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Abstract

The problem of sonar detection and underwater communication in the presence of

impulsive snapping shrimp noise is considered. Non-Gaussian amplitude and non-

homogeneous Poisson temporal statistical models of shrimp noise are investigated from

the perspective of a single hydrophone immersed in shallow waters. New statistical

models of the noise are devised and used to both challenge the superiority of existing

models, and to provide alternative insights into the underlying physical processes.

A heuristic amplitude statistical model of snapping shrimp noise is derived from first

principles and compared with the Symmetric-α-stable model. The models are shown to

have similar variability through the body of the amplitude probability density functions

of real shrimp noise, however the new model is shown to have a superior fit to the

extreme tails. Narrow-band detection using locally optimum detectors derived from

these models show that the Symmetric-α-stable detector retains it’s superiority, despite

providing a poorer overall fit to the amplitude probability density functions. The results

also confirm the superiority of the Symmetric-α-stable detector for detection of narrow-

band signals in shrimp noise from Australian waters.

The temporal nature of snapping from a field of shrimp is investigated by considering

the snapping as a point process in time. Point process analysis techniques are drawn

from the fields of optics, neuro-physics, molecular biology, finance and computer sci-

ence, and applied to the problem of snapping shrimp noise. It is concluded that the

snapping is not consistent with a homogeneous Poisson process and that correlations



iii

exist in the point process on three different time scales. The cause of short time correla-

tions is identified as surface reflected replicas, and models of medium time correlations

are investigated. It is shown that a Cox-Ingersoll-Ross driven doubly-stochastic Poisson

model is able to describe the medium time correlations observed from the counting pro-

cess, but a kth-order interval analysis reveals that there is more information contained

within the snapping than can be described by the model. Analysis of shrimp snap

times over a full day provides evidence of correlation between snap events on long time

scales. Simulation of ocean noise is conducted to illustrate the use of such temporal

models, and implications for their use in detection algorithms are discussed.
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Chapter 1

Introduction

Olla hiljaa, niin saada kaloja

Be quiet and we’ll catch some fish

(Finnish saying)

The problem of detecting signals in noise is fundamental. There are many different

types of noise in the oceans, some are produced by natural phenomena such as seismic

activity, surface agitation (due to the wind) and rain. Others have biological or man-

made origins. Some of these noises are fairly constant such as distant shipping noise,

others are infrequent but may last for an extended period of time, for example air-

gun noise from seismic surveys. Many of the noises in the ocean combine so that

the distribution of pressure amplitudes is approximately Gaussian, and consequently

an additive Gaussian noise model is often chosen for use in underwater acoustic signal

processing algorithms (Chitre et al. 2008). In warm, shallow waters the acoustic activity

of snapping shrimp introduces a sustained, impulsive (and therefore non-Gaussian)

noise into the ocean. Scientists from the University of California Division of War

Research were among the first to identify snapping shrimp noise as a serious concern

for sonar (Inman 2003). In general the performance of linear correlation receivers are

degraded in the presence of impulsive noise (Aazhang & Poor 1987) and this is true for
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such receivers operating in snapping shrimp noise (Chitre et al. 2006). Snapping shrimp

noise will also degrade the performance of conventional sonar (Bertilone & Killeen 2001)

and traditional communication techniques (Chitre 2007, Aazhang & Poor 1987) when

operated using the acoustic frequency band where shrimp noise is dominant.

1.1 Thesis aims

The aim of this thesis is to further understand the impulsive noise produced by fields of

snapping shrimp, with a view to improving sonar detection and communication in such

noise. Justification for expending effort on understanding the statistical properties of

snapping shrimp noise, not just because snapping shrimp are interesting, but also for

improving signal processing is provided by Middleton’s general rule (Middleton 1995):

...the more relevant information regarding both the signal and noise that is

properly used, the better the performance.

The following research activities were chosen for their relevance to fundamental under-

standing of shrimp noise, and their potential for improving signal processing algorithms

used in sonar and underwater communication systems:

1. Review non-Gaussian amplitude models of snapping shrimp noise

2. Derive a phenomenological amplitude model of noise received at a hydrophone

3. Initiate a study of snapping shrimp noise as a point process in time

4. Apply amplitude and temporal statistics to a simulation of ocean acoustic noise

5. Investigate the use of non-Gaussian models applied to a fundamental detection

problem.
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The first three aims were to investigate shrimp noise from a fundamental point of view

and to provide new statistical information about the shrimp noise. The last two aims

were intended to both demonstrate and investigate the application of this knowledge

to practical problems.

1.2 Research methodology

Amplitude and temporal models of shrimp noise are investigated. The analysis is

conducted from the point of view of a single hydrophone placed in the water, and so

the models are appropriate for received pressure levels of shrimp noise combined with

all other sources of ambient noise. Established or commonly assumed models of the

temporal and amplitude statistics are investigated and some new models are developed.

Where possible the models are explained from a physical point of view and comparisons

are made using real ambient noise.

Amplitude models were considered in terms of first order probability density functions

of the instantaneous pressure amplitudes at a receiving hydrophone. Candidate models

were drawn from the existing body of knowledge, and a new heuristic model was derived

from first principles as a dedicated model of shrimp noise with an analytic probability

density function. The models were tested for goodness of fit to real ambient plus shrimp

noise using visual comparison of probability density functions, aided by plots showing

the relative difference between theoretical and empirical results.

Temporal analysis techniques were sourced from scientific fields such as optics and

neuro-physics, and applied to the problem of snapping shrimp noise. Two of the tech-

niques were based on first order statistics and all subsequent techniques made use of

higher order statistics. All of the temporal analyses were conducted using real snapping

shrimp noise with simulated data used only in a secondary confirming (rather than es-

tablishing) role. Conclusions were supported by formal statistical testing, most often

using the Anderson Darling A2 statistic because of important information in the tails of
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the relevant distributions. One of the analysis methods (Fano-factor analysis) did not

admit a formal statistical test because the required distributions were not known. In

place of a formal test, a pseudo-test was applied using guide levels and containment (the

percentage of points residing within a set of guide levels). All tests (and pseudo-tests)

were conducted at the 95% confidence (or 95% containment) level. Visual comparisons

were used when formal statistical tests could not be applied.

To demonstrate a practical application of the amplitude and temporal statistical mod-

els, a simulated pressure time-series was produced and some of the analysis used in the

amplitude and temporal sections were applied to the simulated data. Visual judgement

was used to compare results from simulated data with similar results from real shrimp

noise. A check of parameter consistency was conducted by comparing the parame-

ters used to produce the simulated noise with parameters obtained from the analysis

techniques. The parameters were found to be consistent.

Amplitude models were used to produce locally optimum detectors. The locally opti-

mum detectors were applied to the problem of detecting narrow-band signals in real

shrimp noise. Receiver operating characteristic (ROC) curves were produced by adding

synthetic signals (with pre-determined signal to noise ratio) into a representative set of

real shrimp noise. Detector performance is defined using the detection threshold (the

signal-to-noise ratio giving a probability of detection of one half) and the results are

discussed.

1.3 Supporting field work

The project was intended to use real shrimp noise for all analyses; a large amount of

effort was expended gaining expertise in wide-band underwater acoustic measurement.

The following lists itemise the field measurements and data sets used for this project:

1. Ambient noise measurement at the AWharf jetty, Western Australia (AW).
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2. Ambient noise measurement at the Busselton jetty, Geographe Bay, Western Aus-

tralia (BUWO).

3. Several field measurements from a set of pontoons in Cockburn Sound, Western

Australia (CS-A to CS-D).

4. An exploratory measurement from the Rest Point jetty in the Nornalup-Walpole

Estuary, Western Australia (WP).

5. A field experiment to investigate an asymmetry in the pressure amplitude distri-

bution.

6. A 24 hour measurement at the AWharf to investigate long counting time effects

(AW-24).

In addition to field measurements, several sets of data were sourced from measurements

made by other people:

1. Ambient noise data from Seal Island, Western Australia (SEAL-A to SEAL-C)

provided by Dr Dave Matthews.

2. Ambient noise data from Feather Reef, Queensland, Australia (FR) provided by

Dr Rob McCauley.

3. Ambient noise data from Spencer Gulf, South Australia (SG) provided by Dr

Doug Cato.

4. Ambient noise data from Sydney Harbour, New South Wales, Australia (SYD-A

and SYD-B) provided by Dr Dave Matthews.

Careful review of the data was conducted to ensure that the field data were of high

quality and suitable for the analysis presented in this thesis. Details of field measure-

ments are given in Appendix A and the available details of data sets from other people

are in Appendix B.
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1.4 Thesis format and outline

The format of the thesis is based on large individual chapters, with each chapter con-

taining discussion and a summary. Introductory material is presented at the beginning

of the thesis before splitting into two separate topics: amplitude statistics and tempo-

ral statistics. An application chapter is used to rejoin the concepts from both topics,

followed by some selected discussion and the thesis conclusions.

Thesis chapters are organised as follows:

Chapter 1 (this chapter) outlines the motivations, aims, and research methodologies

used for the thesis.

Chapter 2 provides background information on underwater acoustic noise and snapping

shrimp.

Chapter 3 reviews non-Gaussian amplitude models of snapping shrimp noise, then pro-

ceeds with a theoretical derivation of a heuristic model of snapping shrimp noise received

at a hydrophone. Goodness of fit of the amplitude models to selected real ambient plus

shrimp noise are conducted and the results discussed. The issue of probability density

function asymmetry (between positive and negative pressure amplitudes) is addressed,

and some conclusions are drawn from the results of a field experiment.

Chapter 4 initiates a study of the temporal nature of snapping shrimp noise. A number

of candidate analysis methods are drawn from other scientific fields and applied to the

problem of snapping shrimp noise. A threshold event detection method (and associated

data processing) is described and some of the consequences discussed. Analysis of the

shrimp snap events, as a point process, proceeds with techniques based on interval

and count distributions. The relative strengths of the techniques for analysing shrimp

noise are discussed and the most promising analysis techniques identified. Short time

effects are discovered and the cause identified. Other medium and long time effects
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are investigated using some doubly-stochastic Poisson models, but the origins of these

effects remain unidentified.

Chapter 5 contains applications of the amplitude and temporal models to simulation

of ocean acoustic noise. A simulated time-series of pressure received by a hydrophone

is generated using only a series of random number generators. Some of the analysis

presented in the thesis is applied to the simulated noise to show how well the properties

of the real noise are reflected in the simulation. Finally an investigation of locally

optimum detectors (based on the amplitude models) was conducted using a fundamental

detection problem. Results are shown using receiver operating characteristic curves.

Chapter 6 discusses some selected aspects of the amplitude and temporal models arising

from, and relating to, their use in practical applications. Implications of new results for

sonar detection and communication are also discussed and some potential applications

identified.

Chapter 7 presents the thesis contributions and conclusions, followed by a summary of

topics for further investigation.



Chapter 2

Snapping shrimp noise

In shallow water, one of the dominant and persistent noise sources is the snapping

shrimp (Cato & Bell 1992). The noise caused by snapping shrimp has long been ob-

served and studied, with an early reference to an unknown “crackling” sound in the

water reported by Hulbert (1943). Hulbert points out that fishermen had observed the

noise, and presumed the noise was caused by toadfish gnashing their teeth. This theory

on the origin of the noise was considered by Hulbert, although he admits to not know-

ing if toadfish have any teeth. The noise from snapping shrimp had also been observed

by naval personnel as cited in a 1946 report by the University of California’s Division

of War Research (UCDWR) (University of California Division of War Research 1946).

The report also describes the shrimp species and their snapping mechanism, the geo-

graphical distribution of shrimp throughout the world, characteristics of shrimp fields

including transmission from shrimp beds, depth dependence, diurnal variations and

masking of signals by the noise produced by shrimp fields. A related publication by

Everest et al. (1948) also describes the acoustical characteristics of noise produced by

snapping shrimp. In their paper they discuss ambient noise over shrimp beds, diurnal

and seasonal variations in shrimp spectra, and include an oscillogram of an individual

shrimp snap. The oscillogram contains detailed acoustic information about the shrimp

snap. This acoustic information has only recently been understood (Versluis et al.
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2000).

In this chapter some background information on snapping shrimp is provided, includ-

ing where they are found, how they snap and how the snapping of groups of shrimp

contributes to the ambient noise of the ocean.

2.1 Snapping shrimp

Snapping shrimp (also called pistol shrimp) are small shrimp, usually only a few cen-

timetres long. The distinguishing physical feature of the shrimp is a single enlarged

claw, as can be seen in Figure 2.1. The claw is used to produce a loud impulsive

snapping sound. Snapping shrimp belong to the family Alpheidae of which the genera

Alpheus and Synalpheus are reported to snap vigorously (Cato & Bell 1992, Potter

et al. 1997b, Readhead 1997).

Typical habitat for snapping shrimp are warm shallow waters where debris or structures

exist that allow the shrimp to hide. Shrimp are commonly found in waters warmer than

11◦C, which corresponds roughly with 40 degrees of latitude (see for example University

of California Division of War Research (1946) and Cato & Bell (1992)). Shrimp are

rarely observed in water depths greater than 60 m, however shrimp have been found in

450 m depths (Cato & Bell 1992). Shrimp tend to favour debris covered sea floors and

reefs or other structures that provide a place to hide, such as piers, wharfs and rock

walls.

Snapping shrimp use their snaps for self defence and for stunning or killing prey (Ver-

sluis et al. 2000). The snapping sound is caused by a cavitation bubble (described in

Section 2.2) that is also highly destructive and can cause damage to attackers or prey. It

is difficult to imagine that these purposes alone would result in the persistent snapping

observed through both day and night. There is some speculation about other uses for

the snaps, including communication. In close encounters shrimp respond to snaps from
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other shrimp and have the potential to analyse the snap using hydrodynamic receptors

on the snapping claw (Herberholz & Schmitz 1998).

2.2 Acoustic characteristics of individual shrimp snaps

It was discovered (Versluis et al. 2000) that the noise produced by snapping shrimp

was not due to the claw banging closed, but by the collapse and rebound of a cav-

itation bubble. The evolution of a shrimp snap is illustrated in Figure 2.2 with an

accompanying example acoustic time-series in Figure 2.3. The sketches shown in Fig-

ure 2.2 were based on high speed (approx. 2000 frames-per-second) video footage

from http://stilton.tnw.utwente.nl/shrimp/video.html. To produce a cavitation bub-

ble, shrimp start with their enlarged claw open Figure 2.2(a), then the claw is snapped

closed and a plunger shoots a high speed jet of water into the surrounding water (b-c).

The action of the jet of water creates a cavitation bubble (d) that grows, collapses

(e-f) and then rebounds (f-g). The term rebound is used here to describe the point

of total collapse of the cavitation bubble and coincides with an intense positive acous-

tic pressure pulse. Rebound is followed by rapid destruction of the bubble (h) due

to Rayleigh-Taylor type instability (Versluis et al. 2000). Bubble destruction occurs

before any secondary oscillations.

Shrimp snaps produce a highly impulsive acoustic signal. Peak-to-peak source levels

can be as high as 189 dB re 1 µPa at 1 m (Ferguson & Cleary 2001). The bandwidth

of a shrimp snap is among the widest of any biological source. The upper frequency

limit of the snap extends beyond 250 kHz (Cato & Bell 1992), with theoretical models

(Versluis et al. 2000) predicting pulse widths as small as 100 ps, or an upper frequency

limit of 10 GHz. In practice the observed upper frequency limit will be less than the

theoretical prediction due to the low-pass filtering effect of the ocean (Chitre et al.

2003).
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2.3 Snapping shrimp and ambient noise

Ambient noise in the ocean is defined as the persistent noise that is independent of the

method used to observe it (Urick 1986). Dominant sources contributing to the sustained

ambient noise in the ocean are seismic and turbulence activity, distant shipping, surface

agitation, and thermal noise due to molecular agitation. Noise levels observed in deep

and shallow waters differ and are frequency dependent.

Empirical deep water noise curves taken from Wenz (1962) and Coates (1990) are shown

in Figure 2.4, along with the results of a field measurement conducted at the AWharf

site (a Jetty located near 32◦10′36.3′′S, 115◦40′42.7′′E). In deep water, seismic activity

and hydrostatic effects are mainly responsible for noise below 10 Hz. Distant shipping

noise dominates the spectrum between 10 Hz and 100 Hz. In this region the noise levels

can be expected between 75 dB and 95 dB relative to 1µPa2/Hz at 10 Hz reducing in

trend by 7 dB per octave (approx. 23 dB per decade), and broadening slightly, to give

an expected range from 50 dB to 75 dB at 100 Hz. Sea surface activity due to wind and

rain becomes the dominant noise source from 100 Hz up to 100 kHz. Noise spectrum

levels over this relatively wide band are correlated with sea state. A 5 dB per octave

(approx. 17 dB per decade) decrease in noise levels is shown between 1 kHz and 10

kHz, steepening slightly to 6 dB per octave between 10 kHz and 100 kHz. At higher

frequencies thermal noise reverses the trend and noise levels increase with increasing

frequency. In deep water the frequency of intersection of these two slopes will depend

primarily on sea state.

Ambient noise in shallow waters differs from that in deep water. The propagation of

sound through shallow water tends to reduce the contribution from distant shipping,

to the point that surface agitation may become the dominant source at these frequen-

cies as well as higher frequencies (Urick 1986). In addition to propagation effects in
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shallow waters, there are additional noise sources that may provide persistent or peri-

odic contributions to the noise in shallow waters, depending on location. These noise

sources tend to be either biological or man-made, some examples are: fish choruses

in tropical waters, near-shipping noise in or around harbours and ports, and snapping

shrimp noise in tropical and temperate waters. The AWharf was a shallow water site,

with local shipping noise causing relatively high noise levels below 300 Hz. At 300 Hz

the AWharf noise agreed with the expected noise for the sea state 1 conditions under

which the measurements were taken. The noise levels rise significantly for frequencies

greater than 300 Hz due to a local field of snapping shrimp. At 4 kHz the AWharf

snapping shrimp noise levels peak at 70 dB re 1µPa2/Hz, which is 23 dB greater than

the expected (sea state 1) noise level.

At locations where snapping shrimp are acoustically active, the noise produced by

fields of shrimp will persistently contribute to the local ambient noise. The noise levels

produced by fields of shrimp are location dependent, with factors such as the number

of shrimp in the field and snapping activity of the shrimp affecting the overall noise

levels. In Figure 2.5 several spectra from different locations are presented on the same

plot to illustrate the differences in shrimp noise. Colour groups have been used in the

figure to indicate locations that are in the same region. Locations that are not part of

a region group are plotted using black lines. The blue line region is the north-east of

Australia and here shrimp noise levels vary by as much as 15 dB. The green plot region

is near San Diego and showed variation up to 12 dB. The greatest overall difference in

noise level is 35 dB at 10 kHz, between the locations of Kaneohe Bay and San Diego

Harbour. These spectra show that large variations can be expected in snapping shrimp

noise levels, both between locations that are in the same region as well as between

locations that have large geographic separation.



2.3. Snapping shrimp and ambient noise 13

Figure 2.1: Images of a snapping shrimp taken from above and from the side. The

shrimp has a single enlarged claw (chela) that is used for snapping. (Major scale

markers are centimetres)



2.3. Snapping shrimp and ambient noise 14

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Sketches showing shrimp claw closure and bubble development. The shrimp

starts with its claw open (a) then rapidly closes the claw (b), which activates a plunger

that shoots a high-speed jet of water out from the claw (c). A cavitation bubble is

created by the jet of water shooting into the surrounding water (d). (Sketches based on

high speed video footage from URL http://stilton.tnw.utwente.nl/shrimp/video.html)
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Figure 2.3: The acoustic signature of an individual shrimp snap. The snap starts

with a precursor pulse caused by the claw closure, then the cavitation bubble develops,

collapses and rebounds to give a high positive pressure peak.
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Figure 2.4: Ambient noise in the ocean. Typical dominant noise sources are listed

at the bottom of the figure near the frequency band they influence. Empirical limit

curves from Coates (1990) show nominal maximum and minimum noise levels (solid

black lines) along with nominal noise levels at sea states 1, 3 and 6 (green dashed lines)

and the extreme case of a hurricane (red dashed line). A noise spectrum, averaged over

1/3 octaves, from measurements at the AWharf site (solid blue crossed line) is shown.

The increase in noise level for the AWharf spectrum beyond 1 kHz is due to snapping

shrimp.
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Figure 2.5: Shrimp noise spectra at various locations around the world. The colouring

is a rough grouping of spectra by region. There seems to be little consistency between

spectra; the shrimp noise is location dependent. The curves are hand interpretations of

results from Au & Banks (1998), Bardyshev (2007), Cato & Bell (1992), Everest et al.

(1948), Potter et al. (1997a), Readhead (1997, 1994) and Widener (1967).

In addition to increasing the ambient noise levels at frequencies beyond 1 kHz, snapping

shrimp noise also makes the distribution of pressure amplitudes non-Gaussian. The

snaps produce many more high pressure amplitude values than would be expected for

a Gaussian distribution. A probability density function (pdf) of pressure amplitudes

taken from real ambient noise (that contains shrimp noise) is shown in Figure 2.6. The

blue markers are empirical pdf values computed from the ambient noise, and the red

line shows the pdf of a Gaussian fit to the data. As the pressure amplitudes increase

in both positive and negative directions, the probability density of the ambient noise

is higher than the Gaussian. In this case, the ambient noise distribution is said to

have a heavy tail because the extreme values have a higher probability than expected
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Figure 2.6: An empirical probability density function of real shrimp noise from field

measurements in Cockburn Sound (blue dot markers). Also shown is a Gaussian fit to

the data (red solid line).

for a Gaussian. Detection algorithms that make decisions based on an assumption

of Gaussian distributed noise will experience a high rate of false alarms in such heavy

tailed noise (Bertilone & Killeen 2000). It is therefore important that more appropriate

non-Gaussian noise models of shrimp noise be developed. Detection algorithms using

these non-Gaussian noise models will suffer fewer false alarms when operating in areas

where shrimp noise is prevalent.

2.4 Shrimp noise analyses and applications

Acoustic characteristics of snapping shrimp have been measured using several different

techniques and in various locations. Each measurement seeks to explore one or more
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of the amplitude, spatial or temporal characteristics of the noise. Shrimp noise can be

analysed on different scales, for example, the acoustic signal of an individual snap is

quite different from the noise produced by a group of shrimp. The term micro-scale

refers to individual shrimp, such as the individual’s location or the acoustics of an

individual snap. Macro-scale refers to a group of shrimp, such as a cluster of shrimp

around a wharf or pier, or the acoustic noise produced by a shrimp field or across a

region containing many shrimp fields.

Amplitude measurements of snapping shrimp are typically taken using a pressure trans-

ducer (hydrophone) and analysed to give a noise power level spectrum (noise levels as

a function of frequency). For some of these measurements the aim is to present the

snapping shrimp spectrum for a specific location against snapping shrimp spectra from

other locations, (see for example Readhead 1997), while others compare with dominant

contributions to the persistent ambient noise spectrum, such as wind noise (Cato &

Bell 1992), and shipping and rain (Potter et al. 1997a). Motivation for making such

measurements include using ambient noise to mask other sounds, such as engine noises

from a vessel, or to gain some a priori knowledge of the noise environment against

which a piece of equipment must operate, such as an underwater communication de-

vice. Fewer, more specialised experiments have been conducted to estimate snap source

levels, either from a field of shrimp, or from an individual shrimp in an acoustic tank.

Experiments of this type require more sophisticated equipment and analysis to obtain

additional information such as shrimp location, or to exclude unwanted reflections from

tank walls. Examples of systems used for estimating snap source levels are the wave-

front curvature technique using a linear hydrophone array used by Ferguson & Cleary

(2001), and the tetrahedral array used by Beng et al. (2003). Measurements of indi-

vidual shrimp snaps in acoustic tanks have been conducted by Au & Banks (1998) and

Versluis et al. (2000) to discover both individual source levels and micro-scale detail in

the acoustic signature. These measurements use high speed data acquisition systems

to allow the detail in the snaps to be seen over the impulse response of the acquisition

system, and to allow separation of direct path signals from other spurious signals such

as reflections from tank walls.
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Spatial analyses seek to discover the location or distribution of shrimp in fields or as

individuals. Such analyses allow correlations between shrimp fields and ambient noise

levels, or other ocean environment factors such as bottom type. Higher shrimp noise

levels tend to occur when the sea-floor contains rocky and coral outcrops or where

debris covers the floor. Lower shrimp noise levels occur over mud or sand (Cato & Bell

1992). The spatial distribution of shrimp is also very important if the shrimp noise

is to be used as a noise source, such as for the acoustic daylight project (Buckingham

et al. 1992). Studies of spatial distributions of shrimp for this purpose using parabolic

mirror hydrophones, a tetrahedral hydrophone array, and a sophisticated ambient noise

imaging array can be found in Potter & Koay (2000), Beng et al. (2003), Chitre et al.

(2003) and Venugopalan et al. (2003). These studies showed that spatial anisotropy

variations of ±2 to ±3 dB about the mean can be expected.

Locating the position of individual shrimp is also useful for estimating snap source lev-

els. Ferguson & Cleary (2001) used a wavefront curvature technique to locate individual

shrimp to within a few centimetres. The study was conducted near a wharf in Sydney

harbour and showed that shrimp were clustered about the wharf pylons, presumably

using the growth on the pylons for shelter. Both macro and micro scale spatial analy-

ses indicate that shrimp can be expected to be spatially clustered, favouring areas that

contain growth or debris. This has implications for non-stationary acoustic systems,

for example a sonar being towed, because the noise levels of the shrimp may change

rapidly over relatively small distances.

Another important characteristic of shrimp noise is how the snapping varies with time.

Temporal variations can include the change in noise intensity from a field of shrimp

over days or years (macro-scale), or the detailed analysis of a single snap and how they

develop and collapse with time (micro-scale).

Macro-scale observations are reported for measurement sites in San Diego, Kaneohe

Bay, Midway Island (Everest et al. 1948), and the Timor Sea (Cato 1980, Cato & Bell

1992). Diurnal observations in all locations except the Timor Sea report consistently
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elevated shrimp noise just before sunrise and just after sunset. No consistent diurnal

variations were reported for the Timor Sea. Longer term measurements were taken in

the Timor Sea and revealed average levels lower in October than July and April, but

only by a few decibels. General observations of snapping shrimp noise suggest that

the temporal variation in the ensemble noise levels are not likely to exceed 10 dB over

short or long timescales.

Micro-scale studies include comparisons between acoustic and video footage to inves-

tigate the relationship between cavitation bubble activity and the acoustic signature

of individual snaps (Versluis et al. 2000), and identifying bottom reflected and surface

reflected replicas of the snap (Chitre et al. 2003).

There is an additional medium-time scale (seconds to minutes) that resides between

the extremes of the macro and micro scales described - these are the times at which

individual snaps occur relative to each other. Relatively few studies appear to have

been conducted regarding this time scale. A Monte-Carlo simulation of interdependent

snapping was used by Potter et al. (1997a) to show that interdependence can produce

the expected lognormal distribution of received energy, but this was also true for a

spatial clustering model. Both spatial and temporal distributions of shrimp noise need

to be described statistically, in order to exploit the snaps for ambient noise imaging

or for optimising detection algorithms (Potter & Koay 2000). Significant progress has

been made in understanding the spatial distribution of shrimp (see for example Chitre

et al. 2003), however, more medium-time temporal analysis of shrimp noise is required

to complement these spatial distribution studies. Medium-time temporal analyses were

conducted as part of this thesis.

2.5 Summary of snapping shrimp noise

This chapter provided some background information on ocean acoustic noise and the

impulsive noise created by snapping shrimp. Locations where shrimp noise is likely to



2.5. Summary of snapping shrimp noise 22

be encountered were described on a macro-scale and micro-scale showing the shrimps’

preference for rocky or debris covered sea-floors where rocks, coral and other debris

provide opportunities for seclusion. Acoustic characteristics of individual shrimp snaps

were described along with the physical mechanism used to produce the snap. The

noise produced by fields of snapping shrimp, and how the noise contributes to the

ambient noise in warm shallow oceans, was described. Shrimp noise spectra from

different locations were plotted on a single figure to illustrate the diversity of noise

levels around the world. A probability density function of ambient noise pressure

amplitudes was plotted along with a Gaussian fit to illustrate that snapping shrimp

noise is non-Gaussian. The current state of knowledge was discussed for amplitude,

spatial and temporal characteristics and current best practice was identified for each

of these areas.



Chapter 3

Amplitude models

The persistent ambient noise in the ocean is usually due to the combined effect of

many individual noise sources spread over a large area, such as surface wave noise,

distant shipping noise, and rain. The central limit theorem suggests that the ensemble

statistics of such sources should tend to be Gaussian (McDonough & Whalen 1995,

Chapter 4). However, analysis of experimental data has shown that the statistics of

persistent ambient noise in the ocean is Gaussian only for the deep water case when

it contains no shipping noise, and is only stationary for a few minutes (Arase & Arase

1968).

Non-Gaussian noise modelling is a very broad topic. Many naturally occurring pro-

cesses are non-Gaussian, from the apparent magnitude of stars (Neyman & Scott 1952)

to the intensity of solar flares (Newman 2005). An important subclass of non-Gaussian

noise is impulsive noise, common in electromagnetic and communication applications

and relatively common in underwater (particularly shallow water) acoustics. Models

of impulsive noise can be loosely grouped into two types: those that are based on

mathematical abstractions (statistical models), such as the Cauchy distribution; and

those that are based on the underlying physics of the noise process (physical-statistical

models), such as the Middleton Class A and Class B models. Physically based models
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provide the benefit of links between parameter values and measurable quantities, but

are often overly complicated. Simpler approximations can be used in their place, for

example Middleton’s ClassA model can be approximated by a Gaussian-Gaussian mix-

ture (see for example Aazhang & Poor 1987, Poor & Tanda 2002). Middleton’s Class A

and Class B models have not been considered, instead the related Gaussian-Gaussian

mixture and α-stable models are considered (Middleton 1999).

In this chapter, the Gaussian, Gaussian-Gaussian mixture, and Symmetric-α-stable

models of snapping shrimp noise are discussed. Each model is described by a charac-

teristic function or probability density function, and suitable methods for estimating

model parameters (from real data) are outlined. A new model of shrimp noise is derived

from first principles, using a physical-statistical approach with some assumptions that

are fundamentally different from those used to derive the Symmetric-α-stable model.

The Symmetric-α-stable model is compared with the new model using shrimp noise

from field measurements at different locations around Western Australian shores. Sim-

ilarities and differences between the models are discussed.

3.1 Models of snapping shrimp noise

3.1.1 The Gaussian distribution

The Gaussian distribution is often the first candidate for any model of noise. The

fundamental motivation for the Gaussian distribution arises from the Central Limit

Theorem, which states that a large number of random variables added together under

certain conditions will converge to a Gaussian distribution as the number of contributing

variables tends to infinity.

Gaussian probability density (pdf) and distribution (also called the cumulative distri-
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bution) (cdf) functions are respectively
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where x is the dependent variable defined between negative and positive infinity, and

σ is the standard deviation. The expected value (or mean) has been omitted because

when x represents a pressure fluctuation value, the expected value is zero. The notation

exp (·) and erf [·] are used for the exponential and error functions respectively.

The standard deviation parameter σ can be estimated for real data using any parameter

estimation technique. A commonly used estimator σ̂ is

σ̂2 =
1

N − 1

N∑
k=1

(xk − µ)2 (3.3)

where µ is the expected value (as mentioned, this is assumed to be zero for acoustic

pressure fluctuations), and N is the number of sample values used to compute the

estimate.

In certain cases the Gaussian distribution is not an appropriate model for noise. Im-

pulsive noise is typically dominated by a few nearby sources with very loud source

levels, transmitting for a very short period of time. Such impulsive noise (from nearby

sources) usually does not provide a large enough number of impulse events that overlap

at each instant in time, so that the required conditions for the Central Limit Theorem

are not met, and the resulting noise is non-Gaussian. This is the case for the impulsive

noise caused by snapping shrimp.

Figure 3.1 shows the probability density function of real shrimp noise from a field

measurement at the AWharf site (blue dot markers) and a Gaussian fit (red solid line).

The probability density function of real shrimp noise was estimated using a scaled

quantization level histogram, a histogram with bin width equal to one quantization level

of the digital data. Logarithmically spaced bin smoothing was applied to the histogram
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estimate to improve the estimates in the tails of the distribution, where count numbers

are low (see Appendix C for details of the smoothing algorithm). Probability densities

are plotted as a function of pressure amplitude using two log-log plots so that the body

and the tails of the distribution can be observed (in sufficient detail) concurrently. The

log-log plots are split at the pressure origin to avoid the singularity at zero. Negative

pressure values proceed to the left of the origin and positive pressure values to the right,

both on a logarithmic scale. This type of plot will be referred to as a split-log plot.

The body of the density function (Figure 3.1) shows that the Gaussian fit under-

estimates the probability near the mean (zero value), then over-estimates between 0.5

and 2 standard deviations either side of the mean. Permanent deviation occurs beyond 3

standard deviations where the Gaussian fit significantly under-estimates the probability

of higher amplitude events. The Gaussian model provides a poor fit to almost all of the

observed noise probability densities, which is a typical result for ocean acoustic noise

that has impulses from snapping shrimp.

3.1.2 The Gaussian-Gaussian mixture distribution

The Gaussian-Gaussian mixture model (also called other names such as the ε-mixture

model (Aazhang & Poor 1987), or the contamination model (Martin & Thomson 1982))

arises from a simplification of Middleton’s ClassA model (Blum et al. 1999). In this

model a relative fraction of two Gaussian distributions are combined together as in

Equation 3.4. The relative fraction is determined using a mixing parameter, ε. Valid

values for ε are between 0 and 1, to ensure that the probability density is properly

scaled (integrates to unity). The probability density function for this distribution is

f(x) =
1− ε√
2πσ1

exp
(
− x2

2σ2
1

)
+

ε√
2πσ2

exp
(
− x2

2σ2
2

)
(3.4)

where x is the dependent variable, σ1 and σ2 are the standard deviation of each re-

spective Gaussian component. The mean value of each Gaussian is assumed to be

zero because x represents pressure fluctuation. The Gaussian-Gaussian mixture model

assumes that the background and impulsive noise components “switch” between each
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Figure 3.1: Probability density function of real shrimp noise (blue dot markers) from

field measurements at the AWharf site. A Gaussian fit (red solid line) provides a poor

model of the observed noise distribution.

other, rather than being additive. The variance of the impulsive noise is typically much

higher than the variance of the background noise, with factors of 10 to 100 being com-

mon (Aazhang & Poor 1988) and factors of up to 1×104 considered reasonable (Vastola

1984).

Parameter estimates were obtained for this distribution using the method of moments.

The odd moments do not exist for this distribution, since it is a linear combination of

two Gaussians that also have no odd moments. The first three even sample moments
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(M2,M4 and M6) were computed using

Mn(x) =
∫ ∞
−∞

xndx (3.5)

≈ 1
N

N∑
k=1

xnk . (3.6)

Defining values α, β and γ according to

α = M2
2 −

M4

3
(3.7a)

β =
M6

15
− M2M4

3
(3.7b)

γ =
M2

4

9
− M2M6

15
(3.7c)

(3.7d)

allows the final moment-based parameter estimates to be expressed as

σ1 =

√
−β +

√
β2 − 4αγ

2α
(3.8a)

σ2 =

√
M4
3 −M2σ2

1

M2 − σ2
1

(3.8b)

ε =
(
M2 − σ2

1

σ2
2 − σ2

1

)
(3.8c)

The Gaussian-Gaussian mixture model provides an important benchmark since it is

used, or referred to, extensively in non-Gaussian noise modelling. An important char-

acteristic of this distribution is the relative variance of the two Gaussians (Vastola

1984). In this model one of the Gaussians fits the body, while the other fits the tail

of the distribution and the transition between the two is abrupt. Figure 3.2 shows a

Gaussian-Gaussian mixture fit to real ambient noise data. The abrupt transition (in

the mixture model) can be seen near pressure magnitudes of 1 Pa, but is not evident in

the shrimp noise; there is a smooth transition between the body and tail of the shrimp

noise distribution.

Modelling shrimp noise with a Gaussian-Gaussian mixture cannot be expected to give

excellent results, since it is a simplification of Middleton’s Class A model. The Class



3.1. Models of snapping shrimp noise 29

−10
3

−10
0

−10
−3

−10
−6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Negative pressure (Pa)

P
ro

ba
bi

lit
y 

de
ns

ity

10
−6

10
−3

10
0

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Positive pressure (Pa)

Shrimp noise
G−G mixture 

Figure 3.2: Probability density of real shrimp noise and a Gaussian-Gaussian mixture

fit, plotted on logarithmic scales. The mixture model uses one Gaussian to fit the body

of the density function, and another Gaussian (of significantly higher variance) to fit

the heavy tails.

A model was designed specifically for deliberate or “intelligent” impulsive noises, such

as interference from other communication signalling, rather than for natural “non-

intelligent” noise sources, such as the snapping shrimp.

3.1.3 The α-stable distribution

A family of distributions known as the α-stable distributions have been shown to pro-

vide a suitable model for snapping shrimp noise (Chitre 2006, Chapter 3). These

distributions are defined, not in terms of their probability density or distribution func-

tions for which there is no analytic expression, but rather their characteristic functions,
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that have the general form (Nikias & Shao 1995, Chapter 2)

ϕ(t) = exp (i at− γ |t|α [1 + i sgn (t)β ω(t, α)]) (3.9)

ω(t, α) =


2
π log |t| α = 1

tan
(
πα
2

)
α 6= 1

where a is a location parameter defined on −∞ < a <∞, β is a symmetry parameter

between −1 and 1, and γ is a scale parameter greater than zero. Parameter α is called

the characteristic exponent and is defined on 0 < α ≤ 2. The value of α measures

the thickness (or heaviness) of the tails of the distribution. Small values of α indicate

highly impulsive (or heavy tailed) noise, and as the value of α increases the heaviness of

the tails reduces until the point when α = 2 and the distribution reduces to a Gaussian.

When considering acoustic pressure fluctuation the distribution will be expected to be

located at zero pressure, so a = 0. It may also be assumed under certain circumstances

that the distribution will be symmetric, so that β = 0, however there is evidence to

suggest that this is not the case for shrimp noise. Asymmetry in the shrimp noise is

investigated further in later sections of this chapter. Estimation of parameters γ and

α using the sample quantile method is outlined later in this section.

A few special cases exist where an analytic solution for the pdf can be found; when

α = 2 the pdf is a Gaussian, when α = 1 and β = 0 the pdf is that of a Cauchy

distribution, and when α = 0.5 and β = 1 the pdf reduces to that of a Pearson (or

Lévy) distribution. In all other cases the pdf must be evaluated numerically. When

β = a = 0 the α-stable distributions reduce to an important subclass: the Symmetric-

α-stable (SαS) distributions. Substituting β = a = 0 into Equation 3.9 gives the

characteristic function of the SαS distribution

ϕ(t)SαS = exp (− |γt|α) . (3.10)

Although the SαS characteristic function provides a substantial reduction in complexity

as compared to the general α-stables, the density function still has no analytic solution

except for the Gaussian and Cauchy cases mentioned previously.
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Several methods exist for numerical evaluation of the SαS pdf. Direct methods use nu-

merical inverse Fourier transformation of the characteristic function, that is, evaluating

fα(x) =
1
π

∫ ∞
0

exp (− |γt|α) cos(xt) dt. (3.11)

A method (referred to as the Zolotarev method) uses a transformation so that the inte-

gral is evaluated on the interval [0, π/2], however the technique suffers from numerical

difficulties when α is close to 1 or 2, and when x is (very) large or small (McCulloch

1998). Power series expansions and asymptotic expressions are available for both small

and large x (Nikias & Shao 1995) but joining the results to give a pdf over a full range

of x values can introduce discontinuities.

To overcome these numerical difficulties the method of McCulloch (McCulloch 1998)

was suggested (M Chitre 2008, per. Comm., 26 September). McCulloch’s method

transforms x onto the interval [0,1] and defines the complementary (symmetric) stable

distribution function (Sc) in terms of the complementary distribution function of the

Cauchy (Cc) and Gaussian (Gc) plus a small residual term R, giving

Sc = (2− α)Cc(x1) + (α− 1)Gc(x2) +R(z) (3.12)

where x1 and x2 are original x transformed to z using α, then inverse transformed

using α = 1 (i.e. a Cauchy assumption) for x1 and α = 2 (a Gaussian assumption) for

x2. It can be seen that when the Cauchy (α = 1) or Gaussian (α = 2) assumptions

are true, the other term vanishes and the residual will (necessarily) be zero. When α

equals a value other than 1 or 2, then Cauchy and Gaussian contributions are combined,

and the residual becomes the important function that reconciles the Cauchy-Gaussian

combination with the true value of the SαS. The residual function R(z) is fit by a

quintic spline in z using spline coefficients from McCulloch (1998). The probability

density function is the analytical derivative of Equation 3.12

s(x) =
[
(2− α)c(x1)x′1(z) + (α− 1)g(x2)x′2(z)−R′(z)

]
z′(x) (3.13)

where c(x) and g(x) are respectively the Cauchy and Gaussian probability density

functions, and a dashed notation is used to indicate a derivative with respect to the
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argument. The (relative) precision of the density function estimated using McCulloch’s

method is less than 1× 10−6 for values of α likely to be encountered with shrimp noise

(α between 1 and 2), sufficient for all subsequent evaluations of the SαS probability

density function in this thesis. The density function in Equation 3.13 is standardised

therefore a scaling operation was conducted to give non-standardised pdf values. To

evaluate a SαS pdf with characteristic function from Equation 3.10 the following scaling

operations were performed

f(x) = ζs(xζ) (3.14)

where

ζ =
1

γ
1
α

(3.15)

and γ and α are the scale and characteristic exponent parameters described previously.

Several methods exist for computing the parameters of SαS distributions. Maximum

likelihood, sample fractile (or sample quantile), sample characteristic function, and

negative-order moment methods are outlined in Nikias & Shao (1995). From these

methods the sample fractile method was chosen, as suggested by Chitre (2006), and

implemented as described in Nikias & Shao (1995). The method computes an interim

value vα using

vα =
q0.95 − q0.05

q0.75 − q0.25
(3.16)

where the q are quantiles obtained from the samples using

qf =


Q(1), i = 0

Q(i) +
(
Q(i+1) −Q(i)

) f−ζ(i)
ζ(i+1)−ζ(i) , 0 < i < N

Q(N), i = N

(3.17)

with f being a value greater than 0 and less than 1, the Q are order statistics between

1 and N : Q(1), ..., Q(N), the function ζ defined as

ζ(k) =
2k − 1

2N
(3.18)

and i is an integer computed using

i = bfN + 0.5c (3.19)
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where b·c represents the nearest integer less than the argument. Parameter estimates

for α and γ are then found by interpolating tables; a table for obtaining α directly

given vα, and a table providing vc given α from which γ can be computed using

γ =
(
q0.75 − q0.25

vc

)α
. (3.20)

Sample quantiles were estimated using the Exponentially Weighted Moving Average

(EWMA) incremental estimator (Chen et al. 2000). Given N blocks of data of length

M then the incremental estimator for the f th quantile at the kth of N iterations is

q(k)(f) = (1− w)q(k−1)(f) + (w)q̂f (3.21)

where q̂f is the f th quantile estimate for the current iteration (k) computed using

Equation 3.17 on the M available points, and 0 < w < 1 is a fixed “aging” parameter,

with values typically between 0.01 and 0.1. When k = 1 (i.e. the first iteration) then

q(k)(f) = q̂f .

An example of the SαS fit to the amplitude probability density of real shrimp noise from

the AWharf (AW) is shown in Figure 3.3. The SαS provides a very good fit to the data

through both the body and the tails of the density function, consistent with similar

comparisons in Chitre et al. (2006) and Chitre (2006). Some very minor variations of

the real noise about the SαS fit are evident, including a downward turn of the extreme

tails of the real noise.

The α parameter of the SαS, which gives an indication of the heaviness of the tails,

was estimated using the above parameter estimation technique (and in all cases using

the EWMA quantile estimator) for a number of snapping shrimp noise data sets from

locations around Australia. The results are shown in Figure 3.4. Values of α (cross

markers) range between 1.3 and 1.8, which are slightly lower than those quoted for

Singapore waters (between 1.6 and 1.9) (Chitre et al. 2006). An outlier at α = 2 (circle

marker in Figure 3.4) was obtained for noise from the Nornalup-Walpole Estuary. The

outlier suggests that the sample fractile estimator was not an appropriate estimation

method for this data. A value of α = 1.5 was found to give a reasonable fit to the
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Figure 3.3: Probability density of real shrimp noise with a SαS fit, plotted on logarith-

mic scales. The SαS provides a very good fit to the data through both the body and

the tails of the distribution. Some very minor variations of the real noise about the

SαS fit are evident.

data pdf. There does not appear to be any consistent relationship between the type of

location where the data was gathered and the level of ambient noise or the value of α

for the SαS fit.

3.2 A heuristic model of snapping shrimp noise

In the following section a new heuristic model of the amplitude distribution of snapping

shrimp noise is derived. The model is heuristic in the sense that many simplifications

have been used to keep the model mathematically amenable - the objective being to
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Figure 3.4: SαS parameter α estimated for shrimp noise from various locations around

Australian shores. At these locations the value of α was between 1.3 and 1.8. The

value α = 2 (circle marker) is an outlier caused by poor parameter estimation using

the Nornalup-Walpole Estuary data.

obtain an analytic expression for a pdf that can be related to shrimp noise. The model

focuses on the distribution of amplitudes that would be received at a hydrophone, but

does not include other ambient noise. To arrive at a full ambient noise model the

new model (given the name Garnele: a German word for shrimp) is later combined

with a background Gaussian using the ε-contamination framework. The model has a

physical-statistical basis and physically meaningful parameters have been maintained

where possible.

The Garnele model derivation differs fundamentally from the α-stable derivation in

three ways: the sources are assumed to be uniformly distributed within a circle on

the seabed (the α-stable assumes a Poisson spatial distribution of sources (Nikias &
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Shao 1995)), the distribution of source pressures (source amplitudes) are defined only

for positive values (the α-stable assumes a distribution of source amplitudes that are

symmetric about zero (Nikias & Shao 1995)), and propagation from the source to the

receiver includes a direct path and a surface reflected path (the α-stable assumes a direct

path only; a “cone” from the source to the receiver (Nikias & Shao 1995)). Under the

Garnele assumptions, negative amplitudes are a result of surface reflected snaps only:

no negative impulse amplitudes are generated at the source. The assumptions were

chosen to allow an analytic solution. Many of the assumptions could be adjusted to

produce a more physically realistic distribution; however they are likely to require a

numerical solution.

Density function transformations are used throughout the derivation, rather than char-

acteristic function transformations. The reason for using density function transfor-

mations is that the source level distribution is assumed to be Gaussian, so that the

corresponding pressure amplitudes are lognormally distributed. The lognormal distri-

bution does not have a simple exact characteristic function (although various series

representations can be found (Leipnik 1991, Beaulieu 2006)) excluding the (practical)

use of characteristic function transformations for the derivation. A consequence of

using density function transformations is that the Garnele distribution is defined by

its probability density function, rather than its characteristic function. An advantage

of using density function transformations and assumptions that maintain an analytic

solution is that an analytic expression is available for the resulting probability density

function of received amplitudes.

3.2.1 Derivation of the density function

A single snap from a shrimp is considered to be an event. If the shrimp snaps are

independent in time then the event can be modelled knowing: the location of the shrimp

(a single random variable taken from a spatial distribution), the acoustic signal of the

shrimp (the source waveform scaled by a single random variable from a source amplitude
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distribution), and a relationship that accounts for changes to the source waveform as it

travels from the shrimp to a receiving hydrophone. Given this scenario, the distribution

of amplitudes arriving at the hydrophone can be found using the following series of

random variable transformations:

1. Transform the distribution of source levels into a distribution of source pressure

levels

2. Transform the ground range distribution into path range distributions according

to the model of propagation

3. When boundaries are encountered there may be (possibly random) phase changes

to the propagating signal

4. Source pressure and path range distributions are combined using a propagation

function, to give a distribution of received pressure amplitudes.

The series of random variable transformations is quite generic, allowing appropriate

choices for the distributions. Motivating factors for distribution choices include: using

the most accurate distributions for a specific case, using the most general distributions

for a generic case, or making reasonable assumptions to obtain an analytic solution.

In the following derivation the motivation has been to obtain an analytic solution,

requiring a distribution of source locations that is known not to be true. Despite the

over-simplification of source locations and propagation model, the resulting distribution

is capable of modelling shrimp noise from a variety of locations around Australian shores

and is therefore included as a candidate model of snapping shrimp noise. Following is

a list of the distributions and assumptions used in the derivation:

1. Snap source levels (in decibels) are Gaussian distributed about some mean source

level

2. The probability density of slant ranges between shrimps and the hydrophone are

assumed linear out to some maximum range
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3. Sound is assumed to propagate in an iso-velocity, constant depth water column

along the direct and surface reflected paths

4. Transmission losses are due to spherical spreading only. Effects such as absorp-

tion, scattering and Doppler shift or spread are not included.

In the absence of a known distribution of snap source levels, the Gaussian distribution

was chosen. The rationale for choosing a Gaussian was that the central limit theorem

would apply to the distribution of snapping shrimp claw sizes. Claw size and snap

source level are linearly related (Au & Banks 1998) therefore it was assumed that

the central limit theorem would also apply to the snap source levels, leading to the

choice of a Gaussian distribution. The assumed distribution of ground ranges between

shrimps and the hydrophone can be visualised as a circular shrimp bed, with the shrimp

uniformly distributed within the bed and a hydrophone at the centre of the circle.

Other geometries and shrimp spatial distributions can be devised that will also give

the assumed ground range distribution. Middleton (1977) considers sources Poisson

distributed in one, two and three spatial dimensions. The derivation of an α-stable

model for impulsive noise using the filtered impulse mechanism (Nikias & Shao 1995)

acknowledges the work of Middleton but for simplicity considers a central point of

observation and a cone of sources with vertex at the point of observation. The central

point of observation and cone of sources used to derive the stable model is similar to the

geometry assumed for the Garnele model, except that the Garnele model assumes that

the sources are constrained to the base of the cone (the seafloor) and that the sources

are uniformly distributed. Bottom reflections are also important for fully describing the

received amplitude distribution (Chitre et al. 2003), however to maintain an analytic

solution their effect has not been included.

Source level and ground range distributions are respectively transformed into source

pressure amplitude and path range distributions using the transformation (Devroye

1986)

fY (y) = fX(G−1)
∣∣∣∣dG−1

dy

∣∣∣∣ (3.22)
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where the inverse function G−1 maps a realisation of y to a realisation of x.

The peak source levels (SL) are assumed to be Gaussian distributed with probability

density function

fSL(SL) =
1√
2πΩ

exp

(
−(SL− SLo)2

2Ω2

)
(3.23)

where SLo is the mean source level of a shrimp snap, and Ω is the standard deviation

of shrimp snap source levels for a field of shrimp. This source level density function is

transformed into a source pressure density function using the inverting function

G−1
SL = 20 log10

(
s

pref

)
(3.24)

where s is the peak source pressure amplitude, and pref is a reference pressure (typically

1µPa). Substituting Equation 3.23 into Equation 3.22 and using the derivative of

Equation 3.24 with respect to s gives

fS(s) =
1√

2πηs
exp

(
−(20 log10 (s/pref)− SLo)2

2Ω2

)
(3.25)

where

η =
Ω ln (10)

20
. (3.26)

Substituting the mean source level SLo with the equivalent expression in terms of po

gives the distribution of source pressure amplitudes

fS(s) =


1√

2πηs
exp

(
− ln2(s/po)

2η2

)
, 0 ≤ s <∞

0, otherwise
(3.27)

At this point pref drops out so that the units of s and po are the same (preferably

Pascals). The source pressure amplitude distribution is a lognormal distribution with

median po > 0 (Evans et al. 1993). Such lognormal amplitude distributions often arise

when logarithmic quantities are assumed to be Gaussian distributed (see for example

Fenton 1960).

The next step in the derivation is to define a spatial distribution for shrimp within

the shrimp field. Using the spatial visualisation described previously, with central
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Figure 3.5: Simulated locations of shrimp using a two dimensional (circular) uniform

distribution. A uniformly distributed phase component has been included so the shrimp

lie within a circle, however this is for the illustration only. The derivation does not

required any azimuthal information.

point of observation and shrimp sources constrained to the base of a cone, the shrimp

are assumed to be uniformly distributed within a circle on the seafloor as shown in

Figure 3.5. What is required is to use this visualisation of source location to obtain the

distribution of propagation paths between the sources (the shrimp) and the point of

observation (the hydrophone). For clarity, the following notation is used to distinguish

between different ranges: rg is ground range, rd is the range along a direct propagation

path, and rs is the range along the first surface reflected path. It is assumed that the

circular bed of shrimp has a maximum extent R, so that shrimp do not exist at ground

ranges rg greater than R. When this is not physically true, R is assumed to represent

the ground range at which shrimp no longer contribute a significant amount to the

noise. At large ranges it is assumed that the large number of shrimp contributing very
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small amplitude snaps provides the conditions required for the Central Limit Theorem

to be applicable, the shrimp noise then becomes part of the Gaussian background. The

shrimp ground range distribution function

FRg(rg) =


ρπr2g
ρπR2 , 0 ≤ rg ≤ R

0, otherwise
(3.28)

is the ratio of the number of shrimp in an area defined by rg to the total number of

shrimp in the shrimp bed, where ρ is a shrimp density measure, which is a constant for

this derivation. The derivative of the distribution function with respect to rg gives the

ground range density function

fRg(rg) =


2rg
R2 , 0 ≤ rg ≤ R

0, otherwise.
(3.29)

The ground range probability density function is required for step two of the transfor-

mation process outlined previously. Ground ranges are transformed into slant ranges,

as required by the model of sound propagation. A simple ray model assuming constant

sound speed and spherical spreading is chosen for simplicity, and only the direct and

surface reflected paths are considered; contributions from paths that include a bot-

tom reflection are ignored. An illustration of the assumed propagation is shown in

Figure 3.6. The inverting function for the direct and surface reflected paths is

G−1
rg =


√
r2 − (h− d)2, direct√
r2 − (h+ d)2, surface reflected

(3.30)

where r is the propagation range, h is the depth of the water column and d is the

hydrophone depth. The derivative of Equation 3.30 required for the transformation is

dG−1
rg

dr
=


r√

r2−(h−d)2
, direct

r√
r2−(h+d)2

, surface reflected.
(3.31)
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Figure 3.6: The idealised propagation environment assumed for deriving the Garnele

distribution. The snap from each shrimp travels through an isovelocity water column

from the shrimp to the hydrophone via direct and single surface reflection paths only.

Transformation of ground ranges into propagation ranges, using Equation 3.22, gives a

direct path (rd) solution and a surface reflected (rs) solution

fRd(rd) =


2rd
R2 , (h− d) ≤ rd ≤

√
R2 + (h− d)2

0, otherwise
(3.32)

and

fRs(rs) =


2rs
R2 , (h+ d) ≤ rs ≤

√
R2 + (h+ d)2

0, otherwise.
(3.33)

The final step in deriving the received amplitude distribution due to a field of snapping

shrimp is to combine the source amplitude and propagation range density functions,

using a propagation relationship, to give the desired received amplitude distribution.

When the propagation relationship is simple spherical spreading, a received amplitude

random variable P is related to a source amplitude random variable S, and a range

random variable R by

P =
S
R
. (3.34)

The distribution of S and R are known, so the distribution of P can be obtained by

transformation of random variables. To conduct this transformation the variates s and
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r are mapped to transformed variates p and z using

p =
s

r
(3.35)

and

z = r. (3.36)

The joint distribution of s and r, fSR(s, r), is transformed to a joint distribution of p

and z, fPZ(p, z), using

fPZ(p, z) = fSR(s = pr, z = r)
∣∣J̄(p, z)

∣∣ (3.37)

where J̄(p, z) is the inverse Jacobian

J̄(p, z) =

∣∣∣∣∣∣
∂s
∂p

∂s
∂z

∂r
∂p

∂r
∂z

∣∣∣∣∣∣ . (3.38)

Evaluating the inverse Jacobian, and noting that s and r are independent, gives the

joint density function of p and z

fPZ(p, z) = fS(pr)fR(r) |r| . (3.39)

The probability density function fP (p) can then be found by back substituting r in place

of z, since they are equal from Equation 3.36, and solving for the marginal distribution

in p

fP (p) =
∫
R
fS(pr)fR(r) |r| dr. (3.40)

Direct and surface reflected paths are considered separately, since the domain of r

is different in each case, and the sign of the pressures in each case will be opposite.

The direct path marginal distribution will solve for positive pressures, while the surface

reflected path will solve to give negative pressures. As mentioned, the surface is assumed

to impart an exact π radian phase shift on the pressure signal. These two distributions

will be combined to give an overall pressure distribution. The marginal distribution of

(positive) pressure due to direct path arrivals is defined by

f+
P (p) =

∫ rmax

rmin

fS(p rd)fRd(rd) |rd| drd (3.41)
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which, given the distributions that arise from the assumptions made thus far, expands

to give

f+
P (p) =

∫ √R2+(h−d)2

(h−d)

1√
2πηp rd

exp
(
− ln2 (p rd/po)

2η2

)
2rd
R2
|rd| drd. (3.42)

Solving Equation 3.42 gives the the probability density function of positive received

pressures

f+
P (p) =

exp
(
2
(
m+ η2

))
|p|3R2

(
erf
{
m+ (2η2)− ln (h− d)− ln (|p|)√

2η

}

− erf
{m+ (2η2)− ln

(
|p|
√

(h− d)2 +R2
)

√
2η

})
(3.43)

where η is given in Equation 3.26, erf(·) is the error function, ln (·) is the natural

logarithm, and m = ln (po).

A result is obtained for the negative pressures in a similar manner, except that now the

propagation function will use the surface reflected range distribution of Equation 3.33.

The marginal distribution for the negative pressures is

f−P (p) =
∫ √R2+(h+d)2

(h+d)

1√
2πηp rs

exp
(
− ln2 (p rs/po)

2η2

)
2rs
R2
|rs| drs (3.44)

which is identical to Equation 3.43 except that (h− d) is replaced with (h+ d) because

of the extra path length for the surface reflections. The probability density function

for negative pressures is then

f−P (p) =
exp

(
2
(
m+ η2

))
|p|3R2

(
erf
{
m+ (2η2)− ln (h+ d)− ln (|p|)√

2η

}

− erf
{m+ (2η2)− ln

(
|p|
√

(h+ d)2 +R2
)

√
2η

})
. (3.45)

To obtain the received pressure density function over the full range of pressures, the

positive and negative distributions are combined with equal probability (because each

snap will produce a direct path and surface reflected replica). The result is an overall
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pressure distribution with probability density function

fP (p) =
exp

(
2
(
m+ η2

))
|p|3R2

(
erf
{
m+ (2η2)− ln (h− sgn (p) d)− ln (|p|)√

2η

}

− erf
{m+ (2η2)− ln

(
|p|
√

(h− sgn (p) d)2 +R2
)

√
2η

})
(3.46)

where sgn (·) is the sign (or signum) function.

Equation 3.46 is the probability density function of the heuristic Garnele model, with

parameters m,η,R,h and d. Parameters h and d (the water depth and hydrophone

depth) will often be known in experimental situations. Parameters m and η (related

to the distribution of shrimp source levels), and R (the radius of the shrimp bed) will

need to be estimated.

3.2.2 Derivation of the distribution function

The distribution function of the heuristic model was also derived analytically. Rather

than directly integrating the density function to obtain the distribution function, the

distribution function was derived from fundamentals thus giving two independent solu-

tion paths for the two results. The integral of the density function could then be used

as a consistency check. The distribution function was found by integrating the joint

density function of s and r

FP (p) =
∫∫
R,S

fSR(s, r) ds dr (3.47)

over their respective domains

(h− sgn (p) d) ≤ r ≤
√
R2 +

(
h− sgn (p) d

)2 (3.48)

and

0 ≤ s ≤ pr. (3.49)
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The solution of Equation 3.47 gives the distribution function

FP (p) =
1

2p2R2

[
exp

(
2η2
)

exp2 (m)

(
erf

{
2η2 +m− ln

(
p
(
h+ sgn (p) d

))
√

2η

}

− erf

{2η2 +m− ln
(
p
√
R2 +

(
h+ sgn (p) d

)2)
√

2η

})

+ p2

((
R2 +

(
h+ sgn (p) d

)2)erfc

{m− ln
(
p
√
R2 +

(
h+ sgn (p) d

)2)
√

2η

}

−
(
h+ sgn (p) d

)2erfc

{
m− ln

(
p
(
h+ sgn (p) d

))
√

2η

})]
(3.50)

where erfc {·} is the complementary error function. Evaluating Equation 3.50 in the

limit p→∞ gives unity, so that the distribution is properly scaled.

3.3 Ambient noise: a Gaussian-Garnele mixture model

The Garnele distribution is a model of shrimp-only noise. To use this model (or other

shrimp-only models) for ambient noise requires another component for other (non-

impulsive) background noise; an ambient noise model is created by combining the

shrimp model with a background noise model. In this section the Garnele model is

extended to an ambient noise model using the ε-contamination framework (see for

example Vastola 1984). The framework has a first order noise pdf of the form

fε(x) = (1− ε) f0(x) + εf1(x), 0 ≤ ε ≤ 1 (3.51)

where f0 is the pdf of background noise (usually a Gaussian), f1 is the pdf of the

“contaminating” noise (the impulsive shrimp noise), and ε defines the relative amount

of each of the noise components. When ε = 0 there is no contamination and the

ambient noise pdf is the background noise pdf, and conversely when ε = 1 there is no

background and the ambient noise pdf is the impulsive noise pdf.

If the background noise is assumed to be Gaussian distributed, and the impulsive noise

Garnele distributed, then the resulting ambient noise model is a Gaussian-Garnele
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mixture with density function

f(x) = (1− ε)N(x : 0, σ) + εG(x : m, η, h, d,R) (3.52)

where N is a zero mean Gaussian pdf with standard deviation σ, and G is a Garnele

pdf with parameters m, η, h, d and R.

The ε-contamination framework assumes that the noise switches between the two dif-

ferent distributions, rather than being additive. The difference between switching and

adding is shown in Figure 3.7. In both of the plot windows the dark blue bars are

random variables from the background noise distribution (a Gaussian) and the light

green bars are contamination random variables from a Garnele distribution. Additive

noise is more physically realistic, the presence of an impulse does not exclude other

background noise. When the noise components are additive then the ambient noise

pdf is the convolution of the background noise pdf with the impulsive noise pdf. The

convolution is most conveniently computed by multiplying the characteristic functions

of the two noise pdfs. Unfortunately, the lack of a characteristic function for the Gar-

nele distribution means that the convolution must be computed numerically using the

noise pdfs, or the contamination model must be used as an analytic approximation. If

a solution for the Garnele characteristic function becomes available then the additive

noise model should be used. Issues related to the characteristic function of the Garnele

distribution, including investigations using numerical methods, are topics for further

research.

3.3.1 Parameter estimation for the Gaussian-Garnele distribution

Due to the physical-statistical derivation used for the Garnele distribution the param-

eters of the distribution are physical quantities that can be measured or realistically

estimated. Parameters such as water depth and hydrophone depth are usually mea-

surable within a reasonable uncertainty. Parameters that are unlikely to be easily

measurable are the maximum range of the shrimp bed, the average source level of the

shrimp, and the standard deviation of the source level of snaps from the shrimp field.
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Figure 3.7: A pictorial description of switched and additive combination of random

variables. Blue (dark) bars are Gaussian random variables, and green (light) bars are

Garnele (impulsive) random variables. The additive method adds the random variables

from both distributions together, whereas the switching method uses one or the other

but never both.

Sensible values for these parameters can be obtained from observation, or from con-

trolled studies. For example: a sensible estimate for the mean source level of a shrimp

snap is 180 dB re 1µPa taken from both tank and in-situ measurements (Au & Banks

1998, Beng et al. 2003), and a sensible standard deviation value for the variation of

source levels in a field of shrimp is 6 dB (Ferguson & Cleary 2001), the maximum range

of shrimp is more likely to be hundreds of metres rather than kilometres and so 100 m

is a reasonable estimate of R (see for example Beng et al. 2003). The need for these

parameter values motivates further studies of the type conducted by Ferguson & Cleary

(2001), and Beng et al. (2003). A reasonable estimate for the standard deviation of

the background Gaussian noise is the equivalent standard deviation computed for a
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Gaussian-Gaussian mixture (i.e. σ1 from Equation 3.4).

Initial parameter estimates can be further refined using numerical methods, such as

numerical maximum likelihood. The method of maximum likelihood using a non-

linear least squares fit (Press et al. 1988) of the logarithm of the probability den-

sity functions (theoretical and empirical) performs well and is described here. The

method seeks to minimise the χ2 difference between the observations (yi) and the

model (y(xi; a1 . . . aM ))

χ2 =
N∑
i=1

(
yi − y(xi; a1 . . . aM )

σi

)2

(3.53)

where N is the number of observations, M is the number of free model parameters

(i.e. parameters that have not been measured and are free to be adjusted to give the

best model fit) and σ is a measure of relative uncertainty for each observation. The

observations were computed as the base 10 logarithm of the pdf estimates of real shrimp

noise. The pdf estimates were computed using a quantization level histogram followed

by logarithmic bin smoothing (see Appendix C for details of the smoothing algorithm)

with a logarithm base of 1.05. It was assumed that after logarithmic bin smoothing

the uncertainty in each observation was equal, and consequently σi = σ = 1. Model

estimates were computed as the base 10 logarithm of the Gaussian-Garnele mixture

density function (Equation 3.52) evaluated using the estimated (and iteratively refined)

parameters. Model estimates were computed for each observation at the centre of the

smoothing bin used to compute the observation. Smoothed pdf estimates that were

equal to zero were eliminated from the optimisation because they are not representative

of the Gaussian-Garnele model and produce negative infinite observation values that

need not be handled by the computational codes.

Nonlinear least squares fitting was conducted using the “downhill” method of Powell

(Press et al. 1988). The more sophisticated Levenburg-Marquardt method suffered

from near singular matrices, an indication of correlation between parameters. It is

reasonable to expect this correlation between parameters because values such as mean

source level and maximum range are related through propagation.
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3.4 Comparison of SαS

and Gaussian-Garnele models

A comparison of the SαS and Gaussian-Garnele models was conducted using each

model’s fit to the probability density function of real snapping shrimp noise. Snap-

ping shrimp noise was selected from among the field measurements conducted at the

AWharf, Cockburn Sound, Busselton Jetty, and Nornalup-Walpole Estuary sites. An

empirical density function was computed from each of the data sets using a quantization

level histogram, followed by logarithmic bin smoothing with a logarithm base of 1.05.

Parameters were estimated for SαS and Gaussian-Garnele fits using, respectively, the

sample fractile and maximum-likelihood by non-linear least squares methods described

previously. Probability density functions for each of the models were plotted with the

empirical density functions on split-log plots. Relative difference plots were also con-

structed using the ratio of the difference between the empirical and model results to

the value of the empirical results. The relative difference plots show model deviations

more readily than the probability density plots.

AWharf results from the HTI-96-MIN hydrophone are shown in Figure 3.8 and Fig-

ure 3.9. The deviations are similar for both positive and negative pressure with the

exception of larger differences at the negative pressure extreme than for similar ex-

treme positive pressures. At very low pressures (|x| < 1× 10−3 Pa) both the SαS and

Gaussian-Garnele models under-estimate the probability density, with the Gaussian-

Garnele rising slightly to join the empirical results near |x| = 1×10−3 Pa. In the region

1 × 10−1 < |x| < 1 × 101 both models oscillate about the empirical results by similar

amounts. For |x| > 1 × 101 both models increasingly over-estimate the probability

densities at these extreme values. An increase in variability of the relative differences

can be seen in the extreme tails. For this data the Garnele model provides comparable

or better fit than the SαS model.

Results from Cockburn Sound (CS-B) noise data are shown in Figure 3.10 and Fig-
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ure 3.11. The sample rate was 473 kHz, which is the highest of all the results presented.

Pressure values approaching |x| = 1 × 10−1 Pa suggest good agreement between both

models and the empirical results at very low pressure, however inspection of the den-

sity functions in Figure 3.10 shows that there are insufficient empirical estimates to

be certain that the asymptote predicted by the models is correct. Oscillation of both

models about the empirical results occur in the region 1× 10−1 < |x| < 1× 101, both

models oscillate about the empirical results by similar amounts. For |x| > 1× 101 both

models increasingly over-estimate the probability densities at these extreme values.

An increase in variability of the relative differences can be seen in the extreme tails.

An asymmetry between positive and negative pressure is most obvious for this data,

with negative pressure values for the real noise deviating below the levels predicted by

the SαS. The Garnele and SαS models have comparable fit through the body of the

distribution, however the Garnele model fit is superior at the tails.
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Figure 3.8: A split-log plot of amplitude probability densities derived from AWharf

shrimp noise (black dot markers) with SαS (blue dashed line) and Gaussian-Garnele

(red solid line) fits.
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Figure 3.9: Relative difference between SαS (blue solid line) and Gaussian-Garnele (red

solid line) models and the amplitude pdf of AWharf noise.
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Figure 3.10: A split-log plot of amplitude probability densities derived from Cock-

burn Sound (CS-B) shrimp noise (black dot markers) with SαS (blue dashed line) and

Gaussian-Garnele (red solid line) fits.
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Figure 3.11: Relative difference between SαS (blue solid line) and Gaussian-Garnele

(red solid line) models and the amplitude pdf of Cockburn Sound noise.
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The Busselton Jetty data used to produce Figure 3.12 and Figure 3.13 were recorded

with the same equipment as the AWharf data, and the sample rate was 192 kHz. The

model fit to Busselton Jetty data is better at very low pressures than the fit to AWharf

data at similar pressures. Some oscillations are evident in the region 1× 10−1 < |x| <

1× 101, and this appears to be a recurring feature. Deviations occur in the tails of the

distribution and the variability increases as observed in the previous data sets.

Data measured at the Nornalup-Walpole Estuary had a much lower sample rate of 48

kHz. The results for this data are shown in Figure 3.14 and Figure 3.15. At very

low pressures (below |x| = 1× 10−1 Pa) the SαS model fits the real data well, but the

Gaussian-Garnele fit is poor. Beyond pressures of |x| = 1×10−1 Pa the opposite occurs;

the SαS distribution provides a poor fit, while the Gaussian-Garnele oscillates about

the real data. Deviations increase for both models in the extreme tails (as observed for

all of the data sets) but the asymmetry between positive and negative pressures is not

as pronounced as for the other data sets.

Model fits to the above data sets displayed some consistent features. Both the SαS and

Gaussian-Garnele models provided a reasonable fit to the real noise pdfs at pressure

magnitudes lower than 10 Pa, with both models tending to oscillate about the real data

pdfs by similar amounts. The main differences occurred in the tails of the distribu-

tions, where the relative pdf difference increased significantly for both models but was

consistently less for the Gaussian-Garnele model than for the SαS model. Deviations

in the tails of the distribution were consistently larger for negative pressures than for

positive pressures, suggesting asymmetry in the tails of the real noise pdfs.
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Figure 3.12: A split-log plot of amplitude probability densities derived from Busselton

Jetty shrimp noise (black dot markers) with SαS (blue dashed line) and Gaussian-

Garnele (red solid line) fits.



3.4. Comparison of SαS
and Gaussian-Garnele models 58

−10
3

−10
0

−10
−3

−10
−6

0

2

4

6

8

10

12

14

16

18

20

Negative pressure (Pa)

R
el

at
iv

e 
pd

f d
iff

er
en

ce

10
−6

10
−3

10
0

10
3

0

2

4

6

8

10

12

14

16

18

20

Positive pressure (Pa)

Symmetric−α−stable
Gaussian−Garnele       

Figure 3.13: Relative difference between SαS (blue solid line) and Gaussian-Garnele

(red solid line) models and the amplitude pdf of Busselton Jetty noise.
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Figure 3.14: A split-log plot of amplitude probability densities derived from Nornalup-

Walpole Estuary shrimp noise (black dot markers) with SαS (blue dashed line) and

Gaussian-Garnele (red solid line) fits.
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Figure 3.15: Relative difference between SαS (blue solid line) and Gaussian-Garnele

(red solid line) models and the amplitude pdf of Nornalup-Walpole Estuary noise.
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One important difference between the two models is the number of model parameters,

and the associated problem of parameter estimation. Parameter estimation for the SαS

model is algorithmically simpler and computationally much more efficient than for the

Gaussian-Garnele model. If the pdf fit is most important for pressure magnitudes less

than 10 Pa (i.e. through the body and moderate tails of the distribution) then the

relative ease of parameter estimation for the SαS model makes it the preferable model.

If, however, the extreme tails of the distribution are important then the additional

complexity of parameter estimation for the Gaussian-Garnele model may be justified.

Computational consideration may also be given to numerical evaluation of the SαS

pdf compared with evaluation of the analytic Gaussian-Garnele pdf, noting that the

Gaussian-Garnele pdf contains error functions. Evaluation of the SαS pdf using Mc-

Culloch’s method took (on average) around 50 times longer than the Gaussian-Garnele

pdf, using MATLABrroutines on a Pentium M (2.13 GHz) processor. If parameters

are to be estimated frequently then the additional cost of numerically evaluating the

SαS model may be justified by the cost saving for parameter estimation. Thus, there is

a trade-off between the better efficiency of the Gaussian-Garnele model in estimating

the pdf when the parameters are already known, and the greater computational cost

of parameter estimation.

The comparison of SαS and Gaussian-Garnele pdf results presented suggest two areas

warranting further investigation: frequency dependence of model performance, includ-

ing the effect of receiver bandwidth on real noise observations and the resulting ampli-

tude pdf; and an apparent pdf asymmetry that is observed in real shrimp noise. These

are investigated in the following sections.

3.5 Frequency dependence of the pressure amplitude pdf

Frequency dependence of the pressure amplitude pdf for real shrimp noise was investi-

gated using down-sampling. A 10 minute section of real shrimp noise data was selected

from Cockburn Sound measurements taken in July 2009. This data set was recorded
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using a low-noise, ultra-wide bandwidth RESON 4014 reference hydrophone connected

directly into a Fostex FR-2 recorder and sampled at 192 kHz with 24 bit resolution.

The frequency response of the FR-2 was measured using an Agilent 33220A function

generator configured to output 500 mV (peak-to-peak) white noise over a 20 MHz band-

width. The FR-2 and hydrophone response curves were then combined and averaged

over one-third octaves. One-third octave values were computed by averaging the 1 Hz

linear response over each band and then converting back to a logarithmic scale. The

last one-third octave value was averaged over the restricted band 37 kHz to 96 kHz,

rather than the full band to 112 kHz, due to the sample rate of the data. The averaged

receiver response, shown in Figure 3.16, was flat within 3 dB between 100 Hz and 96

kHz. Given the relatively flat response of the receiver, the original receiver response can

be removed as a cause of any subsequent down-sampling effects. The down-sampled

data can therefore represent a measurement of the same shrimp noise with a receiver

that also has a flat acoustic response from 100 Hz to near half of the down-sampled

sample frequency, assuming that the response of both systems were similar below 100

Hz.

To investigate the frequency dependence of the pressure amplitude pdf the original 192

kHz sampled data was down-sampled by factors of two from 96 kHz to 750 Hz. Down-

sampling was conducted using the convert sample type function in CoolEdit Pro version

2. The conversion was conducted using the high-quality (999) mode with pre-filtering

and post-filtering enabled. The original 24 bit sample resolution was converted to 32

bit resolution for the down-sampling and subsequently saved data files. The original

and down-sampled data were converted to pressure pdfs using a quantization level

histogram followed by scaling and logarithmic bin smoothing with a log-base of 1.05.

The results are shown in Figure 3.17.

The results show that the shape of the amplitude pdf is not altered significantly for

sample frequencies from 192 kHz down to 12 kHz, but the upper limit of observed

pressures is reduced as the bandwidth is reduced. For the data set analysed, the shape

of the amplitude pdf only changed significantly when the data was down-sampled to 6
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Figure 3.16: Response of the receiver used to measure real shrimp noise for down-

sampling analysis as a function of frequency.

kHz and below.
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Figure 3.17: Probability density as a function of pressure amplitude for real shrimp

noise shown in a split-log format. The original shrimp noise was sampled at 192 kHz

(dark blue solid line) and then down-sampled by half to values 96 kHz (red solid line)

through 750 Hz (red dotted line).
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3.6 Experimental investigation of pdf asymmetry in real

shrimp noise

On 10 March 2008 a field experiment was conducted from a set of pontoons in Cock-

burn Sound, to establish if the asymmetry (between positive and negative instanta-

neous pressure amplitudes) predicted by the Garnele distribution was observed in real

shrimp noise. Asymmetry had been observed in previous single hydrophone shrimp

noise measurements, but it was not known if the asymmetry was due to propagation

paths taken by the shrimp snaps (as predicted by the Garnele model) or due to de-

viation from omni-directional hydrophone response caused by the hydrophone cable

(which is not considered in the Garnele model). To minimise the effects of hydrophone

directivity, two hydrophones were mounted in opposite vertical orientations as shown in

Figure 3.18. The two hydrophones were both HTI-96-MIN, with a nominal sensitivity

of -164 dB re 1Vrms/µPa and a usable bandwidth (claimed by the manufacturer) from

2 Hz to 30 kHz. The hydrophones were mounted on a PVC bar that was joined by

support ropes to the surface, and the hydrophone cables were cable tied to the ropes.

A weight was attached to the bottom of the PVC bar (using support ropes) to help

maintain the shape and orientation of the hydrophone mounting while in the water.

Bandwidth limited (20 kHz) white noise was used to determine the nominal gains of

a two channel FOSTEX FR1 recorder used for the measurements. Weather conditions

on the day were realistic (i.e. not ideal), a moderate fetch limited sea had developed

due to onshore winds through the previous night and morning. Winds during the mea-

surements were estimated around 10 knots and there was slight vertical movement of

the pontoons. Various clunks and noises were caused by the motion of the pontoons

against the supporting structures.

A fifteen minute recording of ambient noise was collected. Pressure values from each

channel were grouped into quantization level histograms, which were then scaled to

give an empirical probability density function (epdf). The epdfs were logarithmically

smoothed into 200 bins using a log-base of 1.2. Positive pressure epdf values were
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Figure 3.18: Hydrophone setup used for the pdf asymmetry experiment. Two HTI-96-

MIN hydrophones were mounted on a PVC bar in opposite orientations. The PVC bar

was joined by support ropes to the surface, and to a weight at the bottom.

taken from the downward looking hydrophone, and negative pressure epdf values from

the upward looking hydrophone. Combining was conducted using the epdfs from the

two hydrophones recorded at the same time. The results are epdf estimates minimally

affected by the hydrophone cables, and are simultaneous in time, but with a small

spatial separation. Results are shown in Figure 3.19 plotting probability density as

a function of the pressure magnitude on a semi-logarithmic scale. Shown in the fig-

ures are the real shrimp noise results for positive amplitudes (red cross markers), and

negative amplitudes (black square markers). Asymmetry is evident in the real shrimp

noise, particularly beyond a magnitude of 50 Pascals. The measurements were repeated

with the hydrophones in the opposite orientation to ensure that the observations were

not being caused by the response of one of the hydrophones, and the results were in

agreement.
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Figure 3.19: Asymmetry between positive pressure (red cross markers) and negative

pressure (black square markers) probability densities observed in real shrimp noise.

Solid lines show a Gaussian-Garnele fit to the data.

A Gaussian-Garnele model was fit to the epdf data and shown in Figure 3.19 using a

solid red line for positive pressure values and a solid black line for negative pressure

values. The Gaussian-Garnele model can describe the general behaviour of the real

shrimp noise (that the asymmetry is non-zero and positive) but does not describe the

detail accurately. The Gaussian-Garnele model depends on both the water depth and

hydrophone depth, therefore the measured values of these parameters were used in

the computation of the model values. To observe the asymmetry over the full range

of pressure values, the difference between pdf values for equivalent positive and nega-

tive pressures were computed and scaled by the positive pdf value, to give a relative

asymmetry measure

ρ(x) =
f(x)− f(−x)

f(x)
, x ≥ 0. (3.54)
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Figure 3.20: Amplitude pdf asymmetry for real shrimp noise (black cross markers) and

the equivalent value predicted by the Gaussian-Garnele model (solid red line).

Relative asymmetry measures for real shrimp noise (black cross markers) and the

Gaussian-Garnele model (red solid line) were computed from asymmetry trial data

and the results shown in Figure 3.20. The real noise contained more asymmetry than

anticipated for pressure magnitudes less than 20 Pa, and was more asymmetric than

predicted by the Gaussian-Garnele model for all but the very extreme tail.

Two other data sets, recorded from the same location in Cockburn Sound (CS-B) but

at a different time, were similarly analysed and the results shown in Figure 3.21 and

Figure 3.22. The results shown in Figure 3.21 were recorded with a receiver bandwidth

flat within 3 dB to 50 kHz and within 6 dB to 100 kHz (see Appendix A). The re-

sulting relative asymmetry displays a definite relationship with pressure magnitude. A

Gaussian-Garnele fit under-estimates the asymmetry through most of the tail but joins

with the empirical result in the extreme tail. The results shown in Figure 3.22 were
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recorded with a greatly reduced receiver bandwidth (less than 20 kHz). The relative

asymmetry does not show the definite relationship with pressure magnitude; the results

vary randomly.
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Figure 3.21: Amplitude pdf asymmetry using data from Cockburn Sound (CS-B) mea-

sured using a receiver bandwidth exceeding 100 kHz.
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Figure 3.22: Amplitude pdf asymmetry using data from Cockburn Sound measured

using a receiver bandwidth less than 20 kHz.
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3.7 Summary of amplitude models

Gaussian, Gaussian-Gaussian mixture and SαS models have been discussed as models

of shrimp noise. The Cauchy model was also addressed because it is a special case

of the SαS distribution. A new candidate model of shrimp noise was derived from

first principles and analytic expressions for the density and distribution functions were

given. The new model was called the Garnele model. An ambient noise model was pro-

duced by combining the Garnele and Gaussian distributions using the ε-contamination

framework.

Preliminary comparisons of the Gaussian-Garnele and SαS models were conducted

using empirical density functions from real shrimp noise. Similar variations of both

models about the real data pdf were observed through the body and moderate tails

of the density function, while the Gaussian-Garnele showed an improved fit to the

extreme tails of the density function. Other differences between the two models were the

number of model parameters, the computational efficiency of parameter estimation, and

the computational efficiency of evaluating the pdf. Parameter estimation for the SαS

model was algorithmically simpler and computationally much more efficient than for the

Gaussian-Garnele model, due in part to the large number of parameters in the Gaussian-

Garnele model. However, evaluation of the Gaussian-Garnele pdf was more efficient

than for the SαS pdf (in an example the difference was a factor of 50). The SαS was

the most practical of the two models, and if parameters are to be estimated frequently

then the additional cost of numerically evaluating the SαS pdf may be justified by the

cost saving for parameter estimation. If the fit of the model through the extreme tails

of the pdf is important, especially if pdf asymmetry is evident, then the additional

complexity of the Gaussian-Garnele model would be justified.

Asymmetry was observed in the tails of the pdf of real shrimp noise, and the Gaussian-

Garnele model was able to describe the general behaviour but not the detail of the

asymmetry. An experiment was conducted that eliminated hydrophone directivity, due

to the hydrophone cable, as a cause of the pdf asymmetry; further strengthening the
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assumption of asymmetry due to path difference used in the derivation of the Garnele

distribution. The relative asymmetry of Cockburn Sound shrimp noise was affected by

receiver bandwidth, with wide-bandwidth data showing a definite relationship between

relative asymmetry and pressure magnitude. When the receiver bandwidth was reduced

the definite relationship was not observed.



Chapter 4

Temporal models

The purpose of this chapter is to establish whether the temporal statistics of snaps

produced by a group of shrimp, as measured by a hydrophone, are consistent with a

homogeneous Poisson process. The homogeneous Poisson assumption is important be-

cause it is implicitly assumed by many signal processing algorithms, which are designed

to operate optimally under noise conditions that follow such temporal behaviour. De-

viation of the real noise conditions from the homogeneous Poisson assumption would

be expected to degrade the performance of such signal processing algorithms.

A cross section of temporal analysis techniques were applied to real snapping shrimp

noise, drawing mainly on established techniques used in the fields of optics, neuro-

physics, molecular biology, finance and computer science. Some of the analyses allow

formal statistical testing, while others require visual judgements or allow a pseudo-test.

First order inter-snap interval histogram and uniform conditional tests were applied to

the distribution of times between events. Higher order Fano-factor and kth-order in-

terval techniques were applied respectively to the times between events and the event

counts. Each analysis technique revealed slightly different information about the snap-

ping process.
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4.1 Random point processes

Random point processes are characterised by highly localised events that occur ap-

parently at random (Snyder and Miller, 1991). Examples of random point processes

include emissions from radioactive decay, neuron firings, shot noise in optics, seismic

events, and lightning strikes. Shrimp snaps are highly localised events occurring ap-

parently at random within the ambient noise, and therefore display the fundamental

characteristics of a random point process.

It is important to distinguish between the temporal statistics of a point process, and

other temporal measures such as amplitude variations with time (see for example Ali

1983). A point process is only concerned with the points in time (or space) when

highly localised events occur. The time-series detail of each event is ignored; for the

case of shrimp noise the acoustic time-series is reduced to a binary time-series where a

snap has either occurred or not occurred. This binary time-series is the point process

representation of the acoustic time-series.

Statistical analysis is not normally applied to the point process directly. Instead, two

processes that arise from a point process are used, they are: the counting process (N),

and the interval process (∆). The counting process looks at the number of events

that occur within a given period of time, effectively sectioning the point process into

windows and counting the number of events that occur in each window. The interval

process uses the amount of time that elapses between events. Often it is the interval

between consecutive events that is used, but an interval process can look at the time

between every second, third, or nth (positive integer multiple) if desired. An example

point process is shown in Figure 4.1. The figure includes an illustration of how the

counts and intervals (of the point process) are computed. Fundamentally, the count

and interval distributions are related through their complete distributions (Cox & Lewis

1966). The first and second order moments of these distributions may provide different

and useful information about the point process. One important difference between the

counts and intervals is that the counts retain the same time scale as the point process,
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Figure 4.1: An illustrative example of a point process (circle stems) with counts (upper

values) and intervals (lower values). The counts are obtained by specifying a window

length then counting the number of events in consecutive non-overlapping windows.

The intervals are computed as the difference between consecutive events.

whereas the intervals are a function of interval number (an incrementing integer). This

makes analysis based on counts attractive because the scales of features observed in

the counting process can be directly related back to the point process; the counting

process time axis is undistorted (Lowen et al. 2001).

Reference origins (the point in time when the process start is observed) affect the

stationarity of the counting and interval processes (Cox & Lewis 1966). The origin can

be chosen at either an arbitrary time or an arbitrary event. If the origin is chosen at an

arbitrary event then the counting process will be stationary (but the interval process

will not); alternately if the origin is chosen as an arbitrary time then the interval process

will be stationary (but the counting process will not). The elapsed time between an

arbitrary time origin and the first event is called the forward recurrence time and is

the cause of non-stationarity in the counting process with an arbitrary time origin.

In the following sections homogeneous Poisson and doubly-stochastic Poisson models

are considered in detail. These models represent respectively the simplest, and slightly

more realistic models chosen from a great number of available point process models
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that could be used to describe shrimp noise. Selected analysis methods focused on

these models are presented, to further understand the nature of snap events arriving

at a hydrophone.

4.2 Homogeneous Poisson model

The homogeneous Poisson process is a mathematical concept used to describe a com-

pletely random series of events (Cox & Lewis 1966). Defining properties of the process

are (for a more mathematical treatment see (Snyder & Miller 1991), (Cox & Lewis

1966) or (Hogg & Craig 1995)):

1. There is no trend in the series

2. Two or more events cannot occur at exactly the same instant of time

3. What happens in one time window is completely independent of what happens

in any other non-overlapping time window, irrespective of the window length or

the interval of time between them.

For a homogeneous Poisson process the probability density of counts Nt (as a function

of time, t) is defined by

f(Nt) =
(λt)Nt exp (−λt)

Nt!
(4.1)

having the characteristic that the mean and variance are equal

〈Nt〉 = var(Nt) = λt. (4.2)

The name rate of occurrence is given to the parameter λ because Nt/t converges in

probability to λ in the limit t→∞ (Cox & Lewis 1966).

For the same homogeneous process, the distribution of intervals ∆ is

F(∆) = 1− exp(−λ∆) (4.3)
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and the density function of intervals

f(∆) =
∂F(∆)
∂∆

= λ exp(−λ∆). (4.4)

The intervals are exponentially distributed with parameter λ.

The rate of occurrence λ is always a constant for a homogeneous Poisson process. The

implication for shrimp noise, if it is to follow a homogeneous Poisson process, is that

the rate of snapping must be constant; the snapping rate will not vary with time. Long

term studies of shrimp noise (Everest et al. 1948) show that the spectrum level from a

field of shrimp will typically only vary by a few decibels over the course of a day, with

peaks occurring just before dawn and just after dusk. These variations are likely to be

caused by an increase in snap rate, rather than a change in the individual snap source

levels. If the rate of snapping changes then the process is not a homogeneous Poisson

process, but if the changes are over relatively long time scales (a day), then the process

may be approximately homogeneous Poisson over short time scales (a few seconds or

minutes). It is therefore important to investigate rate changes in real shrimp noise over

short and medium time scales, not only to further understand the nature of shrimp

snapping, but also to provide important information for signal processing applications.

4.3 Event detection

Point process analysis requires that the measured acoustic time-series be converted into

a series of events (an event-series), with each event representing the instant in time that

a shrimp snap has been received. Detection of impulsive signal events in poorly defined

noise is a challenging problem. Detection of shrimp snaps is made more complicated by

the fact that the shrimp snaps do not all have the same or similar amplitude, rather the

snap amplitudes are distributed as outlined in the previous chapter on amplitude mod-

els. Several detection methods were attempted, including: simple threshold, threshold

with dead-time, de-convolution, and a Nuttal power law detector. The threshold with

dead-time detector was found to be as reliable as any of the other detectors, with the
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Figure 4.2: Raw (blue cross markers) and filtered (black solid line) time-series showing

the effect of the pre-detection filter on a single shrimp snap. Important features of the

snap remain unchanged by the filtering operation.

least amount of algorithm complexity, and was the fastest algorithm to execute. For

these reasons the threshold with dead-time detector, combined with some pre-filtering,

was used to detect the shrimp snaps.

4.3.1 Pre-detection filtering

A 6th order high-pass Bessel filter with cut-off frequency at 1.4 kHz was applied to

the data prior to detection, to remove unnecessary low frequency content from the

acoustic time-series. A Bessel filter was chosen so that phase distortion introduced by

the filtering process was linear. Figure 4.2 shows the difference between raw (blue cross

markers) and high pass filtered (black solid line) time-series data for a representative
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Figure 4.3: Spectrum of shrimp noise before (blue cross markers) and after (black solid

line) the pre-detection filter. The filter was designed to attenuate frequencies below 1

kHz.

shrimp snap. The filtering operation reduced the maximum excursion of the precursor

and the main peak, but the snap remained largely intact. Figure 4.3 shows a spectral

density of shrimp noise, computed before (blue cross markers) and after (black solid

line) filtering. Attenuation below 1 kHz is evident, with up to 90 dB difference below

100 Hz. Above 2 kHz the two spectra are almost identical and the pronounced “bump”

in the spectrum caused by snapping shrimp is unchanged. The filtering operation

substantially attenuated low frequency information, without adversely affecting the

important components required for analysis of snapping shrimp noise.
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Figure 4.4: A graphical representation of snap detection. The threshold (dashed hor-

izontal line at 10σ), point of threshold exceedance (circle), snap zone (dashed box),

detection points (triangles) and dead-time (square ended bar) are shown.

4.3.2 Threshold detection with dead-time

Threshold levels were set at multiples of a standard deviation of the noise (σ). Detec-

tions were declared when the amplitude of the time-series exceeded the value of the

threshold. The standard deviation σ was estimated using all samples from the first ten

seconds of the acoustic time-series.

A representative acoustic time-series of a single snap with a threshold level set at 10

standard deviations above the mean is shown in Figure 4.4. In this case the precursor

exceeded the threshold which produced a detection at the wrong time. The snap time

was to coincide with the main peak, not the precursor. To choose the correct time, a
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snap zone was defined using a fixed number of samples prior-to and after the threshold

breach. The snap zone is shown in Figure 4.4 as a dotted box. The maximum value

(inverted triangle marker) within the snap zone was considered to be the main peak;

the correct snap time.

To reduce the number of false detections on surface reflected replica snaps, the minimum

value (triangle marker) in the snap zone was also identified. If the minimum value was

larger than the maximum value then the detection was declared a surface reflection,

and rejected. Signals from distant shrimp may also contain large negative pressure

components, similar to those from surface reflections, due to a low grazing angle bottom

reflected signal having a phase shift near π radians (Chitre et al. 2003). When the

threshold is sufficiently low, the additional processing used to reject surface reflections

may also cause missed detections of distant shrimp.

Following each snap was a short period of time when pressure fluctuations were po-

tentially much larger than the detection threshold. Such fluctuations are evident in

Figure 4.4. The fluctuations include a bottom reflected replica (Chitre et al. 2003)

and oscillations caused by the propagation environment and the impulse response of

the measuring equipment. To avoid false detections during the period of fluctuation a

dead-time (shown using a line with square markers at each end) was enforced after each

snap. Detections were not declared during the dead-time. The effects of missed de-

tections due to the dead-time are identified for the inter-snap interval and Fano-factor

analyses that follow, but are not identified for the Kth order interval analysis. Other

modifications to the thresholding technique, such as adaptive noise estimation (see for

example Watkins et al. 2004) were not used because they were not expected to provide

any benefit additional to the pre-filtering operation. Pre-filtering was preferred due to

lower computational costs (complexity, speed and code availability).
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4.3.3 Consequences of threshold detection

Threshold detection cannot detect any snap events below the threshold level. Distant

shrimp, those with lower received amplitudes, are therefore not included in the event-

series. Loosely speaking the threshold relates to a maximum range, beyond which

the shrimp events would not be included; the event-series and subsequent analysis is

therefore restricted to local shrimp. An alternative argument would be that thresh-

old detection would reduce the detection efficiency. If the missed snap events were

similar to Bernoulli random deletion, then the effect would tend to drive the count-

ing distributions toward homogeneous Poisson (Teich & Saleh 1982). Provided the

shrimp population within the threshold-defined range did not vary appreciably during

the period of observation then the range restriction, or Bernoulli deletion effects, were

considered to be acceptable.

Another consequence of threshold detection was modulation of the peak heights by the

lower frequency noise. Pre-filtering was designed to minimise the lower frequency noise

components but at the same time preserve as much of the snap structure as possible.

Filtering techniques are never ideal, and some modulation would always remain. The

effect of modulation was to periodically raise some of the peaks (near the threshold)

above then below the threshold level. The modulation effects were assumed to be small

enough not to appreciably affect the temporal analysis, however the effect was not

studied in detail.

4.4 Inter-snap interval histogram analysis

A simple test for the homogeneous Poisson process is to compare the distribution of

time intervals between snaps (or events) with a theoretical distribution. The test is

referred to as the inter-event interval (IIH) test (see for example Thurner et al. 1997).

For a homogeneous Poisson process the intervals are exponentially distributed, with
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density function given previously in Equation 4.4. When events are detected using a

dead-time then Equation 4.4 must be modified because the probability of observing

an interval less than the dead-time is zero (Ricciardi & Esposito 1966). The modified

probability density function is

f(∆) = λ exp(−λ(∆− τ)) (4.5)

where τ is the dead-time (in seconds), which can be set to zero if dead-time is not used,

and λ is the rate of occurrence (the same as that for a homogeneous Poisson process).

Variable ∆ is the interval length (in seconds). The modified distribution is called the

dead-time modified exponential distribution, and it describes the probability density of

intervals arising from a process called the Dead Time Modified Poisson (DTMP) point

process (Lowen & Teich 1992). Parameter λ can be estimated using

λ =
1

∆− τ
(4.6)

where ∆ is the mean interval.

Testing goodness of fit between the empirical and theoretical density function curves

was conducted both visually and statistically. For visual comparison the theoreti-

cal and empirical density curves were plotted together and any differences noted. To

aid comparison a log-log plot was used so that the exponential and dead-time modi-

fied exponential density functions would lie on a straight line, as in Liebovitch et al.

(1999). Censure corrections (to account for truncation of the observations) were applied

when using the empirical probability density function (epdf) method from Waterman

& Whiteman (1978). It was observed that the left censure at zero (or the dead-time)

was critical for comparing the epdf with theoretical curves. It was also observed that

when large numbers of observations were available the scaled histogram density function

estimates were less sensitive to both the left and right censures.

Three shrimp noise data sets were chosen as a representative cross section of the avail-

able shrimp noise data. These were selected from data measured in the Spencer Gulf

(SG), near Seal Island (SEAL-C) and in the Nornalup-Walpole Estuary (WP). The

remaining shrimp data sets were reserved for the final summary analysis. A control set
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of homogeneous Poisson distributed events was simulated and processed in a similar

manner to the real shrimp noise. Inter-snap interval histograms were computed using

150 bins evenly spaced across the range of intervals. A logarithmic smoothing operation

was applied to the histogram estimates to improve accuracy in the extreme tail, where

count numbers are expected to be low. The smoothing window size was increased with

increasing interval duration using a logarithm base of 1.2 (see Appendix C). For each

individual data set an estimate of λ was computed using Equation 4.6 and a theoret-

ical curve produced from Equation 4.5. Results are shown in Figure 4.5 by plotting

probability density against a normalised interval. Intervals were normalised so that the

maximum interval from each data set corresponded with unity. The simulated homo-

geneous Poisson data lies in a straight line along the theoretical curve, whereas the

real shrimp noise deviates at both small (less than 0.2) and large (greater than 0.6)

normalised intervals.

Kolmogorov-Smirnov (D), Cramér-von Mises (W 2), and Anderson-Darling (A2) statis-

tics were computed using methods from D’Agostino & Stephens (1986). Kolmogorov-

Smirnov (D) test results can be found in Legg et al. (2005). Anderson-Darling (A2)

results were found to be the most consistent with visual inspection results. The con-

sistency of A2 was attributed to increased sensitivity to deviations in the tail of the

distributions.

The A2 statistic was computed using

A2 = −n− 1
n

(
n∑
k=1

{(2k − 1)(ln(Zk) + (2n+ 1− 2k) ln(1− Zk))}

)
(4.7)

where n is the number of observations, and Zk are the ordered (ascending) observations

transformed using

Zk = 1− exp(−λ(∆k − τ)). (4.8)

Statistical testing was conducted on all of the real shrimp noise and used to produce

Figure 4.6. Each bar in the figure represents an independent data set, from several

different locations. Repeated bars at a given location indicates a data set taken at a
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Figure 4.5: Inter-event interval probability density functions shown using a log-log plot

so that an exponential curve describes a straight line. The plots show empirical and

theoretical curves for simulated homogeneous Poisson data (a), and real shrimp noise

from Spencer Gulf (b), Seal Island (c), and Nornalup-Walpole Estuary (d).

significantly different time (at least on a different day). The height of the bar shows

the base 10 logarithm of the Anderson-Darling statistic. A horizontal (dashed) line

shows the 95% confidence level. Values below this confidence level indicate that the

homogeneous Poisson hypothesis was accepted with 95% confidence. As anticipated,

the simulated homogeneous Poisson data set lies well within the acceptance region. Of

the real data, only the Spencer Gulf (SG) shrimp noise lies within the acceptance region.

For all of the other shrimp noise, the homogeneous Poisson hypothesis is rejected. The

tests suggest that the homogeneous Poisson model is an inadequate model of snapping

shrimp noise.
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Figure 4.6: A summary of the homogeneous Poisson process (HPP) hypothesis for real

shrimp noise using the Anderson-Darling statistic. The control data (HPSIM) accepts

the homogeneous Poisson process hypothesis as does the real shrimp noise measured at

Spencer Gulf (SG). All other real shrimp noise data reject the hypothesis at the 95%

confidence level (horizontal dashed line).

4.4.1 The uniform conditional test

The uniform conditional test for a homogeneous Poisson process (Cox & Lewis 1966)

was also applied to the available shrimp noise data. The advantage of the uniform con-

ditional test (over the IIH test) was that it avoided the need to estimate the parameter

λ. This is an advantage because it avoids biasing the test by using the same data to

estimate the parameter and conduct the test. A disadvantage was that the test was

for a homogeneous rather than dead-time modified homogeneous Poisson process. The

effect of dead-time would slightly regularise the process and make rejection more likely.

Durbin’s transformation (described in Cox & Lewis 1966) was used on the event times

to give a set of transformed order statistics Zk. For a homogeneous Poisson distribu-
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tion the Zk are uniformly distributed between 0 and 1, and testing for this case can be

conducted using one of the empirical distribution tests.

The two-sided Kolmogorov-Smirnov (D) statistic was chosen for the tests of real shrimp

noise. The statistic was computed using the expression (D’Agostino & Stephens 1986)

D = max
{
D+, D−

}(√
n+ 0.12 +

(
0.11√
n

))
(4.9)

where

D+ = max
{(

k

n

)
− Zk

}
(4.10)

and

D− = max
{
Zk −

(
k − 1
n

)}
(4.11)

are respectively the upper and lower one-sided Kolmogorov-Smirnov statistics. Parame-

ter n is the number of observations and k is the set of integers from 1 to n. Equation 4.9

includes corrections for a single-sample test against a completely specified distribution.

The uniform conditional test, as specified above, was applied to all shrimp noise data

and a summary of results shown in Figure 4.7. The figure shows the base 10 logarithm

of the D statistic for each location, with some locations repeated at different times.

The control data (HPSIM), Spencer Gulf (SG), Seal Island (SEAL-A) and Feather

Reef (FR) data sets accepted the homogeneous Poisson hypothesis, all other data sets

rejected the hypothesis. This was a curious result because the effect of dead-time

was expected to increase the likelihood of rejection of the hypothesis but instead the

opposite occurred.

Inconsistencies between the inter-snap interval histogram and uniform conditional tests

suggest that these methods are not adequate for testing the homogeneous Poisson

process hypothesis for snapping shrimp noise. Alternative methods are investigated in

the following sections.
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Figure 4.7: A summary of the uniform conditional test for a homogeneous Poisson

process (HPP) applied to real shrimp noise. The control data (HPSIM) accepts the

homogeneous Poisson process hypothesis as do the Spencer Gulf (SG), Seal Island

(SEAL-A) and Feather Reef (FR) data sets. All other real shrimp noise data reject the

hypothesis at the 95% confidence level (horizontal dashed line).

4.5 Kth order interval analysis

The inter-snap interval histogram analysis presented previously investigated the dis-

tribution of time intervals between successive snaps; these were the consecutive first-

order intervals of the snaps (Perkel et al. 1967). The second-order intervals are the

times between each snap and the one-after-next, and is therefore the sum of two of the

consecutive first-order intervals following each snap. A kth-order interval is the sum of

k first-order consecutive intervals and therefore passes over k − 1 snaps between the

reference snap and the terminating snap.

For a homogeneous Poisson process the distribution of the kth-order intervals (Tk) is
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known; the 2λTk are χ2 distributed with 2k degrees of freedom (Cox & Lewis 1966). A

test for a homogeneous Poisson process can be based on the goodness of fit of empirical

kth-order interval distributions computed from real data against the expected χ2 dis-

tribution. Results from this formal test were not consistent with observation, despite

the agreement between empirical and theoretical probability density functions being

visually acceptable. Possible reasons for the inconsistencies were the doubly censured

data corrections (for the dead-time to the left and the time-series duration to the right),

and the need to estimate the value of λ from the test data. A visual alternative to a

formal statistical test was devised using transformed kth-order intervals plotted as a

function of a normalised ordering number (defined later) and k. Kth-order intervals

were computed for incrementing k as outlined previously. For each k the observed in-

tervals {X1, X2, X3, ..., Xn} were sorted (ascending) to give the ordering intervals (T̂k).

Parameter λ was then estimated using the inverse of the mean value of the observed

intervals, λ = 1/〈T̂k〉. The values 2λT̂k were then transformed using the probability

integral transformation for a χ2 distribution with 2k degrees of freedom, giving trans-

formed values Zi, where i = 1, 2, 3, ..., n. These steps were identical to the first steps

used for case-0 empirical distribution function tests (D’Agostino & Stephens 1986). For

a homogeneous Poisson process the values of Zi should lie on the line y = i/n for all

values of k; the Z are monotonically increasing values between 0 and 1, with slope 1/n.

The order statistics were scaled by the maximum order statistic to give a normalised

ordering number (T̂ /T̂max) so that the slope of the curve Z as a function of normalised

ordering number is unity (for a homogeneous Poisson process). Results from simulated

homogeneous Poisson control data are shown in Figure 4.8. A colour-bar was used to

show the value of Z. For all values of k the Z values increase monotonically between 0

and 1 as expected, with small fluctuations indicative of normal variability for a homoge-

neous Poisson process. Deviations from the homogeneous Poisson baseline of Figure 4.8

indicate that the process generating the events is not a homogeneous Poisson process.

Rudimentary interpretation of the transformed kth-order interval distributions can be

achieved by comparison with the expected result for a homogeneous Poisson process.

Statements such as “there are more large intervals between every 5th snap than would
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be expected for a homogeneous Poisson process” are possible. Relating these interpre-

tations back to the original point process is still problematic because the intervals lie

on a deformed time reference (with respect to the original point process). The average

interval between consecutive snaps may be used as a transformation reference time, so

if the average time is 0.2 s then the large intervals between every 5th snap, for exam-

ple, could be interpreted as correlation on a time scale of 1 s. This is, however, not a

rigorous treatment of the issue.

Transformed kth-order interval distributions for real shrimp noise are shown in figures

4.9 through 4.13. The plots can be interpreted by choosing a k value of interest,

then inspecting the change in Z as a function of the normalised ordering number. If

the value of Z increases linearly with normalised ordering number (i.e. follows the

same gradient as the Z colour bar) then the behaviour at that k is consistent with a

homogeneous Poisson process. For example, the Spencer Gulf results (Figure 4.9) show

that for very low k the intervals are consistent with a homogeneous Poisson process,

but deviation from a homogeneous Poisson process occurs rapidly as k increases (e.g.

when looking at the intervals between every 10th snap there are a higher than expected

number of relatively short time intervals). The Spencer Gulf example is particularly

important because the process was accepted as homogeneous Poisson using the IIH

test, which is consistent because the IIH test is a test based on k = 1 intervals. What

the kth-order interval analysis shows is that while the process is consistent with a

homogeneous Poisson process for k = 1 the entire process is definitely not consistent

with a homogeneous Poisson process.

Cockburn Sound (CS-A) results in Figure 4.10 are consistent with a homogeneous

Poisson process for low values of k, but as k increases there is an increasing number

of longer time intervals. The Nornalup-Walpole results (Figure 4.11) are consistent

with a homogeneous Poisson process for both low and high values of k with deviations

occurring for k between 400 and 800, where there are a higher than expected number of

large intervals. The Seal Island Cave (SEAL-A) result shown in Figure 4.12 contains a

lot of structure, with some oscillation between consistency with a homogeneous Poisson
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process near k = 200 and k = 500, and higher numbers of small time intervals. For

k greater than 600 there are consistently higher than expected numbers of small to

medium time intervals. The Feather Reef results in Figure 4.13 are consistent with

a homogeneous Poisson process for small k followed by a slight transition to higher

numbers of large time intervals and then progressively increasing numbers of both

small and large time intervals, displaying a symmetry that is not observed at the

other locations. All of the real shrimp noise results show significant structure as a

function of k; none of the shrimp noise results display the characteristics expected for

a homogeneous Poisson process.
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Figure 4.8: A waterfall plot of the kth-order interval distributions for simulated homo-

geneous Poisson control data.
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Figure 4.9: A waterfall plot of the kth-order interval distributions from Spencer Gulf.
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Figure 4.10: A waterfall plot of the kth-order interval distributions from Cockburn

Sound (CS-A).
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Figure 4.11: A waterfall plot of the kth-order interval distributions from the Nornalup-

Walpole Estuary.
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Figure 4.12: A waterfall plot of the kth-order interval distributions from the Seal Island

cave (SEAL-A).



4.5. Kth order interval analysis 98

Z

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2

0.4

0.6

0.8

1

200 400 600 800

N
or

m
al

is
ed

 o
rd

er
in

g

K

Figure 4.13: A waterfall plot of the kth-order interval distributions from Feather Reef.
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4.6 Intensity function analysis

Alternative Poisson models arise when the constant intensity constraint of the homo-

geneous model is relaxed. For temporal models the intensity is allowed to vary as a

function of time. Relaxing the constant intensity constraint on shrimp noise is not a

difficult step to take, since the spectrum level of shrimp noise has been observed to

vary over the period of one day (Everest et al. 1948) most likely caused by an increase

in snapping activity. Empirical time varying intensity functions, Λ̂(t), were estimated

using a minimum-mean-square filter as a predictor. Assuming that the estimator is a

linear function of the data, the estimator has the form (Snyder & Miller 1991)

Λ̂(t) = a(t) +
∫ t

to

h(t, u) dN(u) (4.12)

where a(t) is a deterministic function of time, and h(t, u) is the impulse response of the

linear filter estimator. If a(t) is set to zero, and the impulse response is of the form

ho(t, u) =


1
$ , t−$ ≤ u < t

0, otherwise
(4.13)

then the filter reduces to a simple moving-average histogram estimator, using window

size $ (Snyder & Miller 1991). When computing Λ̂(t) using window-based estimation,

the time duration of the window ($) becomes important. The window needs to be

concurrently large enough to allow reasonable estimates of rate, and small enough to

capture important variations with time. Optimum window estimators can be formed

if the autocorrelation function (ρ(u)) of the intensity process is known (Virtamo et al.

1996, Snyder & Miller 1991), which is similar to the “rate meter” approach suggested

by Perkel et al. (1967). If the autocorrelation function is not known then a histogram

estimator can be used (Snyder & Miller 1991).

Empirical intensity functions were computed using a histogram estimator with window

length $ = 3 seconds, moved across the data in 0.1 second increments. A 3 second

window was chosen to ensure a reasonable number of events from which to compute

the average, given the relatively low average snap intensity of most of the data sets.
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A histogram estimator was used because nothing was known of the autocorrelation

function (of the intensity process) of real shrimp noise. Results for the control (HPSIM)

and representative sets of real shrimp noise from Cockburn Sound (CS-A), Spencer

Gulf (SG), Seal Island (SEAL-C) and Nornalup-Walpole Estuary (WP) are shown in

Figure 4.14. The control simulation had a snap rate of 17 snap s-1, similar to that

of Cockburn Sound which was around 20 snap s-1. The average intensities from other

locations are much lower than in Cockburn Sound, most less than 10 snap s-1. In each

plot the y-axis (intensity) limits are set at plus 10, and minus 5, standard deviations

beyond the mean. Interesting features are the rapid change of rate in the Seal Island

data near 300 seconds, and the quantized appearance of the Nornalup-Walpole data

due to very low snap intensity. Intensity estimates for the Spencer Gulf data terminate

before 200 seconds due to the length of the time-series.
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Figure 4.14: Snapping intensity as function of time for control and real shrimp noise

data. A homogeneous Poisson control result is shown (a) along with real shrimp noise

from Cockburn Sound (b), Spencer Gulf (c), Seal Island (d) and Nornalup-Walpole

Estuary (e). Intensities were computed using a histogram estimator with a 3 second

window.
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Figure 4.15: Event intensity estimated using 1 second (a) and 10 second (c) windows.

The snaps were simulated from a homogeneous Poisson process with constant rate

λ = 17 snap s−1.

Results obtained for the intensity function depend on the window size. To illustrate,

Figure 4.15 shows intensity estimates from simulated homogeneous Poisson data (the

rate is actually a constant) for a 1 second window (a) and a 10 second window (c). Also

shown in Figure 4.15 are empirical probability density functions (circle markers) of the

intensities for a 1 second window (b) and a 10 second window (d) as well as a Gaussian

fit (solid line). The variance of intensity given a 1 second window was 26, and for a 10

second window was 1.7; the variance reduces as the window size is increased.

Gaussian fits to the same data, using windows of size 1,2,3,5 and 10 seconds, are shown

in Figure 4.16. Change in intensity variance as a function of window size was shown

using a log-log plot on Figure 4.17. The intensity variances (solid line) describe a
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Figure 4.16: Snapping intensity distributions using window sizes $ =1,2,3,5 and 10

seconds. The window time is shown on top of each curve near the mean value. A

Gaussian representation has been used for illustration purposes only.

decreasing straight line on the log-log plot, indicating an inverse relationship between

intensity variance and window size. The mean intensity divided by the window size

(square markers) describes the same line because variance and mean are equal for a

homogeneous Poisson process. This provides an important bench mark, showing the

amount of variability expected for a homogeneous Poisson process.

Normalised intensity variance as a function of window size, using real shrimp noise

from selected locations, are plotted in Figure 4.18. The results include simulated ho-

mogeneous Poisson events as a control. The homogeneous Poisson control curve lies

lower than the real shrimp noise, although at low window sizes the results tend to-

ward a similar value. Of the shrimp noise data sets the Seal Island data has the most

obvious deviation from the homogeneous Poisson control. Meaningful rate results for
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Figure 4.17: Snapping intensity variance as a function of window size shown on log-log

scales. Also shown is a scaled mean approximation (square markers) for a homogeneous

Poisson process. The variance curve is slightly lower than the scaled mean approxima-

tion because of dead-time.

non-homogeneous processes would need to show either different shape or different vari-

ability than the homogeneous Poisson bench mark. The rate versus window size curves

can be normalised by dividing each variance curve by the mean rate. This normalisa-

tion of variance by the mean rate can be described as comparing the variance versus

counting time curve with that for a homogeneous Poisson process, and is the basis for

the Fano-factor analysis presented in the following section.
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Figure 4.18: Normalised intensity variance as a function of window size for real shrimp

noise at selected locations, and a homogeneous Poisson control.
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4.7 Fano-factor analysis

The Fano-factor (or Index of Dispersion of Counts) is defined as the variance to mean

ratio of the counting process, N (Teich et al. 1996, Fano 1947)

FF =
var(N)
〈N〉

. (4.14)

The significance of this factor arises from its value for a homogeneous Poisson process.

A homogeneous Poisson variate is uniquely characterised by having equal mean and

variance (Evans et al. 1993), so that the Fano-factor of a homogeneous Poisson process

is always unity

FFhpp =
var(N)
E[N ]

= 1. (4.15)

Deviations of the Fano-factor from unity correspond with deviation from a homogeneous

Poisson process. The Fano-factor therefore provides an alternative method investigat-

ing deviation from a homogeneous Poisson process. The importance of the Fano-factor

alternative was demonstrated by Lowen & Teich (1992) who observed long term corre-

lations in auditory-nerve spike trains using Fano-factor versus time curves, even though

the inter-event intervals displayed exponential character consistent with a homogeneous

Poisson process. However, similar comparison of Fano-factor and inter-snap interval

results using snapping shrimp noise showed consistency between the two techniques

(Legg et al. 2007).

In general the Fano-factor varies as a function of counting time so the counting process

becomes N($), where $ is the counting time. The mean and variance of the counts

for different counting times then give the counting time dependent Fano-factor as

FF ($) =
var(N($))
〈N($)〉

. (4.16)

The counting time dependent Fano-factor of a homogeneous Poisson process remains

unity for all counting times. An equivalent definition for the Fano-factor is the ratio

of the variance-time function to its value for a homogeneous Poisson process (Cox &

Lewis 1966)

FF ($) =
V ($)
λ$

(4.17)
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where V ($) is the variance of the counting process as a function of counting time. The

variance-time curve definition of the Fano-factor allows theoretical expressions to be

derived for alternatives to the homogeneous Poisson process.

Empirical Fano-factor estimates can be computed using a windowing scheme, consider-

ing equally spaced instants equal to the counting time ($) (Gusella 1991). To compute

an estimate of the Fano-factor (for one counting time) all of the available event time-

series data is partitioned into equally sized windows. For reasons of independence the

windows must be consecutive and must not overlap. The number of events in each

window form the values ck and these values are used to compute the Fano-factor for

that particular counting time. The computation is the ratio of the variance of ck values

divided by the mean ck, thus

FF ($) =
var({c1, c2, . . . , cn}$)
E[{c1, c2, . . . , cn}$]

(4.18)

where there are a unique set of ck = {c1, c2, . . . , cn} values for each counting time,

indicated using the subscript $ at the end of the set. It is important to note that

for each Fano-factor estimate the entire event time-series is partitioned into counting-

time length windows. To compute the Fano-factor using another counting time, the

entire event time-series must be repartitioned into windows that are the size of the new

counting time. Figure 4.19 shows the method used to compute Fano-factors at different

counting times. This windowing method is not the same as the moving average his-

togram method used to estimate the intensity function. The moving average histogram

method used a sliding window where the start of each new window was incremented by

some small value (that was less than a window size), whereas the Fano-factor method

required that the start of each window be placed exactly at the end of the previous

window.

Dead time detection methods affect the Fano-factor result. Including a dead-time

introduces some regularity into the event series, reducing the variance of counts. For a

homogeneous Poisson process the effect of dead-time reduces the Fano-factor to a value

less than unity. A theoretical expression for a dead-time modified homogeneous Poisson

process is obtained from the probability density function for a dead-time modified
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Figure 4.19: Fano-factors are computed by partitioning the event time-series into con-

secutive non-overlapping windows. The Fano-factor is the ratio of variance and mean

of the counts in these windows. For each counting time the event times-series is repar-

titioned using the corresponding window size.

(homogeneous) Poisson distribution (Cantor & Teich 1975)

p($) =
N∑
k=0

λk($ −Nτ)k

k!
exp (−λ($ −Nτ))

−
N−1∑
k=0

λk($ − (N − 1)τ)k

k!
exp (−λ($ − (N − 1)τ))

(4.19)

where λ is the rate, $ is the counting time, and τ is the dead-time. Expressions for

the mean and variance of the dead-time modified homogeneous Poisson distribution are

respectively

µ =
λ$

(1 + λτ)
+

λ2τ2

2(1 + λτ)2
(4.20)

and

σ2 =
λ$

(1 + λτ)3
. (4.21)

The Fano-factor for a dead-time modified (homogeneous) Poisson process is therefore

FFDTMP =
2λ$

(1 + λτ)[2(λ$)(1 + λτ) + λ2τ2]
(4.22)
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which differs from the simple result of Equation 4.15 and importantly is now a function

of counting time $ as well as the dead-time, τ .

Another effect that alters the value of the Fano-factor at very short counting times is

caused by regularity. Middleton et al. (2003) showed that at very short counting times

the discrete nature of the point process becomes significant; at very short counting

times the intensity appears quite regular. When counting times are short enough

that the intensity is approximately constant, then the process tends to behave like a

homogeneous Poisson process. For a counting time of length $, the number of events

that are expected to occur within the counting time are

k = λ$ (4.23)

where λ is the intensity (the instantaneous rate of occurrence of events), and is assumed

to be approximately constant over the time $ . If k is restricted to be an integer, then

there will normally be some small difference (ε) between k/λ and $ such that

ε = $ − k

λ
. (4.24)

If the probability of getting k or k + 1 events in $ is

p(i) =


1− ελ, i = k

ελ, i = k + 1

0, otherwise

(4.25)

then the mean and variance will be respectively

µ = $λ (4.26)

and

σ2 = ελ (1− ελ) . (4.27)

As the event statistics tend to Equation 4.25, the Fano-factor tends to

FFshort($) =
ε

$
(1− ελ) . (4.28)
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Figure 4.20: Fano-factor versus counting time for simulated dead-time modified ho-

mogeneous Poisson events (circles). Theoretical curves for dead-time correction (solid

line) and the regularity correction (dotted line) are shown.

Figure 4.20 contains a plot of Fano-factor versus counting time for simulated dead-

time modified homogeneous Poisson events (circle markers). Theoretical Fano-factor

curves are plotted for a dead-time corrected homogeneous Poisson process (solid line)

and the regularity correction (dotted line). For counting times less than 3 × 10−3 s

the simulated results agree with the regularity correction curve, and for counting times

greater than 1×10−2 s the simulation results agree with the dead-time corrected curve.

For counting times between 3 × 10−3 s and 1 × 10−2 s the simulated results deviate

above both theoretical curves, instead making a smooth transition from the regularity

correction curve to the dead-time corrected curve.

Methods of combining the short and long time Fano-factor expressions, to give a the-

oretical expression valid for all counting times, seem to work well only for specific
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Figure 4.21: Fano-factor versus counting time for simulated dead-time modified homo-

geneous Poisson events (circles). Additive combination of the dead-time and regularity

corrected theoretical curve (solid line) shows that the method used by Middleton for

modelling a doubly-stochastic process cannot be applied to the dead-time corrected

Poisson process.

applications. Middleton’s method of adding the short-time and long-time approxima-

tions together, gives good agreement with their proposed model (a doubly-stochastic

model). When using this same addition approach for dead-time modified Poisson events

the result did not give good agreement, as shown in Figure 4.21, except toward higher

counting times. Due to these inconsistencies the regularity correction was not applied

directly to empirical results, instead the regularity curve from Equation 4.28 was plot-

ted against any empirical results that may be affected by regularity.

Statistical fluctuations exist in Fano-factor estimates that increase (become more vari-

able) with increasing counting time. The increase in variability is a direct consequence
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of truncation of the event time-series, and is present for all empirical results, including

the homogeneous Poisson result. Significance levels cannot be computed for the Fano-

factor because its distribution is not known exactly (Cox & Lewis 1966). Instead, guide

levels are computed by shuffling (randomly permuting) the order of intervals (Lowen

& Teich 1992). The shuffling technique destroys any correlation arising from the event

order, but at the same time preserves the distribution of inter-snap intervals. By con-

ducting a number of shuffles of the data and recomputing the Fano-factors the mean

and standard deviation of the shuffled data can be used as a guide for normal fluctu-

ation. Figure 4.22 shows Fano-factor versus counting time for simulated homogeneous

Poisson data including dead-time (circle markers) and guide levels (solid lines) set at

±2 standard deviations beyond the shuffled mean. Guide levels were produced using

100 shuffles of the data. In this ideal case 198 of the 201 Fano-factor values (98.5%)

are contained by the guide levels. Guide levels can also vary with the data, rather

than following a predefined expected result. Shuffling the data removes any signifi-

cance in the order of the intervals but does not change the distribution of intervals. If

Fano-factor variations exist due to the distribution of intervals then the shuffling will

not change the result, and the guides will follow the variations (Lowen & Teich 1996).

Deviations above the upper guide level indicate clustering of the events, referred to as

super-Poisson; conversely deviations below the lower guide level indicate anti-clustering

(or increased orderliness) and are referred to as sub-Poisson. Deviations of both the

empirical Fano-factors and the guide levels indicate changes in the inter-event intervals,

rather than in the ordering of the events.

Empirical Fano-factor curves were computed as a function of counting time using Equa-

tion 4.18. The minimum counting time was set equal to the dead-time, which was 0.001

s in all cases. The maximum counting time was set at 1/10 the duration of the time-

series to ensure that the computation of variance and mean had at least 10 sample

points. Counting times were logarithmically spaced between the minimum and max-

imum values using a log base of 1.05. To distinguish different counting time regions

the term short time was assigned to times less than a second, the term medium time

assigned to times between 1 and 60 seconds, and long time for times greater than 60
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Figure 4.22: Fano-factor versus counting time for simulated homogeneous Poisson

events (circles), with positive and negative guide levels (solid lines).

seconds.

Figures 4.23 through 4.28 show Fano-factor versus counting time for selected shrimp

noise data. The selection contains data from Spencer Gulf (SG), Cockburn Sound (CS-

A), Nornalup-Walpole Estuary (WP), the Seal Island Cave (SEAL-A), and Feather Reef

(FR), and includes the results for simulated dead-time modified homogeneous Poisson

(HPSIM) as a control. In each figure cross markers were used for empirical Fano-factor

results from the real or simulated data, dashed lines show the guide levels set at 2

standard deviations beyond the mean, the mean of the shuffled data is shown using

small circles, and a solid line shows both the short and long time theoretical curves

for a dead-time modified Poisson process. The relatively large Fano-factor values in

Figure 4.25 suggest that the snap events were significantly more clustered at the time

of measurement than what is normal.
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A null hypothesis that snapping shrimp noise follows a homogeneous Poisson process

was pseudo-tested using Fano-factor analysis. The pseudo-test was conducted using

guide levels set at 2 standard deviations beyond the mean, with allowances for de-

viations at short counting times consistent with (our) current understanding of the

regularity effects and constraints regarding the joining of Fano-factor results between

short and long time approximations. Testing used the percentage of Fano-factor points

lying within the guide levels, with guidance set at 95%. If 95% of the Fano-factor

points were contained by the guide levels then the process was accepted as a homo-

geneous Poisson process. Important caveats to the test were, that the dead-time be

smaller than the smallest counting time and that the largest counting time be at least

10 seconds. Testing was conducted on all of the available shrimp data sets and on the

homogeneous Poisson control. Test results are shown in Figure 4.29 plotting the base

10 logarithm of the percentage of uncontained Fano-factor points for each location.

Uncontained values were used in the plot so that rejection of the hypothesis coincided

with the higher values (red bars), and conversely acceptance of the hypothesis for lower

values (blue bars). A line of guidance corresponding to 95% containment was also

shown. According to this test the dead-time modified homogeneous Poisson hypothesis

is rejected for the Cockburn Sound, Nornalup-Walpole, Seal Island and Feather Reef

data. The test is conditionally accepted for the Spencer Gulf data, and is accepted

for the simulated control data. Test results gave the same conclusion as the test for a

dead-time modified homogeneous Poisson process using the first order distribution of

intervals (the inter-snap interval histogram analysis).
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Figure 4.23: Fano-factor versus counting time for homogeneous Poisson control data.
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Figure 4.24: Fano-factor versus counting time for Spencer Gulf data.
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Figure 4.25: Fano-factor versus counting time for Cockburn Sound data.
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Figure 4.26: Fano-factor versus counting time for Nornalup-Walpole Estuary data.
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Figure 4.27: Fano-factor versus counting time for Seal Island cave data.
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Figure 4.28: Fano-factor versus counting time for Feather Reef data.
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Figure 4.29: Percentage of Fano-factor values outside the guide levels.

Three distinct features in the Fano-factor versus time curves for shrimp noise are shown

in Figure 4.30 and Figure 4.31. These two plots are for the same data set, which is

a 24 hour recording made at the AWharf site specifically to investigate long counting

time effects (see Appendix A). A short-time rise and plateau for counting times less

than a second is shown in Figure 4.30. The short time effects are evident in both

the original and shuffled results. A medium-time rise and plateau for counting times

between one and two hundred seconds is shown in Figure 4.31, followed by a long-time

rise for counting times greater than two hundred seconds. The medium and long time

effects are evident only in the original shrimp noise data; the shuffled data tends to

agree with a dead-time modified homogeneous Poisson curve at these longer counting

times. The following sections investigate these features.
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Figure 4.30: Fano-factor versus counting time for short counting times (less than one

second).
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Figure 4.31: Fano-factor versus counting time for medium (1 to 200 seconds) and long

(greater than 200 seconds) counting times.
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4.8 The cause of short time effects

One of the Fano-factor features observed in real shrimp noise was a rise and plateau for

short counting times (less than a second). Figure 4.32 shows this feature in empirical

Fano-factor results computed from the Cockburn Sound (CS-B) data and has similar

characteristics to Figure 4.30. Cross markers show the Fano-factor of the shrimp noise

when detected using an automatic (threshold) detector. Also shown are the shuffled

mean (black dotted line) and the shuffled mean of homogeneous Poisson control data

(red solid line). The first observation made about the result was that the rise and

plateau deviations were not explained by regularity or dead-time, since these tend to

reduce (rather than increase) the value of the Fano-factor. The second observation was

that the shuffled data followed the rise and plateau, indicating that the effect was caused

by an unexpected number of intervals at these counting times, rather than unexpected

ordering of the events.

To investigate further, the automatically detected events were inspected visually. Visual

inspection revealed that some surface reflected replicas of the shrimp snaps were being

detected as events and included in the analysis. The surface reflected replicas were

removed manually and a new Fano-factor curve computed as shown in Figure 4.33.

The shuffled mean from the original automatically detected Fano-factor result was

also shown so that the change made by removing the surface reflection replicas was

clear. The result was duplicated using simulated data; when surface reflection events

were included in the analysis the short time rise and plateau appeared in the Fano-

factor results (the simulation results are not shown because they provide no additional

information). It was concluded that the short time rise and plateau were caused by

surface reflected snap replicas being included as events in the process.

The short time rise and plateau also has the effect of translating the medium time results

up the Fano-factor axis. The medium time effect is not masked by the short time effect

and the shape of the medium time effect is unaltered. If the short time effect is small

(i.e. a small number of surface reflection detections remain after automatic detection)
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Figure 4.32: Fano-factor as a function of counting time for Cockburn Sound (CS-B)

data (blue cross markers) including the mean of shuffled data for the same Cockburn

Sound data (black dotted line), and the shuffled mean of homogeneous Poisson control

data (red solid line).

then the effect on the medium time results should be negligible.

4.9 Modelling medium and long time effects

Fano-factor analysis showed a rise and possible plateau for medium and long counting

times. These features are characteristic of doubly-stochastic Poisson processes driven

by Brownian type intensity processes (Middleton et al. 2003). In the following sections

these models are applied to shrimp noise and some fundamental properties, such as

correlation times, are inferred from the model fits.
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Figure 4.33: Fano-factor as a function of counting time for Cockburn Sound (CS-B)

data, with surface reflection events removed manually (blue cross markers). Short time

effects with the reflections removed are greatly reduced compared with the shuffled

mean of the original data (black dotted line), but do not reduce entirely to a homoge-

neous Poisson process (red solid line).

4.9.1 Doubly-stochastic Poisson models

Doubly-stochastic processes have proved useful models of real world processes in the

fields of optics (Teich & Cantor 1978), particle physics (Fano 1947), neuro-physics

(Middleton et al. 2003, Teich et al. 1996), computer science (Gusella 1991, Slimane

& Le-Ngoc 1995) and finance (Lepage et al. 2006). A doubly-stochastic Poisson pro-

cess can be described as a Poisson process whose intensity is modulated by a second

stochastic process (Manton et al. 1999). The following strict definition of a doubly-

stochastic Poisson process from Snyder & Miller (1991) (page 341) is quoted here to
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put the preceding description into proper context

N(t) : t ≥ to is a doubly stochastic Poisson-process with intensity process

λ(t,x(t)) : t ≥ to if for almost every path of the process x(t) : t ≥ to, N(·)

is a Poisson process with intensity function λ(t,x(t)) : t ≥ to. In other

words, N(t) : t ≥ to is conditionally a Poisson process with intensity func-

tion λ(t,x(t)) : t ≥ to given x(t) : t ≥ to.

Doubly-stochastic Poisson processes allow the intensity λ(t) to vary as a realisation of a

stationary, time varying stochastic process {Λ(t)} (Cox & Lewis 1966). An important

characteristic of a doubly-stochastic Poisson process is that the intensity process is

influenced by factors external to the point process. Processes with intensity influenced

by internal factors are referred to as self-exciting processes, and are not considered

here (for further reference see (Snyder & Miller 1991)). The variance (V ) of a doubly-

stochastic Poisson process varies with counting time ($) according to

V ($) = λ$ + 2σ2

∫ $

0
($ − u)ρ(u) du (4.29)

where λ, σ2 and ρ(u) are respectively the mean, variance and autocorrelation function

of the stochastic intensity process {Λ(t)}. The Fano-factor for a doubly-stochastic

Poisson process can then be defined in terms of the variance-time function

FFdspp($) =
V ($)
λ$

= 1 +
2σ2

λ$

∫ $

0
($ − u)ρ(u) du. (4.30)

Setting σ to zero in Equation 4.29 reduces the expression to that of a homogeneous

Poisson process, which in turn reduces the Fano-factor to unity. Some common diffu-

sion intensity models are the Ornstein-Uhlenbeck (OU), Cox-Ingersoll-Ross (CIR) and

Lognormal models. Of these models the OU and CIR are the simplest ergodic diffusions

with closed form density function expressions, and for this reason they are chosen for

further investigation.
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4.9.2 The Ornstein-Uhlenbeck model

The Ornstein-Uhlenbeck (OU) doubly-stochastic Poisson process is defined by the

stochastic differential equation

dXt = −a(Xt − µ) dt+ σ dWt (4.31)

where Xt is the (time dependent) stochastic variable; a, µ and σ are parameters,

and dWt is the differential Weiner process (Higham 2001). Notation follows a slight

modification of that used by Picchini (2007), but the explanations and solutions draw

mainly from Gillespie (1996) and Lepage et al. (2006). The solution to Equation 4.31

is a Gaussian with time dependent mean and variance (Lepage et al. 2006)

µ(t) = µ(1− exp (−at)) + xo exp (−at) (4.32)

and

σ2(t) =
σ2

2a
(1− exp (−2at)). (4.33)

Stationary solutions are obtained by evaluating the mean and variance in the limit of

infinite time giving respectively

µ∞ = µ (4.34)

and

var∞ =
σ2

2a
. (4.35)

The autocovariance function of the process is

cov(Xo, Xt) =
σ2

2a
exp (−at) (4.36)

which is an exponential decay with correlation time a−1, scaled by the stationary vari-

ance. Figure 4.34(a) shows a sample of OU noise time-series (black line) simulated

using the Euler-Maruyama scheme (Higham 2001) with parameters a = 0.1, σ = 0.6,

and dt = 0.001. Also shown is a series of zero mean Gaussian variates with variance

equal to var∞, to illustrate the difference between the time dependent and stationary

(infinite time limit) distributions. In Figure 4.34(b) the spectral densities of the two

time-series are shown along with a curve proportional to af−1, where f is the frequency.
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Figure 4.34: A sample of zero mean Ornstein-Uhlenbeck noise (black solid line) simu-

lated using parameters a = 0.1, σ = 0.6, and dt = 0.001. Zero mean “white” Gaussian

noise with variance equal to var∞ is also shown to illustrate the stationary limit. In

(b) the power spectral density of both types of noise are shown. The “white” Gaussian

noise (grey line) has a flat spectrum whereas the Ornstein-Uhlenbeck noise (black solid

line) has an af−1 relationship (black dashed line).

The af−1 curve describes a straight line due to logarithmic spacings used on both axes

(intrinsic to the y-values because the spectral density is shown using decibels). The OU

spectrum was plotted using a black line, and the stationary Gaussian spectrum using

a grey line. The stationary Gaussian was white (i.e had constant spectral density with

frequency), whereas the OU spectrum followed an af−1 relationship.

To use the OU process as an intensity model that drives a doubly-stochastic Poisson

model of shrimp noise requires that the stable intensity of shrimp snapping be Gaussian
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distributed. A Gaussian distribution was considered a reasonable first choice model be-

cause the factors affecting the snaps were most likely external, numerous and unknown.

To investigate, empirical intensity distributions were compared with a Gaussian fit us-

ing visual inspection of probability density functions. Results for several real shrimp

noise data sets are shown in Figure 4.35.

Empirical probability density functions of shrimp noise (circle markers) were estimated

using a scaled histogram with 10 evenly spaced bins. Intensities were estimated using

the moving average histogram method with a 3 second window and 0.3 second step

sizes. Gaussian fits (solid lines) used the mean and variance of the estimated intensities.

Simulated homogeneous Poisson (a) and shrimp noise from Sydney Harbour (h), and

Cockburn Sound (j,k & l) all had average intensities greater than 10 snaps per second,

and showed acceptable agreement with the Gaussian model. Results for real shrimp

noise with average intensity lower than 10 snaps per second showed progressively worse

fit of the Gaussian model as the average intensity tended toward zero. In particular

the Seal Island (e) and Nornalup-Walpole Estuary (i) show poor agreement with the

model. The underlying reason for this problem was that the Gaussian model allows

negative intensity. Negative intensity does not have any physical meaning, and cannot

be observed in real shrimp noise. When the average intensity of snapping is high,

with respect to the variance, then the probability of negative values according to the

Gaussian model is relatively low, so the model is reasonable. However, when the average

intensity reduces toward zero the probability of negative values becomes unrealistically

high and so the model is no longer appropriate. To avoid the possibility of modelling

negative rates the Cox-Ingersoll-Ross process was investigated.
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Figure 4.35: Probability density of intensity of real shrimp snaps (circle markers) com-

pared with the Gaussian distribution (solid lines) assumed by the OU model. The

model fit was acceptable when the average intensity was high. Low intensity results

particularly Seal Island (e) and Nornalup-Walpole Estuary (i) show poor agreement

with the model.
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4.9.3 The Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross (CIR) model is a generalisation of the squared Ornstein-Uhlenbeck

process (Lepage et al. 2006). The model is defined by the stochastic differential equation

dXt = a(b−Xt) dt+ σ
√
Xt dWt (4.37)

which contains an additional (and important)
√
Xt in the second term. Derivations here

follow those given in Lepage et al. (2006), but for consistency notation follows (exactly)

the generic Itô calculus forms given in Picchini (2007). The solution to Equation 4.37

is a non-central χ2 distribution with degree-of-freedom and non-centrality parameters

respectively

ϕ(t) =
4ab
σ2

(4.38)

and

ζ(t) =
4axo exp (−at)

σ2(1− exp (−at))
. (4.39)

For infinite counting times the expressions reduce to

ϕ∞ =
4ab
σ2

(4.40)

and

ζ∞ = 0. (4.41)

The covariance of the stationary process is

ρ(t) =
bσ2

2a
exp (−at) . (4.42)

When ζ = 0 the non-central χ2 distribution is equivalently a gamma distribution with

parameters

Bscale =
σ2

2a
(4.43)

and

Cshape =
2ab
σ2

. (4.44)

Both the non-central χ2 and gamma distributions are defined only for positive values;

negative values do not occur. The CIR model is therefore a more physically realistic

model of intensity.
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Figure 4.36: Probability density of intensity of real shrimp snaps (circle markers) com-

pared with the gamma distribution fit (solid lines) assumed by the CIR model. Model

fit was good for all locations except the Nornalup-Walpole Estuary (i).
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Intensity distributions of real shrimp noise were compared with a gamma distribution.

Empirical estimates of the intensity probability density function were computed using at

least 3 minutes of data to ensure a reasonable estimate, because correlations in the real

shrimp noise were expected to only exist for a few seconds. Parameters for the gamma

fit were estimated using moment estimators from Evans et al. (1993). Figure 4.36 shows

empirical probability density functions (circle markers) of the intensity functions for 12

different data sets, and a gamma fit (solid line). Homogeneous Poisson control data (a)

showed good agreement between the empirical and theoretical results although there

was a higher than expected number of average intensities. Real shrimp noise results

from Feather Reef (b), Spencer Gulf (f), Sydney Harbour (g & h), and Cockburn Sound

(j,k & l) showed good agreement with the gamma distribution. Results for one of the

Seal Island (c), and the Nornalup-Walpole Estuary (i) data were not as good but may

be explained as having outliers that were affecting the fit. The Seal Island (c) data may

have an outlier near 1.5 snap s-1 and the Nornalup-Walpole Estuary result has three or

four zero counts due to the very low snap rate. Perhaps the most important result was

that the low snap rate Seal Island data (e) showed good agreement with the gamma

fit.

The Fano-factor for a CIR driven doubly-stochastic Poisson process has the analytic

expression (Lepage et al. 2006)

FFCIR(t) = 1 +
σ2

a3t
(exp (−at) + at− 1) (4.45)

where parameters a and σ are from Equation 4.37, and t is counting time. In the limit

of infinite counting time the Fano-factor has an asymptote at

FFCIR(∞) = 1 +
σ2

a2
. (4.46)

Taking the limit as σ → 0 reduces the Fano-factor to unity; that of a homogeneous

Poisson process.

Figure 4.37 shows the Fano-factor as a function of counting time for simulated CIR

driven doubly-stochastic Poisson noise, and a theoretical curve. Parameter values used

for the simulation were a = 0.5, b = 5, σ = 0.5. Each simulated time-series was
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Figure 4.37: Fano-factor variability of simulated CIR doubly-stochastic Poisson data.

1000 s in duration with time increments of 0.001 s. Simulations were repeated 10

times to show the spread of simulated results about the theoretical curve. The spread

of results was larger than anticipated, and illustrates the potential for error if used

to infer parameters of the generating process from a single observation. Parameter

estimates computed from each trial are shown in Table 4.1, and a summary of the

parameter estimation statistics shown in Table 4.2. Mean estimates of b and a were

respectively 4.94 and 1.42, which were within 1 standard deviation of their true values

b = 5 and a = 0.5. The standard deviation of a estimates was 1.49, which was larger

than the mean value of 1.42. Estimates of σ were poor with the mean value of 0.70

lying 10 standard deviations from the true value σ = 0.5. These results showed that

the method used to estimate the parameters of a CIR driven doubly-stochastic Poisson

process was problematic. Alternative methods were not found in the literature.
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Table 4.1: Estimated parameters from 10 separate simulations of a CIR driven doubly-

stochastic Poisson process.

Variable Run

1 2 3 4 5 6 7 8 9 10

b 4.64 4.88 5.16 4.99 4.91 5.01 4.92 4.99 4.98 4.85

a 0.83 0.44 2.32 1.57 1.02 0.47 5.33 0.59 0.82 0.75

σ 0.67 0.74 0.66 0.68 0.70 0.72 0.70 0.68 0.71 0.72

Fano-factor versus counting time curves were computed from several real shrimp noise

data sets and compared with that of a CIR driven doubly-stochastic Poisson model.

Counting times were logarithmically spaced with a base of 1.05 between the dead-time

and 100 seconds. Parameter estimates for the model fit were computed using moment

estimators of the stationary intensity and an estimate of the anticipated asymptotic

value of the Fano-factor for large counting times, as outlined in Lepage et al. (2006).

An estimate of the asymptote was computed using the 90th percentile value of the

Fano-factor; the value of the 9/10th highest Fano-factor. Parameter estimates were

then computed using

b = 〈Λ̂〉, (4.47)

a =
2bvar{Λ̂}
F̂F (∞)− 1

(4.48)

and

σ2 =
2avar{Λ̂}

b
(4.49)

where Λ̂ was the empirically computed intensity process, 〈·〉 the expectation operator,

and var{·} the variance. Results are shown in Figure 4.38. The model curve (solid

line) appears to give a reasonable fit to the empirical Fano-factors (blue cross markers),

although the finite asymptote does not seem to apply in many cases. The unusually

large values from Sydney Harbour (g) were thought to be suspicious, perhaps resulting

from another source of large impulse transients and not the snapping shrimp. Short time

effects in the Cockburn Sound results (k & l) were due to an excessive number of surface
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Table 4.2: Summary statistics of parameter estimation for a CIR driven doubly-

stochastic Poisson process from 10 independent simulated data sets. Mean estimates

of b and a were within 1 standard deviation of the true value, with large variability

between the a estimates. The mean estimate of σ differed from the true value by 10

standard deviations.

Variable True Mean Median Standard

value value value deviation

b 5 4.94 4.95 0.13

a 0.5 1.42 0.82 1.49

σ 0.5 0.70 0.71 0.02

reflections being included in the analysis (as discussed in Section 4.8), suggesting that

the detection method used was not ideal for these data sets. Estimates of the correlation

time were computed and are shown in Table 4.3. Excluding the Sydney Harbour (g)

result with correlation time 16.1 s as an outlier, the mean correlation time was 2.88 s

and the standard deviation of correlation times was 3.68 s.
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Table 4.3: Correlation times of real shrimp noise assuming a CIR doubly-stochastic

Poisson model. Results marked with an asterisk are likely to have been affected by the

short time effect.

Location Tag Sub-figure Corr. time (s)

Homogeneous Poisson (HPSIM) (a) 0.068

Feather Reef (FR) (b) 1.5

Seal Island (Cave) (SEAL-A) (c) 0.85

Seal Island (SEAL-B) (d) 2.39

Seal Island (SEAL-C) (e) 10.9

Spencer Gulf (SG) (f) 0.19

Sydney Harbour (SYD-A) (g) 16.1

Sydney Harbour (SYD-B) (h) 2.8

Nornalup-Walpole Estuary (WP) (i) 1.5

Cockburn Sound (CS-A) (j) 9.3

Cockburn Sound (CS-B) (k) 1.3*

Cockburn Sound (CS-C) (l) 0.89*
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Figure 4.38: Fano-factor versus counting time for real shrimp noise (blue cross markers)

from selected locations, and a CIR model fit (black solid line). Drop-off at high counting

time for Spencer Gulf (f) and Cockburn Sound (k & l) was due to insufficient data.

Surface reflections were not removed.
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4.9.4 Asymptote for infinite counting time

An important feature predicted by the CIR doubly-stochastic model was the finite

Fano-factor asymptote for infinite counting time. This feature was significant because

it means the process is not a fractal process, which has a Fano-factor curve with power

law behaviour (Thurner et al. 1997). There was, however, a fundamental difficulty

verifying the finite asymptote; given a finite time-series, the number of values available

for estimating the mean and standard deviation decreases with increasing counting

time. When counting times become large with respect to the duration of the time-

series then the uncertainty in the Fano-factor increases substantially. Some evidence

for a finite asymptote was observed in the Fano-factor plots, including the Feather Reef,

and Cockburn Sound results shown in Figure 4.38. The apparent asymptotes could also

have been caused by truncation effects, giving a false impression of an asymptote. To

resolve the issue a continuous data set was collected over 24 hours.

4.9.5 A 24 hour time-series

A continuous 24 hour time-series measurement was recorded from the 18th to the 19th

of December 2008 at the AWharf site for the purpose of investigating long counting

time effects. Weather conditions at the start of the measurement were fine, with clear

skies and a wind speed of just over 4 ms−1. The sea state was 1 with a very light

swell. Several small boats were visible from the measurement site but most were at

a distance greater than 1 km. During the night a tanker transited the area. At the

end of measurements the wind had increased to over 7 ms−1 and the sea state had

increased to 2. A single HTI 96-MIN hydrophone was suspended at a depth of 5 m

from a measurement platform near the end of the jetty. The water depth at the start

of measurements was 12.0 m. A portable battery power supply was used to power both

the hydrophone and the field recorder to minimise 50 Hz interference. Details of the

field measurement can be found in Appendix A.
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Data pre-processing and detection

An Edirol R-4 Pro field recorder was used for the measurement, configured to save

Broadcast Wave Format (BWF) wave files onto a FAT32 filesystem. The filesize lim-

itation of FAT32 is handled by the R-4 by creating multiple files in real-time as the

recording progresses. Included in each BWF wave file is a time reference field that

contains the number of samples between the previous midnight and the first sample of

the recording (BWF 2001). By combining the time reference with the sample number

of each file an absolute sample number could be used to reference every sample taken

over the full day, noting that at midnight an additional full day of samples needed

adding to the time reference. The time reference of the start of recording was then

subtracted from each sample to give samples expired since the start of recording. In

total 16,337,910,583 samples were recorded, which required the use of a 64 bit integer

variable for recording sample indexing numbers. The analysis was conducted in MAT-

LAB version R2008b, which does not allow 64 bit integer mathematical operations. To

overcome this problem the embedded java.math.BigInteger was used. Prior to snap

detection each individual file was passed through a 1.4 kHz 6th order Bessel high-pass

filter. Snaps were detected using a threshold at 20 standard deviations beyond the mean

of the nominal background noise, and a dead-time of 0.002 s (384 samples). Threshold

levels were computed using the first data file and then fixed for all subsequent files.

Detection was performed on each individual data file and the sample number of each

detection converted to a 64 bit value (including the file offset) and saved.

Snap rates and the Fano-factor

The data set provided 23 hours, 38 minutes and 13 seconds time separation between

the first and last snaps detected at a 20 standard deviation threshold. The data was

sufficiently long to allow Fano-factor estimates for counting times up to 8509 seconds,

and to observe changes in snap rate over most of a full day. The data was subjected to

rate and Fano-factor analysis and the results interpreted for medium and long counting
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times. The original computation codes were re-written to allow processing of 64 bit

sample numbers using the java.math.BigInteger object. Rate analysis was conducted by

computing the number of counts in consecutive non-overlapping one second windows.

Snap rates as a function of time for the entire 24 hour period are shown in Figure 4.39.

A lower average snap rate was observed during the day, followed by a peak just after

sunset and a higher average snap rate through the night. Another peak occurred just

before sunrise after which the snap rate reduced to a similar level to the previous

morning. The observed pattern is consistent with snap level observations at other

locations (Everest et al. 1948), and confirms that the increased snap levels just after

sunset and just before sunrise are caused by increases in snap rates (referred to as

shrimp activity by Everest et al. (1948)). The probability density function of rates

was computed along with a gamma fit and the results shown in Figure 4.40. Small

deviations between the observation and the model occur due to the two snap rate

peaks and the higher sustained snap rate during the night.

Using the java.math.BigInteger object for detection sample numbers meant that most

MATLAB routines (such as the histogram function) could no longer be accessed. For

this reason a slightly different algorithm was used to compute the Fano-factor as a func-

tion of counting time. Counts were computed using a window based on the minimum

counting time of interest. All subsequent counting times were then chosen as multiples

of the base counting time to allow for some computational efficiency. In this analysis

the minimum counting time was chosen as one second because the focus was on medium

and long counting times. Fano-factors were estimated using the slope of the variance

versus mean count curve (Gabbiani & Koch 1998) for varying count windows. Slopes

were estimated using a linear least squares fit. This Fano-factor algorithm was applied

to the entire 24 hour timeseries and the results shown in Figure 4.41. Inspection of the

Fano-factor results (dot markers) for medium counting times (greater than 1 second)

showed a rise and plateau consistent with previous observations. However, for counting

times greater than 400 seconds the Fano-factor curve shows another rise.
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Figure 4.39: Snap rates as a function of time for the 24 hour data. Lower snap rates

were observed during the day than at night.

Implications for the CIR doubly-stochastic Poisson model

A finite asymptote was not observed in the data measured over the period of a day,

rather a plateau was observed for medium counting times between 1 s and 400 s.

The results show that the CIR driven doubly-stochastic Poisson model cannot fully

describe the temporal behaviour of shrimp noise over all time-scales but can be used

as a model for medium counting times. Averaging times used in underwater acoustic

signal processing are often within the time period defined by the medium counting

time. The CIR driven doubly-stochastic Poisson model of shrimp impulse times would

be applicable for such algorithms.
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Figure 4.40: Snap rate probability density function and a gamma fit to the 24 hour

data. Slight deviations occur due to the variation in snapping rate between day and

night.

4.10 Summary of temporal models

A cross section of temporal analysis techniques have been applied to real snapping

shrimp noise. Inter-snap interval histogram and uniform conditional tests showed that

out of nine different shrimp data sets only one, from Spencer Gulf, was consistent to

first order with a homogeneous Poisson process. This was an important result that

contradicted initial expectations. Higher order analysis based on kth-order intervals

showed that none of the data sets analysed, including the Spencer Gulf data, was

consistent with a homogeneous Poisson process at higher orders. Results from this

analysis showed structure beyond that expected for a homogeneous Poisson process in

the higher order intervals for all of the shrimp noise. Structure in the higher order
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Figure 4.41: Fano-factor as a function of counting time for the 24 hour data. A medium

time rise and plateau is evident between 1 s and 400 s, followed by another rise beyond

400 s.

intervals differed between data sets, with the Seal Island Cave data showing the most

variability. A summary of test results is given in Table 4.4. When the test results

from low order tests were conclusive then higher order tests were not conducted and

are shown using dash marks in the table. It was concluded that snapping shrimp noise

was not consistent with a homogeneous Poisson process, but under some circumstances

may behave like a homogeneous Poisson process to first order.

Intensity function and Fano-factor analysis supported the rejection of the homoge-

neous Poisson process at higher orders, and provided more information about time

scales of non-homogeneous Poisson behaviour. Fano-factors as a function of counting

time showed a rise to a plateau for counting times less than a second (short times), fol-

lowed by another rise and plateau for medium counting times. Short time effects were
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Table 4.4: A summary of test results for a homogeneous Poisson process applied to

snapping shrimp noise. Tick marks indicate that the test passed with 95% confidence

(or visual judgement), cross marks indicate that the test failed, and a dash indicates

that the data was not tested.

Location Tag IIH Uniform Kth-order Fano-factor

conditional (visual-test) (pseudo-test)

Homogeneous Poisson (HPSIM) 3 3 3 3

Feather Reef (FR) 7 3 7 7

Seal Island (Cave) (SEAL-A) 7 3 7 7

Seal Island (SEAL-B) 7 7 – –

Seal Island (SEAL-C) 7 7 – –

Spencer Gulf (SG) 3 3 7 3

Sydney Harbour (SYD-A) 7 7 – –

Sydney Harbour (SYD-B) 7 7 – –

Nornalup-Walpole (WP) 7 7 7 7

Cockburn Sound (CS-A) 7 7 7 7
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identified as surface reflected replicas being included in the event process. Ornstein-

Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) processes were used as models of the

snapping intensity. The (stable) Gaussian distribution of intensity assumed by the

Ornstein-Uhlenbeck process did not agree well with empirical intensity results from

real shrimp noise, particularly when the average snapping intensity was low. The

Ornstein-Uhlenbeck process was, however, a useful process for modelling a coloured

noise process, with the spectral shape showing a definite a/f relationship. A (stable)

gamma distribution assumed by the Cox-Ingersoll-Ross process provided a much better

fit to the empirical intensity results from real shrimp noise and was chosen as the driving

distribution for a doubly-stochastic Poisson model of shrimp noise. CIR driven doubly-

stochastic noise models were fit to real shrimp noise using curves of Fano-factor versus

counting time. The model showed reasonable, but not entirely convincing, agreement

with results from real shrimp noise. A finite asymptote predicted by the CIR driven

doubly-stochastic Poisson model was investigated using a long-time data set. The finite

asymptote was not observed but a plateau was observed for medium counting times

between 1 s and 400 s. The results show that the CIR driven doubly-stochastic Poisson

model cannot fully describe the temporal behaviour of shrimp noise over all time-scales

but can be used as a model for medium counting times. This analysis provides evidence

for correlation between shrimp snap events on long time scales.



Chapter 5

Application to simulation and

detection

This chapter demonstrates two practical applications of the statistical models developed

in this thesis: simulation of semi-realistic ocean acoustic noise, and locally optimum

detection of narrow-band signals in real snapping shrimp noise.

5.1 Simulated ocean ambient noise

Semi-realistic ocean acoustic noise was simulated using only random number generators

derived from the statistical information provided in previous chapters. The simulation

contained the following components:

• Ornstein-Uhlenbeck noise used to simulate very low frequency background noise

• Ornstein-Uhlenbeck noise used to simulate distant shipping noise

• Ornstein-Uhlenbeck noise used to simulate wind noise
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• Garnele distributed shrimp snap amplitudes

• CIR driven doubly-stochastic Poisson shrimp snap events.

A time-series was simulated using a sample rate of 192 kHz. Ornstein-Uhlenbeck ran-

dom variables were generated using the Euler-Maruyama method. Seismic noise was

generated with parameters a = 0.1 and σ = 1, shipping with parameters a = 10 and

σ = 2, and wind with parameters a = 1000 and σ = 20. For these random variables

σ is related to noise power (not bandwidth corrected) and a is the inverse correlation

time. Seismic noise had the longest correlation time (about 10 seconds) and wind the

shortest (one thousandth of a second). Values for σ were chosen to give an overall noise

spectrum similar to real ocean noise. Shrimp noise was generated using Garnele ran-

dom numbers representing a shrimp field 100 m in diameter, with a hydrophone placed

at 5 m depth in a 10 m deep water column. Individual shrimp snaps had a mean source

level of 180 dB re 1µPa (at 1 m) and a spread of 6 dB. Shrimp noise was zero except

when a snap event was declared. Snap event times were computed using intervals from

a CIR driven doubly-stochastic Poisson process using parameters a = 0.5, b = 20 and

σ = 3. The ocean noise time-series was computed by summing all of the individual

components together, and is shown in Figure 5.1.

A set of analysis techniques were selected from the thesis and applied to the simulated

ocean noise. A 16384 point power spectral density was computed using the Welch

method using a Bartlett (triangle) window and produced the result shown in Figure 5.2.

Also shown in Figure 5.2 is a spectrum of the simulated data passed through a 6th

order high-pass Bessel filter with cut-off frequency at 1.4 kHz. Spectral density units

of the simulation were artificially scaled to give values typical of underwater noise. The

simulated noise had a slope of 9 dB per octave for frequencies below 10 Hz, a flat

response between 10 Hz and 100 Hz, then a 5 dB per octave slope between 100 Hz and

2 kHz and a flat response beyond 5 kHz. The contribution from the simulated shrimp

noise (beyond a few kHz) is flat because the snaps were modelled as single sample “delta

functions”. Delta functions were used for this example so that the amplitude statistics
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Figure 5.1: A section of ocean ambient noise time-series simulated using only ran-

dom number generators. Correlated background noise was produced using Ornstein-

Uhlenbeck random variables and the shrimp noise using Gaussian-Garnele random vari-

ables. The time-series was simulated with a sample rate of 192 kHz.

were known exactly. To simulate more realistic ocean noise the delta functions could

be convolved with a representative shrimp snap, such as that shown in Figure 2.3.

The first order probability density function of amplitudes was computed and the result

shown in Figure 5.3. SαS and Gaussian-Garnele fits are also shown. The parameters

used for the Gaussian-Garnele fit were the values used in the simulation, and the re-

sulting fit shows that the model is consistent when used in the simulation (including

being combined with correlated Gaussian background noise). The SαS fit was obtained

with a manually adjusted value of α = 1.98, an indication that the tails of the distri-

bution were not very heavy in this case. A relative difference plot shown in Figure 5.4

shows that both the SαS and Gaussian-Garnele models over estimate the probability
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Figure 5.2: Spectral density of the simulated ocean ambient noise as a function of

frequency. Slopes in the spectrum were similar to those observed in real ocean noise,

although the contribution from the simulated shrimp noise (beyond a few kHz) is flat

because the snaps were modelled as single sample “delta functions”.

of pressure magnitudes greater than 1 Pa, but then come back into agreement in the

tails of the distribution. The SαS model deviates in the extreme tails.
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Figure 5.3: Probability density function of simulated ocean ambient noise (black dot

markers). Symmetric-α-stable (blue dashed line) and Gaussian-Garnele (red solid line)

models are also shown. The Gaussian-Garnele fit parameters were identical to those

used in the simulation.
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Figure 5.4: Relative difference between SαS (blue solid line) and Gaussian-Garnele (red

solid line) models for simulated ocean ambient noise.
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Figure 5.5: Kth-order intervals of simulated ocean ambient noise. The result is similar

to those obtained from Cockburn Sound (CS-A), with skew in the deviation from a

homogeneous Poisson process evident within the first 100 kth-orders.

Kth-order interval analysis was conducted on the simulated noise and the results are

shown in Figure 5.5. Skew in the deviations from homogeneous Poisson were evident

within the first 100 kth-orders similar to those seen in the Cockburn Sound (CS-A)

data.

Fano-factor analysis of the simulated noise showed a medium time rise and no evidence

for surface reflected (short time) correlations. This is the expected result because

there was (deliberately) no causal relationship between positive and negative shrimp

impulses. Medium time correlations were seen in the simulated data, and the results

were consistent with the original CIR process.
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Figure 5.6: CIR driven doubly-stochastic Poisson fit (black solid line) to the Fano-factor

as a function of counting time for the simulated noise (blue cross markers).
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5.2 Detection in snapping shrimp noise

Receiver Operating Characteristic (ROC) curves were produced for a range of detectors

using real shrimp noise. The curves were produced by inserting synthetic signals into

real noise. This method of inserting synthetic signals into real noise for the purpose

of examining detector performance in underwater noise has also been used by Nielsen

& Thomas (1990) and Bertilone & Killeen (2001). Locally optimum detectors were

derived from Gaussian-Gaussian mixture, SαS, and Gaussian-Garnele noise models,

and compared with a benchmark periodogram detector (Kay 1998). Decision thresholds

were empirically estimated using the entire noise-only data. Noise density estimates

at the frequency of interest were sorted in ascending order (to give noise density order

statistics) and a decision threshold set at the value of the N(1−Pfa) ’th order statistic,

where N was the number of noise density estimates and Pfa was the probability of false

alarm.

Synthetic 10 kHz narrow-band (pure cosine) signals were added to the real shrimp noise

at the desired signal to noise ratio (SNR). The SNR was defined as

SNR = 10 log10

(
A2

Ebw ηf

)
(5.1)

where A was the root-mean-squared (RMS) amplitude of the signal sinusoid, ηf was

an ensemble noise power spectral density (at the frequency of interest) estimated using

the Welch method (Welch 1967) over the entire noise data, and Ebw was the effective

noise bandwidth. The effective noise bandwidth was computed using (Heinzel et al.

2002)

Ebw =
Fs
∑N

k=1 ω
2(k)[∑N

k=1 ω(k)
]2 (5.2)

where Fs was the data sample rate, and ω the N point windowing function used to

shade the periodograms (in this case a Bartlett window with N = 4096). The synthetic

signal was produced in 4096 point sections to correspond with the number of points
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used for a periodogram estimate. The phase of the signal was randomised (uniformly)

between 0 and 2π radians at the start of each 4096 point section, then held constant

throughout the section. The signal was added to the noise then periodogram estimates

were produced for the signal plus noise noise using the Welch method with a 4096 point

Bartlett window. Probability of detection was computed using the ratio of the number

of estimates exceeding the decision threshold to the total number of estimates.

Locally optimum detectors were implemented by applying a non-linear transformation

to the sample data prior to periodogram detection. Non-linear transformation functions

(g(x)) were obtained using the amplitude pdf (see for example Kassam 1988)

g(x) =
−f ′(x)
f(x)

(5.3)

where f(x) is the amplitude pdf and dash notation is used to indicate the derivative.

Analytic expressions for g(x) were obtained for the Gaussian-Gaussian mixture and

Gaussian-Garnele models, and a numerical value obtained for the SαS model. The nu-

merical value for the SαS model was computed by evaluating the pdf using McCulloch’s

method at point x, then computing a näıve derivative using small increments above

and below x thus

gSαS(x) =
−(f(x+ ε)− f(x− ε))

2εf(x)
(5.4)

where ε was computed using one fourth of the smallest increment of x.

Parameters for the locally optimum detectors were estimated on a per-detector basis

using an appropriate amplitude pdf fitting technique. Gaussian-Gaussian mixture pa-

rameters were estimated using the method of moments, SαS using the sample fractile

method, and Gaussian-Garnele using maximum likelihood (by nonlinear least squares)

with careful selection of initial conditions required in this case.

An ambient plus shrimp noise data set was selected from among the Cockburn Sound

field data. The sample rate of the acoustic time-series was 473 kHz and the duration

was slightly less than 600 seconds. Each periodogram was computed using a 4096

point FFT, resulting in 68104 periodograms in total. Probability of false alarm was
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Figure 5.7: ROC curves for SαS, Gaussian-Garnele, Gaussian-Gaussian mixture and

Periodogram detectors. Probability of false alarm was 1× 10−2.

set at 1 × 10−2. ROC curves were computed for each detector and the results are

shown on Figure 5.7. The SαS detector was superior to all of the other detectors,

with a detection threshold (the SNR at Pd = 0.5) of 0.53 dB. The Gaussian-Garnele

and Gaussian-Gaussian mixture detectors followed with detection thresholds of 0.82 dB

and 6.15 dB respectively. The periodogram detector was the worst performing detector

with a detection threshold of 13.38 dB, which was the expected result because of the

impulsive non-Gaussian nature of the noise. The results are consistent with Bertilone &

Killeen (2001) in the sense that all of the locally optimum detectors based on suitable

non-Gaussian models gave much better performance than the periodogram detector

(which is optimal for Gaussian noise). The superiority of the SαS detector is consistent

with results obtained by Chitre (2006).

The superiority of the SαS detector over the Gaussian-Garnele detector was an unex-
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Figure 5.8: Probability density function of shrimp noise amplitudes with SαS and

Gaussian-Garnele model fits. The Gaussian-Garnele model appears to provide a better

fit to the real shrimp noise over a greater range of pressures.

pected result, because the Gaussian-Garnele model appears to give a slightly better

overall fit to the amplitude pdf. Amplitude pdfs for the real shrimp noise, and SαS

and Gaussian-Garnele model fits are shown in Figure 5.8. The Gaussian-Garnele model

provides a better fit to the real data than the SαS model, so another factor (other than

goodness of pdf fit) was contributing to the performance of the SαS detector. Similar

inconsistencies have been observed when using locally optimum detectors based on the

Cauchy model (a special case of the SαS model) (D Bertilone 2008, per. Comm.). Possi-

ble reasons for these inconsistencies include: the ability of the detector to accommodate

certain non-stationarities in the shrimp noise data (with respect to the first order am-

plitude pdf), artificial inflation of detection performance due to over-estimating noise

probabilities over certain amplitude regions, or as a consequence of the approximations

inherent in the locally optimum detector structure.
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5.3 Summary of applications

Ocean acoustic noise was simulated using a series of random number generators and

analysed using the spectral density, amplitude probability density, kth-order interval

and Fano-factor techniques presented previously. The results show that some of the

higher order statistical amplitude and temporal properties of real ocean acoustic noise

could be reproduced by the simulation.

Detection of narrow-band signals in real shrimp noise was investigated using locally

optimum detectors derived from SαS, Gaussian-Garnele and Gaussian-Gaussian mix-

ture models. All of these non-Gaussian detectors showed performance improvement

over a periodogram detector. The SαS detector was the best performing detector, with

a detection threshold improvement of 12.85 dB over the periodogram detector. The

Gaussian-Garnele detector had a detection threshold only 0.29 dB higher than the SαS

detector, resulting in a 12.56 dB performance improvement over the periodogram de-

tector. The results presented are very near the maximum performance that can be

expected from locally optimum detectors derived from (first order) amplitude models

of snapping shrimp noise.



Chapter 6

Discussion

The purpose of this chapter is to discuss some selected aspects of the amplitude and tem-

poral models relating to their use in practical applications. Methods and assumptions

used to derive the Gaussian-Garnele model are discussed including the consistency of

parameters when used in simulation, difficulties related to parameter estimation when

using the model in detection algorithms, and some cautionary remarks on using the

model to infer the physical characteristics of the shrimp field. Temporal models and

analysis techniques are discussed and promising techniques are identified. Implications

for sonar detection and communication are discussed, and some processing methods

that could benefit from the contributions in this thesis are identified.

Two important results regarding the statistics of snapping shrimp noise are confirmed

by the results in this thesis. Non-Gaussian models are known to provide a better fit

to the amplitude pdf than the Gaussian model. The first result is that sophisticated

non-Gaussian amplitude models, such as the SαS model, are better models of snap-

ping shrimp noise than the simpler Gaussian-Gaussian mixture model. The additional

complexity associated with the use of sophisticated non-Gaussian models in detection

algorithms is justified because meaningful gains in detection performance can be ob-

tained. This is discussed further in Section 6.1 and Section 6.3. The second result is
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that short time correlations observed in snapping shrimp noise are caused by surface

reflections, this is discussed further in Section 6.2.

6.1 Discussion of amplitude probability density function

models

The SαS model is relatively mature: numerous techniques exist for parameter estima-

tion and numerical evaluation of the pdf, and many examples of application to detection

problems are available (Nikias & Shao 1995). However, application of the SαS model to

shrimp noise is a recent accomplishment and consequently there are a limited number

of studies (to date) on this topic. Most of the available studies use shrimp noise from

Singapore waters (see for example Chitre et al. 2006).

Garnele and Gaussian-Garnele models were derived to provide a physically realistic

model of shrimp noise, with an analytic amplitude pdf. The desire for an analytic am-

plitude pdf was driven primarily by the practical usefulness of an analytic non-linearity

transformation function for locally optimum detection. Throughout the derivation as-

sumptions were chosen to maintain the analytic pdf solution and in some cases these

assumptions were not physically realistic. The assumption of a (two-dimensional circu-

lar) uniform spatial distribution of the shrimp sources may not be as generally appli-

cable as the Poisson spatial distribution (assumed by the SαS model). An alternative

model may combine the source and propagation methods from the Garnele derivation

with the general derivation method used for the SαS model.

The Gaussian-Garnele model may also be attractive for estimating the physical charac-

teristics of a field of shrimp, for example estimating the mean and standard deviation

of snap sound pressure levels at the source. There are several cautions for use of the

Gaussian-Garnele model for this purpose. First, there are parameter correlations. For

example, it appears that the mean sound pressure level and maximum extent of the
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shrimp field are correlated. One of these parameters would need to be accurately mea-

sured if the other is to be inferred through model fitting. Another issue is that the

Gaussian-Garnele model is based on the ε-framework rather than an additive noise

framework. The ε-framework provides analytical convenience but is physically unreal-

istic. Consequences of the ε-framework for estimating the parameters of a shrimp field

in the presence of additive Gaussian noise requires investigation prior to this type of

use.

Parameter estimation was an issue for the Gaussian-Garnele model because the param-

eters are both useful and the cause of some estimation difficulty. The parameters are

physical values that have a certain familiarity (snap source levels, water depth, and

hydrophone depth) rather than mathematically derived quantities such as location and

scale parameters. In situations where many of the physical parameters can be either

measured or reliably estimated using (independent) methods, the Gaussian-Garnele

model allows a direct comparison between theory and experiment that does not require

parameter estimation from the experimental results. However, the model has a total of

7 parameters and although most can be either directly measured or sensibly estimated,

refinement of the parameters requires a non-linear least squares fit. In signal process-

ing applications the cost of estimating the 7 parameters using non-linear least squares

could be prohibitive.

An additional result is that the SαS and Gaussian-Garnele models are significantly

better models of snapping shrimp noise than the Gaussian-Gaussian mixture model.

The Gaussian-Gaussian mixture model is a commonly used non-Gaussian noise model

because it is mathematically simple. This study has shown, however, that the per-

formance of the Gaussian-Gaussian mixture model is quite inferior to the SαS and

Gaussian-Garnele models. Narrow-band detection results showed that the Gaussian-

Gaussian mixture detector only achieved around half of the detection threshold im-

provement (compared with a periodogram detector) that was realised by the SαS and

Gaussian-Garnele detectors. This result is consistent with the conclusions of Willett

(1987) who used shrimp noise from the United States. Willett considered the John-



6.2. Emerging knowledge of the temporal nature of snapping shrimp noise
164

son distribution as an alternative, which gave good agreement out to tail weights of

1 × 10−4 (amplitudes were given in normalised units) but beyond this point the real

shrimp noise became progressively heavier tailed than the Johnson prediction. In light

of the performance superiority of the SαS detector, despite showing worse agreement

in the extreme tails of the pdf than the Gaussian-Garnele detector, a Johnson detec-

tor may perform better than anticipated. The Johnson detector should therefore be

included in further work to understand the relationship between model pdf fit (to real

shrimp noise) and the performance of model based locally optimum detectors.

6.2 Emerging knowledge of the temporal nature of snap-

ping shrimp noise

Many studies of the temporal nature of snapping shrimp noise have investigated the

change in intensity (i.e. changes in spectrum level) over long time durations, or have

indirectly considered the temporal statistics through tests of stationarity of the ampli-

tude statistics. However, few (to date) have considered the snap events directly as a

point process in time. Temporal analysis of snapping shrimp impulses as a point pro-

cess is currently at a very early stage of development. The temporal analysis presented

in this thesis is therefore exploratory, but based on a sound foundation of point process

analysis techniques used in other fields. On reflection, the inter-snap interval histogram

analysis and related uniform conditional test were useful only as indicators that the

process may not be homogeneous Poisson. Their usefulness was found in justifying

the more sophisticated Fano-factor and kth-order interval analyses. Due to the current

immature status of this type of analysis, there are many issues for discussion.

Of the attempted techniques, only the higher order Fano-factor and kth-order interval

analyses were able to reveal the true nature of the shrimp snapping. Fano-factor results

were easier to interpret than the kth-order interval results because the kth-order intervals

distort the time axis (with respect to the original point process). However, the kth-
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order interval results appear to be more “rich” with information than the Fano-factor

results. Further study of interpreting the kth-order interval results is likely to provide

information additional to what is available from Fano-factor analysis.

The kth-order interval analysis provided the strongest evidence that all of the real

shrimp data sets were not homogeneous Poisson distributed, and therefore contributed

the most important conclusion for the thesis. The results also showed the greatest

amount of variation between the different data sets, and so was the most revealing of

the analysis techniques. Unfortunately, the interpretation of kth-order interval results

is difficult. Some progress was made to help understand these results by devising a

transformation, based on part of a statistical test, and applying the transformation to

the interval lengths prior to plotting. The transformed values could then be compared

with what would be expected for a homogeneous Poisson process. Interpretation could

then proceed by first choosing a kth-order of interest, and by looking at the progression

of the order statistics make a judgment relative to a homogeneous Poisson process.

Statements such as “there are more large intervals between every 5th snap than would

be expected for a homogeneous Poisson process” are possible using this method. Relat-

ing these interpretations back to the original point process is still problematic because

the intervals lie on a deformed time reference (with respect to the original point pro-

cess). The average interval between consecutive snaps may be used as a transformation

reference time, so if the average time is 0.2 s then the large intervals between every 5th

snap from the above statement could be interpreted as correlation on a time scale of 1

s. It is the author’s opinion that this is not a rigorous enough treatment of the issue,

and that the potential of kth-order interval analysis will only be realised through more

careful interpretation.

Fano-factor analysis revealed three time-scales on which the snap events were corre-

lated. Short time correlation (less than a second) was attributed to the arrival of surface

reflected replicas of the snaps, and provided the second important conclusion for the

thesis. The cause of medium time (greater than one second) correlations was not iden-

tified. Some candidate mechanisms for the correlation include the shrimp responding to



6.2. Emerging knowledge of the temporal nature of snapping shrimp noise
166

the acoustic background noise (possibly consistent with one of the methods outlined in

Herz et al. (2004)), modulation of the sources above and below the threshold level due

to fluctuating propagation conditions, movement of the shrimp’s food sources through

the shrimp field, or interactions between the shrimp (for example a shrimp may be

more likely to snap if another shrimp has snapped nearby). In the absence of an iden-

tified mechanism for the medium term correlations, the snapping process was modelled

mathematically as a doubly-stochastic Poisson process. Ornstein-Uhlenbeck (OU) and

Cox-Ingersoll-Ross (CIR) processes were investigated as models of the intensity process

driving the doubly-stochastic Poisson process. An investigation of snapping rate distri-

butions showed that the OU process did not correctly model the shrimp noise when the

snapping rate was low. This problem was solved by using the CIR process. Theoretical

curves for the Fano-factor, as a function of counting time, were available for both of

these processes allowing a comparison of empirical Fano-factor results with a theoret-

ical curve. The results showed that the CIR driven doubly-stochastic Poisson process

was able to model the medium time effects observed in the empirical Fano-factor re-

sults. Analysis of a long time-series (a full day) showed that a plateau exists in the

Fano-factor at medium counting times and also shows evidence of correlation between

snaps on longer time scales. For the data analysed the long time scale correlations were

for times greater than 400 seconds.

The CIR driven doubly-stochastic Poisson process was therefore chosen as the snap

event time model to use for simulating ocean noise. An empirical Fano-factor curve was

produced from the simulated data and compared with a theoretical Fano-factor curve

generated using the parameters from the simulation. The results were in agreement.

The temporal analysis presented in this thesis is approaching the stage where spatial

considerations can no longer be ignored. It has been shown conclusively that the snap-

ping from fields of shrimp does not conform with a homogeneous Poisson process, and

therefore the time and location of the shrimp snaps (the spatio-temporal nature of the

shrimp noise) becomes important. The conclusions of this thesis confirm that spatio-

temporal analysis of snapping shrimp noise is warranted, and is a topic that follows
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naturally from this thesis. A possibility for analysing the spatio-temporal nature of

snapping from a shrimp field, that continues from the temporal techniques presented

in this thesis, would be to apply kth-order interval analysis to snap events measured

by a hydrophone array. By improving the relatively immature understanding of tem-

poral statistics, and combining with existing knowledge of the amplitude and spatial

statistics, an overall picture of the true nature of snapping from fields of shrimp can be

developed and links between amplitude, spatial and temporal statistics can be under-

stood.

6.3 Implications for sonar detection and communications

Significant improvements in the detection of weak narrow-band signals can be realised

using locally optimum detectors based on non-Gaussian noise models. Of the available

models, the SαS model appears to provide the greatest performance gains when used

for narrow-band detection. This study confirms the superior performance of the SαS

detector for narrow-band detection using real shrimp noise from (independent) loca-

tions around Australian shores, measured using different equipment and independent

measurement methods.

One of the original intentions of this study was to explore methods for exploiting new

statistical knowledge of snapping shrimp noise to improve the performance of sonar

detection and underwater communication systems. During the course of the study it

became apparent that more work was needed developing an understanding of temporal

statistics, and so the original aims were revised. This section provides a brief discussion

of the original intentions and identifies some signal processing algorithms that may

benefit from the results of this thesis.

Recalling Middleton’s general rule (Middleton 1995):

...the more relevant information regarding both the signal and noise that is
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properly used, the better the performance.

Two important aspects of the general rule are: that the information is relevant, and

that it is properly used. Models of the amplitude, temporal and spatial statistics of a

noise source constitutes relevant information. Proper use of amplitude models, such as

the Symmetric-α-stable model, in (memoryless) locally optimum detectors gives near

optimum results. It remains, therefore, to use the spatial and temporal models of

snapping shrimp noise to obtain improvements in detection performance.

Some signal processing algorithms that make use of temporal information are the auto-

regressive (AR), moving average (MA), auto-regressive moving average (ARMA), and

Quasi-equivalent (QE) models. However, these models are primarily concerned with

sample level correlations and are less likely to benefit from information relating to the

snapping point process. Detectors that do benefit from knowledge of the point process

statistics are the CFAR processors (Himonas 1994, Doukovska 2007). CFAR detector

performance depends on the parameters of randomly occurring impulse events, even

if the events have a low probability of appearance (Doukovska & Kabakchiev 2006).

Investigation of the effect of CIR driven doubly-stochastic Poisson noise on CFAR

processing may provide a way forward for improved detection in snapping shrimp noise.



Chapter 7

Conclusions

7.1 Thesis conclusions

There are many contributions that result from the work presented in this thesis. Most

of the contributions are modest, often confirming existing knowledge using indepen-

dent methods. However, there are two important contributions regarding the temporal

nature of snapping shrimp noise that are substantial in their own right, and have been

studied to the point of being conclusive. They are:

• Snap events from a field of snapping shrimp (received by a hydrophone) are not

consistent with a homogeneous Poisson process;

• Short time correlation of the snap event process is caused by surface reflected

replicas.

In Chapter 4 it was shown using Fano-factor analysis that the shrimp (snap) point

process is correlated over two distinctly different time scales. Short time correlations,

less than a second, were shown to be caused by surface reflected replicas. Medium

time correlations, between 1 and 60 seconds, were modelled using a Cox-Ingersoll-Ross
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driven doubly-stochastic Poisson process. In support of the model for medium time

effects, the distribution of rates was compared with the required gamma distribution

and the results were in excellent agreement. A full day recording was analysed and

showed that a Fano-factor plateau existed for medium counting times and that further

correlation is evident between the snap events on long time scales.

Kth-order interval analysis conducted in Chapter 4 provided the strongest evidence

that all of the real shrimp data sets were not homogeneous Poisson distributed, and

therefore contributed the most important conclusion for the thesis. The results also

showed the greatest amount of variation between the different data sets, and so was the

most revealing of the analysis techniques. Interpretation of kth-order interval results

is complicated because the time scales are distorted with respect to the original point

process. A method was devised to assist interpretation of the kth-order interval results

by using part of a statistical test to transform the results prior to plotting, allowing

interpretation to be made with respect to a homogeneous Poisson process.

The Gaussian-Garnele model derived in Chapter 3 contributes a dedicated model of

snapping shrimp noise that has an analytic probability density function. While the

contribution to improved narrow-band detection made by the new Gaussian-Garnele

model is yet to be fully understood, there are aspects of the model that are useful

for the study of snapping shrimp noise. For example, a representation of source levels

from the shrimp field could be estimated given the water depth, hydrophone depth,

shrimp field extent, and background noise power were known. The issues of parameter

correlation and definition for the shrimp field extent also arise in this context, motivat-

ing further study. Investigation into asymmetry in the extreme tails of the amplitude

probability density function was motivated by the fact that it is both predicted by the

Gaussian-Garnele model and observed in real shrimp noise. Consequently, an experi-

mental investigation of the phenomenon was initiated, rather than ignoring the effect

as an artifact, or attributing it to insufficient statistics. The experimental investiga-

tion contributed further by eliminating hydrophone directivity as a possible cause for

the effect, strengthening the possibility that the effect is indeed due to the source and
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propagation models used by the Garnele model. Comparison of the Gaussian-Garnele

model with the Symmetric-α-stable model revealed similar levels of variability from

both models about real shrimp noise pdfs, with the exception of the extreme tails. In

the extreme tails the Gaussian-Garnele model provided a superior fit to the real shrimp

noise pdf.

Results from Chapter 5 confirm that narrow-band detection using locally optimum

detection based on the Symmetric-α-stable noise model is near optimum in the pres-

ence of snapping shrimp noise. The Symmetric-α-stable detector was superior to all of

the detectors considered. A locally optimum detector based on the Gaussian-Garnele

model performed only marginally worse than the Symmetric-α-stable detector, and

was clearly superior to the Gaussian-Gaussian mixture and periodogram detectors.

Detector performance was conducted using real shrimp noise collected from a location

in Australia, thus providing independent confirmation of similar results obtained for

shrimp noise in Singapore waters. Additional conclusions from the narrow-band de-

tection study include the sub-optimal performance of the Gaussian-Gaussian mixture

model of snapping shrimp noise, which was consistent with similar studies on shrimp

noise from the United States. In these studies using data from the United States, the

Johnson distribution was used to model the shrimp noise

7.2 Recommendations for further work

Topics that have been identified for further work can be grouped into the following:

refining key statistical distributions, interpretation of temporal statistics and transi-

tion to understanding a full spatio-temporal picture, and understanding relationships

between goodness-of-fit and system performance in practical applications.

The development of dedicated models of snapping shrimp amplitude statistics relies

on two fundamental distributions: the distribution of shrimp snap source levels (the

source distribution), and the distribution of ranges to the shrimp and the times at which
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the snaps occur (the spatio-temporal distribution). Refinement of these fundamental

distributions will result in better shrimp noise models which can be used to better

understand the shrimp and to improve signal processing in shrimp noise.

Kth-order interval analysis was the most promising of the temporal analysis techniques

used in this thesis. Further work is required to enable accurate interpretation of this

analysis and more data needs to be analysed to find consistent features that are char-

acteristic of snapping shrimp noise.

A wealth of further research ideas arise from the detection of narrow-band signals in

snapping shrimp noise. Issues for narrow-band detection include, understanding how

the pdf fit of the model affects the performance of locally optimum detectors, and

how deviations of the model above and below the empirical results affect detection

performance. Models that should be considered for this study are the Symmetric-α-

stable, Cauchy, Gaussian-Garnele, Johnson, and Gaussian-Gaussian mixture models.

The detection threshold of detectors derived from these models should also be computed

as a function of signal frequency and compared with the periodogram detector. The

issue of broadband detection and spread-spectrum communication performance should

be considered after the narrow-band results are fully understood. There are a number

of detection algorithms that may benefit from improvements in temporal models, such

as the CFAR processing algorithms. The greatest gain, however, is most likely to be

obtained through spatio-temporal (space-time) processing.



Appendix A

Field Measurements

Several field measurements were conducted to provide data for this thesis. A summary

of these measurement activities is presented for each of the measurement locations.

Multiple measurements were taken at each of the sites using a variety of different

equipment and measurement methods. Measurements were often taken in conjunction

with other field work unrelated to this thesis, indicated as other duties.

A.1 AWharf (AW)

The AWharf is a jetty located near 32◦10′36.3′′S, 115◦40′42.7′′E, in Western Australia.

Only one of the data sets collected at the A-Wharf was used in this thesis. The data was

collected at midday on 31 August 2007. Weather conditions on the day were completely

overcast, and the temperature measured at 15.6◦C. The sea state was relatively calm

with no swell, and a light breeze was blowing.

The following people contributed to the measurement:

• Matthew Legg (design; recording equipment setup, calibration and operation;
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note taking; other duties)

• Dr. Dave Matthews (rigging; other duties)

• Damien Killeen (observation; other duties)

• Dr. Rod MacLeod (rigging; observation; other duties)

The following equipment was used:

• Hydrophone: HTI-96-MIN S/N 554003

Sensitivity: -164 dB re 1V per µPa

Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown

• Recorder: FOSTEX FR1

Sample Rate: 192 kHz

Resolution: 24 bit

Calibration: 20 kHz white noise at -34 dBV and -78 dBV from a Neutrik

Minirator

The hydrophone was mounted on a single piece of PVC tubing, horizontally separated

from another hydrophone by a few centimeters. The hydrophones were suspended

from a rigid steel super-structure using a counter-weighted rope suspension system.

The hydrophones were held at a depth of 4 m in a 13 m water column. The ambient

noise measurement commenced at 12:28 pm (local time), recording continuously for 10

minutes. Hydrophone sensitivity and recorder response curves are shown in Figure A.1.
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Figure A.1: Hydrophone sensitivity and recorder response used to measure the AW

data. The response is shown relative to the response at 1 kHz.
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A.2 Busselton Jetty (BUWO)

Busselton Jetty is located in Geographe Bay, Western Australia. The jetty projects

1.8 km from the shore into the bay and is one of the longest jetties in the southern

hemisphere. At the end of the jetty is an underwater observatory, a cylindrical structure

of approximately 5 m radius that extends from the jetty surface to the seafloor. The

observatory allows public viewing of the underwater environment in the bay, and is

therefore air filled. A series of acoustic measurements were conducted on the 10th and

11th of September 2007, however only data recorded on the 10th was used in this thesis.

Weather on the day was overcast and a moderate sea had developed from moderate to

strong winds the previous night. At the time of recording the winds had eased slightly

to 3.3 ms-1 from the north.

The following people contributed to the measurement:

• Matthew Legg (design; recording equipment setup, calibration and operation;

observation; note taking)

• Dr. Dave Matthews (hydrophone deployment; other duties)

• Damien Killeen (rigging; other duties)

• Dr. Rod MacLeod (rigging; other duties)

The following equipment was used:

• Hydrophone: HTI-96-MIN S/N 554011

Sensitivity: -164 dB re 1V per µPa

Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown
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Figure A.2: Hydrophone sensitivity and recorder response used to measure the BUWO

data. The response is shown relative to the response at 1 kHz.

• Recorder: FOSTEX FR1

Sample Rate: 192 kHz

Resolution: 24 bit

Calibration: 20 kHz white noise at -34 dBV from a Neutrik Minirator

Two hydrophones were placed either side of the underwater observatory, each mounted

on a PVC pipe and suspended using a counterweighted rope suspension system from

the top platform. Only one of the hydrophones (on the left side of the observatory)

was used for the ambient noise recording. The measurement commenced at 16:03 pm

(local time) and recorded continuously for 50 minutes.

Hydrophone sensitivity and recorder response curves are shown in Figure A.2.
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A.3 Cockburn Sound measurements

The following measurements were conducted from a set of pontoons located in Cock-

burn Sound, Western Australia. The measurements were conducted at times when the

weather was fine and sea states as low as possible. Commercial shipping and small boat

activity was common during measurements, and at times dolphins came within 100 m

of the hydrophone.

A.3.1 10 March 2008 (CS-A,CS-D)

As part of the field experiment to investigate the apparent amplitude pdf asymmetry of

real shrimp noise, ambient noise was recorded. Weather conditions were fine with some

cloud, the temperature was estimated as 20◦C and a moderate wind of approximately

8-10 knots was blowing from an east-south-easterly direction. The sea state was higher

than desired, and there was a reasonable amount of movement of the pontoons.

The following people contributed to the measurement:

• Matthew Legg (design; recording equipment setup, calibration and operation;

observation; note taking)

• Dr. Dave Matthews (rigging; hydrophone deployment; other duties)

• Dr. Rod MacLeod (observation; other duties)

• Paul Moses (observation; other duties)

The following equipment was used:

• Hydrophones: HTI-96-MIN S/N 544002

Sensitivity: -164 dB re 1V per µPa
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Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown

• Recorder: FOSTEX FR1

Sample Rate: 192 kHz

Resolution: 24 bit

Calibration: 20 kHz white noise at -40 dBV from a Neutrik Minirator

The hydrophone was mounted on a PVC pipe and suspended at a depth of 5 m. The

water depth was not measured at the time of the recordings but was estimated to be

between 9 m and 12 m.

Hydrophone sensitivity and receiver response are shown in Figure A.3.
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Figure A.3: Hydrophone sensitivity and recorder response used to measure the CS-A

and CS-D data. The response is shown relative to the response at 1 kHz.
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A.3.2 1 December 2005 (CS-B)

The purpose of this measurement was to measure snapping shrimp noise using a wide-

bandwidth recording system. The measurement site was on the near side of the pon-

toons, to the north just past the on-ramp. Weather conditions were fine and winds

were calm. There was slight movement of the pontoons and some rubbing against a

support post.

The following people contributed to the measurement:

• Matthew Legg (design; recording equipment setup, calibration and operation;

observation; note taking)

• Dr. Dave Matthews (rigging)

• Dr. Rod MacLeod (observation)

The following equipment was used:

• Hydrophones: RESON 4034 S/N 1405010

Sensitivity: -225 dB re 1V per µPa plus 50 dB gain

• Recorder: Data Translation DT9834

Sample Rate: 473 kHz

Resolution: 16 bit

Calibration: 20 kHz white noise at -34 dBV from a Neutrik Minirator

A single hydrophone was placed mid-water (exact hydrophone depth was not recorded),

suspended from the hydrophone cable fixed to the pontoon. A water depth of 9.9

m was measured using a Hondex PS-7 hand-held depth sounder. The ambient noise
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Figure A.4: Hydrophone sensitivity and recorder response used to measure the CS-B

data. The recorder response is shown relative to the response at 1 kHz.

measurement commenced at 9:40 am (local time) and a continuous 30 minute recording

was obtained.

A receiver response curve for the recording system used for the measurements is shown

in Figure A.4. Vertical and horizontal directivities at 100 kHz are shown in Figure A.5.

The hydrophone was omnidirectional in both the horizontal and vertical planes with

the exception of those angles in the vertical that coincide with the hydrophone cable.



A.3. Cockburn Sound measurements 183

−30

−30

−20

−20

−10

−10

0 dB

0 dB

90o

60o

30o

0o

−30o

−60o

−90o

−120o

−150o

180o

150o

120o

 

 
vertical
horizontal

Figure A.5: Vertical and horizontal hydrophone directivity at 100 kHz.
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A.3.3 25 November 2005 (CS-C)

The purpose of this measurement was to measure snapping shrimp noise using a wide-

bandwidth recording system. The measurement site was on the near side of the pon-

toons, to the north just past the on-ramp. Weather conditions were fine with a light

wind of approximately 2-5 knots from the south-east. A light swell caused some slight

movement of the pontoons.

The following people contributed to the measurement:

• Matthew Legg (design; recording equipment setup, calibration and operation;

observation; note taking)

• Dr. Dave Matthews (rigging; observation)

• Dr. Rod MacLeod (observation)

The following equipment was used:

• Hydrophones: RESON 4034 S/N 1405010

Sensitivity: -225 dB re 1V per µPa plus 60 dB gain

• Recorder: Data Translation DT9834

Sample Rate: 473 kHz

Resolution: 16 bit

Calibration: 20 kHz white noise at -34 dBV from a Neutrik Minirator

A single hydrophone was placed at 5 m depth, suspended from the hydrophone cable

fixed to the pontoon. A water depth of 9.9 m was measured using a Hondex PS-7

hand-held depth sounder. A continuous 10 minute recording of the ambient noise was

obtained.
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Figure A.6: Combined hydrophone and recorder response used to measure the CS-C

data. The response is shown on a semilogarithmic scale and is relative to the response

at 1 kHz.

A receiver response curve for the recording system used for the measurements is shown

in Figure A.6.
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Figure A.7: Vertical and horizontal hydrophone directivity at 100 kHz.
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A.4 Nornalup-Walpole Estuary (WP)

Exploratory measurements were conducted in the Nornalup-Walpole Estuary from the

Rest Point jetty located at 34◦59′18′′S, 116◦43′18′′E, on the southern coast of Western

Australia. The jetty extends approximately 25 m over the water near a channel that

joins the Walpole and Nornalup Inlets. Snapping shrimp were not expected in these

waters, but it appears that they do inhabit the estuary system in reasonable numbers.

The following people contributed to the measurement:

• Matthew Legg (design; recording equipment setup, calibration and operation;

rigging and deployment; observation; note taking)

• Damien Killeen (rigging and deployment; observation)

The following equipment was used:

• Hydrophone: HTI-96-MIN S/N 306001

Sensitivity: -164 dB re 1V per µPa

Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown

• Recorder: SONY DAT

Sample Rate: 48 kHz

Resolution: 16 bit

Calibration: 20 kHz white noise at -20 dBV from a Neutrik Minirator

The hydrophone was secured from the south eastern corner of the jetty at a depth

of 0.5 m, and recording commenced. A single continuous recording was made over a
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Figure A.8: Nominal hydrophone sensitivity and recorder response used to measure the

WP data. The response is shown relative to the response at 1 kHz.

period of 42 minutes, during which a number of scraping sounds can be heard. The

scraping sounds were thought to be caused by stingrays coming into contact with the

hydrophone cable, although this could not be confirmed visually. During the recording

several people visited the jetty, and some of the visitors commenced fishing. Various

transient signals can be heard as a result, including the sound of a fish being caught. A

water depth of 1.2 m was measured by lowering the hydrophone until it lightly touched

the estuary floor.

Nominal hydrophone sensitivity and recorder response curves are shown in Figure A.8.
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A.5 24 hour recording at the AWharf (AW24)

A 24 hour measurement was recorded from the 18th to the 19th of December 2008 at

the AWharf site for the purpose of investigating long counting time effects. Weather

conditions at the start of the measurement were fine, with clear skies and a wind speed

of just over 4 ms−1. The sea state was 1 with a very light swell. Several small boats

were visible from the measurement site but most were at a distance greater than 1

km. During the night a tanker transited the area. At the end of measurements the

water depth was 12.1 m, the wind had increased to over 7 ms−1 and the sea state had

increased to 2.

The following people contributed to the measurement:

• Matthew Legg (design; recording equipment setup, calibration and operation;

rigging and deployment; observation; note taking)

• Dr. Dave Matthews (rigging and deployment; observation)

• Paul Moses (power supply setup)

The following equipment was used:

• Hydrophone: HTI-96-MIN S/N 554003

Sensitivity: -164 dB re 1V per µPa

Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown

• Recorder: Edirol R-4 pro

Sample Rate: 192 kHz

Resolution: 24 bit
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Figure A.9: Local wind record for the Garden Island region over the same time period

as the 24 hour measurement (wind data from www.seabreeze.com).

Calibration: 20 kHz white noise at -34 dBV from a Neutrik Minirator

A single HTI 96-MIN hydrophone was suspended from a measurement platform near

the end of the jetty using rigging shown in Figure A.10. The water depth at the start

of measurements was 12.0 m and the hydrophone was placed at a depth of 5 m. Output

from the hydrophone was connected directly into the line input of an Edirol R-4 field

recorder configured to sample at 192 kHz with 24 bit resolution. The combined response

of the hydrophone and recorder is shown in Figure A.11. A portable battery power

supply was used to power both the hydrophone and the field recorder to minimise 50

Hz interference.
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Figure A.10: A single hydrophone was mounted on a PVC weighted rig and suspended

from a measurement platform. The hydrophone was located at a depth of 5 m.
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Figure A.11: Hydrophone sensitivity and recorder response used to measure the 24

hour data. The recorder response is shown relative to the response at 1 kHz.



Appendix B

Field data sets

Following are details of the data obtained from field trials conducted by other people.

B.1 Seal Island

Data from Seal Island was provided by Dr Dave Matthews.

Seal Island is located amongst a group of Islands off Shoalwater Bay in Western Aus-

tralia at position 32◦17′33.8′′S, 115◦41′23.5′′E. This recording was made to investigate

the difference between shrimp snaps inside an underwater cave and in nearby open

water.

B.1.1 Seal Island Cave (SEAL-A and SEAL-B)

Two measurements were conducted during this field work, one set of measurements were

taken inside an underwater cave (SEAL-A) immediately followed by other in nearby

open water (SEAL-B). The water depth at both locations was 5 m and the hydrophone
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was mounted on the seafloor. Weather on the day was fine with a 5-10 knot breeze

from the NE. There was no swell and the sea state was 1.

The following equipment was used:

• Hydrophone: HTI-96-MIN S/N 306001

Nominal sensitivity: -164 dB re 1V per µPa

Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown

• Recorder: SONY DAT

Sample Rate: 48 kHz

Resolution: 16 bit

Calibration: 20 kHz white noise from a Neutrik Minirator

Manufacturers hydrophone response curves were not available for this hydrophone.

White noise was recorded from a Neutrik Minirator onto the DAT tape. A response

curve for the DAT tape is shown in Figure B.1.
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Figure B.1: Nominal hydrophone sensitivity and recorder response used to measure the

SEAL-A and SEAL-B data. The recorder response is relative to the response at 1 kHz.
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B.1.2 Seal Island (SEAL-C)

The Seal Island data was recorded using a hydrophone near the surface in a very shallow

water column of between 3 and 5 metres, near to a set of reefs. The sea state was very

low and winds calm.

The following equipment was used:

• Hydrophone: HTI-96-MIN

Nominal sensitivity: -164 dB re 1V per µPa

Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown

• Recorder: SONY DAT (short play mode)

Sample Rate: 41 kHz

Resolution: 16 bit

Calibration: Unavailable

Calibration information for this data set was unavailable, however the equipment used

was similar to that used for SEAL-A and SEAL-B therefore the response of the system

is likely to to be very similar.

B.2 Feather Reef (FR)

Data from Feather Reef was provided by Dr Rob McCauley

Feather Reef is located at position 17◦31′4.4′′S, 146◦23′12.2′′E off the coast of Queens-
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land, Australia. The Feather Reef data was recorded using a bottom mounted hy-

drophone in 24 metres of water. The hydrophone was placed near a set of reefs.

The following equipment was used:

• Hydrophone: MASSA TR1025C

Nominal sensitivity: -196 dB re 1V per µPa

Nominal bandwidth: 10 Hz to 20 kHz

Horizontal directivity: omni-directional

Vertical directivity: 20 deg. toroidal at -3 dB total angle (25 kHz)

• Recorder: DAT (long play mode)

Sample Rate: 32 kHz

Resolution: 16 bit

Calibration: White noise at -130 dB re 1V2/Hz

The manufacturers nominal hydrophone response was available for this hydrophone.

White noise at -130 dB re 1V2/Hz was recorded onto the DAT tape. A response curve

for the DAT tape is shown in Figure B.2.
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Figure B.2: Nominal hydrophone sensitivity and recorder response used to measure the

FR. The recorder response is relative to the response at 1 kHz.
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B.3 Spencer Gulf (SG)

Data from Spencer Gulf was provided by Dr Doug Cato

The Spencer Gulf data was recorded using a hydrophone placed mid-water in the water

column.

The following equipment was used:

• Hydrophone: ITC-1032

Nominal sensitivity (representative mid-band OCV): -194 dB re 1V per µPa

Nominal bandwidth: 10 Hz to 50 kHz

Horizontal directivity: omni-directional

Vertical directivity: Unknown

• Recorder: SONY DAT TCD-D8 (long play mode)

Sample Rate: Usable upper frequency limit 14 kHz

Resolution: 16 bit

Calibration: 3 dB per octave pink noise at -110 dB re 1V2/Hz at 1 kHz

Hydrophone sensitivity and recorder response curves are shown in Figure B.3.
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Figure B.3: Nominal hydrophone sensitivity and recorder response used to measure the

Spencer Gulf data. The recorder response is relative to the response at 1 kHz.
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B.4 Sydney Harbour (SYD-A and SYD-B)

Data from Sydney Harbour was provided by Dr Dave Matthews

Sydney Harbour data was recorded at position 33◦51′52.1′′S, 151◦11′43.6′′E on 4th of

October 2007. The hydrophone was suspended from a wharf at a depth of 4 m in a

10.6 m water column. Winds were 15 to 20 knots from the NE and small boat activity

was regular.

The following equipment was used:

• Hydrophone: HTI-96-MIN 554003

Nominal sensitivity: -164 dB re 1V per µPa

Nominal bandwidth: 2 Hz to 30 kHz

Horizontal directivity: omni-directional

Vertical directivity: unknown

• Recorder: FOSTEX FR-2

Sample Rate: 192 kHz

Resolution: 24 bit

Calibration: 20 kHz white noise from a Neutrik Minirator

Hydrophone sensitivity and recorder response curves are shown in Figure B.4.
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Figure B.4: Hydrophone sensitivity and recorder response used to measure the SYD-A

and SYD-B data. The recorder response is relative to the response at 1 kHz.



Appendix C

Logarithmic smoothing algorithm

Logarithmic smoothing (logsmooth) was conducted by specifying the edges of consec-

utive, non-overlapping windows with size increasing by a specified logarithm base to

the power of the distance of the window from the origin. Window sizes were always

specified in the positive sense, from an origin of zero. Orientation and shift operations

to accommodate negative directions and provide offset origins were handled by codes

outside of the logsmooth algorithm.

Window sizes were computed using

δn = βn (C.1)

where β is the specified logarithm base, and n is the integer number of windows from

the origin to the window of interest. Window edges were computed using the sum of

the preceding window sizes

ω =
n−1∑
k=0

δk (C.2)

The representative window location was the center of the window, ω plus half of δ. The

value assigned to the window was computed as the mean value of the window contents.

The following MATLABrcode is representative of the algorithm used for logarithmic

smoothing operations in this thesis.
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function [YY,XX] = logsmooth(X,Y,NumBins,LOGBASE)

% smooth data in logarithmically spaced bins

MaxVal = max(X);

MinVal = min(X);

MaxAbs = max(abs(X));

MinAbs = min(abs(X));

Range = MaxAbs-MinAbs;

MinInc = Range./sum(LOGBASE.^[0:1:NumBins-1]);

% compute the bin edges

BinIncrements = [0,MinInc.*(LOGBASE.^[0:1:NumBins-1])];

BinEdges = MinAbs+cumsum(BinIncrements);

Edges = sign(MinVal).*BinEdges;

% sort so they are ordered from lowest to highest (ascending)

Edges = sort(Edges);

% remove any edges that are out of bounds

Edges = Edges(find(Edges>=MinVal & Edges<=MaxVal));

% bin centres provide the XX return values

Centres = Edges(1:end-1)+(diff(Edges)./2);

XX = Centres;

YY = repmat(nan,size(Centres));

% mean value in the window provides the YY return value

for k=1:1:length(Centres)

WinData = Y(find(X>=Edges(k) & X<Edges(k+1)));

if ~isempty(WinData)

YY(k) = mean(WinData);

end

end

% Done
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