brightness, texture, and color).  

According to Smith and Morton (2008), when segmenting and creating correct 

object shapes, there are two aspects required; the appropriateness of an object’s 

delineation and the precision of boundary delineation. Wrongly delineated image 

objects can occur as segmentation is difficult to apply in areas where different 

appearance does not imply different meaning and in low contrast areas (Kanjir et 

al, 2008).  Moreover, the absence and occurrence of an object class is determined 

by scale level as a classification result is affected by the size of an object (Jensen, 

2004). An edge-based segmentation algorithm that is very fast and only requires 

one input parameter (scale level) is often employed. By suppressing weak edges 

to different levels, the algorithm can yield multi-scale segmentation results from 
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finer to coarser segmentation (ENVI, 2008).  Values range from 0.0 (finest 

segmentation) to 100 (coarsest segmentation; all pixels are assigned to one 

segment) (ENVI, 2008).  Increasing the scale level causes fewer segments to be 

defined, and reducing the scale level causes more segments to be defined.  

 

When over-segmentation is a problem, merging can be an optional step used to 

combine small segments with similar spectral information within larger areas 

(ENVI, 2008). For example, if the image shows thick vegetation, the results may 

be over-segmented if a small scale level value is set or under-segmented if a large 

scale level value is set. Therefore, merging can be a useful option for improving 

the delineation of tree boundaries. The merge level in ENVI has ranges from 0.0 

to 100.0 (ENVI, 2008). Figure 3.4 shows examples of over and under 

segmentation when generating land parcel objects.  

 
 

 

 

 

 

 

Figure 3.4 Examples of over segmentation (left) and under segmentation (right) 
in the bright colour areas when generating land parcel objects (Smith 
and Morton, 2008). 

3.5.3 Training and validation dataset  

When LULC maps are created, training and validation datasets from the region of 

interest are required to obtain a truly accurate LULC map (Sai, 2010).  A training 

data set is used to assign class labels to image pixels, while a validation dataset is 

used to test the performance of the produced map through estimating the accuracy 

of the individual classes (Sai, 2010; Mclnerney and Kempeneers, 2014).   
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The dataset can be digitized from the existing reference map or collected in the 

field. If the dataset is to be taken from a map, the scales of the map and the image 

need to be comparable (Mclnerney and Kempeneers, 2014). Ideally, to 

characterize the classes on the image accurately, data should be collected at or 

near the time of the satellite over pass.  Data collected from field visits also need 

to be georeferenced, so that the point where the data were collected can be located 

on the RS imagery. GPS receivers are commonly required to record this location 

information (Sudhakar & Kameshwara, 2010). However, the acquisition of 

verification data can be expensive, mainly if access is difficult and/or a statistical 

design is rigorously followed. Within these obstacles, Kalkhan et al. (1997), 

combined the use of a sample of ground truth data and air photo interpretation to 

assess the accuracy of Landsat analysis with 200 point samples for the training 

dataset at the first stage and only 25 point samples in the field for the validation 

dataset. Ground truth may not necessarily be correct either; its errors can be 

because of inconsistencies in labeling, small LULC patches used, incorrectly 

specified locations, the inability to see a larger area of the surface (Liu et al, 

2007). Therefore, accuracy assessment is a matter of compromise between the 

affordable and the ideal, or "a balance between what is statistically sound and 

what is practically attainable must be found” (Congalton, 2007). 

 

The training and validation datasets should be representative of the image and 

landscape, independent (not clustered) and should have sufficient training data in 

all classes.  There is a range of sampling methods including (Figure 3.5): 

a) Simple random sampling (observations are randomly placed). 

b) Stratified random sampling (observations randomly placed in each class). 

c) Systematic sampling (observations are placed at same interval) 

d) Systematic non-aligned sampling (a grid provides even distribution of 

random distributions). 

e) Cluster sampling (random centroids used as a base of observations).   
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Figure 3.5 Sampling methods (Congalton, 1991). 
 

To attain the assumption of independence, a random sampling strategy should be 

applied. The disadvantage of this method is that it is difficult to implement when 

field validation is needed for each point and time consuming. Yet, if validation 

and training data are not randomly distributed this can lead to a biased and 

inaccurate classification. To judge the quality of the training dataset, there are 

three options of preliminary statistical studies that can be conducted as follows 

(Gupta, 2003): 

a) A normally distributed curve represents good quality training samples for 

that category. 

b) A matrix showing statistical separability for each spectral band to check 

two categories are distinguishable in any one or more spectral bands. 

Therefore, categories with poor statistical separability should be merged. 
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c) To depict the mutual relations of responses in different spectral bands for 

all categories, cross plots between various spectral bands are plotted. 

3.5.4 Assessment of image classification accuracy 

Accuracy assessment is useful since mapping errors are inevitable.  It is important 

to estimate the accuracy level of a map by calculating the number of ground truth 

pixels that were classified correctly. The accuracy of a classification is usually 

assessed by comparing the thematic maps produced with the validation dataset 

that is believed to accurately reflect the true LULC. Several methods of accuracy 

assessment have been developed (Liu et al., 2007), such as a category-level 

measure developed by Hellden in 1980 called the mean accuracy index, the 

classification success index (CSI) as introduced by Koukoulas and Blackburn in 

2001 and Cohen's (1960) introduction of the kappa statistic to RS in the early 

1980s.   

 

None of the measures can be used as a standard measure for chance-corrected 

accuracy. However, Liu et al. (2007), comparing twenty accuracy measurement 

methods, said that the primary measure of overall accuracy should be at map level 

showing that accuracy measures are highly consistent with each other.  An error 

matrix is often created to investigate thematic map accuracy.  Such a matrix 

consists of numbers set out in rows and columns which express the number of 

sampling units assigned to a particular class relative to the actual category as 

verified in the field. A population error matrix (Table 3.5) can also be constructed 

if both the reference and produced map classifications for all areas on the map are 

available (Stehman, 1997; Smits et al., 1999; Liu et al., 2007). 
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Table 3.5  Population error matrix with pij representing the proportion of area 
in the mapped LULC category i and the reference LULC category 
(Liu et al., 2007) 

 
Classified Reference 

1 2 … m Total 
1 𝜌11 

 
𝜌12 
 

… 𝜌1m 
 

𝜌1+ 

2 𝜌21 𝜌22 … 𝜌2m 𝜌2+ 
.   … . . 
.   … . . 
m 𝜌m1 𝜌m2 … 𝜌m2 𝜌m+ 
total 𝜌+1 𝜌+2 … 𝜌+m  

 
 

In the error matrix, a tabulated view of map accuracy, overall accuracy, user's and 

producer's accuracies are presented (Congalton, 2007): 

a) Overall accuracy is the simplest and one of the most popular accuracy 

measures. It is computed by dividing the total number of correctly 

classified pixels (the sum of the element along the major diagonal) by the 

total number of pixels in the reference pixels (Congalton, 2007). 

Accuracies of individual categories to describe the success of the 

classification can also be calculated in a similar way by dividing the 

number of correctly classified pixels in each category by either the total 

number of pixels in the corresponding row or column pixels in the 

corresponding row or column (Sundara Kumar, 2006). 

b) Producer's accuracy results from dividing the number of correctly 

classified pixels in each category (on the major diagonal) by the number of 

training set pixels used for that category (the column total) (Liu et al., 

2007). It is to indicate the probability of a reference pixel being correctly 

classified (Congalton, 2007) with the formula below: 

 𝜌ai = 𝜌ii/𝜌+ 3.1 

c) User's accuracy is to indicate the probability that a pixel classified on the 

map represents that category on the ground (Congalton, 2007).  It is 

calculated by dividing the number of correctly classified pixels in each 
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category by the total number of pixels that were classified in that category 

(the total of row) with the eq 3.2 as below (Liu et al., 2007):  

 uai = 𝜌ii/𝜌i+ 3.2 

This figure is a measure of commission error and indicates the probability 

that a pixel classified into a given category actually represents that 

category on the ground (Sundara Kumar, 2006). 

d) The Kappa coefficient is not as sensitive to differences in sample sizes 

between classes. It is therefore; considered a more reliable measure of 

accuracy acquisition, Kappa should always be reported (Liu et al., 2007).  

Eq 3.3 shows the kappa formula. A kappa result of 0.8 or above is 

considered good, between 0.6 and 0.8 is substantial and below 0.4 is 

considered poor (Ear-Slater, 2002).   

 
 

 

3.3 

Where: 
r  = number of rows in error matrix 
nij  = number of observations in row i, column j 
ni  = total number of observations in row i  
nj  = total number of observations in column j  
M  = total number of observations in matrix 

3.5.5 Techniques for change detection  

According to Bhatt (2012), factors that need to be considered when choosing a 

change detection method are the objectives of the change detection (i.e., change 

monitoring, increased efficiency or quality mapping), the extracted change type 

(i.e., spectral, long term LULC, shape) and the thematic change type (i.e., LULC, 

vegetation, wetland, or urban change).  Various change detection techniques have 

been developed. The most common change detection methods used are image 

differencing, principal component analysis (PCA), change vector analysis (CVA) 

and the post-classification change method (Lu et al., 2005).    
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Image differencing involves subtracting pixel by pixel images from two dates and 

threshold boundaries between change and stable pixels then are found for the 

difference image to produce the change map (Song, 2000).  The advantage of this 

method lies in its simplicity of implementation and interpretation (Saxena, 2014).  

However, it is unable to provide a detailed change matrix (Bhatt, 2012).  In PCA, 

the dominant modes of spatial, spectral and temporal variation of two four-

channel multispectral images can be effectively summarized (Li and Yeh, 1998). 

It also offers an advantage in providing maximum visual separability of image 

features (Saxena, 2014) and therefore, PCA can improve the image classification 

accuracy. However, it is often difficult to identify the change areas without a 

thorough examination of the resultant image and field data or visual interpretation 

of the composite image (Lu et al., 2005).  Another change technique is change 

vector analysis (CVA). An advantage of CVA is the ability to process any number 

of spectral bands to produce detailed change detection information (Lu et al., 

2005). However, identifying the trajectory of the LULC changes is difficult and 

becomes the disadvantage of this method (Bhatt, 2012). 

 

Using the post-classification change approach, the change area is recognized 

through direct comparison from two multi-temporal classified images that are 

separately extracted and labeled with correct attributes (Bhatt, 2012).  This 

method is categorized as a classification based detection technique. The benefits 

of post classification comparison are not only that it can detect detailed “from-to” 

information, but also that it can overcome the difficulties linked with RS image 

analysis that is acquired from different sensors at different times of year (Coppin 

et al., 2004; Yuan et al., 2005).  Moreover, the nature, rate and location of changes 

can be efficiently detected and it has been successfully used in urban areas.  

Disadvantages of the post classification comparison method include issues 

associated with the accuracy level of component classifications, sensors and data 

pre-processing methods. Therefore, individual classification should be as accurate 
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as possible (Coppin et al., 2004; Yuan et al., 2005) as a data error can produce a 

large number of erroneous indications of change.  

3.6 Chapter Summary 

This chapter reviews choices of RS Imagery for measuring LULC, LST and 

NDVI and the methodology to obtain LULC maps. Literature about related work 

shows that the combined use of remotely sensed imagery and GIS applications is 

a key tool in LULC and LST change detection and simultaneously extracting 

NDVI. The choice of RS data has to carefully consider the scope of study 

purpose. With the rapid development of RS techniques, many classification 

methods have been developed and are able to be grouped into the traditional 

pixel-based method and the object-based method, a choice that is primarily driven 

by the resolution of RS data. Moreover, along with the use of various remotely 

sensed data, evolution of RS technology also has accelerated the development of 

change detection techniques which are implemented through case studies. 

Different techniques have a balance between cons and pros and are useful to 

varying situations. This chapter also reviews methods for accuracy assessments 

most commonly used and therefore, recommended. In addition, the efficacy of 

various methods to be used is determined by the complex factors and objectives of 

each research. In accordance with the use of multi-temporal and multi-source RS 

data for tropical developing countries, the choice not only needs to consider 

possible optimum and best techniques but also attain the result aims with 

relatively low-cost analysis. 
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4 STUDY AREA AND DATA 

To investigate LULC, LST, and NDVI using RS and GIS technology, information 

about the study area’s characteristics is required. It is also important to achieve an 

interpretation result that is relevant to the actual changes that have occurred.  

Moreover, specific characteristics of the RS data used must be fully understood to 

employ image processing properly, since RS data is used for multiple purposes as 

well as assessing LULC, LST, and NDVI.   

 

This chapter focuses on describing the characteristics of the study area and the 

data used in this study. The selection of the study area located in the southern part 

of Bali was not only due to the fact that this area has undergone the most 

significant change among islands in Indonesia, but also the area’s availability of 

suitable RS imagery and ancillary data such as digital maps for compilation of 

reference data, as well as convenient access to the area for field checking. The 

study area is a famous destination for world-class tourism that plays a tremendous 

role in the Balinese and Indonesian economies.   

 

Indonesia is an archipelagic country of about 17.000 islands with most of its 

population concentrated in coastal zones (Whitten et al., 1996). The most 

economically productive islands such as Bali, Java, and Sumatra are particularly 

vulnerable in the face of climate change (World Bank, 2009; Measey, 2010). 

Diverse human activities that directly affect LULC changes have been increasing 

in quantity and spatial distribution in Bali and have been expanding towards the 

coastal fringe area in the south part of the island. As a result, detrimental 

degradation of the environment over a long time has occurred in those areas in 

particular. This is caused by LULC conversions that often have not been based on 

the principles of sustainable development. Those notable changes are indicated by 

the disappearance of a large amount of essential natural landscapes (e.g., 

agricultural land, vegetation and mangrove forest), which are major potential 
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contributors to moderating the urban microclimate. The detrimental 

environmental functioning of the ecosystem that is triggered by the uncontrolled 

LULC change may very likely decrease tourist visits to Bali. Thus, many 

socioeconomic activities would gain benefits from a reduction in UHI effects 

based on this study outcome.  

4.1 General Description of Study Area 

The research focuses on the main southern coastal region of the island of Bali. 

Most of the urban development is located within a land area of approximately 272 

km2 (17 x 20 km).  As a result of the uniqueness and beauty of the coastal culture 

and the area’s environment, its tourism facilities have developed more rapidly 

than in other regions in Bali.  The study area comprises the main capital city of 

Bali, Denpasar, and its surrounding suburban areas, known as the Sarbagita 

metropolitan area.  The Sarbagita metropolitan area includes the city of Denpasar 

and the regencies of Badung, Gianyar and Tabanan (Figure 4.1).  Geographically, 

the study area is on a relatively broad gently sloping surface with an elevation 

between approximately 0 and 100 m above sea level.   

4.1.1 Socioeconomic condition 

Bali is described as an important region in the Indonesian national development 

plan for the medium term (RPJMN) 2010-2014 (State Ministry of National 

Development Planning of Indonesia, 2013). The tourism industries, which consist 

of trade, hotels, and restaurants, are critical factors in the Gross Regional 

Domestic Product (GDRP) and contributed about 30% of the GDRP from 2010 to 

2013. However, the study area is also still essentially dependent on the 

agricultural sector (about 20%), transport and communication (about 14%), and 

related services (about 14%). Other sectors such as mining, building, and finance 

contribute to less than 10% each. Table 4.1 shows the fluctuation of Bali’s gross 

regional domestic product from 2010 to 2013 (Statistics Office of Bali Province, 
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2011). As a result of good economic conditions in Bali, migration of people from 

other islands and countries has increased, as has the population density. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
Figure 4.1  Location of the study area. 
 

4.1.2 Climate and traditional growing season 

The study area is located in the equatorial region with a typically tropical climate 

characterized by high humidity, abundant rainfall, and high temperatures. The 

area has a mean annual temperature of 33 °C, its humidity ranges between 70 and 

90%, and average rainfall is more than 2,000 mm per year. Winds are moderate 

and predictable. There are two types of seasons in Indonesia.  The dry season runs 

from May to September that is influenced by the Australian continental air masses 

Source: National Geographic 
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Aster imagery in 2013 (scale 1:80.000) 
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and the wet season runs from November to March that is influenced by the Pacific 

and Asian ocean air masses. Due to these different seasons, the natural water 

supply is not continuous throughout the year. It is therefore necessary to select 

and plan species of plants in green space planning that have more ability to retain 

and maintain the availability of groundwater. To prevent flooding in the rainy 

season, making ponds in parks that function as water reservoirs can be an 

alternative solution. 

 

Table 4.1  Gross Regional Domestic Product of Bali (2010-2013) (Statistics  
Office of Bali, 2014) 

 

Business sector 2010 2011 2012 2013* 
  %   %   %   % 

Agriculture, livestock, 
forestry, fishery 12099 18.01 12737 20.78 14137 20.25 15903 16.82 
Mining, excavation 471.2 0.70 545 0.89 660 0.95 758.21 0.80 
Processing, industry 6152 9.16 6606 10.78 7471 10.70 8241.8 8.72 
Electricity, gas, water 1263 1.88 1430 2.33 1704 2.44 1970.8 2.08 
Building 3034 4.52 3440 5.61 4351 6.23 4862.7 5.14 
Trade, hotel, and 
restaurant 20196 30.06 22702 37.04 25372 36.35 28260 29.89 
Transport, 
communication 9683 14.41 10689 17.44 12299 17.62 13477 14.25 
Finance, leasing 4619 6.87 5024 8.20 5663 8.11 6371.6 6.74 
Services 9676 14.40 10857 17.71 12284 17.60 14712 15.56 
 Total 67194  100 61293  100 69805  100 94556  100 

*provisional data 

 

The transition months of April and October are characterized by changing winds 

and inconsistent weather. According to Setiawan (2012), temperature data 

recorded for the period 2004-2008 at Denpasar climatology stations shows that 

temperatures tend to decrease during the dry season, but tend to increase during 

the rainy season (Figure 4.2).  The length of daylight hours between different 

seasons changes relatively little by about 48 minutes.   
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Figure 4.2 Pattern of monthly average temperature for the period of 2004-2008 
and pattern of wet and rainy seasons during three periods in Bali 
(Setiawan, 2012). 

 

These climate patterns interact with the relatively flat topographic conditions and 

allow crops to grow in the study area, where most of Bali’s rice fields are located 

throughout the year. Since irrigated paddy fields’ growing season needs a lot of 

water, the fields’ productivity strongly depends on the availability of water. The 

allocation of river water for irrigation and land utilization in the farmlands is 

collectively controlled by local water communities called Subak. The reduction of 

river water and rainfall in the dry season is usually managed by planting 

horticulture plants that need less water. At this point, the paddy field is 

temporarily transformed into dry farmland for about three months. This change is 

also important to mitigate paddy diseases/pests and rehabilitate the soil structure. 

Another alternative management strategy to overcome water shortage during the 

dry season is planting paddy alternately between adjacent subak regions. 

Therefore, irrigation water is sufficient enough both in the dry and rainy seasons 

for entire subak areas. During the fallow period, farming work is usually focused 
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on maintaining vegetation or mixed gardens near the paddy fields. This system 

shows that local traditional responses in facing the local climatic situation has 

allowed the area of paddy fields to continue to be economically and physically 

productive throughout the year. 

4.1.3 Urbanization in Bali  

As in other developing countries, most people in Indonesia no longer live in 

villages. Indonesia’s population living in urban areas grew steadily from the start 

of Indonesian independence in 1945 as a result of pressure on poverty in rural 

areas and continued to grow sharply in 1960s along with improved socioeconomic 

development. In the period 1980-1990, there was a sharp increase in the urban 

proportion of the population from 22% to 31%.  The 2000 Indonesian population 

census showed that the urban population had reached more than 85 million people 

or about 42% of the total population. In 2020, the urban population is estimated to 

reach 132.5 million people or about 52% of total population (Indonesia Ministry 

of Environment, 1997). 

 

Sarbagita metropolitan area in Bali has become one of the biggest metropolitan 

areas in Indonesia, which is experiencing tremendous urbanization that is 

predicted to continue until 2025 (Sutriadi and Haryo, 2009).  The high level of 

urbanization in Bali is demonstrated by the capital city. Denpasar’s 2010 

population density reached 6400 persons/km2 with 1270 prs/km2 for other 

surrounding regions (Statistics Office of Bali, 2011). In addition, the area’s 

population reached 1,747,151 in 2010 with an annual growth rate of 3.2% 

(Statistics Office of Bali, 2011), and became one of the largest population bases in 

Indonesia.  Consequently, the need for housing and other facilities increases and 

leads to LULC changes.   

 

Figure 4.3 shows the percentage of urbanization growth for Denpasar City in Bali 

province and other cities in Indonesia from 1971 to 2025. The level of 
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urbanization of Indonesia’s five biggest cities including Denpasar (Bali), Jakarta, 

Yogyakarta, Tangerang (Banten), and Bandung (West Java) reached more than 

70% from 2010 to 2015. Urbanized area means built-up areas including 

residential, commercial and service, transportation, communication and utilities, 

industrial and commercial, and mixed built-up area (Sutriadi and Haryo, 2009).  

This is due to the fact that these cities are more economically attractive than other 

Indonesian cities. In 2025, it is predicted that the urbanization level will reach 

over 80%, except Jakarta, which is approaching 100%, meaning that appearance 

of Jakarta has been completely categorized as urban (Saefuloh, 2011).     

 

 
 
Figure 4.3   Urbanization trend in large Indonesian provinces (Sutriadi and Haryo, 

2009). 

4.1.4 Balinese traditional concept of conserving nature 

Rapid LULC transformation in Bali has occurred due to urbanization. This 

transformation occurs not only in the downtown area of Denpasar, located in the 

middle of the study site, but has also expanded to the coastal areas of the 

Sarbagita metropolitan area.  Traditionally, LULC in Bali is arranged around the 

principles of Tri Hita Karana. This is a concept indigenous to the Balinese 

community, which has been shown to be an ecologically sustainable system and 

has protected some of Bali’s natural sacred green spaces. According to Putra 
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(2011), Tri Hita Karana is a local concept for attaining secular bliss through the 

harmonious relationship between humans and the environment (palemahan), 

between human beings (pawongan), and between human beings and God 

(parhyangan) into an integral oneness. However, because of recent population 

pressure, the structure and function of the traditional LULC patterns preserving 

natural and semi-natural areas have undergone fundamental changes in some 

areas. The amount of green agricultural space, water area, and forest has tended to 

be reduced by conversion to urban or related uses that have potentially contributed 

to the increase of an adverse thermal environment. Bali’s indigenous cultural 

concept should be kept in use and integrated into the new concepts of urban 

spatial planning and management (Putra, 2011).  

4.2 Remotely Sensed Data Preparation 

The primary satellite data that were selected to measure LULC, LST, and NDVI 

and to compare the changing intensity were images from Landsat Thematic 

Mapper (TM) 5 and the Advanced Space-borne Thermal Emission and Reflection 

Radiometer (ASTER). Detailed information about the Landsat TM and ASTER 

data collected can be seen in Table 4.2. The choice of the dates (1995, 2003 and 

2013) is determined by the purpose to examine the LULC changes in the past and 

current levels of LULC for the three different periods, given that urbanization in 

Indonesia shows a notable increase from 1995 (Soeroso, 2004), and the 

availability of remotely sensed data with relatively little cloud cover in the study 

area that only can be found on the date of 2003 and 2013. This is also supported 

by the availability of ancillary data in 1995 and 2003. Even though the percentage 

of cloud covers in images seems relatively high on those images, the study area 

had relatively little cloud cover. 
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Table 4.2  Satellite data used in this study 
 

Image Image label Cloud 
cover 
(%) 

Image 
date 

Acquisition time 
Greenwich 
mean time 

( GMT) 

Local 
time 

Landsat TM LT51160661995034DKI00 20.42 3/2/1995 1:35:26  9:35:26 
ASTER ASTL1A0302240248130303180096 16 24/2/2003 2:48:13 10:48:13 
ASTER ASTL1A1304240247461304250055 50 24/4/2013 2:47:46 10:47:46 

4.2.1 Landsat TM data 

Landsat TM 5 data comes from a level 1 product generation system and was 

obtained free of cost through the United States Geological Survey (USGS) web 

interface (USGS.glovis.gov), and was generated by the National Land Archive 

Production System (NLAPS). The study site is located in path 115 and row 66.  

Landsat Level 1 images are geometrically corrected and use Standard Terrain 

Correction (Level 1T) that provides systematic geometric and radiometric 

accuracy by incorporating ground control points (GCPs) while employing a 

Digital Elevation Model (DEM) for topographic accuracy (USGS, 2000). The 

geodetic accuracy of the product depends on the accuracy of the GCPs and the 

resolution of the DEM used. Technical details of Landsat TM are provided at 

Table 4.3.  Generally, a Landsat Level 1 image had the following (USGS, 2000): 

• Map (north-up) image orientation and GeoTIFF output format. 

• Cubic convolution resampling method. 

As described in Chapter 2, cubic convolution re-sampling method creates 

totally new pixel values by calculating a distance-weighted average of a 

block of 16 pixels from the original image that surround the new output 

pixel location. As a result, the new appearance of image is less sharp. 

• World geodetic system (WGS) 1984 datum and Universal Transverse 

Mercator (UTM) map projection. 

• 30-meter (TM, ETM) and 60-meter (MSS) pixel size (reflective bands). 

• File format is GeoTIFF. 
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4.2.2 ASTER data 

ASTER is a collaborative project between Japan's Earth Remote Sensing Data 

Analysis Centre (ERSDAC); Japan’s Ministry of Economy, Trade and Industry 

(METI); and NASA.  The ASTER archive was available at the ASTER earth 

observing system data gateway (http://gds.aster.ersdac.jspacesystems.or.jp), 

which allows entering a number of search criteria.  Data retrieved can be viewed 

and downloaded at level 1A, which combines the radiance at the sensor with the 

image’s radiometric and geometric coefficients. It is provided in the HDF-EOS 

format, which some commercial image processing software such as ENVI and ER 

Mapper can read directly.  The ASTER instrument consists of the visible-near 

infrared (three bands at 15 m/pixel), shortwave infrared (six bands at 30 m/pixel), 

and thermal infrared (five bands at 90 m/pixel) wavelength regions of the 

electromagnetic spectrum.  The ASTER scene covers a 60 × 60 km area. The 

technical specification of the ASTER images used can be seen in Table 4.3. 

Table 4.3  Characteristic of ASTER and Landsat TM imagery 

 
ASTER LANDSAT TM 

Spectral 
subsystem 

Band Spectral 
Range (μm) 

Spatial 
Resolution 

(m) 

Spectral 
subsystem 

Band Spectral 
Range (μm) 

Spatial 
Resolution 

(m) 
    Visible Blue 1 0.45-0.52 30 

Visible-near 
infrared 
(VNIR) 

1 0.52-0.60 
15 

Visible Green  2 0.52-0.60  
120*120 2 0.63-0.69 Visible Red 3 0.63-0.69 

3 N 0.78-0.86 Near infrared 4 0.76-0.90 

Shortwave-
infrared 
(SWIR) 

4 1.60-1.70 

30 

Shortwave IR-1 5 1.55-1.75 
5 2.145-2.185 Thermal IR 6 10.40-12.50 
6 2.185-2.225 Shortwave IR-1 7 2.08-2.35 30 
7 2.235-2.285     
8 2.295-2.365     
9 2.360-2.430     

Thermal 
infrared 
(TIR) 

10 8.125-8.475 

90 

    
11 8.475-8.825     
12 8.925-9.275     
13 10.25-10.95     
14 10.95-11.65     

The blue shaded area shows bands that selected for analysis of LULC, LST, and NDVI mapping. 
 

Although several studies have shown that classification accuracy increases 

substantially with more bands, for the kind of classification used, a smaller 
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number of band is desirable and one way of doing this classification is to use the 

first three principle components of ASTER. In addition since April 2008  the 

visible and near infrared bands of the ASTER sensor (Bands 1, 2, and 3N) have 

been the only bands available for LULC classification since the ASTER SWIR 

bands of 4,5,6,7,8, and 9 were no longer useable due to saturation of values with 

noise and severe striping (ASTER Science Office, 2009).  The ASTER bands of 1, 

2, and 3N provide the highest spatial resolution and have proven useful for urban 

land cover classification (Zhu & Blumberg, 2002; Malekpour & Taleai, 2011; Cai 

et al., 2012).  The most common band combination of spectral band 4, 5, and 3 of 

Landsat TM was used as this band combination of Landsat TM is often used for 

urbanized area, vegetation and agricultural areas (Gusso and Ducatti, 2012) which 

dominate in the study area in 1995 as the principal application of those bands is to 

distinguish soil and vegetation (Horning et al., 2010; U.S. Geological Survey, 

2011). 

4.2.3 Ancillary data 

Ancillary data are used for various purposes such as geometric correction of RS 

data and delineating the boundaries of the region. In this study, a digital map of 

streets and rivers (Geospatial Information Agency of Indonesia, 2005) that 

contains a description of the ground surface was primarily used for geo-

referencing satellite images. Some thematic layers of Bali’s administrative 

boundaries in shapefile format also have been used to delineate the study area and 

to create the area of interest (AoI) and classification references. 

 

Detailed LULC data from Udayana University for Bali from 2003 and 2008 were 

available and have been used for the accuracy assessment of image classification. 

These datasets are downloadable for the study area in shapefile format and 

provide comparable digital maps of Bali’s LULC. Another secondary data source 

was a digital LULC Map of Bali from 1995/1997 produced by Indonesia 

Geospatial Information (Geospatial Information Agency of Indonesia, 1995). 
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These datasets are required as training data for the LULC classification. The scale 

of all output products was set to 1:50000, facilitating the detection of essential 

terrain features by means of satellite images and their representation.  

 

Google Maps, Google Earth, and Quickbird imagery from 2005 for the Badung 

region obtained from the Department of Public Works of the Badung regency 

were also frequently used to check the classified data from RS images whenever 

confusion arose deciding the LULC type.  Google Maps is a free web mapping 

service technology and a source of high-resolution satellite images covering all 

types of landscape (Das, 2007).  A related product is Google Earth. It is a program 

that contains virtual globe, maps, and GIS that maps the earth by the 

superimposition of images gained from GIS 3D, global satellite imagery, and 

aerial photography (Das, 2007).  The derived LULC data can easily be overlaid on 

Google Earth images in order to check and compare the classified images.  The 

integration of LST maps with Google Earth was also used to facilitate low-cost 

techniques for detection of Micro Heat Islands (MUHI) in order to delimit the 

extent of UHI effects.  

4.2.4 Field survey to obtain ground truth data and LULC types 

A field survey was conducted to collect ground truth data in the study area, to 

define LULC types and classification assessments and to learn about the existing 

condition of LULC types. Data collection was conducted using a Global 

Positioning System (GPS) with 10m accuracy. Other necessary tools required 

included printed Google Earth maps and Quickbird images to locate features.  

LULC features and human activities from each sample study were also identified 

and described. In addition, important features were photographed using a field 

camera in order to supplement the produced maps. This field observation was also 

supported by literature to get long-term LULC information about the study area.  

The data utilized in this study were generally processed with ArcMap 10.1 and 
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ENVI 5.0. The statistics analysis was conducted with Microsoft Excel 2010 and 

IBM SPSS statistics 21.  

4.3 Research Design Process 

This study is a framework of RS image processing using Bali as a case study in 

order to plan urban green spaces that can mitigate UHI effects, as has been 

explained in Chapter 1. A general overview of the research process is shown in 

Figure 4.4 with detailed methodology for each analysis. The results and 

discussion will be described in each chapter.  Proportions and conversions of 

LULC and LST from 1995, 2003, and 2013 and the relationship between 

biophysical factors are identified and analyzed using statistics after retrieving and 

validating maps of LULC, LST, and NDVI.  The LULC data was then combined 

with normalized LST data to see the mean LST for each LULC classes for each 

year. In addition, an urban green space plan (block plan) is also developed and 

recommended based on the LST information. 

4.4 Chapter Summary 

The study area located in the southern part of Bali represents an urbanized area in 

the tropical tourism island of Indonesia. While the social, economic, and tourist 

activities of this study area are very sensitive to the environment, as they are 

located in the coastal areas, urbanization is constantly growing, triggering the 

alteration of LULC, and thus, potentially results in UHI effects and other 

detrimental environmental impacts. The choice of this study area was not only 

determined by those situations and benefits to the social, economic, and cultural 

activities and environment, but also the availability of suitable RS imagery and 

ancillary data as well as convenient access for field observation. A temporal series 

of RS images from Landsat TM and ASTER were selected, as those images offers 

fine spatial resolutions, relatively free cloud cover imagery, and have a relatively 

low cost of analysis.  
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Figure 4.4  An overview of the research design 
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5 ANALYSIS OF LAND USE/COVER CHANGE IN 
SOUTHERN BALI 

The LULC of southern Bali, as one of the most populous islands in Indonesia, is 

characterized by more built-up area for economic purposes (i.e. retail, industrial, 

commercial, transportation, recreation, and residential) compared to other areas in 

the island of Bali. The agricultural lands such as grasslands, paddy fields, dry 

fields, and forests that have balanced the urban ecosystem still exist sporadically.  

The necessity for land for many urban purposes has resulted in increased pressure 

on the environment, which led to the change in LULC and ensuing enormous 

costs to the environment.  It is therefore, necessary to examine the changes in 

LULC, so that their effect on the terrestrial ecosystem can be discerned, and 

sustainable LULC planning is able to be formulated. 

 

A range of RS sensed data has been used to map Bali’s LULC previously (JICA, 

2005; As-syakur, 2011); until recently, however, LULC classification was based 

on traditional pixel-based methods. This chapter describes LULC change analysis 

of southern Bali from 1995 to 2013 that uses OBIA with Landsat and ASTER 

data.  This chosen method considers characteristics of the study area in a large and 

complex tropical urban-rural landscape and OBIA offers some advantages such as 

separability between most of the spectrally similar classes and thus, improves the 

accuracy of the final LULC classification (Shan and Hussain, 2010).   In order to 

identify the changes of LULC in Bali, a post classification change approach was 

used. The results of this study are expected to provide valuable information for 

planners to devise sustainable LULC planning and management and to be used 

further for urban green space planning and policy. 
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5.1 Classification Process 

5.1.1 Training data collection 

Training data were classified using field validation, a reference LULC map of 

Bali from 1995/1997, and 2003 and high-resolution image interpretation. A total 

of 298 reference data for the 1995 map and 346 reference data for the 2003 map 

were used to assess the accuracy of LULC maps.  A field survey was conducted to 

collect ground truth information to assess the accuracy of the 2013 LULC map. A 

set of 382 sample points was generated in order to get at least 5 points of each 

LULC class based on random sampling method in ArcGIS with a minimum 

allowed distance between points was 0.5 km. The positions of randomly selected 

points were physically visited in October 2013 and 2014, and locations were 

recorded using a GPS unit (Appendix V-4). Due to the difficulty of accessing 

some areas (e.g. mangrove, swamp areas, and vegetation), not all of these sites 

were able to be visited. Instead, the classes at those sites were manually 

interpreted.  LULC and Expert knowledge obtained from a number of onsite 

activities combined with Google Earth and composite images of ASTER and 

Quickbird for the Badung region were used to identify the class at each point.   

5.1.2 LULC classification system 

Before classification, the classes were assigned and classification rules to describe 

each class were selected.  The observed LULC information was used as the basis 

to determine the type and characteristics of LULC in the study area. The LULC 

classification scheme of Bali in 2003 (JICA, 2005) and the standard LULC 

classification for Indonesia (National Standardization Agency of Indonesia, 2010) 

were adapted to evaluate LULC changes for better acceptability and easy use. 

Other factors such as study purpose, spatial resolution, and spectral reflectance of 

images were also considered in designing the classification types. There are 11 

primary classes can be identified in this study (Figure 5.1 and Figure 5.2).  These 
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were: built up area, open space, vegetation, fish pond, mangroves, bush land, 

grass land, dry farm land, paddy field, swamp area, and water bodies (Table 5.1). 

Table 5.1      The LULC classification schema (modification from Land Use Map 
of Bali JICA (2005) and National Standardization Agency of 
Indonesia (2010) for Bali. 

 
LULC type Description 

Primari Secondary Tertiary 
(Landsat and Aster) (Aster)  

Urban  Built-up area Very dense Areas with built-up urban centers; 
approximately 80- 100% construction 
materials (e.g., asphalt, rooftops, 
concrete). House lots fewer than about 
1 acre, frequent tree cover  

 Dense Areas with a mixture of constructed 
materials (50-80%) and vegetation; 
House lots about <3 acre – 1 acre  

 Semi dense Built-up areas with less than 50% 
constructed materials, large house lots 
(typically about >3 acre) 

 Bright rooftop Buildings with bright rooftops 
Non 
urban 

Vegetation Vegetation Plantations, mixed gardens, woodlots, 
greenways along rivers and streets and 
roads, deciduous vegetation, conifers  

Paddy field Dry Rice plant farms 
 Harvested  
 Watered 
 Vegetative 
Fish pond Fish pond Ponds 
Mangrove forest Dense mangrove Evergreen mangrove forests 
 Non dense 

mangrove 
Bush land Bush land Shrubs 
Grass land Grass land Golf courses, lawns, sod fields  
Open space Open space Exposed soil, landfill sites, areas of 

active excavation, open concrete areas, 
sand beaches  

Dry farm land Dry farm land Crop fields, fallow lands, vegetable 
lands 

Swamp area Swamp area Swamp areas, low-lying areas 
Water bodies Bodies of water Rivers, reservoirs, freshwater,  

permanent open waters 
 

The classes of paddy field, built-up area, and mangrove forest were subdivided for 

2003 and 2013 ASTER imagery analysis into subclasses to differentiate the 

vegetation level at the time of the image acquisition (tertiary LULC types).  A 

more detailed classification scheme of LULC types was applied due to the 

different spectral reflectance of classes. Those tertiary classes were then 
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reclassified into the secondary LULC types, before all the main differences 

become only urban and non urban area in order to see the urban growth. 

a) A mangrove forest is characterized by natural trees located along the south 

beach. The classifications of mangrove forests in Bali consist of 

primary/natural forests and secondary/disturbed forests.  Trees in mangrove 

forests vary in terms of species, such as Rhizophora spp, Avicennia spp. 

Bruguiera spp.; diameter distribution; and total area for each age class. 

b) A paddy field is a wetland planted with rice plants, describes both irrigated 

rice and unirrigated paddy fields, and is commonly found around alluvial 

plains or near the natural river. Operations start long before planting is done, 

depend its planting time, and are carried out using draught oxen and hand hoe.  

c) Bush land is characterized by the presence of woody shrubs that in some areas 

grow together with sparse grass. Bush land in the study area is generally a 

same former vegetation cover, paddy field, or other agricultural area, that has 

regrown. 

d) Grass land consists of permanent natural and planted grasses. Natural grass 

land is located at the international airport. Some areas also include land with 

scattered shrubs and trees and are used for livestock grazing and browsing. 

Artificial grass lands are in parks and on golf courses and are used for 

recreation and sport. 

e) Built-up areas are construction/building area including residential, commercial 

and services, industrial area and road both in rural and urban areas. 

f) Dry farm land is land hosting cultivated horticultural crops such as vegetables 

and flower beds, which are very intensively managed. 

g) Open space is mainly covered by bare soil and exposed rocks and has only a 

little or no vegetation cover. 

h) Vegetation is diverse, containing either natural or planted vegetation that has 

been altered by prolonged cultivation and human settlements. Vegetation 

cover consists of annual or perennial woody and succulent plants and usually 

existed adjacent to irrigated paddy fields, catchment areas for protection 

plantations, and road sides. Such areas include urban and peri-urban 
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plantations operated by the government, non-government bodies, and the local 

community. Such areas are composed of both monoculture types of industrial 

plants such as bamboo and mixed bushy and woody lots (mixed garden) with 

various functions such as fruit production (avocado, jackfruit, longan). 

i) Water bodies are areas covered by water (oceans, estuaries, and rivers). 

j) Swamp areas are areas of seasonal low-lying land that are frequently flooded 

and are dominated by woody plants. Such land is found close to the Airport. 

k) Fishponds are a freshwater ponds stocked with fish. 

5.1.3 Pre-processing of satellite images 

a) Geo-rectification processing 

The ortho-rectification process was applied to correct non-systematic geometric 

errors or the different viewing angles typical of multi-temporal datasets and also 

to ensure that all images and secondary products overlay perfectly. Each scene 

was geo-referenced using the “image to map” technique, based on the digital map 

of Bali and only the ASTER images needed to be projected into UTM WGS 84 

zone 50 S. Approximately 15-20 ground control points (GCPs) were chosen from 

each entire image. The nearest neighborhood algorithm was used during re-

sampling as it has the advantages of preserving the original image’s nearest pixel 

values, which is useful for further image classification, and gave overall root 

mean square errors (RMS) of less than about 0.7 pixels (Appendix V-1 and V-2).  

To obtain better results of LULC changes from 2003 to 2013, small cloud patches 

in the 2013 ASTER image were removed. All three images were clipped to the 

study site boundaries via a clipping operation. Topographic correction was not 

performed, as most of areas in the study area are flat. 
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Figure 5.1  LULC types 
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Figure 5.2  LULC types 
 
 

b) Atmospheric correction 

When using remotely sensed data, geometric and radiometric accuracy are 

required for reliable change detection. To minimize the influence of noise 

and other errors caused by atmosphere, atmospheric correction using 

FLAASH in ENVI was applied, and digital numbers (DN) were converted 

into reflectance. FLAASH, ENVI’s atmospheric correction algorithm 

based on MODTRAN4 code, was applied to the image data. The required 

sensor spectral response function file was provided by DigitalGlobe. 

Model adjustments for the other parameters were kept at their default 

values according to the FLAASH user’s manual for multispectral imagery 

(ENVI, 2009). The FLAASH modules in ENVI software can be used not 

only for atmospheric correction but also to convert digital numbers (DN) 
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surface reflectance of the whole image can be calculated pixel by pixel.  

Figure 5.3 shows the workflow for LULC classification and change 

analysis. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 5.3  Workflow for LULC classification and change analysis 
 

5.1.4 Object-based classification method 

This study used the object-based classification approach for image classification.  
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this study area, considering the spatial and spectral resolution of the imagery used, 

and for expectation of acceptable results. As discussed in Chapter 3, one of OBIA 

advantages is it offers an improvement in separability between most of the 

spectrally similar classes and thus, improves the accuracy of the final LULC 

classification (Shan and Hussain, 2010).   
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The appropriate scale at which to segment LULC types was decided based on the 

different spectral and spatial characteristics of different LULC types. The trial and 

error method was employed in the image segmentation process as there is no 

universally accepted rule for setting the scale of segmentation. Different scale 

levels ranging from 20 to 80 were tried to find the most appropriate scale. After 

that, segmentation results were manipulated interactively.  The segmentation size 

was adjusted and thus enables to represent the minimum sized feature of objects 

or LULC types (e.g. paddy fields and built-up area) and to analyze whether 

objects and feature boundaries were already well matched.  The merge level, a 

parameter for merging small segments based on homogeneity r, was then defined 

to group contiguous segments into larger objects.  This is more practical and 

reliable in finding the appropriate scale for each LULC type. For this study, user-

specified segmentation was finally conducted at a scale parameter of 50 (on a 

scale from 0 to 100) and a scale merge of 90 (on a scale from 0 to 100) as objects 

(e.g. paddy field and built-up area) were considered internally homogenous 

(Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4  Sample of segmentation result (scale parameter of 50)  
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Evenly-distributed representative polygon samples of each LULC were selected 

and labeled based on previous segmented and merged objects using information 

from the field, a good knowledge of the study area, and ancillary data.  

Approximately the same number of representative samples was selected for each 

class throughout each image, although some classes of LULC (i.e. built-up, 

vegetation, paddy field) were more frequently present in the area than others. 

Feature Extraction offers three methods for supervised classification: K Nearest 

Neighbor (KNN), Support Vector Machine (SVM), or Principal Components 

Analysis (PCA). A supervised maximum likelihood classifier was chosen to 

classify each of the polygon objects in the image into LULC types which 

classifies segments based on their proximity to neighboring training regions. The 

K Nearest Neighbor classification method examines the Euclidean distance in n-

dimensional space of the target to the elements in the training data.  The k 

parameter is described by the number of object attributes or neighbours 

considered during classification. The K nearest distances was used as a majority 

vote to determine which class the target belongs to (ENVI, 2008). The K Nearest 

Neighbor method is much less sensitive to outliers and noise in the dataset and 

generally produces a more accurate classification result. In addition, it is more 

rigorous than the other methods, and it more accurately distinguishes between 

similar classes (ENVI, 2008). The same segmentation, merge and classification 

parameters were utilized for other composite dataset.  At the end of the process 

the classified objects were exported to a thematic vector layer with classes of 

LULC. 

 

During the classification process of the ASTER images, more detailed structures 

of LULC types (secondary LULC types) were able to be applied due to their 

different spectral reflectance. Those classes were very dense built-up area, dense 

built-up area, semi-dense built-up area, irrigated paddy field, watered paddy field, 

harvested paddy field, dry paddy field, dense mangrove, and semi-dense 

mangrove. Moreover, more detailed information about built-up areas is required 

in this study, as information about those LULC types is beneficial for the further 
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purpose of green space planning. All object types were finally reclassified into 11 

classes of primary LULC type to see the LULC changes from 1995 to 2013. 

However, an enormous number of small objects was the result. The elimination 

and merger of those small polygons to reduce the number of small objects and 

make further LULC analysis easier was conducted using GIS tools. 

 

A number of incidents of confusion arose in distinguishing between watered 

paddy fields and non-dense mangrove forest, vegetation and vegetative paddy 

field, beach sand, and open space. The confusion over vegetation cover and 

vegetative paddy field might be related to the process of segmentation. In some 

cases the low contrast boundaries between vegetative paddy fields and vegetation 

areas resulted in these regions being merged into a single polygon object although 

these two classes had sufficient spectral difference for fine classification. The 

confusion between watered paddy fields and non-dense mangrove forests and 

between beach sand and open space were not a result of segmentation, as 

generally these two classes were well delineated. Nevertheless, because the 

spectral radiances of the two categories were sometimes very similar, confusion 

occurred. This arose due to similar material factors; for example, water occurs in 

both watered paddy fields and non-dense mangrove forests. Minor adjustments or 

post classification processing were then employed to correct the misclassified 

classes. GIS tools such as area of interest, query builder, and field calculator were 

then used to recode the incorrect classes based on ground observation. The overall 

accuracy of LULC classification can be improved through the use of these 

techniques (Manandhar et al., 2009).  

5.1.5 Classification accuracy assessment 

To evaluate the accuracy of classified images, accuracy assessment was 

performed based on random sampling method. The LULC map of 1997 

(Geospatial Information Agency of Indonesia, 1995) was used as a reference for 

the LULC map of 1995 while, LULC map of 2003 (JICA, 2005) was used as the 
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reference for the LULC map of 2003.  For the LULC map of 2013, the reference 

classes were recorded based on Google image, collecting samples, and field 

reconnaissance. Error matrix tables were produced and the reference class values 

were compared with the classified data. Overall accuracy finally was then 

computed.   

5.1.6 Post-classification comparison change detection 

The approach to change detection was based on multi-date object based-post-

classification comparison (map-to-map comparison). The determination of the 

transformation in quantity from a particular class to other LULC types and their 

corresponding areas over the period was facilitated and evaluated by cross-

tabulation analysis. Using GIS union tools and geometry processing, three 

shapefiles of classified LULC maps were used as the input data and information 

on how classes had changed from one type to another can be calculated from the 

resulting attribute table. Finally, a two-way cross-matrix explaining the LULC 

changes was created and a thematic layer containing different combinations of 

‘‘from–to’’ change in classes was produced. Changes during two intervals were 

obtained: 1995–2003 and 2003–2013.   

5.2 Classification Result 

5.2.1 Landsat image classification and accuracy assessment 

Using the object-oriented approach, Landsat TM can produce a smooth 

classification of LULC types devoid of the mixed pixel effect. The overall 

accuracy was 84.9% with a Kappa Coefficient of 0.8136 (Table 5.2).  User’s 

accuracy of individual classes ranged from 44.68% to 100%, and producer’s 

accuracy of individual classes ranged from 33.33% to 100%. The overall accuracy 

for some LULC categories (i.e. paddy field, grass land) was lower than the 

minimum level of interpretation accuracy, which according to Anderson (1976) 

should be at least 85%.  However, according to Monserud and Leemans (1992), a 
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Kappa coefficient that ranges from 0.70 to 0.85 still indicates a good overall 

classification. 

Table 5.2 Accuracy assessment of LULC map of 1995 
  

No LULC type 
1995 

Accuracy (%) 
Prod. Acc. User Acc. 

1 Built-up area 98.63 87.80 
2 Open space 100.00 90.91 
3 Vegetation 80.77 44.68 
4 Fish pond 100.00 100.00 
5 Mangrove forest 100.00 51.52 
6 Bush land  100.00 100.00 
7 Grass land 33.33 50.00 
8 Dry farm land 100.00 100.00 
9 Paddy field 65.09 93.24 
11 Swamp area 100.00 100.00 
12 Water bodies 100.00 100.00 
 Overall Accuracy (%) 84.9%  
 Kappa Coefficient 0.81  

5.2.2 ASTER image classification and accuracy assessment 

The overall accuracies for LULC classes of ASTER images were established as 

86.99% and 80.37%, and the Kappa coefficient was 0.86 and 0.79 for the 2003 

and 2013 images, respectively (Table 5.3). User’s accuracy of individual classes 

ranged from 62.50% to 100%, and producer’s accuracy of individual classes 

ranged from 57.14% to 100%. However, for some classes there was a low 

accuracy below the “85%” cutoff level for an acceptable result. 
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Table 5.3 Results of first accuracy assessment for the LULC maps of Aster in 
2003 and 2013 

 

LULC type 
2003 Classification 2013 Classification 

Accuracy (%) Accuracy (%) 
Prod. Acc. User Acc. Prod. Acc. User Acc. 

Dense built-up area 100.00 90.38 77.50 65.96 
Very dense built-up area 91.18 83.78 81.13 70.49 
Semi dense built-up area 89.74 100.00 87.50 75.00 
Bright rooftop built up area 83.72 97.30 63.33 82.61 
Open space 100 75.00 90.91 76.92 
Vegetation 83.33 62.50 73.17 93.75 
Fish pond 100 100 100.00 100.00 
Dense mangrove forest 90.91 95.24 100.00 92.00 
Non dense mangrove forest 90.00 81.82 71.43 100.00 
Bush land 57.14 88.89 78.95 100.00 
Grass land 100.00 100.00 100.00 100.00 
Dry farm land 54.55 75.00 70.00 77.78 
Watered paddy field 77.78 77.42 77.78 95.45 
Harvested paddy field 87.50 95.24 70 82.35 
Vegetative paddy field 76.92 80.00 100.00 68.97 
Dry paddy field 100.00 66.67 94.44 70.83 
Beach sand 85.71 100.00 66.67 100.00 
Swamp area 100 100.00 100.00 100.00 
Water bodies 69.23 100.00 66.67 88.89 
         Overall Accuracy (%) 86.99 % 80.37 % 
         Kappa Coefficient 0.8591 0.7874 

 

In order to identify the change in LULC over three different decades for the same 

LULC categories, the 2003 and 2013 ASTER maps needed to be reclassified. All 

the types of built-up areas (dense, very dense, semi-dense, bright roof top built-up 

area) were reclassified into “built-up area”. “Dense mangrove” and “Non dense 

mangroves” were combined into “Mangroves”. The various “Paddy field” types 

(vegetative, watered, harvested, and dry paddy field) were also combined into 

“Paddy field”.  

5.2.3 General LULC condition and distribution 

The spatial pattern of LULC change in 1995, 2003 and 2013 using OBIA yielded 

a visually pleasing classification (Figure 5.5 – 5.10).  Built-up areas are located 

irregularly and commonly in a linear pattern along the road and covered most of 

downtown Denpasar and the Kuta sub-district, the location of the international 
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airport and tourist accommodation center. In the downtown areas, vegetation can 

mainly be seen on the riverbanks, in the roadsides, and parks.  Mangrove forest 

can be seen along the south beach of the study area. Open space existed most 

extensively at the Ngurah Rai Airport, on the island of Serangan, and along the 

beach.  

5.2.4 LULC changes 

Figure 5.7- Figure 5.10 and Table 5.4 show there had been considerably changes 

in LULC configuration in the study area over the 18-year period. Generally, there 

were three major LULC type in the study area: built-up area, vegetation and 

paddy field. Table 5.8 shows a summary of the major LULC conversions, namely 

‘from–to’ information as post-classification comparison reveals various changes 

in LULC types in the southern part of Bali.  It is useful to clarify the informational 

value of a LULC magnitude and its spatial changes. The 1995-2003’s and 2003-

2013’s transformation LULC classes can be seen in Table 5.6 and Table 5.7. 

Since the classifications are not 100% accurate, some errors occurs in the “from-

to change” information. For example from built-up area to paddy, from built-up 

area to vegetation are rare in the field. The comparison map of change detection 

for understanding the spatial pattern of change can be seen in Figure 5.10 and 

Figure 5.11.   
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Figure 5.5  LULC of 1995 
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Figure 5.6  Urban and non urban area of 1995 
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Figure 5.7  LULC of 2003 
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Figure 5.8  Urban and non urban area of 2003 
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Figure 5.9  LULC of 2013 
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Figure 5.10  Urban and non urban area of 2013 
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Figure 5.11  LULC distributions in Southern Bali 
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Figure 5.12  LULC changes of Southern Bali 
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Table 5.4  Area statistics of LULC change of Southern Bali 
 

LULC class 

Area (Ha) 

1995 % 2003 % 2013 % 

Change 
of area 
(1995-
2003) 

Change 
of area 
(2003-
2013) 

Built-up area 7,227 29.23 11,522 45.79 13,678 54.31 4,294 2,156 

Bush land 189 0.76 284 1.13 239 0.95 95 -45 

Dry farm land 145 0.59 122 0.49 108 0.43 -23 -14 

Fish pond 445 1.80 64 0.26 55 0.22 -381 -9 

Grass land 72 0.29 110 0.44 117 0.47 38 7 

Mangroves forest 300 1.21 778 3.09 699 2.78 478 -79 

Open space 376 1.52 486 1.93 344 1.37 110 -141 

Paddy field 10,511 42.52 9,852 39.15 8,188 32.51 -659 -1,664 

Swamp area 4 0.02 11 0.05 9 0.04 7 -2 

Vegetation 5,350 21 1,889 7.51 1,704 6.77 -3,461 -185 

Water bodies 100 0.41 42 0.17 40 0.16 -58 -1 

Total area 24,723  25,164  25,185    
 

It can be seen from Table 5.4 that in 1995, paddy field was the dominant area 

(10,511 ha), followed by built-up areas (7,227 ha) and vegetation (5,350 ha). But, 

in 2013 built-up area became the dominant category (13,678 ha) followed by 

paddy field (8,188 ha), and vegetation (1,704 ha).   

5.2.4.1 General increase 

From 1995 to 2003, the area of mangrove forest designated for conservation 

clearly increased by 478 ha (Table 5.4) and this change has also influenced the 

total area difference among three different years. The rehabilitation project of 

mangrove forests has replaced most of the fish and salt production areas that 

existed in 1995. Figure 5.15 shows the areal increase and decrease of the three 

main LULC types over the observed period. A subtraction of increase and 

decrease of each class approximately was equal to the observed differences in 

Table 5.4 (in column of ‘change of area’).  
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Figure 5.136  Major LULC conversions in Bali of 1995–2003 
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Figure 5.14  Major LULC conversions in Bali of 2003-2013 
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Figure 5.157 Areal increase and decrease of three main LULC types 
 

The largest LULC increase from 1995 to 2003 was in the built-up area class 

(4,294 ha) (Table 5.4). The increase in built-up area was largely caused by the 

conversion of paddy field (3,081 ha), vegetation (2,408 ha), and open space 

(152.35 ha) (Table 5.5). The second largest increase in LULC was the mangrove 

forest class (478.67 ha) (Table 5.4), which gained area from the conversion of fish 

pond (346.89 ha) (Table 5.5). Between the period of 2003 and 2013, the increase 

in built-up area continued by 2,156 ha. The increase of built-up area was largely 
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made up of land change from paddy field (2,936 ha), vegetation (609.29 ha), and 

bush land (123.90 ha). 

 

Table 5.5  Major LULC conversions from 1995 to 2013 
 

“From class” “To class” 1995-2003 (ha) 2003-2013 (ha) 

Bush land Built-up area 50.96 123.90 

 
Paddy field 66.90 95.12 

 
Vegetation 47.87 35.87 

Dry farm land Built-up area 63.50 68.39 
Fish pond Built-up area 23.89 21.05 

 
Mangrove forest 346.89 4.79 

Mangrove forest Built-up area 32.71 63.64 
Open space Built-up area 152.35 52.53 

 
Bush land 1.30 167.42 

 
Water bodies 27.25 56.31 

Paddy field Built-up area 3,081.37 2,936.10 

 
Bush land 138.05 0.16 

 
Dry farm land 62.10 60.06 

 
Vegetation 1,159.10 605.43 

Vegetation Built-up area 2,408.35 609.29 

 
Bush land 57.76 28.23 

 
Paddy field 2,441.72 595.22 

5.2.4.2 General decrease 

Between 1995 and 2003, a significant decrease in area was observed in vegetation 

and paddy fields. Vegetation cover decreased from 5,350 to 1,889 ha, and 

meanwhile paddy fields also decreased slightly, by around 6.3% (from 10,511 to 

9,852 ha).  The largest decrease in vegetation (about 3,460 ha) as it was converted 

to built-up area (2,408.35 ha), paddy field (2,441.72 ha) and bush land (57.76 ha). 

Paddy field experienced the second largest loss (659.03 ha) due to the conversion 

into built-up area (3,081.37 ha), vegetation (1,159.10 ha) and bush land (138.05 

ha).  

 

Between 2003 and 2013, the main LULC decreases were found in the paddy field, 

vegetation, and open space classes with 38.65% (1,664 ha), 4.30% (185 ha), and 
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3.28% (141 ha), respectively (Table 5.4 and Table 5.5). At the same time, the lost 

paddy field was mainly converted into built-up area (2,936.10 ha), vegetation 

(605.43 ha), and dry farm land (60.06 ha), while the decrease of vegetation was 

mainly converted into built-up area (609.29 ha), paddy field (595.22 ha), and bush 

land (28.23 ha). In contrast, built-up area shows a loss into paddy field (1,247 ha) 

and vegetation (406.75 ha) that were seldom in reality (Figure 5.14). This 

apparently unreal change of built-up areas into other LULC types was also 

occurred in the 1995-2003’transformation LULC, for example some built-up areas 

apparently changed into bush land (61.94 ha), dry farm land (27.73 ha), fish pond 

(2.20 ha), and water bodies (3.50 ha) (Figure 5.13).  

5.3 Discussion 

5.3.1 Seasonal difference impact on LULC changes 

Between 2003 and 2013, the considerable conversion from paddy field to 

vegetation may be because of the abandonment of paddy fields due to water 

scarcity. The development of settlements often blocked irrigation systems. As 

result, instead of continuing paddy field activity, paddy fields were converted to 

mixed gardens (vegetation class). In addition, planting rotation activity might also 

have been applied in paddy fields, which may also influence the large change 

from paddy field to vegetation, and vice versa. When the land and crop’s water 

content was lower and paddies had been harvested, several paddy fields were 

often in the transitional period (April). Paddy fields were then usually temporally 

replaced by mixed plantation varieties such as vegetable, cassava, corn, and 

banana. The purpose of diversified planting is to break the chain of pests and 

diseases, rejuvenate soil fertility, and increase farmer income. The farmers usually 

run this system for 3-6 months before the next paddy season. As a result, the 

change from paddy field to vegetation increased. 
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Table 5.6 The 1995-2003’s transformation LULC classes 
 
Area (Ha) 2003 

1995 
Built-up 

area 
Bush 
land 

Dry 
farm 
land 

Fish 
pond 

Grass 
land Mangroves 

Open 
land 

Paddy 
field 

Swamp 
area Vegetation 

Water 
bodies 

Blank 
area 
(sea 

water) 
Grand 
Total 

Built-up area 5,656.65 61.94 27.73 2.20 20.73 35.03 53.96 1,092.97 1.07 254.26 3.50 17.63 7,227.68 
Bush land 50.96 10.84 0.00 0.00 0.00 1.34 8.89 66.90 0.00 47.87 1.76 0.51 189.08 

Dry farm land 63.50 1.98 3.70 0.00 1.65 0.00 0.36 65.70 0.00 8.82 0.00 0.01 145.72 
Fish pond 23.89 0.59 0.00 38.84 0.00 346.89 16.30 8.27 0.00 0.03 10.43 0.01 445.25 

Grass land 0.24 0.00 0.00 0.00 60.84 0.79 6.29 0.00 1.12 0.85 0.00 2.29 72.41 
Mangroves 32.71 1.82 0.00 0.13 0.05 256.49 1.50 1.10 0.00 4.82 0.79 0.71 300.13 

Open land 152.35 1.30 3.34 0.00 2.24 7.34 38.96 131.13 0.00 12.38 0.38 26.87 376.30 
Paddy field 3,081.37 138.05 62.10 4.32 17.47 17.26 9.55 6,019.01 0.15 1,159.10 1.60 2.00 10,511.98 

Swamp area 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 2.14 0.00 0.00 0.00 4.14 
Vegetation 2,408.35 57.76 22.47 0.84 1.45 14.04 7.75 2,441.72 0.00 386.70 3.89 5.20 5,350.16 

Water bodies 3.07 1.78 1.27 4.76 2.20 24.50 25.69 7.08 0.00 2.68 13.61 14.02 100.66 
Blank area (sea 
water) 49.48 8.06 1.66 13.28 1.42 75.11 316.77 19.09 7.09 12.12 6.35 0.00 510.44 

Grand Total 11,522.56 284.12 122.27 64.38 110.04 778.80 486.02 9,852.96 11.57 1,889.62 42.32 69.27 25,233.93 
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Table 5.7 The 2003-2013’s transformation LULC classes 
 

Area (Ha) 2013 

2003 
Built-up 

area 
Bush 
land 

Dry 
farm 
land 

Fish 
pond 

Grass 
land Mangroves 

Open 
land 

Paddy 
field 

Swamp 
area Vegetation 

Water 
bodies 

Blank 
area 
(sea 

water) 
Grand 
Total 

Built-up area 9,754.34 9.18 23.75 0.38 4.76 10.13 52.93 1,247.45 0.00 406.75 1.27 11.62 11,522.56 
Bush land 123.90 12.07 1.91 0.00 0.00 1.64 12.37 95.12 0.00 35.87 0.00 1.24 284.12 
Dry farm 
land 68.39 0.00 7.14 0.00 0.00 0.00 0.08 28.92 0.00 16.08 0.00 1.66 122.27 
Fish pond 21.05 0.04 0.00 34.82 0.00 4.79 1.22 1.41 0.00 0.00 0.00 1.06 64.38 
Grass land 4.06 0.00 0.00 0.00 98.87 0.25 4.31 0.00 0.28 1.18 0.00 1.09 110.04 
Mangroves 63.64 13.38 0.00 15.51 0.06 648.87 9.81 5.11 0.00 0.27 9.07 13.07 778.80 
Open land 52.53 167.42 0.18 1.72 4.05 7.53 175.21 4.40 0.00 16.66 0.53 55.78 486.02 
Paddy field 2,936.10 0.16 60.06 2.62 0.00 4.05 18.39 6,204.19 0.00 605.43 2.57 19.39 9,852.96 
Swamp area 0.00 0.00 0.00 0.00 2.64 0.00 0.00 0.00 8.93 0.00 0.00 0.00 11.57 
Vegetation 609.29 28.23 14.38 0.00 6.15 1.55 10.63 595.22 0.04 621.36 0.28 2.49 1,889.62 
Water bodies 5.26 3.65 0.05 0.10 0.00 0.64 0.55 2.76 0.00 0.63 26.75 1.94 42.32 
Blank area 
(sea water) 40.22 4.90 0.69 0.11 1.42 19.71 59.39 3.71 0.00 0.36 0.00 0.00 130.51 

Grand Total 13,678.78 239.03 108.15 55.25 117.97 699.15 344.90 8,188.29 9.25 1,704.58 40.48 109.34 25,295.17 
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5.3.2 Possible error sources of LULC classification and change detection 

Considering that urban areas in developing countries are typically a chaotic 

mixture of rural and urban LULC and one purpose of this research is to explore 

LULC changes in Bali which are different from other areas in Indonesia, more 

detail LULC types were determined based on standard LULC classification for 

Indonesia and previous reference maps. One of limiting factors that contributes to 

the possible low accuracy in this classification process was small sample size for 

some small LULC types which were used in accuracy test. Several classes such as 

dry farm land, grass land, and fish pond had small reference points which less 

than 10 samples due to their small areas.  The lower the sample size, the higher 

margin of error and lower confidence level. This means that the data becomes less 

reliable and thus should be revisited in the future to significantly improve the 

LULC result. Another possible cause of error in collecting of samples was due to 

the time of collecting reference data.  Reference data for 2013 LULC map was 

collected from a field survey in October 2013, which was a different paddy field 

season from the acquired image from April 2013. Moreover, the difference in 

spatial resolution between classification and reference data may also influence the 

result.  The ground truth data used for the year 1995 and 2003 collected from 

reference maps and Google images may also have adversely affected 

classification accuracy. 

 

The high diversity and detailed LULC classification in a relatively large area may 

also influence separation between objects not too precise and contribute to the 

possible low accuracy under the 85% cutoff level. For example the features of 

paddy fields and vegetation, or other similar LULC types such as grass land, dry 

farmland, and bush land might have easy to be misclassified due to the closeness 

in location and spectral similarity. The low contrast feature boundaries and 

spectral similarity between mixed plantations on paddy fields and surrounding 

vegetation areas resulted in these regions being merged into single polygon 
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objects. Therefore, this error was caused by segmentation problems. Image 

objects may have been generated by either over-segmentation or under 

segmentation. Although it is possible to classify all pixels in an over-segmented 

image object to their true class, they often do not represent the properties of real 

objects so that they are not very useful. In contrast, some objects may had been 

generated at large scale or under segmented image object suffer from mixed 

classes within the objects and thus, the possible classification accuracy that can be 

achieved is always less than 100%. Thus, examining a segmentation object scale 

is very important and recommended. The application of OBIA in a smaller study 

area with higher spatial resolution image than ASTER and Landsat may also 

increase the accuracy.  

 

As a result of these misclassifications, some errors in change detection occurred 

that was carried out using map-to-map comparison approach.  For example built-

up area that apparently changed into vegetation and paddy field. These changes 

were actually rare in the field. It was mainly located in peri-urban areas where 

semi dense built-up areas were mostly located. This rare change phenomenon is 

also may cause by misclassifications of the images due to under or over 

segmentation of the image. Similar spectral signatures of semi dense built-up 

surfaces (typically composed by both impervious and vegetative surfaces), paddy 

field and vegetation caused wrong delineated objects. The high scale level used 

may have caused the objects boundaries between segments was not be properly 

delineated and thus, the absence of an object occurred in some places. Moreover, 

many small segments that cannot be improved using a proper scale level of merge 

may also occur and influenced these misclassification results. Considering some 

of the errors which were found in the classification and in order to more clearly 

see the urban growth, the classification was aggregated into two the primary 

LULC , urban (built-up) and non-urban areas. 
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5.3.3 LULC change trend and impacts on environment   

The change detection map locates areas of LULC change. Due to urban 

expansion, a mixture of rural and urban LULC types has become a major feature 

in the study area. New built-up areas were observed, particularly in the suburban 

areas. Urban expansion that extends further eastward and northeastward mainly 

occurred since the new road along the east coastal area connecting Gianyar to 

Denpasar was built in 2003. Generally, the growth of property developments, 

hotels, and roads has been the primary cause of LULC change in the study area, 

while mangrove forest and fishing industries were apparently the predominant 

drivers of the LULC changes in coastal areas.  

 

Looking at LULC maps from 1995 to 2003, the rapid urbanization process was 

detected mainly at this period as urban areas (classified as built-up areas) 

expanded. This is indicated by the expansion of built-up areas by 4,294.89 ha over 

the 8-year period as a result of uncontrolled development in all directions.  This 

means that for each year, urban areas increased by 536 ha. The increase of built-

up types in this study area was much greater when compared to other tropical 

cities in Southeast Asia during a similar period such as Penang in Malaysia, with 

an urban expansion rate of only 102 ha/year from 1989 to 2002 (Tan et al., 2010). 

Bekasi, another city in Indonesia located close to the main capital city of Jakarta, 

shows a rate of urban expansion of 267 ha/year from 2003 to 2010.  

 

Built-up areas were converted mostly from productive paddy fields and vegetation 

cover. This agrees with the previous study from As-syakur et al. (2011). Paddy 

fields are often located in a relatively flat area and thus, they have been good for 

accessibility of settlements. Moreover, paddy field land also indicates a high 

groundwater capacity for household water resource, making paddy fields ideal 

sites for settlement. The decrease in paddy field land may result in urban 

environmental problems, particularly flooding in the study areas. It has been noted 

that bad flooding occurred in south Bali in 2009 (Balipost, 2009). According to 
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Mizutani (2002), the shape and construction of paddy fields gives them an 

effective ability to restrain water and filter sediment before those materials are 

released downstream. A deliberate strategy should be made by the local 

government to sort out the massive agriculture and paddy field changes as this 

will lead to problem with food security and deep water shortage and imbalance 

urban ecosystem. 

 

During the period 1995-2003, the total area increased by 2,444 ha due to land 

reclamation. In the late 1990s, Bali’s local government promoted a plan to make 

Bali a world tourism destination that attracted many investors. At that time the 

island of Serangan was reclaimed for resort and tourism development and it was 

connected to the mainland of Bali by a bridge. The land reclamation mined sand 

and coral from the ocean floor in order to build a foundation for a new section of 

the island as a tourist enclave (Nakad, 2008).  However, in 1997-1998 this 

reclamation was halted due to the Indonesian financial crisis, and until recent 

years, construction on the island was abandoned and had come to a standstill. This 

land reclamation may have resulted in detrimental environmental impacts such as 

habitat fragmentation and substantial loss of scarce natural resources. Other 

distinct environmental problems were massive flooding in the south region of 

Denpasar in 2009, sand beach erosion, loss of diversity (e.g. fish, turtle), and 

social economic problems (Nakad 2008; Sudiarta, 2012). The LULC maps clearly 

show the spatial distribution of the exposed sand as a new open space and depict 

the transformation of seawater bodies to open landfills on the Island of Serangan.  

5.3.4 Driving Forces 

The available literature suggests that urban development in Bali strongly 

depended on economic growth, and it developed relatively more quickly since the 

tourism boom in the late 1980s. The rapid economic development has attracted 

people to migrate to downtown Denpasar and the surrounding tourist destination 

areas in south Bali. The rate of population growth in Bali was relatively high at 
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1.40% per year (Statistics of Bali Province, 2011), as people have come not only 

from rural areas of Bali, but also from other islands in Indonesia and other 

countries. This population growth rate was similar to that of the capital city of 

Jakarta from 2000 to 2010 (Statistics of Bali Province, 2011). The increase of the 

population rate has triggered the growth of built-up area in order to meet 

settlement demand in the study area.  Coastal areas in the Kuta and Sanur regions 

have become the most notable places where the main tourism facilities have been 

built. However, the economic growth of south Bali declined dramatically due to 

terrorist bomb blasts in 2003 and 2005. This is seen in the change in built-up areas 

that increased by a lower percentage from 2003 to 2013 (8.52%). This shows as 

suggested by Wu et al. (2008), that the population and economic growth of a 

territory obviously influences the changes in LULC. 

 

Although urbanization in the study area is strongly influenced by economic 

growth and demographic change, the nature of urban expansion is also influenced 

by transportation and land value factors. Coastal land and road accessibility have 

played a pivotal role in Bali’s built-up area expansion. Land speculation had a 

marked influence on the development of peripheral areas, as the more scarce 

available land was, the more expensive land became, as was confirmed during 

fieldwork. In response to escalating land prices and growing demand for housing, 

vegetation cover and paddy fields in suburban areas were rapidly transformed into 

built-up areas by individual households, the public sector, and private developers. 

Those sectors were all responsible for land developments in Bali. There is also 

indication that the redefinition of the Denpasar metropolitan area plan in 2008 that 

included the adjacent cities of Badung, Tabanan, and Gianyar (SARBAGITA) and 

led to the development of transportation also played a pivotal role in shaping rapid 

urban expansion. This is visible from the uncontrolled expansion of urbanization 

southwestward and eastward in response to this development.  

 

Between the period of 2003 and 2013, there has been a reduction in the spatial 

changes of built-up area and vegetation compared to the period between 1995 and 
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2003 and there is a possibility of continual reduction over the next few years in 

the study area. This may suggest that the city has become less attractive for people 

to migrate into the area because of unaffordable land price. As a result, built-up 

area will likely expand further into rural areas outside the study area leading to 

peri-urbanization, urban sprawl and fragmentation. 

 

The remaining urban paddy fields owned by local people were strongly influenced 

by the local government’s conservation rule, which has restrained the massive 

change rate of those lands. In addition, preservation of these fields was also 

obviously influenced by local wisdom and the belief of local people in subak, the 

Balinese water irrigation community system. Many people still understand that 

paddy fields are difficult to transform directly into other LULC types, as this 

would disturb the surrounding paddy fields that use the same water irrigation 

system. However, rapid conversion of urban paddy fields to other non-farming 

uses still continues due to economic factors. Poor coordination among 

government agencies leads to the reduction of observed paddy fields. For 

example, several urban paddy fields in conservation areas had been illegally 

converted to built-up areas (residential) without any approval from the relevant 

authorities and without strict law sanctions. This condition illustrates the lack of 

effective coordination among involved agencies in Bali’s LULC development and 

planning. 

5.4 Chapter summary 

Information about the patterns of LULC change, its driving factors and the 

impacts on the environment is important for effective urban management. This 

chapter has demonstrated the usefulness of RS and GIS approaches to retrieve 

LULC maps and estimate LULC changes using relatively low-cost remotely 

sensed imageries in this large and complex tropical urban-rural landscape. OBIA 

has been a valuable tool for producing LULC map information and the change 

detection comparison method is suitable for change detection purposes. However, 



 

113 
 

the OBIA approach requires a very good accuracy level in both classifications 

because the accuracy of the change map is the accumulation of the accuracies of 

the individual classifications.  Some classification errors were caused by high 

diversity LULC types, the small number of samples for some LULC types, 

segmentation errors, time difference of collecting reference data, and difference in 

spatial resolution between classification and reference data. Using ASTER and 

Landsat imagery, 11 LULC classes were determined in the study site, which can 

be identified with good overall accuracy for classified images from 1995, 2003, 

and 2013 that were 85%, 87%, and 80% accurate and had kappa coefficients of 

0.81, 0.85 and 0.78, respectively. Change detection showed that the southern part 

of Bali has experienced rapid urban expansion over the 18-year period, with the 

majority of built-up areas primarily acquired by converting paddy field 

particularly between 2003 and 2013 and vegetation areas along peripheral zones 

particularly between 1995 and 2003. These LULC changes were governed by 

population growth, rapid economic growth from agriculture to tourism sector, and 

road development, and were accelerated by rising land value. In addition, 

inconsistent and ineffective government regulation and poor coordination among 

involved agencies in enforcing planning strategies contributed to the fast LULC 

changes.  In the other hand, the Balinese local wisdom helped to restrain the fast 

change during these periods. 
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6 IMPACT OF LAND USE AND LAND COVER CHANGE ON 
LAND SURFACE TEMPERATURE 

Urban climate change at both the local and regional levels is currently of interest 

due to the increased alteration of vegetation and soil cover to impervious surfaces, 

particularly in urban areas. One profound impact of this alteration is a change in 

the energy balance of urban surfaces, which increases land surface temperatures 

(LSTs).  The increase of LSTs leads to the formation of an Urban Heat Island 

(UHI), in which urban areas tend to have higher air and surface temperatures 

compared to temperatures in the rural surrounding areas.  

 

A UHI is also an example of degradation in the urban environment that is caused 

by LULC change. Thus, the measurement and availability of LST information is 

very crucial in supporting urban management as the expanse of human pressure to 

the environment continues.  Moreover, the impact of these changes on the LST 

varies from one place to another because UHI effects and distribution depend on 

the characteristics of human activities and local conditions.  

 

This chapter focuses in understanding the UHI phenomenon, identifies driving 

factors of UHI effects by examining LST and NDVI in Bali, and discusses the 

change patterns in LST and NDVI during the 18-year period from 1995 to 2013. 

Moreover, as measurement of LST driven by LULC changes allows identification 

of the influence of human-related urban changes on LST, analysis of the 

quantitative relationship of LST by LULC types over the study area, as well as the 

influence of LULC and NDVI spatial patterns on LST was also carried out. 

 



 

115 
 

6.1 Method of NDVI and Land Surface Temperature Retrieval 

6.1.1 Retrieving NDVI 

The scaled NDVI of each year was required in this analysis.  This is because 

NDVI values are subject to error due to seasonal variation.  A scaled NDVI, 

thefore, was computed with the following formula (Lo and Quattrochi 2003; 

Dewan and Corner, 2014): 

 
 

 
 

(6.1) 

Where: 
NDVI  ̽ = Scaled NDVI value 
NDVI min = Minimum NDVI value 
NDVI max = Maximum NDVI value 
 

6.1.2 Preparation of the land surface emissivity and the normalized difference 

vegetation index  

Numerous factors need to be quantified to extract LST from satellite thermal data 

as LST is controlled by the surface energy balance, atmospheric conditions, 

surface thermal properties, and subsurface mediums (Becker and Li, 1990).  Land 

surface emissivity (ɛ) is one of the factors required to calculate LST when using 

the Planck’s relation.  Emissivity is the ratio of the radiant energy emitted from 

the real world body to that released by a black body at a similar temperature 

(Jensen, 2000).  Land surface emissivity (LSE) varies for different materials 

depending on their ability to absorb heat energy. It can be obtained using the 

normalized difference vegetation index thresholds method (NDVITHM). Sobrino et 

al. (2004) consider three different cases: 

a) Fully bare ground  

b) Fully vegetated land 

c) Combination of bare soil and vegetation 
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Although the NDVI threshold method does not appear to be the best LSE 

estimation method for urban areas because several studies performed on inter 

comparison of NDVI threshold and validation against other LSE algorithms 

methods showed the lowest RMSE with the use of in situ data from the urban 

surfaces (Oltra- Carrio et al., 2012), it is the most appropriate option for Landsat 

TM data and to estimate urban LST patterns as a thermal band or a nighttime 

image is not required (Sobrino et al., 2004; Walawender et al., Bokwa, 2014).  

The process used to retrieve LST in this study is shown in Figure 6.1. 

 

 

 

 

 

 

 

 
 

 
Figure 6.1  LST and NDVI retrieval. 
 
 

In order to apply this methodology, the values of soil and vegetation emissivity 

are required. In this work, the emissivity value of 0.99 is used for vegetated 

surface and the emissivity value of 0.97 is for soil surface. The applicability of the 

values to global conditions and urban areas on the earth is assumed (Sobrino et al., 

2004; Sobrino et al., 2012).  In the case that a pixel is composed of a combination 

of bare soil and vegetation and if the surface is also flat, the basic emissivity 

equation is expressed as formula 6.2 (Sobrino et al., 2004; Sobrino et al., 2012; 

Widyasamratri et al., 2013).   

  (6.2) 
 

ASTER  

Landsat 5 
 

Band 3N Band 2 Band 4 Band 3 

NDVI 

Emissivity 
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The proportion of vegetation (PV) is calculated using the following formula 

(Carlson and Ripley, 1997; Sobrino et al., 2004): 

 
 

 
 

(6.3) 

 
NDVI was computed using the following formula (Rouse et al., 1974): 
 
 NDVI = (NIR – R)/(NIR + R) (6.4) 
For Landsat TM: NDVI = (Band 4 – Band 3)/(Band 4 + band 3),  
For Aster: NDVI =(Band 3N - Band 2)/(Band 3N + band 2)  

 

6.1.3 Retrieving LST from Landsat 5 TM 

The Landsat 5 TM thermal infrared data that was acquired on 3/2/1995 has a 

wavelength range of 10.40 to 12.50 µm and a resolution of 120 m.  This image 

was corrected and resampled to 30 x 30 m pixels (USGS, 2014).  There are three 

types of methods which have been developed to retrieve LST from at-sensor and 

auxiliary data: single-channel method, split-window technique, and multi-angle 

method. Because the last two methods require at least two channels, the single-

channel method is the only method that can be applied to the Landsat platform, 

with one thermal channel (Sobrino ., 2004). Traditionally, the main disadvantage 

of single-channel method is that some atmospheric parameters need to be 

considered, usually by a complicated procedure of radiosounding. In this study, 

LST were derived from the corrected TM TIR band (11.45 –12.50 m) by using the 

method described in Chander and Markham (2003), which does not require 

atmospheric parameters and is used widely in urban areas (Xiao et al., 2007).   

The extraction of the LST was carried out in the following phases: 

a) The digital number (DN) of the Landsat TM thermal infrared band was 

converted into spectral radiance using the gain and bias values specific to 

the individual scene.  To extract the brightness temperatures and remove 

the intrinsic errors of the sensors, radiometric calibration was carried out, 
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which transformed the DN values data into a physically meaningful 

radiometric scale by averages of the equation 6.5 (Markham and Barker, 

1987; Chander et al., 2009;): 

 
 

 
(6.5) 
 

or  

 

 

 
 

 
 

 

 

 

 

 
Where: 

Lλ = Spectral radiance at the sensor’s aperture [W/(m2 sr μm)] 
Qcal = Quantized calibrated pixel value [DN] 

Qcalmin = Minimum quantized calibrated pixel value corresponding to 
   LMINλ [DN] 

Qcalmax = Maximum quantized calibrated pixel value corresponding to  
  LMAXλ [DN] 

LMINλ = Spectral at-sensor radiance that is scaled to Qcalmin [W/(m2 sr  
  μm)] = 1.2378 

LMAXλ = Spectral at-sensor radiance that is scaled to Qcalmax [W/(m2  
  sr μm)] = 15.3032 

Grescale = Band-specific rescaling gain factor [(W/(m2 sr μm))/DN] 
Brescale = Band-specific rescaling bias factor [W/(m2 sr μm)] 

 
b) Conversion from Radiance to Brightness Temperature 

The retrieved spectral radiance values were converted to a brightness 

temperature value by applying the inverse of Planck’s function. This 

brightness temperature value is the effective at-satellite temperatures with 

a unity emissivity assumption (NASA, 2011): 
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(6.6) 

                                                                   
Where: 

TB =  Effective at-satellite temperature in Kelvin (K) 
K1 =  Calibration constant 1 in watts/(meter squared*ster*µm)  

K2 =  Calibration constant 2 in Kelvin.   
For Landsat TM, 

 = 1260.56 K 

K  =  607.76 Wm-2sr-1µm-1 

Lλ  =  Spectral radiance in Wm-2sr-1µm-1 

 
The three LST images derived were then converted to the most common 

unit – degrees Celsius – by subtracting the three LST dataset with absolute 

zero (approximately – 273.15 ºC) (Xu and Chen, 2004) using “band 

math”.  The temperature value obtained is not the actual LST, but the at-

sensor brightness temperature. The at-satellite brightness temperature can 

be used to reflect the distribution of the LST as long as the water vapor 

content of the atmosphere is assumed constant and uniform for a relatively 

small region. This assumes then that the influence of the atmosphere on 

radiance temperature would be negligible (Chen et al., 2006; Du et al., 

2014).  

 

c) Considering the nature of LULC, adjustment for spectral emissivity was 

necessary.  Thus, the emissivity corrected LSTs were then computed using 

equation 6.7 (Artis and Carnahan, 1982): 

 
 

 
 

(6.7) 
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Where: 
λ = Wavelength of emitted radiance (the peak response and the average 

of the limiting wavelengths (λ = 11.5 μm) (Markham and Barker, 
1987) 

ρ = h c / σ (1.438 x 102 mK) 
h = Planck’s constant (6.26 x 10-34 J s) 

c = the velocity of light (2.998 x 108 s-1) 
σ = Stefan–Boltzmann’s constant (1.38 x 10-23 J K-1)  

ε = Surface emissivity. 

6.1.4 Retrieving LST from Aster 

In this study, LSTs were retrieved from the 5 TIR bands of ASTER (Table 5.1) 

with the ground resolution of 90 m.  According to Hulley et al. (2012), more 

bands in the TIR region used could lead to better LST estimation.  As with the 

processes to retrieve LST from Landsat, a two-step process using equations 5.4 – 

5.5 were also applied (ASTER Users Handbook, 2007): 

a) Conversion of DN to spectral radiance. 

Conversion of the DN to spectral radiance ASTER for the 5 ASTER bands 

using formula 5.4 can also be translated into: 

 
 Lλ = (DNj – 1) X UCCj (6.8) 

 
Where:  
Lλ = ASTER spectral radiance at the sensor’s aperture measured in a 

wavelength j 
J = ASTER band number 

DNj = Unitless DN values for an individual band j 
UCCj = Unit Conversion Coefficient (W m-2sr-1 μm-1) 

The unit conversion coefficient of each band (bands 10-15) can be seen in 

Table 6.1. 
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Table 6.1  Unit conversion coefficients and calibration constants of ASTER 
thermal bands 

 
Bands Bandpass 

(µm) 
Effective 

Wavelength 
(µm) 

UCC (W m-

2 sr-1 µm -1 ) 
K1 

(W m-2 µm -1) K2 (K) 

10 8.125-8.475 8.291 0.006882 3040.136402 1735.337945 
11 8.475-8.825 8.634 0.006780 2482.375199 1666.398761 
12 8.925-9.275 9.075 0.006590 1935.060183 1585.420044 
13 10.25-10.95 10.657 0.005693 866.468575 1350.069147 
14 10.95-11.65 11.318 0.005225 641.326517 1271.221673 

 
b) Conversion of the spectral radiance into at-sensor brightness temperature. 

The conversion of the spectral radiance into at-sensor brightness 

temperature (TB) was carried out using equation 6.6. This equation needs 

K1 and K2 which are coefficients governed by the effective wavelength of 

a satellite sensor. For example, effective wavelength of the ASTER band 

10, λ=8.291 µm = 8.291×10-6 m, thus the equation should be as below 

(Banerjee et al., 2014): 

 
K1 = C1/λ5   
 = 1.19104356×10-16 W m2/ (8.291×10-6 m) 5  

 =  3040136402 W m-2 µm-1  
 = 3040.136402 W m-2 µm -1 

K2 = C2/λ  
 = 1.43876869×10-2 m K / (8.291×10-6 m)5  

 = 1735.337945 K  
 
The value of other bands are given in Table 6.1. 
 
The two processes above can also be estimated using ENVI software since 

the proper calibration coefficients to transform the integer DN into 

floating-point radiance values are available and can be applied 

automatically (The Yale Center of Earth Observation, 2014). Therefore, 

the two-step processes that apply basic atmospheric correction and 

conversion of the emissivity bands to a brightness temperature map (in 

degrees Kelvin) in the ENVI package were applied in this study. 
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c) For determining the LST from Aster images, equation 6.6 was also used. 

As with retrieving the LST for Landsat, the emissivity for Aster was also 

computed using formula 6.1 and formula 6.7.  

6.1.5 Cloud removal 

The gross technique of checking the cloud area, which was successfully carried 

out by Saunders and Kriebel (1988) using the brightness LST value, was 

employed. Contaminated pixels tend to be seen as localized lower values of LST. 

Such pixels need to first be identified, and in this case they were less than 19 ºC.  

Those cloud pixel values were excluded using “set null” tools in the ArcMap 

package.  

6.1.6 Standardization of LST 

It was not appropriate to directly compare and assess LST variability between 

LST images with multiple time periods since the LST value among the images 

might still represent different year and season parameters. Therefore, to bring all 

of the variables into proportion with one another, the data had to be standardized.  

The standardized LST was required to accommodate the temporal consistency and 

spatial comprehensiveness of the dataset comparison (Salama et al., 2012). 

According to Walawender (2013), the role of the proposed standardization of LST 

is to enable: 

• Objective evaluation of the LST pattern derived from images acquired in 

different atmospheric conditions and in different vegetative periods 

• Restriction of more general LST features 

• Comparative analysis of LST spatial variability in relationship to various 

LULC types 

 

Technically, the standardization using the Z-score (standard score) of the LST 

raster data reflects how many standard deviations of the LST data decrease from 
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the mean value over the whole data (Walawender et al., 2014).  The Z-score 

standardized method measures the distance of the individual LST data points from 

the mean LST in terms of the standard deviation by subtracting the overall mean 

LST value from each individual LST pixel value in each of the gridded LST 

datasets and dividing it by the sample’s standard deviation.  This method accords 

to the following formula 6.9 (Salama et al., 2012; Eden, 2012): 

  
 
  

 

(6.9) 

Where: 

 = Standardized LST in ˚C.   

LST = Individual LST pixel value (of 1995 or 2013) 

LST  = Mean of the LST image (of 1995 = 20. 90 ˚C or 2013 = 25.12 ˚C)  

LST  = Standard deviation of the LST image (of 1995 = 0.96 or 2013 = 3.11). 

 
 is negative if the raw score is below the mean and is positive if above the 

mean.  However, while many researchers (i.e., Walawender et al., 2014) continue 

by using the Z-score standardization value in the LST analysis, the normalized 

LST of 2003 and 2013 was back computed to degrees Celsius in this case. In 

order to maximize the greater range of data sets of the UHI impact on the study 

site, the 2003 data sets was used as a base image to standardize the 1995 and 2013 

data sets, using the following equation 6.10:  

 
  (6.10) 

     
Where: 

 = Individual LST pixel value (of LST map in 1995 and 2013) 

  = Standardized LST (of 1995 or 2013) in ˚C 

 = Mean of the LST image (of 2003 = 25.99 ˚C)  

  = Standard deviation of the LST image (of 2003 = 2.89) 

 
This type of back computation is more commonly used with Min-max 

standardization.  However, Min-max normalization is highly sensitive to outliers 
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in the data as the Min-max method scales the temperature between the highest and 

the lowest of the LST values (Dewan and Corner, 2014; Amiri et al., 2009; 

Carlson and Arthur, 2000). Standardizing the Z-score is the preferred method 

because this method produces meaningful information about each set of data, 

preserves range (maximum and minimum), and reflects the dispersion of the 

datasets (Etszkorn, 2012).  

 

The distribution of observation data after the post-standardization of the LST 

value for each LULC type can also be examined using the box plot method. A box 

plot is a graphic summary of the distribution of samples that describe the shape of 

the data distribution, measure the central tendency, and measure the dispersion 

(diversity) of the observational data. The sample size of the LST for each LULC 

type that is less than 10 was excluded in the box plot analysis. The box plots of 

1995, 2003, and 2013 that correspond to the minimum, low quartile (q3), median 

(q2), upper quartile (q1), and the maximum values were created.  The important 

information in the box plots here can examine the shape properties and the spread 

the tendency of the original data sets by LULC types after the standardization and 

the differences over difference years which cannot be achieved using mean and 

standard deviation. 

6.1.7 The LST pattern using transect analysis 

In addition to the descriptive analysis of the LST maps, the LST pattern could also 

be visually evaluated using a transect graph for each image to examine the 

magnitude pattern. A transect in the west-to-east and the north-to-south direction 

was evaluated based on the variety of LULC maps whose production is discussed 

in Chapter 4. The LST was displayed on the vertical axis with the LULC type and 

on the horizontal axis with the distance. 
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6.1.8 Analysis of relationship between LST and LULC and NDVI 

In order to measure the quantitative relationship between LST and the biophysical 

factors that were LULC and NDVI, two approaches were applied.  In the first 

approach, analysis with regard to all LULC types over the study area was 

conducted to reveal the impact of LULC changes on LST.  The vector data of 

LULC maps in 1995, 2003 and 2013 were super-imposed onto each of the LST 

layers in 1995, 2003, and 2013 using intersect tools in GIS to determine the 

statistical features of LST among the LULC types. Basic zonal statistics of LST 

across the LULC types were calculated and a series of descriptive statistics 

produced summarizing basic findings for the study area.  The LST of different 

LULC types in 1995, 2003 and 2013 were then compared to examine the thermal 

environment change. 

 

In the second approach, the degree of association between LST and NDVI was 

assessed by conducting a correlation analysis between both the normalized LST 

values and scaled NDVI by LULC type on pixel-by-pixel basis (Weng, 2001).  

The use of NDVI and PV in LST correction in highly urbanized areas and 

eventual comparison of LST and NDVI by correlation analysis were used in some 

studies such as Xiao et al., (2008) in China, Liu & Zhang (2011) in Hong Kong, 

Zhou & Wang (2011) in China, and Aduah et al., (2012) in Ghana. Moreover, 

Pearson’s correlation coefficients were also measured between those two 

variables to see the direction and strength of a linear relationship between LST 

and NDVI by LULC types.  The same sample data set of NDVI and LST was 

required for correlation analysis. In this case, swamp area was excluded as low 

sample and a two tailed test for statistical significance (significant at 0.01) was 

used.   

 

Pearson correlation coefficient is referred to as the r-value that ranges from -1 to 

+1.  The closer to the value of 1, the stronger the linear relationship between LST 

and NDVI and the closer to the value of 0, the weaker the linear relationship 
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between LST and NDVI.  The positive r-value means the higher score on LST is 

associated with a higher score on the NDVI and vice versa.  The negative r-value 

means the higher scores on LST are associated with lower score NDVI and vice 

versa, while not significant means there is no predictable relationship between 

those two variables.  Moreover, there are two decision rules that are used for 

assessing if the Pearson correlation test is significant (for α = 0.05).  Those are: 

- P value < 0.05 means the test is significant or there is a significant 

relationship between LST and NDVI 

- P value >0.05 means the test is not significant or there is not a significant 

relationship between LST and NDVI 

6.2 Results 

6.2.1 Spatial pattern of NDVI 

Figure 6.2 – Figure 6.4 show the distribution of scaled NDVI of the three different 

years with scale bars were -0.5-0.3, 0.4-0.6, and 0.7-1.  The maximum and 

minimum NDVI value vary from -0.4 to 1 in 1995, -0.3 to 0.9 in 2003 and -0.2 to 

0.9 in 2013.  According to Rouse (1974) the NDVI value is in the range of -1 to 

+1.  Negative values represent inactive vegetation as well as vegetation with 

lower density and health such as water bodies, buildings, roads, and open area. In 

contrast, highly vegetated areas have correspondingly positive or higher NDVI 

values, which were found here in paddy field and mangrove forest. This is 

because the green vegetation is more sensitive to R band than to NIR band in 

terms of absorption and thus, the reflectance of NIR band is larger than R band 

that influence the higher NDVI value (Rouse, 1974). 
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Figure 6.2  Scaled NDVI of 1995 
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Figure 6.3  Scaled NDVI of 2003 
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Figure 6.4  Scaled NDVI of 2013 
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6.2.2 Standardization of the LST 

The means of the LST pre Z-score standardizations for the years of 1995, 2003, 

and 2013 were 20.90 ºC, 25.99 ºC, and 25.12 ºC, respectively (Table 6.2).  After 

the images of 1995 and 2013 were standardized, the dataset had the average value 

of 0 and the standard deviation value of 1. Since the dataset was then computed to 

degrees Celsius using the 2003 image as the standard, all of the standardized 

images then had the same mean value as the 2003 image, about 25.99 ºC.   

 
Even though the post-standardization of the LST value looked like it had 

undergone a substantial change in the mean and standard deviation values, the 

shape properties of the original dataset were actually retained.  For the 1995 map, 

which was along the expanded temperature range, the mean temperature sharply 

increased from 20.76 ºC to 25.82 ºC, and the standard deviation increased from 

0.96 to 2.89.  The normalization effect for the mean temperature of 2013 was less 

than that for the 1995 image, which decreased by 1.07 ºC. The standard deviation 

decreased from 3.10 to 2.76. 

 
Table 6.2 Comparison of the LST image means for pre- and post-

standardization in 1995, 2003, and 2013 
 
Statistics Land surface temperature 

Standardized 
3/2/1995 

3/2/1995 
 

24/2/2003 Standardized 
24/4/2013 

24/4/2013 

Minimum 23.28 20 19.02 20.31 19.01 
Maximum 38.33 25 36.39 33.12 32.79 
Mean 25.98 20.90 25.99 25.99 25.12 
Standard deviation 2.89 0.96 2.89 2.89 3.11 

 

6.2.3 Spatial pattern of LST changes 

A comparison of the visual and thermal bands for the images showed that the 

cloud and haze pixels had values less than 19 ⁰C for both the 1995 and 2003 

images and 23 ⁰C for the 2013 image. The cloud-covered areas were masked out, 

which resulted in the area becoming null as shown by the white color.  Figure 6.5 
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- 6.7 show the results of the LST extraction from 1995, 2003, and 2013, while 

Appendix V-1 – V-3 show the spatial distribution of the increasing LST.  

Increasing LST maps were produced by subtracting the standardized LST map, 

for example, by subtracting the LST map of 2013 from that of 2003.  

 

There is no standard for the LST scale that describes features of “hotspots,” or so 

called UHI effects, which indicates relatively higher LST values for the 

surrounding areas.  UHI effects are commonly described on the basis of their 

relative thermal intensity in the surrounding area (Mitchell, 2011).  Some UHI 

studies in the cities of Indonesia, such as that in Tangerang city, described hotspot 

areas when the average LST values were above 30˚C (Wibowo, 2013). In 

Bandung city, the average hotspot features were scaled at over 27.5 ˚C (Ramdani 

and Setiani, 2014).  The average higher LST in Bandung was generally found to 

be lower than those of other cities since the city is located at a relatively higher 

elevation. Consequently, the average LST value of the UHI hotspot features in the 

study area was determined to be over 29 ˚C, based on the analysis of the three 

images.  

 

Generally, UHI hotspots that were distributed in the study area can be easily 

identified in areas where buildings, roads, parking areas, and other non-vegetation 

surface types were dominant (Figure 6.5- Figure 6.7). Scattered hotspot features 

can be seen at Ngurah Rai International Airport, Kuta, Sanur, Benoa, the island of 

Serangan, Tabanan city, Gianyar city, and along coastal areas and traffic 

intersections. In addition, the new bypass road over the sea connecting Benoa to 

another Peninsula in southern Bali, which was constructed in 2013 shows an 

increasing LST value. In contrast, the considerably lower temperatures, which 

were less than 26 ºC, were consistently found in the mangrove forest and paddy 

field areas as a result of their evapotranspiration process. Locations and 

distributions of the UHI hot-spots tended to expand wider from 1995 to 2013, and 

there was a tendency for the UHI effects to influence not only the coastal areas 

but also northward rural areas.  
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Figure 6.5  Spatial distribution of normalized LST in 1995  
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Figure 6.6  Spatial distribution of normalized LST in 2003 
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        : a transect sample 
 

Figure 6.7  Spatial distribution of normalized LST in 2013 
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6.2.3.1 The LST area 

To support spatial distribution data of the increasing LST areas, the LST areas 

from 1995 to 2013 with more detail fluctuation of the LST areas (ha) were also 

quantified.  From Figure 6.8 it can be seen that in 1995, the areas with an LST of 

26 °C were the dominant areas of about 6000 ha.  Similarly, in 2003, areas with 

an LST of 25 °C and 26 °C were persistently still the dominant LST areas of 

about 4000 ha, whereas in 2013, areas with the higher LST of 29 °C became the 

major LST areas of 6500 ha. This finding indicates that areas with a higher LST 

were more dominant in 2013 compared to previous years.  

 

 
 

Figure 6.8  Statistics of LST area (ha) in 1995, 2003, and 2002 
 

The fluctuations of the LST areas between 1995 and 2013, between 2003 and 

2013 and between 1995 and 2013 are shown in Figure 6.9.  Generally, between 

1995 and 2013 and between 2003 and 2013, the increasing LST areas of 29 °C by 

4000 ha were the major changes, although the LST areas of 30 °C and 31 °C 

decreased. In contrast, the relatively lower number of LST areas of below 26 °C 

persistently decreased along 1995-2013, as would be expected.   
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Figure 6.9  The changes in the number of LST areas (ha) from 1995 to 2013 
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6.2.3.2 LST graphs 

The detailed local thermal pattern of UHI effects for the three different images 

can be seen from the transect graphs of the LSTs (Figure 6.10 – Figure 6.11).  The 

transect location can be seen in Figure 6.7.  The transect graphs of the LSTs 

(West-to-East) show that the LST increased from the sub-urban areas towards the 

inner city areas, and the lower LST was particularly dominant in the paddy fields 

and vegetations.  The increasing LST at the urban fringes is shown by a relatively 

steep gradient that gradually inclined as the LULC shifted to a built-up area type 

at the downtown with more intensive impervious surfaces. The stable increasing 

temperature gradient remained high until reaching the highest temperature point at 

the center of the city; then it went down. In contrast, there were still some 

declining temperature gradients found at the downtown areas as results of the 

cooling effects of the LULC types such as vegetation and water bodies.  The 

cooler temperature gradient afterward was found close to the sea basin vegetation, 

and it extended to the sea water.  

 

The similar pattern also can found in the transect graphs of the LSTs (South-to-

North) among three different years. However, the higher LST was not only found 

in the downtown of Denpasar but also in the airport area and surrounding (Kuta).  

Paddy field areas located between those two locations shows notable lower LST 

and distinctly can be recognized in the LST graph pattern (Figure 5.11). The 

higher thermal uniformity of built-up areas in the downtown area indicates a 

reduction in urban thermal quality, which needs mitigation. In order to prevent 

formation of more UHIs in regional areas, it is important to keep separating the 

hotspots from the business center of Denpasar city by conserving paddy fields, 

vegetation, and other LULC types proven to have low LSTs. 
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Figure 6.10  Transect graphs transect graphs of the LSTs (West-to-East) 
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Figure 6.11  Transect graphs transect graphs of the LSTs (South-to-North) 
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6.2.4 The LST of different LULC types 

The statistics of standardized LST of different LULC types are shown in Table 6.3 

and Figure 6.12.  Inspection shows that the mean LST among the 11 LULC 

categories varied from 1993 to 2013.  The lowest mean of temperature was 

observed in paddy field (25.69°C), followed by mangrove (26.01°C), and 

vegetation (26.04°C). The highest LST in 2003 and 2013 was in built-up areas.  In 

1995, fish pond (29.79 °C) exhibited the highest average LST followed by built 

up area (29.24 °C), and open land (28.82 °C).  Mostly the high mean temperature 

of the fish pond located close to the mangrove due to various functions of ponds. 

According to the field work, it reveals ponds were not only used for fishery, but 

also for preparation of mangrove forest recovery and salt production. Therefore, 

pond surfaces were not only fully covered by the water, but also by sand and salt.  

It can be indicated from the highest SD value of fish pond in 1995 by 2.22. The 

higher LST of built-up areas and open land were not surprising as a result of its 

relatively low thermal inertia (Carnahan and Larson, 1990). 

Table 6.3 Statistical features of standardized LST by LULC type 
 

LULC type 
1995 2003 2013 Mean  

1995, 2003, 
2013 (°C) 

Mean 
(°C) 

SD 
(±) 

Mean 
(°C) 

SD 
(±) 

Mean 
°C 

SD 
(±) 

Built-up area 29.24 2.71 28.65 2.49 28.51 1.85 29 
Paddy field 25.69 2.15 25.20 1.87 26.42 1.76 26 
Open space 28.82 3.87 28.73 2.36 25.77 2.55 28 
Fish pond 29.79 2.22 26.84 1.39 24.88 1.88 27 
Water bodies 27.66 2.29 25.84 1.99 24.42 1.61 26 
Mangroves 26.01 1.97 25.93 1.34 23.72 1.47 25 
Swamp area 26.29 0.00 25.48 0.44 24.26 0.99 25 
Vegetation 26.04 2.06 25.53 2.42 26.36 1.86 26 
Bush land 26.93 2.60 26.87 2.12 24.63 2.08 26 
Grass land 28.61 2.87 29.19 2.41 26.63 2.01 28 
Dry farm land 27.05 1.85 28.02 1.51 26.99 1.55 27 
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Figure 6.12  The LST by LULC type 

 

The largest standard deviation of LST of built-up areas occurred in 1995 (2.71 °C) 

meaning that these surfaces experienced a wide variation in LST because of 

varying surface materials. In contrast, the smallest standard deviation of LST in 

built-up area was in 2013 (1.85 °C) owing to their greater homogeneity by that 

time. Distinctive changes of standard deviation were also found in other main 

LULC types (paddy field and vegetation). Their relatively lesser change of 

standard deviation indicates that these LULC types experienced homogeneity of 

surface characteristics.   

 

Along with the transformation of fish pond areas into mangrove forest in 2003, 

composition of the highest mean LST class in 2003 was also slightly changed into 

grass land (29.19 °C), open land (28.73 °C), and built up area (28.65 °C).  Paddy 

field, swamp area, and vegetation as the part of greenery areas had the lowest 

mean LST value of 25.20 °C, 25.48 °C, and 25.53 °C, respectively.  The grass 

land in 2003 was located next to the apron of the international airport which is 

fully covered large concrete surface that may influences the LST value of the 

grass.  Moreover, the condition of the grass land was possibly not fully covered by 
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the grass that can be seen from their relatively high SD value (2.41).  In 2013, the 

highest of average LST was in built-up area (28.51°C), followed by dry farm land 

(26.99 °C), and grass land (26.63 °C).  Similar with the case study in 1995 and 

2003, mangroves, swamp areas, and water bodies in 2003 are consistently linked 

to the relatively lowest LST level of 23.72 °C, 24.26 °C and 24.42°C, 

respectively. Mangroves, swamp areas, and water bodies in 2013 are also 

consistently linked to the relatively lowest LST level of 23.72 °C, 24.26 °C, and 

24.42 °C, respectively. Those areas have proven as a substantial role in reducing 

the effect of thermal radiation as a result of their high thermal inertia.  

 

Figure 6.13 shows box plots for 1995, 2003, and 2013, which correspond to the 

minimum, low quartile (q3), median (q2), upper quartile (q1), and maximum 

values and the interquartile range (q3- q1), which covers the central 50% of the 

data.  Swamp area, grassland, and open land were excluded due to low sample 

sizes.  The symmetric data is indicated by the middle median value position and 

the whiskers that show the highest and lowest value of data sets have the same 

length.  Among the three dominant LULC types in the study area (built-up area, 

vegetation and paddy field) from 1995 to 2013 that generally show a symmetric 

data distribution, a notable difference is shown by the LST data distribution of 

built-up area and paddy field in 1995.  The LST data of built-up area in 1995 has a 

median of about 27 ºC.  The data distribution was not symmetric as is shown by 

the median not being located in the middle of the box plots and the whiskers that 

show the highest and lowest value of data sets do not have the same length.  LST 

data of built-up area in 1995 was skewed upwards.  The part of the box to the 

below of the median (representing the lower LST) was shorter than the part to the 

above of the median (representing the higher LST). That means the lower LST of 

the built up areas were closer together than the higher LST of the built up areas or 

most of observed built-up area data concentrated on the lower LST.  In contrast, 

LST data of paddy field in 1995 was skewed downwards that means most of 

paddy field data concentrated on the higher LST.   
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Figure 6.13  Box plots of the standardized LST of each LULC type 
 

Although the LST data distribution of built-up area in 2003 and 2013 were 

symmetric with median of about 28 ºC, the range of LST data in 2003 was larger 

1995 

 

2003 

 

2013 
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than that in 2013. From these box plots it can be seen that although the mean of 

built-up area was higher in 1995, the range of data in 2003 and 2013 was larger 

than the data in 1995 or the LST of built-up area more varied. These box plots 

have proven as a good measure of spread in likely skewed distributions which 

cannot be examined using mean and standard deviation. 

6.2.5 The correlation between LST and NDVI by LULC  

As can be seen in Table 6.4 average NDVI and LST values associated with 

different LULC types were significantly different and only built-up area, paddy 

field and vegetation show persistently negative significant relationship between 

LST and NDVI over three different years. It was indicated by their P values being 

less than 0.05. This means the higher LST of built-up areas is related to the lower 

NDVI values of built-up areas. In contrast, the lower LST of paddy field and 

vegetation was influenced by the higher NDVI values of those LULC types.  

 

The result of not persistently significant relationship from other LULC types here 

may be because the size of sample used was not large enough to be significant or 

less sample statistics deviates from the population parameters. However, the 

strongest negative relationship between NDVI and LST factors by LULC types 

was found for bush land type in 1995 (r = -0.55).  This means the lower LST 

value of bush land has a relationship with the higher NDVI value of bush land. 

Another stronger negative relationships between LST and NDVI was also 

occurred on paddy field category in 1995 (r = 0.46) and vegetation (r = 0.46) in 

2003. The built-up area was also negatively correlated and the strongest 

correlation was found in 1995 (r = 0.34). The relatively weak and moderate 

relationship of the linear relationship compared with other studies may be 

attributed to the widespread heterogeneous LULC type in the study area.  For 

example, built-up areas are actually composed not only of buildings but also 

attached vegetations between the building spaces.  Moreover, vegetation type was 

composed not only by evergreen wooden trees, but also mixed with annual and 



 

145 
 

deciduous species with various leaf conditions. Those factors might have 

influenced the strength of the linear relationship between LST and NDVI by 

LULC types. 

 

Table 6.4 Pearson’s correlation coefficients between LST and NDVI by LULC 
types (significant at 0.05)  

 

Land use/cover type 
1995 2003 2013 

r P value r P value r P value 
Built-up area -0.34 0.00 -0.18 0.00 -0.11 0.01 
Paddy field -0.46 0.00 -0.18 0.00 -0.12 0.00 
Open space -0.01 0.97 -0.04 0.77 0.25 0.10 
Fish pond -0.53 0.00 0.32 0.34 0.64 0.09 
Water bodies -0.07 0.27 -0.38 0.22 0.39 0.61 
Mangroves -0.18 0.20 -0.25 0.90 0.15 0.36 
Vegetation -0.24 0.00 -0.46 0.00 -0.22 0.00 
Bush land -0.55 0.00 -0.26 0.00 0.07 0.83 
Grass land 0.39 0.27 -0.74 0.06 0.23 0.58 
Dry farm land -0.16 0.03 -0.20 0.23 -0.14 0.69 

Shaded blue areas indicates the mean LST and NDVI values associated with the LULC type were 
significantly different 
 

6.3 Discussion 

6.3.1 Impact of LULC change on LST 

As in other research, in the southern part of Bali, Indonesia, the daytime mean 

LST varies with various LULC types among three different years.  Generally, 

based on the mean LST value by LULC types from 1995 to 2003, the impact level 

of LULC types on LSTs can be divided into: 

a) The high impact (over 29 °C) in built-up areas. 

The high impact of built-up areas on LST is indicated by their consistent 

higher LST values among LULC types from 1995 to 2013.  This is not 

surprising that built-up areas associated with building or impervious 

surfaces have been correlated to the higher LST as impervious materials 

typically have a high solar radiation absorption as well as a high thermal 
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capacity and conductivity for releasing heat stored during the day and 

night. Moreover, the high LST of built-up areas is related to the lower 

density and health of vegetation as indicated by their low NDVI values.  

b) The moderate impact (27-28 °C) was open space, grass land, paddy field, 

fish pond, water bodies, vegetation, bush land and dry farm land. Those 

LULC types are typically composed of mixed water, vegetation and soil 

which have lower thermal conductivity compared to impervious surfaces. 

Those LULC types play a significant role in reducing the amount of  

thermal radiation as a result of its high thermal inertia  (Xiao et al. 2008).  

c) The low impact (25-26 °C) was swamp area and mangroves that can help 

to reduce LST and the high radiant temperature of the built-up area. 

 

These impact levels of LULC types on LST have an implication for the further 

LULC management in the study area to reduce the LST value. The mitigation and 

adaptation effort should be more focused on LULC types such as built-up areas, 

open space and grass land through green space planning or using lighter-coloured 

materials for reflective surfaces effects. Built-up area plays an important role in 

forming UHI centers and composed 50% of the study area in 2013 while open 

land and grass land shows the higher LST value although their LST varied from 

1995 to 2013. 

6.3.2 The increasing LST and driving factors 

Figure 6.15- Figure 6.17 show area where LST has increased from 1995 to 2013. 

Most of the increasing LST from that period occurred at the northern sub-urban or 

in the rural areas, while the downtown areas of Denpasar and Tabanan as well as 

the southern coastal areas such as Kuta, Benoa harbour, and the island of 

Serangan shows a relative lower increasing LST areas from 1995 to 2013. This 

phenomenon indicates an impact from the LULC changes in sub-urban and rural 

areas and a consequence of urban expansion. The continuing urbanization that 
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was indicated by increasing built-up areas in sub-urban and rural areas results in 

relatively high LST.  

 

In contrast to the UHIs in 2013, coastal areas in Kuta, Benoa harbour, and the 

island of Serangan had more UHI effects in 1995 and 2003 (Figure 6.14). This 

possible difference of UHI pattern is confirmed by IPCC (2007), which states that 

UHI effects are often localized and are dependent on local climate factors such as 

cloudiness and windiness, and these effects in turn depend on proximity to the sea 

and season.  However, the seasonal changes that influence in day length and Sun 

angle of incidence have been excluded by standardization process in this analysis.  

Moreover according to Pidwirny (2013), locations near the equator have only 

small variations in solar input annually, so that they did not influence the 

difference of this UHI pattern.  

 

As there was no cloud cover on those areas, the variation of this UHI effect is 

possibly caused by wind that taking away heat energy on the surfaces. Cold 

surface currents that occur at the ocean’s surface that are driven by the winds may 

influence the lower LST of coastal locations. Cold surface ocean currents 

originate in polar and temperate latitudes that are driven by atmospheric 

circulation generally flow towards the equator (Pidwirny, 2013) and in this case 

may moderate LST over Kuta, Benoa harbour, and the island of Serangan.  The 

wind speed and direction that flowed from the west (Indian Ocean) were 

suggested the influencing drivers as these areas were located in the western part of 

the study area and were close to and between Indian Oceans. It is confirmed by 

another coastal area in the eastern part of the study area (Sanur) that was not 

directly influenced by Indian Ocean did not show fewer UHI effects either; these 

UHI effects were even more extensive in 2013 (Figure 6.14). However, it is 

necessary to further examine the impact level of the wind on UHI effects for these 

coastal urbanized areas. 
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Figure 6.14  The different change of UHI pattern at Kuta and Sanur in 1995, 2003 
and 2013 

 

In contrast to the coastal areas, UHI effects in the downtown area of Denpasar 

from period of 2003-2013 were more widespread. Wind may also influence the 

LST in the downtown area as according to Erellet al. (2011) in the tropics, a wind 

velocity of 1–1.5 m/s can create cooling effect which is equal to a 2 °C drop in 

temperature.  However, the influence of wind factor in LSTs in the downtown 

areas may not be as strong as in coastal areas. Another possible factor of this 

difference in UHI pattern is the impact of LST standardization that may have 

slightly changed the data distribution.  The factor of increasing impervious 

surfaces in built-up areas suggesting this as one of main drivers for these 

increasing UHIs, has been confirmed by the lower NDVI value. The impact of 

increasing built-up areas (impervious surfaces) on UHI effects needs further 

detailed study and will be presented in Chapter 7. Consequently, management 

strategies to reduce these UHI effects need to be different between these locations.  
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Figure 6.15  Spatial distributions of the increasing LST from 1995 to 2003 
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Figure 6.16  Spatial distributions of the increasing LST from 2003 to 2013 
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Figure 6.17  Spatial distributions of the increasing LST from 1995 to 2013 
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6.4 Chapter summary 

The usefulness of the GIS and remotely sensed thermal data for mapping LST 

distributions using Landsat and ASTER has been demonstrated in this chapter. To 

extract the LST map, the DN of thermal infrared bands was transformed into 

spectral radiance and an effective at-sensor brightness temperature, and an 

emissivity value was thus obtained. The LSTs were not able to be directly 

compared due to the different seasons and times of the year of the acquired 

images. Therefore, a standardization of those LST data, to accommodate the 

accuracy of the comparison between different years and seasons, was conducted. 

Besides the lack of an entirely cloud-free cover image for this study, the 

standardization of the retrieved LST map using LST data directly recorded from 

real object properties or in-situ observation was also missing in this study. Thus, 

improvements by refining LST retrieval with in situ measurement of LST are 

needed for future research.  

 

The LST derived from thermal data has provided temporally synchronous LSTs 

from 1995 to 2013, and, generally, the derived LST images show that UHI effects 

increased from 1995 to in 2013. The use of GIS is not only able to measure the 

spatio-temporal pattern of the LST but also to detect the spatial pattern of the UHI 

effects by transect graphs. The transect graph represents the lower temperature 

gradient of paddy fields and vegetation cover in rural areas. The temperature 

gradient gradually climbs as those LULC transform to built-up areas in downtown 

Denpasar, which is composed of more impervious surfaces. The impact level of 

LULC types on LSTs can be divided into: the high impact LULC (over 29 °C) 

was built-up areas, the moderate impact LULC (27 °C - 28 °C) was open land, 

grass land, paddy field, fish pond, water bodies, vegetation, bush land and dry 

farm land, as well as the low impact LULC (25 °C - 26 °C) was swamp area and 

mangroves.   
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The relationship between LST and LULC was revealed through determining the 

impact of LULC changes on LST and the change of LST area (ha). Wind as well 

as standardization result are of considerable importance in the different 

appearances of UHI effects between eastern coastal areas and downtown of 

Denpasar in April 2013 and, in turn, influence the strategies needed to reduce the 

UHI effects.  The mitigation and adaptation effort through green space planning 

should be more focused on built-up areas as it plays an important role of forming 

UHI centers and has covered most of the study area in 2013. According to this 

above result, LST, NDVI and built-up areas types can be considered to be three 

basic parameters to contribute to further evaluation of green space zoning with RS 

and GIS. The significant negative correlation between LST and NDVI by 

vegetation, paddy field and built-up area category shows the higher LST has a 

relationship with the lower value of NDVI and vice versa. This analysis provides 

applicability of relatively low cost, fine-moderate spatial resolution satellite 

imagery, then to examine the impact of LULC change on the urban environment 

in Bali. 
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7 GREEN SPACE PLANNING AND MANAGEMENT TO 
MITIGATE UHI IN BUILT-UP AREAS 

In the study area, there has been a tremendous reduction in the area of vegetation. 

Built-up areas linked to impervious surfaces (such as roads, buildings, and 

parking lots) now cover these previous vegetation areas, which has resulted in the 

capture of more incoming solar radiation during the day and subsequent re-

radiation of it at night.  As a result, UHI occurs, when the atmospheric 

temperature and LST are hotter than their rural surroundings.  Therefore, the 

mitigation and adaptation effort through green space planning should be more 

focused on LULC types of built-up areas as it plays an important role in forming 

UHI centers and covered most of the study area by 2013.   

  

To anticipate UHI effects, several mitigation and adaptation strategies can be 

employed, such as using lighter-coloured materials for reflective surfaces effects. 

However, a more practical method of mitigating UHI effects is carried out by 

strategic planting of vegetation or developing green spaces in urban areas. This 

strategy has a relatively low cost, which is why it may serve as an affordable 

solution for developing countries. Moreover, it optimizes the advantages of the 

tropical climate, which allows evergreen broad-leaf trees to grow throughout the 

entire year. 

 

As built-up areas play an important role in forming UHI centers and composed 

50% of the study area in 2013, this chapter analyses LST patterns, specifically in 

the built-up areas at micro scale level (MUHI) to investigate mitigating the UHI 

effects through developing urban green space and revealing the influential factors. 

Detection of MUHI is conducted to directly see the UHI hotspots that show higher 

LST than surrounding areas. A priority zone for green space planning in the built-

up area category was also suggested by numerical classification and thus, the 

green space management strategy in each zone can then be developed.  
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7.1 Method of analysis 

7.1.1 Analysis the impact of LULC on LST in urban area types 

The local scale pattern discussed in Chapter 5 was fragmented into a series of 

samples that consist of smaller hot islands and cooler islands at the micro-scale 

level (up to 1 km) taken from three types of urban areas and statistically 

measured. Three types of built-up areas that have been extracted from the 

previous analysis of the LULC map in Chapter 4 were used to identify the change 

of LULC by using polygons of MUHI samples focusing on the built-up areas and 

their surroundings. For this purpose, the size of a MUHI sample was defined to 1 

km2 resolution based on the UHI urban boundary layer (UBL) at micro scale that 

occurs up to 1 km or more (Voogt, 2004), as explained in Chapter 2.  This size of 

sample area also has been applied by Mitchell (2011) with a different technique 

for taking MUHI samples.   

 

The number of sample areas taken in each urban area type varied from seven to 

ten.  Both the number and distribution of samples were determined based on the 

persistent built-up area throughout the three years and the UHI “hot spots” 

tendency on LST maps. A 1 km2 polygon sample included other adjacent different 

LULC types such as vegetation, paddy field, mangroves, and so on.  To detect the 

features that consist of smaller thermal “hot and cool spots”, the LST map and 

Quickbird imagery were used. 

7.1.2 Data and analysis of green space zone 

The raster maps of built-up areas, LST and NDVI in 2013 were further used as the 

factors to determine the priority zone for developing green space using a 

suitability analysis method.  By using Weighted Overlay and Spatial Analyst tools 

in GIS, the priority zone for urban green spaces was determined. A 

reclassification process was conducted on each raster map to define their priority 

level for developing the green spaces. The value of reclassification was defined by 
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the significance level to develop green spaces based on the raster map value 

(Table 7.1).  For instance, a very dense urban area was considered 3; a dense 

urban area was considered 2, and so on. Surveys of experts’ opinions are usually 

used for this sort of analysis to determine the weight value of factors used, but 

these were not conducted in this study.  It is therefore assumed that these factors 

have an equally important role in determining the priority zone for urban green 

space and thus, have the same weighted score value. From this suitability analysis, 

the final value of 1 given the lowest priority urban areas for a green space, but the 

value of 3 was the highest priority for a green space in urban areas (Figure 7.1). 

Therefore, based on the resulting priority zone for green spaces, the management 

for such green spaces in each priority zone could then be suggested. The boundary 

of the district was combined to measure the priority distribution of each district in 

the study area since the role of agencies and government cannot be ignored in the 

development of green spaces to adapt with UHI effects. 

 

Table 7.1 Criteria of scoring and weighting for each factor 
 
No Factor  Value 

Weight score 
1 Urban area Semi dense  0.33 1 

Dense area   2 
Very dense   3 

2 LST 19.02-25.02 0.33 1 
25.03-28.56  2 
28.57-36.39  3 

3 NDVI 0.665-1.043  0.33 1 
0.434-0.663  2 
0.034-0.434  3 
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Figure 7.1  Reclassification of raster map of built-up area type, NDVI and LST 
 

7.2 Results 

7.2.1 Sample distribution 

MUHI samples were taken in three types of urban area (Table 7.2). The urban 

area types were divided based on the proportion and density level of the built-up 

area category in a sample. The first urban area type was a very dense urban area. 

A sample polygon of very dense urban area was composed by approximately 80-

100% of very dense built-up areas and less than 20% of other LULC such as 

vegetation, paddy field, and open land. The second type was a dense urban area.  

A sample polygon of dense urban area is composed by 50 - 80% of dense built-up 

area. The last urban area type was a semi-dense urban area where in a sample area 

was composed of less than 50% of semi-dense built-up area. These samples were 

commonly distributed in traditional Balinese residential compounds with dense 

vegetation between the vacant building spaces. 

 

 

 

 

 

Built-up area  

 
 

NDVI 

 

LST 

 



 

158 
 

Table 7.2 Polygon samples of built-up areas types 
 

Urban 
area 
type 

General 
description 

Google Earth image  
(data SIO, NOAA, U.S. Navy, 

NGA,  GEBCO, Landsat image) 

 Location of polygon 
samples 

Very 
dense 
urban 
area  

A sample area is 
composed of  80-
100% of very 
dense built-up 
areas 

 

 

 
Dense 
urban 
area  

A sample area is 
composed of 50-
100% of dense 
built-up areas 

 

 

 
Semi 
dense 
urban 
area  

A sample area is 
composed of  less 
than 50% of semi 
dense built-up 
area 

 

 

 
 

7.2.2 The LST fluctuation by diversity of LULC types in built-up area types 

Analysis of LST change by diversity of LULC types within urban area samples 

was conducted and the results can be seen in Table 7.3 (which shows the LST 

fluctuation of each LULC class in each year; data does not include a comparison 

of values across years).  It can be seen in Table 7.3 that all LULC types in very 

dense urban areas had higher temperature than other urban area types. The LST of 

all LULC types gradually decreased to the dense and semi-dense built-up areas. 

The difference of LST in very dense urban areas were 3 °C  – 5 °C higher than in 

the semi-dense urban areas depending on the year. For example, in 2003, LST in 
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very dense urban areas was 31.22 °C and in semi-dense urban areas, it was 26 °C; 

meanwhile in 2013, the LST in the very dense urban area type was 30.20 °C and 

in semi-dense urban area type was 27.91 °C. 

 

The higher LST in very dense urban areas not only occurred in built-up area 

types, but also on paddy fields and vegetation areas. The density of built-up areas 

appears to have strongly influenced the UHI effect as suggested by Oke (1982); 

many complex factors are involved in the UHI phenomena and the most 

influential factors are the distribution of a mosaic of complex surface covers and 

urban morphology, such as geometry and density of building materials, which 

combine to create microclimate systems and a limitless array of energy balance. 

7.2.3 The change of LST by urban area types 

Among urban area types, very dense urban areas had the highest average LST of 

29.02 °C, 29.34 °C, and 28.92 °C in 1995, 2003 and 2013, respectively (Figure 

7.2). A very dense urban area causes anthropogenic heat, which when released 

from surfaces is trapped in the city, which increases the overall heat. In addition, 

surface heat on the ground, such as on roads and pavements cannot be effectively 

released out of the urban region because there is a small sky view from the ground 

and physical objects such as buildings absorb most of the emitted heat from the 

ground, keeping the heat trapped within the city (Sailor & Fan, 2002).  In contrast, 

semi-dense urban areas had the lowest average LST of 26.01, 25.62, and 26.84 °C 

in 1995, 2003, and 2013, respectively.  The highest LST being in the very dense 

urban areas gives an indication that the green space development must be firstly 

focused on these areas. 
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Table 7.3 Change of LST by the LULC types in urban area types 
 

LULC type LST (°C) 
1995 2003 2013 

Very dense urban area        
Paddy field 29.42 28.38 28.67 
Built-up 30.98 31.22 30.20 
Vegetation 28.53 29.14 28.49 
Open land 29.30 - 29.70 
Dry farm land 26.89 29.74 - 
Bushland - 29.36 - 
Grassland - 28.19 27.56 
Average 29.02 29.34 28.92 
Dense urban area        
Paddy field 27.67 27.37 27.48 
Built-up 29.64 28.77 28.69 
Vegetation 27.67 27.68 28.88 
Open land 28.15 29.17 28.52 
Dry farm land 28.41 29.60 - 
Bushland 28.10 28.31 28.70 
Fishpond 29.67 28.31 - 
Mangroves - - - 
Waterbodies 28.67 - - 
Average 28.50 28.46 28.45 
Semi dense urban area  

   Paddy field 24.78 25.62 26.27 
Built-up 26.64 26.00 27.91 
Vegetation 25.64 24.55 26.35 
Dry farm land 26.29 - - 
Open land 26.20 - - 
Bushland 26.51 26.30 - 
Average 26.01 25.62 26.84 
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Figure 7.2  LST changes of urban area types 

 

Although it generally appears that the LST of urban areas has changed slightly 

within the last two decades, there was an contradictory variation of urban 

temperature changes. From 1995 to 2003, the mean LST of very dense urban 

areas increased from 29.02 °C to 29.34 °C.  In contrast, it dropped by about 1°C 

to 28.92 °C and is the lowest LST value among other very dense urban areas from 

2003 to 2013.  This decrease of LST was not consistent with the LST dynamics in 

other urban area types. In dense urban area, the LST slightly decreased from 1995 

to 2013.  In contrast, The LST in semi dense urban area sharply increased from 

1995 to 2013.  The possible reason of this fluctuation in LST might still be 

associated with the different seasons, which, thus, influences human behavior and 

activities, such as air conditioner use, that it is hard definitely separate from those 

associated with LULC change. 

 

This result is confirmed by the result of a t-test paired with two means of LSTs 

(Table 7.4). Most of the paired data shows there was no significant difference of 

LST changes.  The exception occurs on paired LST data of very dense built-up 

areas that reduced from 2003 to 2013, and that of the semi dense urban areas from 

2003 to 2013 and from 1995 to 2013.  For which the P values were lower than the 
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significance level (0.05). This means the null hypothesis is rejected and 

comparison of their average LSTs shows there were statistically significant 

differences between them.  

 

Table 7.4  Statistical result of t-test paired two means of LST (significant at 0.05) 
 

Built-up type Paired Mean T-stats T critical stats P value 
Very dense 2003-2013 2.42 1.86 0.02 
 1995-2013 1.71 1.86 0.06 
 1995-2003 0.26 1.85 0.4 
Dense 2003-2013 0.83 1.94 0.22 
 1995-2013 0.96 1.94 0.19 
 1995-2003 0.6 1.94 0.29 
Semi dense 2003-2013 2.55 2.02 0.03 
 1995-2013 8.70 2.02 0.00 
 1995-2003 0.28 2.02 0.39 

The blue shaded areas indicated the period with a significant difference of LST change 

7.2.4 Analysis of green space planning 

The purpose of green space planning is to mitigate UHI effects in the study area 

by determining green space allocation based on measurement result of NDVI, 

LST, and built-up area types. The spatial analysis of green space planning using 

Weighted Overlay and Spatial Analyst tools in GIS produced a block plan that 

shows spatial allocation of green space priority. The local social-cultural factor 

was not used in this planning but will be integrated descriptively in the proposed 

green space management. 

 

There were three priority zones of green spaces resulting from the spatial analysis 

as a block plan (Figure 7.3).  The allocation of a block plan and total area in each 

district in the study area can be seen in Table 7.5: 

a) High priority zone for green space: 

The total area for this zone was found to be 3400 ha that covered 43.21% 

of built-up areas and mostly covered very dense urban areas. This zone is 

characterized by higher LSTs and low green space areas.  

b) Low priority zone for green space: 
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The total area for this zone was 4434 ha (56.44%) and it is the largest zone 

that mostly covered dense urban areas. This zone had a moderate number 

of green spaces and moderate LSTs.    

c) Not a priority zone for green space: 

This zone had a good green space area and low LST with the total area for 

this zone being 0.27 km2 (27 ha) and covering 0.34% of urban areas. 

 

From Table 7.5 and Figure 7.3 the allocation of the high and low priority of green 

spaces can be seen, spread across eleven districts including: Kediri; Abiansemal; 

Sukawati; Ubud; Mengwi; Denpasar Barat; Denpasar Timur; Kuta Utara; Kuta; 

Denpasar Selatan; and Blahbatuh.  The district with a high priority zone for green 

space development was mostly located in Denpasar city with the total area of 

about 5-6 km2, while the district of Kuta and Kuta Utara as a centre of tourism 

area in Bali had a total area of 1.23 and 372 ha, respectively. In contrast, 

Sukawati, located far from Denpasar and Kuta, also had a relatively large high-

priority zone of 5 km2.  The proposed parks’ locations in the high priority zone of 

green space can be seen in Figure 7.4.  These locations were allocated based on 

the priority green space zone and the possible available areas in 2013 that is 

covered by LULC types of paddy fields, vegetation areas, and open land. 
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Table 7.5  Priority zone of urban green space based on district areas  
 

No Green space zone Name of district  Area (Ha) % 

1 Not a priority zone Mengwi 3 0.04 

  
Sukawati 1 0.01 

  
Denpasar Barat 5 0.07 

  
Kuta Utara 4 0.05 

  
Denpasar Selatan 8 0.11 

  
Kuta 2 0.03 

2 Low priority zone Kediri 5 0.07 

  
Mengwi 162 2.13 

  
Abiansemal 76 1.00 

  
Sukawati 290 3.81 

  
Ubud 1 0.01 

  
Blahbatuh 17 0.22 

  
Denpasar Barat 1200 15.76 

  
Denpasar Timur 504 6.62 

  
Kuta Utara 533 7.00 

  
Denpasar Selatan 971 12.76 

  
Kuta 546 7.17 

3 High-priority zone Kediri 25 0.33 

  
Abiansemal 117 1.54 

  
Sukawati  500 6.57 

  
Ubud 2 0.03 

  
Mengwi 199 2.61 

  
Denpasar Barat 677 8.89 

  
Denpasar Timur 666 8.75 

  
Kuta Utara 372 4.89 

  
Kuta 123 1.62 

  
Denpasar Selatan 583 7.66 

  
Blahbatuh 19 0.25 

  
Total area 7611  
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Figure 7.3  Block plan of green space in urban areas 
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Figure 7.4  Suggested locations for new urban parks in high-priority zone 
 

7.2.5 MUHI detection in urban area types 

To support a tree planting plan in green space zones, examination of higher LST 

to determine the detailed location of the planting plan using GIS is described 

below: 

a) Very dense urban areas 

Figure 7.5 shows a typical thermal pattern in very dense urban areas. The 

thermal pattern of “hot spots” defined for this study’s aim was areas with 

temperatures over 29 ºC. Most LST in very dense urban areas was within the 

temperature range of 29.1 ºC – 33 ºC.  Rooftops with low albedo definitely 

show the highest level of surface temperature (over 31.1 ºC) in the sample 

region and the coldest areas (below 29 ºC) was greatly contributed to by paddy 

fields and vegetation features in parks, road sides, cemeteries, and temples. 

 
 :  Old parks 

:  Location of proposed new parks 
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Figure 7.5  Cooling thermal spots provided by features of parks, lawns, vacant 

land, paddy fields, and cemeteries, illustrated by white and green 
shaded areas in very dense urban areas. 
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b) Dense urban areas 

Most LSTs in dense urban areas were in the temperature range of 29.1 °C – 31 

°C. Natural to semi-natural LULC types (i.e., vegetation, paddy field, 

mangrove forest) provided cool thermal spots to the surrounding built-up areas.  

Some sample spots of densely urban areas were close to irrigated paddy fields 

and water bodies that predominantly exhibited LST of 29.1 °C – 31 °C.  In 

contrast, the other dense urban areas located close to irrigated paddy fields, 

parks, and vegetation shows the lower LST zone (25.1 °C – 27 °C). This 

difference in cooling effect to the adjacent densely built-up areas would be 

influenced by environmental factors such as the size of the densely built-up 

areas, configuration of vegetation in dense urban areas, and the nature of the 

elements of densely built-up areas (i.e., roof building, trees, and road).  The hot 

and cold thermal spots also can be seen in the existing park of Niti Mandala 

located in a densely urban area sample (Figure 7.6).  The big trees of parks and 

settlements provided cooling benefits and the presence of asphalt parking lots 

close to the park had higher LST (over 31 °C) that needs to be reduced. 

 

c) Semi dense urban areas 

Figure 7.7 shows that most LST in the semi-dense urban areas was within the 

temperature zone 27.1 °C–29 ºC.  The lower temperature of semi dense urban 

areas was influenced by the paddy fields and vegetation area, which in the 

temperature range of 25.01 °C – 27 °C.  Moreover, the semi dense built-up 

area was sparse and planted with more vegetation than other built-up area 

types. 
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Figure 7.6  Typical thermal sample in densely urban areas (Niti Mandala Park) 
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Figure 7.7  Typical thermal sample in semi-dense urban areas 
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7.3 Discussion 

7.3.1 Factors that influence LST changes among built-up areas 

This discussion is only focused on influencing factors of LST changes in the 

change period that shows significant difference in the LST value based on the t-

statistics test that were very dense of 2003-2013, semi dense of 2003-2013, and 

semi-dense of 1995-2013 (Table 7.5).  The possible factor that influences this 

variation of LST changes is factors of time of day, seasonality, and LULC 

condition (Zhou and Wang; 2011).  The three images used in this study were 

captured at around the same local time at around 9-10 AM, thereby theoretically 

excluding the influence of the time-of-day factor.  In addition, the seasonal factor 

that can influence LST difference also has been excluded by standardization in 

this analysis. Thus, this variation of UHI is assumed to be caused only by the 

LULC condition that is triggered by anthropogenic factors. The increasing 

temperature as well as the dense building density and geometry influence limited 

wind circulation that further impact human comfort and trigger the use of air 

cooling. As a result, the artificial heat sources and also air pollution influence the 

LST change.  The more air conditioners are used, the more heat released, and vice 

versa, which eventually leads to the variation of UHI hot spot features. Therefore, 

the possible reason of this significant declined LST might be associated with the 

different seasons influencing human behavior and activities.   

 

There are two types of season in this study area.  The dry season runs from May to 

September and wet seasons runs from November to March. Different from other 

images that captured on a rainy day of February, the LST of 2013 was in April, 

which is the transitional season (from the rainy to dry season). The secondary data 

of monthly average air temperature for 2004-2008 period also shows the monthly 

temperature of April from the year of 2004 to 2008 tended to be lower than those 

of February (Setiawan, 2012). The pattern of wet and rainy season can be seen in 

Figure 4.2 (Chapter 4). This possible assumption was also confirmed by 
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comparing the estimated LST to the secondary data of ground-based air 

temperature at Ngurah Rai weather station located at 8°75’53”S and 115°17’02”E 

that shows the air temperature pattern in February 2003 was also higher than in 

April 2013. In addition, in accordance with the recorded air temperature pattern, 

the air temperature on 24 February 2003 was 32°C and the air temperature on 24 

April 2013 was 28°C, while the measured LST on 24 February 2003 was 35.23°C 

and the measured LST on 24 April 2013 was 31.09°C (Chapter 6). Therefore, the 

temperature in 2013 was much lower compared to the temperature in 2003 and 

has influenced the lower use of air conditioner. 

 

In contrast, semi urban areas from 1995 to 2013 and 2003 to 2013 shows that 

massive changes of paddy fields to semi dense built-up area had a significant 

impact on sharp LST increase. Also a significant increase in impervious surfaces 

is another possible reason of this increase in LST. Different from other types, 

most semi-dense urban areas were particularly distributed at suburban areas that 

were adjacent to large paddy field areas. The acquired image date of April 2013 

was typically in the end part of the growing paddy season. On this condition, 

those areas might be dominantly influenced by the majority bare land and pre-

emergent state of crops’ growth.  Developed paddy fields in pre-emergent state of 

crops’ growth tend to have similar spectral and radiant characteristics as open soil, 

which may have an exceptionally strong impact on overall LST. This is confirmed 

by the LST of paddy fields, which increased from 1995 to 2013 (Table 7.4). 

However, the impact of growing activities in paddy fields on LST needs to be 

investigated by further research.  Images with more obviously different seasons 

and more detailed investigation on LST change by LULC type condition in the 

built-up area type is required. This result also indicates the limitation of UHI 

nature as UHI is not a stable pattern. There are also many possible external 

factors, such as wind, which is hard to take into account in these built-up areas 

and might also influence the state of UHIs. 
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7.3.2 Concept of green space planning 

The development of green spaces was regulated by Indonesian government 

regulation No. 5/1988 and 2007, which requires that the minimum extensive green 

space is set to be 30% of the total area, and regulation No. 63/2002, which 

requires that the minimum urban state forest area is at least 10% of the total city 

area. However, from the field survey, it can be seen that only one new public park 

was developed during the 18 years. This is a contrasting condition as the urban 

population and development of built-up areas increased tremendously from 1995 

to 2013. The number of public parks was too low, although parks have distinctly 

proven to lower LST pockets among built-up areas.   

The basic concept of green space planning is to develop green spaces in the study 

area in order to mitigate UHI effects as well as to provide urban public facilities.  

Therefore, a better local thermal environment and livable city can be achieved. 

The number of green spaces needs to be highly developed in the high priority 

zone (Figure 7.4). The alternative action could be by developing lots of parks in 

the available vacant land (Figure 7.5) and by planting a large number of trees 

along the road sides, river banks, residential and office yards, and other potential 

areas.  Increasing the number of trees in new parks due to their multiple benefits 

would be more of a plausible solution as it requires relatively low technology and 

is cost-effective.  

Planting trees located in parks, cemeteries, vacant land, and recreation facilities, 

particularly in very dense built-up areas, can offer cooling effect pockets, as trees 

reduce LST directly through the evapotranspiration process. Trees reduce local 

thermal surfaces by absorption and reducing overall heat, through refracting 

sunlight and shading pavements, as well as affecting wind flow (Dwyer et al., 

1992; Parker, 1983).  Larger tree areas would be more effective, as they provide a 

greater canopy and shade cover. Therefore, developing new parks can provide 

larger areas for tree planting that is urgently required and would be a first-priority 

action.  There is no doubt that the presence of green spaces can moderate the UHI 



 

174 
 

effect (Yuan & Bauer, 2007), ensure energy flow (Yeh & Huang, 2006) along 

with providing cleaner air and water (Davies et al., 2008).  

In order to maximize benefits of green spaces, the development of green spaces 

should be approached from the micro-level areas.  Community parks should be 

provided by neighbourhoods or from villages to districts. The current problem of 

the unavailability of government land, which has served as a barrier to having a 

large amount of public parks, could be overcome by purchasing of private land.  If 

this plan can be implemented, this can affect the local surface energy balance and 

potentially lower LST in very dense urban areas. Increasing urban green spaces 

through developing new parks, planting trees, and applying green vertical walls 

and roofs would lower the energy demand and reduce costs for businesses, 

institutions, and residential structures.  This is also in accordance with actions of 

the EPA (2009), which has promoted a mitigation strategy based on increasing 

urban green spaces (urban forestry), cooling the roofs of structures, and cooling 

pavements.    

 
To have more significant impact on controlling the temperature, planting trees and 

other vegetation requires a planting design and proper management. The increase 

of vegetation should be focused on surrounding houses and residential areas, 

roads, and commercial buildings in urban areas. In addition, a specific emphasis 

should also be applied for green rooftops and green vertical walls on the side of 

buildings. Placing trees in front of windows and on the sunniest sides of a house 

will maximize energy savings and would be effective due to the blocking of the 

morning and afternoon sun. In the tropics, trees should be placed along the 

southern exposures of structures (Bowler et al., 2010).  Figure 7.8 shows applied 

UHI mitigation in built-up areas in the study area.  
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Figure 7.8  A cooling pavement in a very dense urban area 
 

To build new parks that can mitigate UHI effects, the hot climate with high 

humidity in the study areas should be considered in the park design and planning.  

Some basic green space concepts are suggested are to reduce LST and minimize 

humidity and modify wind direction, to provide maximum shade in the afternoon, 

to maximise the use of vegetation as a radiation absorbent surface that has shade-

giving properties.  As mentioned by Asimakopoulos et al. (2001), shading from 

trees can significantly decrease the energy required for cooling, decrease the rate 

of heat convection inside buildings due to shaded surfaces that have a lower 

temperature, and decrease the radiation exchange of the wall with the sky. 

 
Adapting the green space basic concept in park element designs can be done by 

considering the points below (Shahmohamadi et al., 2011):  

• Wind is increased through the use of hard and soft landscape materials to 

create air pressure differences and air movement. 

• Minimize paved areas and orient active areas to the southeast to protect 

from afternoon sun.  

• Sun-exposed surfaces use light colour materials. 

• Shaded pathways use canopy trees for airflow and parking lots shall be 

covered by trees or pergolas. 

 Source: www.kampoengbatikpalbatu.com 

http://www.google.com.au/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.kampoengbatikpalbatu.com/ada-kampung-batik-di-jakarta/&ei=QdRRVfy7EsH48QXJ74CIBQ&bvm=bv.92885102,d.dGc&psig=AFQjCNEYWffJxKvGZh8Vw4F52itVqLPi8A&ust=1431512103572786
http://www.google.com.au/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.kampoengbatikpalbatu.com/ada-kampung-batik-di-jakarta/&ei=QdRRVfy7EsH48QXJ74CIBQ&bvm=bv.92885102,d.dGc&psig=AFQjCNEYWffJxKvGZh8Vw4F52itVqLPi8A&ust=1431512103572786
http://www.kampoengbatikpalbatu.com/ada-kampung-batik-di-jakarta/
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7.3.3 Adaptation of local cultural concepts in green space management 

Besides defining green space planning and management based on raster maps of 

built-up area types, LST and NDVI, the indigenous planning concept of green 

space, called Tri Hita Karana that exists in the study area also needs to be 

adopted. This will empower UHI mitigation efforts because this indigenous 

planning concept of green space conserves urban paddy fields and protects some 

natural sacred green spaces in Bali such as traditional sacred places, cemetery, and 

temples.  Space arrangement in Bali was traditionally based on an indigenous life 

concept of the Balinese community called Tri Hita Karana (THK) as discussed in 

Chapter 4. The concept of Tri Hita Karana was applied in human space 

arrangement from the micro level (household level) to macro level (urban) and the 

application is shown in Figure 7.9.  A field study in a very dense, built-up area of 

Denpasar shows the application of THK concept in individual houses can still be 

found either on the features of Parhyangan and Pawongan and most residents still 

have a good understanding of the concepts of Tri Hita Karana. 

 

However, in recent years with population pressure, the traditional structure and 

function of the LULC pattern has had a fundamental change. The implementation 

of the Palemahan concept, which would have a small, open space in the house for 

the trees and garden, can hardly be applied today (Akuntomo and Suratman, 

2013). Narrow houses and economic conditions were the dominant driving factors 

that influenced the transformation in the application of the THK concept in the 

space arrangement (Paturusi & Diartika, 2010). Therefore, the trees and garden 

are often absent which leads to the increase of UHI effects. This situation 

becomes worse if the house was inhabited by immigrants as they tend to ignore 

the THK concept. Moreover, there was no rule from the local government 

regulation that strongly tied all citizens to apply the THK concept. Therefore, in 

the future the THK concepts that once applied to individual housing might 

eventually disappear.  
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*Pictures were taken during field survey 

 

Figure 7.9  The applied THK concept of green space 
 

Because of the green space zones they provide, all paddy fields located in the high 

priority zone have to be preserved and must not be transformed into other LULC 

types.  The quality of existing green space areas that has strong relationship with 

the THK concept should also be increased. As basic local wisdom of Bali, THK 

needs to be more consistently implemented and more empowered to develop 

sustainable urban green spaces.  The embedded local, indigenous concepts would 

also give added value for the identity of Bali’s urban green spaces that cannot be 

found in other areas. The analysis of the relationship between the THK concept 

and the modern green space typology in Indonesia would give the result seen in 

Figure 7.10. From the relationship between THK with the typology of green open 

space development in Indonesia, the THK concept would still be relevant to be 

implemented in the modern conditions and the most possible space for developing 

tree plantation is on the public space of temple and cemetery.  For example there 

Macro level: village source: 
www.pbase.com 

 

 

Tri Hita Karana 

Micro level: 
house, private*  

  

 

Temple for implemented 
Parahyangan  
(macro level at Denpasar city) 
www.balisightseeings.com 
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https://www.google.com.au/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=https://www.flickr.com/photos/45490911@N04/7764273490/&ei=dIpRVZn_AsKE8gWA_4KoBQ&bvm=bv.92885102,d.dGc&psig=AFQjCNGazLH80G72iQUNXpiwH2BVkDzicw&ust=1431493557594042
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were 35 villages that have existed in Denpasar and each of them has three temples 

and at least one cemetery. The green space that existed with them will never been 

converted into another LULC type.  Therefore, those areas need to be optimally 

developed as urban green spaces. This is the most enabling suggestion to 

overcome the limited availability for public areas in the study site. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.10  The relationship between applied THK concept and Indonesia green 
space structure (Adapted from Space Plan Bureau of Indonesia, 
2006; Paturusi and Diartika, 2010) 

7.4 Chapter summary 

This chapter employed LST information of three different urban area types for the 

purpose of green space planning. The average LST increased from the semi-dense 

urban areas to the very dense urban areas. The higher mean LST in very dense 

urban areas indicates that the density of urban area strongly influenced the UHI 

effect.  It also gives an indication that the green space development should be 
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firstly focused on this urban area type. The impact of LULC change on increasing 

LST change shows it was significant in semi-dense urban areas.  The change of 

LST in very dense urban areas was also influenced by anthropogenic activities.  

Based on a weighted overlay of raster maps of LST, NDVI and urban area types, 

three zones of green space planning and management were identified.  Those were 

the high-priority zone, low-priority zone, and not a priority zone.  The amount of 

green spaces and tree planting plan must be highly increased in the high-priority 

zone as green spaces can give a distinct cooling spot in very-dense and densely 

urban areas. Despite zoning, adaptation of the local cultural factor, Tri Hita 

Karana, which cannot be seen physically, is also considered in green space 

management. The concept needs to be more empowered and applied particularly 

at the public level through evergreen tree plantation. At the private level, 

application of green space should be supported by government rules that strongly 

prepare citizens to anticipate more migrants in the future. Although paddy field 

LST in very dense urban areas was higher than LST in other urban area types, the 

paddy field in the adjacent built-up areas had provided cold thermal spots in this 

urban area types.  More attention should be paid to conserving these paddy fields 

in urban areas, particularly those were located in high priority zones of green 

spaces. Additional recreation value and plant diversification that has been running 

well to conserve paddy fields in some city areas should be intensively improved. 

The limited availability of vacant areas and the private status of paddy fields that 

accelerate the changing of paddy field into other things should be overcome by 

buying those private lands by the local government. 
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8 CONCLUSION AND FUTURE DIRECTION 

When examining the impact of LULC on LST and urban green space planning, 

land managers and policy makers need detailed map information as a baseline 

management tool. However, making LULC and LST maps with labour-intensive 

surveys becomes less practical and increases costs. RS and GIS technology offer a 

way to derive necessary information in a spatiotemporal LULC and LST.  The 

study presented in this thesis demonstrates four types of analysis that can be 

retrieved: 

a) Historical multispectral remotely sensed images can be analysed to 

reconstruct the spatial rates and patterns and rates of change of LULC 

from 1995 to 2013; 

b) Historical multispectral remotely sensed images can be analysed to 

reconstruct the spatial patterns and rates of change of LST from 1995 to 

2013; 

c) The relationship between LULC changes and LST and NDVI can be 

determines; and, 

d) Mitigation and adaptation of UHI effects through allocation of green 

spaces is proposed.  

A summary of these studies is described with recommendations for future study.  

8.1 Spatial and temporal LULC rates and patterns 

Chapter 5 examined LULC change rates and patterns between 1995 and 2013 over 

a 240 km2 study area using a temporal series of multispectral RS images. This 

chapter also demonstrated the usefulness of object-based image analysis in 

deriving LULC classification. This type of information is important for updating 

spatial data for urban management, determining past and current levels of LULC, 

as well as the change rate for LULC monitoring.  The spatial and temporal LULC 

change was then studied, and revealed that:  

a) The OBIA approach requires a very good accuracy level in both 

classifications because the accuracy of the change map is the product of 
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the accuracies of the individual classifications. Some classification errors 

are caused by high diversity LULC types, segmentation and merge errors, 

time difference of collecting reference data, and difference in spatial 

resolution between classification and reference data. 

b) There are 12 main LULC classes that can be identified using ASTER and 

Landsat images, with an overall accuracy of 85%, 87 and 80% for maps of 

1995, 2003 and 2013, respectively.  Both images types were useful in 

determining various LULC types in heterogeneous areas, but suffered in 

the detection of the detail of built-up areas and paddy fields (i.e., 

harvesting, watering, and vegetative stage) in 1995 due to the lower spatial 

resolution of the Landsat data.  

c) The study site experienced fast urban growth that expanded into vegetation 

and agricultural areas on the fringes. LULC maps show that in the two 

periods urban expansion occurred in all directions and was distributed 

unevenly in all directions. The city associated with the built-up area 

category expanded an average of 360 ha/year over 8 years (1995-2003), 

with an average of 400 ha/year over 10 years (2003-2013). The highest 

rate of vegetation and paddy field transformation into built-up areas 

occurred particularly during the period of 1995-2003. The decrease in 

paddy field land may result in urban environmental problems, particularly 

floods, food security issues, deep water shortages, and imbalance of the 

urban ecosystem. 

d) LULC changes were governed by a combination of demographic changes, 

economic growth, land value, and road development. Inconsistent and 

ineffective government regulation and little coordination among involved 

agencies accelerated the changes in LULC. On the other hand, the 

Balinese local wisdom helped to restrain the changes during the same 

periods. 
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8.1.1 Recommendations 

a) The imagery and classification techniques in this study did not always 

accurately detect paddy fields, vegetation and built-up areas. In order to 

develop a more accurate and detailed heterogeneous urban structure 

classification, it is recommended that the classification process should be 

revisited and more reference samples be collected to significantly improve 

the classification result.  Moreover, the object-based classification 

technique used in this study may be transferred to higher spatial resolution 

imagery with smaller grid cells (less than 15 m2 of spatial resolution). 

b) The technique used to determine the main driving force variables of LULC 

changes, particularly in fringe areas, needs to be more intensively explored 

as it is useful for predicting future LULC.  This information is also 

important to the development of strategies and practices for urban 

planning and management. 

c) A deliberate strategy should be crafted by the local government to sort out 

the massive vegetation and paddy field changes. Remaining paddy field 

areas should receive designation as timeless paddy fields. Financial 

subsidies money and land tax concessions could be alternative solutions. 

8.2 Spatial and temporal LST rates and patterns 

Chapter 6 examined LST retrieval using ASTER and Landsat thermal data of 

1995-2013. A pattern of UHI effect was related to LULC patterns and changes. 

This analysis has the following results: 

a) Thermal data of both Landsat TM and ASTER is a useful component in 

LST monitoring. A standardization process is necessary to exclude 

seasonal factors and to maintain the temporal consistency for data set 

comparison. Retrieved LST was in accordance with the observed annual 

air temperature pattern from secondary data and temperature data from 

Ngurah Rai climate station. This result makes a contribution by being the 
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first spatial and temporal study of LST patterns in the fastest growing area 

of Bali using RS and GIS technology. 

b) The magnitude and spatial patterns of UHI in Bali can be revealed by 

visually identifying the derived LST images that tended to be more 

widespread in 2013.  The thermal pattern of “hot spots” classified for the 

aim of this study was areas with temperatures over 29 ̊C. Those areas were 

linked with built-up area structures that were characterized by building 

roofs and asphalt parking lots. Thermal patterns of “cool spots” consisted 

of paddy fields and vegetation, which created a lower temperature.  The 

local patterns from transect graph show the lower LST in paddy fields and 

vegetation areas, and the LST gradient gradually climbed in the downtown 

area of Denpasar. This is also an effective technique for locating local 

scale of thermal features of UHI effects by LULC types.  

c) The RS and GIS processing techniques used, which depict a combination 

of satellite thermal data of Landsat TM and ASTER sensor and high 

resolution aerial photograph of Google, are well suited for detecting 

thermal patterns from micro scale of three different density types of built-

up areas for the UHI mitigation effort.  Images from all three dates, 1995, 

2003, and 2013, on built-up area types displayed broadly similar patterns 

with distinct micro UHI effects. 

8.2.1 Recommendations 

Aside from the limited availability of cloud-free satellite data, although the 

synoptic coverage, accuracy, and spatial resolution of ASTER and Landsat can 

reduce requirements for in-situ measurements of temperature, corrected real 

object properties and in-situ observation data of LST that are lacking in this study 

are still required for more comprehensive validation of retrieved LST data. 
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8.3 The relationship between LULC change on LST and NDVI  

Chapter 6 also studied how LULC classes were related with LST changes and 

quantified the relationship between LST and the biophysical parameters (LULC 

and NDVI).  The analysis of the relationship between the LST, LULC and NDVI 

would provide the basis for the mitigation of UHI effects, offering better living 

conditions to the city.  The study revealed that: 

a) The impact level of LULC types on LSTs can be divided into: high impact 

LULC (over 29 °C) in built-up areas, moderate impact LULC (27-28 °C) 

in open land, grass land, paddy fields, fish ponds, water bodies, vegetation, 

bush land and dry farm land, as well as the low impact LULC (25-26 °C) 

of swamp area and mangroves.   

b) LULC changes had an impact on LST changes from 1995 to 2003, 

particularly in the urban fringe areas. The changes in LST in coastal areas 

were more influenced by the cold sea currents caused by wind factors, 

while LCT change in the downtown areas were caused by anthropogenic 

activities such as air conditioning and transportation pollution. 

c) Statistical analysis using Pearson’s correlation coefficient indicates built-

up, paddy field and vegetation types persistently demonstrated a negative 

significant relationship between LST and NDVI across all three years. 

This significant negative correlation shows the higher LST is related to 

lower value of NDVI and vice versa. The weakness of the relationship 

might be due to the heterogeneous condition of LULC types. 

8.3.1 Recommendations 

All further urban research depends on the quality of classification results, which 

are possible misinterpreted and influence the weakness value of the relationship 

between LULC change on LST and NDVI. Therefore, the accuracy of the LULC 

classification should be improved for further study. 
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8.4 Mitigating the UHI effect through green space planning 

As built-up areas play an important role in the formation of UHI centers and 

comprised 50% of the study area in 2013, Chapter 7 analyses the LST pattern 

specifically in the urban area types at the micro scale level (MUHI) in order to 

mitigate the UHI effects through the development of urban green space. Detection 

of MUHI was conducted to directly see the UHI hotspots that showed higher LST 

than surrounding areas. A priority zone for green space planning in the urban area 

category was also suggested by numerical classification, and thus the green space 

management plan for each zone may be developed. The study revealed that: 

a) The density of built-up areas influenced the UHI phenomena. The LST of 

all LULC types in the very dense urban areas was consistently higher than 

temperature in dense and semi dense urban areas. The warmer mean LST 

in very dense urban area types indicates green space development should 

be firstly focused on these areas. 

b) LULC changes in very dense and dense urban areas did not have a 

significant impact on LST changes from 1995 to 2013, with the exception 

of the rise of LST in very dense urban areas from 2003 to 2013, which 

may have been influenced by anthropogenic activities. Yet, the significant 

increase of LST in semi dense urban areas may have been caused by 

LULC changes. 

c) Weighted overlay of raster maps of LST, NDVI and urban area types 

resulted in three zones of green space planning and management. Those 

were the high priority green space, low priority green space and not a 

priority green space.  The amount of green space and the tree planting plan 

must be increased in priority zones, as green space can offer a distinct 

cooling spot in very-dense and dense urban areas.  

d) Adaptation of the local cultural concept, Tri Hita Karana, is also 

considered in green space planning and management.  The concept needs 

to be more empowered and applied, particularly at the public space level, 

through evergreen tree planting. On the private level, the application of 
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green space should be supported by government rules in anticipation of 

continued future migration. 

8.4.1 Recommendations 

a) The study results also indicate the limitations of UHI, as UHI is not a 

stable pattern.  Investigation of the impact of anthropogenic factors (i.e., 

paddy field stage, use of air conditioner) and wind that possibly influences 

LST values is recommended for future research. 

b) Although LST of paddy fields in very dense urban areas was much higher 

than LST in other built up types, the paddy fields adjacent to the built-up 

areas offered the reduction impact on the edge of built-up areas. Therefore, 

more attention should be paid to conserving urban paddy fields, 

particularly in the green space zones of high priority. Additional recreation 

value and plant diversification that have worked well to conserve paddy 

fields in some city areas should be intensively improved. The limited 

availability of vacant areas and the private status of paddy fields 

frequently converted to other uses should be addressed by the local 

government’s purchase of private lands.   

c) Further research into urban green space structures (species, composition, 

function) that have effectively reduced the LST in the study site should be 

conducted in order to develop comprehensive green space planning and 

management. This can be followed by classification of urban green space 

structures and impervious material structures, and thus more detailed 

investigation of LST changes by more detail built-up area structures is 

required.  
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APPENDICES 
 

 
Appendix V-1   GCPs of Geometric correction Landsat 
 

 
 
 
 
 

 

 
Total Rms error 0.69274   
 
 
 
 
 
 
 
 
 

X source Y source X Map Y map Residual
296769.7 -967341 296756.4 -967415
292375.1 -952913 292320.5 -952973
311163.9 -952561 311131 -952641
300670.4 -949089 300614.8 -949156
298451.5 -956925 298412.9 -956995
296589.3 -950181 296531.5 -950246

299729 -964546 299712.5 -964619
298772.4 -950097 298716.5 -950163
307567.7 -953026 307530.5 -953102 0.06146

303548 -951938 303503.3 -952010 0.13259
311298.6 -948999 311255.6 -949077 0.26863
298092.2 -960178 298061.8 -960249 0.44897

305607 -962656 305591.8 -962736 0.164
299177.2 -955148 299135.3 -955217 0.21892
305894.9 -959086 305871.1 -959164 0.21897
304489.1 -961661 304470.2 -961739 0.20987
300874.5 -956677 300838.6 -956749 0.116
295821.4 -955066 295775.4 -955132 0.1793
290709.9 -948600 290641.3 -948657 0.11087
305658.2 -956372 305627.3 -956448 0.0003
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Appendix V-2  GCPs of Geometric correction for ASTER 
 

 
 
Total RMS Error: 0.485257 
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Appendix V-3  Input parameters of FLAASH atmospheric correction  
 

Atmospheric 
Model 

Aerosol Sensor Altitude 
(km) 

Pixel 
size 

Atmospheric 
Model 

Aerosol Center 
Latitude 

(°) 

Center 
Longitude (°) 

Aerosol 
retrieval 

Visibility 
 (km) 

24/4/2013 2:47:46 ASTER 0.5 15 tropical urban -8.701946 115.299273 none 100 
24/2/2003 2:48:13 ASTER 0.5 15 tropical urban -8.708575 115.345918 none 100 
3/2/1995 1:35:26 Landsat 

TM 
0.5 30 tropical urban   none 100 
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Appendix V-4  Random ground truth locations of 2013  
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Appendix V-5  Error matrix of the LULC in 1995 
 

LULC type 
Reference data Grand 

Total 

Users’ 
accuracy 

(%) 

Error of 
commission 

(%) BUA BL DFL FP GL M OS PF SA V WB 
BUA 72  0 0 0 2 0 0 8 0 0 0 82 87.8 12.2 
BL 0 11 0 0 0 0 0 0 0 0 0 11 100.0 0.0 
DFL 0 0 9 0 0 0 0 0 0 0 0 9 100.0 0.0 
FP 0 0 0 17 0 0 0 0 0 0 0 17 100.0 0.0 
GL 1 0 0  0 1 0 0 0 0 0 0 2 50.0 50.0 
M 0 0 0 0 0 17 0 0 0 0 0 17 51.5 48.5 
OS 0 0 0 0 0 0 30 3 0 0 0 33 90.9 9.1 
PF 0 0 0 0 0 0 0 69  0 5 0 74 93.2 6.8 
SA 0 0 0 0 0 0 0 0 0 0 0 2 100.0 0.0 
V 0 0 0 0 0 0 0 26 0 21 0 47 44.7 55.3 
WB 0 0 0 0 0 0 0 0 0 0 4 4 100.0 0.0 
Grand Total 73 11 9 17 3 17 30 106 2 26 4 298     
Producers’ accuracy (%) 98.6 100.0 100.0 100.0 33.3 100.0 100.0 65.1 100.0 80.8 100.0   Overall accuracy: 84.9 % 

 Error of omission (%) 1.4 0.0 0.0 0.0 66.7 0.0 0.0 34.9 0.0 19.2 0.0   
 
BUA : Built-up area BL : Bush land 
DFL : Dry farm land FP : Fish pond 
FP : Paddy field M : Mangrove  
OS : Open space SA : Swamp area 
V : Vegetation WB : Water bodies 
GL : Grass land 
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Appendix V-6  Error matrix of the LULC in 2003 

LULC type 

Reference data 
 

Total 

 
Users’ 

accuracy 
(%) 

 
Error of 

commission 
(%) 

BS VDB DB SDB BRB BL DFL DPF FP HPF MA MB OS SA V VPF WB WP
F 

BS 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 100.00 0.00 
VBD 0 47 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 52 90.38 9.62 
DB 0 0 31 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 37 83.78 16.22 
SDB 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 100.00 0.00 
BRB 1 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 37 97.30 2.70 
BL 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 0 0 9 88.89 11.11 
DFL 0 0 0 0 0 0 6 0 0 0 0 0 0 0 2 0 0 0 8 75.00 25.00 
DPF 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 1 0 1 9 66.67 33.33 
FP 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 4 100.00 0.00 
HPF 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 14 95.24 4.76 
MA 0 0 0 0 0 0 0 0 0 0 20 1 0 0 0 0 0 0 21 95.24 4.76 
MB 0 0 0 0 0 0 0 0 0 0 2 9 0 0 0 0 0 0 11 81.82 18.18 
OS 0 0 0 0 2 1 0 0 0 0 0 0 9 0 0 0 0 0 12 75.00 25.00 
SA 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 100.00 0.00 
V 0 0 0 0 1 4 2 0 0 0 0 0 0 0 15 2 0 0 24 62.50 37.50 
VPF 0 0 0 0 0 0 2 0 0 2 0 0 0 0 1 20 0 0 25 80.00 20.00 
WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 9 100.00 0.00 
WPF 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 3 2 24 31 77.42 22.58 
Total 7 47 34 39 43 14 11 6 4 16 22 10 9 2 18 26 13 25 346     
Producers’ 
accuracy (%) 85.7 100 91.2 89.7 83.7 57.1 54.6 100 100 87.5 90.9 90 100 100 83.3 76.9 69.2 96   Overall accuracy: 

86.99% Error of 
omission (%) 14.3 0.00 8.8 10.3 16.3 42.9 45.5 0.0 0.00 12.5 9.10 10 0.0 0.0 16.7 23.1 30.8 4   

BS : Beach sand VDB : Very dense built up area  GL :  Grassland 
DB : Dense built up area SDB : Semi dense built up area 
BRB : Bright rooftop built up area BL : Bush land 
DFL : Dry farm land FP : Fish pond 
HPF : Harvested paddy field DFP : Dry paddy field 
WPF : Watered paddy field VPF : Vegetative paddy field 
MA : Dense mangrove MB : Non dense mangrove 
OS : Open space SA : Swamp area 
V : Vegetation WB : Water bodies 
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Appendix V-7  Error matrix of the LULC in 2013 

LULC type 
Reference data Tota

l 

Users’ 
accuracy 

(%) 

Error of 
commissi

on (%) BS VBD DB SDB BRB BL DFL DPF FP HPF MA MB GL OS SA V VPF WB WP
F 

BS 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 100.0 0.0 
VBD 1 31 5 0 8 0 1 0 0 0 0 0 0 0 0 1 0 0 0 47 66.0 34.0 
DB 1 6 43 3 1 0 0 0 0 0 0 0 0 0 0 4 0 3 0 61 70.5 29.5 
SDB 0 1 5 21 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 28 75.0 25.0 
BRB 0 2 0 0 19 0 0 0 0 0 0 0 0 1 0 1 0 0 0 23 82.6 17.4 
BL 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100.0 0.0 
DFL 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 2 0 0 0 9 77.8 22.2 
DPF 0 0 0 0 0 1  0 17 0 6 0 0 0 0 0 0 0 0 0 24 70.8 29.2 
FP 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 4 100.0 0.0 
HPF 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 3 17 82.4 17.6 
MA 0 0 0 0 0 0 0 0 0 0 23 2 0 0 0 0 0 0 0 25 92.0 8.0 
MB 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 5 100.0 0.0 
GL 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 8 100.0 0.0 
OS 1 0 0 0 0 2 0 0 0 0 0 0 0 10 0 0 0 0 0 13 76.9 23.1 
SA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 100.0 0.0 
V 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 30 0 0 0 32 93.8 6.3 
VPF 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 2 20 1 3 29 69.0 31.0 
WB 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 9 88.9 11.1 
WPF 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 21 22 95.5 4.5 
Total 12 40 53 24 30 19 10 18 4 20 23 7 8 11 3 41 20 12 27 382     
Producers’ 
accuracy (%) 66.7 77.5 81.1 87.5 63.3 78.9 70.0 94.4 100.0 70.0 100.0 71.4 100.0 90.9 100.0 73.2 100.0 66.7 77.8   Overall accuracy: 

80.37 % 
 Error of 

omission (%) 33.3 22.5 18.9 12.5 36.7 21.1 30.0 5.6 0.0 30.0 0.0 28.6 0.0 9.1 0.0 26.8 0.0 33.3 22.2   

BS : Beach sand  VDB :  Very dense built up area  GL :  Grassland 
DB : Dense built up area  SDB :  Semi dense built up area 
BRB : Bright rooftop built up area BL  :  Bush land 
DFL : Dry farm land  FP  :  Fish pond 
HPF : Harvested paddy field  DFP :  Dry paddy field 
WPF : Watered paddy field  VPF :  Vegetative paddy field 
MA : Dense mangrove  MB :  Non dense mangrove 
OS : Open space  SA  :  Swamp area 
V :  Vegetation WB :  Waterbodies 


	1 INTRODUCTION
	1.1 Background Information
	1.1.1 Land use and land cover change
	1.1.2 The effects of LULC change on increasing land surface temperatures
	1.1.3 Use of spatial data and spatial analysis

	1.2 Research Objectives
	1.3 Significance of the Research
	1.4 Overview of Thesis

	2 REVIEW OF LAND USE, LAND COVER AND UBAN HEAT ISLAND
	2.1 Urban land use and land cover dynamics
	2.2 Urban heat island
	2.2.1 Spatial structure of UHI effects
	2.2.1.1 Boundary layer of UHI
	2.2.1.2 Canopy-layer heat island
	2.2.1.3 Surface UHI

	2.2.2 UHI assessment
	2.2.3 Impacts of UHI

	2.3 Influencing factors of UHI formation
	2.3.1 Surface energy balance
	2.3.2 Vegetative surfaces in UHI formation
	2.3.3 Impervious surfaces and UHI formation
	2.3.4 Anthropogenic heat and pollutants

	2.4 Green Space Planning for UHI Mitigation
	2.4.1 Characteristics of green space
	2.4.2 Vegetation cover indices to represent vegetation condition and the impacts on surface temperature

	2.5 The Impact of Vegetation Change on Surface Temperature
	2.6 Chapter Summary

	3 REVIEW OF RS IMAGERY AND GIS PROCESSING FOR MEASURING LULC AND LST
	3.1 Choice of RS Imagery for Measuring LULC and LST
	3.1.1 Characteristics of RS imagery
	3.1.2 Choice of imagery for detecting UHI effects and LULC

	3.2 Previous UHI Studies
	3.3 Choice of RS and GIS Pre-processing Method
	3.3.1 Geometric correction
	3.3.2 Atmospheric Correction

	3.4 Selecting a System of LULC Classification
	3.5 Image Classification
	3.5.1 Methods of image classification
	3.5.2 Pixel-based classification versus object-based classification method
	3.5.3 Training and validation dataset
	3.5.4 Assessment of image classification accuracy
	3.5.5 Techniques for change detection

	3.6 Chapter Summary

	4 STUDY AREA AND DATA
	4.1 General Description of Study Area
	4.1.1 Socioeconomic condition
	4.1.2 Climate and traditional growing season
	4.1.3 Urbanization in Bali
	4.1.4 Balinese traditional concept of conserving nature

	4.2 Remotely Sensed Data Preparation
	4.2.1 Landsat TM data
	4.2.2 ASTER data
	4.2.3 Ancillary data
	4.2.4 Field survey to obtain ground truth data and LULC types

	4.3 Research Design Process
	4.4 Chapter Summary

	5 ANALYSIS OF LAND USE/COVER CHANGE IN SOUTHERN BALI
	5.1 Classification Process
	5.1.1 Training data collection
	5.1.2 LULC classification system
	5.1.3 Pre-processing of satellite images
	5.1.4 Object-based classification method
	5.1.5 Classification accuracy assessment
	5.1.6 Post-classification comparison change detection

	5.2 Classification Result
	5.2.1 Landsat image classification and accuracy assessment
	5.2.2 ASTER image classification and accuracy assessment
	5.2.3 General LULC condition and distribution
	5.2.4 LULC changes
	5.2.4.1 General increase
	5.2.4.2 General decrease


	5.3 Discussion
	5.3.1 Seasonal difference impact on LULC changes
	5.3.2 Possible error sources of LULC classification and change detection
	5.3.3 LULC change trend and impacts on environment
	5.3.4 Driving Forces

	5.4 Chapter summary

	6 IMPACT OF LAND USE AND LAND COVER CHANGE ON LAND SURFACE TEMPERATURE
	6.1 Method of NDVI and Land Surface Temperature Retrieval
	6.1.1 Retrieving NDVI
	6.1.2 Preparation of the land surface emissivity and the normalized difference vegetation index
	6.1.3 Retrieving LST from Landsat 5 TM
	6.1.4 Retrieving LST from Aster
	6.1.5 Cloud removal
	6.1.6 Standardization of LST
	6.1.7 The LST pattern using transect analysis
	6.1.8 Analysis of relationship between LST and LULC and NDVI

	6.2 Results
	6.2.1 Spatial pattern of NDVI
	6.2.2 Standardization of the LST
	6.2.3 Spatial pattern of LST changes
	6.2.3.1 The LST area
	6.2.3.2 LST graphs

	6.2.4 The LST of different LULC types
	6.2.5 The correlation between LST and NDVI by LULC

	6.3 Discussion
	6.3.1 Impact of LULC change on LST
	6.3.2 The increasing LST and driving factors

	6.4 Chapter summary

	7 GREEN SPACE PLANNING AND MANAGEMENT TO MITIGATE UHI IN BUILT-UP AREAS
	7.1 Method of analysis
	7.1.1 Analysis the impact of LULC on LST in urban area types
	7.1.2 Data and analysis of green space zone

	7.2 Results
	7.2.1 Sample distribution
	7.2.2 The LST fluctuation by diversity of LULC types in built-up area types
	7.2.3 The change of LST by urban area types
	7.2.4 Analysis of green space planning
	7.2.5 MUHI detection in urban area types

	7.3 Discussion
	7.3.1 Factors that influence LST changes among built-up areas
	7.3.2 Concept of green space planning
	7.3.3 Adaptation of local cultural concepts in green space management

	7.4 Chapter summary

	8 CONCLUSION AND FUTURE DIRECTION
	8.1 Spatial and temporal LULC rates and patterns
	8.1.1 Recommendations

	8.2 Spatial and temporal LST rates and patterns
	8.2.1 Recommendations

	8.3 The relationship between LULC change on LST and NDVI
	8.3.1 Recommendations

	8.4 Mitigating the UHI effect through green space planning
	8.4.1 Recommendations



