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0.1 Abstract

The Great Barrier Reef (GBR) region is the most spatially extensive, ecologically

significant and least disturbed large coral reef ecosystem in the world. The reef

was placed on the World Heritage List in 1981 due to its significance to humanity.

The adjacent land mass, the Australian State of Queensland, has had increases

in deforestation, agriculture, urbanisation, and the associated eutrophication of

coastal waters. Whilst these human activities are important for the Australian

economy, since heritage listing we also have an international obligation to pre-

serve the reef. This, combined with fishing and the emergence of the now-billion

dollar tourist industry places a high importance to reef conservation.

With increased land use in the region, there is an need to monitor the GBR and

its catchment on an ongoing basis to ensure sustainable practices are employed

to prolong the benefits of having relatively unspoilt and unique coastal environ-

ments. Extending over 1500 km in length and approximately 15◦ latitude, the

GBR is the largest contiguous coral reef ecosystem in the world, and presents a

challenge for ecosystem health monitoring. Although initially intended for opti-

cally simple oceanic applications, satellite-based ocean colour measurements such

as those from MODIS-Aqua can provide a synoptic and near-daily coverage of

the GBR region. Ocean colour satellites exhibit enormous potential to quantify

coastal water quality parameters, but before potential end-users can trust the

measurements derived from satellites, relationships must be determined which

accurately convert the satellite measured signals (i.e reflectance, Rrs) into these

familiar units of water quality measurement. This relationship or process is re-

ferred to as an “algorithm”.

The research undertaken herein has developed relationships between the con-

centrations and types of substances found in GBR water and their respective

inherent optical properties (Chapter 2). Based on this knowledge, a physics-

based spectral deconvolution routine was established in Chapter 3 and evaluated

in Chapter 4. The deconvolution routine was able to successfully and simultane-

ously retrieve the concentrations of optically-significant substances (phytoplank-
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ton, Colour Dissolved Organic Matter (CDOM), and particulates) from passive

ocean colour observations.

The principal remote sensor developed for, and used in this study (described

in Chapter 3) is known as the Dynamic Above water Radiance and Irradiance

Collector (DALEC). Combined with flow-though measurements of water quality

parameters, the DALEC proved to be an incredibly useful tool for rapid data

collection for algorithm development studies, passive water quality monitoring,

and satellite algorithm validation.

Based on this dataset, the DALEC-based water quality parameter retrievals

yielded Root-Mean-Squared Errors (RMSE) of 26.6%, 17.2% and 10% for To-

tal Chlorophyll-a (TChl), Total Suspended Solids (TSS) and Dissolved Organic

Carbon (DOC), respectively.

The DALEC was used to test the accuracy of a variety of MODIS atmospheric

correction approaches suitable for turbid and glint-effected coastal waters. The

spectral inversion methodology developed on the DALEC measurements was also

applied in Chapter 5 to a GBR flood plume scene from the MODIS satellite

sensor, where it successfully retrieved TChl, TSS from the images with of 26.9%

and 11.8% respectively. A MODIS-based DOC product was also presented.
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Chapter 1

An introduction to the Great

Barrier Reef

The Great Barrier Reef (GBR) lies on the North Eastern coast of the Australian

continent (see Figure 1.1), in the Australian State of Queensland (QLD). The

GBR is the world’s largest coral reef system which spans between approximately

9 ◦S in the Torres Straight near the coast of Papua New Guinea and 24 ◦S, near

Bundaberg, QLD. Its seaward margin essentially defines the continental shelf

which lies 21 km offshore in the north, and approximately 150 km offshore near

the Swain Reefs offshore from Rockhampton in the south (see Fig. 1.3). Locally,

the term GBR “lagoon” is used to describe the semi-enclosed body of water on

the shelf inside the outer barrier structure. Although not a strictly a contiguous

barrier as the name might suggest, the GBR is a series of several thousand indi-

vidual reefs and sandy cays. The general structure of the reef can clearly be seen

from space, running nearly parallel with the coast as shown by the composite

MODIS-Aqua satellite image in Figure 1.2.
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Figure 1.1: Map of Australia featuring major city centres and the showing the
Northern Queensland coastline where the GBR is located.
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Figure 1.2: MODIS-Aqua true colour composite image of the northern queensland
coast and the majority of the Great Barrier Reef. The top half of the image was
captured on the 22nd May 2009 and the bottom half of the image was captured
on the 31st July 2008.
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Figure 1.3: The GBR region, showing prominent regional centers and selected
eastward-flowing coastal watercourses (in blue) derived from Geoscience Aus-
tralia’s TOPO 2.5M 1998 hydrography theme (GA 1998). Partial barrier reef
outlines and islands are shown in orange.
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The north-eastern Queensland coast has a generally warm and humid climate,

with daily mean maximum temperatures varying from approximately 31◦ C in

summer (Dec. - Feb.) to 26◦ C in winter (Jun. - Aug.). The daily mean minimum

temperatures varying from approximately 23◦ C in summer to 17◦ C in winter

(see Fig. 1.4).

Figure 1.4: Monthly mean maximum and minimum temperatures recorded at
Cairns Airport, based on data collected from 1942-2011 (BOM 2012b).

From approximately May to November, SE trade winds blow from the Pacific

Ocean up towards the equatorial trough (Wolanski et al. 1981). This period is

known as the dry season. Towards the summer months, warm and moist air

moves towards Queensland from the northwest. This is referred to as the Indo-

Australian monsoon, and lasts from approximately December to March, although

the timing and duration are known to vary (Robertson et al. 2006). During the

monsoon season, tropical depressions and cyclones bring increased rainfall to

North Queensland. This season is also referred to as the ‘wet’ season.
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The monsoon months bring the majority of the annual rainfall for the area. Fig-

ure 1.5 shows the seasonal rainfall distribution near the prominent tourist town,

Cairns (see Fig. 1.3 for location). This seasonality is representative of other

coastal northern Queensland coastal towns, although total rainfall varies signifi-

cantly across the 14 degrees of latitude, as shown in Fig. 1.7.

Figure 1.5: Monthly mean rainfall recorded at Cairns Airport, based on data
collected from 1942-2011. The annual mean total is 2020.4 mm (BOM 2012b).

In addition to the yearly monsoon period and the trade winds-dominated dry

season, the El Niño - Southern Oscillation (ENSO) also affects the Queensland

climate. ENSO is influenced by multiple-year cycles of heating and cooling of the

sea-surface temperature (SST) in the central and eastern tropical Pacific Ocean

(Whifield et al. 2010). El Niño events are associated with above average SST, and

generally bring below-average dry season rainfall. La Niña events are associated

with below-average SST, and generally bring above average dry season rainfall.

The link between ENSO and Australian rainfall is not always prominent, as the

ENSO process itself is said to modulated by more complicated processes such

as the Interdecadal Pacific Oscillation (IPO) (Arblaster et al. 2002, Power et al.

2006). The result is that between ENSO/IPO and monsoonal lows and cyclone

events, Northern Queensland is subject to a significant degree of interannual vari-
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ability in rainfall (see Fig. 1.6).

Figure 1.6: Yearly rainfall recorded at Cairns Airport, based on data collected
from 1942-2011. (BOM 2012b).

In Figures 1.7 and 1.8, it can be seen that the seaward (eastern) sides of the Great

Dividing range typically experience much higher annual rainfall. This geographi-

cal selectivity in rainfall is also demonstrated by the green vegetation in Fig 1.2.

The area between Cooktown and Cardwell experiences in excess of approximately

2500 mm per year and is referred to as the ‘Wet Tropics’.

The Wet Tropics consists of undeveloped rainforest-clad mountains, giving way

to extensive areas of cleared forest in the coastal lowlands. Forested areas were

cleared for timber, and now largely accommodates cattle pastures and sugar-cane

plantations. Cleared land in the Wet Tropics typically surrounds watercourses

and is identifiable in satellite imagery such as Fig. 1.2. Outside the Wet Tropics,

sugar cane and cattle grazing is still the most common use of land, alongside

horticulture, cotton and minor urban development (Brodie et al. 2003).

As shown in the preceding Figures (1.5, 1.7), the monsoonal months can bring
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Figure 1.7: Gridded average annual rainfall product for Northern Queensland
(1961-1990) (BOM 2009). No data presented over the ocean.
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Figure 1.8: Digital Elevation Map showing the Great Dividing Range and the
low-lying areas which lead to the GBR (Lewis 2001). No data presented over the
ocean. See later in Fig. 2.1 for GBR bathymetry.
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very high rainfall to the GBR catchment. It is estimated that an average of 380

km3 per annum of rain falls on the GBR catchment; 18% of which runs into the

GBR lagoon (Furnas 2003), bringing with it terrestrial sediments and pollutants

including pesticides. This episodic flooding into Great Barrier Reef waters can

be clearly resolved by the MODIS satellite sensor (see Fig. 1.9 and 1.10).

Figure 1.9: MODIS pseudo true colour image of the central GBR coast after a
monsoon flood (Feb, 2008). The bright coloured flood water north-west of Bowen
is sourced from the Burdekin river catchment whereas the southernmost flood
near the Whitsunday Group is sourced from the wetter, forested Proserpine and
O’Connell river catchments. Here, nutrient-rich flood waters appear to be rapidly
converted to phytoplankton biomass. Note plumes of tidal or wind re-suspended
sediments in the Whitsunday Group.

It is almost certain that clearing the forests in the low-lying areas of the GBR

catchment and using the land as pasture has led to increased erosion and sed-

iment discharge into the GBR (McCulloch et al. 2003). As flood waters are a

significant contributor of nutrients to the GBR lagoon (Furnas et al. 1997), it

is very important to monitor terrestrial discharge and the effect of increased nu-

trient influx to the reef. In addition to sediment and nutrients, intensive sugar

cane farming and other horticulture uses pesticides which have been identified as
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a threat to the GBR (Lewis et al. 2009).

The GBR and part of its adjacent coastline was recognised by the United Nations

Educational, Scientific and Cultural Organisation (UNESCO) as a World Her-

itage Site. With UNESCO Heritage listing comes the obligation of the Australian

Government to preserve the site for all humanity. Superimposed on this interna-

tional obligation is the need for the ever-increasing utilisation of this resource-rich

area so that Australia may compete in the expanding global economy.

The combination of the GBR, rainforest-clad mountains and tropical climate

makes North Queensland a very important tourist destination. Between tourism,

commercial fishing and recreational activities, it was estimated that the Great

Barrier Reef Marine Park Catchment Area (GBRCA) contributed $3.7 billion

to the Australian economy in the 2005-2006 period (GBRMPA 2007). As the

tourism industry increases global public awareness of the GBR and surrounds,

there is increased pressure on those engaged in agriculture to operate in ways

that will not jeopardise the tourism industry or the World Heritage status of the

GBR and catchment. There is also a need to monitor the effects of improving

agricultural practices and changing land use in the area.

Remote sensing offers a unique view of the entire GBR. With near-daily coverage

spanning over a decade, the polar-orbiting satellite MODerate resolution Imaging

Spectroradiometer (MODIS) sensors provide a long record over which to measure

changes in the GBR ecosystem. Ocean colour satellites exhibit enormous poten-

tial to quantify coastal water quality parameters, but before potential end-users

can trust the measurements and algorithms based on satellite radiometry in this

region, a number of key issues need to be addressed. This thesis attempts to

answer the following broad questions in order to establish ocean colour satellite

imagery as a quantitative tool for monitoring the Great Barrier Reef region:

1) How do the optical (spectral) characteristics of tropical Australian coastal

waters relate to traditionally-measured water quality parameters?
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Figure 1.10: MODIS pseudo true colour image of the Wet Tropics after a monsoon
flood (Feb, 2007). Flood waters escape the reef past Arlington Reef, and sediment
is ejected east from Hinchinbrook Passage.
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2) How does a complex mixture of these coloured constituents affect the apparent

colour of the coastal ocean?

3) How well can ocean colour be analysed to retrieve the concentration of coloured

substances in coastal waters?

In answering these questions, this study represents significant research because,

for the first time in the GBR region, ocean colour algorithms are developed from

an extensive in situ data set and are documented with the necessary detail to

assist the global community in evaluating the merits of the algorithms and facil-

itating their improvement. The results could have applicability to other tropical

shallow water systems, or at least the instrumentation and methodology described

herein could be applied to obtain an accurate parameterisation of other waters of

interest. The in situ dataset collected for this research project can also contribute

to international efforts to produce a generalised physics-based ocean colour re-

trieval algorithm.

In terms of novel methodology, the research required combining continuous flow-

through water quality measurements with simultaneous transecting above-water

remote sensing reflectance measurements for the purposes of algorithm devel-

opment and validation. This thesis initiated the development of the Dynamic

Above-water Lu (radiance) and Ed (irradiance) Collector (DALEC) spectrora-

diometer, which represents a significant and lasting contribution to the remote

sensing algorithm development and validation process in Australia, and hope-

fully abroad. The unique methodology employed in this project collected large

volumes of data which can rapidly speed up the ocean colour algorithm develop-

ment process, and generally improve on our understanding of optical oceanogra-

phy by significantly reducing spatial mismatches which could otherwise lead to

poor conclusions about the true optical variability in coastal waters.

The research undertaken has developed and evaluated quantitative approaches to

the spatio-temporal monitoring of GBR water quality and demonstrated that a
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high level of accuracy can be achieved from remote sensing.
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Chapter 2

Water Quality and Inherent

Optical Properties

2.1 Introduction

2.1.1 GBR Water Quality and Oceanography

The GBR region is often spatially classified into three broad depth ranges (Maxwell

1968, Larcombe & Carter 2004, Devlin & Brodie 2005); for example, 0-20 m, 20-40

m and waters deeper than 40 m. The shallowest range identifies inshore lagoon

waters that are subject to wind driven re-suspension and terrestrial influence.

Waters from 20-40 m is generally described as ‘middle shelf’ GBR lagoon waters,

and waters deeper than 40 m are described as ‘off-shelf’. Figure 2.1 shows these

broad bathymetric contours from 0-20 m, 20-40 m and 40-100 m, applied to the

GBR Digital Elevation Model (Lewis 2001).

Ocean circulation in the GBR is driven by the North Caledonia Jet and the North

Vanuatu Jet, which brings oceanic Coral Sea water into the GBR. The westward

moving Jet currents meet the eastern side of the GBR and bifurcate to form the

northward-flowing North Queensland Current (NQC), and the southward-flowing

East Australian Current (EAC) (Choukroun et al. 2009). A portion of this bi-

furcated current enters the GBR lagoon. The position of the bifurcation shifts

between 14◦ S during the monsoon and 20◦ S in the dry season (Church 1987).
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Figure 2.1: Bathymetric contours of the GBR lagoon. 0-20 m shown in yellow,
20-40 m shown in cyan and 40-100 m shown in blue. Waters deeper than 100 m
are uncoloured. Original bathymetry data source: GBRDEM (Lewis 2001)

The latitudinal position of the bifurcation governs how much Coral Sea water

flows through the outer reef and into the GBR lagoon, because certain areas of

the outer GBR ‘barrier’ are less dense and so provide less resistance to inflow

(Choukroun et al. 2009).

Seawater contains a vast diversity of constituents including phytoplankton, de-

tritus, viruses, bacteria, chromophoric dissolved organic matter (CDOM), sus-

pended minerals and gas bubbles. These constituents vary in concentration and

size (0.1 nm - 100 µm) (Mobley 1994, Stramski et al. 2004). The concentrations

of these constituents define water quality and also influence the overall optical
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properties of the seawater. Coastal waters in particular, can contain higher con-

centrations of suspended minerals, phytoplankton and CDOM.

Water quality is a complex and subjective term defining the suitability of water

for a particular purpose. For environmental studies in the GBR, water quality

could refer to an assessment of its ability to sustain indigenous marine life. In

the GBR region, turbidity and nutrients have been identified as two principal

influences on water quality (Haynes et al. 2001), coral biodiversity and macroal-

gae (De’ath & Fabricius 2010). Marine turbidity and nutrients can be quantified

by in situ sampling and standardized laboratory measurements including Total

Suspended Solids (TSS), Chlorophyll-a (Chl-a) and Dissolved Organic Carbon

(DOC). These parameters are also potentially measurable from an orbiting ocean

colour sensor i.e.Garver et al. (1994), which would allow the synoptic spatial

quantification of these three parameters across the GBR region.

Chlorophyll is the photosynthetic pigment ubiquitous to all phytoplankton (Bis-

sett et al. 1997) so its concentration has long been used as a proxy for algal

biomass (Yentsch & Menzel 1963). In the typically high-light tropical GBR region

(21 MJ.m−2 annually (BOM 2012a)), available nutrients are rapidly converted

into phytoplankton biomass (Furnas et al. 2005), so chlorophyll-a concentration

is an indicator for increased nutrient input in the region (Steven et al. 1998,

Wooldridge et al. 2006).

Upwelling processes along the seaward margin of the GBR shelf typically oc-

curs a number of times during the summer months when calm or northerly wind

conditions prevail (Furnas et al. 1990). These upwelling events bring colder,

more saline, and nutrient-enriched waters onto the outer shelf where light can

penetrate and create suitable conditions for species of phytoplankton to bloom

(Furnas & Mitchell 1986). Generally, prochlorophytes (Prochlorococcus) domi-

nate the standing oceanic stock in oligotrophic regions (Crosbie & Furnas 2001),

but during periods of upwelling, diatoms, and picocyanophytes (Synechococcus)

can form blooms. Crosbie & Furnas (2001) documented a cross-shelf gradient
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in nanoplankton, where the ratio of Synechococcus to Prochlorococcus increased

towards the coast. Prochlorococcus was confined to mid-shelf and outer shelf wa-

ters. Synechococcus was more abundant at most inshore and mid-shelf sites in

the central GBR. For a diagrammatical view of plankton distribution in the GBR

region, the findings of Revelante et al. (1982), Furnas & Mitchell (1986), Furnas

et al. (1990) and Crosbie & Furnas (2001) are condensed into a cross-sectional

diagram adapted from Moss et al. (2005).

Figure 2.2: Cross section of GBR bathymetric features and generalized phyto-
plankton distribution. Adapted from Moss et al. (2005).

In addition to living Chl-a, degradation products of the Chl-a molecule also flu-

oresce and absorb light. These degradation products are operationally classi-

fied as phaeopigments, consisting mainly of phaeophytin-a and phaeophorbide-a.

These phaeopigments are “produced” by a number of phytoplankton consuming

mechanisms; herbivorous zooplankton grazing (Lorenzen & Downs 1986), bacte-

rial and viral infection, periods of prolonged darkness, and nutrient deficiency.

Phaeopigments are degraded in the water column by photo-oxidation (Herbland

1988). From the standpoint of ocean colour remote sensors, phaeopigments have

similar visible light absorption properties to chlorophyll-a (Roesler et al. 1989),

but do not contribute to phytoplankton primary production. Due to the spec-
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tral similarities, optical remote sensing researchers often combine chlorophyll-a

and phaeopigment concentrations are refer to this quantity as Total Chlorophyll

(TChl) (Babin, Stramski, Ferrari, Claustre, Bricaud, Obolensky & Hoepnffner

2003). Both Chl-a and TChl are used throughout this study.

Total Suspended Solid (TSS) is the dried mass concentration of particulate mat-

ter suspended in seawater. It is derived from (previously) living phytoplankton,

minerals, detritus (previously non-living particulate organic matter) and other

particles retained on a filter. In waters of the GBR region, wind-driven re-

suspension (Larcombe et al. 2001) of sediments and terrestrially-sourced river

plumes increase TSS concentration (Devlin et al. 2001). TSS is significant for at

least two key reasons; the first is that in turbid coastal waters, TSS strongly influ-

ences the light attenuation coefficient of Photosynthetically Available Radiation

(PAR) and secchi disk visibility depths (Wolanski et al. 1981, Udy et al. 2005,

Cooper et al. 2007). Light is rapidly attenuated in waters with a high sediment

load. This is a significant variable that impacts photosynthetic benthic organisms

including algae, corals and seagrass which derive their energy from light. Sed-

iment re-suspension events can also be indicative of nutrients reaching surface

waters, where the abundance of light and nutrients can support phytoplankton

growth (Walker 1981).

The GBR experiences a monsoonal weather pattern with a wet season from

December to March, generally bringing north-west winds, higher rainfall and

episodic river flood events which deposit terrigenous sediments into coastal wa-

ters. During the rest of the year, from May to November, the dry season south-

east trade winds predominate (Wolanski et al. 1981). These winds establish

northerly along-shore currents and waves which are primarily responsible for re-

suspension of fine terrigenous sediments in shallow areas (denoted in green in

figure 2.1) and their subsequent northerly transport (Orpin et al. 1999, Lar-

combe et al. 2001). Wind events are more important than tidal currents for

the re-suspension of sediment in inner-shelf regions (Larcombe et al. 2001). The

re-suspension of sediment can bring the re-suspension of nutrients and detritus

which may have settled out of the water column in between river discharge or

28



re-suspension events (Devlin & Brodie 2005). In the non-flood conditions of

the dry season, rivers become tidal estuaries where the sea water penetrates up-

stream, and is then mixed back towards the ocean. This mechanism also creates

re-suspension and a potential for eutrophication of coastal waters, although wind-

wave driven re-suspension dominates tidal re-suspension in this region (Larcombe

et al. 2001).

In flood conditions during the tropical wet season, there is an increase in nutrient-

rich, turbid and less saline water draining off the land into the coastal region. This

fresher, more buoyant and turbid riverine water is usually easily visible with the

naked eye amidst the background of less turbid, more saline ‘background’ coastal

waters (Orpin et al. 1999). On the edges of these plumes is a region of diffusion

were the fresh water mixes with ocean water, particles settle out of the water

column and terrestrially-sourced dissolved materials interact with the saline wa-

ters to enhance flocculation and the subsequent removal of sub-micron ‘dissolved’

particles from the water column. UV light can also break down organic carbon

molecules into smaller constituent fragments (Twardowski & Donaghay 2002).

Despite flocculation and degradation processes, dissolved nutrients have been

found to disperse much further than particulate material during tropical Queens-

land riverine discharges (Devlin & Brodie 2005). In these coastal regions of the

GBR, riverine nutrient inputs can support the growth of larger phytoplankton

including diatoms and dinoflagellates (Revelante et al. 1982).

The third water quality component of interest to remote sensors is Dissolved Or-

ganic Carbon (DOC). DOC is a heterogeneous mixture of organic compounds

(Del-Castillo 2005) which are the degradation products of marine phytoplank-

ton (fulvic) or terrestrial organic matter (humic) (Carder et al. 1989, Mueller &

Ayukai 1998, Yacobi et al. 2003). Terrestrial runoff is considered to be a signifi-

cant contributor to DOC levels in some coastal areas (Bricaud et al. 1981, Boss

et al. 2001). The visible light absorbing component of the DOC pool is referred

to as Chromophoric (or Coloured) Dissolved Organic Matter (CDOM). Studies in

the open ocean indicate CDOM is also produced by zooplankton, Trichodesmium
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(Steinberg et al. 2004), phytoplankton, bacteria and virii (Siegel et al. 2002). A

number of studies have been performed to optically characterise and distinguish

between the fulvic and humic CDOM components in coastal areas where a com-

bination is likely to exist (Carder et al. 1989, Twardowski & Donaghay 2001).

However, CDOM can be photo-oxidised which makes terrigenous humic acids ex-

hibit optical properties similar to marine-sourced fulvic acids. (Obernosterer &

Benner 2004, Twardowski & Donaghay 2002).

Quantitative measurements of TSS, CHL and DOC largely rely on discrete vol-

ume water sampling where particles are either concentrated onto (CHL, TSS

and Phaeopgiments) or removed by filters (DOC). Inherent in this reductionist

approach is the operational distinction between particulate and dissolved com-

ponents based on the effective pore size of the filter being used. In bio-optical

studies, the dissolved fraction is usually defined as matter smaller than 0.2 µm

(Mitchell et al. 2000, 2003). However, laboratories analysing water samples from

the GBR typically use 0.4 µm filters for their DOC measurements due to excessive

turbidity increasing the filtering time for samples collected in turbid waters (Boto

et al. 1989). In their DOC studies, Boto et al. (1989) found that their choice of

the 0.4 µm filters removed 70% of the bacteria from their samples, thus their

DOC measurements would be slightly higher than if using the 0.2 µm standard

filter size.

The particulate fraction is usually defined as particles greater than 0.2 µm al-

though commonly an operational distinction is made by the nominal 0.7 µm

effective pore size of a Whatman glass-fibre filter (GF/F) matrix for CHL mea-

surements (Steven et al. 1998). Chavez et al. (1995) determined for a large

oligotrophic tropical and sub-tropical latitude range in the Pacific, that photo-

synthetic pigment concentrations retained on 0.7 µm GF/F filters were consistent

with the pigment retention of 0.2 µm membrane filters. Cooper et al. (2007) spec-

ifies the retention of a Whatman GF/F to be 0.2 µm. Other researchers claim

the effective pore size is between 0.5 and 0.7 µm (Loisel et al. 2009). However,

it is likely that the effective pore size is a function of the particle loading on the
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filter and possibly also the vacuum pressure (Mitchell et al. 2003). A polycar-

bonate 0.4 µm (i.e. Nuclepore R© or Poretics R©) pore size is typically used for TSS

measurements in the GBR (Devlin et al. 2001), which should closely match the ef-

fective retention properties of GF/F filters. Poretics filters are also recommended

for use in the Joint Global Ocean Flux Study (JGOFS) protocols (Knap. et al.

1994). In summary, the dissolved and particulate fractions are operationally de-

fined, and so there may be subtle differences in the results of different researchers

using different filter types.

2.1.2 Inherent Optical Properties

2.1.2.1 Radiometric Fundamentals

Light exists as photons which are massless and chargeless ‘packets’ of energy. The

energy of a photon is related to its frequency (ν), according to Eq. 2.1:

E = hν =
hc

λ
, (2.1)

where E is the photon energy (J), h is Planck’s constant (m2.kg.s−1), ν is the

photon frequency (s−1), λ is the wavelength of the photon in a vacuum (m) and

c is the speed of light in a vacuum (m.s−1).

When dealing with light measurements and optical properties, it is useful to

define some fundamental radiometric and geometric units. These are summarised

in Table 2.1. The radiant flux (Φ) is also referred to as optical power, for it is

the unit for describing the amount of radiant energy per unit time. A steradian

(Ω) is a measure of the proportion of a sphere that is visible by an infinitesimal

point at the center of a sphere. It can be determined by Ω = dA
r2

, where dA is the

elemental surface area normal to the center of the sphere, and r is the distance

from the center of the sphere to the surface. Figure 2.3 shows a hemisphere and an

example of the calculation of the solid angle subtended by the elemental surface

area dA. Radiance is typically measured with a photodetector which accepts light

from a restricted angular field of view (for example, a telescope). Irradiance is

typically measured with a photodetector adjacent to a diffuser which serves to
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accept light from a full hemisphere. The terms radiance and irradiance do not

provide information about the wavelength of the photons in question, however if

not specified, usually describes monochromatic light. The terms spectral radiance

and irradiance describe the spectral nature of the aforementioned quantities.

Quantity Symbol SI Unit Abbreviation
radiant energy Q joule J

radiant flux Φ watt W
steradian Ω steradian sr
radiance L watt per square meter per steradian W.m−2.sr−1

irradiance E watt per square meter W.m−2

Table 2.1: Fundamental radiometric quantities. (Mobley 1994)

Figure 2.3: The geometry and calculation of the solid angle subtended by the
surface area dA, at radius r.

2.1.2.2 Radiative Transfer

Figure 2.4, from Kirk (1983) illustrates the concept of transfer of photon energy

(or flux or radiance), through an optically significant medium (the shaded rect-

angle). Inside the medium, light can be absorbed (removed from the beam) or

scattered outside the beam. Scattered light may also re-join the beam to emerge

out of the other side of the medium.

Similarly, light photons coming downward from the sun and scattered by the

atmosphere can interact with the ocean and its constituents in the same two

ways. One interaction is absorption, whereby the photon’s energy is converted

into another form of energy within the absorbing substance and thus ceases to
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Figure 2.4: Conceptual radiative transfer from the incident photon energy from
left to right. Photon energy is removed out of the light path by absorption and
scattering (Kirk 1983).

exist as light. The other main interaction is scattering, whereby the direction of

the photon’s initial trajectory is altered by the medium.

To assist studying these two different optical processes in isolation, Preisendorfer

(1976) established the concept of Inherent Optical Properties (IOP); the absorp-

tion coefficient (a), the total scattering coefficient (b), the backscattering coeffi-

cient (bb) and the volume scattering function (β). By definition, the IOPs are only

influenced by the optically significant substances in the medium and not with the

surrounding illumination conditions of that medium. Apparent Optical Proper-

ties (AOPs), i.e. satellite-observed ocean colour or diffuse attenuation coefficient

(the vertical rate of solar and atmospheric light reduction) are functions of both

the IOPs of the substances in the medium and the geometry and structure of the

ambient light field (Mobley 1994).

IOPs are generally additive 1, so the total absorption or scattering coefficients

of coastal ocean waters can be can be attributed to the sum of the optically or

operationally distinct fractions present in the mixture. As an example, the fol-

lowing equations describe the total spectral absorption (a(λ)) and total spectral

backscatter (bb(λ)) (scattering in the backwards direction from the initial pho-

ton trajectory) of ocean waters as a sum of its broadly-defined optically unique

1Provided particles are separated by at least 3X their radii for scattering, and assuming no
packaging effect for absorption.
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constituents:

a(λ) = aw(λ) + aφ(λ) + aNAP (λ) + aCDOM(λ) + . . . (2.2)

bb(λ) = bbw + bbφ(λ) + bbNAP (λ) + . . . (2.3)

where the subscripts denote example contributions from water (w), phytoplank-

ton (φ), Non-Algal Particulates (NAP ) and Chromophoric (Coloured) Dissolved

Organic Matter (CDOM).

IOPs are wavelength-specific (denoted by (λ) in Eq. 2.2 and 2.3), so spectral

observations of the total IOPs may theoretically be decomposed into their sep-

arate constituent IOPs if each expected constituent’s spectral shape was known

a priori. This Chapter discusses attempts to measure the spectral shapes of the

operationally-defined in-water constituents and their relationship with the water

quality parameters namely, TSS, Chl-a (or TChl) and DOC. The significance of

this initial Chapter will become apparent in Chapter 3.1 when it is demonstrated

that passive multi or hyper-spectral measurements of the AOP remote sensing

reflectance (Rrs) may be used to determine the water’s surface IOPs. This then

allows TSS, Chl-a and DOC concentrations to be estimated optically from a re-

mote location.

2.1.2.3 Absorption

When a photon passes within close proximity to a molecule, the molecule may

absorb this light energy and retain the energy in another form. Each molecule is

able to possess energy in a number of ways. The molecule can be energised to

rotate about its inertial reference frame, the bonds between atoms in the molecule

can be stretched and restored; exhibiting vibrational energy, and electrons within

the molecule can be promoted to higher energy states. Thus an absorbed pho-

ton can add rotational, vibrational or electronic energy to a molecule. Quantum

mechanics predicts that each of these types of energy expressions may only exist
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in discrete or quantised states. So for example, a molecule may only exhibit four

different energy rotational states, three different energy vibrational states and

six different energy electronic states. These permissible energy levels are depen-

dent on the general structure of the molecule, the types of atoms that exist in

the molecule and their arrangement, so each molecule has unique set of energy-

level features. If a photon possesses the required energy to excite any of these

states from their initial energy levels to a higher permissible energy level, then

the photon can be absorbed. The number of possible transitions within and be-

tween rotational, vibrational and electronic2 modes of a molecule typically results

in a broad selection of light energies being absorbed. However, the underlying

discrete nature of molecule-specific energy levels can permit the identification of

the molecule by just observing the spectral (energetic) nature of light absorption

within the medium.

Phytoplankton contain chlorophyll and accessory pigments that exhibit strong

absorption around 440 nm and 676 nm. This leads to the absorption of blue and

red light, leaving green light to be scattered back to the observer. This absorp-

tion and scattering gives rise to the apparent green colour of the ocean during

phytoplankton blooms. Due to the complex rotational, vibrational and electronic

excitation energy structure of organic molecules, these spectral features are much

broader than spectral absorption properties of simpler substances like the metal-

lic atoms inside the chlorophyll molecule.

Fluorescence can sometimes be observed after the process of absorption. Fluores-

cence refers to the emission of a lower-energy photon of light from the particle,

after being illuminated by photons of a higher energy. Fluorescence occurs in sub-

stances whose discrete electronic energy levels are spaced sufficiently close so that

when electrons make a transition from a high energy state to a low energy state,

visible light is emitted. The photosynthetic pigment chlorophyll-a is a fluorescent

pigment that absorbs blue light and emits deep-red fluoresced light. Chlorophyll-

a fluorescence can be used to quantify chlorophyll-a concentration. The angular

2not mentioning other quantum intricacies such as electron spin, nuclear magnetic moments
and other interactions outside the scope of this thesis. . .
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distribution of fluoresced light is isotropic. Fluorescence is also sometimes re-

ferred to as inelastic scattering, because the original source of the energy is from

an incident photon which is absorbed in the process.

2.1.2.4 Scattering

Elastic scattering refers to the re-direction of light from its original path due to

inhomogeneities in the medium the light travels through. Scattering interactions

are categorised under different names, however they all stem from the same in-

homogeneity (Bohren & Huffman 1983).

Consider a stream of photons (light) impinging on a single particle, suspended

in water. A portion of the photons will interact with the particle boundary, to

be reflected backwards from the original direction of motion. Secondly, a portion

of the incident photons will actually enter the particle, and will refract (change

direction) when passing though the particle. The angular deflection is described

by Snell’s Law. Thirdly, a portion of the incident photons will travel very close

to the particle edge, and their trajectory will bend or diffract around the edge.

The relative probabilities of these interactions depends on the particle size and

the relative refractive index between the particle and the medium (i.e. water).

In ocean optics, relative refractive indices of hydrosols are close to unity (Fournier

& Forand 1994). This allows Rayleigh-Gans scattering approximation theory to

describe and predict scattering for small particles present in the ocean. Fortu-

nately, the scattering of larger spherical particles can be predicted by anomalous

diffraction theory based on Huygen’s Principle and geometrical optics (van de

Hulst 1981).

The most comprehensive scattering parameter is the Volume Scattering Function

(VSF), formally defined as the scattered radiant intensity, I (in W.sr−1) measured

at angle θ from the incident ray, emanating from an elemental volume dV (in

m3) which is being irradiated by irradiance E (in W.m−2). The units for VSF
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are inverse steradians (sr−1) (Kirk 1983),

β(θ) =
dI(θ)

EdV
. (2.4)

By integration of the VSF, one may determine the two other commonly used

scattering parameters; total scattering (b) and backscattering (bb) respectively,

b = 2π

∫ π

0

β(θ) sin(θ)dθ, (2.5)

bb = 2π

∫ π

π
2

β(θ) sin(θ)dθ. (2.6)

Total scattering refers to light scattered in any direction with reference to the

original beam’s direction. Backscattering refers to the fraction of light incident

on the medium which is scattered in the backward direction, i.e. from 90 degrees

(π
2

radian) to 180 degrees (π radian) away from the original photon direction.

The ratio of the backward to total scattering is referred to as the backscattering

ratio (unitless),

B =
bb
b
. (2.7)

Another commonly used term is the phase function (β̃(θ)), which is the VSF

normalised by the total scattering. The phase function is expressed in units of

sr−1:

β̃(θ) =
β(θ)

b
. (2.8)

For ocean colour remote sensing applications, backscattering is the most relevant

parameter for it is the backscattering process that returns photons from the ocean

upward to the satellite (Mobley et al. 2002). As expressed by Gordon et al. (1988)

and Lee et al. (1999), the remote sensing reflectance (Rrs), is a function of the

backscattering coefficient (bb),

Rrs ∼ f
bb

a+ bb
, (2.9)

where a is the absorption coefficient and f is considered a constant for the pur-
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poses of this section (Chapter 3 deals with determining f and studying any func-

tional dependence). Rrs is expressed in units of sr−1.

A number of studies (Oishi 1990, Maffione & Dana 1997, Boss & Pegau 2001,

Sullivan & Twardowski 2009, Sullivan et al. 2013) show that due to the consis-

tency of the shape of oceanic VSFs in the backward direction, measuring the

VSF at one angle may be sufficient to reliably estimate the backscattering coeffi-

cient. Considering the relatively straightforward engineering required to measure

scattered light at only one angle, a number of commercially available single-angle

backscattering devices exist e.g. the ECO (WET Labs 2005), Hydroscat (HOBI-

Labs 2008) and the OBS-3 (D&A 2006).

In situ multiple angle detectors resolving portions of the VSF include the commer-

cially available LISST-100X (0.05 - 14◦) (SEQUIOA Scientific 2008) and ECO-

VSF (100, 120, and 150◦) (WET Labs 2004) instruments. However, these do not

cover the entire range of scattering angles from 0 to π radian. Higher angular

coverage instruments currently providing the largest angular range in situ VSF

measurements include the Multi-spectral Volume Scattering Meter (MVSM) (0.6

- 177.3◦) (Lee & Lewis 2003) and the Multiple-Angle SCattering Optical Tool

(MASCOT) (10 - 170◦), (Twardowski et al. 2012), although these instruments

are still under development and are not yet commercially available.

2.1.2.5 Practical IOP Measurements

Quantitative optical transmission measurements are perhaps the most conceptu-

ally straightforward measurement. Consider a collimated beam of radiant flux

(Js−1) incident on a rectangular slab of a particular medium of thickness (dl) as

pictured in Figure 2.5. Of the light Φ0 that impinges on the slab, a fraction Φl

will be transmitted to the other side of the medium; thus the incident light is

attenuated by the medium.

Provided that scattered light is removed from the original beam, and that scat-

tered light does not re-join the original light path, then the attenuation coeffi-
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cient c of incident flux described above is expressed mathematically by the Beer-

Lambert relationship,

Φl = Φ0e
−cl, (2.10)

where Φ0 is the incident flux, Φl is the transmitted flux, l is the path length of

the medium and c (in m−1) is the (beam) attenuation coefficient. Re-arranging

Eq. 2.10 determines the beam attenuation coefficient,

c = −
ln( Φl

Φ0
)

l
, (2.11)

where the beam attenuation coefficient consists of the sum of absorption a and

total scattering b, namely,

c = a+ b. (2.12)

The Beer-Lambert relationship (Eq. 2.10) is the basis behind spectrophotome-

tery, were radiant flux through a sample is measured by light detectors as either

a potential difference in volt or a digitised detector count. In reality, the trans-

mitted radiant flux is difficult to measure directly, requiring an instrument with a

stable power supply, lamp of known spectral emission, clean detector optics and

regular lamp re-calibration or replacement. To minimise these problems, most

spectrophotometers measure radiant flux Vs of the sample of interest relative to

a sample blank measurement Vb (usually pure water in the ocean optics field).

Figure 2.5: Transmission of radiant flux through a slab of known thickness, dl
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Dual-beam spectrophotometers perform the blank and the sample measurement

simultaneously with two different optical paths and detectors. This requires the

use of a pair of matched cuvettes which are optically identical, and a baseline

measurement where the two different combined detector responses (V0s, V0b) are

measured with both the sample and reference cuvettes filled with the same sub-

stance (usually pure water). These four measurements are used to determine cpg,

cpg = −
ln(VsV0b

VbV0s
)

l
, (2.13)

where cpg is a commonly used designation in ocean optics to denote attenuation

due to particles and gelbstoffe (CDOM), without the pure water contribution, Vs

is the voltage measured by the detector for the sample, Vb is the voltage measured

by the detector for the blank, V0s is the voltage measured during the baseline scan

of the sample path, V0b is the voltage measured during the baseline scan of the

reference path, and l is the optical path length.

It should be noted that the dual beam reference spectrophotometer technique

measures attenuation above that of the instrument blank (in this case pure wa-

ter, cw). Determining the total attenuation c from cpg requires the addition of

the attenuation of pure water, which is documented by Pope & Fry (1997) and

Mitchell et al. (2003).

The transmission configuration is also used to determine the absorption of a

medium. As the photodetector needs a finite collection area to receive photons

in any instrument setup, these instruments will always collects a fraction of the

near forward scattered light. For measuring absorption, the photodetector geom-

etry is optimized to capture as much of the scattered light as possible, with the

goal of reducing b in Eq. 2.12, and/or accurately estimating it. This procedure

involves some or all of the following steps: 1) placing the sample as close to the

detector as possible (Mitchell et al. 2000), 2) using a diffuser in front of the de-

tector to capture scattered light (Yentsch & Phinney 1989), and / or 3) using a

reflective cuvette to re-direct scattered light towards the detector (Zaneveld et al.
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1994). Once these efforts have been implemented, then various assumptions can

be applied to remove the residual scattering from the measurement to yield an

absorption coefficient. These assumptions are discussed in Zaneveld et al. (1994),

McKee et al. (2008) and are addressed later in the dissertation, specific to my

methodology.

To detect scattering, instead of placing a detector in-line with the incident beam

as in the transmission configuration, off-axis radiance detectors are placed relative

to the incident beam in order to capture scattered light emanating from the

sample volume. If the incident irradiance (E) and scattering sample volume

(dV ) are known, then by using Eq. 2.4, a measurement of the scattered radiant

intensity dI can yield a scattering measurement β(θ). Typically, the geometry

of off-axis scattering detectors and divergent light sources makes the product

(EdV ) difficult to determine analytically. However, instrument manufacturers

empirically calibrate their instruments in order to determine a scaling factor which

relates detector counts directly to β(θ) (Sullivan et al. 2013).
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2.2 Materials and Methods

2.2.1 Sampling Summary

Collecting data for developing an algorithm suitable for applying to satellite im-

ages of the whole GBR region across different seasons is a challenging task. In an

attempt to represent the water quality and optical conditions experienced across

the GBR over seasons, effort was made to sample as widely as possible and as

frequently as possible. Field trips were conducted on research vessels across a

large section of the Queensland coastline on alternate dry/wet season regimes,

(see Figure 2.6 and Table 2.2).

2.2.2 Water Quality

At each station, a series of Niskin water sampler bottles were used to collect water

from multiple depths. Surface waters <2 m were always sampled and samples

were usually also taken from mid-water column depth in coastal waters (varying

from 6 to 15 m depth). Water was immediately drawn from the Niskin bottles

to prepare sub-samples for analysis.

For chlorophyll-a measurement, duplicate water samples were drawn from Niskin

bottles into sample-rinsed 250 ml measuring cylinders. These samples were fil-

tered through pre-combusted 25 mm Whatman GF/F filters at low vacuum.

Filters were then folded in half (towards the particle-laden side), wrapped in

pre-combusted aluminium foil, labeled and stored at -20 ◦C. Chlorophyll a

and phaeopigment concentrations were determined by fluorometry with a Turner

10AU fluorometer after a dark extraction in 90% acetone and acidification with

0.1 M HCl (Parsons et al. 1984). Filter pads were ground to assist the extrac-

tion process. Fluorescent standards were analysed by spectrophotometry using

the equations of Jeffrey & Humphrey (1975). The sum of the chlorophyll-a plus

phaeopigment will be referred to herein as TChl (Babin, Stramski, Ferrari, Claus-

tre, Bricaud, Obolensky & Hoepnffner 2003).
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Figure 2.6: Region of interest and the 339 sampling sites shown with black circles.
Not all parameters of interest were able to be measured at all sampling sites.
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For TSS measurement, 0.4 µm pure polycarbonate (Poretics R©) membrane filters

were prepared prior to fieldwork by drying them overnight at 60 ◦C, and then

pre-weighing them on a 0.01 mg precision balance. During fieldwork, duplicate

water samples were drawn from Niskin bottles into volume-marked 1 litre High

Density Polyethylene (HDPE) bottles which were pre-rinsed with sample water.

These bottles were inverted directly over the filtering funnel containing the pre-

weighed filter. This allowed any heavier particles to end up on the filter, rather

than being stuck on the side of the sample bottle, and also protected the sam-

ple from airborne particle contamination. The filters were not rinsed to remove

salts; however, filtered seawater blanks were prepared to quantify the small mass

of salt in the water retained on the membrane filters. The particle-laden filters

were folded in half and stored in clean, pre-combusted glass scintillation vials.

Upon returning to the laboratory, filters were dried overnight at 60 ◦C, and then

post-weighed on the same 0.01 mg precision balance.

DOC samples were drawn from Niskin bottles into a sample-rinsed HDPE sy-

ringe and 10 ml samples filtered via a 0.45 µm Sartorius Minisart cartridge into

sample-rinsed 12 ml plastic tubes. Samples were acidified with 100 µl of AR

grade 12N HCl and refrigerated for no longer than three weeks before analysis

with a SHIMADZU TOC-5000A Analyser.

Whilst at station, Secchi disk measurements were made. A solid white disk of

30 cm diameter was lowered vertically into the water column with a rope. The

depth at which the Secchi disk was no longer visible by the observer was recorded.

Multiple observers were used for this data set.

2.2.3 Conductivity, Temperature and Depth (CTD) Pack-

age

The combination of simultaneously acquired conductivity, temperature and depth

(CTD) measurements is extremely valuable for identifying different water masses.

The conductivity and temperature measurements are combined to determine the
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salinity of the water mass which is useful for identifying the presence of river-

ine inputs. The CTD instruments used in this study were equipped with opti-

cal instruments including a pumped WET Labs chlorophyll fluorometer, beam

transmissometer (see attenuation section 2.1.2.5) and a Biospherical Photosyn-

thetically Active Radiation (PAR) scalar irradiance sensor. At nearly all stations

visited, a CTD cast was initially performed to classify the physical conditions for

that station. Upon station arrival, the CTD package was lowered into the water

just below the surface where it was allowed to equilibrate for approximately 1

minute. After this time, the CTD was lowered into the ocean at 1 ms−1. The

CTD was preset to average eight individual CTD measurements and store the

result to the internal data file at 4 Hz. The deepest depth sampled depended on

the site. In shallow coastal waters the CTD was lowered to within a few meters of

the bottom. In deep oceanic waters, CTD profiles were limited to approximately

300 m.

All CTD data was post-processed to remove near-surface data taken during the

equilibration period after immersion. Wherever a discrete water sample was

taken, all CTD data within ± 0.5 m of the bottle depth was extracted, aver-

aged and stored for comparison with water quality measurements. For surface

water sampling, all CTD data between approximately 0.5 m and 1.5 m deep was

extracted for comparison with laboratory analysis of the discrete water sample

from the surface Niskin bottle.

2.2.3.1 CTD Optical Instrument Calibration

The performance of in situ optical instrumentation, including the beam transmis-

someter, chlorophyll fluorometer and optical backscatter sensor can be affected

by ambient temperature and pressure, descent or flow rate, bio-fouling and the

accumulation of grime when not in use. Changes in sensor sensitivity or per-

formance may also change in time due to optical alignment or semiconductor

detector sensitivity degradation. To counter these potential issues, CTD optical

data was post-calibrated when possible with in situ field samples on a per-trip

basis. All of the optical instruments used on the CTD profilers produce an analog
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voltage in response to various water quality parameters, which is recorded by the

data-logger in the CTD. These voltages are converted to engineering units (i.e.

chlorophyll concentration, Nephelometric Turbidity Units (NTU) etc.) via two

coefficients, a linear slope (sometimes referred to as a gain or multiplier) and an

offset (or dark current) coefficient.

The Wet Labs Wetstar fluorometer uses Equation 2.14;

Engineering Units = (V oltage−Offset)× Slope. (2.14)

The NTU sensors and transmissometers use Equation 2.15:

Engineering Units = (Slope× V oltage) +Offset. (2.15)

For the benefit of potential users of these optical instruments and to monitor

instrument stability over time, slopes and offsets were determined from raw volt-

ages and expressed in the relevant formats used in 2.14 and 2.15 so these newly

derived coefficients can be added to the respective CTD package configuration

files for automatic processing by the CTD software. Table 2.3 shows the older

calibration information for the sensors.

Package Instrument Slope Offset Units Date
SBE25 OBS SN1046 200 0 NTU 18/6/1997
SBE25 Wetstar WS3S-163 0.332 0.057 µg−l 27/6/1996
SBE25 Trans 105/2894/045 26.9370 -0.2690 % 3/7/1996

SBE19+ OBS SN2169 400 0 NTU 4/9/2003
SBE19+ Wetstar WS3S-948P 15 0.065 µg−l 17/3/2003
SBE19+ C-Star CST-653PR 20.0338 -1.1019 % 14/3/2003

Table 2.3: Pre-existing CTD Factory calibration information.

In the case of the transmissometer used on the SBE25 CTD profiler, the manufacturer-

provided calibration values gave transmissions in excess of 110 % in some of the

lagoon and reef matrix waters sampled - a physical impossibility. The original fac-

tory transmissometer calibration was intended to read somewhere between 90.2

and 91.3 percent for a 0.25 m path-length 660 nm transmissometer (SBE 2003) in
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water, because the transmission is referenced to air. Non-physical transmissions

in excess of 110%, roughly 20% greater than the theoretical maximum transmis-

sions recorded was cause to re-evaluate the calibration of the transmissometer.

In order to calibrate the beam transmissometers, ideally they would be cleaned

and then their detector voltages would be recorded whilst immersed in pure wa-

ter. Additionally, the “dark” voltage should be measured; the response of the

detector with the detector lens occulted from any light source. If the electrical

engineering is decent, the dark current voltages should not fluctuate apprecia-

bly from the factory defaults. During the field campaign, pure water immersion

is impractical. However, there were regions in the GBR where the deep water

around 200 m should be clear enough to approximate the pure water response of

the transmissometer. For each transmissometer, the maximum recorded voltages

were used as the pure water reference, so transmission is determined by Eq. 2.16:

T =
Vm − Vd
Vclean − Vd

, (2.16)

where T is the transmission, Vm is the measured voltage, Vd is the factory mea-

sured dark voltage and Vclean is the highest measured voltage in clear waters.

The newly derived calibration values for the beam transmissometer are shown

in Table 2.4, however potential users should be aware that these values are now

referenced to very clear sea water, not air, thus beam attenuation coefficients de-

rived from the new transmission coefficients will be slightly underestimated and

will only be due to particles and dissolved substances, cpg. Additionally, cpg mea-

surements are dependent on the acceptance angle of the transmissometer being

used (Boss et al. 2009). The beam attenuation coefficient of water at 660 nm,

approximately 0.364 m−1 (Pope & Fry 1997, Pegau et al. 2002), can be added if

total beam attenuation is required. The magnitude of the underestimation of cpg

may be roughly estimated by observing the y-intercept between a plot of cpg and

TSS 3. Figure 2.7a and b shows the beam attenuation coefficient of particles and

dissolved substances versus TSS for all non-surface samples at all locations. Sur-

3Although CDOM and particle composition will subtly influence the y-intercept
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face bins of CTD data were highly variable, presumably due to surface bubbles

and so were left out of this scatter-plot and regression. Additionally, data from

the KBY stations was left out due to noticeably dirty optical windows.

Figure 2.7: a) Beam attenuation coefficient at 660 nm versus TSS. b) Data as in
a), but re-scaled. c) Total Suspended Solids versus OBS sensor voltage responses,
(from left to right) SBE19+, SBE25 in 2002 only, SBE25 from 2004-2006. d) Wet-
star Chlorophyll Fluorometer voltage versus discrete chlorophyll analysis (SBE25
in 2002 upper, SBE19+ 2004-2006 lower

The integer OBS sensor calibration slopes in Table 2.3 (200 and 400, respectively)

imply no calibration is performed on individual sensors unless electronic calibra-

tion is done by the manufacturer, and the zero offset implies that the dark current

of the semiconductor light detector used in the OBS sensor is non-existent. Addi-

tionally, the engineering units for this ‘calibration’ are NTU, which should strictly

apply only to measurements made at right-angles from the incident beam. This

is probably not the case, so the NTU calibration is considered suspect and is

instead calibrated in terms of total suspended solids concentrations measured in

situ.
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Figure 2.7c shows three distinct populations of TSS versus OBS voltage relation-

ships. From what information is available, the two rightmost relationships come

from the same instrument (SN1046) on the same sensor package, but were col-

lected over different years. This highlights the importance of maintaining CTD

documentation to end users or performing regular in-house calibration exercises

to monitor changes to the responsivities over time. Fortunately, in this case, we

see clearly defined differences which allow suitable calibration equations to be

developed for particular time periods. These are given in Table 2.4

The chlorophyll fluorescence response as a function of chlorophyll concentration

is highly variable, both within regions and within species under different light

regimes. It is desirable that the fluorescence response is calibrated with field

samples of the water where the chlorophyll fluorometer is used. Figure 2.7d

shows the in situ data set used for calibrating the chlorophyll fluorometers.

The chlorophyll fluorometer on the SBE25 profiler did not show any significant

correlation with discrete chlorophyll measurements in 2006, and so this data was

discarded from the calibration data set.

Package Instrument Slope Offset Units Date
SBE25 OBS SN1046 308.119 -3.75861 mg−l 2002 only
SBE25 OBS SN1046 176.910 -3.52525 mg−l 2004-2006
SBE25 Wetstar WS3S-163 0.147556 0.236532 µg−l 2002 only
SBE25 Trans 105/2894/045 24.1820 -0.0412963 percent 2002-2006

SBE19+ OBS SN2169 589.415 -1.75550 mg−l 2004-2006
SBE19+ Wetstar WS3S-948P 0.182506 0.0531380 µg−l 2004-2006
SBE19+ C-Star CST-653PR 21.9573 -0.250496 percent 2004-2006

Table 2.4: New CTD Calibration information - note transmissometers are now
referenced to read 100 percent in pure water, not air

2.2.4 IOPS

2.2.4.1 Dissolved Absorption

CDOM absorption measurements were made with either a benchtop spectropho-

tometer or a submersible mutli-wavelength absorption and attenuation meter

(WET labs ac-9) with a 0.2 µm pre-filter. For benchtop measurements, 200
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ml sea water samples were taken for CDOM absorption measurement, drawn

from a Niskin bottle into a sample-rinsed syringe and then filtered via a 0.45

µm Minisart R© cartridge into HCl-washed and sample-rinsed Teflon bottles. For

physical consistency, the 0.45 µm pore size was chosen to match the filter used

for the the Dissolved Organic Carbon (DOC) sample (Schaffelke et al. 2011).

Additionally, this 0.45 µm nominal particle size cutoff complements the GF/F

particulate measurements, which retain particles larger than 0.5 - 0.7 µm (dis-

cussed previously).

To avoid issues with sample degradation, samples were either stored at room

temperature for no longer than two hours before measurement, or stored in re-

frigeration overnight and then allowed to equilibrate in room temperature for up

to 2 hours. All samples were drawn in subdued lighting and stored in the dark

until measurement with the spectrophotometer. Matched 10 cm path-length

quartz cuvettes were used in a 2 nm bandwidth dual beam Shimadzu UV-Vis

1601 spectrophotometer or a 1 nm bandwidth Shimadzu Pharmaspec 1700 spec-

trophotometer. The optical density of the sample was measured from at least 400

nm to 800 nm, recording in 1 nm steps. Reference water was fresh Milli-Q cre-

ated on demand at ambient laboratory temperature from a Nanopure system with

reverse osmosis source water and filled directly into the Milli-Q rinsed cuvettes.

A spectrophotometer baseline correction spectrum was collected with two pure

water references for every new measurement session. For most CDOM measuring

sessions, a spectrum ‘blank’ was acquired immediately after the baseline correc-

tion spectrum was collected to ensure the accuracy of the baseline measurement.

These initial ‘blank’ spectra were recorded to monitor the magnitude of the instru-

mental noise. To monitor any instrumental drift or to identify effects of possible

reference contamination during the initial baseline scan, an additional ‘blank’ ref-

erence scan was often performed towards at the end of measuring sessions. When

available, this final ‘blank’ spectrum was subtracted from the measurements for

that recording session.

A small subset of CDOM absorption measurements were performed with a WET

Labs ac-9 submersible spectrophotometer with a 0.2 µm Pall R© pre filter. With
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the ship stationary, the ac-9 was initially submerged at 3 m to purge bubbles from

the flow tubes and optical pathlength. The system was then raised to approx-

imately one meter below the surface and allowed to equilibrate with the water

for one to two minutes. Vertical profiles were made with a slow decent rate of

approximately half a meter per second. Upcast data was discarded, and cast

data was binned to provide averaged data at nominal depths co-incident with

Niskin bottle DOC samples. The median of ac-9 data within each bin was used

for further analysis.

For CDOM measurements, the raw optical densities measured by the dual beam

spectrophotometer were converted into absorption coefficients by:

a′CDOM(λ) =
2.303

l
ODs(λ), (2.17)

where a′CDOM(λ) is the raw CDOM absorption (m−1), l is the cuvette length in

meters and ODs(λ) is the optical density of the sample as measured from a dual

beam spectrophotometer (negative log base 10 of the transmission).

The ac-9 is calibrated in Napierian (absorption (m−1)) coefficients, and so ac-9

data did not need to be converted prior to the null point correction.

Despite the fact that CDOM samples are filtered with a 0.45 µm filter, and are

considered to be wholly comprised of dissolved material, scattering errors may still

be present in ‘dissolved’ absorption measurements. This error is introduced when

a fraction of light incident on the spectrophotometer sample is not detected by

the spectrophotometer, and is attributed erroneously to sample absorption. This

effect is usually corrected by subtracting a spectrally constant null-point value

from each measurement. Due to the widely-observed exponential spectral shape

of CDOM absorption in the visible, a Near Infra-Red (NIR) null point wavelength

is recommended (Mitchell et al. 2003), where sample absorption is assumed to

be zero. This widely used scattering correction assumes that the optical density

at the chosen null point is due entirely to scattering in the medium, and that

the scattering of light is wavelength independent. This is known not to be the
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case for scattering from particles with a size similar to the wavelength of light

(van de Hulst 1981); however the actual light lost is usually small relative to the

magnitude of the desired absorption signal in the visible and NIR regions, so this

simple correction is routinely applied. Due to the different concentrations and

variable nature of CDOM in coastal waters, the exact wavelength of the null-point

correction is left to the researcher’s discretion (Mitchell et al. 2003), and thus can

introduce some methodological variability in the reported absorption coefficients

and downstream derived products. In addition, spectrophotometric absorption

measurements in the NIR region are extremely susceptible to sample-reference

temperature and salinity difference-related variability during measurement. This

variability would increase the uncertainty of the overall determined absorption

coefficients if the NIR region is not chosen carefully (Mitchell et al. 2000). Fortu-

nately, studies have been performed to document the temperature-specific absorp-

tion coefficients (Langford et al. 2001) and salinity-specific absorption coefficients

of water (Sullivan et al. 2006, Pegau et al. 1997), which would allow for a better

null-point wavelength decision to be made.

In this study, the null point was calculated from the average raw CDOM absorp-

tion (a′CDOM) measured at 715, 725 and 770nm. Using these three data points

in determining the null point value minimizes the influence of instrumental noise

on the result, and these wavelengths were selected for minimal temperature and

salinity effects based on the aforementioned studies. The null point corrected

CDOM absorption spectrum was determined by:

aCDOM(λ) = a′CDOM(λ)−
(
a′CDOM(715) + a′CDOM(725) + a′CDOM(770)

3

)
.

(2.18)

Figure 2.8a shows a number of spectrophotometer scans performed with Milli-

Q reference water sample in the cuvette, made over time throughout a normal

spectrophotometric measurement cycle, in between baselines. To estimate the

spectrophotometer uncertainty, these scans were averaged to determine a mean

and a standard deviation spectrum. The mean spectrum represents the average

spectral bias exhibited during the measurement process due to consistent base-
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line drift, and the standard deviation spectrum shows the spectral nature of the

uncertainty which could be likened to the detection limit. Figure 2.8b shows the

near-zero average spectral bias and the baseline uncertainty spectrum. To de-

termine the overall uncertainty of a CDOM measurement for use in proceeding

plots and calculations, the baseline uncertainty (Figure 2.8b) is added to standard

deviation of the 3 different wavelengths (715,725,770) used for each scan’s null

point correction. The order of magnitude is comparable to the detection limits

of other researchers (Bricaud et al. 1981, Carder et al. 1989, Warnock et al. 1999).

a) b)

Figure 2.8: a) CDOM blank set spectra b) Post-session CDOM blank average
(spectral bias) and standard deviation (detection limit).
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2.2.4.2 Particulate Absorption

To determine the absorption of suspended particulates, particulate matter in sea

water was concentrated onto GF/F filters and then measured using the quan-

titative filter technique (QFT) (Mitchell et al. 2000, 2003) with the Shimadzu

1601 bench-top spectrophotometer. Depending on the particle load, between 250

ml and 2000 ml of sample was filtered under vacuum pressures less than ap-

proximately 25 kPa to minimize cell rupture. Filter funnels were rinsed with

approximately 20 ml of 0.45 µm filtered seawater to include particles adhering

to the sides of the apparatus. Sample filter pads were either stored flat on clean

and dry plastic petri-dishes in a dark refrigerator for no longer than 4 hours prior

to measuring, or stored in 1 cm diameter cryogenic vials which were immediately

placed in liquid nitrogen and stored for less than one month.

A specially designed filter holder was inserted into the Shimadzu UV-Vis 1601

dual beam spectrophotometer’s optical path to position the filter pads as close as

possible to the detectors (see Figure 2.9). The filters sat on very thin glass cover

slips so that the particle-laden side was facing the detector.

Figure 2.9: Filter pad position with respect to the spectrophotometer window

Before every measurement, the filter/glass interface was inspected for excess mois-

ture, and was corrected if necessary by removing the filter and delicately blotting

absorbent, lint-free tissue on the glass mounting surface. A set of blank refer-

55



ence filter pads were soaked in 0.45 µm Filtered Sea Water (FSW) for 4 hours

in the dark, and spectrophotometric baseline correction spectra were acquired

with two pre-soaked blank filter pads. After the baseline was collected, refer-

ence filter blanks were measured as samples to determine the baseline flatness.

By observing repeat spectrophotometric measurements of the same filter pad af-

ter successive removal and re-mounting, it was visually determined that optical

density measurements performed at wavelengths greater than 920 nm were non-

zero and inconsistent. The cause of the inconsistency was possibly due to the

large absorption coefficient of water in this spectral region (Langford et al. 2001),

combined with the subtly varying thickness of the moist filter pad medium after

successive re-mounting. Each sample was scanned from 400 nm to 900 nm, and

the absorbance was recorded at 1 nm intervals.

To differentiate between the total particulate absorption due to the phytoplank-

ton and other detrital or mineral particles on the sample filter, the particulate

sample was removed and bleached of algal pigments, and then re-measured as the

non-algal fraction of the initial sample (referred to herein as Non-Algal Particulate

(NAP)). A variety of solvents were initially tested to remove the phytoplankton

pigments from the filter pads including methanol, acetone, ethanol and sodium

hypochlorite (bleach) solution. Each solvent was evaluated based on their ability

to remove the signature phytoplankton chlorophyll absorption peak at 676 nm

and Trichodesmium pigments after a 30 minute soaking period followed by rins-

ing with 30 ml of 0.45 µm filtered sea-water. The sodium hypochlorite solution

is inexpensive and removed the absorption effects of both regular phytoplankton

and Trichodesmium rapidly. Repeat trials showed that a double 5 minute soak-

ing treatment of 5 ml 10% NaClO solution was effective in removing the optical

effects of phytoplankton photosynthetic pigments, as other researchers reported

(Tassan & Ferrari 1995). This treatment became the routine pigment removal

method for this study, and blank filters were prepared with the same bleaching

and rinsing regimen to compensate for residual NaClO on the filters.

Each scan (total particulate (p) and Non-Algal Particulate (NAP)) was converted
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from optical density into absorption coefficients as described in Mitchell et al.

(2003). i.e.

ap =
2.303Af
βfVf

[ODfp −ODnull], (2.19)

aNAP =
2.303Af
βfVf

[ODfp −ODnull], (2.20)

where Af is the filter pad collection area (based on vernier caliper diameter mea-

surements), Vf is the volume of seawater passed through the filter, ODfp is the

optical density of the sample filter pad (relative to a FSW moistened filter pad),

ODnull is the estimated scattering error of the sample, and βf is the pathlength

amplification factor of the filter matrix; initially set to βf = 2 (Roesler 1998).

The phytoplankton absorption aφ(λ) can be estimated from the additive nature

of IOPs:

aφ(λ) = ap(λ)− aNAP (λ). (2.21)

In addition to the routine Transmission QFT particulate measurement described

above and in Mitchell et al. (2000, 2003), a variation was performed to investi-

gate the implications of conclusions made by Tassan & Ferrari (1995) for particles

from turbid coastal waters of the GBR. They assert that sample backscattering

from “high” concentrations of suspended inorganic particles leads to spurious ab-

sorption in standard transmission QFT measurements. To determine whether

inorganic sample backscattering or increased path length affected the standard

transmission measurement-derived phytoplankton absorption (the result of Eq.

2.21), a simple Dual Filter measurement protocol was established. This protocol

attempted to match the sample and reference inorganic sediment content to pro-

vide phytoplankton absorbance data. Duplicate filter pad samples were collected,

filtered and stored as described previously. The modified QFT measurements

consisted of scanning both particulate sample filters (P1 and P2) with a FSW

moistened filter blank as reference, bleaching and measuring the first bleached

filter (NAP1) with a FSW moistened filter blank, and then measuring the un-

bleached sample (P2) with the bleached sample as the reference. The unbleached

sample was then bleached and measured relative to a FSW moistened filter blank.

To correct for differences between the duplicate filter samples non-algal loading,

57



the second bleached filter was measured relative to the first bleached filter. The

measurements performed per station are outlined in Table 2.5:

Scan Sample Reference
1 P1 blank
2 P2 blank
3 NAP1 blank
4 P2 NAP1
5 NAP2 blank
6 NAP2 NAP1

Table 2.5: Dual Filter measurement procedure.

Considering the dual-beam spectrophotometer’s reference was chosen to be a

FSW-moistened filter pad which should closely match the particle laden filter

pad, any signal measured by the spectrophotometer should be due to the sample

alone. In the standard QFT or dual-sample methods based on spectrophotometry

(i.e. Eq. 2.19), it was necessary to estimate the magnitude of the spectrophoto-

metric scattering error for each sample (ODnull(λ)). The scattering error may be

estimated from the ODfp(λ) measurement by relying on two assumptions. The

first is that there is negligible non-algal particle / mineral absorption in the NIR

(Babin & Stramski 2002, 2004), so in this region ODfp(NIR) consists entirely of

scattering error (i.e. ODfp(NIR) ≈ ODnull(NIR)). The second assumption is

that the spectral properties of scattered light in the visible and NIR regions follow

a power-law function (as theoretically determined for a Junge-type seawater con-

stituent population) (Forand & Fournier 1999, Twardowski et al. 2001, Doxaran

et al. 2007). By fitting a power law function (parameters A and K in Eq. 2.22)

to the measured ODfp(λ) spectrophotometric optical density measurements from

750 nm to 920 nm, a full-spectrum scattering error estimate can be made by

extrapolation:

ODnull(λ) ≈ Aλ−γb +K, (2.22)

where λ is the wavelength, γb is the hyperbolic slope of the particulate scattering

spectrum (bp(λ)), A is the amplitude proportional to the pathlength amplification

factor and the magnitude of scattering, and K is a linear offset proportional to
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spectrally-independent differences between the baseline and the sample OD. A

and K are model fit parameters based on ODfp(NIR) measurements.

A similar NIR-to-visible extrapolation was performed by Dall’Olmo & Gitelson

(2006), however they used a linear spectral dependency which does not have a

theoretical basis unlike the power-law function.

It is important to note that aφ(λ) as determined with this de-pigmentation

methodology does not discriminate between living and detrital algal pigments

(phaeopigments). Distinction between these two pigment sets is necessary if more

precision is required in using remote sensing to estimate primary production.

Thus,

aφ(λ) = aφliving(λ) + aφdetrital(λ) (2.23)

Similarly, the NAP measurements can be thought of as a combination of absorp-

tion contributions from minerals, living phytoplankton cell walls and detrital cell

walls. The term NAP is inappropriate, for the measurement contains information

about both previously living and detrital algal cell walls (acell). For example the

contributions may be written as,

aNAP (λ) = amin(λ) + acellliving(λ) + acelldetrital(λ). (2.24)

2.2.4.3 Particulate Scattering

A 25 cm pathlength beam transmissometer was mounted on the CTD profiler

and was used to measure the beam attenuation coefficient at 660 nm, cpg(660).

Considering c = a + b, and the transmissometer is calibrated with pure water,

then the particulate scattering bp can be found by subtracting the CDOM, NAP

and phytoplankton absorption coefficients at 660 nm, namely

bp(660) = cpg − aφ − aNAP − aCDOM , (2.25)

where the wavelengths on the right hand side terms were omitted for brevity.
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The spectral nature of the particulate scattering can be inferred by observing

the spectral slope γb calculated as a byproduct of the scattering correction of

the phytoplankton from Eq 2.22. The full bp can then be approximated by a

commonly-used (Forand & Fournier 1999, Mobley 1994, Doxaran et al. 2007) hy-

perbolic spectral function:

bp(λ) = bp(660)

(
λ

660

)−γb
. (2.26)

2.2.4.4 Particulate Backscattering

A Hobilabs Hydroscat-6 backscattering sensor was used to measure backscattering

of GBR particles. A flow-through system was created whereby ship hull-intake

water was pumped with a diaphragm pump through a coarse-meshed (2 mm

square) filter and then up to a 9 l de-bubbling column, approximately 2 m above

the deck. The Hydroscat-6 instrument was mounted in a matt black inverted

20 litre container which allowed water to be gravity-fed from the de-bubbling

column. The container had slightly tapered sides, and was cut at the appropriate

height to produce an opening that matched the diameter of the Hydroscat so it

could be slid inside the bin. The outflow of the bin was positioned at the lowest

point, to assist in the constant flow of particulates from the top to the bottom

of the Hydroscat sampling volume (see Fig. 2.10). The Hydroscat instrument

frame was positioned in between 2 plastic containers to support the weight of the

device, but allow space for the flow-through chamber to reside (see Fig. 2.11).

The outflow had a tap on the end to apply back-pressure to the chamber for the

purposes of priming the chamber to remove bubbles from the optical windows

of the Hydroscat. Prior to deployment, this apparatus was tested in the labo-

ratory with Reverse Osmosis (RO) purified water to ensure that data from the

Hydroscat was not affected by reflections off the inner walls of the chamber. The

scattering measurements of RO water were close to published coefficients of pure

seawater (Buiteveld et al. 1994), so no correction for tank reflection was made.

The Hydroscat has a path length of approximately 15 cm, and so its measurements

may suffer from artifacts due to the loss of scattered light through the process
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Figure 2.10: Close-up of the custom-built flow-through chamber for the Hy-
droscat. The inlet is at the top of the chamber (on the left) and the outlet
is on the right.

Figure 2.11: The Hydroscat flow-through system. Note this picture is depicted
during the setup stage of the experiment. Data was never collected with a double-
loop in the inflow tube. All plumbing distances were minimised to reduce flow-
through lag time.
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of attenuation of scattered light. To correct the measurements made by the

Hydroscat, the manufacturer recommends applying a multiplier σ to data from

all wavelengths (Hydrosoft 2.5 Software for HOBI Labs Optical Oceanographic

Instruments: User’s Manual 2002):

βt(140) = σβu(140), (2.27)

where βu(140) is the calibrated, uncorrected scattering measurement made at

140◦, and

σ = k0 + k1Kbb + k2K
2
bb, (2.28)

where k0, k1 and k2 are wavelength dependent coefficients that are characteristic

of the specific instrument and stored in the instrument’s calibration file, and

Kbb = apg + 0.4bp, (2.29)

where apg is the absorption coefficient (m−1) and bp is the scattering coefficient

(m−1).

The absorption coefficient used to correct the Hydroscat data was determined

from field measurements where available, or modelled with a 2 component phyto-

plankton absorption model based on measurements of chlorophyll concentration

(see Results section). The scattering coefficient was modelled in terms of TSS

based on the tabulated mean TSS and bp measurements provided by Blondeau-

Patissier et al. (2009). The equation determined is bp(555) = 0.56[TSS], where

R2 = 0.9691. Once β(140) has been attenuation-corrected, then pure seawater

scattering at 140◦ must be subtracted from the measurement for the best accu-

racy in clear waters (Boss & Pegau 2001). The particulate backscatter is then

calculated as:

bbp = χp(140)[βt(140)− βsw(140)], (2.30)

where βsw(140) is the pure seawater scattering at 140◦ as determined by the ap-

proach of Zhang et al. (2009), and χp(140) is the backscattering conversion factor
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for a 140◦ viewing sensor, determined by Sullivan & Twardowski (2009).

The Sullivan & Twardowski (2009) average value of χp(140)=1.167 (σ=0.049)

was determined with the 658 nm MASCOT instrument. However, they compared

their value with other researchers (Berthon et al. 2007, Boss & Pegau 2001) who

determined χp(140) from different wavelengths, and agreement was within the

standard error of the MASCOT measurements.

2.2.4.5 Scattering Phase Function

No measurements of phase function were made in the aforementioned IOP data

collection; however, lab-based phase function measurements have been made by

O’Bree (2007) from samples collected in the GBR region. The phase functions of

small particles vary due to the refractive index and size of the particles (van de

Hulst 1957), and there is recent evidence to suggest phase functions also depend

on wavelength (McKee & Cunningham 2005, Chami et al. 2006). The shape of

the phase function at mid scattering angles can influence the light field and thus

Rrs(θ, φ, λ) (Mobley et al. 2002).

In this study, phytoplankon phase functions were modelled with Mie theory

(Bohren & Huffman 1983) from estimates of particle size and cellular material

refractive indices (Stramski et al. 2001). A Prochlorococcus phase function was

modelled by performing Mie calculations for a Gaussian size distribution of parti-

cles, centered on 0.65 µm and having a standard deviation (σ) of 0.1 µm to match

the average Prochlorococcus size distributions shown in Morel et al. (1993). The

real and imaginary parts of the refractive index (relative to seawater) used to

model Prochlorococcus were averages of the three strains tabulated by Stramski

et al. (2001). The averaged, wavelength dependent imaginary refractive indices

from Stramski et al. (2001) were then linearly interpolated to suit the required

calculation wavelength.

Mie-based modelling to determine a representative GBR ‘Diatom’ phase func-
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tion is much more questionable than modelling the relatively simple, spherical

Procholorococcus. Firstly, the (assumed) ‘Diatom’ endmember determined by

identifying the most packaged aφ(λ) measurement could also consist of contribu-

tions of dinoflagellates and other larger eukaryotic phytoplankton. Secondly these

larger phytoplankton are more complex in structure compared to the spherical

Prochlorococcus, so the results of Mie theory will be dubious.

Revelante et al. (1982) listed the names of some more commonly-found diatoms

and dinoflagellates in their studies in the GBR region, and a select group of these

are listed in Table 2.6, along with estimates of their dimensions in two different

axes (r1 and r2, where available).

Name r1 unc. r2 unc. Reference
Nitzschia longissima 2.77 1.61 - - Marken (2005)
Chaetoceros compressus 15 5 6.5 1.5 Tabassum & Saifullah (2010)
Nitzschia bicapitata 18.7 8.3 4.8 1 Scott & Marchant (2005)
Bacteriastrum comosum 100 5 5 5 Teanpisut & Patarajinda (2007)∗

Gymnodinium fusus 25 5 10 2.5 Gomez (2007)∗∗

Table 2.6: Some commonly-found GBR phytoplankton described by Revelante
et al. (1982) and estimated axial and longitudinal (where applicable) radii (r1, r2)
from various references. Radius data and uncertainties are in µm. ∗Bacteriastrum
comosum dimensions estimated from a image in Teanpisut & Patarajinda (2007).
∗∗Gymnodinium fusus dimensions estimated from a image in Gomez (2007).

By observing the prevalence of different (axial, longitudinal) dimensions in commonly-

occuring, non-spherical GBR Diatoms, a series of spherical Mie calculations can

be made for different dimensional sizes and averaged to approximate a size popu-

lation. To estimate a representative Diatom size population, a series of Gaussians

were fitted; centered on each radius for each dimension in Table 2.6. The stan-

dard deviation (σ) of each Gaussian was estimated by the uncertainty of each

radius and each dimension. The real and imaginary parts of the the refractive

index (relative to seawater) were unavaliable, so data from the two diatom and

one dinoflagellate planktonic components from Stramski et al. (2001) (their la-

bels PSEU, CURV and MICA) were averaged and used to model the higher order

populations. The population particle size distributions are shown in Fig. 2.12.
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The particle size distribution of suspended minerals was assumed to be hyperbolic

(Junge) in shape, and thus adequately modelled by the Fournier-Forand Phase

Function (Forand & Fournier 1999). This equation creates a phase function at

angle ψ for a bulk refractive index n and Junge PSD slope µ. The phase function

is described below (modified from Mobley et al. (2002)).

˜βmin(ψ) =
1

4πZ2δν

[
νZ − (1− δν) + [δ(1− δν)− νZ] sin−2

(
ψ

2

)]
+ Y, (2.31)

where

Y =
1− δν180

16π(δ180 − 1)δν180

(3 cos2 ψ − 1), (2.32)

Z = (1− δ), (2.33)

δ =
4

3(n− 1)2 sin2

(
ψ

2

)
, and (2.34)

ν =
3− µ

2
. (2.35)

The Junge PSD slope µ can be estimated from the spectral slope of the scattering

(Forand & Fournier 1999) or attenuation spectrum (Twardowski et al. 2001) γ

using the following relationship:

µ = γ + 3. (2.36)

Based on the cumulative probability distribution equations shown in Forand &

Fournier (1999), Mobley et al. (2002) published the analytical expression for the

backscattering ratio:

Bp = 1− 1− δν+1
90 − 0.5(1− δν90)

(1− δ90)δν90

. (2.37)

This equation allows the parameterization of the Fournier-Forand Phase Function

with either n and µ or with Bp and µ through numerical means. In the GBR

region, if the assumption of a Junge PSD is valid for mineral particles, then

measured backscattering ratios and scattering spectral slopes can be input into

Eq. 2.31 and 2.37 in order to numerically determine the refractive index n and

generate a phase function. As the phytoplankton-based phase functions have
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been calculated with Mie theory, the use of the Fournier Forand phase function in

this work is concerned primarily with modelling the mineral particle assemblage,

where refractive indicies of 1.18 ± 0.06 are expected (the average and σ of the

tabulated data used in Twardowski et al. (2001)).

Figure 2.12: Normalized Particle Size Distribution for a Prochlorococcus mono-
culture (dashed line), a mixture of higher-order phytoplankton (solid line) de-
scribed in Table 2.6, and an example Junge distribution (µ = 2.35) for use with
the Fournier Forand phase function in Eq. 2.31 (dotted line).
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2.3 Results

2.3.1 Water Quality

Table 2.7 provides an initial reduction of the primary water quality parameters

(Chl-a, TSS, DOC and Secchi) from the dataset acquired for this study (also see

2.2). Each water quality parameter is separated into inner, middle and outer

(I,M,O) shelf regions as denoted by the “loc.” column. These regions correspond

to the bathymetric regions shown in Fig. 2.1. The reproducibility (rep. - see Ta-

ble 2.7) of the water quality measurements are estimated by the average replicate

standard deviation for each sample made within that particular region. Table

2.7 and Fig. 2.13 demonstrate that generally, higher concentrations of Chl-a,

TSS, DOC were found inshore with progressive reductions towards offshore. This

trend supports the notion that a significant portion of nutrients and sediment are

terrestrially-sourced. Secchi depth has an inverse proportionality to particle con-

centration and also follows the trend. The standard deviations of the inner and

middle shelf TSS measurements is high (approximately 90% of their respective

means), indicating that both these regions experience large variations in sedi-

ment concentrations. In contrast, outer shelf areas only varied by approximately

30% of their means; a value close to the replicability of TSS measurements made

using our methodology. This is evidence that the outer shelf samples were not

influenced by terrigeneous sediment deposition events. Inner, middle and outer

shelf chlorophyll-a measurements are also variable, with their standard deviations

varying by approximately 70% of the respective means. This fluctuation is much

larger than the replicability of Chl-a measurements made using our methodol-

ogy. It indicates that phytoplankton blooms occurred in inner, middle and outer

shelf regions during the sampling campaign. DOC measurements were larger and

more variable in inshore regions, and decreasingly variable towards the outer shelf

regions. Higher DOC levels and variability towards the coast also suggest ter-

rigenous sources of DOC in these regions. Inshore water have at least twice the

number of samples collected, however these are the regions where existing satel-

lite algorithms fail (Qin et al. 2007), so the preference is convenient. Density and

frequency histograms of the data are shown in Fig. 2.13. The highest ever CHL
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measurement was recorded in Hinchinbrook Passage. The highest TSS concentra-

tion measurement was made at Cape Bowling Green (19◦19′46′′S, 147◦21′38′′E),

and the highest concentration DOC measurement was made at the Burdekin

River mouth (19◦38′23′′S, 147◦38′44′′E). These places of distinction are marked

in Figures 1.9 and 1.10. The lowest TSS and CHL measurements were made

at Myrmidon Reef (18◦16′15′′S, 147◦22′30′′E), and the lowest DOC measurement

was made near Cheviot Is (22◦05′30′′S, 150◦40′18′′E).

type units loc. rep. mean median σ N min max
Chl-a µgl−1 I 0.04 0.52 0.41 0.37 298 0.11 2.25
Chl-a µgl−1 M 0.04 0.39 0.34 0.26 148 0.08 2.02
Chl-a µgl−1 O 0.05 0.44 0.34 0.32 115 0.05 1.77
TSS mgl−1 I 0.26 2.91 2.31 2.74 296 0.74 23.98
TSS mgl−1 M 0.28 1.68 1.44 1.49 148 0.63 16.90
TSS mgl−1 O 0.20 1.16 1.12 0.34 114 0.46 2.41
DOC mgl−1 I 0.03 0.79 0.72 0.34 247 0.46 4.16
DOC mgl−1 M 0.03 0.75 0.71 0.19 125 0.51 2.17
DOC mgl−1 O 0.03 0.67 0.67 0.10 46 0.50 0.91
Secchi m I 1.00 6.70 6.00 3.30 105 1.50 17.00
Secchi m M 1.00 12.54 12.00 5.33 36 5.50 28.00
Secchi m O 1.00 20.43 20.00 5.73 23 13.00 33.00

Table 2.7: Field data collection summary. The location identifiers are I (inner),
M (middle) and O (outer) shelf waters. σ is the standard deviation, N is the
number of samples.

Fig. 2.14 shows scatter plots between the water quality parameters measured.

Being particulate in nature, phytoplankton biomass (as indicated by chlorophyll-

a) will contribute to TSS measurements made. In outer-shelf waters, a trend

between the TSS minimum and chlorophyll-a can be seen. This relationship is

important and will be re-visited in latter sections.

In general relationships between the parameters are poor, however the inverse Sec-

chi disk depth versus TSS shown in Fig. 2.14c appears to have a linear correlation.

Here it can be inferred that in inner shelf waters, suspended particulate mass con-

centration significantly influences Secchi depth measurements. This is consistent

with the well known inverse proportionality between Secchi disk depth and sum

of the beam attenuation coefficient c and the diffuse attenuation coefficient K

(Zaneveld & Pegau 2003), which themselves are linearly correlated to TSS. It is
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Figure 2.13: a-h) Histogram density and frequency of measured Water Quality
concentration samples performed on inner, middle and outer sites following the
definition of Devlin & Brodie (2005) (coloured in orange, green and blue, respec-
tively)
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unclear from Figs. 2.14c, 2.14d or 2.14e which water quality parameter controls

inverse Secchi depth in outer shelf waters. Marine snow (Wolanski et al. 2003)

may be a significant factor contributing to Secchi disk readings; however, marine

snow will not be quantified adequately in either TSS or TChl measurements. The

spectral nature of Secchi disk measurements is defined by the human eye’s spec-

tral response, which should be peaked in the yellowish-green wavelengths. As

Secchi disk measurements are essentially measuring c+K in green wavelengths,

they are less sensitive to substances which attenuate outside the green region of

the spectrum. This means phytoplankton (Chl-a) will be less influential to Secchi

depths compared to substances which absorb and scatter green wavelengths more

readily. This is probably why the correlation in Fig. 2.14d is worse than that of

2.14c. The spectral nature of water constituents will be investigated further in

this thesis.

There is a relationship between phaeopigment concentration and chlorophyll-a

concentration, which supports the idea that the production of phaeopigments is

tied to the abundance of living phytoplankton in the water. Departures from

this trend may contain information about unique pheopigment photooxidation

or grazing rates, highlight regions where detrital phytoplankton dominates living

phytoplankton, or indicate sample degradation from the time of sampling to

analysis. Additionally, fluorometrically-determined phaeopigment concentrations

may contain artifacts due to other fluorescent phytoplankton pigments including

chlorophyll-b (Herbland 1988). Without additional HPLC pigment information,

the extent of the contamination is unknown.
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Figure 2.14: a-h) Scatter plots of the Water Quality concentration samples per-
formed on inner, middle and outer sites following the definition of Devlin & Brodie
(2005) (coloured in orange, green and blue, respectively).
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2.3.2 Conductivity, Temperature and Depth (CTD) Mea-

surements

CTD measurements were used to identify different water masses during the field

sampling from 2002 to 2009. Figure 2.15a shows 4 different temperature versus

salinity (TS) plots for all GBR waters sampled. Surface water in summer (wet

season) months is generally above 27◦C, which is consistent with periods of higher

insolation (downwelling irradiance). Water in summer tends be of lower salinity

than in winter, indicating that fresh water input is often a stronger influence in

GBR waters than increases of salinity due to enhanced evaporation during pe-

riods of elevated sea temperature. Wet season river plume flood TS data can

be seen as a filament on Figures 2.15 a-d towards the top left, and in contrast,

there are a few measurements which exhibit high salinity and high temperature

in the summer months which suggest that these casts were outside the influence

of recent riverine input. The dry season population also exhibits features consis-

tent with surface evaporation, where the warmest waters have the highest salinity.

With knowledge of the TS properties, the types of water which supported phy-

toplankton blooms can be identified. A Chl-a colour-scaled TS plot (Fig. 2.15c)

shows elevated chlorophyll-a concentrations indicative of phytoplankton blooms

over a range of salinities in the wet season, which in part supports the hypothesis

that riverine waters were providing nutrients required for phytoplankton blooms.

The phytoplankton signatures found in waters with salinity higher than 35.5 PSU

in the wet season are probably not influenced by recent terrestrial sources of nu-

trient, but could be due to the nitrogen fixing organism Trichodesmium.

Discrete TSS data was used to colour code the TS diagram shown in Fig. 2.15b.

In this figure, the cooler, higher salinity dry season water is often turbid, which

indicates this water parcel is re-suspended from deeper waters.
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Figure 2.15: Temperature vs Salinity for all waters where discrete samples were
taken. Plot symbols are colour coded to represent a) Inner, Middle or Outer
samples, b) TSS concentration, c) Chlorophyll-a concentration, and d) DOC con-
centration.

2.3.3 IOPS

2.3.3.1 Dissolved

Table 2.2 previously showed the trip codes, numbers of stations and the dates

when CDOM absorption spectra were measured for inclusion in this study. Figure

2.16 shows the entire CDOM absorption spectral data set in a) linear b) logarith-

mic ordinate representations. Figure 2.16b shows the estimated detection limit

of the spectrophotometer.

Of the 417 CDOM spectra measured, 100 were in the very low absorption range

(0-0.025 m−1) in the same order of magnitude of the detection limit of around

0.017 m−1 at 443 nm. When looking at individual spectra at low CDOM con-

centrations, the combined effect of the spectrophotometer detection limit, and

imperfect temperature and salinity corrections makes some absorption spectra
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a) b)

Figure 2.16: Entire CDOM absorption spectra, linear (a) and logarithmic axes
(b). b) shows the empirically estimated detection limit of the spectrophotometer.

appear anomalous, not exhibiting the typical and widely reported exponential

shape (Prieur & Sathyendranath 1981). Due to the shape and magnitude of some

of these spectral scans, contamination either from the CDOM sample storage bot-

tle or cuvette contamination is suspected. Anomalous scans could also be due

to 0.45 µm filter membrane rupture, which could potentially allow phytoplank-

ton and non-algal particulates into the solution. Phytoplankton contamination

would be most prominent around 676 nm, where there is a local maximum of

chlorophyll absorption, but a relatively small absorption due to CDOM itself. No

such rupture artifacts were located in the data. These low magnitude CDOM

absorption spectra were not discarded however, because subsequent regression

analysis weighted each data point with the spectral detection uncertainty (shown

in Figure 2.17c), so data with large fractional uncertainties are suppressed.

The CDOM absorption spectrum is usually described and modelled as a decaying

exponential with negligible absorption in the NIR wavelengths (Prieur & Sathyen-

dranath 1981, Bricaud et al. 1981). This simplistic modelling approach seeks to

parameterize the entire CDOM absorption spectrum with two terms; the con-

centration A at a reference wavelength (λ0) and spectral slope parameter S. For

example:

aCDOM(λ) = A(λ0)e−S(λ−λ0). (2.38)

The exponential slope (S in Eq. 2.38) of the CDOM absorption spectrum has

been shown to vary from approximately 0.007 to 0.023 nm−1 and is dependent on
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the spectral range being fit since spectra typically do not follow an exponential

model exactly (Twardowski et al. 2004). Carder et al. (1989) recognised that the

spectral shapes of CDOM absorption spectra could provide information about the

molecular weights of the dissolved organic materials, by confirming differences in

exponential slope parameter between isolated fulvic and humic acid samples col-

lected from the Mississippi River plume and the Gulf Loop Current intrusion.

Their slope coefficients for fulvic acids were approximately 0.019 nm−1 whereas

their humic acid slope was 0.0110 nm−1. Twardowski & Donaghay (2002) stud-

ied the UV degradation of humic substances and observed increasing spectral

slopes as a function of time exposed to sunlight. Although the functional form

of the exponential equation shown in Eq. 2.38 is generally consistent among re-

searchers 4, spectrophotometer precision, spectral baseline drifts and parameter

fitting methodologies used to determine A and S are not. Unfortunately, this

adds variability to the S slope parameters found in literature, so caution must be

exercised when comparing the results of different researchers (Twardowski et al.

2004).

The exponential slope parameter S and magnitude A were calculated for each

CDOM spectral measurement, using wavelengths from 400 to 600 nm to perform

the spectral fit. A scatter plot of A vs S is shown in Figure 2.17a, and salinity vs

S is shown in Figure 2.17b. A dotted line on Figure 2.17b assists in estimating the

spectral slope of high-CDOM waters. This line was fitted to data with salinities

less than 30 PSU , and results in an extrapolated slope of approximately 0.017

nm−1 for fresh water. Figure 2.17c suggests higher CDOM absorption coefficients

are typically sourced from lower-salinity GBR flood plumes. At aCDOM(412) coef-

ficients less than 0.1 m−1, there is a larger deviation in slopes, which is attributed

to increases in spectrophotometer noise relative to the CDOM absorption signal.

This is despite the inclusion of all wavelengths from 400 to 600 nm in the spec-

tral fit which serves to reduce the sensitivity of S to spectrophotometric noise.

Error bar extents shown on Figure 2.17a and b are determined from spectral fits

of each measured CDOM spectrum ± the spectral baseline uncertainty. Even

4although Twardowski et al. (2004) recommends using a power law.
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after considering the errors in S, there is an apparent increase in spectral slope

in Fig. 2.17a with decreasing CDOM absorption. These results are consistent

with the concept that either larger terrigenous humic (lower slopes) molecules

are either being mixed with more fulvic, marine waters or that processes such

as photobleaching are occurring, converting humic molecules thus increasing the

measured slope parameter (Twardowski & Donaghay 2002). Despite this, there

is no solid relationship between the full range of salinity encountered on the GBR

and the spectral slope of CDOM. This may demonstrate that there is an occa-

sional source of the highest-slope CDOM absorption spectra that occurs in saline

waters. The relative uncertainty of the low absorption coefficient waters is high,

so more accurate data is required to determine whether this feature is real or an

artifact.

The relationship between DOC and CDOM absorption at 412 nm is shown in

Figure 2.17e. The regression was determined from the entire dataset including

lower salinity flood plume waters. The full-dataset regression exhibits a negative

y-intercept, indicating that there is a consistent background concentration of

the DOC that is non-coloured. This finding is consistent with other researchers

(Del-Castillo & Miller 2008). By performing the regression for all wavelengths, a

spectral DOC-specific end member can be identified, along with the offset which

corrects the derived DOC for the invisible DOC fraction, using the form:

aCDOM(λ) = a∗CDOM(λ)[DOC −DOCinv], (2.39)

where a∗CDOM is the DOC-specific absorption spectrum (shown in Figure 2.17g),

and DOCinv is the invisible DOC ‘background’ (approximately 0.65 mgl−1).

Using the model described in Eq 2.38, the CDOM absorption dataset may be in-

verted to test the applicability of the model. Figure 2.17f shows the comparison

between the inverted DOC and the measured DOC, where the correlation coeffi-

cient R2 = 0.93 and the RMS error is approximately 9%. Figure 2.17d shows the

relationship between DOC and salinity for the region. The DOC concentration

is reduced as the salinity increases, supporting the concept that terrestrial DOC
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a) b)

c) d)

e) f)

g)

Figure 2.17: a) CDOM absorption coefficient at 412 nm versus the spectral slope
S. b) Salinity (PSU) versus the spectral slope S. c) CDOM absorption coefficient
at 412 nm versus Salinity (PSU). d) Dissolved Organic Carbon (mgl−1) versus
Salinity (PSU). e) CDOM absorption coefficient at 412 nm versus DOC con-
centration (mgl−1). f) CDOM absorption-inverted DOC versus measured DOC
(mgl−1). R2 = 0.93 and RMSE = 0.09. g) Regression-determined DOC-specific
CDOM aborption spectrum.
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is diluted with lower-DOC coastal waters.

2.3.3.2 Particulates

2.3.3.2.1 Phytoplankon Pigment Absorption

Table 2.2 previously showed the trip codes, numbers of stations and the dates

when phytoplankton pigment absorption spectra were measured for inclusion in

this study. The entire set of phytoplankton pigment absorption spectra is shown

in Figures 2.18a and 2.18b. In the visible domain (Fig. 2.18b), two prominent

peaks exist in the phytoplankton absorption spectra; the first at approximately

440 nm and another at 676 nm. These peaks are associated with chlorophyll-

a, the dominant photosynthetic pigment of marine phytoplankton. At 440 nm,

the phytoplankton absorption coefficients varied from approximately 0.01 to 0.1

m−1; the same order of magnitude as those measured by Bricaud et al. (1995)

for Case 1 waters. Filter pad absorption replicability was tested for approxi-

mately 60 duplicate filter pad preparations from the same Niskin bottle sample,

and was typically better than 0.005 m−1, and provides an estimate of the pre-

cision of the spectrophotometric technique used in this study. For clarity, error

bars are not shown on Figures 2.18a-f. The exact relationship between phyto-

plankton spectral absorption and the chlorophyll-a concentration varies somewhat

depending on phytoplankton species composition (Nair et al. 2008) due to i) the

presence of different accessory pigmentation which overlaps the absorption bands

of chlorophyll-a (Faust & Norris 1985, Hoepnffner & Sathyendranath 1991), ii)

particle size (Stramski et al. 2001) and iii) light history. All attempts to quan-

tify chlorophyll-a concentration from remotely-sensed phytoplankton absorption

properties will be constrained by this variability. This variability is demonstrated

by the low correlation (R2 = 0.46) of the 440 nm absorption data with TChl

(TChl=Chl-a + Phaeopigments), as shown in Figures 2.18c. In comparison, the

data at 676 nm, where pigment packaging is reduced or negligible (Bissett et al.

1997), has a markedly better correlation (R2 = 0.70) with TChl. This suggests

that the combination of optical density, volumetric and diameter measurement

uncertainties inherent in the filter pad method (Mitchell et al. 2000, 2003) are

dominated by natural pigment variability or pigment packaging variability of the
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Figure 2.18: a) Full phytoplankton absorption data set measured in this study.
b) as for (a), but excludes UV region. c) Phytoplankton absorption at 440 and
676 nm (shown as dots and triangles, respectively) versus TChl concentration,
showing regression coefficients for a commonly-used model (Bricaud et al. 1995).
d) Four TChl-specific basis vectors. From highest to lowest specific absorption;
Synnechococcus (Morel et al. 1993), and Prochlorococcus, Trichodesmium and Di-
atoms (this study). e) The 440:676 phytoplankton absorption ratio versus TChl
concentration for the entire data set. Plot symbol colours denote sample salinity,
and two non-linear models are shown on the plot. f) The 440:676 phytoplankton
absorption ratio versus TChl-specific absorption, showing the increase in absorp-
tion efficiency when packaging is reduced.
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samples themselves (Bricaud et al. 2004).

To demonstrate the spectral (and TChl-specific) diversity of GBR phytoplankton

types, 3 hand-picked absorption end members are shown in Fig. 2.18d. Based

on the spectral shape and amplitude, these end members have been assigned to

represent Prochlorococcus, Trichodesmium and Diatom dominated waters (from

high specific absorption to low at 440 nm). The Synechococcus TChl-specifc ab-

sorption spectrum from Morel et al. (1993) was also included for comparison, as

the spectral features present in this end-member is also expected to contribute

to the total phytoplankton absorption of GBR waters.

Despite the variability and intricacies in the absorption properties of GBR phy-

toplankton, broad generalizations must be made which relate the spectral phy-

toplankton absorption with the chlorophyll-a concentration, even though there

is probably no unique chlorophyll-a concentration for a given absorption coeffi-

cient. The correlation coefficients from Fig. 2.18c indicate it is more accurate to

use the phytoplankton absorption at 676 nm than at 440 nm as a predictor for

chlorophyll concentration. However ultimately, remote sensing-derived absorp-

tion coefficients are dominated by pure water absorption itself at 676 nm, and

so aφ(676) retrievals may suffer from a poor signal-to-noise ratio, leading to erro-

neous TChl retrievals. In terms of maximising signal-to-noise, it is far better to

utilize the blue end of the spectrum were absorption due to pure water is lower,

and absorption due to phytoplankton is relatively higher. With this in mind,

the following phytoplankton absorption modelling approaches strive to relate the

entire spectrum to TChl concentration.

A widely-cited non-linear parameterization between phytoplankton absorption

at a given wavelength and the combined chlorophyll-a + phaeopigments concen-

tration (TChl) was published by Bricaud et al. (1995). This type of combined

chlorophyll-a and phaeopigment parameterization leads to a more robust rela-

tionship with phytoplankton absorption than just chlorophyll-a alone (Babin,

Stramski, Ferrari, Claustre, Bricaud, Obolensky & Hoepnffner 2003). However,

80



such a combined parameterization assumes that the spectral characteristics of

phaeopigments are either identical or very similar to that of chlorophyll-a or that

the chlorophyll-a to phaeopigment ratio does not change appreciably. Whether

these assumptions hold in GBR reef waters needs to be tested. The in vivo

chlorophyll-a and phaeophytin absorption spectra were known to differ (Roesler

et al. 1989). The Bricaud et al. (1995) model was only developed using data

from Case-1 stations where the phaeopigment concentration was less than a few

percent of the total pigment concentration, whereas phaeopigments measured in

the GBR water sampled in this study typically contribute 35% (σ=5.3) of TChl

(see Fig. 2.14g), so phaeopigments may generally have a greater importance in

GBR waters. Unfortunately, it is still not clear with the sampling methods used

if the phaeopigment measurements made in the GBR are spectrally contaminated

by Chl-b and Chl-c. Without HPLC or chlorophyll speciation data to provide

further insight, Bricaud et al. (1995) is followed in using TChl to parameterise

phytoplankton absorption, with the caveat that the overall magnitude of living,

photosynthesizing chlorophyll may be slightly overestimated. The Bricaud et al.

(1995) regression approach was used on our dataset, and these model coefficients

are shown in Figs. 2.18c for absorption at 440 nm and 676 nm, and spectrally

shown in Fig. 2.19. The Bricaud et al. (1995) model approach (subsequently

referred to as ‘B95’) is shown below:

aφ(λ) = A(λ)[TChl]B(λ), (2.40)

where A(λ) and B(λ) are the regression-determined model coefficients (see Fig.

2.19 column 1, row 1).

As can be seen from Fig. 2.18e, the 440:676 nm phytoplankton absorption ra-

tio generally decreases with overall TChl magnitude in the GBR dataset. This

effect is known as pigment ‘packaging’, where the phytoplankton spectrum be-

comes ‘flatter’ as the chlorophyll concentration increases. This is explained by

pigment-containing chromophores shading each other as the phytoplankton cell

size increases and / or the density of chromophores increases (Duysens 1956,
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Morel & Bricaud 1981). By observing the salinity-based colour scale in Fig.

2.18e, it is evident that the higher TChl (more packaged phytoplankton) often

occurred as salinity decreased. This effect is indicative of eutrophic coastal water

conditions in the presence of riverine input and a subsequent growth of a larger-

cell (i.e. Diatom dominated) phytoplankton population. Considering that these

lower salinity flood waters are a key area of interest in the GBR, and that the

transition between these waters and more oligotrophic waters is evident in the

dataset, attention must given to pigment packaging effects.

The fractional package effect Q∗a for spherical particles can be estimated theoret-

ically from the efficiency factor for absorption given by Eq. 2.41 (Morel 1991)

and the normalisation shown in Eq. 2.42 (Nelson et al. 1993),

Qa(λ) = 1 +
2e−ρ

′
(λ)

ρ′(λ)
+ 2

e−ρ
′
(λ) − 1

ρ′(λ)2
, (2.41)

Q∗a =
3

2

Qa(λ)

ρ′(λ)
, (2.42)

where ρ
′
(λ) = acmd, the dimensionless product of the absorption coefficient of

the cellular pigmented material acm, and the spherical cell diameter d.

Eq. 2.41 and 2.42 provide a mathematical framework for estimating the pack-

aging effect, however ρ
′
(λ) = acmd is typically not known a priori, and natural

assemblages contain a number of different phytoplankton size classes. Under-

standing this product may help explain the scatter of plots such as Fig. 2.18c.

Interpreting Figs. 2.18c and d and the above equations, one may hypothesize

that if the TChl concentration in the water increases, then ρ
′
(λ) = acmd will also

increase (i.e. TChl is a proxy for ρ′). To test this hypothesis, computational

methods were used to minimize the difference between the measured absorption

at a given wavelength and a linear function of TChl, thus determining forward

model coefficients to estimate a phytoplankton absorption spectrum as a function

of TChl. This technique is referred to as ‘PACK’ herein. A Levenberg-Marquardt
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technique minimized the following function,

aφ(λ) = C[TChl]Q∗, (2.43)

where Q∗ was calculated via Equations 2.41 and 2.42 with ρ
′

= D[TChl]. Phys-

ically, the regression-determined spectral coefficient C describes the generalised

model-extrapolated TChl-specific shape of unpackaged GBR phytoplankton, and

D represents the residual TChl-specific absorption properties of a more packaged

GBR phytoplankton assemblage. The coefficients C and D are plotted in Figure

2.19, column 1, row 2 and appear to support the hypothesis that TChl can be

used as a proxy for ρ′.

Considering that waters dominated by different phytoplankton may be physi-

cally mixed or that a mixture of optically different phytoplankton may co-exist,

Ciotti et al. (2002) introduced the notion of a mixture of two different spec-

trally distinct phytoplankton types. Their work suggested that a ‘background’ of

Prochlorococcus is mixed with larger-size phytoplankton in increasing abundance

with eutrophication. This notion is generally supported in the GBR by the work

of Furnas & Mitchell (1986), Furnas et al. (1990) and Revelante et al. (1982).

Indeed, two of the high and low packaged end members of the GBR absorption

dataset (see Fig. 2.18d) appear spectrally similar to those identified by meth-

ods of Ciotti et al. (2002), although the Prochlorococcus end member selected

from the GBR dataset has a TChl specific absorption of nearly 0.12 l.µg−1m−1

at 440 nm whereas the Ciotti et al. (2002) value for picoplankton approached

0.08 l.µg−1m−1 (both normalised to TChl). The increased chlorophyll specific

absorption can be attributed to a combination of higher light levels present in

this study, and also uncertainties in the pathlength amplification factor.

Expressing this basis vector approach mathematically, the phytoplankton ab-

sorption spectrum of a natural GBR assemblage can be approximately composed

of the sum of Prochlorococcus, and set of larger, highly packaged terrestrially-

influenced coastal phytoplankton (i.e. Diatoms and Dinoflagellates), for example:

aφ(λ) = a∗φPro(λ)[TChlPro] + a∗φDiat(λ)[TChlDiat], (2.44)
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where a∗φPro(λ) is the TChl-specific absorption spectrum for Prochlorococcus, a∗φDiat(λ)

is the TChl-specific absorption spectrum for large cell sized phytoplankton (i.e.

Diatoms) and TChlPro, TChlDia are respectively the TChl concentrations due to

each plankton component.

This approach may be extended to include a third component, namely the preva-

lent GBR cyanobacteria Trichodesmium or Synechococcus, where

aφ(λ) = a∗φPro(λ)[TChlPro] + a∗φTricho(λ)[TChlTricho] + a∗φDiat(λ)[TChlDiat] (2.45)

or:

aφ(λ) = a∗φPro(λ)[TChlPro] + a∗φSyn(λ)[TChlSyn] + a∗φDiat(λ)[TChlDiat], (2.46)

where a∗φTricho(λ) is the TChl-specific absorption spectrum for Trichodesmium,

a∗φSyn(λ) is the TChl-specific absorption spectrum for Synechococcus and TChlPro,

TChlDia, TChlTricho, TChlSyn are respectively, the TChl concentrations due to

each plankton component.

There is no cell size information for the GBR dataset; however, by observing

the extremities of the 440:676 nm phytoplankton absorption ratio plot (Figure

2.18e), examples of high and low packaging can be identified in the dataset. By

using these two extremities and their corresponding TChl concentrations as end-

members representative of the two dominant phytoplankton types in the GBR,

a TChl estimate may be made for a given phytoplankton absorption measure-

ment. Hand-picked spectral absorption end-members for Prochlorococcus and

large cell sized phytoplankton (i.e. Diatoms) were chosen from the GBR dataset

and formed the basis of the spectral mixing models as described by Eq. 2.44-2.46.

The Trichodesmium basis vector spectrum used in Eq. 2.45 was determined from

the average of two separate measurements of ‘puff’ and ‘raft’ Trichodesmium

colonies, and then normalized by an arbitrary number in order to match the

chlorophyll-a-specific Trichodesmium absorption at 440 nm, as published in Sub-

ramaniam et al. (1999). The Synechococcus basis vector spectrum used in Eq.

84



2.46 was digitized from a published chlorophyll-a specific absorption spectrum by

Morel et al. (1993), which was a high-light grown culture (ROS04). These basis

vectors are shown in Fig 2.18d).

Figure 2.19, row 1 shows the spectral model coefficients developed for aφ and ex-

ample model outputs of the Bricaud et al. (1995) method, along with the PACK

(Figure 2.19, rows 2), and three variants of the spectral mixing model approach

(Pro + Diat, Pro + Diat + Tricho, Pro + Diat + Syn) are featured in Figure 2.19

(rows 3 to 5, respectively). The B95 and PACK models embed any accessory pig-

ment information into the model when they correlate with TChl concentration.

This embedding should also reflect the shifting phytoplankton size assemblage

from inshore to offshore waters. The spectral mixing model approach reflects

the shifting phytoplankton assemblage by altering the relative magnitudes of the

different components.

The validity of these five different modelling approaches was tested by quanti-

fying their ability to determine the field measured chlorophyll-a concentration

based on the the field measured phytoplankton absorption spectrum from 400

to 700 nm. For each model, Levenberg-Marquardt optimization code was used

to vary the TChl concentration to obtain the ‘best fit’ spectrum. For B95 and

PACK, this was just one parameter (TChl), but for the spectral mixing models,

the relative contribution of the different phytoplankton components (either 2 or

3) was altered to obtain the best spectral match. The total chlorophyll was then

determined from the sum of the phytoplankton components. The results of these

inversions are shown in column C of Fig. 2.19, and presented in Table 2.8.

Model Slope Offset R2 RMS
B95 1.04 0.02 0.51 0.40

PACK 1.11 -0.03 0.53 0.37
2 MIX 1.14 -0.03 0.83 0.26

3 MIX Trich. 0.92 0.03 0.80 0.23
3 Mix Syn. 1.07 -0.01 0.82 0.24

Table 2.8: TChl Inversion results
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Figure 2.19: Column 1) Spectral model coefficients. Column 2) Example gener-
ated absorption spectra for TChl values 0.05, 0.5, 2 and 5 µgl−1. Column 3) TChl
inversion results for each phytoplankton model (shown in rows). The annotations
A and B in row 1 refer to Eq. 2.40. The annotations C and D in row 2 refer to
Eq. 2.43. Rows 3-5, respectively refer to Equations. 2.44 to 2.46.
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In considering the best performing model, the slope, correlation coefficient and

the RMS error are all important factors. Significant scatter around the dashed

1:1 line for the B95 and PACK models (see Fig. 2.19 column 3, rows 1 and 2) is

most likely a result of the packaging variability and changes in phytoplankton pig-

mentation. This variability is expressed as poor R2 and RMSE coefficients when

compared to the MIX methods. The PACK model produces anomalous outputs

for the highest modelled TChl concentration, as it appears to rapidly approach

a highly-packaged state for TChl concentrations approaching 2 µgl−1 (see Fig.

2.19 column 2, row 2). The highest concentration of TChl experienced during

field sampling was approximately 3.4 µgl−1, so this extrapolation artifact high-

lights the importance of collecting more data for highly-packaged phytoplankton

species using the PACK approach in flood waters. Considering the majority of

the chlorophyll-a concentrations in the GBR were found to be less than 0.5 µgl−1

(see Fig. 2.13), the PACK approach may still have merit.

Overall, the two and three-component models yielded the best R2 and RMS

parameters, with the three-component Synechococcus model yielding the best

combination of slope and offset, combined with high regression coefficients and

lowest RMS error. Based on the fractional decomposition of this best-performing

3-component model (Synechococcus), and its inherent assumptions (i.e. just three

components can represent all TChl), the fractional component of the Prochloro-

coccus TChl contribution can be calculated:

SPro =
TChlPro

TChlPro + TChlDiat + TChlSyn
. (2.47)

Equation 2.47 was used to calculate SPro and is shown in relation to the total

TChl in Fig. 2.20. There is an inverse trend apparent in Fig. 2.20, which

supports the idea that the fractional contribution Prochlorococcus is reduced as

TChl increases. This relationship was functionalised manually through the use

of linear fits to inversed TChl values, in the form of Eq. 2.48,

SPro =
M

8.94TChl
+ 0.0214M − 0.1125, (2.48)
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where values for M govern the slope of the relationship and are manually chosen.

The curves on Fig. 2.20 were generated with M = 0.75, 1.5 and 3 (lower dashed,

middle solid and upper dashed lines, respectively). Approximately 95% of the

data falls between M = 0.75 and M = 3, so even though the coefficients were

manually-determined, Eq. 2.48 is a useful descriptor of the subtle shift in GBR

phytoplankton assemblage when the overall TChl concentration increases. It

should be noted that Spro should never be allowed to be greater than 1 or less than

0. In identifying this, it is acknowledged that there is probably a better functional

fit to the data shown in Fig. 2.20. However, Equation 2.48 is considered adequate

for this study, provided the physical limits are obeyed when using Eq. 2.48.

Modelling the shift in SPro will be important later in Section 3.2.2, where it is

necessary to synthesize the spectral absorption properties of GBR phytoplankton

populations.

Figure 2.20: The relationship between measurement-reduced SPro (Eq. 2.47)
and TChl sampled in the GBR. The curves are generated with Eq. 2.48 for
coefficients M = 0.75, 1.5 and 3 (lower dashed, middle solid and upper dashed
lines, respectively).
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2.3.3.2.2 Non-pigmented Particle Absorption

Table 2.2 previously showed the trip codes, numbers of stations and the dates

when Non-Algal Particulate (NAP) absorption spectra were measured for inclu-

sion in this study. The non-pigmented particle absorption coefficients measured

in the GBR varied from near zero, up to 0.4 m−1 at 440 nm. This corresponds

to approximately four times the range of phytoplankton pigment absorption (see

Fig. 2.18a).

Figure 2.21: Full NAP particle absorption dataset and NAP particle absorption
at 440 nm vs TSS for 1) The standard, wavelength independent “Null Offset” at
900 nm scattering correction (a and b). 2) The extrapolative spectral scattering
method without baseline offset correction (c and d). 3) The extrapolative spectral
scattering method with baseline offset correction (e and f).
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Figure 2.21 shows results of the non-pigmented particulate absorption spectra

dataset for 3 different scattering correction methods. Figures 2.21a and b show

data where ODnull in Eq. 2.20 is set to the measured OD value at 900 nm. This

is the standard scattering correction approach, except that 900 nm was used in-

stead of the more common 715 or 750 nm value (Zaneveld et al. 1994, Mitchell

et al. 2000). It is clear that in this dataset (especially Fig. 2.21c and e) that

there is evidence of non-zero spectrophotometer signal in the NIR (700 - 900 nm)

region which may be attributable to either scattering or absorption or both.

The second NAP dataset (Fig. 2.21c and d) was scattering-corrected using

ODnull = Aλ−γb , where the slight curvature in the uncorrected NIR portion of the

NAP absorption was attributed to scattering, and was subtracted from the sig-

nal. In this set, spectrally-independent differences between the baseline and the

sample OD were not corrected for, thus there are still some random wavelength

independent deviations on the resultant absorption data which introduces spread

in the data shown in Fig. 2.21d. By studying the general relationship between the

scattering-corrected NIR absorption using this method and TSS, and assuming

particulate scattering has been adequately removed from the measurement using

ODnull = Aλ−γb , then the non-zero NIR absorption coefficient can be estimated

from a TSS measurement.

The third NAP dataset (Fig. 2.21e and f) was scattering-corrected usingODnull =

Aλ−γb +K−B[TSS], yielding the final processed dataset. By observing the gen-

eral relationship between the offset parameter K (Eq. 2.22) and the TSS of the

field samples, one may estimate the magnitude of the absorption removed from

the spectrum by using K from Eq. 2.22, whilst still correcting for the baseline

differences which cause scatter around the true relationship. In this way, the

only assumption applied to the aNAP dataset is that, in the NIR, absorption is

spectrally flat, and the only source of spectral structure between 730 and 920 nm

is due to scattered light loss from the spectrophotometer.

Comparing Figs. 2.21b, d and f, it is clear that progressive processing improve-

90



ments enhances the correlation coefficient of the non-pigmented particle absorp-

tion at 440 nm versus TSS scatter plots (R2 = 0.67, R2 = 0.84 and R2 = 0.88,

respectively). However, in observing Fig. 2.21f, there is evidence of a positive

TSS-axis intercept which suggests that a TSS of approximately 0.5 mgl−1 leads

to nil absorption in the blue region. This positive TSS-axis intercept suggests

methodological issues which require further discussion. Firstly, the filters used

to determine absorption (glass fibre) are physically different from those that are

used to measure TSS (polycarbonate). If their retention properties are as re-

ported (and cited previously in the Methods section), the inclusion of the extra

sample population of particles from 0.45 to ≈ 0.7 µm would increase the TSS

measurement slightly, however this cannot explain the ∼0.5 mgl−1 magnitude of

the TSS-axis intercept. Secondly, the TSS filters in this dataset were not rinsed

for salts. Instead, the average mass of a salt ‘blank’ was estimated from a pre-

vious fieldwork value and was subtracted, instead of using an offset determined

from the salinity of the water. This introduction of a salinity-dependent bias is

also far below the magnitude of the TSS x-intercept shown in Fig. 2.4f. Thirdly,

it may be possible that a fraction of the non-pigmented particles contributing to

TSS are ‘invisible’, as in the case for DOC (Del-Castillo & Miller 2008). However,

to my knowledge there is nothing documented in the literature about this artifact

in relation to TSS.

Figure 2.21f presents an approximately linear relationship between non-pigmented

particle absorption and TSS concentration, and by observing the salinity-based

colour scale, it can be seen that river plume sediment generally exhibits a similar

mass specific absorption at 440 nm as does the re-suspended coastal material at

higher-salinity. This scatter plot does not, however, reveal if any spectral differ-

ences are present. However, it is likely that most of the re-suspended material is

similar in composition to the terrestrially-discharged material. Considering the

sampling locations were chosen to cover a wide variety of natural particle as-

semblages, and that there is a clear difference in source mineral content between

outer reef lagoon waters and river discharge waters, a mixture of at least two dom-

inant NAP particle types is realistic. In outer reef areas, it is most likely that

91



terrigeneous coastal particles contribute negligibly to TSS and measured aNAP ,

while detrital material and/or calcareous material predominates. To study these

outer-reef optical properties, spectral linear regression analysis between aNAP (λ)

and TSS was performed on the 66 outer reef samples to determine TSS specific

absorption spectra. To determine the mass-specific absorption properties of the

terrestrially-sourced minerals, the entire data set was used. These 2 distinct mass

specific absorption spectra are shown in Fig. 2.22a.

a) b)

Figure 2.22: a) Regression-derived mass-specific non-pigmented particle ab-
sorption spectra of terrestrial (solid) and oceanic (dashed) particles. b)
Non-pigmented particle absorption-based TSS versus measured TSS (mgl−1)
R2 = 0.95 and RMSE = 0.09.

The double basis vector inversion approach (analogous to that outlined for phyto-

plankton in Eq. 2.44) yielded TSS retrievals with 9% RMS error (see Fig. 2.22b).

The spectral shapes of the two different basis vectors in Fig. 2.22a are different,

with the oceanic spectral basis vector appearing slightly less than half as efficient

at absorbing than the terrestrial basis spectrum. It is assumed that the detritus

associated with bleached, living phytoplankton (acellliving(λ)) and truly detrital

particles (acelldetrital(λ)) in the samples would have a similar spectral shapes to

the oceanic basis vector. Based on the data collected, there is at present no way

to quantify the relative abundance of these two different fractions.

The terrestrial NAP absorption spectrum contains features consistent with the

work of Bowers & Binding (2006) and Babin & Stramski (2002), possibly at-
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tributable to iron content (Babin & Stramski 2004). In contrast, the data pre-

sented by Blondeau-Patissier et al. (2009) for the same geographic region as re-

ported here shows no spectral structure in the NAP absorption. Although unclear

from their methodology, this lack of spectral content may stem from their choice

to use a simple exponential function to represent NAP absorption in their fig-

ures instead of the actual measurements made. The terrestrial NAP absorption

spectrum is assumed to contribute amin(λ) to Eq. 2.24.

A ternary plot is shown in Fig. 2.23, indicating the relative contributions of phy-

toplankton, non-pigmented particles and CDOM absorption at 440 nm for station

measurements where all three parameters were measured. The most absorbing

waters occurred when aφ contributed approximately 10% of the total absorption,

whereas the aCDOM coefficient contributed 65%. The ternary plot highlights that

for 440 nm at least, there are no co-varying absorbing constituents. This plot

is similar to that of Blondeau-Patissier et al. (2009), where the majority of the

absorption budget is usually attributed to either CDOM or NAP.

2.3.3.2.3 Particulate Scattering

The transmissometer measurements of total non-water attenuation coefficients

(cpg) collected during fieldwork varied from approximately 0.10 to 3.5 m−1 at 660

nm. Figure 2.24a shows the relationship between cpg(660) and TChl. For com-

parison, a Case 1 relationship cp(660) = 0.407[TChl]0.795 from Loisel & Morel

(1998) is shown, which approximately marks out the lower bound of the data

points measured in the GBR. The significant spread in data between cpg and

TChl demonstrates that non-algal particulates and/or CDOM influences attenu-

ation in the GBR waters sampled.

The suspended mineral scattering at 660 nm (bmin) shown in Fig. 2.24b was

calculated by correcting measured cp(660) values by subtracting coincident sta-

tion absorption measurements of NAP (aNAP ), CDOM (aCDOM), phytoplankton

absorption (aφ) and estimates of phytoplankton scattering (bφ):
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Figure 2.23: Ternary plot showing the relative absorption at 440 nm of the three
distinct optical components; CDOM, phytoplankton and non-pigmented particles
(NAP). The dotted lines indicate 10% intervals in consituent concentration. Plot
symbols are colour coded with total non-water absorption (red being the highest
at 1.32 m−1, and violet being the lowest at 0.04 m−1)
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bmin(660) = cpg(660)− aNAP (660)− aCDOM(660)− aφ(660)− bφ(660), (2.49)

where, according to the models published by Loisel & Morel (1998):

bφ(660) = 0.407[TChl]0.795 − 0.014[TChl]0.817. (2.50)

Based on the regression in Fig. 2.24b, and assuming the small intercept is a

byproduct of methodological uncertainties, the relationship between TSS and

bmin(660) can be described as:

bmin(660) = b∗min(660)[TSS], (2.51)

where b∗min(660) = 0.339 (determined from the slope of Fig. 2.24b).

The slope of 0.339 is very close to the mineral mass-specific coefficients of Bowers

& Binding (2006), and also very close to the simulated inorganic mass specific

scattering coefficients shown in Table 6 of Babin, Morel, Fournier-Sicre, Fell &

Stramski (2003). The relationship between the total scattering coefficient, b and

TSS will be useful later in Chapter 3, however later the backscattering coefficient

(bb) will be of prime importance when dealing with the interpretation of ocean

colour remote sensing data.

2.3.3.2.4 Particulate Backscatter

Backscattering coefficients (bbp) varied from near-zero to approximately 0.37 m−1

at 442 nm. Figure 2.25a shows the entire particulate backscatter (bbp) dataset,

with hyperbolic model fits overplotted to assist visualising the backscattering

spectrum.

The hyperbolic model is in the form:

bbp(λ) = bbp(555)

(
λ

555

)−γbb
, (2.52)
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a) b)

Figure 2.24: a) Total non-water attenuation (cpg) at 660 nm versus TChl for
the GBR dataset. The non-linear Case-1 relationship of Loisel & Morel (1998)
is shown for comparison (dashed line). b) The estimated non-algal particulate
scattering at 660 nm versus TSS for the GBR dataset. The dashed line is the
linear fit to bmin(660) vs TSS data.

where γbb is the spectral slope of the backscattering spectrum, and 555 nm is

chosen arbitrarily to normalise the spectra. 555 nm is a widely-used wavelength

in ocean optics is also a wavelength where phytoplankton absorption is minimal,

so the possibility of measurement artifacts are reduced.

The backscattering coefficient at 555 nm (bbp(555)) varied approximately linearly

with TSS concentration (R2 = 0.85), as shown in Figure 2.25b, and described by:

bbp(555) = 0.00986[TSS]− 0.00555. (2.53)

Due to the apparent or expected simplicity of the backscattering spectrum, or

lack of hyperspectral backscattering information, remote sensing inversion algo-

rithms often rely on the use of Eq. 2.52 (Lee et al. 1999). Depending on the

approach, some inversion techniques would benefit from characterising the γbb

slope parameter for a particular region. The γbb slope parameter is plotted versus

bbp(555) in Figure 2.25c. The slope parameter varies from a value near 5 in clear

waters, down to approximately 1.5 in the most turbid waters sampled. Slopes

greater than 4 are considered too high for marine hydrosols, so two data points

in Figure 2.25c are questionable. By plotting γbb versus 1/bbp(555) in Fig. 2.25d,

an approximately linear relationship is seen. From this data, the slope parameter
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γbb in Eq. 2.52 can be modelled with the inverse relationship shown below:

γbb =
0.00380

bbp(555)
+ 1.454, (2.54)

where 0.00380 is the slope and 1.454 is the intercept of the line in Figure 2.25d.

The equations 2.52 and 2.54 have the potential for modelling the spectral shift of

the backscattering spectrum in GBR waters from only one parameter - bbp(555)

(or TSS assuming the quasi-linear trend shown in the logarithmic axis in Figure

2.25b). Figure 2.25e shows a histogram of the errors in modelling γbb using Eq.

2.54. It should be noted that there is some spread in the histogram population

(σ=0.28). The ±1σ and ±2σ confidence limits are shown in Figures 2.25c and

d. The potential impact of the uncertainty in the modelled γ is propagated into

Eq. 2.52, and shown in Fig. 2.25f. These results indicate the Eq. 2.54 model

will produce bbp with errors less than approximately 10% in approximately 68.3%

of the data and errors less than approximately 20% in approximately 95% of the

data in the visible range from 400 to 700 nm.

As mentioned previously for non-pigmented particle absorption, it is expected

that there is a shift from terrestrial to oceanic sourced particulates from coastal to

outer shelf waters. An oceanic (detrital / phytoplankton) mass-specific backscat-

tering end-member was determined from the 23 coincident TSS and bbp mea-

surements performed on the outer shelf region, and the terrestrial mass-specific

backscattering was determined from the entire dataset. These two basis vectors

are shown in Fig. 2.26a. The TSS-specific basis vectors can be represented using

Eq. 2.52, with b∗bp(min)(555) = 0.01114, γbb = 1.227 for terrestrial particles, and

b∗bp(det)(555) = 0.00302, γbb = 3.347 for the outer shelf particles. These coefficients

were determined ignoring the data from 676 nm channel of the Hydroscat due

to possible fluorescence artifacts which could bias the basis vectors (McKee &

Cunningham 2005). These basis vectors may be used to retrieve the TSS concen-

trations based on a measured bbp(λ) alone, by a spectral optimisation blending

approach analogous to Eq. 2.44, where the concentrations TSSdet and TSSmin are

varied until the reconstructed bbp(λ) matches the measured bbp(λ). The spectral
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a) b)

c) d)

e) f)

Figure 2.25: a) The full particulate backscattering dataset (black plot symbols),
with hyperbolic model spectral match (solid, continuous line). b) Particulate
backscatter at 555 nm (bbp(555)) versus Total Suspended Solids (TSS). Note:
unfilled plot symbols denote the outer-shelf data points, both axes are logarithmic
and the dashed line is the line of best fit. c) Hyperbolic model spectral slope (γ)
versus particulate backscatter at 555 nm (bbp(555)). The solid line is plotted from
Eq. 2.54. The dashed lines show the ±1σ interval, and the dotted lines show
±2σ interval, generated with Eq. 2.54. d) Hyperoblic model spectral slope (γ)
versus inversed particulate backscatter at 555 nm (1/bbp(555)), showing the same
Eq. 2.54 model fits and confidence intervals as c. e) Histogram of the error in
γbb, as modelled from bbp using Eq. 2.54. f) Fractional errors in modelling bbp(λ)
based on the propagation of the confidence interval uncertainties of Eq. 2.54. As
in c and d, the dashed line is ±1σ and the dotted line is ±2σ.
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reconstruction equation is expressed as:

bbp(λ) = TSSmin

[
b∗bp(min)(555)

(
λ

555

)−γmin]
+TSSdet

[
b∗bp(min)(555)

(
λ

555

)−γdet]
,

(2.55)

where TSSdet is the estimated TSS concentration due to detrial / calcareous parti-

cles and TSSmin is the estimated TSS concentration due to terrestrially-sourced

particles. The total TSS is the sum of these values. b∗bp(min)(555) = 0.01081,

γdet = 1.228 for terrestrial particles, and b∗bp(det)(555) = 0.00302, γdet = 3.347 for

the outer shelf particles (see Figure 2.26a).

To test the suitability of the two different model approaches to reproduce the

measured dataset, the measured bbp(λ) dataset was spectrally inverted using

Levenberg-Marquardt spectral optimization of both the double basis vector (Equa-

tion 2.55) and spectral slope (Equations 2.52-2.54) inversion approached. Both

approaches worked satisfactorily, with RMS errors of 0.34 and 0.23, respectively.

By comparing Figs 2.26b and c, it can be seen that the spectral slope inversion

produces a tighter distribution (correlation coefficients R2 = 0.84 v.s. R2 = 0.78),

resulting in higher precision retrievals.
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a)

b)

c)

Figure 2.26: a) The TSS-specific bbp(λ) end-members. The TSS-specific basis
vectors can be represented using Eq. 2.52, with b∗bp(555) = 0.01081, γbb = 1.228
for terrestrial particles (solid line), and b∗bp(555) = 0.00302, γbb = 3.347 for the
outer shelf particles (dashed line). b) The TSS inversion using the double-basis
blend vector bbp model to approximate measured bbp. c) The TSS inversion results
using Eq. 2.52-2.54 to approximate measured bbp.
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2.3.3.2.5 Phase Function

As shown in Fig. 2.27a, the Mie modelled scattering phase function calcula-

tions of the Prochlorococcus population at 400 nm contains a spectral feature

at approximately 25◦ and 40◦. Similar features were also apparent in the VSF

measurements of O’Bree (2007) for samples collected in the tropical GBR wa-

ters, however the angular locations of these features differed. This may be due

to the presence of Synnechococcus in the field samples measured and/or that

the O’Bree (2007) VSF measurements were performed at 633 nm (both of these

shift the minima to larger angles). Figure 2.27b shows Mie model outputs for the

Prochlorococcus population, evaluated over a range of wavelengths to demonstrate

the wavelength dependency exhibited in the spectral feature. The backscattering

ratio (Bp = bbp/bp) of the simulated Diatom and Prochlorococcus phase functions

were calculated as 0.0342 and 0.0017 respectively, which is very close to the upper

range measured by Boss et al. (2004). However, these Prochlorococcus backscat-

tering ratio is approximately a factor of 2 lower than the minimum backscattering

ratio presented in Boss et al. (2004). This is perhaps not surprising considering

the field measurements of Boss et al. (2004) would contain contributions from

detrius and minerals in addition to Prochlorococcus.

The Fournier-Forand phase function (generated by Eq. 2.31) requires the in-

put of either the refractive index n and the hyperbolic slope of the Junge size

distribution µ (see Eq. 2.36) or µ and the backscattering ratio Bmin. For calcu-

lations used in this study, µ was determined using the average spectral slope of

γb = 0.65, determined as a byproduct of the NIR Quantitative Filter Technique-

based scattering correction process (Eq. 2.22). This γb was used to estimate µ

(i.e. µ = γb + 3 as in Eq. 2.36).

The spectral backscattering ratio (Bmin(λ)) was estimated by combining the mass

specific backscattering and total scattering spectral models, i.e.

Bmin(λ) =
b∗bmin(λ)

b∗min(λ)
, (2.56)
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where:

b∗bmin(λ) = 0.0087

(
λ

660

)−1.228

(2.57)

is derived from Eq. 2.52 using the coastal end-member coefficients shown in Fig.

2.26a (b∗bp(555) = 0.01081 and γbb = 1.228), and

b∗min(λ) = 0.339

(
λ

660

)−0.65

(2.58)

is derived from combining Eq. 2.26 (γb = 0.65) with Eq. 2.51.

The resultant estimated mineral particulate backscattering ratio (Bmin):

Bmin(λ) = 0.0257

(
λ

660

)−0.578

(2.59)

The modelled Prochlorococcus phase function is determined on a realistic, nearly

monodisperse particle size distribution, so it exhibits wavelength dependence (see

Fig. 2.27b). Once a wide variety of different sized phytoplankton particles are

considered, however, (as in the simulation of the Diatom population), this wave-

length dependence is significantly reduced (see Fig. 2.27c). The Fournier-Forand

phase function is inherently determined for hyperbolic particle size distributions,

but is parameterised by the backscattering ratio model which was found to be

wavelength dependent (Eq. 3.38). The Fournier-Forand phase functions for dif-

ferent wavelengths are shown in Fig. 2.27d, and only exhibit subtle wavelength

dependence. The phase function modelling shown here provides an important in-

put into software-based radiative transfer modelling, which will become important

in the next chapter. Although the wavelength dependence is small, ultimately,

the overall wavelength dependence depends on the relative abundance of the dif-

ferent scatterers. This wavelength dependence is maintained through subsequent

simulation chapters.
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a) b)

c) d)

Figure 2.27: a) Mie scattering-determined phase functions for Prochlorococcus
(dotted line), simulated Diatom assemblage (solid line). b) Mie-based Prochloro-
coccus phase functions at 400, 500, 600, 700 and 800 nm (solid, dotted, dashed,
dot-dash and triple-dot-dash lines, respectively). c) Mie-based Diatom phase
functions at 400, 500, 600, 700 and 800 nm. d) Fournier-Forand mineral phase
functions generated by Eqs. 3.38, 2.36 and Eq. 2.31 at 400, 500, 600, 700 and 800
nm.
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2.4 Summary

• IOPs (namely aφ, aNAP , aCDOM and bbp) were measured in GBR waters

alongside water quality parameters of interest (namely TSS, TChl, and

DOC).

• A series of candidate functional relationships (or end-members) were derived

to predict the spectral IOPs of GBR waters for a given water quality con-

centration. These spectral relationships were then used to invert measured

IOP spectra in order to retrieve the corresponding optically-based water

quality parameters. The retrieval accuracy of each functional relationship

was estimated based on the comparison with in situ measured water quality

parameters.

• GBR specific phytoplankton phase functions were estimated using Mie the-

ory, with literature-based refractive index inputs and estimated size popula-

tions. GBR-specific mineral phase functions were estimated using Fournier-

Forand using a mass-specific backscattering ratio estimated from GBR mea-

surements and an average Junge size distribution hyperbolic slope, based

on the NIR spectral scattering errors from the GBR QFT absorption mea-

surements.

Figure 2.28 collects together the absorption end-members determined from the

data measured in the GBR region in this study. Both DOC-specific CDOM ab-

sorption and TSS-specific detrital or mineral absorption spectra are similar in

shape, exhibiting a decaying exponential form, although the exponential slope

of the CDOM absorption end-member is greater than that of either mineral or

oceanic/detrital absorption. The similarity of the spectral shapes may present

difficulty for distinguishing the different constituents from total absorption in-

formation alone. However, fortunately, backscattering is also correlated strongly

with TSS and not with CDOM, so including backscatter in a simultaneous TSS

and DOC retrieval scheme should be effective. This will be evaluated later. It

should be noted that the spectra
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Figure 2.28: Mass-specific absorption end-members determined from the GBR
dataset. Pro is Prochlorococcus and Diat is Diatom TChl-specific absorption
(l.µg−1m−1). CDOM is the scaled DOC-specific CDOM absorption (l.cg−1m−1).
Min is the (terrestrial) mineral and Det is the (oceanic) detrital TSS-specific
absorption (l.mg−1m−1).
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Chapter 3

Remote Sensing Reflectance and

Inherent Optical Properties

3.1 Introduction

The apparent colour of the ocean is governed by the spectral Inherent Optical

Properties (IOPs) (namely, a, bb or β(θ)) of water and its constituents and the

geometry of the incident light field. Significant research efforts over the last 30

years have sought to functionalise the relationship between the remotely-sensed

signal and the in-water inherent optical properties (Gordon et al. 1975, Morel

& Prieur 1977, Carder et al. 1986, Gordon et al. 1988, Lee et al. 1998, 1999,

2002). The common goal of this research lineage was to be able to use large-scale

spatial and temporal reflectance measurements such as those provided from polar-

orbiting satellites to obtain biogeochemical information about the world’s oceans.

Ocean colour remote sensing imagers are typically designed1 to measure the ra-

diance Lw(λ) emanating from the water (denoted by subscript w), for it contains

the information about the constituents of the water column. These polar orbiting

satellites take images during different seasons with differing viewing geometries,

so it is commonplace to normalize Lw(λ) by the downwelling irradiance (Ed(λ))

1The total radiance recorded by satellites is referred to as Lt or LTOA (Top Of Atmosphere),
for this measurement is subject to atmospheric contributions, sun-glint and surface reflected
skylight. The subtraction of these other confounding terms to deduce Lw is outside the scope
of this thesis, however remains an active region of research - especially in coastal waters.
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incident on the ocean surface in order to produce a more spatially and temporally

consistent dataset which highlights changes due to in-water constituents rather

than illumination conditions. This normalized product is referred to as the re-

mote sensing reflectance as defined by (Sathyendranath 2000):

Rrs(θv, θs, φaz, λ) =
Lw(θv, θs, φaz, λ)

Ed(θs, λ)
, (3.1)

where θv is the view nadir angle, θs is the solar zenith angle, φaz is the sun-relative

azimuth angle, λ is the wavelength, Lw is the water-leaving radiance and Ed is

the downwelling irradiance.

In order to interpret observed multi or hyper-spectral Rrs(θ, φ, λ) measurements

to spatially quantify in-water substances that have an optical signature, the fol-

lowing expression based on the assumption of elastic scattering is commonly used

(Gordon et al. 1988, Lee et al. 1998):

Rrs(θv, θs, φaz, λ) =
f(θs, λ)

Q(θv, θs, λ, φaz)

(
bb(λ)

a(λ) + bb(λ)

)
, (3.2)

where a(λ) is the total absorption spectrum (m−1), bb(λ) is the total backscat-

tering spectrum (m−1) and f
Q

partly depends on solar and sensor geometry

(θv,θs,φaz), but also on the phase function of the scattering particles present

and the sea surface state (related to wind speed).

The total absorption and backscattering coefficients can be attributed to the sum

of the optically or operationally distinct fractions present in the water column:

a(λ) = aw(λ) + aφ(λ) + aNAP (λ) + aCDOM(λ) + . . . (3.3)

bb(λ) = bbw + bbφ(λ) + bbNAP (λ) + . . . (3.4)

where the subscripts denote contributions from water (w), phytoplankton (φ),

non-algal particulates (NAP ) and chromophoric (coloured) dissolved organic

matter (CDOM).
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Chapter 2 demonstrated the link between the IOPs of GBR waters and their

corresponding water quality parameters, so that the inputs to Eqs. 3.3 and 3.4

may be functionalised with TSS, TChl and DOC parameters. This Chapter is

concerned with first measuring Rrs accurately, and then establishing the validity

of Eq. 3.2 for GBR waters, and more specifically, the nature of f
Q

, so that field-

measured Rrs spectra can be converted into information about the IOPs (and

hence water quality) of the GBR waters.

3.2 Methods

3.2.1 Measuring Rrs with the DALEC Spectroradiometer

The DALEC (Dynamic Above-water radiance (Lu) and irradiance (Ed) Collector),

the primary sensor used in this research, is comprised of three radiometrically-

calibrated spectroradiometers designed to measure the sky radiance (Lsky), the

upwelling radiance (Lt) and the downwelling irradiance (Ed) in near-simultaneous

fashion. The instrument was designed specifically to operate from a moving ves-

sel, whilst continually recording a large number of measurements across previ-

ously unattainable spatial scales. The spectrometer integration times (analogous

with the concept of ‘exposure time’ in a camera) are designed to be dynamically

optimised throughout the course of the transect to ensure optimum signals are

measured. In this way, the often rapidly-changing spectral signatures of coastal

waters could be sampled with higher quality. Another benefit of the DALEC

approach is that sampling can be performed rapidly across spatial scales more

relevant to comparing with large remote sensing satellite image pixels which are

in the order of 250 m up to 1 km2.

The data from the three separate calibrated above-water radiometers is generally

combined in an equation described by Mobley (1999) to determine the remote

sensing reflectance (Rrs):

Rrs =
Lt − ρLsky

Ed
, (3.5)
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where ρ is the fraction of skylight which is reflected from the ocean surface into

the sea-viewing sensor, Lsky is the sky radiance measured at the complementary

angle of the sea-viewing radiance (Lt) sensor.

The radiance (Lsky, Lt) sensors were designed to be view angle adjustable, how-

ever were set to 40◦ from zenith and nadir respectively, to provide complementary

Lsky are Lt measurements applicable to Eq. 3.5 when the DALEC is level. The

DALEC housing design incorporates a friction-damped dual-axis gymbal mount

to help maintain consistent optical view geometry despite vessel motion often

encountered during transit.

3.2.1.1 DALEC Geometry

The DALEC has an in-built Global Positioning Satellite (GPS) receiver, so each

spectrum has an associated GPS position, date and UTC time. This GPS infor-

mation can be used to calculate solar zenith angle and solar azimuth (Reda &

Andreas 2008, NOAA 1997). When in transit, successive GPS positions allow the

calculation of an estimate ship heading. The DALEC’s boom azimuth relative

to the ship heading was manually set and recorded in a log book. To avoid ship

shadow and sun glint, the DALEC boom azimuth angle was manually adjusted

to achieve an approximate φrel = 135◦ separation between the DALEC azimuth

and the solar azimuth (see Fig. 3.3). Collection of this data during transect

allows the DALEC sun-relative azimuth angle to be estimated at any time. This

information, useful for quality control purposes, may assist the skylight reflection

correction process and is also useful for determining the appropriate conversion

factor between Rrs and bb
a+bb

which will be discussed later in the chapter.
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Figure 3.1: The DALEC spectroradiometer, showing its principal radiometric
measurements of Lt, Ed and Lsky. The sky-viewing radiance sensor is located on
the other side of the DALEC, so is not shown. It looks identical to the Lt sensor,
but is pointing skyward.

Figure 3.2: More details of the DALEC spectroradiometer and mounting.
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Figure 3.3: Overhead (nadir) view diagram of the ideal DALEC azimuthal geom-
etry during deployment.

3.2.1.2 Calibration and characterisation

The accuracy of water quality inversions depends partly on the accuracy of the

input spectroradiometric measurements which are used to form the Rrs sample.

For Lu and Ed measurements, Zeiss MMS-1 UV-VIS NIR enhanced spectrometers

were used. The Zeiss MMS-1 spectrometer modules have been in use in scientific

radiometric studies for over a decade (Kutser et al. 2003). These spectrome-

ters are described by the manufacturer as being ‘monolithic’ because the light-

receiving fibre optic bundle is glued directly to the entrance slit of a spectrometer.

This manufacturing design feature is intended to improve the radiometric stabil-

ity of the device. To further improve radiometric stability, the MMS-1 modules

are installed in the DALEC so that the input fibre bundles are never bent past

their specified bend radius and once in place inside the DALEC housing, cannot

move.

For the Lsky measurement, a compact but less mature Ocean Optics’ USB2000

spectrometer was used. This spectrometer featured a threaded entrance port

which was connected directly to the rigid collimating optics.

In order to have accurate Rrs data, the digital ‘count’ outputs of the three spec-

troradiometers from the DALEC were compared with the spectral calibration of a
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1000 W NIST-traceable lamp (Optronic Laboratories, OL-83A) powered at 8 A,

120 V with a 0.01% stable current power supply. The direct lamp and reflectance

plaque methods of Meuller & Austin (2003) were used for irradiance and radiance

respectively. The particular lamp (SN F-793, Optronic Laboratories) was within

the 50 hour, 1 year calibration transfer period.

The spectral irradiance (E) emitted by the NIST-calibrated FEL lamp, measured

at a distance (r) from the filament was determined by the following equation:

Er(λ) = E50(λ)

[
50 + ∆f

r + ∆f

]2

, (3.6)

where ∆f is typically ≈ 3 mm (the distance from the front face of the lamp

alignment jig and the front face of the filament), E50 is the spectral irradiance

calibration data of the lamp measured at the standard 50 cm, and r = 50.50 ±

0.15 cm. The irradiance responsivity factors FE were then determined by:

FE(λ) =
Er(λ)

Vr(λ)− Vamb(λ)
, (3.7)

where Vr(λ) are the detector counts during illumination and Vamb(λ) are the

counts when the filament is occluded (the ambient signal). The calibrations were

then applied to field measurement using the following formula:

E(λ) = FE(λ)[V (λ)− Vdark(λ)], (3.8)

where Vdark(λ) is the ‘dark count’; the count when no light is incident on the

spectrometer input.

For radiance calibration, a Labsphere SRT-99-100 Spectralon plaque was used to

reflect light from the aforementioned NIST lamp at distance r = 201.10±0.25 cm

from the plaque. The radiance responsivity factors (FL) were then determined

using:

FL(λ) =
ρ(λ, 45◦)Er(λ)

π(Vr(λ)− Vamb(λ))
, (3.9)

where ρ(λ, 45◦) is the spectral reflectivity of the Spectralon plaque viewed at 45◦2.

112



The calibrations were then applied to field measurement using the following

formula:

L(λ) = FL(λ)[V (λ)− Vdark(λ)]. (3.10)

3.2.1.2.1 Detector Linearity

Solid state spectrometers utilize an electronic circuit known as an ‘integrator’,

where charge due to photon and thermal excitation of the detector is accumulated

on capacitive electronic components over a user-defined time integration time (t)

in milliseconds. The Zeiss spectrometer detector ‘charge’ (or voltage) signals are

digitised with 15-bit analog-to-digital converters (ADCs), so for any given inte-

gration time, the maximum resolvable charge ‘count’ (V (λ)) is 215 = 32, 768. The

USB2000 spectrometer has a 12-bit ADC, resolving 212 = 4, 096 counts. In order

to make accurate spectrometer measurements, it is then important to know the

integration time associated with a given V (λ) measurement. Due to the limited

dynamic range of the spectrometers (i.e. 15 or 12 bit), and the natural variability

in ocean and sky radiance and solar irradiance, it is often necessary to vary the

spectrometer integration time in order to maximise the number of counts being

measured. In this work, the term ‘linearity’ refers to the ability of the spectrome-

ter to accumulate counts from a constant source of radiant flux at a constant rate

(counts per second), regardless of the total accumulated count in the integrating

capacitor. Although it is likely that there are significant differences in the spec-

tral radiant flux densities between the calibration lamp during calibration and

the ocean/atmosphere during deployment, it is assumed that the spectrometers

are equally sensitive to the dynamic range of illumination sources encountered.

Thus, the linearity corrections derived from the calibration lamp measurements

are applicable to field measurements.

Prior to using radiometric counts (Vr, Vamb and V ) in the aforementioned cali-

2The Spectralon plaque manufacturer provides ρ(λ, 8◦) only, however the Spectralon is as-
sumed to be a perfect Lambertian (isotropic) reflector, so ρ(λ, 8◦) = ρ(λ, 45◦).
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bration equations, it was critical to consider the spectrometer’s detector linearity.

One way of investigating deviations from linearity is to take measurements of a

known light source across a large range of counts (ideally from ≈ Vdark counts

up to 215). Ideally, a light source would either be able to generate (or be attenu-

ated to produce) a range of known, NIST-traceable Er(λ) values, so that for each

possible spectrometer integration time, a series of V (λ) measurements could be

made across the entire dynamic range of each sensor pixel. Then, successive plots

of Er(λ) vs. Vr(λ) for a given integration time would reveal any non linearity and

could be modelled with mathematical equation. This type of measurement would

be time consuming and was not possible to achieve accurately with the equipment

available.

Instead, the net effect of detector flux linearity and integration time was investi-

gated with the data collected during the radiometric calibration process (discussed

in the next section). This approach is similar to that described by instrument

manufacturer, Ocean Optics (2011a). Briefly; the lamp Er(λ) was observed at

a variety of spectrometer integration times in order to collect counts across a

large portion of the dynamic range of the detectors3. For a perfect linear per-

formance, the count rate of a spectrometer should be constant regardless of how

many counts are recorded. Count rates for the different spectrometers used in

the DALEC were calculated by Eq 3.11, and were assessed for linearity:

P =
Vr(λ)− Vdark(λ)

t
, (3.11)

where P is the count rate.

If there are deviations from linearity in the detector, then P will be seen to vary

under different measurement conditions. Figures 3.4a, c and e shows example

count rates for one pixel from each of the Ed, Lu and Lsky detectors as a function

of detector count. There are clearly differences in the count rate as a function of

accumulated count evident in Figures 3.4a, c and e which need to be corrected.

3The detectors were never allowed to saturate, in case the CCD charge from the saturated
pixels ‘bloomed’ into other pixels.
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In the low count range (measured with very small integration times, but large

uncertainties), there is a drop-off feature in count rate, possibly associated with a

linear offset in the overall effective integration time calibration for each individual

spectrometer. For the Zeiss spectrometers, maximum count rates are observed

at an accumulated count (well depth) of approximately 2000 counts, and then

gradually drops off as the accumulated count increases.

Determining the exact source(s) of the nonlinearity is outside the scope of this

thesis. The goal of the subsequent analysis is to ensure that a constant count

rate is achieved at any accumulated count value. This non-linearity compensation

procedure was implemented in two stages. First, a spectrometer-dependent ∆t

integration time-offset was introduced into Eq. 3.11 to linearize the count rate of

each spectrometer when counts are low:

Q(λ) =
Vr(λ)− Vdark(λ)

t+ ∆t
. (3.12)

where Q(λ) is the modified count rate, and the integration time offset ∆t was

manually determined as ∆t = −1.3,−0.95,−2.5ms for Ed, Lu and Lsky respec-

tively.

The negative sign of these integration time offsets indicates that there is a por-

tion of the integration time which is ineffective in collecting photons. The value

of 550 nm was chosen in Figs. 3.4a, c and e because this is near the maximum

spectral count range achievable without saturation. Unfortunately, not all pixels

were observed across the majority of their dynamic range. These pixels are still

part of the same CCD array, so it is assumed they require the same non-linearity

correction. To test the assumption that pixels from the same CCD array will

require the same non-linearity correction, the corrected count rates Q(λ) for dif-

ferent pixels were compared. In order to do this, the Q(λ) values needed to be

normalised to remove differences in measured count rates due to the non-uniform

spectral output (flux density) of the lamp. The dimensionless normalised count

rate is calculated by:

Qnorm =
Q(λ)

Qref (λ)
, (3.13)
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where Qref (λ) is the interpolated Q(λ) value at a reference accumulated count

value (fixed at 10,000 for Lu and Ed spectrometers, and 500 for Lsky).

The normalised count rate Qnorm data from all relevant pixels for each spectrom-

eter is shown in Figs. 3.4b, d and f. For Ed and Lsky, the pixel variability is

typically less than the error bars of Qnorm, which supports the assumption that

nonlinearity is pixel-independent. The Lsky spectrometer exhibited higher Qnorm

variability during the measurements indicating either an instrumental or exper-

imental artifact, however the inter-pixel variability is still small relative to the

overall non-linearity experienced by the instrument as a whole.

For the Zeiss spectrometers, a 5th order polynomial approach was used to model

the non-linearity shown in Fig. 3.4b and d:

Qnorm = B0 +B1N +B2N
2 +B3N

3 +B4N
4 +B5N

5 (3.14)

where N is the photon-induced count (V − Vdark), and Bx coefficients are listed

in Table 3.1.

The 5th order polynomial is plotted with a white dashed line on Fig. 3.4b and

d. Fortunately, the 5th order polynomial appears to extrapolate to count ranges

which were not measured during the detector linearity experiments. The over-

all intercept (B0) of the non-linearity correction (Eq. 3.14) is not important, as

spectrometer counts get corrected prior to the determination of the radiometric

calibration coefficients. For simplicity, the lowest order terms of these polyno-

mials are shifted so that the normalised count-rate intercept is exactly 1; thus

the lowest count measurements require no linearity correction (other than the

∆t correction). The shifted polynomial coefficients are shown below in Table 3.1.

These polynomials generate the correction factor, by which the measured photon-

induced counts (C) are divided in order to yield the corrected counts (Ccorr):
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a) b)

c) d)

e) f)

Figure 3.4: a) Count rate versus counts for the 550 nm Ed pixel. b) Corrected,
normalised count rate versus counts for all wavelengths. The 5th order polynomial
is overplotted with a white dashed line and the extrapolated parabolic line is
shown with a black dashed line. c) Count rate versus counts for the 550 nm Lu
pixel. d) Corrected, normalised count rate versus counts for all wavelengths. The
5th order polynomial is overplotted with a white dashed line and the extrapolated
parabolic line is shown with a black dashed line. e) Count rate versus counts for
the 550 nm Lsky pixel. f) Corrected, normalised count rate versus counts for
all wavelengths. The linear function is overplotted with a white solid line and
the extrapolated line is shown with a black solid line. For all plots, each ‘count’
is an average of 100 Vr and Vdark measurements, and the count rate error bar
magnitudes are calculated with Eq. 3.11, with the standard deviations ±(σVr +
σVdark) propagated into the numerator.
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Ccorr =
C

Qnorm

. (3.15)

Coefficient Ed Lu
B0 1.00 1.00
B1 -2.8859394e-006 -2.3443405e-006
B2 1.1065396e-010 1.2537352e-010
B3 -5.3532978e-015 -1.2443476e-014
B4 8.7211449e-020 4.2848903e-019
B5 -1.4329147e-024 -6.1826742e-024

Table 3.1: Polynomial coefficients for the linearity compensation of each Zeiss
spectrometer pixel to be used in Eq. 3.14.

The USB2000 spectrometer behaved differently to the Zeiss spectrometers. As

the photon count increased, the photon rate actually increased in a near lin-

ear fashion (see Fig. 3.4e and f). Unfortunately, the full dynamic range of the

USB2000 was not calibrated, so non-linearities were not observed, other than

those corrected with the ∆t correction. It is assumed herein that the linear re-

gion extends throughout the 212 count range for the USB2000. Whilst this is

unlikely, no data were collected to confirm otherwise. The linear fit was modelled

with Qnorm = 1 + B0N , where B0 = 3.6683368e − 005, and N is the recorded

photon-induced (V − Vdark) counts.

The non-linearity correction is important for overall Rrs accuracy because it is

evident there is an approximate 10% variation of count rate throughout the spec-

trometer’s dynamic range for both Ed and Lu. This is evident in the range of

normalised count rates shown in Figures 3.4b and d.

3.2.1.2.2 Calibration Coefficients

For each of the aforementioned irradiance and radiance calibration configurations

(see Section 3.2.1.2), measurements were made across a variety of integration

times. After detector linearity corrections which get applied to both Vr(λ) and

Vamb(λ) independently, a number of FE(λ) and FL(λ) calibration coefficients were

determined for the range of integration times. Figures 3.5a, c and e show the

inverse linear relationship between the FE and FL coefficients at 550 nm and
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the integration time for the three different spectrometers. Characterising the

relationship between the calibration coefficients (FE, FL) and integration time

is useful because the DALEC’s integration time may then be adjusted to suit

any illumination condition to achieve optimum signal-to-noise, and appropriate

calibration coefficients can always be determined. Fortunately, after detector

linearity corrections were made, the calibration coefficients were nearly perfectly

inversely proportional to the integration time (t), so:

FE,L(λ) =
M(λ)

t+ ∆t
, (3.16)

where FE,L refers to the irradiance or radiance responsivity coefficients respec-

tively, t is the spectrometer integration time in ms, ∆t is the aforementioned

spectrometer-dependent integration time offset in ms, and M(λ) is the spectral

calibration constant for each channel, shown in Figs. 3.5b, d and f.

It is useful to estimate the reliability of the calibration coefficients determined by

Eq. 3.16. First, a qualitative assessment was made. The calibration lamp mea-

surements made at different integration times were calibrated using Eq. 3.16,

and were overplotted in Figs. 3.6a, c and e, along with the equivalent NIST char-

acterisation (shown in white). The spectral Route Mean Square Error (RMSE)

was determined for lamp observations for all tested integration times for each

spectrometer. For the Zeiss spectrometers, the RMSE was typically under 1% for

the 400 to 950 nm spectral region. The spectral RMSE for each spectrometer is

shown in Figs. 3.6b, d and f.

The calibration measurements for the Lsky were less effective, for they failed to

characterize the instrument across the full dynamic range of the device. The

maximum count measured during calibration was approximately 1440, out of an

approximate 212 = 4096, so the USB2000 calibration measurements exhibited

a lower signal-to-noise ratio than the Zeiss spectrometer calibration measure-

ments. As a consequence, the lamp reproduction RMSE were slightly higher for

the USB2000 Lsky radiometer, typically under 5% for the 400 to 950 nm spec-

tral region. The calibration coefficients M(λ) for the Lsky sensor are reasonably
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smooth (see Fig. 3.5f), so it is likely that the linear regression used to determine

M(λ) reduced the effect of detector noise at low integration times. Even if the

accuracy of the Lsky measurements were of lower accuracy, these only contribute

marginally to the overall calculation of Rrs by Eq. 3.5, where ρ ≈ 3%.
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a) b)

c) d)

e) f)

Figure 3.5: a) Calibration coefficients (FE) for 550 nm versus the inverse of the
offset-corrected integration time for the Ed sensor. b) The spectral calibration
coefficients, M(λ), of the Ed sensor. c) Calibration coefficients (FL) for 550 nm
versus the inverse of the offset-corrected integration time for the Lu sensor. d) The
spectral calibration coefficients, M(λ), of the Lu sensor. e) Calibration coefficients
(FL) for 550 nm pixel versus the inverse of the offset-corrected integration time
for the Lsky sensor. f) The spectral calibration coefficients, M(λ), of the Lsky
sensor.
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a) b)

c) d)

e) f)

Figure 3.6: a) Calibrated measurements of the NIST lamp Ed spectrometer
measurements performed at all integration times (overplotted), with the NIST-
sourced lamp spectral calibration overplotted in white. b) The spectral RMSE of
the lamp spectral irradiance measurements determined from data recorded at all
measured integration times. The 1% level is shown with a dashed line. c) The
reproduction of the spectralon plaque radiance by the calibrated Lu spectrometer
measurements. All integration times are overplotted. The calibration irradiance
spectrum as reflected by the spectralon plaque is overplotted in white (see Eq.
3.9). d) The spectral RMSE of the lamp reproduction, determined from cali-
brated spectra collected at all measured integration times. The 1% level is shown
with a dashed line. e) The reproduction of the spectralon plaque radiance by the
calibrated Lsky spectrometer measurements. All integration times are overplot-
ted. The calibration irradiance spectrum as reflected by the spectralon plaque
is overplotted in white (see Eq. 3.9). f) The spectral RMSE of the lamp repro-
duction, determined from calibrated spectra collected at all measured integration
times. The 1% level is shown with a dashed line.
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3.2.1.2.3 Dark Count Characterisation

All three spectrometers in the DALEC record counts even when no light enters

the spectrometer. These counts are due to thermal excitation of the semiconduc-

tor detector and other sources of electronic noise, and must be removed from the

signal prior to the application of the calibration coefficients. Vdark measurements

were performed routinely throughout field campaigns in order to characterise any

spectral shape in the ‘dark’ spectrometer outputs (i.e. due to hot pixels etc.).

The magnitude of Vdark fluctuates with temperature4, so it is desirable to know

the actual magnitude of the dark count simultaneously with each measurement

throughout the course of the day. With the exception of a few outlying hot pixels,

the spectral shape of the dark count was essentially flat for all spectrometers.

The first 24 pixels of the USB2000 spectrometer array were blocked or filtered out

by the manufacturer. The average value of these 24 pixels provides an estimate

of the overall dark count of the Lsky detector for any given spectrum. For the

Ed and Lu sensors, less information is known. For each spectrometer, the general

relationship between dark count and integration time was investigated in a series

of tests throughout the DALEC deployment period. The relationship between

dark count and integration time was not consistent (see Fig. 3.7). The data

measured during midday tended to have lower dark counts for a given integra-

tion time (data not shown). The most extreme outlying curve in Fig. 3.7b was

performed after sundown, and the two other curved outliers were performed just

before sundown and proceeded into the evening. This structure is most likely

due to fluctuations in spectrometer temperatures, however in the absence of any

other data, these general relationships based on Eq. 3.17 can provide estimates

of dark current shape and magnitude based on the selected integration time. The

linear relationships based on the linear regression of the data overplotted in Fig.

3.7 were determined for each spectrometer:

Vdark(λ) = Y (λ) +O(λ)(t+ ∆t), (3.17)

4Both the semiconductor detector temperature and the read-out electronics, which heat up
with increased charge throughput (higher counts).
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where O(λ) is the integration-time dependent portion of the dark count and Y (λ)

is the mean invariant dark count contribution.

For Lsky, once this dark count shape is determined for a given corrected integra-

tion time, it is scaled so that it exactly matches the magnitude of the first 24

filtered pixels. For the Ed sensor, the dark count spectral model described by

Eq. 3.17 is used without further modification, acknowledging that errors of up to

approximately 300 counts may be introduced (based on observing the data spread

in Fig. 3.7a). For the Lu sensor, the average of the three lowest Lu values are used

to scale the modelled Lu dark spectrum. This assumes that for every spectrum,

there is a portion of the Lu with negligible photon-induced count. This is likely

in the NIR region, provided there is no floating algae such as Trichodesmium in

the scene under observation. Data where floating algae is likely is flagged and

not used for further analysis. This is discussed later.

It is acknowledged that the lack of continuous dark count monitoring is a short-

coming of the DALEC’s design. An improved DALEC could incorporate auto-

mated internal temperature sensors, optical shutters or filtered portions of the

spectrum on the Lu and Ed channels. All of these would provide information

about the appropriate dark current levels throughout deployment.

3.2.1.3 Spectral Convolution

The two Zeiss spectrometers (Ed and Lu) in the DALEC have a spectral reso-

lution of approximately 10 nm (Zeiss 1999), whereas the USB2000 has a much

higher spectral resolution of approximately 1.5 nm (Ocean Optics 2011b). To

calculate Rrs, the data from all three spectrometers needed to be combined in an

equation similar to Eq. 3.5, so it is preferable if the spectral resolution of all three

spectrometers are identical. Additionally, the wavelength calibrations of the Zeiss

spectrometers are wavelength dependent, with deviations from approximately 0.5

nm in the blue to 1.5 nm in the NIR. This difference also needed to be accounted

for due to the sharp spectral absorption features in the Ed spectrum; otherwise

spectral artifacts may be introduced in the final Rrs product.
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a)

b)

c)

Figure 3.7: Dark Counts at 550 nm versus corrected integration time (see Eq.
3.12) for a) Ed, N=7504, b) Lu, N=7504 and c) Lsky, N=4551. All data ac-
quired on 11 different days during fieldwork (morning, noon and afternoon) are
overplotted to show the variability introduced with changes in temperature.
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To achieve an accurate wavelength alignment and compatible spectral resolu-

tion, all field-measured spectrometer data was convolved with a 10 nm FWHM

gaussian kernel, centered on each of the Lu wavelengths. Figures 3.8a-c shows

examples of calibrated spectrometer signals, with the corresponding convolved

spectra overplotted in white. The most noticeable spectral change after convo-

lution is seen in the Lsky spectrum. Here, the convolution is removing spectral

information related to molecular absorption in the atmosphere.

3.2.1.4 Surface reflection correction

At any particular DALEC instrument azimuth geometry, a certain fraction (K)

of the sky radiance is reflected from the ocean surface into the Lu sensor:

Lt(λ, θv) = Lu(λ, θv) +KLsky(λ, θ
′

v), (3.18)

where θv is the view angle of the sea-viewing radiance spectrometer (from nadir)

and θ
′
v denotes the complement of this angle, from zenith.

Depending on the sea state, at any particular time, this contaminating sky radi-

ance comes from a variety of regions in the sky. For a perfect DALEC alignment

(relative to the horizon), and a flat ocean surface, much of the contaminating

sky radiance would come from the complementary view angle (40◦ from zenith),

and this radiance is measured by the Lsky sensor. Theoretical studies by Mobley

(1999) for a perfectly aligned above-water sensor introduced the ρ parameter in

Eq. 3.5, which can be used to correct for skylight contamination, and is a func-

tion of solar zenith angle, wind speed, relative solar azimuth, instrument’s field

of view and wavelength.

Mobley (1999) suggests an optimal sun-viewing azimuth angle (φaz) of approxi-

mately 135◦ to minimise ρ (see Fig. 3.3). The DALEC’s gymbal mount is attached

to a boom whose view azimuth angle is set to point near this optimal azimuth

angle, however the fixed DALEC boom design and the ship’s variable heading
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a)

b)

c)

Figure 3.8: a),b),c) Examples of calibrated Ed, Lu and Lsky spectra (respectively).
The 10 nm Gaussian-convolved equivalent spectrum is overplotted in white. Note
in particular, the reduction of fine structure in the Lsky spectrum.
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throughout the sampling days lead to variations in the sun-viewing azimuth an-

gle of the DALEC. It was then important to record the sun-viewing azimuth angle

and implement a skylight correction strategy based on this information.

3.2.1.4.1 Hydrolight-based look-up table correction

Hydrolight R© (Sequioa Scientific, USA) is a commercially available and widely-

used radiative transfer software package which can simulate the propagation of

light from a modelled sun and atmosphere, through a wind-roughened air-ocean

interface (Mobley 1989), up towards a sensor such as the DALEC’s Lu spectrom-

eter.

A series of Hydrolight modelling runs were made to calculate ρ(λ) for a range of

wind speeds (U), solar zenith angles (θs), sun-viewing azimuth angles (φaz) and

view angles (θv). From these simulations, a look-up table (LUT) was generated

in order to retrieve ρ(λ) given the instrument’s view angle, sun relative azimuth

angle, wind speed and solar zenith angle. Assuming perfect instrument viewing

angle (i.e. θv = 40), the look-up table was used to retrieve ρ to produce the

corrected Rrs spectrum (Mobley 1999):

Rrs =
Lw
Ed

=
Lt − ρ(λ, φaz, U, θz)Lsky

Ed
, (3.19)

where Lt is the measured sea-viewing radiance, Lsky is the sky-viewing radiance,

Ed is the downwelling irradiance, Lw is the water leaving radiance. ρ is deter-

mined from the Hydrolight-generated LUT which is applicable to time-averaged

measurements (Mobley 1999).

3.2.1.4.2 Residual glint subtraction

The measured Lsky spectrum is not always representative of the spectrum of light

that is contaminating instantaneous Lt measurements. Although the Hydrolight-

based skylight correction approach considers the broadening of the solid angle of
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skylight reflections and resultant shifts in the spectrum, the time-averaged nature

of Hydrolight does not deal with the instantaneous spectral effects of sun-glint,

caused when the direct sunlight is reflected into the Lt sensor; often for only

fractions of a second. To compensate for the instantaneous sun-glint effect, an

additional term in Eq. 3.18 was required (Lee et al. 1997).

Building on Eq. 3.18 to include a sun-glint factor (ε), Eq. 3.18 becomes:

Lt(λ, θv) = Lu(λ, θv) +KLsky(λ, θ
′

v) + εEd, (3.20)

and Eq. 3.19 becomes:

Rrs =
Lw
Ed

=
Lt − ρ(λ, φaz, U, θz)Lsky

Ed
− ε. (3.21)

Often, ε is approximated to be the uncorrected Rrs in the NIR region (say, at 750

nm) (Lee et al. 1997). Hence, the assumption is that there is no Rrs signal at

750 nm. This is not always the case for coastal waters, where high NIR bb values

may occur; contributing to a Rrs(NIR) signal.

Ruddick et al. (2006) observed that there is a normalised reflectance spectral

signature (‘similarity spectrum’) in the deep red to NIR region which is invariant

with sediment concentration because water absorption in these regions is so large.

In other words, in the absence of floating algae and fluorescence, the spectral

shape of Rrs is invariant in the NIR spectral region, but non-zero. This spectral

shape was provided in a Table from Ruddick et al. (2006), and is represented as

S(λ) in Eq. 3.24. S(λ) was spectrally convoluted as described in Section 3.2.1.3.

This spectral shape was based on 27 quality-controlled measurements made in the

North Sea. Unfortunately these measurements are themselves potentially subject

to residual above water skylight correction artifacts. Additionally, the water

temperature in the North Sea is expected to vary greatly compared to that of

the tropical Great Barrier Reef, and S(λ) is dependent on water temperature and

salinity. Since the work of Ruddick et al. (2006), temperature and salinity specific

NIR absorption data have been made available to the remote sensing community
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(Rottgers et al. 2013). By using these new coefficients, a ‘similarity spectrum’ was

generated for this study using a theoretical approach. The resultant spectrum

will not contain residual skylight artifacts, and the temperature and salinity of

GBR waters can be represented. Assuming negligible CDOM and particulate

absorption in the NIR, the spectral shape of u (and Rrs) is influenced only by

particulate backscatter and water absorption:

uNIR ≈
bbw + bbp

aw + bbw + bbp
, (3.22)

where the wavelength dependency has been omitted for brevity, and aw was mod-

elled for a salinity of 35 PSU and a temperature of 29◦ C using the coefficients of

Rottgers et al. (2013). This u modelled spectrum was then at normalised at 780

nm, consistent with Ruddick et al. (2006):

Snew =
uNIR

uNIR(780)
. (3.23)

To demonstrate the sensitivity of Snew(λ) to likely variations in bbp in the GBR

region, equations 2.52 and 2.54 were used to generate a series of Snew(λ) spectra

for bbp(555) values between 0 and 0.3 m−1. These different spectra are overplotted

with faint dotted lines in Fig. 3.9a. The average value is shown as a solid line

with a white outline. The Ruddick et al. (2006) similarity spectrum is plotted

with a dashed line. In comparing the normalised theoretical Snew(λ) with the

approach of Ruddick et al. (2006), it is assumed that any spectral differences

between Rrs and u are negligible in the NIR. From this comparison, it is evident

that the spectral feature around 800 nm is shifted approximately 20 nm between

the two approaches. Also, the theoretical approach does not contain the small

feature evident in the Ruddick et al. (2006) at approximately 760 nm. This fea-

ture may be due to the presence of residual reflected skylight in the measurements

or Raman fluorescence.

Whilst the theoretically-based similarity spectrum Snew(λ) deals with absorption

and elastic scattering, the remote sensing signal will also contain fluorescence

F (λ) and spectral influence from floating Trichodesmium T (λ). These contribu-
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tions should be considered in addition to the similarity spectrum. An optimisation

inversion model was formulated to determine appropriate glint (ε), floating algae

(κ), fluorescence (A0 and A1) correction factors and the theoretically-based sim-

ilarity spectrum scaling factor (J):

Lt − ρ(λ, φaz, U, θz)Lsky
Ed

− ε = JSnew(λ) + κT (λ) + F (λ), (3.24)

where fluroescence F (λ) is modelled with the double-Gaussian parameters of

Zarco-Tejada et al. (2000):

F (λ) = A0e
−(λ−688.3)2

313.29 + A1e
−(λ−746.1)2

1007.43 . (3.25)

A Levenberg-Marquardt (MPFIT) (Markwardt 2009) routine was employed to

vary the five parameters - [ε, J, κ, A0, A1] to minimize the difference between the

left hand side and right hand side of Eq. 3.24 from 650 to 900 nm where Snew(λ)

is from Eq. 3.23. For the inversion, ε was initialised to
(
Lt(900)
Ed(900)

)
, J was initialised

to
(
Lt(780)
Ed(780)

)
and κ, A0 and A1 were all initialised to 0.

The Trichodesmium basis vector, T (λ) was extracted from a DALEC transect

and was left uncorrected for glint or skylight correction. Due to the slick density

and surface expression, no glint could be seen by eye; nor any skylight reflection.

This spectral signature looked similar to the those measured by McKinna (2010).

There are several benefits of this skylight correction approach. First and fore-

most, this method allows skylight and glint correction in turbid coastal waters

where Rrs(750) > 0, providing more accurate Rrs measurements in GBR waters.

Secondly, the commonly encountered floating Trichodesmium may be detected

and is quantified by (κ) using this approach. This quantity can be used as a

quality control flag, or the effects of the Trichodesmium can be removed so that

standard radiative-transfer based Rrs inversions, which assume submerged parti-

cles, can still be performed on the data. Thirdly, the retrieval of the fluorescence

peak (especially the dominant A0 magnitude) can be used to estimate surface wa-
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a)

b)

c)

Figure 3.9: a) The ‘similarity spectrum’ approaches. The Ruddick et al. (2006)
spectrum is shown with a dashed line. The thin, dotted lines show variations in
the theoretical similarity spectrum due to variations in bbp. The solid line with
a white outline is an average theoretical similarity spectrum.. b) The floating
Trichodesmium basis vector, T (λ), obtained from a DALEC measurement directly
over a thick, red Trichodesmium mat, normalised at 780 nm. c) The separate
Gaussian chlorophyll fluorescence emission spectra as generated with Eq. 3.25
(Zarco-Tejada et al. 2000).
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ter chlorophyll-a concentrations from DALEC measurements. This fluorescence

signal can then be subtracted from Rrs prior to the standard radiative-transfer

based Rrs inversion which usually assumes elastic scattering and absorption only

(Lee et al. 1998).

Ultimately, the validity of this skylight correction approach should be assessed

by comparing with above water Rrs extrapolated from subsurface Lu and Ed

measurements. Unfortunately, these validation measurements were not made.

Instead, the overall DALEC post-processing and inversion methodology will be

validated in their entirety later.

3.2.1.5 DALEC Data Quality Control

To quality control DALEC measurements, a number of quality control flags were

created, and are summarised in Table 3.2. The most important requirement is

that DALEC pixels are not saturated. The next important requirement is that

the GPS has a valid positional fix, and that the DALEC’s viewing azimuth an-

gle (φaz) (see Fig. 3.3) is known (either by measuring the compass heading or

calculating the heading of the ship based on successive GPS positions whilst in

motion). The DALEC viewing azimuth angle is used to filter the data to remove

regions with a high probability of sun-glint (i.e. for φaz < 40◦) and regions where

ship shadow is probable (φaz > 160◦). In addition to these fundamental flags,

there are the skylight and glint correction-derived flags. When a large amount of

sun-glint is present and is subtracted from the Rrs measurement in Eq. 3.24, its

value is recorded in the ε parameter. When this is too large, even corrected Rrs

start to look anomalous (i.e. the presence of atmospheric absorption lines in the

NIR region). All data over a certain glint threshold are ignored.

The κ coefficient is employed as a higher level quality control parameter, equal

to the magnitude of the Trichodesmium Rrs contribution at 780 nm. This con-

tribution is not subtracted from the reflectance spectrum, however it could be.

This QC parameter is of vital importance because Trichodesmium present on the

ocean surface covers the underlying water column and invalidates the assumptions
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of the fundamental radiative transfer-based equation Rrs ≈ f
(

bb
a+bb

)
(McKinna

2010).

QC Flag Condition
SATURATED Lu, Ed counts > 32, 000 and Lsky counts > 4, 000.

NO GPS GPS FIX = 0
GOOD GEOMETRY 40◦ < φaz < 160◦

GLINT ε > 0.01
TRICHO κ > 0.00001

Table 3.2: DALEC Quality Control flag conditions.
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3.2.2 Hydrolight Synthetic Rrs Dataset Creation

Hydrolight (described previously) can be used to simulate the above-waterRrs(θ, φ, λ)

for a given set of water column spectral IOPs. By using Hydrolight to simulate

the Rrs(θv, θs, φaz, λ) of known IOPS and concentrations found in the GBR region

(based on the findings of Chapter 2), a dataset can be generated to investigate

the validity of equations such as Eq. 3.2, and in particular f(θv, θs, φaz, λ), specif-

ically for GBR waters.

The Hydrolight ‘ABCASE2’ 4-component (water, phytoplankton, CDOM and

non-algal particles) IOP model was used to perform model runs. For every con-

stituent the concentration-specific absorption, total scattering and phase func-

tions are required as input into Hydrolight (with the exception of CDOM, which

is assumed to contribute negligibly to scattering). The values used in the creation

of this dataset are shown in Table 3.3, and were combined in a FOR loop so that

Hydrolight runs were made for each unique combination of the TChl, TSS and

DOC concentrations.

The synthetic dataset was created for chlorophyll concentrations listed in Table

3.3, ranging from zero up to 5 µgl−1 in order to encompass and slightly extend the

range of chlorophyll concentrations encountered during fieldwork. The synthetic

dataset was created for mineral TSS concentrations listed in Table 3.3, ranging

from near-zero up to approximately 100 µgl−1. This concentration range encom-

passes the range of TSS concentrations encountered during the fieldwork, and

should also represent the TSS values found during highly-turbid flood plumes or

dredging plumes which are known to occur in the region of interest (Islam et al.

2007). DOC concentration in the modelling exercise of this section was varied

from 0.65 to 5.65 mgl−1. The highest field-measured DOC was approximately 4

mgl−1.

All water quality concentrations chosen in Table 3.3 cover, and extend past the

ranges measured in the GBR. This is to assist in simulating the ocean colour

for both ‘normal’ and what is considered to be extreme conditions in the area.
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Discrete concentrations were chosen instead of random sampling from the mea-

sured cumulative water quality probability functions to ensure that these extreme

conditions were present in the simulations.

TChl (µgl−1) TSS (mgl−1) DOC (mgl−1)
0 0+TSSφ 0.65

0.25 0.5+TSSφ 1.15
0.5 2+TSSφ 2.65
2 5+TSSφ 5.65
5 10+TSSφ -
- 100+TSSφ -

Table 3.3: Water quality concentrations of each optically active constituent used
for the synthetic dataset creation. TSSφ = 0.85

√
TChl, which is the assumed

contribution of TSS due to living organic matter correlated with TChl (see Section
3.2.2.2).

Details of the different optical models used for the Hydrolight simulations are

provided in Sections 3.2.2.1 to 3.2.2.4.

3.2.2.1 Phytoplankton

Hydrolight allows only one user-provided chlorophyll-specific absorption spec-

trum as standard. However, as discovered in Chapter 2, a two phytoplankton

component (Procholorococcus and Diatom) model fits the observed variations in

pigment packaging and was shown to be useful for retrieving TChl concentrations

based on aφ spectra.

The contribution of the Diatom spectrum (relative to Prochlorococcus) was of-

ten seen to increase as TChl increased (see Fig. 2.20), and in Chapter 2, this

trend was modelled with Eq. 2.48. In order to model a realistic phytoplankton

assemblage for the GBR to be input into Hydrolight, chlorophyll-specific absorp-

tion spectra needed to be determined for these different relative abundances of

Procholorococcus and Diatoms. From Chapter 2:

SPro =
M

8.94TChl
+ 0.0214M − 0.1125, (3.26)

where M varied from 0.75 to 3 in the GBR dataset (see Fig. 2.20).
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To model the observed (see Fig. 2.20) shift in assemblage, and allow for the

natural variability evident in the data, M was varied by a uniformly-distributed

random number < so that it spanned from 0.75 to 3:

M = 0.75 + 2.25<. (3.27)

For low TChl values, the maximum fractional value of SPro was restricted to 1.

The fraction of TChl attributable to Diatoms was then determined by:

SDiat = 1− SPro. (3.28)

The chlorophyll specific absorption model input was then calculated as:

a∗φ(λ) = a∗Pro(λ)SPro + a∗Diat(λ)(1− SPro), (3.29)

where a∗Pro(λ) and a∗Diat(λ) and the chlorophyll specific absorption spectral end-

members for Prochlorococcus and Diatoms (respectively).

Due to the Case 2 nature of coastal waters and the relatively low numbers of

stations available in Case 1 conditions (i.e. outer shelf samples), the data set

collected in the GBR was not sufficient to determine the spectral scattering prop-

erties of phytoplankton in isolation (also see Section 2.3.3.2.3). Instead, the

Chl-specific scattering data of Morel (1987) (his Fig. 5b) was used to estimate a

TChl-specific scattering end-members for oligotrophic waters (b∗Pro) and eutrophic

waters (b∗Diat). These can then be mixed together in an equation analogous to

Eq. 2.26:

b∗φ(λ) = b∗Pro(λ)SPro + b∗Diat(λ)(1− SPro), (3.30)

where the aforementioned graph of Morel (1987) was used to estimate b∗Pro(550) =

1.2 and b∗Diat(550) = 0.12.

This b∗φ(550) = (1.2SPro + 0.12SDiat) mixing relationship satisfactorily recon-

structed the b∗ = 0.3[TChl]−0.38 relationship from Morel (1987) with an RMS
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error of approximately 13% for TChl values ranging from 0.15 to 10 µgl−1.

For a given TChl value consistent with that used in Eq. 3.26, a phytoplankton

scattering spectrum was formulated based on Eq. 2.26:

bφ(λ) = [TChl]b∗φ(550)

(
λ

550

)−γφ
, (3.31)

where γφ = 2σ(2< − 1) + 0.65; i.e. γφ was centered on the value of 0.65, but

was allowed to randomly vary within two standard deviations 2σ = 0.14 of the

observed γp values calculated by Eq. 2.22. This assumes that γp ≈ γφ.

As is the case for phytoplankton scattering, blending was also performed on

the Mie-modelled Prochlorococcus (β̃Pro(λ, ψ)) and Diatom (β̃Diat(λ, ψ)) phase

functions determined in Section 2.3.3.2.5, and shown in Figs. 2.27a-c. After

blending, the phase functions were re-normalised, as is required for the definition

of phase functions (see Eq. 2.5 and 2.8):

β̃φ(λ, ψ) =
(1.2SProβ̃Pro(λ, ψ) + 0.12SDiatβ̃Diat(λ, ψ))

2π
∫ π

0
(1.2SProβ̃Pro(λ, ψ) + 0.12SDiatβ̃Diat(λ, ψ)) sin (ψ)

. (3.32)
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3.2.2.2 Non-algal Particulates

In Chapter 2, two different mass-specific absorption spectra were reduced from

the GBR dataset; representing terrestrially-sourced mineral particles (a∗min(λ))

and the other for pseudo-detrital or calcareous particles (a∗det(λ)) (see Fig. 2.22).

A blending scheme analogous to Eq. 2.44 was used to model the total aNAP spec-

trum based on the two mass-specific basis vectors, and yielded TSS retrievals

with 9% RMS error (see Fig. 2.22b):

a∗NAP (λ) = a∗det(λ)sdet + a∗min(λ)smin, (3.33)

smin = 1− sdet, (3.34)

where a∗NAP is the mass specific non-algal particulate spectrum, Smin is the frac-

tional contribution of minerals to aNAP and sdet is the fractional contribution of

detritus to aNAP .

Even for a perfectly sampled population of non-mineral particulates, the appli-

cation of the term ‘detrital’ to non-mineral absorption measurements determined

with the filter-pad depigmentation method (Tassan & Ferrari 1995) is misleading.

This is because the filter pad retains components of previously-living phytoplank-

ton cells (i.e. that were living immediately prior to sampling), so a portion of

the aNAP spectrum will be correlated with TChl. By comparing the outer-reef

TSS measurements with TChl, one finds that there is evidence of a relationship

between the lower limit of TSS and TChl (see Fig. 3.10). By assuming that

in these waters, smin = 0, then modelling the lower limit provides an estimate

of the functional relationship between sdet, TSS and TChl. By considering that

sdet must be zero when TSS and TChl both equal, a simple square-root function

was manually chosen to estimate the fraction of the oceanic/detrital basis vectors

that are used to contribute to the overall aNAP spectrum, namely

sdet =
0.85
√
TChl

TSS
, (3.35)

where the coefficient 0.85 was chosen manually to approximate the lower limit

shown in Fig. 3.10.
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In real life, however, it is expected that there could be significant variability

around this assumed relationship. In order to add more variability in the simu-

lations, the random (right hand) term was added:

sdet =
0.85
√
TChl

TSS

(
1 +

(2<− 1)

5

)
, (3.36)

where the Sdet fraction was limited between 0 and 1.

Figure 3.10: Outer-reef TSS and TChl, with the approximate lower-limit rela-
tionship (Eq. 3.35) overplotted.

As shown in Fig. 2.24, the TChl-corrected mineral scattering at 660 nm was

determined by the linear relationship:

bmin(660) = 0.339[TSS]− 0.11. (3.37)

It is assumed that, due to the considerable spread of the data points that was

used to derive b∗min, the y-intercept of 0.11 was ignored and assumed to be a con-

sequence of methodological uncertainty. This uncertainty is prominent because

four separate measurements (cpg, aφ, aNAP , aCDOM) needed to be combined (Eq.

2.49), so the uncertainties are additive. It is also worth mentioning at this point

that, although never highlighted, if one is to regress the mean TSS and mean

bp(555) values from Blondeau-Patissier et al. (2009) (their Table 2), the relation-

ship obtained is bNAP (555) = 0.560[TSS]. Future studies may find it beneficial
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to analyse their dataset to estimate an equivalent b∗min to compare with Eq. 3.37.

The mineral phase function was generated using the Fournier-Forand phase func-

tion, with a randomised input of µ = 2σ(2<− 1) + 0.65 + 3 and an input spectral

backscattering ratio generated by Eq. 3.38, which is a modification of Eq. 2.56

to include a randomised spectral slope based on the 2σ = 0.14 variability of γb.

Bmin(λ) = 0.0257

(
λ

660

)−2σ(2<−1)−0.578

. (3.38)

3.2.2.3 CDOM

The absorption coefficient of CDOM was modelled as a function of DOC, as

described below in Eq 3.39.

aCDOM(λ) = a∗CDOM(λ)[DOC −DOCinv], (3.39)

where the estimated optically inactive fraction of DOC, DOCinv is approximately

0.65mgl−1 (see Eq. 2.38). Accordingly, DOC concentration, in the modelling

exercise of this section, was varied from 0.65 to 5.65mgl−1 to provide aCDOM(λ)

coefficients greater than zero.

3.2.2.4 Other Inputs

Hydrolight runs were performed for clear skies, for a variety of solar zenith angles

(θs = 0◦, 15◦, 30◦, 45◦ and 60◦) and wind speeds (w =1, 2, 5 and 10 ms−1).

Computations were performed from 400 to 750 nm in 10 nm increments (36), so

the total number of individual Hydrolight runs with unique IOP combinations

was 86,400 (consisting of 5(θs)× 4(w)× 5(TChl)× 6(TSS)× 4(DOC)× 36(λ)).

Calculations were performed to provide data for just below the surface (0-), and

just above the surface (0+). Due to the IOP blending approach, input phase

functions needed to be re-discretised for each IOP combination. As a result of

the wavelength dependence of, in particular, the Prochlorococcus phase function

(see Fig. 2.27), each new wavelength also required a new discretisation.
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3.3 Results

3.3.1 DALEC Rrs Measurements

Figure 3.11 shows the spatial distribution of quality-controlled DALEC measure-

ments where coincident flow-though measurements were also made (described

later in Section 2.2.4.4). The flow-through measurements are discussed later in

Section 4.2.1.2. Figure 3.12a shows example spectra measured during a transect

from Lodestone Reef towards Magnetic Island, near Townsville on the 31st of

January 2006. As the ship approached the coast, the DALEC Rrs measurements

decreased in the blue (400 - 440 nm) and increased in the green (500 - 550 nm)

as the particulate load increased. Explaining and understanding the changing

shapes of the Rrs spectrum is assisted by reducing the Rrs spectrum into the

IOPs of the substances in the water.
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Figure 3.11: The locations of quality-controlled DALEC Rrs measurements where
ancillary flow-through measurements were made. All transect data was recorded
between Jan 4th and Jan 31st, 2006.
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a)

b)

Figure 3.12: a) Examples of DALEC Rrs measurements made on the 31st of
January 2006 from deep blue mid-lagoon water (label A), transitioning to brown
water near Magnetic Island (label D). b) Locations of the example DALEC Rrs

measurements shown in Fig. 3.12a. The 0-20 m, 20-40 and 40-100 m bathymetric
contours shown respectively in yellow, cyan and blue.
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3.3.2 Hydrolight Simulations

The Hydrolight-based synthetic dataset described in Section 3.2.2 was used to

investigate the relationship between above-water Rrs and bb
a+bb

, which is of primary

importance to physics-based Rrs inversions. For brevity, the lower-case letter u

is often substituted for the term bb
a+bb

following Eq. 3.40. u is used in Figures

3.13a-c.

u =

(
bb

a+ bb

)
. (3.40)

Figure 3.13a shows the Hydrolight-computed relationship between above-water

Rrs and u for 400 nm, 550 nm and 700 nm, for the entire range of concentrations

shown in Table 3.3.

There is a slightly non-linear trend apparent in the data. It is also interesting

to note that the wavelength dependence of the relationships between Rrs and u

appears to be subtle.

For comparison, Fig. 3.13b shows the subsurface rrs of the Hydrolight simulations

performed at solar zenith angle θs = 0 and sensor nadir view angle θv = 0 at

550 nm, alongside the model fits of Lee et al. (1999) and Gordon et al. (1988).

These models both exhibit the functional form shown in Eq. 3.41,

rrs = g0u+ g1u
2, (3.41)

where lowercase rrs denotes sub-surface remote sensing reflectance, and g0 and g1

are model coefficients (examples of which are shown in Table 3.4).

ID Author g0 g1

G88 Gordon et al. (1988) 0.0949 0.0794
L99 Lee et al. (1999) 0.0840 0.170
L02 Lee et al. (2002) 0.0895 0.1247
*** This study 0.0849 0.1211

Table 3.4: Published polynomial coefficients relating rrs to u. L02 as published
in Lee et al. (2002) was determined from the average of the G88 and L99 sets.
All sets overplotted in Fig. 3.13b, labelled according to the ID column.

The Gordon et al. (1988) coefficients were optimised for oceanic conditions,
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whereas the Lee et al. (1999) coefficients were optimized for coastal conditions.

As a result, Lee et al. (2002) used the average of these two sets of values in order

to equally represent coastal and oceanic waters. The bio-optical model Lee et al.

(1999) used to generate their ‘coastal’ coefficients relied on chlorophyll-a based

particle scattering, and the ‘average particle’ phase function described in Mobley

(1994). The results of the present study are derived from concentration specific,

but slightly randomized blends of molecular, Mie mono-dispersion (small phyto-

plankton), Mie polydispersion (large phytoplankton) and Fornier-Fourand based

(mineral and detrital) phase functions in an attempt to better match the particle

assemblages found in the GBR. Despite the differences in bio-optical modelling

approaches, the coefficients calculated in this study closely match (5.2% for g0

and 2.9% for g1) the averaged coefficients of Lee et al. (2002) (Set L02 in Table

3.4).

The use of the simplistic 2nd order polynomial relationship of Eq. 3.41 may be a

consequence of the previously mentioned studies using a blend of only two phase

functions (i.e. molecular and either ‘average Petzold’ (Mobley 1994, Petzold 1977)

or Kullenberg (1974) for particles). By examining Fig. 3.13c, one can see that,

at low values of u, a simple second order polynomial treatment, as in Eq. 3.41,

cannot attempt to model the results of the observed synthetic Hydrolight runs,

particularly at low u values.

The shortfall of Eq. 3.41 was recognised by Lee et al. (2004), who attributed the

spread of data to the relative abundance of molecular scattering as opposed to

particulate scattering (using Petzold’s ‘average particle’ phase function). By par-

titioning the molecular and particulate scattering components, Lee et al. (2004)

was able to determine more accurate parameters which related rrs (subsurface)

to u.

A similar partitioning approach was used in analysing this synthetic data set.

However, a polynomial functional form (Eq 3.42) was used for the particulate

146



a)

b)

c)

Figure 3.13: a) Above water nadir-viewed Rrs versus u for θs = 0 (400 nm
in diamonds, 550 nm in triangles and 700 nm in filled circles). b) Modelled
subsurface nadir-viewed rrs versus u(550) for θs = 0. The relationships of Gordon
et al. (1988) (G88), Lee et al. (1999) (L99), Lee et al. (2002) L(02) and the
parabolic model fit of this study (***) are shown. c) u(550)-normalised rrs(550)
versus u(550) similar to the plot in Lee et al. (2004), highlighting the deviations
from the simplistic 2nd order polynomial approach. The relationships of Gordon
et al. (1988) (G88), Lee et al. (1999) (L99), Lee et al. (2002) L(02) and the
parabolic model fit of this study (***) are shown.
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contribution and coefficients were determined from above-water Rrs,

Rrs = Gw

(
bbw
a+ bb

)
+G0

(
bbp

a+ bb

)
+G1

(
bbp

a+ bb

)2

+G2

(
bbp

a+ bb

)3

, (3.42)

where Gw, G0, G1 and G2 are the polynomial model parameters, bbw is the

backscattering coefficient of water molecules, and bbp is the backscattering coef-

ficient of all particles (phytoplankton, detritus and minerals). For brevity, wave-

length, geometry and sea state are omitted in the equation, but are described

below.

A specific set of Gi (i denotes coefficient subscripts w, 0, 1 and 2) polynomial co-

efficients were determined using Levenberg-Markvardt optimisation (Markwardt

2009) for the modelled Rrs values determined for each wind speed (ws), solar

zenith angle (θs), sensor view nadir angle (θv), sun-relative sensor view azimuth

(φaz) and wavelength (λ) combination. The resultant Gi(λ,ws, θs, θv, φaz) values

were stored in a LUT which can be searched to retrieve the appropriate Gi co-

efficients for a measured Rrs(λ,w, θs, θv, φaz). Example Gi coefficients are shown

in Fig. 3.14a.

For some analytical inversion approaches (i.e. Lee et al. (2002)), it is desirable to

have knowledge of
(

bb
a+bb

)
based on Rrs alone. In this case, the ratio between bbw

and bbp is unknown, so Eq. 3.42 cannot be used directly. The Hydrolight synthetic

dataset was used to determine an empirical polynomial relationship that could

be applied to Rrs directly,

bb
a+ bb

= U0 + U1Rrs + U2R
2
rs + U3R

3
rs + U4R

4
rs, (3.43)

where U0, U1, U2, U3 and U4 are the polynomial model parameters, and their

spectral dependence is omitted for brevity.

Example spectral Ui coefficients are shown in Fig. 3.14c. As for the G model

coefficients, the U model coefficients vary with wind speed, solar zenith angle,

sensor view nadir angle, sun-relative sensor view azimuth and wavelength. The
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a) b)

c) d)

Figure 3.14: a) Spectral Gi model parameters for Eq. 3.42, for θs = 0, φaz = 135,
θv = 40 and ws = 1 ms−1. b) RMS error when determining Rrs with Eq. 3.42
with the aforementioned model parameters and geometry from a). c) Spectral Ui
model parameters for Eq. 3.43, for θs = 0, φaz = 135, θv = 40 and ws = 1ms−1.

d) RMS error when determining
(

bb
a+bb

)
with Eq. 3.43.
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U model values are also stored in a Look-Up-Table (LUT).

In comparing the RMS errors shown in Fig. 3.14b and d, one may be misled

into concluding that the automatic conversion of Rrs into u yields a lower overall

error, however it is important to realize that Rrs is between approximately 5%

to 7% of u in this dataset (see Fig. 3.13a), and as such, will score higher RMS

errors, especially in the red wavelengths due to there generally being very low

Rrs in these regions.

3.3.3 Field Validation Measurements

Above water Rrs measurements were made with the DALEC, alongside surface

(≤ 2 m depth) in situ IOP measurements at several station visits in an attempt

to collect data to assist evaluating the results of the aforementioned Hydrolight

simulations which relate Rrs to u as in Fig. 3.13. The station visit locations are

shown in Fig. 3.15, and details are provided in Table 3.5. The IOP methodology

used in this section was described previously in Chapter 2. The individual spectra

forming the validation dataset are shown in Figures 3.16-3.18.

Field-based comparisons of this nature are challenging because of the differing

spatial scales involved between discrete IOP water sampling and the DALEC

field of view. For example, each absorption measurement (aCDOM , aφ and aNAP )

was performed ‘on station’ with Niskin water samples taken from the middle of

the ship, approximately 16 m from the viewing footprint of the DALEC which

measures Rrs. Additionally, the bbp measurements are taken from the hull in-

take, which is approximately 2 m under the surface of the water. Considering

the time-consuming nature of discrete IOP absorption sampling and preparation,

extensive vertical IOP sampling was not practical; although substances deeper

than 2 m may contribute to Rrs. The coherence of the respective IOP and Rrs

sampling times is also an issue. For each sampling location, an average DALEC

Rrs and bbp spectrum was calculated for a 15 minute window encompassing the

discrete IOP sampling time, allowing the calculation of a standard deviations of
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Figure 3.15: Locations (shown with white circles) in the GBR during January
2006 where concurrent quality-controlled DALEC Rrs and aNAP , aφ, aCDOM and
bbp IOP measurements were made. The first (yellow) contour highlights waters
shallower than 20 m, the cyan contour shows waters 20-40 m deep, and blue shows
waters 40-100 m deep.
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a) b)

c) d)

e) f)

g) h)

Figure 3.16: DALEC station average Rrs shown with the solid line and±1σ values
are shown with error bars. The dashed line is the reconstructed Rrs spectrum
based on IOP measurements from the same location and Eq. 3.42. The dot-
ted lines show the uncertainty of the IOP-based Rrs reconstruction, calculated
using partial differential calculus (Kirkup 1994). For these spectra, βf = 2.0,
aNAP (750) = 0 and the measured Rrs spectrum was corrected with the similarity
spectrum approach.
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a) b)

c) d)

e) f)

g) h)

Figure 3.17: DALEC station average Rrs shown with the solid line and±1σ values
are shown with error bars. The dashed line is the reconstructed Rrs spectrum
based on IOP measurements from the same location and Eq. 3.42. The dot-
ted lines show the uncertainty of the IOP-based Rrs reconstruction, calculated
using partial differential calculus (Kirkup 1994). For these spectra, βf = 2.0,
aNAP (750) = 0 and the measured Rrs spectrum was corrected with the similarity
spectrum approach.
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a) b)

c) d)

e) f)

Figure 3.18: DALEC station average Rrs shown with the solid line and±1σ values
are shown with error bars. The dashed line is the reconstructed Rrs spectrum
based on IOP measurements from the same location and Eq. 3.42. The dot-
ted lines show the uncertainty of the IOP-based Rrs reconstruction, calculated
using partial differential calculus (Kirkup 1994). For these spectra, βf = 2.0,
aNAP (750) = 0 and the measured Rrs spectrum was corrected with the similarity
spectrum approach.
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Rrs and bbp to quantify spatiotemporal variability in the Rrs measurements and

bbp-derived measurements (see captions in Figures 3.16 - 3.24).

Confounding spatiotemporal issues aside, the overall uncertainties associated with

combining multiple measurements of IOPs into Rrs (Eq. 3.42) or u (Eq. 3.43) are

often large (see error bars in Figures 3.16 - 3.18). The forward conversion (Eq.

3.42) was used to convert measured IOPS into Rrs, because this is how most

predictor-corrector inversion schemes work. The reverse conversion (Eq. 3.43)

was also tested, because this function is useful for the QAA approach (Lee et al.

2002). To put the aforementioned uncertainties into context, the uncertainty of

the input IOPs were propagated through Eq. 3.42, using partial differential cal-

culus (Kirkup 1994). A conservative spectrally-flat uncertainty of 0.01 m−1 was

assigned to the CDOM measurements (based on the baseline reproducibility of

the spectrophotometer), and estimated uncertainties of 5% were assigned to both

aphi and aNAP spectra, although the uncertainty is probably much larger when

considering the pathlength amplification factor and scattering error uncertain-

ties. The standard deviation of the on-station bbp measurements was used as the

uncertainty of bbp.

The DALEC Rrs measurements may be contaminated by skylight reflection and

sun-glint, although efforts were made to correct and quality control this contam-

ination (see Eq. 3.24 and Table 3.2). During sampling from the Niskin bottle,

the RV Lady Basten was usually positioned side-on and downwind of the Niskin

bottle, to minimise the chance of wire tangles. Often this means that the DALEC

relative azimuth angle (θrel) is non-optimal during station measurements, so data

from some stations did not pass quality control procedures established in Table

3.2. Upon comparison between the IOP-based Rrs and the measured Rrs spectra,

it was found that sometimes acceptable comparisons (i.e. spectral RMS errors

between measured and modelled spectra < 40%) were achieved in non-optimal

relative azimuth angle (θrel) conditions. This may be indicative of the adequate

performance of the above-water skylight correction method for those particular

stations. However, a number of poor comparisons were observed for Rrs measure-
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ments made when the solar zenith angle (θs) was greater than 60◦. Considering

the poor spectral fits, and that remote sensors typically don’t image the GBR

during high solar zenith angle conditions, these data were excluded from analy-

sis. In addition, a small number of measured v.s. IOP-modelled Rrs spectra had

radically different spectral features which could not be explained by sources of

uncertainty previously evaluated. This type of mismatch was attributed to IOP

sample mislabelling, and these samples were also excluded. Selective exclusion

of this nature is considered acceptable in this aspect of the work because this

dataset is primarily being used for a validation of the Hydrolight-based Look-

up table approach, and not for deriving any quantitative calibration coefficients

which would effect down-stream processing.

Although error bars between measured and modelled Rrs are both large (i.e.

Fig. 3.19a), and most individual measured and modelled spectra are in agree-

ment when considering these error bars, there may be trends identifiable in the

data. The data shown in Figures 3.19a, 3.19c and 3.19e show comparisons be-

tween measured and IOP-modelled Rrs assuming negligible aNAP absorption in

the NIR, with βf = 2.0, and the Rrs spectrum being corrected for residual skyglint

by setting Rrs(750) = 0. Figures 3.19b, 3.19d and 3.19f show the same compar-

isons with the theoretical similarity-spectrum-based residual sky glint correction

developed in this study. Differences between the two approaches are minor; off-

sets are slightly lower for the similarity-spectrum-based method, however slopes

are slightly reduced. It is possible that at least in this validation data subset,

the Rrs(750) = 0 yields more accurate comparsions with the IOP-based model.

The confidence interval of the regression is large, making conclusions difficult.

Considering GBR flood plume waters can get turbid, the similarity-spectrum

method is preferred for subsequent DALEC processing. Without underwater Ed

and Lu measurements for comparison, it is difficult to quantify residual skylight

reflection artifacts in the corrected DALEC measurements. Atmospheric gas ab-

sorption features indicative of skylight reflection are sometimes apparent in the

DALEC Rrs spectra, however it is unlikely that these wavelength regions will be

utilised for IOP-based inversions.
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The particulate absorption IOP measurements are subject to an unvalidated path-

length amplification factor (βf = 2 see Eq. 2.20) for GBR coastal particles, and

these (βf ) coefficients are known to vary in the literature (i.e. Laurion et al.

(2003), Cleveland & Weidemann (1993), Roesler (1998)). To understand the con-

sequences of an uncertain pathlength amplification factor (previously assumed to

be βf = 2.0 (Roesler 1998)), the same measured vs IOP-modelled Rrs regressions

were performed with different path-length amplification factors being applied to

the measured filter pad-based IOP measurements. Laurion et al. (2003) deter-

mined coefficients closer to βf = 2.6 and Kishino et al. (1985) reported values

ranging from βf = 2.43 to βf = 4.71. Other researchers report the effective βf

is a non-linear function of the sample optical density (Cleveland & Weidemann

1993). The resultant plots using βf = 2.6 ,3.0 and 4.0 are shown in Figs. 3.20

- 3.22. Increases of amplification factor increased the regression slopes between

DALEC measured Rrs and IOP-based Rrs values and also generally reduced re-

gression offsets.

In addition to the uncertain pathlength amplification factor, variations in the

scattering corrections of these QFT absorption measurements exist; in particu-

lar, there is a question whether the non-algal particulate absorption measured in

the NIR (i.e. 750 nm) is non-zero or not (Zaneveld et al. 1994, Bowers & Binding

2006, Mitchell et al. 2000, Babin & Stramski 2002). To investigate the effects

of the uncertain nature of NIR aNAP absorption, validation plots were generated

with both aNAP (750) = 0 and aNAP (750) 6= 0 approaches (using βf = 2.0 in Fig.

3.23 and βf = 4.0 in Fig. 3.24), along with the similarity spectrum-based residual

glint correction method. Figures 3.23 and 3.24 both show subtle degradation of

performance when aNAP (750) 6= 0. In both instances, the regression slope is re-

duced, but more significantly, the residual is increased. Based on this observation

and consistent with the findings of (Babin, Morel, Fournier-Sicre, Fell & Stramski

2003), aNAP (750) will be set to 0 for subsequent work in this thesis.

Due to the low number of data points and large error bars in Rrs and IOP

measurements, it is unclear which pathlength amplification factor to use in sub-
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a) b)

c) d)

e) f)

Figure 3.19: IOP-modelled (βf = 2.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths, for Rrs(750) = 0 residual skylight cor-
rection (left hand column a, c and e), and similarity-spectrum based residual
skylight correction (right hand column, b, d and f). The solid line is a plot of the
regression equation shown on the figure. The dashed line is the 1:1 line and the
dotted lines are the ±2σ confidence intervals of the linear regression.
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a) b)

c) d)

e) f)

Figure 3.20: IOP-modelled (βf = 2.6) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths, for Rrs(750) = 0 residual skylight cor-
rection (left hand column a, c and e), and similarity-spectrum based residual
skylight correction (right hand column, b, d and f). The solid line is a plot of the
regression equation shown on the figure. The dashed line is the 1:1 line and the
dotted lines are the ±2σ confidence intervals of the linear regression.
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a) b)

c) d)

e) f)

Figure 3.21: IOP-modelled (βf = 3.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths, for Rrs(750) = 0 residual skylight cor-
rection (left hand column a, c and e), and similarity-spectrum based residual
skylight correction (right hand column, b, d and f). The solid line is a plot of the
regression equation shown on the figure. The dashed line is the 1:1 line and the
dotted lines are the ±2σ confidence intervals of the linear regression.
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a) b)

c) d)

e) f)

Figure 3.22: IOP-modelled (βf = 4.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths, for Rrs(750) = 0 residual skylight cor-
rection (left hand column a, c and e), and similarity-spectrum based residual
skylight correction (right hand column, b, d and f). The solid line is a plot of the
regression equation shown on the figure. The dashed line is the 1:1 line and the
dotted lines are the ±2σ confidence intervals of the linear regression.
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a) b)

c) d)

e) f)

Figure 3.23: IOP-modelled (βf = 2.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths, for aNAP (750) = 0 (left hand column
a, c and e), and aNAP (750) 6= 0 (right hand column, b, d and f). Similarity-
spectrum based residual skylight correction was used in these plots. The solid
line is a plot of the regression equation shown on the figure. The dashed line is
the 1:1 line and the dotted lines are the ±2σ confidence intervals of the linear
regression.
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a) b)

c) d)

e) f)

Figure 3.24: IOP-modelled (βf = 4.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths, for aNAP (750) = 0 (left hand column
a, c and e), and aNAP (750) 6= 0 (right hand column, b, d and f). Similarity-
spectrum based residual skylight correction was used in these plots. The solid
line is a plot of the regression equation shown on the figure. The dashed line is
the 1:1 line and the dotted lines are the ±2σ confidence intervals of the linear
regression.
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a) b)

c) d)

e) f)

Figure 3.25: IOP-modelled (βf = 2.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths (left hand column a, c and e). DALEC-
based u (Eq. 3.43) versus measured u at 3 different wavelengths (right hand
column, b, d and f). The similarity-spectrum based residual skylight correction
was used, and aNAP (750) = 0. The solid line is a plot of the regression equation
shown on the figure. The dashed line is the 1:1 line and the dotted lines are the
±2σ confidence intervals of the linear regression.
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a) b)

c) d)

e) f)

Figure 3.26: IOP-modelled (βf = 2.6) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths (left hand column a, c and e). DALEC-
based u (Eq. 3.43) versus measured u at 3 different wavelengths (right hand
column, b, d and f). The similarity-spectrum based residual skylight correction
was used, and aNAP (750) = 0. The solid line is a plot of the regression equation
shown on the figure. The dashed line is the 1:1 line and the dotted lines are the
±2σ confidence intervals of the linear regression.
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a) b)

c) d)

e) f)

Figure 3.27: IOP-modelled (βf = 3.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths (left hand column a, c and e). DALEC-
based u (Eq. 3.43) versus measured u at 3 different wavelengths (right hand
column, b, d and f). The similarity-spectrum based residual skylight correction
was used, and aNAP (750) = 0. The solid line is a plot of the regression equation
shown on the figure. The dashed line is the 1:1 line and the dotted lines are the
±2σ confidence intervals of the linear regression.
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a) b)

c) d)

e) f)

Figure 3.28: IOP-modelled (βf = 4.0) Rrs based on Eq. 3.42 versus DALEC
measured Rrs at 3 different wavelengths (left hand column a, c and e). DALEC-
based u (Eq. 3.43) versus measured u at 3 different wavelengths (right hand
column, b, d and f). The similarity-spectrum based residual skylight correction
was used, and aNAP (750) = 0. The solid line is a plot of the regression equation
shown on the figure. The dashed line is the 1:1 line and the dotted lines are the
±2σ confidence intervals of the linear regression.
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sequent stages of the thesis. For now the, βf = 2.0 will remain until further

evidence presents itself to justify an alteration.
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3.4 Summary

• The DALEC spectroradiometer was developed to measure the above-water

Rrs. The DALEC calibration and data analysis protocols were described.

The DALEC spectrometers exhibited non-linearity, so a non-linearity com-

pensation factor was determined for the DALEC in order to ensure better

radiometric accuracy. A method for correcting the above-water DALEC

measurements for surface reflected skylight and sun glint was developed.

This should also improve the accuracy of downstream DALEC-derived prod-

ucts.

• The GBR IOP models developed in Chapter 2 were used as input into exten-

sive Hydrolight simulations tuned to cover the water quality concentrations

observed in GBR waters. It was shown that the simulated Rrs signals con-

tained information about the inherent optical properties in the water. The

conversion factor from Rrs to u (and from u to Rrs) was determined for syn-

thetic IOP (including the phase function) blends of phytoplankton, minerals

and dissolved substances found in the GBR. These conversion factors were

also functionalised in terms of wavelength, solar zenith angle, sun-relative

azimuth angle and view angle so that Rrs measurements from either satel-

lite or the DALEC can be converted into bb
a+bb

. The conversion factors were

stored in a Look-Up-Table (LUT) for further application.

• The Hydrolight-based LUT was applied to in situ IOP measurements and

the LUT was generally able to reconstruct the DALEC measured Rrs spec-

trum within experimental uncertainties. Particulate absorption path-length

amplification and NAP absorption null-point correction were investigated.

The null point aNAP (750) = 0 best reconciled the Hydrolight LUT-converted

Rrs data with the in situ IOP measurements, so these values are used in

subsequent analysis. Considering large experimental uncertainties, there

is little firm evidence to support increasing the pathlength amplification

factor (βf ) of the IOP measurements (and resultant models determined in

Chapter ). This pathlength amplification factor will be addressed later.
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Chapter 4

Remote Sensing Reflectance

Inversions

4.1 Introduction

The focus of this chapter is to combine the relationships between water quality

parameters and IOPs in the GBR attained in Chapter 3.4, with the knowledge

about the decomposition of Rrs into IOPs in Chapter 3, in order to invert Rrs

spectra to produce estimates of the water quality parameters of interest (TChl,

TSS and DOC).

The problem is approached in two stages. The first step is the partitioning

of an individual Rrs measurement into its regionally (or water mass)-specific

constituent IOP spectra; namely aCDOM , aNAP , aφ, bbp. From Chapter 3.4, these

IOP spectra have been measured and documented for GBR waters. An example

of the spectral shapes determined in Chapter 3.4 are again shown in Fig. 4.1.

In reality, Rrs measurements contain artifacts associated with sea surface reflec-

tions, calibration inaccuracies and instrumental noise. In addition, the inversion

models are based on idealised, measured IOPs which represent only a finite set

of conditions and contain methodological uncertainties and the potential for bias

due to the simplifying assumptions applied (i.e. NIR scattering correction and

pathlength amplification factor). Various spectral partitioning methods are tested
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Figure 4.1: Mass-specific absorption end-members determined from the GBR
dataset. Pro is Prochlorococcus and Diat is Diatom TChl-specific absorption
(l.µg−1m−1). CDOM is the scaled DOC-specific CDOM absorption (l.cg−1m−1).
Min is the (terrestrial) mineral and Det is the (oceanic) detrital TSS-specific
absorption (l.mg−1m−1).

in this chapter, by applying them to field-measured Rrs spectra, using the dis-

crete water-sample IOP measurements as validation data set. This IOP-based

validation dataset is described in Section 4.2.1.1.

The second part of the problem is the extraction of information about water

quality properties from the Rrs-derived IOP estimates. This involves the ap-

plication of the mass-specific spectral IOP relationships determined in Chapter

3.4. To provide validation of these inversion-derived water quality parameters, a

flow-through water quality logging system was developed to run simultaneously

with the DALEC Rrs transects. This extensive dataset spans a large geographical

coverage of GBR waters and water types, as shown previously in Fig. 3.11. This

water quality parameter-based validation dataset is described in Section 4.2.1.2.
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4.2 Methods

4.2.1 Validation Measurements

4.2.1.1 Coincident Rrs and IOP Data

To test whether the IOP models (and inherent assumptions) determined in Chap-

ter 3.4 are applicable to the inversion of measured Rrs spectra, a dataset of

concurrently-measured Rrs and IOP spectra was used. This coincident dataset

was previously discussed in Chapter 3, Section 3.3.3 (and expressed in Figures

3.16 - 3.18 and Table 3.5). The IOP retrieval parameters of interest are aφ(442),

aCDOM(442) and bbp(555). It should be noted from the outset that the IOP spec-

tra used here for validating the model represented a small (less than 5%) fraction

of the entire IOP dataset which was used (amongst other water quality data) to

create the IOP models in Chapter 3.4. Thus whilst the “validation” IOP data is

not truly independent, it is considered acceptable for testing the operation of the

numerical inversion techniques.
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4.2.1.2 DALEC Rrs and Water Quality Transects

To assist the collection of a large number of samples across spatially variable

coastal waters, a flow-through system was implemented which collected bbp and

chlorophyll fluorescence data simultaneously and complementary to the DALEC

Rrs measurements. The DALEC and coincident flow-through water quality data

were collected continually aboard the RV Lady Basten during daylight hours over

approximately 20 days in January, 2006. Of these sampling days, only data from

the days when the ship was in transit were used. The dates and locations of the

sampling transects are shown in Table 4.1, and are shown on a map in Figure

4.2.

Jan. 2006 Description
4th Reef 20-344 to near High Peak Is.
7th Seaforth Is. (Lindeman) to Long Is.
8th North Whitsunday Is. to Border Is.
9th Cid Harbour to Bowen
10th Bowen to Central GBR Lagoon off Bowling Green Bay
14th Hook Is. to Deloraine
15th Deloraine Is. to Lindeman Is. via Edward Is.
16th Lindeman Is.
17th Long Is. to North Whitsunday Is.
18th Cateran Bay, Border Is. Only
19th Deloraine Is. to near Holbourne Is.
22nd Townsville to Otter Reef
23rd Cairns to Low Isles
24th Green Is. to Fitzroy Is.
28th Bedarra Is. to South Barnard Is.
29th South Through Hinchinbrook Channel to Orpheus Is.
30th Orpheus Is. to Central GBR Lagoon via Havanah Is.
31st Lodestone Reef to Townsville Harbour

Table 4.1: GBR cruise program on the R.V. Lady Basten in January 2006, dur-
ing which DALEC and flow-through inversion validation measurements were col-
lected. See Table 3.5 for more detail specific to the discrete measurements.

In the flow-through system, sea water was continually pumped using a diaphragm

pump directly from the RV Lady Basten’s hull intake, situated at about 2.0 m

below the ocean surface. The intake had a coarse (2 mm) square mesh filter

which rejected large particles. The pumped water was fed by hose to a 9 litre

reservoir which served to provide an opportunity for large bubbles to re-join the
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Figure 4.2: The locations of quality-controlled DALEC Rrs measurements where
ancillary flow-through measurements were made. All transect data was recorded
between Jan 4th and Jan 31st, 2006. The numbers on the map indicate the
day of January 2006 when sampling occurred. Detail specific to the discrete
measurements was provided previously in Table 3.5.
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atmosphere (see Fig. 4.3). Inside the reservoir, a WETLabs FLNTU (Fluorom-

eter and Nephelometric Turbidity Unit) device was housed in the center of the

reservoir to sample the water passing through the reservoir (see Fig. 4.3). An

inspection port was drilled into the reservoir to assist the routine daily clean-

ing and inspection of the FLNTU optical interface. The outflow of the reservoir

was placed at the very lowest point to ensure the continual flushing of bubble-

free, particle-laden water. The outflow was routinely inspected and no bubbles

were seen, and time series observations of the optical data from the downstream

Hydroscat instrument suggested no bubbles accumulated on the instrument op-

tics. The outflow from the reservoir was brought via a hose to the custom-built

Hydroscat chamber (see Fig. 4.4 and 4.5). Further details of the Hydroscat flow-

through methodology are provided in the Chapter 3.4 Methods section.

To estimate the time lag of the system during cruising (10 knots), the delay be-

tween the start of a visible surface water plume front on the bow of the vessel

(near the DALEC) and the first ‘spike’ of changed water quality parameter from

each instrument (FLNTU and Hydroscat) was recorded. This was repeated a few

times until average time lags were determined (15 and 45 seconds respectively, for

the FLNTU and Hydroscat). The Hydroscat and the FLNTU are both designed

to measure chlorophyll fluorescence and backscattering in a near-simultaneous

fashion. Throughout the fieldwork, the FLNTU data was intermittent, and the

FLNTU scattering data suffered from the adhesion of bubbles on the optical win-

dow. This was due to the FLNTU being placed inside the de-bubbling reservoir.

Accordingly, most of the validation data came from the Hydroscat, which was fed

from the outflow of the de-bubbling reservoir.

For the flow-through WQ dataset, the respective Hydroscat instrument responses

(fluorescence and uncorrected bb(442)) were directly calibrated to in situ TChl

and TSS (respectively) using discrete surface Niskin bottle grab sample data

performed at station stops. This involved averaging the flow-through data for

time intervals during the water sampling, and then performing regression anal-

ysis; the results of which are shown later in the Results section in Fig. 4.22a-c.
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Figure 4.3: The custom-built de-bubbling reservoir / flow-through chamber for
the FLNTU. The hull intake water was pumped into the top of the reservoir (Hose
In), and was allowed to slightly overflow. The FLNTU optical window sits just
above the inspection port, and faces down towards the outflow. The approximate
position of the FLNTU is shown with the light rectangle.
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Figure 4.4: The Hydroscat flow-through sampler. Note this diagram was made
during the setup stage of the experiment. Data was never collected with a double-
loop in the inflow tube. All plumbing distances were minimised to reduce flow-
through lag time.

Figure 4.5: The custom-built flow-through chamber for the Hydroscat. The inlet
is at the top of the chamber (on the left) and the outlet is on the right.
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Particulate backscattering was calculated from the Hydroscat transect measure-

ments using the methodology outlined in Section 2.2.4.4, and the spectral slope

of backscattering (γbb) was calculated using Eq. 2.52.

4.2.2 Inversion Approaches

4.2.2.1 Predictor-corrector Inversion Schemes

A common remote sensing inversion scheme is the iterative predictor-corrector

approach (Roesler & Perry 1995, Garver & Siegel 1997, Lee et al. 1999), whereby

a mathematical procedure systematically varies parameters which alter the mag-

nitude or shape of each constituent IOP spectrum, calculates
(

bb
a+bb

)
, and then

converts this to a predicted Rrs spectrum. This part of the process is referred

to as the ‘forward model’. The results of the forward model of Rrs are then

compared with the measured Rrs spectrum, and based on the spectral residual,

the forward model parameters are corrected to yield a better second prediction.

This cycle is repeated until the goodness-of-fit between the predicted and mea-

sured spectrum reach a required level. The IDL-version of a Levenberg-Marquardt

predictor-corrector method MPFIT (Markwardt 2009) was used to vary the model

parameters in this study.

Depending on the information content and exact nature of the forward model,

this optimisation approach can be computationally expensive and may also be

sensitive to the initial guesses of the inversion parameters, so convergence (the

minimisation of the spectral goodness-of-fit) is not always guaranteed (Markwardt

2009). The performance of such an approach also relies on the ability of the for-

ward model to correctly model the shape of the observed spectrum. Chapter 3.4

investigated the spectral shapes of GBR in-water constituents, and Chapter 3

dealt with developing a LUT which converts
(

bb
a+bb

)
into above-water Rrs, so the

required inputs to this predictor-corrector approach have been established.

The next section outlines some variants on the forward model IOP approach first

published by Lee et al. (1999). Due to the potential for interference between each

component of the forward model (i.e. spectral cancellation / compensation),
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a number of forward model variants were developed and were tested using a

nested FOR loop in the computation in order to determine the best performing

combination of optical models for the retrieval of measured IOPs.

4.2.2.1.1 Absorption Model Variants

These models and associated coefficients were determined in Chapter 3.4. They

are briefly summarised here, as these models are assessed later in the chapter. In

Chapter 3.4, it was shown that the most accurate TChl retrievals were derived

when using different characteristic phytoplankton basis vectors to decompose

aphi measurements (see Table 2.8). It follows then, that provided the predictor-

corrector retrieval is not confounded by the other spectral signatures which com-

poseRrs, then the basis vector approaches will be superior. Only these approaches

are tested herein.

4.2.2.1.1.1 Phytoplankton: Two Spectrum Mixture In Chapter 3.4, it

was shown that the combination of the picoplankton dominated Prochlorococcus,

and highly-packaged Diatom-like basis vectors was able to yield the most accurate

Total Chlorophyll (TChl) concentrations based on measured filter pad absorption

spectra. The total phytoplankton absorption spectrum is represented by Eq. 4.1,

aφ = a∗φPro [TChlPro] + a∗φDiat [TChlDiat], (4.1)

where a∗φPro is the TChl-specific absorption basis vector for Prochlorococcus, a∗φDiat

is the TChl-specific absorption basis vector for Diatoms, TChlPro is the Prochloro-

coccus fraction of TChl and TChlDiat is the Diatom fraction of TChl. The TChl-

specific absorption basis vectors are in units of lµg−1m−1 and the TChl fractions

are in units of µgl−1. Note - the wavelength dependency of the basis vectors has

been omitted for brevity.

4.2.2.1.1.2 Phytoplankton: Four Spectrum Mixture In Chapter 3.4,

four phytoplankton basis vectors were described; Prochlorococcus, highly-packaged

Diatom-like, Trichodesmium and Synechococcus (Morel et al. 1993). All four of

these spectra are used by the optimisation code to model the range of phytoplank-
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ton spectral shapes likely to be encountered in the GBR waters. This approach

requires four parameters which, due to the TChl-specific normalised basis vectors

for each phytoplankton type, are in units of µg.l−1. The appropriate equation is:

aφ = a∗φPro [TChlPro] + a∗φSyn [TChlSyn] + a∗φDiat [TChlDiat] + a∗φTrich [TChlTrich],

(4.2)

where a∗φPro is the TChl-specific absorption basis vector for Prochlorococcus, a∗φSyn

is the TChl-specific absorption basis vector for Synechococcus, a∗φDiat is the TChl-

specific absorption basis vector for Diatoms, a∗φTrich is the TChl-specific absorption

basis vector for Trichodesmium. TChlPro is the Prochlorococcus fraction of TChl,

TChlSyn is the Synechococcus fraction of TChl, TChlDiat is the Diatom fraction

of TChl and TChlTrich is the Trichodesmium fraction of TChl. The TChl-specific

absorption basis vectors are in units of lµg−1m−1 and the TChl fractions are in

units of µgl−1. Note, as before, the wavelength dependency of the basis vectors

has been omitted for brevity.

4.2.2.1.1.3 Phytoplankton: Bricaud 1995 The approach of Bricaud et al.

(1995) was used to functionalise the spectral absorption of GBR phytoplankton in

Chapter 3.4. This aφ model requires the variation of only one parameter, (TChl)

in order to generate a spectrum, however this approach may lack the spectral

detail of the four spectrum mixture.

aφ(λ) = A(λ)[TChl]B(λ), (4.3)

where A(λ) and B(λ) are the regression-determined model coefficients determined

in Chapter 3.4 (see Fig. 2.19 column 1, row 1).

4.2.2.1.1.4 Phytoplankton: Packaging The theoretical packaging approach

of Morel (1991) was used and modified in this research to generalise the shift of

phytoplankton spectral shape as a function of increased packaging. This model

described by Eq. 4.4 requires the variation of only one parameter, (TChl) in

order to generate a spectrum. However, it may also lack the spectral detail of the
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four spectrum mixture,

aφ(λ) = A(λ)[TChl]Q∗, (4.4)

where, Q∗ is determined by Eq. 2.42 in Chapter 3.4.

4.2.2.1.1.5 Phytoplankton: Lee 1998 The final phytoplankton model in-

vestigated is based on Lee et al. (1998), where the full phytoplankton absorption

spectrum is modelled as a function of aφ(440), as shown below:

aφ(λ) = (A0(λ) + A1(λ) ln[aφ(440)])aφ(440). (4.5)

The spectral coefficients A0 and A1 were determined using the GBR dataset

described in Chapter 3.4. The approach has been demonstrated to work with

some success in inversion models (Lee et al. 1998).

4.2.2.1.1.6 aCDOM and aNAP: Real Given the similar spectral shapes of

aCDOM and aNAP , these are often modelled by a single exponential function (Lee

et al. 1999), especially if the number of Rrs wavelengths is limited. Here, con-

sidering the hyperspectral measurements the DALEC provides, the unique GBR-

specific spectral models are used. These are the mineral-dominated TSS-specific

aNAP spectrum shown in Fig. 2.22a and the DOC-specific aCDOM spectrum shown

in Fig. 2.17d. Two parameters TSS and DOC are used to scale the contributions

of the two different basis vectors.

4.2.2.1.1.7 aCDOM and aNAP: Exponential Formalisms Given the ap-

proximately exponential spectral shapes of aCDOM and aNAP , these can be rep-

resented by exponential functions:

aCDOM(λ) = aCDOM(442)(λ)e−SCDOM (λ−442), (4.6)

and

aNAP (λ) = aNAP (442)(λ)e−SNAP (λ−442), (4.7)

where SCDOM = 0.0165 and SNAP = 0.009, and were determined from exponential

model fits from the respective mass specific absorption spectra (shown in Fig.
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2.22a and Fig. 2.17d).

4.2.2.1.2 Backscattering Model Variants

4.2.2.1.2.1 bbp: Standard Formalism As in Lee et al. (1999), the spectral

backscattering spectrum, bbp was modelled by Eq. 2.52.

bbp(λ) = bbp(555)

(
λ

555

)−γbb
, (4.8)

where the Levenberg-Markvardt optimisation is allowed to vary the spectral slope

γbb from 0 to 5, encompassing the range observed the GBR data (see Fig. 2.25d).

4.2.2.1.2.2 bbp: Empirically Constrained The second backscattering model

is as in Eq. 4.8, but ties the magnitude of bbp and the spectral slope γ together

based on a general relationship determined in Chapter 3.4:

γbb =
0.00380

bbp(555)
+ 1.454. (4.9)

4.2.2.1.2.3 bbp: Blended Formalism The third inversion technique uses

a blend of the double basis vectors bbpdet(λ)∗ and bbpmin(λ)∗ determined from

the field measurements in Chapter 3.4, and are combined with a freely-varying

optimised parameter sdet
1 to represent the shift of assemblage from mineral to

organic scattering particles (see Eq. 2.55 and Fig. 2.26a), and then scaled by the

optimised TSS parameter. The equations are as follows:

bbpdet(λ)∗ = 0.00302

(
λ

555

)−3.347

, (4.10)

bbpmin(λ)∗ = 0.01081

(
λ

555

)−1.228

, (4.11)

bbp(λ) = [bbpdet(λ)∗sdet + bbpmin(λ)∗(1− sdet)]TSS. (4.12)

1not to be confused with the uppercase SCDOM and SNAP variables in Eq. 4.6 and Eq. 4.7.
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4.2.2.1.3 Inversion Variable Constraints and Initialistion

As mentioned previously, each model variant was systematically tested in a nested

FOR loop in order to determine the best performing set of IOP inversion models

for use with the predictor-corrector optimisation. The following Table 4.2 shows

the variables which were optimised for each model. The minimum and maximum

variable optimisation bounds are also shown, alongside the initial values of each

variable. The full spectral Rrs data from 400 nm to 750 nm was used for the

inversion.

Variable Min Max Initialisation Model Reference.
TChlPro 0 10 Eq. 4.13, 4.14 two / four a∗φ mix Eq. 4.1, 4.2
TChlDiat 0 10 Eq. 4.15, 4.18 two / four a∗φ mix Eq. 4.1, 4.2
TChlSynn 0 10 Eq. 4.17 four a∗φ mix Eq. 4.2
TChlTrich 0 10 Eq. 4.19 four a∗φ mix Eq. 4.2
TChl 0 10 Eq. 4.13 B95 and pack Eq. 4.3, 4.4
aφ(442) 0 0.5 Eq. 4.32 Lee Eq. 4.5
aCDOM(442) 0 5 Eq. 4.34 all Fig. 2.17d, Eq. 4.6
aNAP (442) 0 5 Eq. 4.33 all Fig. 2.22a, Eq. 4.6
bbp(555) 0 1 Eq. 4.22 all Eq. 4.8, Eq. 4.12
γbb 0 5 Eq. 4.23 standard bbp Eq. 4.8
sdet 0 1 Eq. 4.35, 3.35 bbp blend Eq. 4.12

Table 4.2: Predictor-corrector inversion constraints and initialisation. TChl is in
units of µgl−1, and IOPs are in units of m−1. sdet is dimensionless.

The TChl variable was initalised by re-arranging Eq. 2.40 to solve for TChl:

TChl = exp
ln
(
aφ(442)

A

)
B

, (4.13)

where the model coefficients were estimated as A = 0.04 and B = 0.4.

The TChlPro parameter was initialised by utilising Eq. 4.13 and re-arranging the

model for SPro, with M = 1.5 (Eq. 2.48):

TChlPro =

(
M

8.94TChl
+ 0.0212M − 0.1125

)
TChl. (4.14)

For the two-mixture phytoplankton model, the initial value for TChlDiat was set
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with:

TChlDiat = TChl − TChlPro. (4.15)

For the four-mixture phytoplankton model, the initial values for TChlSynn, TChlDiat

and TChlTricho were set so that each component contributed an equal contribu-

tion to aφ(443) with:

aSynn = aDiat = aTrich =
a∗φSynn + a∗φDiat + a∗φTrich

TChl − TChlPro
, (4.16)

so the contributions became:

TChlSynn =
a∗φSynn
aSynn

, (4.17)

TChlDiat =
a∗φDiat
aDiat

, (4.18)

TChlTricho =
a∗φTrich
aTrich

, (4.19)

where the chlorophyll-specific absorption coefficients at 443 nm are a∗φTrich=0.054,

a∗φSynn=0.124 and a∗φDiat=0.012 (Pathlength amplification factor βf = 2.6).

The sdet initial parameter was estimated by Eq. 3.35, with an estimated TSS

value based on Eq. 2.52 and the QAA-derived bbp(555) from Eq. 4.22.

4.2.2.2 Other Inversion Schemes

Two other inversion schemes are evaluated in this thesis. Namely, the Quasi-

Analytical Algorithm (Section 4.3.2), and some other purely empirical approaches

(Section 4.3.4). Both of these schemes rely on analysis and modelling of the vali-

dation measurements described in Sections 4.2.1.2 and 4.2.1.1, so the description

and formulation of these approaches is left for the Results section.
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4.3 Results

4.3.1 Predictor-Corrector IOP Inversion

To initially evaluate the IOP retrieval performance, each predictor-corrector al-

gorithm variation (summarised in Table 4.2) was tested incrementally with each

other in turn because each IOP model component may have an effect on another

during the inversion. In addition, three different residual skylight correction

methods were chosen. Firstly, Rrs(750) = 0, secondly, the theoretical similarity

spectrum correction, and thirdly, a subset incorporating only the lowest 10% sim-

ilarity spectrum-corrected reflectance measurements per station. This provided

180 sets of results for each retrieved water column optical property (aφ(442),

aCDOM(442), aNAP (442) and bbp(555)). For each set, there were N = 22 stations

available for analysis. Given the number of candidate algorithm combinations, a

process of elimination is employed to select the best performing algorithm(s).

On average, each predictor-corrector inversion combination retrieved reasonable

Rrs(λ) reconstructions. The average spectral RMS error for all inversion varia-

tions (from 400 to 650 nm) was approximately 2.5% (σ = 0.4%), with a minimum

of 1.56% and a maximum of 3.46%. It should be noted, however, that some sta-

tion sites for some inversion combinations failed to converge within the pre-defined

1000 iteration maximum. These combinations usually featured either the Pack,

B-95 or Lee aφ algorithm variants and the Blend bbp algorithm variants. These

combinations were excluded from further analysis as they are considered unreli-

able for the conditions encountered.

As a general test of the accuracy of the inversion models, the in situ non-water ab-

sorption [at(442)−aw(442)] and particulate backscatter (bbp(555)) measurements

were regressed with their inverted counterparts in order to calculate bias value for

each parameter (i.e. the bias was calculated from the slope of the inverted v.s. in

situ linear relationship). It is assumed that the best performing algorithms will

have biases in both retrieved parameters close to unity. By comparing the bias of

at(442)−aw(442) and bbp(555) (see Fig. 4.6a), certain populations can be resolved.
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First, the population of retrievals using “Real” aCDOM(λ) and aNAP (λ) basis vec-

tors (white plot symbols) deviated less from the ideal case, whereas the black plot

symbols (the exponentially-modelled aCDOM(λ) and aNAP (λ) variants) typically

showed greater deviation. In addition to the “Real” aCDOM(λ) and aNAP (λ) basis

vectors which are considered successful algorithm candidates, a certain subset of

the Lee aφ(λ), exponential aCDOM(λ) and aNAP (λ) model results (shown in grey

in Fig. 4.6a), also show potential.

The linear spread between at(442) − aw(442) and bbp(555) indicates that there

is some interplay between retrieved absorption and backscattering. The dotted

line indicates the line of best fit yielded when aNAP (750) 6= 0. In this situation,

bbp(555) inversions become lower in magnitude to compensate for decreased to-

tal absorption. Since aNAP (750) = 0 yields average values closer to unity, the

aNAP (750) = 0 correction is preferred. Figure 4.6b shows the “Real” aCDOM(λ)

and aNAP (λ) basis vector-based algorithms, and are colour coded in terms of

residual glint correction. The grey plot symbols which denote the Rrs(750) = 0

based glint correction seem to yield more consistent bbp(555) retrievals (i.e. less

data spread). However, it is clear that the Rrs(750) = 0 assumption does not

hold in turbid waters. The similarity spectrum approach is still considered the

best.

An initial inspection of the aφ retrievals indicated that for the majority of the

algorithm variants, a large proportion of the aφ retrievals were negatively corre-

lated with in situ aφ measurements. Figure 4.7 shows example scatter plots of

retrieved aφ(442) v.s. measured aφ(442) for 5 different retrieval approaches. In

most cases, there are data points which deviate significantly from the dashed 1:1

line, and these are shown as hollow plot symbols. The hollow plot symbol data

points were ignored in the calculation of the coefficients presented on Fig. 4.7.
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a)

b)

Figure 4.6: a) [at(442)−aw(442)] v.s. bbp(555) inversion biases for all 180 inversion
algorithm combinations. White plot symbols show the “Real” spectral regression-
derived aCDOM(λ) and aNAP (λ) basis vectors. Grey plot symbols are the Lee
aφ(λ) model variants with Exponentially-modelled aCDOM(λ) and aNAP (λ) basis
vectors. Smaller, black plot symbols show all other combinations. The ideal
unity-bias values for each axes are shown with the dashed line. The straight
line is the line of best fit for all “Real” spectral regression-derived aCDOM(λ)
and aNAP (λ) basis vector-derived inversions. The dotted line shows the same
regression performed with the aNAP (750) 6= 0 approach. b) As in a), but filtered
to show only “Real” spectral regression-derived aCDOM(λ) and aNAP (λ) basis
vector-based inversions. Plot symbols are colour-coded in terms of residual glint
correction approach; the Similarity-Spectrum approach is in white, the 10% lowest
similariy spectrum approach is in black, and grey denotes the Rrs(750) = 0 glint
correction. 188



a) b)

c) d)

e)

Figure 4.7: Example aφ(442) retrievals for 5 different aφ modelling approaches;
a) 2 Spectrum Mixture, b) 4 Spectrum Mixture, c) Packaging, d) Bricaud 1995
and e) Lee 1998. Note the occurrence of very low aphi(442) inversions in most
algorithm variants. The hollow plot symbols were identified as outliers and were
excluded from subsequent analysis. The 1:1 line is shown as a dashed line.
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Figure 4.8a - e provides an example of aφ retrieval error v.s. the fractional contri-

bution to the total non-water absorption [at(442)− aw(442)] for five different aφ

retrieval approaches. Figure 4.8f shows the overplotted results from all successful

algorithm variants. In every case, aφ retrieval error increases as the fractional

contribution of aφ is reduced. This may be interpreted as a lack of aφ resolvable

signal present in the Rrs spectrum in these conditions. In every algorithm variant,

the error leads to an under-stated aφ(442) value.

The retrieval data was filtered so that these erroneous values were removed (all

data where the fractional contribution is less than 0.05). The removed data points

are shown as hollow plot symbols in Figure 4.7. The threshold value of 0.05 can

be used to quality control aφ inversion products, however the exact value will be

dependent of the exact algorithm variant being used. The lack of discrete IOP

validation data makes this algorithm-specific value difficult to determine, how-

ever this will be addressed later with the flow-through dataset, where the data

density is higher. Figure 4.8f also shows a large spread of algorithm performance

(shown by large error bars) in the fractional range of 0.2 - 0.3. Further efforts

must be made to identify the most robust algorithm variant combination, and

the influence of the other IOPs should be considered.
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a) b)

c) d)

e) f)

Figure 4.8: a-e) Examples of the aφ(442) retrieval error versus the retrieved frac-
tional contribution of aφ to the total non-water absorption for five different model
variants (note aφ is expressed as aphi in the plots). All show degradation in aφ
retrieval as the fractional contribution of aφ is reduced past approximately 0.1
(10%). f) Results from all 720 variants overpotted. The white plot symbols are
the average, (±0.0125m−1) binned aφ(442) errors, and the error bar magnitude
is the standard deviation of each bin.
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Figure 4.10 provides an example of aCDOM retrieval error v.s. the fractional

contribution to the total non-water absorption [at(442) − aw(442)] for five dif-

ferent aCDOM retrieval approaches. This figure demonstrates that aCDOM(442)

retrievals degrade as the fractional contribution of aCDOM(442) to non-water ab-

sorption [at(442) − aw(442)] increases. This is the opposite of the trend shown

in aφ(442) retrievals. Even when expressing the aCDOM(442) retrieval error as

a percentage, the trend is apparent (see Fig. 4.11a). When the fractional con-

tribution approaches 1, The retrieved aCDOM(442) coefficients are larger than

what was measured, with the average slope between inverted vs measured be-

ing approximately 2.0 (σ = 0.6) (see Fig. 4.9 for an example). This may be

an artifact of the aCDOM contribution acting to compensate for inaccuracies of

the aφ spectral models. The aφ spectral models are based on the Quantitative

Filter Technique, and suffer from wavelength dependent uncertainties due to the

uncertain pathlength amplification and scattering error processes. Alternatively,

considering the similarity between the aCDOM and aNAP spectral shapes, the

predictor-corrector inversion processs may over-retrieve aCDOM at the expense

of aNAP . Figures 4.12a - e) show poor aNAP (442) retrievals for the same algo-

rithm variants shown in Figs. 4.7 and 4.8. Here, when aNAP (442) contributes

significantly to the total non-water absorption, it is generally understated. Fig-

ure 4.13 shows examples of the combined aNAP (442) +aCDOM(442) retrievals v.s.

the combined aNAP (442) + aCDOM(442) measurements for 5 different inversion

model variants. The agreement of these figures (as opposed to the aNAP (442)

retrievals) suggests that generally the inversion models were unable accurately

partition aCDOM(442) and aNAP (442), however accurate retrievals of the com-

bined aCDOM(442) + aNAP (442) are possible.

Fortunately, the non-algal particulates found in the GBR are known to scatter

light, and aNAP (442) is highly correlated with bbp(555) (see Fig. 4.14). This high

correlation provides an opportunity to tie the magnitude of the aNAP spectrum to

bbp(555) during the inversion process. This yields the example inversions shown

in Fig. 4.16. Note that on average, even when aNAP (442) is tied to bbp(555),

the resultant aCDOM(442) retrievals still yield slopes greater than 1, indicating

a consistent spectral error in either the IOP models or the input Rrs measure-
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a) b)

c) d)

e)

Figure 4.9: Example aCDOM(442) retrievals for 5 different aφ modelling ap-
proaches; a) 2 Spectrum Mixture, b) 4 Spectrum Mixture, c) Packaging, d)
Bricaud 1995 and e) Lee 1998. The 1:1 line is shown as a dashed line.
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a) b)

c) d)

e) f)

Figure 4.10: a-e) Examples of the aCDOM(442) retrieval error versus the retrieved
fractional contribution of aCDOM to the total non-water absorption for five dif-
ferent model variants. All show degradation in aCDOM retrieval as the fractional
contribution of aCDOM increases. The 1:1 relationship is shown as a dashed line.
f) Results from all 180 variants overpotted. The white plot symbols are the av-
erage, (±0.0125m−1) binned aCDOM(442) errors, and the error bar magnitude is
the standard deviation of each bin.

194



a)

b)

Figure 4.11: a) aCDOM(442) retrieval error expressed as a percentage versus the
retrieved fractional contribution of aCDOM to the total non-water absorption for
all 720 model variants overplotted. The white plot symbols are the average,
(±0.0125m−1) binned aCDOM(442) percentage errors, and the error bar magni-
tude is the standard deviation of each bin. b) as in a), but for the combined
aNAP (442) + aCDOM(442) retrieval.
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a) b)

c) d)

e) f)

Figure 4.12: Example aNAP (442) retrievals for 5 different aφ modelling ap-
proaches; a) 2 Spectrum Mixture, b) 4 Spectrum Mixture, c) Packaging, d)
Bricaud 1995 and e) Lee 1998. Note the occurrence of very low aNAP (442) in-
versions in most algorithm variants. The 1:1 relationship is shown as a dashed
line. f) Results from all 720 variants overpotted. The white plot symbols are the
average, (±0.0125m−1) binned aCDOM(442) errors, and the error bar magnitude
is the standard deviation of each bin.
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a) b)

c) d)

e) f)

Figure 4.13: Example aCDOM(442) + aNAP (442) retrievals for 5 different aφ mod-
elling approaches; a) 2 Spectrum Mixture, b) 4 Spectrum Mixture, c) Packaging,
d) Bricaud 1995 and e) Lee 1998. The 1:1 relationship is shown as a dashed
line. f) Results from all 720 variants overpotted. The white plot symbols are the
average, (±0.0125m−1) binned aCDOM(442)+aNAP (442) errors, and the error bar
magnitude is the standard deviation of each bin.
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ments. Raman scattering might contribute to this error. Despite this, as long as

correlation coefficients are high, the predictor-correct inversion approaches still

show merit.

Figure 4.14: Measured aNAP (442) versus measured bbp(555) for the discrete IOP
validation measurements. The slope of the relationship and R2 correlation coef-
ficient is shown on the plot.

To determine the best overall algorithm, the accuracy of all three IOP parame-

ters should be evaluated simultaneously. Table 4.3.1 shows the inversion results

of the 16 different approaches which survived elimination. Unfortunately, most

aφ retrievals have poor R2 correlation coefficients. This is probably a consequence

of the limited number and range of samples in this dataset, combined with spa-

tial uncertainties between the Rrs and discrete IOP measurement. This serves to

obfuscate the identification of the ‘best’ performing algorithm using this dataset.

The comparison exercise has however, demonstrated that realistic inversion re-

sults can be achieved with the predictor-corrector approaches. The merits of the

final 16 predictor-corrector methods will be tested later in the chapter with full

transect measurements were the spatial variability between the algorithm inputs

and measured outputs will be less significant.
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a) b)

c) d)

e)

Figure 4.15: Example aNAP (442) retrievals for 5 different aφ modelling ap-
proaches; a) 2 Spectrum Mixture, b) 4 Spectrum Mixture, c) Packaging, d)
Bricaud 1995 and e) Lee 1998. Note the occurrence of very low aNAP (442) in-
versions in most algorithm variants. The 1:1 relationship is shown as a dashed
line. f) Results from all 720 variants overpotted. The white plot symbols are the
average, (±0.0125m−1) binned aCDOM(442) errors, and the error bar magnitude
is the standard deviation of each bin.
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a) b)

c) d)

e)

Figure 4.16: Example aCDOM(442) retrievals for 5 different aφ modelling ap-
proaches; a) 2 Spectrum Mixture, b) 4 Spectrum Mixture, c) Packaging, d)
Bricaud 1995 and e) Lee 1998. The 1:1 line is shown as a dashed line.
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a) b)

c) d)

e)

Figure 4.17: Example bbp(555) retrievals for 5 different aφ modelling approaches;
a) 2 Spectrum Mixture, b) 4 Spectrum Mixture, c) Packaging, d) Bricaud 1995
and e) Lee 1998. The 1:1 line is shown as a dashed line.
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4.3.2 Quasi-Analytical Algorithm

One approach to determine IOPs based on measured Rrs spectra is the Quasi-

Analytical Algorithm (QAA) model of Lee et al. (2002). Since coincident Rrs

and IOP data was collected at discrete stations (described in Chapters 2 and 3),

empirical aspects of the QAA approach can be tuned specifically to the GBR

waters sampled. The GBR-tuned QAA algorithmic approach developed in this

study first converts Rrs into bb
a+bb

(shortened to u, as in Eq. 3.40) using Eq. 3.43,

and then seeks to estimate the total absorption at a reference wavelength. Figures

4.18a and b reveals trends between in situ GBR measurements of absorption and

remote-sensing derivable u (using Eq. 3.43). Based on these measurements, a

useful empirical relationships specific to the GBR can be fitted:

a(555) = K0 +K1

(
u(645)

u(555)

)
+K2

(
u(645)

u(555)

)2

, (4.20)

where a(555) is the total absorption coefficient at 555 nm, u(555) is the bb
a+bb

coefficient at 555 nm, and the polynomial model fit coefficients K0 = 0.0426,

K1 = 0.1284, K2 = 0.4501. The model fit is shown as a solid line in Fig. 4.18a.

A similar equation utilising the wavelengths of the 1 km resolution MODIS bands

is:

a(547) = J0 + J1

(
u(667)

u(547)

)
+ J2

(
u(667)

u(547)

)2

, (4.21)

where a(547) is the total absorption coefficient at 547 nm, u(547) is the bb
a+bb

coefficient at 547 nm, and the polynomial model fit coefficients J0 = 0.0314,

J1 = 0.3253, J2 = 0.4725. The model fit is shown as a solid line in Fig. 4.18b.

The next stage of the QAA-style algorithm approach uses the empirically es-

timated a(555) (or alternatively, a(547)) and combines it with the analytical

expression for u in order solve for bbp(555):

bbp(555) =
u(555)a(555)

1− u(555)
− bbw(555), (4.22)
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a)

b)

Figure 4.18: a) Total absorption, a(555) versus u(645)/u(555) based on GBR IOP
measurements described in Chapter 2. The solid line is a polynomial fit described
by Eq. 4.20. b) Total absorption, a(547) versus u(667)/u(547) based on GBR
IOP measurements described in Chapter 2. The solid line is a polynomial fit
described by Eq. 4.21.

204



where bbw(555) is taken from Zhang et al. (2009).

Once bbp(555) is determined, the spectral slope of the bbp spectrum (γbb) can be

estimated so that the full backscattering spectrum can approximated using Eq.

4.8. An empirical relationship between bbp(555) and γbb was described in Chapter

2 (Eq. 2.54). This relationship was determined from a linear fit to the station-

cropped IOP measurements and the inverse bbp data. Now that the relationship

between Rrs and u has been established, full transect flow-through Hydroscat

and Rrs may be used to assess the applicability of Eq. 4.9. A subset (every 10th

data point) of the full transect data is shown in Fig. 4.19a. The relationship

of Eq. 2.54 based on discrete IOP-only measurements is shown as a solid line

overplotted in Fig. 4.19.

For higher bbp(555) values typical of extreme flood plume events, the dotted line

does not predict the measurements made in the full-transect data. To make

a more robust model, it was necessary to introduce a second function high-

scattering waters in a piecewise fashion:

γbb =


0.00380
bbp(555)

+ 1.454 for bbp(555) < 0.032m−1

−3.32 bbp(555) + 1.68 for bbp(555) ≥ 0.032m−1,

(4.23)

where the first equation is Eq. 4.9, and the second equation is a linear fit of the

data from bbp(555) data ≥ 0.02m−1.

As in Lee et al. (2002), γbb may also be empirically related to Rrs ratios. Examples

of these ratio relationships were determined from in situ DALEC and Hydroscat

measurements for the MODIS 1 km and 500 m bands. These are shown in Figures

4.19b and c. The modelled lines are generated with Eq.:

γbb = γmax
(
1− expAR+B

)
, (4.24)

where γmax, A, R and B are documented in Table 4.4.

Once a suitable γbb is determined, it is applied in Eq. 4.8 to estimate the backscat-
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a)

b)

c)

Figure 4.19: a) Spectral backscattering slope γbb vs bbp(555) for every 10th data
point. The model described by Eq. 4.9 is shown in the solid line. An improved
piecewise model (Eq. 4.23) is shown in the dashed line for bbp(555) ≥ 0.032. b)
and c) Show the spectral backscattering slope γbb vs DALEC-measured reflectance
ratios; the first (b) being applicable to 1 km MODIS bands and the other (c) for
the 500 m bands. For each plot, two different models are featured which have
different asymptotes. See Table 4.4 for details.
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R γmax A B ref.
Rrs(443)/Rrs(547) 4 -0.324 -0.272 Fig. 4.19b, dashed line
Rrs(443)/Rrs(547) 3.2 -0.865 0.000 Fig. 4.19b, solid line
Rrs(469)/Rrs(555) 4 -0.289 -0.260 Fig. 4.19c, dashed line
Rrs(469)/Rrs(555) 3.2 -0.733 0.000 Fig. 4.19c, solid line

Table 4.4: Model coefficients used to estimate γbb based on Rrs ratios. A and B
are model fit parameters.

tering spectrum (bbp(λ)) and then the total absorption a(λ) can be determined

using:

a(λ) =
[1− u(λ)][bbw(λ) + bbp(λ)]

u(λ)
. (4.25)

Once the a(λ) is determined, aw(λ) can be subtracted and the absorption coeffi-

cients of each non-water subfraction can be deduced using empirical relationships

determined from the IOP dataset in Chapter 3.4. The specific relationships of

interest are shown in Figs. 4.20a-d. For the purposes of simplifying the pro-

cess for the first stage of partitioning and, as in Lee et al. (2002), the combined

aCDOM and aNAP is deduced. This sum is referred to as adg. The relative frac-

tions of adg and aφ can be deduced by observing the near-constant relationships

between CDOM + NAP absorption (adg) and phytoplankton absorption (aφ) at

wavelengths of 412 nm and 443 nm (see Fig. 4.20a and b), where:

ares(412) = adg(412) + aφ(412), (4.26)

ares(443) = adg(443) + aφ(443). (4.27)

The empirical relationship in Fig. 4.20a expresses adg(412) in terms of adg(443):

adg(412) = Madg(443), (4.28)

where M = 1.569.

Substituting Eq. 4.28 into Eq. 4.26:
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ares(412) = Madg(443) + aφ(412). (4.29)

Re-arranging Eq. 4.27 to express adg(443) in terms of ares(443) and aφ(443):

adg(443) = ares(443)− aφ(443). (4.30)

The empirical relationship in Fig. 4.20b expresses aφ(412) in terms of aφ(443):

aφ(412) = Naφ(443), (4.31)

where N = 0.660.

Substituting Eq. 4.31 and Eq. 4.30 into Eq. 4.29, and solving for aφ(443) yields:

aφ(443) =
ares(412)−Mares(443)

−M +N
. (4.32)

The partitioning of adg into the aCDOM and aNAP fractions can be made utilis-

ing the empirical GBR IOP dataset. In Fig.4.20c, it can be seen that there is a

linear relationship between aNAP (443) and bbp(555) for the waters sampled. The

equation of the line of best fit is described below:

aNAP (443) = 3.340[bbp(555)]− 0.006 (4.33)

where the equation represented the measured aNAP (443) data with an RMSE of

35.6%.

Finally, the CDOM contribution may be estimated by:

aCDOM(443) = adg(443)− aNAP (443). (4.34)

Figure 4.21 shows a comparison between the QAA retrieved aφ(442), aCDOM(442)

and bbp(555) coefficients and the respective in situ measured values. The algo-

rithm performance is satisfactory, with RMS errors lower than approximately

30 % for all 3 IOPs. However, as was discovered in the previous predictor-
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a)

b)

c)

Figure 4.20: Linear empirical relationships between the absorption coefficients at
412 and 443 nm for: a) GBR combined NAP + CDOM absorption (the slope
defines M in Eq. 4.32), b) GBR phytoplankton absorption (the slope defines
N in Eq. 4.32). Data represented by the white plot symbol was omitted from
the linear regression calculation as it was an outlier, potentially contaminated
by residual non-algal particulates on the filter pad. c) The linear relationship
between aNAP (443) and bbp(555). The RMSE of the linear models are shown on
each plot, along with the R2 correlation coefficients and equations.
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a) b)

c) d)

e)

Figure 4.21: QAA retrieval results for: a) aφ(442), c) aCDOM(442) and e) bbp(555).
b) Shows the degradation in aφ(442) retrieval performance when the relative
contribution of aφ(442) to at(442) − aw(442) is reduced. A fractional threshold
of 0.1 was used to exclude poor aφ(442) retrievals (shown as white plot symbols
in a). d) Shows the degradation in aCDOM(442) retrieval performance when the
relative contribution of aCDOM(442) to at(442)− aw(442) is reduced.
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corrector approaches, aφ(442) retrievals were poor when the fractional contribu-

tion of aφ(442) to at(442)−aw(442) was low. A threshold of 0.1 was used to filter

the retrievals (consistent with the predictor corrector approaches). Also similar

to the predictor-corrector approach, the QAA-derived aCDOM retrievals showed

increasing error as the relative contribution of aCDOM to at(442) − aw(442) in-

creased. It is possible that for highly absorbing waters, the Rrs values at 412nm

become too small to be accurately used for partitioning aφ and aCDOM contribu-

tions. Although (Lee et al. 2002) suggests using a longer reference wavelength in

higher absorption waters, the approach used in this study included the 547/555

and 645 nm bands, so was already making use of the long wavelengths. If long

wavelengths are required, then care must be chosen to avoid spectral regions in

which fluorescence contribute significantly to the Rrs signal, as this would cre-

ate additional errors. This further refinement is left for later work. In order to

quality control the QAA-derived aCDOM(442) retrievals, a relative aCDOM(442)

fractional contribution maximum threshold of 0.82 was used. This removed one

outlier from Fig. 4.21c, as shown with a white plot symbol. The average compu-

tation time of the QAA approach was 1 ms, which is on average, about 50 times

faster than the predictor-corrector apporaches. This computational speed is an

important consideration when large volumes of data need to be processed.

The QAA allows the estimation of the phytoplankton absorption coefficient and

the CDOM absorption coefficient, which are correlated to the respective water

quality parameters TChl and DOC. Particulate backscatter (bbp(555)) was deter-

mined earlier in the algorithm by Eq. 4.8, and 4.9. This bbp(555) value can then

be used to determine TSS (see Fig. 2.25b). The accuracy of this algorithm ap-

proach with respect to water quality parameter retrievals will be evaluated with

an in situ dataset, described later.
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4.3.3 Water Quality Inversions

The coincident discrete Water Quality and time-averaged flowthrough calibration

measurements are shown in Figures 4.22a-c. The RMS errors based on the Hy-

droscat data are 20% for TChl and 15% for TSS. These errors are slightly higher

than the relative replicability of discrete WQ measurements alone (See Table 2.7),

suggesting that the spatial variability between the in-situ and flow-through mea-

surements added to the uncertainty of calibration. The calibration of the the

FLNTU TChl data was shown to have a larger calibration RMS compared to the

Hydroscat TChl, so was not used in further analysis.

The derived calibration coefficients were then applied to the flow-through Hy-

droscat data to compare with the Rrs - retrieved parameters. Unfortunately, no

underway validation DOC data was collected other than discrete samples per-

formed whilst on station.
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a)

b)

c)

Figure 4.22: a) Niskin bottle TChl versus the Hydroscat fluorescence response.
The linear regression shown was used to calibrate the Hydroscat response into
TChl. b) Niskin bottle TSS versus the uncorrected Hydroscat scattering response
at 442 nm. The linear regression shown was used to calibrate the Hydroscat re-
sponse into TSS. c) Niskin bottle TChl versus the FLNTU fluorescence response.
The linear regression shown was used to calibrate the FLNTU response into TChl.
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4.3.4 Empirical DALEC transect retrievals

With the DALEC and flow-through system, it was possible to collect a substantial

amount of data over very large spatial scales. Assuming the optical conditions

characterising the GBR region were adequately represented during the field data

collection, then direct empirical analysis of the field dataset may allow alternative

and faster-performing algorithms applicable to the GBR to be adopted if their

accuracy is satisfactory.

4.3.4.1 Empirical TSS

The most prominent observation from the data analyses is that DALEC-derived

u(645) and flow-through TSS are highly correlated (see Fig. 4.23a). The red 645

nm wavelength was chosen because the MODIS satellite produces a 250 m res-

olution image at this wavelength, so the algorithm will be applicable to MODIS

image products. The u(645) vs. TSS correlation is a result of the low absorption

coefficients of CDOM and phytoplankton in this spectral region, combined with

the fact that in the waters sampled, a significant portion of the scattering mate-

rial contributing to bb(645) is readily captured on the filters used to quantify TSS.

As shown in Chapter 3, even perfectly measured above-water remote sensing re-

flectance is subject to variability caused by differences in sun-relative azimuth

angle, solar zenith angle and wind speed. To remove these artifacts to make a

more generally-applicable empirical relationship between Rrs and TSS, the Rrs

was converted into u by Eq. 3.43 (as described in Chapter 3). Due to the general

non-linearity of the TSS vs u relationship (see Fig. 4.23a), the following 2nd-order

polynomial was fit to relate TSS to u:

TSS = T0 + T1u+ T2u
2, (4.35)

where T0 = 0.79, T1 = 17, and T2 = 193. These coefficients represented the

flow-through TSS data with a RMSE of 16.2% (see Fig.4.23b).
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It is apparent that there is some spread in the u vs TSS data (see Fig 4.23a).

This is possibly due to the fact that the highest suspended loads in this dataset

were found in high CDOM and phytoplankton waters, whose absorption may

contribute significantly to the reduction in Rrs(645).

a) b)

Figure 4.23: a) Flow-through TSS v.s. DALEC-derived u at 645nm. Dashed line
shows the polynomial model 4.35. b) The empirically-retrieved (Eq. 4.35) TSS
vs flow-through TSS.

4.3.4.2 Empirical TChl

The traditional empirical Maximum Band Ratio (MBR) ocean colour chlorophyll

algorithms fail in turbid case-2 waters (Qin et al. 2007). These MBR algorithms

are empirically tuned with large TChl vs Rrs datasets collected mainly in case-1

waters. It is questionable whether regional or trophic variations on the relation-

ship between TChl and Rrs in coastal GBR are represented with the existing

global MBR dataset. The standard MODIS OC3 MBR algorithm form is de-

scribed below (O’Reilly et al. 2000):

TChl = 10A0+A1R+A2R2+A3R3+A4
4 , (4.36)

where

R = log10

(
Rrs(443) > Rrs(488)

Rrs(547)

)
. (4.37)
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In Eq. 4.37, either Rrs(443) or Rrs(488) is chosen as the numerator, providing it

produces the largest ratio when normalised by Rrs(547). The coefficients A0−A4

are respectively 0.2424, -2.7423, 1.8017, 0.0015 and -1.2280 for the OC3M algo-

rithm determined from a large in situ dataset (O’Reilly et al. 2000).

By using the GBR in situ dataset, new polynomial coefficients can be determined

for coastal GBR waters. Figure 4.24a shows the base-10 logarithm of TChl v.s.

R dataset collected in this study for the entire range of GBR waters encountered.

Here, R was calculated by Eq. 4.37, which utlilises MODIS 1 km spatial resolu-

tion bands at 443, 488 and 547 nm. Two different polynomials were used in a

piecewise fashion to describe the data (see Table 4.5). By inspection, it was de-

cided that combining two polynomials in a piecewise fashion best represented the

data and would lend itself to more stable extrapolations if imagery is processed

outside of the regression dataset range. The dotted line describes the relationship

of the OC3M algorithm. Clear differences are seen between the OC3M fit and the

GBR-tuned polynomial, however for low chlorophyll concentrations, differences

are much smaller; in the vicinity of 0.025 µgl−1. Small differences may be due

to differences in laboratory Chl methodology or issues with calibrating the flow-

through chlorophyll fluorometer. For higher TChl waters, there is substantial

deviation. This is likely due to the presence of other in-water constituents (see

TSS-based colour code in Figure 4.24c).

Bands (nm) Range A0 A1 A2 A3 A4

(443, 488, 547) R ≤ 0.0587 -0.2177 -1.1977 4.4589 -22.3351 25.7503
1 km R > 0.0587 -0.1856 -1.6446 1.6587 -1.9631 0

(469, 555) R ≤ 0.0281 -0.2521 -0.6111 2.4902 -11.0464 0
500 m R > 0.0281 -0.2380 -1.0844 1.3553 -2.8821 0

Table 4.5: GBR-specific piecewise polynomial model coefficients for 1 km and
500 m resolution Band Ratio TChl algorithms.

Coastal waters are usually spatially variable, and there is a need to monitor TChl

in close proximity to the shoreline. In this case, it could be beneficial to use the

higher spatial resolution MODIS bands. Using the 500 m resolution MODIS

bands centered at 469 nm and 555 nm similar to the work of Franz et al. (2006),
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a) b)

c) d)

Figure 4.24: a) Polynomial fits to determine the empirical band ratio coefficients
for the GBR dataset using the 1 km bands (Eq .4.37). The dashed line is a
fourth-order polynomial and then solid line is a third order (see Table 4.5). The
dotted line is the OC3M MBR relationship for comparison. Note, colour-coding
of the plot symbols is based on data density, where red is highest and black
is the lowest density. The b) The empirically-retrieved TChl v.s. flow-through
TChl using piecewise polynomials described in Eq. 4.5. The 1:1 line is shown
with the dashed line. RMSE = 0.227. c) Polynomial fit to determine the
empirical band ratio coefficients for the GBR dataset using the 500 m bands,

where R = log10

(
Rrs(469)
Rrs(555)

)
. The dashed line is the first third-order polynomial

and the solid line is the second third order (see Table 4.5). Note, the plot symbols
here are colour-coded in terms of Total Suspended Solids, where low TSS is violet
and high TSS is Red. d) The empirically-retrieved TChl vs flow-through TChl.
The 1:1 line is shown with the dashed line. RMSE = 0.225.
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a GBR-tuned MBR algorithm can be determined to allow the estimation of TChl

at 500 m resolution.

Figure 4.24c presents two 3rd order polynomial fits to parameterise the tuned

band ratio TChl algorithm based on the flow-through TChl and DALEC Rrs,

where in this 500 m algorithm, R = log10

(
Rrs(469)
Rrs(555)

)
.

When processed with the DALEC Rrs data using essentially identical synthesied

spectral bands, both the 1 km and 500 m algorithms retrieve the flow-through

TChl with an RMSE of approximately 23% (see Figs. 4.24b and d). It should

be noted that other constituents correlated to DOC and TChl are expected to

vary R, however this dataset demonstrates that these other constituents must

correlate well with TChl. As a result, the satisfactory 23% RMSE retrieval of

TChl is achieved. This result is surprising, as this retrieval error is lower than the

RMS of retrieving TChl from an in situ measured aφ(λ) (see Table 2.8). This,

combined with the simplicity in image processing and superior spatial resolution

may make this empirical approach superior to full-spectrum inversions for some

applications, however empirical tuning to the local conditions is important.

In terms of absorption, aCDOM can be 5 to 10 times greater than aφ in the blue

region, and generally, areas of high aCDOM also have high TChl concentrations

(see Fig.4.25). Considering this, the MBR algorithm determined for the GBR

(Eq. 4.36) is undoubtedly strongly influenced by the presence of aCDOM because

aCDOM is exponential in spectral shape so will effect R in Eq. 4.36. Additionally,

aNAP can easily be in the same order of magnitude as aφ. Despite this, the MBR

TChl algorithm has been shown to perform satisfactorily with the input dataset

(Fig. 4.24b). However, use of the algorithm should be applied with caution in

that it is sensitive to the relative abundances of different optical fractions en-

countered during the transect fieldwork. This algorithm would be expected to

perform worst for phytoplankton blooms occurring in very clear water, however

these regions are probably adequately measured using the standard OC3M algo-

rithm (O’Reilly et al. 2000), and it is very easy to determine a threshold between
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coastal and case 1 regions based on the empirical TSS algorithm (Eq. 4.35) in

order to blend the two algorithmic approaches if necessary. A TSS threshold at

around 1.5 ± 0.5 mgl−1 should suffice, however this should be confirmed with

visual appraisal of a number of scenes.

Figure 4.25: Coincident discrete aCDOM vs TChl measurements for the GBR
showing weak correlation.

An alternative empirical approach used to estimate TChl is via the MODIS

chlorophyll Fluorescent Line Height (FLH) algorithm (Abbott & Letelier 1999).

The MODIS sensors have 1 km bands positioned at 667, 678 and 748 nm, which

are able to resolve the spectral signature of the water leaving radiance (Lw) due

to phytoplankton pigment fluorescence. The tuned FLH used in this study uses

the Rrs product and is calculated by first establishing a “baseline” equal to the

extrapolated Rrs value at 678 nm determined from only the 667 nm and 748 nm

bands. The FLH is then calculated by the measured Rrs(678), minus the baseline:

FLH = Rrs(678) +
(678− 667)(Rrs(667)−Rrs(748))

(748− 667)
−Rrs(667). (4.38)

In the original radiance-based FLH product, the FLH signal is a function of TChl

and other parameters (Abbott & Letelier 1999):

FLHLu = [TChl]a∗φ(676)EPARφf , (4.39)
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where FLHLu is the radiance-based Fluorescent Line Height, φf is the fluores-

cence quantum yield, a∗φ(676) is the chlorophyll-specific absorption coefficient,

[TChl] is the Total Chlorophyll concentration, EPAR is known or easily estimated

from remote sensing (Carder et al. 2003). However, for the Rrs-based FLH, this

EPAR term becomes less significant. a∗φ(676) varies slightly with phytoplankton

pigment packaging, but can be modelled as a function TChl (see Chapter 3.4).

The main unknown in Eq. 4.39 is φf ; the fluorescence quantum yield which

has been reported to vary from 0.0015 to 0.1, with a mean of 0.0035 (Abbott &

Letelier 1999). This parameter is defined as the fraction of energy absorbed by

TChl that is released in the form of fluorescence, and thus provides information

about the physiological state of the phytoplankton. Although not expressed in

Eq. 4.39, in practice, the fluorescent line height is affected by the presence of

scattering and absorbing minerals and also CDOM. The respective mass-specific

absorption coefficients of aNAP and aCDOM are low in the far red / NIR wave-

length region which the FLH uses, and in case-1 waters, it is possible that these

could be ignored. In coastal GBR waters, this should be assessed. By utilizing

the forward model which creates Rrs spectra, the sensitivity of the FLH to in-

creasing concentrations of aφ, aCDOM , bbp (and associated aNAP ) was assessed.

TSS was varied from 0.7 up to 30 mgl−1 and DOC (i.e. CDOM) was varied from

0.66 up to 30 mgl−1. These ranges are outside of the magnitudes sampled during

the field campaigns. Figure 4.26a and b show how the FLH is contaminated by

increasing concentrations of aCDOM , and bbp (and co-varying aNAP ). The most

significant changes in FLH are associated with increases in bbp, however aCDOM

also effects the FLH. To further demonstrate how bbp (i.e. TSS) influences the

FLH, Figure 4.27 shows plots of the FLH vs TChl (a,b) and FLH vs TSS (c).

The best correlation is derived from the FLH v.s. TSS plot and not TChl, so the

FLH has been demonstrated to not perform as a reliable estimator of Chlorophyll

in coastal GBR waters.
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a)

b)

Figure 4.26: Fluorescent Line Height Offset error versus a) aCDOM(443) and b)
bbp(555). Each vertical ‘line’ of data points is produced by variations in the other
parameters (the most influential being bbp). TSS was varied from 0.7 up to 30
mgl−1 and DOC (i.e. CDOM) was varied from 0.66 up to 30 mgl−1.
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a)

b)

c)

Figure 4.27: The DALEC-based Fluorescent Line Height using flow-through mea-
surements from the January field trip. The data points are colour coded by a)
data density (black to red corresponds with low to high densities) and b) TSS
from black (≈ 0.5 mgl−1), up to red (≈ 18 mgl−1). c) FLH algorithm versus
flow-through measurements of TSS, showing better visual correlation than for
TChl in b).
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4.3.5 IOP-based DALEC transect retrievals

The analysis performed with the discrete IOP dataset was difficult given the spa-

tial variability of the coincident IOP and Rrs measurements, however through a

process of elimination, it was concluded that the “Real” aCDOM and aNAP basis

vectors lead to more accurate IOP retrievals. It was also concluded that ap-

proaches with aNAP (442) tied to bbp could potentially lead to better aCDOM(442)

retrievals, and that aNAP (750) = 0. Apart from these findings, conclusions about

which combination of aφ or bbp inversion approach is the most appropriate would

ideally be drawn analysing by a much larger dataset, where the possible effects of

occasional spatial mis-matches are reduced. Such a dataset was collected during

the DALEC transects.

As the inversion process is known to be affected by the type of IOP models

used, a variety of IOP model combinations were tested. In Chapter 3.4, it was

observed that increasing the number of phytoplankton basis vectors improved

the TChl retrieval based on aφ(λ) measurements. This approach, along with

the more simplistic one-parameter aφ(λ) phytoplankton absorption models were

tested in the hyperspectral inversion scheme (2-Mix, 4-Mix, B-95, Lee and Pack).

Given that all three backscattering models performed similarly (see Table 4.3.1),

all three variants described in Section 4.2.2.1.2 were tested (Std, Blend, and

Emp). Inversions were performed with both a freely-varying aNAP (442) and also

aNAP (442) tied to bbp .

The daily quality-controlled DALEC transect datasets were merged and co-located

with the flow-through water quality data by applying a time lag to the flow-

through measurements. To reduce inversion processing time, every 10th Rrs spec-

trum was inverted using the aforementioned variants of the predictor-corrector

algorithms. This provided 10×3 = 30 sets of results, excluding the QAA method.

The total number of inverted data points for comparison with flow-through wa-

ter quality measurements was approximately 5000 (i.e. 5000 points per inversion

combination).
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4.3.5.1 Particulate Backscattering Retrievals

In general, bbp(555) retrievals for all model variants were highly correlated with

the flow-through TSS measurements. Six example bbp(555) retrievals are shown

in Fig. 4.28. The scatter plots have subtle differences which effect the correlation

coefficients and thus accuracy of TSS retrievals based on bbp(555).

By using the in situ validation flow-through dataset, a more accurate relationship

between the DALEC inverted (b′bp(555)) product and TSS can be formulated:

TSS = M [b′bp(555)] +O, (4.40)

where M is the empirically-tuned slope and O is the tuned offset (shown in Table

4.6), and the bbp(555)′ is primed to indicate it is an inverted parameter.

This re-tuning approach compensates for any potential biases in the IOP-based

inversions. Two TSS retrieval examples are shown in Fig. 4.29.
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a) b)

c) d)

e) f)

Figure 4.28: Example bbp(555) retrievals vs flow-through TSS for: a) The 4 phy-
toplanton mixture, Real aCDOM , free bbp model, b) The 4 phytoplanton mixture,
Real aCDOM , Empirically-tied bbp model, c) The 4 phytoplanton mixture, Real
aCDOM , basis vector blend bbp model, d) The GBR-adapted Lee phytoplankton
model, Real aCDOM , free bbp model, e) The B-95, Real aCDOM , free bbp model and
f) The GBR-tuned QAA. The dashed lines show the relationship described by Eq.
2.53. The solid lines show the regression of the retrieved v.s. flow-through TSS.
The plots are colour coded in terms of data density (black to red corresponds
with low to high densities).
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Figure 4.29: Two examples of the Eq. 4.40 retrieved TSS vs flow-through TSS
comparison for a) GBR-tuned Lee phytoplankton, Real aCDOM and Standard free
bbp algorithm variant and b) The QAA. The dashed line is the 1:1 line. The plots
are colour coded in terms of data density (black to red corresponds with low to
high densities). The results of the best performing algorithm variants are shown
in Table 4.6.
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4.3.5.2 Phytoplankton Absorption

Unlike the bbp(555) retrievals, all algorithm variants produced widely varying aφ

retrievals in some conditions. To qualitatively investigate the accuracy of the aφ

retrievals, they were compared with the flow-through TChl measurements. Six

example aφ retrieval v.s. TChl plots are shown in Figure 4.30. Although the

general shape of the power-law (B-95) relationship between aφ and TChl is ex-

hibited in Figs 4.30a - f, there are some retrievals which clearly deviate from this

trend. For the case of the 2-Mix variants (ie Fig. 4.30b), some of these outliers

could be due to a distinct phytoplankton population with varying chlorophyll-a

specific absorption coefficients, however there are a number of retrievals where

the retrieved aφ(442) values are lower than the lowest TChl-specific aφ(442) en-

countered (see straight dotted lines on each plot in Fig. 4.30). These retrievals

are considered erroneous, and thus presents a limitation to the accuracy of TChl

retrievals based on the aφ(442) v.s. TChl relationship. Fortunately, some algo-

rithm variants are more robust.

Figure 4.31 shows the same retrievals as shown in Figs. 4.30a, c and e, however

the plot symbols are colour coded in terms of fractional aφ contribution to total

non-water absorption (at − aw) in the first column, and the second column is

plotted in terms of total non-water absorption (at−aw). By observing the colour

scales in Figs. 4.31a, c and e, it can be seen that aφ(442) retrievals generally

deviate further from the ‘B-95’ power-law trend as the fractional contribution of

aφ(442) decreases. This likely represents the Levenberg-Marquart optimisation

straying into an incorrect local minimum solution in turbid waters.

Each inversion algorithm variant was evaluated based on its ability to retrieve

the measured flow-though TChl values from inverted aφ(442). The number of

complete aφ(442) failures (i.e. aφ(442) = 0) for each variant was recorded and ex-

pressed as a data retention % in Table 4.6. Algorithm failures were then removed

from the dataset and the B-95 model curve was fitted to the retrieved aφ(442)

data (i.e. Fig. 4.30) for each inversion variant. Re-arranging Eq. 2.40 to solve
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a) b)

c) d)

e) f)

Figure 4.30: Six examples of retrieved aφ(442) v.s. flow-though measured TChl
for: a) The 2 phytoplanton mixture, Real aCDOM , free bbp model, b) The 2 phyto-
planton mixture, Real aCDOM , Empirically-tied bbp model, c) The GBR-adapted
Lee phytoplankton model, Real aCDOM , free bbp model, d) The GBR-tuned QAA,
e) The 4 phytoplanton mixture, Real aCDOM , free bbp model and f) The 4 phy-
toplanton mixture, Real aCDOM , Empirically-tied bbp model. The dashed line is
the B95 relationship developed in Chapter 3.4, and the solid line is the exact B95
relationship of Bricaud et al. (1995). The plots are colour coded in terms of data
density (black to red corresponds with low to high densities). The straight, dot-
ted lines show the extrema of the slightly packaged Prochlorococcus (upper) and
the highly packaged Diatom (lower) end members identified in Chapter 3.4. All
plots were limited to the same range, although outliers exist outside the shown
range for all four variants.
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a) b)

c) d)

e) f)

Figure 4.31: As in Fig. 4.30a, c and e, but symbols are colour coded according
to a) Fractional aφ contribution to total non-water absorption (at − aw), with
the highest values shown in red (80%), fading through yellow, green, blue and
then finally to black. b) Colour coded according to total non-water absorption
(at − aw). As in Fig. 4.30a, c and e, the dashed lines in all plots show the
B95 relationship developed in Chapter 3.4, and the solid line is the exact B95
relationship of Bricaud et al. (1995). The straight, dotted lines show the extrema
of the slightly packaged Prochlorococcus (upper) and the highly packaged Diatom
(lower) end members identified in Chapter 3.4.
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for TChl yields:

TChl = exp
ln
(
aφ(442)

A

)
B

, (4.41)

where the model coefficients A and B are determined from the retrieved aφ values

and the flow-through TChl dataset. The tuned A and B coefficients are listed in

Table 4.6. An example of the Eq 4.41 model curve TChl retrieval is shown in Fig.

4.32, and the results of other algorithm combinations are shown later in Table 4.6.

Figure 4.32: An example of the corrected (Eq. 4.41) retrieved TChl vs flow-
through TChl comparison for the 4-Mixture in situ-derived “Real” aNAP and
aCDOM basis vector variant. The dashed line is the 1:1 line. The plots are
colour coded in terms of data density (black to red corresponds with low to high
densities). This algorithm retained 100% of the data.

For the 2-Mix and 4-Mix inversion variants, TChl can also be calculated by sum-

ming the optimised weights of each chlorophyll-specific basis vector. The weights

are in units of µgl−1 and are described in Eq. 4.2. For example, for the 4-Mix
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variant, the total TChl is calculated as:

TChl = TChlPro + TChlSyn + TChlDiat + TChlTrich, (4.42)

where the subscripts denote the TChl concentration for each of the 4 chlorophyll

specific phytoplankton basis vectors (also see Eq 4.2). The 2-Mix algorithm is

similar, but contains only TChlPro and TChlDiat contributions.

The retrieval of TChl based on Eq. 4.42 may potentially yield information about

the functional groups of phytoplankton with distinctive pigment suites and should

provide greater accuracy TChl retrievals. Two examples of an Eq. 4.42 based

retrieval is shown in Fig. 4.33. These example plots show that despite the general

accuracy of the aφ retrievals (i.e. Fig. 4.30e), the Mix-based algorithms retrieve

erroneous TChl values if the mass-specific absorption basis vectors are used to

calculate TChl (i.e Eq. 4.42). The 2-Mix and 4-Mix retrieval methods are very

sensitive to the mass-specific coefficients of the phytoplankton basis vectors used.

To assess which basis vectors lead to the greatest retrieval error, the RMS error in

the TChl retrieval was plotted as a function of the relative contributions of each

phytoplankton type (see Fig. 4.34). Figure 4.34d highlights that in particular,

very large errors in TChl retrieval occur when TChlDiat is the dominant contrib-

utor to the total TChl. Given that the total aφ appears fairly accurate, the error

demonstrated by Figure 4.34d could suggest that the diatom-like chlorophyll-

specific absorption basis vector (a∗φDiat) determined from field measurements is

erroneous. This may be a result of issues associated with variable pathlength

amplification in the highly turbid waters for which the a∗φDiat was determined.

To correct the magnitude of a∗φDiat , the inverted TChlDiat was compared with the

residual TChl (i.e. TChl−TChlPro−TChlSynn−TChlTricho). An example of this

residual comparison is shown in Fig. 4.35a. In every variant case, the retrieved

TChlDiat value was approximately 4 times greater than the residual value. By

applying a scaling factor to correct a∗φDiat , greatly improved TChl retrieval can be

achieved, as shown in Fig. 4.33b. A list of calculated scaling factors and offsets

are shown in the final retrieval results Table 4.6.
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a)

b)

Figure 4.33: Two examples of the optimised weights retrieved TChl vs flow-
through TChl comparison. a) is the 2-Mixture, Real aCDOM basis vector and
Standard bbp variant, with a TChl calculated by Eq. 4.1. b) is the 4-Mixture,
Real aCDOM basis vector and Standard bbp variant, with a TChl calculated by
Eq. 4.2. The dashed line is the 1:1 line. The plots are colour coded in terms of
data density (black to red corresponds with low to high densities).
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a) b)

c) d)

Figure 4.34: Example of the percentage error in retrieved TChl as a function of
the relative contribution of TChl from a) Prochlorococcus, b) Synnechococcus, c)
Trichodesmium and d) Diatoms. The plots are colour coded in terms of data
density (black to red corresponds with low to high densities)

Unfortunately DOC or aCDOM proxy data from the flow-through system was col-

lected; however aCDOM retrievals varied from near-zero to approximately 3 m−1;

within the range encountered during the discrete sampling presented in Chapter

3.4.

The best overall algorithm was selected by firstly considering the RMSE of the

TChl retrievals, and then also considering the data retention %. Algorithm per-

fomance data is shown in Table 4.6. Table 4.6 shows the most accurate TChl

came from the 4-Mixture, Real-modelled aCDOM , Standard bbp and freely-varying

aNAP algorithm, yielding a TChl RMSE of 26.6% for the entire dataset. The best

performing algorithm for bbp retrieval had an RMSE of 16.5%, however the ap-

proach that the best TChl was only marginally worse performing with an RMSE

of 17.2%, so the 4-Mixture, Real-modelled aCDOM , Standard bbp approach is con-

233



a)

b)

Figure 4.35: a) The residual TChl vs TChlDiat for the 4-Mixture, Real aCDOM
basis vector inversion variant. The dashed line is the 1:1 line. The plots are
colour coded in terms of data density (black to red corresponds with low to high
densities). The solid line is the median slope of the dataset. b) An example of
the corrected optimised weights (Eq. 4.2) retrieved TChl vs flow-through TChl
comparison for the in situ-derived 4-Mix, Real aCDOM basis vector variant. The
data shown here is the TChlDiat corrected equivalent of Fig. 4.33. The dashed
line is the 1:1 line. The plots are colour coded the same as for a).
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sidered satisfactory for TSS inversions. The QAA retrieved TChl with an RMSE

of 38.6% for 96.8% of the dataset.
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4.4 Summary

This Chapter dealt with the application of the DALEC, discrete IOP and the

flow-through system data to develop and / or validate a number of Rrs inversion

approaches. A series of physics-based predictor-corrector inversion techniques

were tested, based on different IOP modelling approaches.

• It was shown that for the discrete IOP dataset, the 4-Mixture phytoplank-

ton absorption model yielded the most accurate Rrs reconstruction and the

most stable aφ(442) retrievals.

• For the DALEC transect water quality inversions, the most stable inversion

came from the 4-Mix, Real aCDOM and Standard bbp approach where the

spectral slope (γ) was allow to freely vary. These approaches may provide

additional information about phytoplankton functional groups in the GBR.

• The 4-Mix, Std. bbp predictor-corrector TChl RMSE was 32.3% (B-95

tuning) or 26.6% (Tuned 2-Mixture sum), with a coincident TSS retrieval

RMSE of 17.2%. In contrast, an empirical TSS algorithm was derived and

shown to have a 16.2% RMSE. A GBR-tuned maximum band ratio algo-

rithm was determined and was shown to retrieve TChl with a 23% RMSE.

Whilst the RMSE of the physics-based TChl retrieval is higher than the

purely empirical MBR approach, it should be noted that the physics-based

approach should provide a more reliable image across the whole GBR re-

gion, with reduced artifacts due to the presence of confounding in-water

constituents and additional information about varying phytoplankton as-

semblages.

• The fluorescence-based FLH algorithm was shown to be affected by bbp, so

is considered unsuitable for TChl inversion in these coastal waters.
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Chapter 5

Validation and Application to

MODIS

5.1 Introduction

Chapter 4 dealt with the application and tuning of a number of water qual-

ity estimation algorithms for use with data collected from the DALEC in situ

spectroradiometer. The DALEC has been demonstrated to be a useful tool for

monitoring surface water quality parameters. Combining the DALEC with a sur-

face water sampling flow-through system significantly adds to the number of data

points available for algorithm training or validation, compared with discrete sam-

pling. The knowledge gained from inverting DALEC Rrs measurements is also

relevant to multi-wavelength ocean colour satellite sensors such as the MODIS.

The synoptic and near-daily coverage of the MODIS sensors provides a wealth of

ocean colour information for the GBR region, however its performance has not

been demonstrated in the turbid, coastal GBR region.

The first step to utilising the MODIS sensor in turbid, coastal waters is to demon-

strate the radiometric accuracy of the MODIS reflectance products. MODIS im-

ages of turbid coastal regions usually require specialist atmospheric correction

procedures because standard operational NASA processing relies on the zero Rrs

in the NIR bands (748 and 869 nm) (Gordon & Wang 1994). This so-called

‘black pixel’ condition is generally not met in coastal waters (Siegel et al. 2000)
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and specifically not in the GBR. Work by Franz et al. (2006) has suggested the

ocean colour community utilise the higher resolution SWIR atmospheric MODIS

bands for turbid waters. This extends the applicability of the black pixel as-

sumption because is more likely that hydrosols are invisible due to very high

water absorption coefficients in the NIR. The atmospheric correction approach

used with MODIS imagery can greatly affect image quality and care must be

taken when using the MODIS SWIR bands, as they are not designed to view the

ocean and their low signal-to-nose ratios lead to noisy (grainy) images. Wang &

Shi (2007) published a method which decides whether the SWIR bands are re-

quired for atmospheric correction or not; thus the algorithm is able to shift from

the 748 and 869 nm NIR black pixel assumption, out to the 1240 and 2130 nm

SWIR bands when appropriate. This approach should ensure that the quality of

clear water imagery is maintained whilst the atmospheric correction accuracy of

turbid waters within the same scene is improved.

One significant benefit of the DALEC instrument developed in this thesis is that

it can be used to validate the choice of atmospheric correction procedures ap-

plied to MODIS scenes in a given region. As the DALEC is a transecting device,

it can be deployed during a satellite overpass and a number of DALEC spec-

tra can be recorded within one MODIS pixel. The DALEC samples Rrs every

3.3 nm in the visible region at approximately 10 nm FWHM (Full Width Half

Maximum) spectral resolution. The MODIS Rrs products are fixed at certain

discrete wavelengths, and most of the bands have spectral resolutions around 10

nm FWHM. Considering the similarity in spectral resolution of the two different

sensors, an average DALEC reflectance value can be calculated for comparison

with the satellite pixels recorded within the same time-frame. Like all satel-

lite match-up approaches, the quality of this comparison is dependent on the

inter-pixel spatial variability encountered and the number of measurements made

within one pixel. Considering this, the DALEC sampling approach would seem

better suited to coastal waters where large gradients in water quality parameters

are often expected.
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Although the spectral coverage of MODIS is less than that of the DALEC, the

MODIS bands were positioned specifically for extracting information about phy-

toplankton and CDOM (Sathyendranath 2000). Given the generally smoothly-

varying spectral IOP signatures found in GBR waters, direct transfer of DALEC

or IOP spectral relationships to MODIS imagery should be possible. Preempting

the application of these DALEC-derived relationships to the MODIS sensor, the

empirical algorithm coefficients (i.e. Eq. 4.35 and 4.36) were determined specifi-

cally for MODIS bands. Additionally, the spectral inversion code (and embedded

IOP basis vectors) used to invert the DALEC Rrs data was written in such a

way that the user simply has to provide the center wavelengths of the input Rrs

bands. A 10 nm FWHM gaussian convolution of all inversion spectra is per-

formed around these centers. This is also considered satisfactory for application

to MODIS within the scope of this thesis work. However, assessing the impact of

the spectral band shapes on the output water quality parameter maps is left for

refinement in further work.

This study determined five new algorithms which show promise in the GBR

region, and these are summarised below:

Name Algorithm Description MODIS
Bands (nm)

Res
(m2)

RMSE
(%)

Ref.

GTSS Empirical TSS 645 250 16.2 Eq. 4.35
GCHL1 Band Ratio TChl 469, 555 500 22.5 Eq. 4.36
GCHL2 Band Ratio TChl 443, 488, 547 1000 22.7 Eq.

4.36,4.37
GINV Predictor-corrector

Inversion (TChl, TSS
and DOC)

all 9 (412 −
748)

1000 25.7,
17.7,
10∗∗

Table 5.1: Summary of algorithms which show potential in GBR waters, with
the associated MODIS spectral bands, the spatial resolution of the bands and the
RMSE determined for each algorithm. The GINV RMSE were estimated from
the DALEC-based retrievals and are for TChl, TSS and DOC (respectively). ∗∗

This RMSE is determined from the IOP-coincident dataset only.

In this chapter, data from the DALEC spectroradiometer is used to help choose

an appropriate MODIS atmospheric correction method and then vicariously cali-

brate the MODIS imagery in turbid, coastal waters using a limited in situ match-
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up dataset. Secondly, the vicariously calibrated MODIS Rrs pixel values are then

used as input into the empirical and predictor-corrector spectral inversion schemes

previously demonstrated with the DALEC data (see Table 5.1).

5.2 Methods

MODIS imagery is able to capture a wide expanse of the Queensland coast, so

within one particular scene, a wide variety of water quality (and IOP) conditions

should be present. This diversity is most prominent during the wet season where

flood plumes are most likely to be present; typically bringing the highest TChl,

TSS and DOC concentrations out to the ocean. The DALEC spectroradiometer

was deployed daily during all ship operations when winds were less than 15 knots.

On the 31st of January 2006, the DALEC continuously measured the changing

reflectance from deep water on the outer reef, towards the turbid waters of Mag-

netic Island, near Townsville. During this transect at approximately 1:50 pm

local time, the MODIS Aqua sensor recorded multispectral imagery over the area

which allows a comparison between in situ DALEC and MODIS Rrs. It should

be noted that the MODIS image was recorded within a few minutes, whereas

DALEC data was recorded within a time window approximately 2 hours before

and after the MODIS image collection. Unfortunately, the only turbid-water

MODIS matchup scene suffers from pixel saturation, sun glint, light clouds and

thin trichodesmium further offshore. A true colour representation of the “match-

up” scene is shown in Figure 5.1. Fortunately, there is still usable data from the

MODIS image.

5.2.1 Atmospheric Correction / Validation

SEADAS (OBPG 2011) processing software was used to perform a variety of at-

mospheric corrections to produce a series of MODIS Rrs images for the 31st of

January 2006 match-up. All image variants were left uncorrected for the Bidirec-

tional Reflectance Distribution Function (BRDF) (brdf opt=0). In addition to
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Figure 5.1: MODIS pseudo true colour image recorded on the 31st of January
2006. The approximate ship track from where DALEC measurements were made
is shown with a black line. The transect started near the top centre of the
image and ended near Townsville. Thin, white cloud is seen offshore over the reef
matrix. Moderate glint is apparent in some offshore pixels and appears grey in
colour. High glint is apparent in the turbid inshore waters near the coast, and
particularly to the North of Townsville.
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the Rrs product, wind speed, sun and sensor azimuth and zenith geometry prod-

ucts were also generated to provide input to the spectral BRDF lookup table

developed in Chapter 3. Flagged pixels were included in the processing (mask-

land=0, maskbath=0, maskcloud=0 ,maskglint=0, maskhilt=0, maskstlight=0

and filter opt=0). Pixels were later screened to remove areas where absorbing

aerosols (ABSAER), atmospheric correction failure (MAXAERITER or ATM-

FAIL), cloud or ice (CLDICE) or trichodesmium (TRICHO) was detected. All

processing included gas opt=15, which denotes atmospheric correction for Ozone,

CO2, NO2 and H2O. Both glint opt=0 and glint opt=1 were tested. Table 5.2

shows the SEADAS-specific atmospheric correction parameters trialled on the

matchup scene.

5.2.2 Water Quality Algorithms

TheRrs-based empirical and inversion algorithms were applied to the atmospherically-

corrected MODIS data. The algorithm outputs were then compared to the av-

erage flow-through TChl or TSS measurements recorded coincident with each

given pixel. Each GINV (predictor-corrector) algorithm variant was tested as

done previously in Chapter 4. Previously, it was shown that inversions in in-

shore waters suffered from poor retrievals when the fractional contribution of

the inverted aφ(443) to (at(443) − aw(443)) was less than between 10 and 20%.

This occurs closer to the coast, when total non-water absorption at 443 nm

(at(443) − aw(443)) reaches above about 0.2m−1. In these situations, the QAA

initialisation of aφ(443) could have large errors. Considering that the MODIS-

based empirical GTSS, GCHL2 and GCHL2.1 outputs are shown to perform

acceptably in the matchup scene, these may be able to also assist in intialising

the GINV inversion approach. To test whether the initialisation parameters in

Table 4.2 influenced the inversion results, 3 different initialisations were tested on

the vicariously calibrated MODIS Rrs dataset. The first was using fixed values of

TSS = 2.0mgl−1, TChl = 2.0µg−1, aφ(443) = 0.06m−1 , aCDOM(443) = 0.06m−1

and aNAP (443) = 0.06m−1 and bbp(555) = 0.015m−1. The second was based on

the empirical MODIS TChl and TSS algorithms (and IOP models). The empir-

ical intitialiser used the GCHL2.1 algorithm for TChl, aφ(443) = 0.044TChl0.37
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Reference Type
aer
opt

aer
wave
short
(nm)

aer
wave
long
(nm)

other
parameters

Gordon & Wang
(1994)

Fixed Maritime
90% RH

4 859 1240 -

Fixed Maritime
99% RH

5 859 1240 -

Fixed Coastal
70% RH

7 859 1240 -

Fixed Coastal
90% RH

8 859 1240 -

Fixed Coastal
99% RH

9 859 1240 -

2-band -1 748 869 -
2-band -1 859 1240 -
2-band -1 1240 2130 -

Gordon & Wang
(1994) Bailey et al.

(2010)
2-band, NIR -3 748 869 -

2-band, NIR -3 859 1240 -
2-band, NIR -3 1240 2130 -

Ziauddin et al. (2010) Fixed Pair -4 859 1240 40,79,1
Fixed Pair -4 859 1240 40,79,0.5
Fixed Pair -4 1240 2130 40,79,1
Fixed Pair -4 1240 2130 40,79,0.5

Ziauddin et al. (2010)
Bailey et al. (2010)

2-band RH, NIR -2 748 869 -

2-band RH, NIR -2 859 1240 -
2-band RH, NIR -2 1240 2130 -
Fixed Pair, NIR -5 859 1240 40,79,1
Fixed Pair, NIR -5 859 1240 40,79,0.5
Fixed Pair, NIR -5 1240 2130 40,79,1
Fixed Pair, NIR -5 1240 2130 40,79,0.5

Ruddick et al. (2000) MUMM -10 1240 2130 α=default
-10 859 1240 α=default
-10 748 869 α =default
-10 1240 2130 α = 21.8
-10 859 1240 α = 26.0
-10 748 869 α = 1.67

Wang & Shi (2007) 2-band, SWIR -9 748 869 (1240,2130)
2-band, SWIR -9 859 1240 (1240,2130)
2-band, SWIR -9 1240 2130 -

Table 5.2: SEADAS atmospheric correction parameters used on the matchup
image. The three numbers in the last column for Fixed Pair models refer to
the aeromodmin, aeromodmax and aermodrat parameters (respectively). The
constrained models correspond to relative humidities between 80 and 95 percent
(model name r80f95v01 to r95f00v01, respectively). (OBPG 2011).
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(see Fig. 2.18c), the GTSS algorithm for TSS, Eq. 2.53 to initialise bbp(555), Eq.

4.33 to initialise aNAP (443) and aCDOM(443) = [TChl]
MK

, where M is 1.569 from

Eq. 4.28 and K = 8 is estimated from the slope of the data in Fig. 4.25. The

third initialisation model was the QAA approache as used on the DALEC Rrs

and described in Table 4.2.

5.3 Results

5.3.1 Atmospheric Correction / Validation

Figure 5.2a and b shows the DALEC Rrs(412) matchup time series and the cor-

responding MODIS pixel values processed with the current default SEADAS

atmospheric correction procedure, without (a) and with (b) residual glint cor-

rection (glint opt). The glint opt=0 setting compares better with the DALEC

data recorded between 10:30 and 12:30 (clear, mid-lagoon waters), however in

moderately turbid waters, the glint opt=1 setting yields a better fit. Although

DALEC data was available from 14:00 to 15:00 the corresponding MODIS pixels

were flagged due to saturated bands (both 748 nm and 869 nm were saturated).

In an attempt to avoid saturated bands, the model selection wavelength pair

(aer wave short and aer wave long) was shifted to 859 nm and 1240 nm, however

the Rrs(412) retrievals are less consistent (see Fig. 5.2c and d). It is likely that

these wavelengths suffer from reduced signal to noise, and so transfer the errors

via the atmospheric correction onto the resultant Rrs(412) product. Furthermore,

the 859 nm and 1240 nm pair still do not yield any pixel information from 14:00

to 15:00. It is possible that the aer opt=-2 relies on one of the saturated bands

for another part of the processing chain, limiting its application in the turbid

waters of this matchup scene.

Figures 5.3 and 5.4 show results as in 5.2, however with the aer opt=-3 and

aer opt=-1 settings (respectively). These approaches use the older and reduced

set of atmospheric models in the model selection. There are minor differences in

the the Rrs(412) retrievals, although it appears that the aer opt=-2 and aer opt=-

3 approaches remove more pixels in turbid waters, whereas the aer opt=-1 shows

slightly negative Rrs(412) values in the same areas (≈ −0.002sr1 from 14:00 to
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a) b)

c) d)

e) f)

Figure 5.2: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 6 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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15:00, negative data not shown).

a) b)

c) d)

e) f)

Figure 5.3: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 6 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.

All aforementioned approaches (aer opt=-1, -2 and -3) use two NIR bands to

estimate both the aerosol contribution and the spectral nature of the aerosol

contribution (see Table 5.2 for the wavelength bands tested). If one or both of

the NIR bands is saturated, then the atmospheric correction model selection is

likely to fail, resulting in the loss of Rrs information in the turbid waters of the

matchup scene. Interestingly, even when aer wave short and aer wave long are
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a) b)

c) d)

e) f)

Figure 5.4: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 6 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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set to bands that are not saturated, SEADAS still yields spurious data (i.e. bad

data from 14:00 to 15:00 in the lower plots c and d from Figure 5.2 to 5.4).

In an attempt to circumvent this issue, a select few matchups were made using

constrained aerosol models and non-saturated aer wave short and aer wave long

combinations (859 nm and 1240 nm). First, five different fixed models were

chosen (aer opt=4, 5, 7, 8 and 9); corresponding to the older Maritime 90%,

Maritime 99%, Coastal 70%, Coastal 90% and Coastal 99% relative humidity

models (Gordon & Wang 1994). The Maritime atmosphere model-based time

series are shown in Fig. 5.5, and the Coastal atmosphere model results are shown

in Fig. 5.6. From these results, it can be seen that the Fixed Coastal model

atmospheric correction approaches yield reasonable or at least non-zero Rrs(412)

values for this matchup. It is not clear whether the NIR correction approach of

Bailey et al. (2010) or the Gordon & Wang (1994) model selection approach is

causing invalid turbid water pixels.

a) b)

c) d)

Figure 5.5: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 4 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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By introducing a constrained Fixed Pair model selection based on the models

of Ziauddin et al. (2010) with and without the NIR correction (Figs. 5.7 and

5.8), it can be seen that the NIR correction does not produce valid data. In

these situations, is may be more appropriate to fix an aerosol model and not

perform the Bailey et al. (2010) NIR correction. It also appears as though the

1240/2130 wavelength-based model selection is more accurate in the most turbid

waters compared with 859/1240. This is because the ocean is more ‘black’ in

longer wavelength regions.

The Wang & Shi (2007) atmospheric correction approach utilizes the concept of

the black pixel similar to Gordon & Wang (1994), however the algorithm assesses a

“turbidity index” (based on Top-of-Atmosphere reflectance measurements at 748

nm and 1240 nm (Shi & Wang 2007)) and switches the model selection bands

from the NIR to SWIR (Short-Wave InfraRed) pairs to achieve the darkest ocean

pixels possible for model selection in turbid waters. This ensures that the SWIR

bands, which are generally more grainy in appearance due to lower signal to noise

ratios on the detectors are only used when it is necessary to do so. The Wang

& Shi (2007) approach appears to work satisfactorily for clearer waters (ie using

the standard 748/869 bands), however also breaks down in turbid waters (See

Fig. 5.9). It is possible that if either the 748 nm or 869 nm band is used for

calculating the model selection in SEADAS, when these reach near saturation,

the turbidity index may provide spurious results which can effect when or if the

model selection bands shift from the NIR to SWIR.

A final turbid water atmospheric correction approach was tested on the matchup

data. The approach of Ruddick et al. (2000) was used. This approach using the

1240 and 2130nm bands yielded accurate Rrs(412) values in the turbid, glint-

effected pixels, as opposed to many of the other atmospheric correction combina-

tions.

From the time series matchup comparisons, it is clear that there are differences

between glint and non-glint corrected MODIS Rrs values for a given atmospheric

correction approach, and for some, setting glint opt=1 often lead to artifacts in

the Rrs(412) data. As the DALEC measurements were glint-corrected using Eq.
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a) b)

c) d)

e) f)

g) h)

Figure 5.6: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 6 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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a) b)

c) d)

e) f)

g) h)

Figure 5.7: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 6 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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a) b)

c) d)

e) f)

g) h)

Figure 5.8: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 6 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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a) b)

c) d)

Figure 5.9: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 4 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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a) b)

c) d)

e) f)

Figure 5.10: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 6 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing. The first row (a and b) is the Wang &
Shi (2007) method. The second row is the standard SEADAS method of Ziauddin
et al. (2010), Bailey et al. (2010), which should be identical to the Wang & Shi
(2007) method in low-turbidity waters. The last row is the standard SEADAS
method of Ziauddin et al. (2010), Bailey et al. (2010), with the model selection
bands shifted to (1240/2130).
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a) b)

a) b)

e) f)

Figure 5.11: DALEC Rrs(412) transect time series (circular plot symbols) and
corresponding MODIS overpass pixel values (black line) for 4 different SEADAS
atmospheric correction variations. The aer opt settings are shown in the title of
each plot, along with aer wave short and aer wave long in parentheses. g denotes
the glint opt setting used during processing.
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3.21, it is considered appropriate to investigate manually applying residual glint

correction to the MODIS data prior to further comparison. For every MODIS

spectrum, ε was calculated by fitting Eq. 3.21 to the MODIS spectrum, and then

subtracted from the entire spectrum. All aforementioned atmospheric correction

variants were processed with and without the additional Eq. 3.21 correction. The

RMS error of each MODIS reflectance band was calculated by comparison with

the DALEC Rrs data.

For the atmospheric correction procedures relying on 748 and 869 nm, 16 transect

matchups were useable. When the 859, 1240 or 2130 nm bands were utilised,

31 transect matchups were usable (except for bands 547, 667 and 678, which

saturated in 15 of the 31 co-incident pixels). Table 5.3 lists the best performing

atmospheric correction methods, sorted in order of the average RMS errors of Rrs

products from 412 to 645 nm. Although the standard processing methods yielded

low RMS errors, these techniques used the 869 nm band, which saturated in the

turbid inshore waters. The best performing atmospheric correction approach

yielding all 31 pixels was the Fixed Coastal 99% RH model (aer opt=9), with

residual glint correction, and the additional ε correction was not applied.

Figures 5.12 and 5.13 show the time series of the 1km resolution MODIS bands,

along with the ε corrected MODIS data and co-incident DALEC data. The same

information is conveyed in the scatter plots in Figs. 5.15 and 5.16, however 3

pixels were removed from analysis due to large fluctuations in the DALEC data

within these pixels. The RMS errors of each wavelength, along with other re-

gression parameters are presented in Table 5.4. The level of agreement between

MODIS and DALEC is encouraging, however not ideal. It is likely that there

is an issue with the atmospheric correction of the MODIS data for this partic-

ular matchup. Considering the DALEC sea-level measurements are available,

these measurements were used to vicariously calibrate the MODIS pixel values so

that empirical algorithms based on DALEC measurements can be applied to the

matchup MODIS scene. These slope and offset coefficients are provided in Table

5.4.

The empirical GTSS and GCHL1 products were processed with the fixed aerosol

model (Coastal 99% relative humidity), with either 859 or (859/1240) nm bands
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a) b)

c) d)

e) f)

Figure 5.12: DALEC Rrs transect pixels and corresponding MODIS overpass
pixel values for 6 different wavelengths, with the 99% Relative Humidity Fixed
aerosol model (859). The original SEADAS MODIS pixel values are shown in
black. The DALEC transect is shown in colour. The additionally glint-corrected
MODIS outputs are shown with coloured, circular plot symbols. Note that the
547 nm band saturated from pixel 15 onwards, where excessive glint and elevated
turbidity was present.
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a) b)

c) d)

Figure 5.13: DALEC Rrs transect pixels and corresponding MODIS overpass
pixel values for 4 different wavelengths, with the 99% Relative Humidity Fixed
aerosol model (859). The original SEADAS MODIS pixel values are shown in
black. The DALEC transect is shown in colour. The additionally glint-corrected
MODIS outputs are shown with coloured, circular plot symbols. Note that the
667 and 678 nm bands saturated from pixel 15 onwards, where excessive glint
and elevated turbidity was present.
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a) b)

c) d)

e) f)

Figure 5.14: DALECRrs(412) transect pixels v.s. corresponding MODIS overpass
pixel values for 6 different wavelengths, with the 99% Relative Humidity Fixed
aerosol model (859). The original SEADAS MODIS pixel values are shown with
red plot symbols. The additionally glint-corrected (r = 1) MODIS outputs are
shown with blue plot symbols. Note that the 547 nm band saturated in 15 of the
31 pixels, where excessive glint and elevated turbidity was present.
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a) b)

c) d)

Figure 5.15: DALECRrs(412) transect pixels v.s. corresponding MODIS overpass
pixel values for 4 different wavelengths, with the 99% Relative Humidity Fixed
aerosol model (859). The original SEADAS MODIS pixel values are shown with
red plot symbols. The additionally glint-corrected (r = 1) MODIS outputs are
shown with blue plot symbols. Note that the 667 and 678 nm bands saturated
in 15 of the 31 pixels, where excessive glint and turbidity was present.
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Band
(nm)

R2 RMSE
(%)

Offset Slope

412 0.82 19.9 -0.0021 1.585
443 0.52 28.5 0.0024 0.875
469 0.41 31.6 0.0025

(0.0034)
0.945
(0.810)

488 0.66 24.6 0.0015 1.010
531 0.94 30.1 0.0005 1.173
547 0.91 35.4 0.0010 0.996
555 0.95 23.6 0.0003

(0.0005)
1.096
(1.069)

645 0.95 20.4 0.0000
(0.0000)

1.164
(1.072)

667 0.94 20.7 -0.0001 1.209
678 0.96 19.8 -0.0002 1.326

Table 5.4: Individual Regression Parameters for the matchup between the
DALEC and the glint-corrected (g=1), 99% Relative Humidity Fixed aerosol
model (859) MODIS pixels for each 1km band wavelength. Coefficients in brack-
ets represent the same regressions but performed on the 500 or 250 m resolution
data. Note that when Rrs varied less, the correlation coefficient R2 and the re-
gression slope deviated further from unity. The slopes and offsets are used later
as vicarious calibration coefficients for processing the matchup MODIS image.

being used to determine the aerosol concentration. Use of the individual 859 nm

band enables a pure 250 m resolution image to help resolve coastal features. De-

spite 859 nm typically not having non-zero reflectance in turbid waters, errors in

the atmospheric correction is minimal at 645 nm, as revealed by the good agree-

ment between the uncorrected MODIS and DALEC in the Rrs(645) time series

plots in Figs. 5.13b and 5.16e, as well as the near-unity slope and near-zero offsets

shown in Table 5.4. These potential errors can be assessed by comparing with the

DALEC Rrs(645) data, or operationally on a scene-by-scene basis by comparing

with the spatially binned 500 m Rrs(645) products which utilise the potentially

more accurate 869, 1240 or 2130 nm band-based atmospheric correction. Taking

this into account, the benefit of having a pure 250 m resolution empirical TSS

image may outweigh any drawbacks associated with atmospheric correction er-

rors for certain empirical applications. From comparing the two columns in Fig.

5.16, it can be seen that introducing the 1240 nm band for model selection does

not improve the accuracy of the high resolution Rrs products for this particular
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matchup.

a) b)

c) d)

e) f)

Figure 5.16: DALEC Rrs transect pixels and corresponding MODIS overpass
pixel values for 3 different wavelengths, with the Coastal 99% Relative Humidity
Fixed aerosol model using 859 nm only (a,c and e), and using 859/1240 (b,d and
f). The original SEADAS MODIS pixel values are shown in black. The DALEC
transect is shown in colour.
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a) b)

c)

Figure 5.17: DALEC Rrs transect pixels v.s. corresponding High resolution
MODIS overpass pixel values for 3 different wavelengths, with the 99% Rela-
tive Humidity Fixed aerosol model (859). The original SEADAS MODIS pixel
values are shown with red plot symbols.
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5.3.2 Empirical Algorithms

5.3.2.1 GTSS - Empirical Total Suspended Solids (250m)

The Rrs validation data in Figs. 5.16e and 5.18c shows that the MODIS Rrs(645)

band compares well with the DALEC. The vicarious calibration coefficients were

applied to the MODIS data, and was then converted into Total Suspended Solids

using Eqs. 3.43 and 4.35. The MODIS data yielded TSS retrievals with an

estimated RMSE of 13.5% (based on a comparison with the flow-through TSS

data). Figure 5.18a and b shows the pixel-based measurements along with the

in situ flow-through TSS measurements. The processed GTSS image is shown

in Fig. 5.21. This image has the sharpest detail possible from MODIS because

the 859nm band used for atmospheric correction is also 250m resolution. In this

scene, small, scatterred clouds and their shadows can be seen around the outer

reef and mid-lagoon waters towards the center and upper right of the image. Dark

filament structures can also be seen in mid lagoon waters and these are caused by

atmospheric correction issues associated with floating Trichodesmium (this can

be verified by viewing the true colour image in Fig. 5.1). The magnitude of the

error is approximately 0.5 mgl−1 in this scene. Near land, there is sometimes

erroneously high values which should be masked out. These are most likely due

to stray light from a bright target influencing the imager. A 5m depth mask

was applied to the imagery, which covers areas in the image which may result in

artifacts from bottom reflection in clear waters. Towards the glint-effected region

(see Fig. 5.1), the GTSS product appears marbled, which represents a reduced

product accuracy in glint-effected regions.
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a)

b)

Figure 5.18: The Flow-through measured TSS vs MODIS empirical algorithm-
based TSS retrievals a) The pixel-resolved time series and b) The comparison
scatter plot.
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Figure 5.19: The 250m resolution empirical GTSS TSS algorithm output. This
product had a RMSE of 13.5% when compared with flowthrough data (N=111),
but note marbling effect to the North-east of Townsville.
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5.3.2.2 GCHL1 - Empirical Chlorophyll-a (500m)

The Rrs MODIS data in Fig. 5.16a and c (i.e. 469 and 555 nm) appeared to be

noisy in clear waters encountered prior to approximately 13:30 local time. There

were patchy clouds in this area, and it is possible that the increased resolution of

these bands (as opposed to the standard 1km bands) make the influence of clouds

more apparent. In more turbid waters away from clouds, the time series appeared

more smooth. The higher spatial resolution of these bands gives an opportunity

to resolve more coastal features, so an empirical TChl algorithmic approach con-

sidered beneficial. Unfortunately, the 469 nm band appears constantly higher

than the equivalent DALEC measurements. The source of the difference is most

likey atmospheric correction, as the atmosphere can account for up 90% of the

reflectance signal measured by the satellite. Other possible sources of difference

include an over-correction of the DALEC data for sky-glint, spectral bandwidth

differences between the MODIS 469 nm and equivalent DALEC 469 nm, or cal-

ibration issues with the MODIS 469 nm band. By vicariously calibrating the

MODIS Rrs signals, possible errors due to atmospheric correction are reduced.

Figure 5.20a and b show comparisons between the MODIS-based GCHL1 out-

puts and the coincident flow-through TChl measurements for different conditions.

From these plots, it can be seen that vicariously calibrating the MODIS data im-

proved the TChl retrievals. Further, a re-regression of the band ratio polynomial

coefficients from this scene (referred to as GCHL1.1, see Table 5.5) improved the

TChl retrieval from an RMSE of 40.9% down to 18.7% for this matchup. Re-

trieval differences between these two algorithms are in the order of 0.3 µg.l−1,

and this uncertainty is possibly consequence of other in-water constituents hav-

ing an effect over the band ratios. It should also be recognised that the area that

is glint-effected, so this may also effect the spectral shape of the input MODIS

data. Figures 5.21 and 5.22 shows the original GCHL1 and GCHL1.1 algorithm

(respectively) applied to the MODIS matchup scene. The GCHL1.1 produces

higher TChl values in mid-shelf and offshore waters which is consistent with the

in-situ flow-through fluorometer measurements, however these elevated readings

may be a fluorometer calibration artifact (possibly biofouling). In off-shore wa-

ters, it is expected that the TChl would be lower than 0.1 µg.l−1, however the
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GCHL1.1 algorithm appears to plateau around this level for realistic R values.

In these more oceanic waters away from terrestrial influences, it is also expected

that the NASA OC3m algorithm product is accurate. OC3m also produces Chl

values lower than 0.1 µg.l−1 in these waters (See Fig. 5.25). Although in this par-

ticular case, the GCHL1.1 algorithm reduces the RMSE compared to an in situ

dataset measured one particular day, it is probably more accurate to routinely

apply the GCHL1 algorithm which was developed with a larger dataset collected

over many days and oceanographic conditions. It should be noted, however that

there are significant differences in the magnitude of the coastal ‘bloom’ features

towards the lower right of the image between the GCHL1 and GCHL1.1 algo-

rithms. Whilst having a high spatial resolution TChl product is enticing, more

work is required to assess the stability and accuracy of the derived TChl values.
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a)

b)

Figure 5.20: a) The pixel-resolved time series of the flow-through measured TChl
and MODIS empirical algorithm-based (GCHL1). The uppermost green trace
with circular plot symbols is the flow-through (fluorometer) TChl concentration.
The thick black line is the MODIS-retrieved GCHL1 output with vicarious cal-
ibration applied to Rrs(469) and Rrs(555). The thin black line is the MODIS-
retrieved GCHL1 output without vicarious calibration. b) The comparison TChl
scatter plot with the vicarious calibration data shown with red plot symbols (no
error bars), and the vicariously calibrated GCHL1 outputs shown in green (with
error bars based on the standard deviation of the flowthrough TChl concentra-
tions recorded within each pixel.)
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Figure 5.21: The 500m resolution GCHL1 TChl algorithm output.
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Figure 5.22: The 500m resolution GCHL1.1 TChl algorithm output.

273



5.3.2.3 GCHL2 - Empirical Chlorophyll-a (1km)

The pixel-resolved time series of the 1km empirical MODIS GCHL2 algorithm

is shown in Fig. 5.23, alongside the NASA OC3m equivalent and an empirically

re-tuned (GCHL2.1) algorithm specifically for the matchup scene. The GCHL2.1

algorithm output performs slightly better than the GCHL2 algorithm (18.8% vs

40.6% RMSE), and significantly better than the OC3m algorithm which over-

states TChl by approximately 250% and has an RMSE of 155.7%. The GCHL2.1

algorithm coefficients are shown in Table 5.5. Figures 5.24 and 5.25 show the

GCHL2 and GCHL2.1 algorithm match-up images (respectively). The standard

NASA OC3m algorithm (similarly applied to vicariously-calibrated MODIS Rrs

bands) is shown in Fig. 5.26 for comparison. Note, in addition to vicarious

calibration, saturated bands in the glint effected regions were replaced with spec-

trally interpolated data from non-saturated bands. If this was not done, most

coastal pixels would be invalid because of saturation in the Rrs(547) band. Sim-

ilar to differences between GCHL1 and GCHL1.1, the GCHL2 image shows a

higher TChl concentration in coastal waters than the matchup-based re-tuned

GCHL2.1. It is likely that the ratio of acdom, aφ and aNAP encountered on this

day was slightly different to the bulk average ratios experienced during data col-

lection. As with the 500m bands, the difference in TChl concentration between

the bulk and revised algorithms illustrates the sensitivity of the empirical TChl

algorithm approach to changes in in-water IOPs. A further demonstration of this

effect can be made by using the spectral forward model described in Chapter 3 to

simulate the maximum band ratio, R in different scenarios. Figures 5.27a-d show

how variations in IOP concentrations and spectral shapes effect the MBR which

is used as the basis for the empirical TChl algorithms. Due to the variability

exhibited in these plots which correspond to potential errors in TChl of hundreds

of percent in ceratin conditions, the reader is cautioned against using a purely

empirical approach to estimate TChl in coastal GBR waters.
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a)

b)

Figure 5.23: a) The pixel-resolved time series of the flow-through measured TChl
and MODIS empirical algorithm-based (GCHL2). The green trace is the coinci-
dent flow-through (fluorometer) TChl concentration. The red line with circular
plot symbols is the GCHL2.1 algorithm. The thick black line is the standard
OC3m algorithm, which approaches 5µgl−1 (data off scale). The thin blue line
with circular plot symbols is the MODIS-retrieved GCHL2 output. b) Scatter
plot with MODIS OC3m (black), GCHL2.1 (red) and GCHL2 (blue), compared
with the flow-through TChl. Error bars are based on the standard deviation of
the flow-through TChl concentrations recorded within each pixel.

275



Bands (nm) A0 A1 A2 A3 A4

(443, 488, 547), R < 0.564 -0.17644 -2.76423 0.00592 1.3316 -7.9275
GCHL2.1, 1 km

(469, 555) -0.19229 -1.87829 -0.17335 1.33157 0
GCHL1.1, 500 m

Table 5.5: Re-tuned matchup-specific polynomial model coefficients for 1 km and
500 m resolution Band Ratio TChl algorithms. Due to the minimal data collected
in very clear waters during the match-up, GCHL2.1 reverts back to the GCHL2
coefficients for R ≥ 0.564.

Figure 5.24: The 1km resolution GCHL2 TChl algorithm output.
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Figure 5.25: The 1km resolution GCHL2.1 TChl algorithm output.
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Figure 5.26: The 1km resolution NASA OC3m Chl-a algorithm output (with
modified atmospheric correction and spectral in-filling to correct for saturation,
consistent with all other matchup images.)

278



a) b)

c) d)

Figure 5.27: a) Simulated Maximum Band Ratio (R) vs log10TChl. Each joined
line is a series of TChl concentrations from 0.1 to 8 µgl−1. Each separate line are
the MBR results for different TSS concentrations (see annotations, TSS mgl−1

units suppressed for clarity). In this simulation, only the Prochlorococcus basis
vector was used (i.e. SPro = 1). b) As in a, but with SPro varying as a function of
TChl (Eq. 3.26) to simulate the transistion from oligotrophic to eutrophic waters.
c) As in a, but each line is for a different DOC concentration (see annotations,
DOC mgl−1 units suppressed for clarity). TSS is held fixed at 0.8 mgl−1, and
SPro = 1. d) as in c, but with SPro varying as a function of TChl (Eq. 3.26).
The OC3m polynomial is overplotted on all graphs for reference.
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5.3.2.4 GINV

Earlier in Chapter 4, it was shown that with DALEC Rrs data as input, the

predictor-corrector inversion outputs needed to be empirically tuned to the wa-

ter quality parameters to get acceptable accuracy. The same applies when using

vicariously calibrated MODIS Rrs as input. This is due to one or more of the fol-

lowing: errors in the spectral shapes of the IOP basis vectors (due to pathlength

amplification, de-pigmentation, and / or sigma correction uncertainties discussed

previously), or errors in the spectral shape of the input Rrs measurements them-

selves. The outputs of each GINV algorithm variant were empirically tuned to

match the flow-through TChl and TSS measurements. The results for the TChl

retrievals and associated tuning parameters (A and B from Eq. 2.40) are shown

in Table 5.6, along with the 1 km empirical GCHL2 and GCHL2.1 results for

reference.

The best performing algorithm was the 4-Mixture phytoplankton absorption

model, with bbp(555) begin tied to the spectral slope γ, and aNAP (442) being a free

parameter. This algorithm achieved an RMSE of 26.9%, and valid data from 27 of

the 31 useable matchup pixels. Four suspect inversions (
aφ(443)

aφ(443)+aCDOM (443)+aNAP (443)
<

0.15) were removed. This algorithm combination only achieved this level of accu-

racy with the empirical initialisation approach. Figure 5.29 shows the markedly

different retrievals from the same algorithm but with different initialisation con-

ditions. Fortunately, in this scene the empirical algorithms were fairly accu-

rate, however the initialisation of the Levenberg-Markquardt predictor-corrector

method needs further work to establish this inversion method on an operational

basis.

The 4-Mix basis vector approach also yields the fractionated TChl contributions

of 4 represetative types of phytoplankton, however the retrievals only accounted

for approximately 50% of the flowthrough TChl. Fig. 5.31 shows the uncor-

rected output TChl retrievals for each different phytoplankton basis vector. In

this algorithm, the relative fraction of Prochlorococcus is initialised with the em-

pirical TChl value for each pixel. Each other basis vector is initialised equally

in terms of aφ(443) contribution so that no particular basis vector is biased dur-

ing the inversion (see Table 4.2 for more details). The time series in Fig. 5.31
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a)

b)

Figure 5.28: The best performing MODIS-based retrieval from the matchup image
a) The pixel-resolved time series, with the flow-through TChl in green, the re-
trieval in black bars and the fractional contribution of aφ(442) to a(442)−aw(442)
overlayed with black plot symbols. b) The comparison scatter plot. This inversion
scheme used the “4-Mix” model, with aNAP (442) being a free inversion param-
eter. The GBR-specific aCDOM and aNAP spectral shapes were used, with the
empirical bbp spectral model which held γ tied to bbp(555). Note that only 27
pixels yielded reliable TChl information.
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a)

b)

Figure 5.29: The same algorithm combination as in Fig. 5.23a, but with different
initialisation values. a) was initialised with fixed parameters and b) was initialised
with the QAA.
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Figure 5.30: The 1km resolution GINV TChl algorithm output.
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indicates that further off the coast at the start of the transect, TChl is mainly

contributed by Prochlorococcus and then towards the coast, Synechococcus con-

tributes the most TChl. This is compatible with the findings of Crosbie & Furnas

(2001), however this trend is influenced by the initial conditions provided to the

predictor-corrector inversion algorithm. Unfortunately, the overall magnitude of

the sum of these TChl components is approximately half of the flowthrough TChl

value. It is possible that the overall magnitudes of the chlorophyll-specific basis

vectors used to invert this matchup scene are not representative of the actual

phytoplankton encountered on that day. This may be due to the methodological

uncertainties associated with determining the chlorophyll-specific basis vectors in

the first place (and that the Synechococcus basis vector was taken from another

study (Morel et al. 1993)). Furthermore, photoadaptation is known to change the

TChl-specific absorption properties of a given phytoplankton type. The retrievals

of the different phytoplankton types is also dependent on the initialisation ap-

proach (data not shown). Apart from assigning an initial SPro value based on

empirical TChl value, the other 3 phytoplankton-representative absorption spec-

tra are initialised equally in magnitude at 443 nm.

Unfortunately, no complementary datasets such as fractionation or HPLC pig-

ment analysis were available for validation of the phytoplankton basis vector

magnitudes. Validation and optimisation of these images is left for further work.

The images of each component are shown in Fig. 5.32. The most dominant basis

vectors were the Prochlorococcus and Synechococcus vectors. There appears to

be artifacts in the image close to the coast in the glint-effected region towards the

top left of the scene. There appears to be some striping artifacts in the GINV

TChl approach. It is unclear whether this is will be a prominent feature in all

TChl images processed with the GINV technique, however it is worth mentioning

that these stripes are much less evident in the empirical MBR algorithms. It may

be possible to use either the 500m or 1km resolution empirical TChl results to

correct these image artifacts, however this is left for future work.

The GINV algorithm also outputs a TSS product at 1km resolution. Most algo-
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a)

Figure 5.31: Raw TChl output for each basis vector. The black line with circular
plot symbols is the flow-through TChl. The Prochlorococcus, Synechococcus, Tri-
chodesmium and diatom retrievals are shown in green, yellow, orange and blue
(respectively).

rithm variants were fairly accurate (between 8.5 and 33 % RMSE), however for

consistency and computational efficiency, only the GINV algorithm variant that

produced the most accurate simultaneous TChl retrieval is presented. It had a

TSS retrieval RMSE of 11.9% (See Figure 5.33). The GTSS TSS algorithm eval-

uated at 1km resolution is also shown on this plot for comparison, and it yielded

a slightly worse RMSE of 14.6%. The high resolution 250m GTSS product may

be able to used to sharpen the more accurate GINV TSS algorithm to combine

the benefits of each algorithm. This is left as further work.

The GINV DOC inversion transect data is shown in Fig. 5.35. As no flow-

through data was available, the pixel-coincident discrete station site DOC values

were overplotted. After removing the outlier with large error bars, a slope and

offset was determined from linear regression between the inversion algorithm-

retrieved aCDOM(443) and the in situ DOC data. The inversion algorithm-

retrieved aCDOM(442) was converted to DOC using Eq. 5.1. The MODIS matchup

scene is shown in Fig. 5.36. The image shows elevated DOC features consistent

with river plumes, unfortunately no extensive validation data was collected.
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a) b)

c) d)

Figure 5.32: The 1km resolution GINV Phytoplankton basis vector TChl al-
gorithm output a) Prochlorococcus, b) Synechococcus, c) diatoms and d) Tri-
chodesmium. Note that these inversions were shown to be inaccurate (see Fig.
5.31).
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a)

b)

Figure 5.33: The best performing MODIS-based retrieval from the matchup image
a) The pixel-resolved time series, with the flow-through TSS in orange, the GINV
retrieval in black bars and the purely empirical GTSS algorithm is shown in
blue for comparsion. b) The comparison scatter plot. This inversion scheme
used the “4-Mix” model, with aNAP (442) being a free inversion parameter. The
GBR-specific aCDOM and aNAP spectral shapes were used, with the empirical bbp
spectral model which held γ tied to bbp(555). All 31 pixels yielded useful TSS
information.
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Figure 5.34: The 1km resolution GINV TSS algorithm output.
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DOC = 2.96[aCDOM(443)] + 0.64 (5.1)

Figure 5.35: The empirically tuned pixel based GINV DOC data with in situ
station data overplotted with circles and error bars representing the duplicate
sample standard deviation. The DOC data point overplotted at pixel 12 was
discarded from the regression which determined the coefficients in Eq. 5.1.
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Figure 5.36: The 1km resolution GINV DOC algorithm output.
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a) b)

c) d)

Figure 5.37: Inversion model outputs: a) GINV TChl, b) GCHL2, c) GINV TSS
and d) GINV DOC.

Figure 5.37 shows four aforementioned inversion outputs side by side. The GINV

TSS product highlights inshore sediment plumes that are independent of features

in the GINV DOC product. This is encouraging because it is further spatial

evidence that the inversion is capable of separating out different constituents.

Although the 5m contour was plotted on all the images, it is possible that some

un-masked pixels are influenced by light reflection from the sea floor in these

scenes. This is probably not the case for the inshore waters of this MODIS scene,

but further offshore in clearer waters this may be an issue. Quantifying the impact

of bottom reflection is left for further work.
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5.4 Summary

• The DALEC was deployed during a transect in order to collect radiometric

data with which to compare with a co-incident MODIS overpass.

• Several atmospheric correction approaches were tested to determine the

most accurate Rrs products for the match-up, whilst also yielding usable

data in the sub-optimal glint-effected regions. The comparison between

DALEC Rrs data was typically within 35% between 412 and 678nm.

• The MODIS overpass was vicariously calibrated with the DALEC Rrs data

and a selection of water quality inversion algorithms determined in Chapter

4 were applied to the MODIS match-up data.

• All inversion outputs were then compared to the coincident in-situ flow-

through datasets. A selection of these inversion algorithms were chosen

based on their performance in the matchup scene, and their respective out-

put parameters were empirically re-tuned to yield the most accurate water

quality inversions as possible. The RMS error from the predictor-corrector

GINV TChl algorithm was 26.9%. The GINV TSS algorithm RMSE was

11.9%, and the empirical GTSS RMSE was 14.6%.

• A brief sensitivity analysis was performed on the empirical TChl algorithms

and the Maximum Band Ratio was shown to be adversely influenced by

varying IOP concentrations and spectral shapes. The use of the empirical

TChl algorithm should be avoided. Despite this, the 1km resolution re-

tuned empirical GCHL2.1 TChl algorithm worked acceptably with a RMSE

of 18.8% for the matchup scene.
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Chapter 6

Conclusions and Suggestions for

Further Work

In this thesis, regionally-specific relationships between water quality parameters,

inherent optical properties and remote sensing reflectance were measured and doc-

umented. This enables the advanced interpretation of passive multispectral and

hyperspectral ocean colour measurements for the GBR region. It is important to

realise that the types of regression-comparison measurements used in this research

are influenced by spatial uncertainties in addition to natural variability. One way

to counter this is to increase the number of measurements in the area, and also

to improve the spatial coherence of multi-parameter measurements in the first

place. The combination of the DALEC radiometer and flow-through sampling

system improved both of these aspects, and whilst these field-based relationships

were determined over a short period of time, the unique sampling design and

methodology allowed the collection of comparison measurements across a wide

range of optical properties compared to conventional oceanographic strategies

which focus more on the vertical distribution of IOPS. Given the ease of use of

the DALEC and flow-through systems, there is no reason why these instruments

cannot become permanent fixtures on ocean-going vessels in the future. Only

with increased data density across seasons and the entire region of interest, will

the true nature of concentration-specific IOPs of regions such as the Great Barrier

Reef become more apparent.
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In addition to the spatial variability problem, methodological uncertainty can

add systematic errors on otherwise spatially coherent multi-parameter datasets.

Firstly, improvements can certainly be made over measuring the absorption co-

efficients of marine particulates with glass fiber filters. Most of the ocean op-

tics community now use the WETlabs ac-9 or ac-s instrument which can be

adapted to the flow-through system which measures the absorption of relatively

undisturbed particles whilst in suspension. Unlike the ac-9/s instruments, the

filter-based absorption methodology is able to distinguish between pigmented

and non-pigmented particles allowing the separation of aNAP and aφ. However,

this approach is at the expense of adding potential bleach artifacts, cell disrup-

tion (pigment loss) during filtering, and spectral and magnitude uncertainties

due to multiple scattering of the filter medium itself. In addition, quantifying

the spectral nature of scattering losses in any transmission measurement (filter

or suspension) needs improvement. Related to these methodological issues is the

uncertain pathlength attenuation (‘sigma’) correction approach of the Hydroscat

bbp measurements. The sigma coefficients have changed periodically, and their

use require accurate IOP inputs. The Hydrolight-based BRDF lookup table was

subject to modelled phase functions, however in the future, in situ measured

phase functions will be available, and so can be input directly into a radiative

transfer forward model. This is unlikely to improve Rrs inversions by more than

a few percent, however each methodological uncertainty through the entire chain

from the water quality measurement all the way though to the satellite pixel has

the ability to contribute uncertainty.

Efforts were made to quality control the DALEC data, however, as this is a new

instrument, there will be improvements to the post-processing of the DALEC

over time. Future improvement could include an active gymbal, which would

incorporate accelerometers and a dual axis motor to compensate for any skew-

ing of the DALEC due to strong wind or salt-effected friction damping. Ideally,

in-water profile measurements to deduce Lw(−0) and Ed(−0) co-coincident with

DALEC Rrs measurements will assist in the validation of the DALEC processing

methodology developed in this thesis, which were based on the findings of Mobley
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(1999) and Ruddick et al. (2006). To this end, further work could be inspired by

the meticulous research of Stanford B. Hooker & Brown (2004) and Zibordi et al.

(2004).

Additionally, further refinements of the floating Trichodesmium identification

(other than simply flagging it) on both DALEC and MODIS imagery will en-

sure improvements in the radiative-transfer inversion process, and also allow the

estimation of Trichodesmium concentration from Remote Sensing (McKinna et al.

2011).

As for the DALEC IOP inversions, although a wide variety of predictor-corrector

inversion variant approaches were tested, other inversion approaches exist (Hed-

ley et al. 2009, Mobley et al. 2005) which could show potential for improving the

IOP yields from DALEC measurements for the situation where aφ contributes

minimally to Rrs. For the MODIS inversions, it was shown that the initial con-

ditions provided to the Levenberg-Marquardt optimisation routine effected the

output, so more work needs to be done on making sure the inversions converge

on the best solution. The semi-analytical inversion model could be extended to

include the fluorescence emission spectra of CDOM, Raman, Phycoerythrin and

Phycocyanin, as these sources contribute to the Rrs spectrum between 400 and

667 nm (Spitzer & Dirks 1985, Bristow et al. 1981, French & Young 1952). Fur-

ther, if red wavelength fluorescence can be either accounted for or avoided, then

using spectral information from the DALEC between 667 nm and 900 nm could

yield important information from shallow waters including bathymetry inversion

and benthic habitat mapping (Lee et al. 1999, Hedley et al. 2009, Mobley et al.

2005).

The atmospheric correction of turbid water imagery was only briefly discussed

in the last Chapter; enough to save the interested reader time in acquiring satis-

factory looking images within the confines of the freely-available SEADAS soft-

ware. Regionally-specific atmospheric correction needs to be studied thoroughly,

and through the use of DALEC transects during satellite overpasses, researchers
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may measure large amounts of sea-level validation reflectance measurements with

which to spectrally quantify the effects of the atmosphere.

As for the MODIS imagery, apart from flagging or correcting for sunglint, cloud

and trichodesmium, a bathymetric dataset such as the GBRDEM should be com-

bined with a tidal model in order to estimate the water depth for a particular

scene and then modify a land / bathymetry mask appropriately, otherwise shal-

low regions with clear water may be falsely interpreted as turbid water. This is

all easily implemented, but is outside the scope of work presented here.

The DALEC-based TChl retrieval approached a RMSE of approximately 30%.

Given the reported variability between aφ and TChl, there is a question whether

the focus of the ocean colour community should be shifted from providing TChl

to aφ retrievals. Absorption is a more directly-measured parameter using remote

sensing, more directly relevant to photosynthesis, and is also a consistent pa-

rameter with which to perform regional comparisons. The relative contribution

of phytoplankon absorption to total non-water absorption was also found to be

an important quality control parameter to ensure the successful inversion of the

down-stream TChl inversion.

The matchup image shown in Chapter 5 is only one out of approximately 75,000

scenes available from MODIS Aqua and Terra over the past decade. The most

significant further work will be processing and analysing this spatio-temporal in-

formation into something relevant for the sustainability of the GBR region; both

in human and nature’s terms.
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