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Abstract

Many industries are beginning to use innovative pricing techniques to
improve inventory control, capacity utilisation, and ultimately the profit of the
firm. In manufacturing, the coordination of pricing and production decisions
offers significant opportunities to improve supply chain performance by better
matching supply and demand. This integration of pricing, production and
distribution decisions in retail or manufacturing environments is still in its early
stages in many companies. Importantly it has the potential to radically improve
supply chain efficiencies in much the same way as revenue management has
changed the management of the airline, hotel and car rental industries. These
developments raise the need and interest of having models that integrate
production decisions, inventory control and pricing strategies.

In this thesis, we focus on joint pricing and production planning, where
prices and production values are determined in coordination over a multiperiod
horizon with non-perishable inventory. We specifically look at multiproduct
systems with either constant or dynamic pricing. The fundamental problem is:
when the capacity limitations and other parameters like production, holding, and
backordering costs are given, what the optimal values are for production
guantities, and inventory and backorder levels for each item as well as a price at
which the firm commits to sell the products over the total planning horizon. Our
aim is to develop models and solution strategies that are practical to implement
for real sized problems.

We initially formulate the problem of time-varying pricing and production
planning of multiple products over a multiperiod horizon as a nonlinear
programming problem. When backorders are not allowed, we show that if the
demand/price function is linear, as a special case of the without backorders
model, the problem becomes a Quadratic Programming problem which has only
linear constraints. Existing solution methods for Quadratic Programming problem

are discussed. We then present the case of allowed backorders. This assumption



makes the problem more difficult to handle, because the constraint set changes
to a non-convex set. We modify the nonlinear constraints to obtain an
alternative formulation with a convex set of constraints. By this modification the
problem becomes a Mixed Integer Nonlinear Programming problem over a linear
set of constraints. The integer variables are all binary variables. The limitation of
obtaining the optimal solution of the developed models is discussed. We
describe our strategy to overcome the computational difficulties to solve the
models.

We tackle the main nonlinear problem with backorders through solving an
easier case when prices are constant. This resulting model involves a nonlinear
objective function and some nonlinear constraints. Our strategy to reduce the
level of difficulty is to utilise a method that solves the relaxed problem which
considers only linear constraints. However, our method keeps track of the
feasibility with respect to the nonlinear constraints in the original problem. The
developed model which is a combination of Linear Programming (LP) and
Nonlinear Programming (NLP) is solved iteratively. The solution strategy for the
constant pricing case constructs a tree search in breadth-first manner. The
detailed algorithm is presented. This algorithm is practical to implement, as we
demonstrate through a small but practical size numerical example.

The algorithm for the constant pricing case is extended to the more general
problem. More specifically, we reformulate the time-variant problem in which
there are multi blocks of constant pricing problems. The developed model is a
combination of Linear Programming (LP) and linearly constrained Nonlinear
Programming (NLP) which is solved iteratively. Iterations consist of two main
stages: finding the value of LP’s objective function for a known basis, solving a
very smaller size NLP problem. The detailed algorithm is presented and a
practical size numerical example is used to implement the algorithm. The
significance of this algorithm is that it can be applied to large scale problems

which are not easily solved with the existing commercial packages.



We include the uncertainty of the demand/price function in this thesis by
considering a set of scenarios. The purpose of this effort is to develop a robust
optimisation (RO) model to determine the optimal production planning and
constant pricing of a manufacturing system with multiple products over a
multiple period horizon to maximize the total profit. We illustrate our model and
its solution with two practical size examples. The importance of this model and
its solution strategy is the novel use of robust optimisation in the discrete case of

joint pricing and production planning.
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Chapter 1

Introduction

In recent years, retail and manufacturing companies look for innovative
pricing strategies to improve their operations and optimise their outputs. Various
tools have been developed and utilised for this purpose including: dynamic
pricing over time; target pricing to different classes of customers and pricing to
understand customer demand. The advantages of these tools include a potential
increase in profit and having less variability in demand or production, which
cannot be ignored.

A significant revolution in retail and manufacturing industries is using
Internet or the Direct-to-Customer model to dynamically change the price of
products. Streitfeld (2000) reports that big companies such as Dell Computers
and Amazon.com use the Direct-to-Customer model to change prices quickly and
easily based on parameters such as demand variation, inventory levels, or
production schedules. The model also enables manufacturers to collect demand
data more simply and precisely.

Utilising a Direct-to-Customer model over the Internet brings an easy
implementation of price changes with a very low cost involved, because there is
no need to produce catalogues or price stickers. Also, the Internet provides a
novel source of information about customer demand and priorities.

Traditionally, many firms and researchers focus on pricing alone as a tool

to improve profits. However for manufacturing industries, the coordination of



price decisions with other aspects of the supply chain such as production and
distribution is not only useful, but is essential. The coordination of these
decisions means an approach that optimises the system rather than individual
elements, improving both the efficiency of the supply chain and of the firm. This
integration of pricing, production and distribution decisions in retail or
manufacturing environments is still in its early stages in many companies.
Importantly it has the potential to radically improve supply chain efficiencies in
much the same way as revenue management has changed the management of
the airline, hotel and car rental industries. These developments raise the need
and interest of having models that integrate production decisions, inventory
control and pricing strategies. Thus in this study, we discuss several models that
combine pricing with other aspects of supply chain, particularly those related to
production planning or inventory control. We characterize the optimal
inventory/production and pricing strategies and develop computational
algorithms for determining the optimal policies.

This Chapter is organised as follows. Section 1.1 gives an introduction to
the joint pricing and production planning problems, in particular for multiple
products over multiperiod horizon systems. Essential features and the main
objective of this project are detailed. In Section 1.2 we provide the current
literature that is closely related to this project. Section 1.3 provides a brief

outline of this thesis.

1.1. The problem

A fundamental problem in joint pricing and production planning is finding
efficient inventory controls/production plans and pricing strategies for satisfying
the endogenous demands over the planning horizon. Usually the plan and
chosen price should satisfy some constraints. The efficiency of the joint pricing

and production planning can be measured in terms of profit. The constraints of



above problem can consist of production capacity, the need to produce a specific
amount in some stages of the horizon and how to deal with the excess demand.
To define the problem more clearly, we find it useful to describe briefly the
literature of joint pricing and production planning. Simchi-Levi et al. (2004) group
papers according to a number of characteristics of the problem or assumptions

made by the researchers. These characteristics are as follows:

. Length of Horizon

For the finite horizon, a number of publications consider a single period
problem, similar to a newsvendor setting. Occasionally, researchers assume a
two period problem. Other possibilities include a multiple period for the both

finite and infinite horizon.

. Prices

For the multiple period problems, price may remain fixed or constant over
the time horizon, even if the demand is non-stationary over time. Another
classification allows for price to dynamically change over time (as a function of
demand, inventory, or other parameters of the problem). This is particularly

important for firms that sell products through electronic channels.

. Demand Type

The first distinction about demand is whether it is deterministic, with a
known function according to parameters like price, or stochastic or random.
Generally in the case of uncertainty, it is assumed that there is some known
portion that is based on price (e.g., linear demand curve), with an additional

stochastic element.

. Sales
In the case of stochastic demand, or when production capacity limits exist,
researchers make assumptions about how to treat excess demand. The primary

assumptions are that demand is either backordered or lost. In some cases



neither assumption is needed, for example under deterministic demand with no

limits or when price can be set to match demand exactly.

. Production Set-up Cost

For some manufacturing problems the addition of a fixed production set-
up cost may be appropriate. In general, the addition of this fixed charge
complicates the structure of the objective function and makes the problems
more difficult to solve (also noted in Eliashberg and Steinberg (1991) as a

distinction between convex or non-convex cost functions).

. Capacity Limits
For manufacturing problems, researchers sometimes include the fact that
production may be limited by the capacity of the system. Although the default is

that most papers do not consider capacity limits.

. Products

Most publications consider a single product or multiple products that do
not share resources, in which case the problems are separable into the single
product case [Gilbert (1999), Bernstein & Federgruen (2003), Biller et al. (2005),
Elmaghraby et al (2008), Neale (2009)]. A few researchers consider multiple
products that share common production resources or components, or share
demand from customers [Gilbert (2000), Kachani and Perakis (2002)].

Now, we define the major problem we address in this thesis. We focus on
joint optimisation of pricing and production planning of a multiple product
manufacturing system over a multiperiod horizon. In this system, the price is
assumed to be either constant or time-varying. The case of constant pricing is a
base attempt to find the optimal solution of the time-varying problem. Demand
is deterministic and a function of price, although we consider uncertainty in the
relationship of demand and price in Chapter 5. For the deterministic demand,

both cases of with and without backorders are discussed. The excess demand is



considered only for the deterministic case. Production setup cost is negligible.
The capacity is shared amongst multiple products.

Given the capacity limitations and other parameters like production,
holding or backordering costs, our objective is to decide upon production
guantities, inventory and backorder levels for each item as well as a price at
which the firm commits to sell the products over the total planning horizon.

In the next Section the literature of joint pricing and production planning

which is closely related to our project is discussed.

1.2. Literature Review

In this Section, we first review the fixed pricing models that are mostly
limited to a single product problem. We then review the literature on joint
optimization of pricing and production planning for multiple products.

Although much of the research in pricing and inventory control has centred
on dynamic prices [Rajan et al. (1992), Zhao and Zheng (2000), Vizard et al.
(2001), Petruzzi and Dada (2002), Netessine (2006)], some [Kunreuther and
Schrage (1973), Gilbert (1999 and 2000), Chan et al. (2006)] has also considered
the problem of choosing a fixed or constant price over the lifetime of a product.

The earliest known example of a problem that integrates a fixed price
decision with inventory policies is that of Kunreuther and Schrage (1973). They
consider the case of a single product with demand that is deterministic. Demand
is a linear function of price, and varying over a season, and they include
production set-up costs. Their model does not have lost sales or backlogging,
since demand is exactly that predicted by price and time, and there are no
production capacity limits. The objective is to determine price, production
schedules, and production quantities so as to maximize profit. The authors
provide a "hill-climbing” algorithm that provides upper and lower bounds on the

price decision. “Hill climbing” is defined by Russell and Norvig (2003) as a



mathematical optimization technique which belongs to the family of local search
methods. It can be used to solve problems that have many solutions, some of
which are better than others. It starts with a random (potentially poor) solution,
and iteratively makes small changes to the solution, each time improving it a
little. When the algorithm cannot see any improvement, it terminates. Ideally, at
that point the current solution is close to optimal, but it is not guaranteed that
hill climbing will ever come close to the optimal solution.

The variant of the problem in which a single price must be chosen for the
entire horizon was studied by Gilbert (1999). Using a slightly less general model
of demand and imposing the restriction that setup and holding costs be time-
invariant, he shows that the total cost of production and inventory is a piecewise
linear function of price. He exploits this property to develop a solution approach
that guarantees optimality for the problem, employing a Wagner-Whitin time
approach for determining production periods. The Wagner-Whitin algorithm is a
dynamic programming lot sizing model that evaluates multiple alternatives that
consider period demand and production, holding, and setup costs to produce an
optimal lot size that varies for each period as required. Gilbert (2000) extends
this research to the problem of determining a single price for each of a number
of goods when the goods share production capacity. He again assumes that
revenue is concave, but does not consider production set-up cost in the multiple
product model. Demand is a function of time and product characteristics, and is
multiplicative with seasonality, i.e., D = 8;:D;, where D; represents the demand
intensity, 6B;; is the seasonality factor of item j in period t and Dj; is the induced
demand of item j in period t. By formulating a deterministic optimization
problem and using the dual, Gilbert develops an iterative algorithm that solves
the problem to optimality. By applying the procedure to a numerical example,
Gilbert also demonstrates that a firm that is pricing multiple products may want
to be more aggressive in pricing products that have high demand early in the
season. Further sensitivity shows that if a product has greater seasonality than

another product, the price may be higher.



Although most of the work on constant pricing assumes deterministic
demand, fixed pricing under stochastic demand is a special case of the Delayed
Production problem in Chan et al (2006). In this research, the authors consider a
general stochastic demand function over multiple periods, where production
capacity is limited but set-up costs are not incurred. Excess demand is lost, and
sales are discretionary, i.e., inventory may be set aside to satisfy future demand
even at the expense of lost sales in the current period. The authors develop a
dynamic programming model that solves the problem to optimality for discrete
possibilities of fixed price. They describe policies and heuristics for the strategies
based on deterministic approximations and analyse their performances. In a
numerical study, making the production and price decisions under stochasticity is
more important when there is limited deterministic seasonality but high levels of
uncertainty about the actual demand realization.

Now we turn specifically to the papers which consider multiple products.
The product line design problem (see Yano and Dabson (1998) for a review) is
concerned with the selection of a mix of products to offer in the market. As
Morgan et al. (2001) point out, this problem has typically been considered from a
marketing perspective, while the operational aspects of product line decisions
have been largely ignored. Morgan et al. (2001) consider individual product costs
and relevant cost interactions among products in their product line design
model, but the prices of products are given as inputs.

Bassok et al. (1999) consider a model with N products and N demand
classes with full downward substitution, i.e., excess demand for class i can be
satisfied using product j for i > j. They show that a greedy allocation policy is
optimal. However, there are no pricing decisions in their model. Meyer (1976)
considers a multiproduct monopoly pricing model under risk. The firm must
make decisions for prices, productions, and capacities before actual demand is
known. However, his model does not consider explicitly the inventory related

costs.



There are other papers which consider a pricing and inventory model
where the demand is a function of the pricing decision. Most of this work is
extendable to multiple products that do not share a common resource.

A single period paper that considers the pricing of multiple products with
substitution is Birge et al (1998). The authors also set the capacity levels for
production. They consider a single-period model in which a firm produces two
products with price-dependent demands. The firm has the ability to make pricing
or capacity decisions for one or both of its products. By assuming the demands to
be uniformly distributed, they are able to show that the pricing and capacity
decisions are affected greatly by the system parameters that the decision makers
can control. They consider two different cases. In the first case, the capacity is
fixed for both products, but the firm can set prices. In the second case, each
product is managed by a product manager trying to maximize individual product
profits rather than overall firm profits and analyse how optimal price and
capacity decisions are affected.

A few papers with multiple time periods have also considered multiple
products. Gallego and Van Ryzin (1997) focus on a multi-market problem, with
multiple products sharing common resources. There is a finite horizon over
which the firm can sell its products. They model demand as a stochastic point
process function of time and the prices of all products. Revenue is assumed to be
concave. Sales are neither backordered nor lost, as price is set to infinity when
inventory is zero (“null- price condition: the price at which demand falls to
zero”). Gallego and Van Ryzin (1997) formulate a deterministic problem, which
they show gives a bound on the expected revenue. This problem also motivates
the creation of a make-to-stock (MTS) and a make-to-order (MTO) heuristic. The
MTS heuristic requires that all products be preassembled, and the price path is
determined from the deterministic solution. The MTO heuristic also uses the
prices from the deterministic solution but produces and sells products as they

are requested. An order is rejected if the components are not available to



assemble it. The authors show that each of these heuristics is asymptotically
optimal as the expected sales increases.

Smith et al. (1998), develop a model to plan promotions and advertising,
and use scenarios to represent market conditions. The decisions of the firm are
the promotion price and the advertisement size or cost, where the
advertisement is limited by a budget. The deterministic demand depends on the
price as well as the advertisement type, and demand scenarios occur with some
probability specified by the user. With additional constraints such as a limit on
the number of markdowns, the authors develop an optimization problem that
maximizes expected profit over multiple products.

Biller et al. (2005) analyse a pricing and production problem where (in
extensions), multiple products may share limited production capacity. When the
demand for products is independent and revenue curves are concave, the
authors show that an application of the greedy algorithm provides the optimal
pricing and production decisions. Excess demand is lost. Black (2005) defines the
greedy algorithm as any algorithm that follows the problem solving
metaheuristic of making the locally optimal choice at each stage with the hope of
finding the global optimum.

Kachani and Perakis (2002) study a pricing and inventory problem with
multiple products sharing production resources, and they apply fluid dynamic
methodology to make their pricing, production, and inventory decisions. In their
case, they consider the sojourn or delay time of a product in inventory, where
the delay is a deterministic function of initial inventory and price (including
competitor’s prices). For the continuous time formulation, they establish when
the general model has a solution, and for the discretised case they provide an
algorithm for computing pricing policies.

Recently, Zhu and Thonemann (2009) studied a pricing and inventory
control problem for a retailer who sells two products. The demand of each
product depends on the prices of both products, that is, the cross price effects

exist between two products. They show that the base-stock list price policy,



which is optimal for the single product problem, is no longer optimal for their
problem. They derive the optimal pricing and inventory-control policy and show
the retailer can greatly improve profits if it manages the two products jointly and
consider the cross price effects. Specifically, they prove that the optimal pricing
policy depends on the starting inventory levels of both products and the optimal
expected profit is sub modular in the inventory levels.

Karakul and Chan (2008) consider a company that produces a well-
established product and wants to introduce a new product. The existing product
is priced at its optimum equilibrium value and has a stable pool of major
customers. The new product targets for a more demanding market segment and
has all the functionality of the existing product. As a result, the company has the
option to offer the new product as a substitute at a cut price in case the existing
product runs out. Both products are seasonal and have fairly long production
lead-times. The company faces the single period problem of pricing the new
product and having optimal quantities of both products on hand till
replenishment is possible. Demand of the existing product during the period is
represented by a discrete distribution generated by the pool of major customers.
However, demand of the new product has to be estimated and is represented by
a set of price dependent continuous distributions. The objective is to find the
optimal price for the new product and inventory level for both products so as to
maximize the single period expected profit.

The authors show that the problem can be transformed to a finite number
of single variable optimization problems. Moreover, for some general new
product demand distributions, the single variable functions to be optimized have
only two possible roots each. These demand distributions include Normal, Log-
Normal, Uniform, Exponential, Gamma, etc. They also show that besides the
expected profit, both the price and production quantity of new products are
higher when it is offered as a substitute.

Fluid dynamic models are also used by Adida and Perakis (2007) to study a

make-to-stock manufacturing system with deterministic demand. They introduce
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and study an algorithm that computes the optimal production and pricing policy
as a function of the time on a finite time horizon, and discuss some insights.
Their results illustrate the role of capacity and the effects of the dynamic nature
of demand in the model.

In Section 1.3 we give a brief review and outline of the thesis.

1.3. Review and Outline of Thesis

This thesis is divided into six chapters that are organised as follows.
Chapter 1 starts with an introduction to the joint pricing and production planning
problems, in particular multiple products over a multiperiod horizon along with
its importance. Essential features and objective of this project are also discussed.
Section 1.2 provides the current literature that is closely related to this project.

Chapter 2 begins by introducing the main features of the problem of time-
varying pricing and production planning of multiple products over a multiperiod
horizon. This problem is formulated as a nonlinear programming problem. The
cases of without and with backorders are presented in Sections 2.2 and 2.3,
respectively. The linear function of demand/price is discussed as a special case of
the problem, which is quite common in deterministic models. An alternative
formulation is to have a convex set of constraints and the problem becomes a
Mixed Integer Nonlinear Programming problem over a linear set of constraints.
The limitation of obtaining the optimal solution of the developed models is
discussed. The Chapter concludes by describing our strategy in this thesis to
overcome the above limitations to solve the models.

In Chapter 3 the aim is to tackle the main time-varying problem defined in
Chapter 2 through solving an easier case when prices are constant. The Chapter
begins by bringing the additional features of the problem and formulating it in a
mathematical programming model. Section 3.2 presents an iterative solution

strategy for the developed model, which constructs a tree searched in breadth-
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first manner. A detailed algorithm is presented in Section 3.3 along with its main
steps flowchart. The proposed method is implemented through a small but
practical size numerical example. Our numerical example shows that by utilising
the proposed algorithm in this chapter, at any iteration we easily solve a small
size nonlinear problem over a linear set of constraints. This brings a promising
use of existing commercial packages to handle the large practical problems. In
Section 3.4 we conclude by discussing about the results and achievements of the
chapter.

In Chapter 4 we reformulate the problem of time-variant joint pricing and
production planning in order to utilise an extension of the algorithm proposed in
Chapter 3. We consider multi blocks of constant pricing problems which can lead
to the time-varying pricing when each block consists of just one period. An
iterative solution strategy is discussed in Section 4.2. A detailed algorithm is
presented in Section 4.3 which is an extension of the algorithm proposed in
Chapter 3. A practical size numerical example is used to implement the algorithm
in Section 4.3. The result of the example is compared with the given formulation
in Chapter 2, which shows the capability of the algorithm to obtain the same
optimal solution. The significance of this algorithm is more understood for large
scale problems which cannot be solved easily with the existing commercial
packages.

In Chapter 5 the uncertainty of the demand/price function is incorporated
into the model. This function can be chosen from a set of scenarios. The purpose
of this Chapter is to develop a robust optimisation (RO) model to determine the
optimal production planning and constant pricing of a manufacturing system
with multiple products over a multiple period horizon to maximize the total
profit. Section 5.1 briefly reviews the robust optimisation approach and its
formulation in the case of a Linear Programming problem. Section 5.2 presents
the deterministic model for the problem of joint pricing and production planning
developed in Gilbert (2000). In this Section we propose a robust optimisation

model for the joint pricing and production planning with uncertain demand/price
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function. Section 5.3 reviews the existing solution methods developed for
nonlinear programming problems. Section 5.4 illustrates our model and its
solution with two practical size examples. The importance of this Chapter is the
novel use of robust optimisation in the discrete case of joint pricing and
production planning.

Finally, Chapter 6 gives a summary of the earlier Chapters and conclusions

obtained from the research. Also suggestions are made for future research work.
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Chapter 2

Models

In this Chapter we consider the problem of joint pricing and production
planning of multiple products over a multi-period horizon. Some important

features of the problem are:

. The planning horizon consists of T periods.

. The firm produces n different products and the demand of each
product is period-varying over the planning horizon.

. Demand of each product is deterministic and dependent on its price.

. The production capacity is limited and shared among different
products.

. Products use the same amount of capacity; here each product uses
one unit of capacity.

. The production set up cost is negligible.

This Chapter is organised as follows. Section 2.1 introduces the notation
and terminology used in our model. In Section 2.2 the problem of joint pricing
and production planning without backorders is discussed and a model is
presented. A special case of the linear demand/price function is discussed.
Section 2.3 incorporates backorders into the model and gives an alternative
model to have a convex set of constraints which is useful for the linear case of

demand/price function.
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2.1. Notation and terminology

We make use of the following notation and terminology in our models.

Parameters:
T: the number of periods.
n: the number of products.
ci: the production cost of one unit of item j in period t.
hj::  the holding cost of one unit of item j in inventory for one period in
period t.
si: the backordering cost of one unit of item j for one period in period t.

K:: the total amount of shared production capacity in period t.

Variables:

pjt: the price of product j in period t.

P: the nxT price matrix

Dj:: the demand for item j in period t, this has been induced by the
chosen price.

D: the nxT demand intensity matrix.

Xjt: the amount of product j produced in period t.

yir:  the amount of product j held in inventory at the end of period t.

zi;: the amount of product j backordered from period t to meet the
demand of period t-1.

X: the nxT production matrix.
the nxT inventory matrix.

Z: the nxT backordering matrix.
Functions:

Dj: (P): the relationship between demand and price of item j in period t,

this function has an inverse, P;; (D).
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Ri(D) : the revenue function as Dj; P;; (D).

Note that, here the relationship between demand intensity and price is
known, but both of them are decision variables of the problem.

We assume that corresponding to each demand intensity matrix, there is
just one price matrix; and for each price matrix there is just one demand
intensity matrix. In our work, we consider situations, in which different products
are presented to different market sectors. Hence there is no interaction between
the price of one product and the demand of one another product or in other
words, the cross price elasticity among various products is zero. By this
assumption, we have the convenience of using Dj; for j =1, .. .,n and t=1,.., T as
the decision variables.

In the next sections, we express the problem of jointly determining the
price and production plan for two cases, first when backorders are not allowed,

next with allowed backorders.

2.2. Joint Pricing and Production Planning for

Multiple Products without Backorders

In this case, because backorders are not allowed, the price of each product
in each period should be determined in a way that all induced demands be
satisfied by using the shared capacity of that period and previous ones.

Gilbert (2000) formulates this problem for the case of constant pricing. He
assumes that the demand for each of n items is seasonal and dependent on the
prices to which the firm commits for the entire planning horizon. He denotes the
price for product j by p;, and the demand intensity for product j by Dj(p), where p
is the n-dimensional price vector. He imposes the following assumptions on

these demand intensity functions:
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ASSUMPTION 1. There is a one-to-one correspondence between price
vectors and demand intensity vectors so that Dj(p) has an inverse, which is
denoted by p;(D), where D is an n-dimensional demand intensity.

ASSUMPTION 2. The revenue Djp;(D) function, denote by R;(D), for each
productj=1,...,nis concave.

To model seasonality, he defines Dj; to be the demand for item j in period t,
and assumes that there exist parameters 68;; such that the D;; = 6;; D;.

In addition to determining the intensities of demand, D;forj =1, .. .,n, to
induce from the market, the firm must also determine a plan for satisfying the
demand that is induced. He assumes that all of the items are produced on the
same equipment and that there is limited capacity. Denote the amount of
unused capacity in period t as x,. The costs per unit are also constant as ¢;and h;.
The products are assumed to be indexed in decreasing order of their holding
costs. He further defines C(D) to be the minimum cost of satisfying the demand
corresponding to the induced demand intensities Dy, ..., D,. The problem of

jointly determining the price and production plan is expressed as:

T = Maxps {H(D) = 7]?L=1 R; ZZ=1 ﬁjt —C(D) )} (2.1)
such that
te1Xt=1Dje < Xieq Ke, fort=12,..,T. (2.2)
In (2.1),

= Min,, {CP(D; x,y) = ¥ (cixjr + XIot (hyje + ¢ixje) )}

(2.3)
subject to:
_le + y]l = —ﬂle] ,fOT ] = 1, ., n, (243)
—Xjt = Yjt-1 t YVje = _ﬁthj JSort=2,..,T—1;j=1,..,n,

(2.4b)
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_ij — ij—l = _B]TD] ’fOT ] = 1, e, n, (24C)

YizoXje = K¢, fort=1,..,T, (2.5)
Yio1—Xor = ?:1(2}1:1 Bj:D; — K:) , (2.6)
Xje,Yie =20, fort=1,...,T; j=1,..,n (2.7)

Constraint (2.2) ensures that he considers only demand intensity vectors
for which there exists a feasible solution to the cost minimization sub-problem,
C(D). Constraint (2.4) is a set of flow balance equations that ensure that all of the
induced demand is satisfied. Constraint (2.5) ensures that capacity in period t is
sufficient to allow all of the production that is planned for all n items. Constraint
(2.6) is a redundant constraint, but its inclusion makes the cost minimization sub-
problem a network. The requirement in (2.7) that inventory be nonnegative
assures that demand is satisfied in all periods t =1, ..., T with no backorders.

However, we introduce some additional and updated parameters and
variables in Section 2.1 to obtain the time-variant model. The problem can be

formulated as:

T = Maxpxyso {ﬂ(D'X, Y) =Y Zgzl(Djt%t (D) — cjexje — hyyje )}

(2.8)
subject to:
je1Xt=1Dje < Xieq K¢, forTt=12,..,T, (2.9)
Djt = xjt + Yjt-1 — Yje, fort=1,...,T; j=1,..,n, (2.10)
Yiz1X%jt < K¢, fort=1,..,T and (2.11)
Xjt» Yje» Dje = 0. (2.12)

Our objective function (2.8) includes the sales revenue minus production
and inventory costs. Constraints (2.9) specify the available capacity over the
planning horizon with no backorders allowed. Constraints (2.10) are a set of flow

balance equations that ensure that all of the induced demand is satisfied.
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Constraints (2.11) ensure that there is an adequate amount of capacity in period
t to produce all n items based on the plan. Finally (2.12) is just the non-negativity
series of constraints.

As can be seen, the problem has been formulated as a Nonlinear
Programming problem over a set of linear constraints. The computational
difficulty of the above problem is due to the non-linear objective function (2.8).
This characteristic makes the task of developing an algorithm that guarantees a
global optimal solution extremely difficult. However, for the case of linear
demand/price function we can utilise the existing developed algorithms that

yield the global optimum.

2.2.1.Case of linear Demand/Price function

In this section the function of the price in terms of demand, Pjt(D), is

expressed as:
Pjt(D) = aj — bjtDjt

As a result the objective function (2.8) becomes a quadratic expression of
Dj: s:
m = Maxp xy>o {Z;'l=1 ZZ:l(Djt (ajt - bthjt) — CeXjt — it Yje )}

(2.13)

So, the problem becomes a Quadratic Programming problem which has
only linear constraints. Since a Quadratic Programming problem is a special case
of a smooth nonlinear problem, it can be solved by a smooth nonlinear
optimization method. However, a faster and more reliable way to solve a QP
problem is to use an extension of the Simplex method or an extension of the
Interior Point or Barrier method in developed commercial packages (for example

CPLEX).
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2.3. Joint Pricing and Production Planning for

Multiple Products with Backorders

In the optimal solution of this problem, we impose that if in any period,
there is a shortage of capacity to produce a specific type of item, there cannot be
an excess capacity to produce any of all type of items.

In this case, the problem can be formulated as:

T = Maxp xy,zz0{m(D,X,Y,Z)
= 7]?L=1 ZZ:l(DjtPjt (D) — CieXje—hjeYje —SjtZje )}
(2.14)

subject to:

Je12t=1Dje < X1 K, (2.15)

Djt = Xjt + Yjt-1 t Zjt41 — Vjr — Zje ., fort =1,..,Tand j =1, ..,n

(2.16)
Z;‘zlx]-t <K, fort=1,..,T (2.17)
YitZjt¢41 =0, fort =1,..,Tand i,j=1,..,n, and (2.18)
Xjt, Yjtr Zjt, Djr = 0. (2.19)

Our objective function (2.14) includes the sales revenue minus production,
inventory and backordering costs. Constraint (2.15) specifies the available
capacity over the planning horizon. Constraints (2.16) are a set of flow balance
equations that ensure that all of the induced demand is satisfied. Constraints
(2.17) ensure that there is an adequate amount of capacity in period t to produce
all n items based on the plan. The requirement in (2.18) that inventory and
shortage as a cross product should be zero ensures that when there is an
insufficient amount of capacity in one period from t =1, . . . ,T the priority is to
meet the demand of the same period instead of the other periods. Finally (2.19)

is just the non-negativity series of constraints.
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This problem is computationally difficult, because of the non-linear
objective function (2.14) as well as the constraint set (2.18). Again, these
characteristics make the task of developing an algorithm that guarantees the
global optimal solution extremely difficult. However, there are some commercial
packages available for solving Nonlinear Programming problems to local optima.
For very large applications, the developed tools may even fail to converge to a
feasible solution. Here by introducing some binary variables, we reformulate the
problem as a Mixed Integer Nonlinear Programming problem over a linear set of
constraints. By this reformulation, we have the option of solving a series of
simpler sub-problems in large-scale applications. Although, for a small to
medium size case, we still have the ease of using developed packages (e.g.

MAPLE) to obtain the local optima.

2.3.1.Mixed Integer Nonlinear Programming over a Convex

Set of Constraints

In order to tackle the complexity of the problem, we reformulate the non-
linear constraints (2.18) as linear constraints. Corresponding to each
YitZjt+1 = 0 constraint, we introduce two binary variables as:

1, lf Vit >0 1, lf th+1 >0
uijt = . and vijt = )
0,if yie =0 0,if zjt11 =0
Then the non-linear constraint can be written as:
ui]-t + vi]'t <1
Yie — €U = 0
Yie — Mu;;e <0
Zjty1 — €V 2 0

th+1 - Mvijt <0
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where, € and M are very small and very big values respectively.

As a result the problem can be formulated as:

T = Maxp xy 750 {Z;'l=1 Z{=1(Djtpjt (D) — CitXjt — hjtyjt — SjtZjt )}

(2.20)
subject to:
5‘1:1 Z{=1Djt < Z{=1 K;, (2.21)
Djt == th + yjt—l + th+1 _y]t - th ,fOT t = 1, ...,T and] = 1, W, n
(2.22)
Z;‘zlx]-t <K, fort=1,..,T (2.23)

( Uije tvije <1

Vit — €U = 0

Yie —Mujy <0 ,fort=1,..,Tandi,j=1,..,n (2.24)
| Zjt41 — Vi 20
Zjty1 — MV < 0

Ujt and Vije are binary variables, fort =1,..,Tand i,j =1, ...,n.
(2.25)

Now this problem is a Mixed Integer Nonlinear Programming problem over
a convex set of constraints. If the demand/price function is linear, this model can
be utilised to formulate the problem as a Mixed Integer Quadratic Programming

problem with all linear constraints and some binary variables.

As we discussed earlier in this Chapter, due to the nonlinearity both cases
of with and without backorders lead to computational difficulties in finding a
solution. As a result, in the following Chapters we look for another solution
strategy to tackle the problem in an easier way by eliminating the nonlinear
constraints while keeping the track of feasibility. As the case of without

backorders has already been addressed by Gilbert (2000) for constant pricing, we

22



only consider the more complex problem with allowed backorders in Chapters 3
and 4. In Chapter 3 we formulate the constant pricing problem with backorders
and present a detailed algorithm to solve the model. In Chapter 4, by extending
the algorithm, the case of time-variant pricing is considered. A practical size
numerical example is given and the solution of the developed model is compared
to the formulation presented in Chapter 2. The significance of the algorithms in
Chapters 3 and 4 is more understood for large scale problems which cannot be

solved easily with the existing commercial packages.
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Chapter 3

Joint Pricing and Production Planning for Fixed

Priced Multiple Products with Backorders

In this Chapter, we investigate the case where backorders are allowed and
the excess demand of products in some periods can be backlogged if it is more
profitable. The application that motivated this research is manufacturing pricing,
where the products are non-perishable assets and can be stored to fulfil the
future demands. We assume that the firm is not flexible to change the price list
frequently and usually has long-term contracts with Original Equipment
Manufacturers (OEMs). Additionally, in some companies, the price
announcement to market is done by publishing the price lists which cannot be
adjusted easily. Hence the price change will bring a considerable cost to them. In
general, choosing a constant price over a finite horizon facilitates the
maintenance of a stable set of loyal customers.

Our problem is computationally difficult, because it involves nonlinear
objective function and some nonlinear constraints. Our strategy to reduce the
level of difficulty is to utilise a method that solves the relaxed problem which
considers only linear constraints. However, our method keeps track of the
feasibility with respect to the nonlinear constraints in the original problem. The
developed model which is a combination of Linear Programming (LP) and

Nonlinear Programming (NLP) is solved iteratively.
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Iterations consist of two main stages. The first stage starts with a known
basis for the LP, solves the linear equations corresponding to the chosen basis
and finds the value of the LP’s objective function in terms of the main problems’
decision variables (which is the demand intensity of each product induced by the
pricing policy). The second stage receives the output of the first stage and based
on that, finds the structure of the NLP. Next, the corresponding linear constraint
set to the chosen basis in stage 1 is defined and the NLP is solved subject to the
determined linear constraint set. Depending on the result of the NLP solution,
some candidate bases will be revealed to restart iteration and repeat stages 1
and 2. To achieve the final optimal solution, a branching type procedure is
utilised which will stop given that all next level branches have been visited in
earlier iterations. Bearing in mind the fact that the backorder case makes the
problem computationally difficult, our proposed strategy is practical to
implement, as we demonstrate through a numerical example.

This Chapter is organised as follows. In Section 3.1 we present the problem
features and formulate it in a mathematical programming model. Section 3.2
explains a solution strategy for the developed model and detailed algorithms
along with implementation are presented in Section 3.3 through a numerical

example.

3.1. Model

This Section formulates the problem of joint fixed pricing and production
planning of multiple products with allowable inventory carrying and backorders.
We first recall the following features of the problem, which listed in Chapter 2.

. The planning horizon consists of T periods.

. The firm produces n different products and the demand of each

product is period-varying and seasonal over the planning horizon.

. Demand of each product is deterministic and dependent on its price.
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. The production capacity is limited and shared among different
products.

. Products use the same amount of capacity; here each product uses
one unit of capacity.

. The production set up cost is negligible.

In this chapter we consider the following additional features:

. The price of each product is constant over the total planning horizon.

. All related costs including production, holding and shortage costs are
constant over the planning horizon for each product.

We make use of the following notation and terminology in the description

of our model.

Parameters:
n: the number of products
T: the number of periods
¢j: the production cost of one unit of item j; j=1,2,...,n
h;j: the holding cost of one unit of item j in inventory for one period
sj:  the backordering cost of one unit of item j for one period
K:: the total amount of available capacity in period t

B;:: the seasonality parameter of item j in period t

Variables:
pj: theprice of productj; j=1,2,..,n
p: the n-dimensional price vector
D: the n-dimensional demand intensity vector
Dj:: the demand foritemjinperiodt; j=1,2,..,nandt=1,2,..T
Xjt: the amount of product j produced in period t
yir - the amount of product j held in inventory at the end of period t
Zi: the amount of product j backordered from period t to meet the

demand of period t-1
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Xot :  the amount of unused capacity in period t
X: the nxT production matrix
the nxT inventory matrix

Z: the nxT backordering matrix

Functions:
Dj(p) : the demand intensity for product j, which is a function of price
vector
Note that the relationship between demand intensity and price is known, but
both of them are decision variables of the problem.
Ri(D) :  the revenue function as Dj(p). p;
C(D): the minimum cost of satisfying the demand corresponding to the

induced demand intensities Dy, ...,D,

We assume that corresponding to each demand intensity vector, there is
just one price vector; and for each price vector there is just one demand intensity
vector. In this study, we look at situations, in which different products are
presented to different market sectors. Hence there is no interaction between the
price of one product and the demand of other products or in other words, the
cross price elasticity among various products is zero. By this assumption, we have
the ease of using D, forj =1, .. .,n as the decision variables. The other assumption
relies on the concavity of the revenue function, Rj(D), for each productj =1, . ..
,n. The seasonality model is assumed to be a purely multiplicative and so D;= 6;; .
Dj(p). We can explain this assumption by considering that the distribution of
price sensitivity among the participants in the market doesn’t change although
the size of the market may differ in different periods. This justification is an
interpretation of the model used for a single product in Gilbert(1999). On the
contrary, Kunreuther and Schrage (1973) for the single product model assume a
price-insensitive additive seasonality term with the intention that demand in

period t is expressed as di(p) =a; + 8:D(p). Although this is more general than the
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purely multiplicative model, we note that in the application of their model,
Kunreuther and Schrage (1973) assume that seasonality is purely additive, i.e.,
6:=6,=...67. As well, we assumed that the products are indexed in decreasing
order of their holding and shortage costs, i.e., h; > h; and s; > s; for i<j. Like any
other inventory system, the shortage cost is always more than the holding cost.
The problem of jointly determining the price and production plan can be

formally expressed as follows:

= Maxpso {n(D) = ¥}, R;(D) X1-1 Bjr — C(D))} (3.1)
such that
=1 Xtz DiBje < Xi-1 Ky (3.2)
In (3.1),
C(D) = Minyy 750 {Z;'l=1 ZZ=1(ijjt + hjyje + Sijt)} (3.3)
subject to:

Djt = Xjt + Yjt-1 t Zjt41 — Vjr — Zje ., fort =1,..,Tand j =1, ..,n,

(3.4)
Z?:o Xjp = K¢, fort=1,..,T, (3.5)
YieZjty1 =0, fort =1,..,Tand i,j =1,..,n, (3.6)
Xjt, Yjt: Zjt, Djt =2 0, fort =1,..,Tand j = 0, ..., n. (3.7)

We refer to the problem (3.3)-(3.7) as the Cost Minimization Sub Problem,
“CMSP”.
The objective function (3.1) consists of the sales revenue minus the total

cost associated with the chosen demand intensity. Constraint (3.2) ensures that
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only demand intensity vectors which result in a feasible solution to the CMSP
have been considered. Constraints (3.4) are a set of flow balance equations that
ensure that all of the induced demand is satisfied. Constraints (3.5) ensure that
there is an adequate amount of capacity in period t to produce all n items based
on the plan. The requirement in (3.6) that inventory and shortage as a cross
product should be zero ensures that when there is an insufficient amount of
capacity in one period from t =1, . . ., T the priority is to meet the demand of the
same period instead of the others’ periods. Finally (3.7) is just the non-negativity
series of constraints.

For the case when backorders are not allowed, Gilbert (2000) utilised the
fact that the objective function to be maximized in the model was concave in the

demand vector D =[Dy,. .. ,Dp]. This property holds also for the backorder case in

our model. Using an argument similar to Gilbert we established that:

THEOREM 1. The profit function, rr(D) that is to be maximized in (3.1) is
concave in the demand vector.

PROOF. Take two demand vectors D' and D? and let D’°=a D'+(1-a) D?
where a€ (0, 1). Let (X', ¥, z!) and (X%, ¥°, Z°) be the optimal solution variables
associated with C(D') and C(D?) respectively. Thus, (x%, yl, Z) and (XZ, yz, Z°) are
feasible with respect to Constraints (3.4-3.7) when D* and D? are in the left-hand
side of (3.4) respectively. Let ¥ = ax® + (1 —a)x?, y =ay!'+ (1 —a)y? and
Z=az! + (1 —a)z2 Clearly, (%,7,7) satisfies all of the constraints in (3.4

3.7). Therefore:

arn(DY) + (1 — a)w(D?)
= Y71(@R;(DY) + (1 — @)R;(DH) Xi-4 e — aC(D*; x*, y1, 2%)
+(1 — a)C(D?;x?,y%,z?)
= Y71 (aR;(DY) + (1 — )R;(DH) X{_y Bje — C(D*5 %, 3, 2), (3.8)

where the latter equality follows from the linearity of the objective function in

(3.3) and the fact that (%, ¥, Z) is a feasible solution to (3.4-3.7) when D’ is in the
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left-hand side of (3.4). By assumption, Rj(D) is concave. Therefore, a R,-(Dl)+
(1-a) Rj(Dz) < Rj(D3) for each j =1, . . . ,n. By substituting for each term in the
summation of the right-hand side of (3.8) , we have:
ar(DY) + (1 - )m(D?) < T}y Ry(D*) TTy Bje — C(D% £,5,2) = m(D?)

(3.9)
where the latter inequality results from the principle of optimality and the

definition of C(D?) as the optimal (minimum) cost of satisfying demand D?. O

3.2. Solution Strategy

Given the capacity limitations and other parameters, the firm must decide
upon production quantities, inventory and backorder levels for each item as well
as a constant price at which it commits to sell the products over the total
planning horizon.

Note that for each D vector, as the decision variable of the model, there is
an optimal solution to the CMSP. In other words, when the D vector is changed
the coefficients of the profit function, (D), will also change. Consequently, the
problem can be solved iteratively. Each iteration starts with a known basis for

the CMSP and involves two stages:
Stage 1: Solve the cost minimization sub problem, CMSP

1)  Consider a known basis, B(D), for the CMSP.
Each basis consists of some of the x,y and z variables for j=0,1,...,n and
t=1,2,..,T.

2) Find the values of the basic variables for CMSP in terms of Dj’s.
This step can be done by using equations (3.4) and (3.5).

3)  Find the value of the objective function of CMSP, C(D), in terms of Dj’s by

using (3.3).
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Stage 2: Solve the main Non-Linear problem and update the basis

1)  Restructure the profit function, m(D), subject to above defined C(D)

function and using (3.1).

2)  Determine a linear constraint set Q(B(D)) such that B(D) is an optimal basis
forany D' €Q(B(D)).

Concerning the Theorem 1, we would guarantee to obtain an optimal
solution for the concave objective function, ri(D), over a linear set of constraints,
Q(B(D)).

Note that once B(D) is determined, Q(B(D)) can be fully specified by using
constraint set generation procedure presented in Section 3.2.1.

3)  Solve the NLP, that maximizes rt(D) subject to D € Q(B(D)).

4) If any of the constraints are binding in the optimal solution to this NLP,
determine how the basis for the CMSP should change. Find the candidate
new basis.

The procedure to do step 4 is mentioned in Section 3.2.2 by details.

3.2.1.Constraint set, 2(B(D)), generation procedure.

Input:
The x,y and z basic variables.
Output:
A set of linear constraints, Q(B(D)) , Q(B(D)) = A;U AU As, in terms of Dy’s.
Steps:
1) Define i(t) as the number of x;: variables in the basis for j=0,...,n.
2)  For each period t, if xo: € B(D), calculate the following constraint in terms
of Dy’s.
i=1%je < Ki. (3.10)

3)  Add (3.10) constraint in a set named A;.

31



4)

5)

6)
7)

If xor € B(D) and yjur.1 € B(D), calculate the following constraints in terms

of Dy’s.
yi(t)t—l > O (3113)
xl'(t)t 2 O (311b)

If xor & B(D) and yiue1 & B(D) , calculate the following constraints in terms

of Dy’s.
Zi(t)t+1 > 0 (3113)
xl‘(t)t 2 O (311b)

Add (3.11a) constraint in a set named A, and (3.11b) in a set named As.
Define Q(B(D))= AU AU As.

3.2.2.Finding new candidate basis procedure.

Input:

Solution of NLP and list of binding constraint in Q(B(D)) = A;U AU As.

Output:

Candidates for a change of the current basis, B(D).

Before going to the main steps of the procedure we need to define some values

as follow:

0(t,j): Min {t' > t; y;,» & B(D)}
a(t,j):Max {t' < t; zj & B(D)}
t(t):Min{a(t,j); j =1, ..,n}

a(t):{j: a(t,j) =t(t)and s; —h; = s; — h; fori ;tj}
t'(t): Max {6(t,j); j=1,..,n}

b(t):{j: 6(t,j) =1t (t)andsj —h; <s; — h; fori ;tj}.

Steps:

1)

For any binding constraint which belongs to set A, the new candidates can

be determined as follows:

32



2)

3)

o If (ziyes1 € BID), forj =1,...,n) {first candidate basis =
B(D) — {ziwye+1} + {Xoe 07 Xiy1 t}}
* Else {first candidate basis =

B(D) — {Yi(t)t—1} + {th OT Xi(t)+1 t}}

For any binding constraint which belongs to set A; the new candidates can

be determined as follows:

Case 1: t=T

{first candidate basis = B(D) — {xl-(t)t} + {)’i(t)—1 t—1}}'

Case 2: 1<t<T
{first candidate basis = B(D) — {xi(t)t} + {Yi(t)—1 t—1}};

e If (yjt ¢ B(D),forj=1,..,n) {second candidate basis =

B(D) - {xi(t)t} + {Zi(t)—l t+1}}-

Case 3: t=1

{first candidate basis = B(D) — {xi(t)t} + {Zi(t)—l t+1}}.

For any binding constraint which belongs to set A; the new candidates can

be determined as follows:

Case 1: t=T
If (Z]-t ¢ B(D),for j = 1,...,n){first candidate basis
= B(D) — {xor} + {YnT—1}}

Else {first candidate basis = B(D) — {Za(t)T(t)ﬂ} + {ya(t)r(t)—l}}-
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Case 2: t=T-1
If (zjt ¢ B(D), for j = 1,...,n){first candidate basis
= B(D) — {xot} + {¥nt-1};
e If (yjt ¢ B(D),for j =1,...,n) {second candidate basis =
B(D) = (o} + {7n e41}}}
Else {
e If (yjt ¢ B(D), for j = 1,...,n){first candidate basis = B(D) —
{xoe} + {zn t41};
o If (z(t) >
1) {second candidate basis = B(D) — {Za(t)f(t)ﬂ} +

{ya(t)r(t)—l}}}

* Else {first candidate basis = B(D) — {Za(t)f(t)ﬂ} +}}

Case 3: 2<t<T-1
If (Z]-t ¢ B(D), for j = 1,...,n){first candidate basis
= B(D) — {xot} + {¥nt-1}
e If (y]-t ¢ B(D),forj =1,...,n){second candidate basis =
B(D) ~ (o} + {zn 11}
* FElse{
o If (t'(t) <
T) {second candidate basis = B(D) — {Yb(t)r’(t)—1} +

{Zb(t)r’(t)ﬂ}}}

Else {
e If (yjt ¢ B(D), for j = 1,...,n){first candidate basis = B(D) —

{xot} + {Znt41}s
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o If (z(t) >
1) {second candidate basis = B(D) — {Za(t)T(t)ﬂ} +

{Ya(t)r(t)—l}}}

* Else{
o If (z(t) > 1){first candidate basis = B(D) — {za(t)r(t)ﬂ} +

Wawrw-1b
 [f(T'(t)<T) {second candidate basis = B(D) —

ooew-1}+ {Zb(t>r’(t)+1}}}

o If (z(t) =1) {first candidate basis = B(D) — {yb(t)‘t'(t)—l} +

{Zb(t)r’(t)ﬂ}}}-

Case 4: t=2
If (Z]-t ¢ B(D), for j = 1,...,n){first candidate basis
= B(D) — {xot} + {¥nt-1};
e If (yjt ¢ B(D),for j =1,...,n) {second candidate basis =
B(D) = {xoe} + {zn 41}}}
* FElse{
o If (7'(t) <
T) {second candidate basis = B(D) — {y,ye')-1} +

{Zb(t)r'(t)+1}}}

Else {
e If (yjt ¢ B(D),for j = 1,...,n) {first candidate basis = B(D) —

(oe} + (Zn 13}
* Else {first candidate basis = B(D) — {yb(t)fr(t)_l} +

{Zb(t)r’(t)+1}}}'
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Case 5: t=1
If (v € B(D), for j = 1,...,n){first candidate basis

= B(D) — {xot} + {Znt+1}}

Else {first candidate basis = B(D) — {yb(t)f'(t)—l} + {Zb(t)rr(t)ﬂ}}.

3.3. Implementation

In this Section, two algorithms are presented to implement the solution
strategy: Semi-Random and Greedy. Because of the similarities between two

algorithms, just the Semi-Random is discussed in detail.

3.3.1.Semi-Random algorithm “SRA”

In this algorithm after the initialization step, which starts with a specific
basis and proposes some other candidates to change the specific basis, the
suggested candidates will be visited level by level. In other words, in each level,
all the proposed candidates will be checked completely before going to the next
level. In fact, we explore the search tree in a breadth-first search (BFS) manner.

In order to bring the algorithm’s steps by detail, we need to define some

more parameters and variables as well as previously defined:

Parameters
P/D;) : the price function of product j , which is inverse of demand
intensity function. For instance: Pj(Dj) = a; — b;D;.
Variables
B(D):  set of xj,y;: and zj;variables chosen as basic variables, “basis”.

B’(D): as an indicator of a basis that is being currently tested.
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Q(B(D)) : set of linear constraints induced by B(D) in terms of D;s. This is
defined by the procedure detailed in Section 3.2.1.

C(D):  cost minimization objective function, which is formulated as:

j=12t=1(cjxje + Riyje + sjzZje)-

n(D): non-linear problem’s objective function, which is structured as:

m(D) = X7, P;(D;)D; Xi-1 Bje — C(D).

LCS : set of linear constraints as follows:

Djt = %jt + Yjt-1 + Zjt41 = Vje — Zjp, fort =1,..,Tand j =1,..,n,
Yioxie = Kp fort =1,..,T.

V: set of visited basis
Note that every basis in this set has a r(D) value , which can be obtained by

solving the NLP subject to that basis.
U;: set of non-visited basis in the i iteration.

POS: matrix of potential optimal solutions (D) along with the
corresponding basis and objective function value, (D).

D* B(D) (D)
POS = ( : : : )
D; B;(D) mi(D)

Main body
Initialize by i=0 and B(D) = B’(D) =V = U; = POS = ¢
1.  B'(D)={xj; j=0,...,n and t=1,...,T}= Bo(D).
If a variable & B’(D), it means that it has a zero value.
2. Calculate xj,y;: and z;; values in terms of Djs by using the LCS. Calculate the
C(D) value for the above found X, y;: and z; in terms of D;s by using its
formulation. Define the m(D) in terms of Djs by using its structure

definition.
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3. Apply the procedure defined in Section 3.2.1 to create the set of
constraints, Q’(B(D)) induced by B’(D).
4.  Solve the nonlinear problem of:
Maximise m(D), structured in step 2,
subject to:
Q’(B(D)) defined in step 3 and
11 Xt=1DiBje < Xi-1 Ke.

This step is in fact optimizing a nonlinear concave objective function over a
linear constraint set which guarantees achieving an optimal solution.

5. Add B’(D) and it’s corresponding rt(D) to V. i.e., V=V+B’(D).

6. Check whether or not there is any binding constraint in Q’(B(D)) subject to
D*. If NO, D* is the optimal solution of the problem. Go to step 13. If YES,
put j=i+1 and go to step 7.

7.  Apply the procedure defined in Section 3.2.2 to find the candidate basis for
each binding constraint and label them as B1(D), B»(D), B3(D), ...

Figure 3.1. Labelling the found candidate bases

Note that the parent of all candidates found is the basis which was recently
being tested, B’(D).
8.  Add all candidates found in step 7 to U;.

U; = {B1(D),B,(D),B5(D), ... }

9.  Choose one of the basis in set U; at random; suppose that it is B,(D). For

the chosen basis, do the following steps:

9.1. B’(D)=B,(D)

9.2. Repeat steps 2 and 3 for this new basis, B’(D).
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9.3.

9.4.

9.5.

9.6.

If the created Q’(B(D)) has feasible area, repeat step 4 for this new

basis and go to step 9.4. Otherwise

9.3.1. Add parent of B’(D) and it’s corresponding D* and (D) to POS.

9.3.2.Add B’(D) to V, give a zero value to the basis in set V, delete
B’(D) from Uj, i=i+1 and go to step 10 .

Add B’(D) and it’s corresponding rt(D) to V, delete B’(D) from U;.

Check whether or not there is any binding constraint in Q’(B(D))

subject to D*. If NO, Add B’(D) and it’s corresponding D* and (D) to

POS. i=i+1, go to step 10. If YES, i=i+1.

Apply the procedure defined in Section 3.2 to find the candidate basis

for each binding constraint and label them as B.1(D), B-2(D), B¢3(D),

) (= =) [

Figure 3.2. Labelling the found candidate bases for each binding constraint

Note that the number of index in B(D) is equal to i. For example in the first

iteration we have B1(D), By(D), B3(D), ..., in the second iteration we have

B11(D), B12(D), B13(D), ... and in the fifth iteration we have B75312(D),

B21342(D), B42315(D), ...

9.7. Add those candidates found in step 9.6 which are not equal to none

of the elements of set V and U, U,,...,U; to U; . Update POS by those

candidates found in step 9.6 which are already in set V or U, U,,...,U;

to U;.

10. i=i-1 and restart from step 9; continue till set Ui comestog .
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11.

12.

13.

i=i+1 , check if Uj exists and is not ¢ go to step 9, if it doesn’t exist or is ¢
goto 12.

Find the biggest value of (D) in POS, and show the corresponding D* and
basis for that.

Calculate the optimal price for each product by using the price function,
P,(D;). Show the values of x, y, z variables corresponding to the optimal
basis.

The following flowchart summarises the main steps of the algorithm.
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Start by i=0 and B’(D)=V = U; = POS =
\ D

v

B'(D) = {xjs; for j =0,..,nand t = 1,...,T} = By(D)

v

. —> Define the Nonlinear Objective function, (D), in terms of D;s

'

Create the set of constraints Q’(B(D)) by applying the procedure in Section 3.2.1.

v

Solve rt(D) subject to Q’(B(D)) Ves No Update V, U;and POS
and this constraint: «— Is there any — > by:
7=1Z?=1 Djﬁjt < Zf=1 K, feasible area? . V=VsB'(D);
L e ifUz¢@,U=U;-
B'(D);

Update V, U; by:

. V=vsB'(D); e if parent of B'(D)

exists, POS= POS +

C if U,‘¢¢,U,‘:Ui'B,(D).
parent of B'(D).

|

Is there any v Find the candidate basis for each
es
binding constraint » =i+l » binding constraint by applying
in the optima? the procedure in Section 3.2.2.
No l Update U; and POS by:
Update POS by: s ifU#¢,U;=U;-B'(D);
e POS=POS+B'(D). * POS=POS +B'(D).
i=i-1
Figure 3.3. Flowchart of the SRA </
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Choose a new basis randomly from U; | g Yes
<« Is U; empty? — i=i+1
and B’(D) =chosen basis. '

No
Is U; empty or not

' ) existent?

Yes l

<« Is POS empty?

No
Find the best value of (D) and

corresponding D;s in POS.

l Yes

Calculate X,Y,Z and P by using the

optimal solution.

'
end

Figure 3.3b. Flowchart of the SRA (continue)

3.3.2.Greedy algorithm “GA”

In this algorithm, the only important dissimilarity with the Semi-Random

algorithm is that we don’t need to define set U; in each level as the set of non-
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visited basis. Regardless of the level of the visited basis, each basis which has a
greater value for the objective function will be chosen earlier to find its next

level.

3.3.3.Numerical Example

In order to display our algorithm more clearly, consider a case with n=2
products and T =6 periods. The parameters for the two products are as shown in
Table 3.1.

Table 3.1. Parameters of the example with n=2 products and T =6 periods

Product PJ(DJ) hj S; G 6_,'1 6]2 6]3 6]4 6]5 6_,'5
j=1 30-0.2 D, 6 8 0 0.6 0.5 0.2 3 1.5 0.2
j=2 30020, | 25| 4 | o | 1 1 1 | 1| 1 1

Note that the relationship between price and demand intensity for both
products is identical, and that their cross price elasticity is zero. For ease of
manual computation, we have specified the unit costs to be zero; however
nonzero production cost can be covered by this algorithm. Finally, we assume a
fixed production capacity, K;=140, for all periods in the planning horizon.

In order to solve this example we choose the Semi-Random algorithm and
follow it step by step:

Initialize by i=0 and B(D) = B’(D) =V = U;=P0OS = ¢ .

1. B(D) ={x, X0y X3 X4 K05 Xog K11 %12 X131 K15 5X16 X 51 X0 X 03 X 54 5% 55 X+ AN
B’(D)=B(D).
x,=0.6D, x,=05D, x,,=02D, x,,=3D, x,s;=1.5D, x=02D, x,,=D, x,,=D, x,,=D,

Xoy=D, x,5=D, x,,=D, x,=140-0.6D, - D, x,,=140-0.5D, - D, ,
Xp3=140-02D, - D, ,x,,=140-3D, - D, x(s=140-1.5D, - D, ,x,,=140-0.2D, - D, .

Note that all other y and z variables are zero.
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CD)=[0.(x;, + X5 +X 3 +X, +X5+ X6+ Xy + Xy X3 + Xy + X5 +Xog) +
6.V + Yot Y3+ Y+ Yi5) 2.5V + Yoy + Vo3 + You + Vos) +
82y + 23+ 21 +2i5 +246) F 420y + 205 + 20y T 255 +25)] = 0.

The NLP structure is:

2 6
Y. P.(D).D,Y B, -C(D)=(30-02D,).D, 6+(30-02D,).D,6-0
Jj=1 t=1

=-12D} -1.2D; +180D, +180D,.

t=1; x,EB(D) — 06D, +D, <140
t=2, x,E€EB(D) — 05D, +D, =140
L _)i=3% xn€B(D) = 02D, +D, =140
" |t=4, x,EBD) - 3D +D, <140
t=5 x,EBD) — 15D, +D, =140
t=6; x,EBMD) —> 02D, +D, =140
2.
A2’A3 =¢
Q'(B(D)) = A,.
Max,, ,, {-12D} -1.2D; +180D, +180D,}
subject to:
t=1; 0.6D, +D, =140
t=2; 05D, +D, <140
3. t=3; 02D,+D, =140
t=4; 3D + D, <140
t=5; 1.5D,+D, <140
t=6; 02D +D, <140 and
D, + D, <140.

Optimal Solution: D =27, D, =59 , x(D,,D,) =10428

a4 V- {(B(D),10428) }.

Note that the corresponding objective value is given to each element in set U.

5. t=4; 3D, +D, <140 Subjectto D’ =27, D) =59 is binding. i=1.

6. Since the binding constraint belongs to set A; , the candidate bases for it
are:

B, (D) =B(D)—{x¢}+{yn}=
{X01 %02 X 035Y 23 X 05 X 06 X 115X 125X 135X 14 X 155X 165X 21 X 2 X 535X 24 X 955X 06 )
Bz (D) = B(D)_{xo4}+{zz5} =

{X01 %02 X 035225 X 05 X 06 X 115X 125X 135X 14 X 155X 16 X 21 X 205X 235X 24 X 255X 56 ) -
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B,(D
=
Figure 3.4. Labelling the found candidate bases for the binding constraint

U, ={B,(D),B,(D)}.
Suppose that the algorithm chooses B;(D) at random.
8.1. B'(D)=B,(D)=
{01 X 02 X 035Y 23X 05 X 06 X 11 X 12 X 132X 14 X5 X 16 X0y X 00 X 03 X0y X 55 X6 -

x,,=06D, x,,=05D, x,=0.2D, x,,=3D, x,s=15D, x,,=02D, x,=D, x,,=D,,
8.2. x»=2D, +3D, -140x,,=140-3D, x,s= D, x,;=D, x,,=140-06D, - D, ,

Xp,=140-0.5D, - D, x,,=280-3.2D, -2D, ,y,,=3D, + D, —14(,

Xys=140-1.5D, - D, x(,=140-02D, - D, .

Note that xg4 is a non-basic, and y»3is a basic variable.

CD)=[0.(x,, + Xy + X3+ X, + X5 + X1 + Xy + Xy + X3 + X,y +Xps +Xog) +
6.y + Yt Y3+ Y+ V5) 2505 + Yo + Vo + Yoy +Y5) +
82y + 23+ 2y + 25 +246) +4.(20y + 295 + 2oy + 295 +296)] = 7.5D, +2.5D, -350.

The NLP structure is:

(30-02D,).D, 6+(30-02D,).D, 6-7.5D, =2.5D, +350
= -12D? -12D? +172.5D, +177.5D, +350.

t=1;, x,€BD) — 06D, +D, =140
t=2; x,€BMD) — 05D +D, <140
A =4t=3; x,€BD) — 32D +2D, <280
t=5 x,EBMD) — 15D +D, <140
t=6; x,EBMD) — 02D +D, <140

A, ={r=4 x,&BD)

!

3D, + D, > 140}
A ={ =4 =x,&BMD) - 3D, <140}

Q'(B(D)) = A, UA, UA,.

8.3. (’(B(D)) has feasible area, solve the NLP:
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Max,, ,, o{-12D} =12D; +172.5D, +177.5D, + 350}
subject to:

t=1;, 0.6D, +D, <140

2; 05D, +D, <140
3; 3.2D,+2D, <280
4; 3D, +D, >140
4;
5;

3D, <140

1.5D, + D, <140

t=6; 02D,+D, <140 and
D, + D, < 140.

t
t
t
t
t

Optimal Solution: D, =46.67 , D, =6533 , (D, ,D,) =12261.20

8.4. v -{B(D).10428),(B,(D),12261 20)} and v, ={B,(D)}.

8.5. =3 32D +2D,<280 fromsetA;and ;-4; 3D <140 fromsetA;
subjectto D = 4667, D; = 6533 are binding. i=2.

8.6. For the binding constraint which belongs to set A; , the candidate

basis are defined as follow:

B, (D) =B'"(D)-{xp;} +{y»}
{X 01X 02 5Y 225V 23 X 05 X 06 X 11 X 12 X 13 X 14 X 155X 165X 21 X 20 5K 23 X 245X 25 »X 26 J +
t=3: 03,)): Min{t'23;y,, €B(D)} =3

0(32): Min{t' = 3;y,, € B(D)} = 4

7'3): Max{6(3, j); j =12} =4

b3):{j: 03,))=7'3) and s;-h;<s,—h, fori= jy=2.

Blz(D) = B'(D)—{y23}+{225}

{01 5% 02 X 035225 X g5 X 06 X 115X 125X 135X 14 X 155X 165X 215X 20 X 535X 04 X 555X o6 ) -

For the binding constraint which belongs to set A; the candidate bases are:
t=4:i4)=2

B13(D) = B'(D)—{X24}+{y13}

{201 X g2 X 035Y 23 X 05 X6 X 11 X 12 X 135X 14 X 155X 16 X 01 X 20 X 035Y 135X 05 X 56

B14(D) = B'(D) _{x24}+{215}

{201 X g2 X 035Y 23X 05 X6 X 115X 12 X 135X 14 X 155X 16 X 01 X0 X 9352 15 X 95 X 9 ) -

Figure 3.5. Labelling the found candidate bases for the binding constraint

46



Due to the limitations in bringing the long computational details in the
thesis, we summarise the result of the remaining steps in Table 3.2. Continuing
in this way finds the following candidate bases which have been visited and

shown.

Table 3.2. List of visited basis stemmed from the continued algorithm.

The
Visited Elements of the Basis
Basis

{01 %02 X 0352 25 X5 X 06 X 11 K12 X135 X 145X 155X 16 X 21 X 90 X 235X 54 X 05 X6}
B,(D)

{01 %02 5Y 225V 23 X5 X 06 X 11 K12 513 X 14 X151 X1 X2 X 03 5K g X 25 X 06 )
B;1(D)

{01 %02 %03 5Y 23K 05 X6 X 115X12 X 13 X 14 K15 K16 X 21 X 20 X235V 135K 25 X 06
Bs(D)

{01 %02 X035V 23X 05 K06 X 11 K12 X 13 X 14 X 155X 16 5K 21 X 20 X 2352 155X 25 X 26 ]
B14(D)

{01 %02 X 0352 2552 26 K06 X 117X 12 X 13 X 14 K 155X 16 X 21 X2 X 23 X 24 X 55 X 26
B2,(D)

{01 X 02 X 035225 X 05 X 06 X1 X 12 X 13 5K 14 K15 516 X2 X 93 X 2352 155X 25 X 26 ]
B145(D)

{01 %02 %0352 25 %05 K06 K11 5%12 K13 K14 5X15 X106 X 01 5X00 +X 035 V135X 055X 06 )
B132(D)

{01 X 02X 035Y 235226 X6 X1 X 12 K13 K14 K15 X 165X 21 K 20 X 035X 04 X a5 X 0
B,,5(D)

{%01%025Y 225V 23 %05 %06 X 11 5%12 X 13 %14 K15 5K 165X 21 X 20 X235V 135K 25 X 26
B;13(D)
B..(D {X01 %02 X035V 2352 26 K06 711 K12 13K 14 K15 X16 K21 K2 X352 155X 25 K06 )
144(D)

{01025V 225Y 2352 26 K06 K11 K12 513 X 145X 15 K16 X1 X 20 5K 93 5K 34 X 95 X 26
B112(D)
Bs(D) {X01 %02 K03 52255226 %06 11X 12 X153 X 14 K15 5X 165X 21 X 20 X 2352 155X 25 X 06 )
222
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{%01%025Y 225V 2305 X6 X11%X12 %13 K14 K15 K16 K21 X2 X352 155K X 06 )

B114(D)
{X01 %02 %0352 2552 26 K06 K11 K12 7X13 K14 K15 K16 K21 K29 X935V 135K 05 X 06 )

B,,1(D)
{X01 X025V 225V 235 24X 06 K11 X 12 X 135X 14 K15 5K 16 X1 5K 00 X 035X 04 X 055X 06 }

B11:(D)
{01025V 225 Y2352 26 K06 K11 X12X135%14 K15 K16 5X 1 X2 X935V 135K 05 X6

B1132(D)
{01002 X035V 235226 %06 X1 812 K13 K14 X1 55X16 X1 X2 X935V 135K 25 X0 )

B311(D)
{01 X025V 225V 235V 24 K06 X1 5X12 %13 5%14 X5 5X16 5% X0 X035V 135%K05 X 06 )

B113:1(D)
{%015%025Y 225V 235Z26 K06 X1 1 %12 K13 X145X15 K16 521 X0 X352 15K 055X 06

B1441(D)
{X015Y215Y225Y235Z 26806 K11 X12 K13 5X1 45815 X1 65821 X0 X035 V135K 055X 06

B11321(D)

Here we detail some of the final steps of the algorithm:
1. This step is in fact the application of the step 9 and its sub steps. Suppose

that the algorithm chooses B;;31:(D) at random.

1.1. BY(D) = B3, (D)

= {0015V 215Y 225V 235 24 X6 X 115X 12 X 135X 14 X 155X 165X 215X 05 X035 135X 05 X 56 } -

x,,=0.6D, ,x,,=05D, x,;=3.2D, -140,x,=140,x,;,=1.5D, ,x,,= 0.2D,,
X, =52D, +5D, -560,x,,=140 - 0.5D, ,x,,= 280 -3.2D,,y,;= 3D, - 140,
X,s=140-1.5D, ,x,s= D, ,x,,=700-5.8D, -5D,,

V,=52D, +4D, -560,y,,=4.1D, + 3D, — 420,

Vo=D,,y,,=15D, + D, -140,x,,=140-0.2D, - D, .

1.2.

Note that xgs5, Xo4, Xo03, X2 and X,4 are non-basic, and y.4, V>3, V22, ¥21and yi3
are basic variables.

C(D) =[0.(x), + X, + X3 + X, + X5 + X6 + Xy + Xy + Xy + Xy, +Xps +Xy0) +

0.0+ Y+ Vi3 + Vi + Vis) +25.(00 + Yoo + Yoy + Yoy + Ya5) +
82y + 23+ 2y +2us +26) 420y + 293 + 2oy + Zos +256)] = 5025D, +25D, —3990.

The NLP structure is:
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(30-02D,).D, 6+ (30-0.2D,).D, .6 -50.25D, - 25D, +3990
= -12D? -12D? +129.75D, +155D, +3990

A _{z =1; x,EB(D) — 58D, +5D, 5700}
"lr=6; x,EBD) — 02D, +D, <140
t=2 x,EB(D) — 52D, +4D, >560
4 t=3 x,¢B(D) — 47D, +3D, >420
> r=4; x,&B(D) — 3D, >140
1=5 xs€¢B(D) — 15D, +D, >140
t=2 x,EB(D) — 05D, <140
a t=3; x,¢BD) — 32D, =280
=4, x,€BD) — 140>0
t=5 x,€¢B(D) — 15D, <140

Q' (B(D)) = A, UA, UA, .
1.3. Q’(B(D)) has feasible area, solve the NLP:

Max,, ,, ,{-1 2D} -12D; +138.75D, + 161D, + 3150}
subject to:
t=1, x,,€B(D) — 58D, +5D, <700
t=2; 52D,+4D, > 560

0.5D, =140

47D, +3D, > 420

32D, =280

3D, > 140

1.5D, + D, > 140

1.5D, <140

02D, + D, <140 and
D, <140.

-
I

-
I

~
I

~ N~
Il Il Il

-
S I
+ o AW W

1

Optimal Solution : D, =56.54 , D, = 6649 , z(D,,D,) =12490.748
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1.4.

(B(D),10428), (B, (D),12261.20),
(B,(D),11260.21),(B,,(D),12308.33),
(B,;(D),12277.9),(B,, (D), 11652.08),
(B,,(D).11935.05),(B,,, (D),10476.67),
(B,;,(D),10476.67),(B,,; (D),20339.38),
(B, 5(D),12387.98),(B,,, (D),12401.97),
(B, ,,(D),12308.39), (B, (D),11947 39),
(B,,,(D),12313.63),(B,, (D),12184 46),
(B,,,(D),12308.33),(B, s, (D),12559.71),
(B,,,,(D),0),(B, 5, (D).11790.748),
(B,,,,(D),12443 85),(B, 5, (D),12559.71),
(B, 3, (D),12490.75)

Us = {B11322(D)}'

and

1.5. -2, 52D +4D,>560 from set A, subjectto D' =56.54, D, =66.49 is

binding. i=6.

1.6. For the binding constraint which belongs to set A, , the candidate

basis are defined as follow:

B3, (D) = B' (D) —{y, } +{xp,}

{01 X 0257 225 235Y 24 X 06 X 115X 125X 135X 14 X 155X 165X 215X 25 X 535 Y 135X 555X 56 } -

Candidate Bjj3171(D) is like Bji3:(D) in set V . So set Ug is still not

constructed, but matrix POS should be updated.

(D, =46.67 , D, =65.33) B,(D) x(D)=12261.20
(D, =48.64 , D, =62.17) B,(D) m(D)=12277.9
(D, =3629 , D, =58.35) B,(D) m(D)=11260.21
(D, =46.67 , D, =66.89) B,,(D) m(D)=11935.05
POS =| (D, =56.70 , D, =64.33) B,,, (D) m(D)=12401.97
(D, =51.19 , D, =6322) B, (D) m(D)=12387.98
(D, =592, D, =59.78) B,, (D) x(D)=12184.46
(D, =586, D, =67.72) B, (D) m(D)=12559.71
(D, =5729 , D, =702) B, (D) m(D)=12443.85
(D, =56.54 , D, =6649) B, (D) x(D)=11790.75

i=5 and restart from step 9; continue till set Us comestog .

The only element in set Us is B;1322(D). This step is again repeating the step

9 of the algorithm.

3.1. B'(D)=Bi1322(D)=

{01 % 025Y 22522552 26 X 06 X 11X 12 5K 13 X 14 X 155X 165X 21 X 205X 935V 135X 255X 26 ) -
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x,=0.6D, x,=05D, x,=32D, -140,x,,=140,x,,=1.5D, x,,=0.2D,,
Xy=D,.x,=32D, +2D, -140,x,,=140-3.2D,,y ,=3D, -140,
X,s=140-15D, x,,=1.5D, +3D, -140,x,,=140-0.6D, - D, ,
x,=420-3.7D, -2D, ,y,,=32D, + D, -140,

Z2,s=D,.,2,,=15D, +2D, -140,x ,=280-1.7D, -3D, .

3.2.

Note that x5, Xo4, Xo3 and x,4 are non-basic, and z» , Z»5, V2> and y;3 are
basic variables.

C(D) =[0.(x;, + X5 + X3+ X4 + X5 + X6+ Xy + X + Xy + Xy, + X5 +Xp) +
6.+ Y+ Vi3 ¥ Vi Vi) +2.5.(Yy + Yoy + Yoy + Yoy + Vos) +
8z + 23+ 2y, + 245 +2y) 420y + 2o3 + 2oy + 2os + 256)] = 32D, +14.5D, -1470.

The NLP structure is:

(30-02D,).D, 6+(30-02D,).D,.6-32D, -14.5D, +1470
= -12D} -12D? +148D, +165.5D, +1470

t=1; x,EBD) — 06D, +D, <140

A =11=2 x,EBD) - 3.1D,+2D, <420
1=6; x,EB(D) — 171D, +3D, =280
t=3 x,&B(D) — 32D, +D,>?280

A, ={t=4 x,&B(D) — 3D, >140
1=5 x,&B(D) — 15D, +2D, >140
t=3 x,¢B(D) — 32D, <280

A, ={r=4; x,¢BMD) — 140>0
t=5  x,s&B(D) — 15D, =140

Q' (B(D))= A, UA, UA,.

3.3. Q’(B(D)) has feasible area, solve the NLP:
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Max,, ,, ,{-1 2D -1.2D; +148D, +165.5D, + 1470}
subject to:

t=1; 0.6D +D, =140

t=2; 37D, +2D, =420

t=3; 32D +D, >280
t=3; 32D =280

t=4; 3D >140

t=5 15D, +2D, >140
t=5 15D =140

t=6; 1.7D +3D, <280
D, + D, =140.

Optimal Solution: D; =70.89 , D, =53.16 , x(D,,D,)=11338.30

(B(D),10428), (B, (D),12261 20),
(B,(D),11260.21),(B,, (D),12308.33),
(B,;(D)12277.9),(B,, (D), 11652.08),
(B,,(D),11935.05),(B,,, (D),10476.67),
(B, (D),10476.67),(B,,; (D),20339.38),
(B, 5(D),12387.98),(B,,, (D),12401.97),
(B,,,(D),12308.39),(B,,, (D),11947.39),
(B,,,(D).12313.63),(B,,, (D),12184.46),
(B,,,(D).12308.33),(B, , (D),12559.71),
(B,,,,(D),0),(B, 3, (D),11790.748),

(B,,,, (D),12443 85),(B, s, (D)12559.71),
(B, ,,,(D),12490.75),(B, 5, (D).11338.30)

3.4. and

3.5. 1=3; 32D, +D,>280 fromsetA;and/=6; 17D +3D, <280 from set
A; subjectto D' =70.89, D, =53.16 are binding. i=6.
3.6. For the binding constraint which belongs to set A, the candidate

basis are defined as follow:

B, 1325,(D) = B'(D) ={y,,} +{xp3}
{X015X02 5% 03 522552 26 X 06 X 11X 12 5X13 5K 14 X 159X16 X 21X 22 X 235 V135X 255X 26
t=6 : a(6]): Max{t'<6;z,, €B(D)} =6
a(6,2): Max{t' < 6;z,, €B(D)} = 4
7(6) : Min{a(6, j); j=12}=4
a6):{j: a(6,j)=7(6) and s;—h;=s,—h; fori= jt=2.

B30 (D)= B'(D) {25} +{y5}

{X01X 02 5Y 225Y 2352 26 X 06 X 115X 12 X 135X 145X 155X 165X 215X 29 X 035V 135X 555X 56 } -
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3.7. Candidate Bji322:(D) is like B,,;(D) and candidate Bii3222(D) is like
B1132(D) in matrix POS . So set Us is still not constructed.

i=5 and set Us is empty now.

i=6 and set Us has not been constructed. So the step 12 and further steps

of the main algorithm should be executed.

B114(D)
B1121(D)
B115(D) <
By12,(D)
B;1314(D) }_ B113111(D)
By131(D)
B11(D) \ 311312(D)
B,,5(D)
By,(D) - B1132:(D) }_ B113211(D)
Bi132(P) B113221(D)
B (D)
B,.,.(D) 11322
ke bt
B114,(D)
B,(D) \ B,3:(D) By31(D)
B,5(D) <
By35(D) < B132,(D)
Bi325(D)
B14(D) B142,(D)
200) B145(D) < B142,(D)
B14(D) 3143(D) 31423(0)
B1441(D)
B144(D) <
B1442(D)
) fm e
e
B;,3,(D)
B;,5(D) <
B;,3,(D)

Figure 3.6. The tree structure of the solutions of the example
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6. The biggest value of (D) in POS and the corresponding D* and basis for
thatis as follow: D =586 , D, =67.72 B, ,,(D) x(D)=12559.71

7. The optimal price for each product is:

p,(D,)=30-0.2(D,)=18.28
p,(D,)=30-02(D,) =16.45

The optimal values of x, y, z variables corresponding to the optimal basis

are:

x,=0.6D, =0.6(58.6) =35.16 x,,=05D, =0.5(58.6) =29.3
X,3=3.2D, —-140 = 3.2(58.6) —140 = 47.52 x,,=140
x,s=1.5D, =1.5(58.6) =87.9 X,6=02D, =0.2(58.6) =11.72
X, =67.72

X,,=67.72

X,=280-3.2D, =280-3.2(58.6) =92.48

y,5=3D, —140 = 3(58.6)— 140 = 35.8

X,=140-15D, =140-1.5(58.6) = 52.1

Xy=15D, +2D, -140 =1.5(58.6) + 2(67.72) — 140 = 83 34
y,,=32D, +2D, 280 = 3.2(58.6) + 2(67.72) - 280 = 42.96
V= 67.72

Z,0=1.5D, + D, —140 =1.5(58.6) + 67.72 140 = 15.62

3.4. Conclusion

In this Chapter we have presented a mathematical programming model for
determining the optimal production and constant pricing policy for a finite time
horizon multiproduct production system with capacity constraints. Our model
allows for backorders. Demand for each product is deterministic and dependent
on its price, and the production set up cost is negligible. The solution strategy to
approach the specified problem is an iterative two stage algorithm. The

algorithm solves the nonlinear programming problem only under linear
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constraints, although keeps the nonlinear constraints feasibility. The first stage
finds the value of a Linear Programming’s objective function in terms of the main
problems’ decision variables and in the second stage a Non-Linear Programming
problem is solved subject to a linear constraint set. We illustrate the method
with a detailed numerical example. The result of this Chapter has been published

by Caccetta and Mardaneh (2010).
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Chapter 4

Optimal Dynamic Pricing and Production
Planning for Multiproduct Multiperiod Systems

with Backorders

The purpose of this Chapter is to develop a mathematical programming
model which optimises the production planning and pricing of a manufacturing
system with multiple products over a multiple period horizon to maximize the
total profit which consists of sales revenue, production, inventory holding and
backordering costs. The application that motivated this research s
manufacturing pricing, where the products are non-perishable assets and can be
stored to fulfil the future demands. We assume that the firm does not change
the price list very frequently. However, the developed model and its solution
strategy have the capability to handle the general case of manufacturing systems
with frequent time-varying price lists. We present an alternative model to the
formulation presented in Section 2.3. The new model is called “Two-Stage
Optimisation Model”. Due to the complexity of the problem formulated in
Chapter 2, in this Chapter we reformulate the problem in a way that can be
handled with an efficient iterative solution strategy. We extend the previous

Chapter’s algorithm for constant pricing to the time-variant pricing problem,

which is the aim of this project as discussed in earlier Chapters.
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Our problem is computationally difficult, because it involves a nonlinear
objective function and some nonlinear constraints. Our strategy to reduce the
level of difficulty in the “Two-Stage Optimisation Model” is to utilise a method
that solves a relaxed problem with only linear constraints. However, our method
keeps track of the feasibility with respect to the nonlinear constraints in the
original problem. The developed model is a combination of Linear Programming
(LP) and linearly constrained Nonlinear Programming (NLP) which is solved
iteratively. Iterations consist of two main stages: The first stage starts with a
given basis for the LP, solves the linear equations corresponding to the chosen
basis and finds the value of the LP’s objective function in terms of the main
problems’ decision variables (which is the demand intensity of each product
induced by the pricing policy). The second stage receives the output of the first
stage and based on that, finds the structure of the NLP’s objective function.
Then, the updated linear constraint set corresponding to the chosen basis in
stage 1 is defined and the NLP is solved subject to the determined updated linear
constraint set. Depending on the result of the NLP solution, some candidate
bases will be revealed to restart iteration and repeat stages 1 and 2. To achieve
the final optimal solution, a branching type procedure is utilised which will stop
given that all next level branches have been visited in earlier iterations. Bearing
in mind the fact that the backorder case makes the problem fairly difficult to
solve, our proposed strategy is practical to implement, as we demonstrate

through a numerical example.

This Chapter is organised as follows. In Section 4.1 we present the problem
features and formulate it in a Two Stage Optimisation Model. Section 4.2
explains a solution strategy for the developed model and detailed algorithms
along with implementation are presented in Section 4.3 through a numerical

example.

57



4.1. A Two-Stage Optimisation Model

This Section formulates the problem of coordinated pricing and production
planning of multiple products with allowable inventory carrying and backorders.
The following features of the problem, which we model, are also listed in
Chapter 2.

. The firm produces n different products and the demand of each

product is period-varying and seasonal over the planning horizon.

. Demand of each product is deterministic and dependent on its price.

. The production capacity is limited and shared among different
products.

. Products use the same amount of capacity; here each product uses

one unit of capacity.

. The production set up cost is negligible.

However there are some additional features which are:
. The planning horizon consists of m blocks of T periods.
. The price of each product is constant over each block but is varying in
different blocks.
. All related costs including production, holding and shortage costs are
constant over each block but are varying in different blocks.
. Demand of each product is period-varying and seasonal over the

planning horizon.

We make use of the following notation and terminology in our models.

Parameters:

m : the number of time blocks

T: the number of periods in each block
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6/'1-.'

Variables:

Pjp -

Functions:

the block number, b= 1,2,..,m. Note that block b includes time
periods T(b-1)+1, T(b-1)+2, ..., T(b-1)+T.

the production cost of one unit of item j in time block b; j=1,2,...,n
and b=1,2,...m

the holding cost of one unit of item j in inventory for one period in
time block b

the backordering cost of one unit of item j for one period in time
block b

the seasonality parameter of item j in period t

the price of productjin time block b, j=1,2,..,nand b=1,2,....m

the n-dimensional price vector of time block b

the n-dimensional demand intensity vector of time block b

the amount of product j produced in period t.

the amount of product j held in inventory at the end of period t.

the amount of product j backordered from period t to meet the
demand of period t-1.

the demand for item j in period t; j=1,2,...,n and t=1,2,...,.mT as D= B;;
Djp.

the amount of unused capacity in period t

the nxmT production matrix

the nxmT inventory matrix

the n x mT backordering matrix

the n x m demand intensity matrix

Djs(p) : the demand intensity for product j in time block b, which is a

function of price vector
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Note that the relationship between demand intensity and price is known,
but both of them are decision variables of the problem.

Rin(D) : the revenue function as Djy(p). pjp

C(D) :the minimum cost of satisfying the demand corresponding to the

induced demand intensities D;3, ...,Dn1,D12, ...,Dn2,...,D1m, ...,Dpm

As before, we assume that corresponding to each demand intensity vector
of each time block, there is just one price vector of the same time block. By this
assumption, we have the ease of using Dj, for j =1, .. .,n and b=1,2,...,m as the
decision variables. Also, the interaction between the demand of a product in one
time block and the price of the product in other time blocks is negligible. In
another words, there is no strategic behaviour of customers in this model. The
next assumption relies on the concavity of the revenue function, R;(D), for each
productj =1, ...,n. The seasonality model is assumed to be purely multiplicative:
Dj:= Bjt . Djp(p). We can justify this assumption by considering that the distribution
of price sensitivity among the participants in the market doesn’t change although
the size of the market may differ in different periods. This justification is an
interpretation of the model used for a single product in Gilbert (1999). As noted
earlier, for the single product model, Kunreuther and Schrage (1973) assume a
price-insensitive additive seasonality term with the intention that demand in
period t is expressed as di(p) =a; + 6:D(p). Although this is more general than the
purely multiplicative model, we note that in the application of their model,
Kunreuther and Schrage assume that seasonality is purely additive, i.e.,
6:=6,=...67. A further assumption we make is that the products are indexed in
decreasing order of their holding and shortage costs, i.e., h; > h; and s; > s; for i<j.
Like any other inventory system, the shortage cost is always more than holding
cost.

The problem of jointly determining the price and production plan can be

formally expressed as follows:

T = Maxp,so {”(D) =Ypzr j:rll R, (D) )Jbint LA Bjt — C(D)} (4.1)
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such that

Zgzrln j:TZig;—T+1 DjpBje < ?;T1 K; . (4.2)
In (4.1),
C(D) = Minyy z50 {Z5=T" ;:?Zi%—ﬂl(cjbxjt + hipYje + SipZ;e) }
(4.3)
subject to:

Djt = Xjt + Yjt-1 + Zjt41 — Vjr — Zje , fort =1,..,mTand j = 1, ...,n,

(4.4)
Z’;:O Xje = K¢, fort=1,..,mT (4.5)
VieZjt41 =0, fort =1,..,mTand i,j =1,..,n (4.6)
Xjt, Yit, Zjt, Djt =2 0, fort =1,...,mT and j = 0, ..., n. (4.7)

We refer to the problem (4.3)-(4.7) as the Cost Minimization Sub Problem,
“CMSP”.

The objective function (4.1) consists of the sales revenue minus the total
cost associated with the chosen demand intensity. Constraint (4.2) ensures that
only demand intensity vectors which result a feasible solution to the CMSP have
been considered. Constraints (4.4) are a set of flow balance equations that
ensure that all of the induced demand is satisfied. Constraints (4.5) ensure that
there is an adequate amount of capacity in period t to produce all n items based
on the plan. The requirement in (4.6) that inventory and shortage as a cross
product should be zero ensures that when there is an insufficient amount of
capacity in one period from t =1, ... ,mT the priority is to meet the demand of
the same period instead of the others’ periods. Finally (4.7) is just the non-

negativity series of constraints.
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For the case when backorders are not allowed, Gilbert (2000) utilised the
fact that the objective function to be maximized in the model is concave in the

demand vector D =[Dj,. . . ,Dp]. Gilbert’s method of proof can be used to

establish that this property holds also for the backorder case in our model.
Formally we have:

THEOREM 2. The profit function, (D) that is to be maximized in (4.1) is
concave in the demand matrix.

PROOF. Take two demand matrices D* and D? and let D’=a D'+(1-a) D?
where a€ (0, 1). Let (x, yl, ZY) and (%, yz, 22) be the optimal solution variables
associated with C(D?) and C(D?) respectively. Thus, (X', v, Z*) and (¥*, y*, 7°) are
feasible with respect to Constraints (4.4-4.7) when D' and D? are in the left-hand
side of (4.4) respectively. Let ¥ = ax! + (1 —a)x?, y=ayl+ (1 — a)y? and
Z=az! + (1 —a)z% Clearly, (% 7,Z) satisfies all of the constraints in (4.4-

4.7). Therefore:

ar(DY) + (1 — a)n(D?)

= 7]?L=1 Z;)n=1(aij(D1) +(1- “)ij(Dz)) Z?ZbT—T+1 ﬁjt —aC(D%; xl'ylle)
+(1 — a)C(D?;x?,y%,z?)

= %=1 X5 (aR;p (DY) + (1 = @)R;p (D*) Xelyr—141 Bje — C(D% %, 5, 2),

(4.8)
where the latter equality follows from the linearity of the objective function in
(4.3) and the fact that (%, 7, 2) is a feasible solution to (4.4-4.7) when D’ is in the
left-hand side of (4.4). By assumption, Rjy(D) is concave. Therefore, a ij(D1)+
(1-a) ij(DZ) < ij(D3) for eachj =1, ...,n and b=1,...,m. By substituting for each

term in the summation of the right-hand side of (4.8) , we have:

an(DY) + (1 — a)n(D?) < X7, X3ty R (D) XL pr_r41 Bje — C(D3 %, 7, 2)
=n(D?)
(4.9)
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where the latter inequality results from the principle of optimality and the

definition of C(D?) as the optimal (minimum) cost of satisfying demand D?. O

4.2. Solution Strategy

Given the capacity limitations and other parameters, the firm must decide
upon production quantities, inventory and backorder levels for each item as well
as a constant price at which it commits to sell the products over the total
planning horizon.

Note that for each D vector, as the decision variable of the problem, there
is an optimal solution to the CMSP. In other words, when the D vector is changed
the coefficients of the profit function, (D), will also change. Consequently, the
problem can be solved iteratively. Each iteration starts with a known basis for

the CMSP and involves two stages:

Stage 1: Solve the cost minimization sub problem, CMSP

1)  Consider a known basis, B(D), for the CMSP.
Each basis consists of some of the x,y and z variables for j=0,1,...,n and
t=1,2,...,mT.

2) Find the values of the basic variables for CMSP in terms of Djys.
This step can be done by using equations (4.4) and (4.5).

3)  Find the value of the objective function of CMSP, C(D), in terms of Djs by
using (4.3).

Stage 2: Solve the main Non-Linear problem and update the basis

1)  Restructure the profit function, n(D), subject to the above defined C(D)
function and using (4.1).

2)  Determine a linear constraint set Q(B(D)) such that B(D) is an optimal basis

forany D' €Q(B(D)).
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Note that once B(D) is determined, Q(B(D)) can be fully specified by using
constraint set generation procedure presented in Section 4.2.1.
Theorem 2 guarantees that an optimal solution for the concave objective
function, n(D), over a linear set of constraints, Q(B(D)), can be obtained.
3)  Solve the NLP, that maximizes rt(D) subject to D € Q(B(D)).
4) If any of the constraints are binding in the optimal solution to this NLP,
determine how the basis for the CMSP should change. Find the candidate
new basis.

The procedure to do step 4 is detailed in Section 4.2.2.

4.2.1.Constraint set, ((B(D)), generation procedure.

Input:

The x,y and z basic variables.

Output:

A set of linear constraints, Q(B(D)) = A;U A,U As, in terms of Djs.

Steps:

1. Define i(t) as the number of x;: variables in the basis for j=0,...,n.

2. For each period t, if xo; €B(D), calculate the following constraint in terms of
Djps.
Yo X < Ky (4.10)

3.  Add constraint (4.10) in a set named A;.

4, If Xor € B(D) and yis.1 € B(D), calculate the following constraint in terms

of Djs.
Yicye-1 >0 (4.11a)
xl'(t)t 2 O (411b)

5.  Ifxor €B(D) and yiur1 € B(D), calculate the following constraint in terms of

Dij.
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Zl:(t)t-l'l > 0 (4.113)
xl'(t)t 2 O (411b)

6. Add (4.11a) constraint in a set named A, and (4.11b) in a set named As.

7. Define Q(B(D))= A;U AU As.

4.2.2.Finding a new candidate basis procedure.

Input:
Solution of NLP and list of binding constraint in Q(B(D)) = A;U A,U As.
Output:
Candidates for a change of the current basis, B(D).
Before going to the main steps of the procedure we need to define some
values as follow:
0(t,j): Min {t' > t; y;,» & B(D)}
a(t,j):Max {t' < t; Zjy & B(D)}
t(t):Min{a(t,j); j =1, ..,n}
a(t):{j: a(t,j) = (t) and sj—hj =s;—h; fori * j}
t'(t):Max {6(t,j); j=1,..,n}
b():{j:6(t,j) = 7'(t) and sj—hj <s;—h; fori * j}.
Steps:
1. For any binding constraint from set A, determine the new candidates as

follows:

o If (zi(t)tﬂ € B(D), forj =1, ,n) {first candidate basis =

B(D) — {Zi(t)t+1} + {th OT Xi(t)+1 t}}

* Else {first candidate basis =

B(D) — {Yi(t)t—1} + {th OT Xi(t)+1 t}}
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For any binding constraint from set A; determine the new candidates as

follows:

Case 1: =mT

{first candidate basis = B(D) — {xl-(t)t} + {)’i(t)—1 t—1}}

Case 2: 1<t<mT
{first candidate basis = B(D) — {xl-(t)t} + {)’i(t)—1 t—1}}}
e If (yjt ¢ B(D),forj=1,..,n) {second candidate basis =

B(D) - {xi(t)t} + {Zi(t)—l t+1}}-

Case 3: t=1

{first candidate basis = B(D) — {xl-(t)t} + {Zl-(t)_l t+1}}.

For any binding constraint from set A; determine the new candidates as

follows:

Case 1: =mT
If (zjt ¢ B(D), for j = 1,...,n){first candidate basis
= B(D) — {xor} + {¥nr-1}}

Else {first candidate basis = B(D) — {za(t)f(t)ﬂ} + {ya(t)r(t)—l}}-
Case 2: t=mT-1

If (Z]-t ¢ B(D),for j = 1,...,n){first candidate basis
= B(D) — {xo¢} + {yne-1};
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e If (y]-t ¢ B(D), forj =1, ...,n) {second candidate basis =

B(D) = (o} + {zn e41}}}
Else {
e If (yjt ¢ B(D), for j = 1,...,n){first candidate basis = B(D) —

{xoe} + {znts1b
o If (z(t) >
1) {second candidate basis = B(D) — {Za(t)f(t)ﬂ} +

{Ya(t)r(t)—l}}}

* Else {first candidate basis = B(D) — {za(t)f(t)ﬂ} +

{ya(t)r(t)—l}}}-

Case 3: 2<t<mT-1
If (zjt ¢ B(D), for j = 1,...,n){first candidate basis
= B(D) — {xot} + {Yne-1};
e If (yjt ¢ B(D),for j =1,...,n) {second candidate basis =
B(D) ~ (o)} + (zn 1)}
* Else{
o If (t'(t) <
T) {second candidate basis = B(D) — {y,ye')-1} +

{Zb(t)r’(t)ﬂ}}}

Else {
e If (y]-t ¢ B(D), forj =1, ...,n){first candidate basis = B(D) —

{xoc} + {Znes1 b
o If (z(t) >
1) {second candidate basis = B(D) — {Za(t)T(t)ﬂ} +

{Ya(t)r(t)—l}}}

* FElse{
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o If (z(t) > 1){first candidate basis = B(D) — {Za(t)r(t)ﬂ} +

{ya(t)r(t)—l};
» If(T'(t) <T) {second candidate basis = B(D) —

{Yb(t)r’(t)—l} + {Zb(t)‘c'(t)+1}}}

o If (z(t) = 1) {first candidate basis = B(D) — {yb(t)fr(t)_l} +

{Zb(t)r’(t)ﬂ}}}-

Case 4: =2
If (zjt ¢ B(D), for j = 1,...,n){first candidate basis
= B(D) — {xot} + {¥nt-1}
e If (y]-t ¢ B(D),for j =1,...,n){second candidate basis =
B(D) = (o} + {zn e41}}}
* Else{
o If (t'(t) <
T) {second candidate basis = B(D) — {y,ye')-1} +

{Zb(t)r’(t)ﬂ}}}

Else {
e If (y]-t & B(D), forj =1, ...,n) {first candidate basis = B(D) —

{xo¢} + {2y, t+1}}}

* Else {first candidate basis = B(D) — {Yb(t)r’(t)—1} +

Zwr o)}

Case 5: =1
If (th ¢ B(D),for j = 1,...,n){first candidate basis
= B(D) — {xot} + (Znr+1}}

Else {first candidate basis = B(D) — {yb(t)‘t'(t)—l} + {Zb(t)rr(t)ﬂ}}.
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4.3. Implementation

In this Section, two algorithms are presented to implement the solution
strategy: Semi-Random and Greedy. Because of the some similarities between

the two algorithms, just the Semi-Random is discussed in detail.

4.3.1.Semi-Random Algorithm “SRA”

In this algorithm after the initialization step, which starts with a specific
basis and proposes some other candidates to change the specific basis, the
suggested candidates will be visited level by level. In other words, in each level,
all the proposed candidates will be checked completely before going to the next
level. In fact, we explore the search tree in a breadth-first search (BFS) manner.

In order to detail the algorithm’s steps, we need to define some further

parameters and variables:

Parameters
Pis(Djp) : the price function of product j, which is the inverse of demand

intensity function. For instance: ij(Dj) = ajp — bjpDjp.

Variables
B(D): set of xj,y;: and zj variables chosen as basic variables
B’(D) : as an indicator of a basis that is being currently tested.
Q(B(D)) : set of linear constraints induced by B(D) in terms of Djs.
This is defined by the procedure detailed in Section 3.1.
C(D): cost minimization objective function, which is formulated as:
P ;:?Zi%—ﬂl(cjbxjt + hjpYie + SjpZjt)-
n(D): non-linear problem’s objective function, which is structured as:

S Ry (D) B B — C(D).
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LCS : set of linear constraints as follow:

Djt = Xjt + Yjt-1 + Zjt41 — Vjr — Zi fort =1,..,mTand j =1, ..., n,
i—oXjt =K, fort=1,..,mT.

V: set of visited basis
Note that every basis in this set has a n(D) value , which can be obtained by

solving the NLP subject to that basis.
U;: set of non-visited basis in the i iteration.

POS : matrix of potential optimal solutions (D*) along with corresponding
basis and (D) value .

D* B(D) (D)
POS = ( : : : )
D; By(D) mi(D)

Main body of SRA

Initialize by i=0 and B(D)= B’(D)= V= U= POS = ¢

1. B’(D)={xy j=0,...,n and t=1,...,mT}= By(D).

If a variable¢ B(D) , it means that it has a zero value.

2. Calculate xjy;t and zj; values in terms of Dj,s by using the LCS. Calculate the
C(D) value for above found xj, y; and z;  in terms of Djs by using its
formulation. Define the mn(D) in terms of Djps by using its structure
definition.

3. Apply the procedure defined in Section 4.2.1 to create the set of
constraints, Q’(B(D)) induced by B’(D).

4. Solve the nonlinear problem of:

Maximise m(D), structured in step 2,
subject to:

Q’(B(D)) defined in step 3 and

b= J=nt=bT T
2p=1 Ujo1 Ze=pr-1+1 DjpBje < Xi=1 Kq
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This step is in fact optimizing a nonlinear concave objective function over a
linear constraint set which guarantees achieving an optimal solution.
5. Add B’(D) and it’s corresponding rt(D) to V. i.e., V=V+B’(D).
6. Check whether or not there is any binding constraint in Q’(B(D)) subject to
D*. If NO, D* is the optimal solution of the problem. Go to step 13. If YES,
put j=i+1 and go to step 7.
7.  Apply the procedure defined in Section 3.2 to find the candidate basis for

each binding constraint and label them as B1(D), B»(D), B3(D), ...

Figure 4.1. Labelling the found candidate bases

Note that the parent of all candidates found is the basis which was recently
being tested, B’(D).
8.  Add all candidates found in step 7 to U;.
U; = {B1(D),B;(D),B5(D), ...}
9.  Choose one of the basis in set U; at random; suppose that it is B.(D). For
the chosen basis, do the following steps:
9.1. B’(D)=B.(D)
9.2. Repeat steps 2 and 3 for this new basis, B’(D).
9.3. If the created Q’(B(D)) has feasible area, repeat step 4 for this new
basis and go to step 9.4. Otherwise
9.3.1.Add parent of B’(D) and it’s corresponding D* and ni(D) to POS.
9.3.2.Add B’(D) to V, give a zero value to the basis in set V, delete
B’(D) from Uj, i=i+1 and go to step 10 .
9.4. Add B’(D) and it’s corresponding ri(D) to V, delete B’(D) from U;.

9.5. Check whether or not there is any binding constraint in Q’(B(D))
subject to D*. If NO, Add B’(D) and it’s corresponding D* and (D) to
POS. i=i+1, go to step 10. If YES, i=i+1.

71



9.6. Apply the procedure defined in Section 4.2.2 to find the candidate
basis for each binding constraint and label them as B.1(D), B-2(D),

Bc3(D), ...

(=) (=) (=] [

Figure 4.2. Labelling the found candidate bases for each binding constraint

Note that the number of index in B(D) is equal to i. For example in the first

iteration we have B1(D), B5(D), B3(D), ..., in the second iteration we have B11(D),

B12(D), B13(D), ... and in the fifth iteration we have B72372(D), B21342(D),

B42315(D), .

10.

11.

12.

13.

9.7. Add those candidates found in step 9.6 which are not equal to none

of the elements of set V and U, U,,...,U; to U; . Update POS by those
candidates found in step 9.6 which are already in set V or Uy, U,,...,U;
to U;.

i=i-1 and restart from step 9; continue till set Ujcomestog .

i=i+1 , check if Uj exists and is not ¢ go to step 9, if it doesn’t exist or is ¢

goto 12.

Find the biggest value of (D) in POS, and show the corresponding D* and
basis for that.

Calculate the optimal price for each product by using the price function,
P,(D;). Show the values of x, y, z variables corresponding to the optimal

basis.

The following flowchart summarises the main steps of the algorithm.
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Start by i=0 and B’(D)= V = U, = POS =
N ' D

B'(D) = {xjs; for j =0, ..,nand t = 1,...,T} = By(D)

\‘)—»

|
;

Define the Nonlinear Objective function, (D), in terms of Dj,s

Create the set of constraints Q’(B(D)) by applying the procedure in Section 4.2.1.

Solve rt(D) subject to Q’(B(D))

and this constraint :

b= J=n \t=bT
XpoT j=1 Yt=pr-r+1 DjpBje <

K,
Update V, U; by:
e V=V+B'(D);

.« ifU=¢,U=U-B (D).

|

Is there any
binding constraint

in the optima?

Nol

Update POS by:
POS = POS + B' (D).

Yes
4_

Yes
—>

l

Is there any

feasible area?

Find the candidate basis for each
i=i+1  L_plbinding constraint by applying the

procedure in Section 4.2.2.

Update U; and POS by:
if Uiz ¢, Ui=U;-B'(D);
POS=POS + B'(D).

|

i=i-1

No | UpdateV, U;and POS
> by:

e V=V+B'(D);

o ifUzP, U= U;-
B'(D);

e if parent of B'(D)

exists, POS= POS +

parent of B'(D).

|

Figure 4.3. Flowchart of the SRA
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Choose a new basis randomly from U; | o Yes
<« Is U; empty? — i=i+1
and B’ (D) =chosen basis. l

No

Is U; empty or not

‘ ) existent?

Yes l

R Is POS empty?

No
Find the best value of n(D) and

corresponding Dj,s in POS.

l Yes

Calculate X,Y,Z and P by using the

optimal solution.

'
end

Figure 4.3b. Flowchart of the SRA (continue)

4.3.2.Greedy algorithm

In this algorithm, the only important dissimilarity with the SRA is that we

don’t need to define set U; in each level as the set of non-visited basis.
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Regardless of the level of the visited basis, each basis which has a greater value

for the objective function will be chosen earlier to find its next level.

4.3.3.Numerical Example

In order to display our algorithm more clearly, consider a case with n=2
products and T =12 periods. The parameters for the two products are as shown

in Table 4.1.

Table 4.1. Parameters of the dynamic pricing example with n=2 products and T

=12 periods
b 1 2 3 4
t 1 2 3 4 5 6 7 8 9 10 | 11 12
j= 06 | 04| 1 1.1 1 |09 |04|07]|04)|05]|08] 12

6;:
j= 1 1 1 1 1 1 1 1 1 1 1 1
j= 10 | 10 | 10 9 9 9 11 | 11 | 11 | 12 | 12 | 12

Cib
j= 8 8 8 7 7 7 8 8 8 9 9 9
j= 6 6 6 5 5 5 4 4 4 7 7 7

hjp
j= 3 3 3 4 4 4 2 2 2 5 5 5
j= 8 8 8 9 9 9 7 7 7 8 8 8

Sib
j= 6 6 6 7 7 7 4 4 4 6 6 6

0.6 | 04 1.1 09 | 04| 07| 04| 05)|08] 12
J= Dy; Di;

Djt D11 D11 DlZ DlZ Dl3 D13 D13 D14 D14 D14
]= D21 D21 D21 D22 D22 D22 D23 D23 D23 D24 D24 D24
j= 30-0.2 Dy 30-0.2D,, 30-0.2Dy; 30-0.2Dy,

Pjp | —
j= 30-0.2 Dy, 30-0.2D,, 30-0.2Dy 30-0.2Dy,

K; 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Note that the relationship between price and demand intensity for both
products is identical, and that their cross price elasticity is zero. For ease of

manual computation, we assume a fixed production capacity, K; =100, for all
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periods in the planning horizon. In order to solve this example we choose the
SRA and follow it step by step.
Initialize by i=0 and B(D)= B’(D)= V= U= POS = ¢ .

B(D) = {xy;:%q2 X3 %04 %05 X 06 X07 %08 Y09 X010 Xo11-X012>
Xi1oX12 X153 5X14 %15 5% 160 X17 X 185X 19 X1 10 K111 K1120

Xy Xy X3 Xy X g5 X6 X g7 X g X9 +X105X 1 X012 )
and B’(D)=B(D).
2.

Xi= 0-6D11’)‘12= O'4D11 Xi3= D11 Xig= I'IDIZ"x15= DIZ"x16= 0'9D12’

x,,=04D,;,x,,=0.7D; ,x,y= 04D, x,,,= 05D, ,x,,,= 08D, ,x,,,=1.2D,,,

X =Xy =X3= Dy X5y =Xy5=X5= Doy Xy =X55=X59= Dy3,%,19= Xy =X, 5= Dy,

X4 =100-0.6D,, — D, ,x,=100-04D,, - D,, ,x,;=100 - D,, - D,,,

Xo,=100-1.1D,, = D,, ,x,s=100 — D,, — D,, ,x,x=100 -09D,, — D,, ,x,;,=100-0.4D,, — D,
Xg=100-0.7D,; — D,;,x4o=100-04D,, - D,, ,x,,,=100-0.5D,, - D,,,

X0, =100-0.8D,, - D,, ,x,,,=100-1.2D,, - D,,.

Note that all other y and z variables are zero.

CD)=[10(x;; + x5 +X;3)+9(x, + X5 + X)) +110x; + x5+ X,9) +12(x,,0 + X, +X,5) +
8(Xy + Xy + X3 ) 4 T(Xpy + Xp5 +X06) +8(Xyy + Xy + Xpg) + (X5 + Xy, +X,5p5) +

(Y1 + Yo+ Yi3) + 31y + Yis + Vi6) +4(Vi7 + Vig + Yio) + T(Vigo + Vi) +

3(Var + Yo # Y)Yy + Vos + Vo) +2(V07 + Yog + V2o) +5(Vi0 + Yo ) +

8(2yy +213) + 92y + 245 + 216) + T(Zy7 + 215 + 219) +8(Zyg0 + Zy1y + 2y1n) +6(2p + 255) +
T(Zyy + o5 + 256) + (2o + Zog + 239) +0(2359 + 21 + 23pp)] =

20D,, +24D,, +27D,, +21D,, +16.5D, +24D,, +30D,, +27D,, .

The NLP structure is:

b=4 12
>.P,(D,)D,> B,-C(D)=2D,(30-02D,)+3D, (30-02D,,)+
b 1=1

2
=1 j=

3D,,(30-0.2D,,)+3D,,(30-0.2D,,)+1.5D,;(30-0.2D ;) +3D,;(30-0.2D,;) +
25D,(30-0.2D,,)+3D,,(30-0.2D,,) -

(20D,, +24D,, +27D,, +21D,, +16.5D,; + 24D, +30D,, +27D,,) =

-04D/ -0.6D;, -0.6D., -0.6D;, 03D}, -0.6D;, —0.5D;, —=0.6D;, +40D,, +66D,, +
63D,, +69D,, +28.5D, +66D,, +45D,, +63D,,.

3.
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0.6D,, + D, <100
04D, + D,, <100
D, +D,, <100

1.1D,, + D,, <100
D,, +D,, <100

09D,, + D,, <100
04D,, + D,, <100
0.7D,, + D,, <100
04D, + D,, <100
0.5D,, +D,, <100
0.8D,, +D,, <100
12D, +D,, <100

Max,,_,{-0.4D] -0.6D;, -0.6D}, -0.6D}, —-0.3D}, - 0.6D3, -

0.5D}, -0.6D;, +40D,, + 66D,, + 63D,, + 69D,,

+28.5D,,+66D,, +45D,, + 63D,,}

t=1 x,€EBMD) —
t=2; Xp,EBWD) —
t=3; Xz EBD) —
t=4 Xy €EB(D) —
t=35; X EB(D) —
A= t=06; X EB(D) —

" lt=7, x,E€EBMD) —
t=28; X EBD) —
t=9; X €EB(D) —
t=10; x,,EBD) —
t=11, x,, €B(D) —
t=12; x,, €EBD) —

Ay Ay =¢

Q' (B(D)) = A,.
subject to:
t=1; 0.6D,, + D, =100
=12 04D,, + D,, =100
t=3; D,, + D,, =100
t=4 1.1D, + D,, =100
t=75; D, +D,, =100
t=06; 09D, + D,, =100
t=1, 04D, + D,; =100
t=8; 0.7D,; + D,; =100
t=09; 04D,; + D,; =100
t =10; 0.5D,, + D,, =100
t=11; 0.8D,, + D,, =100
t=12; 12D, +D,, =100

4.

and

2D, +3D,, +15D,; +2.5D,, +3D,, +3D,, +3D,; +3D,, <1200.

Optimal Solution : (D*n ,D21,D'12,D"»,D"13,D»,D"14, D*24) =
(47,53,449,506,475,55,415,50.1) and x(D")=115322

5.y {®Bm!)1532.2)}.

Note that the corresponding objective value is given to each element in set V.

6. t=3; D, +D, <100 ,

t=4;

1.1D, + D, <100 and (=12; 12D, + D,, <100

from set A; subject to D" are binding. i=1.
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7. Since the binding constraints belong to set A;  the candidate bases for

them are:
Bl(D) = B(D)—{X03}+{)’22} ={---a yzz} B2 (D) = B(D)_{xo3}+{zz4} ={---’ Z24}
B3(D) = B(D)_{xo4}+{y23} ={---a )’23} B4(D) = B(D)—{x04}+{z25}={..., Zzs}
B;(D) = B(D) ={xq;, } +{yo, } ={-, yau }-

8. U, ={B,(D).B,(D),B,(D),B,(D),By(D)}.
9. Suppose that the algorithm chooses B;(D) at random.

9.1. B'(D)=B/(D)= {..y,}-

x,,=0.6D,,,x,,= 04D, ,x3= D, ,x,,= 11D}, ,x;5= Dy, ,x,;=09D,,,
x,,=04D,; x,=0.7D,.x,=04D,;,x,,,=0.5D,,x,,,=08D,,,

9.2. x,,=12D,.x,= D, . x,=2D, + D, —100,x,,=100 - D,,,
Xy =Xp5=Xp6= Dy Xy =X =X p9= D3 Xy 0=X,;=X,,= Dy,
Xy, =100-0.6D,, - D,, ,x,,=200-14D,, -2D,,,y,,= D,, + D,, —100,
Xo,=100-1.1D,, — D,, ,x,s=100 - D,, — D,, ,x,,=100-0.9D,, - D,,,
X;;=100-0.4D,, - D,, ,x,,=100 -0.7D,, - D,,, x,,=100 -0.4D,, — D,,,
Xo0=100-0.5D,, - D,, ,x,,,=100-0.8D,, - D,, ,x,,,=100-1.2D,, - D,,.

Note that xp3 is a non-basic, and y,,is a basic variable.

C(D) = 23D,, +27D,, +27D,, + 21D,, +16.5D,; + 24D, + 30D, +27D,, -300.

The NLP structure is:

-04D} -0.6D;, -0.6D}, -0.6D;, 03D/, -0.6D;, -0.5D;, -0.6D;, +
37D,, +63D,, +63D,, +69D,, +28.5D , +66D,, +45D,, +63D,, +300.

t=1; x,€EBMD) — 06D, +D, <100
=2 xX,EBMD) — 14D, +2D, =200
t=4; xu, €EB(D) — 1.1D,+D,, =100
t=35; Xps €EB(D) — D, +D, =100
t=0; X €EB(D) — 09D, +D,, =100
A =<t=T, X, EB(D) — 04D, +D,;, =100
t=8; xu €EB(D) — 0.7D,+D,, =100
t=9; X €EB(D) — 04D, +D,, <100
t=10; x,,E€BMD) — 05D, +D,, =100
t=11; x,,€B(D) — 08D, +D,, <100
t=12; x,,€B(D) — 12D, +D,, =100

A ={=3% x,¢B(D) — D, +D, >100}
A ={=3 x,eBMD) - D, <100}
Q'(B(D)) = A, UA, UA,.

9.3. (’(B(D)) has feasible area, solve the NLP:
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9.4.

Max,,_,{-0.4D} -0.6D;, -0.6D;, -0.6D;, -0.3D/, - 0.6D;, —
0.5D, -0.6D;, +37D,, + 63D,, + 63D,, + 69D,, +
28.5D,; +66D,, +45D,, + 63D,, + 300}

subject to:

t=1; 0.6D,, + D,, =100
t=2; 14D, +2D,, =200
t=3; D, + D,, >100
t=3; D,, =100

t=4 1.1D,, + D,, =100
t=35; D, +D,, =100
t=06; 09D, + D,, =100
t=1, 04D,; + D,; <100
1=8; 0.7D; + D,; =100
t=09; 04D, + D,; =100
t =10; 05D, +D,, =100
t=11 08D, +D,, =100
t=12; 12D, + D,, =100 and

2D, +3D, +1.5D,; +2.5D,, +3D,, +3D,, +3D,, +3D,, <1200.

Optimal Solution :(D'11,D"21,D"12,D"%»,D"5,D %,D"14,D") =
(47,53,449,50.6,47.5,55,41.5,50.1) and x(D")=115322

9.5. v - {B(D).11532 2),(B,(D),11532 2)}and
Ul ={Bz(D)’B3(D)’B4(D)’BS(D)}-

<100 and

2 =

9.6. (=3, D, +D, >100 fromsetA, and (=4; 1.1D,+D
t=12; 12D, +D,, <100 fromsetA; subjectto p" are binding. i=2.
9.7. For the binding constraint which belongs to set A, the candidate
basis is defined as follow:
B, (D) = B' (D) ~{y,,} +{xps} ={Vx, ,for j=0,12 andt=1,..12}.
For the binding constraints which belong to set A; the

candidate bases are:

B,(D) = B(D) ={xo,} +{y55} ={--Y00> Y23}
B;(D) = B(D) ={xy,} +{255} ={---¥25 25}
B,,(D) = B(D) —{x¢,} +{yp1 1} ={--Y02> Yari} -

9.8. Candidate B;(D) is like B (D) in set V. So the matrix POS and set U,

are constructed as :
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POS =(

Decisions' Value ‘ Basis ‘ Objective Value
(47,53,449,506,47.5,55,415,50.1) ‘ B(D) ‘ 115322

U, ={B,(D),B,;(D), B, (D)}

10. i=1 and restart from step 9; continue till set U; comes to? .

Due to the limitations in bringing the long computational details in the
thesis, we summarise the result of the remaining steps in Table 4.2. Continuing

in this way finds the following candidate bases which have been visited and

shown.

Table 4.2. List of visited basis stemmed from the continued algorithm.

The
Visited Elements of the Basis
Basis

B(D) Xo1%02 %932 237%05X06X07 Xos Koo Xo10-X0 1 X012 %1 1K1 27X 35%145%1 55165
X175X185%105%1 101 1 1561 127%21 X0 X3 X04 X5 X7 X Xag Koo 1010}

B+(D) {01 X025 X3 K04 Xos o6 Ko7 Ko Foo KoroXo1 13V 2115 X11 K12 K13 K14 X5 X
X171 X109 X110 X1 117X1 12X K00 X3 Xy X X6 X7 X X9 Xa10-X21 1 X212 )

B,(D) {01 X025 224 X4 Xos o6 K07 X08 Xoo Xo10 o1 10125 K11 K12 K13 K14 X5 X6
Xi7 K15 X109 X1 107X111X1 125521 X2 K03 X4 X5 X6 X a7 Xog Xa9 XatoXa 11 X210}

B,(D) {01 X025 X3 22 25 %05 X6 2X07 K08 Koo Ko10Xo1 10125 X1 1 K12 K13 14 15 X165
X171 %19 X110 51 117X1 12X K00 X3 Xy X X6 X7 X X9 X 105X21 1 X212 F

B.,(D) {X01 X025 Y225Y 23 %05 Xo6 X07 o8 Koo Ko10Xo11%012:X11 K12 K13 K14 K15 X160
Xi7 K15 K19 X1 105X 117X 125X01 X2 K03 X4 X5 X a6 X 27 Xog X9 Koo X1 X210}

B,,(D) {01 X025 224225 K05 o6 Ko7 Xos Foo KotoXo1 10125 K11 K12 K13 K14 %15 X165
Xi7X15 X109 X1 107X1117X1125%21 X2 K03 X4 X5 X6 X a7 Xog X9 Xa0Xa 11 X212}

B,4(D) {01 X02> Y22 X4 Xos Xo6 X07 Ko Koo Kot0 o115V 211X 11X 12 K13 K14 K15 X165
X17 X158 X109 X 107X 117X 12701 K00 X3 Xy X5 X X7 Xag X9 Xa0X 011 X212

B,s(D) {X01 X025 Y22 225 o5 K06 Ko7 o8 Koo Xoto-Xo1 1 Xo12>X11 K12 X153 K14 K15 X
Xi7 K15 K19 X1 105X 117X 125X01 X2 K03 X4 X5 X a6 X 27 Xog a9 Aot X 14210}

Bs,(D) {01 Xo02>%03 225 K05 X6 *X07 Ko Koo Xo10Xo1 1> Var 15X 11 X 12 X 13 K14 X15-X 165

Xy7 X185%19 X1 105X 11751 125%21 K22 K23 X 94 K5 K6 X 07 K og X9 X 105X 21 1% 212}
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Bss(D) {01 X025 X032 23 X5 *Xo6 K07 X0 Koo XotoXo1 1 Ya115X11 K12 K13 %14 %15 X165
Xi7 K15 X191 105X 117X 125X21 X2 K03 Xy X5 X a6 X2y Xog X9 Xato Xt X212}
B.(D) {01 X2 X3 22255226 %06 Ko7 Xos Koo Xo10-Xo1 1 X012 %11 K12 K13 K14 K15 X165
X171 %19 X110 7K1 117X112X21 K00 X3 Xy X X6 X7 X X9 Xa105X21 1 X212 F
Boy(D) {01 %02 Za4 X4 K05 Ko Ko7 Xos Koo Xo10-X01 1 Var1sX11 K12 K13 K14 K15 X165
X17 X158 X109 X 107X 117X 12701 X 00 X3 Xy X5 X X7 Xag X9 Xa0X 011 X212
B,45(D) {01 X025 Y22 225 o5 X6 Ko7 Xos Koo KotoXo1 1 Ya115X11 %12 K13 %1415 X165
Xi7 K15 K19 X1 105X 117X 125X01 X2 K03 X4 X5 X a6 X2y Xog X9 Aot Xt 1X212 )
Bys(D) {01 X025 224 22255226 X06 o7 Xos oo Xo10-Xo1 X012 %11 K12 K13 K14 K15 X165
X171 X109 X110 7K1 117X1 12X K00 X3 Xy X X6 X7 X X9 Xa105X21 1 X212 F
B,y5(D) {01 X025 2242225 Xo5 K06 X 07 Xos Koo Kot X011 Var1s X1 X102 X13 K14 15 X165
Xi7 K15 X191 105X 117X 125X01 X2 K03 X4 X5 X a6 X2y Xog a9 Xt X 14210}
B,,:(D) {X01 X025 Y225Y 235 %05 Xo6 Ko7 Xos Koo Xo10Xo1 15 Y2110 X11 K12 K13 Xia s g
Xi7 K15 K19 X1 105X 117X 125X01 X2 K03 X4 X5 X a6 X 27 Xog a9 Aot X 14210}
Bsss(D) {01 X02>%03 2255 226 X06 Ko7 Xos Koo Koo X011 Vo115 X11 K12 K13 K14 X5 X165
Xi7 X158 X10 X1 107X 117X 12701 K00 X3 Xy X5 X X7 Xog X9 X0 X211 X212
B,s,(D) {01 X025 Y22 2253 226 o6 X07 o8 Koo Xo10-Xo115Xo12:X11 K12 K13 X4 X5 g
Xi7 K15 X191 105X 117X 125X01 X2 K03 Xy X5 X a6 X2y Xog X9 Koo Xt 14212}
Busrs(D) {01 X02> 2242253 226 X06 Ko7 Xos Koo Koo Xo1 1> Ya115X11 12 K13 X 14 X 15 X165
X17 %15 X10 X 107X 117X 12701 K00 X3 Xy X5 X X7 X X9 X107 11 X212 )
B.52(D) {Xo1X02> Y22 52255 Zag Kos Ko7 K08 Koo Xo10X01 1 Var1sX11 K12 K13 K14 %15 %16
X17 X158 X10 X1 107X 117X 12701 K20 X3 Xy X5 X X7 Xag X9 XX 211 X212

Here we detail some of the final steps of the algorithm:

1. This step is in fact the application of the step 9 and its sub steps. Suppose

that the algorithm chooses By43,(D) at random.

1.1. B'(D) = B,,3,(D) = {...,¥5:255:Z265 Y211} -
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1.2.

C(D) = 23D,, +27D,, +50.1D,, + 42D,, +16.5D,, + 24D, + 36D, +32D,, - 2900.

x,=0.6D,,,x,= 04D, ,x,3= D, ,x,,= 11D}, ;5= D}, ,x,,=09D,,,
X;=04D,;.x,=0.7D;,x,,=04D,; .x,,,=05D,, ,x,,,=08D, x,,=12D,,,
X,=D,,,x,,=D,, +2D,, -100, x,; =100 - D,; ,x,,= 100 -1.1D,,,

X,s=100 - Dy, , X, = 2.1D,, + 3D,, — 200 ,x ),=X,g=X,0= D,;,X,,,= D,,,
X,,=12D,+2D,, -100,x,,=100-1.2D,, ,x,,=100-0.6D,, - D,,,
X,=100-04D,, - D,,,y,,=100 - D,, - D,,,z,s=1.1D,, + D,, =100,

256= 2.1D,, + 2D,, — 200,x,,= 300 -3D,, -3D,, ,x,,=100-04D,; - D,;,
Xog=100-0.7D,; — Dy; ,x0o=100-04D,, - D,; ,x,,,=100-0.5D, - D,,,
Xy, =200-2D,, -2D,,,y,,=12D,, + D,, —100.

Note that xp3 , X024 , Xos and Xpz2 are non-basic, and y,; 725 , z2g and y211

are basic variables.

The NLP structure is:

-04D} -0.6D;, -0.6D}, -0.6D;, -03D}, -0.6D;, —-0.5D}, -0.6D, +
37D,, +63D,, +399D,, +48D,, +28.5D, + 66D,, +39D,, +58D,, +2900.

As

t=1;  x,EB(D) — 06D, +D, <100
t=2  x,EB(D) — 14D, +2D, =200
1=6;  x,EB(D) — 3D, +3D,, <300
t=7.  x,EB(D) — 04D, +D, <100
t=8, xxEB(D) — 07D, +D, <100
1=9;  x,EBD) - 04D, +D, <100
1=10; x,,EB(D) — 05D, +D,, <100
t=11, x,,EB(D) — 2D, +2D,, <200
t=3 x,¢B(D) — D, +D, >100
t=4; x,&BMD) - 1.1D,+D,, >100
1=5 X &B(D) — 21D, +2D, >200
t=12; x,,&B(D) — 12D, +D,, >100
t=3 x,¢B(D) — D, <100

t=4 x,&BD) — 11D, <100

t=5 x,&B(D) — D, =100

t=12; x,&B(D) — 12D, <100

Q' (B(D)) = A UA, UA,.

1.3.

Q’(B(D)) has no feasible area, solve the NLP:
1.3.1. Parent of B’(D) is B143(D):
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Decisions Value Basis | Objective Value
(47,53,44.9,50.6,47.5,55,41.5,50.1) B(D) 1153222
(46.2,52.5,46.08,51.6,475,55,41.5,50.1) B,(D) 11534.08
(47,53,46.05,51.6,47.5,55,41.5,50.1) B,(D) 115337
(47,53,44.9,50.5,47.5,55,41.5,50.1) B,(D) 11532.2
(45.8,52.2,45.8,51.4,475,55,41.5,50.1 By, (D) 115339
(47,53,44.9,50.6,47.5,55,41.5,50.1) B,(D) 11532.2
(47,53,44.9,50.5,47.5,55,41.5,50.1) B,(D) 11532.1
(47,53,46.05,51.6,47.5,55,41.5,50.1) B,,(D) 115337
(47,53,44.6,50.9,47.5,55,41.5,50.1) B,,(D) 112963
(47,53,46.05,51.6,47.5,55,41.5,50.1) B, (D) 11533.7

POS =| (45.8,522,458,51.4,47.5,55,41.5,50.1) B,(D) 11533.9
(47,53,44.9,50.6,47.5,55,41.5,50.1) B,(D) 1153222
(47,53,44.9,50.6,47.5,55,41.5,50.1) B,(D) 11532.2
(46.2,52.5,46.08,51.6,47.5,55,42,49.5) B, (D) 11534.08
(47,53,46.05,51.6,47.5,55,41.5,50.1) B,,,(D) 11533.7
(47,53,44.6,50.9,47.5,55,41.5,50.1) B,,,(D) 11296.3
(475,52.4,45.8,51.8,44.5,52.04,42.04,49.5) | B.,,(D) 10948.08
(47,53,45.7,51.9,47.5,55,41.5,50.1) B;,(D) 11501.5
(47,53,45.7,514,47.5,55,41.5,50.1) B, (D) 11501.5

0 B1432(D) 0

0 34423(D) 0
(47.5,52.4,458,51.8,44.5,52.04,42.04,49.5) | B_ (D) 10948.08

1.4. Add B’(D)toV, delete B’(D) from Uj, i=i+1 and go to step 10.

(B,;, (D),10948 08), (B,,,; (D),0), (B, 5, (D),0)
U,={ i=5.

i=4 and U, is empty now.

(B(D),11532 2),(B,(D),11532 2),(B,(D),11533 9), (B, (D),11532 2),
(B,(D),11532 2)(B, (D),11533 .7),(B,, (D).11534 .08),(B,, (D),11296 3),
(B,,(D),11532 2),(B,,(D),11533 .7)(B,, (D),11533 .7),(B,, (D),11533 .9),
(B,,(D),11501 .5), (B, (D),11532 .1),(B,,; (D), 11533 .7)(B,,, (D),10948 08),
(B, (D),11296 38),(B,,, (D),11534 08), (B.,, (D),11501 .9),

i=5, and Ug is not constructed . Go to step 12 of the algorithm.
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B,o(D) || B.2i(0) | B12ui)]

BiulD) | fB1suilD) ]
By52(0) K—{B1522(0)]

Buss(D) | Y BusaslD) |

B143:(D)

B143:(D)
B1433(D)
B1434(D)

Buu(D) |

Bu2alD) |

B3233(D)

B,ui(D) |
B,14(D) |

3223 (D)

| 8(D)

Byi(D) |

B,54(D) |

BusnlD) )
BuszlD) )

Busz(D) )

| 80

Bsy3,(D)
Bsy3,(D)
Bsy35(D)

3545 (D)

Figure 4.4. The tree structure of the solutions of the example
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4. Find the biggest value of (D) in POS, and show the corresponding D" and
basis for that.

B,(D") 7(D") =11534.08
(D'11,D"2,D"2,D 5% ,D"13,D »,D"14,D ) =
(462,52.5,46.08,51.6,47.5,55,41.5,50.1)

5. Calculate the optimal price for each product by using the price function,
P,(D;). Show the values of x, y, z variables corresponding to the optimal

basis.

(P, pa,p e, p 2, p 3, p . p . p u)=
(20.76,19.5,20.75,19.68,20.5,19,21.7,19.98)

* * * * * * * * * * * *
(X 11,X 12,X 13,X 14,X 15,X 16,X 17,X 18,X 19,X 110,X 111,X 112) =

(27.75,18.50,46.25,50.69,46.08,41.47,18.99,33.24,18.99,20.78,33.25,49 .88)

* * * * * * * * * * * *
(X 21,X 22,X 23,X 24,X 25,X 26,X 27,X 28,X 29,X 210,X 211,X 212) =

(52.50,53.41,53.74,49.30,51.86,51.66,54.99,54.99,54.99,50.11,50.11,50.11)

We also formulated the above example by the model developed in Section
2.3. For the computational part, we utilised the existing optimisation packages
with the capability of dealing with the nonlinear objective functions. We use the
library subroutine ‘NLPSolve’ of Maple in which there is a method option to
select the proper one for solving problems, such as Sequential Quadratic
Programming (SQP). The solution of the numerical example with this approach is
exactly the same as the solution obtained by the algorithm developed in Section
4.3.3. As a result, with this small example we show that the developed algorithm
finds the same optimal solution as the other optimisation packages do. As
discussed earlier, for the bigger size problems, the commercial packages may
even fail to get a feasible solution, whereas with the presented algorithm we
have the ease of solving a series of much smaller nonlinear problems over a set

of linear constraints at each node of the search tree structure.
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4.4. Conclusion

In this Chapter we have presented a mathematical programming model for
determining the optimal production and pricing policy for a finite time horizon
multiproduct production system with capacity constraints. Our model allows for
backorders. Demand for each product is deterministic and dependent on its
price, and the production set up cost is negligible. The mathematical
programming formulation developed has a nonlinear objective function and
some nonlinear constraints. This poses computational difficulties in large scale
applications. To address this difficulty, we present a solution strategy that solves
the nonlinear programming problem only under linear constraints, although it
keeps the nonlinear constraints feasibility and can be effectively solved with an
iterative two stage algorithm. The first stage of the algorithm finds the value of a
Linear Programming’s objective function in terms of the main problems’ decision
variables and in the second stage of the algorithm a Nonlinear Programming
problem is solved subject to a linear constraint set. A detailed numerical example
illustrates our solution strategy. The results of this chapter have been submitted

for publication in June 2010.
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Chapter 5

Fixed Pricing and Production Planning Under

Uncertainty

What we have considered in previous Chapters deals only with
deterministic demand. In this Chapter we incorporate the uncertainty of demand
into our problem.

Although numerous models have been developed to solve deterministic
joint pricing and production planning problems of multiple products, little work
has been done on multi-product systems over a multi-period horizon under
uncertainty.

E.Adida and G.Perakis (2006) use robust optimisation and fluid dynamic
models to study a make-to-stock manufacturing system with uncertain demand.
They show that the robust formulation is of the same order of complexity as the
nominal (deterministic) problem and demonstrate how to adapt the nominal
solution algorithm to the robust problem.

Generally in the case of uncertainty, it has been assumed that the demand
has some known portion based on price (e.g., linear demand curve), with an
additional stochastic element. However, in this chapter we deal with problems in
which the demand/price relationship is uncertain with some known probabilities.

In other words, we consider a discrete set of scenarios for the relationship
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between the chosen price and induced market demand. To our knowledge, this
is the first time that the robust optimisation approach has been used in the case
of discrete time production planning and pricing. The purpose of this Chapter is
to develop a robust optimisation (RO) model to determine the optimal
production planning and constant pricing of a manufacturing system with
multiple products over a multiple period horizon to maximize the total profit
which consists of sales revenue, production and inventory holding costs under
demand/price uncertainty.

This Chapter is organized as follow: Section 5.1 briefly reviews the robust
optimisation approach and its formulation in the case of a Linear Programming
problem. Section 5.2 presents the deterministic model for the problem of joint
pricing and production planning. It also proposes a robust optimisation model for
the uncertain demand/price function. Section 5.3 reviews the existing solution
methods developed for nonlinear programming problems. Section 5.4 illustrates
our model and its solution with two practical size examples. The importance of
this Chapter is the novel use of robust optimisation in the discrete case of joint

pricing and production planning.

5.1. Robust optimisation approach

Our work is based on the robust optimisation tools developed by Mulvey,
Vanderbei and Zenios (1995) which incorporates a goal programming structure
with a set of scenarios involving stochastic inputs.

They are dealing with optimisation models that have two distinct
components: a structural component that is fixed and free of any noise in its
input data, and a control component that is subject to noisy input data. To define

the appropriate model they introduce two sets of variables:
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x € R™: the vector of decision variables whose optimal value is not
conditioned on the realisation of the uncertain parameters. They
are the design variables. Variables in this set cannot be adjusted

once a specific realisation of the data is observed.

y € R™2: the vector of control decision variables that are subjected to
adjustment once the uncertain parameters are observed. Their
optimal value depends both on the realisation of uncertain
parameters, and on the optimal value of the design variables.

Their optimisation model has the following structure:

Linear Programming problem

Minimise cTx+ dTy (5.1)
subjectto Ax =b, (5.2)
Bx +Cy =ce, (5.3)
XER™, y € R™ and x,y=0. (5.4)

Constraint (5.2) denotes the structural constraints whose coefficients are
fixed and free of noise. Constraint (5.3) denotes the control constraints. The
coefficients of this constraint set are subject to noise. Constraint (5.4) expresses
the non-negativity restrictions as well as pre-defined sets of variables.

To define the robust optimisation problem, a discrete set of scenarios
QO ={1,2,3,..SN} is introduced. With each scenario s € Q associate the set
{ds, B, C,, e5} of realizations for the coefficients of the control constraints, and
the probability of the scenario P,, offcourse, Y5Y, P, = 1. The optimal solution of
the mathematical program (5.1)—(5.4) will be robust with respect to optimality if
it remains “close” to optimal for any realization of the scenario s € Q. It is then

termed “solution robust”. The solution is also robust with respect to feasibility if
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it remains “almost” feasible for any realization of s. It is then termed “model
robust”.

Because it is unlikely that any solution to problem (5.1)—(5.4) will remain
both feasible and optimal for all scenario indices s € Q, a model is needed that
will allow us to measure the tradeoff between the solution and model
robustness. The robust optimisation model proposed by Mulvey et al. (1995)
formalises a way to measure this trade-off.

Let {yi1,¥2, ..., Ysn} be a set of control variables for each scenario s € Q
and {z;, z,, ..., Zgy } a set of error vectors that measure the infeasibility allowed in
the control constraints under scenario s. Consider now the following formulation

of the robust optimisation model.

Model ROBUST

Minimise o(x,y1,..,Ysn) + 0wp(24, ..., Zsy) (5.5)
subjectto Ax =b, (5.6)
Bx + Csys +z5 = e, foralls € Q (5.7)
x=>0,y, =0, foralls € Q. (5.8)

With multiple scenarios, the objective function ¢ = ¢ x + d” y becomes
a random variable taking the value & = cT x + d”y,, with probability P,.
Hence, there is no longer a single choice for an aggregate objective.

The first term of the objective function (5.5) measures optimality
robustness. The goal programming weight w is used to derive a spectrum of
values that trade-off solution for model robustness.

For measuring the optimality we could use the mean value

0(.) = XseaFséss (5.9)
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which is the function used in stochastic linear programming formulations. In a
worst-case analysis the model minimizes the maximum value, and the first term
of the objective function is defined by

o(.) =max g¢q &s. (5.10)

Both of these choices are special cases of Robust Optimisation (RO).

The second term in the objective function p(zy, ..., Zgy) is a feasibility
penalty function. It is used to penalize violations of the control constraints under
some of the scenarios. The above model takes a multi-criteria objective form.

The specific choice of the penalty function is problem dependent, and also
has implications for the accompanying solution algorithm. There are two

alternative penalty functions considered:
sz =Y, Rl 2
S EQ

This quadratic penalty function is applicable to equality constrained problems.

p(zy, ..., Zgy) = Z P, max{0, z,} .
S EQ

This exact penalty function applies to inequality control constraints when only

positive violations are of interest.

5.2. Joint pricing and production planning of

multiple products over a multi-period horizon

In this Section we consider a multiproduct capacitated setting and
introduce a demand-based model where the demand is a function of the price.
There is an assumption that the production setup costs are negligible. A key part
of the model is that the uncertain price/demand function is chosen from a
discrete set of scenarios. As a result of this, the problem becomes a non linear
programming problem with the nonlinearities only in the objective function. We
develop a robust optimization model for this problem that considers the

optimality and feasibility of all scenarios. The robust solution is obtained by
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solving a series of nonlinear programming problems. We illustrate our

methodology with detailed numerical examples in the following sections.

5.2.1.Notation and model variables

In this part we bring the notation and terminology used by Gilbert (2000).

Decision variables:

pj: theprice of productj; j=1,2,..,n

P:  the price vector

Dj: the induced demand intensity for product j, which is a function of its
price

Xjt: the amount of product j produced in period t; j=1,2,...,n and
t=1,2,..,T

yir:  the amount of productj held in inventory at the end of period t

X: then xTproduction matrix

Y: then x Tinventory matrix

Parameters and constants:
¢j: the production cost of one unit of item j; j=1,2,...,n
h;j: the holding cost of one unit of item j in inventory for one period
K:: the total amount of available capacity in period t

Bj:: the seasonality parameter of item j in period t
Functions:

Dj(p) : the relationship between price and induced demand of j, for

example: Dj(p)= a;- b;.p;
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5.2.2.Single scenario optimisation model (deterministic case)

We formulate the problem of jointly determining the price and production

plan of multiple products over a multi-period horizon as follows.

Objective

The main components of the objective function in the problem of joint
pricing and production planning include sales revenue, production cost and
holding inventory cost. So, to consider the multi-product problem stated earlier

as an aim of this work, the objective function is given as follows:

MaxP,X,yzo{ﬂ(P;X; Y) = ?:1 Y1 p;-Dj(p)-Bjr — Z;'l=1 Yot Gj- Xjt
?:1 Yios hj-)’jt}- (5.11)

The first term in (5.11) is the sales revenue as a product of the chosen price
and the induced demand brought by the chosen price. The second and third
terms are production and inventory holding costs respectively.

(5.11) can be written as:
MinP,X,YZO{_T[(P: XY)=-%j Y1 pj-Dj(®). Bje + Xj=1 Y Cj- Xjt
+ X7 Yo hy v}

(5.12)

Constraints
Yi1 X1 Bje - Dj(p) < X1 Ky (5.13)
Xjit + Vjt-1 — Yje = Dj(®).Bje . forj=1,.nandt =1,..,T (5.14)
Te1Xe <K, for t=1,..,T (5.15)
Xjt »Yjt ,j =0, forj=1,.nandt=1,..,T. (5.16)

Constraint (5.13) ensures that only demand intensity vectors which result

in a feasible solution have been considered. Constraint (5.14) is a set of flow
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balance equations that ensure that all of the induced demand is satisfied.
Constraint (5.15) ensures that there is an adequate amount of capacity in period
t to produce all n items based on the plan. Inequality (5.16) expresses the non-
negativity restrictions. We have a mathematical programming problem with a

nonlinear objective and linear constraints.

5.2.3.Robust optimisation model for multiple scenarios

We assume that in the case of uncertainty, the price/induced demand
function, D;(p), is not known in advance. Instead there is a discrete set of
scenarios by which the relationship between price and induced demand is
defined with a known probability. To find out the effect of uncertainty on the
joint pricing and production planning, we need to redefine the objective function
and some constraints, which are subject to the uncertainty, of the above single
scenario model.

First, we redefine the objective function in (5.12) under each scenario,

which consists of revenue, production cost and inventory holding cost.

RV® (revenue) = Y7, ¥i_1p;- D} (D). Bje , (5.17)
PC (production cost) = ?:12?:1 ¢j. xjr ,and (5.18)
IC® (inventory cost) = ¥, Yi_q hy.y5, . (5.19)

In the above Djs(p) is the price/induced demand function of product j and
y]-st is the inventory of product j at the end of period t under scenario s € Q =
{1,2,3, ... SN} which happens with a probability of Pr(s).The objective function for
the joint pricing and production planning problem with noisy data comes to a
random variable with the probability of each scenario, which is formulated as

follows:
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Minp x ysso Z;'l=1 ZZ=1 Cj- Xj¢ + Z;'l=1 ZZ=1 hj-yj'st - 7;:1 ZZ=1 pj'Djs(p)-Bjt .
(5.20)

Some might suppose that the expected objective function can be
considered to cover all possible scenarios. But the optimal solution of the

expected objective function is not likely to be optimal for all scenarios.

Minp yysso YseaPr(s). X7y Xte ¢ Xje + X7y Xioq hy 5
?:1 ZZ=1 pj'Djs(p)-:Bjt)
= Yseq Pr(s).(PC + IC° — RV?) (5.21)

Hence, the idea of adding a weight of the variance of the expected solution
to the objective function causes choosing such solutions which are close to
optimal for all scenarios. However, if we put a zero weight for the variance of the
expected solution in the objective function, then we would have the general
form of stochastic programming problem. On the other hand, in the case of
uncertainty, the matter of feasibility should be taken into account as well as the
optimality. To find a solution which remains almost feasible under all scenarios,
we penalise the violation of feasibility of each constraint subject to uncertainty.

It is worthwhile to mention that mostly the robust optimisation approach
has been used in linear programming problems as developed by Mulvey et al.
(1995), but here, we develop a nonlinear programming model with the use of the
RO approach. Now, the robust optimisation model for our targeted problem can

be formally expressed as:

Minp x ysso Qiseq Pr(s).(PC + IC° — RV?)
+2 Yseq Pr(s).[(PC + IC5 — RVS)
— Xseeq Pr(s°). (PC +ICS — RVSO)]Z

+® Yseq Pr(s). |25 + X7 X1 2] (5.22)
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subject to:

Z;‘zlx]-t <K, fort=1,..,T (5.23)
T Xi=1Bje-Di(p) -2° < ¥iq K, ,foralls€Q (5.24)
Xjt + Yir-1 — Vit + Ziy = D (©).Bje, forj=1,..n;t=1,..,Tand all s € Q,
(5.25)

Xit, Vi 0j 25,2 2 0. forj=1,.n;t=1,..,Tand all s € Q (5.26)

Note that stt is the under-fulfillment of demand of product j in period t
under scenario s. Also z° is the total under-fulfilment of demand of all products
over the total planning horizon under scenario s.

The first and second terms in the objective function (5.22) are mean and
variance of the objective function respectively, which measure the solution
robustness. The third term in (5.22) is set to measure the model’s robustness
with respect to infeasibility associated with control constraints (5.24) and (5.25)
under scenario s.

Constraints (5.23) ensure that there is an adequate amount of capacity in
period t to produce all n items based on the plan, which are free of noise.
Constraints (5.24) consider only demand intensity vectors which result to a
feasible solution for the total production capacity available over the planning
horizon. Because these are control constraints which are subject to uncertainty,
z5 measures the amount of infeasibility under scenario s. Constraints (5.25) are a
set of flow balance equations that ensure that all of the induced demand is
satisfied. Due to the noisy data, a new variable, stt , is introduced for each
product of type j in period t to keep the track of feasibility under scenario s.

Finally, constraints (5.26) are simply the non-negativity requirements.
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5.3. Solution Methods

Given the capacity limitations and uncertainty in the problems parameters,
the firm must decide upon production quantities, inventory levels for each item
as well as a constant price at which it commits to sell the products over the total
planning horizon.

As already been noted, corresponding to each specific A and w , which
define the optimality and feasibility preferences, the problem (5.22)-(5.26)
comes to an optimisation problem with nonlinear objective function and linear
constraints. There is a vast literature on such problems. The book by Luenberger
(2003) presents different methods designed to solve a Nonlinear Programming
problem which has n variables and m constraints. Methods devised for solving
this problem that work in spaces of dimension n-m, n, m, or n+m are Primal
Methods, Penalty and Barrier Methods, Dual and Cutting Plane Methods and
Lagrange Methods, respectively.

Primal methods work on the original problem directly by searching through
the feasible region, which has dimension n-m, for the optimal solution. Each
point in the process is feasible and the value of the objective function constantly
improves. Penalty and Barrier methods approximate constrained optimization
problems by unconstrained problems with adding a term to the objective
function. In the case of penalty methods the term prescribes a high cost for
violation of the constraints, and in the case of barrier methods the term favours
the points interior to the feasible region over those near the boundary. Dual
methods are based on the viewpoint that it is the Lagrange multipliers which are
the fundamental unknowns associated with a constrained problem. Once these
multipliers are known, the determination of the solution point is simple. Dual
methods do not attack the original constrained problem directly but instead
attack an alternate problem, the dual problem, whose unknowns are the
Lagrange multipliers of the first problem. Cutting plane algorithms develop a

series of ever-improving approximating linear programs, whose solutions
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converge to the solution of the original problem. Lagrange methods directly
solve the Lagrange first-order necessary conditions. The set of necessary
conditions is a system of n+m equations in the n+m unknowns.

In the computation part of this work we have utilised the existing
optimisation packages with the capability of dealing with the nonlinear objective
functions. We use the library subroutine ‘NLPSolve’ of Maple in which there is a
method option to select the proper one for solving the specific problem, such as
Quadratic Interpolation, Branch-and Bound, Modified Newton, Nonlinear
Simplex, Preconditioned Conjugate Gradient and Sequential Quadratic
Programming (SQP). According to the described criteria for each method, we
have selected SQP to optimize each NLP problem.

Our strategy to find the optimal pricing and production planning under
uncertainty is to solve a sequence of the above nonlinear programming problems
for a range of A and w . We first choose a fixed small value (e.g. 0.01) of A and a
considerably vast range of w (e.g. 0-300, with suitable increments) and find the
optimal solution of each specific problem within the selected range. We draw
three different plots of all specific problems as follows, the expected profit, the
solutions standard deviation (as a measurement of the optimality) and the
demand under fulfilment (as a measurement of the feasibility). Next, if the
expected profit doesn’t level out within the chosen range of w, we extend the
range to observe a leveled out expected profit. By increasing the value of A, we
solve the sequence of nonlinear problems again within the same modified range
of w. Comparing the resulted plots of the new A and the previous one, and
bearing in the mind the decision makers preferences, the next value of A may be
selected to continue the computation. As would be expected, the robust zone of
any specific case of joint pricing and production planning is highly dependent on
the resulting plots to compare the expected profit with the optimality and

feasibility measures.
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In the next Section we illustrate this RO approach and our strategy to find
the robust solution for a detailed small example. We further demonstrate the

ability to handle a large, more realistic case.
5.4. Numerical Example

In order to make the model more clear, two different cases are presented
in this Section. First, we start modelling and solving a smaller example with n=2
products , T =6 periods and Q = {1,2}. The second example consists of n=10
products , T =12 periods and Q = {1,2,3}.

5.4.1.Two products, Six Periods and Two Scenarios

The parameters for the example are as shown in Table 5.1.

Table 5.1. Parameters of the example.

Product Scenario D; (p) hj G 6_,'1 6]2 6/'3 6/'4 6]5 6]5

Pr(s=1)=0.8 150-5 p;
j=1 6 | 16 |06 | 05| 02| 3 | 15]02
Pr(s=2)=0.2 150-4 p,;

Pr(s=1)=0.8 150-5 p,
j=2 25|11 | 1 1 1 1 1 1
Pr(s=2)=0.2 150-4 p,

We assume a fixed production capacity, K; =140, for all periods in the
planning horizon.
Here we bring the problem formulation based on the proposed RO approach as

follows:
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RV

6 p; (150 = 5p;) + 6 p, (150 — 5p,)
=900 p, + 900 p, — 30 p? — 30 p3

6 p; (150 —4p;) + 6 p, (150 — 4 p,)
=900 p; + 900 p, — 24 p? — 24 p?

RV?

PC =16 (x11 + x93 + X135 + X154 + X145 + X16)

+ 11 (xy1 + x5 + X3 + Xou + X5 + Xop)
ICt
1C?

6 (yi1 + ¥iz + Vizs + Via + Yis) + 2.5 (V31 + V32 + Y3z + Via + V3s)
6 (V71 + Vs + Vs + ¥is + ¥is) + 2.5 (V3 + Y3 + Y3z + Vi + ¥5s)

The problem is:

Min PC + 0.8(IC* — RVY) + 0.2(IC% — RV?)
+0.81[0.2(IC* — RVY) — 0.2(IC? — RV?)]?
+0.22[0.8(IC% — RV?) — 0.8(IC* — RV)]?
+08wl[zt +zi, +zh + 2zl + 2z, + z)s + 2L + z3, + z1,
+ 233 + 234 + 235 + 73]
+ 02w [z2 + 2% + 22, + 2l + z2, + 2z + z2 + 25, + 72,

+ z2; + z2, + 755 + z2].

subject to:

X1t + Xpr < 140, for t =1, ...,6

6 (150 — 5 p,) + 6 (150 — 5p,) - z* < 840

6 (150 — 4 p;) + 6 (150 — 4 p,) -z2 < 840

Xjt + Yjr-1 — Yie + 2 = D (). Bje forj=12 ;t=1,...,6 and all s € {1,2},
Xit, Vi 0j 25,25y 2 0,forj=12;t=1,..,6 and all s € {1,2}.
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The Nonlinear Programming problem has been solved for a range of A and
w. The optimized value of the decision variables can be obtained for each specific
problem with a particular A and w.

Based on the decision maker’s preferences the violation of the optimality
and feasibility can be penalized by choosing the appropriate value for A and w
respectively. The higher value of A results in a solution with less standard
deviation from the expected one and a big w brings more feasibility to all control
constraints under each scenario. Hence, a single decision cannot be made
instantly for this type of problem with uncertainty; instead there should be a
reasonable discussion revealing the importance of the optimality and feasibility
for each case.

Now we bring the result of the specific problem for a chosen range of w (0-

200) and some fixed value of A (0.01, 0.1, 1).

Figure 5.1. The expected total profit
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As can be seen, the expected profit drops dramatically when the value of w
increases by 20. Since then, by increasing the value of w, the change of expected
profit is not considerable. When the value of A rises from 0.1 to 1, we can say
that the total profit remains very similar. As a result, choosing the preferred A
depends on the other aspects of the decision making, which are optimality and
infeasibility measurements illustrated in the following figures. Figure 5.2.

illustrates the solution’s standard deviation as a percentage of the expected total
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profit, which is actually an indicator of the optimality. Figure 5.3. shows the total

demand under-fulfilment as a percentage of the total expected demand, which

measures the feasibility.

Figure 5.2. The solution’s standard deviation
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As should be expected, we are interested in the smaller values on this

figure, because they give a better solution regarding the optimality. Like the

previous figure, by increasing the value of A from 0.1 to 1, the solution’s standard

deviation does not change significantly. So, to choose the preferred A we need

the result of the feasibility measurement to be able to summarize the robust

decision making.

Figure 5.3. The total demand under-fulfilment
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By increasing the value of w from zero to 10, the percentage of demand

under-fulfillment drops sharply. Also by raising A, the amount of unsatisfied
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demand will be increased too. But, because at any nonzero rate of w the under-
fulfillment is less than five percent, we do not have too much concern about
choosing larger values for A which brings more optimality. In other words, for
finding the robust answer to this specific example, we just consider first and
second figures as the mean and standard deviation of the solution respectively.

By finding the optimal solution for A=10 over the same range of w and
comparison to the above plots, it can be seen that almost all the results remain
similar. As a result, A=1 and w = 20 to 30 provides a reasonable zone to find the
robust solution of the problem. As an example we present the output within the
robust zone for A=1 and w = 20.

The total expected profit: 4971.1

The standard deviation: % 0.0084

The total under-fulfillment: 0

X171 = 23.0844 X1, = 19.2370 Xq13 = 7.6948 X14 = 7.6948

X15 = 57.7110 X16 = 63.6037

X1 = Xpp = Xp3 = Xg4 = Xp5 = Xy = 51.7045

p; = 22.3051 p> = 19.6590

5.4.2.Ten products, Twelve Periods and Three Scenarios

We now discuss a realistic size problem in manufacturing pricing, where
the firm is not flexible to change the price list frequently and usually has long-
term contracts with Original Equipment Manufacturers (OEMs). It is reasonable
to expect that in a real situation the number of product classes, which do not
have cross price dependency in their demand function is not too large. So the
assumption of n=10 can cover a large number of applications. Besides, by
considering T=12 we are catering for a whole year of planning on a monthly

basis, which is logical for constant pricing. Our three scenarios present good,
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moderate and weak market situations. For such a realistic size example, Maple is
efficient.

The parameters for this example are as shown in Table 5.2.

Table 5.2. Parameters of the example.

Product | h; | ¢; Bt

1 2 3 4 5 6 7 | 8 9 |10 11 | 12

j=1 2 6|06[05[02(02|15| 3 | 2 |1 [08|05|07] 1
j=2 1|4]0806| 1 | 2 |15|11| 1 (0907 ]|14]03]07
J=3 3(8|07|04[03(03|15|28| 2 |1 [07|06| 1 |07
j=4 2 (5]09|03[06|12|15|15| 3 |[05|06|04]|07]08

j=5 4|10 1|1 |11 |1 |1 |1 |1]1]1]|1][1

j=6 1/7]2|1|08|05[07| 1 |06[05|02|02]|15] 3

J=7 4191|1111 |11 |1|1]1|1]1
j=8 3(4|15|15[12|06|03|09| 1 | 2 (06|07 1 |07

j=9 2|6 | 1|11 | 1|11 |1|1 11|11

j=10 18|11 |1 | 1|1 |11 (1 |1]|1]|1]1

Scenario Di(p))
Pr(s=1)=0.7 150-5 p;
Pr(s=2)=0.2 150-4.5 p;
Pr(s=3)=0.1 150-4 p;

We assume a fixed production capacity, K; =100, for all periods in the
planning horizon. Similar to the previous example, the results for this specific
problem include the expected profit, the standard deviation of the solution and

the total demand under-fulfilment shown as follow:
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Figure 5.4. The expected total profit
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Figure 5.5. The solution’s standard deviation as a percentage of the expected total profit
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Figure 5.6. The total demand under-fulfilment as a percentage of the expected total
demand
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As can be seen, the expected profit in the case of A=0.1 and A=1 remains
very similar. We need to consider the optimality and infeasibility measurements

simultaneously to choose the robust zone preferred by the decision maker. If it is

105



desired to have the demand satisfied as much as possible, we might choose
A=0.01 and w = 80to90 which results in the smallest possible standard
deviation and the biggest possible expected profit within the chosen range of A
and w .0On the other hand, if the decision maker is concerned more about the
profit regardless of the unsatisfied demand, we might select a bigger value of A
(like 1) and a range of w (like 20-30) after which the expected profit and
infeasibility amount remain much similar. Thus, our methodology presents tools

which assist the decision maker explore the range of possibilities.

5.5. Conclusion

In this Chapter we have presented a mathematical programming model for
determining the optimal production and constant pricing policy for a finite time
horizon multiproduct production system with capacity constraints and demand
uncertainty. The production set up cost is negligible, and demand for each
product is dependent on its price, but the price/demand function is uncertain.
Our methodology makes use of Robust Optimisation ideas and our model can be
effectively implemented utilizing existing computational packages (we use
Maple). We illustrate with detailed numerical examples. The results of this

Chapter are to appear in the Pacific Journal of Optimisation, 2011, in press.
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Chapter 6

Conclusion and future work

In this thesis, we make several contributions to the literature of joint
pricing and production planning. More specifically, this work develops and
analyses several inventory/production models with pricing decisions of multiple
products over a multiperiod horizon under capacity constraints. It extends some
existing results in constant pricing and inventory/production systems and
provides an approach to develop a tree search algorithm for the time-variant
problem with and without backorders. This thesis also utilises a robust
optimisation approach for handling the demand/price uncertainty induced from
market.

We include the dynamic pricing decision into multiproduct
inventory/production systems. We formulate the problem as a Non-Linear
Programming Problem in both cases of with and without backorders and discuss
the limitations of getting the optimal solution due to the price incorporation. In
this thesis, we mainly address the reduction of the level of difficulty of the
formulated optimisation problem and develop an efficient algorithm to solve it.
These tackles include considering a special but practical case for the
demand/price function, conversion of nonlinear constraints to linear and use of
results for constant pricing.

We contribute to develop a solution strategy to solve the constant pricing

with allowed backorders. The strategy constructs a tree search in breadth-first
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manner iteratively. A detailed example shows the ability of the proposed
algorithm to be implemented in practical size problems.

We extend our work to the case where the price and other parameters of
the problem are time-variant. By this extension, our aim is to tackle the
formulated Non Linear Programming problem in the earlier part by dividing it
into several sub-problems with convex set of constraints. Our solution Strategy
proposes an iterative algorithm to construct a search tree structure to find the
optimal solution more efficiently. The detailed algorithm is illustrated through a
numerical example.

We also contribute in incorporating the demand/price uncertainty into the
model. We make use of the robust optimisation approach to handle the
existence of several scenarios in the market. Our strategy is to utilise existing
computational packages (like Maple) for solving the problem. We illustrate our
method with detailed numerical examples.

The outcomes of the research presented in this thesis have provided us
with a better understanding of the joint pricing and production planning problem
along with its complexities. However there are still areas that are open to further
investigation and perhaps improvement.

One of the main goals of this thesis was to incorporate endogenous
demand into the inventory/production systems. More clearly, we tried to see
what the effect of pricing decisions would be on production plans due to the
demand/price relationship. This was done through the assumption of zero price
elasticity. There is still scope to improve this investigation. For example, one
might consider product substitution or non-zero price elasticity.

Another area of the research that can be explored further is the
consideration of strategic behaviour of customers. Whether this increase in
complexity in the model improves the quality of practical coverage would be

worth investigating.
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