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Abstract 

This study focuses on the potential of using a single beam echosounder as a tool for 

recognition and assessment of seafloor vegetation. Seafloor vegetation is plant 

benthos and occupies a large portion of the shallow coastal bottoms. It plays a key 

role in maintaining the ecological balance by influencing the marine and terrestrial 

worlds through interactions with its surrounding environment. Understanding of its 

existence on the seafloor is essential for environmental managers. 

Due to the important role of seafloor vegetation to the environment, a detailed 

investigation of acoustic methods that can provide effective recognition and 

assessment of the seafloor vegetation by using available sonar systems is necessary. 

One of the frequently adopted approaches to the understanding of ocean environment 

is through the mapping of the seafloor. Available acoustic techniques vary in kinds 

and are used for different purposes. Because of the wide scope of available 

techniques and methods which can be employed in the field, this study has limited 

itself to sonar techniques of normal incidence configuration relative to seafloors in 

selected regions and for particular marine habitats. For this study, a single beam 

echosounder operating at two frequencies was employed. Integrated with the 

echosounder was a synchronized optical system. The synchronization mechanism 

between the acoustic and optical systems provided capabilities to have very accurate 

groundtruth recordings for the acoustic data, which were then utilized as a supervised 

training data set for the recognition of seafloor vegetation. 

In this study, results acquired and conclusions made were all based on the 

comparison against the photographic recordings. The conclusion drawn from this 

investigation is only as accurate as within the selected habitat types and within very 

shallow water regions. 

In order to complete this study, detailed studies of literature and deliberately 

designed field experiments were carried out. Acoustic data classified with the help of 

the synchronized optical system were investigated by several methods. Conventional 

methods such as statistics and multivariate analyses were examined. Conventional 
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methods for the recognition of the collected data gave some useful results but were 

found to have limited capabilities. When seeking for more robust methods, an 

alternative approach, Genetic Programming (GP), was tested on the same data set for 

comparison. Ultimately, the investigation aims to understand potential methods 

which can be effective in differentiating the acoustic backscatter signals of the 

habitats observed and subsequently distinguishing between the habitats involved in 

this study. 
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Chapter 1 Introduction 

1.1 Background and significance 

This study investigates the potential of using a single beam echosounder as a 

tool for recognition and assessment of seafloor vegetation. The expected outcome of 

this study is useful acoustic techniques which can be applied for habitat mappings of 

seafloor vegetation. The seafloor vegetation investigated in this study includes 

mainly seagrass and macro algae populations on the shallow coastal sea bottoms near 

the capital of Western Australia, Perth, in 2004 and 2005. 

Significant progress in the acoustic study of seafloor vegetation has been 

made due to military requirements for the understanding of acoustic characteristics of 

buried mines deployed amongst the marine vegetation along coastlines (Richardson, 

Valent et al. 2001; Caruthers and Fisher 2002). Although the focus of the mine burial 

projects was not on the plant benthos, the plant benthos did play critical roles by 

affecting the sonar’s detection abilities of the buried objects on the shallow coastlines 

(Elmore, Richardson et al. 2005). The impact of plant benthos on the detection of 

buried mines can be seen from a case study in which an Italian-made Manta mine 

simulator was deployed among the vegetation on a seabed to simulate the mine burial 

detection scenario (McCarthy and Sabol 2000). Mainly the drive of the studies above 

is due to the fact that seafloor vegetation strongly affects the mine-hunting 

capabilities such that sonars are unable to effectively detect the target mines. 

Knowledge and techniques originally being developed for military needs are 

often transferred to commercial uses. A typical case of such a transfer is the 

technique acquired by BioSonics Incorporated in the USA from the Engineer 

Research and Development Center (ERDC) of the US Army Corps of Engineers. 

One of its current products EcoSAV was developed from the original processing 

technique called SAVEWS (Submersed Aquatic Vegetation Early Warning System) 
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(McCarthy and Sabol 2000; Burczynski 2001; Burczynski, Hoffman et al. 2001; 

Sabol and Johnston 2001; Hoffman, Burczynski et al. 2002; Sabol, Burczynski et al. 

2002). This shows that recognition of seafloor vegetation is critical to the military 

requirements. 

Beyond military needs, civilian and scientific requirements for using 

acoustics as an effective means for the exploration of underwater vegetation drove 

further developments of the acoustic tools to more challenging scenarios (Caddell 

1998; Berntsen, Hovem et al. 1999; Chu, Wiebe et al. 2000; Bett 2001; Galloway 

2001; Caruthers and Fisher 2002; Brehmer, Gerlotto et al. 2003; Godlewska, 

Swierzowski et al. 2004). After these developments, acoustic techniques have been 

gradually called upon as the indispensable tools for monitoring seafloor habitats 

(Davies, Foster-Smith et al. 1997; Bett 2001). 

Vegetation’s acoustic backscatter properties are still far from fully understood. 

This can be seen from common practices that a variety of methods are frequently 

used and combined in order to provide useful outcomes. These methods include air 

borne surveys, and direct measurements such as the costly and labour intensive 

diver’s measurements. Advancements of acoustic identification abilities can 

significantly reduce the needs for the expensive methods, which is one of the 

advantages which acoustic tools can outperform other methods in observing the 

seabed. 

As revealed in previous studies, there are still some areas in which 

researchers can improve the skills and knowledge to better understand the acoustic 

properties of seafloor vegetation. Among plant benthos, seagrass has been frequently 

studied and used as a major health indicator of water conditions (Cavazza, 

Immordino et al. 2000; Piazzi, Acunto et al. 2000; Wood and Lavery 2000; Linton 

and Warner 2003; Lee, Short et al. 2004; Marba, Santiago et al. 2006). Hence the 

study of seagrass’s acoustic properties occupied a great portion of this work despite 

the fact that other plants such as macro algae also belong to plant benthos. Besides 

seagrass and macro algae, limited species of animal benthos and a variety of seafloor 

substrates were also observed. In order to have a detailed insight into the acoustic 

backscatter characteristics of seafloor vegetation for recognition purposes, small 

scale areas near the author’s study base were selected. 
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1.2 Research objectives 

This study aims at the following objectives: 

 Investigation of acoustic parameters which can efficiently characterize 

the seafloor vegetation, 

 Development of feasible acoustic techniques for the recognition of 

seafloor vegetation, 

 Development of acoustic means which can provide useful quantitative 

measures of seafloor vegetation by using a single beam echosounder 

operated at two frequencies. 

For the above objectives, several acoustic techniques used for the 

identification of seafloor vegetation were investigated. Techniques developed in this 

study are expected to be useful for the classification of seafloor habitats. Through 

robust classification performance, a person is able to better understand the precise 

conditions of the seafloor, which in turn can contribute to the better management of 

coastal environments. 

1.3 Thesis structure 

The thesis is divided into seven chapters. 

The second chapter presents previous studies related to the seafloor 

vegetation and the seafloor substrate. It provides an overview of our level of 

understanding of seafloor vegetation by acoustics. It points out the weakness of the 

previous studies and presents what are brought into focus in this study. In the end, it 

introduces some of the commercially developed techniques and recommendations 

made by researchers. 

In chapter 3, instrumentation and data collection details are presented. It 

presents how the field trials were planned and carried out, and details of the data 

collections. It includes a description of the methods chosen for collecting and 

classifying the data, and the areas where data were collected. Finally it presents the 

scope of the collected data and their limitations for use. 
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Chapter 4 presents the data processing results for each particular field data. 

These sites include Cockburn Sound surveyed in 2004, and Parmelia Bank and Owen 

Anchorage of Western Australia surveyed in 2005. The results include the 

capabilities of the acoustic parameters investigated by conventional techniques and 

their limitations in characterizing the seafloor vegetation. 

In chapter 5, Genetic Programming (GP) is introduced. It introduces the basic 

theory of the GP algorithm, a prerequisite for the understanding of the application 

results, and illustrates how GP is applied to this particular acoustic study. In this 

chapter, it includes an introduction of a MATLAB toolbox for GP used in this study. 

Also presented are the design of a Fitness Function, the improvement of the 

classification performance after the adoption of GP, and the limitations of the GP 

algorithm applied on the case studies. 

In chapter 6, discussions are given for the use of the experimental tools, 

traditional techniques used in the data processing, and the study results after the 

application of the GP system. 

Finally, Chapter 7 presents the author’s conclusions and recommendations of 

his investigation results for the recognition and assessment of seafloor vegetation by 

using a single beam echosounder operated at two frequencies. 
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Chapter 2 Historical studies of seafloor 

vegetation and the substrate 

This chapter reviews some of the historical studies of seafloor vegetation 

relevant to the acoustic backscatter properties. Comments on previous works are 

provided, including the shortcomings, limitations, and recommendations where 

possible. 

2.1 Acoustic studies of seafloor vegetation 

There have been several studies made for the understanding of the acoustic 

backscatter properties of seafloor vegetation. The historical records showed either the 

importance of acoustic tools for the management of seafloor habitats or the 

interesting acoustic features of some seafloor vegetation species. Literature also 

provided evidences that the presence of some seafloor vegetation affected the 

effective use of acoustic devices. Following are the major acoustic studies focusing 

on the animal and plant benthos respectively. 

2.1.1 Introduction of marine benthos 

Marine benthos can be roughly divided into two categories: plant benthos 

such as algae and seagrass, and animal benthos such as corals and clams. While 

benthos can be differentiated by the bodies of water they live in, i.e. marine and 

freshwater, they can also be differentiated by the size, i.e. micro and macro. Due to 

the huge number of species which can be included in the benthic community, it is 

unrealistic to investigate all of them. In this study, only a few species of seafloor 
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vegetation are investigated such as seagrass and macro algae, and animal benthos 

such as sea squirts. 

2.1.2 Animal benthos 

Since animal benthos are not the focus of this study, only brief introductions 

of some of the typical works are introduced in the following, which highlight the use 

of acoustics as an important tool for the understanding of animal benthos: 

 An observation for the common epi-benthos conducted with a sidescan 

device and followed up with coring and photography in the Atlantic 

Ocean (Bett 2001). 

 A test for the influence of macrofaunal activities on the low-angle 

acoustic backscatter from seafloor sediment by a special measurement 

at both 40 and 300 kHz for the known species at sea (Self, A'Hearn et 

al. 2001). 

 A benthic habitat mapping program for the prawns, clams, scallops 

crabs, rockfish, etc. conducted with an echosounder at 38 and 200 kHz 

during February 2001 in the Strait of Georgia (Galloway 2001). 

 A study of the multibeam data collected from Browns Bank, Canada, 

between Nova Scotia and Cape Cod in 1996 and 1997 for the 

understanding of the relationship between the acoustic backscatter 

intensity and the giant scallop abundance (Kostylev, Courtney et al. 

2003). 

 An investigation of the RoxAnn classification technique for the 

estimation of shellfish abundance in the Newfoundland and Labrador 

area (Naidu and Seward 2003). 

 An acoustically based observation for the identification of scallop 

seabed carried out by a variety of acoustic devices and various analysis 

algorithms in the St. Lawrence Canada in 2002 and 2003 (Hutin, 

Simard et al. 2005). 
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 An investigation of sandeels ecology by the use of an echosounder for 

the understanding of interrelationships of sandeels to their predators 

and fishing activity (Freeman, Mackinson et al. 2004). 

 A mapping program for the oyster reefs and oyster bottom of Galveston 

Bay Texas carried out with a tow fish of Datasonics DFT-210 at 22 and 

300 kHz in 1990 (Simons, Soniat et al. 1992). 

 A mapping program for oyster habitat in Chesapeake Bay, Maryland, 

by the use of assorted sonar systems (Smith and Greenhawk 1998; 

Smith, Bruce et al. 2001). 

 A monitoring program of mussel cultures by using sonar devices along 

the Mediterranean coastline (Brehmer, Gerlotto et al. 2003). 

 The use of a variety of sidescan sonars and high-resolution seismic 

reflection profilers for the detection of bivalve reefs in the Bay of 

Fundy, Canada, in 1995 (Wildish, Fader et al. 1998). 

 An observation for the bioherms in Chesapeake Bay, USA, by sidescan 

sonars and divers (Wright, Prior et al. 1987). 

 An observation of enhanced acoustic backscatter from sand dollars 

(Dendraster excentricus) in water depths between 16 and 24 metres in 

the vicinity of Humboldt Bay, California (Fenstermacher, Crawford et 

al. 2001). 

 A study seeking an effective seafloor classification technique for the 

mapping of coral reef benthic classes conducted in Negros Occidental, 

within the Visayas region of the Philippine Archipelago in October 

1997 (White, Harborne et al. 2003). 

 A investigation of the interrelationships between the acoustic 

backscatter signals and the sediment types and animal benthos for the 

characterization of seafloor habitats on the western continental shelf of 

India (Chakraborty, Mahale et al. 2007). 
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2.1.3 Plant benthos 

2.1.3.1 Hydrilla and Lyngbya: a historical study 

In the USA, the earliest study of plant benthos investigated by acoustics was 

accomplished by Maceina and Shireman (Maceina and Shireman 1980). They took 

advantages of a primitive acoustic system, a depth-recording fathometer DE-719 

made by Raytheon Marine Co., to estimate the distribution and biomass of  Hydrilla, 

which was regarded as the most problematic aquatic plant found in all types of water 

in the United States. Although Hydrilla was the predominant macrophyte in the 

surveyed areas, its acoustic tracing patterns were not unique enough to be used as a 

reliable feature for identification purposes, especially when other aquatic plants 

coexisted and mixed with it. 

Mentioned in their study was another observed nuisance plant, Lyngbya, 

which is also known by its common names such as Mermaid Hair and Fire Weed. It 

is a filamentous blue-green algae found worldwide (Moreton Bay Waterways and 

Catchments Partnership 2002). The Lyngbya can infest the water mass and attach on 

plant benthos when environmental conditions permit. Since the algae tissues were so 

fine when comparing to their attached plants, it was anticipated that the existence of 

this filamentous vegetation would be hardly distinguishable by their acoustic system. 

To their surprise, Maceina and Shireman mentioned that the recorded patterns of this 

aquatic plant were ‘distinguishable in the summer and fall’ and ‘recorded as a low 

flat mound as it characteristically grows 0.1-0.2 m in height above the hydrosoil’ 

(Maceina and Shireman 1980, p. 35). However, Najas, Nitella and Chara of Hydrilla, 

which also have become troublesome aquatic weeds in lakes, streams, and reservoirs, 

were found in a variety of areas (Langeland 1996), and distinct differences in tracing 

patterns were not detected. Moreover, when the winter came and submerged 

vegetation was near the bottom, the detectable Lyngbya (in summer) was not 

detected anymore. Obviously the observation of the submerged plants with the 

acoustic tools was disturbed by the plants’ physical characteristics and seasonal 
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factors. The effectiveness of an acoustic tool for the characterization of the 

vegetation targets was also limited by its coexistence with other vegetation. 

This pioneer trial of utilizing acoustic tools for the estimatation of the 

distribution and biomass of submerged vegetation represented a historical record in 

showing that sonar systems provided advantages of savings in time and manpower 

for vegetation surveys, especially when comparing to other conventional labour 

intensive methods such as diver’s measurements. However, their observation of the 

distinguishable vegetation was derived from visual inspections of the acoustic 

recordings recorded on the paper. There were no specific acoustic characteristics 

provided as the quantitative measures for the distinguishable vegetation in their study. 

2.1.3.2 A modelling study for algae 

Up to date, there has been only one work published on physical models of 

acoustic backscatter from marine plants (Shenderov 1998). Three physical models 

were developed by Shenderov to describe acoustic backscattering from algae. The 

algae were simulated by a three-dimensional system of bent elastic bodies. The 

backscattered sound pressure from algae was regarded as sound diffraction on 

semitransparent bent plates and rods corresponding to algae leaves and stems. 

Ultimately it aimed at the provision of a relationship between the scattered sound 

wave amplitude and the algae biomass as a basis for estimating underwater 

vegetation biomass on the seafloor. For this purpose, the three models have to 

simulate the real world algae. The first model considers acoustic backscattering from 

a single leaf of three typical conditions: predominantly horizontal disposition, 

uniform distribution, and predominantly vertical disposition. Then sound reflection 

and backscattering are modelled for dense dispositions of plants on the bottom by 

simulating a system of layers with random distances between them. The third model 

simulates sound scattering by algae with curved intertwined stems. 

By comparing his theoretic predictions with previous experimental recordings, 

Shenderov found that the experimental values of reflection coefficient were mostly 

within the calculated boundary values. Shenderov showed that the backscattering 

cross section increased with increasing frequency under the condition of sparse 
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dispositions of plants, and concluded that the reflected signal intensity was 

dependent on biomass and the intensity was able to give the estimate of biomass 

under a condition of appropriate calibration. For a very dense distribution of plants, 

in contrast, ‘the reflected signal depends only slightly on the biomass’ (Shenderov 

1998, p. 800). 

The important result of his study is that ‘the backscattering cross section after 

averaging over the angles of inclination is not dependent on the geometrical 

parameters of the leaves and the stems bending’ (Shenderov 1998, p. 800). In other 

words, a stable estimate of biomass is expected even if the parameters of the shape 

are unknown. For the first time, Shenderov provided theoretic models for researchers 

to understand how physical characteristics of algae influence the acoustic response 

and consequently the estimated biomass as a result. 

From Shenderov’s calculations, the equivalent radius of the backscattering 

cross section from a leaf of area 0.25 m2 at high frequency is about 2 cm. (The 

relationship between the equivalent radius spha  and the backscattering cross section 

0  defined by Shenderov is 4/2
0 spha .) Noticeably, the equivalent radius of a fish 

of 0.2-m long is approximately the same. This suggests that there could be an 

ambiguity in differentiating the acoustic backscatter from two different objects when 

they hold the above conditions. 

For jellyfish, the equivalent radius is about 0.15-0.4 cm. In other words, the 

acoustic backscatter from small fish and algae is stronger than that from jellyfish and 

hence algae and fish are more easily detected by the sonars, which is reasonable 

because their backscatter strength differs approximately 10 times. This also indicates 

that the jellyfish is nearly acoustically transparent. 

For dense distributions of plants on the bottom, an example given by 

Shenderov showed that the calculated equivalent radius of leaves was about 8 cm. By 

comparing to the example for the sparse disposition model, this value is relatively 

large. That is, the backscatter level from dense plants is at least one magnitude higher 

than that from sparse plants. If this is true, this finding will be a very useful clue for 

researchers to differentiate sparse and dense distribution of plants. However, this 

model did not provide suggestions for how to distinguish different plants such as 

seagrass and algae with similar backscatter strength. 
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In the more complex model of sound scattering from a system of curved and 

intertwined stems, the derived cross section in the high-frequency approximation is 

independent of the specific geometric parameters of the plant curve. In the example 

provided by Shenderov, the equivalent radius from this model is approximately 6 cm, 

which is about the same order as that obtained in the sparse disposition model. 

Noticeably, the model developed by Shenderov is only applicable at frequencies 

when the product of frequency and leaf thickness is from about 300 to 500 kHz-mm. 

For an algae leaf of 2 mm in thickness, the applicable frequency range will be about 

150-250 kHz. Beyond this frequency range, the model is unable to provide a good 

description of acoustic backscattering from algae. Sonar systems operating at such 

frequencies are expected to be capable of predicting the algae biomass when this 

condition is met. 

At lower frequencies, acoustic backscatter still depends on the algae’s 

physical parameters, which limits the application of the model. All in all, 

Shenderov’s study was the first attempt to physically model acoustic backscatter 

from algae in order to provide quantitative relations between acoustic backscatter 

characteristics and biomass of algae. Although there are possibly some other acoustic 

methods capable of estimating the biomass of marine vegetation, ‘the results of an 

approximate estimation will be useful for choosing operation modes of echosounders 

and analysis of results’ (Shenderov 1998, p. 800), concluded Shenderov. 

2.1.3.3 Areal studies for seagrass and macro algae 

Since seagrass is among other plant benthos representing one of the best 

indicators of the health conditions of water bodies (Linton and Warner 2003; Lee, 

Short et al. 2004; Marba, Santiago et al. 2006), it is particularly focused on in this 

study. Influences and impact of underwater vegetation to the detection and 

understanding of its surrounding background had been noticed at a very early date 

(van der Heijden, Claessen et al. 1983). From a review of literature, there have been 

some studies of seafloor vegetation specifically carried out by means of acoustics. 

Provided in Appendix A is a list of the major acoustic studies of seagrass or algae 
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sorted according to the geographic localities. Following are those experimental 

studies described for each major geographic location in alphabetical order. 

2.1.3.3.1 Australia 

Australia is renowned for its prominent effort in the protection of its natural 

environment. Its endeavour extends from the land territory to its legitimate ocean 

environment. An early attempt at using echosounders for the investigation of the 

underwater habitats was made by the Offshore Scientific Pty Ltd in Narrabeen 

Lagoon, NSW, in April 1994 (Hundley and Denning 1994; Hundley, Zabloudil et al. 

1994). The targeted seagrass was the species Zostera capricorni. The study aimed at 

the evaluation of the acoustic technique’s ability to map the density and location of 

seagrass beds. The advantages of using an acoustic system claimed by the survey 

company and by the acoustic device supplier, BioSonics Inc., were the insensitivity 

to water turbidity, near real-time depth availability, data resolution, wide area 

coverage, and reduced reliance on manpower (BioSonics Inc. 1994). 

In the Narrabeen Lagoon mapping project, the evaluation work of using the 

acoustic system was divided into three phases. The first phase involved ground-

truthing areas of seagrass for comparison with the acoustic results. Phase two was to 

calibrate acoustic systems in order to relate the acoustic characteristics to the 

seagrass biomass. In the last phase, the researchers used the calibrated acoustic 

system to carry out acoustic mapping of the seagrass in areas having been ground-

truthed. According to the statements published on the sonar supplier’s web site 

(BioSonics Inc. 1994), they claimed that ‘this study shows the success of this method 

for obtaining seagrass bed location and density’ and the ‘application has been shown 

to provide high quality, quantitative measures of the characteristics of seagrass beds 

on a variety of scales.’ 

However, there was no evidence capable of showing that the quantitative 

measures were robust enough and able to characterize the seagrass-covered meadows, 

nor was it able to identify the existence of the seagrass. There are still problems 

requiring further investigations in order to achieve the goal of obtaining quantitative 
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measures for the seagrass meadows. This point can be witnessed by a report made by 

an Australian authority a few years later, which is discussed in the next paragraph. 

In 1998, a report to the Great Barrier Reef Marine Park Authority provided a 

summary of their investigation of the use of a sidescan sonar for the mapping of 

tropical seagrass habitats (Lee Long, McKenzie et al. 1998). According to their 

preliminary trials, they pointed out that the acoustic techniques ‘cannot be used for 

determining above-ground seagrass biomass in these habitats’ and there were some 

cases where ‘seagrass sites were not interpreted as seagrass with the acoustic 

technique’ (Lee Long, McKenzie et al. 1998, p. iii). They suggested that the 

refinement of the acoustic technique was required before it was possible to discern 

low-biomass seagrass habitat from bare substrate. Except for the advantages of 

acoustic techniques in time, and labour saving and spatial resolution over traditional 

sediment grab sampling methods, they found that the relation of acoustic signals to 

the absolute biomass measures had limited potential, and summarized that dive-based 

sampling was always required. 

From the above points, it is understandable that the acoustic techniques 

adopted in that time period did not provide satisfactory results for the Australian 

authority. Nevertheless, there was a major drawback in their study: the relative 

acoustic backscatter intensity divided into several levels at an interval of 10 dB was 

used as a measure for the detection and estimate of the seagrass biomass. The use of 

the acoustic backscatter intensity as a sole parameter for the characterization of 

seagrass has a limited effect. In a complex environment, like the benthic habitats, a 

detailed description of the study targets may need more than one parameter. Other 

possible problems found in their study are the capabilities of the sonar system used. 

Since every acoustic device has its limited abilities, the sidescan used by them might 

not be quite suitable for the measurements of the benthic communities such as the 

seagrass meadows investigated by the Australian authority. 

2.1.3.3.2 Canada 

An acoustic tracing technique firstly employed by Maceina and Shireman 

(Maceina and Shireman 1980) was used to estimate the aboveground biomass of 
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submerged macrophytes in lakes (Duarte 1987). Duarte used an equation to estimate 

the biomass from the vegetation stand height and plant growth form. Basically, ‘the 

height of the stand sampled was estimated from the echosounder chart’ (Duarte 1987, 

p. 733) while the growth form and the biomass were obtained by SCUBA diver’s 

sampling analysis. Through linear regression, a best fit equation to estimate the mean 

biomass was derived. In the equation, height and growth form of the macrophytes 

were used as the variables for estimating the biomass. The results calculated from the 

equation were compared to those directly obtained by the SCUBA divers through 

direct observation. Duarte concluded that ‘the echosounder-based method is limited 

to stands growing at depths greater than 70 cm with plants taller than 20 cm’ (Duarte 

1987, p. 732). 

There are two major points which can be further discussed: the way of 

measuring the plant height from the acoustic recordings and the process of assessing 

the biomass. The criteria used to measure the plant heights from the acoustic 

recordings and the accuracy and appropriateness of the plant growth form used as the 

key feature for the biomass estimate should be reconsidered. Usually, physical 

shapes and orientations of seagrass and algae leaves in the water are often affected 

by the current. The plant growth form recorded by the divers is often different from 

the actual conditions sampled by the echosounder. Considering the typical footprint 

size of ‘about 80 cm in diameter’ in Duarte’s study (Duarte 1987, p. 733), it would 

be very difficult for the divers to exactly locate the right place and measure the right 

height and actual size of the vegetation. A statistical analysis of the dependence of 

height and growth form on time should be considered. 

In another survey, where water depth varied from 0.6 to 14 metres, a 

Precision Survey fathometer DE-719 was used for the survey of submerged aquatic 

vegetation in Lake Saint-Pierre, Canada (Fortin, Saint-Cyr et al. 1993). The 

dominant plant species were pondweed (Potamogeton richardsonii), water celery 

(Vallisneria americana), and stonewort (Nitella sp.). The researchers observed three 

basic acoustic patterns corresponding to different vegetation structures, or 

phytoacoustic facies. These three patterns are echo returns appearing 1) near the 

water surface, 2) in the water column well below the water surface, and 3) a series of 

echoes located near the lake bottom. Each was respectively associated to 1) tall 

plants, 2) shorter species, and 3) plants near lake bottoms respectively. The 
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researchers claimed that ‘underwater data collected with SCUBA show good 

agreement between the basic phytoacoustic facies and the three dominant plant 

species identified in Lake Saint-Pierre’ (Fortin, Saint-Cyr et al. 1993, p. 232). 

However, the determination of the submerged aquatic vegetation density was 

determined by the use of a numerical code system representing the acoustic 

signatures of each vegetation cover appearing on the echograms. There was no 

quantative assessment for how the three acoustic patterns were determined. 

Basically, the observation of the submerged aquatic vegetation was limited by 

the capability of the analogue echosounder, which relied on the acoustic images 

recorded by an analog recorder. There are many possibilities that the three patterns 

can be associated to different biological organisms. Nevertheless, this study 

represents one of the excellent trials when scientists were trying to take advantages 

of the acoustic devices in mapping the distribution and coverage of underwater 

vegetation in the early stage. 

2.1.3.3.3 France 

A combined approach of using a sidescan sonar and aerial photography for 

the assessment of the seagrass (P. oceanica) distribution was examined off the Island 

of Corsica (Pasqualini, Pergent-Martini et al. 1998). Although the researchers used 

the Principal Components Analysis (PCA) applied to the digitalized image for 

mapping the seagrass distribution, they did not provide any useful information of the 

acoustic backscatter characteristics of seagrass. Nevertheless, they found that ‘the 

upper limit of P. oceanica seagrass beds rarely exceeds depths of 10 m’ and ‘the 

lower limit of P. oceanica seagrass beds ranges from 13 m to 42 m’ (Pasqualini, 

Pergent-Martini et al. 1998, p. 362). 

Recently, a single beam echosounder EQ60 was deployed in the 

Mediterranean Sea by Semantic-TS, aiming to develop a method for detecting and 

characterizing vegetation on the seabed (Noel, Viala et al. 2006). The researchers 

asserted that ‘the presence of reverberation peaks before the bottom echo in the case 

of bottom covered with Posidonia’ provided acoustic signatures for the 

differentiation of assorted bottom types and offered ‘feasibility of the acoustic 
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detection of the Posidonia land’ (Noel, Viala et al. 2006, p. 1). In addition, they 

argued that the ‘comparison between depth of the canopy echo, and depth of bottom 

interface echo allows to estimate plants height’ (Noel, Viala et al. 2006, p. 1). This 

conclusion raises the question of how to locate the depth of the vegetation canopy 

and the depth of the bottom interface when the bottom is covered by vegetation. 

Most importantly, before the detection of vegetation’s canopy, it is firstly necessary 

to understand how to determine whether the echo is backscattered from the 

vegetation or not. An obvious instance challenging the above suggestion is the 

presence of other epi-benthos which may also exhibit acoustic signatures similar to 

those from the vegetation. 

2.1.3.3.4 Italy 

Italy has been traditionally a key player in underwater acoustics research in 

the European Union. The once named SACLANT Undersea Research Centre 

(SACLANTCEN) since 1959 (now changed into NATO Undersea Research Centre 

(NURC) after 2004 to reflect a much broader mission and range of products than the 

original Centre) is located in La Spezia, Italy. Bazzano and Siccardi of this Centre 

conducted a series of experiments to study acoustic backscatter from the seagrass 

Posidonia oceanica (Bozzano and Siccardi 1997; Siccardi, Bozzano et al. 1997; 

Bozzano, Castellano et al. 1998; Bozzano, Mantovani et al. 1998; Siccardi and 

Bozzano 2000; Bozzano, Mantovani et al. 2002). They conducted measurements of 

the acoustic backscatter strength of reference objects (ping-pong balls filled with 

assorted materials) and seagrass in the laboratory water tank and at sea with a 

controllable device to lower the echosounder in the water. In their measurements, the 

sonar head was approximately one metre above the targets. The measurements were 

made for the target strength, reflected beam pattern, and the acoustic return profiles 

for different settings of sonar gain at the frequency of 2 MHz in order to understand 

the acoustic characteristics of the abundant Mediterranean seagrass, P. oceanica. 

Although they made several acoustic measurements for the seagrass, no quantitative 

measures were effective in characterizing the seagrass. 
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Later Lyons and Pouliquen investigated the acoustic scattering properties of 

P. oceanica within the same research institute, SACLANTCEN (Lyons and 

Pouliquen 1998). They used sidescan, single beam and parametric sonar to 

investigate the dependence of scattering strength on grazing angle and frequency. 

The operational frequency ranged from 30 to 110 kHz. They made a number of 

experiments in a wide range of grazing angles at several sites near the islands of Elba 

and Sardinia, Italy, and in Saros Bay, Turkey. From their measurements at sea, they 

found that the maximum scattering strength from the seagrass was high with the 

average values between -20 and -26 dB.  They speculated that the high scattering 

strength could be ‘due to the gas pockets found in individual Posidonia leaves which 

behave as a line array of bubbles’ or ‘the carbonate material commonly found on 

mature leaves’ (Lyons and Pouliquen 1998, p. 1628). They also found ‘weak 

dependence on grazing angle’ and ‘no dependence of scattering strength on 

frequency’ (Lyons and Pouliquen 1998, p. 1628) over the frequency range examined. 

Although Lyons and Pouliquen’s study was on seagrass instead on algae, the last 

observation is contradictory to some extent to the results predicted by the physical 

backscatter model for algae made by Shenderov described in section 2.1.3.2. Finally, 

Lyons and Pouliquen suggested future work on modelling seagrass beds as a volume 

of randomly oriented bubble line arrays in order to understand the grazing angle and 

frequency dependence of scattering strength for seagrass bottoms. 

In a different approach, a sidescan sonar and an airborne Visual Infra Red 

Scanner (VIRS) were used to investigate the extension of seagrass (P. oceanica) beds 

and the epiphytic algal assemblage distribution around Elba Island in 1994 and 1995 

(Piazzi, Acunto et al. 2000). For calibration purposes, direct observations by SCUBA 

divers and a remote operated vehicle (ROV) were used. There is not much 

description for the acoustic properties of seagrass or algae in their study. The only 

helpful information related to this thesis is that ‘the distribution of the seagrass was 

affected by the morphology of the bottom’ (Piazzi, Acunto et al. 2000, p. 342). But, 

no information is available for whether this observation is based on the findings from 

the airborne device or the sidescan sonar. 

Around the Island of Ischia and in its adjacent waters, an attempt was made to 

build an updated and detailed map of the Posidonia beds and to monitor their 

evolution in the areas after 50 years when the first seagrass map was produced by 
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Funk in 1927 (Colantoni, Gallignani et al. 1982). According to the recorded 

Posidonia depth limits in the areas, the seagrass distributed from 0 to 50 m with an 

average distribution at 15 m. In order to understand the seagrass distribution in an 

effective way, the investigators decided to use both acoustic systems and other 

complementary sampling methods for this task. They deployed a low frequency (3.5 

kHz) echosounder and a sidescan sonar in their preliminary cruise in 1977, which 

could be the earliest documented record of the use of sonar systems for the mapping 

of vegetation-covered seabeds. They found that ‘low-frequency echosounding proved 

to be rather ineffective as it did not discriminate the acoustic character of Posidonia 

beds from those of rocky and sandy bottoms’ (Colantoni, Gallignani et al. 1982, p. 

56). On the other hand, ‘the side scan sonar was very satisfactory’ (Colantoni, 

Gallignani et al. 1982, p. 57). They claimed that the sidescan ‘produces sonographs 

similar to aerial oblique views’ and can ‘discriminate the different types of bottom 

with an excellent degree of accuracy’ (Colantoni, Gallignani et al. 1982, p. 57). 

Moreover, they commented that ‘Posidonia beds were remarkably well recognized 

and their limits, as well as their main features correctly identified in most cases’ 

(Colantoni, Gallignani et al. 1982, p. 57). Therefore, the sidescan sonar was utilized 

throughout the whole rest of the seagrass mapping course in 1977 and 1978. Except 

for the sonographs produced by the sidescan sonar and presented in their work, there 

are no quantitative measures examined for the acoustic assessment of the seagrass. 

Obviously the identification of the so-called patterns of the seagrass was based on the 

researchers’ visual observation of the sonographs and their recognition abilities and 

scientific experience. No important acoustic features of the seagrass can be learned 

from the study. However, the ineffective low frequency echosounder used by the 

researchers may imply that frequencies as low as to the range of 3.5 kHz are not 

suitable for the detection of marine vegetation like the seagrass Posidonia. Hence, 

sonar systems selected for the detection of seagrass or algae should operate at 

frequencies higher than at least 3.5 kHz. 
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2.1.3.3.5 Japan 

In the Seto Inland Sea, a 200 kHz Kaijo PS-11E single beam echosounder 

was used for the mapping of the seagrass Zostera marina in 1991 (Komatsu and 

Tatsukawa 1998). In the study, the authors claimed that ‘the echo-sounder recorded 

clearly vertical distributions of Z. marina plants as shading and height pattern on 

echograms’ (Komatsu and Tatsukawa 1998, p. 39). Although they claimed that ‘the 

above-ground biomass of Z. marina could be roughly estimated based on a relation 

between the shading of echo traces of plants and above-ground biomass obtained by 

quadrat samplings’ (Komatsu and Tatsukawa 1998, p. 39), there were no indications 

of how the recognition of the seagrass Z. marina and the differentiation of different 

seagrass species were achieved. 

Later in 2001, the same research group adopted a more advanced 455 kHz 

multibeam (RESON SeaBat 9001) system for the mapping of seagrass Zostera 

caulescens in Otsuchi Bay on the Sanriku Coast of Japan (Komatsu, Igarashi et al. 

2003). Basically, the study was an introduction of a methodology for estimating 

seagrass biomass through the use of processing software (Hypack Max). Using the 

software, the seagrass signals were compared against the echoes backscattering from 

the bare substrate in order to obtain a topographic profile of the bottom. After 

determining the bottom depth difference between the topographic profiles with and 

without the seagrass, a 3-D seagrass volume was obtained. By the verification of the 

quadrat samplings, a relationship associating the seagrass volume to the biomass was 

obtained. 

Again, no quantitative assessment of the backscatter characteristics was made 

to demomstrate how the recognition of the seagrass was made, except the 

observation that the seagrass signals ‘sticked out upward from the base line on the 

hydrography software’ and ‘these signals were echo reflecting from the leaves or 

stems of seagrass on the bottom’ (Komatsu, Igarashi et al. 2003, p. 225). Cautions 

should be made that there was a finding in the literature that ‘the echo produced by 

the rhizome and root systems buried up to 10 cm deep have an intensity seven times 

higher at 100 kHz than at 500 kHz’ (Siljeström, Moreno et al. 2002, p. 2874). This 

means that if the determination of the base line is based on the backscatter at 100 
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kHz, there is a danger of picking up the wrong base line for the true bottom depth 

and as a consequence leading to an overestimate of the seagrass biomass. A more 

detailed description of the study results by the Spanish group will be introduced in 

the following Spain section. Nevertheless, the Japanese researchers reported an 

interesting finding that seagrass ‘blade length was proportional to bottom depth’ 

(Komatsu, Igarashi et al. 2003, p. 228). They suggested that ‘beam frequencies above 

200 kHz are necessary to detect seagrass beds,’ and concluded that ‘multi-beam 

sonar is a very useful apparatus for mapping seagrass beds and visualizing the 

underwater landscape’ (Komatsu, Igarashi et al. 2003, p. 229). This suggestion is 

indirectly supported by a study in which a low frequency echosounder of 3.5 kHz 

was not capable of distinguishing the P. oceanica beds from the bare seafloor 

(Colantoni, Gallignani et al. 1982). 

Usually but not always, the maximum amplitude of an echo return is 

considered as an indicator of the sea bottom or the seagrass canopy from which the 

acoustic signal is backscattered. However, the Spanish research group observed that 

higher intensity echoes were backscattered from the rhizome and root systems 

instead from the seagrass canopy at a lower frequency. Because of this consideration, 

an overview of the biological characteristics of some typical seagrass species found 

in Western Australia is given in section 2.2. 

2.1.3.3.6 Poland 

In order to assess the spatial distribution and biomass of underwater 

vegetation and to identify their species composition, a 208 kHz BioSonics DT 4200 

echosounder was used in Puck Bay of the southern Baltic Sea (Tęgowski, Gorska et 

al. 2003). The data collection was carried out over the seabed of a homogeneous 

sandy bottom with dominant seagrass species of Zostera marina, Zanichellia sp. and 

Potamogeton sp. within a mean water depth of 1.7 metres. The brown filamentous 

algae Pilayella sp. observed by the Polish scientists is able to populate and attach on 

the seagrass leaves in eutrophic coastal areas due to its competitive ability in 

tolerance of polluted waters over the perennial vegetation. Air bubbles trapped in the 

algae clouds can alter the echoes from the covered seagrass. This acoustic feature 



Chapter 2 

 21

was also observed by Maceina and Shiremand (see section 2.1.3.1). Besides this 

consideration, the aim of the study by the Polish scientists was to investigate 

potential parameters that could be used to effectively differentiate the bare sand 

seafloor from seagrass covered meadows, including the algae. 

By examining the echo envelopes, the Polish scientists chose three 

parameters for characterizing the underwater vegetation. These three parameters are 

the moment of inertia, spectral width, and fractal dimension derived from the echo 

envelopes (see Chapter 4 for definitions). The authors compared the classification 

abilities of the selected parameters in identifying the bare seafloor and the plant-

covered meadows. The study targets included the brown filamentous algae Pilayella 

sp. in the polluted and eutrophic waters of Puck Bay. However, the final results were 

only given for the differentiation of bare sand seafloor and the plant-covered 

meadows. 

The Polish researchers did not agree with some algorithms implemented in 

Sabol’s classification algorithm (Sabol and Johnston 2001; Sabol, Burczynski et al. 

2002), which will be discussed in more detail in section 2.5.3. They argued that ‘the 

depth of the sharpest rise of the echo envelope cannot be used to localise a 

vegetation-covered sea floor’ (Tęgowski, Gorska et al. 2003, p. 216). They observed 

that ‘in the majority of echoes from a vegetated bottom the highest echo level 

corresponds to backscattering from the water-bottom boundary’ (Tęgowski, Gorska 

et al. 2003, p. 216). To examine such arguments, an investigation of several acoustic 

data sets groundtruthed by synchronized stereo camera footages has been carried out 

in this PhD study, which will be discussed in the next chapter. 

In order to assess the efficiency of these three parameters in distinguishing 

the bare sand seafloor and the plant-covered meadows, the Polish researchers used 

some criteria in the performance assessment procedure. Among these cirteria, 

suitable thresholds were used to divide echoes into two groups according to the 

parameter variability range. These two groups correspond to the covered and 

uncovered bottom conditions. In their algorithm, pings for which the parameter was 

larger than the threshold were classified as plant ones. The overall classification 

performance of each parameter groundtruthed by visual inspection was assessed by 

false alarm and misdetection rates. Figure 2-1, taken from their work, shows how 

these three parameters performed over the sandy bare bottoms and the plant-covered 
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meadows. The researchers concluded that the moment of inertia parameter gave the 

best performance and the fractal dimension parameter the poorest. They suggested 

that the use of just one parameter was not sufficient to detect vegetation under the 

conditions provided. 
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Figure 2-1 Performance comparisons of three parameters (c, d and e) along with 

the echogram (a), plant height (b) and results of cluster analysis (f) 

over the sandy bare bottoms and plant-covered meadows presented in 

the work by Tęgowski, Gorska, and Klusek (Tęgowski, Gorska et al. 

2003).† 

                                                 
†  Reprinted from Aquatic Living Resources, Vol 16, Jarosław Tęgowski, “Statistical analysis of 

acoustic echoes from underwater meadows in the eutrophic Puck Bay (southern Baltic Sea)”, pages 

215-221, copyright (2003), with permission from EDP Sciences. 
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2.1.3.3.7 Spain 

In the earlier stage of a project aiming at characterization of phanerogam 

communities of Posidonia oceanica and Cymodocea nodosa, a sidescan sonar was 

used in the Cabrera Archipelago in the Mediterranean Sea south of Spain (Siljeström, 

Rey et al. 1996). The acoustic data were firstly recorded in an analog form on paper 

and then scanned to covert them into a digital data format. From the sidescan images 

collected at two operational frequencies, they found that the ‘100 kHz band is usually 

noisier than the 500 kHz one’ but ‘the definition of the meadow structure is better 

than that of the 500 kHz image’ (Siljeström, Rey et al. 1996, p. 311). After applying 

the K-means algorithm, an enhancement of image classification had been achieved 

only for the images of dense areas of Posidonia. The authors assumed that this could 

be ‘due to the strong structure of the vegetation and to the detailed scale’ (Siljeström, 

Rey et al. 1996, p. 312). When the same procedure was applied to the data collected 

from Cymodocea, the classification result from the 100 kHz data ‘displays no 

characteristic structural pattern’ but ‘a faint dendritic pattern’ was discerned when 

the authors inspected the later images (Siljeström, Rey et al. 1996, p. 314). Finally 

the authors concluded that the use of high resolution sidescan sonar could be a cost-

effective solution for the monitoring of these submarine areas. However, no specific 

acoustic features of seagrass were provided as a basis for the identification of marine 

vegetation. 

Interestingly in a later study on the same experimental data (Siljeström, 

Moreno et al. 2002), the researchers presented a hypothesis to justify the selective 

response of Cymodocea nodosa at two frequencies: 100 and 500 kHz. After proper 

pre-processing of the two-frequency sidescan images, they found that the 

‘monospecific plant community presents a very strong acoustic response in 100 kHz’ 

while ‘the same vegetation is almost transparent using 500 kHz’ (Siljeström, Moreno 

et al. 2002, p. 2872). The authors proposed two possible scenarios to interpret what 

they had found. The two hypotheses are: 1) air canals in leaves, and 2) air contained 

in the rhizomes and root systems. Based on their understanding of acoustic theory, 

they asserted that ‘the echo intensity should be higher at 500 kHz than at 100 kHz’ 

(Siljeström, Moreno et al. 2002, p. 2874). According to the predicted result from the 
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theory, the first hypothesis is contradictory to their findings. In their second 

hypothesis, it ‘supposes that the high intensity echo (100 kHz) and the low intensity 

one (500 kHz) are produced by the rhizome and root systems of Cymodocea nodosa’ 

(Siljeström, Moreno et al. 2002, p. 2874). From seagrass’s anatomy, one can assume 

that the rhizome and root system can contain air, which might result in high-level 

echoes at both 100 and 500 kHz. According to the authors’ estimate after considering 

the penetration abilities of the two frequencies in soft sediments, ‘the echo produced 

by the rhizome and root systems buried up to 10 cm deep have an intensity seven 

times higher at 100 kHz than at 500 kHz’ (Siljeström, Moreno et al. 2002, p. 2874), 

which was consistent to their observation. As a result, their second hypothesis was 

supported. That is, the strong acoustic response at 100 kHz is 1) closely related to the 

anatomical structure of the plant in that the air can be contained in the dense rhizome 

and root systems, and 2) related to the 100-kHz’s better penetration abilities in 

sediments than the 500 kHz. This is an important finding. The observation found 

here can be a useful feature for identification of the seagrass species of C. nodosa. 

In a different experiment, detailed measurements of the scattering coefficient 

were made in a laboratory water tank for a thick layer of Gelidium seaweed covering 

a sandy bottom (Carbó and Molero 1997). Gelidium is a genus of red algae covering 

a very wide geographic range. It has long been the major ingredient used as a 

chemical thickener in the food industry. So there is a strong commercial demand for 

the information on its geographic distribution needed for harvesting. However, in 

contrast to the study result made by Maceina and Shireman (Maceina and Shireman 

1980), Carbó and Molero were unable to find any unique backscatter characteristics 

of the Gelidium for detection purposes. Using various echosounders with operational 

frequencies at 102, 201, and 527 kHz in a normal incidence configuration, they 

found that ‘target strength of each individual seaweed front is very weak,’ and ‘the 

average value of the bottom scattering strength is found to be between -26 and -34 

dB’ (Carbó and Molero 1997, p. 343). In the end, the authors concluded that there 

were difficulties in using echosounder systems to detect the Gelidium seaweed layer 

on a sandy bottom. This shows that the use of echosounders to reliably detect algae 

such as the Gelidium is not a straight-forward procedure. Investigations of study 

targets and selections of suitable operational frequencies need to be firstly considered 

before an effective estimate of underwater vegetation by acoustic methods is possible. 



Chapter 2 

 26

2.1.3.3.8 USA 

Among many studies, the major acoustic studies of plant benthos in the 

United States were mostly supported or carried out by a military unit, U.S. Army 

Engineer Waterways Experimental Station (WES) before the 1990s. They originally 

investigated various sampling techniques for the assessment and harvesting of the 

‘submersed aquatic vegetation’ (SAV) (Sabol 1984). Later acoustic tools were 

investigated and developed for the detection and mapping of the SAV in many 

studies (Sabol and Melton Jr. 1995; Sabol and Burczinski 1998; McCarthy and Sabol 

2000; Burczynski, Hoffman et al. 2001; Sabol and Johnston 2001; Sabol 2002; Sabol, 

Burczynski et al. 2002; Sabol, Melton et al. 2002; Sabol, Shafer et al. 2005; Sabol 

2005; Sabol and Stewart 2005). The evolution of acoustic techniques was finally 

developed into a Submersed Aquatic Vegetation Early Warning System (SAVEWS) 

for the detection and mapping of SAV by the WES (Sabol and Melton Jr. 1995; 

Sabol and Johnston 2001; Sabol, Burczynski et al. 2002; US Army Engineer 

Research and Development Center 2005). This technique was later transferred to 

BioSonics Inc., a US hydroacoustic system supplier. One of the products of 

BioSonics Inc., EcoSAV, was based on SAVEWS patented as a processing technique 

(Schneider, Burczynski et al. 2001). Its methodology will be discussed in section 

2.5.3. 

Besides the studies carried out by BioSonics and WES in the USA, a unique 

experimental structure (see Figure 2-2) constructed at a university marina was used 

for differentiation of the pure acoustic backscatter features of macro algae from that 

of bare substratum (Riegl, Purkis et al. 2005). The experimental setup mainly 

consisted of a wire basket that can accommodate study targets, such as macro algae 

or seagrass, and was suspended under an echosounder in the water for measurements. 

By measuring the acoustic backscatter strength under two different conditions - when 

the study targets were put into the basket and when removed, the researchers were 

able to estimate the difference of acoustic backscatter from algae and the sandy 

substrate. Through this process, the researchers expected to observe the acoustic 

backscatter characteristics of algae in order to distinguish it from the bare sand 

seafloor. Although the difference of backscatter intensity between the two conditions 



Chapter 2 

 27

was small, this experiment presented a good scientific approach for the 

understanding of the acoustic backscatter differences between marine plants and bare 

sediments. 

 

 

Figure 2-2 An experimental setup for the observations of acoustic backscatter 

when the macro algae was placed in the wire basket and when 

removed (Riegl, Purkis et al. 2005).‡ 

 

In addition to the observations of the macro algae described above, the above 

study also aimed to assess the effectiveness of various acoustic ground 

discrimination systems (AGDS), including the RoxAnn algorithm, QTC View and 

ECHOplus (see section 2.5), on the data collected from macro algae and seagrass in 

the Indian River Lagoon areas in Florida. The authors used two single beam 
                                                 
‡  Reprinted from Journal of Experimental Marine Biology and Ecology, Vol 326, Riegl et al., 

“Distribution and seasonal biomass of drift macroalgae in the Indian River Lagoon (Florida, USA) 

estimated with acoustic seafloor classification (QTCView, Echoplus)”, pages 89-104, copyright 

(2005), with permission from Elsevier. 
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echosounders at 50 and 200 kHz for the measurements of the acoustic backscatter 

from areas within the Lagoon in different seasons. By comparing the backscatter 

characteristics obtained from different locations in different seasons, the authors 

concluded that the study results ‘indicate high spatial and temporal variability in 

biomass and distribution of macrophyte biomass in the Indian River Lagoon’ (Riegl, 

Purkis et al. 2005, p. 90). They also found a dependence of algal biomass on depth 

and season. This dependence of biomass on sea depth detected by the AGDS systems 

was also observed by Hutin (Hutin, Simard et al. 2005). However, no comments 

were given for what had caused the depth dependence. 

In 1987 and 1988, acoustics was used for mapping the eelgrass Zostera 

marina in Tomales Bay, California (Spratt 1989). Spratt used a Lowrance Truline 

LRG-1510 fathometer for the determination of eelgrass distribution and a vegetation 

sampler for groundtruth purposes. The determination of the percent of bottom 

covered by eelgrass on each transect was measured from acoustic chart recordings 

(see Figure 2-3). Although the determination of the existence of eelgrass was based 

on the researcher’s visual observation of the recorded echograms, it is still 

remarkable that acoustics had been recognized as an effective tool for the mapping of 

eelgrass, especially when reliable quantitative measures of the eelgrass’ acoustic 

features were unavailable in the early days. However, due to the poor performance of 

the fathometer used, the determination of the eelgrass biomass and its distribution 

greatly relied on direct sampling tools in order to provide the final eelgrass 

distribution map for the California Department of Fish and Game. 
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Figure 2-3 Recorded echograms of backscatter from eelgrass, Zostera marina. A 

and B indicate the bottom coverage of 100% and 80% by eelgrass 

respectively (Spratt 1989). 

 

2.2 Seagrass in Western Australia 

In Western Australia (WA) alone, various studies have been made for the 

understanding of seagrass on the following topics: 

 new species (Cambridge and Kuo 1979) 

 monitoring of changes in areal coverage (Kendrick, Eckersley et al. 1999; 

Kendrick, Hegge et al. 2000; Kirkman and Kirkman 2000; Kendrick, Aylward 

et al. 2002) 
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 decline of seagrass (Cambridge and McComb 1984; Cambridge, Chiffings et al. 

1986; Silberstein, Chiffings et al. 1986; Walker, Lukatelich et al. 1989; Walker 

and McComb 1992; Hastings, Hesp et al. 1995) 

 physical factors such as light, temperature, depth, polluted waters, storms, and 

geological locations affecting seagrass’s biological behaviour and distribution 

(Cambridge 1975; Kirkman 1985; Kirkman and Kuo 1990; Gordon, Grey et al. 

1994; Masini, Cary et al. 1995) 

 morphology, anatomy and histochemistry (Kuo 1978; Kuo and Cambridge 

1978; Cambridge and Kuo 1982; Kuo, Iizumi et al. 1990; Kuo and Kirkman 

1990; Kuo 1993) 

 canopy structure and pollination biology (Smith and Walker 2002) 

 variation of biomass below and above ground (Paling and McComb 2000) 

 mechanical transplantation development (Kirkman 1999; Paling, van Keulen et 

al. 2001) 

 sedimentation and fauna diversity (Brearley and Walker 1995; Jernakoff and 

Nielsen 1998; MacArthur and Hyndes 2001; Keulen and Borowitzka 2003) 

 association of biomass productivity to the water nutrients (McMahon and 

Walker 1998) 

 ecological significance for the local communities (Walker, Hillman et al. 2001) 

 

To provide a background for this research project, the major biological 

features and distributions of seagrass in WA found in the course of this study are 

discussed in the following subsections. 

2.2.1 Coverage and diversity 

Studies of seagrass in WA were mainly limited to areas of shallow waters 

within 10 m depth offshore of the capital of WA, Perth. The seafloor areas around 

Cockburn Sound, and Success and Parmelia Banks around Owen Anchorage offshore 

of the port of Fremantle have been frequently selected as the seagrass study sites. A 

map showing these areas is given in Figure 2-4. Previous mapping methods included 
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SCUBA divers’ measurement, aerial photography, and satellite imaging. These areas 

are located within a coastline of 200 km, which is far less than 1 % of the total WA 

coastline length. Other areas studied also include Warnbro Sound (Walker, 

Lukatelich et al. 1989; Cambridge and Hocking 1997; Smith and Walker 2002), 

Safety Bay (Keulen and Borowitzka 2003), Rottnest Island (Walker, Lukatelich et al. 

1989; Brearley and Walker 1995; Hastings, Hesp et al. 1995), Shark Bay (Walker 

and McComb 1988; Marbà and Walker 1999), Geographe Bay (McMahon and 

Walker 1998), and Two People Bay in Albany (Kendrick, Waycott et al. 1997). 

Australia’s coastal waters contain the world’s highest diversity of seagrass species, 

and WA is home to the most diverse seagrass species in Australia (Kirkman 1997; 

Butler and Jernakoff 1999). It has been estimated that there are over 11 genera and 

26 species in WA alone (Kirkman 1997). From the recent observation (van Keulen 

2005), the number of species found has increased. There are currently about 58 

species recognized of which Australia is home to 30. For the genus Posidonia, nine 

species are currently recognised, of which eight are found in Australia. All eight 

Australian species occur in WA (Kuo and McComb 1989). The frequently observed 

and studied seagrass species are Posidonia sinuosa Cambridge and Kuo, and 

Posidonia australis Hook. f. named after the finders’ name (Cambridge and Kuo 

1979). 
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Figure 2-4 Location of Success Bank, Parmelia Bank, Owen Anchorage, and 

Cockburn Sound offshore of the capital of WA, Perth. The inset 

shows the approximate position of the areas on the Australia contour. 

 

2.2.2 Biological features of P. sinuosa and P. australis 

Below is a brief discussion of the major biological features of P. sinuosa and 

P. australis observed around Cockburn Sound. These features could have effects on 

the acoustic backscatter and need a thorough understanding. 
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2.2.2.1 Meadow and canopy structure 

According to the samples taken at Warnbro Sound by the biologists (Smith 

and Walker 2002), meadows of P. australis are comparatively smaller 

(approximately 20-50 m2) than those of P. sinuosa which can extend for hundreds of 

square metres. P. sinuosa shoots often grow in rows (approximately 50 cm wide) and 

alternate with bare sand channels of similar width (see Figure 2-5a) while P. 

australis shoots grow in an apparently random pattern (see Figure 2-6a). The canopy 

structure of P. sinuosa viewed from above is described as an ‘enclosed umbrella-

like’ canopy while the shoots of P. australis have bare spaces between them and may 

be thought as an ‘open’ canopy (Smith and Walker 2002, p. 61). From the image data, 

similar features were also observed on these two seagrass species. Their appearance 

difference can be observed by comparing Figure 2-5b and Figure 2-6b. Although 

these two species have somewhat different canopy structure, their canopy heights 

have little differences. In comparison to the world’s longest seagrass Zostera 

caulescens Miki having lengths of up to 7 metres (Aioi, Komatsu et al. 1998), the 

canopy height of these two species is small and ranges from 35 to 45 cm observed by 

the biologists. These values are different from those observed in the ESP project 

(around 25 cm) although the extended leaf length can be actually larger than these 

numbers (see Figure 2-7). 

In this study, it was hoped that the acoustic backscatter from seagrass 

meadows can reveal clues of canopy patterns as one can see from the images. It was 

believed by the author that the substrate covered by seagrass was more probably 

detectable by the sonar system if the seagrass canopy is of open canopy pattern rather 

than closed. This issue is discussed in detail in Chapter 3. 
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Figure 2-5 Images of P. sinuosa meadows from (a)§ a previous study (Smith and 

Walker 2002) showing apparent bare sand channels in rows, and from 

(b) the author’s video record showing similar row pattern but having 

denser shoot cover with almost all the shoots bent horizontally. 

 

 

Figure 2-6 Images of P. australis meadows from (a)§ a previous study (Smith and 

Walker 2002) and from (b) the author’s video record showing an 

apparent open canopy structure when comparing to Figure 2-5b. Areas 

indicated by the arrows are the spaces in the canopy where a bare sand 

seafloor is visible. 

 

                                                 
§ Reprinted from Aquatic Botany, Vol 74, Smith & Walker, “Canopy structure and pollination biology 

of the seagrasses Posidonia australis and P. sinuosa (Posidoneaceae)”, pages 57-70, copyright (2002), 

with permission from Elsevier. 
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Figure 2-7 Measurements of the leaves of seagrass P. sinuosa with a ruler of 30 

cm in length. The longest extended leaf length was over 50 cm. The 

leaves were collected near the Garden Island in Cockburn Sound in 

2004. 

 

2.2.2.2 Leaf area index and pollination features 

P. sinuosa and P. australis differ not only in the meadow and canopy 

structure but also in shoot density, leaf area, and pollination features. The measured 

mean shoot density of P. sinuosa and P. australis is 1475 (m-2) and 913 (m-2) 

respectively (Smith and Walker 2002). Hence the shoot density of P. sinuosa is 

almost twice as high as that of P. australis. This suggests that sonar systems above P. 

sinuosa seagrass meadows will have fewer chances to observe the substrate than 

above seagrass meadows of P. australis. 

Smith and Walker observed that leaf area index at flower height in the P. 

sinuosa canopy was significantly higher than that in the P. australis canopy. This 

implies that flowers are better protected in P. sinuosa’s meadows due to the higher 

leaf area index than that of P. australis. This means that the sonars will have fewer 

chances to “see” the flowers and fruits from P. sinuosa than from P. australis. 

Questions from this understanding are whether there will be any effective acoustic 

characteristics that can be observed and related to this biological feature, and if the 
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sonar systems are effective enough in telling this delicate feature from the 

vegetation’s pollination strategies for survival. 

The mean leaf area index is a relative value of the horizontal cross-section of 

leaves at certain height above the seafloor. A chart showing the distribution of the 

mean leaf area index and the mean leaf biomass of these two seagrass species at 

different heights is provided in Figure 2-8. Based on Smith and Walker’s 

measurements, the leaf area distribution in Figure 2-8a can be represented by a chart 

(see Figure 2-9) indicating the contribution of each leaf cross-section area to the 

acoustic shielding of the substrate. From Figure 2-9, it is obvious that P. sinuosa is 

more effective than P. australis in hiding the substrate from acoustic observation. 

For P. sinuosa, the contribution of the leaf area covering is dominated by the “Of 

bent section” and the “Below bent section”. For P. australis, the major contribution 

comes from the “Below bent section”. The “At flower height” sections of both 

seagrass species contribute little effect to the area covering. This implies that the 

contribution of the “At flower height” of both seagrass species to the acoustic 

shielding of the substrate has little difference. 

 

 

Figure 2-8 Distribution of (a) leaf area, and (b) leaf biomass of shoots in situ in 

the P. sinuosa and P. australis canopies (Smith and Walker 2002)** 

 

                                                 
**  Reprinted from Aquatic Botany, Vol 74, Smith & Walker, “Canopy structure and pollination 

biology of the seagrasses Posidonia australis and P. sinuosa (Posidoneaceae)”, pages 57-70, 

copyright (2002), with permission from Elsevier. 
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Figure 2-9 Stacked distribution of the occupied areas of the “Of bent section”, 

“At flower height”, and “Below bent section” on the meadows of P. 

sinuosa and P. australis, and their total leaf area cover indexes 

according to Smith and Walker’s measurement readings. 
 

2.2.2.3 Anatomy of seagrass 

According to biologists’ observation, both P. australis (Kuo 1978) and P. 

sinuosa (Cambridge and Kuo 1982) leaf blade has large air-lacuna (see Figure 2-10 

and Figure 2-11). There is no significant difference in the size of the air-lacuna in the 

inner portion of leaf blade between these two species. However, there is a significant 

difference on the cuticle (a continuously structural layer on leaf surface). In contrast 

to P. australis, the leaf cuticle of P. sinuosa is not porous in appearance (see Figure 

2-11). It is unknown if the porous structure of the leaf cuticle of P. australis contains 

air or not. If the porous structure contains air, this may explain why P. australis is 

more capable of standing upward than P. sinuosa. 
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Figure 2-10 Transverse cross section of a portion of a P. australis leaf blade with 

air-lucuna marked by A and the cuticle on skin with porous structure 

(Kuo 1978).†† 

 

 

Figure 2-11 Transverse cross section of a portion of a P. sinuosa leaf blade with 

air-lucuna marked by A and the cuticle on skin without porous 

structure (Cambridge and Kuo 1982).‡‡ 

 

Larger leaf area coverage by P. sinuosa may physically cover the sand 

bottoms and contribute superior masking effects than P. australis for the 

undercovered sand bottoms from being observed by sonar systems above. However, 

                                                 
†† Reprinted from Aquatic Botany, Vol 5, Kuo, “Morphology, anatomy and histochemistry of the 

Australian seagrasses of the genus Posidonia könig (posidoniaceae). I. Leaf blade and leaf sheath of 

Posidonia australis Hook. f.”, pages 171-190, copyright (1978), with permission from Elsevier. 
‡‡  Reprinted from Aquatic Botany, Vol 14, Cambridge and Kuo, “Morphology, anatomy and 

histochemistry of the Australian seagrasses of the genus Posidonia könig (posidoniaceae). III. 

Posidonia sinuosas Cambridge & Kuo.”, pages 1-14, copyright (1982), with permission from 

Elsevier. 
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if the porous structure of the leaf cuticle of P. australis contains air, it may contribute 

more substantial effects to the sonar systems than P. sinuosa’s larger leaf area. 

Besides the above mentioned features, the seagrass’s assembly features, such 

as the row pattern of P. sinuosa meadows, might be possibly observable and used for 

seafloor characterization by acoustic systems. The presence and the biological 

features of seagrass may affect acoustic backscattering from the seafloor, which was 

one of the major focuses of this study that predetermined the selection of 

instrumentation and data analysis methods implemented in the project. These effects 

are discussed in more detail in Chapter 3 and Chapter 4. 

2.3 Acoustic studies of seafloor substrates 

2.3.1 Relevance of seafloor substrates to this study 

Most of acoustic studies of the seafloor made to date have primarily been 

focusing on mappings of seafloor substrates rather than marine benthos (Dalachartre, 

Vray et al. 1992; Thorne, Hardcastle et al. 1994; Andrieux, Delachartre et al. 1995; 

Beaujean 1995; Clarke, Danforth et al. 1997; Dyer, Murphy et al. 1997; Walter, 

Lambert et al. 1997; Taylor, Vincent et al. 1998; Thorne, Hardcastle et al. 1998; 

Caiti 2000; Brandes, Silva et al. 2001; Chakraborty, Kaustubha et al. 2001; Thorsos, 

Williams et al. 2001; Bentrem, Sample et al. 2002; Caruthers and Fisher 2002; 

Chotiros, Lyons et al. 2002; Thorne and Hanes 2002; Walter, Lambert et al. 2002; 

Atallah and Smith 2003; Preston, Parrott et al. 2003; Carle, Bloomer et al. 2004; 

Collier and Brown 2005; Tęgowski 2005). The substrate here means the sediments, 

reefs and rocks constituting the seabeds on which the benthos resides. Seafloor 

substrates may consist of sand, mud, rocky rubble, coral reefs, or a mixture of these. 

The reason of examining the acoustic backscatter properties of substrates is that 

backscatter from the target seafloor vegetation may also contain effects from the 

substrates. In order to extract the “pure” acoustic backscatter features of the seafloor 

vegetation only, it is essential to understand the influence of the background signals 
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backscattering from the substrate, i.e. the seafloor without vegetation. Figure 2-12 

illustrates this idea in a simplified manner. In the scenario shown in Figure 2-12, the 

recorded echo comprises backscatter from everything within the cone under the 

echosounder, including mainly but not exclusively the seagrass and the sediment. 

This is the main reason why the acoustic backscatter properties of the seafloor free of 

vegetation is an essential part of the vegetation’s acoustic study. 

 

 

Figure 2-12 An illustration of the scenario when acoustic backscatter is collected 

from a combined effect with targets in the insonified acoustic cone, 

including the vegetation and the sediment. 

 

2.3.2 Classification techniques developed 

Caruthers and Fisher provided a comprehensive overview of the acoustic 

systems used for sediment classification tasks (Caruthers and Fisher 2002). 
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Classification systems were divided into two categories: sonar systems of vertical- 

and oblique-incidence configurations. Among these systems, vertical-incidence 

systems occupied the major portion of their reviews although they also discussed 

sidescan sonar systems which belong to the oblique-incidence category. They 

investigated many classification systems, such as RoxAnn, QTC View, ECHOplus, 

BioSonics’ classification system, and Automated Seafloor Classification System. 

The classification systems were reviewed to assess their effectiveness in classifying 

the sediment types. Among these systems, RoxAnn, QTC View, and BioSonics have 

been frequently investigated with respective to their effectiveness in classification 

tasks (Brown, Mitchell et al. 2005). A brief overview of these classification 

techniques will be briefly given in section 2.5. 

2.4 Acoustics used in various problem related tasks 

In recent years, several research programs were carried out in order to 

develop techniques for effective mappings of the plant benthos. For instance, a 

project for mapping the nuisance macro algae (Ulva genus) for effective harvesting 

was carried out in Delaware’s inland bays (Rehoboth Bay, Indian River and Little 

Assawoman) in 2000 (Seaman, Finkbeiner et al. 2000; NOAA Coastal Services 

Center 2005). The observations were made by deploying a 200 kHz echosounder 

system in deeper parts of the bays of turbid areas and a conventional colour aerial 

photographic technique in clear and shallow waters. The acoustic data were 

processed by a GroundMaster RoxAnn signal processor combined with RoxMap 

software for the RoxAnn’s roughness (E1) and hardness (E2) analysis. With the 

classified habitat map based on RoxAnn’s technique, the researchers claimed that 

‘they identified vegetated areas and preliminary results indicate RoxAnn may be able 

to distinguish between Gracilaria and Ulva accumulations’ (Seaman, Finkbeiner et 

al. 2000, p. 1704). Although it is not evident from the paper in showing how the 

macro algae were identified and classified into subgroups, this project demonstrated 

that acoustic systems were effective tools for mapping vegetation in areas where 

photographic techniques were ineffective. 
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Acoustic techniques have gradually been improved and applied to various 

tasks related to studies of the seafloor. Besides studies of seagrass, acoustic 

techniques have also been employed for the following tasks which are related to 

seafloor vegetation: 

 determination of depth-related distribution and abundance of seastars (Howell, 

Billett et al. 2002); 

 lake bottom recognition (Andrieux, Delachartre et al. 1995); 

 measurements of detritus (Di Massa and Bosma 2000); 

 measurements of oxygen synthesis by seagrass (Hermand, Nascetti et al. 1998; 

Hermand, Nascetti et al. 1999; Hermand 2004b; Hermand 2004a); 

 shellfish abundance estimation (Smith and Greenhawk 1998; Wildish, Fader et 

al. 1998; Naidu and Seward 2003); 

 and many seabed-related acoustic studies (Orr and Rhoads 1982; Libicki, 

Bedford et al. 1989; Panda, LeBlanc et al. 1994; Beaujean 1995; Bentrem, 

Sample et al. 2002; Walter, Lambert et al. 2002). 

The reason for considering the above mentioned topics is the frequent 

presence of organisms or objects close to, on or beneath the seabed. The presence of 

these creatures can bring impacts to the effective detection of actual study targets. 

2.5 Commercial classification techniques 

The studies presented in this section include commercial classification 

techniques which are primarily software products, although some commercial 

classification techniques include both hardware and software tools as a whole 

package. Since the methods used for acoustic classification of the seafloor play an 

important role in providing habitat maps for end users, it is necessary to understand 

the algorithms embedded in the commercial products. An overview of such products 

is given in the following subsections. As can be seen from results of several studies, 

there are both significant achievements and shortcomings in the application of the 

discrimination techniques to the marine habitat mapping (Schlagintweit 1993; 

Magorrian, Service et al. 1995; Greenstreet, Tuck et al. 1997; Sotheran, Foster-Smith 
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et al. 1997; Caddell 1998; Pinn and Robertson 1998; Pinn, Robertson et al. 1998; 

Hamilton, Mulhearn et al. 1999; Kloser, Bax et al. 2001; Pinn and Robertson 2001; 

Siwabessy 2001; Caruthers and Fisher 2002; Fodale, Bronte et al. 2003; Foster-

Smith and Sotheran 2003; Freitas, Rodrigues et al. 2003; Freitas, Silva et al. 2003; 

Pinn and Robertson 2003; White, Harborne et al. 2003; Wilding, Sayer et al. 2003; 

Foster-Smith, Brown et al. 2004; Humborstad, Nottestad et al. 2004; Madsen 2004; 

Brown, Mitchell et al. 2005; Collier and Brown 2005). Since full descriptions of 

each product have been provided by each respective manufacturer, only the major 

features of those classification systems and dissimilarities in their classification 

approach will be outlined in the following subsections. 

2.5.1 RoxAnn 

RoxAnn’s classification technique is probably one of the most common 

methods familiar to researchers. It uses two parameters derived from the acoustic 

backscattered pulses as a measure of the seafloor’s roughness and hardness. Practical 

applications of this method and some theoretical issues of the algorithm have been 

thoroughly investigated in several works (Chivers, Emerson et al. 1990; 

Schlagintweit 1993; Heald and Pace 1996; Greenstreet, Tuck et al. 1997; Hamilton, 

Mulhearn et al. 1999; Siwabessy 2001; Caruthers and Fisher 2002; Wilding, Sayer et 

al. 2003; Humborstad, Nottestad et al. 2004).  Theoretical grounds of the method 

were made as early as in 1984 (Orłowski 1984). The method developed by Orłowski 

was also specifically highlighted in Hamilton’s report for the Defence Science and 

Technology Organisation (DSTO) (Hamilton 2001). 

The roughness and hardness are exclusively used as the only parameters 

characterising each echo from the seafloor (Chivers, Emerson et al. 1990; Heald and 

Pace 1996). Once acoustic samples are represented in a two dimensional space of 

roughness and hardness, various criteria can then be used to cluster the samples into 

different classes. Different clusters of samples represent different classes of seafloor 

habitat types. The criteria used for clustering is mainly based on groundtruth 

recordings or subjective considerations. There is no universal approach to the 

selection criteria. Ultimately, the method aims at the optimal results that can provide 
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distinctive habitat maps such as a colour coded map of different seafloor habitat 

types. 

Empirical factors and subjective decisions often determine the number of 

classes defined in the roughness and hardness space. When two or more clusters 

overlap each other, it is often a difficult problem for the determination of the 

appropriate number of distinctive classes. In this two dimensional space, overlapping 

of two different classes is highly probable. 

Questions have been raised in a few studies on whether acoustic classification 

tools are capable of distinguishing details of the real habitats, such as the differences 

between seagrass and macro algae or even the morphologic differences of the same 

vegetation group (Maceina and Shireman 1980; Colantoni, Gallignani et al. 1982). 

So the classification task does not just involve the technical issues only but also the 

decision regarding the final resolution of the habitat maps with respect to different 

classes. This point was also highlighted by many researchers. For instance, the 

classification algorithm can be adapted to ignore minor classes and keep the 

predominant classes in order to show the major habitat types on the map (Brown, 

Mitchell et al. 2005). 

Comparing to other methods, RoxAnn’s technique may have different 

classification results in certain circumstances. For instance, Collier and Brown 

mentioned that ‘the RoxAnn roughness index E1 compared well with the sidescan, 

whilst the RoxAnn hardness index E2 did not’ (Collier and Brown 2005, p. 431). 

2.5.2 QTC 

Quester Tangent provides a series of commercial products for sonar data 

acquisition and post-processing. Especially suitable for single beam echosounders, 

QTC Impact provides the function that can determine effective acoustic parameters 

for differentiating the seabed features using only the first echo return from the seabed. 

The use of the first echo return only is different from the RoxAnn technique where 

both the first and second echo returns are utilized. It is understood that 

characterization parameters extracted from the samples or records are presented in a 

Q space. Through a principal component analysis, prominent Q parameters 
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contributing most to the spatial variations are selected to characterize the whole data 

set. Clustering is then applied to the samples distributed in the selected Q space. Both 

supervised and unsupervised data training schemes can be adopted in the QTC 

system. The QTC classification ability is comparable to other techniques although 

some differences have been found in certain cases (Smith and Greenhawk 1998; 

Galloway 2001; Smith, Bruce et al. 2001; Hutin, Simard et al. 2005; Moyer, Riegl et 

al. 2005). A detailed discussion of the QTC technique for acoustic bottom 

classification is available from Legendre’s report (Legendre 2002). 

2.5.3 BioSonics 

In addition to the above mentioned classification techniques, there are also 

ECHOplus, the Automated Sediment Classification System (ASCS) and other 

techniques developed for classification of sonar data and examined by many 

researchers (Lambert, Walter et al. 1998; Bates and Whitehead 2001; Caruthers and 

Fisher 2002; Riegl, Purkis et al. 2005).  

In BioSonics’s sonar processing and classification packages, each of their 

four methods except the B1 method developed for seafloor discrimination extracts a 

pair of parameters from the backscatter signals (Burczynski 2001). In these four 

methods, the parameters are extracted either from the first echo only or from both the 

first and second echoes. The following subsections give a brief description of these 

four methods and the parameters determined in each of them. 

2.5.3.1 B1 method 

This method basically follows Pouliquen and Lurton’s idea (Pouliquen and 

Lurton 1992). In this method, it is assumed that soft sea bottoms tend to produce 

flatter echo returns than the harder ones (see Figure 2-13a). By integrating the 

squared echo amplitude within a certain time interval, the cumulative energy is 

obtained (see Figure 2-13b). After acquiring the bottom echoes from each known 

bottom type, a database comprising distinctive bottom classes is built. It is also 
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assumed in this method that each distinctive bottom class has its own distinctive 

cumulative energy profile. By using a curve fitting algorithm along with the 

groundtruthed database, unknown bottom echoes can be identified and classified into 

distinctive classes. This is the so called B1 method in the VBT§§ software. 

 

 

Figure 2-13 The first bottom echo envelopes from soft and hard bottoms 

illustrating the approach used in the BioSonics B1 method: (a) 

envelopes of the echo amplitude and (b) cumulative energy after 

integrating the squared echo amplitude within a certain time interval 

(Burczynski 2001).*** 

 

2.5.3.2 B2 method 

This method is an exact replica of the RoxAnn’s algorithm. Figure 2-14 

demonstrates the classification scheme according to the clustering of the backscatter 

data in the E1 (roughness) and E2 (hardness) space. 

 

                                                 
§§ A software package developed by BioSonics for bottom classification and sediment analysis. 
*** Figure reused with permission from Janusz Burczynski with the BioSonics Inc., 4027 Leary Way 

NW, Seattle WA 98107, USA. 
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Figure 2-14 E1 and E2 parameters used in BioSonics’s B2 method for classifying 

different bottom types (Burczynski 2001).††† 

 

2.5.3.3 B3 method 

The B3 method uses only the first bottom return to determine the modified 

roughness and the modified hardness parameters. The modified roughness parameter 

defined in this method is almost the same one as that used in the RoxAnn’s algorithm 

for estimating the roughness feature. To illustrate the idea of this method, a drawing 

demonstrating the evolution of the insonified areas on the bottom with time is shown 

in Figure 2-15. It shows the development of the insonified area in its three phases. 

The following is the description of the three phases: 

 

                                                 
††† Figure reused with permission from Janusz Burczynski with the BioSonics Inc., 4027 Leary Way 

NW, Seattle WA 98107, USA. 
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Figure 2-15 Three successive phases of an echo showing the insonified areas on 

the sea bottom (Burczynski 2001). In Phase 1, the insonified area 

increases with time. In Phase 2, the insonified area is ring-like and 

increasing in diameter with time. In the last phase, the ring width 

rapidly decreases with time until it disappears.‡‡‡ 

 

Phase 1 – Attack - It starts from the moment when the front of the transmitted pulse 

at the specular angle touches the bottom and lasts for approximately the length of the 

transmitted pulse. 

Phase 2 – Decay - It starts from the end of Phase 1 to the moment when the edge of 

the footprint is insonified. 

Phase 3 – Release - It starts from the end of Phase 2 and lasts until the moment when 

the end of the transmitted pulse insonifies the edge of the footprint. 

It is assumed that the remaining portion after the last phase is mainly caused 

by the reverberation due to bottom volume inhomogenity. To illustrate this model, 

Burczynski numerically simulated the effects of bottom surface reverberation and 

                                                 
‡‡‡ Figure reused with permission from Janusz Burczynski, BioSonics Inc., 4027 Leary Way NW, 

Seattle WA 98107, USA. 
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bottom volume reverberation contributing to the resulting echo received by the 

echosounder (see Figure 2-16). The plot shows that the major contribution to the 

echo after the last phase is primarily from the bottom volume reverberation. Figure 

2-17 shows how different types of sea bed, from fine sand to rock, affect the echo tail 

appearing as a shoulder. 

In this method, the first bottom return is divided into two parts. The first part 

starts from the echo front and ends in a time interval equal to the transmitted pulse 

width. The second part starts right after the first part and lasts three times longer than 

the transmitted pulse width. The modified roughness parameter in this method is 

defined as the energy of the second part. The modified hardness parameter is the 

energy of the first part of the first bottom echo, which is different from the hardness 

determined in the RoxAnn algorithm. 

 

 

Figure 2-16 Simulation result showing the contribution from bottom surface 

reverberation (short dash line) and bottom volume reverberation (long 

dash line) to the collected echo (solid line).§§§ 

 

                                                 
§§§ Figure reused with permission from Janusz Burczynski with the BioSonics Inc., 4027 Leary Way 

NW, Seattle WA 98107, USA. 
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Figure 2-17 Numerical simulation results for the echo backscattering from fine 

sand (solid line), sand (short dashed line), gravel (long dashed line) 

and rock (alternate long and short dashed line) made by Burczynski. 

The shoulder at the tail of the echo gradually appeared as the bottom 

types varied from fine sand to rock, which indicates the contribution 

of the bottom volume reverberation from different types of sea 

bottoms.**** 

 

2.5.3.4 B4 method 

The fractal dimension parameter (see section 4.2.1.4 for the definition of 

fractal dimension) is used in the B4 method, in addition to the roughness parameter 

(E1) which is determined in the same way as that in the previous methods and in the 

RoxAnn algorithm. The effectiveness of using the fractal dimension parameter of the 

first bottom echo for characterizing the seafloor types has been explored by 

Tęgowski, Gorska and Klusek (Tęgowski, Gorska et al. 2003) who concluded that 
                                                 
**** Figure reused with permission from Janusz Burczynski with the BioSonics Inc., 4027 Leary Way 

NW, Seattle WA 98107, USA. 
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the poorest parameter was the fractal dimension when compared with two more 

effective parameters, the moment of inertia and the spectral width. 

Both Sabol’s reports (Sabol and Johnston 2001; Sabol, Burczynski et al. 2002) 

for the US Army Corps and Engineers and Caruthers and Fisher’s report (Caruthers 

and Fisher 2002) provided a clear explanation of BioSonics’s classification 

algorithms developed for seafloor characterization. As to the choice of the method 

most suitable for seafloor characterization in any particular conditions, there is little 

information and discussion available from the reports. 

BioSonics also suggested a method for detecting seagrass and estimating its 

height (Sabol and Johnston 2001). The method is based on an assumption that the 

leading edge of the echo signal corresponds to backscatter from the top of the 

seagrass canopy, while the “true” bottom, i.e. the sediment substrate, can be 

determined from the time of the trailing edge crossing a threshold of certain level 

(relative to the maximum backscatter) corrected for the transmitted pulse length. 

Sabol et al. suggested a threshold of –50 dB. At high frequencies, such as 200 kHz, 

the leading edge of the echo signal backscattered from seagrass is usually distinctive 

enough to be observed, so that the range estimate to the seagrass canopy determined 

by the moment of threshold crossing is reasonably accurate, which is discussed in 

detail in section 4.2.3 of the thesis. 

In contrast to the canopy top, detection of the substrate by the threshold 

crossing of the trailing edge, as used in the BioSonics’ method, is much more 

ambiguous. As demonstrated in Chapter 4, the echo signal backscattered from 

seagrass consists commonly of multiple peaks with highly variable amplitudes. The 

later arrival peaks strongly distort the trailing edge in a fairly random manner, and 

hence the moment of threshold crossing at a fixed amplitude level also strongly 

varies from one echo signal to another, even if the sea depth does not change. 

Consequently, the range estimates by the trailing edge contain large random errors. 
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2.6 Observations of seafloor backscatter characteristics 

at different frequencies 

Unique backscatter characteristics from benthos have been noticed by 

researchers. Mackinson’s research group observed stronger backscatter intensity at 

120 kHz than that at 38 kHz for sandeels (Mackinson, Turner et al. 2005). Similar 

observations with the employment of a sidescan sonar also found that the acoustic 

seafloor images from the 100 kHz band were usually noisier than the 500 kHz 

(Siljeström, Rey et al. 1996). However, Siljeström’s research group also noticed that 

the definition of the meadow structure derived from the 100 kHz was better than that 

from the 500 kHz. From the above observations, it shows that the use of different 

frequencies presents different information about the study targets. From the studies 

of the Posidonia seagrass, historical records indicated that higher frequencies gave 

more details than the lower ones. 

2.7 Concluding remarks 

It is obvious that acoustic studies of seafloor vegetation comprise a wide 

scope of knowledge. The acoustic backscatter from seafloor vegetation depends on 

the vegetation’s biological features, sediment properties, and technical characteristics 

and measurement settings of the sonar systems. Issues involved include many 

technical issues and environmental constraints as well. Acoustically determined 

results need to be compared to groundtruth measuremnts such as video recordings or 

direct samplings in order to provide accuracy assessment. In this study, the acoustic 

observation was verified by comparing to the optical recordings. 

In this thesis, basic quantitative assessments are provided. Although not 

exhaustive, it is hoped that this study can provide some basic ideas of the acoustic 

properties of the seafloor vegetation for further research needs. 

Among a large variety of seafloor vegetation, only a limited number of 

species have been acoustically studied before. No matter whether they are animal or 

plant benthos, the acoustic backscatter characteristics are still not fully understood. 
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Since there is a need for using acoustics as a means to effectively characterize and 

monitor the vegetation on seafloors, potential methods for the above purpose were 

investigated in this study. 

There is a potential by the use of sonar systems with different frequencies to 

characterize the study targets. The use of two frequencies in providing quantitative 

assessments of seagrass canopy height will be illustrated in section 4.3.4. 
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Chapter 3 Instrumentation and data 

collections 

Based on the understanding of the literature discussed in Chapter 2, 

instrumentation and data collection aim to support the following requirements: 

 To collect groundtruth recordings (videos and photographs) that can reflect the 

actual situation of the study targets as accurately as possible so that the 

groundtruth recordings can provide the best support for the identification of the 

acoustic data. 

 In addition to seafloor vegetation, to collect data from bare sea bottoms such as 

pure sand bottoms so that the backscatter characteristics can be compared to 

that of seafloor vegetation. 

 To collect high resolution acoustic data in the hope that morphological features 

of underwater vegetation can be revealed. 

 To develop and build a composite data collection system which can collect 

groundtruth recordings (videos and photographs) and acoustic data 

simultaneously. 

 

In order to fulfil the above requirements, the instrumental systems and the 

experimental setup were designed and built, and will be introduced below. 

3.1 The Epi-benthic Scattering Project (ESP) 

The ESP project is part of the Coastal Water Habitat Mapping (CWHM) 

project of the Cooperative Research Centre for Coastal Zone, Estuary and Waterway 

Management (Coastal CRC). It was initiated within the CWHM project, with one of 

its goals being to provide support for the author’s study needs. It ran from the end of 
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2003 until the beginning of 2006. It was mainly supported by the Coastal CRC, with 

additional resources provided by Curtin University of Technology. 

‘The aim of this project is to develop innovative acoustic techniques as a tool 

for seafloor habitat mapping,’ as was stated in the beginning of its first milestone 

report (Woods 2004). In order to achieve this aim, several steps were taken: 

 Development of a test rig: This enabled a direct comparison of acoustic 

backscatter with stereoscopic imagery from a range of benthic habitats, 

including those with substantial communities of seagrasses and macro algae, 

 Investigation of the relationship between a plant’s physical characteristics and 

acoustic backscatter: This provided opportunities to find useful acoustic 

parameters that can be used to characterize the epi-benthic plants, 

 Development of appropriate processing techniques: The techniques developed 

can be used as effective tools to distinguish the seafloor vegetation from other 

habitat types observed in this study. 

 

In order to fulfil the above requirements, the ESP project was divided into 

three stages. Each stage involved a field experiment with its own goal and is 

introduced in section 3.3. 

 

3.2 Instrumentation 

The ESP data collection mainly included the use of two echosounders and an 

optical sub-system. The acoustic system included the SIMRAD EQ60, a single beam 

echosounder operating at 38 and 200 kHz, and the TAPS (Tracor Acoustic Profiling 

System), a six-frequency echosounder. The optical system mainly contained a pair of 

digital cameras. These two cameras were controlled by a custom electronic circuit 

board. The development of the design and the use of the composite system are 

introduced in the following subsections. 
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3.2.1 Development of data collection facilities 

3.2.1.1 The ESP structure 

The ESP test rig is shown in Figure 3-1. A diagram in Figure 3-2 illustrates 

the basic experimental conditions of the concluded ESP project. The structure can 

accommodate the optical and acoustic components for the simultaneous data 

collection and can be deployed and operated from a small boat. The triggering of the 

two data collection components was synchronized. Due to the synchronization ability, 

each echo can be accurately identified by the examination of the corresponding 

stereoscopic photographs. After calibration, the stereoscopic camera system is 

capable of measuring the seagrass canopy height for comparisons with the the 

acoustic recordings. 
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Figure 3-1 Three views of the ESP data collection rig as deployed in 2005, 

showing its major optical and acoustic components.†††† 

 

                                                 
†††† Mr. Malcolm Perry carried out the mechanic work necessary to integrate the ESP components 

together. 
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Figure 3-2 A conceptual diagram (not to scale) showing the ESP structure when 

deployed in the field. This diagram has been significantly simplified 

in showing the integrated stereoscopic camera set and the sonar 

components installed in the ESP frame. 

 

The whole structure can be lowered into the water and supported by ropes 

from a boat. Attached to the ropes are the data cables responsible for the transmission 

of control signals and delivering of the collected data back to computers on the boat.  

Since the whole structure was designed to be able to freely move with the currents, 

there were occasions when the sonar head was not actually looking vertically 

downward. In these situations, the acoustic backscatter was not from the normal 

incidence direction, which was an undesirable situation in this project. An 

inclinometer was used to measure the orientation. Along with the optical and 

acoustic components, there was a light installed adjacent to the optical components to 

provide additional illumination when there was insufficient natural light. 
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3.2.1.2 The TAPS 

The six-frequency scientific echosounder TAPS was installed as one of the 

acoustic components in the integrated data collection system. It has six frequencies at 

265, 420, 700, 1100, 1850, and 3000 kHz. As it stated in the product manual (BAE 

Systems): TAPS is a self-contained oceanographic instrument that measures acoustic 

backscatter (volume scattering strength, Sv) at six frequencies along with depth, 

temperature, and date/time. The major advantage of TAPS was its six-frequency 

capability, providing opportunities to understand the dependence of acoustic 

backscatter on frequency. This was expected to be helpful in determining the 

frequency ranges most suitable for the monitoring of seafloor vegetation. 

The major drawback of TAPS is its fixed range bin length of 12.5 cm, 

especially when comparing to a much better range resolution of the EQ60 of 1.88 cm. 

Problems were also experienced with the relatively large amplitude reflections from 

the seabed saturating the receiver, which made it impossible to produce useful 

measurements for further analysis. Attempts to overcome the saturation problem by 

fitting an attenuating mask to the instrument were only partially successful. Because 

of these problems, the experimental recordings from TAPS were finally discarded 

from further analysis and are not considered further in this thesis. 

3.2.1.3 The ESP data collection system 

The ESP data collection system comprised several components. A simplified 

system block diagram showing the data flow directions and the components is 

provided in Figure 3-3. A more detailed system block diagram made by other project 

team members is provided in Appendix B. 
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Figure 3-3 A simplified block diagram showing the data flow directions and the 

components of the ESP data collection system. 
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3.2.1.4 The wet end box and the cameras 

In the hardware system, the wet end box is the major component that was 

completely designed and installed by the ESP project members. Installed in the box 

were two 5-Mega-pixel digital still cameras, a micro-controller, a video switch board, 

and a tri-axial accelerometer, which can sense the orientation angles of the device. 

Figure 3-4 shows the components without the underwater housing. Figure 3-5 shows 

the major underwater housing components and the completed wet end box on the 

ESP frame. A schematic diagram of the wet end micro-controller is provided in 

Appendix C. 

The wet end micro-controller (WEM) is mainly a bridge between the two 

cameras in the wet end box and the personal computer (PC) on the boat. It 

synchronizes the two cameras and is responsible for delivering the trigger signals 

from the PC to the cameras. It also controls the video switch board and samples the 

signals from the accelerometers. The recorded digital photographs were stored on the 

memory cards in the cameras. It was necessary to retrieve the wet end box back onto 

the boat and upload the recorded photographs to the PC when the memory cards 

were fully loaded. A real-time view of the seabed from one of the cameras was 

provided via the video switch board. Through the video monitoring of the seabeds in 

real time, operators were able to maintain well focused field views for the optical 

system. Tilt angles sensed by the tri-axial accelerometer were transmitted digitally to 

the PC by the wet end micro-controller. The data communications between the dry-

end PC and the wet end box were via a bidirectional RS422 serial data link. 
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Figure 3-4 Internals of the wet-end box, showing wet end micro-controller, video 

switch board, tri-axial accelerometer, and two 5-mega-pixel digital 

still cameras.‡‡‡‡ 

 

                                                 
‡‡‡‡ Design, testing, and construction of the stereoscopic camera system were carried out by Mr. 

Andrew Woods. Software for the wet-end microcontroller was written by Dr. Alec Duncan. 
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Figure 3-5 The underwater housing components, showing its (a) back cover, (b) 

housing cylinder, (c) front cover, and the installed housing (d) without 

and (e) with the front cover on the ESP frame. 

 

3.2.1.5 The acoustic sub-system: EQ60 

The SIMRAD EQ60 is a self-contained echosounder, which can be deployed 

for a variety of tasks. It can operate at either 38 or 200 kHz individually, or at both 

these frequencies simultaneously. For the ESP project, both frequencies were used 

and the EQ60 was switched to the “external triggering” mode so that the control 

software (ESPañolito) on the PC was able to provide a proper timing for the 

triggering of every sensing component. 
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The EQ60 received not only the triggering signals from PC but also the 

position data from the GPS receiver according to the position of the antenna. The 

GPS data were stored on its computer hard disc. 

The EQ60 is a very mature acoustic product, and can be easily installed on 

small boats. For the ESP project, the sonar head (which contains the two acoustic 

transducers) was installed along with the TAPS and the wet end box on the ESP 

frame. The sonar head was connected through an independent cable to the EQ60’s 

dedicated computer where the signals were digitised and stored on a hard disc. After 

the completion of the field trials, the logged data were transferred to the author’s PC 

for analysis. 

Since the acoustic components were firmly installed on the ESP frame, the 

direction of the transmitted beams was completely governed by the movements of 

the ESP frame. When the frame was deflected away from a vertical orientation by 

strong currents, the EQ60 was also tilted away from vertical incidence angles. The 

strategy used in the field was to look for ideal sites that can minimise the undesirable 

tilt effect. 

3.2.1.5.1 Characteristics of EQ60 

The EQ60’s beam patterns at the 38 and 200 kHz frequencies are provided in 

Appendix D. The major characteristics of EQ60 extracted from the product manual 

(Simrad) are provided in Table 3-1. 
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Table 3-1 Major characteristics of EQ60 and selected settings. 

Operational frequencies (kHz) 38.08 198.864 

Band width (kHz) 3.8 10.0 

Nominal beam width (degree) 

(see Appendix D) 
15.2 7.2 

Sample interval (μs) Selected: 126 Selected: 25 

Absorption coefficient (dB/m) 0.0098 0.0523 P
ar

am
et

er
s 

Maximum ping rate (1/sec) 10 10 

Transmit power (W) Selected : 100 Selected : 100 

A
dj

us
ta

bl
e 

Pulse length (μs) Selected: 256~1024 Selected: 100~1024 

 

3.2.2 Synchronization of the optical and acoustic systems 

The purpose of simultaneously collecting each optical and acoustic sample 

pair was for the purpose that each acoustic sample could be attributed to a proper 

habitat type by identifying the corresponding optical sample. 

Synchronization was achieved by the ESPañolito program which controlled 

the triggering of all the components. This program was developed by a project 

member, Mr. Amos Maggi. It provided interfaces for the control and management of 

the data collection in the field. It was installed in a Windows environment, and can 

be easily adapted to the field requirements. 

In the ESP hardware system, there were seven clocks that needed to be 

corrected. These clocks controlled Camera 1, Camera 2, WEM, TAPS, EQ60, GPS, 

and the PC itself. The correction of these seven clock times was accomplished by 

considering the time offset differences relative to a reference clock and by 

considering the frequency differences from different clocks. The two camera clocks 

exhibited some variations although over 95% of the variations were within 0.02 

seconds. Considering the common time separation between two consecutive data 
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samplings, these variations did not cause significant problems. After this step, each 

acoustic sample was referred to its correct photographic pair. A database containing 

the corrected optical and acoustic records was ready for the optical classification task, 

which was the next step. 

Figure 3-6 shows the data availability of each component when lined up 

against the time (day number). The optical recordings were essential records used to 

identify habitat types. Without the optical recordings, an accurate correspondence of 

the acoustic signals to the correct habitat types is unachievable in this case study. 

Figure 3-6 was produced from a data set collected from the first field trial in 2004. 

From this figure, one is able to find out that not every optical recording has its 

corresponding acoustic recordings, and vice versa. 
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Figure 3-6 Data availability of each sensing component when lined up against the 

time. This data set was collected from the first field trial in 2004. 

 

3.3 Field trials and data collections 

Data were collected from several field trials held in shallow coastal waters 

near the capital of Western Australia, Perth. There were three field trials 

implemented specifically for the ESP project. The three ESP field trials were carried 

out on 10 August 2004, 1 June 2005, and 26 October 2005. The experimental 

conditions are introduced in the following subsections. 
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3.3.1 The first field trial 

On 10th of August 2004, the ESP project carried out its first field trial off 

Woodman Point in Cockburn Sound, Western Australia. The Sound is a coastal shelf 

region bounded partly by Garden Island to the west. Due to the protection from the 

open ocean provided by Garden Island and the blocking effects of a causeway to the 

south connecting the island to the mainland, the water in the Sound provided a 

calmer environment than those outside the Sound and was suitable for field trials. 

3.3.1.1 Field deployment 

In Cockburn Sound, there were only very few seagrass meadows still existing, 

mainly on shallow banks on the northern areas near Parmelia Banks, on narrow strips 

of banks near Garden Island, and on comparatively larger areas of banks at the 

southern part of the Sound near the causeway. Figure 3-7 shows the seagrass 

distributions compiled by a group of seagrass specialists (Kendrick, Aylward et al. 

2002). From this figure, the author was able to plan the field deployment locations in 

order to cover both seagrass meadows and bare sand seafloors. 
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Figure 3-7 A seagrass coverage map of Cockburn Sound, WA, showing the 

remaining seagrass coverage (18%) in 1999 after the decline from 

1967 (Kendrick, Aylward et al. 2002).§§§§ 

 

The water depths of the planned transects were all less than 10 metres except 

in an area near the centre of the Sound where depths beyond 10 metres were 

observed. The aims of the first sea trial were to test the equiment and deployment 

techniques and to obtain acoustic echoes from a variety of seabeds – particularly 

sand and seagrass. 

                                                 
§§§§ Reprinted from Aquatic Botany, Vol. 73, Kendrick, Aylward et al., “Changes in seagrass coverage 

in Cockburn Sound, Western Australia between 1967 and 1999”, p75-87, copyright (2002), with 

permission from Elsevier. 
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Since seagrass uses sunlight as the source of energy to undergo 

photosynthesis, it can only survive in shallow areas where the sunlight conditions are 

acceptable. Although 99% of the seagrass in the world is in depths less than 50 

metres and a depth limit of 90 metres is predicted by a model (Duarte 1991), the 

seagrasses recorded in Cockburn Sound were mainly limited to water depths less 

than 10 metres. From this field trial, there were no seagrass meadows observed at 

depths more than 10 m. However, since the surveyed areas were bounded in very 

limited areas, the observation result does not imply that it is impossible to find 

seagrass meadows in unsurveyed areas of the Sound. 

Considering the need to collect samples from the seagrass meadows and for 

the safety of the boat, field sites were chosen from areas where seagrass had been 

reported and the depths were deep enough and safe for the boat to sail. When the 

ESP structure was deployed in the field, it was supported by a rope and hung from a 

simple derrick used to lower the structure into the water for measurements. The 

derrick was made by Dr. Rob McCauley, the leader of the CWHM project and also a 

member of the ESP project. According to the plan, the ESP structure should be 

maintained at a fixed distance above the seabed at each site. Because of the different 

water depth at each site this meant that the draft of the instrument (i.e. depth of sonar 

head below water surface) was different at each site. The draft can be easily 

determined by measuring the height of the ESP structure and the lengths of the rope 

in advance and marking the rope with colour tapes at every equal distance. By 

observing the mark on the rope which appears above the water surface level, one was 

able to have a good estimate of the sonar’s actual draft. 

Unfortunately, the weather conditions were often unpredictable. Occasional 

strong winds did happen and the drafts were not always properly recorded. The 

actual drafts of the ESP structure at the three sites were not reliable. Consequently, 

the ESP device can not be used to measure water depth. 

However, distance readings from the sonar and from the videos did provide 

real-time information that allowed the ESP structure to be maintained at an 

appropriate distance above the seafloor for suitable optical focusing and operations 

of the acoustic system. The boat was anchored at each site. However, the winds and 

currents generated relative motions between the ESP system and the seabed.  This 

was not a significant problem when ambient lighting conditions were good and the 
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exposure times needed were short enough to take clear photographs. But the relative 

motions did in some cases result in motion blurring of photographs taken under poor 

lighting conditions – for example when the seabed was in the shadow of the boat. 

Data were collected from three sites, which covered five major habitat types 

in the Sound. In Figure 3-8, seabeds in “Site 1” were predominantly pure sand and 

seagrass meadows while those seen at “Site 2” were predominantly sand, reef, and 

algae. Data collected from “Site 3” were excluded from further analysis due to 

problems with the poor quality data collected. The analysis results of the data 

collected from this field trial are given in Chapter 4. 

 

 

Figure 3-8 Site locations of the first ESP field trial in Cockburn Sound in 2004. 

3.3.1.2 Samples collected 

In this field trial, synchronized data from the EQ60, TAPS, stereo image 

cameras, and GPS were acquired. A total of 1232 sample pairs of both echoes and 

still images were acquired. Further examination of the images and the echoes 

revealed that 540 samples were fully intact and 300 of these samples were selected as 

standard representatives of 5 pure classes. Pure classes are defined here for those 

groups of sample collected from seafloors with single species of seafloor vegetation 

or sole substrate observed from the optical images. Typical class samples of 
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photographic pairs and acoustic backscatter waveforms of these 5 pure classes are 

provided in figures from Figure 3-9 to Figure 3-13. In these figures, the markers X 

on the photographic pairs are the centres of 38 and 200 kHz beams, and circles 

around them are the estimated -3dB level locations of their major lobes based on the 

range of 1.5 metres. Predominant habitat types in the areas within these two circles 

determined what habitat types the samples would be classified into. The number of 

samples within each of these classes were 81, 10, 8, 21 and 180 respectively for the 

pure sand, seagrass 1 (Posidonia sinuosa), seagrass 2 (Posidonia australis), rocky 

reef, and macro algae. 
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Figure 3-9 Photographic pair and acoustic backscatter waveforms of a typical 

sand class sample. 
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Figure 3-10 Photographic pair and acoustic backscatter waveforms of a typical 

seagrass species P. sinuosa class sample. 
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Figure 3-11 Photographic pair and acoustic backscatter waveforms of a typical 

seagrass species P. australis class sample. 
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Figure 3-12 Photographic pair and acoustic backscatter waveforms of a typical 

rocky reef class sample. 
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Figure 3-13 Photographic pair and acoustic backscatter waveforms of a typical 

macro algae class sample. 
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3.3.1.3 Biological features of observed seagrasses 

The observed major seagrass species in Cockburn Sound were P. sinuosa and 

P. australis. An overview of the historical seagrass distribution in the Sound can be 

seen from Figure 3-7. Contrary to the historical data, the collected seagrass samples 

at Cockburn Sound in 2004 were dominated by P. australis. The typical appearances 

of the dense seagrass species observed in this field trial are shown in Figure 3-14. 

The seagrass species on the upper part of the photograph in the figure is P. sinuosa 

while the lower part is P. australis. The 25 cm canopy height on both sides of the 

figure was estimated from the seagrass illustration by Phillips and Meñez (Phillips 

and Meñez 1988). This number was reasonably within the scope of the 

measurements observed in the ESP project. As has been described in section 2.2.2.2, 

the “Of bent section” of P. sinuosa can be observed directly from above the seagrass 

meadows while the “Below bent section” is not possibly seen from the photograph. 

From Figure 3-14, a distinct canopy pattern difference between these two seagrasses 

can be easily observed. 
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Figure 3-14 Canopy appearances and characteristics of P. sinuosa and P. australis 

recorded in Cockburn Sound 2004.***** 

 

The historical seagrass recordings of P. sinuosa and P. australis for the 

average canopy height observed by Smith and Walker were between 35 and 45 cm 

(Smith and Walker 2002), and were about 25 cm from the estimate of the diagrams 

depicted by Phillips and Meñez (Phillips and Meñez 1988). The vegetation in water 

can wave along with the currents such that the detected canopy height of the plants 

can vary from one moment to the next moment. The average canopy height can also 

change at different seasons through their life cycles. The changing behaviour of the 

canopy height due to seasonal changes was observed and documented by McKenzie 

(McKenzie 1994). In McKenzie’s observation, the observed canopy height varied 

even more for the seagrass species of Zostera capricorni Aschers where the canopy 

height was the greatest between October and February (maximum 53.4 cm) and the 

                                                 
***** The seagrass diagrams on both sides of the seagrass photograph in Figure 3-14 were extracted 

from the publications by Government of South Australia ( Coast Protection Board. (2004). 

"Seagrasses of South Australia." 2004, from www.environment.sa.gov.au.), and ( Phillips, R. C. and 

E. G. Meñez (1988). "Seagrasses."  Smithsonian contributions to the marine sciences 34: 85-89.). The 

identification of the seagrass species was supported and advised by the author’s associate supervisor, 

Associate Prof. Gary Kendrick at the Department of Botany of the University of Western Australia. 
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lowest around mid year (minimum 4.4 cm) on the Northern Queensland coastlines in 

Australia. 

3.3.2 The second field trial 

3.3.2.1 Field deployment 

During the second ESP field trial on first of June 2005, measurements were 

made at Owen Anchorage to the north, west Parmelia Bank to the west, and Jervoise 

Bay harbour in the Cockburn Sound to the south. Shallow banks are divided by a 

shipping channel into west and east banks which are densely populated by seagrasses. 

More seagrass species are found in these areas than in Cockburn Sound. Site 

locations of the second field trial are shown in Figure 3-15 overlain on a map of the 

year 1999 seagrass species distribution at Success and Parmelia Banks. The seagrass 

distribution map was a result of the extrapolation of the sampled data by the kriging 

method and was done by Dr. Karen Holmes at the University of Western Australia. 

The figure shows how the estimated seagrass species were scattered in the Sound, 

and the field site locations where the data were collected. 
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Figure 3-15 Site locations of the second ESP field trial according to the GPS data 

overlaying on a map of year 1999 seagrass species distribution of 95% 

likelihood of presence on Success and Parmelia Banks.††††† 

3.3.2.2 Samples collected 

At site 1, the predominant Posidonia seagrass was observed with much 

cleaner leaf surface conditions than those observed in Cockburn Sound in the first 

field trial. Flat and pure sand bottoms were almost identical to those observed in the 

first field trial. 

At site 2, sea squirts populated the major areas on rubble bottoms with patchy 

seagrass and wrack mixed together. Surprisingly hard corals were observed at a few 

spots. This site was unique for its rough bottom surface due to the wide spread 

assemblage of sea squirts in this area. On a few photographs, oval-shaped plate 

profiles of unknown organisms projected from the bottom. 

                                                 
††††† The seagrass distribution map was provided by Dr. Karen Holmes of the University of Western 

Australia. 
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At site 3, dense Posidonia species covered the whole area. Since no physical 

samples of the seagrass were collected from this field trial, it was not possible to 

definitively determine the seagrass species. However, since the P. australis possesses 

the open canopy structure and an open canopy structure was also clearly observed 

from positions above the seagrass meadows in the field, it is possible that the 

seagrass meadows were predominantly occupied by seagrass species with the same 

open canopy structure, including P. australis. But it is uncertain for whether the 

seagrass in this site is definitely P. australis or not. Although the historical records 

showed that P. sinuosa is the predominant seagrass species to be observed around 

this site, the photographs did not provide any validation of the historical observations. 

In the whole area, flat and uniformly distributed seagrass meadows can be the only 

descriptor in characterizing the sea bottom at this site. 

After moving on to site 4 just south of Carnac Island, clear water, and a 

variety of macro algae and the common tall kelp species of Ecklonia radiata were 

observed. Occasionally covered by hard shell benthos, the sea bottoms were basically 

fine sands and rocky reefs with a lot of macro algae growing on them. Tall algae and 

rocky reefs were the common scenes at this site. Very flat and pure sand bottoms 

were observed on the last few photographs. 

After a strong wind built up in the afternoon, the field trial was moved on to 

site 5 within the Jervoise Bay harbour. Calm water and muddy sand are the major 

features of this site. Due to the low ambient light levels at this site, the light was 

turned on for the optical system. No vegetation was found at this site. This may be 

due to the human activities frequently carried on within the harbour. In a few photos, 

mussel shells covered the sea bottom. 

Due to insufficient separations between the sonar head and the sea bottom at 

site 5, there were overlaps between the ringing of the acoustic tranducers and the first 

bottom returns. In view of this issue, the samples collected from this site were 

discarded from further analysis. 

Typical photographic pairs and acoustic backscatter signals from each habitat 

type are provided in figures from Figure 3-16 to Figure 3-21. A few coral samples as 

shown in Figure 3-21 were collected from site 2. 
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Figure 3-16 Photographic pair and acoustic backscatter waveforms of a typical 

sand class sample collected from site 1 of the second field trial. 
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Figure 3-17 Photographic pair and acoustic backscatter waveforms of a typical 

Posidonia seagrass class sample collected from site 1. 
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Figure 3-18 Photographic pair and acoustic backscatter waveforms of a typical sea 

squirts class sample collected from site 2. 
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Figure 3-19 Photographic pair and acoustic backscatter waveforms of a typical 

macro algae class sample collected from site 4. 
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Figure 3-20 Photographic pair and acoustic backscatter waveforms of a typical 

mussel class sample collected from site 5. 
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Figure 3-21 Photographic pair and acoustic backscatter waveforms of a typical 

coral class sample collected from site 2. 
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3.3.3 The third field trial 

On the 26th of October 2005, the ESP project completed its final field trial. It 

was a rainy day but fortunately with comparatively calm weather suitable for the 

experiment. Like the previous trials, the journey started from Woodman Point in 

Cockburn Sound and went straight to the planned field sites. After arrival at the 

designated sites, the ESP wet end system was deployed over the side of the boat on a 

davit. The experiment was limited to a smaller area than before on the east bank of 

Owen Anchorage. The site locations of this trial are shown in Figure 3-22. 
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Figure 3-22 Site locations of the final ESP field trial according to the GPS data 

overlain on a map of year 1999 seagrass species distribution of 99% 

likelihood of presence of Success and Parmelia Banks on the east 

banks of Owen Anchorage.‡‡‡‡‡ 

3.3.3.1 Strategic changes and investigations of depth 

dependence 

The field sites of the final field trial had been investigated and documented 

for the seagrass species and distribution by biologists (Kendrick, Hegge et al. 2000). 

Habitat types were known to be limited to only a few species and their respective 

locations were supposedly accurate enough to be determined from the seagrass 

distribution map shown in Figure 3-22. Based on this understanding, the plan was to 

deploy the ESP system over areas where the observation ranges were to be made 

beyond the operational limit of the optical system such that the seagrass meadow 

                                                 
‡‡‡‡‡ The seagrass distribution map was provided by Dr. Karen Holmes of the University of Western 

Australia. 
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types can be only determined from the seagrass distribution map provided in Figure 

3-22. The major motivation was to understand the acoustic backscatter variation at 

ranges larger than the operational limit of the optical system. For this reason, part of 

the acoustic data collected in this field trial was unable to be accurately identified 

through the assistance of optical recordings. As a consequence, the determination of 

the associated meadow types of these echoes can not be as accurate as those made in 

the previous field trials. An inherent assumption in these measurmeents is therefore 

that the habitat types did not vary significantly at each site. 

3.3.3.2 Samples collected 

Due to the strategy adopted in this field trial, the samples’ species could not 

always be accurately identified. The seagrass species was roughly identified as the 

Posidonia seagrass group. Since no physical seagrass samples were collected from 

the meadows, the identification of this Posidonia seagrass group was purely based on 

the canopy appearance on the photographs being similar to the Posidonia group. 

Posidonia alone is believed to have at least 8 species in Western Australia (Kuo and 

McComb 1989). The dense seagrass shown in Figure 3-24 had comparatively 

narrower blades and longer leaves than those observed in the previous field trials, 

and higher plant density patterns than those of the other P. sinuosa and P. australis 

meadows that were observed at different sites. 

Comparatively shorter leaved Amphibolis meadows were observed for the 

first time in this ESP project. This seagrass species was loosely dispersed in the 

meadows. Bottom substrate can be clearly observed from above the canopy and the 

canopy height is much shorter than that of Posidonia. It is anticipated that it will be a 

difficult task to differentiate this Amphibolis meadow (Figure 3-25) from the sand 

class (Figure 3-23) if purely based on the observation of the acoustic backscatter. 

According to the cover homogeneity, seagrass classes were further 

differentiated into subclasses to account for the density difference. Since the seagrass 

species were not accurately identified, it would be more realistic to differentiate the 

density differences than to tell the differences of seagrass species by acoustics. An 
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investigation of possible acoustic signatures for the density differences is provided in 

section 4.3.5. 
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Figure 3-23 Photographic pair and acoustic backscatter waveforms of a typical 

sand class sample from the third field trial. 
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Figure 3-24 Photographic pair and acoustic backscatter waveforms of a typical 

Posidonia seagrass class sample from the third field trial. 
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Figure 3-25 Photographic pair and acoustic backscatter waveforms of a typical 

Amphibolis class sample from the third field trial. 
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3.4 Differences between 38 and 200 kHz 

The 200 kHz sounder with the sampling interval of 25 micro-seconds 

provides better resolution than the 38 kHz sounder. A narrower beam and 

consequently smaller footprint size at 200 kHz results in a smaller seafloor area 

sampled at 200 kHz than that at 38 kHz. From the author’s observation, the 200-kHz 

was more sensitive than the 38-kHz to the existence of marine vegetation. Therefore 

it was proposed in this study that the 38-kHz echo could be a steady indicator for the 

localization of the water-sediment interface, no matter whether there is vegetation on 

the bottoms or not. Based on the assumption that each echo was collected from a flat 

footprint and the operation modes did not change significantly, the author 

investigated the effectiveness of using the 38-kHz backscatter signal as a reference 

for the bottom localization and as a base by comparing against the 200-kHz signal 

for the estimate of vegetation canopy height (see sections 4.2.2, 4.2.3, and 4.3.4). 

3.5 Data conversion 

Raw data values were logged by the SIMRAD EQ60 acquisition program. 

The raw data were then exported to values of the volume backscatter strength Sv into 

MATLAB format by SonarData’s EchoView software (version 3.10.139.8). 

According to SonarData’s manual, the volume backscatter strength Sv is obtained for 

the range R and received signal level Pr according to: 

a
t

rr S
cGP

RRPPRSv 2)
32

log(102log20),(
2

22
0 

  3-1 

where α (in dB/m) is the acoustic attenuation coefficient in sea water, Pt is the 

transmitted signal power at 1 m from the sonar head, G0 is receive gain (in relative 

units), c (in m/s) is the sound speed, τ (in second) is the transmitted pulse width, and 

ψ (in steradian) is the sonar beamwidth expressed in terms of the solid angle. 

It should be noted that SonarData used different formulae in different 

EchoView versions for defining Sv. The formula given in (3-1) was taken from 

version 3.10.139.8. The up-to-date version provides a different correction term for 
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2Sa. The default input value of Sa in the data processing algorithm is zero. The values 

of the volume backscatter strength used in this study are derived from the formula 

defined in equation 3-1. 

For the description of the seafloor surface backscatter properties, the volume 

backscatter strength Sv automatically calculated in EchoView and then exported into 

MATLAB was converted into the received acoustic power Pr, using equeation 3-1, 

and then the surface backscattering coefficient was calculated according to Medwin 

and Clay’s formulation provided in section 13.3.2 in (Medwin and Clay 1998). The 

surface backscatter coefficient s can be expressed as: 

AR

RR

p

p
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2
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2
0

2

)2exp( 
  3-2 

where <pr
2> is the mean squared pressure of the received signal, p0

2 is the squared 

pressure of the transmitted signal at the reference distance R0 (R0= 1m), R is the 

distance between the sonar head and the seafloor, β = α / 20log(e) is the sound 

attenuation coefficient in sea water in nepers, and A is the seafloor insonification area. 

For the pulse width used and sea depth observed in all experimental 

measurements in this study, the insonification area was always limited by the sonar 

beam footprint on the seafloor, which can be expressed in dBs as follows: 
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where ψ is the –3-dB width of the main lobe of the sonar directivity pattern 

expressed in radians. To simplify the calculation, the sonar beams at both frequencies 

of EQ60 were assumed to be rotationally symmetrical, although it is slightly 

asymmetrical at 38 kHz (see Appendix D). 

Once the received signal level is retrieved from the Sv value, the surface 

backscatter strength S can be calculated from: 

SCTRRRPPsS tr  2log40log10log10)log(10 2
0  3-4 

In contrast to the definition of the seafloor backscatter strength through the 

mean level of backscattered signals, as in Equation 3-4, the instantaneous backscatter 

level Pr is used in this study to estimate “instantaneous” samples of S, which, for 

simplicity, will be referred to as seafloor (or surface) backscatter strength. This 
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quantity is used to represent the seafloor backscatter value wherever it is considered 

in the text below, if not mentioned otherwise. 

3.6 Classification methodology 

Ultimately, the classification aimed at the provision of a classified acoustic 

database in which each acoustic sample was assigned to a specific bottom type by the 

examination of the corresponding optical sample. Different field trials observed 

different bottom types and population differences. For different field trials, 

classification criteria therefore had to adapt to the bottom types encountered. A 

habitat type found in one field trial is not necessary to be found in other field trials. 

Nevertheless, seagrass and flat sand bottoms were observed in every field trial and 

were the major habitat types exhibiting distinct acoustic backscatter features. 

3.6.1 Photographic classification 

The assignment of each photographic pair to a distinct habitat type was 

carried out manually. Before the collected optical data were classified, the 

photographs had to be previewed in order to understand how many habitat types 

were in each collected data set. Based on the biological features that appeared on the 

photographs, a table of tentative habitat types for the collected data was generated. 

A typical table of habitat types used for the image classification from the first 

field trial is given in Table 3-2. In the table, the habitat types assigned for the images 

were based on the predominant species or bottom types appearing on the 

photographs and occupying the greatest portion of the areas on the photographs. In 

the assignments, the attribute of each photographic sample was represented by a 

combination of two digits. 
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Table 3-2 A classification table of two digits used in combination for the 

assignments of the habitat types (1st digit) and the distribution 

attributes (2nd digit) of the observed study targets on the photographs 

for the first ESP field trial in 2004. 

Assigned NO 1st digit: Habitat types 2nd digit: Distribution attributes 

1 Sand Uniform 

2 (Not used) Non-uniform 

3 Reef Dense 

4 Macro algae Sparse 

5 Seagrass 1 (P. sinuosa) Epiphytes attached on seagrass 

6 Seagrass 2 (P. australis) Gas bubbles appeared 

7 Mixture of 2 seagrasses  

8 Fish appeared  

9 Coarse sand  

 

For example, a classification of “62” indicates that the predominant species 

observed from the image pair is seagrass species P. australis, and the seagrass 

photographed is not uniformly distributed on the bottoms. Note that the “80”, “05”, 

“06”, and “00” are exclusively reserved for the fish observed within the footprints, 

epiphytes attached on seagrass, gas bubbles, and unrecognizable photographs 

respectively. 

Area cover differences of a species on the photographs were observed. The 

distribution of a predominant species may vary in extent from dense, medium, to 

sparse disposition. Areas covered by the predominant species may also occupy only 

part of the photograph while the other part is totally occupied by different habitat 

types. In order to accomplish the task of assigning an appropriate habitat type to each 
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photographic pair, circle plots of the estimated insonified areas for each frequency of 

the echosounders were plotted on the corresponding photographs. 

The circle plots were based on the EQ60’s beam patterns (see Appendix D) 

and laboratory measurements of the beam width at the -3 dB backscatter level at each 

frequency made in a water tank§§§§§. The centre of each circle was also determined. 

As one can see in the previous figures such as Figure 3-25, the enclosed areas 

varied from one frequency to another and hence the habitat type assigned to each 

sample may have an ambiguity depending on the frequency choice. In this study, the 

identification of seafloor habitats was primarily based on the areas enclosed by the 

EQ60 footprint at 200 kHz. 

There were occasions when the same optical samples were assigned to 

different habitat types at different classification attempts. One of the reasons was that 

there were situations in which the predominant species on the photographs was not 

distinctive. The other reason was that two or more species were observed in the same 

photograph. 

In order to prevent ambiguities arising from the above issues, data were 

classified into data sets with different confidences.  The highest confidence data sets 

consist of bottom types of pure sand seafloor and single seagrass species meadows 

uniformly distributed on the insonified areas. Lower confidence data sets consist of 

data in which two or more species may appear simultaneously on the images or the 

species is not uniformly distributed. 

3.6.1.1 Issues due to the system configuration 

Figure 3-26 shows how a fish appearing within the insonified cone in the 

water column affected the optical (left and right camera photographs) and acoustic 

data collected. In this particular case, it shows that there were occasions when the 

acoustic backscatter data could not be properly interpreted unless a comparison was 

made for the optical and acoustic samples taking into account the actual 

                                                 
§§§§§ The laboratory measurements of each frequency’s -3 dB backscatter level were mainly supported 

by Dr. Alec Duncan and assisted by Mr. Andrew Woods. 
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configuration of the system components. This also shows that objects appearing in 

the water column can impact on the collected data. This is also why in Table 3-2 

there is a category particularly reserved for samples when fish appeared on the 

photographs. 

In Figure 3-26, the 200-kHz echo revealed the fish by exhibiting a sharp peak 

well above the detected bottom while the 38-kHz echo signal was not sensitive to the 

presence of the fish. In order to avoid the influence of in-water backscatterers on the 

acoustic classification of seafloor vegetation, the samples containing fish and gas 

bubbles were excluded from this study. After this screening, a classified acoustic 

data set was obtained. It contained classes of 1) pure sand bottoms, 2) pure seagrass 1 

(P. sinuosa), 3) pure seagrass 2 (P. australis), 4) mixed seagrasses, 5) rocky reefs, 6) 

macro algae, and 7) other non-uniformly distributed species of the above classes. 

When fish appeared at positions such as those marked by @, ©, and ® in 

Figure 3-26  and was actually outside the acoustic cone of the sonar beam, the 

acoustic samples collected under such conditions might be incorrectly classified into 

the fish class in spite of the fact that echoes were actually backscattered from fish-

free seafloors. If a similar observation system is to be used, one needs to carefully 

understand the configuration-induced issues in order to prevent such a 

misclassification possibility. 
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Figure 3-26 A particular case showing how the study targets (fish and seafloor) 

were recorded by the Left camera (no fish), Right camera (fish 

appeared), and the two-frequency echosounder due to the 

configuration of the detection components and the relative position of 

the fish under the detection components. Those marked by @, ©, and 

® indicate the possible positions where fish may be observed on the 

photographs while no indications of fish can be observed from the 

acoustic signals. 
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3.6.2 Classified acoustic data 

The synchronization of the optical and acoustic systems allowed 

classification of the acoustic data set into appropriate habitat types using the above 

mentioned procedure. After this step, a very accurately identified acoustic data set 

became available for supervised training of classification algorithms, which was one 

of the major advantages of the ESP project. 

3.7 Summary 

In conclusion, the synchronization mechanism between the optical and 

acoustic systems provided a perfect platform to obtain an accurately classified 

acoustic data set for further needs including the supervised training requirements of 

the acoustic classification methods. According to different levels of data confidence, 

data were divided into the so-called “pure” samples and “non-pure” samples. 

With the accurately identified acoustic data, there are chances we can resolve 

some of the doubts about the relationship between characteristics of the acoustic 

waveform and the seafloor properties, and use the acoustic features identified from 

the comparative analysis of acoustic and visual data to develop methods for the 

acoustic assessment of seafloor vegetation. 
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Chapter 4 Conventional study results 

This chapter illustrates the results of analysis of the acoustic data by some 

conventional methods. The analysis aims to understand the acoustic backscatter 

characteristics of some typical vegetation species by comparing their backscatter 

features against those from the bare sand seafloors. In the three field trials, the study 

targets varied, the field sites changed, the operational procedures were adapted to the 

actual conditions, and the data collection system was adjusted accordingly. However, 

the settings of the EQ60 sonar were kept the same in order to provide a fair 

comparison between different field trials. 

In view of the frequent use of the terminology “feature” and “parameter” in 

the following text, they are defined below for their specific meanings used in this 

work. 

 Parameter - some measured characteristic of the signal. (e.g., EPW in 

section 4.2.1.3) 

 Feature - the result of some combination of one or more parameters that 

is then used for classification purposes. (e.g., those PCA components in 

section 4.4.2 and GP individuals in Chapter 5) 

 

4.1 Study considerations 

4.1.1 Applicability of backscatter theory to seafloor 

vegetation 

There have been several theoretical studies made for the estimates of the 

seafloor roughness defined by various statistical parameters (Isakovich 1969; Akal 

and Hovem 1978; Berkson and Matthews 1983; Fox and Hayes 1985; Pace, Al-
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Hamdani et al. 1985; Stanton 1985; Jackson, Winebrenner et al. 1986; Ogilvy 1987; 

Thorsos 1988; Ogilvy 1991; Stanton, Chu et al. 1991; Jackson and Briggs 1992; 

Michalopoulou, Alexandrou et al. 1994; Bilgen and Rose 1997; Ivakin 1998; Lyons, 

Pouliquen et al. 1998; Novarini and Caruther 1998; Thomas, Rosen et al. 1999; 

Keiffer and Novarini 2000; Johnson 2002; Liu, Huang et al. 2002; Johnson and 

Burkholder 2004; Liu, Tsai et al. 2004). According to Stanton’s study (Stanton 1984), 

if the scale of seafloor roughness is much smaller than the acoustic wavelength, the 

roughness parameters, such as the root mean square (RMS) roughness height and the 

roughness correlation length, can be estimated from the acoustic echo envelope and 

then used for characterizing various bottom types. However, the theory developed by 

Stanton is only applicable to a limited range of backscatter scenarios depending on 

the acoustic frequencies and the bottom types. He applied his model to numerically 

predict acoustic backscatter from several bottom types, including sand ripples, 

nodules, or rubble beds. For bottom types, such as those covered with seagrass or 

macro algae, acoustic backscattering at higher frequencies is subject to shadowing 

effects and multiple reflections from leaves and the substrate and hence the classical 

acoustic backscatter models, such as the small perturbation model and small slope 

approximation, are no longer applicable. The Kirchhoff approximation commonly 

used for acoustic scattering modelling is not applicable to simulating backscattering 

from the vegetation-covered seabeds. With the only appropriate theoretical models 

suitable for the vegetation-covered seabeds being a few models made by Shenderov 

(Shenderov 1998), which are applicable to certain simplified scenarios of 

backscattering from seafloor plants, the author of this thesis carried out an analysis of 

the waveform characteristics from an empirical point of view. The attempt here was 

made to find if there were any acoustic parameters suitable for effective 

characterization of some typical habitat types in order to provide capabilities for the 

recognition and assessment of seafloor vegetation by using the available single beam 

echosounder. 

4.1.2 Waveform analysis 

For waveform analysis, there are several ways to extract seabed information 

from backscatter data of multi-frequency sonar systems. It can be the waveform 
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analysis at a single frequency or a comparison between different frequencies (two 

frequencies for EQ60). Since the time resolution at the lower frequency (38 kHz) of 

the EQ60 sonar is coarser than that at 200 kHz, it was mainly the 200 kHz 

backscatter data which were used for characterizing the seabeds. Due to the 38 kHz’s 

poor sampling resolution (see Table 3-1), extraction of additional useful reference 

points from the 38 kHz’s echo envelope is almost impossible except the maximum 

backscatter level. The 38 kHz data were only used for its steady indication of the 

water-sediment interface location by using its maximum backscatter level. 

The waveforms of acoustic signals backscattered from bare sediments and 

from bottoms covered with vegetation are different. Different frequencies also 

presented different sensitivities to the study targets. Physical properties of the 

interface between the seafloor substrate and water are the key factors that may 

influence the returned waveforms. A flat sandy seafloor can be regarded as an ideal 

flat interface which is unique and different from vegetation-covered seabeds. The 

existence of vegetation on the water-sediment interface can be regarded as a 

perturbation of the bare bottom condition. To understand the variation of the 

backscatter from different bottom types, the author investigated the echo envelopes 

of the pure sand seafloor and the seagrass-covered seabeds. The results are given in 

the following sections. 

4.1.3 Location of the bottom from the waveform analysis 

Illustrated in Figure 4-1 are the typical acoustic waveforms at 38 and 200 kHz 

for backscattering from a densely populated seagrass meadow of P. australis (see 

Figure 3-9 as a contrast for backscattering from the bare sand bottom). There was a 

discussion among scientists (e.g., (Sabol, Melton et al. 2002) and (Tęgowski, Gorska 

et al. 2003)) about the appropriate reference point on the waveform which could be 

assigned to the true water-sediment interface location. The true bottom location 

refers to the interface between the water and the sediment on which the vegetation is 

accommodated. When an echo backscatters from a flat and bare sand seafloor, the 

returned waveform is quite sharp and the water-sediment interface can be easily 

located. When an echo is backscattered from vegetation-covered seabeds, the 

returned waveform is generally elongated and consists of several peaks of 
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comparable levels, which is clearly seen at 200 kHz in Figure 4-1. The amplitude of 

those peaks varies considerably from one transmission to another one. When the 

echoes are backscattered from very dense seagrass meadows (see Figure 3-17) or tall 

macro algae (see Figure 3-19), the later arrival peaks distort the echo tail such that it 

is generally impossible to appropriately determine the range to the bottom by the 

decay of the backscatter level. If the maximum level can be used to refer to the 

water-sediment interface location, it is seen in the 38-kHz waveform Figure 4-1 that 

there is only one peak which can be definitely selected for this assignment (see 

sections 4.2.2 and 4.2.3 for further investigation results). However, it is evident from 

the 200-kHz waveform that there are several peaks in the waveform at 200 kHz 

which could be assigned to the water-sediment interface location if the maximum 

level were used. 
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Figure 4-1 Typical waveforms at two frequencies of EQ60 backscattered from a 

densely populated seagrass meadow of P. australis showing several 

peaks in the 200-kHz waveform with backscatter levels comparable to 

the maximum value (Max). 
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The maximum fluctuation between the backscatter peaks at 200 kHz as 

shown in Figure 4-1 is over 30 cm. The multiple peaks of similar height on the 200 

kHz bottom return make the location of the maximum level an unreliable parameter 

because statistical fluctuations in the heights of the individual peaks will lead to large 

changes in position of the maximum. When this fluctuation is comparable to the size 

of the study target, it is a critical issue in considering the designation of an 

appropriate reference point on the waveform for the correct bottom interface location. 

To show the effect of the above issue, the author provided the investigation results of 

this problem in sections 4.2.2 and 4.2.3. 

In the following sections, the observations and analysis results of the data 

collected by the EQ60 from each field trial are provided. 

 

4.2 Cockburn Sound 2004 

4.2.1 Characterization parameters 

4.2.1.1 Bottom backscatter strength 

Lyons and Abraham used the mean backscattering strength (BSS) in dB as a 

measure for the characterization of different seafloor covers including Posidonia 

oceanica seagrass meadows. The BSS’s angular dependence for four bottom types is 

shown in Figure 4-2 (Lyons and Abraham 1999). From Figure 4-2, the BSS of the P. 

oceanica near the grazing angle of 80 deg is around -20 dB. Lyons and Abraham 

observed that the mean scattering strength measured in their study did not correlate 

well with the bottom types. They suggest that any classification scheme needs to 

consider not just the mean scattering strength but also other parameters to improve 

characterization results. 
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Figure 4-2 Bottom backscatter strength as a function of grazing angle for four 

different bottom types: shellfish covered sand, Posidonia Oceanica 

seagrass covered sand, medium sand, and mud observed by Lyons and 

Abraham.****** 

 

Instead of using BSS, the author investigated the potential of the maximum 

backscatter level expressed in terms of surface backscatter strength as a descriptor 

for the recognition of the bottom types observed in the first field trial. The 

histograms of the maximum S value for various bottom types observed at two 

frequencies are shown in Figure 4-3 and Figure 4-4. The results showed that the 

maximum backscatter strength obtained for each particular class fluctuated over 20 

dB at both frequencies. Although the variations of the maximum backscatter strength 

at 200 kHz were smaller than those at 38 kHz, the maximum backscatter strength 

also could not be used as a sole characteristic for distinguishing all the classes. 

 

                                                 
****** Reprinted with permission from The Journal of the Acoustical Society of America, Vol 106, Iss 

3, Lyons, A. P. and D. A. Abraham, “Statistical characterization of high-frequency shallow-water 

seafloor backscatter”, pages 1307-1315, copyright (1999), Acoustical Society of America. 
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Figure 4-3 Histogram of the maximum backscatter strength obtained at 38 kHz 

from various classes where samples were collected from the first field 

trial. 
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Figure 4-4 Histogram of the maximum backscatter strength obtained at 200 kHz 

from various classes where samples were collected from the first field 

trial. 

 

4.2.1.2 Echo-average backscatter strength 

A parameter called integral backscattering strength (IBS) has been 

investigated by Tęgowski (Tęgowski 2002) for recognition of bottom sediments in 

the southern Baltic Sea. It was defined as an integral of the instantaneous surface 

backscatter strength S derived from the echo envelope within a depth interval. 

Instead of using the IBS defined by Tęgowski, the author divided the IBS by the 

depth interval as an average backscatter strength value for each echo so that the 

echo-average backscatter strength is independent of the depth interval. As shown in 

Figure 4-5, the echo-average backscatter strength does not perform better than the 

maximum backscatter strength in distinguishing the classes discussed in the 

previous section. 

 



Chapter 4 

 104

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

N
or

m
al

iz
ed

 f
re

qu
en

cy

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

Echo-average backscatter strength, dimensionless

Sand

Reef

Macro algae

P. sinuosa

P. australis

 
Figure 4-5 Histograms of echo-average backscatter strength obtained at 200 kHz 

for five classes where samples were collected from the first field trial 

(cf. Figure 4-25). 

 

4.2.1.3 Effective pulse width 

As was discussed in section 2.1.3.3.6, Tęgowski, Gorska and Klusek used the 

moment of inertia (MI) of the backscatter pulse as a parameter for differentiation of 

seagrass meadows from flat sandy bottoms (Tęgowski, Gorska et al. 2003). MI is the 

same in concept as the effective pulse width (EPW) discussed below. The EPW is a 

product of the sampling interval and the square root of MI. Both MI and EPW are 

based on the determination of the “Center of Mass” (Denbigh 1989) of the 

backscattered pulse waveforms (Tęgowski, Gorska and Klusek used the term “Centre 

of Gravity” instead). To calculate the EPW, it is necessary first to determine the 

centre of mass (CM) of the backscatter return impulse. 

The mathematical definition for the CM is 
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ic jfjfiIntji  4-1 

where fi(j) is the pulse amplitude of the j-th sonar ping number at index i and Int 

denotes the integer function. For discrete pulse signals of backscatter echoes, the 

amplitude fi(j) is the squared acoustic pressure of the backscattered signal. It is 

essential that the summation in equation 4-1 is made over an interval which contains 

entirely the first bottom return, i.e. starts before the front of the first bottom echo and 

ends before the second bottom return. The selected summation time interval is shown 

in Figure 4-6. 
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Figure 4-6 Time interval for the summation to be made over for the first bottom 

return in equation 4-1 and the reference points used to derive the 

parameters used in this study. 

 

All the parameters used in this study were derived from the first backscatter 

echo as indicated in Figure 4-6, in contrast to the RoxAnn technique (see section 

2.5.1). The summation region starts from the index corresponding to the minimum of 

the pulse front and ends at the index which is twice the starting index. 
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In order to determine an appropriate time interval containing the entire signal 

of the first bottom echo, the maximum backscatter level has to be firstly located. 

Searching for the maximum level should start from a predefined range from the sonar 

head to avoid false localization due to acoustic ringing of the transducer decaying for 

a certain time after transmission of the sonar impulse. Backscatter peaks comparable 

in level to the first bottom return may appear before the first bottom return if fish or 

any object of high backscatter target strength, such as gas bubbles, appears in the 

insonified cone. Those signals backscattering from in-water objects should be 

manually removed in order to make sure that the characterization parameters are 

correctly extracted from the first bottom echo. Once the maximum point in the first 

bottom return is determined, the other reference points such as the “Front” 

(determined from the selected threshold of the backscatter level), “Min of front”, 

“Max of front” (determined by comparing neighbour backscatter level), and “End” of 

the first bottom return can be easily determined (see Figure 4-6). 

There is a major drawback of this selection for the first bottom return. The 

farther the study target, the longer the time duration will be considered in the 

calculation for the first bottom return, which could result in range dependence for the 

extracted characterization parameters. 

EPW of an acoustic backscatter signal can be expressed as 

   jItjEPW   4-2 

where 

 
   

 
 



i
i

i
ic

jf

jfii
jI

2

 4-3 

is the MI of the j-th sonar ping and δt is the sampling interval. 

By investigating the value of the EPW, it is possible to distinguish a few 

acoustically distinct seabeds, but not all. In one of the previous study results 

(Siwabessy, Tseng et al. 2004), EPW gives the best performance against other 

parameters in differentiating various seabed types. 

A comparison of the EPW measured for several data sets is provided in 

Figure 4-7 and Figure 4-8. The data illustrated in Figure 4-7 come from the 

homogeneous habitat types (pure classes) while those in Figure 4-8 represent the 

inhomogeneous classes containing mixed seafloor covers within the acoustic 
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footprint with one major class dominating the others (non-pure classes). Since P. 

sinuosa was not observed in the non-pure classes, it was not included in Figure 4-8. 
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Figure 4-7 Histogram of EPW of five pure habitat types where samples were 

collected from the first field trial (cf. Figure 4-14). 
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Figure 4-8 Histogram of EPW of four non-pure habitat types where samples were 

collected from the first field trial (cf. Figure 4-15). 

 

It is seen from Figure 4-7 and Figure 4-8 that the macro algae class exhibits 

the highest EPW values while the sand class has the lowest EPW values. Overlaps of 

the EPW distributions between different non-pure classes as shown in Figure 4-8 are 

considerably larger than those in Figure 4-7. This is most likely due to the mixed 

habitat types of the non-pure classes with analogous properties between different 

classes. For example, if the non-pure sand class is mixed with seagrass, the sand 

class will have EPW values approaching the seagrass’s EPW distribution range. 

If there are only two classes involved, it is possible to choose an optimal 

EPW threshold to discriminate the two different classes with the minimum 

misclassification rate. However, overlapping is inevitable and the condition of more 

than two classes observed in this study does not allow perfect segmentation of those 

classes by using the EPW parameter only. 

As described in section 3.3.2.2, macro algae, such as the common kelp 

species of Ecklonia radiate, were observed in the field trials. High and prominent 

shoot profiles were their common feature. Their higher EPW values than other 

classes may be due to this unique profile feature. 



Chapter 4 

 109

The EPW of backscatter echoes from the seagrass meadows was generally 

larger than that from flat sandy bottoms. It is still unknown whether the longer tail of 

the backscatter pulse from seagrass is a consequence of reverberations in the seagrass 

mass or multiple reflections between the vegetation and the bottom substrate. Large 

EPW values were also observed from the backscattering from rocky reefs, macro 

algae and other habitats, such as coral reefs, which make the seafloor surface 

noticeably rougher than the pure and fine sediments, such as sand and silt. 

4.2.1.4 Hurst exponent and fractals 

Fractals introduced in topology for the first time by Mandelbrot (Mandelbrot 

1967; Mandelbrot 1984) are defined as phenomena exhibiting patterns of self-

similarity or self-affinity and are independent of scaling (Hastings and Sugihara 

1993). Seagrass canopies of the P. sinuosa species exhibit patterns analogous to 

fractals in scales when viewing from a distance (see Figure 2-5a for the parallel 

growing patterns periodically separated by the sand channels) and from a closer 

range (see Figure 2-5b for the parallel inclination of the leaves). 

Fractal dimension (FD) of the echo envelope has been used by Tęgowski, 

Gorska and Klusek as one of the parameters for discriminating bare sand and 

vegetation-covered seabeds (Tęgowski, Gorska et al. 2003). Although they 

concluded that the accuracy of classification by FD was noticeably worse than that 

by MI (or EPW in this study), it is worthwhile to examine the robustness of the FD 

parameter again for the classification of the sonar data collected in this study. To 

understand this, the author conducted a study of the correlation between the fractal 

dimension and some distinct habitat types. 

The Hausdorff dimension (Hausdorff 1918) and Hurst exponent (Hurst 1951; 

Hurst 1952) are often used to determine the FD which characterizes the roughness of 

a geometrical object and long-memory dependence of fractal time series respectively 

(Gneiting and Schlather 2003). Under certain assumptions, the FD can be related to 

the Hurst exponent through a linear function (Barton and Poor 1988; Molz, Liu et al. 

1997). 

The Hurst exponent H is a scaling parameter of self-similarity. Its linear 

relationship with the FD can be expressed by 
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HCD   4-4 

where D is the FD and C is a constant (Mandelbrot and Wheeler 1983; Feder 1988). 

Hence, the FD can be determined from the Hurst exponent through the above 

equation. 

According to Hurst’s study (Hurst 1951), the Hurst exponent can be 

estimated by calculating the mean value of the so-called rescaled ranges. A detailed 

mathematical formulation for estimating the Hurst exponent can be found in (Peters 

1994; Weron 2002). The calculation of the Hurst exponent is briefly illustrated by 

the following procedures. 

Firstly the whole length N of an echo envelope is divided into d contiguous 

sub-series of length n, where d*n=N. Next for each sub-series m = 1,…,d 

1) find each sub-series mean 
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3) calculate a series of cumulative sums for each normalized sub-series data 
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One can then easily obtain the so-called “rescaled range” Rm / Sm where 
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Finally the mean value of the rescaled range for all sub-series of length n is obtained 

by 
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The Hurst exponent H, and hence FD through equation 4-4, can be obtained by 

taking the logarithm of the mean (R/S)n  through the general relationship: 

H

n

nC
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Since it is the relative value of the H among the different habitat types that is 

relevant for the differentiation purpose, one can assign the constant C’ to be unity. 

Following the above formulation, the estimated Hurst exponent H values can be 

calculated from the slope of a log-log plot of R/S against n. A typical example for a 

pure sand echo envelope is plotted in Figure 4-9. 
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Figure 4-9 Log-log plot of the rescaled range (R/S) vs. the sub-series length n of a 

typical echo from bare sand and its least mean square linear fit. The 

slope is the Hurst exponent. 

 

It is noticeable that the rescaled range (R/S) deviates more from the linear fit 

as the sub-series length n increases. This is because the average value is calculated 

for fewer available number of d sub-series data sets. The histograms of the Hurst 

exponent estimated for the echo signals from five pure classes are plotted together in 

Figure 4-10. Large overlaps of the Hurst exponent distributions obtained for different 

seafloor classes reveal that the Hurst exponent is not robust enough for using it as a 

single parameter for distinguishing those five habitat types. 
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Figure 4-10 Histograms of the estimated Hurst exponent of five pure habitat types 

where samples were collected from the first field trial. 

 

The Hurst exponent’s inability to distinguish the five pure habitat types may 

be due to the limited sampling ability of the sonar system used. Other possible 

reasons could be that fractal patterns might not actually exist in the echo envelope or 

the relationship between Hurst exponent and FD is not a linear one like equation 4-4. 

4.2.2 Detection abilities of the 38 and 200 kHz sonars 

As discussed in sections 3.4 and 4.1.3, the 38 kHz sonar is expected to be 

primarily sensitive to the substrate and insensitive to the existence of vegetation on 

seabeds. To examine this assumption, let us consider a case for samples only selected 

within a small and bounded area assuming flat sea bottoms. By selecting the 

maximum amplitude on the 38 kHz waveform (see Figure 4-1) as the indicator for 

the bottom, there is no obvious evidence from Figure 4-11 that the 38 kHz is 

sensitive to the existence of seagrass on seabeds. Conversely, the bottom ranges for 
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the same pings, determined from the front of the 200 kHz echo (see Figure 4-12), 

exhibited an obvious difference between the sand and the seagrass meadows. It is 

evident that the 200-kHz echo signal is more sensitive than the 38 kHz in detecting 

the existence of the vegetation on the seafloor. The limited ability of low frequencies 

for detecting seagrass habitats was also noticed by a group of Italian researchers 

(Colantoni, Gallignani et al. 1982) and discussed in section 2.1.3.3.4. It is 

consequently reasonable to expect that the differneces between the ranges 

determined at these two frequencies may be useful for estimating canopy height. 

 

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Range, m

N
or

m
al

iz
ed

 f
re

qu
en

cy

 

 

Sand

Seagrass

38 kHz

 

Figure 4-11 Histogram of detected bottom range based on the peak location of the 

echo waveform at 38 kHz for sand and two seagrass species 

combined. 
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Figure 4-12 Histogram of bottom ranges measured from the front location of the 

waveform at 200 kHz for sand and two seagrass species combined. 

 

4.2.3 Detection of seagrass canopy 

In view of the above observations, the range difference between the “Front” 

at 200 kHz and the “Max” at 38 kHz, defined as RD in this study, is proposed as a 

measure for the height of vegetation on seabeds. The “Front” indicated in Figure 4-6 

was determined by selecting the first sampled point on the waveform below a 

selected threshold level. The threshold was assigned at levels approximately 20 dB 

below the average peak level value of the echo signals and used as a criterion for the 

computer algorithm to detect the arrival of the first pulse after excluding the initial 

time interval from the echogram which contains noise from acoustic ringing by the 

transducer. 

From the optical recordings, different habitat types have different surface 

contours. Even for the same plant on the same bottom location insonified by the 

same sonar system within the main lobe, it can have different RD values varying 
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over time due to the plant’s waving motion with the currents. As shown in Figure 

4-13, the macro algae exhibits the biggest RD variation value reflecting the wide 

variety of algae sizes and its changing canopy height over time actually observed in 

the field, while flat surface bottom types such as the sand seem to have smaller RD 

and RD variation values than other classes. The Posidonia seagrasses generally have 

bigger RD values than the sand bottom. 
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Figure 4-13 Histogram of the RD values for five pure classes where samples were 

collected from the first field trial. 

 

 

Further investigation results for the relationship between RD and seagrass 

canopy height for samples collected from Owen Anchorage and Parmelia Bank at 

different seasons in 2005 are illustrated in section 4.3.4. 
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4.3 Owen Anchorage and Parmelia Bank 2005 

4.3.1 Sea squirts 

In the second field trial, a seafloor densely populated by sea squirts was 

observed among other habitats. It was not possible to distinguish the bottoms covered 

by sea squirts from the surrounding mudy seafloor by using the best parameter (EPW) 

as a sole parameter for classification purposes (see Figure 4-14 for the pure classes 

and Figure 4-15 for the non-pure classes). The seagrass class has generally higher 

EPW values different from other non-vegetation classes while the EPW values of the 

mud class are generally lower. The EPW distribution of the macro algae class 

overlaps the EPW variations of all other classes. The sea squirts class exhibits EPW 

values close to the mud class. 
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Figure 4-14 Histograms of the EPW of five pure habitat types where samples were 

collected from the second field trial (cf. Figure 4-7). 
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Figure 4-15 Histograms of the EPW of five non-pure habitat types where samples 

were collected from the second field trial (cf. Figure 4-8). 

 

4.3.2 Classification performance for only sand and 

seagrass 

In the final field trial, sand and the Amphibolis griffithii and Posidonia 

seagrass species are the predominant habitats observed in the surveyed area. The 

quality of the optical recordings did not allow the author to differentiate the 

Posidonia seagrasses into further finer species. The Posidonia seagrasses observed in 

the final field trial were different from those observed in the second field trial. They 

populated densely in a bigger patchy area but without the row pattern observed in the 

second field trial. Amphibolis griffithii was observed for the first time in this study. 

Its canopy height was only a few centimetres and the plants were sparsely distributed 

on the seabed. To understand the characterization ability of the best parameter (EPW) 

investigated in the previous sections for the echo samples collected in the final field 

trial, histograms of the EPW values of these two classes are shown in Figure 4-16. 
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Note: Posidonia and Amphibolis are combined as a single class due to Amphibolis’s 

too few sample numbers. 
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Figure 4-16 Histograms of EPW values of the two pure classes observed in the 

final field trial (cf. Figure 5-8). 

 

It is seen from Figure 4-16 that the sand and the combined seagrass classes 

can be distinguished by selecting an EPW threshold below which the samples are 

classified as sand and as seagrass otherwise. A confusion matrix for all samples of 

the pure classes derived from an EPW boundary value of 0.12 ms is provided in 

Table 4-1. The confusion matrices for each particular site are given in Table 4-2, 

Table 4-3, and Table 4-4. The number in each bracket in the tables indicates the 

identification accuracy of the acoustic method with the EPW parameter for each 

class. 
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Table 4-1 Confusion matrix for all pure class samples collected from all sites of 

the final field trial based on the EPW boundary value of 0.12 ms (cf. 

Table 4-5, Table 4-6, Table 4-7, Table 4-8, Table 4-9, and Table 5-2). 

Note samples of the Amphibolis griffithii and Posidonia classes are 

combined as a single class. 

                  Acoustics 

Optics 
Sand 

Amphibolis + 

Posidonia 

Sand (150) 134 (89%) 16 

Amphibolis (3) + 

Posidonia (107) 
12 98 (89%) 

 

Table 4-2 Confusion matrix for pure class samples collected at site 1 and 2. 

                  Acoustics 

Optics 
Sand 

Amphibolis + 

Posidonia 

Sand (0) 0 (100%) 0 

Amphibolis (3) + 

Posidonia (74) 
8 69 (90%) 

 

Table 4-3 Confusion matrix for pure class samples collected at site 3. 

                  Acoustics 

Optics 
Sand 

Amphibolis + 

Posidonia 

Sand (0) 0 (100%) 0 

Amphibolis (0) + 

Posidonia (30) 
3 27 (90%) 

 

Table 4-4 Confusion matrix for pure class samples collected at site 4. 

                  Acoustics 

Optics 
Sand 

Amphibolis + 

Posidonia 

Sand (150) 134 (89%) 16 

Amphibolis (0) + 

Posidonia (3) 
1 2 (67%) 
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Based on the above recognition criterion, the distribution conditions of the 

three pure classes identified by the optical (left) and acoustic (right) methods at each 

site are shown in Figure 4-17. 
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Figure 4-17  Distributions of the pure class samples derived from the classification 

results made by visual observation (left) and acoustic method with 

the EPW parameter (right) over sites of the final field trial. Note the 

coordinates are omitted here. 
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4.3.3 Dependence of characterization parameters on 

range 

Investigation of the acoustic backscatter dependence on range was carried out 

by deploying sonar systems at a few discrete ranges in the final ESP field trial. 

Measurements of the acoustic backscatter of the sand and the seagrass classes were 

made at different fixed depths. Physical quantity investigated was the surface 

backscatter strength having been corrected for factors as shown in equation 3-4 (see 

section 3.5). In calculating the characterization parameters, a fixed sound speed of 

1500 m/s was used all the time in this study. Variations of the parameter values 

against observation ranges are shown in Figure 4-18 and Figure 4-19 for the pure 

sand and pure seagrass samples respectively. Dashed lines indicate the standard 

deviations from the best linear fit shown by the solid lines. 
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Figure 4-18 Measurements of the characterization parameters versus range to the 

bottom and their linear fits for pure sand samples collected from the 

final field trial. 
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Figure 4-19 Measurements of the characterization parameters versus range to the 

bottom and their linear fits for pure seagrass samples collected from 

the final field trial. 

 

Overall, the maximum S value shown in both figures appears to slightly 

increase with range, which is seen in a gentle slope of the linear fit. On the other 

hand, the echo-average backscatter strength and EPW do not exhibit any noticeable 

dependence on range for both sand and seagrass. This is an expected result because 

the seafloor backscatter strength, derived from the backscatter intensity corrected for 

the transmission loss and insonification area, should be in general range independent 

and depend mainly on the morphological and physical parameters of the bottom, 

rather than the geometry of measurement. However, since the observations are made 

within a very limited range interval (3.5 m) and only very few samples are available 

at the larger ranges (between 3 and 3.5 m), the range dependence prediction of these 

parameters at much larger ranges is uncertain. 
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4.3.4 Range difference (RD) and seagrass canopy height 

Based on the above observations investigated in the previous sections, it is 

reasonable to assume that vegetation such as the Posidonia seagrasses would be 

moderately transparent for acoustic waves at frequencies as low as 38 kHz, but 

effectively reflective at hundreds of kHz. If such an assumption is appropriate, the 

seagrass canopy height can be practically determined by comparing the detected 

bottom ranges at two different frequencies. The criteria for determining the bottom 

range at the 38 and 200 kHz in different ways have been discussed in sections 4.2.2 

and 4.2.3. 

The dependence of the RD values measured at the two frequencies on the 

detected bottom range is shown in Figure 4-20. Dashed lines around each linear fit 

are the standard deviations above and below the linear approximation. For sand, the 

average RD is around 0.17 m. For seagrass, the average RD is about 0.43 m. The 

average seagrass canopy height estimated by subtracting sand’s average RD value 

from seagrass average RD value is about 26 cm, which is smaller than the historical 

records varying from 35 to 45 cm but is in reasonable agreement with the 

measurements of the canopy height between 20 and 40 cm observed by the optical 

system in the ESP project (see sections 2.2.2.1 and 3.3.1.3). 
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Figure 4-20 RD vs. bottom range and the linear fits for pure sand and seagrass 

samples collected from the final field trial. 

 

A map of the sand and seagrass samples discriminated according to the EPW 

parameter over an area at site 4 of the final ESP field trial is given in Figure 4-21. 

The corrected RD values (after removing the average sand RD value of 0.17 m) are 

indicated by colours. The frequency distribution of the corrected RD values (seagrass 

canopy height) for the samples at each site that were classified using the EPW 

parameter as seagrass, is shown in Figure 4-22. 
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Figure 4-21 Distributions of the sand and seagrass samples classified by EPW with 

the corrected RD values shown in colour designated for seagrass 

canopy height at site 4 of the final ESP field trial (cf. Figure 4-30, 

Figure 4-34, Figure 4-38, Figure 4-46, and Figure 5-10). 
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Figure 4-22 Histograms of the estimated seagrass canopy height obtained after 

removing the average sand RD value of 0.17 m from the RD measured 

for seagrass at each site of the final ESP field trial. 

 

There is a small amount of outliers of the sand samples which can be 

observed with large RD values from either Figure 4-20 or Figure 4-21. In rare cases, 

the 38 kHz waveform of sand samples had several peaks in the first bottom return, 

such as the one shown in Figure 4-23, where the second peak of the first bottom 

return has a higher amplitude response than the first one causing an uncommonly 

large RD value when comparing to the normal RD values. The reason causing such 

response is uncertain yet. 
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Figure 4-23 An instance of the second peak in the 38-kHz first bottom return from 

sand which has a higher amplitude than the first one causing an 

uncommonly large RD value when comparing to the normal RD 

values. 

 

4.3.5 Differences between dense and sparse dispositions 

One of the results obtained by Shenderov through numerical modelling is that 

the acoustic backscatter level from densely populated algae should be at least two 

times higher than that from sparse algae (Shenderov 1998). Although seagrass is 

biologically different from algae, seagrass and algae might be similar in acoustic 

properties. To examine if there is any similar backscatter tendency on the seagrass, 

the author investigated the variation of the acoustic backscatter from densely and 

sparsely disposed P. sinuosa seagrasses. 

The characteristics compared for the dense and sparse seagrasses were the 

echo-average backscatter strength and EPW parameters (see sections 4.2.1.2 and 

4.2.1.3). The histograms of the two seagrass density conditions for the EPW and 
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echo-average backscatter strength are shown in Figure 4-24 and Figure 4-25 

respectively. 
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Figure 4-24 Histograms of EPW for the densely and sparsely populated P. sinuosa 

seagrass observed in the final field trial. 
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Figure 4-25 Histograms of echo-average backscatter strength for the densely and 

sparsely populated P. sinuosa seagrass samples collected from the 

final field trial (cf. Figure 4-5). 

 

Because of the large overlap between the histograms shown in Figure 4-24 

and Figure 4-25, both EPW and echo-average backscatter strength were unable to 

completely discriminate the difference between the two seagrass density conditions. 

Yet, there is some difference between the maximum frequency values of the echo-

average backscatter strength for the two seagrass conditions. The echo-average 

backscatter strength value at the maximum frequency for the dense seagrass is about 

0.15 while that for the sparse seagrass is roughly 0.1 in Figure 4-25, and the peak 

EPW value of the dense seagrass is about two times as large as the sparse one in 

Figure 4-24 – a tendency observed from the above two figures approaches the model 

predicted by Shenderov (see section 2.1.3.2 for the discussion of the algae models 

made by Shenderov). However, considering the variations and overlapping 

conditions of the above two parameters for the two seagrass density conditions and 

the fact that the actual number of sparse seagrass samples (35) is far less than that of 

the dense seagrass (111), a thorough investigation of a larger data set than that used 
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here would be required in order to make a definite conclusion for whether or not the 

seagrass cover conditions are distinguishable by the acoustic parameters used here. 

4.4 Multivariate approach 

Below are the results of multivariate statistical analysis of acoustic signals 

collected from some distinctive pure habitat types observed in the final ESP field 

trial. Each first bottom return, which will hereinafter be referred to as an acoustic 

bottom sample, was processed to obtain a set of statistical values that was used to 

represent the main features of each sample. 

4.4.1 Correlations among statistics 

Later in section 4.4.2 and Chapter 5, the same statistics investigated in this 

section will be used again for comparison purposes. Analysis will be first made for 

the performance with five statistics only (maximum, mean, standard deviation, 

skewness, and kurtosis). Later in section 4.4.2.1.2 the EPW parameter will be 

included in order to understand whether the addition of this parameter improves the 

classification performance or not. 
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Figure 4-26 Matrix plot of pairs of five statistics derived from the backscatter 

envelope of the first bottom return from sand class samples collected 

from the final field trial and their respective distribution histograms on 

the main diagonal where scales and units are omitted. 
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Figure 4-27 Matrix plot of pairs of five statistics derived from the backscatter 

envelope of the first bottom return from Posidonia seagrass class 

samples collected from the final field trial and their respective 

distribution histograms on the main diagonal where scales and units 

are omitted. 

 

To see the general linear relationship between each pair of the five statistics 

obtained from the data here, we can plot their correlations pair-wisely in a 2-

dimensional space to know roughly whether or not any statistical variable has any 

linear dependence tendency on the other. From matrix plots Figure 4-26 and Figure 

4-27 for sand and Posidonia seagrass classes respectively, it is obvious that some 

statistical variables are well correlated to others. For example, pairs like Mean and 

STD, and Skewness and Kurtosis have comparably stronger linear relationships in 

strength and direction than others. On the main diagonal of these figures, one can 

have a rough picture of the distribution conditions of the numbers of samples on the 

statistical variable values. 

To get a rough idea of the characterization abilities of these five statistic 

variables for the sand and Posidonia seagrass classes, histograms of these five 

statistics derived from the linear scale value of the echo-average backscatter strength 

are given in Figure 4-28. From the figure, it is seen that some statistics, such as 
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skewness and kurtosis, demonstrate a better performance with respect to 

distinguishing the two classes than the other ones. However, since skewness and 

kurtosis are almost linearly proportional to each other for both sand and seagrass, 

fewer statistical variables should suffice to provide similar performance for the 

characterization of the classes involved here. For this reason, Principal Components 

Analysis (PCA) commonly used in multivariate statistical analysis will be applied to 

the same data in the next section for extractions of best characterization parameters. 
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Figure 4-28 Histograms of five statistics derived from the first bottom echoes for 

sand and Posidonia classes obtained from the final field trial where 

units are omitted here. 

 

To understand the classification abilities of these five statistics, the author 

picked the skewness variable as an example for this purpose. Obviously the 

performance of the skewness variable is not better than that of the EPW parameter in 

classification although skewness is the best parameter among the above statistic 

variables which can best discriminate the class samples when comparing Figure 4-29 

below and Figure 4-16. To quantitatively understand its classification abilities, the 

author made some investigations and provided the results as shown in Table 4-5 and 

Figure 4-30. 
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Figure 4-29 Histograms of skewness values of the two pure classes observed in the 

final field trial with a boundary value of 4.25 used to discriminate the 

two class samples. 

 

From Figure 4-28 and Table 4-5, it is expected that the other individual 

statistics might not provide any better abilities than the skewness to discriminate the 

two class samples involved in this study. To understand the effect after applying the 

PCA method over the individual statistics in classification performance, the author 

made some investigations on this problem and provided the results in section 4.4.2.  

Table 4-5 Confusion matrix for all pure class samples collected from all sites of 

the final field trial based on the skewness boundary value of 4.25 (cf. 

Table 4-1, Table 4-6, Table 4-7, Table 4-8, Table 4-9, and Table 5-2). 

                  Acoustics 

Optics 
Sand Posidonia 

Sand (150) 109 (73%) 41 

Posidonia (107) 15 92 (86%) 
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Figure 4-30 Distribution of the sand and Posidonia seagrass samples identified by 

the skewness variable with the corrected RD values shown in colour 

designated for seagrass canopy height at site 4 of the final ESP field 

trial (cf. Figure 4-21, Figure 4-34, Figure 4-38, Figure 4-46, and 

Figure 5-10). 

 

4.4.2 Principal components analysis 

Principal Components Analysis is probably one of the most well-known 

techniques used for reducing the number of parameters needed for modelling 

variations in natural processes. It is a common multivariate method widely adopted 

for classification purposes in many scientific areas. The major advantage of PCA is 

its ability to find the best linear combinations of parameters to use as new orthogonal 

parameters for the description of data variation. In this case study, the statistical 

parameters used for characterization, including the EPW, are normalized first with 

respect to their means and then variations around the mean values are calculated. 

After this normalization process, the algorithm finds the eigenvectors and 
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eigenvalues of the covariance matrix from the normalized parameters. Eigenvalues of 

the covariance matrix represent the contributions of the eigenvectors to the global 

variations in the new variable space. That is, a higher variance signifies the 

importance of the eigenvector, which is indicated by a higher eigenvalue. Based on a 

selection criterion, the eigenvectors with the most significant eigenvalues are 

selected as the major parameters in place of the original variables for the description 

of original data variations in the eigenvector space. The major component accounts 

for the most variability in the data and the succeeding components of smaller 

eigenvalues account for the remaining variability in descending order.  

To examine the abilities of the PCA technique in characterizing the acoustic 

backscatter from seafloor vegetation, investigations of classification performance in 

the following subsections were made respectively for when the input parameters 

were selected from the five statistics only (see section 4.4.2.1.1) and when the EPW 

parameter was included (see section 4.4.2.1.2). 

4.4.2.1 Kaiser’s rule 

In PCA, it is important to determine the number of principal components 

(PCs) that contribute most to the variation. Kaiser provided a criterion, called 

Kaiser’s eigenvalue-greater-than-one rule, which defined a threshold of unity for the 

eigenvalues derived from the variations of normalized parameters (Kaiser 1960). The 

eigenfunctions with the corresponding eigenvalues exceeding the defined threshold 

are selected as PCs, while the other eigenfunctions are considered to have negligible 

effects. The criterion proposed by Kaiser is adopted in this study and used for the 

following tests. 

After the selection of PCs based on Kaiser’s rule, a K-means clustering 

method will be used to partition the samples on the selected PCs space into two 

clusters representing the sand and Posidonia seagrass classes. There are many 

partitioning options in the K-means method. The basic approach implemented in the 

K-means is to minimize the sum of distances from each multivariate sample to the 

clusters’ centroid for all clusters. In this case study, it is found that the best 

partitioning result is obtained by minimizing the so-called “correlation distance”, d(x, 

y)=1 – corr(x, y), where d(x, y) represents the distance between data points x and y 
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and corr(x, y) is the correlation value of x and y after normalizing data points to zero 

mean and unit standard deviation within each cluster (Seber 2004). 

4.4.2.1.1 Input parameters: Statistics 

The variances of the five PCs after normalizing the five statistics as discussed 

in section 4.4.1 are shown in Figure 4-31. The selection of the first two PCs that have 

eigenvalues greater than unity based on Kaiser’s rule is well demonstrated in this 

figure. 
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Figure 4-31 Eigenvalues obtained from the five normalized statistics as used in 

section 4.4. The threshold value for the selection of PCs is based on 

Kaiser’s rule (Kaiser 1960). 

 

Based on Kaiser’s rule, a scatter plot of the sand and Posidonia seagrass class 

samples represented by their coefficients in the two PCs space is shown in the upper 

panel of Figure 4-32. Using K-means, the partitioning result with the two assigned 

clusters and their respective centroids is shown in the lower panel of Figure 4-32. 
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Cluster 1 is mainly sand samples and therefore is assigned to sand class while cluster 

2 is Posidonia seagrass. 
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Figure 4-32 Scatter plot of the sand and Posidonia class samples on the top-two-

PCs space (upper panel) and the partitioning result for two clusters 

with their respective centroids using K-means (lower panel). 

 

Figure 4-33 shows the misclassification events marked with circles and 

squares in the selected PCs space determined by the above mentioned method. The 

confusion matrix in Table 4-6 demonstrates the identification ability of the 

classification method based on PCA and K-means for partitioning, as discussed 

above. 
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Figure 4-33 Scatter plot of two-cluster data on the top-two-PCs space with the 

misclassified samples marked by circles and squares. 

 

Table 4-6 Confusion matrix of all the pure sand and Posidonia class samples 

with their statistics as the input parameters for the PCA and 

partitioned by K-means as discussed in the text for the data collected 

from the final ESP field trial (cf. Table 4-1, Table 4-5, Table 4-7, 

Table 4-8, Table 4-9, and Table 5-2). 

                  K-means 

Optics 
Sand Posidonia 

Sand (150) 124 (83%) 26 

Posidonia (107) 30 77 (72%) 

 

As seen from comparing Table 4-6 with Table 4-1 in section 4.3.2, the 

partitioning result by K-means for the pure sand and Posidonia seagrass samples on 

the selected top-two-PCs space does not have a better performance than that 

determined by the EPW parameter. 
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With the same RD value as a measure for the seagrass canopy height as 

discussed in section 4.3.4, a map of the two-cluster samples identified by the PCA 

and K-means method at site 4 of the final field trial is provided in Figure 4-34. 
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Figure 4-34 Distribution of the sand and seagrass samples identified by the PCA 

and K-means method with the corrected RD values shown in colour 

designated for seagrass canopy height at site 4 of the final ESP field 

trial (cf. Figure 4-21, Figure 4-30, Figure 4-38, Figure 4-46, and 

Figure 5-10). 

 

The identification capability by the PCs for seagrass is 72% in Table 4-6, 

which is worse than that (89%) in Table 4-1 identified by the EPW. The poor 

performance by the PCs used here can be also observed from the inconsistency of the 

colour-coded representation originally intended for the seagrass canopy height and 

the poor identification ability given in Figure 4-34. 
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4.4.2.1.2 Input parameters: Statistics and EPW 

Because EPW was found to be the most effective parameter with respect to 

discrimination of the backscatter features of the sand and seagrass samples in a 1-D 

space, the EPW was included as one of the input features in the PCA analysis in 

order to examine possible improvements in classification performance. The 

eigenvalues of the normalized variations derived from the new set of six parameters 

after the inclusion of EPW are shown in Figure 4-35. It is obvious by comparing 

Figure 4-35 against Figure 4-31 that the third component here is more prominent 

than that calculated for the set of five statistical parameters, although the third 

component is still below Kaiser’s threshold. 
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Figure 4-35 Same as Figure 4-31, but with the inclusion of the EPW parameter. 

Based on Kaiser’s rule, two PCs determined from Figure 4-35 were selected. 

A scatter plot for the sand and Posidonia class samples with their coefficients on the 

selected PCs space is provided on the upper panel of Figure 4-36. A partitioning 

result using K-means with two assigned clusters and their respective centroids is 

shown in the lower panel of Figure 4-36. Cluster 1 is mainly sand samples and 
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therefore is assigned for sand while cluster 2 is Posidonia seagrass. It seems that the 

two clusters are better separated in the 2-D space than that shown in Figure 4-32. 
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Figure 4-36 Scatter plot of the sand and Posidonia class samples on the top-two-

PCs space (upper panel) and the partitioning result of two clusters 

with their respective centroids using K-means (lower panel) resulted 

from the inclusion of the EPW. 

 

After the inclusion of the EPW, the misclassification events on the top-two-

PCs space are shown in Figure 4-37 and the confusion matrix is shown in Table 4-7. 
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Figure 4-37 Scatter plot of two-cluster data on the top-two-PCs space with the 

misclassified data points marked by circles and squares after including 

the EPW. 

 

Table 4-7 Confusion matrix of all the pure sand and Posidonia class samples 

determined by K-means after including the EPW for the data collected 

from the final ESP field trial (cf. Table 4-1, Table 4-5, Table 4-6, 

Table 4-8, Table 4-9 and Table 5-2). 

                  K-means 

Optics 
Sand Posidonia 

Sand (150) 106 (71%) 44 

Posidonia (107) 29 78 (73%) 

 

After the inclusion of the EPW, the distribution condition of the two-cluster 

samples determined by the above mentioned method is shown in Figure 4-38. By 

comparing the identification accuracy for sand in Table 4-6 (83%) and Table 4-7 

(71%), the identification performance for sand after the inclusion of the EPW is 

surprisingly worse than that without the inclusion of the EPW, which was considered 

in the previous section. This could be due to the determination algorithm used in the 
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K-means. However, by comparing Figure 4-34 and Figure 4-38, it seems that most of 

the seagrass samples with prominent canopy heights are mostly effectively identified 

when comparing to those in Figure 4-34, which is an improvement in identifying the 

actual seagrass locations rather than just for the performance measured exclusively 

only in terms of numbers. 
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Figure 4-38 Same as Figure 4-34 but after the inclusion of the EPW (cf. Figure 

4-21, Figure 4-30, Figure 4-46, and Figure 5-10). 

 

As demonstrated by comparing the results in this section and the previous 

section, the classification ability combining both PCA and K-means to distinguish 

samples of the two classes seems to be limited by the clustering algorithm 

implementd by the K-means, although the input parameters, the five statistics and the 

EPW, play a critical role to the performance. The statistical method and the PCA are 

not able to provide acceptable classification results, even though the two pure classes 

involved here are the most distinctive ones. After the inclusion of the EPW, it is 

obvious from Figure 4-35 that the third PC contributes more to the global variations 

when comparing against Figure 4-31. However, since the third component is not 

selected for the PCs, there is no indication by comparing Table 4-6 and Table 4-7 
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that the overall recognition ability from the above process is enhanced after the 

inclusion of the EPW. 

Figure 4-39 to Figure 4-42 and Table 4-8 demonstrate results of classification 

using K-means applied to the first three PCs of the highest eigenvalues. 
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Figure 4-39 Same as the upper panel of Figure 4-36 but after the inclusion of the 

third PC. 
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Figure 4-40 Same as the bottom panel of Figure 4-36 but after the inclusion of the 

third PC. 
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Figure 4-41 Same as Figure 4-37 but after the inclusion of the third PC. 
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Table 4-8 Confusion matrix of all the pure sand and Posidonia class samples 

determined by K-means after the inclusion of EPW and the third PC 

for the data collected from the final ESP field trial (cf. Table 4-1, 

Table 4-5, Table 4-6, Table 4-7, Table 4-9, and Table 5-2). 

                  K-means 

Optics 
Sand Posidonia 

Sand (150) 113 (75%) 37 

Posidonia (107) 13 94 (88%) 
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Figure 4-42 Same as Figure 4-38 but after the inclusion of the third PC (cf. Figure 

4-21 and Figure 5-10). 

 

After the inclusion of the third PC, the overall performance is enhanced when 

comparing to the results with only two PCs. However, the classification performance 

is still worse than that obtained purely by the EPW parameter investigated in sections 

4.3.2 and 4.3.4. The PCA is in principle an effective method which can extract new 

prominent components from the original input parameters for describing the 
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variation of the data. The unsatisfactory discrimination performance obtained here 

could be due to the partitioning algorithm employed by the K-means, which is an 

unsupervised algorithm that does not use any prior knowledge about the actual 

classes identified unambiguously for training samples.  By contrast, the single 

parameter classification results based on EPW and described in section 4.3.2 relied 

on a set of training data to determine the optimum discrimination threshold. 

4.4.3 Linear discriminant analysis 

In the previous sections, the focus of classification has been narrowed down 

to a two-class problem for the sand and seagrass classes. In history, Fisher has 

investigated similar problems and proposed a method to differentiate the two plant 

species, Iris setosa and I. versicolor, by their characteristics (Fisher 1936). The 

methodology, which he applied to the taxonomic problem, has been developed 

nowadays into the so-called linear discriminant analysis (LDA). 

LDA is one of the available supervised classification techniques frequently 

used by researchers for classification problems where the number of classes is 

determined a priori. In LDA, the discriminant function (DF) is a linear combination 

of the observational variables such as the statistics, PCs, and EPW in this study. 

In principle, the DF formed by m observational variables can be expressed by: 




m

i
iiVw

1

 4-12 

where wi is the weight of the observational variable Vi, denoting its proportional 

contribution to the variable’s discrimination capability for the known classes. With 

equation 4-12, the description of the training data observed on the m-dimensional 

space is then transformed to the observation of the data consisting of the same 

classes by the DF on a one-dimensional space. 

For a problem with only two observational variables (m=2), a mixed two-

class data set can be segmented into two separated classes based on Fisher’s criterion. 

The criterion proposed by Fisher is the so-call F ratio (Dodge 2008). Its formulation 

is given by equation 5-1 in section 5.4. The criterion implies the maximum 

separation between different classes and the minimum dispersion within each class. 
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From the previous investigation results, we understood that the simple and 

easily interpretable variables, such as the skewness and EPW, gave above average 

performance in classifying the sand and seagrass classes. As shown in the upper 

panel of Figure 4-43, Zp is the projection value of point P of the two-class samples 

onto the new axis Z, which is called the discriminant score (Goldstein and Dillon 

1978; Sharma 1996). 
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Figure 4-43 Projection value Zp of point P (upper panel) and histograms (lower 

panel) of the two classes observed on the new axis Z expressed by the 

DF. 

 

In such a case, equaiton 4-12 can then be expressed as 

SkewnessEPW  )sin()cos(   4-13 

where θ denotes the angle between the EPW axis of the two-dimensional space and 

the new axis Z, as shown in the upper panel of Figure 4-43. The DF given by 

equation 4-13 is referred to as the Fisher’s linear DF with the two variables, EPW 

and skewness. 

Each sample lying in the original two-dimensional space at the angle θ 

relative to the new axis will have its corresponding z value, which is the discriminant 
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score of each individual sample observed on the new axis. A series of angle θ values 

will then generate a series of F ratio values according to Fisher’s criterion, which is 

plotted in Figure 4-44. The optimization procedure in this case is to find the angle θ 

at which the F ratio is maximal. There is one angle θ ††††††  which results in the 

maximum F value. 
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Figure 4-44 Plot of Fisher’s ratio F versus angle θ with the maximum F ratio value 

of 281 at an angle of -0.3 degree pointed by the arrow. 

Once the optimal angle θ of the Fisher’s linear DF in equation 4-13 is 

determined, histograms of the DF values of the two classes can finally be plotted, as 

shown in the lower panel of Figure 4-43. The minimum misclassification rate takes 

place when the boundary between the two classes of sand and seagrass is set at the 

optimum DF value of 0.091. Based on the boundary found by LDA, a discrimination 

result shown in the EPW-skewness space is given in Figure 4-45. 

                                                 
†††††† The other anlge which gives the same maximum F value is the one obtained by adding 180° to 

the angle θ. 
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Figure 4-45 A LDA discrimination result for the data collected from the final ESP 

field trial using Fisher’s criterion with an error rate of 0.097. 

 

Table 4-9 Confusion matrix of all the pure sand and Posidonia samples 

determined by LDA with the EPW and skewness variables using 

Fisher’s criterion for the data collected from the final ESP field trial 

(cf. Table 4-1, Table 4-5, Table 4-6, Table 4-7, Table 4-8, and Table 

5-2). 

                  LDA 

Optics 
Sand Posidonia 

Sand (150) 132 (88%) 18 

Posidonia (107) 8 99 (93%) 

 

Table 4-9 contains the confusion matrix of all the pure sand and Posidonia 

samples collected from the final ESP field trial. It is determined by the LDA method 

with the EPW and skewness variables using Fisher’s criterion. By comparing the 

numbers in Table 4-9 against those in Table 4-1 made by EPW, the identification 

performance here is marginally worse (88% against 89%) for sand, but is better (93% 

against 89%) for Posidonia. 
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A map of habitats identified by the LDA method is shown in Figure 4-46 

along with the estimated seagrass canopy height. By comparing this figure with all 

previously shown maps of identified habitat classes, we can conclude that the LDA’s 

identification performance is comparable to or slightly better than that by EPW. 
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Figure 4-46 Map of the sand and seagrass samples identified by the LDA with the 

corrected RD values shown in colour designated for seagrass canopy 

height at site 4 of the final ESP field trial (cf. Figure 4-21, Figure 

4-30, Figure 4-34, Figure 4-38, and Figure 5-10). 

 

4.5 Summary 

Several parameters have been investigated with respect to their recognition 

capabilities for the seafloor vegetation. The EPW parameter provided the best 

performance in differentiating the habitat types when comparing to other parameters, 

such as the maximum backscatter intensity (see section 4.2.1.1), echo-average 

backscatter strength (see section 4.2.1.2), and Hurst exponent (see section 4.2.1.4). 
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Acoustic discrimination for the flat sand seafloor and seagrass meadows by the EPW 

parameter was particularly successful. However, further differentiation of each of 

these two major classes into more specific subclasses was not so effective. 

A considerable difference between the detected bottom ranges of seagrass 

meadows measured at 38 and 200 kHz was observed. The echo signal at the lower 

frequency (38 kHz) was almost insensitive to the presence of seagrass in contrast to 

the echo signal at 200 kHz. It was found that the 38 kHz echo could be used for 

detecting the substrate even in the presence of seagrass, which provided the means 

for estimating the seagrass canopy height by comparing the ranges detected at 38 and 

200 kHz (see sections 4.2.2, 4.2.3, and 4.3.4). 

The range to the maximum level of acoustic backscatter at 200 kHz did not 

indicate the true location of the seagrass’s canopy. It was found instead that the echo 

front at 200 kHz was a more appropriate reference point for the detection of 

seagrass’s canopy (see section 4.2.3). However, at some scenarios, the canopy height 

determined acoustically cannot be groundtruthed by the optical system due to the fact 

that optical observations of the substrate were obscured by the dense seagrass shoots 

(see for example Figure 3-14). This is the reason why there is no quantitative 

comparison of the canopy height made by acoustics and optics in this study. 

Sea squirts observed in the second field trial on sand seafloors cannot be 

discriminated by acoustic means. Possible reasons for this could be due to the poor 

resolution of the acoustic system when comparing to the physical size of sea squirts 

and the limited characterization capabilities of the parameters examined. 

No obvious range dependence of backscatter characteristics used for seafloor 

classification has been observed. 

Determination of seagrass canopy height based on the bottom detection at 

two different frequencies was made. Firstly, the seagrass meadows on the seabed 

were distinguishable from bare sand by the EPW values of acoustic backscatter 

signal. Estimates of the canopy height were then acquired by the use of the RD value 

measured at two frequencies. The corrected RD values after subtracting the average 

sand RD value (0.17 m) gave quite reasonable estimates of the seagrass’s canopy 

height consistent with both historical data and optical observations in this study. 

The statistics used in this study were not efficiently capable of differentiating 

the acoustic signals backscattered from the sand and Posidonia seagrass bottoms 

except the skewness. 
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From the multivariate approach, when two or three PCs were used for 

distinguishing the two distinctive classes, the results obtained in section 4.4 with the 

PCA and K-means methods were still worse than that made by the EPW parameter 

investigated in sections 4.2 and 4.3. 

In the last section, results obtained from the LDA method with the EPW and 

skewness variables are in general as good as those obtained by the EPW, which 

shows that LDA is a better discrimination algorithm than the combined PCA and K-

means method for the classification problem encountered in this study. 
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Chapter 5 Application of Genetic 

Programming 

5.1 Study motivation 

Genetic Programming (GP) has been explored for its possible applications to 

marine science in very limited areas of research to date (Chami and Robilliard 2002; 

Liong, Gautam et al. 2002). The author of this thesis was inspired by an effective 

application case of GP to a diesel engine problem (Sun, Tsung et al. 2004), which 

prompted him to investigate the potential applicability of GP to solve the problems 

encountered in this study. A preliminary investigation of using GP for classification 

of acoustic backscatter data has led to some promising results (Tseng 2005; Tseng, 

Gavrilov et al. 2005a; Tseng, Gavrilov et al. 2005b). To illustrate the principle and 

algorithm employed for implementing GP for the problem of classifying acoustic 

backscatter signals from the seafloor, the author presents in detail its application 

method in this chapter. Differences between the classification results after the 

application of GP and other methods presented in the previous chapter can be 

observed by comparing the GP results given in this chapter with those given in 

Chapter 4. 

Since the principle of GP has been systematically explored and discussed in 

the literature by some pioneers in the Machine Learning area (Koza 1992; Banzhaf, 

Nordin et al. 1998), a brief introduction of the principle of GP is given in the 

beginning of this chapter. It is necessary for readers to understand its basic principle 

in order to fully comprehend the application results illustrated in this chapter. This 

chapter focuses on the application of the GP approach to the classification problems 

encountered in this study. 
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5.2 A novel approach for feature extraction 

Traditionally, parameters which were used to characterize different classes of 

signals were determined by experts according to their experience and detailed studies 

of the problems involved. Conventional approaches to solve problems are usually 

adopted. In the conventional case, provision of signal features greatly relies on 

experts’ understanding of the problem. 

Is it possible that the determination of characterization parameters can be 

replaced by machines with artificial intelligence in order to provide solutions for 

difficult problems or for scenarios where alternative solutions are required? GP 

provides the potential to answer this question. By modifying the fitness function used 

in general GP problems, the GP algorithm can be employed to provide capabilities to 

learn the input signals and give versatile solutions which are comparable in 

performance to those offered by traditional methods investigated in Chapter 4. 

The GP system does not just allow for more ways of combining the input 

parameters than the linear combinations used in PCA examined in section 4.4.2, but 

also adopt Darwin’s selection principle to check for the optimal way of combining 

input signal parameters into potential solutions for obtaining the best classification 

performance. The check process is implemented in each generation by comparing 

every randomly generated offspring (new parameter randomly generated by 

combining the input parameters and the operators provided) in performance. After 

several generations assigned by system programmer, the best performed parameter 

selected will be generated. In such an approach, it is mainly the randomness and the 

selection principle which govern the birth of the possibly robust parameters for 

classification and the way to compare each new parameter’s performance with the 

fitness function provided, which is a difference in concept against the conventional 

methods. 

5.2.1 Supervised training for classification 

In signal classification studies, there are usually two common approaches 

adopted: supervised training and un-supervised training. The adoption of either mode 
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depends on the attributes of the data acquired. Each acoustic sample obtained in this 

study was simultaneously collected along with its corresponding optical record. The 

data acquired in this way provided opportunities for researchers to carry out 

supervised training of the acoustic data for classification purposes. 

Below are the introduction of the GP algorithm and the study results after 

applying the GP algorithm in showing its adaptive abilities for the classification of 

acoustic signals extracted from samples collected from the final ESP field trial. 

5.3 Introduction of GP 

GP, in short, is a paradigm of breeding computer programs according to 

genetic evolution processes. It can be employed to achieve machine learning abilities 

by an appropriate design of the algorithm. It is based on Darwin’s natural selection 

principle according to required conditions to breed computer programs for specific 

purposes. The searching for possible solutions for complex real world problems is 

replaced by machines with learning abilities. 

The study of GP is mainly pioneered by John Koza in investigating machine 

learning abilities on real world problems where computer programs can adapt 

themselves to provide improved solutions from one generation into next one (Koza 

1992). GP is believed to be evolved from the Genetic Algorithm (GA) developed 

before 1992 (Holland 1992). GP is now further explored for its principle and 

applications by many scientists (Banzhaf, Nordin et al. 1998; Sette and Boullart 2001; 

Langdon and Poli 2002), and has evolved into different versions of GP (Downing 

2001) and for different purposes (Langdon 1998; Babovic and Keijzer 2000). All in 

all, GP provides mechanisms for computer programs to evolve themselves from one 

generation into the next with potentially better performance in solving problems. 

It is important to know how GP was applied on tasks for solving problems of 

interest. Initially GP was investigated for its capabilities on solving small and 

relatively easy problems. Ideally, the algorithm used in solving simple problems may 

also be applied to solve a wide range of problems. Whether this was for the 

proof-of-concept or as a demonstration of GP’s capabilities in solving the problems 

involved, researchers showed that GP can seemingly solve a wide variety of 
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problems, such as the design of complex structures (e.g., antenna (Comisky, Yu et al. 

2000)). 

Because the implementation of GP requires fast computing machines, it has 

increasingly become one of the intensely studied disciplines within Genetic and 

Evolutionary Computation due to nowadays affordable computer prices. Since there 

have been a variety of problem domains shown to be amenable to the application of 

GP, it is now intensely explored for its possible applicability to different areas. 

Studies of GP on issues of optimization, symbolic regression, fitness design, and its 

possible applications on real world problems have been explored in the annual 

GECCO (Genetic and Evolutionary Computation COnference) conference promoted 

by the Special Interest Group on Genetic and Evolutionary Computation (SIGEVO) 

(SIGEVO 2006). 

One of the biggest advantages of adopting machine learning approaches is the 

provision of possible solutions by the machine itself when human intelligence is not 

able to provide efficient solutions for the complex real world problems or alternative 

solutions are necessary. This instance can be easily seen from the well known case 

study of the artificial ant in the problem of following the Santa Fe Trail (Langdon 

and Poli 2002). This successful and powerful ability of the machine learning 

approach has been commercialized and applied on the vehicle dispatching and cargo 

delivery business (Benyahia and Potvin 1998). 

5.3.1 Genetic evolution of computing programs 

In GP, a candidate solution or computer program is called an “individual”. In 

each program run, programmers need to assign a set of initial GP parameters in order 

to implement the GP, including the numbers of generation and population (number of 

individuals in a generation). In a generation, individuals have variable abilities in 

solving problems. In order to find individuals which best solve the problem, GP 

programs (individuals) undergo genetic evolution from one generation into the next 

with potentially improved performances through selection mechanisms determined 

by the fitness function. The evolution has to follow Darwin’s natural selection 

principle. In short, only those individuals with above average performance can be 

selected into the next generation for further GP processes. 
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Individuals usually undergo three common genetic evolution processes in 

order to evolve into new individuals. In a new generation, it includes new individuals 

“randomly” generated by the GP system according to the system settings, along with 

the “good” individuals selected from the previous generation. 

The randomness attribute of the GP algorithm provides all possible 

appearances of an individual to be generated in a generation. The way which each 

intermediate generation is filled by the randomly generated individuals mimics 

nature’s strategy for survival. In such an environment controlled by the fitness 

function and system settings designed by programmers, potential solution programs 

are expectedly to be generated from a more global solution space rather than from a 

limited and local one. Through randomness, GP provides survival opportunities for 

an initial group of candidate programs to evolve into a group of programs with better 

performance. The best performing program sorted from the final generation is then 

the best program so far and regarded as the “best-so-far” solution for a problem. 

It is also important to note that there is no so-called early rejection problem 

for individuals to be selected in the GP algorithm. Those individuals which have 

appeared in an early generation are not necessarily excluded from reappearing in a 

later generation. Due to GP’s randomness property, any individuals are possibly 

regenerated several times in different generations as long as the GP system does not 

limit itself in any particular restrictions. 

5.3.1.1 Tree-based GP individuals 

In classical GP, each GP individual can be represented by a GP-tree, such as 

the simple GP-tree given in Figure 5-1. In the figure, it is a tree-based expression 

equivalent to the mathematical function of (√F1) x (F2 – F3). The operator in the 

figure can be any mathematical operator or a combination of any operators while F1, 

F2, and F3 at the terminals can be any real numbers and represent the input 

parameter values used to characterize different data (different signals in this case 

study). Hence, each individual is a combination of the numerical values of the input 

characterization parameters and the mathematical operators. 

Ultimately the hope is that the input parameters at the terminals after 

combining with the operators at the non-terminals can be evolved through the genetic 
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process into individuals that perform well. In principle, individuals transform the 

original characterization parameters (terminal nodes) into new variables (new 

individuals) and map them onto the best-so-far solution space. The performances of 

the individuals are measured by a fitness function. That is, each individual, by 

transforming every sample onto a solution space, is a candidate solution. They only 

differ in their performance in solving problems. After the selection process, the best 

performing individual in the final generation is selected as the best-so-far solution. 

 

X

An individual

F2 F3 F1

 Non-Terminal set
(Operators) 

Terminal set
(Initial feature values) 

 

Figure 5-1 A tree-based GP individual expression equivalent to (√F1) x (F2 – 

F3). 

 

Usually each individual in a generation can undergo any of the following 

three genetic evolution processes in breeding new individuals. 

5.3.1.2 Reproduction 

Reproduction is a process of breeding a new individual by producing an exact 

copy of its parent individual. This reproduction process can be illustrated by the 

example given in Figure 5-2. As in Figure 5-1, the OP1, OP2, and OP3 in Figure 5-2 

are any mathematical operators or any combinations of operators while F1, F2, and 

F3 are the numeric values of the input parameters. 
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Figure 5-2 A sample genetic evolution process of reproduction. 

 

5.3.1.3 Crossover 

Crossover is a process occurring within a pair of individuals. A sub-tree of an 

individual is replaced by another sub-tree from the other individual in constructing a 

new individual, and the replaced sub-tree will replace the other sub-tree where it is 

originally attached on the other individual. A sample process illustrating the 

crossover operation on a pair of individuals is given in Figure 5-3. 

 
 

OP1

Offspring individuals

F2 F3 F1

OP1

OP2 OP3

 F1 F2 F3

OP2 OP3

Parent individuals

Crossover
operation
on node

OP4 OP4

F4 F5 F4 F5

 

Figure 5-3 A sample genetic evolution process of crossover operating on a node. 
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5.3.1.4 Mutation 

Mutation is a process that can happen either on the non-terminals or on the 

terminals of a GP-tree. In a sample mutation process given in Figure 5-4, the OPX 

and OPY on the non-terminals denote some operators while FX and FY on the 

terminals denote some parameters before and after mutation processes. The possible 

parameters and operators are limited to those initially provided by the programmer. 

 
 

Offspring individual

F2 F3

OP1

OP2 OPX

 F1 F2 F3

OP2

Parent individual

Operation on operator
OP1

 F1

OPY

 F1  FX  F3  F1  FY  F3

OP1 OP1

OP2 OP3 OP2 OP3
Operation on terminal

Mutation:

 

Figure 5-4 Two sample genetic evolution processes of mutation operated on an 

operator and terminal respectively. 

 

5.3.1.5 Why best-so-far 

Scientists frequently need to answer whether the solution found is the best 

one or not. Are there any better ones existing, and, if so, how to find them? In the 

search space for the solutions, GP also confronts the same dilemma. The best-so-far 

solution obtained is basically controlled by the settings of the GP system and by the 

intrinsic nature of randomness. In principle, the more generations allowed in a GP 

program run, the more chances are given to the GP system to find better performing 
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solutions than those found by allowing fewer generations. However, in the search for 

the top performing solutions, the so-called best one found is still only valid within 

the search space attempted in that only limited generations are allowed in the GP 

program run. There are still possibilities that better solutions may exist beyond the 

search scope. This is why the term, best-so-far, is probably the most appropriate term 

for referring to the solution found by the GP system. 

Another important property of the GP algorithm is that each GP program run 

cannot be exactly replicated in another program run (Stewart 2004). Different 

program runs follow different evolutional routes to the final results with similar but 

unequal solution values. Even if the constraints provided by the GP settings are the 

same, the evolution process can be dramatically different among different program 

runs. 

There have been many studies focusing on the understanding of factors which 

may control the GP system and determine the solutions (Koza 1992; Koza 1994; 

Banzhaf, Nordin et al. 1998; Koza, Bennett et al. 1999; Banzhaf, Koza et al. 2000; 

Sette and Boullart 2001; Langdon and Poli 2002; Luke and Panait 2002; Koza 2003). 

Since these are beyond the focus of this study, they will not be discussed here. 

Interested readers are referred to the above mentioned literature for further studies. 

5.4 Design of the Fitness Function for classification 

How each individual is assessed and determined by the GP system in order to 

be selected into the next generation critically depends on the fitness function (FF). 

Just like creatures in nature are relentlessly selected by their environments according 

to Darwin’s selection principle, FF in GP serves exactly the same role as the 

“environment” for the GP individuals. Only the best performing individuals can 

survive from the test of the environment (i.e., FF) and breed “offspring” (new 

individuals) for new generations. 

According to each problem’s requirements, the FF can be in a variety of 

forms. Generally it gives the error rate of individuals in solving problems. Those 

individuals with lower error rates get higher scores in performance. Through this 
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assessment mechanism, each individual obtains a score according to its performance 

in solving problems. 

Since GP is more commonly used for optimization problems rather than for 

classification tasks, the FF commonly employed by the GP community needs to be 

modified in order to be applicable to this case study. 

A group of researchers has investigated the use of GP on similar 

classification problems with good results (Sun, Tsung et al. 2004). Their basic idea is 

very simple: to decrease the distribution range of each class and increase the 

separation between different classes in the GP solution space. To explain this point, 

an example of two separated classes of samples being transformed by a candidate GP 

individual and mapped onto a 1-dimensional solution space is shown in Figure 5-5. 

For illustration purposes, the separation between the two classes is represented by 

their median values and the scattering within each class is represented by the 

maximum fluctuation. In order to separate these two classes, it is better to increase 

the distance between the median values of the two classes as far as possible, and to 

reduce the maximum fluctuations within each class as small as possible. 
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Figure 5-5 An ideal case of two separated classes with their samples being 

transformed by a candidate GP individual and mapped on a 

normalized solution space. The separation between different classes’ 

median values and the maximum fluctuation range within each class 

combined is one of the measures for the performance of the GP 

individuals. 

 

Unlike the FF used by the previous researchers, the one used in this study is 

based on the statistical approach suggested by Fisher (Fisher 1936) and advice from 

Gavrilov and Duncan‡‡‡‡‡‡. In Fisher’s study, he investigated techniques which can 

find an optimal linear combination of features to best minimize the misclassification 

rates of two or more classes of objects in his taxonomic problem. The optimal linear 

combination of features is then expected to be an effective classifier for classification 

of objects. Based on Fisher’s idea and from a general statistical point of view, the 

separation of M classes can be measured as: 

                                                 
‡‡‡‡‡‡ Personal communication with Dr. Alexander Gavrilov and Dr. Alec Duncan of Curtin University 

on 19th of June 2007 and 16th of January 2008. 
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mN  is the number of samples in class m , 

mX  is the mean of the samples in class m , and  

X  is the mean of all samples, 

and 
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in which 

N  is the total number of samples, and 
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ms  is the dispersion within class m   given by: 
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The fitness function defined by equation 5-1, commonly referred to as the F 

ratio, is to be maximized in order to obtain the maximum separation between 

samples of different classes and the minimum dispersion within samples of each 

class. 

5.5 A MATLAB toolbox for GP, GPLAB 

A free MATLAB toolbox specially made for the study of GP, GPLAB, was 

used in this study. It can be flexibly amended to adapt to different GP-related studies. 

Although it was not originally designed for the classification task, it was modified 

and extended by adding new routines in order to meet the author’s study 

requirements. Using this toolbox, the author carried out an investigation of GP’s 
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abilities with respect to the marine habitat classification task. The complete version 

of GPLAB, except the modified programs especially written for this study, can be 

found at: 

http://gplab.sourceforge.net/ 

5.6 Implementation of GP 

To compare the classification performance of the GP algorithm with those by 

the conventional methods discussed in Chapter 4, the data used in this chapter were 

the same pure sand and Posidonia samples investigated in section 4.4, which were 

collected from Owen Anchorage and Parmelia Bank in the final field trial. 

5.6.1 Terminal and non-terminal nodes 

In order to keep the input number of parameters the same as those used in 

Chapter 4 for fair comparison purposes, the five statistics (Max, Mean, STD, 

Skewness, and Kurtosis) of the pure sand and Posidonia seagrass samples are used 

again as the input values for the GP terminal nodes. As for the non-terminal nodes, 

they are selected from the common operators: summation, subtraction, multiplication 

and division. In order to safely run the program, a protected operator referred to as 

kozadivide §§§§§§  (Koza 1992) is used instead of the common division to prevent 

dividing by zero errors. 

5.6.2 Symbolic regression 

To implement the designed GP system for classification, the acoustic data 

were rearranged to resemble a symbolic regression. Each acoustic sample was pre-

processed from the first bottom return to obtain a set of statistical values which was 

                                                 
§§§§§§ kozadivide(x1,x2) returns 1 if x2=0 and x1/x2 otherwise.  
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used here to represent the main features of each sample. Any solution resulting from 

the GP system will hence be a result originated from these statistics representing the 

original samples. The data were then normalized before being used as input 

parameters for the GP system. In order to distinguish the differences between 

different classes for the GP system, samples of different classes were assigned with 

distinctive codes for differentiation purposes in order to undertake symbolic 

regression. 

The GP system initially generates several combinations of the input 

parameters with the mathematical operators provided. Each combination is evaluated 

with the fitness function as shown in equation 5-1 which rewards solutions producing 

similar values for the same class and different values for different classes. The aim is 

to be able to delimit the regions where each class plots its own values, minimizing 

the overlap between classes. 

Ideally the optimal regression function should map the two pure classes into 

two separate ranges on a 1-dimensional space, with as small an overlap between the 

pure sand and Posidonia classes as possible. At the same time, space sitting between 

the two clusters is assumed to represent mixed habitat types or any extra types which 

are not considered in the algorithm. 

The performance of the designed GP system for the classification of the two 

pure classes with the above defined FF is given below. 

5.6.3 Result 

The GP-tree representing the best-so-far solution program found by the GP 

system is shown in Figure 5-6*******. On the GP-tree terminals, the X1, X2, X3, X4, 

and X5 represent respectively the five statistics of the acoustic backscatter signals: 

maximum, mean, standard deviation, skewness, and kurtosis. Figure 5-7 shows the 

solution values of the 2-class samples being mapped on a 1-dimensional solution 

space by the best-so-far solution given in Figure 5-6 after 10 generations. 

                                                 
*******  The corresponding algebraic formula of the solution found is written as: 

minus(plus(times(times(X4,X5),X5),kozadivide(minus(kozadivide(X2,X3),plus(times(X5,X2),times(

X5,X2))),X5)),plus(minus(X2,times(X4,X5)),kozadivide(X2,X3))). 
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Figure 5-6 The GP-tree of the best-so-far solution found by the GP system with 

the fitness function given in equation 5-1. 
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Figure 5-7 Solution values of the 2-class samples after being mapped on a 1-

dimensional solution space by the best-so-far solution program for 

which the statistics at the GP-tree terminals were derived from the 

same data collected from the final field trial as investigated in section 

4.4. 

 

To understand if the implemented GP system has provided any improvement 

or not in differentiating these two classes against those by the EPW parameter and 

the statistics investigated in sections 4.3 and 4.4 respectively, Figure 5-7 was 

replotted as histograms given in Figure 5-8. 
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Figure 5-8 Histograms of GP solution values of the 2-class samples as used for 

Figure 5-7. 

 

By comparing Figure 5-8 against Figure 4-16 and Figure 4-28, it is clear that 

the GP system is capable of providing comparable discrimination ability to that of 

the EPW parameter and noticeably better ability than those of the individual statistics 

discussed in sections 4.3 and 4.4 respectively. 
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Figure 5-9 Fitness value, number of levels and nodes for the best individuals 

resulted from each generation vs 10 consecutive generations for the 

final solution program shown in Figure 5-6. The final fitness value is 

about 162.1. 

 

The plot in Figure 5-9 shows the progress of the fitness value, tree level (the 

maximum number of levels from the tree top to the terminals), and number of nodes 

of the best performing individuals generated in the GP program run. It reveals 

whether the fitness value of the best individual in each generation increases with the 

increase of number of levels and nodes in the tree or not. The GP program was 

controlled by the settings listed in Table 5-1 for the choice of: 1) the first generation 

to be introduced (Ramped Half-and-half (Koza 1992)), 2) numbers of populations 

and generations allowed, 3) rates of genetic operations allowed, 4) strategy adopted 

in selecting individuals when the fitness values are equal (Lexicographic method 

(Luke and Panait 2002)), and 5) the historical records generating the final best-so-far 

solution program. For in-depth understandings of each GP parameter used in the GP 

program run, readers are referred to the literature cited here. 

Obviously, it can be found from Figure 5-9 that the fitness value stalled after 

two generations. 
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Table 5-1 Major GP parametric settings, main historical parameter values, and 

characteristics used for finding the GP-tree solution program in Figure 

5-6. 

Population initialization Ramped Half-and-half††††††† (Koza 1992) 

Population size 250 individuals 

Generations till solution 10 

Crossover rate 0.5 

Mutation rate 0.5 

Reproduction rate 0.1 

Tournament size 25, Lexicographic‡‡‡‡‡‡‡ (Luke and Panait 2002) 

Elitism none  

Best level history 4, 4, 6, 6, 6, 6, 8, 8, 7, 8, 7 

Best node history 15, 13, 21, 19, 21, 23, 27, 27, 27, 29, 29 

Maximum level history 
28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 

Heavy Dynamic Limit§§§§§§§ (Silva and Costa 2004) 

Solution tree 7 levels, 29 nodes 

Originally generated by Crossover 

 

Based on the boundary value at -0.22 determined from Figure 5-8 for the 

segmentation of the two-class samples by minimizing the misclassification error rate, 

a confusion matrix of all the pure sand and Posidonia seagrass samples is provided in 

Table 5-2. Shown in Figure 5-10 is a map of the sand and Posidonia seagrass 

samples identified by the GP solution program given in Figure 5-6. The corrected 

RD values expressed in colour were independently determined by the method 

discussed in section 4.3.4. 

 

                                                 
††††††† One of the three basic ways (along with “grow” and “full” methods) to initialize a population of 

individuals. 
‡‡‡‡‡‡‡ A technique for controlling the significant growth of a GP tree by modifying selection to prefer 

smaller trees when fitness does not change. By default, the tournament size is 10% of the population 

size. 
§§§§§§§ An approach for controlling code bloat of a GP tree during the course of a program run. 
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Table 5-2 Confusion matrix of all the pure sand and Posidonia class samples 

based on the boundary of the GP result determined from Figure 5-8 

for the data collected from all four sites of the final ESP field trial in 

2005 (cf. Table 4-1, Table 4-5, Table 4-6, Table 4-7, Table 4-8, and 

Table 4-9). 

                  GP 

Optics 
Sand Posidonia 

Sand (150) 129 (86%) 21 

Posidonia (107) 9 98 (92%) 
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Figure 5-10 Distributions of the sand and seagrass samples classified by the GP 

result with the corrected RD values shown in colour designated for 

seagrass canopy height at site 4 of the final ESP field trial (cf. Figure 

4-21, Figure 4-30, Figure 4-34, Figure 4-38, and Figure 4-46). 

 

By comparing the confusion matrix given in Table 5-2 against that in Table 

4-1 in section 4.3.2 and those confusion matrices in Table 4-6, Table 4-7, Table 4-8, 

and Table 4-9 in section 4.4, one can conclude that GP is capable of providing 
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classification performance comparable to that of the EPW parameter and better 

performance than those resulted from the multivariate approach, except the LDA 

performance discussed in section 4.4. However, the identification performance for 

the actual seagrass locations provided by GP is worse than that made by the EPW 

and LDA. 

5.7 Limitations of GP 

From the GP results demonstrated in the previous section, it is clear that the 

classification performance should not just consider accuracy in terms of number only. 

As shown in Figure 5-10, a few seagrass samples with large canopy height were 

incorrectly classified as sand samples by the GP method while such case was rarely 

seen in the result achieved by the EPW as shown in Figure 4-21. Obviously the GP 

algorithm designed for the classification problem in this study was incapable of 

avoiding such an irrational mistake although its performance measure in terms of 

number was not necessarily weaker than those by other methods. 

The optimal adjustment of the GP parameters listed in Table 5-1 for a best 

identification result is one of the focuses (Bäck and Schwefel 1993; Koza, Keane et 

al. 2000; Koza, Keane et al. 2005) repeatedly discussed in the annual SIGEVO 

conference (SIGEVO 2006). To find an optimal combination of the GP parameter 

setting is a hard research problem. To have a reasonable GP parameter setting, 

problems like stagnation and code growth (Smith and Harries 1998; Smith 2000; 

Fernández, Galeano et al. 2004; Luke and Panait 2006) are among other key issues 

on-going hot topics. A universal approach for an optimal GP parameter setting for a 

good classification result is still unavailable up to date. 

In the GP approach, GP systems with the fitness function like that given by 

equation 5-1 are good for discriminating simple mixing conditions where different 

classes can be well separated by the GP solution programs after being mapped on a 

one-dimensional solution space as shown in Figure 5-5. For more complicated 

mixing scenarios, the mixed classes should be better distinguished in a two- or multi-

dimensional solution space. 
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Theoretically, the more flexibility the GP system offers, the more chances a 

better solution will be found. In reality, only a limited computational time is allowed. 

And, the GP system is only allowed to implement its algorithm with limited 

generations and population sizes. 

GP has higher computing power requirements than the other methods 

considered in this thesis. Its primary advantage is the flexibility it gains from 

breeding solution programs genetically from its input parameters, but this is 

diminished by its variable and hard-to-predict behaviours due to its intrinsic 

randomness. 

5.8 Summary 

The design of the fitness function as shown in equation 5-1 and the symbolic 

regression procedure made the GP system a useful tool for breeding solution 

programs, which are then used as descriptors for differentiating acoustic signals of 

different attributes. The designed GP system is capable of acting as a supervised 

training mechanism for the initial input parameters at the GP-tree terminals to 

genetically evolve into not only acceptable but also as many versatile solution 

programs as possible for classification purposes. Although the solution programs 

found by GP were not necessarily superior in capability when comparing to the EPW 

parameter (see section 4.2.1.3) in distinguishing the data, the proposed GP system 

was found possessing human-competitive machine intelligence which can provide 

comparable classification performance against those by the conventional methods. 

The GP approach proposed here for classification purposes can be applied to 

any tasks involving supervised training for signal classification problems. For 

example, by providing some basic statistics derived from the signals as the GP 

terminals and following the procedures as described in this chapter, a fair solution 

program can be safely obtained from each program run and used as a descriptor for 

characterizing the signals. In other words, the prerequisite for a supervised training 

requirement is achieved by assigning a symbolic regression process for the GP 

system to follow and with an appropriate fitness function as a measure to distinguish 

different classes of signals. 
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One of the advantages of the GP method proposed here is the availability of 

solutions without substantial knowledge of the nature of the data involved except 

some basic statistical properties of the study target. In other words, GP has the 

flexibility with respect to the selection of operators at the non-terminal nodes and 

their random combinations of genetic processes applied to every intermediate 

terminal node, including the initial parameters, in the GP solution tree. Another 

advantage of using GP for classification is its applicability to very complex systems, 

where it is very hard to determine the relationship/connection between different 

observed characteristics, for example when identifying different persons by different 

features of their faces (Loizides, Slater et al. 2001; Bhanu, Yu et al. 2004). In this 

aspect, the GP system proposed here is an effective tool capable of providing 

alternative and possibly effective solutions for signal classification tasks. 



 

Chapter 6 Discussion 

This chapter discusses the results and issues that have been investigated in the 

previous sections. Comments on the experimental platform developed within the ESP 

project for the observation of epi-benthos are given in section 6.1. Issues which may 

have affected the analysis outcomes of the conventional methods are given in section 

6.2. The GP issues are discussed in section 6.3. 

6.1 The experimental platform: the ESP structure 

By using the optical component of the ESP structure, reliable optical 

recordings were available within limited focus ranges. Clear images were only 

available between ranges of about 1 and 4 m. Moreover, acoustic recordings 

collected from ranges smaller than 1.5 m were difficult to process due to the ringing 

of the sonar head. These limitations reduced the number of useful samples. Those 

classes with insufficient number of samples were discarded from further 

investigations. Hence, limitations highlighted above reduced the data processing in 

this study to limited groups of data rather than on all available data. 

A further upgrade of the observation platform will highly enhance its 

operational capabilities. By improving the way the optical system stored its optical 

data, the platform can remain longer in time in the water so that more abundant data 

can be available in each deployment. 

Tilting of the ESP structure driven away from the normal incidence direction 

by currents was considered negligible. However, examination of the optical data still 

found occasional cases in which the ESP structure was away from the ideal normal 

incidence direction. Effects that may come from this aspect are unknown. 
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There were several factors which may affect the quality of the collected data. 

Due to the limited time windows available in the field and limited hardware 

resources available to this study, the data set obtained contained only limited samples 

with serious imbalances both in sample number and in diversity. These restrictions 

diminished the full potential capabilities of the whole ESP data collection system and 

hence may have influenced the quality and the scope of diversity of the acquired data 

for the data analysis requirements. For example, a total number of 1232 collected 

samples in the first field trial were left with only 435 perfect samples for use while a 

great portion of the discarded samples were identified useless for several reasons. 

With this limited and imbalanced data set, analyses of the data were difficult to have 

fair comparisons between groups of different habitat types. Due to this consideration, 

compromises were made in the data analysis by restricting the comparisons between 

data classes with comparable sample numbers. As a result, the accuracy of the 

conclusions made from this study should be proportional to the number of samples 

available. Study results from samples scarce in number are considered unreliable. 

Some of acoustic backscatter characteristics of seafloor vegetation are still poorely 

investigated and need further experimental and theoretical studies. 

6.2 Conventional investigation results 

When backscattering was from seagrass meadows or rough seafloors like the 

macro algae patches, enhanced backscatter level in the “tail”, as described in the 

literature, was observed in this study. Since EPW is by definition an effective 

measure of the length of the “tail”, it was found the most effective parameter capable 

of differentiating the difference between the sand and seagrass classes (see section 

4.2.1.3). 

In addition to statistics and EPW, other acoustic parameters such as fractals 

were investigated for their possible capabilities in characterizing backscatter signals 

(see section 4.2.1.4). A potential improvement for the use of fractal dimension in 

classification problems is the adoption of other approaches for the derivation of 

fractal dimension such as the spectrum inclination or box dimension instead of the 

approach used here. However, since it was not the author’s intention to do an 
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exhaustive test of all the existing techniques for this problem, other alternative 

methods or parameters which might have better results than the ones obtained here 

are not considered in this study. For the parameters investigated in this study, the 

EPW gives an above average result. 

Although the sea squirts had rough contours when comparing to the flat 

sandy bottoms, they did not exhibit any difference in the acoustic features when 

comparing against the sand class (see section 4.3.1). This could be due to the reason 

that the sonar system’s best sampling resolution is not good enough to observe the 

existence of sea squirts on seafloors. Or, the use of the best parameter found (EPW) 

is still incapable of differentiating the tiny variations between the sea squirts and 

their surrounding substrates. To understand if there are any detection possibilities for 

the sea squirts, sonar systems of higher frequencies and higher sampling resolutions 

might be necessary. 

Investigations of the dependence of the characterization parameters on range 

were made in section 4.3.3. The results indicated that any range dependence was not 

obvious. The major consideration is that the available data were collected from very 

limited ranges of observation, between 1 and 4 m. An investigation that can extend to 

longer ranges than those observed in this study is necessary in order to provide a 

definite conclusion. 

When examining vegetation-covered seabeds, it is a critical issue in assigning 

a correct reference point on the echo envelopes for the identification of the 

vegetation’s canopy. It was commonly accepted by the marine community that the 

maximum level was a good reference point for the designation of the study target’s 

position. Investigation results (see section 4.1.3) indicated that the maximum level on 

the waveform was not an appropriate reference point for the indication of seagrass 

canopy height at 200 kHz. It is shown in this study that the echo front is a better 

reference point than the maximum on the echo envelope at this frequency. 

RD was found an effective measure which gave acceptable estimate results 

for the seagrass canopy height after considering the sand’s average RD value (see 

section 4.3.4). However, readers are reminded to understand that the estimated 

seagrass canopy height varied from around 10 to 50 cm, which should have been 

affected by the sampling rate of the sonar system at both frequencies. It is also true 

that the seagrass can move along with the currents so that its canopy height is not a 

static value but an instantaneous value changing with time. 
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6.2.1 Strengths and weeknesses of the characterization 

parameters and techniques used 

The derivation of EPW for the characterization of seafloor vegetation was 

motivated by the evidence of long echo “tail” from seabeds with rough surfaces 

observed by previous researchers. From this evidence, EPW was hence defined to 

account for the echo “tail” aspect which in a hope could best describe the study 

targets. From the comparisons against other techniques in the previous chapters, 

EPW stands out from other parameters, such as the statistic moments, and 

characterizes the study targets with an above average discrimination performance. 

Though good in characterizing simple combinations of different classes, the EPW 

characteristic is still incapable of differentiating complex mixing types or classes of 

more than two. There is a need to find other parameters which could account for the 

acoustic properties of different seafloor types not being correlated with EPW. 

LDA was among the multivariate methods which provided the best 

characterization capability for the two seafloor types investigated in this study. 

However, to be effective in characterization, the LDA method needs supplying 

robust input variables, such as the EPW and skewness, in order to derive a new 

variable as a parameter for distinguishing different classes in an effective way. 

6.3 Application of GP algorithm to classification tasks 

The investigation of the GP algorithm for this study was driven by the limited 

abilities of the conventional methods when applied on the classification problems. 

The study of GP was mainly for its potential abilities for the classification of acoustic 

backscatter data collected from the assorted habitat types. It is clear from the 

investigation results as shown in Chapter 5 that the GP system can provide not only 

versatile but also comparable solutions in performance for classification problems. 

GP is totally different in concept from multivariate analyses such as the PCA 

with K-means or LDA. PCA can extract prominent components from each input 

parameter and differentiate the variation of the data with the PCs on a multi-

dimensional space. However, the combined performance of the final selected PCs is 
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still limited by each input parameter’s ability. There is no way that the performance 

of the final PCs selected can exceed that combined from all input parameters. The 

LDA approach also suffers from similar limitations. In contrast, as long as the FF of 

the GP system is able to provide a good way for the “individual” to genetically 

evolve into robust offspring, the GP system is capable of providing solutions with 

reasonable differentiation capabilities, which does not necessarily have to be weaker 

in performance than that combined from all the input parameters. 

Different program runs gave different best-so-far solutions by combining 

operators and terminal parameters in a variety of forms. Since there is no universal 

rule to determine the number of the program runs needed to find an optimal solution, 

the best-so-far solution was selected based on to the solution performance of the 

testing program runs. Two solutions with similar performance can be derived from 

drastically different GP-tree forms. This makes it difficult to identify any branches in 

the GP-tree which are the most prominent roles in solving the classification problems. 

The algorithm implemented in the GP system is applicable to any signal 

classification task as long as the task is under a supervised training condition. The 

GP algorithm implemented here is capable of providing as many solutions as needed 

for classifying the signals, which is an advantage inborn in the GP algorithm. 

As shown in section 5.6.3, the GP system did not perform efficiently along 

the generations. The number of nodes and the GP-tree level could get further 

complicated while fitness has stalled if no appropriate measure is used. How to 

prevent the program code bloat and improve the efficiency in the GP program runs 

requires a great deal of understanding of the effects of those GP parameters, which is 

still under investigations by many researchers (Fernández, Galeano et al. 2004; Silva 

and Costa 2004; Luke and Panait 2006). Since these issues are far beyong the focus 

of this study, no further information is available from this study. 

 



 

Chapter 7 Conclusions and 

Recommendations 

This study investigated effective ways for the recognition and assessment of 

seafloor vegetation by using a single beam echosounder. The optical sub-system of 

the ESP structure was able to provide photographic pairs for groundtruthing purposes 

through the synchronization mechanism between the acoustic and optical 

components. The optical recordings obtained were able to provide support for the 

identification of the actual habitat type for each corresponding acoustic sample. 

Data were mainly collected from shallow coastal waters near the author’s 

study base, Perth, through the ESP project in 2004 and 2005. Measurements were 

mainly carried over sea bottoms of sandy seafloor, seagrass meadows, and rocky 

reefs populated with macro algae, corals, and other epi-benthos. Seagrass species of 

P. sinuosa and P. australis were the major plant benthos observed on the sandy sea 

bottoms. They were particularly focused on in this study due to their long term 

importance as an indicator for the estimate of impacts from natural forces and 

anthropological activities. 

Collected data were firstly built into a database so that acoustic and optical 

data could be correctly linked. After classifying the acoustic data through the 

identification of the optical recordings, acoustic samples having been classified into 

different classes were then investigated for their possible characteristics by a few 

methods. 

Below are the major conclusions and the important observations as a whole 

obtained from this study. They are divided into three parts: Literature review in 

section 7.1, Experimental materials in section 7.2, and Data analysis results in 

section 7.3. 
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7.1 Literature review 

In this study, a detailed survey of the literature review pertinent to this study 

topic was done. It was systematically studied and discussed in Chapter 2. The study 

of the literature indicated that the earliest time of the study records of marine benthos 

by the acoustic methods, especially for seagrass, only began from around 1977 by 

Colantoni and Zucchini (see (Colantoni and Zucchini 1979)) and around 1980 by 

Maceina and Shireman (Maceina and Shireman 1980). It started a new page in 

history in that people started the use of sonar systems for the study of seagrass. 

“Shading” and “tail” are the words most often used by the early scientists to 

describe the seagrass meadows or rough surface seafloors when using sonar systems. 

These words suggest that the characteristics of the epi-benthos may conceal their 

acoustic features in the levels after the maximum backscatter level on the echo 

envelope. When the pulses were backscattered from seagrass meadows or rough 

surface seafloors, increases of backscatter intensity and elongated duration in time 

were observed on the tail of the echo envelope. 

While the study of animal benthos might be motivated by the needs for 

fishery, the study of plant benthos by acoustic methods involved a mixture of 

requirements from not only environmental concerns but also military needs for 

effective surveillance of explosive mines within seagrass meadows in shallow waters. 

Recorded in literature as well are the techniques developed for the 

classification of acoustic backscatter signals for assorted applications. Among those 

techniques, PCA is the most revealing and popular one frequently used in the marine 

acoustic communities. Among the multivariate methods, LDA is the best in deriving 

the new variable for classification problems. However, none of them can provide 

perfect results for all cases. 

From the literature review, the author was inspired to develop a new 

algorithm to provide alternative solutions for the classification problem. The study of 

the GP algorithm proved that the GP system developed here is capable of solving 

classification problems involving supervised training conditions. 
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7.2 Experimental materials 

 The ESP structure used in this study is an excellent experimental 

platform for the observation of close range targets in shallow waters 

and within small areas when real time data observation and 

monitoring are necessary. 

 The unique simultaneous firing mechanism of the ESP structure for 

both the acoustic and optical systems contributed to a production of a 

synchronized data set with acoustic and optical samples linked by 

their firing time for data classification requirements. 

 The whole ESP system was quite portable and can be installed on 

small boats on reasonably calm waters for data collection purposes. 

 Due to the design and the available data storage space in the optical 

system, one disadvantage of the ESP data collection system was the 

requirement of periodical retrievals of the wet end component back on 

board in order to download the photographic data and clear the 

memory space for the next new measurement in the water. This action 

interrupted the function of continuous observations for some specific 

targets and could cause difficulties in bringing the ESP structure back 

to the original observation position. 

 Due to the inherent limitations of the optical system, the available 

operational ranges were limited within very short distances, which 

subsequently restricted the available acoustic data within very limited 

ranges. As a result, the investigation of the acoustic backscatter 

dependence on range seemingly can not provide any definite 

conclusion for the range dependence concern discussed in section 

4.3.3. 

 Awareness of the differences of the insonified areas between the 38 

and 200 kHz of the EQ60 is important. The acoustic samples obtained 

by the 200 kHz were collected from a comparatively smaller footprint 

size than that obtained by the 38 kHz on a wider area surrounding that 

of the 200 kHz. Due to this difference, each pulse of the 200 kHz was 

unable to completely reflect what was actually observed by the 38 
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kHz although the insonified area by the 200 kHz was within that of 

the 38 kHz and this difference was corrected in the calculation for the 

acoustic parameters. It should be noted that there were still differences 

in species compositions and population densities between the two 

insonified areas of each collected acoustic sample although samples 

analysed were selected from those that can minimize the impact from 

the condition mentioned here. 

 Uncertainties due to the operational factors in the field such as the 

tilting of the ESP structure in waters away from the normal incidence 

configuration were also experienced. Although operations were made 

over areas where waters were thought as calm as possible, imperfect 

conditions due to the unforeseen environmental factors were still 

inevitable and hence could have affected the accuracy of the 

investigation results. Improvement of a more controllable observation 

system than the present one is necessary in order to improve the 

observation result. 

7.3 Data analysis results 

 There was a difference between the detected ranges by the 38 and the 

200 kHz in measuring the targets in the water. For flat sandy seafloors, 

the differences are negligible. But, for those measured from seagrass 

meadows or rough seafloors, the differences can be as high as the size 

of the study targets. 

 Statistics showed that the maximum level on the acoustic backscatter 

waveform at 200 kHz is not an appropriate reference point in 

indicating the location of the seagrass canopy. When the seagrass 

canopy heights are comparable to the backscatter wave length, the use 

of the maximum backscatter strength as an indication of seagrass 

canopies can lead to misleading results. It is found in this study that 

the wave front is a better reference point than the maximum on the 

waveform in referring the seagrass canopy location. 
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 The RD value investigated in section 4.3.4 was found an effective 

measure for the seagrass canopy height. Although the error of the 

estimate of seagrass canopy height by RD may be as high as the 

number calculated, the estimated mean values for the seagrass canopy 

height by the use of RD were within a reasonable range and was 

consistent to both the historical recordings and the observations made 

by the optical system in this study. 

 Fractal analysis on the acoustic backscatter signals was investigated 

for its possible ability for differentiation purposes. Results showed 

that this parameter was a poor classifier. 

 Among the plant benthos, seagrass was particularly focused on, and 

exhibited unique acoustic features. As indicated in the article (Lyons 

and Abraham 1999), there is no easy way that the backscatter strength 

at vertical incidence can be used to effectively characterize the 

seagrass. However, it was found in this study that the EPW and RD 

were capable of providing reasonable estimates for the recognition 

and assessment of the seafloor vegetation against its sandy 

background. It is fortunate to know that seagrass only exists on sandy 

seafloors while live corals only grow on reefs. The understanding of 

the seagrass’s neighbouring background can provide additional 

assistance for the identification of the seagrass by acoustics. 

 Sea squirts were found in the field. They can not be differentiated 

from their background by the acoustic parameters investigated in this 

study. The backscatter intensity did not show any differences which 

can reveal their existence. Based on the understanding of the limited 

resolution abilities of the sonar systems used in this study and the 

sparse density and the comparably small size of the sea squirts 

observed in the field, recommendations for improving acoustic 

detection of sea squirts might be to use sonar systems with higher 

resolution capabilities than the one used in this study and to conduct 

additional complementary measurements using other approaches. 

 When comparing the acoustic backscatter intensity between the 

sparsely and densely populated seagrass meadows as shown in section 

4.3.5, the author could not find strong evidence which would prove 
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the model predicted by Shenderov, although the tendency was 

consistent with Shenderov’s prediction (Shenderov 1998). The 

considerations were mainly their overlapping conditions given in 

Figure 4-24 and Figure 4-25 and the imbalance in number of samples 

between the two population density classes. 

 The LDA classification algorithm performed better than the K-means 

method for the classification problems encountered in this study. 

However, its performance, like that of other multivariate methods, 

still strongly depends on the input parameters which should be robust 

enough for reliable classification result. 

 The investigation results showed that the GP method provided 

advantages over the traditional methods in the affordability of many 

alternative solutions. The GP method provides a new approach to the 

classification problem, and is shown in this study that classification 

problems can be solved by the introduction of GP. For classification 

problems of more than two classes, it will require a further adjustment 

of the fitness function instead of the one provided in equation 5-1, in 

order to accommodate other mixing conditions of different habitat 

types. 
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Appendices 

Appendix A Areal acoustic studies of seagrasses or algae in the world, showing the 

key research members, the major acoustic devices, and the frequencies 

used for the study targets. (Note: On first column, the “T or E” under 

the column represents the attribute of the studies, Theoretical or 

Experimental, while “T & E” represents both.)******** 

A 

G
ro

up
 Key 

persons 

Acoustic 

devices 
kHz Study targets Ref 

Hundley N/A N/A N/A 

(Hundley and 

Denning 1994; 

Hundley, Zabloudil

et al. 1994) 

Lee Long 

McKenzie 

Roder 

Hundley 

Sidescan 420 

H. ovalis 

H. pinifolia 

H. uninervis 

Z. capricorni 

C. serrulata 

(Lee Long, 

McKenzie et al.

1998) 

E 

A
us

tr
al

ia
 

Jordan 

Lawler 

Halley 

Barrett 

Single beam: 

SIMRAD 

ES60&EK60 

Furuno 600L 

120 

200 

H. australis 

Z. tasmanica 

P. australis 

(Jordan, Lawler et 

al. 2005) 

Duarte 
Sitex-Honda 

HE-356 
50 Macrophytes (Duarte 1987) 

E 

C
an

ad
a 

Fortin 

Saint-Cyr 

Leclerc 

Single beam: 

Raytheon DE-

719 

208 

Potamogeton 

Vallisneria 

Nitella sp. 

(Fortin, Saint-Cyr et 

al. 1993) 

                                                 
******** Table is spanned into three pages and continued on next two pages. 
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A 
G

ro
up

 Key 

persons 

Acoustic 

devices 
kHz Study targets Ref 

E 

F
ra

nc
e 

Pasqualini 

Pergent-

Martini 

Clabaut 

Pergent 

Sidescan N/A P. Oceanica 
(Pasqualini, Pergent-

Martini et al. 1998) 

Colantoni 
Single beam: 

Sidescan: 

3.5 

N/A 
Posidonia 

(Colantoni and 

Zucchini 1979; 

Colantoni, 

Gallignani et al. 

1982) 

Bozzano 

Siccardi 

Sector Scan: 

ST2000 
2000 P. Oceanica 

(Siccardi, Bozzano 

et al. 1997; Bozzano, 

Castellano et al. 

1998; Bozzano, 

Mantovani et al. 

1998; Siccardi and 

Bozzano 2000; 

Bozzano, Mantovani 

et al. 2002) 

Normal 

incidence 

8 

40 

Lyons 

Pouliquen Oblique 

incidence 

30 

40 

80 

90 

110 

P. Oceanica 
(Lyons and 

Pouliquen 1998) 

E 

It
al

y 

Piazzi 

Acunto 

Cinelli 

Sidescan 
100 

500 
P. Oceanica 

(Piazzi, Acunto et al. 

2000) 
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A 

G
ro

up
 Key 

persons 

Acoustic 

devices 
kHz Study targets Ref 

Sidescan: 

Klein 3000 

130 

445 

E 

Ja
pa

n 
Shono 

Komatsu 

Sato 

Koshinuma 

Tada 

Multibeam: 

Seabat 9001 
455 

Z. caulescens 

Z. asiatica 

(Shono, Komatsu et 

al. 2004) 

T 

& 

E P
ol

an
d 

Tęgowski 

Gorska 

Klusek 

Single beam: 

BioSonics 

DT4200 

208 
Macro algae 

Pilayella sp. 

(Tęgowski, Gorska

et al. 2003) 

Siljestrom 

Rey 

Moreno 

Sidescan: 

Klein 595 

100 

500 

P. Oceanica 

C. nodosa 

(Siljeström, Rey et 

al. 1996; Moreno, 

Siljestrom et al.

1998; Siljeström, 

Moreno et al. 2002) E 

S
pa

in
 

Carbó 

Molero 

Single beam: 

IA-100 

Raytheon V700 

Ulvertech 295 

102 

201 

527 

Gelidium 
(Carbó and Molero 

1997) 

T 

R
us

si
a 

Shenderov N/A N/A Macro algae (Shenderov 1998) 

E 

U
K

 Stent 

Hanley 

Single beam: 

Seafarer 
N/A E. canadensis

(Stent and Hanley 

1985) 
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A 
G

ro
up

 Key 

persons 

Acoustic 

devices 
kHz Study targets Ref 

Maceina 

Shireman 

Single beam: 

Raytheon DE-

719 

208 

Vallisneria 

Hydrilla 

Lyngbya 

(Maceina and 

Shireman 1980) 

Spratt 

Lowrance 

Truline LRG-

1510 

N/A Z. marina (Spratt 1989) 

Miner N/A N/A Z. marina (Miner 1993) 

BioSonics 

Sabol 

McCarthy 

Burczinski 

Single beam: 

DT4000 

DT6000 

Klein 2000 

Sidescan: 

Klein 2000 

420 

208 

100 

500 

Eelgrass 

Z. capricorni 

V. Americana

T. testufinum 

S. filiforme 

H. wrightii 

Z. marina 

Z. noltii 

(Sabol and Melton 

Jr. 1995; Sabol and 

Burczinski 1998; 

McCarthy and Sabol 

2000; BioSonics Inc. 

2001b; BioSonics 

Inc. 2001a; 

Burczynski, 

Hoffman et al. 2001; 

Sabol and Johnston 

2001; Sabol 2002; 

Sabol, Burczynski et 

al. 2002; Sabol, 

Melton et al. 2002; 

Sabol 2005) 

Seaman 

Finkbeiner 

Worthy 

RoxAnn 

Groundmaster 
200 

Macro algae 

Ulva 

(Seaman, Finkbeiner 

et al. 2000) 

 

U
S

A
 

Riegl 

Moyer 

Dodge 

Morris 

Virnstein 

Single beam: 

Suzuki TGN60-

50H-12L 

Suzuki 

TGW50-200-

10L 

50 

200 

Seagrass 

Macro algae 

(Riegl, Moyer et al. 

2005; Riegl, Purkis 

et al. 2005) 
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Appendix B A system block diagram made by the ESP project member, Dr. Alec J. 

Duncan, showing the detailed components and data flow directions of 

the whole ESP data collection system. 
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Appendix C Schematic diagram of the wet end micro-controller made by Mr. 

Andrew Woods. 
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Appendix D Beam patterns of the EQ60 at the 38 kHz Longitudinal, 38 kHz 

Transverse, and 200 kHz from SIMRAD’s product specifications. 
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