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Preface

The subject of this study came about during an investigation into mechanistic
flow models. Previous discussions with A/Prof. Martyn Ray about offshore oil
and gas exploration had drawn my research interest to the phenomena associated
with hydrocarbon flow in pipelines and flow assurance. Browsing through SPE
papers in an attempt to find a subject for my thesis, I came across a paper
discussing a unified mechanistic flow model, whose authors were part of a very
active research team at Tulsa University. The paper briefly described several
empirical correlations, as part of the mechanistic flow model, and referred to
other previous mechanistic models. As I started following the references and
reading more about mechanistic flow models, I became more familiar with the
subject, but also started being intrigued by the fact that for the same parameter,
different models were using different empirical correlations. In fact, the subject
of empirical correlations is so vast, that certain studies are entirely dedicated to
reviewing correlations for certain parameters, such as the friction factor or the
void fraction. This sparked the idea of analysing whether an empirical correlation
in a particular mechanistic flow model could simply be “unplugged” and a new
correlation “plugged in”, as you would with a mechanical component which was
part of a mechanical assembly. This is not just an academic question, because
it addresses the practical situation where a better empirical correlation becomes
available and it needs to be “fitted” into the mechanistic model. Even though
authors specify the empirical correlations to be used with their model, one has
to raise the question whether there are better correlations that could be used.
Although the idea of analysing the effect of empirical correlations on mechanistic
flow models may seem simple, once one comes to the realisation that replacing
empirical correlations may lead to significant changes to the calculation algorithm,
complexity comes into play.

The previous situation described the case when we had a correlation and we
needed to “plug” it into the model. Considering it in a different way, one could
think of a case where we have the model and we need to find the empirical
correlation that leads to the best predictions. This becomes an optimisation
problem.

Later, reading more about unified mechanistic flow models, I became even more
baffled by the number of empirical correlations used by certain models. There
are models which use more than one empirical correlation for the estimation of
the same model parameter. An example is the use of two correlations for the
interfacial friction factor, according to whether the flow is stratified or annular in
the Taylor bubble zone of the slug flow. This led me to believe that the interfacial
friction factor is a particularly important parameter of the flow model. However,
not much research is dedicated to the subject of model sensitivity analysis rela-
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tive to the interfacial friction factor. In fact, little research has been done in the
area of sensitivity analysis of mechanistic flow models. This set me on a path of
model experimentation, by performing model numerical simulations, while keep-
ing some of the parameters constant. My interest turned to determining whether
it was important to find better correlations for some of the model parameters. If
the model is fairly insensitive to variations of some of the input parameters, ob-
viously, a better correlation would not improve the accuracy of the model much.
This becomes both a sensitivity analysis and a mechanistic model simplification
problem.

The title of this thesis encompasses all these problems, which will be discussed
in detail in the following chapters. In my view, research is meant to generate
solutions, but also and equally important to generate questions. I hope this
research study has generated a mix of both.

This study progressed from initially one question, to a couple of questions,
then to many questions, until it finally gained momentum, after a very slow
start. Finding answers to these questions was not easy, particularly when not
much research at all has been done in the area of the use of empirical correlations
for mechanistic model optimisation and simplification. Fleshing out the ideas and
expressing them in a concise and unambiguous manner was even more difficult.
Some of the chapters had to be rewritten from scratch and others modified, as
both my supervisors, A/Prof. Nicoleta Maynard and Dr. Gordon Ingram, took
on the enormous task of reading chapters of muddled reasoning and confusing
ideas, while I was still trying to get some clarity as to where I was heading with
my research.

I would like to thank A/Prof. Martyn Ray for pointing me in the right direction
in the early stages of the research, reading the content of the thesis and making
valuable suggestions. I am also grateful to my supervisors A/Prof. Nicoleta
Maynard and Dr. Gordon Ingram, who helped me refine the ideas and provided
advice and guidance at different stages of this research.

The author alone assumes responsibility for the conclusions of this thesis and
any errors it may contain.

Adrian-George Brustur
Perth, March 2014
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Abstract

Mechanistic models represent process behaviour through sets of equations based
upon fundamental conservation laws and scientific knowledge of the process. In
order to compensate for the lack of sufficient knowledge of the physical phe-
nomena, empirical correlations are used to estimate certain model parameters.
Empirical correlations in mechanistic models make them data-sensitive, to the
extent that they become data-driven. The current industry practice for model
predictions is to check the data fit of a selection of mechanistic models, for the
purpose of choosing the most accurate model.

This study proposes a method to use a set of alternative empirical correlations
in a mechanistic model with the view of optimising or simplifying the model.
This suggests that the current industry practice needs to be changed to first test
the data fit of a set of empirical correlations in each model and only then select
the most accurate mechanistic model.

To achieve mechanistic model optimisation a two stage modelling approach is
taken. During the first stage, training, a history table of optimal correlation sets
is created. For the second stage, prediction, two methods are proposed:

1. A history matching algorithm based on sensitivity analysis. This is an
algorithm based on the minimisation of an objective function, with the
view of identifying an optimal correlation set to be used for prediction.

2. Data mining. Sorting and grouping techniques are used to identify regions
where a certain empirical correlation set is optimal. Mechanistic model
simplification is useful for situations where it is difficult to find empiri-
cal correlations for certain model parameters, or the empirical correlations
have a computationally-intensive component. A method based on sensitiv-
ity analysis is proposed to keep constant empirical parameters with a low
influence on the model output.

Based on the observation that each empirical correlation depends on a possibly
different set of input parameters, the structure of the calculation algorithm used
by the model may change each time a different correlation is used. Essentially, one
cannot “unplug” an empirical correlation out of a mechanistic model and replace
it with an alternative correlation, without first analysing whether the calculation
algorithm has to be modified. This study proposes a method to analyse the
changes in the calculation algorithm, when a new empirical correlation is used.

The theoretical concepts developed in this investigation were applied to the
Zhang et al. (2000) mechanistic slug flow model, widely used in the oil and gas
industry for the prediction of pressure gradient and liquid holdup in two-phase
pipe flow. In order to achieve model optimisation, a set of empirical correlations
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pertaining to slug flow was selected and systematically used to replace the orig-
inal correlations in the model. The results showed a better performance of the
optimised model compared to the original Zhang et al. (2000) model.

Sensitivity analysis of the empirical parameters used in the Zhang et al. model
determined:

◦ An easy method to improve the accuracy of the model, by identifying the
empirical parameter with the greatest influence on the model output, in
this case the liquid holdup fraction in the slug.

◦ A direction for experimental research, to find better empirical correlations
for the empirical parameters that have a higher sensitivity factor, in this
case liquid holdup, Taylor bubble velocity and wetted wall fraction.

This study concludes that before a mechanistic model is used on production data,
the empirical correlations used by the model have to be “tuned” by selecting the
appropriate correlation to ensure the best model performance.
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Glossary

IPM Prosper
PROSPER is a well performance, design and optimisation program for mo-
delling most types of well configurations found in the worldwide oil and gas
industry today. PROSPER can assist the production or reservoir engineer
to predict tubing and pipeline hydraulics and temperatures with accuracy
and speed. PROSPER’s sensitivity calculation features enable existing well
designs to be optimised and the effects of future changes in system param-
eters to be assessed.

NODAL
An analytical tool used in forecasting the performance of the various ele-
ments comprising the well completion and production system. This analysis
is used to optimize the completion design to suit the reservoir deliverability,
identify restrictions or limits present in the production system and identify
any means of improving production efficiency. NODALTM is a trademark
of Schlumberger.

PipeSim
Steady-state, multiphase flow simulator software for the design and diag-
nostic analysis of oil and gas production systems. The software tools model
multiphase flow from the reservoir to the wellhead. The software also anal-
yses flowline and surface facility performance to generate comprehensive
production system analysis. PIPESIM was created by Schlumberger.
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Chapter 1

Introduction

Multiphase flow occurs in many industrial situations and applications. In the
petroleum industry, it occurs in oil and gas wells, piping and gathering systems,
and equipment in refineries such as boilers, condensers, separators and distillation
towers. Out of all the types of multiphase flow, gas-liquid (oil-natural gas), liquid-
liquid (oil-water), gas-liquid-liquid (natural gas-oil-water) and solid-liquid-liquid-
gas flows (sand-oil-water-natural gas), this study will concentrate on gas-liquid
flows.

The challenges posed by transporting multiphase fluids through pipelines are
significant due to complex physical and chemical phenomena. The NODALTM

analysis approach commonly used in the petroleum industry, allows for well sys-
tem performance analysis and surface utilities sizing. The NODALTM approach
assumes the selection of a number of nodes in the well production system and the
division of the system at a chosen node. The system components upstream from
the chosen node constitute the inflow section and the components downstream
from the node, the outflow section. In NODALTM analysis, if the node is chosen
at the wellflow level, Equations 1.1 and 1.2 determine the wellflow pressure Pwf
on the Inflow Performance Relationship (IPR) curve. The inflow equation is:

Pwf = PReservoir −∆PReservoir −∆PGravelPack −∆PPerforations (1.1)

The outflow equation is:

Pwf = PSeparator + ∆PFlowline + ∆PChoke + ∆PWellHead+

+ ∆PSafetyV alve + ∆PTubingRestrictions + ∆PTubing (1.2)

Figure 1.1 shows the IPR curve, Tubing Head Pressure (THP), Downstream
Choke Pressure (DCP), Downstream Flowline Pressure (DFP) and the separator
pressure lines, plotted together. Starting from the reservoir pressure, the draw-
down pressure is the first pressure drop ∆PReservoir, after which each component
introduces a flow rate dependent pressure drop. Figure 1.1 shows the importance
of the tubing ∆PTubing and flowline ∆PFlowline pressure drops in the context of
petroleum production optimisation. A shift in the operating line, as shown in
Figure 1.1, which may occur due to reservoir depletion or change of flow rate
q, leads to changes in the value of the separator pressure. This pressure may
fall below the minimum separator pressure set by the design. This explains
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Figure 1.1: NODALTM system analysis on a well production system (Curtin 2011).

the importance of having accurate models for the calculation of multi-
phase flow pressure drop in pipelines of different inclination angles, in
the context of petroleum production optimisation. Not knowing the
pressure drops accurately, the production facilities can not be sized
properly. The subject of this study is related to the flow models for the calcu-
lation of the pressure drop in the production string and transmission pipelines of
different inclination angles.

In the petroleum industry, a reliable multiphase flow model is required in order
to perform the following operations (Ismail 1999; Bratland 2009):

◦ Selection of the appropriate tubing size. If the tubing diameter is too
large the well acts as a gas-liquid separator and the excessive gas slippage
results in high bottom hole pressures. If the tube is too small, excessive
frictional pressure drop will occur.

◦ Prediction of the lift curve minima, which determines when a well
needs to be ”kicked off”, artificially lifted or recompleted.

◦ Design of the gas lift system.

◦ Prediction of bottomhole pressures. This is the case in offshore pro-
duction facilities, especially when the wells are located deep below the water
level. An inappropriate multiphase flow correlation may lead to inaccurate
calculation of the bottomhole pressure, and subsequent errors in the facili-
ties design.

◦ Avoiding problems with gas hydrates, wax, asphaltene and scale
buildup.

◦ Providing data for corrosion, erosion and corrosion-erosion calcu-
lations.
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Due to the complex nature of multiphase flow, the problem was first approached
by conducting experiments and determining empirical models. For the devel-
opment of an empirical model a large number of experiments are required and
unless a dimensional analysis is carried out, the model will only apply to the par-
ticular limited set of conditions (Falcone, Hewitt, and Alimonti 2010). Empirical
models lack the understanding of the fundamental physical mechanisms, but have
the great advantage of being simple.

During the last two decades most multiphase flow research has been directed
towards the development of mechanistic flow models. They use fundamen-
tal knowledge of the interactions between process variables to define the model
structure and require a fundamental understanding of the physics and chemistry
governing the process.
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Chapter 2

Research objectives, data and
system selection

2.1 Introduction

Critical thinking is a concept that will be used in this chapter to show how the
subject of this research investigation was chosen. Critical thinking will be used
as a tool to determine the project objectives, its boundaries and provide a sketch
of the path to follow to the solutions for the stated objectives.

2.2 Critical thinking process

For a deeper understanding of the project objectives, it is important to show the
process that led to their conception. The best way to describe this process is to
apply critical thinking analysis to the multiphase flow knowledge domain. Figure
2.1 is a graphical depiction of such a process. Not only does such a figure allow
ideas to crystallise, but it also explains how they were arrived at and it promotes
logical consistency. It also shows the natural process of raising questions around
the use of empirical correlations in mechanistic multiphase flow models and the
attempt to find answers.

Figure 2.1 is divided into four “swimlanes”: logical inference, question, solution
method and outcome. The “Logical inference” lane starts with the problem to
be analysed. In this case we analyse the initiative of using alternative empirical
correlations in the same mechanistic model. The “Logical inference” lane con-
tains all the inferences we can make as a result of this initiative. The nodes are
connected by “leads to” oriented edges and show the logical flow of the train of
thoughts. The last nodes of the inference chains are the conclusions. The next
lane, “Questions”, contains questions that can be asked relative to the conclu-
sions in the previous lane. The “Solution method” lane suggests methods to solve
the questions asked in the previous lane. The last lane, “Outcome”, contains the
outcomes of the methods applied to the questions. This diagram contains both
vertical and horizontal layers. The leftmost column develops the initial idea fur-
ther into a set of ideas. This is the vertical layer. Each of these ideas branch
out horizontally and as they traverse the different swimlanes, questions, solutions
and outcomes are suggested. A horizontal layer is thus created for each idea in
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Figure 2.1: Overview of the critical thinking process applied to the multiphase flow.
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the leftmost column.
The questions in Figure 2.1 presented the following possible research paths:

1. Changes of the mechanistic model’s calculation algorithm.

2. Analysis of the possibility of improving the mechanistic model’s perfor-
mance by using a selection of empirical correlations.

3. Analysis of the possibility of simplifying the mechanistic model by maintain-
ing constant some of the parameters, which would otherwise be calculated
by using empirical correlations.

4. Analysis of the changes in the flow pattern transition prediction, associated
with the process of using alternative empirical correlations.

This study will approach the first three research subjects. As far as the last
research path is concerned, the concepts and methods discussed in the following
chapters can be applied to determine the model predictions on each side of the
boundary between adjacent flow regimes. This research path will not be explored
in this study, because the discontinuity issue is already known in mechanistic
flow models and a solution exists. The discontinuities vary when the empirical
correlations for the two flow pattern models (such as slug-annular in vertical
flow) are being replaced with alternative correlations. The agreed practice is to
perform linear interpolation between the two different pressure gradient values,
each pertaining to an adjacent flow regime. The linear interpolation eliminates the
discontinuity. The transition boundaries can be determined with a flow pattern
identification model, such as Barnea’s (1987).

2.3 Project objectives

This study is an attempt to shed new light on the path that research has taken
in the area of mechanistic models, by showing that one of the areas ignored
so far has been the optimisation of existing mechanistic models by
finding more suitable empirical correlations. In effect this is a tuning
procedure, because there is no “silver bullet” mechanistic model to simulate the
flow behaviour for all gas-liquid combinations, for all flow parameter ranges. The
study will describe the steps involved in such a tuning process.

In summary, the project objectives are:

1. To analyse the effects of using alternative empirical correlations
on the mechanistic model’s calculation algorithm. The discussion in
Chapter 7 will show that this is a complex process that may lead to a series
of different calculation algorithms. A structured procedure to determine
these different calculation algorithms is proposed in Section 7.5.

2. To show that the use of a choice of empirical correlations leads
to mechanistic model optimisation. The effect of using different em-
pirical correlations on the predicting capabilities of the mechanistic model
are analysed in Chapter 8. It will be shown that for a data set of measured
pressure gradients and liquid holdups, the iterative process of replacing the
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correlations can bring the model prediction closer to, or at least as close to,
the measured values as the original mechanistic model. This creates an as-
sociation between the input data point and an optimal correlation set. The
algorithm to achieve this will be described in Section 8.2 and constitutes
the first step towards model optimisation.

The second step, a “history matching” method based on sensitivity analysis,
is proposed in Chapter 9. Section 9.3.2 will show that sensitivity analysis
together with history matching provide a method to optimise a mechanistic
model.

3. To show that the use of a selection of empirical correlations, in
conjunction with sensitivity analysis, may lead to a simplified ver-
sion of the mechanistic model. Chapter 10 will show that ranking the
effect of empirical correlations based on the contribution they have to the
model’s output is important, because it shows which correlations need to be
replaced with better ones for more accurate predictions. Model simplifica-
tion also reduces the execution time for computationally-intensive models, if
the parameter with negligible contribution to the output involves iterations
in its calculation procedure.

2.4 Mechanistic model selection

2.4.1 Flow pattern selection

As oil and gas reserves are becoming depleted or coming close to the end of their
lifecycle, exploration is moving offshore, where the cost of constructing and op-
erating oil and gas rigs is very high. The alternative offered by research is to
utilise production systems with minimum offshore processing. Due to the lat-
est advancements in multiphase flow modelling, driven mainly by the petroleum
industry, it is now possible to transport unseparated multiphase gas-oil-water
mixtures over relatively long distances to an onshore separation facility. This has
generated massive savings for oil and gas developments, because multiphase trun-
klines have replaced topside offshore oil and gas rigs. This is the case of Snohvit
and Ormen Lange fields off the Norwegian coast. Trunkline lengths of well over
100 km were used. At Tyrihans in the North Sea, where production started in
2009, the subsea tieback connected a new field to existing offshore structures and
generated savings by avoiding a new topside. The flow line length in this case was
43 km (Bratland 2009). In these cases it is important to accurately predict the
multiphase flow characteristics in long transportation pipelines. This not only
involves the prediction of the flow pattern, but also the flow characteristics of the
determined flow pattern.

Slug flow is the most common flow pattern in oil transportation pipelines (Mar-
cano et al. 1998) and can be generated by hilly terrain, or changes in flow rate.
Zhang et al. (2003b) discussed the issue of slug dissipation and generation in
hilly terrain. Slug flow is important to predict and characterise, because
of its undesirable effects:

◦ Variation in oil and gas flow rates entering the downstream processing
facilities.
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◦ Mechanical damage to pipeline connections and support.

However, slug flow is desirable for artificial lift in heavy-oil reservoirs.
Its understanding is also important for designing effective gas lift and unloading
strategies. The prediction of the slug-annular flow transition is important for
controlling the stability of multiphase flow from the perforations, along the pro-
duction string, to the wellhead. This is also an important issue in the design and
operation of continuous flow in gas-lift installations used in floating production
systems, where the produced fluids traverse a flexible riser to a Floating Pro-
duction, Storage and Offloading (FPSO) vessel (Guerrero-Sarabia and Fairuzov
2006).

To summarise these considerations, all the aspects of slug flow modelling
are crucial for the design and operation of oil and gas transportation
and processing facilities. For this reason, a slug flow mechanistic model is
selected in Section 2.4.2, in order to exemplify the theoretical aspects of this
study.

2.4.2 Model selection

Numerous slug flow models can be found in the literature, but this study consid-
ered the Zhang et al. (2000) slug flow mechanistic model (Appendix E.7). The
reasons the Zhang et al. (2000) model was chosen are:

1. The model was the basis for an extensive flow research project at Tulsa
University (Tulsa University 2008). Improvements to the model have been
made as a result of the project and it has become the cornerstone of a
unified model for gas-liquid-liquid pipe flow (Tulsa University 2008).

2. The model was improved in 2003 and the new model was the first approach
ever to determine flow pattern transitions based on slug flow dynamics, that
is, considering all other flow patterns as particular cases of slug flow. Zhang
et al. (2003c) showed that this flow pattern encompasses all the other flow
patterns. Due to turbulence, gas is trapped in the liquid slug, which leads
to dispersed bubble flow in this region. Each of the possible flow regimes
can be obtained as a particular case of the more general case of slug flow.
For example, stratified or annular flow can be obtained by taking the limit
of LS → 0 and LF → ∞, where LS is the liquid slug length and LF is the
length of the film zone in the slug unit. The opposite case for dispersed
bubble flow can be obtained by taking the limits LS →∞ and LF → 0.

3. The model is one of the advanced slug flow models and has good prediction
capabilities. It was the first slug flow model to take into account the mo-
mentum exchange term, as described by Equation E.145 in Appendix E.7.

4. The model uses a large number of empirical factors, making it suitable for
analysis from the point of view of this study.

Although the discussion revolves around this particular slug flow model, the
concepts can be applied to any mechanistic model that has an empirical compo-
nent. The Zhang et al. (2000) model was used only for the purpose of demon-
strating how the theoretical concepts could be applied practically.
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Table 2.1: Empirical correlations for the calculation of parameters LS, HLLS, vTB,
fi and Θ used by the Zhang et al. (2000) and Zhang et al. (2003) slug flow models.

Correla-
tion

LS HLLS vTB fi Θ

Zhang et Zhang Zhang Bendik-
sen

Cohen & Hanratty Grol-
man

al.(2000)
Zhang et Zhang Zhang Bendik-

sen
Andritsos &
Hanratty/

Grol-
man

al.(2003) Asali & Ambrosio

Despite the Zhang et al. (2003c) model being a unified mechanistic model,
which can determine the flow pattern and predict both the pressure drop and
liquid holdup, the algorithm for the slug flow is very similar to the 2000 version.
As the 2003 slug flow model takes into account liquid entrainment in the gas core
of the slug unit, it also makes the notable change of using different empirical co-
rrelations for the friction factor fi compared to the 2000 model (Appendix E.7.3).

Choosing the Zhang et al. (2000) model as a benchmark and not its 2003 version
makes sense, because this way the theoretical framework discussed in the following
chapters can analyse whether the replacement of the empirical correlation for fi
in the new model was beneficial for the accuracy of the model or not. Table
2.1 lists the empirical correlations used by the Zhang et al. (2000) and (2003)
models, which can be found in Appendix F. A detailed description of the slug
flow characteristics, parameters and notation is given in Appendix C.

2.5 Research data

2.5.1 Research data sources

In order to achieve the objectives mapped out earlier, data sets from multiple
sources have been analysed:

◦ Tulsa University Fluid Flow Project (TUFFP) database - The team of re-
searchers at TUFFP (Tulsa University 2008) conducted a four year project,
with the following objectives:

1. To investigate and understand the fundamental physical mechanisms
describing the interaction between gas, oil and water.

2. To develop a comprehensive unified mechanistic multiphase flow model.

3. To conduct experimental studies at the Tulsa University Three Phase
Flow Facility and generate new data sets.

The TUFFP data bank contains both well and flowline data points, per-
taining to all flow patterns. A 2008 report shows that the TUFFP well data
bank had 2052 data points (Tulsa University 2008).
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◦ Brill et al. (1981) - Twenty-nine multiphase flow tests were conducted in two
3-mile long pipelines in the Prudhoe Bay field, in Alaska. The pipelines used
were 12” and 16”, respectively. The flow line geometry was complex with
sections of the pipeline following the terrain profile. In order to calculate
the output pressure and liquid holdup, the line was divided into 36 segments
with various inclination angles.

Very few experiments have ever been conducted in an oil field with real
formation fluids. Most of them have used flow test facilities with air and
water, air and oil or other combinations, but very rarely formation fluids.

2.5.2 Research data selection

Although the Brill et al. (1981) data bank has the advantage of containing real
formation fluid data, the complexity of the pipeline profile and the variation of
flow patterns along the pipeline makes the identification of slug flow very difficult.
This led to the selection of the TUFFP data bank, which has the advantage of
having used straight flow lines. This makes the identification of slug flow data
convenient.

The TUFFP database contains data referring to pipeline (0◦, ±5◦, ±10◦) and
wellbore (vertical and near vertical) inclination angles. All the flow patterns
ranging from stratified smooth to annular misty flow are included. Out of all
the database records, a subset of 95 flow data points for the slug flow pattern
was selected for flow simulation. The selection process was random and the only
criterion applied was for the data point to pertain to slug flow. The number of slug
flow data points is a result of analysing TUFFP database points. As the database
does not have a field for flow pattern, the FLOPATN software (Shoham 2006)
was used to determine the flow pattern for each individual data point analysed.

The selected subset contains data points from Andritsos (1986), Beggs and Brill
(1972) and Mukherjee and Brill (1985) flow tests. The two-phase liquid mixtures
used to obtain the data are described in Appendix A, Table A.1.

All the 95 data points were used in the numerical simulations in Chapters 8
and 10. In Chapter 9, these 95 points are divided into two subsets:

◦ A first set of 71 data points was used as a history database.

◦ The remaining 24 data points were used as input data to test the optimised
and simplified models.

The ratio between the number of data points in the history database and the
number used for the analysis of model optimisation and simplification was chosen
according to the criteria:

◦ A sufficient number of data points has to exist in the history database for
the optimisation and simplification algorithms to function properly.

◦ A sufficient number of test data has to be available for the study to reach
reasonable conclusions.

Based on this criteria, a ratio of:

ratio =
number of test data points

number of history database points
= 0.3 (2.1)
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was deemed satisfactory.

2.6 Selection of programming language

All the algorithms and methods discussed in this study have been simulated
numerically by software modules written in GNU Octave.

GNU Octave is a high-level programming language primarily intended for nu-
merical computations, which was developed by John W. Eaton in 1988 at the
University of Wisconsin-Madison. It is named after Octave Levenspiel and it was
initially used as a companion to the reaction engineering course at the university
(Eaton 2013). The main advantage of GNU Octave over MATLAB is that it is
free software, under the terms of the GNU Public License. GNU Octave is used in
academia and industry, and was used for various projects on the massive parallel
computer at the Pittsburgh supercomputing centre.

The following considerations were taken into account when GNU Octave was
chosen for the implementation of the programs:

◦ License - for the future development of the programs, not having to purchase
a license to run the software was considered an advantage.

◦ Support and documentation - GNU Octave has an active support group
and the language is very well documented.

◦ Capabilities - GNU Octave has been built with MATLAB compatibility in
mind, as an Open Source, free alternative to it.

The following software modules have been written for the numerical simulation
chapters and can be found on the attached CD:

1. For the numerical simulation of the Zhang et al. slug flow model: zhang.m
in the Zhang Model folder .

2. For global sensitivity analysis: main.m, myfunction.m, randorient.m, screen-
ingplan.m, screeningplot.m in the Sensitivity Analysis folder.

3. For the optimisation of the Zhang et al. model through history matching:
zhangoptim.m and zhangcc.m in the Optimisation folder.

4. For the Zhang et al. model simplification: zhangsimple.m in the Simplifi-
cation folder.

The Zhang et al. (2000) slug flow model was run on the considered data bank
and the prediction errors were calculated. The results are shown in Appendix A,
Table A.7. The results constitute the starting point and the benchmark for all
the other algorithm predictions.

2.7 Summary

This chapter analysed the thinking process that led to the choice of research
subject. A multi-layered diagram is presented to show different research paths
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that result from the graphical representation of the thinking process. The choice
of three of these research paths leads to the project objectives. These three
research objectives are:

1. Analysis of the effects of using alternative empirical correlations on the
mechanistic model’s calculation algorithm.

2. The investigation whether the use of a choice of empirical correlations leads
to mechanistic model optimisation.

3. The verification whether the use of a selection of empirical correlations, in
conjunction with sensitivity analysis, leads to a simplified version of the
mechanistic model.

Although the theoretical framework presented in the following chapters applies
to any mechanistic model, the Zhang et al. (2000) mechanistic slug flow model has
been selected. The numerical simulation of the optimisation and simplification
concepts in Chapters 9 and 10 has been applied to a subset of 95 slug flow data
points. These constitute a subset of the TUFFP data bank.

The algorithms used in the simulation have been implemented as scripts in GNU
Octave, a high-level language, primarily intended for numerical computations.
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Chapter 3

Research motivation and
significance

3.1 Introduction

Chapter 2 provided an insight into the process of selecting the subject for this
research, by using critical thinking. However, this does not provide an answer to
the question of the research motivation and industry significance of the subject.
This chapter will provide a list of business and research drivers that created a
demand for this investigation.

3.2 Project motivation and significance

As onshore oil and gas reservoirs gradually come to the end of their lifecycle,
exploration has moved offshore in the search for new reservoirs. Various crude
oil production forecasts currently exist. Until not long ago there was a general
agreement that there would be a decline in forthcoming years, as shown in a May
2009 forecast in Figure 3.1 (Eriksen 2009). The Ultimate Recoverable Reserves
(URR) shown by the red line in Figure 3.1 forecast a clear decline worldwide,
mainly due to big declines in Russia, Norway, the UK, Mexico and Saudi Arabia
where the production allegedly peaked in 2005.

However, new studies have shown that this is not entirely true. It seems that
peak oil has not happened and it is unlikely to happen for a very long time. The
Hubbert’s peak theory states that fossil fuel production in a given region over
time follows a bell-shaped curve with a decline in the future. Studies published by
Harvard University show that a new oil boom has begun (Maugeri 2012). This is
partly true because of the new investment in unconventional oil, especially shale
oil. What is certain though, is that conventional vertical land well drilling has
almost reached an end, and oil and gas exploration has either moved offshore or
adopted the newer technologies of horizontal drilling and fracking for shale oil.

A new set of challenges come along with the move to offshore exploration.
Flow models, most of them empirical, could not predict the fluid flow behaviour
any longer, due to the very different flow conditions. For example, low subsea
temperatures at even relatively low pressures may lead to the formation of gas
hydrates (Figures 3.2 and 3.3), which is not the case for onshore production
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Figure 3.1: World crude oil production forecast (Eriksen 2009).

Figure 3.2: Gas hydrate formation curve as a function of pressure and temperature
(Bratland 2009).

facilities.
Traditional models needed a re-assessment, hence a new approach was taken

by the scientific community and mechanistic models became increasingly the pre-
ferred choice, mainly because extrapolation of the empirical flow models led to
inaccurate results in the new offshore field conditions. However, mechanistic
models use empirical correlations. It is in this context that the analysis of the
influence of empirical correlations on the mechanistic models was considered im-
portant.

To this end, this study selected the Zhang et al. (2000) mechanistic
slug flow model. This model used a set of empirical correlations, whose
replacement with alternative correlations will be analysed. There are
many reasons why this endeavour is worthwhile:

1. In the years since these unified models were released, new empirical co-
rrelations have been developed. A lot of the existing correlations were
developed in test facilities with fluid mixtures such as air and water, or
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Figure 3.3: Gas hydrate formation for different pure components (Bratland 2009).

air and kerosene, and used small diameter smooth vinyl or glass pipelines.
However, the offshore transportation trunklines are 20”-40” in diameter
and made out of steel. The fluid mixtures are very different from the ones
used in the development of most of the empirical correlations. This raises
the question whether these new correlations would significantly improve
the output of the mechanistic flow model. In other words, the question is
whether any improvement to the accuracy of the flow model is made by
continuously updating the empirical correlations with new, more
accurate ones, as they become available.

2. The design engineer is faced with the difficult task of choosing the right
empirical correlation in the process of sizing the equipment for gathering,
pumping, transporting and storing the two-phase hydrocarbon mixtures.
Woldesmayat and Ghajar (2007) presented a paper where 68 empirical co-
rrelations for void fraction were compared, out of hundreds of such corre-
lations. The literature abounds in reviews of empirical correlations. These
studies normally compare a large number of correlations and focus on the
accuracy of these correlations on estimating a certain model parameter,
such as friction factor (Shoham and Xiao 1991; Garcia et al. 2007; Aziz
and Ouyang 1995; Spedding, Cole, and Donnelly 2004), or void fraction
(A.Woldesmayat and Ghajar 2007). Considering that mechanistic models
have several such empirical parameters, the number of empirical correlation
combinations that could be used in the model increases exponentially. This
could potentially mean that the engineer has to consult a very large num-
ber of empirical correlations to make the right decision. One could argue
that nowadays simulation software incorporates all this complexity. How-
ever, in most cases only a very limited number of models and correlations
are being considered by the software and without prior knowledge and
deep understanding of which particular empirical correlation each
flow model is using, the engineer may blindly choose a model. For
example, as shown in Figure 3.4 the Pipesim software offers a multitude
of choices for vertical flow. However, the engineer will need to know that
Duns and Ros, Hagedorn and Brown, Orkiszewski, Mukherjee and Brill are
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Figure 3.4: Options for choosing a flow model in the commercial software application
Pipesim.

empirical flow models, unlike Govier, Aziz and Fogarasi. If one were to
choose the latter to model the flow, the immediate question would be what
empirical correlations does this flow model use and to what extent could
they be applied to the field operations? As this is not shown by the soft-
ware, not only would the engineer need to know all these details for all the
flow models included in the application, but also the eventual updates to
the models, such as the difference between the Gray original and the Gray
modified flow models. To emphasize this complexity even further, one of
the most common restrictions of empirical correlations is that they are flow
regime dependent or only apply for a certain range of inclination angles
(horizontal and near horizontal, vertical or upward inclined). This means
that from the start, they can only be applied to a certain flow regime and
this needs to be known prior to their application.
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These arguments show that an off-the-shelf software application encapsu-
lates the complexity of the flow in a non-transparent manner and the user
has the ultimate responsibility of doing the extensive research to check the
model’s applicability to the flow conditions. This study is an insight
into the process of choosing the right correlation for the data,
and shows the framework for incorporating this complexity into
the software application.

3. It is important to quantify the extent to which empirical correlations
influence the output of the flow model. Only when this is correctly
identified, do we know that further research in the area related to the
parameter estimated by the empirical correlation is worthwhile.
Model sensitivity analysis relative to a certain empirical parameter allows
us to focus where it matters on finding better and more accurate
empirical correlations. In other words, if we aimed to improve the ac-
curacy of the mechanistic model we would look at the empirical parameter
that has the greatest influence on the model accuracy, and try to find a bet-
ter empirical correlation for it. The opposite would happen with the least
sensitive empirical parameters, which due to their low influence would not
need to have their empirical correlation replaced, because rough estimates
would do as good a job as accurate ones.

4. As progress in science leads to a deeper understanding of the physical flow
phenomena, mechanistic flow models and their calculation algorithms need
to be re-visited, with the view of changing their use of empirical correla-
tions. Flow parameters that were estimated initially by empirical
correlations in the original model may now be available to be
calculated mechanistically. From this point of view, the whole algo-
rithm needs to be changed to allow for the calculation equations of these
parameters to be an integral part of the model. This process should only
be undertaken if the real benefit is a more accurate model, which is not
detrimental to numerical stability.

5. A general consensus exists amongst the petroleum production engineers that
the empirical correlations used in the field have to be selected according to
the crude oil properties. Research (Hanafy et al. 1997) also emphasized
that the empirical correlations should be chosen to the meet the geographi-
cal, regional properties of the production fluid. Empirical correlations used
in the production fields of the North Sea cannot be used in the Gulf of
Suez, Western Desert or Sinai production fields. There is a worldwide
requirement for all the production fields to replace empirical co-
rrelations in mechanistic models to match the regional, local data,
corresponding to the local production fluid composition and flow
conditions.

6. Mechanistic models use empirical correlations as closure relationships. This
is the case for well-known mechanistic models (Zhang et al. 2000, 2003c;
Ansari et al. 1994; Petalas and Aziz 2000; Gomez et al. 2000; Bonizzi,
Andreussi, and Banerjee 2009). Due to these correlations, the models
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become data-sensitive and there is no guarantee that the model
can be applied successfully to new field data.

7. The current, established software used in petroleum production (PipeSim,
IPM Prosper) offers a data-matching option, which allows the user to check
which one of a selected list of models performs best on a certain test data set.
Given that each one of these models uses empirical correlations, the software
determines the best match by determining each model’s predictions and
comparing them to the measured data, by using one empirical correlation set
per model only, the one that comes with the model. No attempt to optimise
the model by trying different correlation sets is made. This study will
show the advantage of attempting the extra step of optimising
the mechanistic model by trying different empirical correlation
sets on each model, before determining which mechanistic model
fits best.

3.3 Summary

This chapter has outlined industry and research challenges that this study at-
tempts to address. These challenges are:

1. Updating an existing mechanistic model with new empirical correlations.

2. Replacing an empirical component with a mechanistic component within a
mechanistic model.

3. Determining the most sensitive empirical parameter for the mechanistic
model. This helps with the selection of an accurate empirical correlation
for the data. In terms of future research work, this determines which pa-
rameters need better experimental estimation.

4. Finding the best empirical correlation set for the data.

5. Adjusting an existing mechanistic model to include geographically-dependent
empirical correlations.

The empirical component of mechanistic models makes them data-sensitive. The
main deficiency of the current approach of using mechanistic models is that they
do not adjust their empirical correlations to match the data set particularities.
This argument will be elaborated and demonstrated in the following chapters.
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Chapter 4

Literature review

4.1 Introduction

Chapter 2 introduced the project objectives and specified that the Zhang et al.
(2000) mechanistic slug flow model will be used throughout this investigation
as a case study to support the discussion around using alternative empirical co-
rrelations in mechanistic models. To better understand the evolution of flow
models and the latest advancements, an introduction into the field of empirical
and mechanistic models is essential.

The empirical correlation replacement framework discussed in the following
chapters relies on a systemic view of the mechanistic models. Therefore, this
chapter will review the relevant literature to show how the optimisation process
discussed in Chapter 9 relates to current systemic approaches.

4.2 Empirical correlations

Empirical models are based on direct observation through a large number of
experiments, measurements and extensive data collection and analysis. The most
commonly used empirical models in petroleum production are Dukler et al. (1964)
and Beggs and Brill (1973), for flow in pipelines, and the Hagedorn and Brown
(1964) and Duns and Ros (1961) correlations in wellbores, to name just a few of
them. The predictive performances of these models are poor and errors of ±30%
are common.

The conventional approach to pressure gradient calculation, before the prolif-
eration of computer technology, was to use pre-prepared pressure traverse curves.
These curves were prepared using a correlation such as Hagedorn and Brown
(1964), for different values of the parameters: inside pipe diameter d, liquid flow
rate qL, water fraction fW , average flowing temperature T and oil, gas and water
specific gravities. The calculation is graphical and involves the selection of the
diagram that corresponds to the well completion and fluid parameters. Such a
diagram is presented in Figure 4.1. This approach hides the complexity of the
multiphase flow in the correlation used to develop the pressure traverse curves.

The early models were not entirely empirical and still considered the mass and
momentum conservation equations as their theoretical foundation. The pressure
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Figure 4.1: Pressure traverse curve used for the calculation of pressure drop (Heriot
Watt 2009).

gradient equation derived from the continuity and momentum equations is:

−αk
∂Pk
∂x

+
dP

dx

∣∣∣∣
due to friction

− αkρkg sin θ︸ ︷︷ ︸
due to elevation

− αkρkvk
∂vk
∂x︸ ︷︷ ︸

due to change in velocity

= 0 (4.1)

where:

Apipe = pipe cross-sectional area.
Ak = cross-sectional area occupied by phase k.
αk = Ak

Apipe
= volume fraction of phase k.

ρk = density of phase k.
vk = superficial velocity of phase k.
g = gravitational acceleration.
θ = pipe inclination angle.
Pk = external pressure applied on phase k in the control

volume.
dP
dx due to friction

= pressure gradient of phase k due to friction from
other phases and pipe wall.

Equation 4.1 is called the mechanical energy balance and is derived in Appen-
dix D. The values of the terms in Equation 4.1 change with the inclination angle,
so that for vertical flow the elevation pressure drop prevails and for horizontal
flow the frictional losses prevail. The acceleration term becomes non-negligible at
high velocities. The contribution of the different pressure drop terms in the total
pressure drop is illustrated in Table 4.1. The acceleration term was not included,
because many of the early models did not include the term at all.

The complexity of the Equation 4.1 lies in the fact that the elevation pressure
drop depends on the density of the two-phase mixture, which in turn depends
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Table 4.1: Typical pressure loss values in the production string (Heriot Watt 2009).

Pressure Loss Term Pressure loss
due to

elevation [%]

Pressure loss
due to

friction [%]
Well
Orien-
tation

(vertical)
well model

85-98 2-15

(horizontal)
pipeline
model

0-30 70-100

on the liquid holdup. Also, the frictional losses depend on the two-phase friction
factor. However, these terms change with the flow regime. Most of the corre-
lations for pressure drop and liquid holdup are based on these considerations.
Nevertheless, they differ in their approach regarding the flow regimes, the two-
phase mixture density and the gas slippage. From this point of view, a possible
classification would be (Brill and Beggs 1991):

1. Homogenous no-slip model. This does not take into account the slip
or the flow regimes. The two phase mixture is treated as a pseudo-single
phase with an average mixture velocity and fluid properties. The averaging
factor is the non-slip liquid holdup. The gas and liquid are assumed to be
travelling at the same velocity and the density is calculated based on the
input gas-liquid ratio. Equation 4.1 is thus greatly simplified and the only
matter requiring further consideration is the friction factor.

2. Slip considered, but no flow regime consideration. Since the gas
slippage is taken into account, a calculation method is provided to predict
the liquid holdup and the friction factor at different locations in the pipe.
These calculation methods apply without consideration of the flow regime.

3. Slip considered, flow regime considered. Unlike the previous cate-
gories, the models in this category have to determine the flow regime first
and once this is determined, an appropriate calculation method for the
pressure gradient and liquid holdup is provided.

To add to the complexity related to the use of a correlation, some correlations
are only available for vertical, others for horizontal and very few for inclined
flow conditions. Table 4.2 lists some of the well known early models and their
classification (Brill and Beggs 1991).

Comparative research for two-phase and three-phase correlations has been done.
Spedding (2006) reviewed two-phase flow correlations for horizontal flow and
showed that correlations such as Lockhart-Martinelli had errors of ±50%, while
Beggs and Brill had ±20%. The notable result was that some two-phase corre-
lations that performed poorly on two-phase flow prediction, gave better results
when applied to three-phase flow.

Most of the experimental research in the area of multiphase flow used test
facilities with plastic pipes of relatively small diameter. However, offshore oil
and gas production facilities use trunklines with diameters of between 20” and
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Table 4.2: The vertical flow correlation classification.

Vertical Flow Correlation Classification

Poettmann and Carpenter 1
Baxendell and Thomas 1
Fancher and Brown 1
Hagedorn and Brown 2
Duns and Ross 3
Orkiszewski 3
Aziz, Govier and Fogarasi 3
Chierici, Ciucci and Sclocehi 3
Beggs and Brill 3

40” (Tulsa University 2008). This is one of the common flaws of the empirical
multiphase flow models, which for large pipe diameters exhibit “high diameter
errors” (Liejin et al. 2009; Bratland 2009; Newton, Bhardwaj, and Behnia 1992).
In the early 80s, explorations on the North Slope in Alaska resulted in decisions to
transport oil and associated gas in large diameter flow lines, mainly for economic
considerations. This required use of empirical correlations, which were mostly
based on small diameter pipes. In most cases the prediction of liquid holdup was
poor (Brill et al. 1981).

4.3 Mechanistic modelling

Mechanistic models are based on an understanding of the behaviour of a system’s
components, generally through the application of fundamental laws such as mass,
momentum and energy conservation. As this study uses the Zhang et al. (2000)
mechanistic slug flow model, a review of the most important mechanistic flow
models is necessary.

Figure 4.2 shows schematically the structure of a mechanistic model and pro-
vides a graphical interpretation of different research paths. Most of the models
currently used in the petroleum industry are one-dimensional, two-phase and do
not take into account the interphase mass transfer as a result of phase behaviour.
However, more complex models exist, but very few consider the entire complex-
ity of the multiphase flow. The initial approach in the modelling of multiphase
flow was to determine the pattern transition criteria and then develop calculation
models for the hydrodynamics and heat transfer, for each one of the patterns.

Taitel et al. (1980) presented a mechanistic model for the flow-pattern tran-
sitions in upward two-phase flow and identified the mechanisms and transition
boundaries between them. Barnea et al. (1982) extended the applicability of the
model to inclined flows. A few years later, in 1987, Barnea combined all the flow
pattern prediction models into one unified model for the flow pattern transition
prediction (Barnea 1987). Barnea’s unified model is valid for inclination angles
from −90◦ to +90◦. The term “unified” referred to the fact that, unlike previous
research, the model was now valid for a range of pipe inclinations and not just
“wellbore”, which had been used typically for near-vertical flow, or “pipeline”,
for near-horizontal flow.
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Figure 4.2: The structure of a mechanistic flow model - both the assumptions made
and the empirical correlations are important, integral parts of the model.
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The mechanistic models developed over the last four decades or so can be
classified as wellbore, pipeline or unified.

4.3.1 Pipeline models

Mechanistic models appeared in the early 70s with the works of Agrawal et al.
(1973) and Taitel and Dukler (1976). These models are applicable for hori-
zontal and near-horizontal flow conditions, namely ±10◦. The models are one-
dimensional and even though two-dimensional models have been developed in the
meantime by Shoham and Taitel (1984), Issa (1988) and Hall (1992), the industry
is still using one-dimensional models. Due to the pioneering work of Dukler and
Hubbard, and because of its durability, a description of the model is given in
Appendix E.5.

4.3.2 Wellbore models

These models are applicable not only for vertical flow, which rarely occurs in the
industry, but for off-vertical as well, for inclination angles between 60◦ and 90◦.
Specific models for slug flow were presented by Fernandes et al. (1983) and then
Sylvester (1987) (Shoham 2006). Annular flow in wellbores was modelled by the
Alves et al. (Shoham 2006). A recent model for two-phase flow in vertical annuli
was proposed by Zhang et al. (2010).

4.3.3 Unified models

New unified models were developed by Felizola and Shoham (1995), who pre-
sented a unified slug flow model, valid for the entire range of angles of inclination
between 0◦ and +90◦ (Shoham 2006). This model is included in Appendix E.6.
Ansari et al. (1994) presented a comprehensive model for the prediction of up-
ward two-phase flow patterns and included calculation methods for the pressure
drop and liquid holdup for bubble, slug and annular flow. Petalas and Aziz (2000)
developed a unified mechanistic model with a wide range of applicability, from
downward, to horizontal and upward flow. Over the last decade an even more
unified approach has been taken and mechanistic models have changed to incor-
porate a unified flow pattern prediction model and separate unified models for
the different flow patterns. This was the approach taken by (Zhang et al. 2003c;
Zhang and Sarica 2006). This model will be further analysed as a case study for
the theoretical development in this thesis. Therefore, the base model is described
in Appendix E.7. The model was extended by the researchers at Tulsa University
to three-phase flow (gas-oil-water) (Tulsa University 2008).

Most of the models mentioned so far are two-phase models. Three phase flow
(oil, water, gas) was studied experimentally by Acikgogz et al. (1991), who gave
a classification of the three-phase flow regimes. Khor et al. (1997) analysed
the three-phase stratified flow and determined flow holdups. Cengizhan et al.
(2007) have extended the previous work of Acikgogz and identified and classified
gas-oil-water flow patterns, by using the flow facilities at Tulsa University.

An interesting approach was taken by Bonizzi, Andreussi and Banerjee (2009)
who presented a one-dimensional model that does not require that the flow
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regimes be specified and does not use flow regime dependent closure relationships.
The model is valid for slow-transients in near-horizontal pipes. Four “fields”, or
“layers” are considered in the equations: continuous liquid, dispersed liquid, con-
tinuous gas and dispersed gas.

Research in the area of mechanistic flow algorithms and sensitivity analysis
on the empirical parameters has been fairly scarce and very few notable papers
can be mentioned (Sarica, Zhang, and Wilkens 2011). Despite of a fairly
large number of papers conducting reviews of empirical correlations of
certain parameters, such as friction factor (Shoham and Xiao 1991; Garcia et
al. 2007; Aziz and Ouyang 1995; Spedding, Cole, and Donnelly 2004) and liquid
volume fraction (Gregory, Nicholson, and Aziz 1978; Eissa 2009), none of them
seems to have gone the extra step of analysing what happens to the
model prediction if all these correlations are applied consecutively.

4.4 Combined mechanistic and empirical

modelling

Flow modelling is just one particular case of system modelling. At this more
general level, the mechanistic models represent process behaviour through a set
of equations, based upon fundamental conservation laws and scientific knowledge
of the process. The shortcomings of the mechanistic models are that, in order to
compensate for the lack of sufficient understanding and knowledge of the relevant
physical phenomena, or ability to solve complex mathematical problems, they
make assumptions and simplifications. Mechanistic models allow a certain degree
of extrapolation outside the region for which experimental data confirms the
model’s predictions with a certain level of accuracy. The mechanistic approach
to modelling is called “white box” modelling.

The opposite of this approach is the so-called “black box”, empirical modelling.
The empirical approach extracts knowledge directly from the operating data and
is fitted to the data according to a minimisation criterion. This is usually based on
the minimisation of the residuals, which are the norm of the differences between
prediction and observation values. Due to the method used to derive them, a
large number of input-output data points are required for these models to lead to
reliable and accurate predictions. Empirical models do not permit extrapolation
outside the data domain they were developed for and tested against.

The approach of combining both “white box” and “black box” modelling is
called “grey box” or “hybrid” modelling. Combining the two paradigms cre-
ates models that address the issues of both worlds. The mechanistic model is
improved to work outside the area where existing scientific laws have been con-
firmed, and the empirical model is extrapolated outside its region of validity by
the fundamental conservation laws.

The combination of the two approaches can be performed in serial or parallel
arrangements:

1. In the serial approach, the empirical module is fed with operating data and
provides estimates for the empirical parameters to the mechanistic model, as
shown in Figure 4.3. This configuration was used by Psichogios and Ungar
(1992) for modelling the process of fermentation. The empirical module
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Figure 4.3: Structure of a serial hybrid model (Psichogios and Ungar 1992).

Figure 4.4: Structure of a serial with feedback hybrid model (Schubert et al. 1994).

Figure 4.5: Structure of a parallel hybrid model (Thompson and Kramer 1994).

used an Artificial Neural Networks (ANN) module in this case. In order to
improve the parameter estimation, the configuration can be improved with
feedback to the empirical module (Figure 4.4). This approach was used by
Schubert et al. (1994) for yeast cultivation process modelling.

2. In the parallel approach, both the empirical and the mechanistic models
are fed the same data, as illustrated in Figure 4.5. The role of the empi-
rical module is different in these configurations, as it aims to forecast the
“residuals”, the corrections that have to be added to the mechanistic model
predictions to estimate the process output. Thompson and Kramer (1994)
applied such a structure to model a penicillin fermentation plant.

Belmiro et al. (2004) used a hybrid model based on ANN with the structure
in Figure 4.6. The model works in two phases: training and forecasting. In the
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Figure 4.6: Structure of a Belmiro et al. hybrid model during the training phase
(Belmiro, Saraiva, and Pantelides 2004).

Figure 4.7: Structure of a Belmiro et al. hybrid model during the forecasting phase
(Belmiro, Saraiva, and Pantelides 2004).

training phase in Figure 4.6 the inputs x are fed to the mechanistic model, which
calculates the estimates ẏe = g (ye, x,Θ), where Θ is a vector of mechanistic
model parameters and ye is the model prediction of the “true”, or measured
process output y. The empirical module is fed with the residuals R = y − ye.
Thus, the residuals have the form:

R̂ = f (x, ye,Φ) (4.2)

where f is a local-continuous space of functions and Φ is a vector of parameters op-
timised in order to minimise the square norm of the difference R̂−R. The space
of functions f depends on the choice of empirical modelling technique, for ex-
ample piecewise linear polynomials for Multivariate Adaptive Regressive Splines
(MARS), sigmoidal basis functions for ANN. (Belmiro, Saraiva, and Pantelides
2004). In the forecasting phase in Figure 4.7, the mechanistic module predictions
ye and the inputs x are fed to the empirical module, which predicts the residuals
R. The model prediction is then calculated by adding the mechanistic module
estimate and the residual:

ŷ = ye + R̂ (4.3)

The model used in this study is also a two-phase model, like that of Belmiro et
al., but instead of using ANN for the empirical module, this study uses a set of
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empirical correlations. Consequently, the space of functions f used in the model,
consists of piecewise functions characterising sets of empirical correlations. The
proposed hybrid model has a parallel structure, similar to the one used by Belmiro
et al., but with some changes due to differences in the process modelled.

4.5 Summary

This chapter presented a review of the relevant empirical and mechanistic flow
models used in petroleum production optimisation, with an emphasis on mecha-
nistic models. Such an introduction was necessary, because it outlines the Zhang
et al. (2000) mechanistic model in the context of other flow models. Different rel-
evant approaches to mechanistic modelling are also presented. They are essential
for the understanding of the hybrid modelling and optimisation topics discussed
in Chapter 6 and 9. The “training phase” concept used in the Belmiro and al.
model will be used for hybrid modelling.
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Chapter 5

Zhang et al. mechanistic slug
flow model

5.1 Introduction

The Zhang et al. slug flow model was selected as a case study to validate the
theoretical framework for empirical correlation replacement. Therefore, a presen-
tation of the model calculation algorithm is necessary.

Chapters 9 and 10 will discuss model optimisation and simplification. In order
to compare the performance of the modified model with that of the original model,
statistical measures are used. A presentation of these measures is therefore also
essential.

This chapter will present:

◦ A list of terms, definitions and the mathematical symbols used in slug flow
modelling in Section 5.2.

◦ The Zhang et al. (2000) and (2003) calculation algorithms in Section 5.3.
The models are derived in Appendix E.7 in the context of the fundamental
flow equations.

◦ Flow model statistical measures in Section 5.5.

5.2 Slug flow terminology

Figure 5.1 shows the structure of a slug unit. The following notation will be
adopted throughout this study:

Lengths:
d = pipe internal diameter.
LU = length of the slug unit.
LS = length of the liquid slug zone.
LF = length of the liquid film zone.
LM = length of the mixing zone.
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Figure 5.1: Detailed description of a slug unit (Shoham 2006).

Liquid holdups:
HLLS = liquid holdup in the liquid slug zone.
HLTB = liquid holdup in the liquid film zone.
HGLS = gas void fraction in the liquid slug zone.
HGTB = gas void fraction in the liquid film zone.

Velocities:
vLLS = absolute velocity of the liquid slug.
vGLS = absolute velocity of the dispersed bubbles inside the liquid slug zone.
vM = slug mixture velocity.
vLTB = absolute velocity of the liquid film under the Taylor bubble in the

liquid film zone.
vGTB = absolute velocity of the gas inside the liquid film zone. This is not

the velocity of the Taylor bubble.
vTB = absolute velocity of the Taylor bubble inside the liquid film zone.
vF = relative velocity of the liquid film in the liquid film zone, with

respect to the Taylor bubble velocity.
vG = relative velocity of the gas in the liquid film zone, with respect to

the Taylor bubble velocity.

Friction factors:
fLW = liquid-wall friction factor.
fGW = gas-wall friction factor.
fi = interfacial friction factor.
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Figure 5.2: Geometrical parameters in slug flow (Zhang et al. 2003c).

Fluid properties:
ρL = liquid density.
ρG = gas density.
µL = liquid viscosity.
µG = gas viscosity.
σ = surface tension.

Geometrical parameters:
These parameters refer to Figures 5.1 and 5.2.
θ = pipe inclination angle.
Apipe = pipe cross-sectional area.
Θ = wetted wall fraction. It is the ratio between the liquid wetted wall

length measured along the pipe circumference, and the pipe
circumference.

SF = liquid wetted wall arc length.
SG = gas contacted wall arc length.
SCD = chord between the highest liquid level points.
Si = interfacial perimeter.
AF = cross-sectional liquid flow area.
AG = cross-sectional gas flow area.
ACD = cross-sectional area bounded by the wetted wall and its chord.

Shear stresses:
τGW = shear stress at the gas-wall interface.
τLW = shear stress at the liquid-wall interface.
τS = shear stress of the gas-liquid mixture at the wall interface.
τi = shear stress at the gas-liquid interface.
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5.3 Zhang et al. (2000) and (2003) models

5.3.1 Assumptions

The Zhang et al. (2003) model is a unified mechanistic flow model; that is, it
covers all the flow regimes, including slug flow. The slug flow component of the
model assumes a fluid mixture of gas, liquid and droplets entrained in the gas
core. This is an improvement on the Zhang et al. (2000) slug flow model, which
only considered gas and liquid.

As this study investigates the use of various empirical correlations in slug flow
modelling, and in order to compare the Zhang et al. (2000) slug flow model with
the 2003 unified model, the following assumptions had to be made:

◦ As the study compares the two slug flow models, only the slug flow com-
ponent of the 2003 unified model will be used for comparison. The other
model components of the 2003 model refer to different flow regimes and will
not be considered.

◦ As the Zhang et al. (2000) slug flow model assumes only gas and liquid
fluid mixtures, we will assume that there is no droplet entrainment in the
slug flow component of the 2003 unified mechanistic model.

5.3.2 Calculation algorithms

The two calculation algorithms, Zhang et al. (2000) and Zhang et al. (2003), are
presented together, because the only three differences are:

1. The 2003 version includes Zhang step 9, whereas the 2000 version does
not. This is because the 2003 version included a more accurate correlation
for HLLS (Zhang et al. 2003a), whereas the 2000 version only relied on the
initial estimation provided by the Gregory (1978) correlation.

2. The correlations for fi in Zhang step 14 are different. The 2000 version
used the Cohen and Hanratty correlation for fi, whereas the 2003 version
used the combination Andritsos and Hanratty (1987) and Asali and Am-
brosio (1984).

3. The 2003 version calculates parameter τLW with a slightly different expres-
sion in Zhang step 15.

The combined presentation of the algorithms helps understand the concepts
in Chapter 7, where an algorithm for the placement of empirical correlations
according to their functional dependencies is developed. By showing the 2003
version of the Zhang et al. calculation algorithm, there is a clearer indication of
where the Zhang et al. (2003a) correlation for HLLS and other similar correlations
can be positioned.

The model input parameters are:
d, θ, vSL, vSG, ρL, ρG, µL, µG and σ.

Zhang step 1: Start with an estimated value for HLTB.
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Zhang step 2: Calculate LS, vM . LS is known as a closure relationship. The
Zhang et al. empirical correlation is used for the calculation of LS:

LS =
(
32cos2θ + 16sin2θ

)
d (5.1)

vM = vSL + vSG (5.2)

Zhang step 3: Calculate Taylor bubble velocity vTB:

vTB = c0vM + vdrift (5.3)

where the flow coefficient c0 = 2 for laminar flow and c0 = 1.2 for tur-
bulent flow. The Taylor bubble drift velocity vdrift is calculated with the
Bendiksen (1984) correlation:

vdrift = 0.54
√
gd cos θ + 0.35

√
gd sin θ (5.4)

for values of θ ∈ [0◦, 90◦].

Zhang step 4: Estimate HLLS using the Gregory correlation:

HLLS =
1

1 +
(
vM
8.66

)1.39 (5.5)

Zhang step 5: Calculate vLTB and vGTB by simultaneously solving:{
HLLS (vTB − vM) = HLTB (vTB − vLTB)

(1−HLLS) (vTB − vM) = (1−HLTB) (vTB − vGTB)
(5.6)

Zhang step 6: Calculate ρS:

ρS = ρG (1−HLLS) + ρLHLLS (5.7)

Zhang step 7: Calculate ReS:

ReS =
ρSvMd

µL
(5.8)

Zhang step 8: Calculate fS:

fS = CReS
n (5.9)

where:

C =

{
1.0 for laminar flow

0.046 for turbulent flow
(5.10)

n =

{
1 for laminar flow

0.2 for turbulent flow
(5.11)
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Zhang step 9 (Only in 2003 version): The Zhang et al. correlation for
HLLS shown in Equation 5.12 is used to improve the accuracy of the pre-
dictions:

HLLS =
1

1 + Tsm

3.16
√

(ρL−ρG)gσ

(5.12)

The parameter Tsm has the form:

Tsm =
1

Ce

[
fS
ρSvM

2

2
+
d

4

ρLHLTB (vTB − vLTB) (vM − vLTB)

LS

]
(5.13)

and Ce is:

Ce =
2.5− |sin θ|

2
(5.14)

Zhang step 10: Calculate LF and LU by simultaneously solving:{
LUvSL = LSvMHLLS + LFvLTBHLTB

LU = LS + LF

Zhang step 11: Calculate the wetted wall fraction Θ, using the Grolman co-
rrelation:

Θ = Θ0

(σW
σ

)0.15

+
ρG

(ρL − ρG) cos θ

(
ρLvSL

0.25d

σ

)0.25[
vSG

2

(1−HLTB)2gd

]0.8

(5.15)

Zhang step 12: Calculate the geometrical parameters SF , SG, Si, AF and AG:

SS = πd (5.16)

SF = πdΘ (5.17)

AF = HLTBApipe (5.18)

SG = πd− AF (5.19)

AG = (1−HLTB)Apipe (5.20)

SCD = d sin (πΘ) (5.21)

ACD =
d2

4

(
πΘ− sin (2πΘ)

2

)
(5.22)

Si =
SF (ACD − AF ) + SCDAF

ACD
(5.23)
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Zhang step 13: Calculate the Reynolds numbers ReLW and ReGW :

ReLW =
4AFvLTBρL

SFµL
(5.24)

ReGW =
4AGvGTBρG
(SG + Si)µG

(5.25)

Zhang step 14 (2000 version): Calculate the friction factors fGW , fLW and
fi:

fLW = C1Re
−n1
LW (5.26)

fGW = C2Re
−n2
GW (5.27)

fi = 0.0142 (5.28)

where the Ci and ni factors (i = 1, 2) are:

Ci =

{
1.0 for laminar flow

0.046 for turbulent flow
(5.29)

ni =

{
1 for laminar flow

0.2 for turbulent flow
(5.30)

The interfacial friction factor fi, as calculated in Equation 5.28, is using the
Cohen and Hanratty correlation.

Zhang step 14 (2003 version): Calculate the friction factors fGW , fLW and
fi:

fLW = C1Re
−n1
LW (5.31)

fGW = C2Re
−n2
GW (5.32)

where the Ci and ni factors (i = 1, 2) are:

Ci =

{
1.0 for laminar flow

0.046 for turbulent flow
(5.33)

ni =

{
1 for laminar flow

0.2 for turbulent flow
(5.34)

If Θ < 0.8 use the Andritsos and Hanratty correlation to calculate fi.
Otherwise, use the Asali and Ambrosio correlation to calculate fi.

These correlations are used for stratified and annular flow, respectively.
They are applied to the film zone of the slug unit, where the flow can be
either stratified or annular.
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Andritsos and Hanratty (1987): The correlation in Equation 5.35 ap-
plies to stratified flow, under the assumption of a flat gas-liquid inter-
face.

fi = fC

[
1 + 14.3HLTB

0.5

(
vSG
vSG,t

− 1

)]
(5.35)

fC is the friction factor of the gas in the core of the Taylor bubble.

vSG,t = 5
[m
s

](ρGO
ρG

)0.5

(5.36)

ρGO in Equation 5.36 is the gas density at atmospheric pressure.

Asali and Ambrosio (1984): The correlation applies to annular flow.

fi = fG

[
1 + 13.8WeG

0.2ReG
−0.6

(
h+
F − 200

√
ρG
ρL

)]
(5.37)

The parameter h+
F is the dimensionless thickness of the liquid film and

is defined in Equation 5.38:

h+
F =

ρGhFv
∗
C

µG
(5.38)

v∗C =

√
τi
ρG

(5.39)

For a smooth pipe fG is defined as in Equation 5.40:

fG = 0.046ReG
−0.2 (5.40)

The Weber and Reynolds numbers are calculated with Equations 5.41
and 5.42:

WeG =
ρGv

2
SGd

σ
(5.41)

ReG =
ρGvSGd

µG
(5.42)

Equation 5.37 shows the dependency of fi on h+
F , which according to

Equation 5.38 depends on v∗C . This parameter in its turn, according
to Equation 5.39 depends on τi, the interfacial shear stress. On the
other hand, τi is defined as:

τi = fi
ρG (vSG − vSL) |vSG − vSL|

2
(5.43)

This shows an interdependency, which from the point of view of the
calculation of fi can only be solved by assuming an initial value for
fi and then iterating until convergence is achieved, as in the following
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algorithm:
Step 1 Assume fi = fG
Step 2 Calculate τi according to Equation 5.43.
Step 3 Calculate v∗C according to Equation 5.39.
Step 4 Calculate h+

F from Equation 5.38.

Step 5 Calculate fi,calculated using Equation 5.37. If
|fi,calculated−fi|
fi,calculated

< ε

the algorithm has converged and fi,calculated represents the value of fi.
Otherwise, repeat from Step 2, by assuming fi = fi,calculated.

Zhang step 15: Calculate the shear stresses τGW , τLW , τS and τi:

τGW = fGW
ρGvGTB

2

2

τLW = fLW
ρLvLTB

2

2

τS = fS
ρSvM

2

2

τi = fi
ρG (vGTB − vLTB) |vGTB − vLTB|

2
(5.44)

The (2003) version is using a slightly different expression for τLW :

τLW =
3µLvLTB
hF

− τi
2

(5.45)

where the hF is calculated with:

hF =
2ApipeHLTB

sF + Si
(5.46)

Zhang step 16: Calculate the margin of error merr of Equation 5.47:

merr =
ρL (vTB − vLTB) (vM − vLTB)

LF

− ρG (vTB − vGTB) (vM − vGTB)

LF

+
τGWSG

(1−HLTB)Apipe
− τLWSF
HLTBApipe

+ τiSi

(
1

HLTBApipe
+

1

(1−HLTB)Apipe

)
− (ρL − ρG) g sin θ (5.47)

Zhang step 17: Check if the margin of error merr is less than the allowable
tolerance ε:

|merr| < ε (5.48)

If Condition 5.48 is satisfied, go to Zhang step 18. Otherwise, recalculate
HLTB from Equation 5.47 so that merr is zero in Zhang step 16 and go
back to Zhang step 5 to reiterate the algorithm.
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Table 5.1: Empirical parameters and the empirical correlations used in the Zhang et
al. (2000) slug flow model.

Empirical parameter Empirical correlation

vTB Bendiksen
HLLS Gregory
LS Zhang
Θ Grolman
fi Cohen and Hanratty

Table 5.2: Empirical parameters and the empirical correlations used in the Zhang et
al. (2003) slug flow model.

Empirical
parameter

Empirical correlation

vTB Bendiksen
HLLS Gregory, Zhang
LS Zhang
Θ Grolman
fi Andritsos and Hanratty / Asali and

Ambrosio

Zhang step 18: Calculate the slug unit pressure gradient dP
dL

∣∣
U

and the slug
unit liquid holdup HLU :

dP

dL

∣∣∣∣
U

= −LF
LU

τLWSF + τGWSG
Apipe

− LS
LU

τSSS
Apipe

− LFg sin θ

LU
[ρLHLTB + ρG (1−HLTB)]− LS

LU
ρSg sin θ (5.49)

HLU = HLLS
LS
LU

+HLTB
LF
LU

(5.50)

The model outputs are predictions for the slug unit pressure gradient and
slug unit liquid holdup. This study will only analyse the pressure gradient
output. All the concepts and methods presented in this investigation can be
applied to the HLU output in a similar way.

Tables 5.1 and 5.2 list the empirical parameters used in the Zhang et al.
(2000) and (2003) models and the empirical correlations used for their estimation.

To compare the Zhang et al. (2000) model with other models developed here,
a series of statistical measures widely applied in the literature was used. They
are described next.
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5.4 An equation oriented approach to solving

the Zhang et al. mechanistic model

Two main process modelling solution approaches exist in chemical engineering:

1. The Sequential Modular approach.

2. The Equation Oriented approach.

The modelling approach in Section 5.3.2 is Sequential Modular (SM). The Direct
Substitution method:

yk+1 = F (yk) (5.51)

where y is the model output vector and k is the iteration number, is used to
iteratively calculate the model output.

An alternative to solve the Zhang et al. model is to use an Equation Oriented
(EO) approach. This approach considers the entire model as a collection of alge-
braic equations, which are solved simultaneously for all the unknowns. A common
strategy for solving systems of non-linear equations is to use local linearisation
techniques based on the Newton-Raphson root-finding method.

Another strategy to solve the system of equations using the EO approach takes
into account the fact that most engineering problems are characterised by sparse
matrices. This strategy simplifies the problem considerably by reducing the struc-
tural matrix associated with the set of equations to a lower block-triangular form.
The blocks identify the sets of equations that need to be solved simultaneously.
The procedure of partitioning the matrix into blocks uses techniques to deter-
mine the strong components of the directed graph associated with the system of
equations. The lower block-triangular form of the structural matrix offers the
advantage of allowing for an easy calculation of the variables through the For-
ward Substitution method. Despite the reduced complexity of the final system
of equations, root-finding methods are still required, as some equations are non-
linear. Numerous variations of this approach exist in the literature, depending on
the method used to identify the strong components (Barton 1995; Sargent and
Westerberg 1964; Barkley and Motard 1972; Duff 1981b, 1981a).

The Block Decomposition method is based on the strategy of using the sparse
matrix block decomposition to simplify the set of equations associated with the
model. This method applied to the Zhang et al. model provides some benefits over
the Direct Substitution method. The following points describe the advantages and
disadvantages of the two methods:

1. Unlike the Direct Substitution method, which is highly iterative and re-
quires a computational time ofO (noi) (n = number of variables, o =average
time to compute an output variable, i =number of iterations), the Block
Decomposition method reduces the complexity of the set of equations to
solving smaller size sets of equations. Generally, EO methods offer greatly
reduced computational times for high values of n or when there is no prior
knowledge of the solution range of the guess variable in the Direct Substi-
tution method.
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2. The Block Decomposition method involves mathematical algorithms to re-
duce the sparse matrix associated with the system of equations to its lower
block-triangular form. Not all sparse matrices are reducible to this form,
but in the case of the Zhang et al. model the matrix is already in this
format. In general, EO methods may fail during the pre-processing steps
that set up the solving method and further analysis is required to ensure
the success of the pre-processing operations.

3. Similar to the Direct Substitution method, the root-finding method used by
the Block Decomposition method also needs to provide an initial guess for
variable x1. If the Newton-Raphson method is chosen, the success of the
algorithm may be jeopardised if the Jacobian becomes numerically singular
at one or more iterations, or if the initial guess is not within the convergence
region. However, other numerical root-finding methods exist to mitigate
this risk (e.g. Levenberg-Marquardt method).

4. The code associated with solving the Zhang et al. model using the Block
Decomposition method uses library functions for boolean matrix multipli-
cation and root-finding methods. This would have further required matrix
factorisation library functions if the structural matrix had not already been
in lower block-triangular form. Generally, the EO approach requires a pro-
gramming language with a rich library of mathematical functions.

5. In contrast to the SM approach, EO allows for model optimisation and
tuning.

5.4.1 The effect of the empirical correlation replacement
on the modelling approach

An empirical correlation replacement in a mechanistic model leads to a new set
of equations. A subject that warrants clarification is the effect of the change of
the set of equations pertaining to the model on the chosen simulation approach.

In the EO approach, as the strategy involves a level of abstraction between the
set of equations to be solved and the method to solve them, theoretically the
strategy should not be affected. However, initial values to start a root-finding
method such as Newton-Raphson may be affected, as the initialisation value may
have to change as the empirical correlation equations are being replaced with
another set of equations.

In the SM approach, the topology of the directed graph changes every time an
empirical correlation is replaced in the model. Regardless of the Block Decom-
position method applied, Path Tracing methods (Sargent and Westerberg 1964;
Barkley and Motard 1972) or Reachability matrix based methods (Steward 1965;
Himmelblau 1966), the method is not affected by the change.

Later in Chapter 7, an algorithm to replace empirical correlations in mechanistic
models is described. This algorithm assumes that the structural matrix of the
model has been reduced to a lower block-triangular form. The algorithm is in
essence an algorithm to permute the rows of the matrix based on functional
dependencies. This algorithm can be applied to both SM and EO simulation
approaches.
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5.5 Statistical measures used for flow model

comparison

The following collection of statistical measures was first used by Ansari et al.
(1994). Since then, they have been used widely in petroleum production engi-
neering for characterising flow model fit.

Let us assume a number K of flow models, whose predictions for pressure
gradient are to be compared on the same data bank of n input points. For each
flow model k ∈ {1, 2, . . . , K}, the following six statistical measures are calculated
as functions of the output y = pressure gradient:

1. Average percent error:

E1,k =

(
1

n

n∑
i=1

pei

)
× 100 (5.52)

where:

pei =
ypredicted,i − ymeasured,i

ymeasured,i
(5.53)

is calculated for each input data point xi, i = 1, 2, . . . , n.

2. Absolute average percent error:

E2,k =

(
1

n

n∑
i=1

|pei|

)
× 100 (5.54)

3. Percent standard deviation:

E3,k =

 n∑
i=1

√
(pei − E1,k)

2

(n− 1)

 (5.55)

4. Average error:

E4,k =

(
1

n

n∑
i=1

ei

)
× 100 (5.56)

where:

ei = ypredicted,i − ymeasured,i (5.57)

is calculated for each input data point xi, i = 1, 2, . . . , n.

5. Absolute average error:

E5,k =

(
1

n

n∑
i=1

|ei|

)
× 100 (5.58)
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6. Standard deviation:

E6,k =

 n∑
i=1

√
(ei − E4,k)

2

(n− 1)

 (5.59)

To compare the K models, a relative performance factor is calculated for each
model:

FPRk =
|E1,k| − |E1MIN

|
|E1MAX

| − |E1MIN
|

+
E2,k − E2MIN

E2MAX
− E2MIN

+
E3,k − E3MIN

E3MAX
− E3MIN

+
|E4,k| − |E4MIN

|
|E4MAX

| − |E4MIN
|

+
E5,k − E5MIN

E5MAX
− E5MIN

+
E6,k − E6MIN

E6MAX
− E6MIN

(5.60)

where:

EjMIN
= min{Ej,k} (5.61)

EjMAX
= max{Ej,k} (5.62)

for all k = 1, 2, . . . , K and j = 1, 2, . . . , 6.
The minimum value:

FPRkm = min{FPRk} k = 1, 2, . . . , K (5.63)

corresponds to model km, considered the most accurate model of all the K models
compared.

5.5.1 Flow model comparison requirements

To understand the meaning of all these parameters, we need to understand the
requirements for a fair model comparison. For several flow models to be compared
and ranked, the following issues need to be addressed:

1. The statistical measures should reflect the performance of the models for
both high and low value ranges. It is important to know whether a
pressure variance of 20 psi, for example, was associated with a 100 psi, or
a 1000 psi pressure drop. Therefore, a fair comparison takes into account
the value of the variance relative to the measured value. The model with
the lower variance relative to the measured value is preferred. Measures
pe, E1, E2 and E3 address this requirement by calculating the average and
standard deviation relative to the measured values.

On the other hand, the introduction of the measured value in the statistical
measures, although necessary, does not offer the complete information to
allow model comparison. To understand this, one can easily imagine the
situation described in Figure 5.3, where two models of variances:

V1 = pressurepredicted,1 − pressuremeasured
V2 = pressurepredicted,2 − pressuremeasured

are compared. Assuming that the measured values are in the range:

pressuremeasured ∈ [100 psi . . . 1000 psi] (5.64)

and that the variances have the values:
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Figure 5.3: The variance difference relative to the measured output is not a good
comparison parameter in the high range of output values.

(a) Variance V1 = 20 psi for the range of values lower than 700 psi, while
V2 = 10 psi for the same range.

(b) Variance V1 = 100 psi and V2 = 200 psi for a measured output value
of 1000 psi.

one could conclude the following:

◦ Model 2 performs better than model 1 for 67% of the output range.

◦ Model 1 performs better in the higher 33% of the output range.

◦ At the two ends of the output range, model 2 is better than model 1
by 10% for the minimum output value, whereas model 1 is better than
model 2 by 10%, for the maximum value of the output range.

If no other statistical parameters independent of the measured value were
considered, one may make the final decision that model 2 performed better.

However, this is a skewed view of the real situation, because model 1 per-
forms only marginally worse than model 2, by 10 psi in the low to medium
range. In the higher range of values, model 1 performs a lot better, having
a variance of 100 psi, unlike model 2 whose variance is 200 psi. This dis-
tinction is not made if only the relative statistical measures are considered.
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The difference between the pe based and e based measures is that the
first are relative measures of the variance to the measured value ymeasured,
whereas the second are independent of the measured value. In light of this
discussion, if pe, E1, E2 and E3 were the only parameters used to compare
the models, the comparison would not be fair in the high range of values.

To avoid this sort of situation, the statistical parameters e, E4, E5 and E6

have been introduced, because they are independent of the measured values.

2. The model predictions should follow the measured values closely. The
statistical factors to measure the “closeness” are E1, E2, E4 and E5. Some
terms in the averages E1 and E4 might cancel out, depending on which side
of the measured values the predictions fall. Low values of these measures
show that the prediction follows the measured output closely and traversing
this curve from opposite directions is a sign that the prediction follows the
“true” output line. However, the absolute deviations on either side of the
measured line have to be minimal, and this is quantified by the measures
E2 and E5.

3. The mean of the model prediction values should follow the measured values
curve as closely as possible. In other words, there should be minimum
scatter. Parameters E3 and E6 respectively measure the standard devia-
tion.

In the original paper that introduced the FRP factor, Ansari et al. (1994) argue:

◦ “E1 indicates the overall trend of the performance, relative to the measured
pressure drop.

◦ E2 indicates how large the errors are on the average.

◦ E3 indicates the degree of scattering of the errors about their average value.

◦ E4 indicates the overall trend, independent of the measured pressure drop.

◦ E5 is also independent of the measured pressure drop and indicates the
magnitude of the average error.

◦ E6 indicates the scattering of the results, independent of the measured
pressure drop.

◦ The minimum and maximum possible values for FRP are 0 and 6, indicating
the best and worst performances, respectively.”

The parameters E1, E2 and E3 depend on the magnitude of the measured value
and are therefore suitable for model evaluations in the small range of values.
Parameters E4, E5 and E6 are appropriate for model evaluations at large values,
because they are independent of the measured values (Majeed 1996).

An interesting result is obtained when only two models are compared. In this
case, each one of the terms E−EMIN

EMAX−EMIN
is either 1 or 0, respectively. This means

that for the particular case of two model comparisons, the final FRP score is
always a positive integer.
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5.6 Summary

This chapter introduced the slug flow nomenclature and presented both the 2000
and 2003 versions of the Zhang et al. calculation algorithm.

As this research study aims to establish optimised and simplified versions of the
Zhang et al. model, statistical measures for flow model performance comparison
were presented.
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Chapter 6

Hybrid modelling of mechanistic
flow models

6.1 Introduction

This chapter approaches the optimisation problem mentioned as a project objec-
tive in Chapter 2 by first taking a global view of mechanistic flow models. This
view allows us to define the problem in the general context of hybrid modelling.
Once defined, Chapters 7, 8 and 9 build on the theoretical foundations of this
chapter and discuss the details of the optimisation process.

6.2 Overview of hybrid flow modelling

Most of the mechanistic flow models, including the Zhang et al. (2000) model
selected in this study, have the structure shown in Figure 6.1. The “white box”
feeds the model status parameter vector ϕ to the “black box”, in order to provide
a vector Φ containing estimates of the model parameters, which, for the lack of
scientific knowledge, need to be calculated by empirical correlations. The Φ vector
is fed back to the “white box” for the final calculation of the model estimate ỹ.

For the particular case of the Zhang et al. (2000) model, whose calculation
algorithm is described in Chapter 5, these vectors have the form:

ϕ = [HLTB] (6.1)

Φ = [LS HLLS vTB fi Θ] (6.2)

Equations 6.1 and 6.2 are expressing the functional dependencies of LS, HLLS,
vTB, fi, Θ in terms of model parameters. HLTB is the only parameter used by the
“black box” to provide estimates for the empirical parameters in Φ. Chapter 7
elaborates upon the functional dependency concept. The component parameters
in Equations 6.1 and 6.2 were defined in Section 5.2.
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Figure 6.1: Most of the mechanistic flow models have a hybrid structure in which
the empirical correlations provide estimations for the components in vector Φ, based
on a status vector ϕ.

6.3 Definitions and notations

Suppose a set of known model input values:

Xknown = {x1, x2, . . . , xn} (6.3)

and the known measured values of the process:

Y true = {yt,1, yt,2, . . . , yt,n} (6.4)

such that yt,i is the “true” model value for the input xi, i = 1, 2, . . . , n. The
term “true” refers to the observed, or measured values of the process. In reality
there is no such thing as a “true” model, because no model can predict the real
process outputs with perfect accuracy.
Definition The pairs 〈xi, yt,i〉, i = 1, 2, . . . , n are called the training data set.

Suppose there are r empirical parameters ek, k = 1, 2, . . . , r in the mechanistic
model. For each empirical parameter ek, a set of alternative empirical correlations
Ωk may be used for its calculation:

Ωk = {gk,1, gk,2, . . . , gk,kk}

where gk,j is the empirical correlation that may be used for the calculation of ek.
For each input data point xi, i = 1, 2, . . . , n the empirical parameters are calcu-

lated with their respective correlations ek (xi) = gk,jk (xi) where jk = 1, 2, . . . , kk.
For each input point xi the empirical correlations in the sets Ωk provide:

k1 estimates for the empirical parameter e1

k2 estimates for the empirical parameter e2
...

kr estimates for the empirical parameter er
We define the vector:

Φ (xi) = [e1 (xi) e2 (xi) . . . er (xi)] (6.5)
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containing estimations of the empirical parameters at point xi for some combina-
tion of correlations j1, j2, . . . , jr.

The iterative process of selection of an empirical correlation gk,j from each set
Ωk leads to different values of the vector components ek (xi) in Φ (xi), depending
on which empirical correlation was used for each empirical parameter. To denote
this, we use the notation:

Φl (xi) , l = 1, 2, . . . , L (6.6)

to refer to:

Φl (xi) = [g1,j1 (xi) g2,j2 (xi) . . . gr,jr (xi)] (6.7)

where:

j1 = 1, 2, . . . , k1

j2 = 1, 2, . . . , k2

...

jr = 1, 2, . . . , kr

l = 1, 2, . . . , L (6.8)

Despite Equation 6.5 suggesting Φ (xi) is a vector, because each parameter ek
is calculated by a number of alternative correlations, Φ (xi) is actually a set of
vectors:

Φ (xi) = {Φ1 (xi) ,Φ2 (xi) , . . . ,ΦL (xi)} (6.9)

where L = k1 × k2 × · · · × kr.
The mechanistic model provides estimates of the true values. We use the no-

tation:

Y estimates
l = {ỹ1,l, ỹ2,l, . . . , ỹn,l} (6.10)

where ỹi,l is an estimation of the “true” value yt,i for:

◦ The input xi, i = 1, 2, . . . , n.

◦ The empirical parameter vector Φl (xi), l = 1, 2, . . . , L.

The values ỹi,l are influenced by both mechanistic and empirical components in
the model. We use the notation ỹi,l to mean:

ỹi,l = ỹ (Φl (xi) , xi) (6.11)

where i = 1, 2, . . . , n and l = 1, 2, . . . , L. Equation 6.11 shows that ỹi,l is calcu-
lated taking into account:

1. The empirical component Φl (xi), which contains the empirical parameter
values calculated with set l of empirical correlations, l = 1, 2, . . . , L.

2. The mechanistic component, which depends on the input xi.
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Figure 6.2: Structure of the hybrid model used during the training phase.

6.4 Optimisation method using alternative

empirical correlation sets

This study proposes a two stage flow model optimisation:

1. The first stage is training. During this stage, a parallel configuration is
proposed, in which the model is first “trained” on an input-output training
data set, consisting of pairs 〈xi, yt,i〉, i = 1, 2, . . . , n with xi ∈ Γ, where Γ is
the input domain of discrete values, as shown in Figure 6.2.

For the same discrete value xi, one correlation from each of the empirical
correlation sets Ω1,Ω2, . . . ,Ωr in the “black box” is used to estimate the
empirical parameters e1, e2, . . . , er respectively. As a different correlation is
chosen from each set Ωk each time, L = k1 × k2 × · · · × kr vectors Φl (xi)
containing empirical parameter estimations are generated. This was shown
in Equation 6.7.

The model estimation ỹi,l depends on the vectors Φl (xi), as shown in Equa-
tion 6.11. The L values of ỹi,l are compared to the “true” model outputs yt,i.
The “true” model was included in Figure 6.2 for the sole purpose of outlin-
ing that the known process outputs, yt,i are used to calculate the residuals
Rl (xi), which are the difference between the measured value of the process
output yt,i and the model estimation ỹi,l:

Rl (xi) = yt,i − ỹi,l l = 1, 2, . . . , L (6.12)

Let us assume that the minimum residual value for the input xi:

Rmin (xi) = min{Rl (xi) , l = 1, 2, . . . , L} (6.13)

is obtained for a certain combination of empirical correlations. We use the
notation O (xi) to refer to the set of empirical correlations whose values
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Figure 6.3: Structure of the hybrid model used during the prediction phase.

Φl (xi) minimise the residual at point xi:

O (xi) = {g1,j∗1
, g2,j∗2

, . . . , gr,j∗r } (6.14)

j∗1 ∈ {1, 2, . . . , k1}
j∗2 ∈ {1, 2, . . . , k2}

...

j∗r ∈ {1, 2, . . . , kr}

The set of empirical correlations O (xi) is optimal for the input point xi,
because it ensures a minimum residual.

The 3-tuple 〈xi, O (xi) , Rmin (xi)〉 is stored in a table during the training
stage. At the end of the iteration, which goes through all the training data
points 〈xi, yt,i〉 i = 1, 2, . . . , n, a table is constructed. Each entry in the
table associates a training input point xi with an optimal correlation set
and the minimum residual: 〈xi, O (xi) , Rmin (xi)〉 , i = 1, 2, . . . , n.

2. During the second stage, prediction, the model uses the 3-tuple
〈xi, O (xi) , Rmin (xi)〉 determined during the training stage, to predict the
model output (Figure 6.3). This time, the model makes predictions on a
different set of input values xj for which the “true” output yt,j is not nec-
essarily known. That is, the input data set is no longer the training data
set. The model prediction ŷ for an input point xj is determined as follows:

ŷ (xj) = ỹj,i∗ +Rmin (xi) (6.15)

where:

ỹj,i∗ = ỹ (O (xi∗) , xj) (6.16)

Equation 6.16 illustrates that the model estimation ỹj,i∗ at a point xj that
is not part of the training data set takes into account:
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(a) The optimal correlation set at a point xi∗ that is part of the training
data set. An objective function F (xj, xi), such as the distance between
xj and the input points in the training data set xi ∈ Γ, i = 1, 2, . . . , n,
is defined and its values are calculated. The index i∗ in Equations 6.15
and 6.16 is the index of one of the input points in the training data
set, xi∗ ∈ Γ, that minimises the objective function F .

(b) The mechanistic component, reflected by the influence of xj.

The interpretation of Equation 6.15 is that in order to make a prediction
at an input point xj:

(a) The “closest” input point xi∗ that is part of the training data set is
determined. An objective function F is used to define the “closeness”.

(b) Using the table generated in the training stage, the elements in the
3-tuple associated with xi∗ , the optimal correlation set O (xi∗) and the
minimum residual Rmin (xi∗) are determined.

(c) The model prediction is calculated at point xj, using the optimal em-
pirical correlation set for the “closest” point xi∗ and the minimum
residual calculated for xi∗ .

Equation 6.15 ensures that the residuals are zero, if xj ∈ Γ. That is, if xj
is in the training data set, the residuals are zero and ŷ (xj) = yt,j. For all
the other values xj /∈ Γ, the residuals have the role of a correction factor.

If there are multiple points xi∗1 , xi∗2 , . . . , xi∗M that minimise the objective
function F , there are M optimal correlation sets associated with these
points. As only one model prediction exists, ŷ (xj), a further criterion has to
be specified to select only one empirical correlation set fromO

(
xi∗1
)
, O
(
xi∗2
)
,

. . ., O
(
xi∗M
)
. This subject will be discussed in detail in Section 9.3.4, as

part of the optimisation of the Zhang et al. mechanistic model.

6.5 Summary

This chapter served both as an introduction and back reference for Chapters 7,
8 and 9, as the concepts developed in those chapters fit into the hybrid model
structure and algorithm explained here.

The two stages of the optimisation process are discussed in detail in the follow-
ing chapters:

◦ Chapter 7 shows the issues related to replacing empirical correlations with
alternative correlations, as part of the training phase.

◦ Chapter 8 discusses the training phase of the optimisation procedure.

◦ Chapter 9 deals with the prediction phase.

Chapters 7, 8 and 9 describe the steps that need to be taken towards mecha-
nistic model optimisation through empirical correlation set replacement, and are
the theoretical building blocks of the optimisation framework proposed in this
study.
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Chapter 7

The effect of empirical
correlations on the calculation
algorithm of the mechanistic
model

7.1 Introduction

To apply the concepts in Chapter 6 to model optimisation and simplification, the
empirical correlations in the analysed mechanistic models have to be substituted
by other correlation sets. This may involve changes to the model calculation
algorithm, because each empirical correlation depends on a different set of input
parameters, which need to be determined prior to the use of the correlation. Es-
sentially, we cannot “unplug” an empirical correlation out of a mechanistic model
and replace it with an alternative correlation, without first analysing whether the
Calculation Algorithm (CA) has to be modified. This leads to the conclusion
that different combinations of empirical correlations may lead to different CAs.
Consequently, an algorithm for replacing empirical correlations in mechanistic
models is required.

The algorithm has the main objective to determine the step in the CA of a
mechanistic model where an empirical parameter can be placed, based on the em-
pirical correlation used for its estimation. To reach this aim, a gradual approach
was taken by:

◦ Defining the notation used - Section 7.2.

◦ Stating the problem - Section 7.3.

◦ Describing some of the supporting algorithms needed for Chapter 8 - Sec-
tion 7.4.

◦ Describing the algorithm to replace empirical correlations in mechanistic
models - Section 7.5.

◦ Demonstrating in detail the steps of the algorithm for the case study of the
Zhang et al. (2000) slug flow model - Section 7.6.
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Figure 7.1: Step Si in the CA finds the roots Y i for the equations Ei (Y i, X) = 0,
i = 1, 2, . . . , N .

7.2 Definitions and notations

Definition: A Calculation Algorithm (CA) is a sequence of independent calcu-
lation steps Si, i = 1, 2, . . . , N :

CA = {S1, S2, . . . , SN} (7.1)

At each step Si, a vector of parameters of unknown value Y i = (yi1, y
i
2,

. . . , yin), Y i ∈ Rn is calculated based on a vector of parameters of known
value X = (x1, x2, . . . , xm), X ∈ Rm, according to a set of n functions
Ei = {Ei

1, E
i
2, . . . , E

i
n}, where Ei

j : Rm+n → R, i = 1, 2, . . . , N and j =
1, 2, . . . , n. The set of equations:

Step Si :


Ei

1 (yi1, y
i
2, . . . , y

i
n, x1, x2, . . . , xm) = 0

Ei
2 (yi1, y

i
2, . . . , y

i
n, x1, x2, . . . , xm) = 0

...

Ei
n (yi1, y

i
2, . . . , y

i
n, x1, x2, . . . , xm) = 0

(7.2)

is solved for Y i at step Si. The notation yij refers to variable yj calculated
at step i in CA. This is illustrated in Figure 7.1.

Without any loss of generality we assumed real values for yij and xk,
despite constraints that may apply to them (e.g. area is always positive,
angle values have upper and lower bounds). Solving the system of Equa-
tions 7.2 allows the component variables yij be expressed as a function f of
the components of the input vector X, as in the following equation:

yij = f (xj1, xj2, . . . , xjp) (7.3)

where {xj1, xj2, . . . , xjp} ⊆ {x1, x2, . . . , xm} is a subset of the input X.

Definition: The factors in the set {xj1, xj2, . . . , xjp}, that directly influence yij
are called influencing factors of variable yij.

There are situations when the explicit form of function f is not known.
However, this does not matter, because we are interested in outlining the
functional dependency of variable yij on {xj1, xj2, . . . , xjp}.

The execution of a CA is a sequence of steps {S1, S2, . . . , Sk, . . . , Sk,
. . . , SN}, in which some of the steps may be repeated a number of times.
The order of the steps is such that one step’s inputs are outputs of various
previous steps.
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Definition: Suppose a functional dependency at step Si in CA:

yij = f (. . . , xjl, . . .) l = 1, 2, . . . , p (7.4)

If the functional dependency in Equation 7.4 is not empty, there will always
exist a variable ysk, calculated at step Ss, such that:

xjl = ysk, s = 1, 2, . . . , N. (7.5)

A functional dependency is called empty when all its influencing factors
are constants, input parameters, or a combination of these. We use the
notation f () to denote an empty functional dependency.

To be part of a CA, the variables in the functional dependency in Equa-
tion 7.4 have to satisfy the condition in Equation 7.5. We will call Equa-
tion 7.5 the step pre-requisites condition for step Si.

Definition: A mechanistic model is properly ordered if all the variables in the
model are calculated at the minimum step where the pre-requisites condition is
met.

Suppose the functional dependency yij = f (. . . , xjl, . . .), where xjl = Apipe
and that yij is the only variable in CA using Apipe in its calculation. There

are two possible approaches to placing the step where Apipe = πd2

4
is calcu-

lated:

1. At step Si−1 in preparation for step Si, where yij needs Apipe as part
of the step pre-requisites condition.

2. At any other step before Si−1, such as the first step in CA.

If Apipe is calculated at the first step, the model is properly ordered, because
variable Apipe is placed at the minimum step in relation to the model input
parameter d = pipe diameter.

The first approach at step Si−1, although correct from the algorithmic
point of view, does not make the model properly ordered as defined here.

Definition: Suppose a variable xk ∈ R on which variable yij depends, such that:

yij = f (xj1, xj2, . . . , xjp) = f (f (. . . f (. . . xk . . .) . . .)) (7.6)

The functional dependency of yij on a parameter xk can be represented as
a tree, where the functional dependencies are represented as edges and the
influencing parameters as vertices: yij

xj1

...

xj2

...

xk

...

...
The dependency chain of variable yij is the sequence of vertices in the

tree obtained by a Depth First Search (DFS) walk in the tree. We use the
notation D

(
yij
)

for the dependency chain of variable yij.
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D
(
yij
)

is the set of the dependency chains of the directly influencing
factors xj1 , xj2 , . . . , xjm :

D
(
yij
)

= {D (xj1) , D (xj2) , . . . , D (xjm)} (7.7)

Definition: We classify model variables, based on the type of parameters that
exist in their dependency chain. Variable yij is:

1. Entirely non-empirical, if the dependency chain does not contain any
empirical parameters.

2. Partially non-empirical, if there is at least one empirical parameter in
the dependency chain.

3. Empirical, if it is estimated by an empirical correlation.

Section 7.4.2 will describe a method for determining the dependency chain of a
variable.

7.3 Problem statement

Let us assume a CA = {S1, S2, . . . , SN} for a mechanistic model. The set of em-
pirical parameters used in the model is {e1, e2, . . . , er}. Suppose a set of empirical
correlations Ωk is used for the estimation of each empirical parameter ek, such
that:

Ωk = {gk,1, gk,2, . . . , gk,kk}

where gk,j is the empirical correlation that may be used for the calculation of ek,
k = 1, 2, . . . , r.

Problem 1: For a given CA = {S1, S2, . . . , SN}, find the permutation of steps:

CAnew = Permutation
(
S1, S2, . . . , SN

)
(7.8)

associated with the replacement of the empirical correlation gk,i with an-
other correlation gk,j from the same set Ωk, i 6= j, i, j = 1, 2, . . . kk, so that
the step pre-requisites conditions are still met. Both correlations, gk,i and
gk,j calculate the same empirical parameter ek.

The equivalent statement is to find the step in CAnew where an empirical
parameter ej, j = 1, 2, . . . , r can be placed, when the empirical correlation
for ek, k 6= j is replaced by another empirical correlation in the same set
Ωk, k = 1, 2, . . . , r.

Problem 2: Determine the position of the empirical parameters ej, j = 1, 2,
. . . , r to minimise the number of different CAnew generated by substituting
one correlation at a time, using all the correlations in all the sets at least
once.
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7.4 Supporting algorithms for graph generation

and functional dependency analysis

Suppose we intend to replace the empirical correlation for parameter ek in CA.
The method proposed in this study is based on converting the empirical correla-
tion for the calculation of ek from Equation 7.9:

ek = g (x1, x2, . . . , xm) (7.9)

to the functional dependency in Equation 7.10:

ek = f
(
nn1

1 , . . . , n
nn
n , p

p1
1 , . . . , p

pp
p , e1, . . . , ee

)
ek /∈ {e1, e2, . . . , ee} (7.10)

where:
g = empirical correlation.
{x1, x2, . . . , xm} = set of influencing parameters.
nnii = non-empirical parameters calculated at step Sni of CA.
p
pj
j = partially empirical parameters calculated at step Spj of CA.
el = empirical parameters.
i = 1, 2, . . . , nn, j = 1, 2, . . . , pp and l = 1, 2, . . . , ee.
Si is the i−th step in the first iteration of the CA.

Function f is not explicitly determined and is just a placeholder for expressing
that parameter ek depends on the factors on the Right Hand Side (RHS) of
Equation 7.10.
Different notations are used for the steps in CA and CAnew:

◦ Si ∈ CA refers to a calculation step in CA.

◦ Stepi ∈ CAnew refers to a calculation step in CAnew.

Equation 7.10 takes into account the three possible types of influencing parame-
ters that are used in a functional dependency:

1. Entirely non-empirical.

2. Partially non-empirical.

3. Empirical.

Equation 7.10 allows us to determine the step in CAnew where the empirical
parameter ek can be placed, by considering the type of the influencing parameter:

1. Entirely non-empirical parameters nnii can be placed after the maximum of
all the steps of the entirely non-empirical parameters:

Stepek ≥ max (Sn1 , Sn2 , . . . , Snn) + 1 (7.11)

The value on the RHS of Condition 7.11 is constant, because Stepn1 = Sn1 ,
Stepn2 = Sn2 , . . . , Stepn1 = Sn1 . This is because the position of the entirely
non-empirical parameters does not change when a new empirical correlation
is used in the algorithm.
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2. Partially non-empirical parameters ppii can be placed after all the steps
where empirical parameters along the dependency chain are calculated.
Suppose the tree representation of D (ek) and that ej, j 6= k is the first
empirical parameter encountered along the dependency chain:

D (ek) = D
(
p
pj
j

)
= . . . = D (ej) (7.12)

As correlations for ej are alternated with others from the same set, the step
of ej in CAnew may change. Because none of the parameters between ek and
ej are empirical, the position of ek relative to ej will always be the same:

Stepek − Stepej = constant (7.13)

We can state that:

Stepek ≥ max (Stepej + ∆ (ek, ej)),

j = index of all empirical parameters in D (ek) (7.14)

where:

∆ (ek, ej) = Sek − Sej (7.15)

is the relative distance in steps between the step where ek is calculated and
the step where ej is calculated. As explained in the lead up to Equation 7.13,
∆ is constant.

3. Empirical parameters ei can be placed after the steps where e1, e2, . . . , ee
have been calculated. These steps may change position as the empirical
correlations used for their calculation are being alternated. Stepe1 , Stepe2 ,
. . . , Stepee are not known yet, because Equation 7.10 has not been obtained
for all the empirical parameters in the model yet. However we can state
that:

Stepek ≥ max (Stepe1 , Stepe2 , . . . , Stepee) + 1 (7.16)

Remark: Empirical parameters are a particular case of partially non-empirical
parameters that are obtained for ∆ = 1. Equation 7.16 can be obtained from
Equation 7.14 for ∆ = 1. Therefore, when we calculate Stepek , we only need to
classify the influencing factors in two categories:

1. Entirely non-empirical.

2. Having an empirical component, which includes empirical and partially
non-empirical parameters.

To summarise these results, Stepek can be expressed as the maximum between
a constant and a variable component:

Stepek ≥ max

{
constant determined by entirely non-empirical factors

variable determined by factors having an empirical component

(7.17)

Condition 7.17 implies that in order to determine Stepek we need to classify the
influencing factors of ek into the two categories and then apply Equations 7.11
or 7.14, accordingly. Consequently, we need to determine:

60



◦ The dependency chain D (ek).

◦ The influencing factor classification.

Although Condition 7.17 contains a certain level of uncertainty relative to the
position of ek, once Equation 7.10 is obtained for all the empirical parameters in
the model, we can centralise the information and make a decision of where each
empirical parameter can be placed.

As the dependency chain is a tree map of the variables and functional depen-
dencies, we need to extend the tree concept to all the variables in the mechanistic
model. Therefore, for the purpose of this analysis we will use a graph repre-
sentation of CA. The vertices in the graph represent the variables and the
directed edges show both a functional dependency and the direction of it.

Sections 7.4.1 and 7.4.2 illustrate the processes of:

◦ Building the graph.

◦ Determining the dependency chain of a variable.

◦ Determining the variable classification, necessary for Condition 7.17.

7.4.1 Building a graph representation of a mechanistic
model

In order to build a graph representation of a mechanistic model, two operations
are required:

◦ Mapping model variables to graph vertices. The result is a discon-
nected graph.

◦ Connecting the vertices in the graph. This links the vertices in the
graph, based on the functional dependencies of the variables they represent.

1. Mapping model variables to graph vertices

The calculation algorithm CA is mapped to a graph G by defining a map
M : CA→ G that associates a step Si ∈ CA to a set of n vertices:

V i = {vi1, vi2, . . . , vin} (7.18)

such that the name of each one of the Y i components is assigned to a label
of a vertex:

M
(
Si
)

= {vi1, vi2, . . . , vin|Label
(
vik
)

= Name
(
yik
)
, k = 1, 2, . . . , n} (7.19)

The Name values used in Equation 7.19 refers to the text string values,
rather than numeric value of yij.

The map is illustrated in Figure 7.2.

The calculation steps in CA are parsed and sequentially mapped to graph
vertices. The pseudocode is shown in Algorithm 7.1. At the end of the
procedure, a graph G = V 1 ∪ V 2 ∪ . . . ∪ V N is obtained, as shown in
Figure 7.3. The vertices of the graph are disconnected.
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Figure 7.2: Mapping step Si to n graph vertices.

Algorithm 7.1 Build disconnected graph

for all steps Si in CA do
V i ←M (Si) such that Label

(
vij
)

= Name
(
yij
)
, j = 1, 2, . . . , n

end for

2. Connecting the vertices in the graph

Two entities are required for this operation:

(a) The graph vertices, whose labels are named after the yij variables.

(b) The CA steps Si, which include the functional dependency statement
for yij:

yij = f (xj1, xj2, . . . , xjp) (7.20)

where {xj1, xj2, . . . , xjp} ⊆ {x1, x2, . . . , xm} is a subset of the input X,
i = 1, 2, . . . , N , j = 1, 2, . . . , n.

Assuming the current vertex is vij, there are four stages involved in the
process of linking vij to its adjacent graph vertices:

(a) From the label of the current vertex determine the calculation
step that mapped to it. The inverse map permits the convenient
identification of the calculation step Si from the superscript index of
the label of the vertex:

M−1
(
vij
)

= Si (7.21)
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Figure 7.3: Mapping of the CA to a disconnected graph. There are ni variables
calculated at step Si, i = 1, 2, . . . , N .

(b) From the functional dependency determine the influencing fac-
tors. Equation 7.21 allowed the identification of step Si, where the
factor yij had already been determined to have the functional depen-
dency:

yij = f
(
xj1 , xj2 , . . . , xjp

)
(7.22)

The factors that yij depends on are {xj1 , xj2 , . . . , xjp}.
(c) Search graph G for the p vertices whose labels are {xj1 , xj2 , . . . , xjp}.

The influencing factors {xj1 , xj2 , . . . , xjp} of yij have been previously

calculated in other steps and there exists a set {yk11 , y
k2
2 , . . . , y

kp
p } of
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parameters calculated at steps {Sk1 , Sk2 , . . . , Skp} such that:
xj1 = yk11

xj2 = yk22
...

xjp = y
kp
p

(7.23)

because the calculation steps are connected such that the output of one
step is the input of another. This is the step pre-requisites condition
discussed in Section 7.2.

As the graph G is a representation of the model parameters, there
exists a set of p vertices such that:

Label
(
vk11

)
= Name

(
yk11

)
Label

(
vk22

)
= Name

(
yk22

)
...

Label
(
v
kp
p

)
= Name

(
y
kp
p

) (7.24)

This proves that the graph searches for vertices of labels xj1 , xj2 , . . . , xjp
will always be successful.

(d) Connect the p vertices found, {vk11 , v
k2
2 , . . . , v

kp
p }, to vertex vij by using

directed edges that originate in the p vertices.

The four-stage process of connecting a vertex to its adjacent vertices using
functional dependency is illustrated in Figure 7.4. The visual representation
of the graph is complex even for a small size model. Therefore, we will use
the adjacency matrix, defined as:

AR,R =


a1,1 a1,2 . . . a1,R

a2,1 a2,2 . . . a2,R
...

...
. . .

...
aR,1 aR,2 . . . aR,R


where:

R = number of model parameters.
ai,j = 1 denotes a functional dependency of the variable in the vertex
vi on the variable in the vertex vj and ai,j = 0 otherwise.
i, j = 1, 2, . . . , R.

The pseudocode of the recursive procedure to connect the vertices in graph
G based on the four stages discussed earlier is shown in Algorithm 7.2. The
procedure starts from vertices V N and populates the edges in the graph until the
stop condition y = f () is reached. At the end of the procedure, the adjacency
matrix A contains the graph representation of the model parameters and their
functional dependencies.

As mentioned at the start of this chapter, this procedure will be demonstrated
in Section 7.6 using a case study: the Zhang et al. slug flow model.
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Algorithm 7.2 The pseudocode of the recursive procedure to connect the vertices
in graph G based on the steps in CA. The procedure generates the adjacency
matrix A.

procedure Connect(G, v)
INPUT:
v=current vertex.
G=directed graph.
OUTPUT:
A=adjacency matrix for graph G.
——————————————————————————–
Build a zero square matrix of size R:
ai,j = 0 where i, j = 1, 2, . . . , R.
Mark v as explored:
v (Explored) = TRUE
1. Determine the calculation step where variable yij, for which

Label (v) = Name
(
yij
)
, is calculated.

The inverse map:
M−1 (v) = Si is used for this operation.
2. Determine the input factors from:
yij = f (xj1, xj2, . . . , xjp)
if f = f () then

return
else

3. Search graph G for vertices {w1, w2, . . . , wp} such that:
Label (w1) = xij1 and
Label (w2) = xij2 and

...
Label (wp) = xijp
This determines G.adjacentV ertices (v) = {w1, w2, . . . , wp}
4. Update the elements of the adjacency matrix:
aj,j1 = 1, aj,j2 = 1, . . . , aj,jp = 1
for all w in G.adjacentV ertices (v) do

if w (Explored) = FALSE then
CALL Connect(G,w)

else
return

end if
end for

end if
end procedure
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Figure 7.4: The four-stage process of determining the adjacent vertices for a vertex
in graph G.

7.4.2 Dependency chain identification

Let us assume a mechanistic model mapped to a directed graph G, as described
in Section 7.4.1, and an empirical parameter:

ek = g (x1, x2, . . . , xm) (7.26)

calculated with the empirical correlation g.
This section aims to:

◦ Determine the dependency chain D (ek).

◦ Determine the category of the influencing factors {x1, x2, . . . , xm}.

◦ Determine the position of Stepek .

The weight of the edges in graph G are all equal to 1, as reflected by the elements
of the adjacency matrix. The distance between two vertices in G is defined as
the sum of the weights of the connecting edges.

Definition: The depth of vertex xj relative to vertex ek is defined as:

Depth (xj, ek) = distance (xj, ek) (7.27)
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where vertex xj is an ancestor of vertex ek in the directed graph.

The dependency chain is determined by using a Depth First Search (DFS) in
the graph, starting sequentially from the vertices of the influencing factors x1, x2,
. . . , xm. To determine the category of each one of these factors, the DFS stop
condition was modified to stop the graph traversal if:

1. An empirical parameter is encountered.

2. An empty functional dependency is detected.

This permits classifying the influencing parameters as:

1. Having an empirical component, if stop condition (1) is encountered.

2. Entirely non-empirical, if stop condition (2) is encountered.

The pseudocode of the recursive procedure that determines the dependency
chain and establishes the calculation step for an empirical parameter is described
in Algorithm 7.3. The procedure is initialised and called according to Algo-
rithm 7.4.

Two global variables are used in Algorithms 7.3 and 7.4 for the case when the
current influencing factor, xj, is entirely non-empirical:

◦ ChainMaxStep. This variable records the maximum step of all the entirely
non-empirical parameters in D (xj).

◦ DependencyChainMaxStep. This variable records the maximum of all
ChainMaxStep values. This is the equivalent of calculating the RHS of
Condition 7.11.

The two variables require global memory allocation, because they need to retain
their value between successive calls of the IdentifyDependencyChain procedure.

If an empirical parameter is encountered while traversing D (xj), the procedure
in Algorithm 7.3 reaches the stop condition and the name of the empirical para-
meter and the depth are saved to the stack. This is equivalent to calculating the
RHS of Condition 7.14.

Before the start of Algorithm 7.3 we assumed ek had the influencing factors
x1 and x2, as shown in Figure 7.5. The x1 and x2 factors are represented in
the superscript notation showing the step in CA where they are calculated. The
dependency of ek on x1 and x2 is outlined by the two 1 values on the row pertaining
to ek and two columns pertaining to x1 and x2 respectively. The graphical tracing
of the execution of Algorithm 7.3 is shown in Figure 7.6. The procedure starts
from x1 as an input to correlation g. Due to the step pre-requisites condition,
there exists a step in CA that calculates x1 and, hence, for which x1 is the
output. This is the red line 1 in Figure 7.6. Next, the influencing factors of x1

are determined. These are the red lines labelled 2 in Figure 7.6. The process
continues in the same fashion until one of the following stop conditions is met:

1. The row pertaining to a factor does not contain any values of 1. This
means that the factor can not be expanded any more. This means that x1

is entirely non-empirical.
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Algorithm 7.3 Recursive procedure to determine D (ek). Empirical parameters
along the dependency chain and their depth are pushed to the stack. ek has a
functional dependency e = f (X), where X = {x1, x2, . . . , xm} are the influencing
factors.

procedure IdentifyDependencyChain(CurrentNode,X,A,Depth)
INPUT:
CurrentNode=current vertex.
X=set of influencing factors.
A=adjacency matrix for graph G.
Depth=current depth value.
OUTPUT:
1. Stack contains empirical parameters in the dependency
chain and their depth.
2. DependencyChainMaxStep has the maximum in the
step of all entirely non-empirical parameters
dependency chain.
——————————————————————————–
for all x in X do

ChainMaxStep = 0
if isEmpirical (x) = TRUE then

Push x to Stack
Push Depth to Stack
Continue

else
Step = getStep (x)
if Step > ChainMaxStep then

ChainMaxStep = Step
end if
X1 = identifyAdjacencyList (x)
if isEmpty (X1) then

if ChainMaxStep > DependencyChainMaxStep then
DependencyChainMaxStep = ChainMaxStep

end if
Continue

else
CurrentNode = x
Depth = Depth+ 1
CALL IdentifyDependencyChain(CurrentNode,X1, A,Depth)

end if
end if

end for
end procedure

68



Algorithm 7.4 Calculate the step where ek can be placed.

procedure CalculateSteps(ek, g, A)
INPUT:
ek=empirical parameter.
g=empirical correlation.
A=adjacency matrix for directed graph G.
OUTPUT:
Stack contains (empirical factor, Depth) pairs.
DependencyChainMaxStep is the maximum of all
the steps of the entirely non-empirical factors.
The step where ek can be placed is:
max(DependencyChainMaxStep+1, step of
empirical factor+Depth from the stack)
——————————————————————————–
Global: DependencyChainMaxStep
Global: ChainMaxStep
CurrentNode = ek
X = identifyAdjacencyList (ek)
Depth = 1
CALL IdentifyDependencyChain(CurrentNode,X,A,Depth)

end procedure

Figure 7.5: Adjacency matrix showing the functional dependency of parameter ek =
g
(
xi11 , x

i2
2 , . . . , x

im
m

)
.

2. An empirical factor is encountered. This means that x1 is a factor having
an empirical component.

Once either of the two stop conditions is encountered while traversing the de-
pendency chain of x1, the procedure continues in the same way with x2.

As noted in Section 7.4.1, the Zhang et al. slug flow model will be used in
Chapter 8 to demonstrate the application of these supporting algorithms.
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Figure 7.6: Empirical parameter ek depends on xi11 and xi22 . DFS first explores
the dependency chain of xi11 . The red lines show the path taken to determine the
sequence of vertices in D

(
xi11
)
. After D

(
xi11
)

is determined, the dependency chain

of xi22 is explored.

7.5 Algorithm to replace empirical correlations

in mechanistic models

Section 7.4 presented a set of procedures, each solving a particular part of the
problems stated in Section 7.3. This section merges all the procedures into one
algorithm that solves both Problems 1 and 2. The algorithm determines:

Objective 1: One CAnew that does not change when the empirical correlations
are alternated.

Objective 2: The step in CAnew of each empirical parameter in the model.

The empirical correlation replacement algorithm is as follows:

Step 1: Convert the model to a properly ordered model.

Most of the time, this can be achieved by introducing an S0 in CA and
calculating all the model parameters that are based entirely on model input
factors in this step.

Step 2: For all steps Si ∈ {S1, S2, . . . , SN} of CA do:

2.1 Express the variables yij, j = 1, 2, . . . , n calculated in Si as a functional
dependency:

yij = f (x1, x2, . . . , xm) (7.28)

2.2 Map step Si to a set of n vertices, one for each variable yij, j =
1, 2, . . . , n. Label the vertex with the variable name.

At the end of Step 2 the disconnected graph G is the graph representation
of the model.

The procedure performing these tasks was shown in Algorithm 7.1.
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Step 3: For all vertices v ∈ G, starting with the vertices in:

V N = {vN1 , vN2 , . . . , vNnN}

do:

3.1 Determine the adjacent vertices of v.
Use the inverse map and the functional dependency in Equation 7.28 to
determine the adjacent vertices, as was explained in Section 7.4.1.

3.2 Update the adjacency matrix to reflect the adjacency.
ai,j = 1, if vertex vi is adjacent with vj; ai,j = 0 otherwise.

At the end of Step 3, the graph representation is complete and the functional
dependencies are represented as links in the graph.

The procedure that builds the adjacency matrix representation of the graph
was shown in Algorithm 7.2.

Step 4: Group the empirical correlations in sets Ωk by the empirical parameter
ek they estimate.

Step 5: For each group Ωk and for all empirical correlations gk,i in each group:

5.1 Write the empirical parameter ek estimated by the correlation as a
functional dependency:

ek = gk,i (x1, x2, . . . , xm) (7.29)

If the functional dependency is empty, the empirical parameter ek can be
placed anywhere in CA and steps 5.2 and 5.3 are skipped.

5.2 Identify the influencing factors xj as elements x
ij
j in the Outputs column

of the adjacency table (Figure 7.5).

5.3 For each influencing factor x
ij
j , j = 1, 2, . . . ,m determine:

◦ The dependency chain D
(
x
ij
j

)
.

◦ The maximum step of the entirely non-empirical parameters inD
(
x
ij
j

)
.

◦ Record the empirical parameters and their depth in D
(
x
ij
j

)
.

While traversing the graph, the stop conditions are:

1. xj is an empirical parameter.

2. An empty functional dependency D () is detected.

5.4 Express the position of Stepek as:

Stepek ≥ {step of entirely non-empirical parameters in CA,

step of empirical parameters in CAnew + ∆} (7.30)

where ∆ is the depth.
The pseudocode of the procedures implementing this step were shown in
Algorithms 7.3 and 7.4
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Table 7.1: Slug flow empirical parameters and empirical correlations selected in this
study.

Parameter Correlations used for replacement Number of correla-
tions per parameter

LS Zhang, Scott, Felizola and Shoham 3
HLLS Eissa Al-Safran, Woldesmayat and Gha-

jar, Toshiba, Gomez, Zhang, Spedding
and Spence, Minami and Brill, Barnea
and Brauner, Gregory, Nicklin

10

vTB Bendiksen, Hassan and Kabir 2
fi Cohen and Hanratty, Andritsos and Han-

ratty, Ouyang and Aziz, Bendiksen, Vla-
chos, Asali and Ambrosio

6

Θ Grolman, Biberg, Fan, Hart 4

Step 6: Minimise the number of calculation algorithms.
6.1 Identify the empirical parameters that have associated more than two
empirical correlation groups. A group was formed as a set of empirical
correlations having the same position conditions in the CA for the given
empirical parameter.
6.2 For each one of these parameters, reduce the number of groups to
one, by making all the correlations part of the group with the highest step
number.

7.6 Case study — Applying the empirical

correlation replacement algorithm to the

Zhang et al. (2000) slug flow mechanistic

model

We will now follow all the steps in the algorithm in Section 7.5 and use the Zhang
et al. (2000) model as a case study. A set of empirical correlations was selected
for the estimation of each one of the empirical parameters: LS, vTB, HLLS, Θ
and fi. These correlations are shown in Table 7.1. While reading this section, it
may help to refer to Section 5.3, which presented the Zhang model.

Remark: Step Si, which was the notation for a step in a CA, translates into
Zhang step i for the case of the Zhang et al. (2000) model, from Section 5.3.

Step 1: Convert the model to a properly ordered model.

This can be achieved by introducing step S0 and calculating the parameters:

◦ Apipe=cross-sectional area

◦ SS=pipe circumference

◦ vM = vSL + vSG
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as part of S0. This involves bringing:

◦ SS from S12 to S0.

◦ vM from S2 to S0.

Step 2: For all steps Si ∈ {S1, S2, . . . , S18} of CA do:

2.1 Express the variables yij, j = 1, 2, . . . , n calculated in Si as a functional
dependency:

yij = f (x1, x2, . . . , xm) (7.31)

S0 was not included because all the functional dependencies of the param-
eters in S0 are empty. As S0 is not mapped to the graph, when we express
the functional dependencies we will not take into account S0 parameters.
In this case, they are Apipe, SS and vM .
Starting from Zhang step 1, which in this notation is S1, we express the
variables in each step as in Equation 7.31:

S1 :

H1
LTB = f ()

S2 :

L2
S = f ()

S3 :

v3
TB = f ()

S4 :

H4
LLS = f ()

S5 :

v5
LTB = f

(
H1
LTB, v

3
TB, H

4
LLS

)
v5
GTB = f

(
H1
LTB, v

3
TB, H

4
LLS

)
S6 :

ρ6
S = f

(
H4
LLS

)
S7 :

Re7
S = f

(
ρ6
S

)
S8 :

f 8
S = f

(
Re7

S

)
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S9 : This step does not occur in the 2000 version of the Zhang model con-
sidered in this example.

S10 :

L10
U = f

(
H1
LTB, L

2
S, v

3
GTB, H

4
LLS

)
L10
F = f

(
H1
LTB, L

2
S, v

3
GTB, H

4
LLS

)
S11 :

Θ11 = f
(
H1
LTB

)
S12 :

S12
F = f

(
Θ11
)

S12
G = f

(
Θ11
)

S12
CD = f

(
Θ11
)

S12
i = f

(
H1
LTB,Θ

11
)

A12
F = f

(
H1
LTB

)
A12
G = f

(
H1
LTB

)
A12
CD = f

(
Θ11
)

S13 :

Re13
LW = f

(
v5
LTB, A

12
F , S

12
F

)
Re13

GW = f
(
v5
GTB, A

12
G , S

12
G , S

12
i

)
S14 :

f 14
LW = f

(
Re13

LW

)
f 14
GW = f

(
Re13

GW

)
f 14
i = f ()

S15 :

τ 15
LW = f

(
v5
LTB, f

14
LW

)
τ 15
GW = f

(
v5
GTB, f

14
GW

)
τ 15
i = f

(
v5
LTB, v

5
GTB, f

14
i

)
τ 15
S = f

(
ρ6
S, f

8
S

)
S16 and S17 : These steps are not included here, because they do not cal-

culate model parameters. They represent the conditional reiteration
of some of the CA steps.

S18 :

dP

dL

18

= f
(
H1
LTB, L

2
S, L

10
U , L

10
F , S

12
F , S

12
G , τ

15
LW , τ

15
GW , τ

15
S

)
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Table 7.2: The empty adjacency matrix is a preliminary step in generating the graph
representation of the Zhang et al. (2000) model. It has 26 rows and 26 columns.

H1
LTB L2

S v3
TB . . . τ 15

LW τ 15
GW τ 15

i τ 15
S

dP
dL

18

H1
LTB

L2
S

v3
TB

...
...

...
... . . .

...
...

...
...

...
τ 15
LW

τ 15
GW

τ 15
i

τ 15
S
dP
dL

18

2.2 Map step Si to a set of n vertices, one for each variable yij, j =
1, 2, . . . , n. Assign the variable name to the vertex label. This is equiv-
alent to mapping to the empty adjacency matrix in Table 7.2.

Step 3: For all vertices v ∈ G, starting with the vertices in V 18 = {v18
1 } do:

3.1 Determine the adjacent vertices of v.

3.2 Update the adjacency matrix to reflect the new adjacency.

All the graph vertices are found in the Outputs column of the adjacency
table. Therefore, to traverse all the vertices in the graph, we start with the
last element in the column and progress towards the first.

The last element in the Outputs column has the Label = Name
(
dP
dL

18
)

.

The inverse map points to S18, where the functional dependency for dP
dL

determined in Step 2 is:

dP

dL

18

= f
(
H1
LTB, L

2
S, L

10
U , L

10
F , S

12
F , S

12
G , τ

15
LW , τ

15
GW , τ

15
S

)
The adjacent vertices are: {H1

LTB, L
2
S, L

10
U , L

10
F , S

12
F , S

12
G , τ

15
LW , τ

15
GW , τ

15
S }.

Factors SF , SG and SCD have been merged into one variable S∗, because as
S12 shows, they have the same functional dependency. Similarly AF and AG
are merged into AF,G. These simplifications help unclutter the adjacency
matrix without affecting the results. Based on these considerations, the
adjacent vertices are: {H1

LTB, L
2
S, L

10
U , L

10
F , S

12
F,G, τ

15
LW , τ

15
GW , τ

15
S }.

The adjacency relationship is reflected in the following matrix elements:

a26,1 = 1 a26,2 = 1 a26,10 = 1 a26,11 = 1
a26,13 = 1 a26,22 = 1 a26,23 = 1 a26,25 = 1

The next vertex has the label τ 15
S . Inverse mapping to S15, we find the

functional relationship for τ 15
S :

τ 15
S = f

(
ρ6
S, f

8
S

)
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The following matrix elements are updated:

a25,7 = 1 a25,9 = 1

The next vertex has the label τ 15
i , for which the inverse map points to S15.

The functional relationship:

τ 15
i = f

(
v5
LTB, v

5
GTB, f

14
i

)
is reflected in the adjacency matrix:

a24,5 = 1 a24,6 = 1 a24,21 = 1

The procedure continues in a similar fashion until all the vertices are tra-
versed and the adjacent vertices determined. At the end, the adjacency
matrix has the form shown in Table 7.3. This table is the graph represen-
tation of the Zhang et al. (2000) model.

Step 4: Group the empirical correlations in sets Ω by the empirical parameter
they estimate. Table 7.1 lists the empirical correlations that have been
selected for each empirical parameter in the Zhang et al. (2000) slug flow
model.

Ω1 = {g1,1, g1,2, g1,3} for the estimation of e1 = LS

Ω2 = {g2,1, g2,2, g2,3, g2,4, g2,5, g2,6, g2,7, g2,8, g2,9, g2,10}
for the estimation of e2 = HLSS

Ω3 = {g3,1, g3,2} for the estimation of e3 = vTB

Ω4 = {g4,1, g4,2, g4,3, g4,4, g4,5, g4,6} for the estimation of e4 = fi

Ω5 = {g5,1, g5,2, g5,3, g5,4} for the estimation of e5 = Θ

g1,1 = Zhang correlation

g1,2 = Scott correlation

g1,3 = Felizola and Shoham correlation

g2,1 = Eissa Al-Safran correlation

g2,2 = Woldesmayat and Ghajar correlation

g2,3 = Toshiba correlation

g2,4 = Gomez correlation

g2,5 = Zhang correlation

g2,6 = Spedding and Spence correlation

g2,7 = Minami and Brill correlation

g2,8 = Barnea and Brauner correlation

g2,9 = Gregory correlation

g2,10 = Nicklin correlation
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g3,1 = Bendiksen correlation

g3,2 = Hassan and Kabir correlation

g4,1 = Cohen and Hanratty correlation

g4,2 = Andritsos and Hanratty correlation

g4,3 = Ouyang and Aziz correlation

g4,4 = Bendiksen correlation

g4,5 = Vlachos correlation

g4,6 = Asali and Ambrosio correlation

g5,1 = Grolman correlation

g5,2 = Biberg correlation

g5,3 = Fan correlation

g5,4 = Hart correlation

Step 5: The details of Step 5 were discussed in Section 7.5 and will be demon-
strated for each one of the empirical parameters ek (HLLS, LS, vTB, fi and
Θ) and for each empirical correlation gk,i used in this study, as shown in
Table 7.1 and Step 4.

1. Group - Parameter slug liquid holdup, HLLS

(a) Eissa Al-Safran (2009): The Eissa Al-Safran correlation for
HLLS is:

HLLS = 1.05− 0.0417

mr − 0.123

mr =
HLTB (vTB − vLTB) (vM − vLTB)

v2
M

5.1 Write the empirical parameter as a functional dependency.

HLLS = g (HLTB, vTB, vLTB, vM)

5.2 Determine the influencing factors in the superscript notation.

{H1
LTB, v

3
TB, v

5
LTB}

5.3 For each influencing factor determine the dependency chain.
Stop the dependency chain when an empty dependency or an em-
pirical parameter is encountered.

The following is a tracing of the execution of the pseudocode in Al-
gorithm 7.3. MaxStep is the variableDependencyChainMaxStep
in the pseudocode.
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Depth: +1, MaxStep = 0

D (H1
LTB) = D (). SHLTB = 1. SHLTB > MaxStep. As-

sign MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack : {vTB+
1}. Stop.
D (v5

LTB) = {D (H1
LTB) , D (v3

TB, ) , D (H4
LLS)}. Explore fur-

ther.

Depth: +2

D (H1
LTB) = (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 2, vTB + 1}. Stop.
D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 2, vTB + 2, vTB + 1}. Stop.
Return to Depth +1.

Depth: +1

Finished exploring all influencing factors.

5.4 HLLS placement restrictions by influencing parameter type:
Entirely non-empirical: {H1

LTB}.

StepHLLS ≥MaxStep+ 1 = 2

Having an empirical component: {v5
LTB, v

3
TB}.

StepHLLS ≥ max{StepHLLS + 2, StepvTB + 2, StepvTB + 1}
= max{StepHLLS + 2, StepvTB + 2}

HLLS final placement restrictions:
Combining the previous results, we conclude that:

StepHLLS ≥ max{2, StepHLLS + 2, StepvTB + 2} (7.32)

(b) Woldesmayat and Ghajar (2006): The Woldesmayat and Gha-
jar correlation for HLLS is:

HLLS = 1− vSG
ṽ

ṽ = vSG

1 +

(
vSL
vSG

)(
ρG
ρL

)0.1


+ 2.9

[
gdσ (1 + cos θ) (ρL − ρG)

ρL2

]0.25

( 1.22 + 1.22 sin θ)
Patmospheric
Psystem

79



5.1 Write the empirical parameter as a functional dependency.

HLLS = g ()

5.4 Consequently, the empirical parameter can be placed any-
where in CAnew.

StepHLLS = anywhere (7.33)

(c) Toshiba (2005): The Toshiba correlation for HLLS is:

HLLS = 1− vSG
1.08vM + 0.45

5.1 Write the empirical parameter as a functional dependency.

HLLS = g ()

Similarly:
5.4 HLLS final placement restrictions:

StepHLLS = anywhere (7.34)

(d) Gomez (2000): The Gomez correlation for HLLS is:

HLLS = 1.0× e−(7.8510−3θ+2.4810−6ReLS)

ReLS =
ρLvMd

µL

5.1 Write the empirical parameter as a functional dependency.

HLLS = g ()

5.4 This has the same functional dependency like the Toshiba
correlation, analysed earlier. Therefore:

StepHLLS = anywhere (7.35)

(e) Zhang (2000): The Zhang correlation for HLLS is:

HLLS =
1

1 + Tsm

3.16
√

(ρL−ρG)gσ

Tsm = fS
ρSvM

2

2Ce

+
d

4

ρLHLTB (vTB − vLTB) (vM − vLTB)

LSCe

Ce =
2.5− |sin θ|

2
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5.1 Write the empirical parameter as a functional dependency.

HLLS = g (ρS, fS, HLTB, vTB, vLTB, LS)

5.2 Determine the influencing factors in the superscript notation.

{ρ6
S, f

8
S, H

1
LTB, v

3
TB, v

5
LTB, L

2
S}

5.3 For each influencing factor determine the dependency chain.

Depth: +1, MaxStep = 0

D (ρ6
S) = D (HLLS) : Empirical : Push HLLS and depth to stack :

{HLLS + 1}. Stop.
D (f 8

S) = D (Re7
S) = D (ρ6

S). Explore further.

Depth: +2

D (ρ6
S) = D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 2, HLLS + 1}. Stop.
Return to Depth +1.

Depth: +1

D (H1
LTB) = (). SHLTB = 1. SHLTB > MaxStep. Assign

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 1, HLLS + 2, HLLS + 1}. Stop.
D (v5

LTB) = {D (H1
LTB) , D (v3

TB, D (H4
LLS) . Explore further.

Depth: +2

D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 2, vTB + 1, HLLS + 2, HLLS + 1}. Stop.
D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 2, vTB + 2, vTB + 1, HLLS + 2, HLLS + 1}. Stop.
Return to Depth +1.

Depth: +1

D (L2
S) : Empirical : Push LS and depth to stack :

{LS + 1, HLLS + 2, vTB + 2, vTB + 1, HLLS + 2, HLLS + 1}.
Stop.
Finished HLLS dependency chain.

5.4 HLLS placement restrictions by influencing parameter type:
Entirely non-empirical: {H1

LTB}.
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StepHLLS ≥MaxStep+ 1 = 2

Having an empirical component: {L2
S, v

3
TB, ρ

6
S, f

8
S, v

5
LTB}.

StepHLLS ≥ StepLS + 1, StepHLLS + 2, StepvTB + 2,

StepvTB + 1, StepHLLS + 2, StepHLLS + 1

Combining the results, we conclude that:

StepHLLS ≥ max{2, StepLS + 1, StepvTB + 2, StepHLLS + 2}
(7.36)

(f) Spedding and Spence (1989): The Spedding and Spence co-
rrelation for HLLS is:

ε

1− ε
=
[
0.45 + 0.08e−100(0.25−v2SL)

](vSG
vSL

)0.65

HLLS = 1− ε

5.1 Write the empirical parameter as a functional dependency.

HLLS = g ()

5.4 Consequently, the empirical parameter can be placed any-
where in CAnew.

StepHLLS = anywhere (7.37)

(g) Minami and Brill (1987): The Minami and Brill correlation
for HLLS is:

HLLS = 1− e−[ lnZ1+9.21
8.7115 ]

4.3374

Z1 =
1.84vSL

0.575

vSGd0.0277

(
ρL

0.5804

g0.3696σ0.1804

)−0.25

(
Psystem
101325

)0.05

µL
0.1

5.1 - 5.4 Similarly, all the inputs in the Minami and Brill corre-
lation are mechanistic model inputs. Therefore:

StepHLLS = anywhere (7.38)

(h) Barnea and Brauner (1985): The Barnea and Brauner corre-
lation for HLLS is:

HLLS = 1− 0.058h2

h = 2

√
0.4σ

(ρL − ρG) g

(ρL
σ

)0.666
(
fSvM

3

2d

)0.4

− 0.725
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5.1 Write the empirical parameter as a functional dependency.

HLLS = g (fS)

5.2 Determine the influencing factors in the superscript notation.
Using the adjacency matrix, we determine that the influencing
factors are:

{f 8
S}

5.3 For each influencing factor determine the dependency chain.

Depth: +1, MaxStep = 0

D (f 8
S) = D (Re7

S) = D (ρ6
S). Explore further.

Depth: +2

D (ρ6
S) = D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 2}. Stop.
Return to Depth +1.

Depth: +1

Finished exploring the influencing factors of HLLS.

5.4 HLLS final placement restrictions:
Combining the results, we conclude that:

StepHLLS ≥ max{StepHLLS + 2} (7.39)

This result may seem incorrect, but the interpretation is that the
step where HLLS calculated with the Barnea and Brauner corre-
lation can be placed is at least two steps after the initialisation of
the parameter with the Gregory correlation.

(i) Gregory (1978): The Gregory correlation for HLLS is:

HLLS =
1

1 +
(
vM
8.66

)1.39

5.1 Write the empirical parameter as a functional dependency.

HLLS = g ()

5.4 HLLS placement restrictions:

StepHLLS = anywhere (7.40)
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(j) Nicklin (1962): The Nicklin correlation for HLLS is:

HLLS = 1− vSG

1.2vM + 0.35
√
gd

5.1 Write the empirical parameter as a functional dependency.

HLLS = g () (7.41)

5.4 This is similar to the previous case, therefore the position is:

StepHLLS = anywhere (7.42)

Based on their functional dependencies, the empirical correlations for
parameter HLLS form the following four groups, as shown in Table 7.4:

Group 1: Woldesmayat and Ghajar, Toshiba, Gomez, Spedding and
Spence, Minami and Brill, Gregory, Nicklin. HLLS estimated with
these correlations can be placed anywhere in the calculation algo-
rithm.

Group 2: Barnea and Brauner. HLLS calculated with this correlation
can be placed at a step that is two steps after the correlation that
initially estimates HLLS, such as the Gregory correlation or any
other Group 1 correlation.

Group 3: Eissa Al-Safran. HLLS calculated with this correlation can
be placed at a step that is a maximum of the following: 3, two
steps after vTB and two steps after the correlation that initialises
HLLS.

Group 4: Zhang. HLLS calculated with this correlation can be placed
at a step that is a maximum of the following: 2, one step after
LS, two steps after vTB and two steps after the correlation that
initially estimates HLLS.

2. Group - Parameter liquid slug length, LS

(a) Zhang at al (2000):
The correlations is:

LS =
(
32cos2θ + 16sin2θ

)
d (7.43)

All the influencing parameters are model input factors. Therefore:

StepLS = anywhere (7.44)

(b) Scott et al. (1989):
The Scott correlation is:

LS = max

{
30d, e−26.8+28.5[ln( d

0.0254)]
0.1
}

(7.45)

Similarly:
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Table 7.4: There are four groups of empirical correlations for HLLS. The grouping
criteria are the step placement conditions in the algorithm.

Group Empirical correlations Position conditions

1 Woldesmayat and Ghajar,
Toshiba, Gomez, Spedding
and Spence, Minami and
Brill, Gregory, Nicklin

StepHLLS = anywhere

2 Barnea and Brauner
StepHLLS ≥ max{StepHLLS + 2}

3 Eissa Al-Safran
StepHLLS ≥ max


2

StepvTB + 2

StepHLLS + 2

4 Zhang
StepHLLS ≥ max


2

StepLS + 1,

StepvTB + 2,

StepHLLS + 2

Table 7.5: There is only one group of correlations for the calculation of LS.

Group Empirical correlations Position condition

1 Zhang, Scott, Felizola and Shoham StepLS = anywhere

StepLS = anywhere (7.46)

(c) Felizola and Shoham (1995):
The Felizola and Shoham correlation is:

LS = 20d

(
1 + 1.5

θ

90

)
(7.47)

StepLS = anywhere (7.48)

These three correlations can be placed anywhere in the calculation
algorithm. Therefore, all these correlations can be made part of one
group, as shown in Table 7.5.

3. Group - Parameter Taylor bubble translational velocity, vTB

(a) Bendiksen (1984): The Bendiksen correlation is:

vTB = CSvM + vdrift (7.49)
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Table 7.6: There is only one group of correlations for the calculation of vTB.

Group Empirical correlations Position condition

1 Bendiksen, Hassan and Kabir StepvTB = anywhere

vdrift = 0.54
√
gd cos θ + 0.35

√
gd sin θ (7.50)

where CS is 1.2 for turbulent flow and 2 for laminar flow.
5.1 Write the empirical parameter as a functional dependency.

vTB = g () (7.51)

5.4 vTB placement restrictions:

StepvTB = anywhere (7.52)

(b) Hassan and Kabir (1992): The Hassan and Kabir correlation
for vTB is:

vdrift = 0.35

√
gσL (ρL − ρG)

ρL2

√
sin θ(1 + cos θ)2 (7.53)

Similarly:

StepvTB = anywhere (7.54)

There is one group of correlations for parameter vTB, as shown in
Table 7.6.

4. Group - Parameter interfacial friction factor, fi

(a) Cohen and Hanratty (1965): The Cohen and Hanratty corre-
lation for fi is:

fi = 0.0142 (7.55)

Stepfi = anywhere (7.56)

(b) Andritsos and Hanratty (1987):
The Andritsos and Hanratty correlation for fi is:

fi = fGW

(
1 + 14.3HLTB

0.5

(
vSG
vSG,t

− 1

))
(7.57)

vSG,t = 5
[m
s

](ρGO
ρG

)0.5

(7.58)
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5.1 Write the empirical parameter as a functional dependency.

fi = g (HLTB, fGW )

5.2 Determine the influencing factors in the superscript notation.
Using the adjacency matrix, we determine that the influencing
factors are:

{f 14
GW , H

1
LTB}

5.3 For each influencing factor determine the dependency chain.

Depth: +1, MaxStep = 0

D (H1
LTB) = D (). SHLTB = 1. SHLTB > MaxStep. As-

sign MaxStep = 1. Stop.
D (f 14

GW ) = D (Re13
GW ) = D (v5

GTB, S
12
G , S

12
i , A

12
G ). Explore

further.

Depth: +2

D (v5
GTB) = D (H1

LTB, v
3
TB, H

4
LLS). Explore further.

Depth: +3

D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 3}
D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 3, vTB + 3}

Depth: +2

D (S12
G ) = D (Θ11) : Empirical : Push Θ and depth to stack :

{Θ + 2, HLLS + 3, vTB + 3}
D (S12

i ) = D (Θ11) : Empirical : Push Θ and depth to stack :
{Θ + 2, HLLS + 3, vTB + 3}
D (A12

G ) = D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep.

Keep MaxStep = 1. Stop

5.4 Combining the results, we conclude that:

Stepfi ≥ max{2, StepΘ+2, StepHLLS +3, StepvTB +3} (7.59)

(c) Asali and Ambrosio (1984):
The correlation was used in Zhang step 14, in Section 5.3.2 and
involves the following calculation algorithm:
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Asali step 1 Assume fi = fG. For a smooth pipe fG is defined
as in Equation 7.60:

fG = 0.046ReG
−0.2 (7.60)

The Weber and Reynolds numbers are calculated with:

WeG =
ρGv

2
SGd

σ
(7.61)

ReG =
ρGvSGd

µG
(7.62)

Asali step 2 Calculate τi from Equation 7.63:

τi = fi
ρG (vSG − vSL) |vSG − vSL|

2
(7.63)

Asali step 3 Calculate v∗C according to Equation 7.64:

v∗C =

√
τi
ρG

(7.64)

Asali step 4 Calculate h+
F from Equation 7.65:

h+
F =

ρGhFv
∗
C

µG
(7.65)

Asali step 5 Calculate fi,calculated using Equation 7.66:

fi = fG

(
1 + 13.8WeG

0.2ReG
−0.6

(
h+
F − 200

√
ρG
ρL

))
(7.66)

If
|fi,calculated−fi|
fi,calculated

< ε the algorithm has converged and fi,calculated
represents the value of fi. Otherwise, repeat from Asali step 2,
by assuming fi = fi,calculated.

Stepfi = anywhere (7.67)

(d) Ouyang and Aziz (1996): The Ouyang and Aziz correlation
for fi is:

fi = 10−8.0942+4.2893Hsin θ
LTB

f 0.8732
LW N0.3072

vL
N1.0365
D

N1.914
G

(
vGTB
vLTB

)0.9783 (7.68)

where fLW is the Fanning wall friction factor for the liquid phase:

Rvolumetric =
vSG
vSL

(7.69)

Reliquid =
ρLvLTBHLTBd

µL
(7.70)

fLW = 1.6291
(
Reliquid

−0.5161
) (
Rvolumetric

0.0926
)

(7.71)
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The following dimensionless groups are defined:
Liquid velocity number:

NvL = vSL 4

√
ρL
gσ

(7.72)

Gas viscosity number:

NG = µG 4

√
g

ρLσ3
(7.73)

Pipe diameter number:

ND = d

√
ρLg

σ
(7.74)

5.1 Write the empirical parameter as a functional dependency.

fi = g (fLW , vGTB, vLTB, HLTB, ) (7.75)

5.2 Determine the influencing factors in the superscript notation.

{f 14
LW , v

5
GTB, v

5
LTB, H

1
LTB}

5.3 For each influencing factor determine the dependency chain.

Depth: +1, MaxStep = 0

D (f 14
LW ) = D (Re13

LW ) = D (v5
LTB, S

12
F , A

12
F ). Explore further.

Depth: +2

D (v5
LTB) = D (H1

LTB, v
3
TB, H

4
LLS). Explore further.

Depth: +3

D (H1
LTB) = D (). SHLTB = 1. SHLTB > MaxStep. As-

sign MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 3}
D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 3, vTB + 3}

Depth: +2

D (S12
F ) = D (Θ) : Empirical : Push

Θ and depth to stack : {Θ + 2, HLLS + 3, vTB + 3}
D (A1

F2) = D (H1
LTB) = D (). Stop.

Depth: +1
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D (v5
GTB) = D (H1

LTB, v
3
TB, H

4
LLS). Explore further.

Depth: +2

D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack : {vTB+
2,Θ + 2, HLLS + 3, vTB + 3}
D (H4

LLS) : Empirical : Push HLLS and depth to stack : {HLLS+
2, vTB + 2,Θ + 2, HLLS + 3, vTB + 3}

Depth: +1

D (v5
LTB) = D (H1

LTB, v
3
TB, H

4
LLS). Explore further.

Depth: +2

D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 2, HLLS + 2, vTB + 2,Θ + 2, HLLS + 3, vTB + 3}
D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS+2, vTB+2, HLLS+2, vTB+2,Θ+2, HLLS+3, vTB+3}

Depth: +1

D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.

5.4 fi final placement restrictions:

Stepfi ≥ max{2, StepΘ+2, StepHLLS +3, StepvTB +3} (7.76)

(e) Bendiksen et al. (1989): The Bendiksen correlation for fi
calculates a ∆hWave factor first.

∆hWave =

[
ρG(vSG − vSL)2

4 (ρL − ρG) g cos θ

]

+

√√√√[ ρG(vSG − vSL)2

4 (ρL − ρG) g cos θ

]2

− σ

(ρL − ρG) g cos θ

(7.77)

fi = 0.001375

[
1 +

(
2× 104 ∆hWave

d
+

106

ReG

)
0.333

]
(7.78)

90



ReG = ρG
|vGTB − vLTB| (1−HLTB) d

µG
(7.79)

5.1 Write the empirical parameter as a functional dependency.

fi = g (HLTB, vGTB, vLTB ) (7.80)

5.2 Determine the influencing factors in the superscript notation.

{H1
LTB, v

5
GTB, v

5
LTB, }

5.3 For each influencing factor determine the dependency chain.

Depth: +1, MaxStep = 0

D (H1
LTB) = D (). SHLTB = 1. SHLTB > MaxStep. As-

sign MaxStep = 1. Stop.
D (v5

GTB) = D (H1
LTB, v

3
TB, H

4
LLS). Explore further.

Depth: +2

D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 2}
D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 2, vTB + 2}

Depth: +1

D (v5
LTB) = D (H1

LTB, v
3
TB, H

4
LLS). Explore further.

Depth: +2

D (H1
LTB) = D (). SHLTB = 1. SHLTB = MaxStep. Keep

MaxStep = 1. Stop.
D (v3

TB) : Empirical : Push vTB and depth to stack :
{vTB + 2, HLLS + 2, vTB + 2}
D (H4

LLS) : Empirical : Push HLLS and depth to stack :
{HLLS + 2, vTB + 2, HLLS + 2, vTB + 2}

5.4 fi final placement restrictions are:

Stepfi ≥ max{2, StepHLLS + 2, StepvTB + 2} (7.81)

(f) Vlachos (1997): The Vlachos correlation is:

fi = 0.024HLTB
0.35ReSL

0.18 (7.82)
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Table 7.7: Groups of correlations for the calculation of fi.

Grp Empirical correlations Position conditions

1 Cohen and Hanratty, Asali
and Ambrosio

Stepfi = anywhere

2 Andritsos and Hanratty,
Ouyang and Aziz

Stepfi ≥ max{2, StepΘ + 2, StepHLLS +
3, StepvTB + 3

3 Vlachos Stepfi ≥ 2
4 Bendiksen Stepfi ≥

max{2, StepHLLS + 2, StepvTB + 2}

where the Reynolds number is:

ReSL =
ρLvSLd

µL
(7.83)

fi final placement restrictions:

Stepfi ≥ 2 (7.84)

There are four different groups of correlations for fi, as shown in
Table 7.7.

5. Group - Parameter wetted wall fraction, Θ

(a) Grolman (1994): The Grolman correlation is:

Θ = Θ0

(σwater
σ

)0.15

+
ρG

(ρL − ρG)

1

cos θ

(
ρLvSL

0.25d

σ

)0.25[
vSG

2

(1−HLTB)2gd

]0.8

(7.85)

Θ0 = 0.624(HLTB)0.374 (7.86)

5.1 Write the empirical parameter as a functional dependency.

Θ = g (HLTB) (7.87)

5.2 Determine the influencing factors in the superscript notation.

{H1
LTB}

5.3 For each influencing factor determine the dependency chain.

Depth: +1, MaxStep = 0

D (H1
LTB) = D (). SHLTB = 1. SHLTB > MaxStep. As-

sign MaxStep = 1. Stop.
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5.4 Θ final placement restrictions:

StepΘ ≥ 2 (7.88)

(b) Biberg (1999): The Biberg correlation is:

β = 2π−2

{
πHLTB +

(
3π

2

) 1
3 [

1− 2HLTB +HLTB

1
3 − (1−HLTB)

1
3

]}
(7.89)

5.1 Write the empirical parameter as a functional dependency.

Θ = g (HLTB ) (7.90)

5.4 Θ final placement restrictions:

StepΘ ≥ 2 (7.91)

(c) Fan (2005): The Fan correlation is:

Θ =

[
0.57HLTB

0.345 + 0.0637FrL
0.68

(
vSG
vSG,C

)0.68
](σW

σ

)0.15

(7.92)

for values of Θ ∈ [0, 0.5].

Θ =

[
0.57HLTB

0.345 + 0.0637FrL
0.68

(
vSG
vSG,C

)0.55
](σwater

σ

)0.15

(7.93)

for values of Θ ∈ (0.5, 1].
The critical value of the superficial gas velocity, vSG,C is:

vSG,C = 5
[m
s

] [ 1.24

ρG
[

kg
m3

]]0.5

(7.94)

FrL =
ρLvSL

2

(ρL − ρG) gd cos θ
(7.95)

5.1 Write the empirical parameter as a functional dependency.

Θ = g (HLTB ) (7.96)

5.4 Θ final placement restrictions:
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Table 7.8: There is only one group of correlations for the calculation of Θ.

Group Correlations Position condition

1 Grolman, Biberg, Fan, Hart StepΘ ≥ 2

StepΘ ≥ 2 (7.97)

(d) Hart et al. (1989): The Hart correlation is:

Θ = min

{
1,Θ0 + CFr0.58

}
(7.98)

Θ0 = 0.624(HLTB)0.374 (7.99)

where the constant C = 0.26 and the Froude number is:

Fr =
ρLvSL

2

(ρL − ρG) gd
(7.100)

5.1 Write the empirical parameter as a functional dependency.

Θ = g (HLTB ) (7.101)

5.4 Θ final placement restrictions:

StepΘ ≥ 2 (7.102)

There is one group of empirical correlations for parameter Θ, as shown
in Table 7.8.

Step 6: Minimise the number of calculation algorithms. The correlations
for each empirical parameter were grouped based on their position restric-
tions in the algorithm. Table 7.9 lists the number of groups of equivalent
correlations for each empirical parameter in the Zhang et al. (2000) and
(2003) models.

Based on the number of groups, the total number of distinct flow calculation
algorithms may be as high as:

Number calculation algorithms = Groups HLLS ×Groups LS

×Groups vTB ×Groups fi

×Groups Θ

= 4× 1× 1× 4× 1 = 16 (7.103)

This is a significant reduction from the initial number:

Number calculation algorithms = 3× 10× 2× 6× 4 = 1440 (7.104)
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Table 7.9: Number of groups of equivalent correlations for each empirical parameter
in the Zhang et al. (2000) model.

Empirical parameter Number of groups

HLLS 4
LS 1
vTB 1
fi 4
Θ 1

that might be expected from a preliminary consideration of Table 7.1.

To further reduce the number of algorithms, we need to:

6.1 Identify the empirical parameters that have a number of groups ≥ 2:

These parameters are HLLS and fi. They lead to a high number of calcula-
tion algorithms.

6.2 For each one of these parameters, reduce the number of groups to one,
by making all the correlations part of the group with the highest step num-
ber.

1. HLLS : Four groups of correlations for parameter HLLS were deter-
mined, as shown in Table 7.4. The solution to reduce the number of
groups for parameter HLLS to one, is to make all the groups part of
the same group, by placing them after the maximum step required by
any correlation in these four groups.

Table 7.4 shows a dependency of HLLS on HLLS. As mentioned
earlier, the second HLLS refers to the initial estimation of HLLS,
used to start the calculations. The first HLLS is used as a more
“accurate” correlation, to recalculate HLLS. Consequently, we
need to split the correlations for HLLS into two groups:

Group 1: Woldesmayat and Ghajar, Toshiba, Gomez, Sped-
ding and Spence, Minami and Brill, Gregory, Nicklin. These
are the correlations in group 1 in Table 7.4 and do not have
placement restrictions. We choose to keep Zhang step 4 (Sec-
tion 5.3.2) for the initial estimation of HLLS.

Group 2: Zhang, Barnea and Brauner and Eissa Al-Safran. Ac-
cording to the conditions in Table 7.4, these correlations re-
quire they be placed at a step that needs to be determined
based on StepLS , StepvTB and StepHLLS . As HLLS for the ini-
tial estimation was decided to be placed at Zhang step 4, we
now need to determine the positions of StepLS and StepvTB .

◦ According to the result in Table 7.5, LS correlations do not
have any requirements in terms of where LS has to be placed.

◦ Similarly, Table 7.6 shows that vTB correlations do not have
placement restrictions.
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Therefore, we place:

◦ LS at Zhang step 2, which is the same position as in the
original Zhang et al. (2000) algorithm.

◦ vTB at Zhang step 3, keeping the same position.

◦ HLLS initial estimation at the same Zhang step 4, using the
correlations of Woldesmayat and Ghajar, Toshiba, Gomez,
Spedding and Spence, Minami and Brill, Gregory, Nicklin.

To make all HLLS correlations part of the same group we need
to find the maximum step required by the correlations:
StepBarneaandBrauner ≥ {StepHLLS + 2}
StepEissaAl−Safran ≥ max{2, StepvTB + 2, StepHLLS + 2}
StepZhang ≥ max{2, StepLS + 1, StepvTB + 2, StepHLLS + 2}

(7.105)

which, given the assignments for LS, vTB and initialisation of
HLLS, leads to:

StepBarneaandBrauner ≥ {6}
StepEissaAl−Safran ≥ max{2, 5, 6}
StepZhang ≥ max{2, 3, 5, 6}

(7.106)

Therefore, if we place HLLS at a step greater than 6, we could
make all the HLLS correlations part of the same group.

These considerations lead to the following placement of the co-
rrelations for HLLS and LS:

Zhang step 2: LS calculated by all the selected correlations.

Zhang step 3: vTB calculated by all the selected correlations.

Zhang step 4: HLLS calculated with any of the correlations:

◦ Woldesmayat and Ghajar

◦ Toshiba

◦ Gomez

◦ Spedding and Spence

◦ Minami and Brill

◦ Gregory

◦ Nicklin

Zhang step 6 onwards: HLLS calculated with any of the co-
rrelations, so long as it is not the same correlation used for
the initial estimation. That is, the condition is that the co-
rrelations in step 4 and 6 be different.

2. fi: Four groups of correlations for fi were identified, as shown in
Table 7.7. In order to make all the correlations part of the same
group, we need to determine StepΘ.
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Table 7.10: Empirical correlation groups and the position of the empirical parameter
they estimate in CAnew.

Parameter Final position Empirical correlations

HLLS Zhang step 4 Woldesmayat and Ghajar, Toshiba, Gomez,
Spedding and Spence, Minami and Brill,
Gregory, Nicklin

HLLS Zhang step 9 All the correlations in Table 7.4, on the con-
dition that the correlation in Zhang step 9 is
not the same as in Zhang step 4

LS Zhang step 2 All the correlations in Table 7.5
vTB Zhang step 3 All the correlations in Table 7.6
fi Zhang step 14 All the correlations in Table 7.7
Θ Zhang step 11 All the correlations in Table 7.8

We have already established that StepHLLS = 4 and StepvTB =
3. According to Table 7.8, all the correlations for Θ have the
requirement StepΘ ≥ 2, therefore we keep the existing position
for the calculation of Θ, at Zhang step 11. With these selections,
the conditions in Table 7.7 can be stated as:

Stepfi ≥ max

{
{2, (11 + 2) , (4 + 3) , (2 + 3)}
{2, (4 + 2) , (3 + 3)}

(7.107)

which results in:

Stepfi ≥ 13 (7.108)

Therefore, keeping the existing position Zhang step 14 for the
calculation of fi makes all correlations part of the same group.

To summarise, we have determined the positions in the calculation algo-
rithm for the selection of empirical correlations in Table 7.1. These positions
are shown in Table 7.10.

7.7 Summary

This chapter presented an empirical correlation replacement algorithm
that:

◦ For a given mechanistic model with a Calculation Algorithm (CA), and

◦ For an empirical correlation set chosen for each empirical parameter in the
model,

determines a new CA such that the empirical correlations can be swapped without
modifying the new CA. The algorithm is based on a graph representation of the
CA.

The empirical correlation replacement algorithm was designed to address the
problem of replacing an empirical correlation used in the mechanistic model, with
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an alternative empirical correlation. The algorithm determines the step in the
calculation algorithm where the empirical parameter calculated by the alternative
correlation can be placed. The algorithm can be used in all the situations where
it is necessary to replace an empirical correlation in a model:

◦ Using an alternative correlation that matches better the local production
data, instead of a more generic empirical correlation used by the model.

◦ Replacing the empirical correlation with a set of mechanistic equations,
when the phenomenon described initially by the correlation becomes better
understood.

However, in this study the empirical correlation replacement algorithm is used as
a supporting algorithm for the optimisation method described in Section 6.4.

The algorithm was demonstrated on the Zhang et al. (2000) and (2003) slug
flow models. Five sets of empirical correlations for parameters LS, HLLS, vTB,
fi and Θ were selected. The number of correlations in each set was shown in
Table 7.1. According to Equation 7.104, the initial assessment of the number of
possible calculation algorithms was 1440. The empirical correlation replacement
algorithm presented here and demonstrated using the Zhang et al. (2000) and
(2003) models, reduced this number to just 1.
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Chapter 8

Mechanistic model training using
alternative empirical correlations

8.1 Introduction

Section 6.4 stated that the first step in the model optimisation using alternative
empirical correlation sets was the training phase. The goal of this chapter is to
determine the best empirical correlation set for a training data set, which
consists of input data points and their associated output measured values. A
curve fitting method using alternative correlations is proposed for this
purpose. The method is applied to the Zhang et al. (2000) slug flow model
and the best empirical correlation set is determined for the data set selected in
Section 2.5, which is used as a training data set.

8.2 Curve fitting method using alternative

empirical correlations

There are many curve fitting methods used for interpolation in numerical analy-
sis, such as polynomial, spline, rational and Gaussian. This chapter will describe
a procedure to determine the best empirical correlation set for each input
training data point xi, with the view of using it for interpolation in the vici-
nity of that point. In mathematical terms, the method will generate piecewise
functions, such that in the vicinity of the input data point xi, the same empirical
functions will be used for empirical parameter estimations. As the input moves
towards xi+1, a possibly different set of functions corresponding to another set of
empirical correlations will be used by the model. Figures 8.1 and 8.2 illustrate
the concept of selecting one empirical correlation out of a pool of correlations, for
each empirical model parameter and the use of one correlation set in the vicinity
of each input data point.

Unlike other numerical interpolation methods, which are not based on modelling
the physical phenomena and only aim to determine a continuous function to run
through the data points, the method presented here offers the advantage of still
being based on a mechanistic model, which means that if the input points are
too far apart, it can still predict the output with a certain level of accuracy.
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Figure 8.1: A mechanistic model showing the dependency of the model output on
empirical correlations. This study will analyse the effect on the model predictions of
selecting one empirical correlation for each empirical parameter ej, j = 1, 2, . . . , r,
from a predefined pool of correlations.

Let us consider an input data set (x1, x2, . . . , xn), a “true” model whose mea-
sured outputs are (yt,1, yt,2, . . . , yt,n), and a mechanistic model whose estimations
are (ỹ1, ỹ2, . . . , ỹn). Each input data point is a vector with M components:
xi = (xi,1, xi,2, . . . , xi,M) , i = 1, 2, . . . , n. The problem discussed in this chap-
ter is to find the best empirical correlations for the parameters (e1, e2, . . . , er) in
the “black” boxes of the mechanistic model, for each individual input data point
xi, such that the residuals Ri = R (xi) are minimal.

The purpose of the method is to determine the best empirical correlation
set for each input data point xi and save this information into a history
table. To establish which empirical correlation set fits best the curve of the
“true” values in Figure 8.2, the model estimation ỹi is compared to the measured
data yt,i and the one that generates a minimum variance is associated with the
data point xi. Expressed in terms of residuals, the empirical correlation set that
minimises the residual Ri, for an input data point xi, is considered the best. The
notation used for the best correlation set at point xi is O (xi).

The curve fitting method replaces one empirical correlation at a time. The
model estimations and residuals are calculated for each input data point xi. The
3-tuple:

〈xi, O (xi) , Rmin (xi)〉

where:

O (xi) = optimal correlation set

Rmin (xi) = the minimum residual at xi

is stored with the view of being used during the prediction stage. The collection
of all these records constitutes the history table. The curve fitting method is
the implementation of the training phase in the optimisation process described
in Section 6.4.
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Figure 8.2: Piecewise functions are curve-fitting the “true model”. Each piecewise
function represents the model prediction for the best empirical correlation at input
xk = (xk,1, xk,2, . . . , xk,M) and around its vicinity.

As the curve fitting method forms a new correlation set every time a correlation
has been replaced in the calculation algorithm, the empirical parameters calcu-
lated with the new combination of correlations, have to be placed at different
steps in the calculation algorithm. This is where the results of Chapter 7 are
used. The correlation replacement algorithm described in Chapter 7 deter-
mined the position in the calculation algorithm where the empirical parameters
could be placed, depending on the empirical correlation used for their estimation.
Positioning the empirical parameters is a pre-requisite for the use of the curve fit-
ting method. Figure 8.3 summarises the building blocks involved in constructing
the history table.

8.3 Case study - Building a history database for

the Zhang et al. slug flow model

The curve fitting method using alternative correlations was applied to the
Zhang et al. (2000) model to the end of determining the best empirical correlation
set for each input data point. The 95 slug flow input data points from the TUFFP
data bank used for the simulation are vectors with the following components:

xi = (xi,1, xi,2, xi,3, xi,4, xi,5, xi,6, xi,7, xi,8, xi,9) i = 1, 2, . . . , n M = 9
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Figure 8.3: Top down structure showing the dependency relationships between the
building blocks involved in optimising a mechanistic model.

xi,1 = d xi,2 = β xi,3 = vSL
xi,4 = vSG xi,5 = ρL xi,6 = ρG
xi,7 = µL xi,8 = µG xi,9 = σ

The empirical correlation vector Φ = (g1, g2, . . . , g6), r = 6 used for the simulation
was:
g1 is one correlation for LS

from the set: Zhang, Scott, Felizola and Shoham.
g2 is one correlation for vTB

from the set: Bendiksen, Hassan and Kabir.
g3 is one correlation for HLLS

from the group 1 set: Gregory, Gomez, Woldesmayat and Ghajar,
Toshiba and Leung, Spedding and Spence,
Minami and Brill, Nicklin.

g4 is one correlation for HLLS

from the group 2 set: Gregory, Gomez, Woldesmayat and Ghajar,
Toshiba and Leung, Spedding and Spence,
Minami and Brill, Nicklin, Eissa Al-Safran,
Barnea and Brauner, Zhang

provided that g4 is not
the same correlation as g3.

g5 is one correlation for Θ
from the set: Grolman, Biberg, Fan, Hart.
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g6 is one correlation for fi
from the set: Cohen and Hanratty, Andritsos and Hanratty,

Vlachos, Ouyang and Aziz, Bendiksen,
Asali and Ambrosio.

The position in the calculation algorithm of the empirical parameters, which
is dependent on the empirical correlation, has to be determined before applying
the curve fitting method to the Zhang et al. (2000) model. This was established
in Chapter 7, and Table 7.10 shows the steps in the calculation algorithm where
the parameters can be placed. Based on these results, the curve fitting method
has the form illustrated by the pseudocode in Algorithm 8.1.

The GNU Octave program in the Model Training folder on the attached CD
implements the pseudocode. The output of running the simulation program on
the data set is the history table and is shown in Table A.9, Appendix A. The
numerical codes associated with the empirical correlations are given in Tables A.2-
A.6, Appendix A.

8.4 Data mining techniques for result

interpretation

The curve fitting method using alternative correlations determined the
best empirical correlation set for each individual input data point in the train-
ing data set. These correlations are shown in the history table in Table A.9,
Appendix A. However, rather than knowing the best correlation at the granular
level of the individual point, we are also interested to know whether there are
any patterns where the same correlation set performs best.

Data mining is an effective process in the attempt to find such patterns in
data sets. This is useful for our purpose of determining regions where a cer-
tain empirical correlation set performs best. This undertaking aims to show that
organising the input data in certain ways, such as grouping and sorting by cer-
tain keys may reveal regions, or patterns of regions, where only one empirical
correlation set performs best and is therefore, optimal.

The input data used in the case study was sorted in ascending order of vSL.
Using the threshold vSL = 0.1 m/s, the data were then separated into two groups
corresponding to values smaller and greater than 0.1 m/s respectively. Both
groups were then further partitioned according to whether the inclination angle
β was zero or not. This created four data sets that were analysed for regions
where one correlation set prevailed. This sorting and partitioning procedure
is illustrated in Figure 8.4, which emphasizes that the correlation set LcS = 1,
Hc
LLS = 1, vcTB = 1, f ci = 1, Θc = 1 is the dominant optimal correlation set in

the series of values vSL < 0.1 m/s and β = 0. The notation parameterc refers
to the empirical correlation number in Tables A.2-A.6 used for the calculation of
the parameter.

Table A.10 in Appendix A shows the data organised by ascending values of vSL
and then grouped by pipe inclination angles β. Figure 8.4 is a simplification of
the data in Table A.10.

This procedure to organise the data is not random. Sensitivity analysis calcu-
lations in Section 9.3.1 show that vSL is the most influential parameter on the
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Algorithm 8.1 The pseudocode of the curve fitting method applied to the Zhang
et al. calculation algorithm. The purpose of the method is to build a history table.

1: procedure Training(X,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6)
2: REQUIRES: The step in the calculation algorithm where the empirical
3: parameters are calculated, depending on the correlation used for their
4: calculation.
5: INPUT: X = {x1, x2, . . . , xn}
6: The sets of correlations Ω1,Ω2,Ω3,Ω4,Ω5,Ω6

7: OUTPUT: History database. Each record is 〈xi, O (xi) , Rmin (xi)〉
8: ———————————————————————————————
9: for all xi ∈ X do
10: for all gLS ∈ Ω1 do
11: for all g1HLLS ∈ Ω2 do
12: for all gvTB ∈ Ω3 do
13: for all gfi ∈ Ω4 do
14: for all gΘ ∈ Ω5 do
15: for all g2HLLS ∈Ω2 do
16: Zhang step 1: Guess HLTB

17: Zhang step 2: Calculate LS = gLS (xi)
18: Zhang step 3: Calculate vTB = gvTB (xi)
19: Zhang step 4: Calculate HLLS = g1HLLS (xi)
20: Zhang step 5: Calculate vTB and vGTB
21: Zhang step 6: Calculate ρS
22: Zhang step 7: Calculate ReS
23: Zhang step 8: Calculate fS
24: if g2HLLS 6= g1HLLS then
25: Zhang step 9: Calculate HLLS = g2HLLS (xi)
26: else
27: Continue
28: end if
29: Zhang step 10: Calculate LF and LU
30: Zhang step 11: Calculate Θ = gΘ (xi)
31: Zhang step 12: Calculate SF , AF , SG, AG, SCD,
32: ACD and Si
33: Zhang step 13: Calculate ReLW and ReGW
34: Zhang step 14: Calculate fLW , fGW and
35: fi = gfi (xi)
36: Zhang step 15: Calculate τGW , τLW and τi
37: Zhang step 16: Calculate merr = margin of
38: error
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39: Zhang step 17:
40: if merr ≥ ε then
41: Go To Zhang step 5
42: else
43: Calculate residual:
44: R (xi) = |dP/dL− (dP/dL)measured|
45: if R (xi) < Rmin (xi) then
46: Rmin (xi) = R (xi)
47: Create a record in the history table
48: Save: xi,gLS, g1HLLS , gvTB , gfi , gΘ, g2HLLS
49: Save: Rmin (xi)
50: end if
51: end if
52: end for
53: end for
54: end for
55: end for
56: end for
57: end for
58: end for
59: end procedure

model predictions. The second most influential parameter is the inclination angle
β. This explains why the data were organised by taking into account these two
factors, in the order of their influence.

Figures 8.6-8.8 represent the occurrence fraction of each of the optimal corre-
lations for the parameters LS, HLLS, vTB, fi and Θ, in the four series of data:
(vSL < 0.1 m/s and β = 0), (vSL ≥ 0.1 m/s and β = 0), (vSL < 0.1 m/s and
β 6= 0) and (vSL ≥ 0.1 m/s and β 6= 0).

Figure 8.5 shows the distribution of the correlation set LcS = 1, Hc
LLS = 1,

vcTB = 1, f ci = 1 and Θc = 1 over the interval vSL < 0.1 m/s and β = 0. This
correlation set offers better prediction capabilities in this domain than all
the other correlation sets and is therefore optimal.

Other patterns of correlations were investigated, but as Figures 8.6-8.8 show,
no obvious regions where one pattern dominated could be determined.

8.4.1 Comparison between the optimal empirical correla-
tion set and the set in the Zhang et al. (2000) slug
flow model

The Zhang et al. (2000) used the empirical correlation set in Table 8.1. This
is the optimal correlation set for vSL < 0.1 m/s and β = 0. Consequently, we
can ascertain that the Zhang et al. (2000) model is already optimised in the
domain of horizontal flow at low superficial liquid velocities.
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Figure 8.4: Sorting and partitioning the input data revealed the existence of the
prevailing optimal set of empirical correlations LcS = 1, Hc

LLS = 1, vcTB = 1, f ci = 1,
Θc = 1. This is a simplification of the data in Table A.10, for the purpose of revealing
a region with an optimal correlation set.

Table 8.1: Empirical parameters and the empirical correlations used in the Zhang et
al. (2000) slug flow model.

Empirical parameter Empirical correlation Correlation
code

vTB Bendiksen 1
HLLS Gregory 1
LS Zhang 1
Θ Grolman 1
fi Cohen and Hanratty 1

8.4.2 Comparison between the optimal correlation set and
the set in the Zhang et al. (2003) slug flow model

The Zhang et al. (2003) used the empirical correlation set in Table 8.2. The two
sets are different in the correlations for HLLS and fi.

This finding is surprising. The Zhang et al. (2003a) correlation for slug liquid
holdup HLLS was developed in 2003 and was based on the balance between the
turbulent kinetic energy of the liquid phase and the surface energy of the dispersed
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Figure 8.5: The correlation set LcS = 1, Hc
LLS = 1, vcTB = 1, f ci = 1 and Θc = 1 is

optimal for horizontal flow (β = 0) in the region of values of vSL < 0.1 m/s.

Table 8.2: Empirical parameters and the empirical correlations used in the Zhang et
al. (2003) slug flow model.

Empirical
parameter

Empirical correlation Correlation
code

vTB Bendiksen 1
HLLS Gregory, Zhang 1,10
LS Zhang 1
Θ Grolman 1
fi Andritsos and Hanratty, Asali and

Ambrosio
2,6

spherical gas bubbles, unlike the Gregory correlation which was developed in
1977 and had a simpler approach to calculating HLLS. In fact, the Zhang et al.
(2003) flow model uses the Gregory (1987) correlation as a “less accurate”, initial
estimate forHLLS and refines the value of the liquid holdup by using its own Zhang
et al. (2003a) HLLS correlation, during the iterations of the calculation algorithm.
The Gregory correlation holds for horizontal slug flow, while the Zhang et al.
HLLS correlation was developed for both horizontal and inclined flow. Hence,
both correlations were in their validity domain. Both correlations are
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Figure 8.6: The correlation set LcS = 1, Hc
LLS = 1, vcTB = 1, f ci = 1 and Θc = 1 is

not optimal for horizontal flow (β = 0) in the region of values of vSL ≥ 0.1 m/s.

described in Section F.3. These results prove that for certain flow conditions of
horizontal flow at low superficial liquid velocity, the Gregory correlation for liquid
holdup is more accurate than the Zhang et al. correlation. More importantly, this
emphasizes the data sensitivity of mechanistic models and that the embedded
empirical correlation should be chosen according to the data fit on the
input domain.

The correlations for fi used in the Zhang et al. (2003) model depend on the
flow regime in the liquid film area of the slug unit. The model used the following
correlations for fi:

◦ Andritsos and Hanratty (1987) in the case of stratified flow.

◦ Asali and Ambrosio (1984) in the case of annular flow.

The Cohen and Hanratty (1968) correlation for the interfacial friction factor fi
was developed for stratified flow, for a fully developed rough gas-liquid interface,
corresponding to small liquid waves. Based on empirical experiments, the corre-
lation simply suggests that the best estimation for the interfacial friction factor is
fi = 0.0142. On the other hand, the Andritsos and Hanratty (1987) correlation
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Figure 8.7: The correlation set LcS = 1, Hc
LLS = 1, vcTB = 1, f ci = 1 and Θc = 1 is

not optimal for non-horizontal flow (β 6= 0) in the region of values of vSL < 0.1 m/s.

described in Section F.6, Equation F.32, applies to stratified flow in cases when
the gas-liquid interface is flat. The better prediction capabilities offered by the
former correlation rather than the latter are puzzling, given the simplicity of the
first equation.

It is important to point out that the “improvement” brought to the Zhang
et al. (2000) model by its 2003 version was not beneficial for horizontal flow
at low superficial liquid velocities. Zhang et al. (2000) used the optimal
correlation set, while Zhang et al. (2003) did not. This emphasizes
again the idea that upgrading a model with “more accurate” correlations is not
justified, if the correlation is not data-fitted first. That is, we can not apply a
mechanistic model to some data without first testing the fitting of its internal
empirical correlations. This is a change to the current industry practice,
which only checks the data fit of a selection of mechanistic models, without
checking the fit of their internal empirical correlations to the data set.
This argument is discussed in more detail in Section 9.5.
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Figure 8.8: The correlation set LcS = 1, Hc
LLS = 1, vcTB = 1, f ci = 1 and Θc = 1 is

not optimal for non-horizontal flow (β 6= 0) in the region of values of vSL ≥ 0.1 m/s.

8.5 Summary

This chapter discussed the curve fitting method using alternative empirical
correlations, as part of the training stage, the first step towards mechanistic
model optimisation using correlation replacement. The method determined the
best empirical correlation set for each individual input data point. This
information is stored in a database that will be used for model optimisation in
the next chapter.

Data mining techniques applied to the simulation results identified the region
(vSL < 0.1 m/s, β = 0), where the empirical correlation set LS = 1, HLLS = 1,
vTB = 1, fi = 1 and Θ = 1 performs best. Consequently, this correlation set is
optimal for the identified domain.

The comparison between the optimal correlation set for the domain of horizontal
flow at low superficial velocities, the Zhang et al. (2000) and the Zhang et al.
(2003) models showed:

◦ The Zhang et al. (2000) model used the optimal correlation set for the
selected input domain.

◦ The correlations for HLLS and fi in the Zhang et al. (2003) model, despite
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being “more accurate”, according to their authors (Zhang et al. 2003a,
2003c) are not optimal. This makes the newer Zhang et al. (2003) model
not optimal for the input domain of horizontal flow at low super-
ficial liquid velocities.

The following two conclusions can be drawn:

1. Mechanistic models are data sensitive and one can not apply a me-
chanistic model to a data set without first testing the data fit of
its internal empirical correlations.

2. The current industry practice needs to be changed from checking the
data fit of a selection of mechanistic models, to first checking the data
fit of their internal empirical correlation set.
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Chapter 9

Model optimisation

9.1 Introduction

The outcome of the training stage was a history table of optimal empirical
correlation sets for the training data set. This chapter will discuss the pre-
diction stage of the algorithm in Section 6.4 and will use the information in the
history table to generate the optimal prediction.

9.2 Model optimisation using correlation

extrapolation and data interpolation

As petroleum exploration moves to new offshore fields with more extreme physical
conditions, where fluid properties are outside the validity range of known empiri-
cal correlations, hydrocarbon pipeline flow modelling becomes more difficult. As
new exploratory wells are drilled, flow data become available before the start of
production. The general approach taken in the literature (Kahrs and Marquardt
2007) is to consider the entire flow model invalid outside the validity domain of
the empirical correlations and to use neural networks on the available data, in
order to adjust the model. A lot of research is focussed on establishing the criteria
for determining the model validity domain, based on the empirical correlations
used by the model (Kahrs and Marquardt 2007; Fiedler and Schuppert 2008).

This study takes a fundamentally different approach. Instead of completely
discarding an empirical correlation outside the data domain it was tested against,
this investigation recognises that the empirical correlation may be valid outside
it. In light of this view, this study tries to extrapolate the empirical correlation
outside its validity domain. From this point of view, this is an extrapolation
problem.

Chapter 8 identified the best empirical correlation sets for the training data set,
on an individual point basis. The challenge is to make a prediction for an input
data point when this is not part of the training data set, but is in its proximity.
This is an interpolation problem.

The selection of the best empirical correlation set, for each individual input
data point, in order to minimise the distance between the model’s prediction and
the measured output, constitutes an optimisation problem.
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Figure 9.1: The black rectangular markers show the predicted output of the original
mechanistic model. The white rectangular markers show the estimations of the curve
fitting model, which rely on prior knowledge of the measured, or “true” output values,
shown here as red markers. The arrows illustrate the residuals. For a new xnew input
data point, the lack of knowledge about the “true” output raises the question about
predicting the output.

To summarise these concepts, this study deals with extrapolation and in-
terpolation in order to optimise a mechanistic model. This is illustrated
in Figure 9.1, where the optimised model has to provide a good estimation of the
real value, while taking as input a new data point xnew that is not part of the
training set.

Two different methods to optimise a mechanistic model are proposed and pre-
sented.

1. The first optimisation method uses history matching to determine the
closest input data point in the data set for which an optimal correlation
set is known. This involves the minimisation of an objective function. This
method is presented in Section 9.3.

2. The second optimisation method uses data mining to detect prevailing
patterns of optimal correlations. In this case, the optimisation is not per-
formed over the entire input domain, but over a subset for which such a
pattern exists. The method is presented in Section 9.4.

Both methods assume that a table of best correlations has been built for a training
data set, as described in the curve fitting algorithm in Chapter 8. This history
table has the schema in Table 9.1 and was built in Section 8.3. The records in
the history table were shown in Table A.9.
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Table 9.1: The schema of the history table, where n = test number, t = test
name, d = diameter, β = inclination angle, vS = superficial velocity, ρ = density,
µ = viscosity and σ = interfacial surface tension, LcS = optimal correlation number
for the calculation of LS, Hc

L = optimal correlation number for the calculation of
HLLS, vcTB = optimal correlation number for the calculation of vTB, f ci = optimal
correlation number for the calculation of fi, Θc = optimal correlation number for the
calculation of Θ, R = minimum residual and subscripts L and G refer to liquid and
gas, respectively.

n t d β vSL vSG ρL ρG µL µG σ LcS Hc
L vcTB f ci Θc R

9.3 Model optimisation using a history

matching algorithm based on sensitivity

analysis

This optimisation method uses the history table schema shown in Table 9.1 in
conjunction with a history matching algorithm, discussed later in Section 9.3.2.
The new input data point with its flow dynamics (vSL, vSG), fluid properties (ρL,
ρG, µL, µG, σ), certain pipe diameter and inclination (d, β) is compared to
the training input data set, for which the optimal correlation sets have already
been identified. If such a match is found, that is, if xnew = xhistory, the best
correlation set to fit the new input data point is determined from the history
table as the correlation set associated with the matched entry xhistory. However,
this poses a new question. It is very unlikely that the new input data point
will match value-for-value each component of the existing data point vectors
(dnew = dhistory, βnew = βhistory, vSLnew = vSLhistory , . . . , σnew = σhistory). If we
were to plot two data points in a nine-dimensional hypercube (Figure 9.2), the
new data point and one of the points in the history table, the problem could
be stated as to find the data point in the history table to minimise the distance
in the nine-dimensional hypercube. Generalising the three-dimensional distance
between two data points in the input space, the objective function would be:

F =

√√√√ 9∑
k=1

(xnew,k − xhistory,k)2 (9.1)

However, this approach is simplistic and does not take into account an important
aspect. Each element of the input data point vector:

x = [d, β, vSL, vSG, ρL, ρG, µL, µG, σ] (9.2)

has a different effect on the output of the model. Equation 9.1 assumes an
equal weight of the input factors in the model’s output. This is an unfounded
assumption. One approach would be to consider the following objective function:

Fh =

√√√√ 9∑
k=1

cW,k2(xnew,k − xh,k)2 (9.3)
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Figure 9.2: Distance between the new input data point and the matched data point
in the hypercube.

where each weight factor cW,k is calculated by determining the sensitivity of the
input component k. The index h refers to a data point in the history table. Func-
tion Fh defined in Equation 9.3 takes into account the different contributions of
the input parameters to the model output. Hence, when the function is minimised
across all the h points in the history table in the search for the closest history
point, the minimisation is performed in such a way that the highest contributing
factor is most strongly taken into account.

This concept would work well for input data whose values were fairly close to
those in the history table. If, for example, the model were using a history table
of laboratory experimental data and the model were to be tested on field data
that differed considerably from those obtained in the laboratory, the objective
function could minimise at a point considerably far from the input data point,
simply because there was no point in the history table close to the input point.
For such cases, it is expected that the optimised model will not perform any
better than the Zhang et al. (2000) original model and a decision is made to use
the latter model for these situations. In other words, the optimisation will only
work well if:

◦ The input data fed into the model have a similar range to the data in the
history table. Generally this is the case, because well test data are obtained
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from the field before the production start.

◦ Sufficient data exist in the history table.

◦ A good objective function is used, capable of discovering the closest point
in the history table to the input point.

Assuming that the objective function minimises at the history data point with
the index h∗ ∈ {1, 2, . . . , n}:

xh∗ = (xh∗,1, xh∗,2, . . . , xh∗,9) (9.4)

the following test criterion was applied to revert back to the Zhang model when
the objective function minimises too far from the input data:

δk = cW,k|xnew,k − xh∗,k| k ∈ [1..9] (9.5)

xnew =

{
xh∗ if δk ≤ 10−3|xMAX

k − xMIN
k | ∀k ∈ [1 . . . 9]

xnew otherwise
(9.6)

where:

xMAX
k = max{xj,k} maximum of component k across all input data points

xMIN
k = min{xj,k} minimum of component k across all input data points

j = 1, 2, . . . , n and k = 1, 2, . . . ,M

are the upper and lower limit of the range of variation of component k across all
the input data points {x1,k, x2,k, · · · , xn,k}.

The meaning of Condition 9.6 is that if there exists a projection of the distance
between xnew and xh∗ on one of the axes of the hypercube, such that the norm
of the projection is greater than 10−3 of the maximum variation range of that
component, the Zhang et al. (2000) original model will be used for prediction.
The value 10−3 was chosen as data resolution, meaning that a change in the 3rd

digit was observed to trigger a correlation set change.

If all the input vector components satisfy the inequality δk ≤ 10−3|xMAX
k −

xMIN
k |, then the Zhang et al. optimised model will be used for prediction.

Other test criteria can be applied, and many other objective functions can be
constructed. The purpose of this study is not to focus on objective functions,
but to show that even relatively simple objective functions can lead to improved
results, better than those given by the original mechanistic model. Nonetheless,
this does not mean that the form of the objective function is not important.
A good objective function is crucial for the functioning of the history matching
algorithm.
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Table 9.2: The minimum and maximum values of the input factor for the considered
data sample.

Input factor Minimum Maximum Unit [SI]

d 0.025 0.174 m
β -0.174 0.174 rad
vSL 0.027 3.983 m/s
vSG 0.091 3.419 m/s
ρL 790.673 1000.035 kg/m3

ρG 1.156 30.435 kg/m3

µL 0.000810 0.048170 Pa s
µG 0.000012 0.000019 Pa s
σ 0.023 0.075 N/m

9.3.1 Calculation of the weight coefficients cw,k using sen-
sitivity analysis of the input factors

A screening method, such as the Elementary Effects method (Morris 1991), de-
scribed in detail in Section B.1, Appendix B, can be applied to rank the input
factors in terms of their influence on the model’s output. This ranking is nece-
ssary, because it will be used to determine the values of the weight coefficients
in the objective function in Equation 9.3. A summary of the sensitivity analysis
calculations is shown here. Please refer to Section B.1, Appendix B for full details
of the application of the Morris Elementary Effects method.

Sensitivity analysis of the pipe geometry, flow dynamics and fluid pro-
perties input parameters

The following input factors were considered for the analysis: diameter (d),
inclination angle (β), superficial liquid velocity (vSL), superficial gas velocity
(vSG), liquid and gas densities (ρL, ρG), liquid and gas viscosities (µL, µG)
and surface tension (σ). The minimum and maximum values for each one
of the factors in the 95 point data sample discussed in Section 2.5 were
determined and shown in Table 9.2.

The distribution of these parameters in the minimum-maximum range is
uniform, because, for the purpose of this analysis, any value in the range
is assumed with an equal probability. Therefore, the Elementary Effects
method does not need to be modified as it would for a normal distribution.

Selection of the cell, ∆ and parameter r = number of random
trajectories
The method ensures the transformation of the input domain values from
the range [min . . .max] to the interval [0 . . . 1]. A grid value of p = 100
was considered sufficient for the division of the interval [0 · · · 1] into equal
cells. The method’s ∆ value was chosen according to the recommenda-
tions, ∆ = p

2(p−1)
(Saltelli et al. 2008). The parameter r = number of

random trajectories in the input domain needs to be chosen in such a way
that the values of the Morris normalised means do not change between dif-
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Table 9.3: The value of the input factor normalised Morris means for different values
of r = number of trajectories.

Input
fac-

r = 5
run 1

r = 5
run 2

r = 10
run 1

r = 10
run 2

r = 100
run 1

r = 1000
run 1

r = 10000
run 1

tor case 1 case 2 case 3 case 4 case 5 case 6 case 7

d 0.1328 0.4774 0.1553 0.0000 0.1776 0.1413 0.1568
β 0.2396 0.3839 0.4217 0.3673 0.2477 0.2646 0.2671
vSL 0.2966 0.0323 0.3412 0.2035 0.2454 0.2939 0.2780
vSG 0.2800 0.0000 0.0082 0.3532 0.1551 0.2063 0.1821
ρL 0.0000 0.0923 0.0185 0.0434 0.0184 0.0124 0.0189
ρG 0.0006 0.0015 0.0000 0.0010 0.0001 0.0006 0.0018
µL 0.0467 0.0084 0.0441 0.0167 0.0716 0.0421 0.0582
µG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ 0.0033 0.0039 0.0107 0.0145 0.0837 0.0385 0.0366

Figure 9.3: Variation of the normalised Morris means for different cases and values
of the r parameter. The values have stabilised for case 7 (r = 10000).

ferent runs of the sensitivity analysis method. A number of trajectories
between 4 and 10 is normally sufficient for most sensitivity analysis cases
(Saltelli et al. 2008), because the ranking of the input factors usually does
not change anymore for r ≥ 10. However, because we use the normalised
Morris means as weight coefficients, we also need to make sure that the
values of the means stabilise too. In this case it was noticed (Figure 9.3)
that the normalised means did not stabilise for r = 10 between different
runs of the sensitivity method. The value of r was increased gradually from
r = 10 to 100, then 1000 and then 10000 while the values of the Morris
normalised means were examined. The values are shown in Table 9.3. The
purpose of these calculations was to choose the value of r for which these
values have stabilised.

As the values of the means converged to a stable value at case 7 (r =
10000), a value of r = 10000 was chosen in the calculation. The normalised
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Table 9.4: The Morris means µi and the normalised Morris means ( µi
Σµi

) of the
input factors, obtained by applying the Elementary Effects method for p = 100 and
r = 10000.

Input Morris mean µi Normalised Morris mean µi
Σµi

d µd =7368.643 0.156810
β µβ =12552.692 0.267131
vSL µvSL =13067.850 0.278094
vSG µvSG =8561.372 0.182192
ρL µρL =892.657 0.018996
ρG µρG =87.783 0.001868
µL µµL =2737.998 0.058267
µG µρG =0.039 0.000001
σ µσ =1721.808 0.036641

Table 9.5: Ranking of the input factors from the most influential (high value) to
the least influential (low value).

Input Morris mean µi Normalised Morris mean µi
Σµi

vSL µvSL =13067.850 0.278094
β µβ =12552.692 0.267131
vSG µvSG =8561.372 0.182192
d µd =7368.643 0.156100
µL µµL =2737.998 0.058267
σ µσ =1721.808 0.036641
ρL µρL =892.657 0.018996
ρG µρG =87.783 0.001868
µG µρG =0.039 0.000001

means obtained for this value of r are shown in Table 9.4.

It is important to mention here that the figures in Table 9.4 are obtained
by averaging the derivatives of the model’s output as a function of each
input factor, for a random selection of input domain values. Sorting these
values in descending order leads to a ranking of the input factors in the
order from the most influential to the least influential factor, as shown in
Table 9.5 and Figure 9.4. This ranking applies to the entire input domain.

Coefficient calculation

Sorting the means calculated by the Elementary Effects method in descend-
ing order determines the influence of the input factors, from the highest to
the lowest, as shown in Table 9.5. By assigning the weight factors the val-
ues of the normalised means, the coefficients have the role of minimising
preferentially in the direction of the more influential input components.

The ranking in Table 9.5, where the inclination angle has a significant
effect on the output, confirms previous research, which has shown that even
the slightest change in pipe inclination, such as 0.1◦, can have a significant
effect on the output and can even lead to a flow pattern transition (Shoham
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Figure 9.4: Ranking of the input factors from the highest value as the most influential
(high normalised mean) to the least influential (lowest normalised mean).

2006). Figures 9.5 and 9.6 illustrate the significant change in the flow
pattern map for a small inclination of 0.25◦. The maps were obtained by
applying the Barnea flow pattern transition criteria (Barnea 1987) to a wide
range of superficial gas and liquid velocities, vSL and vSG ∈ [0.05 . . . 50] m/s.
Nevertheless, despite the fact that results like this can be generalised to all
input data ranges, others are data-dependent and only apply for the input
range applied to the model. For example the fact that the liquid velocity
vSL has a slightly higher influence than the inclination angle β cannot be
generalised for all data sets.

9.3.2 History matching algorithm

The curve fitting algorithm in Chapter 8 built a history table, which was an
association between a set of input data points and the best empirical correlations
to be used for each point. The history matching algorithm developed here,
identifies the closest history table point, by minimising the distance objective
function. Sensitivity analysis is used to calculate the weight coefficients in the
objective function. An illustration of how these concepts come together is shown
in Figure 9.7.

The algorithm to optimise a mechanistic model using history matching based
on sensitivity analysis is:

Step 1: Apply a sensitivity analysis method to the input factors.

For the selected data set (Section 2.5) and the Zhang et al. (2000) mecha-
nistic model, Section 9.3.1 applied the Morris Elementary Effects method

121



Figure 9.5: Flow regime map for a 21” pipe diameter and 0◦ inclination. SW =
stratified wavy, SS = stratified smooth, BB = bubble, SL = slug, CH = churn, EB
= elongated bubble, AN = annular, DB = dispersed bubble.

to the input factors d, β, vSL, vSG, ρL, ρG, µL, µG, σ and calculated their
sensitivities.

Step 2: Normalise the results and rank the input factors. Assign the normalised
values to the weight coefficients cw,k.

For the example of Zhang et al. (2000) model, the weight coefficients are:
cw,vSL = 0.278094, cw,β = 0.267131, cw,vSG = 0.182192, cw,d = 0.156810,
cw,µL = 0.058267, cw,σ = 0.036641, cw,ρL = 0.018996, cw,ρG = 0.001868,
cw,µG = 0.000001.

Step 3: In order to calculate the prediction, for each input data point build
the objective function defined in Equation 9.3. Calculate and store the
value of the objective function for all the points h in the history table
(h = 1, 2, . . . , H).

The objective function is the distance in the hypercube between the new
input data point and a point in the history table. Both the new input data
point and the history point are vectors with the following components:

xnew = (xnew,d, xnew,β, xnew,vSL , . . . , xnew,µL , xnew,µG , xnew,σ)

xh = (xh,d, xh,β, xh,vSL , . . . , xh,µL , xh,µG , xh,σ)

h = 1, 2, . . . , H (9.7)
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Figure 9.6: Flow regime map for a 21” pipe diameter and 0.25◦ inclination. A
significant change in flow pattern distribution is observed from the previous case for
a very small inclination increment.

where H is the size of the history table.

Taking into account the weight coefficients calculated in Step 2 and the
x vectors in Equations 9.7, the distance between the new input data point
and a history data point becomes:

Fh (xnew, xh) = {cW,d2(xnew,d − xh,d)2 + cW,β
2(xnew,β − xh,β)2

+ cW,vSL
2(xnew,vSL − xh,vSL)2 + cW,vSG

2(xnew,vSG − xh,vSG)2

+ cW,ρL
2(xnew,ρL − xh,ρL)2 + cW,ρG

2(xnew,ρG − xh,ρG)2

+ cW,µL
2(xnew,µL − xh,µL)2 + cW,µG

2(xnew,µG − xh,µG)2

+ cW,σ
2(xnew,σ − xh,σ)2}0.5 (9.8)

Calculate and store the value of the objective function in Equation 9.8 for
all the points h in the history table (h = 1, 2, . . . , H).

Step 4: Iterate through all the values of the objective function determined in
Step 3 and identify the minimum value and the index h∗ for which this is
reached.

The history data point xh∗ is the closest entry in the history table to the
new input data point xnew, and has an optimal correlation set associated
with it. The position of this optimal correlation set in the history table
entry is shown in the schema in Table 9.1.
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Figure 9.7: This diagram describes the two main components of this optimisation
method: a history table and an objective function. The former relies on the curve
fitting method described in Chapter 8 to build a history table and the latter relies on
a sensitivity analysis method to calculate the objective function’s weight coefficients.
The first is part of the “training” stage, whereas the second is part of the “prediction”
stage.

Step 5: Verify that all the projections of the line between xnew and xh∗ on all
the axes of the hypercube satisfy the condition:

δk ≤ 10−3|xMAX
k − xMIN

k | k = 1, 2, . . . , 9 (9.9)

This criterion was described in Equation 9.6 and means that the input point
is in the proximity of the history point xh∗ .

Otherwise, the objective function minimises at a history point that is too far
from the input point and the optimal correlation set known for this history
point cannot be used. Hence, in these situations, the optimal correlation
set is the one used by the original mechanistic model and Step 6 is skipped.

For the Zhang et al. (2000) model and the selected data bank, if any of the
inequalities in Step 5 is not met, the original empirical correlation set used
in the Zhang et al. (2000) model will be used: LcS = 1, Hc

LLS = 1, vcTB = 1,
f ci = 1, Θc = 1 (the decoding correlation number-correlation name is shown
in Tables A.2-A.6).

Step 6: Read the entry for xh∗ in the history table and extract the optimal
correlation set and the minimum residual Rh∗,min associated with it.
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Figure 9.8: Comparison of pressure gradient prediction errors: the Optimised model
vs. the Zhang et al. (2000) model vs. Zhang et al. (2003) model. The Optimised
model outperforms the other models.

Step 7: Use the optimal correlation set and the input point xnew to calculate the
model output. Add the residual to the output to construct the prediction,
according to Equation 6.15 in Chapter 6.

The pseudocode of this algorithm is shown in Algorithm 9.1.

9.3.3 Case study - Zhang et al. slug flow model optimisa-
tion using the history matching algorithm based on
sensitivity analysis

The best correlation sets for the 95 slug flow data points were calculated as
part of the simulation in Section 8.3. These data points and the associated
optimal correlations constituted the history table. Based on the considerations
in Section 2.5.2, in order to test the performance of the optimised model, 24 data
points were taken randomly out of the history table and considered as new input
data. Thus, the optimised model was run against a history table of 71 points.

9.3.4 Simulation results

Algorithm 9.1 was implemented as a GNU Octave script in the Optimisation folder
on the attached CD. The combined results of the predictions of the Optimised,
Zhang et al. (2000) and (2003) models are shown in Figures 9.8 and 9.9, which
are based on the results in Table A.11, in Appendix A. The Optimised model
performs best with an overall score of FPR = 0, followed by the Zhang et al.
(2003) model with a score of FPR = 3.12 and Zhang et al. (2000) with a score of
FPR = 6.

The E statistical measures for the comparison are shown in Table 9.6. The
terms Term1 − Term6 in Table 9.7 are the six components of the sum in Equa-
tion 5.60.
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Algorithm 9.1 The pseudocode of the optimal prediction algorithm.

1: procedure Optimal(xi)
2: REQUIRES: Rank of the input factors is known.
3: INPUT: xi,
4: Sensitivities = {Sens1, Sens2, . . . , SensM}
5: Maximum values for each input factor vector component:
6: MAX = {xMAX

1 , xMAX
2 , . . . , xMAX

M }
7: Minimum values for each input factor vector component:
8: MIN = {xMIN

1 , xMIN
2 , . . . , xMIN

M }
9: OUTPUT: ŷ
10: —————————————————————————
11: Calculate thresholds on each axis:
12: CW,1 = Sens1, CW,2 = Sens2, . . . , CW,M = SensM
13: Thresholdk = 10−3

∣∣xMAX
k − xMIN

k

∣∣
14: for all xh ∈ H do
15: Calculate objective function Fh
16: if Fh < Fmin then
17: Fmin = Fh
18: xh∗ = xh
19: end if
20: end for
21: for all xi,k, k ∈ {1, 2, . . . ,M} do
22: if |xi,k − xh∗,k| < Thresholdk then
23: CorrelationF lag = Optimal
24: else
25: CorrelationF lag = OriginalModel
26: end if
27: end for
28: if CorrelationF lag = Optimal then
29: Search history table for record containing xh∗
30: Read the empirical correlation set O (xh∗)
31: Set CorrelationSet = O (xh∗)
32: Read minimum residual associated with xh∗ : Rmin (xh∗)
33: Set residual: Residual = Rmin (xh∗)
34: else
35: CorrelationSet = original
36: Set residual: Residual = 0
37: end if
38: Calculate the model estimation ỹ:
39: ỹ =PredictOutput(xi, CorrelationSet)
40: Calculate the prediction ŷ:
41: ŷ = ỹ +Residual
42: end procedure
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Figure 9.9: Comparison of pressure gradient prediction errors: the Optimised, the
Zhang et al. (2000) and (2003) models. Most of the model predictions fall within
the range of measured value ±10%.

Table 9.6: E parameter comparison between the Optimised model and the Zhang
(2000) and (2003) models.

Model E1 E2 E3 E4 E5 E6

Optimised 0.20 7.42 0.04 -833.07 9544.63 4127.28
Zhang (2003) -0.96 10.33 0.20 -2375.12 11552.08 11767.07
Zhang (2000) -4.40 12.48 0.94 -2973.03 12226.83 14729.33

Table 9.7: The FPR score shows that the Optimised model outperforms the Zhang
(2000) and (2003) models. The lower value of FPR corresponds to the more accurate
model.

Model Term1 Term2 Term3 Term4 Term5 Term6 FPR

Optimised 0 0 0 0 0 0 0
Zhang (2003) 0.18 0.57 0.18 0.72 0.74 0.72 3.12
Zhang (2000) 1 1 1 1 1 1 6

Despite the history data containing the best correlation set for every training
data point, the success of the optimisation method described here lies in the effec-
tiveness of the objective function to rediscover the optimal correlation set. The
objective function used in this study was fairly simple, but other more effective
functions may give even better results. Figure 9.8 shows that for some of the
data points the Optimised model performed worse. This is because the objective
function minimised too far from the input point and the threshold criteria did
not work for that particular point. It may be argued that the “too far” criteria
may need to be changed, but there is also another more important reason for
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Figure 9.10: History points that lead to the minimisation of the objective function
are situated on a spheroid of radius Fmin.

which this could happen.
It is important to know whether the minimisation of the objective function Fh,

defined in Equation 9.3 has a unique solution xh∗ in the history data set.
For a minimum value Fmin, a given input point of components xnew,k and a

known set of weight coefficients cW,k, k = 1, 2, . . . , 9, the locus of the points x in
the 9-dimensional hyperplane satisfying Equation 9.10:

Fmin =

√√√√ 9∑
k=1

cW,k2(xnew,k − x)2 (9.10)

is a hyperspheroid of radius Fmin (Figure 9.10). This means that all the history
points situated on the surface of the hyperspheroid, lead to a minimum value of
the objective function. This may create an ambiguous situation, because each
history point on the surface of the hyperspheroid is associated with a possibly
different optimal correlation set. The existence of a multitude of history points
leading to a minimum objective function raises the question of which one of them
to choose, and consequently which optimal correlation set to associate with the
new input data point xnew.

The solution to choosing the right history table point relies on the ranking of
the input factors. Let us assume two history data points x1,history and x2,history,
situated on the same hyperspheroid of radius Fmin. As the sensitivity analy-
sis determined that the order of influence of the input factors on the output is
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(vSL, β, vSG, d, µL, σ, ρL, ρG, µG), the solution of choosing one history data point
over the other involves the calculation of |δk| = |cW,k (xk,new − xk,h)| values, for
both points h = 1, 2, where k = vSL, β, vSG, d, µL, σ, ρL, ρG, µG.

If
∣∣δ1vSL

∣∣ < ∣∣δ2vSL

∣∣, history point 1 is chosen, and the associated optimal corre-
lation set is used for the prediction of the input xnew.

If
∣∣δ1vSL

∣∣ =
∣∣δ2vSL

∣∣, then if
∣∣δ1β

∣∣ < ∣∣δ2β

∣∣, point 1 is chosen. Otherwise, point 2
is chosen.

The idea is to minimise the components in the order dictated by the sensitivity
analysis. This procedure allows the selection of a single history data point and
therefore the selection of the optimal correlation set for the new input data point.

On the other hand, the Elementary Effects method is a global sensitivity
method and determines the input factor ranking based on the averages of the
derivatives of the output as a function of input factors. This leads to one rank-
ing over the entire input domain. This “blanket” ranking used in the objective
function does not lead to a good objective function to discover the closest point
in the history table, especially when the input factor ranking may differ locally,
from point to point. A different approach for the sensitivity analysis needs to be
taken for a more effective model optimisation.

If a local sensitivity method is applied, the influence of each input factor on
the model output varies across the range of values of the factor. Assuming the
same Fh objective function, this change means that the weight coefficients become
functions of the history data points. The objective function changes accordingly:

Fh =

√√√√ 9∑
k=1

[
c (xk,h)W,k

]2

(xknew − xk,h)
2 (9.11)

There are problems with defining the objective function in this way. Figure 9.11
shows an input data point and two history data points situated on the hyper-
spheroid of radius Fmin. Let us assume the following:

◦ In the area around history point 1 we assume vSL as the most influential
factor.

◦ In the area around history point 2 we assume d as the most influential
factor.

◦ For an input data point such that dinput = dhistory2 and vSLinput = vSLhistory1,
we need to associate one of the history data points with the new input data
point, in order to determine the optimal correlation set to be used with the
input.

The selection of one history point for this case is impossible. Unlike the previous
situation when we could use δk and the ranking of the global sensitivity values
to determine a single history point, this is not possible anymore because the
local sensitivities differ locally, from point to point. The solution to this problem
is beyond the scope of this study, but would lead to an algorithm with better
capabilities to find the optimal correlation set for each input point. Nevertheless,
even when the optimisation procedure uses global sensitivity analysis the method
ensured better model predictions than the original mechanistic model.
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Figure 9.11: The history data points have different input factor rankings. For
example, for the history data point 1 vSL has the highest influence on the model
output, followed by d and vSG.

9.4 Model optimisation using data mining

Data mining for regions of prevailing optimal correlation sets was discussed in
Section 8.4. If such a region is identified over a range of input values, then the
model using that prevailing correlation set is optimised over that input range.

Based on the input parameter ranking results in Section 9.3.1, which showed
that parameters vSL and β had the greatest influence on the model output, the
input data were sorted in ascending order of vSL. The sensitivity analysis per-
formed in Section 9.3.1 explains now why the data were sorted by values of vSL
first and then by values of β, which at the time of the discussion in Section 8.4
had not been explained.

Section 8.4 showed that by sorting the data pertaining to horizontal flow (β = 0)
by values of vSL, a fairly consistent pattern of correlations was observed for the
lower range of vSL (vSL < 0.1 m/s). The combination LcS = 1, Hc

LLS = 1, vcTB = 1,
f ci = 1 and Θc = 1 prevailed as the optimal correlation set in the range of values
vSL < 0.1 m/s and vSG < 5.9 m/s, as shown in Table A.10 and Figure 8.5.
A suggestive depiction of the sorting and partitioning procedure was shown in
Figure 8.4.

We can conclude that despite the Zhang et al. (2003) model obtaining a better
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overall score (FPR = 3.12) than the Zhang et al. (2000) model (FPR = 6) for the
24 data points, there are data sets where the correlation set LcS = 1, Hc

LLS = 10,
vcTB = 1, f ci = 2 for stratified flow or f ci = 3 for annular flow, Θ = 1, used by the
Zhang et al. (2003) model is not optimal. These data correspond to low superficial
liquid velocities, where the optimal correlation set is LcS = 1, Hc

LLS = 1, vcTB = 1,
f ci = 1, Θc = 1. This way, using data mining techniques, the original Zhang et
al. (2003) model can be optimised by adjusting the empirical correlation set over
the input range of low superficial liquid velocities, vSL < 0.1 m/s.

9.4.1 Optimisation method comparison

Although both the data mining and the history matching methods rely on
the existence of a history table, the fundamental difference between them is
that for a given input point, the first method does not need an objective
function to identify the optimal correlation set. This is because the prevailing
optimal correlation set, if it exists, is valid for an entire range of input values.
If the input point is part of this range, then the optimal correlation set to be
associated with the input point, is the prevailing correlation set.

It is important to mention that unlike the optimisation method using his-
tory matching and sensitivity analysis, the data mining method may lead
to regions of optimality. For example, the optimal correlation set LcS = 1,
Hc
LLS = 1, vcTB = 1, f ci = 1 and Θc = 1 is not optimal over the entire input range,

but only for horizontal flow (β = 0) at low superficial liquid velocities (vSL < 0.1
m/s).

9.5 Recommendations on the use of empirical

correlations in mechanistic models

Numerous papers and books (Shoham 2006; Zhang et al. 2003c; Zhang and Sarica
2006; Fan et al. 2007; Gomez et al. 2000; Ansari et al. 1994; Petalas and Aziz 2000;
Zhang and Sarica 2006) describe mechanistic models, along with the empirical
correlations used as closure relationships. The models are then tested against data
sets and the performance is analysed according to a set of statistical measures.
In light of this discussion, this study raises the following criticisms to this widely
used approach:

1. The selection of the empirical correlations in these models is independent
of the particular input data. The empirical correlations are first chosen
and then the model is tested on the data, but the feedback on the model’s
performance is not used for the selection of the correlation. This ignores
the data dependency aspect of mechanistic models. It may be argued that
the empirical correlations are chosen according to their validity domain, so
they are not data independent. However, this is a weak dependency,
because it does not take into account the particularities of the data set.
Sections 9.4 and 8.4 showed that the correlation for fi used in the Zhang
et al. (2000) model performed better than the correlations for fi in the
Zhang et al. (2003) model in the low superficial velocity domain, despite
both correlations being within their validity region. As discussed here, the
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right approach is to use the optimal correlation for predictions. As the
optimality criterion is data-dependent, optimisation using alternative co-
rrelations will always outperform the classic approach, where the empirical
correlations are not tuned to the data, in spite of them being within
their validity domain.

2. The practice of data fitting mechanistic models without replacing the em-
bedded empirical correlations is an incomplete solution to the problem.
The performance of the mechanistic models varies on different input data
sets, because of the empirical component. Trying to data fit the entire me-
chanistic model, when the root cause is the empirical component is not the
right approach.

9.6 Summary

This chapter approached the optimisation problem both as an interpolation and
extrapolation problem. The new paradigm is:

mechanistic model optimisation = correlation extrapolation + data interpolation

Given a set of input data points for which the optimal empirical correlation set is
known, the prediction of the model for a new input point in their vicinity needs
to be calculated. This is an interpolation problem. The method suggested in
this study recognises that there is a likelihood that an empirical correlation may
be valid outside its validity range. This use of empirical correlations, constitutes
an extrapolation problem. The data interpolation combined with the empirical
correlation extrapolation are used for mechanistic model optimisation.

Two optimisation methods were discussed:

1. Optimisation using a history matching algorithm based on sensi-
tivity analysis. This method relies on two elements:

◦ A history table, which is an association between an input data point
and both an optimal correlation set and a residual. The table was
built as part of the training stage, as discussed in Chapter 6.

◦ An objective function whose minimisation determines the closest
point in the history table to the input for which the output is to be
predicted. The objective function was built as a distance function in
a hyperspace, and the weight coefficient calculated based on sensitiv-
ity analysis. The minimisation, which leads to finding the optimal
correlation set for the input point, is part of the prediction phase,
as discussed in Chapter 6. A thorough discussion of the selection of
the history data point which leads to both the minimisation of the
objective function and the selection of the optimal correlation set for
the input data point was given in Section 9.3.4.

The numerical predictions performed with the Optimised, the Zhang et al.
(2000) and (2003) models using a set of 24 data points showed the following
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ranking, in the order of decreasing performance:

(a) Optimised model.

(b) Zhang et al. (2003) model.

(c) Zhang et al. (2000) model.

2. Optimisation using data mining. This method analysed the history
table by using sorting and grouping techniques. For the data set analysed
and the Zhang et al. (2000) model, it was noticed that the correlation set
LcS = 1, Hc

LLS = 1, vcTB = 1, f ci = 1, Θc = 1 prevailed and was therefore
optimal. It was concluded that in order to be optimal in the region of low
superficial velocities:

◦ The empirical correlation set in the Zhang et al. (2000) model should
not be replaced.

◦ The empirical correlation set in the Zhang et al. (2003) model should
be replaced with the optimal correlation set.

Unlike the history matching method, the optimisation using data mining may
provide only regional optimisation.

133



134



Chapter 10

Model simplification

10.1 Introduction

Chapter 9 showed the use of sensitivity analysis in model optimisation. Sensitivity
analysis was applied to model input factors to rank their effect on the output of
the mechanistic model.

The approach taken in this chapter is to use sensitivity analysis to determine
the effect of the empirical parameters on the model’s prediction. The difference
between the two approaches is illustrated in Figure 10.1. This undertaking is
important, because it establishes whether an empirical parameter requires an
accurate empirical correlation for its estimation. Sensitivity analysis applied to
empirical parameters has the following benefits:

1. It determines an easy method to improve the accuracy of the mechanistic

Figure 10.1: Mechanistic model simplification using sensitivity analysis applied to
the empirical correlation vector Φ. This is different to the optimisation case in which
sensitivity analysis was applied to the model input factors.
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model, by identifying the parameters with the greatest influence on the
model output. This allows the production engineer to easily establish a
method to improve model prediction by replacing the empirical correlation
that estimates the parameter with the greatest influence on the output,
with a more accurate one.

2. It sets a direction for experimental research to find better empirical correla-
tions for the empirical parameters that have greater influence on the model
output.

3. It determines the model parameters that have a minimal influence on the
model output and hence, only need to be assigned educated guess values
or be calculated with less accurate empirical correlations. Therefore, the
model calculation algorithm could be simplified by maintaining constant
these empirical parameters. This is beneficial for cases when an empirical
correlation is difficult to find, or be developed, or has a highly computational
component.

The investigation was triggered by the fact that numerous papers discuss fric-
tion factor correlations and some focus on the interfacial friction factor (Liu et al.
2008; Shoham and Xiao 1991; Ouyang and Aziz 1996; Kowalski 1987; Cohen and
Hanratty 1968). On the other hand, there are mechanistic models such as the
Shoham slug flow model, described in Section E.6 in Appendix E, that in spite
of not taking into account the interfacial friction factor, still offer reasonable pre-
diction capabilities (Shoham 2006). This raised the question of the effect of the
interfacial friction factor fi on the prediction of slug flow mechanistic models.

10.2 Case study - Empirical parameter

sensitivity of the Zhang et al. mechanistic

model

10.2.1 Sensitivity analysis

We will now determine the effect of the empirical parameters LS, vTB, HLLS,
fi and Θ on the Zhang et al. model prediction and review the three benefits
mentioned previously in Section 10.1. The Morris Elementary Effects method
(Section B.1, Appendix B) is applied to the Zhang model core. The mechanistic
model core is defined as the model without its empirical components.

Ranking of the empirical parameters LS, HLLS, vTB, fi and Θ
The minimum and maximum values of the empirical parameters were de-
termined for the selected data sample of 95 slug flow data points (Sec-
tion 2.5) and are shown in Table 10.1. The experimental measurements of
Roumazeilles (1994) and Yang (1996) show that the slug liquid holdup can
become as low as 0.24. Therefore, the minimum value of HLLS was set to
0.24.

For the purpose of model simplification analysis, these empirical parame-
ters have a uniform distribution, so the elementary effects method can be

136



Table 10.1: The minimum and maximum values of the input factor for the considered
data sample.

Input factor Minimum Maximum Unit [SI]

LS 0.423 45.439 m
HLLS 0.240 1.000 -
vTB 0.178 8.777 m/s
fi 0.000 0.172 -
Θ 0.269 1.000 -

Table 10.2: The value of the input factor normalised Morris means for different
values of r = number of trajectories.

Input factor r = 5 r = 5 r = 10 r = 10 r = 100 r = 1000
run 1 run 2 run 1 run 2 run 1 run 1
case 1 case 2 case 3 case 4 case 5 case 6

LS 0.000001 0.000001 0.000000 0.000000 0.000001 0.000000
HLLS 0.794618 0.419211 0.347085 0.260221 0.451215 0.438789
vTB 0.165120 0.470886 0.347472 0.421766 0.399322 0.366599
fi 0.000000 0.000002 0.000000 0.000000 0.000003 0.000011
Θ 0.040261 0.109900 0.305443 0.318013 0.149459 0.194601

Table 10.3: Ranking of the empirical parameters in the order from the most influ-
ential (highest value) to the least influential (lowest value).

Input Factor Normalised Morris mean

Liquid holdup in the slug (HLLS) 0.438789
Velocity of Taylor bubble (vTB) 0.366599

Wetted wall fraction (Θ) 0.194601
Interfacial friction factor (fi) 0.000011

Liquid slug length (LS) 0.000000

applied without any prior processing.

Selection of the cell, ∆ and parameter r = number of random
trajectories
The number of trajectories in the Morris Elementary Effects method was
determined as the minimum value for which the values of Morris normalised
means have stabilised, as shown in both Table 10.2 and Figure 10.2. For
a number of cells p = 100, this number of trajectories is r = 1000. The
last column in Table 10.2 is transferred to Table 10.3, which has the final
stabilised values of the normalised means. The sensitivities are assigned
these values.

Result interpretation The suite of GNU Octave programs in the Sensitivity
Analysis folder on the attached CD were written to implement the Morris
method.

The means calculated by the Morris method, given in Table 10.3 and Fig-
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Figure 10.2: Selection of the r = number of trajectories parameter, based on
stabilisation of the normalised Morris means.

Figure 10.3: Ranking of the empirical parameters from the highest value as the
most influential (highest normalised mean) to the least influential (lowest normalised
mean).

ure 10.3 show the ranking of the empirical parameters, in the order of the
most influential to the least influential. Similarly, Table 10.4 lists the stan-
dard deviations, which show the interaction effects between parameters.
Low values of both Morris mean (µ) and standard deviation (σ), as shown
in both Tables 10.3 and 10.4 for the entries of LS and fi, correspond to
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Table 10.4: Degrees of correlation between the empirical parameters, with the
highest correlation value first.

Parameter Normalised Standard Deviations

HLLS 0.393804
vTB 0.378810
Θ 0.227305
fi 0.000080
LS 0.000001

non-influential input. Due to the difference in the order of magnitude be-
tween the last two terms (fi and LS) and the first three (HLLS, vTB and Θ)
in Table 10.3, we can conclude the following:

1. A method to quickly improve the accuracy of the model, is to find
better correlations for HLLS, vTB and Θ for the input domain
where the model will be used.

2. Research in the areas of liquid holdup, liquid wetted wall frac-
tion and Taylor bubble translational velocity will have a positive
influence on the model’s prediction capability.

3. The model could be simplified by keeping fi and LS constant. In
fact, Cohen and Hanratty (1968) suggested a constant value of fi =
0.0142 for stratified wavy flow in the liquid film area of the slug unit.

10.2.2 A simplified mechanistic model obtained from the
Zhang et al. slug flow model

To analyse the performance of the simplified models obtained by keeping constant
LS and fi, we need to use a mechanistic model whose empirical correlations do not
assign constant values to these parameters. Therefore, the Zhang et al. (2000)
model is not suitable, because it uses the Cohen and Hanratty correlation, which
simply assigns fi = 0.0142. A suitable candidate is the Zhang et al. (2003) model,
because it does not use the Cohen and Hanratty correlation for fi. Instead, the
model uses:

◦ The Andritsos and Hanratty correlation for fi when the flow in the film
zone is stratified.

◦ The Asali and Ambrosio correlation for fi, when the flow in the film zone
is annular (Zhang et al. 2003c).

Therefore, the numerical simulation compares the following four models:

1. The Zhang et al. (2003) mechanistic model that keeps both LS and fi
constant.

2. The Zhang et al. (2003) model that only keeps LS constant.

3. The Zhang et al. (2003) model that only keeps fi constant.
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4. The Zhang et al. (2003) model, with its original empirical correlations
for LS and fi.

on the same data set of 95 slug flow data points, discussed in Section 2.5.
The following constant values are assigned to LS and fi in the first three models:

◦ fi = 0.0142 following Cohen and Hanratty (1968), who suggested this value
for stratified wavy flow. The data sample pertains to near-horizontal flow.
This means that stratified flow is very likely to occur. If the inclination
angle had been outside the range [0◦ . . .+ 10◦], stratified flow would not
have occurred and this value would have been incorrect.

◦ LS kept constant at a value equal to its average value. The maximum
and minimum values were obtained by running the Optimised Zhang model
on the history data. A minimum value of 0.423 m and a maximum value
of 45.439 m were determined for LS. Therefore, the average value of LS =
22.931 m was chosen.

10.3 Analysis of the performance of the

simplified Zhang models

The program that implements the simplified models is found on the attached CD
in the Simplification folder.

The predictions of the simplified models are compared to the predictions of the
Zhang et al. (2003) model. The simulation results are shown in Tables A.12-
A.15. The performance comparison results are presented in Table 10.5 and show
that for the input data considered:

1. The first two simplified models (LS and fi constant, and LS constant)
have a very similar performance factor: FPR (LS = ct, fi = ct) = 0.854,
FPR (LS = ct) = 0.861.

2. The last two models (fi constant and the original Zhang et al. (2003)
model) have almost the same performance factor: FPR (fi = ct) = 2.996,
FPR (Zhang2003) = 3.002.

3. The first two models perform better than the last two models.

10.3.1 Discussion of the simulation results

A spike is noticed in the output of the first two simplified models, as shown in
Figure 10.4, for data point (test 934 CRE37, Tables A.12-A.13). This occurs
for the model that keeps constant both LS and fi, and for the model that keeps
constant LS. The sensitivity analysis in Table 10.3 concluded that fi had a greater
influence on the output than LS. Therefore, relative to the spike in Figure 10.4,
it would be expected that a higher contribution to the spike would come from
fi. This means that the model that keeps fi constant should exhibit a similar
spike for data point (test 934 CRE37). However, the line for fi = constant in
Figure 10.4 shows exactly the opposite. Once fi is maintained constant and
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Table 10.5: E parameter comparison between the cases when (LS = ct and fi = ct),
(LS = ct), (fi = ct) and the Zhang et al. model. The lower values of FPR show the
first two models perform better.

Model E1 E2 E3 E4 E5 E6 FPR

LS = ct
and

-2.350 16.630 22.800 573.620 10750.190 5659.374 0.854

fi = ct
LS = ct -2.343 16.628 22.737 575.599 10750.420 5677.752 0.861
fi = ct 0.159 11.111 1.714 1267.311 10855.920 12293.570 2.996
Zhang 0.162 11.110 1.735 1268.115 10856.040 12301.370 3.002
(2003)

Figure 10.4: The simplified models (blue, red and green lines) follow closely the
Zhang et al. (2003) model predictions (purple line).

LS estimated by an empirical correlation, the spike disappears. This apparently
contradicts the statement that fi has a greater influence than LS on the model
output.

The explanation lies in the fact that the statement we made was incomplete.
It is true that the influence of fi is greater, but on the average, not on a point by
point basis. If we examine the method we used in the sensitivity analysis section
to rank the empirical parameters (Section B.1, Appendix B), we see that the
Elementary Effects method is a global sensitivity method and it calculates the
mean of the derivatives for each input parameter. The ranking of the influence of
the input parameters on the output of the model is based on sorting these means.
In other words, the level of influence is based on averages of the input domain
and consequently does not apply to an individual point, but on the average of
the values in the input domain.

As this study was approaching completion a paper was published (Sarica,
Zhang, and Wilkens 2011) by some of the authors of the Zhang et al. slug flow
model, in which they perform a sensitivity analysis study on the influence of the
slug length LS on the slug flow models of Ansari (1994) and Zhang et al. (2000,
2003c). They conclude that for all three models the liquid slug length LS input
factor showed negligible influence on the model output. Their study showed that
the Zhang et al. model manifested an increased LS sensitivity at high gas flow
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rates.
These results are in complete agreement with this study. Nevertheless, this

study also shows a low influence of the interfacial friction factor fi and that the
important correlations that affect the prediction performance of the Zhang et al.
mechanistic model are: the liquid holdup in the slug, HLLS and the Taylor bubble
velocity vTB. This means that in order to improve the prediction capabilities of
the Zhang et al. model, the empirical correlations for these two factors need to
be updated.

10.3.2 The performance of the model with fi = constant

Over the years many research papers have been dedicated to correlations for the
prediction of the interfacial friction factor fi. The global sensitivity result in
Table 10.3, which shows that for the Zhang et al. model the interfacial friction
factor has a very low contribution to the model output, is puzzling. Further
investigation of the reasons why the research community allocated such a high
importance to fi was required. Most of the research papers review or determine
new correlations for fi in stratified flow in near-horizontal pipelines (Liu et al.
2008; Shoham and Xiao 1991; Ouyang and Aziz 1996; Kowalski 1987; Cohen
and Hanratty 1968). It is widely accepted that the interfacial friction factor in
stratified flow is associated with the onset of roll waves and slug flow (Liu et al.
2008; Shoham and Xiao 1991). Since slug flow derives from different interfacial
wave patterns, Zhang et al. (2008) analyse the mechanism for the transition to
slug flow. Classical Kelvin-Helmholtz stability was usually applied for inviscid
fluids to explain the transition. Zhang et al. (2008) argue that the instability of
a stratified flow is only a necessary condition for slugs to appear. The sufficient
condition is slug stability, without which slugs form but gradually may disappear
in time. Liu et al. (2008) show that the fraction fi

fGW
has a direct effect on the

stability of the slug flow. They suggest that if there is no fluctuation between
the gas and liquid phases, fi could be approximated by fGW , the gas-wall friction
factor. However, as soon as the interfacial waves appear, fi becomes larger than
fGW . This is partially in agreement with the results of Cohen and Hanratty
(1968) who suggested fi = fGW for fGW > 0.0142 and fi = 0.0142 for stratified
wavy flow.

This explains the result obtained in this study, which considered a near-horizon-
tal pipeline data sample of stable slug flow, with mostly stratified flow in the
film zone area. According to Cohen and Hanratty, fi should be set constant,
which explains the low sensitivity shown in Table 10.3. In other words, the low
sensitivity of the model towards fi applies to the chosen data sample, but if
another data sample had been chosen (which included annular flow in the film
zone area of the slug unit), the sensitivity may have been higher.

10.4 Summary

The following can be concluded:

◦ The slug length LS was found to have little influence on the output of the
Zhang et al. model. This is in agreement with the current research (Sarica,
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Zhang, and Wilkens 2011), which showed low influence of LS on several
slug flow models.

◦ The interfacial friction factor was found to have a low influence on the
output. This is in agreement with the research (Cohen and Hanratty 1968),
which predicted low sensitivity for stratified flow, so we conclude that this
may be due to the nature of the data sample. For the particular input data
sample used in this study, the model that assumes fi = constant performs
slightly better than the Zhang et al. (2003) model.

◦ The empirical correlations for HLLS, vTB, Θ have a high contribution to
the model predictions and better empirical correlations for these model
parameters would definitely improve the model’s performance.

◦ For the selected data bank, the simplified models that keep LS and fi
constant, and LS constant, offered better predictions than the model using
empirical correlations for the estimation of these parameters.
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Chapter 11

Conclusions and
recommendations for future work

As offshore production moves into deeper waters farther offshore, the formation of
undesirable substances, such as wax and hydrates, starts occurring. The majority
of empirical correlations, developed in flow test facilities for onshore conditions,
do not produce accurate predictions for offshore conditions. Consequently, the
mechanistic models using these empirical correlations may become unusable off-
shore. As flow data from offshore production facilities become available, either
new correlations developed for the new conditions need to replace existing co-
rrelations in the model, or, as this study suggests, other correlation sets, not
necessarily specifically developed for the new offshore conditions could be used.
In either of these situations, the empirical correlations in the mechanistic flow
model need to be replaced by other correlations.

This study addresses this practical problem and proposes a framework for re-
placing empirical correlations in mechanistic models. This approach to empi-
rical correlations in mechanistic models has not been taken before by
any other research studies and the framework proposed here is the first
in this field. This theoretical framework can be applied in a very similar fashion
to any mechanistic model, irrespective of the process being modelled.

The conclusions of this study are:

1. The process of using alternative empirical correlations for the same model
parameter may involve changes in the structure of the calculation
algorithm of the mechanistic model. This means that one cannot “unplug”
an existing empirical correlation and replace it by “plugging in” another
correlation. To this end, a method was proposed in Chapter 7 to analyse
the structural changes of the algorithm and place the empirical parameter
at the appropriate step. The method, which uses functional dependency
analysis and directed graphs, was shown in Section 7.5.

2. Two main applications of the framework for using alternative empirical
correlation sets have been identified:

(a) Mechanistic model optimisation. Chapter 6 outlined a hybrid
modelling approach to model optimisation. The training phase dis-
cussed in Chapter 8, proposes a curve-fitting method based on us-
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ing multiple empirical correlation sets, for the purpose of building a
history table. This ensures that the model is “trained” first on a
given input/output data set, to know the optimal correlation sets for
each such data 2-tuple. The table is the fundamental element for two
prediction methods proposed by this study:

i. Optimal prediction using a history matching algorithm
based on sensitivity analysis. Along with the history table,
this prediction method is based on the minimisation of an objec-
tive function, whose weight coefficients are calculated using sensi-
tivity analysis. The minimisation determines the optimal correla-
tion set to be used for output prediction, depending on where the
input is located in the input domain.
This was exemplified in Section 9.3.1, as a case study of the Zhang
et al. (2000) slug flow model, where an objective function was built
based on the elementary effects global sensitivity analysis method.
It was shown that the optimised model had a performance supe-
rior to that of the original model. A general procedure to optimise
a mechanistic model was described in Section 9.3.2.

ii. Optimal prediction using data mining. This method is based
on data mining techniques, such as sorting and partitioning of the
history table, in order to determine regions where one optimal co-
rrelation set prevails. Unlike the previous prediction method, this
may only lead to regional optimisations.
For the TUFFP data set analysed, it was noticed that the corre-
lation set LS = 1, HLLS = 1, vTB = 1, fi = 1, Θ = 1 prevailed in
the region of low superficial liquid velocities, vSL < 0.1 m/s. This
means that:

◦ The empirical correlations in the Zhang et al. (2000) model
are optimal for the selected data bank.

◦ In order to be optimal in the region of low superficial velocities,
the Zhang et al. (2003) model’s empirical correlation set has
to be replaced with the set: LS = 1, HLLS = 1, vTB = 1,
fi = 1, Θ = 1.

(b) Mechanistic model simplification. In cases where empirical corre-
lations are difficult to find, or the computational intensity of the corre-
lations is high, sensitivity analysis, as shown in Chapter 10 may offer
the answer to simplifying the model. The case study of the Zhang et
al. model described in Section 10.2 showed that for the particular data
sample used, the simplified models obtained by keeping the interfacial
friction factor fi and the length of the slug LS constant, performed
better than the Zhang et al. (2003) model, which used empirical co-
rrelations for the calculation of these empirical parameters.

3. In order to identify which model parameter brings about the high-
est improvement in model prediction, the study proposes a sensitivity
analysis method be applied to the model, for the input domain used in the
application. This will determine which empirical parameter requires an in-
vestigation for more accurate empirical correlations.
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In the case of Zhang et al. model, the sensitivity analysis performed in Sec-
tion 10.2 and shown in Table 10.3 revealed that correlations for HLLS have
the highest influence on the model predictions. Therefore, for the Zhang et
al. model, investigations into finding better correlations for HLLS can bring
significant improvements to the model.

Empirical correlations in mechanistic models make them data-sensitive, to
the extent that they become data-driven. This study suggests that before ap-
plying a mechanistic model that contains empirical correlations to production
data, a set of alternative empirical correlations be applied first, in order to opti-
mise the model. Section 9.4 gives the example of the Zhang et al. mechanistic
flow model, where the authors replaced empirical correlations between successive
versions of the model in order to improve its performance. However, this study
has shown that for the selected data range, the “improved” model performed
worse. This emphasizes the idea that a framework for empirical correlation
replacement should be applied to the model first, before it is used on
any production data.

11.1 Recommendations for further research

1. The study showed that in the case of the Zhang et al. (2000) and (2003)
mechanistic models, the parameter LS had a negligible influence on the out-
put. This is a confirmation of recent research (Sarica, Zhang, and Wilkens
2011), which analysed multiple slug flow models and reached the same con-
clusion. The sensitivity analysis performed in Section 10.2 showed that
parameters HLLS, vTB and Θ have a high influence on the model output.
A recommendation is made to assess the influence of these factors on other
well-known mechanistic models. Should the results be consistent with the
results in this study, which only analysed the Zhang et al. model, it could
be concluded that research in the area of improving empirical correlations
for liquid holdup, Taylor bubble velocity and wetted wall fraction
is of the greatest importance for improving the accuracy of mechanistic slug
flow models.

2. The previous recommendation can be generalised by making a research
proposition to investigate multiple mechanistic models for a certain process,
and perform sensitivity analysis on their empirical parameters. This inves-
tigation would determine the most influential empirical parameters for each
one of them and identify a common set of influential parameters. Further
on, these parameters would determine the class of empirical correlations
that needs to be further researched to bring the best accuracy improvement
in the entire group of mechanistic models considered.

3. The development of a mechanistic model, from a collection of first prin-
ciple equations and empirical correlations into a calculation algorithm is a
complex process. The mapping is sometimes not unique, and multiple calcu-
lation algorithms may exist for the same series of equations. The functional
dependency graph discussed in Chapter 7 could be used to this end. A
research initiative is suggested here to develop an algorithm to convert the
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series of model equations into a calculation algorithm. Not only would this
help with the development of a calculation algorithm, but also with the
identification of equivalent calculation algorithms and the selection of the
best performing one.
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Appendix A

Tables

A.1 Data tables
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A.2 Empirical correlation codification

Tables throughout this research study make reference to empirical correlations
by their code number. The codification correlation number-correlation name is
specified in Tables A.2- A.6.

Table A.2: Empirical correlations for the calculation of parameter LS and their
codification.

Code Empirical correlation for LS

1 Zhang
2 Scott
3 Felizola and Shoham

Table A.3: Empirical correlations for the calculation of parameter HLLS and their
codification.

Code Empirical correlation for HLLS

1 Gregory
2 Gomez
3 Barnea and Brauner
4 Eissa Al-Safran
5 Woldesmayat and Ghajar
6 Toshiba and Leung
7 Spedding and Spencer
8 Minami and Brill
9 Nicklin

10 Zhang

Table A.4: Empirical correlations for the calculation of parameter vTB and their
codification.

Code Empirical correlation for vTB

1 Bendiksen
2 Dukler and Hubbard
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Table A.5: Empirical correlations for the calculation of parameter fi and their cod-
ification.

Code Empirical correlation for fi

1 Cohen and Hanratty
2 Andritsos
3 Ouyang and Aziz
4 Bendiksen
5 Vlachos

Table A.6: Empirical correlations for the calculation of parameter Θ and their cod-
ification.

Code Empirical correlation for Θ

1 Grolman
2 Biberg
3 Fan
4 Hart
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A.3 Model comparison tables

Table A.7: Zhang et al. (2000) PG predicted values against the measured values
for each test in the selected data bank. PG Err[%] = (PG-measured PG)/measured
PG × 100.

No Test Predicted Measured Predicted
no PG [Pa/m] PG [Pa/m] PG Err [%]

97 AND97 32.75 26.69 -14.29
113 AND113 80.47 88.44 -17.87
129 AND129 196.42 192.95 0.55
343 AND343 64.78 51.57 -22.08
536 BEG1 68.79 92.74 -34.81
537 BEG2 69.08 92.74 -34.53
538 BEG3 333.74 339.30 -1.39
539 BEG4 337.24 339.30 -0.33
548 BEG13 59.38 54.28 -44.51
549 BEG14 59.37 54.28 -44.62
550 BEG15 998.12 1131.02 -22.23
551 BEG16 1006.31 1131.02 -22.16
574 BEG39 709.96 678.61 4.99
575 BEG40 716.94 678.61 6.00
580 BEG45 148.74 180.96 -21.22
581 BEG46 149.42 180.96 -20.85
582 BEG47 5483.87 5315.82 3.90
583 BEG48 5977.64 6175.40 -2.50
588 BEG53 1996.46 2488.25 -19.16
589 BEG54 2022.40 2488.25 -18.09
596 BEG61 1205.91 1040.54 15.98
617 BEG82 2975.82 2714.46 10.00
619 BEG84 6617.60 6673.05 2.35
629 BEG94 689.95 570.03 20.62
650 BEG115 2443.98 2035.84 20.05
659 BEG124 324.29 339.30 -9.15
660 BEG125 691.40 769.09 -10.06
661 BEG126 2391.87 1945.36 23.97
662 BEG127 269.09 282.75 -20.48
665 BEG130 183.09 180.96 -21.92
666 BEG131 1699.97 1764.40 -10.67
673 BEG138 399.79 361.92 -7.06
678 BEG143 1132.10 1063.16 6.59
681 BEG146 405.62 429.78 -8.26
682 BEG147 4233.17 3393.07 25.55
684 BEG149 7532.78 7238.56 4.41
685 BEG150 385.82 316.68 -0.56
689 BEG154 2725.35 3279.97 -16.54
690 BEG155 870.42 972.68 -10.71

Continued on next page
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Table A.7 – continued from previous page
No Test Predicted Measured Predicted

no PG [Pa/m] PG [Pa/m] PG Err [%]
692 BEG157 587.71 622.06 -9.74
693 BEG158 1058.41 1198.88 -12.01
694 BEG159 2895.03 2375.15 22.48
695 BEG160 409.57 497.65 -29.60
698 BEG163 313.89 339.30 -24.25
699 BEG164 2399.22 2465.63 -7.79
705 BEG170 807.34 723.85 4.96
706 BEG171 524.17 497.65 -11.21
711 BEG176 1166.20 1357.23 -14.16
714 BEG179 674.79 701.23 -6.41
715 BEG180 4778.89 4003.83 19.88
722 BEG187 3441.57 3393.07 1.66
723 BEG188 1517.20 1447.71 4.54
901 CRE4 23.20 26.69 -21.24
906 CRE9 113.87 99.07 -23.07
934 CRE37 15.30 15.60 36.92

1188 MUK1 3992.32 3923.30 5.56
1190 MUK3 860.87 1016.11 13.82
1191 MUK4 844.36 949.38 19.46
1202 MUK15 401.91 356.04 12.57
1203 MUK16 466.35 407.84 13.83
1209 MUK22 869.17 1030.81 13.40
1210 MUK23 422.14 407.84 2.98
1211 MUK24 518.92 459.87 11.90
1213 MUK26 166.61 215.12 -25.24
1214 MUK27 521.86 437.48 12.55
1227 MUK40 819.57 674.99 21.15
1245 MUK58 3854.73 4323.91 -1.27
1250 MUK63 1223.83 993.71 15.76
1252 MUK65 607.48 660.06 -9.09
1256 MUK69 164.54 163.09 -34.54
1258 MUK71 426.23 511.67 -47.61
1270 MUK83 473.34 519.14 -10.66
1271 MUK84 494.19 511.67 -4.94
1272 MUK85 444.97 519.14 -16.63
1274 MUK87 570.75 667.53 -26.08
1281 MUK94 296.85 244.75 13.78
1282 MUK95 468.85 422.77 8.58
1283 MUK96 589.40 526.60 10.32
1284 MUK97 623.85 615.50 1.13
1285 MUK98 699.78 726.79 -3.70
1286 MUK99 1005.07 1016.11 -1.57
1287 MUK100 1022.26 1016.11 0.36
1288 MUK101 1065.56 1016.11 4.37

Continued on next page
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Table A.7 – continued from previous page
No Test Predicted Measured Predicted

no PG [Pa/m] PG [Pa/m] PG Err [%]
1289 MUK102 609.65 615.50 -2.92
1291 MUK104 857.06 741.72 9.87
1292 MUK105 705.25 741.72 -8.26
1298 MUK111 941.71 919.75 2.31
1337 MUK150 297.36 341.11 -34.10
1338 MUK151 524.42 459.87 -9.07
1339 MUK152 584.24 489.50 -6.98
1340 MUK153 260.31 252.21 -28.87
1343 MUK156 156.36 185.48 -35.87
1344 MUK157 73.20 88.89 -40.75
1345 MUK158 216.16 252.21 -60.22
1354 MUK167 119.24 133.46 -51.26
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Table A.8: Zhang et al. (2003) pressure gradient (PG) predicted values against the
measured values for each test in the selected data bank. PG Err[%] = (PG-measured
PG)/measured PG × 100.

No Test Predicted Measured Predicted
no PG [Pa/m] PG [Pa/m] PG Err [%]

97 AND97 32.75 26.69 22.71
113 AND113 80.47 88.44 -9.01
129 AND129 196.42 192.95 1.79
343 AND343 64.78 51.57 25.60
536 BEG1 68.79 92.74 -25.82
537 BEG2 69.08 92.74 -25.51
538 BEG3 333.74 339.30 -1.63
539 BEG4 337.24 339.30 -0.60
548 BEG13 59.38 54.28 9.38
549 BEG14 59.37 54.28 9.37
550 BEG15 998.12 1131.02 -11.75
551 BEG16 1006.31 1131.02 -11.02
574 BEG39 709.96 678.61 4.61
575 BEG40 716.94 678.61 5.64
580 BEG45 148.74 180.96 -17.80
581 BEG46 149.42 180.96 -17.42
582 BEG47 5483.87 5315.82 3.16
583 BEG48 5977.64 6175.40 -3.20
588 BEG53 1996.46 2488.25 -19.76
589 BEG54 2022.40 2488.25 -18.72
596 BEG61 1205.91 1040.54 15.89
617 BEG82 2975.82 2714.46 9.62
619 BEG84 6617.60 6673.05 -0.83
629 BEG94 689.95 570.03 21.03
650 BEG115 2443.98 2035.84 20.04
659 BEG124 324.29 339.30 -4.42
660 BEG125 691.40 769.09 -10.10
661 BEG126 2391.87 1945.36 22.95
662 BEG127 269.09 282.75 -4.83
665 BEG130 183.09 180.96 1.17
666 BEG131 1699.97 1764.40 -3.65
673 BEG138 399.79 361.92 10.46
678 BEG143 1132.10 1063.16 6.48
681 BEG146 405.62 429.78 -5.62
682 BEG147 4233.17 3393.07 24.75
684 BEG149 7532.78 7238.56 4.06
685 BEG150 385.82 316.68 21.83
689 BEG154 2725.35 3279.97 -16.90
690 BEG155 870.42 972.68 -10.51
692 BEG157 587.71 622.06 -5.52
693 BEG158 1058.41 1198.88 -11.711
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Table A.8 – continued from previous page
No Test Predicted Measured Predicted

no PG [Pa/m] PG [Pa/m] PG Err [%]
694 BEG159 2895.03 2375.15 21.88
695 BEG160 409.57 497.65 -17.69
698 BEG163 313.89 339.30 -7.48
699 BEG164 2399.22 2465.63 -2.69
705 BEG170 807.34 723.85 11.53
706 BEG171 524.17 497.65 5.32
711 BEG176 1166.20 1357.23 -14.07
714 BEG179 674.79 701.23 -3.77
715 BEG180 4778.89 4003.83 19.35
722 BEG187 3441.57 3393.07 1.42
723 BEG188 1517.20 1447.71 4.79
901 CRE4 23.20 26.69 -13.05
906 CRE9 113.87 99.07 14.93
934 CRE37 15.30 15.60 -1.94

1188 MUK1 3992.32 3923.30 1.75
1190 MUK3 860.87 1016.11 -15.27
1191 MUK4 844.36 949.38 -11.06
1202 MUK15 401.91 356.04 12.88
1203 MUK16 466.35 407.84 14.34
1209 MUK22 869.17 1030.81 -15.68
1210 MUK23 422.14 407.84 3.50
1211 MUK24 518.92 459.87 12.84
1213 MUK26 166.61 215.12 -22.54
1214 MUK27 521.86 437.48 19.28
1227 MUK40 819.57 674.99 21.41
1245 MUK58 3854.73 4323.91 -10.85
1250 MUK63 1223.83 993.71 23.15
1252 MUK65 607.48 660.06 -7.96
1256 MUK69 164.54 163.09 0.88
1258 MUK71 426.23 511.67 -16.69
1270 MUK83 473.34 519.14 -8.82
1271 MUK84 494.19 511.67 -3.41
1272 MUK85 444.97 519.14 -14.28
1274 MUK87 570.75 667.53 -14.49
1281 MUK94 296.85 244.75 21.28
1282 MUK95 468.85 422.77 10.89
1283 MUK96 589.40 526.60 11.92
1284 MUK97 623.85 615.50 1.35
1285 MUK98 699.78 726.79 -3.71
1286 MUK99 1005.07 1016.11 -1.08
1287 MUK100 1022.26 1016.11 0.60
1288 MUK101 1065.56 1016.11 4.86
1289 MUK102 609.65 615.50 -0.95
1291 MUK104 857.06 741.72 15.54

Continued on next page
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Table A.8 – continued from previous page
No Test Predicted Measured Predicted

no PG [Pa/m] PG [Pa/m] PG Err [%]
1292 MUK105 705.25 741.72 -4.91
1298 MUK111 941.71 919.75 2.38
1337 MUK150 297.36 341.11 -12.82
1338 MUK151 524.42 459.87 14.03
1339 MUK152 584.24 489.50 19.35
1340 MUK153 260.31 252.21 3.20
1343 MUK156 156.36 185.48 -15.69
1344 MUK157 73.20 88.89 -17.643
1345 MUK158 216.16 252.21 -14.29
1354 MUK167 119.24 133.46 -10.65
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Table A.9: The history table generated by the curve-fitting method during the
training stage.

No Test LS HLLS vTB fi Θ ỹ yt Rmin

no. corr. corr. corr. corr. corr.
no. no. no. no. no. [Pa/m] [Pa/m] [Pa/m]

97 AND97 1 4 2 5 2 27.43 26.69 0.74
113 AND113 3 10 1 4 3 88.56 88.45 0.11
129 AND129 1 1 1 4 1 194.01 192.95 1.06
343 AND343 1 4 1 4 4 51.66 51.57 0.09
536 BEG1 3 3 2 3 3 92.34 92.74 0.40
537 BEG2 3 10 2 2 1 92.75 92.74 0.01
538 BEG3 3 10 1 1 1 338.68 339.31 0.63
539 BEG4 1 1 1 1 1 338.16 339.31 1.15
548 BEG13 1 4 1 1 2 55.22 54.29 0.93
549 BEG14 1 4 1 1 2 55.15 54.29 0.86
550 BEG15 1 2 1 4 4 1027.94 1131.03 103.09
551 BEG16 1 2 1 4 4 1037.06 1131.03 93.97
574 BEG39 1 7 1 3 1 678.49 678.62 0.13
575 BEG40 1 4 2 4 2 682.54 678.62 3.92
580 BEG45 1 2 2 1 2 180.56 180.96 0.40
581 BEG46 1 2 2 1 2 180.76 180.96 0.20
582 BEG47 3 9 2 1 1 5318.42 5315.82 2.60
583 BEG48 1 10 2 3 1 6193.62 6175.40 18.22
588 BEG53 1 7 1 3 2 2415.46 2488.26 72.80
589 BEG54 1 7 1 3 2 2453.93 2488.26 34.33
596 BEG61 3 10 1 3 2 1035.18 1040.54 5.36
617 BEG82 3 2 2 4 1 2724.01 2714.46 9.55
619 BEG84 1 9 1 4 1 6672.28 6673.05 0.77
629 BEG94 1 10 2 1 1 572.12 570.04 2.08
650 BEG115 1 1 2 3 2 2020.63 2035.85 15.22
659 BEG124 2 4 1 5 4 336.67 339.31 2.64
660 BEG125 2 10 2 1 1 767.66 769.10 1.44
661 BEG126 2 10 2 5 2 1941.90 1945.36 3.46
662 BEG127 1 2 2 1 1 277.24 282.76 5.52
665 BEG130 1 4 1 2 2 180.78 180.96 0.18
666 BEG131 1 2 1 4 4 1721.87 1764.40 42.53
673 BEG138 3 4 2 1 1 351.90 361.93 10.03
678 BEG143 1 3 1 1 3 1058.92 1063.16 4.24
681 BEG146 1 8 1 1 3 428.58 429.79 1.21
682 BEG147 1 4 1 1 2 3497.53 3393.08 104.45
684 BEG149 2 4 1 4 1 7296.15 7238.57 57.58
685 BEG150 1 1 2 4 2 317.60 316.69 0.91
689 BEG154 3 5 2 1 2 2773.46 3279.97 506.51
690 BEG155 2 4 2 4 4 1009.56 972.68 36.88
692 BEG157 3 10 1 4 4 627.04 622.06 4.98
693 BEG158 1 10 2 4 1 1211.75 1198.89 12.86
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Table A.9 – continued from previous page
No Test LS HLLS vTB fi Θ ỹ yt Rmin

no. corr. corr. corr. corr. corr.
no. no. no. no. no. [Pa/m] [Pa/m] [Pa/m]

694 BEG159 1 3 2 1 2 2373.40 2375.15 1.75
695 BEG160 3 10 1 4 4 498.61 497.65 0.96
698 BEG163 3 10 1 4 4 341.30 339.31 1.99
699 BEG164 2 2 1 4 4 2407.96 2465.64 57.68
705 BEG170 1 4 1 4 1 728.15 723.86 4.29
706 BEG171 1 10 1 4 3 506.79 497.65 9.14
711 BEG176 3 10 2 1 1 1316.61 1357.23 40.62
714 BEG179 3 10 1 1 1 684.92 701.24 16.32
715 BEG180 1 4 1 1 2 4041.62 4003.83 37.39
722 BEG187 1 5 2 1 2 3404.72 3393.08 11.64
723 BEG188 1 8 2 1 1 1447.58 1447.71 0.13
901 CRE4 1 10 1 1 2 26.72 26.69 0.03
906 CRE9 3 2 2 4 4 99.32 99.08 0.24
934 CRE37 1 10 1 1 1 15.31 15.61 0.30

1188 MUK1 1 8 2 3 1 3967.79 3923.30 44.49
1190 MUK3 1 5 1 5 1 1019.75 1016.11 3.64
1191 MUK4 1 4 2 4 3 949.59 949.38 0.21
1202 MUK15 1 5 1 3 1 355.45 356.05 0.60
1203 MUK16 1 2 1 1 2 405.83 407.85 2.02
1209 MUK22 1 9 2 4 3 1033.61 1030.82 2.79
1210 MUK23 1 3 2 1 1 406.71 407.85 1.14
1211 MUK24 2 1 2 4 2 460.41 459.88 0.53
1213 MUK26 1 7 1 3 3 216.18 215.12 1.06
1214 MUK27 1 3 2 4 2 456.30 437.48 18.82
1227 MUK40 1 4 1 3 3 672.23 675.00 2.77
1245 MUK58 3 1 2 3 2 4320.49 4323.91 3.42
1250 MUK63 2 1 2 4 2 995.57 993.72 1.85
1252 MUK65 1 1 1 1 2 659.83 660.07 0.24
1256 MUK69 1 10 1 4 4 163.72 163.09 0.63
1258 MUK71 3 10 1 4 3 514.76 511.68 3.08
1270 MUK83 3 10 1 4 2 520.73 519.14 1.59
1271 MUK84 1 3 1 1 2 510.98 511.68 0.70
1272 MUK85 3 10 2 1 2 510.33 519.14 8.81
1274 MUK87 1 9 2 4 3 669.01 667.53 1.48
1281 MUK94 1 10 2 5 2 245.40 244.75 0.65
1282 MUK95 1 3 1 5 4 452.94 422.78 30.16
1283 MUK96 1 6 1 1 2 487.31 526.61 39.30
1284 MUK97 1 2 1 1 2 615.25 615.50 0.25
1285 MUK98 3 4 2 1 4 726.51 726.80 0.29
1286 MUK99 3 4 1 1 1 1015.23 1016.11 0.88
1287 MUK100 1 9 1 4 1 1017.72 1016.11 1.61
1288 MUK101 1 8 1 1 2 1016.19 1016.11 0.08
1289 MUK102 3 10 1 1 1 614.34 615.50 1.16
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Table A.9 – continued from previous page
No Test LS HLLS vTB fi Θ ỹ yt Rmin

no. corr. corr. corr. corr. corr.
no. no. no. no. no. [Pa/m] [Pa/m] [Pa/m]

1291 MUK104 1 1 2 1 1 705.33 741.73 36.40
1292 MUK105 1 5 2 4 3 741.73 741.73 0.00
1298 MUK111 1 5 2 1 1 917.09 919.75 2.66
1337 MUK150 3 4 2 5 4 341.78 341.12 0.66
1338 MUK151 1 4 1 1 1 458.94 459.88 0.94
1339 MUK152 1 4 1 5 4 493.88 489.51 4.37
1340 MUK153 1 9 1 5 1 253.05 252.22 0.83
1343 MUK156 3 8 2 5 2 185.80 185.49 0.31
1344 MUK157 1 6 2 3 1 88.81 88.90 0.09
1345 MUK158 1 10 2 5 4 258.73 252.22 6.51
1354 MUK167 2 10 1 5 2 133.55 133.46 0.09
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Table A.10: Best correlation sets for horizontal flow, with data sorted by increasing
values of vSL. In the low superficial velocity range, vSL < 0.1 [m/s], the dominant
correlation set is LS = 1, HLLS = 1, vTB = 1, fi = 1 and Θ = 1.

vSL Angle vSG d LS HLLS vTB fi Θ
[m/s] [◦] [m/s] [m] corr. corr. corr. corr. corr.

no. no. no. no. no.

0.005791 0 0.643128 0.077978 1 1 1 1 1
0.005791 0 1.011936 0.077978 1 1 1 1 1
0.005791 0 1.743456 0.077978 1 1 1 1 1
0.005791 0 3.166872 0.077978 1 1 1 1 1
0.005791 0 5.574792 0.077978 1 1 1 1 1
0.009754 0 0.600456 0.077978 1 1 1 1 1
0.009754 0 1.075944 0.077978 1 1 1 1 1
0.009754 0 1.847088 0.077978 1 1 1 1 1
0.009754 0 3.118104 0.077978 1 1 1 1 1
0.009754 0 5.879592 0.077978 1 1 1 1 1
0.014326 0 0.85344 0.077978 1 1 1 1 1
0.017069 0 1.072896 0.077978 1 1 1 1 1
0.017069 0 1.837944 0.077978 1 1 1 1 1
0.017069 0 3.060192 0.077978 1 1 1 1 1
0.017069 0 5.903976 0.077978 1 1 1 1 1
0.017374 0 0.542544 0.077978 1 1 1 1 1
0.03048 0 1.033272 0.077978 1 1 1 1 1
0.03048 0 1.780032 0.077978 1 1 1 1 1
0.03048 0 3.096768 0.077978 1 1 1 1 1
0.03048 0 5.635752 0.077978 1 1 1 1 1
0.03109 0 0.551688 0.077978 1 1 1 1 1
0.042062 0 2.310384 0.0381 1 4 1 1 2
0.042062 0 2.313432 0.0381 1 4 1 1 2
0.05334 0 3.13944 0.077978 1 1 1 1 1
0.055169 0 5.733288 0.077978 1 1 1 1 1
0.055778 0 0.981456 0.077978 1 1 1 1 1
0.056083 0 1.795272 0.077978 1 1 1 1 1
0.056388 0 0.612648 0.077978 1 1 1 1 1
0.063002 0 1.161288 0.025146 1 4 2 5 2
0.082296 0 0.192024 0.0381 2 10 1 5 2
0.098146 0 1.834896 0.077978 1 1 1 1 1
0.098755 0 1.014984 0.077978 1 1 1 1 1
0.098755 0 5.715 0.077978 1 1 1 1 1
0.101194 0 3.084576 0.077978 1 1 1 1 1
0.109728 0 0.09144 0.0381 1 6 2 3 1
0.109728 0 0.371856 0.0381 1 10 2 5 4
0.139995 0 1.161288 0.025146 3 10 1 4 3
0.148986 0 3.160776 0.09525 1 4 1 4 4
0.165842 0 1.182624 0.0381 3 3 2 3 3
0.165842 0 1.185672 0.0381 3 10 2 2 1
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Table A.10 – continued from previous page
vSL Angle vSG d LS HLLS vTB fi Θ
[m/s] [◦] [m/s] [m] corr. corr. corr. corr. corr.

no. no. no. no. no.
0.173431 0 1.70688 0.077978 1 1 1 1 1
0.17465 0 5.586984 0.077978 1 1 1 1 1
0.17587 0 3.392424 0.077978 1 1 1 1 1
0.176479 0 2.584704 0.077978 1 1 1 1 1
0.201686 0 1.109472 0.0254 1 2 2 1 2
0.201686 0 1.11252 0.0254 1 2 2 1 2
0.277368 0 0.103632 0.0381 3 8 2 5 2
0.277368 0 0.286512 0.0381 1 9 1 5 1
0.291998 0 1.170432 0.025146 1 1 1 4 1
0.291998 0 2.901696 0.077978 1 1 1 1 1
0.32065 0 5.202936 0.077978 1 1 1 1 1
0.44196 0 0.155448 0.0381 3 4 2 5 4
0.4572 0 0.6096 0.17145 1 10 1 1 2
0.530352 0 0.688848 0.0381 1 7 1 3 3
0.552115 0 1.185672 0.0381 3 10 1 1 1
0.552115 0 1.197864 0.0381 1 1 1 1 1
0.562356 0 4.681728 0.077978 1 1 1 1 1
0.566928 0 1.749552 0.0381 1 3 2 4 2
0.582168 0 0.435864 0.0381 1 4 1 5 4
0.603504 0 0.35052 0.0381 1 4 1 1 1
0.622676 0 1.100328 0.0254 1 7 1 3 1
0.622676 0 1.11252 0.0254 1 4 2 4 2
1.136904 0 0.676656 0.0381 2 1 2 4 2
1.149096 0 0.3048 0.0381 1 5 1 3 1
1.155192 0 0.454152 0.0381 1 3 2 1 1
1.161288 0 0.4572 0.0381 1 2 1 1 2
1.603431 0 0.362712 0.0381 1 2 1 4 4
1.603431 0 0.371856 0.0381 1 2 1 4 4
1.697736 0 0.402336 0.0381 1 4 1 3 3
1.85547 0 0.301752 0.0254 1 7 1 3 2
1.85547 0 0.316992 0.0254 1 7 1 3 2
2.231136 0 0.316992 0.0381 1 4 2 4 3
2.231136 0 0.332232 0.0381 1 5 1 5 1
2.231136 0 0.39624 0.0381 1 9 2 4 3
2.61619 0 1.027176 0.0254 3 9 2 1 1
2.61619 0 1.194816 0.0254 1 10 2 3 1
3.983736 0 1.956816 0.0381 1 8 2 3 1
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Table A.12: Performance of the simplified model for the case LS=ct and fi=ct
vs measured pressure gradient values. PG = pressure gradient. PG Err[%] = (PG-
measured PG)/measured PG × 100.

No Test Simplified LS=ct Measured Simplified LS=ct
no. fi=ct PG [Pa/m] PG [Pa/m] fi=ct PG Err [%]

97 AND97 22.36 26.69 -16.22
113 AND113 71.15 88.44 -19.54
129 AND129 190.69 192.95 -1.17
343 AND343 40.11 51.57 -22.21
536 BEG1 59.29 92.74 -36.06
537 BEG2 59.47 92.74 -35.86
538 BEG3 329.77 339.30 -2.80
539 BEG4 333.18 339.30 -1.80
548 BEG13 30.51 54.28 -43.79
549 BEG14 30.56 54.28 -43.69
550 BEG15 997.38 1131.02 -11.81
551 BEG16 1005.54 1131.02 -11.09
574 BEG39 705.95 678.61 4.02
575 BEG40 712.84 678.61 5.04
580 BEG45 140.21 180.96 -22.51
581 BEG46 140.66 180.96 -22.26
582 BEG47 5483.26 5315.82 3.14
583 BEG48 5976.54 6175.40 -3.22
588 BEG53 1996.45 2488.25 -19.76
589 BEG54 2022.31 2488.25 -18.72
596 BEG61 1145.86 1040.54 10.12
617 BEG82 2903.57 2714.46 6.96
619 BEG84 6627.14 6673.05 -0.68
629 BEG94 623.37 570.03 9.35
650 BEG115 2367.42 2035.84 16.28
659 BEG124 311.42 339.30 -8.21
660 BEG125 691.88 769.09 -10.03
661 BEG126 2386.54 1945.36 22.67
662 BEG127 227.05 282.75 -19.70
665 BEG130 145.75 180.96 -19.45
666 BEG131 1699.27 1764.40 -3.69
673 BEG138 334.39 361.92 -7.60
678 BEG143 1128.98 1063.16 6.19
681 BEG146 395.35 429.78 -8.01
682 BEG147 4229.46 3393.07 24.64
684 BEG149 7533.45 7238.56 4.07
685 BEG150 313.39 316.68 -1.03
689 BEG154 2725.36 3279.97 -16.90
690 BEG155 871.28 972.68 -10.42
692 BEG157 569.11 622.06 -8.51
693 BEG158 1059.89 1198.88 -11.59
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Table A.12 – continued from previous page
No Test Simplified LS=ct Measured Simplified LS=ct

no. fi=ct PG [Pa/m] PG [Pa/m] fi=ct PG Err [%]
694 BEG159 2889.92 2375.15 21.67
695 BEG160 356.79 497.65 -28.30
698 BEG163 264.76 339.30 -21.96
699 BEG164 2398.62 2465.63 -2.71
705 BEG170 757.33 723.85 4.62
706 BEG171 442.88 497.65 -11.00
711 BEG176 1167.81 1357.23 -13.95
714 BEG179 660.58 701.23 -5.79
715 BEG180 4775.00 4003.83 19.26
722 BEG187 3441.58 3393.07 1.42
723 BEG188 1519.61 1447.71 4.96
901 CRE4 20.95 26.69 -21.50
906 CRE9 76.28 99.07 -23.00
934 CRE37 64.99 15.60 316.41

1188 MUK1 4047.59 3923.30 3.16
1190 MUK3 1094.39 1016.11 7.70
1191 MUK4 1074.78 949.38 13.20
1202 MUK15 400.74 356.04 12.55
1203 MUK16 464.25 407.84 13.83
1209 MUK22 1110.44 1030.81 7.72
1210 MUK23 419.96 407.84 2.97
1211 MUK24 515.44 459.87 12.08
1213 MUK26 160.54 215.12 -25.36
1214 MUK27 499.55 437.48 14.18
1227 MUK40 819.13 674.99 21.35
1245 MUK58 4025.24 4323.91 -6.90
1250 MUK63 1182.82 993.71 19.03
1252 MUK65 600.15 660.06 -9.07
1256 MUK69 114.41 163.09 -29.84
1258 MUK71 314.16 511.67 -38.60
1270 MUK83 464.38 519.14 -10.54
1271 MUK84 487.07 511.67 -4.80
1272 MUK85 433.11 519.14 -16.57
1274 MUK87 516.39 667.53 -22.64
1281 MUK94 278.79 244.75 13.90
1282 MUK95 459.53 422.77 8.69
1283 MUK96 581.23 526.60 10.37
1284 MUK97 623.67 615.50 1.32
1285 MUK98 700.75 726.79 -3.58
1286 MUK99 1004.37 1016.11 -1.15
1287 MUK100 1021.19 1016.11 0.49
1288 MUK101 1063.26 1016.11 4.63
1289 MUK102 598.23 615.50 -2.80
1291 MUK104 829.82 741.72 11.87
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Table A.12 – continued from previous page
No Test Simplified LS=ct Measured Simplified LS=ct

no. fi=ct PG [Pa/m] PG [Pa/m] fi=ct PG Err [%]
1292 MUK105 686.66 741.72 -7.42
1298 MUK111 941.02 919.75 2.31
1337 MUK150 281.55 341.11 -17.46
1338 MUK151 488.63 459.87 6.25
1339 MUK152 536.82 489.50 9.66
1340 MUK153 227.45 252.21 -9.81
1343 MUK156 146.45 185.48 -21.04
1344 MUK157 66.02 88.89 -25.72
1345 MUK158 163.66 252.21 -35.11
1354 MUK167 98.33 133.46 -26.31
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Table A.13: Performance of the simplified model for the case LS=ct vs measured
pressure gradient values. PG = pressure gradient. PG Err[%] = (PG-measured
PG)/measured PG × 100.

No Test Simplified LS=ct Measured Simplified LS=ct
no. PG [Pa/m] PG [Pa/m] PG Err [%]

97 AND97 22.36 26.69 -16.22
113 AND113 71.15 88.44 -19.54
129 AND129 190.69 192.95 -1.17
343 AND343 40.11 51.57 -22.21
536 BEG1 59.29 92.74 -36.06
537 BEG2 59.47 92.74 -35.86
538 BEG3 329.77 339.30 -2.80
539 BEG4 333.18 339.30 -1.80
548 BEG13 30.51 54.28 -43.79
549 BEG14 30.56 54.28 -43.69
550 BEG15 997.38 1131.02 -11.81
551 BEG16 1005.54 1131.02 -11.09
574 BEG39 705.95 678.61 4.02
575 BEG40 712.84 678.61 5.04
580 BEG45 140.21 180.96 -22.51
581 BEG46 140.66 180.96 -22.26
582 BEG47 5483.26 5315.82 3.14
583 BEG48 5976.54 6175.40 -3.22
588 BEG53 1996.45 2488.25 -19.76
589 BEG54 2022.31 2488.25 -18.72
596 BEG61 1145.86 1040.54 10.12
617 BEG82 2903.57 2714.46 6.96
619 BEG84 6627.14 6673.05 -0.68
629 BEG94 623.37 570.03 9.35
650 BEG115 2367.42 2035.84 16.28
659 BEG124 311.42 339.30 -8.21
660 BEG125 691.88 769.09 -10.03
661 BEG126 2386.54 1945.36 22.67
662 BEG127 227.05 282.75 -19.70
665 BEG130 145.75 180.96 -19.45
666 BEG131 1699.27 1764.40 -3.69
673 BEG138 334.39 361.92 -7.60
678 BEG143 1128.98 1063.16 6.19
681 BEG146 395.35 429.78 -8.01
682 BEG147 4229.46 3393.07 24.64
684 BEG149 7533.45 7238.56 4.07
685 BEG150 313.39 316.68 -1.03
689 BEG154 2725.36 3279.97 -16.90
690 BEG155 871.28 972.68 -10.42
692 BEG157 569.11 622.06 -8.51
693 BEG158 1059.89 1198.88 -11.59

Continued on next page
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Table A.13 – continued from previous page
No Test Simplified LS=ct Measured Simplified LS=ct

no. PG [Pa/m] PG [Pa/m] PG Err [%]
694 BEG159 2889.92 2375.15 21.67
695 BEG160 356.79 497.65 -28.30
698 BEG163 264.76 339.30 -21.96
699 BEG164 2398.62 2465.63 -2.71
705 BEG170 757.33 723.85 4.62
706 BEG171 442.88 497.65 -11.00
711 BEG176 1167.81 1357.23 -13.95
714 BEG179 660.58 701.23 -5.79
715 BEG180 4775.00 4003.83 19.26
722 BEG187 3441.58 3393.07 1.42
723 BEG188 1519.61 1447.71 4.96
901 CRE4 20.95 26.69 -21.50
906 CRE9 76.28 99.07 -23.00
934 CRE37 64.99 15.60 316.40

1188 MUK1 4047.59 3923.30 3.16
1190 MUK3 1094.39 1016.11 7.71
1191 MUK4 1074.78 949.38 13.21
1202 MUK15 400.74 356.04 12.55
1203 MUK16 464.25 407.84 13.83
1209 MUK22 1110.44 1030.81 7.72
1210 MUK23 419.96 407.84 2.97
1211 MUK24 515.44 459.87 12.08
1213 MUK26 160.54 215.12 -25.36
1214 MUK27 499.55 437.48 14.18
1227 MUK40 819.13 674.99 21.35
1245 MUK58 4025.24 4323.91 -6.90
1250 MUK63 1182.82 993.71 19.03
1252 MUK65 600.15 660.06 -9.07
1256 MUK69 114.41 163.09 -29.84
1258 MUK71 314.16 511.67 -38.60
1270 MUK83 464.38 519.14 -10.54
1271 MUK84 487.07 511.67 -4.80
1272 MUK85 433.11 519.14 -16.57
1274 MUK87 516.39 667.53 -22.64
1281 MUK94 278.79 244.75 13.95
1282 MUK95 459.53 422.77 8.69
1283 MUK96 581.23 526.60 10.36
1284 MUK97 623.67 615.50 1.32
1285 MUK98 700.75 726.79 -3.58
1286 MUK99 1004.37 1016.11 -1.15
1287 MUK100 1021.19 1016.11 0.49
1288 MUK101 1063.26 1016.11 4.63
1289 MUK102 598.23 615.50 -2.80
1291 MUK104 829.82 741.72 11.87

Continued on next page
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Table A.13 – continued from previous page
No Test Simplified LS=ct Measured Simplified LS=ct

no. PG [Pa/m] PG [Pa/m] PG Err [%]
1292 MUK105 686.66 741.72 -7.42
1298 MUK111 941.02 919.75 2.31
1337 MUK150 281.55 341.11 -17.44
1338 MUK151 488.63 459.87 6.31
1339 MUK152 536.82 489.50 9.74
1340 MUK153 227.45 252.21 -9.73
1343 MUK156 146.45 185.48 -21.01
1344 MUK157 66.02 88.89 -25.68
1345 MUK158 163.66 252.21 -34.98
1354 MUK167 98.33 133.46 -26.22
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Table A.14: Performance of the simplified model for the case fi=ct vs measured
pressure gradient values. PG = pressure gradient. PG Err[%] = (PG-measured
PG)/measured PG × 100.

No Test Simplified fi =ct Measured Simplified fi =ct
no. PG [Pa/m] PG [Pa/m] PG Err [%]

97 AND97 32.75 26.69 22.71
113 AND113 80.47 88.44 -9.01
129 AND129 196.42 192.95 1.79
343 AND343 64.78 51.57 25.60
536 BEG1 68.79 92.74 -25.82
537 BEG2 69.08 92.74 -25.51
538 BEG3 333.74 339.30 -1.63
539 BEG4 337.24 339.30 -0.60
548 BEG13 59.38 54.28 9.38
549 BEG14 59.37 54.28 9.37
550 BEG15 998.12 1131.02 -11.75
551 BEG16 1006.31 1131.02 -11.02
574 BEG39 709.96 678.61 4.61
575 BEG40 716.94 678.61 5.64
580 BEG45 148.74 180.96 -17.80
581 BEG46 149.42 180.96 -17.42
582 BEG47 5483.87 5315.82 3.16
583 BEG48 5977.64 6175.40 -3.20
588 BEG53 1996.46 2488.25 -19.76
589 BEG54 2022.40 2488.25 -18.72
596 BEG61 1205.91 1040.54 15.89
617 BEG82 2975.82 2714.46 9.62
619 BEG84 6617.60 6673.05 -0.83
629 BEG94 689.95 570.03 21.03
650 BEG115 2443.98 2035.84 20.04
659 BEG124 324.29 339.30 -4.42
660 BEG125 691.40 769.09 -10.10
661 BEG126 2391.87 1945.36 22.95
662 BEG127 269.09 282.75 -4.83
665 BEG130 183.09 180.96 1.17
666 BEG131 1699.97 1764.40 -3.65
673 BEG138 399.79 361.92 10.46
678 BEG143 1132.10 1063.16 6.48
681 BEG146 405.62 429.78 -5.62
682 BEG147 4233.17 3393.07 24.75
684 BEG149 7532.78 7238.56 4.06
685 BEG150 385.82 316.68 21.83
689 BEG154 2725.35 3279.97 -16.90
690 BEG155 870.42 972.68 -10.51
692 BEG157 587.71 622.06 -5.52
693 BEG158 1058.41 1198.88 -11.71

Continued on next page
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Table A.14 – continued from previous page
No Test Simplified fi =ct Measured Simplified fi =ct

no. PG [Pa/m] PG [Pa/m] PG Err [%]
694 BEG159 2895.03 2375.15 21.88
695 BEG160 409.57 497.65 -17.69
698 BEG163 313.89 339.30 -7.48
699 BEG164 2399.22 2465.63 -2.69
705 BEG170 807.345058 723.85 11.53
706 BEG171 524.170067 497.65 5.32
711 BEG176 1166.20 1357.23 -14.07
714 BEG179 674.79 701.23 -3.77
715 BEG180 4778.89 4003.83 19.35
722 BEG187 3441.57 3393.07 1.42
723 BEG188 1517.20 1447.71 4.80
901 CRE4 23.20 26.69 -13.05
906 CRE9 113.87 99.07 14.93
934 CRE37 15.30 15.60 -1.92

1188 MUK1 3992.32 3923.30 1.75
1190 MUK3 860.87 1016.11 -15.27
1191 MUK4 844.36 949.38 -11.06
1202 MUK15 401.91 356.04 12.88
1203 MUK16 466.35 407.84 14.34
1209 MUK22 869.17 1030.81 -15.68
1210 MUK23 422.14 407.84 3.50
1211 MUK24 518.92 459.87 12.84
1213 MUK26 166.61 215.12 -22.54
1214 MUK27 521.86 437.48 19.28
1227 MUK40 819.57 674.99 21.41
1245 MUK58 3854.73 4323.91 -10.85
1250 MUK63 1223.83 993.71 23.15
1252 MUK65 607.48 660.06 -7.96
1256 MUK69 164.54 163.09 0.88
1258 MUK71 426.23 511.67 -16.69
1270 MUK83 473.34 519.14 -8.82
1271 MUK84 494.19 511.67 -3.41
1272 MUK85 444.97 519.14 -14.28
1274 MUK87 570.75 667.53 -14.49
1281 MUK94 296.76 244.75 21.25
1282 MUK95 468.84 422.77 10.89
1283 MUK96 589.45 526.60 11.93
1284 MUK97 623.85 615.50 1.35
1285 MUK98 699.78 726.79 -3.71
1286 MUK99 1005.07 1016.11 -1.08
1287 MUK100 1022.26 1016.11 0.60
1288 MUK101 1065.56 1016.11 4.86
1289 MUK102 609.65 615.50 -0.95
1291 MUK104 857.06 741.72 15.54

Continued on next page
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Table A.14 – continued from previous page
No Test Simplified fi =ct Measured Simplified fi =ct

no. PG [Pa/m] PG [Pa/m] PG Err [%]
1292 MUK105 705.25 741.72 -4.91
1298 MUK111 941.71 919.75 2.38
1337 MUK150 297.33 341.11 -12.83
1338 MUK151 524.30 459.87 14.01
1339 MUK152 584.10 489.50 19.32
1340 MUK153 260.19 252.21 3.16
1343 MUK156 156.34 185.48 -15.70
1344 MUK157 73.19 88.89 -17.66
1345 MUK158 215.98 252.21 -14.36
1354 MUK167 119.15 133.46 -10.71
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Table A.15: Prediction errors of the simplified models (LS = ct and fi = ct, LS =
ct, fi = ct) vs Zhang et al. (2003) prediction errors. PG Err[%] = (PG-measured
PG)/measured PG × 100.

No Test LS =ct fi =ct LS =ct fi =ct Zhang (2003)
no. PG Err [%] PG Err [%] PG Err [%] PG Err [%]

97 AND97 -16.22 -16.22 22.71 22.71
113 AND113 -19.54 -19.54 -9.01 -9.01
129 AND129 -1.17 -1.17 1.79 1.79
343 AND343 -22.21 -22.21 25.60 25.60
536 BEG1 -36.06 -36.06 -25.82 -25.82
537 BEG2 -35.86 -35.86 -25.51 -25.51
538 BEG3 -2.80 -2.80 -1.63 -1.63
539 BEG4 -1.80 -1.80 -0.60 -0.60
548 BEG13 -43.79 -43.79 9.38 9.38
549 BEG14 -43.69 -43.69 9.37 9.37
550 BEG15 -11.81 -11.81 -11.75 -11.75
551 BEG16 -11.09 -11.09 -11.02 -11.02
574 BEG39 4.02 4.02 4.61 4.61
575 BEG40 5.04 5.04 5.64 5.64
580 BEG45 -22.51 -22.51 -17.80 -17.80
581 BEG46 -22.26 -22.26 -17.42 -17.42
582 BEG47 3.14 3.14 3.16 3.16
583 BEG48 -3.22 -3.22 -3.20 -3.20
588 BEG53 -19.76 -19.76 -19.76 -19.76
589 BEG54 -18.72 -18.72 -18.72 -18.72
596 BEG61 10.12 10.12 15.89 15.89
617 BEG82 6.96 6.96 9.62 9.62
619 BEG84 -0.68 -0.68 -0.83 -0.83
629 BEG94 9.35 9.35 21.03 21.03
650 BEG115 16.28 16.28 20.04 20.04
659 BEG124 -8.21 -8.21 -4.42 -4.42
660 BEG125 -10.03 -10.03 -10.10 -10.10
661 BEG126 22.67 22.67 22.95 22.95
662 BEG127 -19.70 -19.70 -4.83 -4.83
665 BEG130 -19.45 -19.45 1.17 1.17
666 BEG131 -3.69 -3.69 -3.65 -3.65
673 BEG138 -7.60 -7.60 10.46 10.46
678 BEG143 6.19 6.19 6.48 6.48
681 BEG146 -8.01 -8.01 -5.62 -5.62
682 BEG147 24.64 24.64 24.75 24.75
684 BEG149 4.07 4.07 4.06 4.06
685 BEG150 -1.03 -1.03 21.83 21.83
689 BEG154 -16.90 -16.90 -16.90 -16.90
690 BEG155 -10.42 -10.42 -10.51 -10.51
692 BEG157 -8.51 -8.51 -5.52 -5.52
693 BEG158 -11.59 -11.59 -11.71 -11.71
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Table A.15 – continued from previous page
No Test LS =ct fi =ct LS =ct fi =ct Zhang (2003)

no. PG Err [%] PG Err [%] PG Err [%] PG Err [%]
694 BEG159 21.67 21.67 21.88 21.88
695 BEG160 -28.30 -28.30 -17.69 -17.69
698 BEG163 -21.96 -21.96 -7.48 -7.48
699 BEG164 -2.71 -2.71 -2.69 -2.69
705 BEG170 4.62 4.62 11.53 11.53
706 BEG171 -11.00 -11.00 5.32 5.32
711 BEG176 -13.95 -13.95 -14.07 -14.07
714 BEG179 -5.79 -5.79 -3.77 -3.77
715 BEG180 19.26 19.26 19.35 19.35
722 BEG187 1.42 1.42 1.42 1.42
723 BEG188 4.96 4.96 4.80 4.79
901 CRE4 -21.50 -21.50 -13.05 -13.05
906 CRE9 -23.00 -23.00 14.93 14.93
934 CRE37 316.41 316.40 -1.92 -1.94

1188 MUK1 3.16 3.16 1.75 1.75
1190 MUK3 7.70 7.71 -15.27 -15.27
1191 MUK4 13.20 13.21 -11.06 -11.06
1202 MUK15 12.55 12.55 12.88 12.88
1203 MUK16 13.83 13.83 14.34 14.34
1209 MUK22 7.72 7.72 -15.68 -15.68
1210 MUK23 2.97 2.97 3.50 3.50
1211 MUK24 12.08 12.08 12.84 12.84
1213 MUK26 -25.36 -25.36 -22.54 -22.54
1214 MUK27 14.18 14.18 19.28 19.28
1227 MUK40 21.35 21.35 21.41 21.41
1245 MUK58 -6.90 -6.90 -10.85 -10.85
1250 MUK63 19.03 19.03 23.15 23.15
1252 MUK65 -9.07 -9.07 -7.96 -7.96
1256 MUK69 -29.84 -29.84 0.88 0.88
1258 MUK71 -38.60 -38.60 -16.69 -16.69
1270 MUK83 -10.54 -10.54 -8.82 -8.82
1271 MUK84 -4.80 -4.80 -3.41 -3.41
1272 MUK85 -16.57 -16.57 -14.28 -14.28
1274 MUK87 -22.64 -22.64 -14.49 -14.49
1281 MUK94 13.90 13.95 21.25 21.28
1282 MUK95 8.69 8.69 10.89 10.89
1283 MUK96 10.37 10.36 11.93 11.92
1284 MUK97 1.32 1.32 1.35 1.35
1285 MUK98 -3.58 -3.58 -3.71 -3.71
1286 MUK99 -1.15 -1.15 -1.08 -1.08
1287 MUK100 0.49 0.49 0.60 0.60
1288 MUK101 4.63 4.63 4.86 4.86
1289 MUK102 -2.80 -2.80 -0.95 -0.95
1291 MUK104 11.87 11.87 15.54 15.54
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Table A.15 – continued from previous page
No Test LS =ct fi =ct LS =ct fi =ct Zhang (2003)

no. PG Err [%] PG Err [%] PG Err [%] PG Err [%]
1292 MUK105 -7.42 -7.42 -4.91 -4.91
1298 MUK111 2.31 2.31 2.38 2.38
1337 MUK150 -17.46 -17.44 -12.83 -12.82
1338 MUK151 6.25 6.31 14.01 14.03
1339 MUK152 9.66 9.74 19.32 19.35
1340 MUK153 -9.81 -9.73 3.16 3.20
1343 MUK156 -21.04 -21.01 -15.70 -15.69
1344 MUK157 -25.72 -25.68 -17.66 -17.64
1345 MUK158 -35.11 -34.98 -14.36 -14.29
1354 MUK167 -26.31 -26.22 -10.71 -10.65
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Appendix B

Sensitivity analysis calculations

Conventional sensitivity analysis methods can be broadly classified into:

◦ Sensitivity testing - this involves studying the response of the model for a
set of changes in the model formulation. This approach is often used to
evaluate the robustness of a model by testing whether the response of the
model changes significantly in relation to changes in model parameters and
structural formulation of the model.

◦ Analytical methods - involve either the differentiation of the model equa-
tions, or the reformulation of the original model using stochastic algebraic
equations.

◦ Sampling based methods - do not require the differentiation of the model
equations. These methods involve running the code of the model on a set
of sample points. Some of the widely used methods are: Monte Carlo and
Latin Hypercube Sampling, Fourier Amplitude Sensitivity Test (FAST),
reliability based methods and response surface methods.

The Morris Elementary Effects method (Morris 1991) is a sampling screening
method. The input domain is randomly sampled through a number of trajecto-
ries. A trajectory is obtained by varying one vector component at a time by a
small ∆ value. This method was selected for this study because it is a generali-
sation of the conventional local derivative method and it offers a method to rank
the effect of the input factors on the output of the model.

B.1 The Morris Elementary Effects method

B.1.1 Elementary Effect definition

Let us consider a model with k independent inputs xi, i = 1, 2, . . . , k. These
inputs can take values across p selected levels in the k-dimensional unit cube
(0 ≤ xi ≤ 1). This way the input space is discretised into a p-level grid Ω. For a
given value of an input vector X = (x1, x2, . . . , xk), the Elementary Effect of the
i-th input factor is defined as:

EEi =
Y (x1, x2, . . . , xi−1, xi + ∆, xi+1, . . . , xk)− Y (x1, x2, . . . , xi−1, xi, . . . , xk)

∆
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(B.1)

where Y is the model output for vector X, p is the number of levels and ∆ is an
element of the set { 1

(p−1)
, . . . , 1 − 1

(p−1)
}. p is chosen to be an even number and

∆ = p
2(p−1)

.

X ∈ Ω and the transformation (X + ei∆) is such that the new vector is in Ω
((X + ei∆) ∈ Ω). The vector ei is defined as a vector of zeroes, but with a unit
as its i-th component: ei = (0, 0, . . . , 1, . . . , 0).

The distribution of Elementary Effects Fi associated with the i-th input factor is
obtained by randomly sampling different input vectors X from the grid Ω. Morris
proposed that the mean µ and the standard deviation σ of the distribution Fi
be used as sensitivity measures. The mean µ determines the overall influence
of the input factor on the output and the standard deviation σ determines the
correlation level with other input factors.

Campolongo et al. (2007) (Saltelli et al. 2008) proposed the value µ∗ be used
instead of µ, where µ∗ is the mean of the distribution Gi of the absolute values
of the Elementary Effects, |EEi|.

B.1.2 The sampling strategy

The Elementary Effects method builds r trajectories of (k + 1) points in the input
space, each trajectory providing k Elementary Effects values, one for each input
factor, with a total of r (k + 1) sampling points. The trajectories are generated
starting from a base value X∗, which is not part of the trajectory, but is used
to generate the trajectory points by increasing one or more of its k components
by ∆. This way, the first trajectory point X(1) is obtained from X∗ by adding
∆ to one or more components of X∗, such that X(1) ∈ Ω. The second trajectory
point X(2) is obtained from X(1) by adding +∆ or −∆ to its i-th component:
X(2) = X(1) + ei∆. The index i is randomly selected from the set {1, 2, . . . , k}.
The third sampling point is generated from X(2) by randomly selecting an index
j such that j 6= i and X(3) = X(2) + ei∆. The procedure continues until X(k+1),
which is the end point of the trajectory. This design generates a trajectory
of (k + 1) sampling points {X(1), X(2), . . . , X(k+1)}, which has the fundamental
property that two consecutive points differ by ∆ in one component only, and all
the k indices have been used. The procedure is illustrated in Figure B.1. The
following equation could generate the r trajectories with the above properties:

B∗ = Jk+1,kX
∗ + ∆B (B.2)

where B is a (k + 1)× k strictly lower triangular matrix of 1s:

B =


0 0 0 · · · 0
1 0 0 · · · 0
1 1 0 · · · 0
...

...
...

. . .
...

1 1 1 · · · 0

 (B.3)

and Jk+1,k is a (k + 1) × k matrix of 1s, and X∗ is the randomly chosen base,
required for building the trajectory. Equation B.2 builds a matrix of trajectories,
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Figure B.1: An example of a trajectory in the input space for k = 3. The red line
shows the transition between consecutive points (Saltelli et al. 2008).

whose rows are sampling points X(1), X(2), . . . , X(k+1), but has the major draw-
back that the sampling points are not chosen randomly, given the form of matrix
B.

A randomised version of the sampling matrix proposed by Morris is given in
Equation B.4:

B∗ = {Jk+1,kX
∗ +

∆

2
[(2B − Jk+1,k)D

∗ + Jk+1,k]}P ∗ (B.4)

where D∗ is a k-dimensional diagonal matrix in which each diagonal element is
either +1 or −1 with equal probability:

D∗ =


+1 0 0 · · · 0
0 +1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

 (B.5)

and P ∗ is a k×k matrix in which each row contains one element equal to 1 while
all others are 0, and no two columns have 1s in the same position. An example
of such matrix is given in Equation B.6. This is called the random permutation
matrix.

P ∗ =


0 1 0 · · · 0
0 0 0 · · · 1
1 0 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 0

 (B.6)

Equation B.4 calculates a matrix B∗ which provides one Elementary Effect per
input, which is randomly selected.
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B.1.3 The computation of the sensitivity measure

Let us consider trajectory j in the input space and point X(L) on this trajectory.
The Elementary Effect associated with point X(L) and its i-th component is:

EEj
i

(
X(L)

)
=
Y
(
X(L+1)

)
− Y

(
X(L)

)
∆

(B.7)

EEj
i

(
X(L)

)
=
Y
(
x

(j)
L1
, x

(j)
L2
, . . . , x

(j)
Li

+ ∆, . . . , x
(j)
Lk

)
− Y

(
x

(j)
L1
, x

(j)
L2
, . . . , x

(j)
Li
, . . . , x

(j)
Lk

)
∆

(B.8)

The mean µ, mean of absolute Elementary Effect values µ∗ and standard deviation
σ2 are calculated with Equations B.9, B.10 and B.11:

µi =
1

r

r∑
j=1

EEj
i i = 1, 2, . . . , k (B.9)

µ∗i =
1

r

r∑
j=1

∣∣EEj
i

∣∣ i = 1, 2, . . . , k (B.10)

σ2
i =

1

r − 1

r∑
j=1

(
EEj

i − µi
)2

i = 1, 2, . . . , k (B.11)

The mean µ in Equation B.9 assesses the global influence of the input factor xi on
the output. Campologno et al. (2007) showed that µ∗ is a better measure of the
overall effect of the input xi on the output. If both µ and µ∗ are high, the input
factor has a strong effect on the output and that the sign of the effect is always
the same. If µ is low while µ∗ is high, the input factor has a strong effect, but
with variable direction. The standard deviation σ2 is a measure of input factor
correlation, with high values indicating a high degree of correlation.
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Appendix C

Multiphase flow terminology and
definitions

C.1 Note

This appendix contains materials found in the literature. As the definition of
the multiphase flow terminology is important for the presentation of the concepts
described in Chapters 1-10, a list of multiphase flow terms is presented here.

C.2 Notations

Mass Flow Rate [kg/s]
WL = liquid mass flow rate.
WG = gas mass flow rate.
W = total mass flow rate.
W = WL +WG

Volumetric Flow Rate [m3/s]
qL = liquid volumetric flow rate.
qG = gas volumetric flow rate.
q = total volumetric flow rate.
q = qL + qG

C.3 Definitions

C.3.1 Phase

For the purpose of this research, a phase is a physically and chemically homoge-
nous sub-system, separated by definite boundaries, that allows mass transfer to
other phases.

C.3.2 Component

Components are pure substances that make up the system. For this purpose,
they will be considered as molecular species of fixed elemental composition and
molecular weight.
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Figure C.1: Typical composition of natural gas (Bratland 2009).

Most of the time, the literature does not specifically mention multiphase, mul-
ticomponent when it refers to a mixture having different phases and it adopts
the more concise term of multiphase. This is the convention adopted throughout
this study too. The term multiphasewill refer to a mixture of components with
different phases. The typical example is a mixture of natural gas, oil and water.
Natural gas in itself is a mixture of more components, as shown in Figure C.1.
Some of the liquid droplets may be entrained in the gas flow, for example in an an-
nular mist flow, when the liquid forms a thin film around the pipe circumference.
According to the previous definition of the phase concept, droplets constitute
a phase. Droplets are torn away from the liquid film through entrainment and
also deposited back into the liquid film through deposition. This way, there is a
continuous mass transfer between the two phases. Obviously, the droplet phase
will have the same composition as the liquid phase it comes from.

C.3.3 Liquid holdup HL and gas void fraction α

The liquid holdup HL is the fraction of a volume element occupied by the liquid
phase. As the liquid level in the pipe fluctuates, the notion of instantaneous liquid
holdup is a more accurate measurement of the liquid fraction in the unit volume.
The instantaneous liquid holdup HL (x,t) is the liquid holdup inside a differential
volume at a spatial and temporal point (x, t). For practical reasons, the spatial
and temporal average of the instantaneous holdup is a more useful definition:

HL =

∫∫
HL (x,t) dxdt∫
dx
∫
dt

(C.1)

For simplicity, the average liquid holdup for a designated volume will be denoted
by HL, knowing that HL is actually meant.
The gas void fraction is the fraction of the volume element occupied by the gas
phase. Hence, it can be calculated from the liquid holdup:

α = 1−HL (C.2)

Both the liquid holdup and the gas void fraction have values in the range [0, 1].
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C.3.4 Superficial velocities, vSG and vSL

The superficial velocity of a phase is the velocity at which the phase would travel
through the pipe if this were the only phase inside the pipe. This can be expressed
mathematically as:

vSL =
qL
Apipe

vSG =
qG
Apipe

(C.3)

The superficial velocities are not actual velocities, because each phase only occu-
pies a fraction of the pipe cross-section.

C.3.5 Mixture velocity vM

The mixture velocity vM is the total volumetric flow rate q = qL + qG per unit
area.

vM =
qL + qG
Apipe

= vSL + vSG (C.4)

C.3.6 Actual velocities, vG and vL

The actual velocities, as opposed to the superficial velocities, are the real velocities
of the gas and liquid phases, as measured by a measuring device. They can be
expressed with respect to the superficial velocities:

vL =
qL
AL

=
qL
Apipe

× Apipe
AL

=
vSL
HL

(C.5)

Similarly:

vG =
vSG
α

=
vSG

1−HL

(C.6)

C.3.7 Slip velocity vSLIP

The difference between the actual phase velocities is called the slip velocity.

vSLIP = vG − vL (C.7)

C.3.8 Slippage and holdup

The multiphase flow equations are generally complex and some of the earlier flow
models assumed that both the gas and liquid phase travelled at the same velocity,
vG = vL. This assumption is called the non-slip condition. For this condition:

vSLIP = vG − vL = 0 (C.8)

vG =
vSG
α

(C.9)
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Figure C.2: The effect of slippage on liquid holdup (Shoham 2006).

α = 1−HL (C.10)

vL =
vSL
HL

(C.11)

0 =
vSG

1−HL

− vSL
HL

(C.12)

HL =
vSL

vSL + vSG
(C.13)

For the non-slip condition, the liquid level is the same throughout the pipe and
at any pipe cross-section:

λL =
AG
Apipe

=

qL
vG
qL
vSL

=
vSL

vSL + vSG
(C.14)

Equations C.13 and C.14 show that the non-slip liquid holdup is equal to the
average liquid holdup:

λL = HL−non−slip (C.15)

If vG > vL the non-slip condition is not satisfied any longer and there is a slippage
between the gas and the liquid phase. This is reflected by:

HL > λL (C.16)

Figure C.2 depicts graphically these considerations.
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C.3.9 Drift velocity vdrift

The drift velocity is the velocity of a phase relative to the mixture velocity.

vL−drift = vL − vM (C.17)

vG−drift = vG − vM (C.18)

C.3.10 Quality x

Quality is a measure of the gas mass flow rate with respect to the total mass flow
rate.

x =
WG

WG +WL

=
WG

W
(C.19)

C.4 Average fluid properties

The average density and viscosity of the multiphase mixture are:

ρM = ρLHL + ρG (1−HL) (C.20)

µM = µLHL + µG (1−HL) (C.21)

The liquid phase is a combination of oil and water in most cases. The liquid
phase average density, viscosity and interfacial tension are:

ρL = ρwaterfwater + ρoil (1− fwater) (C.22)

µL = µwaterfwater + µoil (1− fwater) (C.23)

σLG = σwater−Gfwater + σoil−G (1− fwater) (C.24)

where the water cut fwater is defined as the volumetric water flow rate with respect
to the total liquid flow rate:

fwater =
qwater

qwater + qoil
(C.25)

In reality, because oil and water flows are extremely complex, correlations have
been developed for the calculations of the average properties, instead of Equa-
tions C.22 and C.23.
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Appendix D

Derivation of fundamental
equations of two-phase fluid flow

D.1 Note

Most of the slug flow mechanistic models rely on the mass and momentum conser-
vation laws. Although the derivation of the continuity and momentum conserva-
tion equations is widely found in the literature, the presentation of the derivation
of these equations in this appendix is the foundation upon which Appendix E
was built.

D.2 Notation

m = mass.
v = velocity.
x = distance measured in the direction of the fluid flow.
A = cross-sectional area.
F = external force applied to the control volume.
P = pressure.
α = phase holdup.
ρ = density.
θ = pipe inclination angle.

Subscript k applied

to these elements means that the element refers to phase k.

D.3 Continuity equation

Figure D.1 shows the control volumes used in the derivations of the fundamental
equations of two-phase flow, used as basis by the slug flow models described in
Appendix E.
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The mass conservation law for phase k can be expressed as:

Net mass flow of phase k into control volume from phase k︸ ︷︷ ︸
IN-OUT

+ Net mass flow of phase k from other sources or phases︸ ︷︷ ︸
IN-OUT

= Mass of phase k accumulated (D.1)

The first term in Equation D.1 is:

ρkvkAkdt−
(
ρk +

∂ρk
∂x

dx

)(
vk +

∂vk
∂x

dx

)(
Ak +

∂Ak
∂x

dx

)
dt

= ρkvkAkdt−
(
ρkvkAk + vkAk

∂ρk
∂x

dx+ ρkAk
∂vk
∂x

dx+ ρkvk
∂Ak
∂x

dx

)
(D.2)

Since Ak = αkA and ignoring the negligible terms containing more the one partial
derivative, the first term in Equation D.1 becomes:

Net mass flow of phase k into control volume from phase k︸ ︷︷ ︸
IN-OUT

= −A∂ (αkρkvk)

∂x
dx

(D.3)

Substituting this term in the initial mass balance, Equation D.1 becomes:

−A∂ (αkρkvk)

∂x
dx+

n∑
p=1,p 6=k

ṁp→k −
n∑

p=1,p 6=k

ṁk→p = A
∂ (αkρk)

∂t
dx (D.4)

∂αkρk
∂t

+
∂ (αkρkvk)

∂x
=

∑n
p=1,p 6=k ṁp→k −

∑n
p=1,p 6=k ṁk→p

Adx
(D.5)

To simplify this form of the equation, we can define two mass transfer parameters:

Figure D.1: Two phase (gas-liquid) flow control volume (Bratland 2009).
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ΓINk =

∑n
p=1,p 6=k ṁp→k

Adx

ΓOUTk =

∑n
p=1,p 6=k ṁk→p

Adx
(D.6)

Parameters ΓINk and ΓOUTk defined in Equations D.6 represent the mass transfer
rate per unit volume of pipe, from other phases to phase k, and from phase k to
other phases, respectively. Γ is measured in [kg/m3 s].

The mass balance can be re-written in terms of Γ parameters:

∂ (αkρk)

∂t
+
∂ (αkρkvk)

∂x
= ΓINk − ΓOUTk (D.7)

n∑
k=1

ΓINk −
n∑
k=1

ΓOUTk = 0 (D.8)

Equation D.8 is zero because the mass gain of one phase is the mass loss of
another phase.

n∑
k=1

αk = 1 (D.9)

Equation D.9 is called the saturation constraint. Equations D.7-D.9 represent the
mass conservation equations.

For steady-state conditions, Equation D.7 becomes:

∂ (αkρkvk)

∂x
= ΓINk − ΓOUTk (D.10)

D.4 Momentum equation

The momentum equation for phase k is:

ρkαkAdx
dvk
dt

=
m∑
i=1

F (D.11)

A Taylor series is used to expand the term dvk
dt

in the Equation D.11. The second
order and higher derivative terms are neglected:

dvk =
∂vk
∂t

dt+
∂vk
∂x

dx (D.12)

Now the term dvk
dt

can be expanded into:

dvk
dt

=
∂vk
∂t

+
∂vk
∂x

dx

dt
(D.13)
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Equation D.11 becomes:

αkAρk

(
∂vk
∂t

+ vk
∂vk
∂x

)
dx =

m∑
i=1

F (D.14)

The term ∂vk
∂t

in Equation D.14 will be expanded:

∂ [(αkρk) vk]

∂t
= αkρk

∂vk
∂t

+ vk
∂ (αkρk)

∂t
(D.15)

From this equation we calculate:

αkρk
∂vk
∂t

=
∂ [(αkρk) vk]

∂t
− vk

∂ (αkρk)

∂t
(D.16)

This term can now be substituted in Equation D.14, which becomes:

∂ (αkρkvk)

∂t
− vk

∂ (αkρk)

∂t
+ αkρkvk

∂vk
∂x

=

∑m
i=1 F

Adx
(D.17)

The term αkρkvk
∂vk
∂x

will be expanded and for this we calculate:

∂ (αkρkvk
2)

∂x
= αkρkvk

∂vk
∂x

+ vk
∂ (αkρkvk)

∂x
(D.18)

The first term of the Left Hand Side (LHS) of this equation can be substituted
into Equation D.17:

∂ (αkρkvk)

∂t
− vk

∂ (αkρk)

∂t
+
∂ (αkρkvk

2)

∂x
− vk

∂ (αkρkvk)

∂x
=

∑m
i=1

Adx
(D.19)

∂ (αkρkvk)

∂t
+
∂ (αkρkvk

2)

∂x
= vk

[
∂ (αkρk)

∂t
+
∂ (αkρkvk)

∂x

]
︸ ︷︷ ︸

mass conservation

+

∑m
i=1 F

Adx
(D.20)

∂ (αkρkvk)

∂t
+
∂ (αkρkvk

2)

∂x
= vk

(
ΓINk − ΓOUTk

)
+

∑m
i=1 F

Adx
(D.21)

The term vk
(
ΓINk − ΓOUTk

)
in Equation D.21 shows that fluids going from one

phase to another take momentum with them.
Equation D.21 can be re-written as:
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∑m
i=1 F

Adx
=

(
dP

dx

∣∣∣∣
external−pressure

)
+

(
dP

dx

∣∣∣∣
gravity

)
+

+

(
dP

dx

∣∣∣∣
friction−from−other−phases

)
+

+

(
dP

dx

∣∣∣∣
friction−from−wall

)
+

+

(
dP

dx

∣∣∣∣
surface−tension−from−other−phases

)
+

+

(
dP

dx

∣∣∣∣
surface−tension−from−wall

)
(D.22)

The external pressure term in Equation D.22 can be expressed in terms of the
pressures applied at the control volume ends:

(
dP

dx

∣∣∣∣
external−pressure

)
=
pkαkA+ Fk−internal − A

(
αk + ∂αk

∂x
dx
) (
pk + ∂pk

∂x
dx
)

Adx

(D.23)

Fk−internal is the internal force on phase k, due to the pressure on the surface of
phase k inside the control volume.
Assuming that both the pressure on phase k and αk vary linearly:

Fk−internal =

(
pk +

1

2

∂pk
∂x

dx

)(
A
∂αk
∂x

dx

)
(D.24)

Adx
dP

dx

∣∣∣∣
external−pressure

= Aαkpk + pkA
∂αk
∂x

dx+
A

2

∂pk
∂x

∂αk
∂x

(dx)2 − Aαkpk

− Aαk
∂pk
∂x

dx− Apk
∂αk
∂x

dx− A∂αk
∂x

∂pk
∂x

(dx)2

= −Aαk
∂pk
∂x

dx+
A

2

∂pk
∂x

∂αk
∂x

(dx)2 (D.25)

If we ignore the higher order terms, the pressure gradient due to external forces
becomes:

dP

dx

∣∣∣∣
external−pressure

= −αk
∂pk
∂x

(D.26)

The pressure gradient due to gravity is:

dP

dx

∣∣∣∣
gravity

= −αkρkg sin θ (D.27)
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The pressure gradients due to external forces and gravity from Equations D.26
and D.27 can be substituted in Equation D.22:

∂ (αkρkvk)

∂t
+
∂ (αkρkvk

2)

∂x
= −αk

∂pk
∂x︸ ︷︷ ︸

due to external forces

+

(
dP

dx

∣∣∣∣
due−to−friction−from−other−phases

)

+

(
dP

dx

∣∣∣∣
due−to−friction−from−wall

)

+

(
dP

dx

∣∣∣∣
due−to−surface−tension−from−other−phases

)

+

(
dP

dx

∣∣∣∣
due−to−surface−tension−from−wall

)
− αkρkg sin θ︸ ︷︷ ︸

due to gravitation

+ vkΓ
IN
k − vkΓOUTk︸ ︷︷ ︸

due to mass transfer

(D.28)

As any force acting on phase k must have an opposite counterforce, the sum of
all forces between different phases must be zero. In this model there are three
such forces:

1. Friction forces.

2. Surface tension forces.

3. Forces due to momentum exchange.

This observation can be expressed mathematically as:

n∑
k=1

(
dP

dx

∣∣∣∣
due−to−friction−from−other−phases

)

+
n∑
k=1

(
dP

dx

∣∣∣∣
due−to−surface−tension−from−other−phases

)

+
n∑
k=1

vk
(
ΓINk − ΓOUTk

)
= 0 (D.29)

Most of the models described in this study will use the following assumptions:

1. Steady-state conditions.

2. No mass transfer occurs between phases.

3. The effect of the surface tension forces due to other phases on momentum
is ignored.
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On these assumptions, Equation D.28 becomes:

∂ (αkρkvk
2)

∂x
= −αk

∂pk
∂x

+
dP

dx

∣∣∣∣
due−to−friction

− αkρkg sin θ (D.30)

∂ (αkρkvk
2)

∂x
=
∂ [(vk) (αkρkvk)]

∂x
= αkρkvk

∂vk
∂x

+ vk
∂ (αkρkvk)

∂x
= αkρkvk

∂vk
∂x

(D.31)

From Equation D.10, the assumption of no mass transfer between phases leads
to:

∂ (αkρkvk)

∂x
= 0 (D.32)

Equation D.31 becomes:

αkρkvk
∂vk
∂x

= −αk
∂pk
∂x

+
dP

dx

∣∣∣∣
due−to−friction

− αkρkg sin θ (D.33)

−αk
∂pk
∂x

+
dP

dx

∣∣∣∣
due−to−friction

− αkρkg sin θ︸ ︷︷ ︸
due to elevation

− αkρkvk
∂vk
∂x︸ ︷︷ ︸

due to change in velocity

= 0 (D.34)

Equation D.34 is called the mechanical energy balance equation. The equa-
tion shows that the pressure drop in multiphase flow under steady-state conditions
is due to:

1. Friction - the friction sources are either friction forces between the current
phase and other phases, or between the current phase and the pipe wall.

2. Gravitation - the term called due to elevation is the term showing the
gravitational effect on pressure drop. This term is normally referred to as
elevation pressure gradient.

3. Change in velocity - the term called due to change in velocity is normally
referred to as the acceleration pressure gradient.

It is important to reinforce the assumptions under which Equation D.34 is valid:

1. Steady-state conditions.

2. No mass transfer between the phases occurs.

3. Surface tension forces are ignored in so far as the momentum is concerned.
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Appendix E

Slug flow modelling

E.1 Note

Although this appendix contains materials readily found in the literature, it was
felt to be important to present a clear and coherent coverage of the foundation of
the slug flow mechanistic models, which are at the heart of this research study.

E.2 Structure of a slug unit

Figure E.1: Detailed description of a slug unit (Shoham 2006).

Figure E.1 shows the structure of a slug unit. The notation and definition of
the parameters used in this chapter is given in Section 5.2.
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Figure E.2: Mass balance equation applied on a control volume inside the slug body
(Shoham 2006).

E.3 Introduction

The slug flow pattern takes place in a wide range of pipe diameters and superficial
gas and liquid velocities. The gas pockets called Taylor bubbles in the literature,
characterize this flow pattern. Taylor bubbles occupy most of the pipe cross
section. If two parallel planes sectioned the pipe across the Taylor bubble region,
the flow inside the volume could be described as either stratified or annular,
depending on the wetting degree of the pipe circumference. Fully developed slug
flow is characterized by an alternation of gas pocket and liquid slugs, the period
at which the slug units in the train alternate being quasi-equal. In vertical flow,
the Taylor bubbles have a round nose and an almost flat stern. The rise velocity
of the gas pockets does not depend on their length, as shown by Nicklin (1962).

E.4 Slug velocity vs. Taylor bubble velocity

As the slug body travels at an absolute velocity vS, there are two simultaneous
processes occurring at the ends of the slug body:

1. Scooping - because the liquid slug body moves at a higher velocity vS than
the liquid film in front of it, vLTB, the liquid particles of the liquid film at
the border with the slug body are scooped and engulfed by the slug body.
A turbulent mixing zone is created inside the liquid slug as a result.

2. Shedding - after being accelerated to the slug body velocity and after trav-
eling for a while with the slug body, the liquid particles are finally shed
back into the liquid film of the following slug unit and decelerated back to
the liquid film velocity vLTB.

It is important to point out that the slug body does not travel at the same
velocity as the Taylor bubble and vS 6= vTB.
The two processes can be described mathematically by applying the mass con-
servation equations.

E.4.1 The continuity equation on a control volume inside
the slug body

Assuming a control volume bounded by the front of the slug body and a parallel
plane inside the slug body, as shown in Figure E.2, a coordinate system moving at
the velocity of the Taylor bubble is set. With respect to this coordinate system,
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the interface of the slug body is stationary. The liquid in the slug body flows
backward with a relative velocity of vTB−vLLS. The liquid in the film zone ahead
of the slug body moves backward at a relative velocity of vTB−vLTBe. The liquid
film particles are sped up from vLTB to a higher velocity vLTBe in the entry zone
adjacent to the slug body.

dmscooped

dt
= ρL × ApipeHLTBe︸ ︷︷ ︸

liquid area in film in front of slug body

× (vTB − vLTBe)

︸ ︷︷ ︸
scooping liquid volumetric flow rate

(E.1)

dmshed

dt
= ρL × ApipeHLLS︸ ︷︷ ︸

liquid area inside the slug body

× (vTB − vLLS)

︸ ︷︷ ︸
shedding liquid volumetric flow rate

(E.2)

As the scooping flow rate is equal to the shedding flow rate, Equations E.1 and
E.2 lead to:

HLTBe (vTB − vLTBe) = HLLS (vTB − vLLS) (E.3)

Similarly, applying the mass balance on the gas phase yields to:

(1−HLTBe) (vTB − vGTBe) = (1−HLLS) (vTB − vGLS) (E.4)

Some slug flow models make the assumption that there is no slip between the gas
and liquid phases inside the slug body. In these cases:

vS = vLLS = vGLS (E.5)

Even though Figure E.2 shows this particular case, the mass balance Equa-
tions E.3 and E.4 can still be described by the same figure.

E.4.2 The continuity equation on a control volume in both
the slug body and stratified region

Maintaining the same coordinate system moving at the translational velocity, a
control volume bounded by a plane in the slug body (at point 1) and a plane
in the stratified region (point 2) can be set, as depicted in Figure E.3. A mass
balance can be carried out on this control volume:

(vTB − vLLS) (1−HLLS) = (vTB − vGTB) (1−HLTB) (E.6)

E.4.3 The continuity equation on a control volume over
the entire slug unit

A mass balance can be written for both liquid and gas phases, considering a
control volume the size of an entire slug unit.
For the liquid phase, this yields:

ρLvSLTUApipe = ρLvLLSTSApipeHLLS︸ ︷︷ ︸
liquid mass average in the slug body region

+ ρLvLTBTFApipeHLTB︸ ︷︷ ︸
liquid mass average in the liquid film region

(E.7)
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Figure E.3: Control volume between two cross-sections, one in the slug body, the
other in the stratified region, for the mass conservation equation in the two regions
(Shoham 2006).

Defining a parameter β = LF
LU

= vTBTF
vTBTU

= TF
TU

, the previous equation becomes:

vSL = vLLSHLLS (1− β) + vLTBHLTBβ (E.8)

Similarly, for the gas phase:

ρGvSGTUApipe = ρGvGLSTSApipeHGLS︸ ︷︷ ︸
gas mass average in the slug body region

+ ρGvGTBTFApipeHGTB︸ ︷︷ ︸
gas mass average in the liquid film region

(E.9)

vSG = vGTB (1−HLTB)
TF
TU

+ vGLS (1−HLLS)
TS
TU

(E.10)

TU = TS + TF (E.11)

vSG = vGLS (1−HLLS) (1− β) + vGTB (1−HLTB) β (E.12)

E.4.4 Mass of liquid inside the slug unit

There are two ways to measure the amount of liquid inside a slug unit:

1. Assuming a pipe cross-section, the mass of liquid which flows through the
cross-section in an amount of time equal to the slug unit period would be
the mass of liquid in a slug unit.

2. The second method assumes “freezing” the slug unit, by assuming a coor-
dinate system traveling at the same velocity at the slug unit and measuring
the inputs, outputs and the mass accumulated.

198



Determination of the mass of liquid in a slug unit by using the cross-
section method

The mass of liquid in a slug unit can be determined by calculating the amount
of liquid passing through a cross-section of the pipe during a time interval equal
to the slug unit period, TU :

WL =

ρLApipeHLLSvSTS︸ ︷︷ ︸
mass of liquid in slug body zone

+

∫ TF

0

ρLApipeHLTB (t) vLTBdt︸ ︷︷ ︸
mass of liquid in film zone

TU
(E.13)

Equation E.13 can be transformed from the time to the space domain, by using
the conversion terms:

TS =
LS
vTB

TF =
LF
vTB

dt =
dL

vTB
(E.14)

WL = ρLApipeHLLS
vLLS
vTB

LS
TU

+

∫ LF

0

ρLApipeHLTB
vLTB
TUvTB

dL (E.15)

LU = vTBTU (E.16)

WL =
ρLApipeHLLSvLLSLS +

∫ LF
0

ρLApipeHLTBvLTBdL

LU
(E.17)

Determination of the mass of liquid in a slug unit by using the freezing
method

Assuming a coordinate system moving with the same translational velocity as the
slug, the following mass balance can be written:

WL =

ρLApipeHLLSLS︸ ︷︷ ︸
mass of liquid in the slug body zone

+

∫ LF

0

ρLApipeHLTBdL︸ ︷︷ ︸
mass of liquid in the film zone

TU
− x (E.18)

where, x is the mass rate for the scooping or shedding process:

x = ρLApipeHLLS (vTB − vLLS) = ρLApipeHLTB (vTB − vLTB) (E.19)
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The liquid superficial velocity, vSL is:

vSL =
qL
Apipe

=
WL

ρLApipe
=
HLLSLS +

∫ LF
0

HLTBdL
LU
vTB

− x

= vTBHLLS
LS
LU

+
vTB
LU

∫ LF

0

HLTBdL− (vTB − vLLS)HLLS

= vTBHLLS

(
LS
LU
− 1

)
+ vLLSHLLS +

vTB
LU

∫ LF

0

HLTBdL

= vLLSHLLS − vTBHLLS
LF
LU

+
vTB
LU

∫ LF

0

HLTBdL

= vLLSHLLS + vTB
LF
LU
− vTBHLLS

LF
LU

+
vTB
LU

∫ LF

0

HLTBdL− vTB
LF
LU︸ ︷︷ ︸

vTB LF /LU was added and subtracted

= vLLSHLLS + vTB (1−HLLS)
LF
LU

+
vTB
LU

∫ LF

0

HLTBdL−
vTB
LU

∫ LF

0

dL

= vLLSHLLS + vTB (1−HLLS)
LF
LU
− vTB
LU

∫ LF

0

(1−HLTB) dL (E.20)

This gives the expression of the liquid superficial velocity:

vSL = vLLSHLLS + vTB (1−HLLS)
LF
LU
− vTB
LU

∫ LF

0

(1−HLTB) dL (E.21)

The average gas void fraction in the slug unit, HGSU is defined as:

HGSU = HGLS
LS
LU︸ ︷︷ ︸

average gas void fraction in the liquid slug region

+

∫ LF
0

HGTBdL

LU︸ ︷︷ ︸
average gas void fraction in the liquid film region

(E.22)

This takes into account the gas void fraction values in both the liquid slug and
liquid film regions.
The average slug unit liquid holdup is the opposite of the average slug unit gas
void fraction:

HLSU = 1−HGSU = 1−
(1−HLLS)LS +

∫ LF
0

(1−HLTB) dL

LU
(E.23)
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Equation E.23 can be combined with Equation E.21:

vSL = vLLSHLLS + vTB (1−HLLS)

(
1− LS

LU

)
− vTB
LU

∫ LF

0

(1−HLTB) dL

= vLLSHLLS + vTB (1−HLLS)− vTB (1−HLLS)
LS
LU

− vTB
LU

∫ LF

0

(1−HLTB) dL

= vLLSHLLS + vTB (1−HLLS)

− vTB

{
(1−HLLS)LS +

∫ LF
0

(1−HLTB) dL

LU

}
= vLLSHLLS + vTB (1−HLLS)− vTB (1−HLSU)

= vLLSHLLS + vTB − vTBHLLS − vTB + vTBHLSU (E.24)

This equation allows the calculation of HLSU :

HLSU =
vTBHLLS − vLLSHLLS + vSL

vTB
(E.25)

Equation E.25 allows the calculation of HLSU in terms of vSG:

vM = vSL + vSG = vLLSHLLS + vGLS (1−HLLS) (E.26)

This equation holds because the mass balance equation for both liquid and gas
phases results in a constant volumetric flow rate through any cross section of the
slug unit, in this case the slug body.

vSL = vGLS (1−HLLS) + vLLSHLLS − vSG (E.27)

This result can be used in Equation E.25:

HLSU =
vTBHLLS + vGLS (1−HLLS)− vSG

vTB
(E.28)

Slug unit average holdup concluding remarks

Equations E.25 and E.28 show an interesting result. The average liquid holdup
in a slug unit HLSU does not depend on the slug structure, namely it does not
depend on the length of the slug body zone LS, or the liquid film zone, LF . It
only depends on:

◦ Liquid and gas superficial flow rates, vSL and vSG.

◦ Liquid and gas particle/bubble velocities in the slug body, vLLS and vGLS.

◦ Taylor bubble translational velocity, vTB.

◦ Liquid holdup within the slug body, HLLS.
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Figure E.4: Dukler and Hubbard model (1975) (Shoham 2006).

E.5 Dukler and Hubbard (1976)

E.5.1 Assumptions

The following assumptions were made in the Dukler and Hubbard model:

1. The model considers fully developed, steady-state, two-dimensional flow.
A consequence of the steady-state assumptions is that liquid does not ac-
cumulate inside the slug and, as explained further in the next section, the
volumetric scooping rate at the front of the slug body is equal to the volu-
metric shedding rate at the end of it. The immediate consequence of this
is that the slug train consists of slug units of same length LU .

2. There is no slip between gas and liquid in the liquid slug body. This as-
sumption translates into the condition:

vLLS = vGLS = vS (E.29)

3. Both the gas and liquid phases are incompressible.

4. The flow is horizontal.

The model is not complete, because two additional variables need to be specified
as input parameters: freqS, the slug frequency, and HLLS, the liquid holdup in
the slug body.

E.5.2 Mass conservation

From Equation E.2, the translational velocity of the Taylor bubble can be ex-
pressed as:

vTB = vS +
x

ρLApipeHLLS︸ ︷︷ ︸
additional velocity gained by the scooping process

(E.30)

Defining c = x
ρLApipeHLLS

, Equation E.30 can be re-written as:

vTB = vS + cvS = vS (1 + c) = c0vS (E.31)
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Figure E.5: Control volume for the study of the liquid film hydrodynamics (Shoham
2006).

where c0 = 1+c. c is a function of Reynolds number and the following expression
holds:

c = 0.021 lnReS + 0.022 (E.32)

where:

ReS =
ρLvMdpipe

µL
(E.33)

vM =
qL + qG
Apipe

= vS (E.34)

Equation E.32 was obtained based on considerations related to the shedding
process, for a wide range of Reynolds numbers.

The values of c were also confirmed by experiments (Fabre 1994). It was found
that for turbulent flow c = 0.2 and for laminar flow c = 1. Consequently, c0 has
the values:

c0 =

{
1.2 for turbulent flow

2 for laminar flow
(E.35)

The meaning of the c0 coefficient is that of a flow distribution coefficient. It shows
the contribution of the mixture velocity to the translational velocity.

E.5.3 Hydrodynamics of the liquid film

This section aims to determine:

1. The velocity profile vF (z) relative to the coordinate system moving with
the slug front velocity of vTB.

2. The liquid holdup distribution along the liquid film HLTB (z), or alterna-
tively, hF (z), the liquid film height at location z. As shown in Figure E.5,
the axis z has its origin at the end of a slug body and the positive values
are opposite to the direction of flow.

The velocity of the liquid film in this coordinate system is:

vF = vTB − vLTB =
x

ρLApipeHLTB

(E.36)
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Momentum Balance

A momentum balance can be applied to the control volume of width dz in Fig-
ure E.5:

d(mliquidvliquid)
dt

dz
=

∑
F

dz
(E.37)

where: ∑
F = Wall Friction− Taylor Bubble Pushing Force

+ Gravitational Component along z axis (E.38)

Equations E.37 and E.38 can be further expanded into:

d

dz


ρL ApipeHLTB︸ ︷︷ ︸

liquid flow area

vF

︸ ︷︷ ︸
liquid volumetric flow rate︸ ︷︷ ︸
liquid mass flow rate

vF

︸ ︷︷ ︸
momentum rate


= τFSF −

d

dz

(
PApipeHLTB

)

+


ρL ApipeHLTB︸ ︷︷ ︸

liquid flow area

dz

︸ ︷︷ ︸
volume of liquid︸ ︷︷ ︸

mass of liquid

g sin θ


︸ ︷︷ ︸
gravitational component along z axis

1

dz

(E.39)

The Taylor bubble pushing force was expressed in terms of P , the average hydro-
static gas pressure acting on the control volume.

d

dz

(
PApipeHLTB

)
= (ρL g dhF cos θ)︸ ︷︷ ︸

hydrostatic weight of the liquid column of height dhF and length dz on z axis

×ApipeHLTB

dz
(E.40)

Substituting the value of vF from E.36 into Equation E.39 yields:

d

dz

(
ρLApipeHLTBv

2
F

)
=

d

dz

[
(ρLApipeHLTB)

(
x2

ρLApipeHLTB

)2
]

=
d

dz

(
x2

ρLApipeHLTB (hF )

)
=

x2

ρLApipe
−

dHLTB
dhF

H2
LTB

dhF
dz

(E.41)
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− x2

ρLApipe

HLTB
dhF

H2
LTB

dhF
dz

= τFSF − ρLApipeHLTBg cos θ
dhF
dz

+ ρLApipeHLTBg sin θ

(E.42)

dhF
dz

= − τFSF + ρLApipeHLTBg sin θ
x2

ρLApipeH
2
LTB

dHLTB
dhF

− ρLApipeHLTBg cos θ
(E.43)

The boundary conditions for E.43 are:

hF (z = 0) = HLLSd (E.44)

corresponding to:

vF (z = 0) = vTB − vS (E.45)

The following conclusions can be drawn from E.43:

1. The equilibrium level hF−equilibrium is reached when dhF
dz

= 0. This yields
to:

τFSF + ρLApipeHLTBg sin θ = 0 (E.46)

where τF is the shear stress caused by the friction between the liquid film
and the pipe wall. This must be expressed using the actual velocity of the
liquid film vLTB, not the relative velocity vF = vTB − vLTB, because force
is invariant in non-accelerating coordinate systems.

τF = fF
ρLv

2
LTB

2
(E.47)

2. The critical level hF−critical is the value of hF for which the denominator is
zero:

x2

ρLApipeH2
LTB

dHLTB

dhF
− ρLApipeHLTBg cos θ = 0 (E.48)

If the boundary condition of Equation E.43, hF (z = 0) > hF−critical, which
is the solution of E.48, hF (z = 0) needs to be adjusted and made equal to
hF−critical.
In other words, the boundary condition of Equation E.43 becomes:

hF (z = 0)

{
HLLSd if HLLSd ≤ hF−critical

hF−critical if HLLSd > hF−critical
(E.49)
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E.5.4 Slug length

The same Equation E.13 that provided the value of the mass of liquid in a slug
unit could be used to determine the liquid slug length. The method measured
the mass of liquid passing through a cross-section of the pipe during an interval
equal to the slug unit period TU :

WL =

ρLApipeHLLSvSTS︸ ︷︷ ︸
mass of liquid in slug body zone

+

∫ TF

0

ρLApipeHLTB (t) vLTBdt︸ ︷︷ ︸
mass of liquid in film zone

TU
(E.50)

The term HLTB is not constant in the interval TF . Therefore, the purpose of the
following calculations is to determine the product HLTBvLTB.
As previously shown in Equation E.3, the following equation holds:

HLTB (vTB − vLTB) = HLLS (vTB − vS) (E.51)

Also, Equation E.31 shows that:

vTB = vS + cvS = vS (1 + c) (E.52)

vTB − vS = cvS (E.53)

Substituting this result in E.51 yields to:

HLTB (vTB − vLTB) = HLLScvS (E.54)

vTBHLTB − cvSHLLS = vLTBHLTB (E.55)

(1 + c) vSHLTB − cvSHLLS = vLTBHLTB (E.56)

vS [HLTB − c (HLLS −HLTB)] = vLTBHLTB (E.57)

This result can now be introduced in Equation E.50:

WL =
{
ρLApipeHLLSvS

LS
vTB

+

∫ LF

0

ρLApipevS [HLTB − c (HLLS −HLTB)]
dL

vTB

}
freqU (E.58)

The expression was converted from the time to the space domain, using:

TS =
LS
vTB

TF =
LF
vTB

dt =
dL

vTB
(E.59)

206



WL

ρLApipevS
=
freqU
vTB

{
HLLSLS +

∫ LF

0

[HLTB − c (HLLS −HLTB)] dL

}
(E.60)

Assuming that the liquid film is at equilibrium in the stratified region of the slug
unit:

HLTB = HLTBe = constant (E.61)

WL

ρLApipevS
=
freqU
vTB

{HLLSLS + LF [HLTB − c (HLLS −HLTB)]} (E.62)

LF = LU − LS =
vTB
freqU

− LS (E.63)

This result can be introduced in Equation E.62:

WL

ρLApipevS
=

freqU
vTB

HLLSLS

+
freqU
vTB

(
vTB
freqU

− LS
)

[HLTB − c (HLLS −HLTB)]

=
freqU
vTB

HLLSLS +

(
1− LS

freqU
vTB

)
[HLTB − c (HLLS −HLTB)]

=
freqU
vTB

HLLSLS + [HLTB − c (HLLS −HLTB)]

− LS
freqU
vTB

[HLTB − c (HLLS −HLTB)] (E.64)

This allows us to solve for LS:

LS =

WL

ρLApipevS
− [HLTB − c (HLLS −HLTB)]

freqU
vTB

(HLLS −HLTB + cHLLS − cHLTB)

=

WL

ρLApipevS
− [HLTB − c (HLLS −HLTB)]

freqU
(1+c)vS

(1 + c) (HLLS −HLTB)
(E.65)

This gives the solution LS:

LS =
vS

freqU (HLLS −HLTB)

[
WL

ρLApipevS
−HLTB + c (HLLS −HLTB)

]
(E.66)

E.5.5 Velocity of the gas pocket

As shown in Equation E.6:

(vTB − vS) (1−HLLS) = (vTB − vGTB) (1−HLTB) (E.67)

vGTB = vTB − (vTB − vS)

(
1−HLLS

1−HLTB

)
(E.68)

As vTB = (1 + c) vS, the previous equation can be written as:

vGTB = vTB − cvS
(

1−HLLS

1−HLTB

)
(E.69)
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E.5.6 Length of the mixing zone

According to Dukler and Hubbard (1976), based on a correlation for the velocity
head, the length of the mixing zone is:

Lmixing = 0.3vhead = 0.3
(vS − vLTBe)2

2g
(E.70)

E.5.7 Algorithm for the calculation of pressure gradient
and liquid holdup in horizontal slug flow

Input parameters:

◦ WL and WG = liquid and gas mass rates.

◦ dpipe = pipe diameter.

Fluid properties:

◦ ρL and ρG = liquid and gas densities.

◦ µL and µG = liquid and gas viscosities.

◦ σ = surface tension.

Additional parameters:

◦ HLLS = liquid holdup in the slug body.

◦ freqU = slug unit frequency.

Step 1 Calculate the slug velocity:

vS =

WL

ρL
+ WG

ρG

Apipe
(E.71)

Step 2 Calculate the Taylor bubble velocity, vTB and the scooping mass rate,
x:

ρS = ρLHLLS + ρG (1−HLLS) (E.72)

µS = µLHLLS + µG (1−HLLS) (E.73)

ReS =
ρSvSdpipe

µS
(E.74)

c = 0.021 ln (ReS) + 0.22 (E.75)
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vTB = (1 + c) vS (E.76)

x = c (ρLApipeHLLSvS) (E.77)

Step 3 Assume a value for LS:

LS = LS−estimate (E.78)

Step 4 Calculate the length of the liquid film region, LF :

LF =
vTB
freqU

− LS (E.79)

Step 5 Integrate numerically the equation:

dhF
dz

= − τFSF + ρLApipeHLTBg sin θ
x2

ρLApipeH
2
LTB

dHLTB
dhF

− ρLApipeHLTBg cos θ
(E.80)

from z = 0 to z = LF . The boundary conditions are hF (z = 0) = HLLSd. The
shear stress in the liquid film region is calculated with:

τF = fF
ρL(vTB − vF )2

2
(E.81)

This step determines HLTS (z) and vLTB (z).

Step 6 Calculate the length of the liquid slug, LS from:

LS =
vS

freqU (HLLS −HLTB)

[
WL

ρLApipevS
−HLTB + c (HLLS −HLTB)

]
(E.82)

Step 7 Compare the value of the assumed LS−estimate with the value of the LS
calculated from Equation E.82:

|LS − LS−estimate| < ε (E.83)

If the absolute value of the difference between the two values is less the accept-
able tolerance ε, convergence is reached and continue with Step 8.
Otherwise, go back to Step 4.

Step 8 Calculate the pressure drops:

−∆Pacceleration =
x

Apipe
(vS − vTBe) (E.84)

−∆Pfriction = fS
ρSv

2
S

2

LS
dpipe

(E.85)

−∆PU = −∆Pacceleration −∆Pfriction (E.86)

Step 9 The total pressure gradient is:

−dP
dL

= −∆PU
LU

(E.87)
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E.6 Felizola and Shoham mechanistic model for

upward slug flow (1995)

This model builds up on the previous slug flow models by Fernandes et al. (1983),
Sylvester (1987) and Vo and Shoham (1989). Many of the equations used by this
model, Equations E.3, E.4, E.8 and E.12 have already been discussed in the
previous sections and were derived based on the mass balance equation applied
to different control volumes. The model considers that the liquid film in the
stratified region of the slug flows backwards, so the term vLTB is replaced by
−vLTB in the aforementioned equations:

HLTB [vTB − (−vLTB)] = HLLS (vTB − vLLS) (E.88)

(1−HLTB) (vTB − vGTB) = (1−HLLS) (vTB − vGLS) (E.89)

vSL = vLLSHLLS (1− β) + vLTBHLTBβ (E.90)

vSG = vGLS (1−HLLS) (1− β) + vGTB (1−HLTB) β (E.91)

where β = LF
LU

= TF
TU

.
A force balance over the liquid film zone yields:

ρL HLTBApipe︸ ︷︷ ︸
area occupied by liquid in liquid film zone

dL

︸ ︷︷ ︸
volume occupied by liquid in liquid film zone︸ ︷︷ ︸

mass of liquid in the film zone

g sin θ

︸ ︷︷ ︸
gravitational component parallel to the pipe axis

= τLW
SL
Apipe

+ τi
SL
Apipe

= fL
ρLvLTB

2

2

Si
Apipe

+ fi
ρG [vGTB − (−vLTB)]

2

SL
Apipe
(E.92)

The geometrical parameters SL and Si are defined in Figure E.6.

E.6.1 Closure relationships

As the number of unknowns exceeds the number of equations, a set of closure
relationships needs to be used. This is a set of empirical correlations.
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Figure E.6: Geometric parameters for the stratified region of slug flow (Shoham
2006).

Taylor bubble drift velocity vdrift

The Taylor bubble translational velocity vTB can be expressed as:

vTB = c0vM + vdrift (E.93)

where the flow coefficient c0 is:

c0 =

{
1.2 for turbulent flow

2 for laminar flow
(E.94)

Alves et al. (1993) suggested the following values for the flow coefficient c0:

c0 =


1.0 for turbulent flow and 0◦ < θ ≤ 50◦

1.15 for turbulent flow and 50◦ < θ ≤ 60◦

1.25 for turbulent flow and 60◦ < θ ≤ 90◦

2 for laminar flow

(E.95)

A widely used correlation for the Taylor bubble drift velocity is Bendiksen (1984):

vdrift = 0.54
√
gdpipe cos θ + 0.35

√
gdpipe sin θ (E.96)

for values of θ ∈ [0◦ . . . 90◦].

Gas bubble velocity in the slug body vGLS

The gas bubble velocity in the slug body is the sum of the medium velocity and
the bubble rise velocity. The Harmathy (1962) correlation can be used for the
latter:

vGLS = c0vM + 1.53 4

√
(ρL − ρG) gσ

ρL2
HLLS

0.5 sin θ (E.97)

where the distribution coefficient, c0 is:

c0 =

{
1.0 . . . 1.5 for vertical flow

1.0 for horizontal and near horizontal flow
(E.98)

The value used for inclined flow applications is c0 = 1.2.
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Liquid holdup in the slug body HLLS

There are several correlations for HLLS, but the one used by this model is Gomez
et al. (2000):

HLLS = e−(7.85×10−3θ+2.48×10−6ReLS) (E.99)

where the Reynolds number ReLS is:

ReLS =
ρLvMdpipe

µL
(E.100)

Slug body length LS

Based on experimental results, Shoham (2006) suggested that the length of the
slug body in slug flow has values in the range [20dpipe, · · · , 30dpipe], with the lower
end of the scale reached for vertical flow and the higher end for horizontal flow.
Shoham improved the model by using a correlation for LS based on a linear
interpolation between the two ends of the scale.

E.6.2 Numerical solution

Two parameters, K1 and K2 are defined:

K1 = vTBHLLS + vGLS (1−HLLS)− vM (E.101)

K2 = K1 + vM − vTB (E.102)

The eight Equations E.88-E.93, E.97 and E.99 can be reduced to just one equation
with one unknown, hF :

fGρG

[
K1

HLTB

+
K2

(1−HLTB)

]2

Si + fLρL

(
K1

HLTB

− vTB
)2

SL

− 2ρLgApipeHLTB sin θ = 0 (E.103)

because Si, SL and HLTB can be expressed as functions of hF :

Si = dpipe

√
1−

(
2
hF
dpipe

)
− 1

2

(E.104)

SL = dpipe

[
π − arccos

(
2
hF
dpipe

− 1

)]
(E.105)

HLTB =
π − arccos

(
2 hF
dpipe
− 1
)

+
(

2 hF
dpipe
− 1
)√

1−
(

2 hF
dpipe
− 1
)2

π
(E.106)
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The solution hF−solution of Equation E.103 allows us to determine all other un-
knowns in the entire set of eight equations mentioned before.
To find the solution, the Newton-Raphson method could be used:

hF |j+1 = hF |j −
F

F ′
(E.107)

where the function F is the LHS of Equation E.103.

F ′ =
dF

dhF

= 2{fGρGSi
(

K1

HLTB

+
K2

1−HLTB

)[
K2

(1−HLTB)2 −
K1

HLTB
2

]
− fLρLSL

(
K1

HLTB

− vTB
)

K1

HLTB
2 − ρLgApipe sin θ}dHLTB

dhF

+ fGρG

(
K1

HLTB

+
K2

1−HLTB

)2
dSi
dhF

+ fLρL

(
K1

HLTB

− v2
TB

)2
dSL
dhF
(E.108)

where:

dSi
dhF

=
2
(

1− 2 hF
dpipe

)
√

1−
(

2 hF
dpipe

)2
(E.109)

dSL
dhF

=
2√

1−
(

2 hF
dpipe

)2
(E.110)

dHLTB

dhF
=

4

πdpipe

√
1−

(
2
hF
dpipe

)2

(E.111)

There are two solutions to Equation E.103 and only the lower value is the correct
one. For any iterative numeric algorithm, using an initial guess of hF−initial =
0.1dpipe will allow the algorithm to always converge to the correct root.

E.6.3 Felizola Shoham algorithm for upward slug flow in
inclined pipes

Step 1 Calculate vTB, vGLS and HLLS from the closure relationships, Equations
E.93, E.97 and E.99:

vTB = c0vM + vdrift vM = vSL + vSG (E.112)

where the flow coefficient c0, with Alvez et al. (1993) suggested changes is:

c0 =


1.0 for turbulent flow and 0◦ < θ ≤ 50◦

1.15 for turbulent flow and 50◦ < θ ≤ 60◦

1.25 for turbulent flow and 60◦ < θ ≤ 90◦

2 for laminar flow

(E.113)
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vGLS = c0vM + 1.53 4

√
(ρL − ρG) gσ

ρL2
HLLS

0.5 sin θ (E.114)

HLLS = e−(7.85×10−3θ+2.48×10−6ReLS) (E.115)

Equations E.97 and E.103 are valid for 0◦ ≤ θ ≤ 90◦.
Step 2 Calculate K1 and K2 parameters, as defined in E.101 and E.102:

K1 = vTBHLLS + vGLS (1−HLLS)− vM (E.116)

K2 = K1 + vM − vTB (E.117)

with vM = vSL + vSG.
Step 3 Determine hF and HLTB from Equation E.103:

fGρG

[
K1

HLTB

+
K2

(1−HLTB)

]2

Si + fLρL

(
K1

HLTB

− vTB
)2

SL

− 2ρLgApipeHLTB sin θ = 0 (E.118)

The Newton-Raphson method could be used to determine the appropriate root
hF−solution. The remarks in Section E.6.2 relative to the use of the method are
useful to this end.
Step 4 Calculate vLTB and vGTB from:

vLTB =
K1

HLTB

− vTB (E.119)

vGTB =
K2

1−HLTB

+ vTB (E.120)

Step 5 Solve for vLLS Equation E.6:

(vTB − vLLS) (1−HLLS) = (vTB − vGTB) (1−HLTB) (E.121)

Step 6 Solve for β = LF
LU

equation:

β =
vLLSHLLS − vSL

vLLSHLLS + vLTBHLTB

(E.122)

This is just another formulation of Equation E.8:

vSL = vLLSHLLS (1− β) + vLTBHLTBβ (E.123)
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Figure E.7: Control volume used by the Zhang et al. (2000) model.

Step 7 Determine the length of the liquid film region, LF and the length of the
slug unit LU from:

LF = LS
β

1− β
(E.124)

LU = LS + LF (E.125)

Step 8 Determine the pressure drop in the slug unit and the pressure gradient:

−∆PU = ρSgLS sin θ+τS (πdpipe)
LS
Apipe

+ρFgLF sin θ+τFLF
SF
Apipe

+τGLF
SG
Apipe

(E.126)

and −dP
dL

= −∆PU
LU

.

E.7 Zhang et al. model for slug flow (2000)

Unlike the previous slug flow models by Dukler and Hubbard (1976) and Taitel
and Barnea (1990), the Zhang et al. (2000) model considers the entire gas pocket-
liquid film as the control volume. The model allows the calculation of:

◦ The pressure gradient in the slug unit.

◦ The slug unit frequency.

◦ The liquid holdup in the film region.

E.7.1 Equations for the Developed Slug Flow

Assumptions

1. No slip between the gas and liquid phases in the slug body. This is equiva-
lent to:

vLLS = vGLS = vS (E.127)

2. Slug units are equally spaced, which is equivalent to LU = constant.

3. Gas and liquid phases are incompressible.

215



Continuity equations

Assuming a control volume the size of the slug unit, the following mass balance
can be written:

ρLApipeHLLS (vS − vTB) = ρLApipeHLTB (vLTB − vTB) (E.128)

As shown earlier in Equations E.3 and E.4:

HLTB (vTB − vLTB) = HLLS (vTB − vLLS) (E.129)

(1−HLTB) (vTB − vGTB) = (1−HLLS) (vTB − vGLS) (E.130)

Summing the two Equations E.129 and E.130 the velocity vS is obtained:

vS = vGTB (1−HLTB) + vLTBHLTB (E.131)

Mass balances for the liquid and gas phases, as shown in Equations E.8 and E.12,
lead to:

vSL = vLLSHLLS (1− β) + vLTBHLTBβ (E.132)

vSG = vGLS (1−HLLS) (1− β) + vGTB (1−HLTB) β (E.133)

where β = LF
LU

. With the non-slip assumption, vLLS = vGLS = vS, the equations
become:

vSLLU = vSHLLSLS + vLTBHLTBLF (E.134)

vSGLU = vS (1−HLLS)LS + vGTB (1−HLTB)LF (E.135)

Momentum equations

The momentum at section 1 in Figure E.7 is:

ρLApipeHLTB (vLTB − vTB) vLTB (E.136)

and at section 2 is:

ρLApipeHLLS (vS − vTB) vS (E.137)

Due to gas static and hydrostatic liquid pressures, the forces acting at section 1
are:

P1ApipeHLTB + ρLg cos θ

∫ hf e

0

(hfe − y) b (y) dy (E.138)
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and at section 2:

P2ApipeHLLS + ρLg cos θ

∫ hf i

0

(hfi − y) b (y) dy (E.139)

The third type of forces acting on the curved surface of the liquid film in the
direction z are due to the gas pressure P2 pushing on the liquid slug body:

P2Apipe (HLLS −HLTB) (E.140)

Based on these facts, the momentum equation is:

P1ApipeHLTB + ρLg cos θ

∫ hf e

0

(hfe − y) b (y) dy

−
[
P2ApipeHLLS + ρLg cos θ

∫ hf i

0

(hfi − y) b (y) dy

]
+ τiSiLF − τLWSLSLF − ρLg sin θApipeHLTBLF

= ρLApipeHLLS (vS − vTB)− ρLApipeHLTB (vLTB − vTB) vLTB
(E.141)

The RHS of Equation E.141 can be further expanded based on:

HLLS (vS − vTB) = HLTB (vLTB − vTB)

as shown in Equation E.129. The RHS of Equation E.141 becomes:

ρLApipeHLTB (vLTB − vTB) (vS − vLTB) (E.142)

Replacing the RHS of Equation E.141 with E.142, the momentum Equation E.141
becomes:

P2 − P1

LF
=

ρL (vTB − vLTB) (vS − vLTB)

LF

+
τiSi − τLWSW
HLTBApipe

− ρLg sin θ

− ρLg cos θ

HLTBApipeLF

[∫ hfi

0

(hfi − y) b1 (y) dy

]
− ρLg cos θ

HLTBApipeLF

[∫ hfe

0

(hfe − y) b2 (y) dy

]
(E.143)

Similarly, for the gas phase:

P2 − P1

LF
=
ρG (vTB − vGTB) (vS − vGTB)

LF
+
−τiSi − τGWSW
(1−HLTB)Apipe

−ρGg sin θ (E.144)
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Equating the pressure drop from the previous two Equations E.143 and E.144,
yields:

0 =
ρL (vTB − vLTB) (vS − vLTB)− ρG (vTB − vGTB) (vS − vGTB)

LF

− ρLg cos θ

LFHLTBApipe

[∫ hfi

0

(hfi − y) b1 (y) dy −
∫ hfe

0

(hfe − y) b2 (y) dy

]
+

τGWSGW
(1−HLTB)Apipe

− τLWSLW
HLTBApipe

+ τiSi

(
1

HLTBApipe
+

1

(1−HLTB)Apipe

)
− (ρL − ρG) g sin θ (E.145)

LU = LS + LF (E.146)

The first term in Equation E.145 represents the momentum exchange between
the slug body and the liquid film zone. Zhang et al.’s model was the first model
to take into account the momentum exchange term, as described in Equation
E.145.

E.7.2 Zhang et al. (2000) model calculation algorithm

The Equations used by the solution algorithm are E.129, E.130, E.131, E.134,
E.145 and E.146.
Step 1 Start with an estimated value for HLTB.
Step 2 LS is known as a closure relationship. The Zhang et al. (2000) correlation
found in Section F.1 is used:

LS =
(
32 cos2θ + 16 sin2θ

)
d (E.147)

Step 3 Calculate vTB using the equation:

vTB = c0vS + vdrift vS = vSL + vSG (E.148)

where the flow coefficient c0 = 1.2 for turbulent flow and c0 = 2 for laminar flow.
These were the values considered in the Zhang et al (2000) slug flow calculation
algorithm.
Alvez et al. (1993) improved the values for the c0 coefficient to:

c0 =


1.0 for turbulent flow and 0◦ < θ ≤ 50◦

1.15 for turbulent flow and 50◦ < θ ≤ 60◦

1.25 for turbulent flow and 60◦ < θ ≤ 90◦

2 for laminar flow

(E.149)

The Taylor bubble drift velocity is calculated with the Bendiksen (1984) correla-
tion:

vdrift = 0.54
√
gdpipe cos θ + 0.35

√
gdpipe sin θ (E.150)
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for values of θ ∈ [0◦ . . . 90◦].
Step 4 Use the Gregory correlation described in Section F.3 to calculate HLLS:

HLLS =
1

1 +
(
vS

8.66

)1.39 (E.151)

Step 5 Calculate vLTB and vGTB using Equations E.129 and E.130:{
HLLS (vTB − vS) = HLTB (vTB − vLTB)

(1−HLLS) (vTB − vS) = (1−HLTB) (vTB − vGTB)

Step 6 Calculate LF and LU from:{
LUvSL = LSvSHLLS + LFvLTBHLTB

LU = LS + LF

Step 7 Calculate the wetted wall fraction factor Θ, using the Grolman correlation:

Θ = Θ0

(σW
σ

)0.15

+
ρG

(ρL − ρG)

1

cos θ

(
ρLvSL

0.25d

σ

)0.25[
vSG

2

(1−HLTB)2gd

]0.8

(E.152)

Step 8 Calculate the geometrical parameters SF , SG, Si, AF and AG:

SF = πdΘ

AF = HLTBApipe

SG = πd− AF
AG = (1−HLTB)Apipe

SCD = d sin (πΘ)

ACD =
d2

4

(
πΘ− sin (2πΘ)

2

)
Si =

SF (ACD − AF ) + SCDAF
ACD

(E.153)

These parameters are shown graphically in Figure E.8.
Step 9 Calculate the friction factors fGW , fLW and fi:

fGW = CRe−nLW
fLW = CRe−nGW
fi = 0.0142 (E.154)

where the C and n factors are:

C =

{
1.0 for laminar flow

0.046 for turbulent flow
(E.155)

n =

{
1 for laminar flow

0.2 for turbulent flow
(E.156)
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Figure E.8: Geometrical parameters in slug flow (Zhang et al. 2000).

The Reynolds numbers are calculated with:

ReLW =
4 AF vLTB ρL

SF µL

ReGW =
4 AG vGTB ρG
(SG + Si)µL

(E.157)

The interfacial friction factor fi in Equation E.154 is using the Cohen-Hanratty
correlation shown in Section F.6.
Step 10 Calculate the shear stresses τGW , τLW and τi:

τGW = fGW
ρG (vGTB)2

2

τLW = fLW
ρL (vLTB)2

2

τi = fi
ρG (vGTB − vLTB) |vGTB − vLTB|

2
(E.158)

Step 11 After all the terms in Equation E.145 have been calculated, determine
the margin of error merr, which is the value of the RHS of the equation:

merr =
ρL (vTB − vLTB) (vS − vLTB)− ρG (vTB − vGTB) (vS − vGTB)

LF

− ρLg cos θ

LFHLTBApipe

×
[∫ hfi

0

(hfi − y) b1 (y) dy −
∫ hfe

0

(hfe − y) b2 (y) dy

]
+

τGWSGW
(1−HLTB)Apipe

− τLWSLW
HLTBApipe

+ τiSi

(
1

HLTBApipe
+

1

(1−HLTB)Apipe

)
− (ρL − ρG) g sin θ (E.159)

The integral terms are only about 1% of the value of the mixing term, which is
the first term in the RHS of the Equation E.159, according to (Zhang et al. 2000).
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Hence, they can be safely ignored.
Step 12 Check if the margin of error merr is less than the admitted tolerance ε:

|merr| < ε (E.160)

If Condition E.160 is satisfied, continue with Step 13. Otherwise, calculate HLTB

from merr and go back to Step 5 to reiterate the algorithm.
Step 13 Calculate the pressure gradient and the liquid holdup for the slug unit
with Equations E.161 and E.162:

dP

dL

∣∣∣∣
U

= −LF
LU

τLWSLW + τGWSGW
Apipe

− LS
LU

τSSS
Apipe

− LFg sin θ

LU
[ρLHLTB + ρG (1−HLTB)]− LS

LU
ρSg sin θ (E.161)

HLU = HLLS
LS
LU

+HLTB
LF
LU

(E.162)

E.7.3 Zhang et al. (2003) model calculation algorithm

A unified hydrodynamic mechanistic model for gas-liquid pipe flow was developed
at Tulsa University in 2003 (Zhang et al. 2003c). Unlike previous mechanistic
models, this model makes predictions for both flow-pattern transition and flow
behaviour using slug dynamics. The equations of slug flow are used not only to
calculate the slug characteristics, but also to predict the boundary transitions
from slug flow to other flow patterns. Apart from being a unified model, as far
as the slug flow model is concerned, some improvements were made to the 2000
slug model:

◦ The model improves the previous assumptions and considers the liquid en-
trainment in the gas core of the slug unit.

◦ The Cohen and Hanratty (Equation F.32) interfacial friction factor correla-
tion is replaced by the Andritsos and Hanratty (Equation F.33) correlation
for cases when the flow is stratified, or Asali and Ambrosio correlation
(Equation F.35) when the flow is annular.

◦ The shear stress at the pipe wall for laminar flow of the film zone of the
Taylor bubble is now calculated with the equation:

τLW =
3 µL vLTB

hF
− τi

2
(E.163)

where the hF is the average of liquid film height in the film zone and is calculated
with:

hF =
2ApipeHLTB

SF + Si
(E.164)

This research study analyses the performance of the Zhang et al. model as it
transitioned from the (2000) version to the (2003) version. The analysis focuses
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on the replacement of the correlations for HLLS and fi in the new version. For
a fair model comparison between the two model versions, the number of phases
considered has to be the same: gas and liquid, without liquid entrainment.

With the assumption of no liquid entrainment, the calculation algorithm of the
2003 version is:
Step 1 Start with an estimated value for LF .
Step 2 Use the Zhang et al. (2000) correlation for LS (Section F.1):

LS =
(
32 cos2θ + 16 sin2θ

)
d (E.165)

Step 3 Calculate vTB using the Bendiksen correlation:

vTB = c0vS + vdrift vS = vSL + vSG (E.166)

where the flow coefficient c0 = 1.2 for turbulent flow and c0 = 2 for laminar flow.

vdrift = 0.54
√
gdpipe cos θ + 0.35

√
gdpipe sin θ (E.167)

for values of θ ∈ [0◦ . . . 90◦].
Step 4 Use the Gregory correlation to calculate an initial estimation of HLLS:

HLLS =
1

1 +
(
vS

8.66

)1.39 (E.168)

Step 5 Calculate vLTB and vGTB using Equations E.129 and E.130:{
HLLS (vTB − vS) = HLTB (vTB − vLTB)

(1−HLLS) (vTB − vS) = (1−HLTB) (vTB − vGTB

Step 6 Recalculate HLLS using the more “accurate” Zhang correlation described
in Section F.3:

HLLS =
1

1 + Tsm

3.16
√

(ρL−ρG)gσ

(E.169)

The parameter Tsm has the form:

Tsm =
1

Ce

[
fS
ρSvS

2

2
+
d

4

ρLHLTB (vTB − vLTB) (vM − vLTB)

LS

]
(E.170)

and Ce is:

Ce =
2.5− |sin θ|

2
(E.171)

Step 7 Calculate LU from:

LU = LS + LF (E.172)

Step 8 Calculate the wetted wall fraction factor Θ using the Grolman correlation:

Θ = Θ0

(σW
σ

)0.15

+
ρG

(ρL − ρG)

1

cos θ

(
ρLvSL

0.25d

σ

)0.25[
vSG

2

(1−HLTB)2gd

]0.8

(E.173)
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Step 9 Calculate the geometrical parameters SF , SG, Si, AF and AG:

SF = πdΘ

AF = HLTBApipe

SG = πd− AF
AG = (1−HLTB)Apipe

SCD = d sin (πΘ)

ACD =
d2

4

(
πΘ− sin (2πΘ)

2

)
Si =

SF (ACD − AF ) + SCDAF
ACD

(E.174)

Step 10 Calculate the friction factors fGW , fLW and fi:

fGW = CRe−nLW
fLW = CRe−nGW

(E.175)

where the C and n factors are:

C =

{
1.0 for laminar flow

0.046 for turbulent flow
(E.176)

n =

{
1 for laminar flow

0.2 for turbulent flow
(E.177)

The Reynolds numbers are calculated with:

ReLW =
4 AF vLTB ρL

SF µL

ReGW =
4 AG vGTB ρG
(SG + Si)µL

(E.178)

Depending on whether the flow in the film zone is annular or stratified, Asali and
Ambrosio or Andritsos and Hanratty correlations for fi are used. The decision
about the flow type is made by testing the value of the wetted wall fraction
parameter, Θ:

Θ

{
≤ 0.8 stratified flow

> 0.8 annular flow
(E.179)

If the flow is annular, the Asali and Ambrosio correlation is used. Otherwise,
the Andritsos and Hanratty correlation for fi is used. These correlations are
described in Section F.6.
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Step 11 Calculate the shear stresses τGW , τLW and τi:

τGW = fGW
ρG vGTB

2

2

τLW =
3 µL vLTB

hF
− τi

2

τi = fi
ρG (vGTB − vLTB) |vGTB − vLTB|

2
(E.180)

where the hF is the average of the film zone and is calculated with:

hF =
2ApipeHLTB

SF + Si
(E.181)

Step 12 Calculate the margin of error merr:

merr =
ρL (vTB − vLTB) (vS − vLTB)− ρG (vTB − vGTB) (vS − vGTB)

LF

− ρLg cos θ

LFHLTBApipe

×
[∫ hfi

0

(hfi − y) b1 (y) dy −
∫ hfe

0

(hfe − y) b2 (y) dy

]
+

τGWSGW
(1−HLTB)Apipe

− τLWSLW
HLTBApipe

+ τiSi

(
1

HLTBApipe
+

1

(1−HLTB)Apipe

)
− (ρL − ρG) g sin θ (E.182)

Step 13 Check if the margin of error merr is less than the admitted tolerance ε:

|merr| < ε (E.183)

If Condition E.183 is satisfied, continue with Step 14. Otherwise, calculate LF
from merr and go back to Step 5 to re-iterate the algorithm.
Step 14 Calculate the pressure gradient and the liquid holdup of the slug unit:

dP

dL

∣∣∣∣
U

= −LF
LU

τLWSLW + τGWSGW
Apipe

− LS
LU

τSSS
Apipe

− LFg sin θ

LU
[ρLHLTB + ρG (1−HLTB)]− LS

LU
ρSg sin θ (E.184)

HLU = HLLS
LS
LU

+HLTB
LF
LU

(E.185)
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Appendix F

Empirical correlations used by
slug flow models

This study will consider the following empirical correlations, grouped by the
parameter they calculate:

F.1 Empirical correlations for the calculation of

parameter Liquid Slug Length, LS

1. Scott et al. (1989):

LS = max

{
30d, e−26.8+28.5[ln( d

0.0254)]
0.1
}

(F.1)

This correlation is based on data from the Prudhoe Bay field (Bratland
2009).

2. Zhang et al. (2003c):

LS =
(
32cos2θ + 16sin2θ

)
d (F.2)

3. Felizola and Shoham (2006):

This correlation was discussed in the Felizola and Shoham model, in the
closure relationships subsection E.6.1.

F.2 Empirical correlations for the calculation of

parameter Slug Frequency, freqslug

1. Zabaras (2000): The SI form of the correlation is:

freqslug = 0.0226

(
vSL
gd

)1.2[
64.8

vM
+ 3.281vM

]1.2

[0.836 + 2.75 (sin θ)]0.25

(F.3)
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This correlation is valid for inclination angles between 0◦ ≤ θ ≤ 11◦ and
pipe diameters 0.0254 m ≤ d ≤ 0.2 m. It is worth mentioning that under
steady-state conditions, vTB = vslug and:

LU =
vslug

freqslug
(F.4)

F.3 Empirical correlations for the calculation of

parameter Slug Liquid Holdup, HLLS

Based on studies by Dukler et al. (1964), Marcano (1973), Palmer (1975), Mand-
hane et al. (1975), Spedding et al. (1990), Spedding (1997) and Woldesmayat and
Ghajar (2006), which compared different empirical correlations for void fraction
in pipes at different inclination angles, the following empirical correlations were
selected. According to these studies these correlations have an accuracy range of
±15 %:

1. Eissa Al-Safran (2009):

HLLS = 1.05− 0.0417

mrv − 0.123
(F.5)

The parameter mr is the momentum transfer rate to accelerate the mass of
the liquid from vLTB to the slug mixture vM . Its mathematical expression
is:

mr = ρLApipeHLTB (vTB − vLTB) (vM − vLTB) (F.6)

The non-dimensional form of the momentum transfer rate, mrv, is given
by:

mrv =
mr

ρLApipev2
M

(F.7)

2. Woldesmayat and Ghajar (2006):

HLLS = 1− vSG
ṽ

ṽ = vSG

1 +

(
vSL
vSG

)(
ρG
ρL

)0.1


+ 2.9

[
gdσ (1 + cos θ) (ρL − ρG)

ρL2

]0.25

( 1.22 + 1.22 sin θ)
Patmospheric
Psystem

This correlation is a modified version of the Coddington and Macian (2002)
correlation and is valid for all flow regimes.
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3. Toshiba (Leung 2005):

HLLS = 1− vSG
1.08vM + 0.45

(F.8)

This correlation is valid for inclined pipes and all flow regimes.

4. Zhang (2003a) :

HLLS =
1

1 + Tsm

3.16
√

(ρL−ρG)gσ

(F.9)

The parameter Tsm has the form:

Tsm =
1

Ce

[
fS
ρSvM

2

2
+
d

4

ρLHLTB (vTB − vLTB) (vM − vLTB)

LS

]
(F.10)

and Ce is:

Ce =
2.5− |sin θ|

2
(F.11)

5. Gomez (2000):
This correlation is valid between inclination angles 0 ≤ θ ≤ π/2.

HLLS = 1.0× e−(7.85×10−3θ+2.48×10−6ReLS) (F.12)

where the Reynolds number is:

ReLS =
ρLvMd

µL
(F.13)

6. Spedding and Spence (1989):

ε

1− ε
=
[
0.45 + 0.08e−100(0.25−v2SL)

](vSG
vSL

)0.65

(F.14)

where:

HLLS = 1− ε (F.15)

7. Minami and Brill (1987):

HLLS = 1− e−[ lnZ1+9.21
8.7115 ]

4.3374

(F.16)

where:

Z1 =
1.84vSL

0.575

vSGd0.0277

(
ρL

0.5804

g0.3696σ0.1804

)−0.25(
Psystem
101325

)0.05

µL
0.1 (F.17)

This correlation applies to all flow regimes and pipe inclinations.
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8. Barnea and Brauner (1985):
This correlation is independent of the inclination angle.

HLLS = 1− 0.058

[
2

√
0.4σ

(ρL − ρG) g

ρL
σ

0.666fSvM
3

2d

0.4

− 0.725

]2

(F.18)

9. Gregory (1978):
This correlation was designed and tested for horizontal flow:

HLLS =
1

1 +
(
vM
8.66

)1.39 (F.19)

Despite its limited validity, various flow models use it as a low accuracy
estimate for an initial value for HLLS, while the more accurate values are
calculated by other correlations at later steps in the calculation algorithm.

10. Nicklin et al. (1962):

HLLS = 1− vSG

1.2vM + 0.35
√
gd

(F.20)

F.4 Empirical correlations for the calculation

of parameter Taylor Bubble Translational

Velocity, vTB

1. Bendiksen:

vTB = CSvM + vdrift (F.21)

vdrift = 0.54
√
gd cos θ + 0.35

√
gd sin θ (F.22)

where CS is 1.2 for turbulent flow and 2 for laminar flow.

2. Hassan and Kabir:

vdrift = 0.35

√
gσL (ρL − ρG)

ρL2

√
sin θ(1 + cos θ)2 (F.23)

where vM = vSL + vSG.

F.5 Empirical correlations for the calculation of

parameter Wetted Wall Fraction, Θ

1. Fan (2005):

Θ =

[
0.57HLTB

0.345 + 0.0637FrL
0.68

(
vSG
vSG,C

)0.68
](σW

σ

)0.15

(F.24)
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for values of Θ ∈ [0, 0.5].

Θ =

[
0.57HLTB

0.345 + 0.0637FrL
0.68

(
vSG
vSG,C

)0.55
](σW

σ

)0.15

(F.25)

for values of Θ ∈ [0.5, 1].
The critical value of the superficial gas velocity, vSG,C is:

vSG,C = 5
[m
s

] [ 1.24

ρG
[
kg
m3

]]0.5

(F.26)

FrL =
ρLvL

2

(ρL − ρG) gd cos θ
(F.27)

2. Biberg (1999):

β = 2π− 2

{
πHLTB +

(
3π

2

) 1
3 [

1− 2HLTB +HLTB

1
3 − (1−HLTB)

1
3

]}
(F.28)

For stratified flow, this correlation is accurate within ±0.002 radians, ac-
cording to Bratland (2009).

3. Grolman (1994):

Θ = Θ0

(σW
σ

)0.15

+
ρG

(ρL − ρG)

1

cos θ

(
ρLvSL

0.25d

σ

)0.25[
vSG

2

(1−HLTB)2gd

]0.8

(F.29)

4. Hart et al. (1989):

Θ = min

{
1,Θ0 + CFr0.58

}
(F.30)

where the constant C = 0.26 and the Froude number is:

Fr =
ρLvL

2

(ρL − ρG) gd
(F.31)

F.6 Empirical correlations for the calculation of

the interfacial friction factor fi

1. Cohen and Hanratty (1968): Cohen and Hanratty proposed a constant
value of 0.0142 for the interfacial friction factor in stratified flow, corre-
sponding to a fully developed rough interface, due to the presence of small
liquid waves.

fi = 0.0142 (F.32)
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2. Andritsos and Hanratty (1987): The correlation in Equation F.33 ap-
plies to stratified flow, under the assumption of a flat gas-liquid interface.

fi = fC

[
1 + 14.3 HLTB

0.5

(
vSG
vSG,t

− 1

)]
(F.33)

fC is the friction factor of the gas in the core of the Taylor bubble.

vSG,t = 5
[m
s

](ρGO
ρG

)0.5

(F.34)

ρGO in Equation F.34 is the gas density at atmospheric pressure.

3. Ambrosio and Asali (1984): The correlation applies to annular flow.

fi = fG

[
1 + 13.8 WeG

0.2ReG
−0.6

(
h+
F − 200

√
ρG
ρL

)]
(F.35)

The parameter h+
F is the dimensionless thickness of the liquid film and is

defined in Equation F.36.

h+
F =

ρGhFv
∗
C

µG
(F.36)

v∗C =

√
τi
ρG

(F.37)

For a smooth pipe fG is defined as:

fG = 0.046 ReG
−0.2 (F.38)

The Weber and Reynolds numbers are calculated with:

WeG =
ρGv

2
Gd

σ
(F.39)

ReG =
ρGvGd

µG
(F.40)

Equation F.35 shows the dependency of fi on h+
F . However, according to

Equation F.36 h+
F depends on v∗C . Equation F.37 shows the dependency of

v∗C on τi, the interfacial shear stress, which is defined as:

τi = fi
ρG (vG − vL) |vG − vL|

2
(F.41)

A method for solving Equations F.35- F.41 is given in Zhang step 14 (2003
version) in Section 5.3.2.
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4. Vlachos et al. (1997): For stratified flow, the interfacial friction factor
can be expressed by the empirical correlation:

fi = 0.024 HL
0.35ReSL

0.18 (F.42)

where the Reynolds number is:

ReSL =
ρLvSLd

µL
(F.43)

5. Hamersma and Hart (1987):
For small liquid holdup, HL ≤ 0.04:

fi =
0.0625[

log
(

15
ReG

+ ε
3.715d

)]2 (F.44)

where ε = estimated interfacial roughness = 2.3δL and δL = uniform liquid
thickness.
For annular flow, the uniform liquid thickness can be obtained as a function
of the liquid holdup HL, as follows:

HLTB =
AL
Apipe

=
π
4

[
d2 − (d− δL)2]

π
4
d2

= 2

(
δL
d

)
−
(
δL
d

)2

(F.45)

With the notation x = δL
d

, the following equation is obtained:

−x2 + 2x−HLTB = 0 (F.46)

with the solutions:

x1,2 = 1±
√

1−HLTB (F.47)

and because x ≤ 1, the only acceptable solution is:

x = 1−
√

1−HLTB

δL = d
(

1−
√

1−HLTB

)
(F.48)

6. Kowalski (1987):
This correlation was developed using data from experiments conducted un-
der high pressure. Kowalski correlated the interfacial friction factor with
the liquid holdup and the gas and liquid Reynolds numbers (Kowalski 1987):

fi = 7.5× 10−5H−0.25
L Re−0.3

G Re0.83
L (F.49)

where the Reynolds numbers are defined as:

ReG =
ρGvGdpipe

µG

ReL =
ρLvLdpipe

µL
(F.50)
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7. Bendiksen et al. (1989):
Bendiksen et al. derived an expression for the average wave height of the
interfacial waves in stratified flow, based on a force balance equation. The
expression of ∆hWave is:

∆hWave =

[
ρG(vG − vL)2

4 (ρL − ρG) g cos θ

]
+

√√√√[ ρG(vG − vL)2

4 (ρL − ρG) g cos θ

]2

− σ

(ρL − ρG) g cos θ

(F.51)

The height of the wave in this equation can be used as the absolute rough-
ness parameter to calculate the interfacial friction factor, either using the
Colebrook and White, or the Hall Equation F.53.

8. Sinai (1986):
Sinai derived an empirical expression for the roughness of the gas-liquid
phase interface, based on the Charnock (1955) correlation for the interfacial
friction factor. The relationship expresses the roughness of the interface in
terms of the gas velocity:

εi = 89.9

(
ρG

ρL − ρG

)(
SI

SG + SI

)(
v2
G

g

)
fi (F.52)

This relationship can be used in conjunction with the Colebrook and White
equation (Brill and Beggs 1986), Hall correlation (1957) or Moody’s equa-
tion. Moody produced the following approximate equation for the friction
factor:

fFanning = 0.001375

[
1 +

(
2× 104 ε

dpipe
+

106

Re

)
0.333

]
(F.53)

This equation gives values within ±5% for Reynolds numbers between 4000
and 107 and values of ε/dpipe up to 0.01.

9. Ouyang and Aziz (1996):
Using a regression approach, Ouyang and Aziz derived the following expres-
sion for the interfacial friction factor:

fi = 10−8.0942+4.2893Hsin θ
L

f 0.8732
WL N0.3072

vL
N1.0365
D

N1.914
G H0.9783

r

(F.54)

where Hr is the liquid holdup ratio, HL is the liquid holdup, θ is the in-
clination angle and fLW is the Fanning wall friction factor for the liquid
phase. Hr is defined as follows:

Hr =
vGTB
vLTB

(F.55)

The following parameters are defined:

Rvolumetric =
vSG
vSL

(F.56)

Reliquid =
ρLvLTBHLTBd

µL
(F.57)

fLW = 1.6291
(
Reliquid

−0.5161
) (
Rvolumetric

0.0926
)

(F.58)
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These parameters are used in the definition of the following dimensionless
groups:

Liquid velocity number:

NvL = vSL 4

√
ρL
gσ

(F.59)

Gas viscosity number:

NG = µG 4

√
g

ρLσ3
(F.60)

Pipe diameter number:

ND = dpipe

√
ρLg

σ
(F.61)
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