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ABSTRACT 

Murray Valley encephalitis virus (MVEV) is the main causative agent of arboviral 

encephalitis in Australia. Of the four genotypes of MVEV (G1-G4), only G1 and G2 

are found in Australia. G1 is dominant, while G2 is confined to Kununurra in the 

northeast Kimberley region of Western Australia (WA). Prior to this thesis, G2 MVEV 

had not been detected since 1995.  

In order to accurately characterise the distribution of the different MVEV genotypes 

in WA, nucleotide sequencing and phylogenetic analyses were performed on the 

partial envelope gene of all (seventy one) MVEV isolates collected from mosquitoes 

in northern WA between 2005 and 2009. Four G2 isolates were identified (5.6% of 

all isolates sequenced) from Fitzroy Crossing and Broome in the west Kimberley 

region. This indicates that G2 continues to circulate in WA, and beyond its 

previously recognised geographic range of Kununurra. Of the sixty seven G1 

isolates, forty five (67.2%) belonged to sublineage G1a, and twenty two (32.8%) 

belonged to sublineage G1b. To further characterise the genetic diversity within 

these isolates, sequencing and analysis of the full-length prM-E genes and the 3ʹ-

untranslated region (3ʹUTR) was performed on representative isolates. Analysis of 

the full-length prM-E genes indicated a similar phylogenetic relationship between 

all of the MVEV isolates compared to that obtained using a partial analysis of the 

envelope gene. Analysis of the 3ʹUTR sequences identified a unique 18-nucleotide 

deletion in all G2 isolates from 1991, 2006 and 2009, which may serve as a genetic 

marker of recent G2 strains. 

In order to facilitate the detection and quantification of viral RNA from all four 

genotypes of MVEV in the laboratory, surveillance and clinical settings, a real-time 

quantitative RT-PCR (RT-qPCR) was developed and validated. This assay 

demonstrated a high level of efficiency, sensitivity and specificity to all four MVEV 

genotypes and detected MVEV in infected pools of mosquito homogenates, as well 

as infected brains and tissues of veterinary clinical specimens.  
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Next generation sequencing (NGS) was employed to characterise the depth of 

genetic diversity and mutation spectra in the G1 and G2 MVEV populations. The 

complexity of mutant spectra within each sample quasispecies was determined by 

calculating the percentage of sequence clones as well as nucleotides that differed 

from the consensus sequence. This approach has been used by many researchers to 

detect low-frequency mutations and variants in a viral population. NGS technology 

revealed that G1 samples are highly genetically diverse while G2 samples have a 

lower level of genetic complexity and sequence heterogeneity. The lower level of 

genetic diversity in G2 MVEV is associated with low abundance of this MVEV 

genotype in nature.  

The phenotypic features of representative isolates from recent G1a, G1b and G2 

were characterised and compared with those of the prototype viruses – the primary 

ancestral viruses – of G1 (MVE-1-51) and G2 (OR156) in a single-step growth curve 

assay and a mouse model of pathogenesis. There was no significant difference 

between the replication kinetics of G1 and G2 isolates in DF1 cells compared to 

their prototype viruses. In contrast, recent G1 isolates demonstrated significantly 

lower replication kinetics in C6/36 cells compared to G1 prototype virus; whereas, 

one recent G2 isolate displayed a significantly higher replicative fitness than the G2 

prototype virus in these cells. In an in vivo mouse infection model, all G1 isolates 

demonstrated a dose-dependent mortality rate, characteristic of highly virulent 

strains. In contrast, G2 isolates demonstrated a significant reduction in 

neuroinvasiveness, and increases in average survival time and 50% humane dose 

end point (HD50) values, indicative of attenuation.  

In an experimental evolution study, the basis of MVEV restricted genetic diversity 

(the observation that MVEV has not been subjected to a high level of genetic 

variation) was explored. It was hypothesised that the genetic stability of MVEV 

results from alternate cycling between mosquito vectors and avian hosts. 

Genetically homogeneous MVEV G1 and G2 clonal populations were passaged 

sequentially in mosquito C6/36 or avian DF1 cells or alternately between the two 

cell lines. Passaging G1 and G2 MVEV in mosquito cells did not result in significant 

differences in genetic and phenotypic characteristics. In contrast, serial passage of 
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G1 and G2 MVEV in avian cells and alternately between mosquito and avian cells 

resulted in accumulation of mutations that were associated with significant 

differences in replicative ability in a single-step growth curve assay and an 

attenuation of virulence in mice. This suggests that the restriction of MVEV genetic 

diversity may be a result of alternating replication between mosquitoes, in which 

purifying selection is strong, and not as a result of replication in avian hosts, where 

purifying selection is relaxed. 

Recent detection of G2 isolates from the Kimberley region of WA provided a unique 

opportunity to compare the genetic and phenotypic characteristics of this genotype 

to isolates belonging to the dominant Australian genotype (G1). Significantly, 

circulating G2 viruses were shown to have a low level of genetic diversity and an 

attenuated phenotype in a mouse model of MVE. In contrast, G1 viruses had 

relatively high levels of genetic diversity in circulating strains and a virulent 

phenotype in mice. It is therefore hypothesised that genetic diversity is an 

important contributing factor to the observed abundance and distribution of each 

of these genotypes. The body of work presented herein provides an insight into the 

genetic diversity, molecular epidemiology and geographical distribution of MVEV, 

the mechanisms that restrict MVEV evolution as well as the potential molecular 

determinants of attenuation in G2 MVEV. A new highly sensitive and specific 

diagnostic tool (RT-qPCR) capable of detecting all MVEV genotypes was developed.  
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1.1 Introduction 

Acute viral encephalitis can be caused by numerous pathogens. In Australia, the 

main causative agent of arboviral encephalitis in humans is Murray Valley 

encephalitis virus (MVEV) that causes the disease Murray Valley encephalitis [MVE; 

(Mackenzie et al., 2002; Marshall, 1988)]. MVEV can also cause neurological disease 

in horses (Gard et al., 1977; Roche et al., 2013). MVEV is a member of the Japanese 

encephalitis (JE) serocomplex which comprises important viral pathogens including 

Japanese encephalitis virus (JEV), West Nile virus (WNV), Saint Louis encephalitis 

virus (SLEV) and Usutu virus [USUV; (Simmonds et al., 2012)]. In the last century, 

major MVEV outbreaks occurred in the eastern and south-eastern states of 

Australia (Broom et al., 2002a; Mackenzie et al., 1994; Mackenzie and Williams, 

2009; Russell and Dwyer, 2000). However, MVEV is believed to currently exist in an 

enzootic cycle in the Kimberley region of Western Australia [WA; (Mackenzie and 

Broom, 1995; Spencer et al., 2001)], where most human cases of MVE now occur.  

From early March 2011, significant rainfall and flooding in most parts of Australia 

resulted in an increase in the population of MVEV’s main mosquito vector, Culex 

annulirostris (Knox et al., 2012). Subsequently, MVEV demonstrated higher levels of 

activity in endemic regions and a re-emergence in the southern and south-eastern 

states. During the 2011 outbreak of MVEV, there were sixteen confirmed human 

cases of encephalitis, including four deaths (Knox et al., 2012). Moreover, the 2011 

MVEV outbreak saw substantial numbers of horse infections with significant 

mortalities and widespread seroconversion of sentinel chickens (Mann et al., 2013; 

Roche et al., 2013). Significantly, this was the first time since 1974 that MVEV 

infection was seen in humans in the south and south-eastern states (Knox et al., 

2012). 

The propensity of MVEV to spread and re-emerge is a major concern because of the 

serious public and veterinary health threat that MVEV outbreaks represent. The 

continued study of the distribution, spread and evolution of this virus will be 

important to understand the drivers of MVEV outbreaks.  
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1.2 Flaviviruses 

The genus Flavivirus consists of a highly diverse group of mainly arthrobod-borne 

viruses (arboviruses) that are distributed worldwide (Gould et al., 2003). This genus 

comprises some of the highly virulent human pathogens such as MVEV, JEV, WNV 

and SLEV that cause encephalitis; as well as the dengue viruses (DENVs) and yellow 

fever virus (YFV) that cause haemorrhagic fever (Gubler, 2012; Gubler et al., 2007). 

These viruses cause significant morbidity and mortality rates among humans and 

animals (Ghosh and Basu, 2009; Knox et al., 2012; Murray et al., 2011; Roche et al., 

2013). In addition, this genus contains many avirulent viruses such as Alfuy virus 

(ALFV) and Stratford virus (STRV) that do not appear to cause disease in humans or 

animals (May et al., 2006; Prow et al., 2011). A significant body of research has been 

conducted to investigate the genetic diversity, virulence, fitness and evolution of 

members of flaviviruses. These studies provided important insights into the 

epidemiology and pathogenicity of flaviviruses.  

1.2.1 Taxonomy and Classification 

Flavivirus is a genus of the family Flaviviridae (Simmonds et al., 2012). The 

prototype virus of this family is YFV, after which the genus and family were named. 

The Latin word flavus means yellow, signifying the jaundice caused by this disease. 

The taxonomy of the Flavivirus genus is somewhat confused since the International 

Committee on Taxonomy of Viruses (ICTV) frequently revises the classification. Prior 

to 2005, the ICTV classification listed over seventy viruses in the genus (Calisher and 

Gould, 2003; Calisher et al., 1989). This was mainly due to classifying subtypes and 

serotypes as separate species within the genus (Gubler, 2012). Calisher et al. (1989) 

classified flaviviruses into eight antigenic complexes and subcomplexes, based on 

their serological characteristics. One of the most important antigenic complexes of 

flaviviruses is the JE antigenic complex which comprises ten viruses including JEV, 

MVEV, WNV, SLEV, ALFV, STRV, USUV, Kunjin virus (KUNV), Koutango virus (KOUV), 

and Kokobera virus (KOKV), most of which are serious human pathogens (Calisher et 

al., 1989). However, many flaviviruses, including YFV, failed to fit into these 

categories. According to Kuno et al. (1998), one of the biggest challenges in the 
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classification of the Flavivirus genus arises from the diverse and widespread 

arthropod vectors and vertebrate hosts involved in the transmission of these 

viruses.  

Advances in the studies of molecular phylogenetics, antigenic structures and 

geographic association of flaviviruses, coupled with knowledge of their vector and 

host associations, pathogenicity and ecological features, have enabled re-

classification of these viruses into groups, species and subtypes/serotypes 

(Simmonds et al., 2012). The most recent ICTV classification (Simmonds et al., 2012) 

only lists fifty three species within the Flavivirus genus, forty of which are human 

pathogens (Table 1.1 and Appendix 1.1). In the recent classification, flaviviruses 

have been classified into three distinct groups, with associated subgroups. The 

three main groups are tick-borne viruses, mosquito-borne viruses, and viruses with 

no known vector. The tick-borne group contains twelve species, whereas the 

mosquito-borne group contains twenty seven. The remaining fourteen species 

belong to the group with no known vector (Table 1.1 and Appendix 1.1). Each main 

group contains viruses of medical and clinical significance that cause disease in 

humans and/or animals (Gubler, 2012). Some viruses in the family do not fit any of 

these groups and are yet to be classified.   

1.2.2 Virion, Genome Organisation, Structure and Function 

Flaviviruses have an enveloped spherical virion of approximately 50nm in diameter. 

The virion contains a positive-sense, single-stranded RNA genome that is surrounded 

by a host-derived lipid membrane which sediments between 170 and 210 S (Kuhn, 

2012; Monath and Heinz, 1996; Schmaljohn and McClain, 1996). The viral genome 

spans approximately 11,000 nucleotides and consists of a single open reading frame 

(ORF) that encodes a polyprotein, flanked by 5ʹ and 3ʹ untranslated regions [UTRs; 

Fig. 1.1A; (Kuhn, 2012; Markoff, 2003)]. The genome is capped at its 5ʹ end, but 

unlike many cellular messenger RNA, it lacks a 3ʹ polyadenylated (poly A) tail. 

Two forms of virus can be distinguished: an extracellular mature virion and an 

intracellular immature virion (Fig. 1.2A). Mature virions contain three structural 

proteins:  the capsid (C) protein, the membrane (M)  protein and the envelope (E)   
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Table 1.1. Members of the genus Flavivirus. 

1. TICK-BORNE VIRUSES 

 

 

Mammalian tick-borne virus group 

 

Seabird tick-borne virus group (probably tick-borne) 

 

Kadam virus group 

  

2. MOSQUITO-BORNE VIRUSES 

 

Aroa virus group 

 

 

Dengue virus group 

 

Japanese encephalitis virus group 

 

                   Cacipacore virus  

  

Japanese encephalitis virus  

  

Koutango virus  

  

Murray Valley encephalitis virus  

   

Alfuy virus  

  

St. Louis encephalitis virus  

  

Usutu virus  

  

West Nile virus  

   

Kunjin virus  

  

Yaounde virus  

 

Kokobera virus group  

 

Ntaya virus group 

 

 

Yellow fever virus group 

PROBABLY MOSQUITO-BORNE 

 

Kedougou virus group 

 

Edge Hill virus group 

  

3. VIRUSES WITH NO KNOWN ARTHROPOD VECTOR (NKV) 

 

Entebbe bat virus group 

 

Modoc virus group 

 

Rio Bravo virus group  

  

4. TENTATIVE SPECIES IN THE GENUS (not approved) 

 

Mammalian tick-borne viruses 

 

Mosquito-borne viruses 

 

Probably arthropod-borne viruses 

 

Viruses with no known arthropod vector 

 

The main groups of viruses are listed in bold UPPERCASE text, the subgroups are listed in bold 

lowercase text; and the names of virus species are listed in normal type script; subspecies names are 

listed as italics. Only members of the Japanese encephalitis virus groups are listed. For the complete 

list and classification of the Flavivirus genus, please refer to Appendix 1.1. Adapted from Simmonds 

et al. (2012). 
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protein (Rey et al., 1995). Intracellular immature virions contain the precursor to 

the M protein (prM) instead of M [Fig. 1.2A; (Heinz and Stiasny, 2012; Kuhn et al., 

2002; Li et al., 2008)]. Flavivirus immature virions display a spiky surface (Fig. 1.2B), 

but unlike other mature RNA viruses that exhibit the spike-like projection on their 

surface, mature flaviviruses have a smooth surface [Fig. 1.2C; (Kuhn et al., 2002; 

Mukhopadhyay et al., 2005; Zhang et al., 2003)]. The surface of the flavivirus virion 

shows 30 copies of E protein dimers that are organised in an icosahedral symmetry 

[Fig. 1.2B, and Fig. 1.2C; (Mukhopadhyay et al., 2005; Zhang et al., 2003)].  

1.2.2.1 Replication Overview 

Flaviviruses replicate in the cytoplasm of host cells [Fig. 1.3; (Gubler et al., 2007; 

Lindenbach et al., 2007; Roby et al., 2012)]. Prior to cell entry, these viruses are 

capable of using several cellular molecules to mediate their attachment into the 

host cells (Jindadamrongwech et al., 2004 ; Krishnan et al., 2007; Navarro-Sanchez 

et al., 2003; Tassaneetrithep et al., 2003). None of these molecules have yet been 

confirmed as functional flavivirus receptors (Roby et al., 2012). Upon attachment to 

the host cell surface, flaviviruses are internalised via clathrin-mediated endocytosis 

[Fig 1.3A; (Chu and Ng, 2004; Mosso et al., 2008; Suksanpaisan et al., 2009)]. 

Following internalisation, the low pH of the endosomes triggers the fusion of the 

viral envelope with the cell membrane, allowing the disassembly and release of the 

flavivirus RNA into the cytoplasm of the infected cells [Fig. 1.3B; (Bressanelli et al., 

2004; Lindenbach et al., 2007; Roby et al., 2012; Stiasny et al., 2007)].  

The translation of flavivirus RNA produces a large polyprotein of approximately 

3400 amino acids (Fig. 1.3C) that is co- and post-translationally cleaved into ten 

proteins (C, prM-M, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5; Fig. 1.1A) by 

virus-encoded protease and host cell signalases (Lindenbach et al., 2007; 

Mukhopadhyay et al., 2005; Roby et al., 2012)]. The structural proteins (C, prM/M 

and E) are encoded by the 5ʹ one-third of the ORF, while the non-structural (NS) 

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are encoded by the 3ʹ two-

third (Fig. 1.1A). The NS proteins replicate the flavivirus genomic RNA [Fig. 1.3D; 

(Roby et al., 2012)]. The prM and E glycoproteins wrap the newly synthesised
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C 
(375) 
[125] 

PrM 
(501) 

[167]  

E  
(1503) 
[501] 

NS1 
(1056) 
[352] 

NS2A  
(681) 
[227] 

NS2B 
(393) 
[131] 

NS3 
(1857) 
[619] 

NS4A 
(378) 
[126] 

NS4B 
(774) 
[258] 

NS5 
(2715) 
[905] 

 

 
 

 
 H/R    H/R Conserved  H/R   

 
 Protease  
[1-168] 

  Helicase  
[180-618] 

 

 

 

 
 

 

5ʹUTR 3ʹUTR 

Motif A Motif B Motif C Motif D 

Polymerase (RdRp) [271-905] 

Methyltransferase 
[1-270] 

C 

E 

A 

B 

D 

Fig. 1.1. 
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Fig. 1.1. Schematic representation of the Flavivirus genome.  

A. There are three structural (C, prM, and E) proteins and seven non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5).  Numbers in parantheses () represent the 

length of each gene in nucleotide bases, whereas square brackets [] denote the lengths of each protein in terms of the number of amino acid. Structural proteins 

are green; non-structural proteins are blue. The cleavage sites of the Flavivirus-encoded NS2B-NS3 proteases are indicated by blue-filled down arrows. The 

cleavage sites of the host-produced proteases are indicated by green-filled up arrows.  

B. The predicted composition of the NS2B protein is displayed. This contains a conserved hydrophilic region and three hydrophobic regions (H/R). Also shown is the 

protease and helicase domains of the NS3 protein. A schematic representation of the NS5 protein with its methyltransferase and polymerase (RdRp) domains is 

also shown. The relative positions of the conserved motifs of the polymerase domain is displayed below the NS5 protein. 

C. The predicted secondary and tertiary structures of the 5ʹUTR and 3ʹUTR are displayed. The locations of the conserved secondary and tertiary elements in two 

untranslated regions at both ends of the genome are shown. SL: stem loop; AUG: start codon; UAR: upstream of AUG region; DAR: downstream of AUG region; CS: 

cyclisation sequences; cHP: the C protein hairpin; sfRNA: subgenomic flavivirus RNA; RCS: repeated conserved sequence; DB: dumbbell-like structure; PK: 

pseudoknot.  

Fig. 1.1A and 1.1B are adapted from published data (Luo et al., 2012; Yu et al., 2007), Fig. 1.1C is reproduced from Roby et al. (2012). 
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Fig. 1.2.  Schematic and three dimensional images of the Flavivirus virion.  

A. The spherical capsid contains the positive-sense single stranded genomic RNA and the capsid 

protein (C). The surface of immature protein (left) is covered by spike-like trimers of the pre-

membrane (prM) and envelope (E) heterodimers. The mature particle (right) contains the mature 

membrane (M) instead of prM (Heinz and Stiasny, 2012). B. Surface shaded view of a cryo-electron 

microscopy reconstruction of DENV-2 immature virion at 12.5 Å resolution (Zhang et al., 2003). C. 

Cryo-electron microscopy reconstruction of the mature DENV-2 virion at 14Å resolution (Zhang et al., 

2003). Triangles indicate one icosahedral unit. 

A

. 

B. 

C. 
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Fig. 1.3. A schematic representation of the Flavivirus replication cycle.  

A. Virus attachment and entry 

B. Disassembly and release of the viral RNA 

C. Translation of flavivirus RNA 

D. Replication of viral genomic RNA 

E. Assembly of the immature virus particles and budding into the endoplasmic reticulum  

F. Cleavage of pr segment from the M protein and maturation of the virus particle 

G. Release of the mature virion from the cell.  

Modified from Perera et al. (2008).  
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genomic RNA and the capsid protein to assemble the immature virus particles (Fig. 

1.3E). These immature virions are budded into the endoplasmic reticulum (ER) 

before they are transported to the Golgi network via the secretory pathway 

(Mackenzie and Westaway, 2001; Welsch et al., 2009). The low pH of the trans-

Golgi network causes the host enzyme furin to cleave the pr segment from the M 

protein and produce the mature virion [Fig. 1.3F; (Mukhopadhyay et al., 2005; 

Stadler et al., 1997; Welsch et al., 2009)]. The mature virion is immediately secreted 

at the plasma membrane [Fig. 1.3G; (Roby et al., 2012)]. 

Flaviviruses often produce defective genomes that lack most of the structural 

genes, and the 5ʹ half of the NS1 gene (Lancaster et al., 1998; Yoon et al., 2006). 

Defective genomes that encode stop codons or deletions have been found to form a 

part of the genetic diversity of many flavivirus populations (Aaskov et al., 2006; 

Lancaster et al., 1998; Yoon et al., 2006). The virus particles that carry these 

defective genomes are called defective interfering (DI) particles. Due to the defect 

in their genome, their replication and life cycle completely depends on the enzymes 

and helper functions of the parental virus (Aaskov et al., 2006; Lancaster et al., 

1998; Yoon et al., 2006). Thus, defective genomes are unable to replicate in the 

absence of the complete genome of wild-type virus. However, they often compete 

with the parental viruses and disrupt the production of full-length infectious virions, 

resulting in an increased production of non-infectious particles (Lancaster et al., 

1998; Poidinger et al., 1991). The DI particles are involved in significantly reducing 

the cytopathogenicity of the wild-type virus (Poidinger et al., 1991) and establishing 

a persistent infection (Poidinger et al., 1991; Yoon et al., 2006). 

1.2.2.2 5ʹ and 3ʹ Untranslated Regions  

The 5ʹ end of the flavivirus genome contains a type I m7GpppAmpN2 cap 

(Lindenbach et al., 2007). The 5ʹUTR demonstrates a high level of variation between 

viruses belonging to the different groups of flaviviruses (Brinton and Dispoto, 1988), 

however, the secondary structures in this region appear to be conserved and play 

an important role in RNA replication (Filomatori et al., 2006). Within the 5ʹUTR, 

there are two stem loops (SL) named SL-A and SL-B [Fig. 1.1D; (Lodeiro et al., 2009)]. 
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SL-A, which is also known as 5ʹSL, is a necessary promoter element for RNA 

synthesis (Alvarez et al., 2005; Filomatori et al., 2006; Roby et al., 2012). SL-B 

contains a conserved sequence which is located upstream of the translation 

initiator (AUG) called the 5ʹUAR [upstream of AUG region; (Alvarez et al., 2005)]. 

The conserved  sequences of the 5ʹUTR are complementary with their counterparts 

in the 3ʹUTR and are involved in the cyclisation of the flavivirus genome (Friebe and 

Harris, 2010; Khromykh et al., 2001a; Villordo and Gamarnik, 2009). The capped 

5ʹUTR of flaviviruses can also direct the translational expression in cell culture (Chiu 

et al., 2005). 

The 3ʹUTR of flaviviruses lack a poly A terminal and demonstrates considerable 

variation in size and sequence between flaviviruses (Poindinger et al., 1996). In 

mosquito-borne flaviviruses, the 3ʹUTR can be divided into three domains. Domain 

1 is located immediately downstream of the stop codon and is highly variable in 

length and sequence (Mandl et al., 1998; Men et al., 1996; Poindinger et al., 1996). 

This domain contains four stem loops (SL-I, SL-II, SL-III and SL-IV) and two conserved 

hairpin structures: the repeated conserved sequence (RCS; RCS3) and the cyclisation 

sequence [CS; CS3; Fig. 1.1E; (Pijlman et al., 2008; Proutski et al., 1997)]. Since 

domain I demonstrates great variability, not all mosquito-borne flaviviruses contain 

all four SLs, RCS3 and CS3 of this domain. It has been reported that the highly 

structured RNA sequences in domain 1 of the 3ʹUTR of flaviviruses render resistance 

to cellular ribonucleases (Pijlman et al., 2008). The incomplete degradation of  the 

flavivirus genome by cellular nucleases results in the production of subgenomic 

flavivirus RNA (sfRNA; Fig. 1.1E) that are important for the infectivity and the 

pathogenicity of these viruses (Pijlman et al., 2008). 

Domain 2 is moderately conserved and contains several hairpin motifs such as RCS2 

and CS2, that fold into dumbbell-like (DB) structures called DB1 and DB2 (Fig. 1.1E). 

Mosquito-borne flaviviruses possess at least one of these conserved structures 

(Roby et al., 2012).  

Domain 3 is highly conserved and encompasses the 3ʹSL, CS1, 3ʹ UAR and 3ʹ DAR 

[downstream of AUG region; Fig. 1.1E; (Markoff, 2003)]. The 3ʹSL is the most 
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conspicuous structure at the 3ʹ end of the flavivirus genome (Brinton et al., 1986). 

In addition to genome cyclisation, the conserved structures and RNA elements in 

the 3ʹUTR of flaviviruses are also involved in RNA synthesis (Alvarez et al., 2005; 

Tilgner et al., 2005), replication (Friebe and Harris, 2010) and translation (Holden 

and Harris, 2004; Li and Brinton, 2001). Apart from the structures in domain 3 of the 

3ʹUTR shown in Fig. 1.1E, another secondary structure between 3ʹ UAR and 3ʹ DAR, 

called the small hairpin (sHP), has been recently described (Villordo et al., 2010; 

Villordo and Gamarnik, 2013). Significantly, the sequence of the loop of sHP is found 

to be essential in DENV replication only in mosquitoes, but not in mammalian cells 

(Villordo and Gamarnik, 2013). Mutations in the stem loop of sHP resulted in viruses 

that were unable to replicate in mosquito cells, whereas the same mutants 

replicated efficiently in mammalian cells (Villordo and Gamarnik, 2013). The 

presence and the role of sHP in other flaviviruses is not yet identified. 

In addition to the above secondary structures within the 3ʹUTR of the flavivirus 

genome, up to five tertiary structures, named pseudoknots (PK), have also been 

predicted [Fig. 1.1E; (Olsthoorn and Bol, 2001; Pijlman et al., 2008; Shi et al., 1996)]. 

A PK is formed when single-stranded RNA within a hairpin loop base-pairs with an 

RNA sequence elsewhere in the genome (Roby et al., 2012).  

1.2.2.3 Structural Proteins 

Capsid (C): The C protein is an essential protein of about 11kd. It encapsidates the 

viral RNA to form the nucleocapsid (NC). Despite having a similar size in all 

flaviviruses, the sequence of the C protein shows little sequence conservation. 

According to Jones et al. (2003), the C protein is the least conserved protein in the 

genome of flaviviruses with only a maximum of 40% sequence identity between the 

genus members. The nascent form of C protein, also called anchor C (anchC), has a 

hydrophobic anchor on its C-terminal that functions as a signal sequence in the 

translocation of prM glycoprotein into the endoplasmic reticulum [ER; (Lindenbach 

et al., 2007). Analyses of the available sequence information of flaviviruses for 

predicting the secondary structure indicate that there are conserved RNA elements 

of small sizes that are complementary to their counterparts in domain 3 of the 
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3ʹUTR. 5ʹ DAR is complementary to 3ʹSL (Friebe and Harris, 2010), whereas 5ʹ CS is 

complementary to 3ʹ CS1 [Fig. 1.1D and Fig. 1.1E; (Hahn et al., 1987). These two 

conserved structures (5ʹ DAR and 5ʹ CS) are separated by a 14-nucleotide sequence 

in the C protein that forms the capsid hairpin (cHP; Fig. 1.1D). The cHP directs the 

initiation of translation from the first AUG of the C protein (Clyde and Harris, 2006), 

and is essential for genome cyclisation and RNA synthesis (Clyde et al., 2008).  

Pre-membrane/membrane (prM/M): The prM protein is the glycoprotein 

precursor to the M protein.  After translocation of anchC/prM into the ER, the signal 

peptidase cleaves C to produce the mature C and M proteins. Cleavage is mediated 

by host proteases such as furin present in the Golgi-apparatus [Fig. 1.1A; (Stadler et 

al., 1997)]. However, this process is not undertaken until an adequately high level of 

viral serine protease is present (Amberg et al., 1994; Lobigs, 1993). Cleavage is also 

influenced by the level of expression of the E protein (Lorenz et al., 2002).  The pr 

segment of the uncleaved prM protects the virus from a premature fusion to the 

cell membrane by covering the fusion loop of the E protein during egress from the 

cells (Li et al., 2008).  

The cleavage of prM protein to the M protein and the N-terminal pr segment is 

associated with maturation and release of virus particles. The N-terminal of the pr 

segment contains six conserved cysteine residues. These cysteine residues form 

disulfide bridges (Nowak and Wengler, 1987) and participate in the formation of N-

linked glycosylation sites (Kim et al., 2008). This site has been shown to be 

important in Golgi trafficking and secretion of the virion, and for the pathogenicity 

of flaviviruses in mice (Goto et al., 2005; Kim et al., 2008) 

Envelope (E): The E protein is around 53kd (Lindenbach et al., 2007). It mediates 

receptor binding, membrane fusion, and induces immunity (Hall et al., 1996; Lobigs 

et al., 1990; Schneeweissa et al., 2011; Spohn et al., 2010; Sultana et al., 2009). The 

E protein contains 500 residues that are organised into three domains (Fig. 1.4), 

forming a head-to-tail homodimer on the surface of the virion (Luca et al., 2012; 

Nybakken et al., 2006; Rey et al., 1995; Zhang et al., 2004). Domain I is the central, 

eight-stranded, β-barrel domain, that contains approximately 120 residues arranged  
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Fig. 1.4. The three dimensional crystal structure of the E protein of WNV that shows 

the location of three distinctive domains.  

Adapted from Nybakken et al. (2006).  
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in three segments (Luca et al., 2012; Nybakken et al., 2006; Rey et al., 1995; Zhang 

et al., 2004). In WNV, the three segments span residues 1-51, 134-195 and 284-297 

(Nybakken et al., 2006). There are four conserved cysteine residues in domain I, 

forming two disulfide bonds (Nybakken et al., 2006; Rey et al., 1995). The N-linked 

glycosylation site of the E protein (NYS; residues 154-156) is located within the 

second segment of domain I (Luca et al., 2012; Nybakken et al., 2006; Rey et al., 

1995; Zhang et al., 2004). The glycosylation of E protein at N154 considerably 

enhances the assembly and secretion of flavivirus particles into the extracellular 

milieu and increases their infectivity (Hanna et al., 2005; May et al., 2006; Murata et 

al., 2010; Prow et al., 2011). Domain I acts as a hinge between domain II and domain 

III (Luca et al., 2012; Nybakken et al., 2006; Rey et al., 1995; Zhang et al., 2004).  

Domain II contains two loops that connect the three segments of domain I [residues 

52-133 and 196-283 (Nybakken et al., 2006)]. These loops fold together to produce 

a dimerisation domain. Domain II contains six cysteine residues that form three 

disulphide bonds (Nybakken et al., 2006; Rey et al., 1995). The tip of domain II 

contains the putative fusion peptide, a hydrophobic sequence that is rich in glycine 

[Fig. 1.4; (Nybakken et al., 2006; Rey et al., 1995; Zhang et al., 2004)]. The sequence 

of the fusion peptide is almost entirely conserved in all flaviviruses. The fusion 

peptide is 13 residues long (98-110) in mosquito-borne flaviviruses (Nybakken et al., 

2006; Zhang et al., 2004). It is anticipated that the fusogenic activity of the virus is 

related to this sequence (Allison et al., 2001; Fritz et al., 2008; Kuhn et al., 2002; 

Seligman, 2008; Stiasny et al., 2007). In addition, the putative flexible hinge region 

(residues 273-277), which connects domain I and domain II, is also located on 

domain II. This region is also conserved in all flaviviruses (Luca et al., 2012; 

Nybakken et al., 2006; Rey et al., 1995). 

Domain III contains an immunoglobulin-like fold and is 103 residues long (residues 

298-400) in mosquito-borne flaviviruses (Luca et al., 2012; Nybakken et al., 2006; 

Zhang et al., 2004). A 15-residue segment connects domain III to domain I. Domain 

III contains two cysteine residues and only one disulfide bridge. Domain III functions 

as a receptor binding domain (Chu et al., 2007; Rey et al., 1995) and is the key  

target of neutralising antibodies (Fritz et al., 2008; Lin and Wu, 2003; Martina et al., 
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2008; Schneeweissa et al., 2011; Spohn et al., 2010). The RGD receptor binding 

motif (residues 388-390) is located in domain III of the E protein (Lobigs et al., 1990; 

Nybakken et al., 2006; Rey et al., 1995). 

1.2.2.4 Non-Structural Proteins 

NS1: The NS1 glycoprotein (46kd) demonstrates a high degree of homology among 

flaviviruses (Mackow et al., 1987; Mandl et al., 1989b). It contains twelve highly 

conserved cysteine residues (Blitvich et al., 2001; Wallis et al., 2004) and at least 

two or three N-linked glycosylation sites [N130, N175 and N207; (Muller and Young, 

2012)]. The twelve conserved cysteine residues and their associated disulfide 

bridges are essential in the folding and function of the NS1 protein (Blitvich et al., 

2001; Wallis et al., 2004). The N-linked glycosylation sites have an important role in 

RNA replication and viral pathogenesis (Muller and Young, 2012; Muylaert et al., 

1996).  

The NS1 glycoprotein can be found in three different cellular locations, including the 

vesicles within host cells (intracellular NS1), within the cell in the vesicular 

compartments associated with the cell membrane (mNS1), and as a secreted 

protein in the extracellular surface on the host cell [sNS1; (Muller and Young, 2012; 

Smith and Wright, 1985)]. Intracellular NS1 is important for viral replication and has 

been shown to co-localise with flavivirus double-stranded RNA (dsRNA) in 

replication complexes [RC; (Lindenbach and Rice, 1997; Mackenzie et al., 1996; 

Westaway et al., 1997)]. In addition, mNS1 and sNS1 are highly immunogenic 

(Falgout et al., 1990; Gould et al., 1986; Hall et al., 1996; Hall et al., 1995; 

Schlesinger et al., 1985). Several studies have also associated the NS1 protein and 

anti-NS1 antibodies in the disease pathogenesis and autoimmunity (Avirutnan et al., 

2006; Cheng et al., 2009; Lin et al., 2006; Sun et al., 2007).  

NS2A: The NS2A glycoprotein is a hydrophobic protein of comparatively small size 

(22kd). There is evidence that NS2A is involved in virus assembly, and a mutation in 

this protein can block virus production (Kummerer and Rice, 2002; Liu et al., 2003). 

However, this effect can be reversed by a second mutation in the NS3 helicase 

domain (Kummerer and Rice, 2002; Liu et al., 2003). The interaction of NS2A with 



18 
 

NS3, NS5, and the 3ʹUTR of flavivirus genomic RNA may co-ordinate the shift from 

RNA replication to RNA packaging (Khromykh et al., 2001b; Mackenzie et al., 

1998b).  

NS2B: NS2B is a hydrophobic protein of 14kd. The NS2B protein of flaviviruses 

contains a highly conserved, central and hydrophilic domain (40-residue long). This 

domain is flanked by three hydrophobic regions [Fig. 1.1B; (Falgout et al., 1993)]. 

The conserved domain is essential for flavivirus protease activity and NS3-mediated 

cleavage of the NS2B/NS3 cleavage site (Falgout et al., 1993; Jia et al., 2013). The 

protease activity of flaviviruses also involves the NS2B-NS3 serine protease which 

functions to release viral proteins that are crucial in viral replication and assembly 

(Chambers et al., 1991; Falgout et al., 1993; Rothan et al., 2012).  

NS3: The NS3 protein of flaviviruses is a large, trypsin-like multifunctional protein of 

approximately 70kd. It is the second most conserved protein of the flavivirus 

polyprotein (Chambers et al., 1990; Luo et al., 2012). NS3 contains two structurally 

and functionally distinctive domains: the N-terminal (protease) domain and the C-

terminal (helicase) domain (Fig. 1.1B). 

The protease domain of the NS3 protein encodes serine protease that, in 

association with the conserved hydrophilic domain of the NS2B, is essential for the 

proteolytic cleavage of non-structural proteins of flaviviruses (except NS1; Fig. 

1.1A). This process results in the release of mature NS proteins in the cytoplasm of 

flavivirus-infected cells. Additionally, the NS2B-NS3 complex cleaves within the C 

protein (Fig. 1.1A), releasing it from anchC (Chambers et al., 1990; Lobigs, 1993). 

The helicase domain of the NS3 protein spans amino acids 180-618 (Fig. 1.1B) and 

has multiple functions including RNA helicase (Benarroch et al., 2004; 

Padmanabhan et al., 2006), RNA nucleoside 5ʹ triphosphatase (RTPase), nucleoside 

triphosphatase (NTPase) activities (Benarroch et al., 2004; Wang et al., 2009; 

Warrener et al., 1993; Wengler and Wengler, 1991), increasing fatty acid synthesis 

(Heaton et al., 2010 ), and virus assembly (Liu et al., 2002; Patkar and Kuhn, 2008). 

In addition, NS3 has been shown to play a role in the induction of host cell 
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apoptosis (Duarte dos Santos et al., 2000) and the severity of DENV-associated 

disease in mice (Bordignon et al., 2007; Luo et al., 2012).  

NS4A: NS4A is a hydrophobic transmembrane protein of 16kd that plays an 

important role in RNA replication (Mackenzie et al., 1998b; McLean et al., 2011). 

NS4A binds to NS3 as a cofactor and causes an increase in the catalytic activity of 

NS3 (McCoy et al., 2001). Moreover, together with some of the other NS proteins, 

NS4A is involved in blocking type I interferon signalling and the translocation of 

STAT2 into the nucleus of the host cell.  This has the effect of modulating the innate 

immune response (Liu et al., 2005; Miller et al., 2006). Furthermore, it has been 

shown that NS4A co-localises with NS1 and dsRNA in the vesicle packets (Mackenzie 

et al., 1998b). This suggests a role for these proteins in RNA replication. 

NS4B: NS4B is a highly hydrophobic protein of about 27kd that primarily resides in 

ER-derived cytoplasmic foci. NS4B also forms a complex with NS3 and dsRNA, 

driving the intermediate phase of viral RNA replication (Miller et al., 2006). Like 

NS4A, NS4B can block the interferon (IFN)-induced antiviral response  by inhibiting 

type I IFN signalling (Liu et al., 2005; Munoz-Jordan et al., 2003).  

NS5: NS5 is a large multifunctional protein of about 103kd, and is the most 

conserved protein of the flaviviruses (Davidson, 2009; Lindenbach et al., 2007). 

There are two distinct domains in this protein: the N-terminal domain 

[methyltransferase, (MTase)] and the C-terminal (polymerase) domain (Fig. 1.1). 

The MTase domain (residues 1-270) is involved in the modification of RNA 5ʹ cap 

(Zhou et al., 2007). The polymerase domain (residues 271-905) contains the viral 

RNA-dependent RNA polymerase (RdRp), which is essential for viral RNA replication 

(Bartholomeusz and Wright, 1993; Davidson, 2009; Lescar et al., 2012; Yu et al., 

2007). It is now known that the RdRp of flaviviruses is a primer-independent 

polymerase and initiates the de novo synthesis of negative-strand RNA without the 

help of other virus or host cofactors (Ackermann and Padmanabhan, 2001; Selisko 

et al., 2006). Sequence analysis of RdRp revealed four conserved motifs designated 

motif A, B, C, and D (Poch et al., 1989; Yu et al., 2007). It has been shown that 
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substitution in each of these motifs results in the complete inactivation of RdRp (Yu 

et al., 2007).  

NS5 is also able to induce the  transcription and subsequent secretion of interleukin 

8 [IL-8; (Medin et al., 2005)]. The ability of NS5 to influence the expression of IL-8 

prevents the antiviral effects of innate immunity enabling the spread of the virus in 

the host (Medin et al., 2005). Furthermore, NS5 can bind to IFN receptor complexes 

and inhibit IFN function (Best et al., 2005; Lescar et al., 2012). This highlights the 

importance of NS5 in the replication and pathogenesis of flaviviruses. 

1.2.3 Pathogenesis  

Most flaviviruses do not cause human or animal diseases. But emerging and re-

emerging flaviviral infections around the world highlight their ability to become 

more pathogenic and cause large outbreaks (Bledsoe, 2004; Li et al., 2011; 

Mackenzie et al., 2004; Mackenzie and Williams, 2009). In this section, only the 

pathogenesis of encephalitic flaviviruses is addressed. Flaviviruses are usually 

transmitted by arthropod vectors. They typically enter via the skin through the bite 

of an infected arthropod. From the site of entry, the encephalitic flaviviruses 

progress to the regional draining lymph nodes (Kimura et al., 2010; McMinn et al., 

1996). Within the first 48 hours post infection (hpi), flaviviruses amplify rapidly in 

the regional lymph nodes and peripheral organs, before migrating via the lymphatic 

system to the thoracic duct. Here, the viruses drain into the circulatory system and 

establish a primary viraemia (Kimura et al., 2010; Monath and Heinz, 1996). The 

virus is then transported to the extraneural tissues to replicate. Subsequently, the 

newly replicated viruses enter back into the bloodstream and cause a secondary 

viraemia within 60-72 hpi (Kimura et al., 2010). Approximately 4-5 days post 

infection (dpi) neurological infection can occur, whereby the virus enters the central 

nervous system by breaching the blood-brain barrier [BBB; (Hayes et al., 2005)], 

and/or invasion of the olfactory neurons (Andrews et al., 1999). Following 

replication in the CNS, clinical signs and symptoms appear after 7 dpi (Bennett, 

1976; Kimura et al., 2010).  
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The disease caused by members of the JE serogroup ranges from mild fever and 

meningitis to acute destructive encephalitis (Hayes et al., 2005; Knox et al., 2012; 

Salcuni and Rizzo, 2011; Sejvar et al., 2003). The mortality rate of flavivirus infection 

depends on the species and genotypes involved, but can be as high as 25%. Most 

survivors experience permanent neurological sequelae (Ding et al., 2007; Ghosh and 

Basu, 2009; Knox et al., 2012; Murray et al., 2011).  

1.2.4 Immunity  

Following a flavivirus infection, both innate and adaptive immune systems are 

induced and interact with each other to eliminate the infection (Nash and 

Usherwood, 2000). The innate immune system initiates a rapid non-specific 

response against the pathogens. This may result either in completely abolishing or 

slowing the spread of infection (Nash and Usherwood, 2000). The adaptive immune 

system establishes the production of flavivirus-specific antibodies which is a slow 

but highly specific response. The E protein of flaviviruses is a major antigenic 

determinant and can provide a protective response (Hall et al., 1996; Schneeweissa 

et al., 2011; Spohn et al., 2010; Sultana et al., 2009). The antibody-eliciting epitopes 

on the E protein of flaviviruses induce the production of neutralising antibodies 

(Heinz, 1986; Oliphant et al., 2007; Roehrig et al., 1989). Non-neutralising, yet 

protective antibodies that recognise NS1 protein have also been reported (Calvert 

et al., 2006; Hall et al., 1996). Other flavivirus proteins such as C, prM, NS3, NS4B 

and NS5 are also immunogenic and have been shown to induce immunity (Brinton 

et al., 1998).  

In areas where two or more flaviviruses co-circulate, secondary exposure to a 

related flavivirus results in an anamnestic response, in which a rapid and stronger 

immune response against the primary flavivirus infection is initiated (Calisher, 

1994b; Mongkolsapaya et al., 2003; Williams et al., 2010). Serologically, it can be 

nearly impossible to distinguish the infections with different viruses (Halstead et al., 

1983; Makino et al., 1994; Westaway et al., 1974; Williams et al., 2010).  In many 

cases, the original antigenic sin phenomenon can be observed, in which the highest 

antibody response is provided by the virus responsible for the first infection 
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(Halstead et al., 1983; Midgley et al., 2011; Mongkolsapaya et al., 2003). Original 

antigenic sin is considered an important mechanism in the development of dengue 

haemorrhagic fever (DHF) and dengue shock syndrome [DSS; (Gibbons, 2010; Green 

and Rothman, 2006; Midgley et al., 2011)]. Original antigenic sin has also been 

reported in the experimental infection of guinea pigs with JEV and WNV (Inouye et 

al., 1984).  

1.2.5 Diagnosis and Detection 

Because flaviviruses can cause very severe diseases, their early diagnosis and 

detection is essential for improved outcome in the clinical setting. Although 

flavivirus diseases can be diagnosed based on clinical symptoms, geographical 

distribution and the patients’ case history, many laboratory tests have been 

developed to assist with the early detection of flavivirus infection. Virus isolation, 

serology, and molecular tests are discussed below. 

1.2.5.1 Virus Isolation 

Flaviviruses can be isolated by using a variety of cell culture systems. Virus isolation 

from infected tissues of humans or animals can be achieved by inoculation of the 

chorioallantoic membranes of embryonated eggs, the intracerebral inoculation of 

suckling mice or serial culture in mosquito, mammalian or avian cell lines (French, 

1952; French et al., 1957; Lehmann et al., 1976; Miles et al., 1951; Williams et al., 

2010). Encephalitic flaviviruses such as JEV and MVEV can only be isolated from the 

cerebrospinal fluid (CSF) of <30% of human patients who manifest acute 

encephalitis (Monath and Heinz, 1996). The isolation of the virus from human and 

animal samples requires that the infection be at a very advanced stage. MVEV has 

been isolated post mortem from the brain tissue of fatal human cases (French, 

1952; French et al., 1957; Lehmann et al., 1976; Miles et al., 1951).  

For surveillance purposes, flaviviruses can be isolated from the homogenates of 

mosquito pools. Virus isolation from mosquito pools involves an initial cell culture in 

the Aedes albopictus C6/36 cell line, followed by culture in mammalian cells such as 

African green monkey cell line (Vero cells), and porcine stable-equine kidney [PSEK 



23 
 

cells; (Broom et al., 1989; Johansen et al., 2009)]. Subsequent identification can be 

made by several methods including enzyme immunoassay (EIA), enzyme-linked 

immunosorbent assay (ELISA), neutralisation with specific monoclonal or polyclonal 

antibodies and immunofluorescent staining, or by reverse-transcription polymerase 

chain reaction (RT-PCR).  

Virus isolation remains an important method of detecting and characterising exotic, 

emerging and previously unidentified viruses. In addition, virus isolation is an 

important method for providing viral stocks for diagnostic and research purposes 

(Williams et al., 2010). Nonetheless, this is a time-consuming and labour-intensive 

technique.  

1.2.5.2 Serological Tests 

Classical serological techniques for flavivirus diagnosis include the serum 

neutralisation test [NT;  (Gorman et al., 1975; Ksiazek and Liu, 1980)], 

haemagglutination inhibition [HI; (Clarke and Casals, 1958)], complement fixation 

[CF; (Casals and Palacios, 1941; Southam, 1956)], indirect fluorescent antibody [IFA; 

(Monath et al., 1981)] and ELISA (Burke et al., 1987; Martin et al., 2000; Solomon et 

al., 1998). The NT provides the most reliable results and is considered the best 

method for virus identification (Calisher, 1994a; Williams et al., 2010). 

Unfortunately, this technique is difficult to perform and the results can be difficult 

to interpret. The HI and CF tests are susceptible to considerable cross-reactivity 

between flaviviruses and, therefore, cannot be reliably used for the identification of 

flaviviruses to species level (Williams et al., 2010). Although the IFA test is easy to 

perform and the results can be obtained relatively quickly, it is not broadly 

commercially available (Williams et al., 2010). Therefore, ELISA and enzyme 

immunoassays (EIA) have been extensively used for the specific detection and 

identification of flaviviruses (Hogrefe et al., 2004; Pezzoti et al., 2011; Schmitz et al., 

2011; Shi and Wong, 2003).  

Problems are encountered when testing hyperimmune sera following multiple 

flavivirus infections. Serological identification of the infecting agent in a secondary 

flavivirus infection can be complicated because of the development of broadly 
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cross-reactive antibodies (Makino et al., 1994). This problem is more prominent in 

areas, such as northern Australia and the tropical Americas, where many flaviviruses 

co-circulate. It is important that positive serological test results in such areas are 

confirmed by multisampling or by other diagnostic techniques (Ledermann et al., 

2011).   

1.2.5.3 Molecular Tests 

As discussed earlier, virus isolation and detection by immunoassay techniques are 

time-consuming, laborious, and sometimes lack sensitivity. Therefore, molecular 

diagnostic methods, such as RT-PCR, RT-nested PCR and real-time quantitative RT-

PCR (RT-qPCR) techniques, are useful tools for the rapid and specific detection and 

identification of flavivirus infection (Huang et al., 2004; Jeong et al., 2011; Mendez 

et al., 2007; Patel et al., 2013).  

RT-PCR provides additional information about the molecular epidemiology of 

flaviviruses in both routine surveillance (Jeong et al., 2011; Johansen et al., 2007) 

and outbreak settings (Huang et al., 2004; Nunes et al., 2011). Nested PCR, a 

modified version of the RT-PCR assay, involves an initial RT-PCR reaction using 

primers that cover a relatively wider region of the genome, followed by a nested 

PCR amplification that employs primers specific for a region within the initial RT-PCR 

amplified products. A nested PCR provides a definitive diagnosis of an etiological 

agent of a flavivirus infection when species-specific nested primers are employed 

(Jeong et al., 2011; Williams et al., 2010). The definitive identification of flaviviruses 

by conventional or nested PCR requires post-amplification manipulation of the PCR 

product such as analysis on agarose gels and DNA sequencing (Studdert et al., 2003; 

Williams et al., 2010).  Therefore, they are time-consuming and can pose a risk of 

contamination. In addition, a conventional PCR principally produces the same 

amount of the end product at the completion of the amplification process making 

the quantification of the initial starting template extremely difficult (Bustin and 

Nolan, 2004; Kubista et al., 2006; Valasek, 2005). This would be useful for the 

determination of viral load in both clinical or surveillance situations. 
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Advances in fluorophore and probe design over the last two decades have prepared 

the way for designing more accurate, rapid, highly sensitive and specific RT-qPCR 

assays (Conceicão et al., 2010; Huang et al., 2004). RT-qPCR relies on the real-time 

detection of fluorescent signals produced during the amplification of the nucleic 

acid templates (Hugget et al., 2005; Kubista et al., 2006; Valasek, 2005). Two types 

of fluorophores are widely used: SYBR Green and target-specific probes labelled 

with various fluorescent dyes (Bustin and Nolan, 2004; Valasek, 2005). 

The SYBR Green method does not require a fluorescence-labelled probe specific for 

a target sequence (Bustin and Nolan, 2004; Valasek, 2005). Therefore, an RT-qPCR 

using SYBR Green is easier to design and less expensive to run than the RT-qPCR, 

which requires target-specific probes. Moreover, the reaction performed with SYBR 

Green is reversible (Ririe et al., 1997; Valasek, 2005) allowing the generation of a 

melt curve after the completion of the PCR. Melt curve analysis is an essential tool 

to determine the melting temperature of the PCR product so as to ensure the 

specificity of primers, and to monitor for contamination and primer-dimerisation 

(Bustin et al., 2009; Bustin and Nolan, 2004; Ririe et al., 1997; Valasek, 2005). 

Moreover, melt curve analysis has been used for the serotyping of DENV (Yong et 

al., 2007). However, there are a few inherent shortcomings with the SYBR Green 

method. Since SYBR Green is not specific for a target sequence, it can 

indiscriminately bind to any double-stranded DNA during the amplification process 

(Bustin and Nolan, 2004; Valasek, 2005). Hence, it cannot be used for a multiplex 

PCR. In addition, if there are any primer-dimers present in the reaction, the SYBR 

Green will provide an incorrect fluorescence reading due to the binding to the 

dimers. This may result in fluorescence detection in the no-template control (NTC), 

giving a false-positive result (Bustin and Nolan, 2004; Valasek, 2005), if a melt curve 

analysis is not performed.  

An alternative method is to use a probe-based RT-qPCR which employs probes that 

are highly specific for the target sequence. A significant advantage of probe-based 

RT-qPCR is that not only the primers but also the probe contributes to the 

specificity of the assay. Hence, an additional level of specificity is introduced (Bustin 

and Nolan, 2004; Valasek, 2005). In probe-based RT-qPCR assays, primer-dimers do 
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not emit a fluorescence signal; therefore the amount of signal emitted is 

proportionate to the amount of product amplified. Furthermore, hydrolysis probes 

can be labelled with various distinguishable dyes (Hugget et al., 2005). This allows 

the construction of a multiplex PCR for the amplification, detection, quantification 

and differentiation of different targets within a single PCR reaction (Chao et al., 

2007; Hue et al., 2011; Lai et al., 2007; Pongsiri et al., 2012; Yong et al., 2007).  

In addition to the various RT-PCR techniques, isothermal nucleic acid-sequence 

based amplification (NASBA) has been successfully used to detect flaviviruses 

(Lanciotti and Kerst, 2001; Wu et al., 2001). In this technique, the amplification of 

nucleic acid sequences are performed using three enzymes: a reverse transcriptase, 

T7 RNA polymerase, and RNase H. The amplified product is a single-stranded anti-

sense RNA that can be detected by using a target-specific capture probe, a  detector 

probe and an instrument which is capable of detecting and measuring 

electrochemiluminescence (Chan and Fox, 1999). This technique presents a more 

sensitive approach to detecting strains with low initial copy numbers (Jittmittraphap 

et al., 2006). Several studies have also used multi-analyte single-membrane 

biosensors to detect DENV. In this sensitive, rapid, and serotype-specific method, 

generic and serotype-specific DNA probes hybridise with the virus RNA that was 

amplified by NASBA (Baeumner et al., 2002; Zaytseva et al., 2004).  

Finally, state-of-the-art next generation sequencing (NGS) has been used to detect 

flaviviruses (Bishop-Lilly et al., 2010; Mann et al., 2013; McMullan et al., 2012). 

Although NGS technology has not yet been reported extensively for the detection of 

flaviviruses in a diagnostic setting (McMullan et al., 2012), it has been more widely 

used for whole genome sequencing and for its ability to detect low frequency 

variants, providing valuable information about the depth of the genetic diversity 

within a virus population (reviewed below, Section 1.3.4). Therefore, it not only 

detects the virus but also provides valuable information about the depth of the 

genetic diversity within the virus population (Mardis, 2008; Radford et al., 2012; Su 

et al., 2011). This technique has some fundamental shortcomings. All steps involved 

in this process are subject to the introduction of errors, such as point mutations, 

insertions/deletions (indels), and recombinant chimeric sequences (Beerenwinkel et 
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al., 2012; Görzer et al., 2010b; Malet et al., 2003). Recent advances in NGS as well 

as statistical and computational analyses have allowed for the generation of longer 

reads, and adjustment of some of the confounding factors, including error 

correction (Beerenwinkel et al., 2012; Beerenwinkel and Zagordi, 2011; Yang et al., 

2012). Hence, NGS technology not only can be used to detect flaviviruses, but also 

provide more accurate estimate of the genetic diversity within the virus population, 

as well as de novo sequencing of full-length genome. 

1.3 Flavivirus Evolution and Genetic Diversity  

Flaviviruses, like other arboviruses perpetuate themselves in nature by alternating 

replication (cycling) in arthropod vectors and vertebrate hosts (Ciota and Kramer, 

2010; Marshall, 1988). The requirement of arboviruses, including flaviviruses, to 

replicate in distinct host environments may explain their need for a considerable 

genetic plasticity, which is the defining characteristic of RNA viruses (Ciota and 

Kramer, 2010; Weaver, 2006). This genetic plasticity is the result of a high mutation 

rate, a large population size and a high level of viral replication of RNA viruses 

(Domingo and Holland, 1994; Drake and Holland, 1999; Holland et al., 1990; 

Steinhauer et al., 1992)  

It is well-established that, because the RdRp of RNA viruses lacks proofreading 

ability, these viruses acquire more mutations and endure higher genetic variation 

than DNA viruses (Steinhauer et al., 1992). The high error rate of RdRp is estimated 

to result in 10-3 to 10-5 substitutions per nucleotide in each round of replication 

(Domingo and Holland, 1994; Drake and Holland, 1999). However, even with this 

remarkable potential for sequence variation, arboviruses have experienced limited 

evolution over time (Davis et al., 2005; Ebel et al., 2004; Weaver, 2006).  

1.3.1 The Mechanism of Restricted Molecular Evolution in Arboviruses 

The generally accepted theory is that the evolutionary stasis of flaviviruses (and 

arboviruses) results from alternating replication in invertebrate and vertebrate 

hosts (Coffey et al., 2008; Coffey and Vignuzzi, 2010; Deardorff et al., 2011; 

Forrester et al., 2012; Scott et al., 1994; Weaver, 2006; Woolhouse et al., 2001). 
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This may be mainly due to the effect of various bottlenecks occurring during 

arbovirus transmission (Brackney et al., 2011; Forrester et al., 2012; Li and 

Roossinck, 2004; Sittisombut et al., 1997). Another theory associated with arbovirus 

evolutionary stasis is the fitness trade-off hypothesis. This hypothesis proposes that 

arboviruses maintain adequate replicative ability and fitness in both invertebrate 

and vertebrate hosts in preference to having a fitness increase in one host and a 

fitness decline in another (Ciota and Kramer, 2010; Deardorff et al., 2011). 

Therefore, only mutations that are either neutral or beneficial for both hosts are 

fixed, while those mutations that are deleterious for one or both hosts are 

eliminated by purifying selection (Domingo and Holland, 1997; Levins, 1968; Novella 

et al., 2012). 

Many experimental studies have assessed the role of host cycling on arboviral 

adaptation and evolution both in vitro (Chen et al., 2003; Coffey and Vignuzzi, 2010; 

McCurdy et al., 2011; Vasilakis et al., 2009) and in vivo (Ciota et al., 2009; Ciota et 

al., 2008; Coffey et al., 2008; Deardorff et al., 2011; Fitzpatrick et al., 2010; Jerzak et 

al., 2007; Jerzak et al., 2008; Lin et al., 2004; McCurdy et al., 2011). However, these 

studies provide conflicting results. While some studies revealed that the genetic 

stability of arboviruses results from host cycling (Coffey et al., 2008; Coffey and 

Vignuzzi, 2010; Moutailler et al., 2011), others revealed that it is multiple passages 

through a single host type that contributes to the evolutionary conservation of 

arboviruses (Chen et al., 2003; Ciota et al., 2009; Lin et al., 2004; Vasilakis et al., 

2009).  

Research has revealed the rate of mutation and the genetic diversity is host-

dependent. For example, in an in vivo study, Jerzak et al. (2007) revealed that more 

genetic changes developed in mosquito-passaged WNV than in chicken-passaged 

WNV. In contrast, subsequent research revealed that the rate of mutation in WNV 

was similar in viruses derived from sequential passaging either in chickens or 

mosquitoes compared with virus that underwent cycling between the two hosts 

(Jerzak et al., 2008). 
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In addition to host factors, a recent study revealed that the rate of mutation can be 

virus-dependent. McCurdy et al. (2011) demonstrated that passaging JEV in cell 

culture, eggs or mice introduced twenty two amino acid substitutions which 

resulted in its attenuation and improved survival rate in infected mice. However, in 

an identical experiment, Venezuelan equine encephalitis virus (VEEV) developed 

eleven amino acid changes which did not significantly affect the virulence of the 

virus in mice.  

Numerous arbovirus experimental evolution studies carried out on WNV (Ciota et 

al., 2008; Ciota et al., 2007b; Deardorff et al., 2011), SLEV (Ciota et al., 2007b), DENV 

(Chen et al., 2003; Vasilakis et al., 2009), VEEV (Coffey et al., 2008), Chikungunya 

virus [CHIKV; (Coffey and Vignuzzi, 2010)] and Rift Valley fever virus [RVFV; 

(Moutailler et al., 2011)] suggested that releasing arboviruses from cycling, by 

sequential passaging in either vector or host cells, in a laboratory setting resulted in 

cell-specific adaptation. However, other studies do not support this phenomenon in 

single-host-specialised viruses (Ciota et al., 2009; Deardorff et al., 2011).  

Therefore, the arbovirus evolution studies conducted so far, even with the same 

viruses, have produced varying results in an attempt to explain the reasons for the 

genetic stability of these viruses. According to Ciota and Kramer (2010), different 

outcomes of arbovirus evolution studies may be due to slight variations in factors 

such as the multiplicity of infection (MOI) applied in each study, the number and 

length of passages, the incubation temperature, and the source of parental virus 

used. 

1.3.2 Selection Pressure and Flavivirus Evolution  

Generally in RNA viruses, including flaviviruses, the unique features of viral biology, 

such as their mode of transmission, and their requirement to survive extreme 

conditions, may impose constraints on viral evolution (Scott et al., 1994; Weaver, 

2006; Woelk and Holmes, 2002). Their evolution and genetic diversity is governed 

by the operation of different selection pressures (Hall, 2011; Lemey et al., 2009). 

Generally, the difference between the rates of synonymous (silent) mutations per 

synonymous sites (dS) to that of non-synonymous (replacement) mutations per 



30 
 

non-synonymous sites (dN) is used to estimate the nature of selection pressure in a 

molecular sequence. If dN > dS, positive selection is indicated, whereas a dN < dS 

reflects the operation of purifying selection. An equal dN and dS ratio (dN = dS) 

implies the action of neutral selection (Hall, 2011; Lemey et al., 2009). Both 

phylogenetic and genetic studies of flaviviruses strongly suggest the dominance of 

purifying selection over their evolutionary history (Holmes, 2003). The operation of 

strong purifying selection has been identified in JEV (Mohammad et al., 2011), WNV 

(Bertolotti et al., 2007; Jerzak et al., 2005; Jerzak et al., 2008; May et al., 2011), 

DENV (Holmes, 2003) and SLEV (Baillie et al., 2008). To date, only a low level of 

positive selection has been reported in WNV (Beasley et al., 2003; Bertolotti et al., 

2007; Brault et al., 2007), SLEV (Baillie et al., 2008), JEV (Carney et al., 2012) and 

DENV (Bennett et al., 2006; Myat Thu et al., 2005; Twiddy et al., 2002a; Twiddy et 

al., 2002b).  

1.3.3 Genetic diversity and Population Structure of Flaviviruses 

Flaviviruses, like other RNA viruses, exist as a complex swarm of closely-related 

virus particles with non-identical genomes within a host. This genetically diverse 

population is generated as a result of the rapid replication kinetics of viruses with 

large population sizes via a low fidelity and error-prone RdRp (Domingo and 

Holland, 1994; Drake and Holland, 1999; Holland et al., 1990; Steinhauer et al., 

1992). This ensemble of mutationally coupled variants is called quasispecies or 

mutant swarm (Biebricher and Eigen, 2006; Domingo et al., 2001; Lauring and 

Andino, 2010). The terms mutant spectrum (Ciota and Kramer, 2010; Ciota et al., 

2007c; Perales et al., 2010) or mutant cloud (Perales et al., 2010; Roossinck and 

Schneider, 2006) have also been used to describe this dynamic swarm of mutants. 

Research has revealed that the viral quasispecies does not only describe an 

ensemble of individual variants, but a collection of interactive mutants that 

together define the phenotype of the virus (Biebricher and Eigen, 2005; Domingo et 

al., 2001; Lauring and Andino, 2010; Vignuzzi et al., 2006). The complexity of a 

mutant swarm (the number of various genomic sequences and the mean number of 

mutations in each genome) is governed by a balance between the mutation rate 

and selection forces (Ciota and Kramer, 2010; Perales et al., 2010), which are 



31 
 

controlled by the virus-host interaction (Schneider and Roossinck, 2001). The size, 

composition and complexity of the mutant swarm have a significant effect on 

various phenotypic characteristics of the virus such as its fitness (Domingo and 

Holland, 1997; Domingo et al., 2006; Perales et al., 2010), adaptability (Ciota et al., 

2007a; Elena and Sanjuan, 2005; Lauring and Andino, 2010), virulence and 

pathogenesis (Jerzak et al., 2007; Lancaster and Pfeiffer, 2012; Vignuzzi et al., 2006) 

and response to antiviral drugs (Domingo et al., 2001; Domingo et al., 2006; Lauring 

and Andino, 2010; Perales et al., 2010).  

Research on WNV has revealed that adaptation of the virus to a specific host cell is 

not solely due to the consensus changes, but it is mainly directly correlated with the 

breadth of mutant swarm in the virus population (Ciota et al., 2007b; Ciota et al., 

2007c). Hence, a comprehensive understanding of the quasispecies dynamics is 

crucial in appropriate characterisation of arbovirus adaptation and evolution (Ciota 

et al., 2012; Ciota and Kramer, 2010).   

Genetic diversity in flaviviruses can also manifest as genotypic diversity. Species 

that exist within different genotypes may be associated with unique phenotypes. 

For example, G1 and G3 of JEV are associated with JEV epidemics, while G2 and G4 

are more commonly associated with endemic activity. During the last two decades, 

G1 has become the dominant genotype in Australasia (Pyke et al., 2001), Vietnam 

(Nga et al., 2004), China (Cao et al., 2011; Wang et al., 2010; Zhang et al., 2011), 

India (Fulmali et al., 2011), Japan (Ma et al., 2003), South Korea (Yun et al., 2010) 

and Thailand (Nitatpattana et al., 2008), suggesting a better fitness and/or virulence 

phonotype.  Similarly, viruses belonging to different lineages and sublineages of 

WNV are also associated with distinct phenotypes. For example, lineage I 

encompasses strains distributed through much of the world and is subdivided into 

different clades. Clade Ia is distributed through much of the New World and 

contains the NY99 strain that caused severe encephalitis in humans and animals 

(Beasley et al., 2003; Davis et al., 2003a; Lanciotti et al., 1999; Murata et al., 2010; 

Nash et al., 2001), while clade Ib contains the WNV subtype KUNV that is restricted 

in circulation to the Australasian region and causes flu-like symptoms or mild 
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encephalitis in humans, and is a rare cause of neurological disease in horses (Broom 

et al., 2003; Gray et al., 2011; Mann et al., 2013).  

1.3.4 Assessment of Genetic Diversity  

The genotypic diversity of flavivirus populations has been characterised using the 

consensus sequences of either full-length genome or individual genes. In the 

majority of studies, the E gene and its deduced protein have been used for 

phylogenetic analyses of MVEV (Johansen et al., 2007; Lobigs et al., 1988), JEV (Ali 

and Igarashi, 1997; Paranjpe and Banerjee, 1996; Pyke et al., 2001; Uchil and 

Satchidanandam, 2001; Williams et al., 2000), WNV (Berthet et al., 1997; Jerzak et 

al., 2005; Scherret et al., 2001) and TBEV (Kovalev et al., 2010; Kovalev and 

Mukhacheva, 2012; Mandl et al., 1989a; Whitby et al., 1993). The E glycoprotein 

plays a significant role in the virulence, cellular tropism, protective host immune 

response, and replication cycle of flaviviruses (Beasley et al., 2005; Brault et al., 

2004; Chu et al., 2007; McMinn, 1997; Prow et al., 2011; Sultana et al., 2009). As a 

result, this gene is subject to higher levels of natural selection than other genes, and 

shows higher levels of genetic variation (Twiddy et al., 2002a; Twiddy et al., 2002b), 

which makes it suitable for phylogenetic studies. In addition to the E protein, 

molecular determinants of pathogenesis in flaviviruses also reside in the prM 

protein (Hurrelbrink and McMinn, 2003; McMinn et al., 1995). As a result, both prM 

and E genes have been employed to better characterise genetic relationships of 

flaviviruses (Beasley et al., 2003; Blitvich et al., 2004; Chen et al., 1990; Davis et al., 

2003b; Estrada-Franco et al., 2003; Williams et al., 2013; Williams et al., 2000). 

Other studies have used the NS1 gene (Jerzak et al., 2005), NS5-3ʹUTR sequences 

(Hobson-Peters et al., 2013; Poidinger et al., 2000; Poindinger et al., 1996) and 

complete genomes (Baillie et al., 2008; Jan et al., 1996; Mohammad et al., 2011) to 

characterise the genotypic or inter-population genetic diversity of flaviviruses.  

The spectrum of heterogeneity within a viral population has been determined using 

standard molecular cloning approaches coupled with conventional (Sanger) 

sequencing of only a few biological clones isolated from a viral population (Ciota et 

al., 2012; Ciota et al., 2008; Ciota et al., 2007c; Jerzak et al., 2005; Jerzak et al., 
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2007). However, because this procedure is both labour-intensive and time-

consuming, very few studies have characterised the genetic diversity of flavivirus 

populations with adequate detail. The recent introduction of NGS technology has 

revolutionised this field of study (Beerenwinkel and Zagordi, 2011; Su et al., 2011; 

Wang et al., 2007). It has been successfully used in the characterisation of the 

genetic diversity and mutant spectra within discrete populations of HIV (Fleury et 

al., 2013; Tsibris et al., 2009; Wang et al., 2007; Yin et al., 2012), hepatitis B virus 

(Nishijima et al., 2012; Solmone et al., 2009), hepatitis C virus (Dietz et al., 2013; 

Escobar-Gutiérrez et al., 2012; Lauck et al., 2012) and influenza virus (Kuroda et al., 

2010; Selleri et al., 2013; Watson et al., 2013).  

Using this approach, low-frequency mutations and variants can be detected so as to 

provide a detailed picture of the genetic diversity of the viral population 

(Beerenwinkel and Zagordi, 2011; Chen-Harris et al., 2013; Eriksson et al., 2008). 

Due to the error-prone nature of the PCR and sequencing, library preparation and 

alignments of short reads, NGS data must be further processed and validated 

before it can be used for the estimation of the genetic diversity of a virus 

population (Mardis, 2008; Su et al., 2011). Recent advances in computational and 

statistical programs have overcome this challenge (Chen-Harris et al., 2013; Yang et 

al., 2012). Therefore, with appropriate post-sequencing data validation and 

processing, NGS offers the advantage of detecting minor, but clinically-relevant 

variants within virus populations that conventional sequencing might fail to detect 

in clinical and biological samples (Chen-Harris et al., 2013; Wang et al., 2007).  

1.3.5 Molecular Determinants of Fitness and Pathogenesis 

The engineering of infectious clones for various flaviviruses including MVEV 

(Hurrelbrink et al., 1999), JEV (Sumiyoshi et al., 1992), WNV (Yamshchikov et al., 

2001), KUNV (Khromykh and Westaway, 1994), YFV (Rice et al., 1989), DENV (Lai et 

al., 1991; Mosimann et al., 2010; Pierro et al., 2006; Suzuki et al., 2007), and TBEV 

(Mandl et al., 1997) has facilitated the mapping of virulence determinants. These 

are distributed throughout the structural and non-structural proteins as well as the 

5ʹ and 3ʹUTRs  (Hurrelbrink and McMinn, 2003; McMinn, 1997).  Some  of  the  most  
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Table 1.2. Molecular determinants of flavivirus virulence.  

Position  Mutation Location Flavivirus Effects * References 

prM protein 

143 E
143

D, N
144

R  Glycosylation site TBE/DENV-4 High NV in mice (Pletnev et al., 

1993) 

162 V
162

A prM-E cleavage site  LGTV Low NV (Holbrook et al., 

2001) 

165 Y
165

H  LGTV Low NV (Holbrook et al., 

2001) 

166 T
166

L prM-E signalase site DENV-2  Loss of replication 

and virus recovery 

(Pryor et al., 

1998) 

206 S
206

V Furin cleavage site TBE/DENV-4 Low NV in mice (Pletnev et al., 

1993) 

Envelope protein 

52 Q
52

R or Q
52

K Polar interface linking 

domain I and II, 

important for 

conformational  

changes 

JEV Low NI (Hasegawa et 

al., 1992) 

R
52

G YFV Low NI (Schlesinger et 

al., 1996) 

  

107 L
107

T Fusion peptide (98-

113) 

TBEV Low fusogenic 

activity 

(Allison et al., 

2001) 

 L
107

D  TBEV No fusogenic 

activity 

(Allison et al., 

2001) 

      

126 K
126

E  Between strands d 

and e on the  surface, 

important for 

conformational 

changes and fusion 

activity 

 DENV-2 Loss of NV (Gualano et al., 

1998) 

  

138 E
138

K External region of 

domain I, close to 

domain  I and II 

junction, critical for 

interaction  with 

cellular molecules 

JEV Low NI, and low 

NV 

(Chen et al., 

1996) 

           

154 N
154

D Glycosylation site 

(154-156) 

ALFV Low NI (Prow et al., 

2011) 

  N
154

S WNV Low NI (Beasley et al., 

2005) 

  N
154

L  TBEV/DENV-4 Low NV (Pletnev et al., 

1993) 

  Y
155

S  WNV Low NI  (Chambers et 

al., 2008) 

159 V
159

A Adjacent to 

glycosylation site  

WNV Higher 

transmission 

efficiency by Culex 

mosquitoes 

(Beasley et al., 

2003; Moudy et 

al., 2007) 
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Table 1.2. continued  

Position  Mutation Location Flavivirus Effects * References 

270 I
270

S Adjacent to hinge 

region 

JEV Low NI  (Cecilia and 

Gould, 1991) 

          

277 S
277

I, S
277

N, S
277

V, 

S
277

P  

Flexible hinge region 

(273-277) 

MVEV Low NI, abnormal 

fusogenic activity, 

delayed growth in 

cell culture 

(Hurrelbrink 

and McMinn, 

2001; McMinn 

et al., 1995),  

  S
270

*  ALFV Low NI  (McMinn et al., 

1995; Prow et 

al., 2011) 

          

305 F
305

V Lateral surface of 

domain III 

TBEV Higher NV  (Schlesinger et 

al., 1996) 

308 D
308

N TBEV Loss of NV  (Jiang et al., 

1993) 

310 S
310

P LIV Loss of NV  (Jiang et al., 

1993) 

368 G
368

R TBEV Loss of NI  (Holzmann et 

al., 1997) 

380 R
380

T TBEV Higher NV  (Schlesinger et 

al., 1996) 

384 Y
384

H TBEV Loss of NI  (Holzmann et 

al., 1997) 

      

390 D
390

N, D
390

Y RGD receptor-binding 

motif (388-390) 

MVEV Loss of NI  (Hurrelbrink 

and McMinn, 

2001) 

  D
390

G, D
390

A, 

D
390

H 

MVEV Loss of NI  (Lee and Lobigs, 

2000) 

  D
390

G, D
390

A, 

D
390

H 

MVEV Loss of NI, faster 

kinetics of blood 

clearance  

(Lee and Lobigs, 

2002) 

  D
390

G, D
390

A, 

D
390

H, D
390

N 

MVEV Loss of NI  (Lobigs et al., 

1990) 

  G
389

A, D
390

E YFV17D Reduction of viral 

titre in vitro 

(van der Most 

et al., 1999) 

  D
390

H, D
390

N DENV-2 Low NV in mice (Sanchez and 

Ruiz, 1996) 

NS1 protein 

30 A
30

P   WNV Low NV, Loss of NI (Liu et al., 

2006b) 

903, 904 N
903

I, S
904

R,  N-linked glycosylation 

site 

TBEV/DENV-4 Low  NV  (Pletnev et al., 

1993) 

979, 980 K
979

R, N
980

I  TBEV/DENV-4 High NV  (Pletnev et al., 

1993) 

NS2B protein     

63 E
63

D   JEV SA14 Loss of NV (Ni et al., 1995) 
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 Table 1.2. continued         

Position  Mutation Location Flavivirus Effects * References 

NS3 protein 

 77 D
77

N, D
77

A,    YFV Reduced NS3 
protease activity 

(Chambers et 
al., 1990) 

      

138 S
138

A  YFV Reduced NS3 
protease activity 

(Chambers et 
al., 1990) 

      

  S
138

C   YFV Abolished NS3 
protease activity, 
No recovery of the 
infectious virus  

(Chambers et 
al., 1990) 

105 A
105

G   JEV SA14 Loss of NV (Ni et al., 1995) 

249 T
249

P   WNV High NV in 
American Crows 

(Brault et al., 
2007) 

NS4B protein 

101 P
101

L  DENV-4 Low replication in 
mosquitoes, 
higher replication 
vertebrate cells 

 

102 C
102

S   WNV Low NV, Low NI (Wicker et al., 
2006) 

NS5 protein 

536 D
536

A Motif A JEV Complete 
inactivation or 
severe loss of 
enzyme activity 

(Yu et al., 2007) 

605 G
605

A Motif B 

668 D
668

A Motif C 

669 D
669

A 

669 D
669

N 

691 K
691

A Motif D 

653 S653F   Inhibition of JAK-
ATAT signalling. 
Enhanced 
replication of 
KUNV in the 
presence of IFN 

(Laurent-Rolle 
et al., 2010) 

The untranslated regions (UTRs) 

82-87 Deletion 5'UTR DENV-4 Low translation 
efficiency 

(Cahour et al., 
1995) 

      

172-143 
3'd 

Only retains 3' 
CS-2A, CS-1 and 
3'SL 

3'UTR DENV-4 Smaller plaque 
size. No viraemia, 
moderate level of 
antibody response 

(Men et al., 
1996) 

*.NI: neuroinvasiveness; NV: neurovirulence. Comparisons have been made with either clone-

derived or wild-type viruses. The NI and NV have been determined in the mouse model of 

pathogenesis.  
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important and well-studied flavivirus virulence determinants are described below 

and listed in Table 1.2.  

In the prM protein, molecular determinants of virus replication and virulence reside 

in many important locations such as the glycosylation site, the prM-E signalase and 

cleavage sites and furin cleavage site. In the E protein, molecular determinants of 

viral, replication, fitness and virulence are found at various locations of all three 

domains. The most important and well-studied are the fusion peptide, the 

glycosylation site, the flexible hinge region and the receptor-binding RGD motif. 

Similarly, molecular determinants underlying enzymatic activities, virus replication, 

and virulence reside in the NS proteins, such as the glycosylation site of the NS1 

protein, and the four motifs of the RdRp in NS5. The 5ʹ and 3ʹUTRs of flavivirus 

genomes also harbour molecular determinants that are important in RNA 

translation, genome cyclisation, replication and immune response of flaviviruses.  

1.3.6 Flavivirus Virulence Studies and Animal Model of Pathogenesis 

The virulence of flaviviruses is typically determined by a mouse model of 

pathogenesis. Groups of three-week old mice (various breeds) are injected either via 

the intracranial (i.c.) or intraperitoneal (i.p.) route (Beasley et al., 2002; Hasegawa et 

al., 1992; Hurrelbrink et al., 1999; Lobigs et al., 1988; McMinn et al., 1995). The i.c. 

injection is carried out to determine the virus neurovirulence which is the ability of 

the virus to cause encephalitis following the initiation of a cytopathic infection in 

the central nervous system, (CNS). The i.p. injection is performed to characterise 

neuroinvasiveness, the ability of a virus to multiply in peripheral tissues, produce 

viraemia and invade the CNS. 

According to Monath et al. (1980), flaviviruses can be classified into three different 

virulence categories, based on their ability to produce a lethal infection after i.c. 

and i.p. inoculation in an animal model. Highly virulent strains produce a high 

mortality rate after i.p. inoculation over all ranges of virus concentrations that are 

lethal via i.c. inoculation. Flavivirus virulence studies unequivocally reveal that, in 

highly virulent strains, the mortality rate is dose-dependent, with greater rates at 

higher doses (Beasley et al., 2002; Beasley et al., 2005; Chambers et al., 2008; Davis 
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et al., 2003a; Prow et al., 2011; Shirato et al., 2004). Intermediate virulent strains 

are those that produce scattered deaths in animals over a wide range of doses such 

that no 50% lethal dose (LD50) via the i.p. route can be calculated for these viruses. 

Low virulent strains are those that produce no or minimal mortality over the entire 

range of virus concentrations tested, but produces death via the i.c. route. This 

classification is still used as the reference work on flavivirus virulence studies in 

animals. 

Several studies have associated flaviviruses with a range of virulence characteristics, 

defined by different virus and host factors. For example, the dose and route of 

inoculation of flaviviruses impact on their virulence and the severity of the disease 

in mice. Flaviviruses demonstrate a high mortality rate when inoculated via i.c. 

route, whereas they exhibit a variable mortality pattern when administered via i.p. 

route  (Beasley et al., 2005; Chambers et al., 2008; Coelen, 1988; Davis et al., 2003a; 

Hurrelbrink and McMinn, 2001; Lawson, 1988). It is hypothesised that inability of 

the virus to cross BBB after an i.p. injection is associated with a lower LD50 (Diamond 

and Klein, 2004). 

Additional factors such as age, and the genetic background of the animal, can 

influence the virulence of flaviviruses. For example, it has been demonstrated that 

mice develop resistance to i.p. challenge with flaviviruses as they age (Fitzgeorge 

and Bradish, 1980; Lawson, 1988), but remain susceptible to i.c. challenge 

(Fitzgeorge and Bradish, 1980; Lawson, 1988; May et al., 2006). The development of 

resistance to infection with increasing age is believed to be due to the maturation 

of the BBB and differences in the function of T-cells and macrophages (Diamond 

and Klein, 2004; Fitzgeorge and Bradish, 1980).  

Furthermore, significant differences in the virulence of flaviviruses have been 

observed between different strains of mice (Chambers et al., 2008; Lawson, 1988; 

Shueb, 2008). In a study on MVEV, Lawson (1988) demonstrated that inbred 

CBA/CaH mice exhibited a lower level of mortality compared to outbred CD1 mice 

when injected with high concentrations of the virus. In another study, Shueb (2008) 

revealed that DUB mice demonstrated a delayed time to death and a lower 



39 
 

mortality rate compared to HeJ mice when challenged with KUNV and MVEV. 

Similarly, Chambers et al. (2008) revealed that B-cell deficient mice displayed a 

lower mortality rate than the SCID mice when injected with WNV subcutaneously or 

intraperitoneally.  

1.4 Flaviviruses of Australasian Region 

Flaviviruses are the cause of a high number of viral infections in the Australasian 

region. Thirty different flaviviruses circulate in this region, ranging from highly 

pathogenic agents such as MVEV, JEV, WNV and DENV to less pathogenic viruses 

such as ALFV, STRV, KOKV (Mackenzie and Williams, 2009). The propensity of 

flaviviruses to emerge and establish in new geographic areas poses a significant 

public and veterinary health concern for the region. Given that some flaviviruses are 

pathogens of animals, disease outbreaks or emergence can also lead to economic 

losses and threaten trade status. Some of the most prevalent and important 

flaviviruses in the region are reviewed below. 

1.4.1 Murray Valley Encephalitis Virus (MVEV) 

Murray Valley encephalitis virus is a medically important flavivirus that is enzootic in 

the Kimberley region of WA (Mackenzie and Williams, 2009; Marshall, 1988). It is 

the most important causative agent of arboviral encephalitis in humans in 

Australasia (Mackenzie and Williams, 2009; Marshall, 1988) and also causes 

infection in horses leading to neurological diseases (Gard et al., 1977; Knox et al., 

2012; Roche et al., 2013). Since MVEV is the focus of this thesis, a detailed review of 

this virus follows. 

1.4.1.1 Clinical Picture 

Infection with MVEV is mostly asymptomatic with only 1 in 200-1000 MVEV-

infected individuals developing encephalitic manifestations (Burrow et al., 1998; 

Cordova et al., 2000; Knox et al., 2012; Mackenzie et al., 1993; Spencer et al., 2001). 

The incubation period is between 5 and 28 days (Bennett, 1976; Spencer et al., 

2001). People of all ages can be affected but the severity of disease is more 

pronounced in young children and older adults (Burrow et al., 1998). Most likely, 
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MVEV enters the brain via the BBB and there is also evidence indicating that it can 

enter the brain via the olfactory neurons (Andrews et al., 1999). The pathogenic 

processes that mediate disease are yet to be fully elucidated.  

MVEV causes both mild and severe infections. In mild cases, people may suffer from 

headache, fever (usually over 40°C), neck stiffness, irritability, photophobia, 

drowsiness, and some other non-specific febrile illness (Burrow et al., 1998; 

Cordova et al., 2000; Knox et al., 2012). In severe cases (encephalitis), patients may 

experience fits, coma, and respiratory failure. During the advanced phase of 

infection, patients may exhibit signs of cerebellar, brainstem and spinal cord 

involvement including flaccid paralysis, tremor and death. Seizures usually occur in 

children, but may also happen in adults (Burrow et al., 1998; Cordova et al., 2000; 

Knox et al., 2012; Mackenzie et al., 1993). Vomiting and macular erythematous rash 

are also common clinical features in children (Anderson, 1954; Burrow et al., 1998; 

Knox et al., 2012). The outcome of infection is worse in the elderly and young 

children (Burrow et al., 1998; Mackenzie et al., 1993). Physicians may not 

immediately associate these signs with MVE infection, especially in non-enzootic 

areas (Spencer et al., 2001). Computed tomography (CT) scan images are usually 

normal. However, dramatic abnormalities can be detected by magnetic resonance 

imaging (MRI). Because MRI is a more sensitive and specific system of imaging, it is 

the method of choice to detect early signs of disease (Cordova et al., 2000; Knox et 

al., 2012).  

1.4.1.2 Morbidity and Mortality 

There are no clear clinical features of MVEV that can be used to predict the 

outcome of the disease. Pioneer epidemiological studies on MVEV indicated a case 

mortality rate of  68% (Anderson, 1954). However, due to advances in modern 

medicine, the mortality rate has declined dramatically and it is currently 20-25% 

(Knox et al., 2012; Mackenzie and Broom, 1995). About 30%-50% of survivors will 

exhibit permanent brain damage and neurological sequelae (Bennett, 1976; 

Cordova et al., 2000; Spencer et al., 2001). Young male children from Aboriginal 

http://www.google.com.au/url?sa=t&rct=j&q=mri&source=web&cd=1&cad=rja&ved=0CDsQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMagnetic_resonance_imaging&ei=RSskUbftGMySiQewlYGICw&usg=AFQjCNG06thrk0TReRrCBgtCXk9Mef9TJg&bvm=bv.42661473,d.dGY
http://www.google.com.au/url?sa=t&rct=j&q=mri&source=web&cd=1&cad=rja&ved=0CDsQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMagnetic_resonance_imaging&ei=RSskUbftGMySiQewlYGICw&usg=AFQjCNG06thrk0TReRrCBgtCXk9Mef9TJg&bvm=bv.42661473,d.dGY
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communities in WA experience the worst outcome (Smith et al., 1997; Spencer et 

al., 2001). 

1.4.1.3  Epidemiology     

1.4.1.3.1 History and Geographic Distribution 

Historical data suggest that the first cases of MVE were reported in 1916-1918 in 

New South Wales (NSW), Victoria (VIC), and Queensland (QLD) (Anderson, 1954; 

Mackenzie and Broom, 1995), however, an aetiological agent was not identified. 

Because of this, and the fact that the disease had not been described previously, it 

was called Australian X disease (Anderson, 1954; Mackenzie and Broom, 1995). The 

first large epidemics of MVE occurred in eastern Australia between 1917 and 1925 

(Anderson, 1954), with 281 confirmed cases and a 68% fatality rate (Anderson, 

1954; Mackenzie and Broom, 1995). No MVEV activity was recorded in Australia 

between 1925 and December 1950 (Anderson, 1954; Mackenzie and Broom, 1995).  

The second major epidemic of MVE occurred in 1950-1951 in southern and south-

eastern Australia. This was the first time the virus was detected in South Australia 

(SA) (Mackenzie and Broom, 1995; Miles et al., 1951). In this epidemic, forty five 

encephalitic cases were recorded with a mortality rate of 42% (Anderson, 1954; 

Mackenzie and Broom, 1995). During this time, MVEV was predominantly detected 

in the Murray Valley area, after which it was named. French (1952) first isolated the 

virus after inoculating brain material obtained from fatal cases onto the 

chorioallantoic membrane of embryonated chicken eggs. Miles et al. (1951) also 

isolated the virus from the brain of the only fatal case from SA. The isolation of 

MVEV from the brain of a deceased human MVE case from Papua New Guinea 

(PNG) in 1956 (French et al., 1957) marked its first detection in PNG, indicating its 

presence beyond Australia. After 1951, only sporadic cases of MVEV occurred in VIC 

(1956), WA (1969) and in QLD and NSW [1971; (Mackenzie and Broom, 1995)].  

The next large epidemic of MVE took place in 1974 with 58 human cases including 

12 deaths (20% mortality rate). The epidemic commenced in January and lasted for 

five months. The outbreak started around the Murray Valley and eventually spread 
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to all mainland states (Mackenzie and Broom, 1995; Spencer et al., 2001; Williams 

et al., 2010). After the 1974 outbreak, the disease was named Australian 

encephalitis (Mackenzie and Broom, 1995). However, since the term “Australian 

encephalitis” refers to infections caused by both MVEV and the closely-related 

KUNV, it was later recommended that the use of this term be discontinued. To 

avoid confusion, Murray Valley encephalitis and Kunjin encephalitis are now used 

accordingly (Spencer et al., 2001). 

Prior to 1974, there was only one MVEV case reported in WA and none from the NT 

(Mackenzie and Broom, 1995). However, after 1974, there was a significant shift in 

the geographical distribution of MVE and the majority of cases since then have been 

reported in WA and the NT. There is substantial evidence suggesting that the 

Kimberley region of WA is the enzootic region for MVEV in Australia (Broom, 2003; 

Broom et al., 2002a; Broom et al., 1995; Broom and Whelan, 2005). The southern 

and eastern states (SA, NSW, VIC, and QLD) that had experienced epidemics prior to 

1974 have since shown a low incidence of human clinical cases (Broom and Whelan, 

2005; Knox et al., 2012; Spencer et al., 2001). Circumstantial evidence suggests that 

both environmental and ecological factors resulting from the damming of the Ord 

River in the Kimberley region of WA created favourable conditions for the virus to 

become enzootic in this region (Mackenzie and Broom, 1999; Spencer et al., 2001).  

An increase in the activity of MVEV was observed in early 2000 as a consequence of 

heavy rainfall in WA. Significantly, in this year, a human case was reported in the 

town of Dongara, only 315km north of Perth, the southernmost point of WA, where 

an MVE case has been detected (Cordova et al., 2000). During the same year, 

antibodies to MVEV was detected in domestic chickens at Coorow, 240km north of 

Perth (Broom et al., 2002a).  

The most recent outbreak of MVE occurred in 2011. Exceptional rainfall and heavy 

flooding increased the numbers of Cx. annulirostris mosquitoes, and led to the 

subsequent spread and re-emergence of MVEV in all mainland states. Severe 

human encephalitic cases were reported in WA (nine cases, one death), NT (four 

cases, one death), SA (two cases, one death), NSW (one case) and one suspected 
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fatal case from VIC (Knox et al., 2012). MVEV activity was also detected in horses in 

all mainland states resulting in a high incidence of mortality (Roche et al., 2013). 

MVEV antibodies were also detected in the serum of sentinel chickens at Dongara 

and Leonara (Knope et al., 2013). The 2011 epidemic highlighted the potential of 

MVEV to re-emerge and emphasises the need for vigilance and continued 

surveillance in order to control further outbreaks. 

1.4.1.3.2 Factors That Facilitate the Spread of MVEV in Australia 

It is hypothesised that the movement of infected waterbirds (Broom et al., 2002a; 

Guay et al., 2012; Mackenzie et al., 1994) and/or wind-blown infected mosquitoes 

(Broom et al., 1995; Johansen et al., 2000; Kay and Farrow, 2000; Ritchie and 

Rochester, 2001) facilitates the spread of MVEV and cause epizootic activities. 

Furthermore, similar to other flaviviruses, climatic factors may have a significant 

impact on the spread and the establishment of MVEV (Gould and Higgs, 2009; 

Martin et al., 2008; Russell et al., 2009; Weaver and Reisen, 2010). Environmental 

conditions, such as high temperature, heavy rainfall and flooding are likely to play a 

significant role in the spread, movement and maintenance of the virus (Broom et 

al., 2002a).  

1.4.1.3.3 Molecular Epidemiology 

Genetic variation among MVEV isolates representing different geographical regions, 

times of isolation and species of origin has been studied previously (Coelen and 

Mackenzie, 1988; Johansen et al., 2007; Lawson, 1988; Lobigs et al., 1986, 1988; 

Williams et al., 2013). As for other flaviviruses (Section 1.3.4), phylogenetic studies 

of MVEV have employed the prM, E, and NS5 genes as well as the 3ʹUTR to 

characterise the genetic diversity of MVEV (Johansen et al., 2007; Lobigs et al., 

1988; Poindinger et al., 1996; Williams et al., 2013). These studies have identified 

four distinct genotypes (G1-G4). Of these, G1 is the dominant genotype. G1 strains 

have been isolated from all mainland Australian states and was also isolated from 

PNG in 1998 (Johansen et al., 2000), suggesting the movement of MVEV between 

PNG and mainland Australia. G2 has only been isolated from the Kununurra district 

of the Kimberley region of WA and appears to be restricted to this area.  G2 strains 
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were last detected in 1995 (Johansen et al., 2007). This period of apparent 

dormancy suggests that this genotype may have altered biological characteristics 

compared to G1 viruses and that it exists in a distinct ecological niche (Johansen et 

al., 2007; Williams et al., 2010). Thus, G2 viruses may have been undersampled 

during mosquito trapping activities. Alternatively, G2 viruses may have not been 

detected since 1995 because they have become extinct (Williams et al., 2010). 

There is an 84.6% nucleotide identity translating to 94.4% amino acid similarity 

between isolates belonging to G1 and G2 (Johansen et al., 2007). A single isolate 

each of G3 and G4 were identified in 1966 (Lobigs et al., 1986) and 1956 (French et 

al., 1957), respectively, from PNG. Isolates of G3 and G4 are very closely related, to 

each other but distinct from G1 and G2 strains, demonstrating a 91.3% nucleotide 

identity (99.2% amino acid similarity) with each other and a maximum of 87.0% 

nucleotide identity (96% amino acid similarity) with G1 and G2 strains (Johansen et 

al., 2007). These two genotypes appear to be confined to this geographical region. 

However, due to the lack of an active and effective surveillance system in PNG, the 

accurate distribution of G3 and G4 is unknown.  

1.4.1.3.4 Transmission Cycle    

MVEV principally exists in a mosquito-waterbird amplification cycle, where 

mosquitoes are the vectors and waterbirds are the main hosts (Mackenzie and 

Broom, 1995; Marshall, 1988). Humans, horses and some other mammals are 

incidental or dead-end hosts (Gard et al., 1977; Holbrook and Gowen, 2008; 

Marshall, 1988; Roche et al., 2013). The main vector for MVEV is Cx. annulirostris 

which accounts for more than 90% of mosquito isolates (Mackenzie and Broom, 

1995). MVEV was also isolated from other mosquito species, including Cx. pullus, Cx. 

quinquefasciatus, Cx. sitiens, Aedes normanensis, Ae. pseudonormanensis, and 

Anopheles bancroftii (Johansen et al., 2007; Kay et al., 1982). To date, vector 

competency (transmission efficiency) for MVEV has only been confirmed for Cx. 

annulirostris (Kay et al., 1984) and Cx. quinquefasciatus (Kay et al., 1982). The 

isolation of MVEV from Ae. normanensis (Broom et al., 1989) in arid regions of WA 

supports the hypothesis that, during episodes of drought, MVEV may be maintained 
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in desiccant-resistant eggs. When there is an improvement in the environmental 

conditions, viruses may then reactivate. 

Little is known about the likely vertebrate hosts of MVEV. Seroepidemiological 

studies of a variety of animals and birds revealed that waterbirds were the likely 

host of MVEV (Anderson, 1954; Liehne et al., 1976). Marshall et al. (1982) indicated 

that waterbirds from the order Ciconiiformes are the main MVEV vertebrate host. 

Experimental studies have since confirmed that rufous night herons (Whitehead et 

al., 1968) and egrets (Boyle et al., 1983) play a role in the ecology and epidemiology 

of MVEV. Other vertebrates such as Grey kangaroos, rabbits, pigs, dogs, and 

chickens produce a high or moderate viraemic response to MVEV and may also have 

roles in the MVEV lifecycle (Kay et al., 1985). Further surveillance and investigation 

is needed to confirm the roles (if any) of these animals as either amplifying or 

maintenance hosts. 

1.4.1.4 Control Measures 

Since there is no specific cure available for MVE or vaccine to MVEV, it is essential 

to focus on surveillance and control measures aimed at preventing the spread of 

infection. To effectively control MVEV, a number of measures need to be 

undertaken concurrently. All these control measures are complementary and need 

to be carried out in parallel with each other to warrant the best outcome.  

1.4.1.4.1 Control of Vectors 

It is generally believed that barrier control (barrier fogging with both larvicides and 

adulticides) to create a buffer zone around communities that are at risk during an 

outbreak provides a good approach to controlling mosquitoes so as to protect 

human populations (Dale et al., 1998; Spencer et al., 2001; Whelan, 2011a). 

However, the success of this concept depends on knowledge of the habits and 

habitats of the mosquitoes, as well as the implementation of an efficient, intensive 

and effective mosquito control program. Large scale use of chemicals to eradicate 

MVEV in the endemic area is an impractical approach. Mosquito control programs 

consists of many strategies, including: physical, cultural, environmental, agricultural, 
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chemical and biological control of mosquitoes (Dale et al., 1998; Douglas, 2011; 

Lindsay and Harrington, 2011; Ng and Vythilingam, 2012; Spencer et al., 2001; 

Whelan, 2011a, b). 

1.4.1.4.2 Control of Hosts 

Although waterbirds have been implicated as MVEV hosts, there may be a number 

of other possible amplifying hosts that are yet to be identified [P. Neville (2012); 

personal communication]. The movement of waterbirds has been associated with 

the eruption of MVEV into new areas (Guay et al., 2012). Despite this knowledge, 

little has been done to control bird populations in endemic regions. This is a 

challenge given that the culling of birds, including migratory birds, is prohibited 

under the Japan-Australia Migratory Bird Agreement (JAMBA; 1974), China-

Australia Migratory Bird Agreement (CAMBA; 1986), and the Republic of Korea-

Australia Migratory Bird Agreement (ROKAMBA; 2006; (Australian Government, 

2009; Neville, 2012)].  

1.4.1.4.3 Surveillance Systems 

All arbovirus infections, including MVEV, are reported to the Commonwealth 

Department of Health and Aged Care via the National Notifiable Disease 

Surveillance System (NNDSS). The Laboratory Virology and Serology (LabVISE) 

Reporting Scheme also contribute to the reporting and surveillance of MVE 

infection in Australia (Spencer et al., 2001). In addition, since the mid-1970s, a 

prospective surveillance program has been in place to detect evidence of MVEV 

infection in the serum of sentinel chickens in WA, the NT, NSW, and VIC (Fig. 1.5). 

Sera are collected and screened for the presence of antibodies against MVEV and 

other medically important arboviruses (Broom et al., 1998; Broom, 2003; Broom 

and Whelan, 2005; Broom et al., 2002b; Fitzsimmons et al., 2009; Johansen et al., 

2009; Spencer et al., 2001).  Furthermore, mosquito surveillance activities are 

carried out annually. Mosquitoes are trapped, speciated and processed for virus 

isolation to determine species that are likely to be involved in virus transmission 

(Johansen et al., 2009). 
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 Fig. 1.5. The location of sentinel chicken flocks in Australia in 2007-2008 

● Indicate the locations where sentinel chickens are located. Reproduced from Knope et al. (2013).  
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Some opportunistic surveillance has also been done for MVEV (Spencer et al., 

2001). Sera collected during kangaroo and possum culling exercises were tested to 

help determine the extent of it geographical spread. In some parts of WA, 

opportunistic testing of domestic chickens has been used to determine the 

geographical limits of the spread  of  MVEV  activity,  where sentinel chickens were 

not available (Broom et al., 2002a; Spencer et al., 2001).  

The surveillance of weather, including rainfall patterns, temperature, the Southern 

oscilation index (El Niño or La Niña events), and river flow levels are also useful 

tools for predicting MVEV activity and mosquito breeding capabilities (Spencer et 

al., 2001). Similar to RVFV (Martin et al., 2008)] and DENV (Russell et al., 2009; 

Weaver and Reisen, 2010), climatic factors may have a significant impact on the 

spread and the establishment of MVEV (Gould and Higgs, 2009). In fact, it is now 

evident that large outbreaks of MVEV, especially in WA, are related to extreme and 

abnormal weather (Broom et al., 2002a; Roche et al., 2013).  

The surveillance of weather, including rainfall patterns, temperature, the Southern 

oscilation index (El Niño or La Niña events), and river flow levels are also useful 

tools for predicting MVEV activity and mosquito breeding capabilities (Spencer et 

al., 2001). Similar to RVFV (Martin et al., 2008)] and DENV (Russell et al., 2009; 

Weaver and Reisen, 2010), climatic factors may have a significant impact on the 

spread and the establishment of MVEV (Gould and Higgs, 2009). In fact, it is now 

evident that large outbreaks of MVEV, especially in WA, are related to extreme and 

abnormal weather (Broom et al., 2002a; Roche et al., 2013).  

1.4.1.4.4 Vaccines 

Due to low incidence of MVE each year in Australia, it might be argued that the 

development of a vaccine is not warranted. However, this virus poses a high risk to 

the population of northern Australia and specifically to infants and children (Broom 

et al., 2000). Hence, the development of a vaccine against MVEV has been the 

subject of ongoing research for decades. Pioneer studies (Hall et al., 1996) revealed 

that when F1 hybrid mice were vaccinated with a recombinant vaccinia virus 

(expressing prM-E-NS1-NS2A), mice were 100% protected against a subsequent 
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challenge with a higher dose of MVEV. Mice that received a combination of (C-prM-

E-NS1-NS2A), (NS1-NS2A without the structural genes) or pure NS1 were only 

partially protected. In another mouse study, an epitope of MVEV was expressed in 

an avirulent strain of Salmonella to stimulate the production of anti-MVEV 

antibodies (Whittle et al., 1997). The sera obtained six weeks post inoculation 

neutralised 60%-70% of a subsequent challenge with wild-type virus. No complete 

neutralisation was observed in this study (Whittle et al., 1997). Colombage et al. 

(1998) used a gene gun for the intradermal delivery of the prM and E proteins, as 

well as intramuscular injection of DNA. This provided resistance/protection against 

subsequent challenge with wild-type virus. When MVEV recombinant subviral 

particles (SVPs) were tested, they were found to provide 100% protection against a 

subsequent lethal dose of MVE-1-51 (Kroeger and McMinn, 2002).  

In the absence of a commercially available vaccine, research has been undertaken 

to examine whether licenced vaccines for other members of the JEV serocomplex 

afford any protection against MVEV. Immunisation of mice with a low-dose of an 

inactivated JEV vaccine (JE-VAX) enhanced a subsequent infection with MVEV 

(Lobigs et al., 2009). In another study, the effect of immunisation against UV-

inactivated MVEV on a subsequent JEV infection was examined. This study 

demonstrated that the antibodies produced after a primary challenge with MVEV 

may exacerbate the course of a secondary infection with JEV (Lobigs et al., 2003). 

Interestingly in two studies, a single high dose of a live chimeric JEV vaccine 

candidate-ChimeriVax-JE (Guirakhoo et al., 1999; Lobigs et al., 2009) was shown to 

elicit complete protection against a subsequent lethal challenge with MVEV 

infection. Therefore, the ChimeriVax-JE vaccine may be a good candidate to be used 

in the event of an MVEV outbreak, at times of vector abundance, or when 

considerable seroconversions are detected amongst sentinel chickens. 

The effect of passive immunisation on MVEV infection has also been investigated. 

Broom et al. (2000) demonstrated that passive immunisation of mice with MVEV 

antisera provided complete protection against a subsequent MVEV infection. 

Moreover, at least two studies investigated the efficacy of passive immunisation of 

mice with the antiserum of KUNV (Broom et al., 2000) and JEV (Wallace et al., 2003) 
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on a later infection with MVEV. These studies revealed that prior inoculation of 

mice with subneutralising concentration of inactivated KUNV or JEV antiserum 

augments the course of MVEV infection resulting in a higher viraemia titre and a 

higher mortality rate. Therefore, passive immunisation cannot be regarded as an 

optimal choice for providing protection against MVEV infection. Moreover, it seems 

that prior infection with a closely-related flavivirus may render a person at risk of a 

more severe disease if a secondary infection with another flavivirus occurs.  

1.4.2 Japanese Encephalitis Virus (JEV) 

JEV is the most common cause of encephalitis in Asia, and it is estimated to cause 

nearly 45,000 cases of human disease in eastern and south-eastern Asia each year 

(Erlanger et al., 2009; Fischer et al., 2008; Lindenbach et al., 2007).  

Most cases of human infection with JEV are asymptomatic. Less than 1% of JEV- 

infected people present with clinical disease (Gajanana et al., 1995; Vaughn and 

Hoke, 1992). The disease manifests with a wide range of clinical symptoms. In mild 

cases, patients may experience a febrile illness, whereas with encephalitic cases, 

people may suffer brain disorders, Parkinsonian syndrome, acute flaccid paralysis 

and death (Bhatt et al., 2012; Kalita and Misra, 2000; Kumar et al., 2006; Misra and 

Kalita, 1997; Rayamajhi et al., 2006; Solomon et al., 2002). The case fatality rate of 

JEV is approximately 20-30% (Bista and Shrestha, 2005; Ghosh and Basu, 2009; 

Kumar et al., 2006). Almost half of the survivors develop significant psychiatric and 

neurological sequelae (Ding et al., 2007; Ghosh and Basu, 2009; Mackenzie et al., 

2006; Solomon et al., 2000). In pigs, JEV causes stillbirth and mummified foetus. 

Infected piglets that are born alive experience convulsions, tremors and die 

immediately after birth (Williams et al., 2012). Abortion is common in pregnant 

sows. The infection is asymptomatic in non-pregnant animals. The encephalitis 

symptoms are only occasionally seen until six months of age (Daniels et al., 2002; 

Williams et al., 2012). 

In the early 1970’s, more than 100,000 JEV cases were recorded each year, with 

China having the majority of these cases (Igarashi, 1992). However, over the last 

three decades, due to the use of a JEV vaccine together with urbanisation, host and 
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vector control, and systematic agricultural practices, the number of JEV cases has 

significantly declined. Currently, nearly 30,000 JEV cases are reported each year in 

China (Fischer et al., 2008). Though, because of poor surveillance and diagnostic 

systems in many countries, this number might represent an underestimate of the 

actual burden of the disease (Erlanger et al., 2009). 

JEV is, presently, established in twenty four countries of Asia and the Pacific 

(Campbell et al., 2011). The reason for this huge geographical distribution has yet to 

be determined. It is thought that wind-blown mosquitoes, infected migratory birds, 

changes in agricultural practices and animal husbandry (especially in pig-rearing 

practices) and the establishment of irrigation for rice production could all 

contribute to this phenomenon (Erlanger et al., 2009; Hanna et al., 1996; Keiser et 

al., 2005).  

In Australia, JEV was initially identified in the Torres Strait islands in 1995, and later 

spread to the Northern Peninsula Area and southwest Cape York in northern QLD 

(Hanna et al., 1999; Hanna et al., 1996; Mackenzie et al., 2004; Mackenzie et al., 

2006). To investigate the origin of JEV infections in the Torres Straits, 

comprehensive seroepidemiological studies and mosquito surveys were conducted 

in PNG (Johansen et al., 1997; Johansen et al., 2000; Spicer et al., 1999). It was 

found that seroconversion against JEV was present in PNG as early as 1989 

(Johansen et al., 1997), and in 1997-1998, JEV was isolated from Cx. annulirostris 

and Cx. palpalis in PNG (Johansen et al., 2000). Phylogenetic studies also revealed 

that PNG isolates were closely related to strains isolated from the Torres Strait 

Islands (Johansen et al., 2000). These results provided solid evidence that the 1995 

outbreak of JEV in the Torres Strait Island of Australia originated from PNG 

(Johansen et al., 2000; Mackenzie et al., 2006). It is hypothesised that migratory 

birds and/or wind-blown mosquitoes may have carried the virus from PNG to the 

Torres Strait islands (Hanna et al., 1996; Johansen et al., 2000; Ritchie et al., 1997).   

Phylogenetic analyses of the prM (Chen et al., 1992; Chen et al., 1990) and E genes 

(Li et al., 2011; Ni and Barrett, 1995; Paranjpe and Banerjee, 1996; Uchil and 

Satchidanandam, 2001; Williams et al., 2000) have classified JEV into five distinct 
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genotypes (G1-G5). There is a substantial genetic difference between the virus 

strains that circulate in endemic and epidemic areas. Strains of G1 and G3 are more 

commonly associated with JEV epidemics in temperate areas, whereas those of G2 

and G4 have been detected in tropical areas where JEV is endemic. However, more 

G1 cases and isolates have been recorded in many Australasian countries in the past 

decades (Cao et al., 2011; Fulmali et al., 2011; Ma et al., 2003; Nga et al., 2004; 

Nitatpattana et al., 2008; Pan et al., 2011; Pyke et al., 2001; Wang et al., 2010; 

Zhang et al., 2011; Zhu et al., 2011). G5 contains isolates from Muar city of 

Malaysia, and very recently from China (Li et al., 2011; Mohammad et al., 2011; 

Takhampunya et al., 2011; Uchil and Satchidanandam, 2001). It is believed that 

ecological and epidemiological factors, together with differences in virulence, 

contribute to this distinct distribution of the JEV genotypes (Chen et al., 1992; Chen 

et al., 1990; Mackenzie et al., 2004).  

JEV is transmitted between Culex mosquitoes and vertebrate hosts, mainly pigs and 

wading birds (Bista and Shrestha, 2005; Burke and Leake, 1988; Endy and Nisalak, 

2002; Igarashi, 1992; Tang et al., 2010; Vaughn and Hoke, 1992). Other animals, 

such as cattle, goats, sheep, buffalo and horses, can also be infected with JEV but 

they usually do not develop high levels of viraemia, and hence are not considered 

amplifying hosts (Endy and Nisalak, 2002; Ilkal et al., 1988; Yang et al., 2007). 

Humans have no role in the maintenance and amplification of JEV and are only 

dead-end points in the JEV transmission cycle (Ting et al., 2004; Yang et al., 2007).  

Control measures such as controlling mosquito populations and animal hosts can 

also reduce the number of human cases. Generally, these strategies are similar to 

those described for MVEV. One notable exception is the immunisation of pig 

populations with the JEV vaccine. Although the immunisation of pigs has been 

shown to have a profound effect on the incidence of JEV, it is not economically 

viable. Instead, the physical removal of pigs has been shown to have a significant 

impact in reducing JEV cases. It is recommended that pigs be kept at least five 

kilometres from human residents (Endy and Nisalak, 2002; Scherer et al., 1959). 
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At present, there are no specific treatments for JEV and therapy is limited to the 

management of complications and supportive care (Daniels et al., 2002; 

Guruprasad, 2011; Platt and Joo, 2006). Due to the lack of any specific antiviral 

therapy, the high incidences, the moderate fatality rate and the significant 

sequelae, prevention of JEV is considered very important. Human vaccination 

appears to be the most effective means of preventing JEV (Mackenzie et al., 2006; 

Tsai, 2000). In some countries, for example Japan and China, the implementation of 

JEV vaccination program has almost eradicated JE (Halstead and Thomas, 2010; Liu 

et al., 2006a; Tsai, 2000).  

1.4.3 West Nile Virus (Kunjin Virus) 

WNV is another medically important flavivirus of the JE serocomplex (Calisher et al., 

1989) that presents both public and veterinary health concerns in Australia, in the 

form of the WNV subtype KUNV (Broom et al., 2003; Ebel and Kramer, 2009; Gray et 

al., 2011; May et al., 2011). WNV was originally isolated from the West Nile district 

of Uganda from the blood of a patient with fever (Smithburn et al., 1940). Its 

distribution now includes Australia, Europe and the Americas, Middle East and Asia 

(Bakonyi et al., 2006; Balenghien et al., 2006; Broom et al., 2003; Doherty et al., 

1963; Ebel and Kramer, 2009; Gray et al., 2011; Kutasi et al., 2011; May et al., 2011; 

Monaco et al., 2011; Papa et al., 2012; Vazquez et al., 2010) . 

KUNV can manifest as two types of clinical disease in humans. KUNV encephalitis is 

less common and the symptoms are milder than those of MVEV (Mackenzie et al., 

1994; Mackenzie et al., 1993). In mild cases, fever and flu-like symptoms with 

polyarthralgia and polyarthritis are characteristic (Gray et al., 2011). In the last 

decade, 31 human cases of KUNV has been reported in Australia, mainly from the 

NT [only one case from NSW and three from VIC; (Gray et al., 2011)]. KUNV can also 

cause infection in horses (Frost et al., 2012; Gard et al., 1977; Mann et al., 2013; 

Roche et al., 2013). Horse infection by KUNV is subclinical in most cases. However, 

neurological symptoms such as ataxia, depression, hyperaesthesia, convulsion, 

paralysis and coma have been observed in some cases (Frost et al., 2012; Mann et 

al., 2013; Roche et al., 2013). In 2011, an outbreak of KUNV occurred in Australia 
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that caused devastating disease and death among horses, especially in southern 

and south-eastern states (Frost et al., 2012; Roche et al., 2013). 

In Australia, KUNV is enzootic across the tropical north of Australia and can 

occasionally appear in other parts of mainland Australia (Broom et al., 2003; Ebel 

and Kramer, 2009; Gray et al., 2011; May et al., 2011). KUNV was first isolated in 

Australia  from Cx. annulirostris mosquitoes in 1960 (Doherty et al., 1963; Krauss et 

al., 2003). The main mosquito vector of KUNV is Cx. annulirostris and ardeid birds 

are the main amplifying hosts (Boyle et al., 1983; Marshall, 1988). The ecology and 

epidemiology of KUNV is extensively monitored alongside MVEV in Australia. While 

KUNV is enzootic across northern Australia, it has been shown to have a focus in the 

Kimberley region of WA and the NT (Broom et al., 2003; Gray et al., 2011).  

Within the WNV there have been up to seven lineages proposed that differ from 

each other by 5-25% (Bondre et al., 2007; Vazquez et al., 2010). KUNV belongs to 

lineage 1b (Pesko and Ebel, 2012; Scherret et al., 2001). According to Scherret et al. 

(2001), the Australian KUNV isolates are genetically homologous and are distinct 

from WNV strains found elsewhere. 

The primary means of transmission of WNV/KUNV involves mosquitoes as the 

primary vectors and birds as the main amplifying hosts. In addition to birds, a large 

number of vertebrates such as humans, horses and reptiles may exhibit clinical 

symptoms. WNV can also be transmitted via blood transfusion (Papa et al., 2012; 

Pealer et al., 2003) and by organ transplant (Iwomoto et al., 2003). There is no 

specific treatment for WNV infection (Bhattacharya, 2003). Interferon-α (Kalil et al., 

2005), Ribavirin (Loginova et al., 2009) and WNV-specific immunoglobulin (Hamdan 

et al., 2002) have been tried in the treatment of WNV infection; however, there is 

not enough data to support their efficacy. 

No vaccine is available to prevent WNV infection in human. However, WNV vaccines 

have been licensed for use in horses (Garch et al., 2008; Ng et al., 2003; Seino et al., 

2007). These vaccines have been designed against NY99 strain of WNV. To date, the 

efficacy of these vaccines for protection to KUNV has not been reported. Given that 

there is a close genetic and antigenic relatedness between KUNV and the NY99 
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strain of WNV, the use of these vaccines against KUNV may be an option. Other 

control measures include controlling mosquito populations, and are similar to those 

described for MVEV. 

1.4.4 Alfuy Virus (ALFV) 

ALFV is another member of the JE serocomplex of flaviviruses that circulates in 

Australia (Calisher et al., 1989; Mackenzie et al., 1994). ALFV shares a high degree of 

genetic and antigenic similarity with MVEV (Calisher et al., 1989; De Madrid and 

Porterfield, 1974; May et al., 2006; Poindinger et al., 1996). In fact, molecular 

studies have assigned ALFV as a subtype of MVEV (Simmonds et al., 2012; Thiel et 

al., 2005). However, sequencing of the complete genome of ALFV revealed a 73% 

nucleotide identity between ALFV and MVEV, corresponding to 83% amino acid 

similarity, indicating that ALFV is a distinct species in the JEV serocomplex(May et 

al., 2011). 

Although ALFV is genetically and antigenically closely related to MVEV, it has not yet 

been associated with disease of human and animals (Mackenzie and Williams, 2009; 

May et al., 2006). In vivo studies with mice have revealed that ALFV is unable to 

invade the CNS. It has been suggested that the inability of ALFV to invade the CNS is 

due to mutations in the prM-E region of ALFV, compared to virulent MVEV (May et 

al., 2006; Prow et al., 2011). The glycosylation motif, which is associated with 

neuroinvasiveness in encephalitogenic MVEV, is absent in ALFV (May et al., 2006; 

Prow et al., 2011). Similarly, the conserved putative hinge region between domain I 

and domain II of the flavivirus E protein demonstrates a unique amino acid 

substitution in ALFV (May et al., 2006; Prow et al., 2011). Mutagenesis studies 

revealed that the absence of the glycosylation motif and changes to the hinge 

region in ALFV results in the loss of neuroinvasiveness in mice (May et al., 2011; 

Prow et al., 2011).  

Since there is a high level of antibody cross-reactivity between infections caused by 

MVEV and ALFV, the chances of some MVEV cases having actually been caused by 

ALFV cannot be discounted. In fact, because there is an inadequate amount of 

information about the biological and clinical characteristics of this virus in humans 
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and animals, its potential as an etiologic agent may be unrecognised (May et al., 

2006).  

ALFV was first isolated in 1966 at Cape York in the north of Australia, from the blood 

of a swamp pheasant (Whitehead et al., 1968). The major vector for this virus is Cx. 

annulirostris and ardeid birds are believed to be the main vertebrate hosts 

(Mackenzie et al., 1998a; Mackenzie and Williams, 2009). The regular isolation of 

ALFV in Culex mosquitoes in northern Australia suggests that it has a similar ecology 

to other members of the JE serocomplex, especially MVEV (Johansen et al., 2003).  

1.4.5 Other Flaviviruses 

DENV is another member of the Flavivirus genus that causes some of the most 

important arboviral diseases around the globe. Over half of the earth’s population 

live in areas at risk (Gubler, 2011). In Australia, DENV cases have been reported in 

QLD and NSW (Clenland and Bradley, 1918). There were 6,271 confirmed cases of 

DENV infection between 1993 and 2009, with the main outbreaks occurring in 

Townsville, Cairns and the Torres Strait Islands (Hanna et al., 2001; Hanna et al., 

1998; Ritchie et al., 2013; Tropical Public Health Unit Network, 2004). DENV has 

four antigenically distinct serotypes (DENV-1 to DENV-4), all of which can produce 

dengue fever (DF) upon initial infection. A secondary DENV infection with a 

different serotype to that of the initial infection can cause more severe diseases, 

called dengue haemorrhagic fever (DHF) or dengue shock syndrome [DSS; (Gubler, 

1998; Halstead et al., 1983)]. This is due to an antibody-dependent enhancement of 

the secondary DENV infection, a phenomenon called antigenic sin (Halstead et al., 

1983). To date, no treatment or vaccine is available for DENV (Edelman, 2005). 

DENV is not endemic in Australia, however, its main vector, Aedes aegypti, is native 

to northern QLD. Infected travellers introduce DENV to local mosquito populations 

and initiate outbreaks (Giele, 2011; Gubler, 2011). DENV’s primary transmission 

cycle involves the Aedes aegypti mosquito as the main vector with humans as 

amplifying hosts (Gubler, 2011). Other Aedes species that act as vectors for DENV 

include Ae. albopictus and Ae. scutellaris (Hu et al., 2011; Russell et al., 2009). The 

principal risk factor associated with contracting DENV is exposure to the mosquito 
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vector (Gubler, 1998; Gubler and Clark, 1996; Gubler, 2011). However, DENV 

transmission has been reported in the nosocomial environment elsewhere in the 

world (Chen and Wilson, 2004; de Wazieres et al., 1988; Wagner et al., 2004), and 

recently in Australia (Clark et al., 2012).  

The methods available for the diagnosis of DENVs are the same as those described 

for the other flaviviruses. The best way to control DENV is by raising public 

awareness and controlling mosquito populations (Gubler and Clark, 1996; Gubler, 

2011). 

KOKV is enzootic in Australia and PNG. It is another important member of the 

flaviviruses that can cause human infection (Mackenzie and Williams, 2009). 

Initially, it was classified as a member of the JE serocomplex. Later, based on both 

antigenic (Hall et al., 1991) and genomic (Poindinger et al., 1996) characteristics, 

KOKV was classified into its own serogroup together with STRV. KOKV was first 

isolated from Cx. annulirostris collected at Kowanyama in northern QLD in 1960 

(Doherty et al., 1963). Since then, it has been detected in WA, the NT, QLD, NSW, 

and PNG (Mackenzie et al., 1994; Poidinger et al., 2000). Kangaroos and other 

macropods are believed to be KOKV’s main reservoir hosts (Doherty et al., 1971). 

Human infections with KOKV (acute polyarticular disease) have been reported in 

NSW, QLD, VIC and PNG (Mackenzie et al., 1994; Mackenzie and Williams, 2009). 

The related STRV is enzootic in Australia and may also be found in PNG (Mackenzie 

and Williams, 2009). It was first isolated in Cairns, northern QLD from Ae. vigilax 

mosquitoes (Doherty et al., 1963). Later, it was also isolated from Cx. annulirostris 

Ae. procax and Ae. notoscriptus. Although human infection with STRV can occur 

(Hawkes et al., 1985), no human disease has so far been reported (Mackenzie and 

Williams, 2009).  

Edge Hill virus (EHV) is another member of the Flavivirus genus that circulates 

throughout Australia. It was first isolated in Cairns, QLD, in 1961 (Doherty et al., 

1963; Mackenzie and Williams, 2009), and has subsequently been found across 

Australia. EHV has been isolated from a range of mosquito species (Macdonald et 

al., 2001; Mackenzie et al., 1994; Russell and Dwyer, 2000). The main amplifying 
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hosts are marsupials (Doherty et al., 1964; Hawkes et al., 1985). Human infections 

have been reported in New South Wales (Hawkes et al., 1985) and disease can 

present as myalgia, arthralgia and muscle fatigue (Aaskov et al., 1993). Phylogenetic 

studies suggest that EHV is closely related to YFV (Macdonald et al., 2001; 

Macdonald et al., 2010).  

Sepik virus (SEPV), which is phylogenetically the closest flavivirus to YFV (Kuno and 

Chang, 2006), was first isolated from the Mansonia septempunctata mosquito in 

the Sepik district of  PNG (Karabatsos, 1985; Woodroofe and Marshall, 1971). Later, 

it was isolated from the Cx. Sitiens mosquito in the Western Province of PNG. 

Serological studies suggest that this virus may also be present in the Indonesian 

archipelago (Mackenzie and Williams, 2009). To date, SEPV has not been found in 

Australia.  

Insect-specific flaviviruses (ISFs) have recently been isolated from the NT (Hobson-

Peters et al., 2013). This is the first time an ISF has been isolated in Australia. The 

virus was isolated from Coquillettidia xanthogaster mosquitoes and was tentatively 

named Palm Creek virus (PCV), after its first place of isolation. Phylogenetic analyses 

of the NS5-3ʹUTR sequences of PCV and those of other known ISFs from other parts 

of the world revealed a close relationship between Australian PCV and the cell 

fusing agent virus (CFAV, Tentative Flavivirus; Appendix 1). Interestingly, a pre-

infection of mosquito C6/36 cells with PCV suppressed the subsequent infection 

with MVEV and KUNV, via a superinfection exclusion phenomenon (Hobson-Peters 

et al., 2013). However, the detection of PCV-like viruses in Coquillettidia and Culex 

mosquitoes in the Kimberley region of WA [Nguyen, McLean, Hobson-Peters, 

Barnard, Johansen and Hall, unpublished data; cited in Hobson-Peters et al. (2013)] 

has invited speculation that PCV may be more broadly distributed than the NT. So 

far, PCV has not been associated with a human or animal disease in Australia. 

1.5 Aims of This Study 

Since MVEV is the most important encephalitogenic arbovirus in Australia, the aim 

of this thesis is to enhance the knowledge of this virus. This thesis will specifically 

focus on the following: 
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1. Genetic characterisation of MVEV isolates from WA (2005-2009): G2 of 

MVEV has not been detected since 1995. However, since only a small 

number of MVEV strains isolated each year have been sequenced, the first 

aim of this thesis is to sequence all MVEV strains isolated in WA during the 

five year period 2005-2009. This will address the continued circulation of G2 

MVEV in the geographic region that is the enzootic focus of this virus and 

help to more accurately estimate genetic diversity at the genotype level.  

2. Development of an RT-qPCR capable of detecting and quantifying all four 

MVEV genotypes: There is currently no rapid, sensitive and specific assay for 

the identification of all genotypes of MVEV. Such an assay is essential for 

comprehensive detection and identification of all MVEV strains in both 

routine surveillance and outbreak settings. The development of a rapid, 

sensitive and specific assay capable of detecting and quantifying all MVEV 

genotypes will be attempted. This assay will also be necessary to perform 

the RT-qPCR required for aim 3, 4 and 5. 

3. Characterisation of genetic diversity using NGS: To date, the intra-

population genetic diversity of flaviviruses has not been characterised using 

NGS technology. The third aim of this thesis is to characterise the genetic 

diversity and population structure within individual MVEV populations in 

order to gain an insight into the quasispecies phenomenon and mutant 

spectra of this virus.  

4. Phenotypic characterisation of recent isolates from G1 and G2: Since 1988, 

MVEV research has focused on deciphering the phenotypic characteristics of 

the most prevalent Australian genotype (G1). Since the understanding of the 

actual differences between the phenotypic features of the co-circulating 

Australian genotypes (G1 and G2) is limited, the in vitro cytopathogenicity 

and in vivo virulence phenotypes of both G1 and G2, including recent 

isolates, will be characterised and compared.  

5. Experimental evolution of MVEV: Previous research has provided conflicting 

findings on the reasons for the evolutionary stasis and restricted genetic 

diversity within flavivirus populations. In this thesis, an in vitro experimental 
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evolution study will be carried out to investigate these factors for G1 and G2 

of MVEV. 

It is anticipated that the results obtained in this thesis will lead to a better 

understanding of the prevalence and distribution of currently circulating MVEV 

genotypes, as well as the depth of genetic diversity within individual virus 

populations. This study also aims to address the biological factors underlying the 

restricted evolution of MVEV through the characterisation of the phenotypic 

features of the two co-circulating MVEV genotypes (G1 and G2). Taken together, 

this study aims to further enhance the knowledge of both the genetic and 

phenotypic characteristics of MVEV and to provide insights into the spread and 

pathogenesis of this virus. 
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2.1 Introduction  

MVEV is endemic in the Kimberley region of WA and can occasionally cause 

epizootic activity in other regions of WA (Broom, 2003; Broom et al., 2002a; 

Marshall, 1988), and sporadic outbreaks in other states of Australia (Broom and 

Whelan, 2005; Knope et al., 2013; Knox et al., 2012; Roche et al., 2013). The major 

vector of MVEV is Cx. annulirostris, accounting for over 90% of isolates (Mackenzie 

and Broom, 1995; Russell and Dwyer, 2000). However, other mosquito species such 

as Cx. pullus (2.6%), Ae. normanensis (1.6%) and Cx. quinquefasciatus (1.2%) have 

yielded isolates and may also transmit the virus [C. Johansen and A. Broom, 

unpublished data, cited in Williams et al. (2010)].  

Of the four distinct genotypes of MVEV, only G1 and G2 strains have been isolated 

in Australia. G1 is the dominant genotype and comprises isolates from all mainland 

states. Only five strains belonging to G2 have been detected, between 1973 and 

1995 from Kununurra in the Kimberley region of WA, and appear to be restricted to 

this area (Johansen et al., 2007; Liehne et al., 1976). No G2 isolates have been 

detected since 1995. However, it is important to note that since 1995, only a small 

proportion of all MVEV isolates collected from field mosquitoes have been 

sequenced [C. Johansen (2010), personal communication], such that an accurate 

estimation of the genetic diversity of MVEV has not been properly characterised. It 

has been suggested that G2 strains may exhibit altered biological features that 

confine them to the north-eastern Kimberley region (Johansen et al., 2007). 

Furthermore, it has been hypothesised that G2 viruses may be extinct or occupy a 

rarely-sampled ecological niche with a low level of activity (Johansen et al., 2007; 

Williams et al., 2010).  

In the present study, the latter hypothesis was tested by nucleotide sequencing and 

phylogenetic analyses of all MVEV isolates collected from WA between 2005 and 

2009. This chapter reports the first detection of G2 isolates since 1995 and their 

first appearance outside the northeast Kimberley region of WA. Results obtained 

from this study help describe the distribution and pattern of activity of different 
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genotypes of MVEV in WA. They also provide an insight into inter- and intra-

genotypic variation between MVEV isolates.  

2.2 Materials and Methods 

2.2.1 Cells and Viruses 

C6/36 cells were grown at 28°C in medium 199 (M199; Life Technologies, Australia) 

supplemented with 1% L-glutamine (Life Technologies, Australia) and 10% foetal 

bovine serum (FBS; Life Technologies, Australia). Vero and PSEK cells were grown at 

37°C in M199 medium (Life Technologies, Australia) supplemented with 1% L-

glutamine (Life Technologies, Australia) and 5% or 10% FBS (Life Technologies, 

Australia), respectively. All incubations were carried out in the presence of 5% CO2. 

MVEV isolates included in this study were kindly provided by the Arbovirus 

Surveillance and Research Laboratory, University of Western Australia, and 

consisted of eighty three isolates from mosquitoes collected from various locations 

in WA between 2005 and 2009, as part of an annual survey of mosquito fauna and 

arbovirus activities in WA (Fig. 1.5). Virus isolates were derived from the infected 

homogenates of mosquito pools, as described previously (Johansen et al., 2009; 

Quan et al., 2011). Briefly, homogenates were used to inoculate monolayers of 

C6/36 cells in 96-well plate (Greiner Bio-one, Australia) followed by passages in 

Vero and PSEK cells (Fig. 2.1). Monolayers were incubated for four days and 

examined microscopically for CPE. The isolation of MVEV strains were confirmed by 

enzyme immunoassay using an MVEV-specific monoclonal antibody (Broom et al., 

1998; Johansen et al., 2009; Quan et al., 2011). Isolated viruses were further grown 

in PSEK cells in 25cm2 tissue culture flasks (Greiner Bio-one, Australia) and 

incubated for four days. The tissue culture supernatants were clarified by 

centrifugation at 1000xg for 5 min, and aliquots were stored at -80°C.  

2.2.2 RNA Purification, and RT-PCR  

Viral RNA was extracted from 140µl of infected tissue culture supernatants using a 

QIAamp®  Viral  RNA  mini  kit  (QIAGEN, Australia),  according to the manufacturer’s  
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4 days, 37°C 
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4 days, 37°C 

50µl 

Homogenates of 

mosquito pools 

 

Fig. 2.1. The isolation process of MVEV strains from the homogenates of mosquito 

pools. 

Adapted from (Johansen et al., 2009) 
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protocol. Purified RNA was reverse-transcribed using the flavivirus universal primer 

VD8 (Pierre et al., 1994) and SuperScript® III Reverse Transcriptase kit (Life 

Technologies, Australia), according to the manufacturer’s protocol. Briefly, 10µl of 

purified RNA was combined with 2µM of VD8 and 10mM dNTP mix in a 0.2ml thin-

walled PCR tubes and incubated at 65°C for 5 min; followed by cooling on ice for 5 

min. Subsequently, 4µl of 5X RT buffer, 1µl of DTT, 40U of RNase OUTTM and 200U 

of SuperScript® III RT were added to the reaction, and incubated at 55°C for 60 min, 

followed by 70°C for 15 min. The cDNA was aliquoted and stored at -30°C for 

subsequent use. Reverse transcription was done in an Eppendorf AG thermal cycler. 

Initially, a 675bp region within the envelope (E) gene of all virus isolates was 

amplified. This genomic region included nucleotides 1293-1967 (amino acids 431-

655) of the full-length MVEV (GenBank accession No. NC000943), corresponding to 

nucleotide 319-993 (amino acid 107-331) of the E gene. The amplification was 

carried out using the forward primer MVE-E1269F and the reverse primer MVE-

E1990R (Table 2.1).  

For the amplification of the full-length pre-membrane (prM) and E genes (prM-E), 

three overlapping sets of primers were used. The first set contained the forward 

primer prM-E-368F and the reverse primer prM-E-1086R; the second set consisted 

of the forward primer prM-E-991F and the reverse primer prM-1795R; and the third 

set comprised of the forward primer prM-E-1691F and the reverse primer prM-E-

2514R (Table 2.1).  

A 678bp region corresponding to 279bp of the 3ʹ end of the NS5 gene and the first 

399bp of the 3ʹUTR of the full-length MVEV (GenBank accession number: 

NC000943) was amplified using flavivirus universal primers EMF1 and VD8 (Pierre et 

al., 1994). Table 2.1 presents the details of all oligonucleotide primers used in this 

chapter. 

All PCR amplifications were carried out using 1µl of the cDNA, 8µM of the primers 

and 22µl  of  the PCR SuperMix  (Life Technologies, Australia), as per manufacturer’s  
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Table 2.1. Details of oligonucleotide primers used in this study. 

 Primers Region * Size Sequence (5ʹ→3ʹ) References 

prM-E-368F C 24 GATTGATGTGGTGAACAAAAGGGG (Williams et al., 2013) 

prM-E-1086R E 21 GTTTRTCAGCRGCCATGATGG (Williams et al., 2013) 

prM-E-991F E 22 GYAGCCGTGAYTTYATTGAAGG (Williams et al., 2013) 

prM-1795R E 25 GHRAACTCGACTGGTAYGGCTCCAG (Williams et al., 2013) 

prM-E-1691F E 21 GGAGTTTGAAGAGCCACATG (Williams et al., 2013) 

prM-E-2514R NS1 20 TRAGCTCYCTYCTGGTGATG (Williams et al., 2013) 

MVE-E1269F E 19 GCTGGGGYAAYGGATGTGG This study 

MVE-E1990R E 24 GATATTGGRATTTTGCATGGTCCA This study 

EMF1 NS5 21 TGGATGACSACKGARGAYATG (Pierre et al., 1994) 

VD8 3ʹUTR 20 GGGTCTCCTCTAACCTCTAG (Pierre et al., 1994) 

 

*.C: Capsid gene; E: Envelope gene; NS1: NS1 gene; NS5: NS5 gene; 3ʹUTR: 3ʹ untranslated region.  
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protocol. The reactions were performed using the following thermocycling 

conditions: a denaturation step at 94°C for 2 min; followed by 35 cycles of 94°C for 

30 sec; annealing at 56°C for 30 sec; and elongation at 72°C for 1 min, plus a final 

extension at 72°C for 10 min. The amplification was carried out in thin-walled 0.2ml 

PCR tubes using an Eppendorf AG thermal cycler. PCR products were visualised on a 

2% w/v agarose gel stained with ethidium bromide. The RT-PCR products were then 

purified using the QIAquick® PCR purification kit (QIAGEN, Australia), according to 

the manufacturer’s protocol. 

2.2.3 Sequencing  

The purified PCR products were sequenced using Big Dye version 3.1 chemistry and 

a 3730xI DNA Analyser with a 96-capillary array (Applied Biosystems, Australia). The 

sequencing was carried out at the Australian Genome Research Facility (AGRF) in 

Perth.  

2.2.4 Sequence Analysis and Multiple Alignment 

Sequences were edited using BioEdit 7.2.0 Sequence Alignment Editor software 

(Hall, 1999). The sequences of all isolates in this study were aligned with the 

reference sequences of MVEV strains previously isolated and sequenced from 

Australia and PNG [Table 2.2; (Johansen et al., 2007; Williams et al., 2013)]. Multiple 

alignments of the nucleotide and deduced amino acid sequences were performed 

using ClustalW in MEGA 5.2.1 (Tamura et al., 2011). The NS5-3ʹUTR sequences 

obtained in this study were aligned with the reference sequences of MVEV and 

other closely-related flaviviruses such as ALFV, JEV and WNV (Table 2.3). The 

nucleotide sequences obtained in this study were deposited in the GenBank 

database.  

2.2.5 Phylogenetic Analyses 

The phylogenetic analyses in this study were performed using MEGA 5.2.1 software. 

Initially, two different methods were employed to construct phylogenetic trees for 

these sequences: maximum likelihood (ML) and neighbour joining (NJ). To construct 

the ML tree, all sequences were subject to a model test in MEGA 5.2.1 to find the 
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Table 2.2. Details of Murray Valley encephalitis sequences used as reference strains 

in the analyses of E and prM genes in this study.  

Isolate  

Year of  

isolation Location of isolation * 

Species of  

origin † 

GenBank 

accession No. 

MVE-1-51 1951 Mooroopna, VIC Human brain NC000943 

NG156 1956 Brown River, Central Province, PNG Human brain JN119801 

MK6684 1966 Maprik, East Sepik Province, PNG Mixed Culicines JN119800 

T69 1969 Northern Australia Human brain JN119813 

OR2 1972 Kununurra, NE Kimberley, WA Cx. annulirostris JN119805 

OR155 1973 Kununurra, NE Kimberley, WA Cx. annulirostris JN119803 

OR156 1973 Kununurra, NE Kimberley, WA Cx. annulirostris JN119804 

TC123130 1974 Culgoa, VIC Human brain JN119814 

OR1109 1977 Kununurra, NE Kimberley, WA Cx. annulirostris JN119802 

PH491 1981 Newman, E Pilbara, WA Cx. annulirostris JN119810 

K109 1986 Kununurra, NE Kimberley, WA Cx. annulirostris JN119770 

K5686 1989 Kununurra, NE Kimberley, WA Cx. annulirostris JN119784 

K6454 1991 Kununurra, NE Kimberley, WA Cx. annulirostris JN119788 

K6521 1991 Kununurra, NE Kimberley, WA An. bancroftii JN119789 

K16963 1994 Billiluna, SE Kimberley, WA Cx. annulirostris JN119773 

K21413 1995 Kununurra, NE Kimberley, WA Cx. pullus JN119774 

18403C 1996 Mitchell River, Cape York Peninsula, QLD Cx. annulirostris JN119762 

PNG6910 1998 Balimo, Western Province, PNG Cx. sitiens group JN119812 

PNG6523 1998 Balimo, Western Province, PNG Cx. sitiens group JN119811 

CY1189 1999 Pormpuraaw, Cape York Peninsula, QLD Cx. sitiens group JN119769 

K36687 1999 Kununurra, NE Kimberley, WA Cx. annulirostris JN119776 

K41994 2000 Billiluna, SE Kimberley, WA Cx. annulirostris JN119777 

GU0019 2000 Normanton, QLD Cx. annulirostris JN119765 

K47457 2001 Derby, NW Kimberley, WA Cx. annulirostris JN119778 

K50609 2003 Billiluna, SE Kimberley, WA Ae. normanensis JN119782 

K66339 2008 Kununurra, NE Kimberley, WA Cx. annulirostris JN119790 

K67517 2008 Willare, NW Kimberley, WA Cx. annulirostris JN119791 

K67812 2008 Broome, W Kimberley, WA Cx. annulirostris JN119792 

611W/WA/08 2008 Kununurra, NE Kimberley, WA Human brain JN119767 

08-154300 2008 Monto, QLD Horse brain JN119766 

145694 2008 Leeton, NSW Cx. annulirostris JN119755 

145507 2008 Griffith, NSW Cx. annulirostris JN119759 

145649 2008 Griffith, NSW Cx. annulirostris JN119758 

145705 2008 Leeton, NSW Cx. annulirostris JN119760 

V11-10  2011 Callawadda, VIC Horse brain JX123032 

 

*.NSW: New South Wales; VIC: Victoria; QLD: Queensland; WA: Western Australia; PNG: Papua New 

Guinea; E: east; W: west; NE: North-east; NW: northwest; SE: southeast 

† Cx: Culex; An: Anopheles; Ae: Aedes 
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Table 2.3. Details of flavivirus sequences used in the analysis of a highly variable 

region of the 3ʹUTR in this study. 

Isolate  

Year of  

isolation 

Location of 

isolation Species of origin 

GenBank 

accession No. 

MVEV MVE-1-51 1951 Australia Human NC000943 

MVEV OR156 1973 Australia Mosquito L48976 

MVEV MK6684 1966 PNG Mosquito L48974 

MVEV NG156 1956 PNG Human L48975 

ALFV K7827 1991 Australia Mosquito L48965 

ALFV MRM3929 1966 Australia Pheasant  L48966 

JEV K94P05 1994 Korea Mosquito AF045551 

JEV FU  1995 Australia Human L48968 

JEV Nakayama 1935 Japan Human EF571853 

JEV JKT6468 1981 Indonesia Mosquito AY184212 

JEV Muar 1952 Malaysia Human HM596272 

WNV NY99 1999 USA Human AF196835 

KUNV MRM61C 1960 Australia Mosquito L48978 

WNV Sarafend         unknown unknown unknown L48977 

WNV Rabensburg 1997 Czech Republic Mosquito AY765264 

WNV LEIV-Krnd88 1998 Russia Tick AY277251 

KUNV Sarawak 1966 Borneo Mosquito L49311 
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best-fit substitution model. To construct an ML tree for the 106 partial E gene 

sequences included in this study, the Kimura-2 model of evolution with the        

proportion of invariable sites (K2+I) was found to be the best model for the data, 

and was therefore used. For the NJ tree, the suitability of the data was first 

determined in MEGA 5.2.1 by calculating the average pairwise Jukes-Cantor (JC) 

distance of all sequences included in the study. According to Nei and Kumar (2000), 

if the average pairwise JC distance is <1.0, the data is suitable for the NJ tree. For 

the sequences of the partial E gene, the average JC distance between the sequences 

was 0.059, which indicated that the data was suitable for constructing the NJ tree. 

To construct the NJ tree, the Maximum Composite Likelihood model was applied, as 

recommended by Hall (2011).  

For the full-length prM-E sequences, only an ML tree was constructed. Fifty three 

sequences first underwent a model test as described above. Consequently, the 

Tamura-Nei model with gamma distribution with invariant sites (TN93+G+I) was 

used. The robustness of all trees constructed was assessed by applying a 

bootstrapped support analysis of 1000 replicates. In this study, two criteria were 

used to determine whether a group of sequences formed a distinct lineage: the 

visual inspection of the tree and a percentage cut-off >4% difference. 

A nucleotide difference of <92% was used as a cut-off value to determine different 

genotypes. Within each genotype, sequences with a ≥95.5% nucleotide identity 

were considered the same lineage. The cut-off value was determined based on the 

visual inspection of the tree and the nucleotide identity between different strains 

belonging to different clades/sub-clades. 

2.2.6 Assessment of Selection Pressures  

The operation of selection pressure was tested on the complete 53 prM-E 

sequences of MVEV isolates representing all four genotypes. To detect adaptive 

evolution in these sequences, the hypotheses of positive selection, purifying 

selection and neutral selection were tested using a codon-based Z-test of selection 

in MEGA 5.2.1. Z-test analyses were performed averaging over all as well as 

between sequence pairs. Z values (dN – dS) were estimated using the Nei-Gojobori 
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(proportion) model, applying 1000 bootstrap replicates. Probability values of p<0.05 

were considered significant. In addition, to find codons encoded by the prM-E genes 

that had been under selection pressure, at each codon level, a HyPhy analysis (Pond 

et al., 2005) was performed in MEGA 5.2.1. The test statistic dN - dS was calculated 

using an ML method and the Tamura-Nei model. 

2.2.7 Three Dimensional Modelling 

The full-length E amino acid sequences of representative G1 and G2 isolates were 

aligned with the E amino acid sequences of closely-related flaviviruses, including JEV 

(Luca et al., 2012), WNV (Nybakken et al., 2006), DENV (Zhang et al., 2004) and 

TBEV (Rey et al., 1995), for which crystal structures have previously been solved. 

Furthermore, the non-conservative amino acid substitutions of the G2 consensus 

sequence were mapped on the three dimensional model of WNV [PDB accession 

number: 2HG0; (Nybakken et al., 2006)] using the Cn3D 4.3 software (National 

Center for Biotechnology Information, 2011). 

2.3 Results 

2.3.1 RT-PCR and Sequencing 

RT-PCR and sequencing was performed to compare the genetic diversity between 

MVEV isolates that were obtained from mosquitoes collected from WA between 

2005 and 2009. Of the eighty three isolates included in this study, twenty were not 

amplified by the initial RT-PCR and underwent a re-isolation process in cell culture 

(Fig. 2.1). Eight of these isolates were re-isolated and were subject to the RT-PCR 

and sequencing. Therefore, seventy one MVEV isolates that were obtained between 

2005 and 2009 were used for sequence analyses (Table 2.4). Of these, fifty nine 

(83%) were isolated from Cx. annulirostris, eight (11.3%) from Cx. pullus and four 

(5.6%) from other mosquito species, such as Ae. (Macleaya) species, An. amictus 

and Ae. normanensis.  



 
 

72 
 

2.3.2 Phylogenetic Analyses 

2.3.2.1 Partial E Gene 

Sequencing of nucleotide 378 to 1050 of the MVEV E gene has been used previously 

for phylogenetic analyses of MVEV strains (Johansen et al., 2007), and was also 

employed in this study (Table 2.4). Both ML and NJ methods produced trees of 

similar topology, with minor differences observed in the order of the terminal 

nodes and in bootstrap support. Four genotypes were clearly identified. The recent 

isolates from WA formed two distinct lineages (G1 and G2). Furthermore, two 

separate lineages for G1 (designated G1a and G1b) were evident.  

Four new G2 isolates were identified (Fig. 2.2C, Appendix 2.1C). Three of these were 

from mosquitoes collected at Fitzroy Crossing (2006 and 2009) and one from 

Broome (2006). This is the first time that a G2 strain has been detected outside 

Kununurra in the northeast Kimberley region of WA. Three recent G2 isolates were 

isolated from Cx. annulirostris and one from Cx. pullus. These strains formed a 

subclade within the G2 lineage. G2 comprises this subclade, as well as a cluster of 

five distinct isolates from 1973 to 1995. The partial E sequences of G2 isolates 

shared at least 95.5% nucleotide identity with each other and 99.1% amino acid 

similarity. G2 isolates were more closely related to G3 and G4 viruses than those of 

G1 (Table 2.5). There was a maximum of 91.8% nucleotide identity and 99.1% 

amino acid similarity between isolates of G2, G3 and G4. Whereas, there was a 

maximum of 86.8% nucleotide identity and 95.1% amino acid similarity between the 

isolates of G1 and G2 (Table 2.5).  

G1 was further classified into two separate lineages: G1a and G1b (Fig. 2.2 and 

Appendix 2.1). G1a included strains from 2008 and 2009, as well as the two recent 

PNG strains from 1998 [PNG6910 and PNG6523; (Johansen et al., 2007)]. The 

Australian strains within G1a are exclusively from the Kimberley and Pilbara regions 

of WA. Within the 675bp region of the E gene (partial), G1a isolates exhibited a high 

level of genetic variation with a minimum of 96.0% nucleotide identity, translating 

to at least 97.7% amino acid similarity (Table 2.5). In contrast, G1b comprised   
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Table 2.4. Details of Murray Valley encephalitis virus isolates collected between 

2005 and 2009 from different regions of Western Australia and used in this study.  

Isolate 

Year of 

Location of isolation Species of origin 

GenBank accession No. 

isolation Partial E prM-E 
NS5-

3ʹUTR 

K56445 2005 Parry's Lagoon (NE Kimberley) Cx. annulirostris  JX867202 JN119783  ND 

K59532 2006 Fitzroy Crossing (W Kimberley) Cx. annulirostris  JX867132 KC206092 JX867211 

K59536 2006 Fitzroy Crossing (W Kimberley) Cx. pullus  JX867133 KC206093 JX867212 

K62017 2006 Broome (W Kimberley) Cx. annulirostris  JX867134 KC206094 JX867213 

K61375 2006 Derby (W Kimberley) Cx. annulirostris  JX867191 ND ND 

K60555 2006 Kununurra (NE Kimberley) Cx. annulirostris  JX867192 ND ND 

K59582 2006 Fitzroy Crossing (W Kimberley) Cx. annulirostris  JX867193 ND ND 

K61299 2006 Kununurra (NE Kimberley) Cx. annulirostris  JX867194 ND ND 

K60748 2006 Wyndham (NE Kimberley) Cx. annulirostris  JX867195 ND ND 

K61396 2006 Derby (W Kimberley) Cx. annulirostris  JX867196 ND ND 

K60119 2006 Halls Creek (SE Kimberley) Ae. (Macleaya) sp.  JX867197 JN119785 ND 

K60365 2006 Kununurra (NE Kimberley) Cx. annulirostris  JX867198 JN119786 ND 

P8891 2006 Karratha (W Pilbara) Ae. normanensis  JX867199 ND JX867210 

P8400 2006 Newman (E Pilbara) An. amictus  JX867200 ND ND 

P8372 2006 Newman (E Pilbara) Cx. annulirostris  JX867201 JN119807 ND 

K62899 2007 Kununurra (NE Kimberley) Cx. annulirostris JX867190 JN119787 ND 

K67259 2008 Parry's Lagoon (NE Kimberley) Cx. annulirostris JX867166 ND JX867209 

K67317 2008 Parry's Lagoon (NE Kimberley) Cx. annulirostris JX867167 ND ND 

K67238 2008 Parry's Lagoon (NE Kimberley) Cx. annulirostris JX867168 ND ND 

K66298 2008 Kununurra (NE Kimberley) Cx. pullus JX867187 ND ND 

K67234 2008 Parry's Lagoon (NE Kimberley) Cx. annulirostris JX867188 ND ND 

K67235 2008 Parry's Lagoon (NE Kimberley) Cx. annulirostris JX867189 ND ND 

K68196 2009 Fitzroy Crossing (W Kimberley) Cx. annulirostris JX867135 KC206095 JX867214 

P9771 2009 Newman (E Pilbara) Cx. annulirostris JX867136 ND ND 

P9781 2009 Newman (E Pilbara) Cx. annulirostris JX867137 ND ND 

P9929 2009 Newman (E Pilbara) Cx. annulirostris JX867138 ND ND 

P9904 2009 Newman (E Pilbara) Cx. annulirostris JX867139 ND ND 

P9783 2009 Newman (E Pilbara) Cx. annulirostris JX867140 ND ND 

P9937 2009 Newman (E Pilbara) Cx. annulirostris JX867141 ND ND 

P9831 2009 Newman (E Pilbara) Cx. annulirostris JX867142 ND ND 

P9833 2009 Newman (E Pilbara) Cx. annulirostris JX867143 ND ND 

P9883 2009 Newman (E Pilbara) Cx. annulirostris JX867144 ND ND 

P9943 2009 Newman (E Pilbara) Cx. annulirostris JX867145 ND ND 

P9765 2009 Newman (E Pilbara) Cx. annulirostris JX867146 ND ND 

P9978 2009 Newman (E Pilbara) Cx. sp. (damaged) JX867147 ND ND 

P9808 2009 Newman (E Pilbara) Cx. sp. (damaged) JX867148 ND ND 

P9950 2009 Newman (E Pilbara) Cx. annulirostris JX867149 ND ND 
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Table 2.4. continued  

Isolate 

Year of 

Location of isolation * Species of origin † 

GenBank accession No. ‡ 

Isolation Partial E prM-E 
NS5-

3ʹUTR 

P9705 2009 Port Hedland (W Kimberley) Cx. annulirostris JX867150 ND ND 

P9946 2009 Newman (E Pilbara) Cx. annulirostris JX867151 ND ND 

P9753 2009 Newman (E Pilbara) Cx. annulirostris JX867152 ND ND 

P9652 2009 Port Hedland (W Kimberley) Cx. annulirostris JX867153 ND ND 

P9990 2009 Newman (E Pilbara) Cx. annulirostris JX867154 JN119809 ND 

P9777 2009 Newman (E Pilbara) Cx. sp. (damaged) JX867155 ND JX867203 

P9986 2009 Newman (E Pilbara) Cx. annulirostris JX867156 ND JX867204 

P9754 2009 Newman (E Pilbara) Cx. annulirostris JX867157 ND ND 

P9901 2009 Newman (E Pilbara) Cx. annulirostris JX867158 ND ND 

P9749 2009 Newman (E Pilbara) Cx. annulirostris JX867159 ND ND 

P9862 2009 Newman (E Pilbara) Cx. annulirostris JX867160 JN119808 ND 

P9992 2009 Newman (E Pilbara) Cx. annulirostris JX867161 ND ND 

K68834 2009 Kununurra (NE Kimberley) Cx. annulirostris JX867162 ND ND 

K69679 2009 Kununurra (NE Kimberley) Cx. annulirostris JX867163 ND ND 

K69211 2009 Kununurra (NE Kimberley) Cx. annulirostris JX867164 ND ND 

K68150 2009 Fitzroy Crossing (W Kimberley) Cx. annulirostris JX867165 JN119793 JX867205 

K70310 2009 Broome (W Kimberley) Cx. annulirostris JX867169 JN119799 JX867206 

K68439 2009 Wyndham (NE Kimberley) Cx. annulirostris JX867170 ND ND 

K68320 2009 Billiluna (SE Kimberley) Cx. annulirostris JX867171 JN119795 JX867208 

K69016 2009 Kununurra (NE Kimberley) Cx. annulirostris JX867172 ND ND 

K68260 2009 Halls Creek (E Kimberley) Cx. annulirostris JX867173 ND ND 

K68838 2009 Kununurra (NE Kimberley) Cx. annulirostris JX867174 JN119797 ND 

K68463 2009 Wyndham (NE Kimberley) Cx. annulirostris JX867175 ND ND 

K68473 2009 Wyndham (NE Kimberley) Cx. annulirostris JX867176 JN119796 ND 

K68474 2009 Kununurra (NE Kimberley) Cx. annulirostris JX867177 ND ND 

K68970 2009 Kununurra (NE Kimberley) Cx. annulirostris JX867178 ND ND 

K69485 2009 Kununurra (NE Kimberley) Cx. pullus JX867179 JN119798 ND 

K69155 2009 Kununurra (NE Kimberley) Cx. pullus JX867180 ND ND 

K69051 2009 Kununurra (NE Kimberley) Cx. pullus JX867181 ND ND 

K69052 2009 Kununurra (NE Kimberley) Cx. pullus JX867182 ND ND 

K69521 2009 Kununurra (NE Kimberley) Cx. pullus JX867183 ND ND 

K69381 2009 Kununurra (NE Kimberley) Cx. pullus JX867184 ND ND 

K69612 2009 Kununurra (NE Kimberley) Cx. pullus JX867185 ND JX867207 

K68211 2009 Geikie Gorge (W Kimberley) Ae. (Macleaya) sp.  JX867186 JN119794 ND 

 

*.E: east; NE: North-east; SE: Southeast; W: west;  

† Cx: Culex; An: Anopheles; Ae: Aedes; sp. species 

‡ Partial E: partial envelope gene; prM-E: full-length pre-membrane and envelope genes; NS5-3ʹUTR: 

the 3ʹ end of the NS5 gene with the 5ʹ end of 3ʹUTR; ND: Not determined.   
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 K69051/WA-Kununurra/2009 (CP) 
 K68260/WA-Halls_Creek/2009 (CA) 

 P9771/WA-Newman/2009 (CA) 
 K69485/WA-Kununurra/2009 (CP) 

 K68320/WA-Billiluna/2009 (CA) 
 K68834/WA-Kununurra/2009 (CA) 
 P9904/WA-Newman/2009 (CA) 

 K67235/WA-Parrys_Lagoon/2008 (CA) 
 P9929/WA-Newman/2009 (CA) 

 P9978/WA-Newman/ (C) 
 K66339/WA-Kununurra/2008 (CA) 

 K68463/WA-Wyndham/2009 (CA) 
 P9831/WA-Newman/2009 (CA) 
 K70310/WA-Broome/2009 (CA) 

 P9950/WA-Newman/2009 (CA) 
 K67234/WA-Parry's Lagoon/2008 (CA) 
 K68439/WA-Wyndham/2009 (CA) 
 K68211/WA-Geikie_Gorge/2009 (AM) 
 P9781/WA-Newman/2009 (CA) 

 K69052/WA-Kununurra/2009 (CP) 
 K69521/WA-Kununurra/2009 (CP) 

 K68970/WA-Kununurra/2009 (CA) 
 P9783/WA-Newman/2009 (CA) 
 K69155/WA_Kununurra/2009 (CP) 
 P9937/WA-Newman/2009 (CA) 
 K66298/WA-Kununurra/2008 (CP) 
 K69612/WA-Kununurra/2009 (CP) 

 K69381/WA-Kununurra/2009 (CP) 
 K68473/WA-Wyndham/2009 (CA) 

 P9943/WA-Newman/2009 (CA) 
 P9765/WA-Newman/2009 (CA) 
 P9833/WA-Newman/2009 (CA) 
 P9883/WA-Newman/2009 (CA) 

 P9808/WA-Newman/2009 (CA) 
 K69474/WA-Kununurra/2009 (CA) 
 K69016/WA-Kununurra/2009 (CA) 
 K67238/WA-Parry's Lagoon/2008 (CA) 
 P9705/WA-Port Hedland/2009 (CA) 

 K67517/WA-Willare/2008 (CA) 
 611W/WA-Kununurra/2008 (HB) 

 K69211/WA-Kununurra/2009 (CA) 
 P9946/WA-Newman/2009 (CA) 
 K67259/WA-Parry's Lagoon/2008 (CA) 
 K67317/WA-Parrys_Lagoon/2008 (CA) 

 K67812/WA-Broome/2008 (CA) 
 P9753/WA-Newman/2009 (CA) 

 P9652/WA-Port_Hedland/2009 (CA) 
 K68838/WA-Kununurra/2009 (CA) 

 K69679/WA-Kununurra/2009 (CA) 
 PNG6523/PNG/1998 (CS) 

 PNG6910/PNG/1998 (CS) 

Genotype 1a 

 MVE_1-51/VIC-Mooroopna/1951 (HB) 
 TC123130/Culgoa-VIC/1974 (HB) 

 K50609/WA-Billiluna/2003 (AN) 
 K16963/WA-Billiluna/1994 (CA) 

 T69/NA/1969 (HB) 
 OR2/WA-Kununurra/1972 (CA) 
 18403C/QLD-Cape York Peninsula/1996 (CA) 

 OR1109/WA-Kununurra/1977 (CA) 
 PH491/WA-Newman/1981 (CA) 

 OR155/WA-Kununurra/1973 (CA) 

 Genotype 1b 

 Genotype 4 
 Genotype 3 

 Genotype 2 

Intermediate lineages 
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B.     

 Genotype 1a 

 MVE_1-51/VIC-Mooroopna/1951 (HB) 

 TC123130/Culgoa-VIC/1974 (HB) 

 K50609/WA-Billiluna/2003 (AN) 

 K16963/WA-Billiluna/1994 (CA) 

 T69/NA/1969 (HB) 

 OR2/WA-Kununurra/1972 (CA) 

 18403C/QLD-Cape York Peninsula/1996 (CA) 

 OR1109/WA-Kununurra/1977 (CA) 

 PH491/WA-Newman/1981 (CA) 

 OR155/WA-Kununurra/1973 (CA) 

 P9992/WA-Newman/2009 (CA) 

 P9862/WA-Newman/2009 (CA) 

 145649/NSW-Griffith/2008 (CA) 

 P9901/WA-Newman/2009 (CA) 

 P9754/WA-Newman/2009 (CA) 

 P9749/WA-Newman/2009 (CA) 

 145705/NSW-Leeton/2008 (CA) 

 K68150/WA-Fitzroy_Crossing/2009 (CA) 

 K60365/WA-Kununurra/2006 (CA) 

 K60119/WA-Halls_Creek/2006 (AM) 

 K56445/WA-Parry's Creek/2005 (CA)  

 K60555/WA-Kununurra/2006 (CA) 

 K59582/WA-Fitzroy_Crossing/2006 (CA) 

 K61299/WA-Kununurra/2006 (CA) 

 K60748/WA-Wyndham/2006 (CA) 

 K61396/WA-Derby/2006 (CA) 

 K62899/WA-Kununurra/2007 (CA) 

 P8891/WA-Karratha/2006 (AN) 

 K61375/WA-Derby/2006 (CA) 

 P8400/WA-Newman/2006 (AA) 

 P8372/WA-Newman/2006 (CA) 

 08-154300/QLD-Monto/2008 (EB) 

 145507/NSW-Griffith/2008 (CA) 

 v11-10_mvev/VIC-Callawadda/ 2011 (EB) 

 145694/NSW-Leeton/2008 (CA) 

 P9986/WA-Newman/2009 (CA) 

 P9777/WA-Newman/2009 (C) 

 P9990/WA-Newman/2009 (CA) 

 GUOO19/QLD-Normanton/2000 (CA) 

 K36687/WA-Kununurra/1999 (CA) 

 K41994/WA-Billiluna/2000 (CA) 

 CY1189/QLD-Cape York Peninsula/1999 (CS) 

 K47457/WA-Derby/2001 (CA) 

 K5686/WA-Kununurra/1989 (CA) 

Genotype 1b 

 Genotype 4 
 Genotype 3 
 Genotype 2  
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Fig. 2.2. Maximum likelihood phylogenetic tree constructed using partial E gene 

sequences. 

Trees are constructed using nucleotide 319-993 of the E gene sequences. Four genotypes are clearly 

identified (Genotype 1 to Genotype 4). Genotype 1 is further classified as genotype 1a and 1b. 

Genotypes 1b, 2, 3 and 4 are collapsed in (A). Genotypes 1a, 2, 3 and 4 are collapsed in (B). 

Genotype 1 is collapsed in (C). Numbers above the internal nodes are the bootstrap support values 

from 1000 replicates. The scale represents 0.02 substitutions per nucleotide site. WA: Western 

Australia; NSW: New South Wales; VIC: Victoria; QLD: Queensland; PNG: Papua New Guinea; NA: 

Northern Australia; CA: Cx. annulirostris; CP: Cx. pullus; CS: Cx. sitiens group; CX: Mixed culicine; C: 

Culex species (damaged); AM: Aedes (Macleaya) species; AN: Aedes normanensis; AB: Anopheles 

bancroftii; AA: Anopheles amictus; HB: Human Brain; EB: Equine brain;  

● indicates the isolates that were sequenced in this study.  

  

 Genotype 1 

Genotype 4  NG156/PNG/1956 (HB) 

Genotype 3  MK6684/PNG/1966 (CX) 

 OR156/WA-Kununurra/1973 (CA) 

 K109/WA-Kununurra/1986 (CA) 

 K21413/WA-Kununurra/1995 (CP) 

 K6521/WA-Kununurra/1991 (AB) 

 K6454/WA-Kununurra/1991 (CA) 

 K68196/WA-Fitzroy_Crossing/2009 (CA) 

 K59532/WA-Fitzroy_Crossing/2006 (CA) 

 K62017/WA-Broome/2006 (CA) 

 K59536/WA/Fitzroy Crossing/2006 (CP) 

Genotype 2 
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Table 2.5. Nucleotide and deduced amino acid identities within and between partial 

E gene sequences of genotypes of Murray Valley encephalitis virus. 

Genotypes Nucleotide identity % Amino acid identity % 

Within G1a 96.0-100 97.7-100 

Within G1b 97.4-100 98.2-100 

Within G1 92.6-95.4 96.0-98.6 

Within G2 95.5-99.8 99.1-100 

G1 vs G2 84.3-86.8 92.4-95.1 

G1 vs G3 and G4 87.5-90.1 94.6-97.3 

G2 vs G3 and G4 86.2-91.8 94.6-99.1 

Within all MVEV strains 84.1-100 92.4-100 
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isolates from 1989-2011 from WA, NSW, VIC and QLD. When the partial E 

sequences were compared, G1b isolates showed a slightly lower level of variation 

compared to G1a, with at least 97.4% nucleotide identity translating to a minimum 

of 98.2% amino acid similarity (Table 2.5).  

2.3.2.2 Full-Length prM-E Genes 

Previous studies have used the full-length prM-E genes to better characterise the 

phylogenetic relationships in flaviviruses, such as MVEV (Williams et al., 2013), JEV 

(Williams et al., 2000), and WNV (Blitvich et al., 2004). To confirm and expand the 

partial E gene phylogeny, full-length prM-E genes of representative strains of G1a, 

G1b and G2 from different regions, dates and sources of isolation, were sequenced 

and aligned with reference strains of MVEV (Table 2.2) to build an ML tree.  

Similar tree topology and groupings to the partial E gene ML tree (Figure 2.2) were 

observed using the full-length prM-E sequences (Appendix 2.2). However, contrary 

to the partial E gene analyses, when the level of variation between different 

genotypes was examined for the full-length prM-E sequences, G1a demonstrated 

slightly higher variation than G1b (Appendix 2.3). G1a isolates displayed a minimum 

of 97.5% nucleotide identity, translating to at least 99.7% amino acid similarity. G1b 

demonstrated at least 98.0% nucleotide identity translating to a minimum of 99.1% 

amino acid similarity (Appendix 2.3). Moreover, similar to partial E gene analysis, G2 

strains were more closely related to the G3 and G4 strains when the full-length 

prM-E sequences were compared (Appendix 2.3). There was a maximum of 88.0% 

nucleotide identity translating to 96.8% amino acid similarity between the isolates 

of G2, G3, and G4. Whilst a maximum of 87.5% nucleotide identity and 96.7% amino 

acid similarity was observed between the isolates of G1 and G2. The isolates of G1, 

G3 and G4 shared a maximum of 90.6% nucleotide and 98.9% amino acid similarity, 

indicating that G1 isolates are also more closely related to G3 and G4 PNG strains 

instead of the co-circulating strains of G2 (Appendix 2.3).  

Nonetheless, the differences observed in the level of variation within and between 

different genotypes of MVEV were not so significant as to alter the tree topography. 
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Hence, for the purpose of phylogenetic analyses, the partial E gene sequences 

provided adequate information to build the trees. 

2.3.3 Three Dimensional Modelling 

Multiple alignments of the prM-E amino acid sequences of G1 and G2 strains were 

performed to identify biologically significant substitutions or differences. Since no 

G3 and G4 strains were detected in this study, these genotypes were not included in 

the three dimensional analysis. Alignment of the prM amino acid sequences 

revealed a high level of conservation in this protein. Only a single amino acid 

substitution was observed for strain K21413 (T98I) that resulted from the C293T 

mutation in the nucleotide sequence (data not shown). However, many silent 

nucleotide mutations were observed in the prM gene of the G2 that did not affect 

the deduced amino acid sequence. The multiple alignment of the E protein revealed 

that there were twenty six unique amino acid substitutions between G1 and G2 

isolates, of which fifteen were non-conservative (Table 2.6).  All cysteine residues, 

the putative fusion peptide, the glycosylation site, and the receptor binding RGD 

motif were completely conserved in MVEV isolates (Fig. 2.3). 

No three dimensional (3D) structure of MVEV has yet been solved. However, the 3D 

crystal structures of the E glycoprotein of JEV (Luca et al., 2012), WNV (Nybakken et 

al., 2006), DENV (Zhang et al., 2004) and TBEV (Rey et al., 1995) have been 

previously described. In order to locate the observed mutations in the G2 strains of 

MVEV on the 3D structure of the E protein of flaviviruses, a multiple alignment of 

the consensus sequences of the E proteins of G1 and G2 of MVEV was carried out 

with reference sequences of JEV, WNV, DENV and TBEV. Of the twenty six unique 

substitutions in the E protein between G1 and G2, thirteen are located in domain II, 

six in domain I and four in domain III. The remaining three mutations are located in 

the trans-membrane region, which is not part of the soluble structure of the E 

glycoprotein (Fig. 2.3).  

Since MVEV is genetically closely-related to WNV, the fourteen non-conservative 

amino acid substitutions were mapped on the 3D structure of the E glycoprotein of 

WNV  [Fig. 2.4;  (Nybakken et al., 2006)]. Four  of  these  were  located  in domain II,   
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                                         A0         B0            C0                     D0                    a    

                     10         20         30         40         50         60         70                    

             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

MVEV  G1     FNCLGMSSRD FIEGASGATW VDLVLEGDSC ITIMAADKPT LDIRMMNIEA TNLALVRNYC YAATVSDVST   

MVEV  G2     FNCLGMGSRD FIEGVSGATW IDLVLEGDSC ITIMAADKPT LDIRMMNIEA TNLAVVRNYC YAATVSDIST   

JEV  (3P54)  FNCLGMGNRD FIEGASGATW VDLVLEGDSC LTIMANDKPT LDVRMINIEA SQLAEVRSYC YHASVTDIST   

WNV  (2HG0)  FNCLGMSNRD FLEGVSGATW VDLVLEGDSC VTIMSKDKPT IDVKMMNMEA ANLAEVRSYC YLATVSDLST   

DENV (1TG8)  MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNTTT   

TBEV (1SVB)  SRCTHLENRD FVTGTQGTTR VTLVLELGGC VTITAEGKPS MDVWLDAIYQ ENPAKTREYC LHAKLSDTKV   

 

                        b                                         c                                    d                           e                   E0              
 

                      80         90        100        110        120           130                    

             ....|....| ....|....| ....|....| ....|....| ....|....| ...  .|... .|....|...  

MVEV  G1     VSNCPTTGES HNTKRADHNY LCKRGVTDRG WGNGCGLFGK GSIDTCAKFT CSN--SAAGR LILPEDIKYE   

MVEV  G2     VANCPTTGES HNTKRADHSY LCKRGVTDRG WGNGCGLFGK GSIDTCAKFT CSS--SATGR LILPENIKYE   

JEV  (3P54)  VARCPTTGEA HNEKRADSSY VCKQGFTDRG WGNGCGFFGK GSIDTCAKFS CTS--KAIGR TIQPENIKYK   

WNV  (2HG0)  KAACPTMGEA HNDKRADPAF VCRQGVVDRG WGNGCGLFGK GSIDTCAKFA CST--KAIGR TILKENIKYE   

DENV (1TG8)  DSRCPTQGEP TLNEEQDKRF VCKHSMVDRG WGNGCGLFGK GGIVTCAMFT CKK--NMEGK IVQPENLEYT   

TBEV (1SVB)  AARCPTMGPA TLAEEHQGGT VCKRDQSDRG WGNHCGLFGK GSIVACVKAA CEAKKKATGH VYDANKIVYT   

 

                            E0                            αÁ            F0                 G0            H0                              f     
   

              140        150        160        170        180        190        200               

              .|....|... .|....|... .|....|... .|....|... .|....|... .|....|... .|....|...  

MVEV  G1      VGVFVHGSTD STSHGNYSTQ IGANQAVRFT ISPNAPAITA KMGDYGEVTV ECEPRSGLNT EAYYVMTIGT   

MVEV  G2      VGVFVHGSTD STSHGNYSSQ IGANQAARFT ISPNAPAITA KMGDYGEVTV ECEPRSGLNT EAYYVMSIGT   

JEV  (3P54)   VGIFVHGTTT SENHGNYSAQ VGASQAAKFT VTPNAPSVTL KLGDYGEVTL DCEPRSGLNT EAFYVMTVGS   

WNV  (2HG0)   VAIFVHGPTT VESHGNYSTQ VGATQAGRFS ITPAAPSYTL KLGEYGEVTV DCEPRSGIDT NAYYVMTVGT   

DENV (1TG8)   VVITPH-SGE EHAVGNDTGK HGK----EVK ITPQSSITEA ELTGYGTVTM ECSPRTGLDF NEMVLLQMKD   

TBEV (1SVB)   VKVEPHTGDY VAANETHSGR KTAS----FT IS--SEKTIL TMGEYGDVSL LCRVASGVDL AQTVILELDK   

 

                                       g        αA              h                           i                          j                  αB  
 

                   210        220        230            240        250        260            

                   .|.. ..|....|.. ..|....|.    ...|.... |....|.... |....|.... |....|....  

MVEV  G1     ------KHFL VHREWFNDLL LPWTSPAST- --EWRNREIL VEFEEPHATK QSVVALGSQE GALHQALAGA   

MVEV  G2     ------KHFL VHREWFNDLL LPWTSPSNT- --DWRNREVL MEFEEPHATK QSVVALGSQE GALHQALAGA   

JEV  (3P54)  ------KSFL VHREWFHDLA LPWTSPSST- --AWRNRELL MEFEGAHATK QSVVALGSQE GGLHQALAGA   

WNV  (2HG0)  ------KTFL VHREWFMDLN LPWSSAGST- --VWRNRETL MEFEEPHATK QSVIALGSQE GALHQALAGA   

DENV (1TG8)  ------KAWL VHRQWFLDLP LPWLPGADTQ GSNWIQKETL VTFKNPHAKK QDVVVLGSQE GAMHTALTGA   

TBEV (1SVB)  TVEHLPTAWQ VHRDWFNDLA LPWKHEGAQ- --NWNNAERL VEFGAPHAVK MDVYNLGDQT GVLLKALAGV   

 

                            K        l                 I0                                           A                             B          
  

            270        280        290        300         310        320        330         

             |....|.... |....|.... |....|.... |....|.. . .|....|... .|....|... .|....|...  

MVEV  G1     IPVEFSSSTL KLTSGHLKCR VKMEKLKLKG TTYGMCTE-K FTFSKNPADT GHGTVVLELQ YTGSDGPCKI   

MVEV  G2     IPVEFTGSTL KLTSGHLKCR VKMEKLKLKG TTYGMCTE-K FTFSKNPADT GHGTVVLELQ YAGSDGPCKI   

JEV  (3P54)  IVVEYSSS-V MLTSGHLKCR LKMDKLALKG TTYGMCTE-K FSFAKNPVDT GHGTVVIELS YSGSDGPCKI   

WNV  (2HG0)  IPVEFSSNTV KLTSGHLKCR VKMEKLQLKG TTYGVCSK-A FKFLGTPADT GHGTVVLELQ YTGTDGPCKV   

DENV (1TG8)  TEIQMSSGNL LFT-GHLKCR LRMDKLQLKG MSYSMCTG-K FKVVKEIAET QHGTIVIRVQ YEGDGSPCKI   

TBEV (1SVB)  PVAHIEGTKY HLKSGHVTCE VGLEKLKMKG LTYTMCDKTK FTWKRAPTDS GHDTVVMEVT FSGT-KPCRI   

 

                           C                              D                         E                   F                       G 
 

             340        350        360        370        380        390        400         

             .|....|... .|....|... .|....|... .|....|... .|....|... .|....|... .|....|...  

MVEV  G1     PISSVASLND MTPVGRMVTA NPYVASSTAN AKVLVEIEPP FGDSYIVVGR GDKQINHHWH KEGSSIGKAF   

MVEV  G2     PISSVASLND MTPIGRMVTA NPYVASSTVN SKVLVEIEPP FGDSYIVVGR GDKQINHHWH KEGSSIGKAF   

JEV  (3P54)  PIVSVASLND MTPVGRLVTV NPFVATSSAN SKVLVEMEPP FGDSYIVVGR GDKQINHHWH KAGSTLGKA-   

WNV  (2HG0)  PISSVASLND LTPVGRLVTV NPFVSVATAN AKVLIELEPP FGDSYIVVGR GEQQINHHWH KSGSHHHHHH   

DENV (1TG8)  PF-EIMDLEK RHVLGRLITV NPIVTEK--D SPVNIEAEPP FGDSYIIIGV EPGQLKLDWF KKG-------   

TBEV (1SVB)  PVRAVAHGSP DVNVAMLITP NPTIENN--- GGGFIEMQLP PGDNIIYVG- ---ELSHQWF QKGSSIGRVF   

 

        Trans-membrane Region 
 

             410        420        430        440        450        460        470         

             .|....|... .|....|... .|....|... .|....|... .|....|... .|....|... .|....|...  

MVEV  G1     STTLKGAQRL AALGDTAWDF GSVGGVFNSI GKAVHQVFGG AFRTLFGGMS WISPGLLGAL LLWMGVNARD   

MVEV  G2     STTLKGAQRL AALGDTAWDF GSVGGVFNSI GKAVHQVFGG AFRTLFGGMS WITQGLLGAL LLWMGINARD   

JEV  (3P54)  ---------- ---------- ---------- ---------- ---------- ---------- ----------   

WNV  (2HG0)  ---------- ---------- ---------- ---------- ---------- ---------- ----------   

DENV (1TG8)  ---------- ---------- ---------- ---------- ---------- ---------- ----------   

TBEV (1SVB)  QKTKKGIERL TVIGEHAWDF GSAGGFLSSI GKAVHTVLGG AFNSIFGGVG FLPKLLLGVA LAWLGLNMRN    
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             480        490        500         

             .|....|... .|....|... .|. 

MVEV  G1     KSIALAFLAT GGVLLFLATN VHA  

MVEV  G2     KSIALAFLAT GGVLLFLATN VHA  

JEV  (3P54)  ---------- ---------- ---  

WNV  (2HG0)  ---------- ---------- ---  

DENV (1TG8)  ---------- ---------- ---  

TBEV (1SVB)  PTMSMSFLLA GGLVLAMTLG VGA  

 

Fig. 2.3. Multiple alignment of the E protein amino acid consensus sequences of G1 

and G2 Murray Valley encephalitis virus (MVEV) with closely related flaviviruses and 

tick-borne encephalitis virus (TBEV).  

Domains are colour coded as: domain I, dark purple; domain II, dark blue; domain III, grey. The C-

terminal region which is not part of the soluble envelope fragment is in black. The trans-membrane 

region is shown in thick black line. Important amino acids are highlighted as follows: turquoise: 

conservative substitutions; red: non-conservative substitutions; yellow: glycosylation site; grey: 

putative fusion peptide; bright green: conserved cysteine residues; gray: conserved histidine 

residues; blue with white font: conserved RGD motif; Black square indicate putative flexible hinge 

region between domain I and domain II. Substitution types are categorised as conservative or non-

conservative as described previously (Chelikani et al., 2007; Vrati et al., 1999). Assignments of 

domains are based on the 3D structure of West Nile virus (PDB accession number: 2HG0). Numbers 

on the top of the alignment indicate the position of amino acid residues based on the MVE-1-51 

complete genome (NC000943). Arrows indicate the β-sheets; lines between arrows represent 

connecting loops. Nomenclatures are indicated above the sheets and loops. 
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Table 2.6. Unique amino acid substitutions in the envelope glycoprotein of the G2 

compared to the G1 of Murray Valley encephalitis virus. Substitutions are colour 

coded according to their domain as per figure 2.6. 

Substitutions* Substitution type† Location‡ 

S
7
G Non-conservative D I  

A
15

V Conservative D I, loop Ao-Bo 

V
21

I Non-conservative D I, loop Ao-Bo 

L
55

V Conservative D II, sheet a 

V
68

I Non-conservative D II, loop a-b 

S
72

A Non-conservative D II, sheet b 

N
89

S Conservative D II, loop b-c 

N
123

S Conservative D II, sheet e 

A
126

T Non-conservative D II, sheet e 

D
134

N Non-conservative DI1, loop e Eo 

T
157

S Conservative D I, loop αÁ 

V
165

A Conservative D I, sheet Fo 

T
205

S Conservative D II, sheet f 

A
229

S Non-conservative D II, loop h 

E
232

D Conservative D II, loop i 

I
238

V Non-conservative D II, loop i 

V
240

M Non-conservative D II, loop i 

S
275

T Conservative D II, loop k 

S
276

G Non-conservative D II, loop k 

T
330

A Non-conservative D III, B-C loop 

V
352

I Non-conservative D III, loop D 

A
367

V Conservative D III, loop D 

A
369

S Non-conservative D III, loop D 

S
461

T Conservative Trans-membrane region 

P
462

Q Non-conservative Trans-membrane region 

V
474

I Non-conservative Trans-membrane region 

 

*Amino acid locations are based on MVE-1-51 complete genome (NC000943). 

† Substitution types are categorised as conservative or non-conservative as described in Fig. 2.3. 

‡ Domain locations are based on West Nile virus envelope crystal structure (PDB accession no. 

2HG0).  
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Fig. 2.4. Diagram showing the predicted 3D folded structure of West Nile virus E 

protein with homologous unique non-conservative substitutions of the G2 of Murray 

Valley encephalitis virus highlighted in yellow.  

The diagram is adapted from the closely-related West Nile virus (PDB accession number: 2HG0). 

Domains are color-coded as per Fig. 2.3. The ball-and-stick structures indicate the carbohydrate on 

N
154

 which is part of NYS glycosylation site. Ribbons with arrowheads represent the β-sheets. 

Connecting loops are shown with thin tubes. 

S7G 

V21I 

V352I 

A238V 

V240M

D134N

V68I 

S72A 

A126T 

A229S 

S276G 

A369S 

T330A
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suggesting this domain is more variable for MVEV than the other two domains. 

Significantly, the flexible hinge region (residues 273-277) which connects domain I 

and domain II (Rey et al., 1995; Zhang et al., 2004) exhibited two mutations: a 

conservative S275T substitution and a non-conservative S276G substitution (Table 2.6 

and Fig. 2.3, Fig. 2.4). Although the glycosylation site (NYS; 154-156) was fully 

conserved, a conservative substitution (T157S) adjacent to this site was detected in 

the G2 isolates. 

2.3.4 Operation of Selection Pressures between Various Genotypes 

The operation of positive selection was assessed using either the Z-test or HyPhy. 

No evidence of positive selection was found using either method. However, there 

was evidence of neutral or purifying selection in the prM-E genes of MVEV isolates 

included in this study (Table 2.7). 

2.3.5 NS5-3ʹUTR Sequence Analysis 

In order to compare the highly variable polymorphic region at the beginning of the 

3ʹUTR of G1 and G2 strains, a multiple alignment of the first 67 nucleotides of the 

3ʹUTR was carried out along with the same region of ALFV, JEV and WNV (Fig. 2.5). 

The multiple alignment revealed a unique 18-nucleotide deletion in the 3ʹUTR of the 

recent G2 isolates just downstream of the stop codon (Fig. 2.5), which may serve as 

a genetic marker for the recent G2 strains. A 64-nucleotide deletion in OR156, 

which is regarded as the prototype strain of G2 of MVEV, has been previously 

identified (Poindinger et al., 1996). The OR156 deletion pattern closely resembled 

the deletion in ALFV strains K7827 and MEM3929 that exhibited a 56-nucleotide 

deletion at a very similar genomic region. Interestingly, one of the G2 isolates 

(K6521) displays a one-nucleotide insertion at position 10414, which aligns with the 

same nucleotide in MK6684 (G3 of MVEV), JKT6468 (G4 of JEV) and Rabsenburg 

(lineage III of WNV).  

One of the recent PNG isolates (PNG6910) that belongs to G1a isolates shares a 

two-nucleotide deletion at positions 10458 and 10459 with another PNG isolate, 

NG156 (G4 of MVEV). Two of the recent G1b isolates (K68150 and P8891) exhibit a   
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Table 2.7. Analysis of the operation of selection pressures averaged over all full-

length prM and E gene sequences included in this study. 

 

Type of Selection dN – dS * p-value † 

Positive  -24.108 1.000 

Purifying  24.094 0.000 

Neutral  -23.867 0.000 

 

*. dN – dS (Z test of selection).  

† A p-value of >0.05 was considered not to be significant.  
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                               10400     10410     10420     10430     10440     10450     10460  

                             ...|....|....|..._.|....|....|....|....|....|....|....|....|....|... 

MVEV strains                   

Genotype 1a                                                                                            
MVEV 1-51                    TAAATAACATTGATAGA-AAATTTTGTAAATATTTAATGTAATATAGTATAGGTAAAATTTTTTGAAA 

K69612                       TAAATAACATTGATAGA-AAATTTTGTAAATATTTAATGTAATATAGTATAGGTAGAATTTTTTGAAA  

K70310                       TAAATAACATTGATAGA-AAATTTTGTAAATATTTAATGTAATATAGTATAGGTAGAATTTTTTGAAA  

PNG6910                      TAAATAACATTGATAGA-AAATTTTGTAAATATTTAATGTAATATAGTATAGGAAAAATTTT--GAAA  

Genotype 1b                                                                                           
K68150                       TAAATACCATTGATAGA-AAATTCTGTAAATATTCAATGTAACATATTGTAAGTAAAATTTT---AGA  

P8891                        TAAATACCATTGATAGA-AAATTTTGTAAATATTCAATGTAATACATTGTATGTAGAATTTT---AGA  

OR2                          TAAATAACATTGATAGA-AAATTCTGTAAATATTTAATGTAATATAGTATAAGTAAAACTTTTTGAAA  

K16963                       TAAACAACATTGATAGA-AAATTTTGTAAATATTTAGTGTAACATAGTATAAGTAAAATTTTTTGAAG  

Genotype 2                                                                                             
OR156                        TAA----------------------------------------------------------------G  

K6521                        TAAATAATATTCATGGAAAAACTTCTTAAATATTTAATGTTGTTTA------------------GAAG  

K59532                       TAAATAATATTTATGGA-AAACTTCTTAAATATTTAATGTTGTTTA------------------GAAG  

K59536                       TAAATAATATTCATGAA-AAACTTCTTAAATATTTAATGTTGTTTA------------------GAAG  

K62017                       TAAATAATATTCATGAA-AAACTTCTTAAATATTTAATGTTGTTTA------------------GAAG  

K68196                       TAAATAATATTCATGGA-AAACTTCTTAAATATTTAATGTTGTTTA------------------GAAG 

Genotype 3                                                                                             
MK6684                       TAAATAATATCAATGGAAAATTTTTGTAAATATTTAATG--ATATAGTATTGTTTAGGTTTTT-AGAA  

Genotype 4                                                                                             
NG156                        TAAATAACATTGATGAA-AAATTTTGTAAATACTTAATGTAACATAGAATTGATTAATTTTT--AGAA  

ALFV strains                                                                                           
K7827                        TAAACAGAAC--------------------------------------------------------AA  

MRM3929                      TAAACAGAAC--------------------------------------------------------AA  

JEV strains                                                                                                     
K94P05 (Genotype-I)          TAG-----------ACAG--GATTAA------------GTCATGTGTGTAATGTGAG-ATAAGAAAAT  

FU (Genotype-II)             TAG-----------ATAGCAAATCAA------------GTTAAGTGTATAATGTGA--ATAAGAAAAT  

Nakayama (Genotype-III)      TAGTGTGATTTAAGGTAGGAAAATAA------------ACCATGTAAATAATGTGAATGAGAAAATGT  

JKT6468 (Genotype-IV)        TAGTGTGGTCCCAAGTAATAAAATGA------------ATGTAACAAAATGAATGTATAATATAGGGT  

Muar (Genotype-V)            TAAAGAACTCTTGAAAACAAATGTAAATAGTAGTAATTGTTTAGTGTAAATAGTGTAAATAAATAAAT  

WNV strains                                                                                                       
NY99 (Lineage-Ia)            TAGATATTTAATCAATTGTAAATAG-----ACAATATAAGTATGCATAAAAGTGTAGTTTTATA-GTA 

WNV-KUNV MRM61C (Lineage-Ib) TAAATACTTTGT------------------TAATTGTAAATAAATATTGTTATTATGTG------TAG  

Sarafend (Lineage-II)        TAAATAATGAAGCTGTATTAAATAGTTGTATGGTTGTAATTATGCTGATTTAGTGTTTATAGTAATTT 

Rabensburg (Lineage-III)     TGAATGAAGGAGCGTTCAT---------------TGTAAATATGTGTA-------------------- 

LEIV-Krnd88 (Lineage-IV)     TGAA-------------------------------GCTAACACACACACACCC------------CAT 

WNV-KUNV Sarawak (Lineage-VI)TAAGT-------------------------TTGTGGTGATCATGTAAATATAGT-----------TGT  

 

Fig. 2.5. Multiple nucleotide alignment of the 3ʹUTR of representative strains of G1a, 

G1b, G2, G3 and G4 of Murray Valley encephalitis virus with the representative 

strains of closely related flaviviruses such as Alfuy virus, Japanese encephalitis virus 

and West Nile virus. 

Black square indicates the position of the unique 18-nucleotide deletion in the recent G2 MVEV 

isolates. Dotted square indicate the 64-nucleotide deletion of OR156. Dashes represent gaps; 

numbers on the top indicate nucleotide position according to the MVE-1-51 complete genome 

(NC000943). 
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three-nucleotide deletion at the same position (10458-10460). Interestingly, 

deletions at this position are also observed in MK6684 (G3 of MVEV) and the 

representative strains of all WNV lineages, except Sarafend strain (lineage II). None 

of the JEV strains exhibit a deletion at this position (Fig. 2.5). No specific deletions 

were observed to separate G1a strains from G1b. These results highlighted the 

sequence variability in this region of the 3ʹUTR of flaviviruses.   

2.4 Discussion   

The major finding of this study was the identification of four more G2 isolates; three 

from mosquitoes collected from Fitzroy Crossing and one from Broome. This 

supports the hypothesis that G2 strains of MVEV continue to circulate in the 

Kimberley region of WA and may exist in a rarely sampled ecological niche. It is the 

first report of G2 isolates in the west Kimberley and extends the known geographic 

range of this genotype by approximately 600km west (Fig. 1.5). The isolation of 

three G2 strains in one year (2006) from mosquitoes in Fitzroy Crossing and 

Broome, approximately 400km apart, provides evidence that this genotype 

circulates over a broad geographic region. No G2 isolate was detected in 

mosquitoes collected from the Pilbara region of WA, suggesting that this genotype 

may not yet have become established or has not been sampled in that region. Given 

the intrinsic role of mosquitoes in the lifecycle and ecology of MVEV, isolates from 

mosquitoes may be viewed as representative of the ecosystem from which they 

were sampled. However, since these are only collected from specific sites over a 

selected period of time in WA, they are only a sample of the population. Although 

isolates retrieved from mosquito collections may not definitively represent the 

MVEV population in nature, they can be regarded as a random sampling. It should 

also be noted that some strains circulating in nature may not be cultureable; 

therefore, subpopulations of MVEV may have been left undetected in this study. 

This is difficult to assess and further studies are required to evaluate PCR-positive, 

isolation-negative mosquito pools 

The detection of G2 strains beyond the Kununurra region invites speculation as to 

whether these viruses have spread from this region or have circulated more broadly 
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than initially thought, but simply not been detected during surveillance activities. 

The fact that G2 has not been detected from Kununurra since 1995 may indicate 

that the ecological and environmental conditions in that area are no longer 

favourable for the G2. However, because the complete prM-E sequence comparison 

of all G2 isolates revealed a maximum of 1.1% amino acid divergence in these 

strains, it is unlikely that biological characteristics of these structural proteins are 

involved in this phenomenon.  

Similar to the previous G2 isolates that were collected from different mosquito 

species (Cx. annulirostris, Cx. pullus, and An. bancroftii), recent G2 isolates were also 

isolated from Cx. annulirostris and Cx. pullus. The observed amino acid substitutions 

in the E gene of G2 strains, as compared to G1 strains, could affect the transmission 

efficiency of this genotype by other mosquito vectors that transmit G1. Studies on 

the closely-related WNV revealed that a single substitution in the E gene (A159V) 

resulted in a shorter extrinsic incubation period in the mosquito vector leading to 

an explosive westward expansion of the geographic range of WNV in North America 

(Davis et al., 2005; Ebel et al., 2004; Kilpatrick et al., 2008; Moudy et al., 2007). 

Moreover, Moudy et al. (2009) revealed that a mutation at position 154 (N154I), of 

the WNV glycosylation site (Luca et al., 2012; Nybakken et al., 2006; Prow et al., 

2011; Rey et al., 1995), severely affected the vector competency of Cx. pipiens and 

Cx. tarsalis and restricted virus transmission. Although G2 of MVEV did not show 

mutation at either of these positions, it demonstrated a mutation at position 157 

(T157S) which is in close proximity of residues 159 and 154 [adjacent to the 

glycosylation site; (Luca et al., 2012; Nybakken et al., 2006; Prow et al., 2011; Rey et 

al., 1995)]. This mutation may affect one or more stages of virus replication in the 

vector. Further investigation is required to assess whether T157S mutation affects 

the competence of mosquito vectors for G2 virus transmission. 

Moreover, the inherent genetic diversity of Cx. annulirostris and Cx. pullus may also 

influence the vector competence of these species for G1 and G2 MVEV strains. In a 

study on the closely-related JEV, Hemmerter et al. (2007) provided circumstantial 

evidence that certain lineages of Cx. annulirostris may not efficiently transmit JEV, 

thereby preventing the establishment of JEV in mainland Australia. The authors 
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revealed that biodiversity of Cx. annulirostris coincided with the southern limits of 

JEV activity in Australasia. Further studies may reveal whether differences in the 

biodiversity of Cx. annulirostris and Cx. pullus mosquitoes that circulate in different 

regions of WA and various states of Australia impacts on the activity and 

establishment of different MVEV genotypes or subgenotypes. Moreover, 

Hemmerter et al. (2007) demonstrated that the south-Australian lineage of Cx. 

annulirostris can only be found in some parts of SA, NSW, and south-eastern QLD. 

Coincidentally, no G1a and G2 strains have been detected in these states, yet. 

Therefore, it can be speculated that the south-Australian lineage of Cx. annulirostris 

may be poorly or non-permissive to G1a and G2 strains, thus preventing their 

transmission and spread to these areas. Vector competency studies will be required 

to address this possibility. 

Recent studies on JEV revealed that the viral host preference is affected by 

molecular determinants that are unique for each specific genotype (Schuh et al., 

2010; Solomon et al., 2003). According to Solomon et al. (2003), JEV strains that 

belong to G4, such as JKT6468 and JKT7003, demonstrated unique molecular 

determinants in the C and E proteins. These genotype-defining viral molecular 

determinants may presumably be responsible for restricting G4 of JEV to Indonesian 

region. The G2 strains of MVEV may possess such molecular determinants that limit 

them to a particular host species or smaller range of hosts. As a result, G2 strains 

could be restricted to particular vertebrate hosts in which they cannot amplify 

efficiently.   

Previous studies on the genetic relationships of MVEV have been limited in that 

small numbers of viruses were considered or isolates from a restricted endemic 

region were studied (Coelen and Mackenzie, 1988; Johansen et al., 2007; Lawson, 

1988; Lobigs et al., 1986, 1988). Nonetheless, all phylogenetic studies divided MVEV 

isolates into four distinct genotypes. Furthermore, recently Williams et al. (2013) 

further classified G1 isolates into G1a and G1b sublineages. G1a comprises strains 

collected in 2008 and 2009 from WA and two recent PNG strains collected in 1998. 

G1b contains MVEV strains collected between 1989 and 2011 from all mainland 

states of Australia. Some G1 isolates occupied intermediate lineages, which 
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clustered interchangeably with either G1a or G1b subgroups, depending on the 

region of the genome or the algorithm used for phylogenetic analyses (Williams et 

al., 2013). These isolates, therefore, could not reliably be classified into either G1 

subgroups. Phylogenetic studies of the MVEV isolates reported in this chapter found 

a similar pattern and supported the recent proposed classification.  

The majority of MVEV strains collected from WA between 2005 and 2009 were 

isolated from Cx. annulirostris (Table 2.4), confirming that this species is the main 

mosquito vector of MVEV. The results also revealed that in recent years, the 

isolation of MVEV from this species has slightly decreased. While 83% of recent 

MVEV strains were isolated from Cx. annulirostris, 11.3% were isolated from Cx. 

pullus, and 5.6% from the other minority mosquitoes. This indicates that more 

MVEV strains have been isolated from Cx. pullus in recent years, compared to 2.6% 

isolation from this mosquito in previous years (Williams et al., 2010). It may simply 

be due to under-trapping of Cx. pullus in previous years, or it may indicate the 

relative recent abundance of this mosquito compared to previous years. No MVEV 

was isolated from Cx. quinquefasciatus in this study, which has previously been 

shown to account for 1.2% of transmission of MVEV (Williams et al., 2010).  

The E glycoprotein of flaviviruses consists of three domains: domain III, a receptor-

binding domain that acts as major target of neutralizing antibodies, domain II, the 

dimerisation domain that contains the putative fusion peptide and the flexible 

hinge region, and domain I which acts as a hinge between domain II and III and 

houses the glycosylation site (Luca et al., 2012; Nybakken et al., 2006; Rey et al., 

1995). G2 strains of MVEV encoded twenty six unique amino acid substitutions in 

the E glycoprotein, fourteen of which are non-conservative. Half of these mutations 

are located in domain II (Table 2.6; Fig. 2.3, and Fig. 2.4), suggesting that this 

domain is subject to a higher level of selection pressures than the other two 

domains. However, evidence of selection pressure operating on the E protein was 

not found in this study. The biological importance of many of these substitutions, if 

any, is yet to be confirmed.  
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Significantly, the glycosylation site that is crucial for the neuroinvasive phenotype of 

flaviviruses (Beasley et al., 2005; Kim et al., 2008; Prow et al., 2011; Shirato et al., 

2004), the putative fusion peptide that is essential for the fusogenic activity of the 

virus (Allison et al., 2001; Seligman, 2008), and the RGD motif which is the receptor 

binding region within the E glycoprotein (Hurrelbrink and McMinn, 2003; Lee and 

Lobigs, 2000; Lobigs et al., 1990) are fully conserved in all MVEV isolates. Similarly, 

all twelve cysteine residues that form intramolecular disulphide bridges in the 3D 

folded structure of flaviviruses (Nowak and Wengler, 1987) are fully conserved in all 

MVEV isolates (Fig. 2.3). Thus, even when some other mutations act on the surface 

of the molecule affecting its hydrophobicity, charge, shape and intermolecular 

interaction, the intramolecular structure of the virus remains greatly conserved 

(Nowak and Wengler, 1987; Tennessen, 2008). In contrast, the putative flexible 

hinge region that links domain I and domain II of the E protein (Rey et al., 1995; 

Zhang et al., 2004) is not conserved in the G2 isolates of MVEV. This region 

exhibited S275T (conservative) and S276G (non-conservative) substitutions (Table 2.6; 

Fig. 2.3). Mutations at this region were shown to result in significant decreases in 

the flexibility of the hinge, fusion efficiency, and neuroinvasiveness in mice 

(McMinn, 1997; McMinn et al., 1995).  

Analysis of the 3ʹUTR sequences of MVEV isolates identified a unique 18-nucleotide 

deletion downstream of the stop codon in the G2 strains isolated after 1991. This 

may serve as a genetic marker of the recent strains. A similar pattern of deletions 

has been found in the closely-related flaviviruses such as ALFV, JEV and WNV 

(Poindinger et al., 1996). However, ALFV demonstrated the most similar deletion 

(56-nucleotide deletion) to OR156, which has a 64-nucleotide deletion. One 

explanation of the differing sizes of this deletion in G2 strains is that the ancestral 

G2 strain may have contained the smaller 18-nucleotide deletion, but through time, 

a larger deletion was introduced in the OR156 lineage. Alternatively, it can be 

speculated that the ancestral G2 strain had the larger deletion, which was 

subsequently replaced with sequence encoded by the recent G2 via a 

recombination event. Due to the relatively high degree of nucleotide variation in 

this region between the recent strains of G2 and other genotypes, this is unlikely to 
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have occurred with latter. The biological significance of this deletion remains to be 

characterised. However, recently it has been shown that the highly structured RNA 

sequences at the beginning of the 3ʹUTR of flaviviruses renders resistance to 

nucleases (Pijlman et al., 2008). This results in the production of subgenomic 

flavivirus RNA that are important for infectivity and pathogenicity of these viruses 

(Pijlman et al., 2008). The observed variability and polymorphism at the beginning 

of the 3ʹUTR does not affect the known 3ʹSL secondary structure of flaviviruses 

which is essential for the genome cyclisation and RNA synthesis (Alvarez et al., 

2005; Khromykh et al., 2001a; Tilgner et al., 2005; Villordo and Gamarnik, 2009).  

Finally, within the prM and E genes of MVEV, no codon position was subject to 

positive selection. This indicates that similar to other flaviviruses (Baillie et al., 2008; 

Holmes, 2003; Jerzak et al., 2005; Jerzak et al., 2008; May et al., 2011; Mohammad 

et al., 2011; Woelk and Holmes, 2002), the genome of MVEV has been subject to 

purifying selection over time.  

2.5 Conclusion and Future Direction 

In conclusion, the analysis of all MVEV isolates resulted in the detection of four new 

G2 isolates comprising 5.6% of all recent MVEV isolates sequenced in this study. The 

results reported in this chapter support the hypothesis that G2 strains of MVEV 

have a smaller and restricted circulating population or have less efficient 

transmission cycles than G1 strains (Johansen et al., 2007; Williams et al., 2010) and 

G2 may exist in a unique ecological cycle (Johansen et al., 2007). This suggests that 

in order to understand the pattern of MVEV activity and geographic variation, it is 

essential to sequence all MVEV strains that are isolated each year. However, this 

may not be feasible or practical in arboviral surveillance activities. Further sequence 

analyses, especially using the highly sophisticated NGS technique can provide 

valuable information on the depth of genetic diversity and population structure in 

MVEV isolates, which is addressed in Chapter 4. The observed amino acid 

substitutions in the G2 of MVEV are likely to affect the phenotypic characteristics of 

this genotype, such as differences in replication kinetics in the cell culture, 
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pathogenicity and virulence in animal models. This will also be explored as part of 

this thesis in Chapter 5. 
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3.1 Introduction  

The laboratory diagnosis of MVEV infections, as for other flaviviruses, is typically 

performed using serological assays to detect antibody responses (Hall et al., 1996; 

Kuno, 2003), virus isolation techniques (French, 1952; French et al., 1957; Lehmann 

et al., 1976; van den Hurk et al., 2002) and/or RT-PCR to detect viral nucleic acid 

(Harnett and Cattell, 2010; McMinn et al., 2000; Patel et al., 2013; Pyke et al., 2004; 

Studdert et al., 2003; Tanaka, 1993; Williams et al., 2010). Serological assays, 

especially neutralisation tests are regarded as the gold standard method of 

detection because they provide the most accurate and conclusive results. However, 

these assays are technically difficult to perform and the results can be difficult to 

interpret unless the operator is highly experienced (Calisher, 1994b; Williams et al., 

2010). Serological tests are also unable to distinguish antibody responses to 

secondary flavivirus infections due to a complex anamnestic response to common 

epitopes of the primary infecting virus (Halstead et al., 1983; Makino et al., 1994). 

Virus isolation can take a long period of time and may require multiple passages to 

culture an isolate. In addition, virus isolation techniques commonly fail to provide 

results if viable virus is absent or of low titres in an infected sample (Johansen et al., 

2009). Disadvantages also exist for molecular methods of MVEV detection such as 

conventional RT-PCR and nested PCR. Conventional RT-PCR requires post-

amplification manipulation to visualise PCR products using electrophoresis and also 

requires sequencing of amplicons for definitive identification (Studdert et al., 2003; 

Tanaka, 1993; Williams et al., 2010). Nested PCR is also subject to the risk of 

contamination, because of the requirement of two rounds of PCR.  

Real-time quantitative PCR (qPCR) assays offer the advantage of lower 

contamination risk, accurate quantitative measurement and easy standardisation 

(Bustin and Nolan, 2004; Kubista et al., 2006). Since its development in 1992 

(Higuchi et al., 1992), qPCR has been used for the detection (Cavrini et al., 2011; 

Harnett and Cattell, 2010; Patel et al., 2013; Pyke et al., 2004; Zaayman et al., 2009), 

quantification (Gurukumar et al., 2009; Mantel et al., 2008; Santhosh et al., 2007), 

genotyping and serotyping (Chien et al., 2006; Johnson et al., 2005; Leparc-Goffart 
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et al., 2009; Shu et al., 2003) of many flaviviruses. While flavivirus universal RT-qPCR 

assays (Moureau et al., 2008; Patel et al., 2013) can detect MVEV, final 

identification is only achieved by sequencing. Two specific RT-qPCR assays for the 

detection of MVEV have been reported (Harnett and Cattell, 2010; Pyke et al., 

2004). Both assays utilise primers and probes that contain several mismatches in 

the genomic sequences of G2, G3 and G4. The recent detection of G2 isolates from 

the Kimberley region of WA, reported in Chapter 2, highlighted the need to detect 

all genotypes of MVEV for comprehensive molecular diagnostic capability. This 

chapter outlines the development and validation of a fluorogenic one-step RT-qPCR 

assay for the detection and quantification of all genotypes of MVEV. 

3.2 Materials and Methods 

3.2.1 Viruses, Clinical and Environmental Samples 

Flavivirus isolates that represent each of the recognised genotypes or phylogenetic 

lineages of available members of the JEV group were used in the validation of the 

assay. These viruses included strains of MVEV, ALFV, JEV, WNV, KUNV, and KOUV. In 

addition, KOKV, STRV, EHV, YFV 17D, and isolates of each of four DENV serotypes 

were tested.  

The environmental samples used in this study consisted of homogenates of 

mosquito pools that previously tested positive for MVEV, ALFV, KUNV, and EHV. 

Mosquito homogenates were kindly provided by the Arbovirus Surveillance and 

Research Laboratory, the University of Western Australia. The clinical samples 

tested in this study included homogenates of horse and duck tissues that tested 

positive for MVEV and KUNV at CSIRO, Australian Animal Health Laboratory (AAHL). 

The clinical samples were kindly provided by CSIRO, AAHL. 

3.2.2 Titration 

All virus stocks were titrated in PSEK cells using 96-well micro-titre plates (Greiner 

Bio-one, Australia). The titre was determined by the 50% tissue culture infective 

dose (TCID50) method (Reed and Muench, 1938). 

http://en.wikipedia.org/wiki/Virus_quantification
http://en.wikipedia.org/wiki/Virus_quantification
http://en.wikipedia.org/wiki/Virus_quantification
http://en.wikipedia.org/wiki/Virus_quantification
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3.2.3 Assay Design  

3.2.3.1 Primers and Hydrolysis Probe 

To design oligonucleotide primers specific for MVEV, available sequences of all four 

genotypes of MVEV were aligned using ClustalW in MEGA 5.2.1 software (Tamura et 

al., 2011), along with the sequences of representative genotypes and lineages of 

ALFV, JEV, WNV, KUNV, KOUV, STRV, YFV, and DENV (Table 3.1). Primers and the 

hydrolysis probe were selected to target the 3ʹUTR that was conserved within the 

four MVEV genotypes but demonstrated variation amongst other flaviviruses. The 

forward primer MVEV-10593F, reverse primer MVEV-10703R and the hydrolysis 

probe MVEV-10656 were synthesised by Fisher Biotech (Table 3.2). The probe was 

labelled with a 5ʹ 6-carboxy-fluorescein (FAM) reporter and a 3ʹ MGBNFQ minor 

groove binding non-fluorescent quencher. A nucleotide BLAST search (BLASTn) was 

carried out to ensure that primers and probe were specific for MVEV. 

3.2.3.2 RNA Extraction and Melt Curve Analysis 

Viral RNA was extracted from 140µl of samples using the QIAmp® viral RNA mini kit 

(QIAGEN, Australia), as per manufacturer’s protocol. The specificity of the RT-qPCR 

assay for MVEV nucleic acid extracts was verified by performing melt curve analysis 

and agarose gel electrophoresis. Viral RNA was reverse-transcribed using the 

MVEV16Rb primer (Table 3.2) and Superscript® III Reverse Transcriptase kit (Life 

Technologies, Australia), as described in Chapter 2 (Section 2.2.2). The resulting 

cDNA was used to template a 20µl reaction using KAPA SYBR® FAST qPCR Master 

Mix (KAPA Biosystems, USA). The reaction contained 4µl of cDNA, 10µl KAPA SYBR® 

FAST qPCR Master Mix (2X), and 200nM of each forward (MVEV-10593F) and 

reverse primer (MVEV-10703R). The cycling conditions involved a denaturation step 

at 95°C for 3 min followed by 40 cycles of 95°C for 5 sec, 52°C for 20 sec, and 72°C 

for 30 sec. The reaction was then cooled to 55°C for 20 sec. The temperature was 

increased to 95°C in increments of 0.5°C for 10 sec with constant fluorescence 

reading. Results were analysed using CFX ManagerTM Software (Bio-Rad, Australia). 

Representative PCR products of each genotype were also analysed on a 2% w/v 

agarose gel to confirm the absence of any secondary bands. 
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Table 3.1. Sequences of flaviviruses used for the generation of MVEV specific 

primers and probe. 

Strains 

Lineage/ 

Genotype * 

Year of 

isolation 

Location of 

isolation 

Source of 

isolation 

GenBank  

accession no. 

MVE 1-51 1 1951 Australia Human NC000943 

OR156 2 1973 Australia Mosquito KC852193 

MK6684 3 1966 PNG Mosquito L48974 

NG156 4 1956 PNG Human L48975 

ALFV MRM3929 N/A 1966 Australia Pheasant  AY898809 

JEV K94P05 1 1994 Korea Mosquito AF045551 

JEV FU  2 1995 Australia Human AF217620 

JEV Nakayama 3 1935 Japan Human EF571853 

JEV JKT6468 4 1981 Indonesia Mosquito AY184212 

JEV Muar 5 1952 Malaysia Human HM596272 

WNV NY99 1a 1999 USA Human AF196835 

KUNV MRM61C 1b 1960 Australia Mosquito AY174504 

WNV Sarafend 2 Unknown unknown unknown AY688948 

WNV Rabensburg 3 1997 Czech Republic Mosquito AY765264 

WNV LEIV-Krnd88 4 1998 Russia Tick AY277251 

WNV 804994 5 1980 India Human DQ256376 

KUNV Sarawak 6 1966 Borneo Mosquito L49311 

KOUV DakAaD  5443 7 1968 Senegal Rodent FVVNS5GAH 

STRV 23759 N/A 1995 Australia Mosquito FVVNS5GAB 

YFV 17D IU 2011 USA Human JN628281 

DENV-1 IU 2004 Venezuela Human FJ744701 

DENV-2 IU 2001 Thailand Human FJ744724 

DENV-3 IU 2004 USA Human FJ024470 

DENV-4 IU 2007 Venezuela Human FJ882590 

 

*.N/A: Not applicable;  IU: Information unavailable. 
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Table 3.2. Primers and probe targeting the MVEV 3ʹUTR used in this study. 

Primers /Probe* Sequence (5ʹ→3ʹ) Size (bp) Tm (°C) 

 

RT-qPCR primers 

MVEV-10593F CGGTTGGAAAGCCTCCCAG 19 55.4 

MVEV-10703R CACAGATTGCACTCCTCGGC 20 55.9 

 

Hydrolysis probe 

MVEV-10656 FAM-CCGTGTCAGATCGCGAAAGCGCCAC-MGBNFQ 25  64.2 

 

Cloning primers 

MVEV-10563F GAGGACTGGGTTACCAAAGC 20 53.8 

MVEV-10734R CGGCTTTGTTYACCCAGTCC     20 53.8 

MVEV-16Rb AGATCCTGTGGTCTTCTC 18 48.0 

 

*. Numbering is based on the genome of MVE-1-51 (NC000943) 

  



 
 

101 
 

3.2.4 Generating Plasmid Clones for Use as Quantification Calibrators 

Quantification calibrators are used in the standard curve as reference molecules for 

quantifying unknown samples, and determining the efficiency of the assay for each 

genotype. Quantification calibrators were generated for each genotype of MVEV. 

For G1, an infectious cDNA clone of MVEV G1 [pMVE-1-51; (Hurrelbrink et al., 

1999)] was kindly provided by Professor Peter McMinn, University of Sydney. 

pMVE-1-51 was transformed into DH10BTM Competent Cells (Life Technologies, 

Australia), and grown on LB plates containing 200µg/ml of ampicillin overnight. 

Briefly, this involved mixing 500ng of the full-length pMVE-1-51 with 50µl of 

DH10BTM electrocompetent cells on ice for 2 minutes. The mixture was then 

transferred into pre-chilled 0.1cm electroporation cuvettes (Life Technologies, 

Australia) and the electroporation was carried out in Bio-Rad GenePulser XCellTM 

(Bio-Rad, Australia), applying 200Ω resistance, 25µF capacitance, and 1800 volts. 

Five hundred microlitre of pre-warmed LB media was immediately added into the 

electroporation cuvette (Life Technologies, Australia), mixed and transferred into 

1.5ml microcentrifuge tubes. After incubation at 37°C for 1 hour, with shaking, 

100µl of the mixture was plated on to LB agar supplemented with ampicillin 

(200µg/ml), and incubated at 37°C for 18 hours. A single colony was selected and 

incubated in 4ml LB media supplemented with ampicillin for eight hours at 37°C. 

Next, 1ml of the grown culture was added to 150ml LB media supplemented with 

ampicillin and incubated at 37°C overnight

The resulting plasmid was purified using the QIAGEN Plasmid Midi kit (QIAGEN, 

Australia), as per manufacturer’s protocol. The purified plasmid was linearised with 

XbaI (New England Biolabs, USA) and purified by a phenol-chloroform extraction. In 

vitro transcription of the linearised product was carried out using the MEGAscript® 

T7 kit (Life Technologies, Australia), as per manufacturers’ protocol. The reaction 

contained 1µg of purified pMVE-1-51 DNA, 7.5mM of each dATP, dCTP, dUTP, 

2.5mM of dGTp, and 2µl of 10X Reaction Buffer to a final volume of 20µl. The 

reaction was incubated at 37°C for 4 hours. Full-length MVE-1-51 RNA transcripts 

were treated with 2U of TURBO DNase (Life Technologies, Australia) at 37°C for 30 
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min. The resulting RNA was purified with the QIAGEN RNeasy kit (QIAGEN, 

Australia), according to the manufacturer’s protocol, to remove template DNA. 

There are currently no full-length infectious clones for MVEV strains OR-156 (G2), 

MK6684 (G3) and NG156 (G4). Therefore, RNA for G2, G3 and G4 were generated 

by cloning a 172-nucleotide fragment of the 3ʹUTR encompassing primer and probe 

binding sites. Initially, the fragments were amplified using forward primer MVEV-

10563F, reverse primer MVEV-10734R (Table 3.2), and the PCR SuperMix (Life 

Technologies, Australia), as described in Chapter 2 (Section 2.2.2). The products 

were purified using the ChargeSwitch Pro PCR kit (Life Technologies, Australia), and 

ligated into the pGEM®-T Easy vector (Promega, Australia), according to the 

manufacturer’s protocol.  Each ligation reaction contained 20ng of insert DNA, 5µl 

of 2X Rapid Ligation Buffer, 50ng of pGEM®-T Easy Vector, and 3 Weiss units of T4 

DNA Ligase, to a final volume of 10µl. The reactions were incubated at 4°C for 18 

hours, followed by inactivation at 65°C for 5 minutes. The inactivated ligated 

products were transformed into DH10BTM competent cells (Life Technologies, 

Australia), and plasmids were purified using QIAGEN Plasmid Midi kit (QIAGEN, 

Australia). The purified plasmid was linearised using SalI (Promega, Australia), and 

gel-purified using Wizard® SV Gel and PCR Clean-up System (Promega, Australia), 

according to the manufacturer’s protocol. In vitro transcription of linearised 

products was performed as above, but for eight hours, to generate 264-nucleotide 

RNA products. The in vitro RNA transcripts were treated with 2U of TURBO DNase 

(Life Technologies, Australia) and purified using the QIAGEN RNeasy Kit (QIAGEN, 

Australia). The copy number of each plasmid was calculated according to the 

formula Xg/µl RNA / [transcript length in nucleotides x 340] x 6.022 x 1023.  

3.2.5 Reverse transcription real-time quantitative PCR (RT-qPCR) 

Purified RNA was assayed in a 20µl reaction containing 8µl of RNA and 12µl of the 

assay master mix. The PCR mix consisted 0.3U of SuperScript® III Platinum® One-

Step qRT-PCR (Life Technologies, Australia), 10U of RNaseOUTTM Recombinant 

Ribonuclease Inhibitor (Life Technologies, Australia), 0.5U of i-StarTaqTM DNA 

Polymerase (iNtRON Biotechnology, Korea), 1mM of DL-DTT (Sigma-Aldrich, 



 
 

103 
 

Australia) 0.3µM of MVEV-10593F and MVEV-10703R, and 0.1mM MVEV-10656-

FAM. A one-step RT-qPCR was carried out in a CFX96TM Real-Time System (Bio-Rad, 

Australia). Thermocycling conditions were as follows: 50°C for 30 min, and 95°C for 

5 min; followed by 50 cycles of 94°C for 15 sec, 55°C for 20 sec and 72°C for 30 sec 

with the fluorescence read at the end of each cycle. The assay was performed in 

HSP9601 96-well plates (Bio-Rad, Australia) sealed with microseal B (Bio-Rad, 

Australia). Each assay contained in vitro-transcribed MVE-1-51 RNA as the positive 

internal control and water as no template control (NTC). In addition, the sensitivity 

and specificity of previously reported MVEV-specific RT-qPCR assays (Harnett and 

Cattell, 2010 and Pyke et al., 2004) was assessed using MVEV RNA extracts (8µl). A 

modification of the Pyke et al. (2004) assay was employed whereby the 

same primers (400nM) and probe (120nM) were used in the AgPath-IDTM One-Step 

RT-PCR kit (Life Technologies, Australia), with thermocycling conditions as 

recommended by the manufacturer (45°C for 10 min, and 95°C for 10 min; followed 

by 45 cycles of 95°C for 15 sec, 60°C for 45 sec).  

3.2.6 Efficiency, Linearity and Standard Curve 

The PCR efficiency (the ability of the assay to double amplicons at the end of each 

cycle) and the co-efficient determination [(R2) a measure of the linearity of the 

standard curve] of the assay were determined in triplicate by standard curve 

analysis using ten-fold serial dilutions of in vitro-transcribed RNA from each virus 

genotype. The efficiency, co-efficient determination (R2) and slope values were 

calculated by CFX ManagerTM Software (Bio-Rad, Australia). The efficiency was 

calculated from the slope as described previously (Pfaffl, 2001; Vandesompele et 

al., 2002).  

3.2.7 Assay Performance 

Assay performance was assessed following the guidelines for minimum information 

required for the publication of quantitative real-time PCR experiments (Bustin et al., 

2009). A quantification cycle (Cq; the cycle number at which fluorescence signal 

increases above the threshold value) of over 40 was considered as negative result.  
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3.2.7.1 Analytical Performance 

The analytical sensitivity, which indicates the minimum copy number of the 

template in a sample that is detectable by the assay, was assessed by testing ten-

fold serial dilutions (107 to 10-1 copies) of in vitro RNA transcripts from each 

genotype. The lower limit of detection (LOD), which signifies the lowest 

concentration of a template that the assay could detect, was determined for each 

genotype. 

The analytical specificity of the assay, or the ability of the assay to correctly amplify 

and detect the desired target sequence, was evaluated by testing the in vitro RNA 

transcripts as well as viral RNA extracts from MVEV-positive tissue culture 

supernatants of all MVEV genotypes. 

3.2.7.2 Sensitivity for Clinical and Environmental Samples 

Clinical sensitivity of the assay was assessed using RNA extracted from mosquito 

homogenates, horse and duck brain homogenates and homogenates of duck tissues 

(lung, liver, kidney, spleen) that tested positive for MVEV. Clinical sensitivity was 

calculated as the ratio of the number of positive results/ (number of positive 

isolates tested + number of false negative results) as described previously (Bustin et 

al., 2009; Chien et al., 2006). 

3.2.7.3 Diagnostic Specificity  

The diagnostic specificity of the assay was determined by testing viral RNA 

extracted from tissue culture supernatants of cultures of related flaviviruses, 

including ALFV, JEV, WNV, KUNV, KOUV, KOKV, STRV, EHV, YFV, and DENV. In 

addition, viral RNA from environmental and clinical samples that tested positive for 

flaviviruses such as ALFV, KUNV and EHV were also tested. The specificity was 

calculated as the ratio of the number of negative results/ (the number negative 

isolates tested + the number of false positive results) as described previously (Chien 

et al., 2006).  

The homogenates of mosquito pools were tested for the presence of MVEV in a 

fixed cell ELISA using the MVEV-specific mAb 10C6 (Hall et al., 1996), as part of a 
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panel of 12 mAbs against flaviviruses and alphaviruses (Broom et al., 1998). Testing 

of clinical samples involved a pan-flavivirus RT-qPCR (Chao et al., 2007) and an 

MVEV-specific RT-qPCR (Pyke et al., 2004).  

3.2.8 Interlaboratory Comparisons 

The interlaboratory tests were performed in three different laboratories: the 

research laboratory at Curtin University, PathWest Laboratory Medicine WA in 

Perth, and CSIRO, AAHL in Geelong, Victoria. The tests at Curtin University were 

performed as described above (Section 3.2.5). The tests at PathWest were 

performed with 0.2ml thin-walled clear PCR tubes (Axygen, Australia) in a Corbett 

RG6000 thermocycler (Corbett Life Science, Australia). Clinical samples were tested 

at AAHL using 0.2ml thin-walled clear PCR tubes in a Fast Real-time PCR System7500 

(Applied Biosystems, Australia). Testing at all locations used the same RT-qPCR 

chemistry (Section 3.2.5); however, viral RNA templates were derived from the virus 

collections of each laboratory and were not standardised. 

3.2.9 Assay Precision  

The precision of the assay was examined by applying the methods described 

elsewhere (Abdul-Careem et al., 2006; Bustin et al., 2009; Santhosh et al., 2007). 

Intra-assay repeatability (short-term precision, intra-assay variance) was assessed 

by testing ten-fold serial dilutions of MVE-1-51 in vitro RNA transcripts (107 to 101 

copies) in triplicate in a single assay. For each dilution, mean Cq values, their mean, 

standard deviation (SD) and coefficient of variation (CV) were calculated separately. 

Inter-assay reproducibility (long-term precision, inter-assay variance) was 

determined by running 106, 104 and 103 copies of MVE-1-51 in vitro RNA transcript 

in triplicates over four separate consecutive days. The mean Cq, SD and CV of each 

concentration were calculated independently for each dilution.  

3.3 Results  

3.3.1 Assessment of Current RT-qPCR Assays for the Detection of MVEV 

Alignment of the sequences of the primers and probes used in the reported MVEV-

specific RT-qPCR assays (Harnett and Cattell, 2010; Pyke et al., 2004) with genomic   
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B.        
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Fig. 3.1. Multiple alignments and amplification curves of four genotypes of MVEV 
with the primers/probe used in previously reported MVEV RT-qPCR assays.  

A: Harnett and Cattell (2010); and B: Pyke et al. (2004). Boxes indicate the positions of forward and 
reverse primers at both ends and the probes in the middle. Numbers above the alignments indicate 
the nucleotide position according to the MVE-1-51 complete genome (NC000943). RFU: Relative 
fluorescence unit; ΔRn: Baseline subtracted normalised reporter signal. RT-qPCR cycle numbers are 
plotted against RFU in (A) or ΔRn in (B). 
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sequences of MVEV G1-G4 revealed mismatches in G2, G3 and G4 (Fig. 3.1). To 

compare the sensitivity and efficiency of this assay with previously reported MVEV-

specific RT-qPCR assays, purified viral RNA from each genotype, standardised to a 

virus titre of 104 TCID50/ml was tested by RT-qPCR as described by Harnett and 

Cattell (2010) and Pyke et al., (2004). A modification of the latter assay was 

employed, using the same primers and probe in a commercial RT-PCR kit. The 

mismatches in G2, G3 and G4 sequences considerably affected the amplification of 

these genotypes (Fig. 3.1). Amplification of G3 viral RNA resulted in higher Cq values 

and comparatively lower fluorescence signal to G1 amplification for both assays.  In 

the Harnett and Cattell (2010) assay, G2 was not detected, while G4 exhibited a 

considerably higher Cq value to those of the G1 and G3 (Fig. 3.1). In the Pyke et al. 

(2004) assay, although both G2 and G4 viral RNA showed amplification, G4 

exhibited a higher Cq and lower RFU than G2 (Fig. 3.1). 

3.3.2 Assay Design  

The aim of this study was to develop an MVEV-specific RT-qPCR assay capable of 

detecting all genotypes with similar sensitivity and efficiency. Alignment of the full 

length genomes of all four genotypes of MVEV with other closely-related 

flaviviruses revealed that the 3ʹUTR was the most conserved region in the genome 

of MVEV that also demonstrates a high level of variation compared to this region of 

other flavivirus species (Fig. 3.2). Primers and probe were designed to target a 111-

nucleotide fragment within this region that was fully conserved in all MVEV 

genotypes, except for two bases within the G2 strain (OR156; Table 3.2 and Fig. 

3.2). Those mismatches, however, do not locate inside the primers and probe 

annealing sites. This region spanned nucleotide position 10593 to 10703 of the 

MVE-1-51 complete genome (NC000943). To ensure maximum efficiency of the 

assay, primers were selected outside the predicted 3ʹ stem loop (3ʹSL) structure of 

the flavivirus genome (Brinton et al., 1986; Markoff, 2003; Thurner et al., 2004). 

BLAST search of the primers and hydrolysis probe revealed no significant matches 

to any available sequences of flaviviruses in the GenBank database, except to MVEV 

sequences (data not shown).  
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Fig. 3.2. Alignment of MVEV isolates with representative strains of closely-related flaviviruses. 

The figure demonstrates a part of the 3ʹUTR of the flavivirus genome that is highly conserved among MVEV genotypes, but shows variation in other flaviviruses. Squares 

indicate the position of the assay primers at both ends and the probe in the middle. Dots indicates nucleotide identities, dashes indicate gaps in the alignment. Numbers on 

the top of the alignment indicates the nucleotide position based on MVE-151 complete genome (NC000943).

MVEV MVE-1-51 C GG T T GG A A A GC C T C C C A G A A C C G T C T C GG A A G A GG A G T C C C T GC C A A C A A T GG A G A - T G A A GC C C G T - G T C A G A T C GC G A A A GC GC C A C - - - - - - T T C GC C G A GG A G T - - GC A A T C T G T G

MVEV OR156 . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . - . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . - - - - - - . . . . . . . . . . . . . - - . . . . . . . . . .

MVEV MK6684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . - - - - - - . . . . . . . . . . . . . - - . . . . . . . . . .

MVEV NG156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . - - - - - - . . . . . . . . . . . . . - - . . . . . . . . . .

ALFV MRM3929     T C . . . . . . . . . . . . . . T G A T . . . . . . . . . . . . T . . . . . . . . . . . . . . . T . GG . A G . . G . . . . . . . . . . - . . . . . G . . A . - . T T . T . . . . . - - - - - - C . T . . . A G A A G . . - - . . . . C . . . C .

JEV K94P05       A . . - G . . . . . . . . C T . A G A . C . G T C T C G . A - . . C A . G T C . . T GC T . . C . GG A A . T T G A A A G . C . A A C - G T C A G . - - - C . A C . . T T C T G T GC - C A T T C C GC T G . G . A G T - - GC GGC C T GC G -

JEV FU           A . . - G A . . . . . . . C T . A G A . C . G T C T C G . A - . . T A . G T C . . T GC T . . C . GG A A . T T GG A A G . C . A A C - G T C A G . - - - C . A C . . A T A T G T GC - C A C T C C GC T G . G . A G T - - GC GGC C T GC G -

JEV Nakayama     A . . - G A . . . . . . . C T . A G A . C . G T C T C G . A - . . T A . G T C . . T GC T . . C T GG A A . T T G A A A G . C . A A C - G T C A G . - - - C . A C . . A T T T G T GC - C A C T C C GC T G . G . A G T - - GC GGC C T GC G -

JEV JKT6468      G A . - G A . . . . . . . C T . A G A . C . G T C T C G . A - . . . A . G T C . . T GC T . . C T GG A T . T T GG A A G . C . A A C - G T C A G . - - - C . A C . . T . T T G T GC - C A C T C C GC T G A G . A G T - - GC GGC C T G T A -

JEV Muar         A . . - A . . . . . . . . C T . A G A . C . G T C T C G . A - . . . A . G T C . . T GC T T . C T GG A . . T T GG A A G . C . G - - . G T C A G . C C A C G T . . G T GC . A C - - - - - - T . C GC T G A G . A G T - - GC A GC C T G T A -

WNV NY99         T - - C C A T G T . A G . C . T . . . . . . . . . . . . . . . - A G . A G . A . . . C A . A T G T T G . A A C T T C A A . GC . . A A . - . . . . . . - - - . C . C GC T A . GG . G T GC T A C . . T G . . G A . . . . - - . . . G . . . . C .

KUNV MRM61C T - - C C A T G T . A G . C . T . . . . . . . . . . . . . . . - A . . A G . A . . . C A . A T G T T G . A . C T T C A A GGC . . A . . - . . . . . . - - - . C . C GC . A T GG . G T C C C A C . . T G . . G A . . . . - - . . . G . . . . . .

WNV Sarafend     T - - C C A C G T . A G . C . T . . . . . . . . . . . . . . . - A GC A G . A . . . C A . G T G . T T . A . C C T C A A . GC . . A . . - . . . . . . - - - . C . C . C . T - G . T G T GC C A C . . T G . . G A . . . . - - . . . G . . . . C .

WNV Rabensburg   T - - C C A C G T . A G . C . T . . A . . . . . A . . . . . . - A . . A G . . . . . C A . G T G T C T . A A C C C T A A GGC . . A . . T . . . . . . - - - . C . C . C GC A A G T G T GC T A C . . T G . . . A . . . . - - A . T G . . . . C .

WNV LEIV-Krnd88  T . . G A T A T C . A A GC . A T G . . G . G A . . C A C . T - A . . C C C . . A A . A . . G T T T C G . A . C G A G . . C C . . - - - - A C G T . - - - - T T G T . . . T . T G T G - - - G A C C GC A . A . . . C . C A C A T . . C . . T G .

WNV 804994       T - - C C A T G T . A G . C . T . . . . . . . . C . . . . . . - A G T A G . A . . . C A . A T G T T G . A . T T T C A A . GC . . A C C - . . . . . . - - - . C . C . C . . A GG T G T GC C A C . . A G . . G A . . . . - - . . GG . T . . C .

KUNV Sarawak     T - - C C A C G T . A G . C . T . . . . . . . . . . . . . . . - A G A A G . A . . . C A . G T G T T T . A . C C T C A A GGC . . A . . - . . . . . . - - - . C . C . C T T - A G T G T GC C A C . . T G . . G A . . . . - - . . . GC . . . C .

KOUV DakAaD 5443 T - - C C A C G T . A T . C . T . . . . . . . . . . . . . . . - A G . A G . A . . . C A . G T G T T T . A T T C T C A A . GC . . A A . - . . . . . G - - - . C . C . C . T G A G T G T GC C A . C . T G . . G A . G A . - - . . T G . . . . C .

STRV 23759       A . C C C . . . GG . A A . . . GGC C C . . . A . . A C C G - . . . . T T G . . A C . . T T G T . . A T A T . T A A A T . T G T A - - - . . . . . . . - - . C G . . A G . . . . . - C A G T A A G A T G T A . A T C T G G T . . C . . . . . C A

YFV 17D          T . C C A C T GC T A A GC T G T G A GG . A . . GC A . . C - T G . . . C A G . . G A . . T C . . GG T T GC G A A A . . C . T G . . T T C T G . G A . C T C C C . C . C . A G A G T A A A A A G A A . G . . . C C T C C GC T . C C A C C C T

DENV-1           G A . - GC T GC . A . . C A T GG A . G . T . . A C GC A - - T G . . G T A G . A G A . T . G T GG . T A G A GG A . . C C . . - - . C T C T . . - - - - A C . T . A . . . A G . - - - - - A GC - - - - . G . . C - - - - C . . . C A C C A .

DENV-2           G A . - GC C . C . A A . C A T GG A . G . T . . A C GC A - - T G . C G T A G T GG A . T . G . GG . T A G A GG A . . C C . . - - . C C C T T - - - - - A C . . . T . . . A G . - - - - - A A C A A T G . G . . C - - - - C . . . GGC . A .

DENV-3           G A . - GC T GC . A A . . G T GG A . G . T . . A C GC A - - C . . T G T A G . A G A . T . G . GG . T A G A GG A . . C C . . - - . C C C A T . - - - - A C . C . A . . . A G . - - - - - A GC - - - G . G . C C - - - - C G . GC A C T G A

DENV-4           G A . - GC C . T GC G . C A . GG A . G . T . . A C GC . - - T G . C . T A T T GG A . T . G . GG . T A G A GG A . . C C . . - - . C C C A T C . C T . A C . . . A . . . A G . - - - - - A A A A . - G . G . C C - - - - C G . . G . C A G .
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Table 3.3. The lower limit of detection (LOD), efficiency, co-efficient determination 

(R2) and the slope values of the assay for each genotype of MVEV. 

 MVEV Genotypes 

LOD  

(RNA copies) Efficiency  R
2 

† Slope  

G1 10 100 0.998 -3.321 

G2 10 100.9 0.998 -3.301 

G3 10 100 0.997 -3.323 

G4 10 100.4 0.997 -3.313 

 

† Co-efficient determination (R
2
), the linearity of the standard curve of each assay. R

2 
indicates how 

well data points (Cq of all samples) fit on a standard curve.
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Fig. 3.3. Standard curves for RT-qPCR amplification of RNA from MVEV genotypes G1, G2, G3 and G4 from which LOD, efficiency, slope and R2 

values for each genotype were calculated.  

Quantification cycle (Cq) is plotted against log10 of the starting quantity of viral RNA.
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3.3.3 Analytical Performance 

The lower LOD of the assay for each genotype was assessed by using ten-fold serial 

dilutions of in vitro RNA transcripts from each genotype in standard curve analyses. 

The lower LOD of the assay for all genotypes was 10 RNA copies (Table 3.3 and Fig. 

3.3). The efficiency of the assay for all genotypes was 100% indicating that the 

amount of PCR product doubled at the end of each cycle. The slope of the standard 

curve, that provides an indication of the efficiency of the assay, was between -3.321 

to -3.313 for all genotypes (Table 3.3, Fig 3.3). According to Kubista et al. (2006), a 

slope value between -3.3 to -3.8 is optimal. A slope of -3.3 to -3.8 is equivalent to an 

amplification efficiency of approximately 100% to 85%, respectively. The co-

efficient determination (R2) that indicates the linearity of the assay in a standard 

curve was ≥0.997 for RNA of all MVEV genotypes (Table 3.3 and Fig. 3.3). Thus, the 

assay could detect the target sequence in all MVEV-positive samples with high 

levels of efficiency and linearity.  

3.3.4 Melt Curve Analysis 

The melt curve analysis was carried out to assess primer-dimerisation, and any 

other non-specific amplification in the assay. A single peak was observed for each 

MVEV genotype, indicating the specificity of the assay only to MVEV RNA templates 

(Figure 3.4A). The melting temperature for all genotypes was 83.0 ± 0.5°C. In 

addition, agarose gel electrophoresis of the amplified products revealed no 

secondary bands, further confirming the absence of any secondary non-specific 

amplification (Figure 3.4B).  

3.3.5 Assay Precision 

Ten-fold serial dilutions of in vitro-transcribed MVE-1-51 RNA were used to test 

intra- and inter-assay variability (Appendix 3.1). The mean ± SD of CV values for 

intra-assay variability was 0.86 ± 0.62, while that of inter-assay variability was 1.22 ± 

0.26 (Table 3.4). According to Islam et al. (2004), when inter- and intra-assay 

variability of an assay is <5.0, it is considered acceptable. Therefore, the 

experimental variability of the assay is in the acceptable range.   
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A 

 

 B. 

Fig. 3.4. (A) Melt curve analyses of RT-qPCR amplicons from viral RNA templates of 

all four MVEV genotypes. (B). Agarose gel electrophoresis of the RT-qPCR amplified 

products with 100bp ladder as a reference marker. 

NTC: No template control 
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Table 3.4. Intra- and inter-assay variablities of Cq values following RT-qPCRs of 

serial dilutions of MVE-1-51 in vitro RNA transcripts.  

Variation RNA Copies  

Cq 

Mean SD CV (%) 

Intra-assay 10
7
 13.19 0.12 0.89% 

 

10
6
 17.00 0.33 1.95% 

 

10
5
 20.58 0.20 0.96% 

 

10
4
 23.78 0.13 0.56% 

 

10
3
 26.78 0.07 0.25% 

 

10
2
 30.34 0.05 0.16% 

 

10
1
 33.38 0.41 1.23% 

 Inter-assay 10
6
 17.34 0.25 1.43% 

 

10
4
 23.92 0.22 0.93% 

 

10
3
 27.12 0.35 1.30% 

 

SD: standard deviation; CV: coefficient of variation 
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3.3.6 Clinical Performance  

The sensitivity and diagnostic specificity of the assay to detect MVEV in mosquito 

samples (environmental) and veterinary samples (clinical) were assessed using 

homogenates of mosquito pools and infected animal tissues that tested positive for 

MVEV and other related flaviviruses. The assay only amplified and detected MVEV-

positive samples (Table 3.5). The assay demonstrated absolute sensitivity and 

specificity for MVEV isolates. 

The clinical sensitivity and diagnostic specificity of the assay were also assessed by 

three interlaboratory comparisons. All interlaboratory testing detected only the 

MVEV-positive samples with comparable Cq values. No non-MVEV flaviviruses or 

negative samples were detected by any of these analyses.  Thus, all interlaboratory 

comparisons produced 100% sensitivity and specificity for the MVEV isolates. 

3.4 Discussion 

The detection of recent G2 strains of MVEV (Chapter 2) highlighted the need to 

develop a rapid and sensitive assay to detect all MVEV genotypes. The aim of the 

studies reported in this chapter was to design a sensitive and specific RT-qPCR assay 

capable of detecting and quantifying viral RNA from all four genotypes of MVEV, 

with a high level of efficiency in both laboratory and clinical samples. Primers and 

probes used in previously reported probe-based RT-qPCR assays for the detection of 

MVEV (Harnett and Cattell, 2010; Pyke et al., 2004) exhibit several mismatches to 

G2, G3 and G4 sequences, which significantly affect their analytical sensitivity in 

detecting viruses belonging to these genotypes (Fig. 3.1). Furthermore, no data on 

the efficiency, linearity, precision and interlaboratory validation has been reported 

for these assays (Harnett and Cattell, 2010; Pyke et al., 2004).   

The originality of this assay is based on the comprehensive analysis of multiple full 

genome alignments of all four genotypes of MVEV with closely-related flaviviruses 

(Fig 3.2) to ensure the choice of specific primers and probe. Primers and hydrolysis 

probe were selected from the 3ʹUTR of MVEV genome that matched the sequence 

of all four MVEV genotypes (without any mismatches) but exhibited a  high  level  of  
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Table 3.5. Assessment of clinical sensitivity and diagnostic specificity of the RT-qPCR 

assay for the detection of viral RNA from flaviviruses extracted from tissue culture 

supernatants, environmental (mosquito) samples, and clinical samples. 

Samples Source of isolate 
Geographic  

origin 

Year of 

collection/ 

isolation  

Cq Result 

MVEV strains 

MVE-1-51 (G1) * TC-SN Australia 1951 15.18 Pos 

OR156 (G2) * TC-SN Australia 1973 15.85 Pos 

MK6684 (G3) * TC-SN PNG 1966 12.54 Pos 

NG156 (G4) * TC-SN PNG 1956 13.94 Pos 

Environmental samples (Mosquito homogenates)    

K59532 (G2) Cx. annulirostris  Fitzroy Crossing, WA 2006 19.39 Pos 

K59536 (G2) Cx. pullus  Fitzroy Crossing, WA 2006 21.66 Pos 

K62017 (G2) Cx. annulirostris  Broome, WA 2006 35.07 Pos 

K60555 (G1) Cx. annulirostris  Kununurra, WA 2006 17.31 Pos 

K68150 (G1) Cx. annulirostris  Fitzroy Crossing, WA 2009 16.35 Pos 

K68838 (G1) Cx. annulirostris  Kununurra, WA 2009 17.11 Pos 

K69612 (G1) Cx. pullus  Kununurra, WA  2009 19.39 Pos 

P8891 (G1) Ae. normanensis  Karratha, WA 2006 19.37 Pos 

K72445 (G1) † Cx. annulirostris  Broome, WA 2011 20.20 Pos 

K72682 (G1) † Cx. annulirostris  Broome, WA 2011 16.60 Pos 

K72974 (G1) † Cx. annulirostris  Broome, WA 2011 16.10 Pos 

K73041 (G1) † Cx. annulirostris  Willare, WA 2011 17.50 Pos 

K73051 (G1) † Cx. annulirostris  Willare, WA  2011 19.20 Pos 

K73072 (G1) † Cx. annulirostris  Willare, WA 2011 20.10 Pos 

K73080 (G1) † Cx. annulirostris  Willare, WA  2011 17.40 Pos 

K73096 (G1) † Cx. annulirostris  Willare, WA  2011 16.50 Pos 

K73146 (G1) † Cx. species Derby, WA  2011 18.60 Pos 
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Table 3.5. continued     

Samples Source of isolate 
Geographic  

origin 

Year of 

collection/ 

isolation  

Cq Result 

K73164 (G1) † Cx. annulirostris  Derby, WA  2011 30.90 Pos 

K73251 (G1) † Cx. annulirostris  Derby, WA  2011 15.30 Pos 

K73350 (G1) † Cx. annulirostris  Derby, WA  2011 16.40 Pos 

K73350 (G1) † Cx. annulirostris  Derby, WA  2011 16.40 Pos 

K73384 (G1) † Cx. annulirostris  Derby, WA  2011 17.60 Pos 

K73445 (G1) † Cx. annulirostris  Derby, WA  2011 17.00 Pos 

K73475 (G1) † Cx. annulirostris  Derby, WA  2011 15.30 Pos 

K73607 (G1) † Cx. annulirostris  Fitzroy Crossing, WA  2011 18.80 Pos 

K73846 (G1) † Cx. annulirostris  Geikie Gorge, WA  2011 17.80 Pos 

K73996 (G1) † Cx. species Halls Creek, WA  2011 17.60 Pos 

K74130 (G1) † Cx. species Halls Creek, WA  2011 16.30 Pos 

K74283 (G1) † Cx. annulirostris  Kununurra, WA  2011 14.40 Pos 

K74400 (G1) † Cx. annulirostris  Kununurra, WA  2011 19.20 Pos 

Clinical samples      

11-00937-0001 ‡ Duck brain SA, Australia 2011 21.8 Pos 

11-00937-0002 ‡ Duck lung SA, Australia 2011 15.1 Pos 

11-00937-0003 ‡ Duck liver SA, Australia 2011 19.0 Pos 

11-00937-0004 ‡ Duck kidney SA, Australia 2011 19.9 Pos 

11-00937-0006 ‡ Duck spleen SA, Australia 2011 16.8 Pos 

11-01572-0001 ‡ Horse  brain  VIC, Australia 2011 36.8 Pos 

11-01572-0003 ‡ Horse  brain  VIC, Australia 2011 31.6 Pos 

11-01572-0004 ‡ Horse  brain  VIC, Australia 2011 30.1 Pos 

11-01572-0008 ‡ Horse  brain  VIC, Australia 2011 34.0 Pos 



 
 

117 
 

Table 3.5. continued     

Samples Source of isolate 
Geographic  

origin 

Year of 

collection/ 

isolation  

Cq Result 

Non-MVEV      

ALFV * TC-SN Australia 1966 >40 Neg 

JEV TS00 * TC-SN Australia 2000 >40 Neg 

JEV FU *  TC-SN Australia 1995 >40 Neg 

JEV Nakayama * TC-SN Japan 1935 >40 Neg 

JEV JKT6468 * TC-SN Indonesia 1981 >40 Neg 

WNV NY99 * TC-SN USA 1999 >40 Neg 

KUNV MRM16C * TC-SN Australia 1960 >40 Neg 

WNV G22886 * TC-SN India 1958 >40 Neg 

KUNV Sarawak * TC-SN Borneo 1966 >40 Neg 

KOUV * TC-SN Senegal 1968 >40 Neg 

KOKV MRM32 * TC-SN Australia 1960 >40 Neg 

STRV * TC-SN Australia 1995 >40 Neg 

EHV * TC-SN Australia 1961 >40 Neg 

YFV 17D * TC-SN USA 1937 >40 Neg 

DENV-1 * TC-SN Venezuela 2004 >40 Neg 

DENV-2 * TC-SN Thailand 2001 >40 Neg 

DENV-3 * TC-SN USA 2004 >40 Neg 

DENV-4 * TC-SN Venezuela 2007 >40 Neg 

Environmental samples (Mosquito homogenates)    

K72837 (ALFV) † Cx. annulirostris  Broome, WA 2011 >40 Neg 

K72910 (ALFV) † Cx. annulirostris  Broome, WA 2011 >40 Neg 

K72944 (ALFV) † Cx. annulirostris  Broome, WA 2011 >40 Neg 

K74154 (ALFV) † Cx. pullus  Kununurra, WA 2011 >40 Neg 

K74157 (ALFV) † Cx. pullus  Kununurra, WA 2011 >40 Neg 

K74390 (ALFV) † Cx. annulirostris  Kununurra, WA 2011 >40 Neg 
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Table 3.5. continued     

Samples Source of isolate 
Geographic  

origin 

Year of 

collection/ 

isolation  

Cq Result 

K73822 (KUNV) † Cx. annulirostris  Halls Creek, WA 2011 >40 Neg 

K74015 (KUNV) † Cx. annulirostris  Geikie Gorge, WA 2011 >40 Neg 

K74003 (EHV) † Ae. normanensis  Halls Creek, WA 2011 >40 Neg 

Clinical samples      

11-00937-0005 ‡  Duck kidney SA, Australia 2011 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-00186-0028 ‡ Duck pooled tissues SA, Australia 2013 >40 Neg 

13-01336-0001 ‡ Horse  brain QLD, Australia 2013 >40 Neg 

13-01440-0003 ‡ Horse  CSF NSW, Australia 2013 >40 Neg 

13-01645-0001 ‡ Horse  brain WA, Australia  2013 >40 Neg 

 

WA: Western Australia, SA: South Australia, VIC: Victoria. TC-SN: Tissue culture supernatants; Cx: 

Culex; Ae: Aedes; Cq: quantification cycle, G1: Genotype 1, G2: Genotype 2. 

* Standardised at 10
4
 TCID50/ml. 

†.Tested at PathWest Laboratory Medicine, WA. For methodology refer to Section 3.2.8. 

‡ Tested at CSIRO, AAHL, Geelong, Victoria. These specimens submitted to AAHL for routine 

diagnostic testing. For methodology refer to Section 3.2.8.  
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variation in other flaviviruses. This region was previously selected for designing RT- 

qPCR assays for other flaviviruses such as JEV (Yang et al., 2004) and DENV (Chien et 

al., 2006; Gurukumar et al., 2009; Houng et al., 2001). This region is functionally 

important because the highly conserved RNA sequences at the beginning of the 

3ʹUTR offer genomic RNA resistance to nucleases (Pijlman et al., 2008). The 

incomplete degradation of flavivirus genomic RNA by the host cell nucleases     

produces subgenomic flavivirus RNA (sfRNA) which is critical for the pathogenicity 

and infectivity of the virus (Pijlman et al., 2008). 

This is the first MVEV RT-qPCR assay, to date, that has undergone an exhaustive 

examination of reproducibility, efficiency, linearity, sensitivity and specificity for all 

MVEV genotypes. The applicability of the assay for laboratory diagnosis of MVEV 

was demonstrated by testing flavivirus-positive environmental and clinical samples. 

These samples included homogenates of mosquito pools and infected horse and 

duck tissues. The assay could detect all MVEV-positive samples and no other 

flaviviruses or negative samples were amplified by the assay. An interlaboratory 

comparison was performed to confirm the sensitivity, and specificity of the assay. 

These interlaboratory tests were carried out using the RT-PCR chemistry and 

thermocycling protocol developed in this study, by different operators and different 

real-time instruments. In each interlaboratory test, the assay only detected MVEV 

samples with highly reproducible and repeatable results, making it suitable for 

laboratory diagnosis.  

RT-qPCR assay quantification requires standardisation of the assay with a reference 

molecule (Hugget et al., 2005). In previous studies, the lower LOD of MVEV specific 

RT-qPCR assay was determined by two different methods. Studies tested RNA that 

was purified from the ten-fold serial dilutions of viruses that were quantitated by 

plaque assay (Dash et al., 2012; Kwallah et al., 2013; Pyke et al., 2004; Shu et al., 

2003), or using ten-fold serial dilutions of in vitro-transcribed RNA (Eiden et al., 

2010; Leparc-Goffart et al., 2009; Santhosh et al., 2007; Schwaiger and Cassinotti, 

2003). According to Mantel et al. (2008), several factors, including the methods and 

kits used for RNA purification, the number of samples that undergo purification at 

the same time, and inter-operator variability, substantially affect the accuracy of 
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the lower LOD using RNA purified from serial dilutions of seeded viruses. Hence, the 

synthetic RNA obtained from in vitro transcription is more suitable for 

characterisation of the LOD. From the previously reported RT-qPCR assays for the 

detection of MVEV, the assay designed by Harnett and Cattell (2010) does not 

report the lower LOD, while Pyke et al. (2004) reported a lower LOD of <1 PFU, 

which corresponded to Cq values between 31 and 34. In this study, in vitro-

transcribed RNAs encompassing RT-qPCR amplicons were constructed and used to 

determine the LOD of the assay for each genotype. The lower LOD of this assay is 10 

RNA copies, which is comparable or better than the LOD reported in the other 

flavivirus RT-qPCR assays [e.g., 3 RNA copies in Eiden et al. (2010), 10 RNA copies in 

Schwaiger and Cassinotti (2003), 20 RNA copies in Santhosh et al. (2007) and 100-

5000 RNA copies in Leparc-Goffart et al. (2009)]. The ability of the assay to detect 

very low RNA copies from these transcripts (Table 3.3 and Fig. 3.3), coupled with 

sensitive and specific detection of all MVEV genotypes, demonstrates its suitability 

for the detection and quantification of viral RNA in both clinical and laboratory 

settings. 

In conclusion, the MVEV one-step RT-qPCR assay reported here is highly sensitive 

and specific for the detection of all MVEV genotypes. This assay may have 

application for virus surveillance of MVEV in the Australasian region. In addition, 

this assay may also be suitable for the molecular diagnosis of MVEV infection in 

humans and animals, with the potential for a significant impact on disease 

management. Further, this assay may be used in overseas diagnostic laboratories 

where imported MVEV infections need to be considered.  

In this thesis, the MVEV-specific RT-qPCR assay was used to determine viral RNA 

copy number in MVEV environmental samples, before undergoing NGS for 

characterising the depth of genetic diversity (Chapter 4). Moreover, this assay was 

used to detect MVEV in the brains of mice as part of characterising virulence 

phenotypes of different strains of MVEV from the two co-circulating Australian 

genotypes (G1 and G2; Chapters 5 and 6). 
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4.1 Introduction  

In Chapter 2, genetic diversity between MVEV populations at the genotype level 

was characterised using consensus sequences of virus isolates obtained by Sanger 

capillary sequencing technology. It was reported that G2 viruses of MVEV still 

circulated in the Kimberley region of WA, and G1 viruses were divided into two 

subgenotypes (G1a and G1b). One of the limitations of Sanger sequencing is its 

inability to detect low frequency variants, only being able to detect the majority of 

nucleotides at a given position. However, due to a large population size and rapid 

replication rate, driven by an error-prone and low fidelity RdRp, RNA viruses, 

including flaviviruses, circulate in nature as highly genetically diverse and interactive 

populations (Ciota et al., 2012; Ciota and Kramer, 2010; Drake and Holland, 1999; 

Jerzak et al., 2005; Jerzak et al., 2007; Steinhauer et al., 1992). This genetically-

linked ensemble of variants within a viral population is called a quasispecies (Eigen 

and Schuster, 1977). These variants collectively interact on a functional level to 

represent the complex behaviour of viruses, such as providing varying fitness 

phenotypes that benefit virus population when presented with selection pressure 

and bottlenecks (Domingo et al., 2001; Lauring and Andino, 2010). Many studies 

have investigated the importance of quasispecies and their effect on viral 

phenotypes, some of which have been reviewed in Chapter 1 (Section 1.3.3). These 

studies revealed that the complexity (the number of various genomic sequences 

and the mean number of mutations in the viral population) of a quasispecies 

population affects viral fitness, adaptability, pathogenesis, virulence and response 

to antiviral drugs (Ciota et al., 2007a; Elena and Sanjuan, 2005; Jerzak et al., 2007; 

Perales et al., 2010; Vignuzzi et al., 2006).  

Traditionally, the extent of genetic diversity within a flavivirus population has been 

determined by biological and molecular cloning and subsequent Sanger sequencing 

(Ciota et al., 2007c; Jerzak et al., 2005). Sanger sequencing only characterises the 

consensus sequence of each virus population, which represents the most frequent 

nucleotide at each position; minority sequences are not characterised in these 

studies. It is now evident that minority but phenotypically-important variants can 
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persist in a virus population without ever being fixed into the consensus sequence 

(Coffey and Vignuzzi, 2010; Sanz-Ramos et al., 2008). Therefore, to relate the 

genetic diversity of a flavivirus population to a particular phenotype, the consensus 

sequence provides an imperfect snapshot of the underlying genome. Moreover, 

due to their time-consuming and labour-intensive nature, the accurate estimation 

of the level of genetic diversity within a flavivirus population with adequate detail 

using cloning and Sanger sequencing is challenging.  

More recently, NGS has been used to characterise the genetic diversity within a 

viral population at an extraordinary level of detail. NGS can detect low frequency 

mutations by massively paralleled sequencing of a sample with coverage of up to 

10,000 reads for each base (Beerenwinkel and Zagordi, 2011; Su et al., 2011). 

Therefore, it can provide valuable information on the composition of the mutation 

spectra and genetic diversity within viral quasispecies populations (Beerenwinkel 

and Zagordi, 2011; Leamon et al., 2007; Mardis, 2008; Margulies et al., 2005; Wang 

et al., 2007).  

So far, for flaviviruses, the use of NGS technology has been reported only for the 

detection of YFV in clinical specimens (McMullan et al., 2012) and DENV in 

mosquitoes (Bishop-Lilly et al., 2010) and for whole genome sequencing of MVEV, 

WNV and DENV (Henn et al., 2010; Mann et al., 2013). To date, the use of NGS for 

characterisation of intra-population genetic diversity and mutation spectra in a 

flavivirus population has not been reported. However, this technique has been used 

extensively to detect and characterise the complexity of quasispecies and mutant 

swarms of other RNA viruses (Fleury et al., 2013; Hedskog et al., 2010; Kuroda et al., 

2010; Lauck et al., 2012; Nishijima et al., 2012; Solmone et al., 2009; Tsibris et al., 

2009). These studies have demonstrated that NGS has been able to detect minor 

variants that were not detectable with standard Sanger sequencing. For example, 

Tsibris et al. (2009) and Görzer et al. (2010a) revealed that NGS was able to detect 

and quantify low-frequency variants (as low as 1%) of HIV-1 and human 

cytomegalovirus, respectively.     
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However, this technique comes with a few fundamental short-comings. All steps 

involved in this process are subject to errors. NGS technology has a higher error rate 

(~4-10 errors/kb) than conventional Sanger sequencing [~0.01 error/kb; (Huse et al., 

2007; Wang et al., 2007)]. Point mutations, indels, and recombinant chimeric 

sequences can be generated during the RT-PCR and NGS steps, providing imperfect, 

incomplete and/or unreliable information on a viral population structure 

(Beerenwinkel et al., 2012; Görzer et al., 2010b; Malet et al., 2003). Furthermore, 

selective amplification bias during primary rounds of PCR can affect the relative 

frequency of genetic variants (Beerenwinkel and Zagordi, 2011). Therefore, NGS 

data needs to be further processed to adjust for confounding factors and provide 

more reliable estimation of the genetic diversity in a virus population (Beerenwinkel 

and Zagordi, 2011; Chen-Harris et al., 2013; Yang et al., 2012). Post-sequencing 

processing of NGS data involves multiple steps, including filtering to remove low 

quality reads, alignment of the filtered reads with a reference sequence, error 

correction of the reads, and frequency estimation of variants (Beerenwinkel and 

Zagordi, 2011; Chen-Harris et al., 2013).  

This chapter reports the use of NGS technology to test the hypothesis that MVEV 

exists in nature as a highly genetically diverse complex of variants. Homogenates of 

mosquitoes were used in this study to avoid any artefacts associated with isolation 

in cell culture. Results obtained from this analysis reveal the complexity of the 

mutation spectrum and genetic diversity within MVEV populations in the two co-

circulating Australian genotypes (G1 and G2) and show that differences exist in 

genetic diversity between viruses belonging to different genotypes and 

subgenotypes. 

4.2 Materials and Methods  

4.2.1 Viruses 

Virus samples used in this study were kindly provided by the Arbovirus Surveillance 

and Research Laboratory, University of Western Australia, and consisted of eight 

MVEV-positive homogenates of mosquito pools that were collected as part of the 
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annual survey of mosquito fauna and arbovirus activities in WA. Each sample 

comprised 20 mosquitoes of a single species that were processed as described 

previously (Johansen et al., 2009). 

4.2.2 Viral Concentration in Mosquito Homogenates 

The concentration of MVEV in each mosquito homogenate was quantified using the 

MVEV-specific RT-qPCR assay, as described in Chapter 3 (Section 3.2.5). For each 

homogenate, the viral RNA copy number was calculated based on the standard 

curve that was generated using the in vitro- transcribed MVE-1-51 RNA. 

4.2.3 RNA Purification, and RT-PCR  

Total RNA was extracted from 140µl of mosquito homogenates using a QIAamp® 

Viral RNA mini Kit (QIAGEN, Australia), according to the manufacturer’s protocol. 

Purified RNA was reverse transcribed using MVE-E1990R (Table 2.1) and the high 

fidelity SuperScript® III Reverse Transcriptase Kit (Life Technologies, Australia), as 

described in in Chapter 2 (Section 2.2.2).  

A 675bp region was amplified using the forward primer (MVE-E1269F), the reverse 

primer (MVE-E1990R; Table 2.1) and the KAPA HiFiTM DNA Polymerase (KAPA 

Biosystems, USA), as per the manufacturer’s protocol. Each reaction contained 10µl 

of cDNA, 0.3µM of each forward and reverse primers, 0.3µM of dNTP mix, 5µl of 1x 

KAPA HiFi Fidelity buffer, and 0.5U of KAPA HiFi DNA Polymerase to a final volume 

of 25µl. high-fidelity enzymes were used for reverse-transcription and amplification. 

The amplification was performed with the following thermocycling conditions: an 

initial denaturation at 95°C for 5 min, followed by 35 cycles of 98°C for 20 sec, 58°C 

for 15 sec and 72°C for 30 sec, and a final extension at 72°C for 5 min. The 

amplification was carried out in thin-walled 0.2ml PCR tubes using an Eppendorf AG 

thermal cycler. The PCR products were visualised on a 2% w/v agarose gel stained 

with ethidium bromide and purified using the QIAquick® PCR purification Kit 

(QIAGEN, Australia), according to the manufacturer’s protocol. The concentration 

and purity of each DNA template was determined using a NanoDrop 2000 

Spectrophotometer (Thermoscientific, Australia). 
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4.2.4 Quality Control 

Prior to library preparation, an additional purification step was carried out using 

Agencourt® AMPure® XP Kit (Beckman Coulter, Australia), according to the 

manufacturer’s protocol. The quality, quantity and length of each purified DNA 

fragment were determined using the Agilent 2100 bioanalyzer high sensitivity DNA 

chip (Agilent Technologies, Australia), according to the manufacturer’s protocol. 

This step and subsequent DNA library preparation, emulsion PCR (emPCR), and NGS 

were performed at the Institute for Immunology & Infectious Diseases at Murdoch 

University, Perth, WA. 

4.2.5 DNA Library Preparation  

The DNA library was prepared using long-read GS FLX Titanium Rapid Library 

Preparation Kit XL+ (Roche/454, Australia), according to the manufacturer’s 

protocol. The rapid library (RL) preparation was carried out as outlined below (steps 

1-5 in Fig. 4.1).  

Approximately 1µg of the purified DNA template from each sample (except K59536 

for which only 0.55µg was available) was nebulised as per standard Roche/454 

protocol, applying 15 psi of nitrogen for 1 min. The nebulised DNA fragments were 

purified using the QIAGEN MinElute PCR Purification Kit (QIAGEN, Australia), 

according to the manufacturer’s protocol. Sixteen microlitres of purified products 

were end-repaired in a 25µl reaction containing 2.5µl of RL 10x polynucleotide 

kinase (PNK) buffer, 2.5µl of RL ATP, 1µl of RL dNTP, 1µl of RL T4 polymerase, 1µl of 

RL PNK, and 1µl of RL Taq polymerase. The reactions were mixed, centrifuged for 5 

sec and incubated at 25°C for 20 min, followed by 72°C for 20 min. To ligate the 

unique RL multiplex identifier (MID) adaptors to each end-repaired product, 1µl of 

RL ligase was added to each reaction, mixed, centrifuged for 5 sec and incubated at 

25°C for 10 min. The end-repaired-adaptor-ligated products were purified using 

Agencourt AMPure beads (Beckman Coulter, Australia), as per the manufacturer’s 

protocol. The concentration of each sample was quantified in single use cuvettes 

using a TBS 380 Fluorometer (Promega, Australia). The quality of the DNA products 

was assessed using an Agilent 2100 Bioanalyser  high  sensitivity  DNA  chip  (Agilent  
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Fig. 4.1. Schematic representation of the steps involved in the rapid library 

preparation and clonal amplification of DNA products by emulsion PCR.  

6. Denaturation of rapid library product 

7. Adding to DNA capture beads 

8. Clonal amplification by emPCR 

9. Breaking oil emulsion and 

collecting DNA-carrying beads 

1. DNA Fragmentation by Nebulization 

2. Fragment end-repair 

3. Adaptor ligation 

4. Product purification  

5. Product quantification 
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Technologies, Australia). The adaptor-ligated purified products were then pooled in 

equimolar ratios before undergoing the emPCR. 

4.2.6 Clonal Amplification of Products by Emulsion PCR  

The emPCR of DNA products was carried out using GS FLX Titanium SV emPCR Kit 

(Lib-L; Roche/454, Australia) and the GS Titanium emPCR Filters SV (Roche/454, 

Australia), according to the manufacturer’s protocols. EmPCR was performed in four 

main steps outlined below (steps 6-9 in Fig. 4.1). 

First, amplification and emulsion mixes were prepared by adding 290µl 1x Mock 

Amplification Mix to each tube of emulsion oil, mixed by inverting 3 times, and 

shaken at 25Hz for 5 min in a TissueLyser (QIAGEN, Australia). For each reaction, 

80µl of DNA capture beads were removed and beads were washed twice with 1ml 

of 1x capture bead wash buffer TW. Purified DNA products (10µl) were denatured 

at 95°C for 2 min, added to DNA capture beads (approximately 2.4 x 106 beads for 

each reaction) and mixed. Next, 215µl of Live Amplification Mix was added to each 

reaction. The content of each tube was added to the emulsion solution (prepared 

above), mixed by inverting 3 times, and shaken at 15Hz for 5 min on TissueLyser 

(QIAGEN, Australia). After emulsification, 100µl of the emPCR amplification mix was 

added to each well of 96-well thermocyler plates (Bio-Rad, Australia); plates were 

sealed with microseal B (Bio-Rad, Australia), and subjected to thermocycling 

conditions of 94°C for 4 min, and 50 cycles of 94°C for 30 sec, and 60°C for 10 min.  

At the termination of emPCR amplification, each sample containing the micro-

reactor emulsions of clonally-amplified DNA molecules was drawn into a 10ml 

syringe using a 16 gauge blunt, flat tip needle. To disrupt emulsions, 100µl of 

isopropanol was then added to each well and mixed by pipetting up and down. The 

isopropanol rinse of each well was filtered using GS Titanium emPCR Filters SV 

(Roche/454, Australia), according to the manufacturer’s protocol. The beads were 

then recovered from the filter, using GS FLX Titanium SV emPCR Kit (Lib-L; 

Roche/454, Australia), according to the manufacture’s protocol. The DNA-positive 

beads were then purified and collected using Magnetic Enrichment Beads and a 

Magnetic Particle Concentrator (Roche/454, Australia), as per the manufacturer’s 
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protocol and resuspended in 30µl of Annealing Buffer XT. Six microlitres of 

sequencing primer was added to each sample, incubated at 65°C for 5 min, and 

placed on ice for 2 min. Next, 500µl of Annealing Buffer XT was added to each tube, 

mixed, centrifuged and supernatants were discarded. This step was repeated two 

more times. The percentage of bead enrichment was determined according to the 

standard Roche/454 protocol. Finally, 100µl of Annealing Buffer XT was added to 

each tube before sequencing.  

4.2.7 Next Generation Sequencing and Initial Filtering  

Next generation sequencing in this study was performed on one of the eight lanes 

of the GS FLX+ instrument (Roche/454, Australia) using GS FLX Titanium Sequencing 

Kit XL+ (Roche/454, Australia) and 70x75 PicoTitrePlate (Roche/454, Australia), 

according to the manufacturers’ protocols. The raw 454 data were processed, 

analysed and filtered by default Roche/454 GS FLX+ system software. Low quality 

reads were filtered out and the sequences were assigned to the original samples via 

12-nucleotide barcodes. For each sequence, a .sff file was obtained, from which 

nucleotide sequence data (.fna file) and a phred-like quality score (.qual file) were 

extracted.  

4.2.8 Sanger Sequencing  

To facilitate NGS data alignment, filtering and variant analysis, all samples were 

subjected to conventional RT-PCR and capillary sequencing using MVE-E1269F and 

MVE-E1990R primers (Table 2.1), as described in Chapter 2 (Section 2.2.3).  

4.2.9 Control Experiments  

PCR and NGS errors: To accommodate for errors introduced during the RT-PCR, 

emPCR and NGS, the MVEV-1-51 plasmid (Chapter 3, Section 3.2.4) was directly 

sequenced by conventional Sanger sequencing. This was performed to provide a 

comparative sequence used to identify the level of mutations introduced over the 

course of the RT-PCR, emPCR and NGS. Similar to the RNA purified from the 

mosquito homogenates, the in vitro-transcribed MVE-1-51 RNA (Chapter 3, Section 
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3.2.4) underwent the RT-PCR, emPCR and NGS steps as mentioned above. Any 

differences between the plasmid sequence and the NGS sequences derived from in 

vitro-transcribed RNA of pMVE-1-51 were assumed to be due to PCR and NGS 

errors. Per-nucleotide variance of the MVE-1-51 was calculated after computation 

and statistical analysis (detailed below) and served as the baseline error rate of the 

PCR and NGS protocol in this study.  

Effects of experimental protocol on relative amplification and quantification of 

minority genotypes: To ensure an equal and impartial sensitivity of experimental 

protocols used in this study on the amplification and quantification of minority 

sequences, an additional control was employed comprising a defined ratio of 

1:10:89 of RNA from MVE-1-51 (G1), NG156 (G4) and OR156 (G2), respectively. 

Genome copy numbers of the three control RNAs were determined by the MVEV-

specific RT-qPCR assay described in Chapter 3, then RNA from each virus strain was 

pooled prior to RT-PCR amplification.  

4.2.10 Post-Sequencing Data Processing  

A series of computational tools were utilised for the alignment, filtering, analysis 

and interpretation of each dataset. First, all sequences of each dataset were 

mapped with the sample-specific consensus sequence using Roche/454 FLX 

Newbler software, and a 400-nucleotide sequence window was identified. The 

sequence window spanned nucleotide positions 487-886 corresponding to amino 

acid positions 163-295 of the E protein of MVE-1-51 (GenBank accession No. 

NC000943). In the initial filtering step, sequences that did not span the entire 

sequence window and those with ambiguous nucleotides (Ns) were filtered out. 

Using ClustalW and Muscle softwares, the remaining sequences were aligned to the 

sequence window and the overhang nucleotides at both ends were trimmed. Since 

there were multiple counts of unique sequences present in each dataset, a binning 

process was performed, in which unique sequences were identified and counted. 

The nomenclature of each sequence comprised a unique identifier followed by the 

number of times it was found in the dataset. Then, nucleotide sequences were 

translated into amino acid sequences and aligned with that of the consensus 
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sequence. Homopolymer errors and frameshifts introduced by the NGS protocols 

were corrected and the reads were re-binned as above. The per-nucleotide variance 

of each processed and final dataset was calculated as the total number of 

nucleotide mutations observed divided by the total number of nucleotides in the 

dataset. For example, if at the termination of the filtering step there were 1000 

sequences in a dataset 400-nucleotide long, and the total numbers of nucleotide 

mutations in all sequences were 2000, per-nucleotide variance was calculated as: 

2000/(1000x400)=0.005.   

4.2.11 Determination of Quasispecies and Mutant Swarm in MVEV Samples 

The NGS sequence composition of the processed sequence dataset for each sample 

was compared to the consensus sequence. Genetic diversity and mutation spectra 

of each sample was determined by the proportion of sequences that differed from 

the sample-specific consensus sequence as well as the corrected per-nucleotide 

variance of each sample (calculated as the subtraction of per-nucleotide variance of 

the control dataset from the sample-specific per-nucleotide variance; see above). 

Two-tailed t-tests were performed to assess whether there were significant 

differences between the genetic diversity and complexities of mutation spectra of 

MVEV samples belonging to different genotypes/subgenotypes. Genetic diversity 

and single nucleotide polymorphism (SNP) was determined by determining the 

proportion of nucleotides that differed from consensus sequence at each variable 

site. To ensure true polymorphism, a nucleotide change in a sequence was 

considered as SNP only when it occurred at a frequency of 0.1% per site 

(approximately double the baseline error) and when there was at least two 

nucleotide mutations in that sequence. Mutations with a frequency of <0.1% could 

not reliably be classified as either a sequencing error or true SNP, and therefore 

were not accounted for. 

4.2.12 Assessment of Selection Pressures 

The operation of selection pressure was tested on each dataset separately in MEGA 

5.2.1 as described in Chapter 2 (Section 2.2.6). Briefly, the hypotheses of neutral, 

purifying and positive selection were tested using the Z-test of selection averaged 
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over and between sequence pairs. In addition, a HyPhy analysis (Pond et al., 2005) 

was performed on each dataset to determine specific codons under adaptive 

evolution. 

4.2.13 Phylogenetic Analysis 

For each filtered dataset, an ML tree was constructed using MEGA 5.2.1 software. 

Initially, all sequences in each dataset were subject to a model test to find the best-

fit substitution model, which was then used to construct the ML tree. The reliability 

of ML trees was estimated by applying bootstrapped support analysis of 1000 

replicates.  

4.2.14 Statistical Analysis 

Two-tailed t-tests were performed to determine significant differences in measures 

of genetic diversity between the filtered and corrected datasets belonging to 

different genotypes/subgenotypes. Specifically, the per-nucleotide variance and the 

number of sequences that differ from the sample-specific consensus sequence for 

each sample were compared. The statistical analyses were performed using 

StatistiXL 1.10 software (Roberts and Withers, 2007). A p-vale of <0.05 was 

considered to be statistically significant.  

4.3 Results 

4.3.1 Sample Selection  

Samples were selected to represent recent isolates of the two co-circulating 

Australian genotypes (G1 and G2), different mosquitoes vector species, 

geographical regions and time of collection (Table 4.1). In addition, attempts were 

made to select samples with a comparable viral genome copy number determined 

by RT-qPCR (Chapter 3). The latter was performed to ensure that population sizes in 

all samples were comparable. Attempts to select mosquito samples infected with 

G2 MVEV from different geographic areas could not be achieved, since all G2 

infected specimens included in this study were collected from Fitzroy Crossing. The 

only infected mosquito pool collected from Broome (K62017) could not be included  
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Table 4.1. Details of Murray Valley encephalitis viruses used in this study. 

Samples Genotype 

Year of 

collection Location of collection Species of origin *  Viral copy No.† 

K68320 G1a 2009 Billiluna (SE Kimberley) Cx. annulirostris 7.11 

K69612 G1a 2009 Kununurra (NE Kimberley) Cx. pullus 7.37 

      K68150 G1b 2009 Fitzroy Crossing (W Kimberley) Cx. annulirostris 7.18 

K60555 G1b 2006 Kununurra (NE Kimberley) Cx. annulirostris  7.05 

P8891 G1b 2006 Karratha (W Pilbara) Ae.normanensis  6.70 

      

K59532 G2 2006 Fitzroy Crossing (W Kimberley) Cx. annulirostris  5.85 

K59536 G2 2006 Fitzroy Crossing (W Kimberley) Cx. pullus  4.36 

K68196 G2 2009 Fitzroy Crossing (W Kimberley) Cx.annulirostris 6.25 

 

* Cx: Culex; Ae: Aedes 

† Numbers represent the Log10 viral copy number in 140µl of the mosquito homogenates used for 

RNA purification in this study.  
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in this study because it did not yield high concentration of viral RNA. The genome 

copy numbers of G1 samples included in this study were between 6.70 to 7.37 log10, 

whereas G2 samples contained between 4.36 to 6.25 log10 viral genome copies 

(Table 4.1). 

4.3.2 Assessment of the Accuracy of the Experimental Design 

To determine the extent of RT-PCR and NGS error, and to differentiate naturally 

occurring mutations from amplification and sequencing errors, a clonal population 

of MVEV RNA was included in this study. This was derived from the pMVE-1-51 

infectious clone by in vitro transcription, and underwent the same experimental 

procedures as test samples. The target sequence region for NGS was also 

determined for the pMVE-1-51 by direct sequencing of the plasmid by conventional 

sequencing. This sequence was used as a reference for the computational analyses 

of the NGS of pMVE-1-51-derived RNA. Thus, observed nucleotide differences 

between the NGS-derived sequences to the reference sequence of pMVE-1-51 

provided an indication of experimental error. The overall per-nucleotide variance of 

the plasmid sequence dataset was 0.057%. This empirically observed per-nucleotide 

variance was used as the baseline reference to distinguish authentic low-frequency 

variants from sequencing errors. Corrected per-nucleotide variance measures were 

calculated for each test sample by subtraction of plasmid baseline error (0.057%) 

from the sample-specific per-nucleotide variance. The corrected per-nucleotide 

variance more accurately demonstrates the complexity of the quasispecies of each 

sample. 

A second control sample was included in this study to ensure the experimental and 

computational procedures applied were not biased towards specific or low 

frequency MVEV genotypes or sequences. For this purpose, a defined input ratio of 

1:10:89 of viral genome copies of G1 (MVE-1-51), G4 (NG156) and G2 (OR156) 

viruses, respectively, were pooled and underwent the same experimental 

procedure as the test samples. After computational analysis an output ratio of 

80.9%, 15.2% and 3.9% were obtained, indicating that the ratio of the input RNA 

was relatively well preserved throughout the RT-PCR and sequencing steps and that 
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significant sequencing bias did not occur. Therefore, any differences in the level of 

genetic diversity and the complexity of mutation spectra observed between 

different genotypes and subgenotypes in this study were considered a genuine 

quasispecies phenomenon. 

4.3.3 RT-PCR and Sequencing 

Purified viral RNA from mosquito homogenates and controls were used to template 

reverse transcription and PCR using high fidelity enzymes to minimise the 

introduction of nucleotide errors. Purified amplicons were sequenced by both 

Sanger sequencing and NGS, in order that consensus (Sanger) sequences could be 

used as references in subsequent bioinformatics filtering steps. 

4.3.4 Data Filtering  

NGS raw sequencing datasets were initially processed by the instrument’s default 

software. A total of 31,167,084 nucleotides were obtained for all samples tested, 

with a read length of 530 ± 215 nucleotides. The maximum read length obtained 

was 791 nucleotides while the shortest was 40. Due to a large number of sequences 

with variable lengths (Appendices 4.1 and 4.2), start and end positions, a series of 

bioinformatics tools were developed to align, filter and analyse the NGS data. By 

assessing the coverage plots of all datasets, a 400-nucleotide sequence window was 

determined to achieve optimal coverage of the majority of sequences. The 

sequence window contains the glycosylation site and flexible hinge region of the E 

protein. For each dataset, the sample-specific Sanger sequence was used as a 

reference for aligning and filtering the NGS data. In the initial step of data filtering, 

47.5 ± 3.6% of the reads with ambiguous nucleotides (Ns) and those that did not 

span the entire window sequence were removed (Table 4.2). Next, sequences that 

contained frameshifts and indels were filtered out (Table 4.2). The remaining 

sequences were re-aligned to the reference sequence for each sample and the 

number of unique sequences determined (Section 4.2.10). Six samples contained 

sequences with a single stop codon (Table 4.2), ranging in frequency between one 

sequence (K69612 and K59532) and 13 sequences (P8891). At the end of data 

processing and filtering steps, 31.1 to 41.0% of G1 and 39.0 to 44.6% of G2 
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sequences remained of the original sequence datasets (Table 4.2). The final filtered 

sequence alignment for each sample contained unique sequences comprising 

singletons and redundant clones.  

4.3.5 Intra-Population Genetic Diversity and Phylogenetic Analyses 

Despite filtering out a large proportion of reads from the raw datasets, a large 

number of high quality reads were retained and used for the characterisation of 

mutation spectra and quasispecies within each MVEV sample. Genetic diversity was 

assessed by considering the per-nucleotide variance within each sample dataset, as 

well as the proportion of sequences that differed from the sample-specific 

consensus sequence. To determine the complexity and phylogenetic relationship of 

the variants, an ML tree was constructed using sequence sets for each sample. 

Genetic diversity of the samples within each genotype/subgenotypes is explained 

separately below.  

4.3.5.1 Genotype 1a 

For the K68320, 466 reads were obtained after filtration, 262 (56.2%) of which 

matched the consensus nucleotide sequence with 100% identity and represent the 

dominant clonal sequence in this virus sample (Fig 4.2). The remaining 204 (43.8%) 

sequences differ from the consensus sequence by one to 30 nucleotides. Of these, 

110 (23.6%) are identical to each other (Fig. 4.2), but differ from the consensus 

sequence by 27 nucleotides (four amino acids). The remaining sequences are 

minority variants, most of which (45) are singletons. Four of the singletons exhibited 

a single stop codon in their encoded amino acid sequence (Table 4.2). The corrected 

per-nucleotide variance of this isolate is 2.285%. The ML phylogenetic tree clearly 

showed two distinct clades for this sample (Fig. 4.2). Interestingly, the two most-

frequent sequences are located on two separate clades, indicating a distinct 

phylogenetic relationship between the major variants in this sample.  
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Fig 4.2. Maximum likelihood phylogenetic tree constructed using K68320 (genotype 
1a) sequences. The pie chart demonstrates the relative abundance of the variants.  
The dominant sequence clones are highlighted as blue: consensus; and green: the most frequent 

variant that differ from consensus sequence. Variants that occur ≤5% are not indicated.   
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Table 4.2. Viral genome copy numbers, read metrics of steps in the sequence filtering pipeline, and estimates of genetic variation for each 

sample of Murray Valley encephalitis virus tested. 

                                                                                            No. of reads remaining after filtering              

Isolates Genotype Viral copy 

No. 

Raw reads <400-nt window, 

Ambiguous nt. 

Frameshifts, 

indels 

Unique 

sequences 

Singletons Redundant 

sequences 

sequences with  

stop codon 

Sample-specific  

Per-nucleotide 

Variance (%)*  

Corrected 

Per-nucleotide 

variance (%) † 

K68320 G1a 7.11 1,449 710 466 58 45 13 4 2.342 2.285 

K69612 G1a 7.37 357 188 111 24 16 8 1 2.887 2.830 

            

K68150 G1b 7.18 10,204 5,160 3,689 284 190 94 8 0.275 0.218 

K60555 G1b 7.05 3,145 1,834 1,288 100 73 27 3 0.149 0.092 

P8891 G1b 6.70 21,559 11,599 8,153 434 260 174 13 0.213 0.156 

            

K59532 G2 5.85 1,704 860 726 54 44 10 1 0.098 0.041 

K59536 G2 4.36 270 131 105 4 3 1 0 0.012 -0.045 

K68196 G2 6.25 65 37 29 4 3 1 0 0.034 -0.023 

            

      Control Dataset per-nucleotide variance  0.057  

 
* Sample-specific per-nucleotide variance for each sample was calculated as the number of nucleotide mutations observed in a dataset divided by the total number of 
nucleotides in the dataset. 
† Corrected per-nucleotide variance was calculated as the subtraction of control dataset per-nucleotide variance (baseline error) from the sample-specific per-nucleotide 
variance. 
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For K69612, a total of 111 sequences were obtained after filtration, 54 (48.6%) of 

which exactly matched the consensus sequence. The remaining 57 (51.4%) 

sequences differed from the consensus sequence; 23 (20.7%) are identical to each 

other (Fig. 4.3), but differ to the consensus sequence by 27 nucleotides and four 

amino acids. There are 16 singletons in the K69612 sequence set, only one of which 

contains a (single) stop codon (Table 4.2). The corrected per-nucleotide variance of 

this sample was 2.830%, comparable to that of K68320 (above). As for K68320, in 

the ML phylogenetic tree, two clearly distinct clades were observed for this isolate 

(Fig. 4.3). Interestingly, the two major variants also belonged to two separate 

clades, again indicating a distinct phylogenetic relationship between the most 

frequent variants in this virus sample. 

Overall, G1 isolates (K68320 and K69612) demonstrated a complex mutation 

spectrum in their sample population, with a comparable level of genetic diversity as 

measured by per-nucleotide variance, the proportion of mutant sequences that 

differ from consensus sequence as well as phylogenetic analysis. Furthermore, the 

results demonstrate no substantial differences in the genetic diversity between 

viruses vectored by different mosquito species (Cx. annulirostris for K68320 and Cx. 

pullus for K69612), suggesting that different species of mosquitoes do not 

considerably affect the genetic diversity in G1a MVEV populations. 

4.3.5.2 Genotype 1b 

In the case of K68150, at the completion of filtering steps, 3,689 reads remained, of 

which 2,651 (71.9%) exactly matched to the consensus nucleotide sequence. The 

remaining 1,038 (28.1%) reads differed from the sample-specific consensus 

sequence, 372 (10.1%) of which only differed by four nucleotides and one amino 

acid residue. In the final sequence dataset, there are 190 singletons. Eight sequence 

clones contained a single stop codon, four of which are singletons. The corrected 

per-nucleotide variance of this sample was 0.218%, at least 10-fold lower than the 

comparative values of the G1a viruses analysed, indicating a much lower level of 

genetic complexity in the K68150 virus population. The ML phylogenetic tree 

showed  
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Fig 4.3. Maximum likelihood phylogenetic tree constructed using K69612 (genotype 

1a) sequences. The pie chart demonstrates the relative abundance of the variants.  

For legend, please refer to page 17.  
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Fig. 4.4. Maximum likelihood phylogenetic tree constructed using K68150 (genotype 
1b) sequences. The pie chart demonstrates the relative abundance of the variants. 
 
For legend, please refer to page 17. 
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showed two distinct clades for this sample (Fig. 4.4). Furthermore, clade 1 also 

contained a sub-clade 1a. The two most-frequent variants are located on the main 

branch of clade 1 and in sub-clade 1a. Clade 2 only contains 58 (1.57%) counts of all 

sequences within this virus population, and therefore represents a minority lineage. 

Variants within sub-clade 1a and clade 2 showed a higher level of heterogeneity, 

with higher levels of nucleotide distance occurring between sequences within each 

of these groups (Fig. 4.4). The remaining sequences of clade 1 appear to be more 

homogeneous. 

For K60555, 1,288 sequences remained after the filtering steps, of which 1,109  

(86.1%) had 100% nucleotide identity to the consensus sequence (Fig. 4.5), and 

made up the dominant sequence clone in this virus sample. The remaining 179 

(13.9%) reads consisted of minority variants that differed by one to 19 nucleotides 

from the consensus sequence. There were 27 singletons in K60555, three of which 

contain a single stop codon (Table 4.2). The corrected per-nucleotide variance of 

this sample was 0.092%, indicating a much lower level of genetic diversity and 

complexity within this virus population compared to K68150. The ML phylogenetic 

tree demonstrates two distinct clades. The most frequent variant belongs to clade 

1, which also contains the majority (97.98%) of the total sequences of this sample. 

Clade 2 only contains 26 variants of K60555 (Fig. 4.5), representing a minority 

lineage. 

For the final G1b isolate (P8891), 8,153 sequences remained following the filtering 

steps, of which 6,711 (82.3%) were identical to consensus nucleotide sequence. The 

remaining 1,442 (17.7%) sequences were minority variants that differed from the 

consensus sequence by 1-31 nucleotides (1-4 amino acids), and 260 of these were 

singletons. Thirteen sequence clones from this sample contained a single stop 

codon, nine of which were singletons. The corrected per-nucleotide variance of this 

isolate was 0.156%, higher than K60555, but lower than K68150. Phylogenetic 

analyses of P8891 sequences demonstrated three separate clades (Fig. 4.6). Clade 1 

is further divided into several sub-clades (1a-1f; Fig. 4.6) each containing variable 

level of genetic diversity. The most frequent variant of this sample belongs to clade 

1. Clade 2 and 3 were minority subsets of sequences that demonstrated a   
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Fig. 4.5. Maximum likelihood phylogenetic tree constructed using K60555 (genotype 
1b) sequences. The pie chart demonstrates the relative abundance of the variants. 

The dominant sequence clones are highlighted blue. Variants that occur ≤5% are not indicated.  
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Fig. 4.6. Maximum likelihood phylogenetic tree constructed using P8891 (genotype 

1b) sequences. The pie chart demonstrates the relative abundance of the variants. 
The dominant sequence clone are highlighted blue. Variants that occur ≤5% are not indicated. 
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1. Clade 2 and 3 were minority subsets of sequences that demonstrated a 

considerable level of intra-clade genetic diversity. Clade 2 contained 166 (2.0%) 

sequences, whereas clade 3 only contained 56 (0.7%) of the total sequences of this 

virus sample (data not shown). 

Altogether, consistent with the high numbers of raw reads obtained for G1b 

samples, these also contained higher numbers of unique sequence clones compared 

to G1a. However, the proportion of sequence clones that differed from sample-

specific consensus sequence is significantly lower in G1b isolates when compared to 

G1a (p=0.021; Appendix 4.3). Similarly, the per-nucleotide variance of G1b virus 

populations was significantly less than those of G1a (p=0.001; Appendix 4.4). These 

two measures indicate that the complexity of mutation spectra is lower in G1b 

quasispecies populations than G1a.  

As per G1a samples, there is no substantial differences between the genetic 

diversity of G1b samples from different mosquito species (Cx. annulirostris for 

K68150 and K60555, and Ae. normanensis for P8891), indicating that the species of 

mosquito vector also does not impact on the level of genetic diversity of G1b virus 

populations. 

4.3.5.3 Genotype 2 

Initially, significantly lower concentrations of G2 viruses compared to G1 viruses 

were obtained from homogenates of G2-infected mosquito pools (Table 4.2). For 

K59532, a total of 726 sequences were obtained following the filtration steps, of 

which 653 (89.9%) exactly matched the nucleotide consensus sequence. The 73 

remaining sequences (10.1%) consisted of low frequent variants, including 44 

singletons that differed from the consensus sequence by 1 to 14 nucleotides (two 

amino acids). Only one sequence with a single stop codon was found in this G2 

sample. The corrected per-nucleotide variance of K59532 was 0.041% lower than 

that of G1 samples, indicating the presence of a less diverse quasispecies 

population. The phylogenetic relationship of the sequences within the K59532 

population is depicted in Fig. 4.7. Two distinct clades could be observed. The most  
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Fig. 4.7. Maximum likelihood phylogenetic tree constructed using K59532 (genotype 

2) sequences. The pie chart demonstrates the relative abundance of the variants. 
The dominant sequence clone is highlighted blue. Variants that occur ≤5% are not indicated. 
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frequent variant in this sample belonged to the clade 1, which contained the 

majority of sequence clones in this sample. Clade 2 is minority lineage, consisting of 

only 18 (2.48%) sequences. 

For K59536, a total of only 105 sequences were obtained after filtering; 102 (97.1%) 

of these were 100% identical to the consensus nucleotide sequence. Three (2.9%) 

remaining sequences were singletons showing one to three nucleotides mutations 

(zero to one amino acid change). No sequences with a stop codon were observed in 

this sample. The corrected per-nucleotide variance of K59536 was -0.012% below 

the baseline variance of the control dataset (Table 4.2). This indicates a very high 

level of sequence homogeneity in this sample. The ML phylogenetic tree 

demonstrating the relationships between the K59536 sequences is displayed in Fig. 

4.8. 

For the K68196 sample, a total of only 29 filtered sequences were obtained, of 

which 26 (89.7%) exactly matched the consensus sequence. Three remaining 

sequences (10.4%) were singletons (Table 4.2 and Fig. 4.9), differing from the 

consensus sequence by one to two nucleotides and only one amino acid. No stop 

codon was observed in any of the K68196 sequences. As for K59536, the per-

nucleotide variance of this sample was lower than the baseline error rate (0.034%), 

and also indicates a high level of genetic homogeneity between the sequences of 

this sample. The phylogenetic relationships between the sequences of this sample 

are displayed in Fig. 4.9.    

As for G1 samples, a similar level of genetic diversity was observed between G2 

viruses found in different mosquito species (Cx. annulirostris for K59532 and 

K68196, and Cx. pullus for K59536). This indicates that the depth of genetic diversity 

of G1 and G2 MVEV viral populations is not substantially affected by different 

species of mosquito vectors.  

Altogether, the G2 samples demonstrated a much lower level of genetic diversity 

than the G1 samples, indicating that the populations of the G2 viruses are highly 

homogeneous. It should also be emphasised that the raw sequence reads and 

subsequent filtered sequence clones obtained for K59536 and K68196 were very 

much lower than for other viruses (Table 4.2), which may have affected sampling of 

minority variants.  
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Fig. 4.8.  Maximum likelihood phylogenetic tree constructed using K59536 (genotype 

2) sequences. The pie chart demonstrates the relative abundance of the variants. 
The dominant sequence clone is highlighted blue. Variants that occur ≤5% are not indicated. 

  

 HDVIXJP01AVJHC (102) 

 HDVIXJP01A5LEI (1) 

 HDVIXJP01A6RYC (1) 

 HDVIXJP01AQR4Y (1) 

0.005 

102 
(97.1%) 



 
 

149 
 

 

 

 

 

Fig. 4.9.  Maximum likelihood phylogenetic tree constructed using K68196 (genotype 

2) sequences. The pie chart demonstrates the relative abundance of the variants. 
The dominant sequence clone is highlighted blue. Variants that occur ≤5% are not indicated.
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4.3.6 Analysis of Single Nucleotide Polymorphism 

In order to assess the level of diversity and polymorphism at each variable site in 

the filtered sequence alignment of each virus sample, the proportion of mutations 

at each site was calculated (Tables 4.3 and 4.4). Interestingly, samples within G1a 

and G1b shared non-consensus changes at identical positions. G1a viruses shared 

nucleotide polymorphisms at 30 different positions scattered throughout the 400-

nucleotide region of the E gene analysed (Table 4.3). These nucleotide changes 

resulted in only four substitutions in the encoded amino acid sequences of the 

minority variants, including L180M, I238V, S275P and S277N. The L180M and I238V 

substitutions are identical with G2 viruses, whereas S275P and S277N substitutions 

were not observed in any G2 viruses. The latter substitutions were located on the 

flexible hinge region (Fig. 2.4), which acts as a hinge between domain I and domain 

II of the E protein. G1b viruses displayed polymorphism at 31 nucleotide positions 

(Table 4.3), which resulted in only two amino acid substitutions (P275S and S277N) in 

the flexible hinge region of the minority variants. These two amino acid 

substitutions were not seen in any G2 virus samples. 

In G2 viruses, a lower level of polymorphism was observed compared to G1 viruses. 

In K59532, a total of 12 nucleotide positions demonstrated SNPs (Table 4.4), only 

one of which encoded an amino acid substitution at position 222 (L222P) in minority 

variants. SNPs were also observed in three nucleotide positions in the K59536 virus 

population, none of which changed the amino acid sequence. For the K68196, only 

two SNPs were observed, one encoding an amino acid substitution at position 240 

(M240I) in minority variants. None of the amino acid substitutions in the G2 viruses 

were identical to amino acids encoded by G1 viruses at corresponding positions.  

4.3.7 Assessment of Selection Pressures 

The operation of selection pressure on each dataset was assessed by employing the 

Z-test of selection. Table 4.5 summarises the results of testing positive, purifying 

and neutral selection averaged over all sequences in each dataset. As the p-value is 

more than the significance level (0.05) for the test of positive selection, these 

dfdfffff 
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Table 4.3. Single nucleotide polymorphisms between nucleotides 487-886 of the E gene 

of genotype 1a and genotype 1b MVEV viruses and their relative proportion (%) within 

their respective sequence datasets. 

Nucleotide  Genotype 1a    Genotype 1b 

Position Cons* Var† K68320 K69612 

 

Cons* Var† K68150 K60555 P8891 

489 A G 34.5 36.0 

 

G A 2.0 2.2 3.1 

513 G A 37.6 40.5 

 

A G 0.4 0.2 0.6 

519 C T 37.6 40.5 

 

T C 0.4 – 0.6 

538 T    A ‡ 37.6 40.5 

 

A T  0.3 – 0.7 

561 T C 34.3 36.9 

 

C T 2.0 2.3 3.1 

570 T T 5.2 10.8 

 

C T 17.9 2.3 3.7 

586 C A 4.9 10.8 

 

T C 14.7 2.3 3.7 

594 G C 36.9 41.4 

 

A G 0.4 – 0.7 

600 T C 36.7 41.4 

 

C T 0.4 – 0.6 

606 C T 33.7 37.8 

 

T C 1.8 2.2 3.0 

609 C T 29.0 17.1 

 

C T 12.8 4.7 6.7 

630 C T 32.8 37.8 

 

T C 1.8 2.3 3.1 

639 G A 32.8 37.8 

 

A G 1.8 2.2 3.1 

657 C T 35.8 40.5 

 

T C 0.3 – 0.7 

660 C T 35.8 40.5 

 

T C 0.3 – 0.7 

693 G A 33.0 36.9 

 

A G 1.9 2.0 3.0 

711 A G 32.6 36.9 

 

G A 1.9 2.0 3.0 

712 A    G ‡ 32.6 36.9 

 

G A 1.7 2.0 3.0 

756 G G 27.5 25.2 

 

G A 12.6 4.3 6.6 

763 C T 35.2 39.6 

 

T C 0.4 – 0.7 

789 T C 35.2 39.6 

 

C T 0.3 – 0.7 

816 T C – 47.7 

 

C T 0.1 – 0.1 

822 T C 31.8 36.0 

 

C T 1.8 2.2 2.9 

823 T    C ‡ 31.8 36.0 

 

C    T ‡ 1.7 2.2 2.8 

830 G    A ‡ 27.3 36.9 

 

G    A ‡ 12.3 4.4 6.4 

831 T C 35.0 16.2 

 

C T 0.3 – 0.7 

840 G A 35.0 39.6 

 

A G 0.3 – 0.7 

852 G A 35.0 39.6 

 

A G 0.4 – 0.7 

861 G A 31.1 36.0 

 

A G 1.8 2.3 2.8 

870 G A 31.1 32.4 

 

A G 1.8 2.3 2.8 

873 

  

– – 

 

A G – 0.4 0.4 

* Cons: consensus sequence nucleotide; †Var: nucleotide variation in minority sequences 

‡ Indicate nucleotides that encode amino acid changes. – Indicate positions where no SNP observed. 
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Table 4.4. Single nucleotide polymorphisms between nucleotides 487-886 of the E gene 

of genotype 2 MVEV viruses and their relative proportion (%) within their respective 

sequence datasets. 

Nucleotide 

Positions Consensus Variations K59532 K59536 K68196 

501 C T 2.5 – – 

525 C T 2.5 – – 

564 G A – – 3.5 

588 G A 2.5 – – 

594 G A 2.5 – – 

618 T C 2.5 – – 

624 A G 2.5 – – 

627 G A 2.5 – – 

   666 * T C 2.5 – – 

690 C T 2.5 – – 

696 T C – 0.95 – 

720 G A – –  3.5 * 

732 A G – 0.95 – 

783 G A – 0.95 – 

784 T C 2.5 – – 

825 A G 2.5 – – 

828 T C 2.5 – – 

 

* Indicates nucleotides that encode amino acid changes. 

– Indicate positions where no SNP observed.  
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Table 4.5. Identification of selection acting on the nucleotides 487-886 region of the 

E gene of MVEV strains included in this study. 

Samples 

 p-value* (Z-test of selection)† 

Genotype Positive selection Purifying selection  

Neutral 

selection 

K68320 G1a 1.000 (-5.287) 0.000 (5.377) 0.000 (-5.241) 

K69612 G1a 1.000 (-5.385) 0.000 (5.266) 0.000 (-5.283) 

K68150 G1b 1.000 (-4.078) 0.000 (4.124) 0.000 (-3.993) 

K60555 G1b 1.000 (-4.074) 0.000 (4.012) 0.000 (-3.966) 

P8891 G1b 1.000 (-4.759) 0.000 (4.739) 0.000 (-4.980) 

K59532 G2 1.000 (-4.302) 0.000 (4.531) 0.000 (-4.382) 

K59536 G2 1.000 (-1.350) 0.094 (1.325) 0.182 (-1.342) 

K68196 G2 1.000 (-0.081) 0.468 (0.081) 0.938 (-0.078) 

 

Values in selection column denote p-value. Numbers in the parentheses ( ) denote the Z-test of 

selection.  

* A p-value of >0.05 was considered not to be significant.  

† dN – dS (Z test of selection).  
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analyses revealed no evidence of positive selection in the evolutionary history of 

these MVEV samples. Conversely, a p-value of <0.05 was obtained when both 

purifying and neutral selection were tested in all G1 and one of the G2 samples 

(K59532), indicating the operation of purifying and neutral selection on these virus 

populations. When positive and neutral selection were assessed by Z-test analysis, 

all dN – dS values were negative, indicating the operation of purifying selection. In 

contrast, Z-test analysis of adaptive evolution in two G2 samples (K59536 and 

K68196) produced a p-value of >0.05 for all positive, purifying and neutral selection 

pressures; therefore, a significant conclusion about selection averaged over all 

sequences of each of these two virus populations could not be made.  

When the above hypotheses were tested between sequence pairs of each dataset, 

the majority of sequence pairs (>99.9%) appeared to be under purifying and neutral 

selection. A minor number of sequences, mostly singletons belonging to G1 samples 

(except K69612), and one G2 sample (K59532) demonstrated a positive dN – dS 

value with a p>0.05, indicating positive selection (data not shown). 

The operation of selection pressure was also assessed at the codon level via HyPhy 

using an ML analysis. This analysis revealed no significant evidence for the 

operation of positive selection at any of the codons of the partial E gene sequences 

in the dataset of each tested samples (data not shown). Therefore, based on the 

three analyses described above, purifying and neutral selections have been the 

most dominant driving forces of MVEV evolution over time. 

4.4 Discussion  

The primary aim of this chapter was to characterise and compare the level of 

genetic diversity within G1 and G2 MVEV populations circulating in the 

environment. This study revealed that MVEV exists in nature as a highly genetically 

diverse ensemble of variants and that the diversity is more pronounced within the 

populations of G1 virus populations compared to those of G2.  
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In this study, viral RNA transcribed from the genetically defined pMVE-1-51 plasmid 

(Hurrelbrink et al., 1999) was included to estimate the inherent error rate of RT-PCR 

and NGS. The per-nucleotide variance of the MVE-1-51 control (implying the 

inherent error rate), after the data filtration steps, was 0.057%. This is substantially 

lower than that obtained in previous NGS studies: 0.98% (Wang et al., 2007), 0.27% 

(Solmone et al., 2009), 0.13% (Nishijima et al., 2012) and 0.11% (Tsibris et al., 2009). 

However, it is comparable to the 0.05% error rate obtained in the conventional 

molecular cloning approach used by Ciota et al. (2007c), but substantially higher 

than the 0.004% reported by Jerzak et al. (2005), using the same methodology. This 

indicates that the experimental design employed in this study produced final 

sequence datasets containing a minimum nucleotide error rate. It should be noted 

that only a single control replicate was employed. For rigorous validation of error 

rate, ideally control replicates should be included. However, the current cost of NGS 

is a limiting factor in terms of numbers of both control and test samples replicates 

that can be included in a given study. 

The impartial and unbiased efficiency of the experimental and computational 

processes on detecting different genotypes or minority variants in this study was 

assessed by including a second control containing defined ratios of different strains 

of MVEV belonging to: 1% MVE-1-51 (G1), 10% NG156 (G4) and 89% OR156 (G2). 

Following NGS, the ratio was reasonably preserved showing 3.9% MVE-1-51, 15.2% 

NG156 and 80.9% OR156. Although this sensitivity is relatively lower than those 

previously reported in other NGS studies (Görzer et al., 2010a; Tsibris et al., 2009), it 

indicates that strong biases were not introduced in the amplification processes 

towards a specific genotype. Moreover, it reveals that the experimental and 

computational protocols employed here could detect minority variants that were 

present in the population as low as 3.9%. The relative difference in the ratio of input 

RNA to that of the output result may have been a result of experimental error, such 

as dilution effect during the generation of the standard curve for RT-qPCR or during 

the formation of the input ratio pool.  

The genetic diversity and complexity of mutation spectra within each virus 

population were characterised by considering the corrected per-nucleotide 
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variation of each sample, and the percentage of variant sequences that differed 

from the sample-specific consensus sequence. Altogether, the result of this 

assessment showed that genetic diversity and mutation spectra were significantly 

higher in G1a samples than those of G1b, which were in turn higher than G2 

samples. Samples belonging to G1a contained a significantly higher number of 

sequences that differed from each of the sample-specific consensus sequence 

(p=0.021), and also demonstrated as higher per-nucleotide variation compared to 

G1b and G2 samples (p=0.001). In contrast, G2 samples exhibited a significantly 

lower complexity than all G1 samples (p=0.029). Only one G2 isolate (K59532) 

displayed a higher per-nucleotide variance than baseline error, yet it was 

substantially lower than that of G1 samples (Table 4.2). The other two G2 samples 

(K59536 and K68196) had a lower per-nucleotide variance than the baseline error 

(plasmid control), indicating little or no evidence of a highly diverse viral 

populations. Similar to this finding, Jerzak et al. (2005) found no evidence of a 

complex mutation spectrum in two WNV samples taken from mosquitoes and 

American crows.  

It is worth noting that initially lower numbers of raw reads were obtained for G2 

samples (Table 4.2). While the coverage of K59532 sample was comparable to the 

G1 samples, K59536 and K68196 had substantially lower numbers of reads than any 

other sample in the study. This may have affected the sampling and detection of 

minority sequences and low level of genetic variation. Therefore, the level of 

nucleotide variation for K59536 and K68196 may in fact be higher. Significantly, the 

lower level of genetic diversity in G2 viruses correlates with them being the 

minority circulating genotype that is restricted in the Kimberley region of WA. 

Proposition can be made that the inherent lower level of intra-population genetic 

diversity in G2 viruses is an underlying factor for the restricted geographical spread 

and low frequency of these viruses in nature. Overall, the level of genetic diversity 

and the complexity of mutation spectra in G1 MVEV populations tested in this study 

are substantially higher than that reported for homogenates of WNV-infected 

mosquitoes and bird specimens, with 19.5% of sequences and 0.016% of 

nucleotides differing from consensus sequence (Jerzak et al., 2005). However, in the 
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latter study, the authors employed conventional cloning and sequencing to 

determine the depth of genetic diversity in the WNV populations analysed.  

SNP analysis revealed that nucleotide polymorphism is higher in G1a samples, 

compared to G1b, which is in turn higher than G2 viruses. Analysis of SNP supported 

the observation of lower levels of genetic diversity in G2 viruses as characterised 

above. Of significance is the observation of SNP at amino acid positions 275 and 277 

in the flexible hinge region of samples belonging to G1a and G1b (S275P and S277N 

substitutions in G1a, and P275S and S277N in G1b minority variants). Changes in the 

flexible hinge region have been proposed to lead to decreased flexibility of the 

hinge and lowered fusion efficiency of the viral envelope to the plasma membrane 

during infection. Mutations at position 277 resulted in loss of MVEV virulence in 

mice (Hurrelbrink and McMinn, 2001; Prow et al., 2011). Although these 

substitutions are not reflected in the consensus sequence of any G1a or G1b 

samples tested here, they may affect their phenotypic characteristics in vitro and/or 

in vivo. The phenotypic features of these viruses will be examined in Chapter 5.  

The selection pressure analyses on each sequence dataset revealed the dominance 

of purifying and neutral selection acting on MVEV populations in mosquitoes (Table 

4.5). Similar findings have been reported previously for WNV (Jerzak et al., 2005; 

Jerzak et al., 2008). Minor evidence of positive selection was also observed between 

sequence pairs of four G1 and one G2 samples, also consistent with previous 

reports for several other flaviviruses (Baillie et al., 2008; Beasley et al., 2003; 

Bennett et al., 2006; Bertolotti et al., 2007; Brault et al., 2007; Carney et al., 2012; 

Twiddy et al., 2002a; Twiddy et al., 2002b). In flaviviruses, as per any other virus, 

selection operates at the population level and not on individual sequences within 

the population (Biebricher and Eigen, 2006; Eigen, 1971; Vignuzzi et al., 2006). 

Therefore, the minor number of sequences showing evidence of positive selection 

in a large MVEV population may not have a considerable effect on the phenotype of 

these viruses.  

Nucleotide mutations that disrupted the ORF and led to the introduction of 

premature stop codons were observed in all G1 and one G2 sequence datasets 
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(Table 4.2). These stop codons were frequently repeated at amino acid positions 

217, 225, 233, 250 and 264, all of which reside on domain II of MVEV (Fig. 2.4). Stop 

codons were the result of a frameshift mutations rather than nucleotide deletions. 

The presence of a stop codon can result in the production of defective non-viable 

genomes in a flavivirus population that are highly likely to be removed by natural 

selection. In previous studies, sequences encoding a stop codon in DENV and WNV 

were also reported (Aaskov et al., 2007; Aaskov et al., 2006; Jerzak et al., 2005). The 

prevalence of stop codons in MVEV datasets, detailed in this chapter, were much 

lower (0.06 to 0.90%) than that found in WNV population (2.25%) reported by 

Jerzak et al. (2005) and DENV-1 population, in which up to 55% of sequence clones 

contained defective genomes (Aaskov et al., 2006). The DENV-1 study revealed that 

viral populations containing stop codons were found to circulate with a high 

prevalence between mosquitoes and humans for one and half years (Aaskov et al., 

2006). The stop codon variant of DENV-1 represented a distinct phylogenetic 

lineage. The authors proposed that transmission of viruses in the stop codon 

lineage was most likely due to a complementation process, in which defective 

genomes used the functional proteins of wild-type virus to complete the replication 

cycle (Aaskov et al., 2006). A similar phenomenon may be occurring in MVEV 

populations, whereby defective genomes continue to circulate with wild-type 

genomes.  

Despite using sample homogenates of G1 MVEV with comparable copy numbers, 

substantially different numbers of raw reads were obtained following NGS. It was 

not possible to determine the reason for this difference. However, the presence of 

DI particles in the homogenates might have contributed to this discrepancy. 

Previously, it has been demonstrated that DI particles of flaviviruses lack most of 

the structural genes as well as 5ʹ end of NS1 gene (Lancaster et al., 1998; Tsai et al., 

2007; Yoon et al., 2006). To date, the observation of DI particles lacking the 3ʹUTR 

(the target of MVEV-specific RT-qPCR assay used to determine the viral copy 

number in this study; Chapter 3) has not been reported. Therefore, it may be 

argued that DI particles have been amplified by the RT-qPCR and contributed to the 

calculation of the viral copy number, but due to the lack of structural genes, they 
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were not amplified by the RT-PCR and were not sequenced by NGS, hence 

decreasing the number of raw reads in some samples. This discrepancy may have 

also been a result of experimental errors during amplification, library preparation 

and NGS.  

An interesting finding in this study was the observation of substantially lower viral 

genome copy numbers for G2 MVEV compared to G1 (Table 4.2). This may indicate 

that G2 viruses replicate less efficiently in mosquitoes than G1 viruses. This 

observation is consistent with the attenuated phenotype of G2 viruses in mice 

(Chapter 5 and 6). These differences may be due to the unique genetic composition 

of G2 viruses compared to G1. Previous studies on WNV revealed that a single 

amino acid substitution in the E protein resulted in higher levels of infection 

efficiency and virus production in mosquitoes (Beasley et al., 2003; Brault et al., 

2007; Moudy et al., 2007). Conversely, G2 strains of MVEV may contain molecular 

determinants that restrict their replication in mosquitoes than G1 strains. 

This is the first report of NGS technology having been used to characterise the 

genetic diversity and complexity of quasispecies in MVEV populations. It 

demonstrated that G1 MVEV perpetuates in nature as a highly genetically diverse 

mix of variants, whereas G2 exists as a more homogeneous population. Results 

reported here highlight NGS as a powerful technology that can provide a detailed 

insight into the genetic structure and make up of viral populations.   
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PHENOTYPIC CHARACTERISATION OF 

GENOTYPE 1 AND 2 MURRAY VALLEY 

ENCEPHALITIS VIRUSES: COMPARISON 

OF GROWTH KINETICS IN CELL CULTURE 

AND VIRULENCE IN MICE
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5.1. Introduction  

In Chapter two, the genetic variation of MVEV isolates was characterised. It was 

reported that G2 MVEV still circulates in the Kimberley region of WA and G1 has 

two sublineages (G1a and G1b). In Chapter three it was reported that G1 MVEV 

perpetuates in nature as a complex of genetically heterogeneous variable genomes, 

whereas the genome of G2 is more homogeneous. There has been little research 

done to further understand the phenotypic characteristics of the G2 strains, despite 

circulating in northern Australia for many decades. So far, only two studies have 

compared the phenotypic features of the two co-circulating Australian genotypes of 

MVEV, G1 and G2 (Coelen, 1988; Lawson, 1988). These studies revealed that OR156 

(the G2 prototype strain) is an attenuated strain of MVEV, whereas G1 strains are 

virulent. Since 1988, the majority of MVEV studies have focused on assessing the 

genetic variation and phylogenetic analyses of all MVEV strains (Johansen et al., 

2007; Mann et al., 2013; Poindinger et al., 1996; Williams et al., 2013), while others 

have concentrated on investigating the virulence characteristics of G1 prototype 

strain, MVE-1-51 (Clark et al., 2007; Hurrelbrink and McMinn, 2001; Hurrelbrink et 

al., 1999; Kroeger and McMinn, 2002; Lee and Lobigs, 2000, 2002; Lobigs et al., 

2009; Lobigs et al., 1990; McMinn et al., 1995; McMinn et al., 1996; Prow et al., 

2011) or other G1 isolates (Guirakhoo et al., 1992; Hall et al., 1996; Poidinger et al., 

1991; Wallace et al., 2003). Therefore, there is limited knowledge about differences 

in virulence phenotypes of the current circulating MVEV isolates from various 

genetic types and subtypes.   

The recent detection of four new G2 isolates in the Kimberley region of WA 

(Chapter 2) provided a unique opportunity to investigate and compare the 

phenotypic features of recent isolates of G1 and G2 and compare them with their 

prototype strains.  

In Chapter 2, unique amino acids in the full-length prM and E proteins of G2 

isolates of MVEV were identified (Table 2.6). It is evident that a small number of 

mutations (Chapter 1, Section 1.3.5) can have a significant impact on the virulence 

phenotype of flaviviruses both in vitro (Ciota et al., 2007b; Hurrelbrink and 
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McMinn, 2001; Moudy et al., 2007; Shirato et al., 2004) and in vivo (Beasley et al., 

2005; Cecilia and Gould, 1991; Chambers et al., 2008; Davis et al., 2003a; Halevy et 

al., 1994; Hurrelbrink and McMinn, 2001; Lobigs et al., 1990; McMinn et al., 1995; 

Prow et al., 2011; Shirato et al., 2004). For example, single amino acid substitutions 

in the genomes of WNV (Liu et al., 2006b; Wicker et al., 2006), JEV (Kim et al., 2008; 

Ye et al., 2012), DENV-2 (Sanchez and Ruiz, 1996) and TBEV (Holzmann et al., 1990) 

has been shown to result in attenuation of virulence in mice. Conversely, a single 

amino acid substitution in WNV (Brault et al., 2007; Moudy et al., 2007) was shown 

to result in greater vector infection and an explosive southwesterly spread of WNV 

in the United States in 2002. Moreover, it is also evident that genetically diverse 

populations of flaviviruses have a significantly higher viral fitness, adaptability, 

virulence and pathogenesis than less diverse populations (Ciota et al., 2012; Ciota 

et al., 2007c; Jerzak et al., 2007). 

In this chapter, the in vitro and in vivo phenotype of representative strains of G1a, 

G1b and G2 isolates, recently isolated from WA, are described. This study aims to 

shed light on the question of whether differences in the replication and virulence of 

MVEV are associated with different genotypes or subgenotypes.  

5.2. Materials and Methods 

5.2.1 Cells  

Chicken fibroblast cell line (DF1 cells) were grown in DMEM (Life Technologies, 

Australia) supplemented with 1% L-glutamine (Life Technologies, Australia) and 5% 

FBS (Life Technologies, Australia) at 37°C in the presence of 5% CO2. C6/36 and PSEK 

cells were grown as described in Chapter 2 (Section 2.2.1). Infected cells were 

cultured in 2% FBS with 1% L-glutamine (maintenance media). 

5.2.2 Viruses 

Six isolates of MVEV were tested: MVE-1-51, OR156, and representative recent 

isolates from G1a (K68838), G1b (K60555), and G2 (K59532 and K62017). MVE-1-51 

and OR156 were derived from tissue culture supernatants with multiple (unknown) 
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passage histories. K68838, K60555, K59532 and K62017 viruses were isolated from 

tissue culture supernatants infected with the homogenates of mosquito pools, as 

described in Chapter 2 (Section 2.2.1 and Fig. 2.1). The latter isolates were kindly 

provided by the Arbovirus Surveillance and Research Laboratory, The University of 

Western Australia. All virus stocks were titrated in PSEK cells as described in 

Chapter 3 (Section 3.2.2) 

5.2.3 Growth Kinetics in Cell Culture 

Viral replication kinetics of each of virus isolate tested was assessed by single-step 

growth curve analysis in C6/36 and DF1 cells. These two cell lines were selected to 

represent the mosquito vector and avian host of MVEV, respectively. Briefly, sub-

confluent (80%) monolayers of DF1 and C6/36 cells were inoculated with a virus 

suspension at an MOI of 0.01 in six-well plates. Each virus strain was tested in 

triplicate. The monolayers were incubated for one hour at 28°C for C6/36 cells and 

37°C for DF1 cells to allow the adsorption of virus particles to cells. The inoculum 

was removed and the monolayer in each well was rinsed twice with 2ml of PBS. 

Four millilitres of maintenance media was added to each well. Aliquots of 400µl 

were removed from each well at 0, 12, 24, 36, 48, 72 and 96 hpi and replaced with 

an equal volume of fresh maintenance media. The titre of virus in each triplicate 

was determined by titration in PSEK cells. Single-step growth curves were 

generated using the mean and standard error of the titre at each time-point.  

5.2.4 Mouse Virulence Experiments 

Groups of six 18-day old Swiss ARC mice (Animal Resources Centre, Murdoch, 

Western Australia, Australia) were injected i.p. with 50µl of 10-fold dilutions of virus 

(100-102 TCID50 for G1 strains and 102-104 for G2 strains). A group of six control mice 

were inoculated i.p. with 50µl of sterile PBS. Mice were housed in clean individually 

ventilated cages and were provided with water and food ad libitum. Mice were 

weighed every morning. Infected mice were monitored twice daily until the first 

signs of the disease were observed, after which, they were examined every two 

hours. To reduce distress to experimental animals, the 50% humane end point dose 

(HD50) was employed (Wright and Phillpotts, 1998). In this method, when animals 
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exhibited severe signs of disease or lost ≥15% body weight, they were euthanised. 

HD50 method does not significantly differ from LD50 (Wright and Phillpotts, 1998). 

The HD50 was calculated for each virus using the method of Reed and Muench 

(1938). The average survival time (AST) was also determined for each infection 

group by calculating the mean time to death (in days) of the number of mice that 

succumbed to infection.  

5.2.5 Virus Detection and Quantification 

The brains of euthanised mice were collected, snap frozen in liquid nitrogen and 

stored at -80°C. Frozen tissues were thawed and 10% w/v homogenates were 

prepared in M199 medium (Life Technologies, Australia) using a PYREX® Tenbroeck 

homogeniser, Corning® (Corning Life Sciences, Australia). Homogenates were 

centrifuged at 4000xg for 10 min at 4°C. Supernatants were removed and re-

centrifuged under the same conditions. The clarified supernatants were stored in 

200µl aliquots at -80°C. The virus titre in each brain homogenate was determined 

using the TCID50 method. Furthermore, MVEV-specific RT-qPCR assay was 

performed to determine the viral RNA copy number in each homogenate. Viral RNA 

was extracted from 140µl of brain homogenates using QIAamp® Viral RNA mini kit 

(QIAGEN, Australia), according to the manufacturer’s protocol. Purified RNA was 

tested in duplicate using the MVEV-specific RT-qPCR assay, described in Chapter 3 

(Section 3.2.5). For each homogenate, the viral RNA copy number was calculated 

from the standard curve that was generated using in vitro- transcribed MVE-1-51 

RNA. The concentration of viral RNA present in each homogenate was expressed as 

the TCID50/g as well as the copy number/g of infected mouse brain.  

5.2.6 Serological Confirmation of Infection in Surviving Mice 

At 21 dpi, surviving mice were euthanised with an i.p. injection of an overdose 

(150mg/kg body weight) of pentobarbitone. To confirm infection in surviving mice, 

blood samples were collected by cardiac puncture. Blood was allowed to clot at 

room temperature for 30 minutes. The samples were then incubated at 4°C for 2 

hours and subsequently centrifuged at 1500xg for 10 min and serum recovered. An 

immunofluorescence assay (IFA) was performed in 96-well micro-titre plates 
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(Greiner Bio-one, Australia) to detect the presence of anti-MVEV antibodies in mice 

sera. Briefly, monolayers of PSEK cells were inoculated with 50µl of MVE-1-51 at an 

MOI of 1.0 and incubated for one hour. After removing the inoculum, the cells in 

each well were washed twice with 100µl of PBS and then 100µl of fresh 

maintenance media was added to each well. The plates were then incubated at 

37°C for 48 hours. The media was removed and cells were fixed using 100µl of a 1:1 

acetone-methanol fixative solution at room temperature for 10 minutes. The 

fixative solution was removed and the plates were rinsed three times using 100µl of 

0.5% BSA-PBS blocking solution. Fifty microlitre of each mouse serum was added to 

individual wells in duplicate as primary antibody. Monoclonal antibodies (mAbs) 

against MVEV E protein (3H6) and MVEV NS1 protein [10C6; (Hall et al., 1995)] were 

used as positive controls, at 1:5 dilution, and were tested in duplicate. MAbs 3H6 

and 10C6 were kindly provided as cell culture supernatants by Professor Roy Hall of 

the University of Queensland, Australia. Sterile PBS and sera of control mice were 

tested in duplicate as negative controls. The monolayers were incubated with sera 

and controls at room temperature for one hour. Cells were then washed three 

times with 100µl of PBS prior to adding 50µl of a 1:200 dilution of FITC-conjugated 

goat anti-mouse antibody (SIGMA Aldrich, Australia). Monolayers were incubated at 

37°C for 30 minutes and washed three times with 100µl of PBS. The presence of 

anti-MVEV antibodies, indicating seroconversion, was confirmed by the observation 

of antibody staining under UV light (absorption Wavelength: 495nm and emission 

Wavelength: 528nm) using an Olympus IX51 microscope. 

5.2.7 Statistical Analysis 

Repeated measures analysis of variance (rmANOVA) was employed to determine 

whether observed differences were significant. Two-tailed paired Student’s t-test 

was performed to determine whether there were any significant differences 

between the mice mortalities of different test viruses. Statistical significance of the 

AST values was determined using a two-tailed t-test. Animal experiments were 

approved by the Curtin University Animal Ethics Committee (AEC; approval number: 

AEC_2011_64). A two-tailed t-test was performed to see if the observed differences 

in the viral copy number and titres were significant. Statistical analyses were 
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performed using StatistiXL 1.10 software (Roberts and Withers, 2007). A p-value of 

<0.05 was considered to be statistically significant. 

5.3. Results 

5.3.1 Comparison of Viral Replication in Avian and Mosquito cells  

The replication kinetics of recent G1 and G2 isolates were determined using a 

single-step growth curve analysis in DF1 and C6/36 cells, and compared to the 

prototypic strain of G1 (MVE-1-51) and G2 (OR156). Statistical significance of any 

differences in replication kinetics was evaluated using the rmANOVA, which 

compares the height and shape of the growth curve, taking into consideration both 

the maximum titre and the rate of viral replication (Roberts and Withers, 2007). The 

maximum titre and the rate of replication were used in this study as measures of 

virus replicative fitness (Ebel and Kramer, 2012; Orr, 2009). 

5.3.1.1. Viral Fitness in DFI Cells 

All viruses, except K62017 (G2), demonstrated comparable replication kinetics in 

DF1 cells from 0 hpi to 96 hpi. These viruses demonstrated a sharp rise in titre 

between 0 hpi to 12 hpi, after which the titre increased at a slower rate until it 

reached its peak (7.25 ± 0.16 Log10 TCID50) at 48 hpi (Fig. 5.1). The titre of these 

viruses declined by up to one log after 48 hpi, dropping to 6.26 ± 0.23 Log10 TCID50 

at 96 hpi. For K62017, the titre of the virus was higher at 96 hpi than any other 

virus in this study (Fig. 5.1), indicating a greater level of stability of this virus culture. 

However, the statistical analyses of the combined single-step growth curve data 

revealed no significant differences between the replicative ability of the G1 strains 

(MVE-1-51, K68838, and K60555) and the G2 strains (OR156, K59532 and K62017; 

Table 5.1).  

5.3.1.2. Viral Fitness in C6/36 Cells 

The replicative ability of the G1 and G2 isolates in this study was also assessed in a 

single-step growth  curve  assay  in  C6/36  cells.  The replicative ability  of  the G1 
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Fig. 5.1. Growth kinetics of MVE-1-51 and OR156 with recent genotype 1 (K68838, 

K6055) and genotype 2 (K59532 and K62017) isolates in DF1 cells. 
Error bars represent the mean ± standard deviation of the triplicates at each time point. 

 

Table 5.1. Statistical analyses of the single-step growth curve data of the MVEV in 

DF1 cells (rmANOVA).   

Reference  Viruses 

Mean 

Difference Standard error q statistic* p-value† 

MVE-1-51 (G1) 

K68838 0.033 0.658 0.051 0.97 

K60555 -0.767 0.658 1.166 0.42 

OR156 0.700 0.658 1.064 0.94 

K59532 0.400 0.658 0.608 0.90 

K62017 -1.000 0.658 1.521 0.54 

      

K68838 (G1a) 

K60555 -0.800 0.658 1.216 0.67 

OR156 0.667 0.658 1.014 0.89 

K59532 0.367 0.658 0.558 0.70 

K62017 -1.033 0.658 1.571 0.69 

      

K60555 (G1b) 
OR156 1.467 0.658 2.230 0.62 

K59532 1.167 0.658 1.774 0.60 

K62017 -0.233 0.658 0.355 0.81 

      

OR156 (G2) 
K59532 -0.300 0.658 0.456 0.94 

K62017 -1.700 0.658 2.585 0.55 

      

K59532 (G2) K62017 -1.400 0.658 2.129 0.57 
*.The q statistic (studentised range statistic) is used for multiple significance testings across a 
number of means. It is the calculation of the differences in mean divided by the standard error. 
† A p-value of <0.05 is considered significant.  
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prototype strain (MVE-1-51) was significantly greater than G2 prototype strain 

(OR156; Fig. 5.2 and Table 5.2). However, recent G1 strains, K68838 (G1a) and 

K60555 (G1b), demonstrated a significantly lower replicative ability than MVE-1-51 

and the G2 strains up to 48 hpi (Fig. 5.2 and Table 5.2). Although at 96 hpi, their 

titres were similar to that of MVE-1-51, the shape and the height of the growth 

curve demonstrates a slower increase in the titre of K68838 and K60555 (Fig. 5.2). A 

substantial difference (0.9 Log10) could be observed as early as 24 hpi, with these 

two viruses exhibiting a lower titre compared to MVE-1-51, between 24-72 hpi. The 

replicative ability of K68838 (G1a) was not significantly different to that of K60555 

(Table 5.2). 

In the case of the G2 isolates, there was no significant difference in the replicative 

ability of OR156 and K59532. However, the replicative ability of K62017 was 

significantly higher than both OR156 and K59532 (Fig. 5.2 and Table 5.2). Significant 

differences were observed as early as 24 hpi, with K62017 showing an 

approximately ten-fold higher titre than OR156 between 24-72 hpi (Fig. 5.2).  

Overall, there was a significant difference between the replicative ability of strains 

belonging to G1 (MVE-1-51, K68838 and K60555) to those belonging to G2 (OR156, 

K59532 and K62017; Fig. 5.2 and Table 5.2). While the prototype strain of G1 (MVE-

1-51) demonstrated a higher replicative ability in C6/36 cells than the G2 prototype 

strain (OR156), the recent G1 isolates (K68838 and K60555) exhibited a lower 

replicative ability compared to recent G2 isolates (K59532 and K62017; Fig. 5.2 and 

Table 5.2). This was apparent as a slower replication rate between 12-72 hpi, 

however equivalent titres were observed at 96 hpi. 

5.3.2. Virulence in Mice 

To further characterise the phenotypic features of MVEV strains from different 

genotypes, the neuroinvasiveness of the virus isolates was investigated using a 

mouse model of pathogenesis (Beasley et al., 2005; Hurrelbrink and McMinn, 2001; 

Hurrelbrink et al., 1999; May et al., 2006; Prow et al., 2011). To minimize the use of 

animals, recent G1a (K68838) and G1b (K60555) isolates with only one G2 isolate 

(K59532) were tested and compared to the prototype viruses.   
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Fig. 5.2. Growth kinetics of MVE-1-51 and OR156 with recent genotype 1 (K68838, 
K6055) and genotype 2 (K59532 and K62017) isolates in C6/36 cells. 
Error bars represent the mean ± standard deviation of the triplicates at each time point. 

 

Table 5.2. Statistical analyses of the single-step growth curve data of the MVEV in 

C6/36 cells.   

Reference  Viruses 

Mean 

Difference 

Standard 

error q statistic p-value† 

MVE-1-51 (G1) 

K68838 4.233 0.210 20.112 0.00 

K60555 4.867 0.210 23.121 0.00 

OR156 1.367 0.210 6.493 0.00 

K59532 1.467 0.210 6.968 0.00 

K62017 -1.600 0.210 7.601 0.00 

      

K68838 (G1a) 

K60555 0.633 0.210 3.009 0.05 

OR156 -2.867 0.210 13.619 0.00 

K59532 -2.767 0.210 13.144 0.00 

K62017 -5.833 0.210 27.713 0.00 

      

K60555 (G1b) 
OR156 -3.500 0.210 16.628 0.00 

K59532 -3.400 0.210 16.153 0.00 

K62017 -6.467 0.210 30.722 0.00 

      

OR156 (G2) 
K59532 0.100 0.210 0.475 0.74 

K62017 -2.967 0.210 14.094 0.00 

      

K59532 (G2) K62017 -3.067 0.210 14.569 0.00 
*.The q statistic (studentised range statistic) is used for multiple significance testing across a number 
of means. It is the calculation of the differences in mean divided by the standard error. 
† A p-value of <0.05 is considered significant.  
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The neuroinvasive phenotypes of G1 isolates were determined by i.p. injection of 

groups of six 18-day old Swiss outbred mice with 100-102 TCID50 of the virus (Table 

5.3). This range had previously been found to generate HD50 for this genotype of 

MVEV (Hurrelbrink and McMinn, 2001; Prow et al., 2011). Isolates belonging to G1 

were virulent and had HD50 values between 0.88 to 2.00 log10 TCID50 with an AST of 

between 5.2 to 7.8 days (Table 5.3). A dose-dependent mortality rate was observed 

whereby higher numbers of deaths were associated with the greater dose of the 

virus (Table 5.3, Appendix 5.1). Although fewer mice died after inoculation with 

K68838 (G1a) and K60555 (G1b), the differences in HD50 between all G1 strains 

tested were not statistically significant (Table 5.3 and Appendix 5.1). Mice remained 

healthy for 4-6 days, after which they demonstrated signs of disease, such as ruffled 

fur, hunching, eye closure, anorexia and a reduced weight gain followed by a 

marked decrease in weight within 24 hours. Severe signs of neurological 

involvement such as tremor, twitching, lethargy, loss of balance, immobility and 

hind leg paralysis were observed. The progression of disease was rapid with death 

occurring within 24 hours of onset of symptoms. Full paralysis in one or both hind 

legs was observed in 32.5% of mice with lethal infections, whereas 35% displayed 

partial paralysis, in either one or both hind legs. The remaining animals (32.5%) did 

not show signs of paralysis but exhibited other severe signs of neurological 

involvement. All mice that succumbed to the infection lost at least 15% body 

weight.  

In contrast to G1 isolates, higher doses (102-104 TCID50) of G2 isolates were injected 

into mice to determine the HD50, as it was hypothesised that the G2 isolates of 

MVEV are attenuated strains (Coelen, 1988; Lawson, 1988). No higher doses were 

available to continue the experiment for the G2 isolates beyond 104 TCID50, because 

higher titres in culture could not be achieved. Interestingly, most mice that received 

different doses of G2 isolates exhibited no clinical signs of disease or death. Low 

numbers of mortalities were observed for high doses of G2 virus isolates such that 

HD50 values could not be determined (Table 5.3 and Appendix 5.2). The AST for 

mice that succumbed to the G2 lethal infection ranged between 7 to 12 days (Table 

5.3 and Appendix 5.2), showing significantly higher AST than G1 strains (p=0.002). 
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Table 5.3. Average survival time (AST) and HD50 values for MVEV isolates following 

intraperitoneal inoculation of 18-day old Swiss ARC mice. 

Virus 

Dose  

(Log10 TCID50)  

Mortality 

(%) 

AST   

(days) 

HD50  

(Log10 TCID50) p-value‡  

Genotype 1 isolates     

MVE-1-51 (G1) 0 0/6 (0%) N/A   

1 4/6 (66.7%) 6.3   

2 5/6 (83.3%) 5.2 0.88  

      

K68838 (G1a) 0 0/6 (0%) N/A   

1 0/6 (0%) N/A   

2 3/6 (50%) 7.3 2.00 0.225 † 

      

K60555 (G1b) 0 0/6 (0%) N/A   

1 0/6 (0%) N/A  0.423 † 

2 5/6 (83.3%) 7.8 1.60 0.423 ‡ 

      

      

Genotype 2 Isolates     

OR156 (G2) 2 1/6 (16.7%)    12.0 *   

3 0/6 (0%) N/A   

4 0/6 (0%) N/A >4.00  

      

K59532 (G2) 2 2/6 (33.3%) 10.0   

3 1/6 (16.7%)    10.0 *   

4 0/6 (0%) N/A >4.00 0.184 † 

* The value represents the survival time of the only mice that died in these group.  

†.p-values are based on statistical comparison mice mortalities of each virus with that of the 

prototype virus of the associated genotype. 

‡ P-value is based on statistical comparison of mice mortalities of K68838 and K60555. A p-value of 
<0.05 is considered to be significant. 
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The course of disease for mice that demonstrated lethal infection when inoculated 

with G2 isolates was similar to those inoculated with G1 isolates, except they had a 

prolonged time to death. Interestingly, inoculation of mice with lower doses of 

K59532 (recent G2) caused higher mortality compared to those inoculated with the 

higher doses (Table 5.3, and Appendix 5.2), but this was not statistically significant. 

This phenomenon is called a prozone effect (Monath et al., 1980). 

In each of the mice that succumbed to infection, the presence and concentration of 

MVEV in brain homogenates were determined by the RT-qPCR assay described in 

Chapter 3, and by titration in PSEK cells. As shown in Appendix 5.3, the viral RNA 

ranged from 11.51 to 13.33 Log10 copies per gram of mouse brain. There was no 

significant difference in the viral copy number in the brains of mice that were 

inoculated with MVE-1-51 and K68838. However the viral copy number in the 

brains of mice that inoculated with MVE-1-51 was significantly higher than those 

inoculated with K60555 (G1b) and the G2 isolates (Appendix 5.4). There was no 

significant difference in viral copy number between recent G1 isolates (K68838 and 

K60555) and the two G2 isolates (OR156 and K59532). In addition, virus titres 

ranged between 107.0 to 109.6 TCID50 per gram of mouse brain (Appendix 5.3). 

Although significantly higher titres were obtained from homogenates of mice that 

were administered with MVE-1-51 than any other isolate tested, no significant 

differences were observed when the titres of recent G1 (K68838 and K60555) and 

G2 (OR156 and K59532) isolates were compared (Appendix 5.5). 

Sera from mice injected with any dose of the prototype strain of G1 (MVE-1-51) 

contained anti-MVEV antibodies in IFA. However, mice administered with a low 

dose of recent isolates of G1a (K68838) and G1b (K60555) did not always have 

detectable antibodies to MVEV (Appendix 5.6). The sera of all mice surviving the 

infection with G2 MVEV contained anti-MVEV antibodies (titres not determined). 

5.4. Discussion 

In this chapter, the in vitro replication and in vivo virulence of representative MVEV 

isolates of recent G1 and G2 were investigated and compared to prototype isolates.  
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Fig. 5.3. Immunofluorescence assay for the detection of antibodies to MVEV in the 

sera of mice following inoculation with MVEV.  

A. 10C6 (positive control), B. 3H6 (positive control), C. positive mouse serum, D negative 

(uninfected) mouse serum,  

  

A B 

C D 
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The fitness of each isolate was determined by examining its replicative capacity in 

avian DF1 and mosquito C6/36 cells in single-step growth curve analyses. No 

significant difference was observed in the replicative ability of recent MVEV isolates 

compared to their prototype strains in avian cells, suggesting that the ability of 

MVEV isolates to infect avian cells may have been unchanged over time. In this 

regard, it is notable that these strains were isolated approximately 60 years apart. 

A fundamental question that requires further investigation is whether the ability of 

MVEV to infect its vertebrate hosts in nature has also been unaffected over time.  

In C6/36 cells, the significantly lower replication kinetics observed in recent G1 

isolates (K68838 and K60555) and the higher replicative ability of one of the recent 

G2 isolates (K62017) compared to the prototype strains is of interest and may be 

due to genetic differences between these strains. Variation in the replication of 

flaviviruses in mosquito and vertebrate cells has been previously demonstrated. 

The molecular determinants underlying this phenotypic variation are located in the 

C protein (Groat-Carmona et al., 2012), E protein (Ciota et al., 2007b), NS4B protein 

(Hanley et al., 2003) and the 3ʹUTR (Alvarez et al., 2005; Villordo et al., 2010; 

Villordo and Gamarnik, 2013; Zeng et al., 1998). For example, Hanley et al. (2003) 

demonstrated that a point mutation in the NS4B protein (P101L) resulted in 

decreased DENV replication in C6/36 cells, while this mutation increases the 

replication kinetics of the virus in mammalian cells. The recent G1 isolates K68838 

and K60555 may contain a mutation(s) of similar effect that decreases their 

replicative ability in C6/36 cells relative to DF1 cells. Comparison of the E genes of 

these isolates to that of MVE-1-51 reveals that K68838 (G1a) encodes only one 

substitution (M180L) located in domain I of the E protein (Fig. 2.4), while K60555 

(G1b) exhibits two, T230S and I237V, both in domain II. Furthermore, comparison of 

the E gene of K62017 to that of OR156 reveals three unique mutations (S7G, V68I 

and A367V, located in domain I and II, respectively (Fig. 2.4). These locations on the 

E gene have not been previously associated with any molecular determinants of 

fitness and virulence. Further genetic and phenotypic studies may reveal the 

biological importance of these substitutions as well as substitutions in other parts 

of the genome that are associated with a lower replicative ability in mosquito cells.  
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To extend the in vitro characterisation, in vivo neuroinvasion was examined by 

determining the HD50 and AST values after i.p. injection of groups of 18-day old 

mice with different doses of each virus. Consistent with the studies of Coelen 

(1988) and Lawson (1988), this study also revealed that significant variation in the 

neuroinvasive potential of MVEV isolates correlates to their genotypes, with G1 

viruses being highly neuroinvasive and G2 viruses showing a low neuroinvasive 

phenotype. The mortality rate and mean time to death of mice that were infected 

with the G1 isolates were dependent on the doses administered, a feature of highly 

virulent strains (Davis et al., 2003a). The HD50 and AST values were reliably 

obtained for G1 isolates and were consistent with the values reported in previous 

MVEV studies (Coelen, 1988; Hurrelbrink and McMinn, 2001; Lawson, 1988; Prow 

et al., 2011; Shueb, 2008). In contrast, groups of mice inoculated with G2 isolates 

demonstrated sporadic deaths across most doses, so that HD50 and AST could not 

reliably be determined.  

Of interest was a significantly delayed time to death for G2 isolates (10.50 ± 2.65 

days) compared to that of the G1 isolates (6.13  ±  0.92 days; p=0.002) a 

distinguishing feature of an attenuated strain of flaviviruses (Beasley et al., 2005; 

Hurrelbrink and McMinn, 2001; Lawson, 1988; Prow et al., 2011). Delayed time to 

death was reported for OR156 [up to 13 days; (Lawson, 1988)] and attenuated 

mutants of MVE-1-51 [10.2 dpi, (Hurrelbrink and McMinn, 2001)]. Similarly, a mean 

time to death of 11.4-13.3 dpi were reported for three WNV attenuated strains 

(Beasley et al., 2002; Beasley et al., 2005). It has been hypothesised that the 

inability of the host to entirely clear the virus, the persistence of the virus in 

peripheral tissues and some as-yet-unidentified immunopathological reactions 

might be involved in this late disease state (Lawson, 1988).  

Also of interest was the observation of mice that received higher doses of the G2 

isolates which displayed lower level of mortality rates than those that received 

lower doses. This phenomenon is called prozone effect, and has been observed for 

many flaviviruses, such as MVEV (Hurrelbrink and McMinn, 2001; Lobigs et al., 

1988; Lobigs et al., 1990; Prow et al., 2011), WNV (Beasley et al., 2002; Beasley et 

al., 2005; Shirato et al., 2004) and SLEV (Monath et al., 1980). The 
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immunopathologic factors governing the prozone effect for G2 isolates of MVEV is 

not yet known.  

The titres of viruses in the brains of infected mice obtained in this study are 

comparable with those reported previously (Beasley et al., 2005; Chambers et al., 

2008). The observation of a three to four log differences between viral copy 

numbers and titres of MVEV isolates in the brains of individually infected mice 

(Appendix 5.3) indicates a high ratio of non-infectious to infectious virus particles. 

This may be due to the much higher sensitivity of the MVEV RT-qPCR assay 

(discussed in Chapter 3), compared to cell culture. Similar differences between the 

viral copy numbers and titres were reported by (Jerzak et al., 2005), where the 

concentration  of WNV-infected samples taken from different bird and mosquito 

species were tested. The presence of DI particles in the infected mouse brains and 

subsequent cultures may also have contributed to this difference. DI particles can 

reduce the cytopathic effect of MVEV infection in cell culture (Poidinger et al., 

1991), but the genomes of these particles can be amplified by the RT-qPCR. 

Although the genomes of DI particles of flaviviruses lack most of the structural 

genes and the 5ʹ end of NS1 gene (Lancaster et al., 1998; Yoon et al., 2006), there 

are no reports of deletions in the 3ʹUTR. Therefore, the presence of DI particles (if 

any) could have been detected by the RT-qPCR assay employed in this study, which 

targets the 3’UTR, thereby leading to an apparently high ratio of genome copies to 

infectious particles.    

The variation in the neuroinvasivness of MVEV strains from different genotypes 

observed in this study is comparable with results of similar studies investigating 

flavivirus virulence phenotype (Beasley et al., 2002; Coelen, 1988; Lawson, 1988; 

Monath et al., 1980). In these studies researchers correlated the variation in the 

virulence of flaviviruses such as MVEV (Coelen, 1988; Lawson, 1988) WNV (Beasley 

et al., 2002), and SLEV (Monath et al., 1980) to different genotypes. This suggests 

that certain molecular determinants of pathogenesis specific for each genotype are 

responsible for the virulence properties of these viruses. In this regard, the 

variability in neuroinvasiveness of flaviviruses has been associated with 

microevolution. While some amino acid substitutions result in an increase in 
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virulence (Brault et al., 2004; Brault et al., 2007; Kilpatrick et al., 2008; Moudy et 

al., 2007), others significantly reduce virulence of flaviviruses (Beasley et al., 2005; 

Gualano et al., 1998; Guirakhoo et al., 2004; Holbrook et al., 2001; Holzmann et al., 

1990; Hurrelbrink and McMinn, 2001; McMinn et al., 1995; Monath et al., 1980; Ye 

et al., 2012). Comparison of full-length prM and E proteins of G2 to that of G1 

revealed several amino acid substitutions, already discussed in Chapter 2 (see also 

Section 2.3.2 and Table 2.7). The biological significance of many of these 

substitutions is as yet not known. However G2 exhibits a conservative S275T and a 

non-conservative S276G substitution in the flexible hinge region between domain I 

and domain II. Previous research revealed that mutation in this region can greatly 

influence the fusogenic activity and neuroinvasiveness of MVEV in mice 

(Hurrelbrink and McMinn, 2001; Prow et al., 2011). In addition, as mentioned in 

Chapter 6 (Section 6.3.6) the G2 isolates of MVEV exhibit several other amino acid 

differences compared to G1 in the structural and non-structural proteins as well as 

5ʹ and 3ʹUTRs (Chapter 6). These genetic changes may also contribute to or account 

for their attenuated phenotype.  

The results in Chapter 4 indicated that G2 viruses exist as less genetically diverse 

populations than G1 viruses. This is significant because previous research has 

revealed that more diverse populations of RNA viruses have a significantly higher 

replication, pathogenesis and virulence than less diverse populations (Ciota et al., 

2007a; Domingo et al., 2006; Lancaster and Pfeiffer, 2012; Lauring and Andino, 

2010; Perales et al., 2010; Vignuzzi et al., 2006). It can be hypothesised that less 

complex mutant spectra in G2 viruses, coupled with the unique mutations observed 

in viruses within this genotype, have significantly attenuated its virulence 

phenotype. However, it should be noted that in this chapter, phenotypic 

characterisation was performed on virus isolates, whereas in Chapter 4, 

homogenates of mosquito pools were examined. 

The data presented in this chapter supports the hypothesis that G2 isolates of 

MVEV are attenuated. Unfortunately, due to an overwhelming number of 

mutations scattered in structural and non-structural proteins of the G2 (Chapter 6, 

Section 6.3.6), a specific mutation/s cannot be readily associated with this 
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attenuation. Further genetic and molecular studies are required to elucidate the 

mechanism of virulence or attenuation of these two very closely related genotypes 

of MVEV. The availability of an infectious clone for MVEV [pMVE-1-51; (Hurrelbrink 

et al., 1999)] offers a unique opportunity for reverse genetic studies. Introduction of 

point mutations or a complete gene of G2 isolates into the MVEV infectious clone, 

similar to those reported by previous researchers (Chambers et al., 2005; 

Hurrelbrink and McMinn, 2001; Matusan et al., 2001; Prow et al., 2011; Pryor et al., 

1998) may provide valuable information on revealing the molecular determinants 

of attenuation in the G2 isolates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

179 
 

 

 

 

 

 

 

 

 

6. CHAPTER 6 

 

GENETIC AND PHENOTYPIC 

CHARACTERISATION OF MURRAY 

VALLEY ENCEPHALITIS VIRUS 

FOLLOWING ADAPTATION IN MOSQUITO 

AND AVIAN CELLS 
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6.1 Introduction 

MVEV, as for any other arbovirus, circulates in nature by alternating replication 

(cycling) between arthropod vectors and vertebrate hosts. This places substantial 

evolutionary constraints, which may have limited the evolution of this virus 

throughout its history (Ciota and Kramer, 2010; Weaver, 2006). As addressed in 

Chapter 2 (Sections 2.3.2.1 and 2.3.2.2), MVEV has shown a high level of genetic 

conservation over time. 

Experimental evolution studies that have employed cell culture systems (Chen et 

al., 2003; Coffey and Vignuzzi, 2010; Moutailler et al., 2011; Vasilakis et al., 2009) 

and animal models (Ciota et al., 2009; Coffey et al., 2008; Lin et al., 2004) have 

provided conflicting conclusions with regards to the effect of host cycling on the 

genetic stability of arboviruses. A review of these studies is provided in Chapter 1 

(Section 1.3.1). In short, some studies have indicated that host cycling results in 

genetic stability (Coffey et al., 2008; Coffey and Vignuzzi, 2010; Moutailler et al., 

2011), whereas, others conclude that evolutionary conservation of arboviruses is 

the result of adaptation in a single host cell type (Chen et al., 2003; Ciota et al., 

2009; Lin et al., 2004; Vasilakis et al., 2009). To date, no experimental evolution 

studies have been carried out to explain the reason behind the evolutionary stasis 

of MVEV.  

This chapter describes an in vitro experimental evolution study carried out to 

examine the evolutionary constraints imposed by sequential passaging or cycling of 

MVEV in mosquito and/or avian cell lines. This study aims to investigate the 

molecular basis of such adaptation phenotypes. Three hypotheses were 

simultaneously tested:  

1. Sequential passaging of MVEV in single host cells remove the selective 

pressures imposed by cycling and will facilitate the accumulation of mutations; 

2. A significant fitness trade-off exists in viruses derived from avian and mosquito 

cell cycling, whereas higher levels of fitness and adaptation may be observed in 
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single host cell-specialised viruses, in which increased fitness in one host cell 

line will be accompanied by decreased fitness in the other; and 

3. A minor number of mutations can have a significant impact on the phenotype 

of MVEV both in vitro and in vivo. 

Results obtained in this study may provide an insight into the mechanism(s) of 

MVEV evolution and indicate whether a significant fitness trade-off exists in the 

MVEV population as a result of the requirements to replicate in mosquito and 

vertebrate hosts. 

6.2 Materials and Methods 

6.2.1 Cells  

DF1, C6/36 and PSEK cells were grown as described in Chapter 5 (Section 5.2.1). 

6.2.2 Clone-Derived Viruses  

Clone-derived virus representing G1 of MVEV was generated from full-length in 

vitro-transcribed RNA prepared from the pMVE-1-51 infectious clone (Hurrelbrink 

et al., 1999), as described in Chapter 3 (Section 3.2.4). In order to generate 

infectious viral RNA, 5mM cap analogue [m7G(5ʹ)ppp(5ʹ)G; Life Technologies, 

Australia] was added to the T7 RNA synthesis reaction. The in vitro-transcribed 

MVE-1-51 RNA was then purified using a QIAGEN RNeasy Kit (QIAGEN, Australia), 

according to the manufacturer’s protocol. Subsequently, a sub-confluent 

monolayer of PSEK cells was transfected with the capped in vitro-transcribed MVE-

1-51 RNA using Lipofectamine 2000TM reagent in a 25cm2 tissue culture flask 

(Greiner Bio-one, Australia). Briefly, 1.5µg of purified RNA was added to 500µl of 

Opti-MEM media (Life Technologies, Australia) in a 1.5ml eppendorf tube and 

incubated at room temperature for 20 minutes. The sub-confluent (80%) 

monolayer of cells was washed twice with 5ml of PBS and once with 5ml of Opti-

MEM. Cells were transfected with transfection mixture (500µl of Opti-MEM 

containing in vitro-transcribed RNA) at 37°C for 3 hours. The media was removed 

and cells were washed twice with 5ml of PBS, prior to adding 3ml of maintenance 
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M199 media (Life Technologies, Australia). The cells were incubated under 

standard cell culture conditions for five days or until approximately 75% CPE was 

observed. Tissue culture supernatants were removed and clarified by 

centrifugation at 1500xg for 5 minutes. The rescued viruses were further cultured 

in a 25cm2 tissue culture flask (Greiner Bio-one, Australia) of C6/36 cells under 

standard conditions for 5 days. Supernatants were removed and clarified as above 

before they were used as working stock for parental virus of G1 (G1-P0) in serial 

passage experiments. 

A full-length infectious clone representing G2 of MVEV has not been reported and 

was not available. Therefore, biological clones of G2 MVEV were prepared using a 

cloning by limiting dilution method. Initially, 5-fold serial dilutions of OR156 were 

prepared and used to infect monolayers of PSEK cells in a 96-well micro-titre plate 

(Greiner Bio-one, Australia). The monolayers were incubated at 37°C for 3-4 days or 

until CPE was observed in the highest dilution of virus. The tissue culture 

supernatant of the well exhibiting CPE in the end-point dilution was harvested and 

clarified as above. A further set of 2-fold serial dilutions was prepared from the 

resultant supernatant and were used to infect PSEK cells in a 96-well micro-titre 

plate (Greiner Bio-one, Australia). The supernatants of the wells with the highest 

dilution that demonstrated CPE were further expanded individually by infecting 

C6/36 cells in a 25cm2 tissue culture flask (Greiner Bio-one, Australia) for 5 days. 

Supernatants were harvested and clarified as described above and used as working 

stock for parental virus of G2 (G2-P0) in cell passage experiments. 

6.2.3 Experimental Cell Passages 

The cell passage experiment reported in this chapter was performed essentially as 

described elsewhere (Chen et al., 2003; Ciota et al., 2007b; Coffey et al., 2008; 

Coffey and Vignuzzi, 2010; Jerzak et al., 2008; Moutailler et al., 2011). Briefly, G1-P0 

and G2-P0 were subjected to ten sequential passages in C6/36 cells (yielding viruses 

G1-C10 and G2-C10, respectively) or DF1 cells (G1-D10 and G2-D10, respectively; 

Fig. 6.1). As a control, G1-P0 and G2-P0 were also passaged sixteen times 

alternately between C6/36 and DF1 cells (G1-A16 and G2-A16, respectively; Fig. 6.1). 
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Fig. 6.1. Schematic representation of the methodology used in this chapter. 

G1-C10 and G1-D10 indicate G1 viruses passaged ten times in C6/36 cells or DF1 cells, respectively. 
G1-A16 indicates G1 virus passaged 16 times alternately between C6/36 cells and DF1 cells. G2 
passaged virus nomenclature is similarly shown.    
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For each passage, sub-confluent monolayers of DF1 and C6/36 cells (1x106 cells) 

were infected at an MOI of 0.01 in a 25cm2 tissue culture flask (Greiner Bio-one, 

Australia) and incubated for one hour at appropriate growth temperature.  

Inoculum was then removed and cell monolayers were washed twice with 5ml of 

PBS. Next, 5ml of fresh maintenance media was added to each flask and cells were 

incubated for three days. The cell culture supernatants were centrifuged at 3000xg 

for 5 min and stored at -80°C. The titre of the supernatants was determined in PSEK 

cells after each passage, as described in Chapter 3 (Section 3.2.2). 

6.2.4 Growth Kinetics in Cell Culture   

The replication kinetics of the passaged viruses was determined in DF1 and C6/36 

cells and compared to their parental viruses, as per the method described in 

Chapter 5 (Section 5.2.3). Additional samples were taken at 6 hpi for both DF1 and 

C6/36 cells. Since the growth kinetics of all viruses in DF1 cells indicated a reduction 

in titre after 48 hpi, the 96 hpi time-point was omitted from DF1 infection.  

6.2.5 Mouse Neuroinvasive Experiments 

Animal studies were performed as per methodology detailed in Chapter 5 (Section 

5.2.4). The animal study conducted in this chapter received approval from the 

Curtin University’s AEC (AEC approval number: AEC_2011_64).  

6.2.6 Virus Detection and Quantification 

The brains of mice that succumbed to the lethal infection were homogenised as 

detailed in Chapter 5 (Section 5.2.7). The concentration of MVEV in the brain 

homogenates was determined by titration in PSEK cells and using the MVEV-specific 

RT-qPCR assay as detailed in Chapter 5 (Section 5.2.5).  

6.2.7 Serological Confirmation of Infection in Surviving Mice 

At 21 dpi, all surviving mice were euthanised and their sera were collected as 

described in Chapter 5 (Section 5.2.6). IFA was performed on the sera of all 

surviving mice as detailed in Chapter 5 (Section 5.2.6). 
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6.2.8 RNA Extraction and RT-PCR of the Complete Genomes 

RNA was extracted from 140µl of each sample (tissue culture supernatants or brain 

homogenates) using the QIAamp® Viral RNA mini kit (QIAGEN, Australia), as per the 

manufacturer’s protocol. The cDNA was synthesised using 10µl of purified RNA, 

reverse primers [VD8 (Pierre et al., 1994) or MVEV16Rb; Appendix 6.1] and 

SuperScript® III Reverse Transcriptase kit (Life Technologies, Australia), as described 

in Chapter 2 (Section 2.2.2). The complete genome of G1 viruses were amplified 

using 19 overlapping sets of primers (Appendix 6.1) and PCR SuperMix (Life 

Technologies, Australia) as described in Chapter 2 (Section 2.2.2). Similarly, the 

complete genomes of G2 viruses were amplified using seventeen overlapping sets 

of primers (Appendix 6.2). All PCR reactions were performed as described in 

Chapter 2 (Section 2.2.2), except that some G2 amplicons underwent an elongation 

step at 72°C for 90 seconds (indicated by asterisks in Appendix 6.2). The PCR 

products were purified using QIAquick® PCR purification kit (QIAGEN, Australia), 

according to the manufacturer’s protocol. 

6.2.9 Sequencing and Sequence Analyses 

Sequencing were carried out at AGRF, Perth, as described in Chapter 2 (Section 

2.2.3). The raw sequences were compiled, edited and assembled in BioEdit (Hall, 

1999) and MEGA 5.2.1 (Tamura et al., 2011) software. Multiple alignment of the 

nucleotide sequences and the deduced amino acid chains were carried out using 

ClustalW in MEGA 5.2.1. The authenticity of all observed mutations was confirmed 

by resequencing the associated region using freshly extracted RNA from the 

respective viral stock. The eight complete genome sequences obtained in this study 

were deposited in the GenBank database (KC852189 - KC852196; Table 6.1).  

6.2.10 Statistical Analyses 

Statistical analyses were performed as per methodology described in Chapter 5 

(Section 5.2.7).  
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Table 6.1. Details of all viruses used in this chapter. 

Virus GenBank ID Experimental Passages  Accession No 

G1-P0 * MVE-1-51-P0  N/A KC852189 

G1-C10 MVE-1-51-C10 C6/36 (10x) KC852190 

G1-D10 MVE-1-51-D10 DF1 cells (10x) KC852191 

G1-A16 MVE-1-51-CD8 C6/36 ↔ DF1 (16x) KC852192 

    

G2-P0 † OR156-P0     N/A KC852193 

G2-C10 OR156-C10    C6/36 (10x) KC852194 

G2-D10 OR156-D10    DF1 cells (10x) KC852195 

G2-A16 OR156-CD8    C6/36 ↔ DF1 (16x) KC852196 

 

* Derived from a molecular clone of MVE-1-51 (CDV-1-51), which was rescued in C6/36.  

† Derived from a biological clone of OR156 (CDV OR156), and passed once in C6/36.  
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6.3 Results 

6.3.1 Comparison of the Clone-Derived and Wild-Type Viruses: in Vitro 

Replication in Cells and in Vivo Pathogenesis in Mice 

In order that genetically homogeneous virus populations were used as parental 

viruses in the serial cell passage experiment, clone-derived viruses of G1 and G2 

were generated. To ensure that clone-derived viruses (CDV-1-51 and CDV OR156) 

were not phenotypically different to those of un-cloned laboratory strains (MVE-1-

51 and MVE OR156), the phenotypes of these viruses were compared in vitro in a 

single-step growth curve assay and in vivo in a mouse model of pathogenesis. No 

significant differences were seen in the replication kinetics of the clone-derived 

viruses to those of un-cloned laboratory strains both in C6/36 and DF1 cells (Fig. 

6.2). Similarly, following infection in mice, no significant differences in virulence of 

clone-derived viruses were observed, when compared to those of un-cloned 

laboratory strains (Table 6.2). Similar to the results reported for G1 MVEV in 

Chapter 5 (Section 5.3.2), CDV-1-51 caused dose-dependent mortality in mice, 

characteristic of highly virulent strains. In contrast, for G2 viruses, a sporadic 

pattern of deaths across the virus doses tested (102-104), characteristic of 

attenuated flaviviruses, was observed. These results indicate that no significant 

phenotypic differences between the clone-derived viruses and un-cloned 

laboratory strains were apparent. Therefore, CDV-1-51 and CDV OR156 were used 

as parental viruses of G1 (G1-P0) and G2 (G2-P0), respectively, in the cell passage 

experiment described below.  

6.3.2 Experimental Passage  

G1-P0 and G2-P0 were sequentially passaged ten times in either mosquito (C6/36) 

or avian (DF1) cells and as a control, they were also passaged for a total of sixteen 

times alternately between the two cell lines (eight passages in each; Fig. 6.1). This 

resulted in the generation of virus populations designated G1-C10, G1-D10, and G1-

A16 for G1 MVEV and G2-C10, G2-D10, and G2-A16 for G2 MVEV (Fig. 6.1). Fig. 6.3 

shows the infectious titres of all viruses at each passage. Although the titres of
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A 

Reference  Viruses 

Mean 

Difference 

Standard 

error q statistic * p-value † 

CDV-1-51 (G1) MVE-1-51 1.167 0.658 1.774 0.60 

CDV OR156 (G2) OR156 0.200 0.658 0.304 0.83 

B 

Reference  Viruses 

Mean 

Difference 

Standard 

error q statistic * p-value † 

CDV-1-51 (G1) MVE-1-51 -0.300 0.210 1.425 0.33 

CDV OR156 (G2) OR156 -0.433 0.210 2.059 0.34 

Fig. 6.2. Growth kinetics of clone-derived vs. un-cloned laboratory strains of 
genotype 1 (CDV-1-51, MVE-1-51) and genotype 2 (CDV OR156 and OR156) MVEV 
in (A) DF1 cells and (B) C6/36 cells. Statistical analyses for assays in each cell line are 
shown below each graph. 

*.The q statistic (studentised range statistic) is used for multiple significance testing across a number 
of means. It is the calculation of the differences in means divided by the standard error. 
† A p-values of <0.05 is considered significant.  

Mean differences is the difference between the sum of means of triplicates of two given samples. 

Standard error in the table refers to the standard error of the differences between means. 
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Table 6.2. Average survival time (AST) and HD50 values of clone-derived vs. un-

cloned laboratory strains of genotype 1 (CDV-1-51, MVE-1-51) and genotype 2 (CDV 

OR156 and OR156) MVEV in a mouse model of pathogenesis. 

Virus 

Dose  

(Log10 TCID50)  

Mortality 

(%) 

AST  

(days) 

HD50  

(Log10 TCID50) p-value *  

Genotype 1     

CDV-1-51 (G1) 

0 0/6 (0%) N/A 

 

 

1 1/6 (16.7) 7 

 

 

2 4/6 (66.7) 7 1.64  

     

 

MVE-1-51 (G1) 

0 0/6 (0%) N/A 

 

 

1 4/6 (66.7%) 6.3 

 

 

2 5/6 (83.3%) 5.2 0.88 0.27 

      

Genotype 2 

   

 

CDV OR156 (G2) 

2 2/6 (33.3%) 7.5 

 

 

3 1/6 (16.7%) 7 

 

 

4 2/6 (33.3%) 5 >4.00  

     

 

OR156 (G2) 

2 1/6 (16.7%) 12 

 

 

3 0/6 (0%) N/A 

 

 

4 0/6 (0%) N/A >4.00 0.06 

 

*.p-value of > 0.05 is considered not significant. 

N/A: Not applicable  
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A 
 

 
 

 
B 

 
 

 

 
Fig. 6.3. The titre of genotype 1 (A) and genotype 2 (B) MVE viruses during 
sequential passage in mosquito C6/36 cells and avian DF1 cells, and alternately 
cycled between the two.  
 

Titrations were performed in PSEK cells.  
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C6/36-cell-passaged viruses were approximately 1.0 log10 lower than the 

unpassaged parental viruses for the first six passages, the titres of G1-C10 and G2-

C10 were similar to that of their respective parental viruses, suggesting that the 

viruses adapted to C6/36 cells after six passages. In contrast, the titre of DF1-cell-

passaged viruses were similar to their parental viruses for the first three passages, 

but increased from passage 4 onwards, such that the titres of G1-D10 and G2-D10 

were approximately 2.0 log10 higher than G1-P0 and G2-P0, respectively. This 

indicates selection of viruses with a higher replicative ability and fitness in DF1 cells. 

In comparison, the titres of cycled-viruses (G1-A16 and G2-A16) were not 

substantially different to those of the respective parental viruses for the first five 

passages, after which an approximately 1.0 log10 increase in titre was observed. The 

titres of the G1-A16 and G2-A16 were comparable between P6 and P16 (Fig. 6.3).  

6.3.3 Comparison of Viral Fitness 

The viral replicative ability of the passaged viruses of each genotype were assessed 

by single-step growth curve analyses and compared to that of the associated 

parental virus in both DF1 and C6/36 cells.  

6.3.3.1 G1 Viruses 

In C6/36 cells, no significant differences were observed in the replicative ability of 

G1-C10 compared to G1-P0 (p=0.31; Fig. 6.4A and Appendix 6.3A). The titre of 

these two viruses increased rapidly during the first 6 hpi, then increased steadily 

until 48 hpi, after which it plateaued to 96 hpi (end of experiment). In contrast, G1-

D10 demonstrated a small, but statistically significant decrease in replicative ability 

compared to G1-P0 (p=2.26E-04) and G1-C10 (p=1.94E-04; Fig. 6.4A and Appendix 

6.3A). Moreover, the replicative fitness of G1-A16 was substantially and significantly 

lower than G1-P0 (p=1.93E-07), G1-D10 (p=1.93E-07) and G1-C10 (p=2.14E-07; Fig. 

6.4A and Appendix 6.3A), indicating that G1-A16 has a lower level of replicative 

fitness in C6/36 cells than any other G1 isolates included in this study (Fig 6.4A). In 

DF1 cells, no significant difference in the replicative ability of G1-C10 compared to 

G1-P0 was observed over the course of the experiment (p =0.36; Fig. 6.4B and 

Appendix 6.3B). However, G1-D10 displayed a higher replicative ability than G1-P0   
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A 

 

B 

Fig 6.4. Comparison of growth kinetics of MVEV G1-D10, G1-C10 and G1-A16 with 

their parental virus (G1-P0) in C6/36 (A) and DF1 cells (B).  

Titres are presented as the mean and standard error from three individual replicates obtained at 
each time-point. G1-D10: DF1-cells-passaged virus; G1-C10: C6/36-cells-passaged virus; G1-A16: 
C6/36-DF1-passaged virus; G1-P0: Parental unpassaged virus. 
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(p=1.92E-07) and G1-C10 (p=1.95E-07; Fig. 6.4B and Appendix 6.3B). This indicates 

that avian DF1-cell-derived G1-D10 has a higher level of replicative fitness in these 

cells, compared to the other serially-passaged G1 strains and that adaptation to this 

cell line has taken place over the ten sequential passages. In contrast, the 

replicative ability of G1-A16 in DF1 cells, as in C6/36 cells, was significantly lower 

than G1-P0 (p=2.40E-05), G1-C10 (p=1.97E-05) and G1-D10 (p=2.13E-07; Fig. 6.4B 

and Appendix 6.3B) over the duration of the time course of infection.  

Taken together, sequential passages of G1-P0 in mosquito C6/36 cells did not alter 

the growth kinetics of the resulting virus (G1-C10) in both C6/36 and avian DF1 

cells. However, virus derived from sequential passage in avian DF1 cells  (G1-D10) 

demonstrated a lower replicative ability in C6/36 cells, but increased replicative 

fitness in DF1 cells, indicating adaptation to these cells. Alternately-cycled virus G1-

A16 showed lower replication kinetics than the parental virus in both C6/36 and 

DF1 cells, suggestive of a lower replicative fitness for this virus in both host cell 

lines. 

6.3.3.2 G2 Viruses 

In C6/36 cells, no difference in replication kinetics was observed between G2-P0 

and G2-C10 (p=0.32; Fig. 6.5A and Appendix 6.4A). These viruses exhibited 

comparable titres across all time-points tested. In contrast, G2-D10 and G2-A16 

demonstrated marginally, but statistically significant, lower titres in mosquito cells 

than G2-P0 (p=5.63E-05 and p=9.12E-05, respectively; Appendix 6.4A) and G2-C10 

(p=4.32E-05 and p=8.85E-05, respectively; Fig. 6.5A and Appendix 6.4A). There 

were no differences between the replicative ability of G2-D10 and G2-A16 (p=0.14; 

Appendix 6.4A), indicating they have a similar growth phenotype in C6/36 cells. As 

observed in C6/36 cells, there was no difference between the replicative ability of 

G2-P0 and G2-C10 in the avian DF1 cells (p=0.28; Fig. 6.5B and Appendix 6.4B). In 

contrast, the replication curves of G2-D10 and G2-A16 were significantly higher 

than G2-P0 (p=1.92E-07 and p=2.91E-07, respectively; Appendix 6.4B) and G2-C10 

(p=2.13E-07 and p=3.55E-07, respectively; Appendix 6.4B). A significant difference 

in replication kinetics between G2-D10 and G2-A16 was also found (p=3.85E-07).   
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A 

 

B 

 

Fig 6.5. Comparison of growth kinetics of G2-D10, G2-C10 and G2-A16 with their 

parental virus (G2-P0) in C6/36 (A) and DF1 cells (B). 
 

Titres are presented as the mean and standard error from three individual replicates obtained at 

each time-point. G2-D10: DF1-cells-passaged virus; G2-C10: C6/36-cells-passaged virus; G2-A16: 

C6/36-DF1-passaged virus; G2-P0: Parental unpassaged virus 
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Titres of G2-were approximately 1.0 log10 higher titre than G2-A16 from 6 hpi to 48 

hpi (Fig. 6.5B).  

As for G1 virus, sequential passage of G2 parental virus (G2-P0) in C6/36 cells did 

not significantly affect the growth kinetics of the virus in either C6/36 or DF1 cells. 

In contrast, sequential passages in avian DF1 cells (yielding G2-D10) and alternate 

cycling between C6/36 and DF1 cells (G2-A16) resulted in slightly lower replicative 

replication kinetics in C6/36 cells, but a higher replicative fitness in DF1 cells. This 

suggests that differences in the replication kinetics of these viruses are due to 

passage in DF1 cells, either sequentially or alternately. 

6.3.4 Mouse Virulence Study 

Neuroinvasiveness of each passaged virus was determined by i.p. inoculation of 

groups of 18-day old Swiss ARC mice with a range of virus doses. For each virus, the 

HD50 and AST values were determined (when possible) and compared to their 

parental viruses. Virus concentrations (genome copy numbers and infectious titres) 

in the brain of euthanised mice were also determined and compared. 

6.3.4.1 G1 Viruses  

Initially, mice were inoculated with 100-102 TCID50 of G1 isolates. Mice were healthy 

for 4-6 dpi, after which they exhibited early signs of disease, similar to those 

described in Chapter 5 (Section 5.3.2). The HD50 and AST values of G1-C10 were 

lower, but not significantly different, to those of G1-P0 (Table 6.3 and Appendix 6.5) 

and mice injected with these viruses demonstrated a dose-dependent mortality 

rate (Table 6.3 and Appendix 6.5). Virus concentrations in the brain of euthanised 

mice were not significantly different as determined by genome copy number 

(p=0.648) or TCID50 (p=0.639; Appendix 6.7). Similar to the findings described in 

Chapter 5 (Section 5.3.2), approximately 3.0 to 4.5 log10 differences were observed 

between the RNA copy number (12.39 to 13.51 log10 copies/g) and the titre (9.00 to 

9.8 log10 TCID50/g) of these viruses in the brains of individually infected mice. 

Remarkably, HD50 and AST values could not be obtained for G1-D10 and G1-A16 

viruses when mice were inoculated with the same dose range. Therefore, additional   
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Table 6.3. HD50 and average survival time (AST) values of the passaged variants 

compared to the parental viruses. 

Virus 
Dose  

(Log10 TCID50)  
Mortality 

(%) 
AST 

(days) 
HD50 

(Log10 CID50) 
p-

value* 

Genotype 1 isolates     

G1-P0 0 0/6 (0%) N/A   

G1-P0 1 1/6 (16.7) 7   

G1-P0 2 4/6 (66.7) 7 1.64  

      

G1-C10 0 0/6 (0%) N/A   

G1-C10 1 5/6 (83.3%) 6.6   

G1-C10 2 6/6 (100%) 5.35 0.60 0.225 

      

G1-D10 0 0/6 (0%) N/A   

G1-D10 1 0/6 (0%) N/A   

G1-D10 2 0/6 (0%) N/A   

G1-D10 3 0/6 (0%) N/A   

G1-D10 4 0/6 (0%) N/A   

G1-D10 5 0/6 (0%) N/A   

G1-D10 6 0/6 (0%) N/A >6.0 0.018 

      

G1-A16 0 0/6 (0%) N/A   

G1-A16 1 1/6 (16.7) N/A   

G1-A16 2 0/6 (0%) N/A   

G1-A16 3 0/6 (0%) N/A >4.0 0.028 

G1-A16 4 0/6 (0%) N/A   

      

Genotype 2 Isolates     

G2-P0 2 2/6 (33.3%) 7.5   

G2-P0 3 1/6 (16.7%) 7   

G2-P0 4 2/6 (33.3%) 5 >4.0  

      

G2-C10 2 2/6 (33.3%) 10   

G2-C10 3 2/6 (33.3%) 8   

G2-C10 4 1/6 (16.7%) 6 >4.0 0.423 

      

G2-D10 3 0/6 (0%) N/A   

G2-D10 4 0/6 (0%) N/A   

G2-D10 5 0/6 (0%) N/A   

G2-D10 6 0/6 (0%) N/A >6.0 0.001 

      

G2-A16 3 0/6 (0%) N/A   

G2-A16 4 0/6 (0%) N/A   

G2-A16 5 0/6 (0%) N/A   

G2-A16 6 0/6 (0%) N/A >6.0 0.001 

*.p-values are based on statistical comparison of mice mortalities for the same doses of each virus 

with that of the associated parental virus. A p-value of <0.05 is considered to be significant. 
Numbers in bold indicate statistically significant p-values.  



 
 

197 
 

groups of mice were inoculated with up to 106 TCID50 of G1-D10 and 104 TCID50 of 

G1-A16 viruses (a higher titre was not available for G1-A16). These higher doses 

also did not cause lethal infections, except for one mouse that displayed paralysis in 

both hind legs 7 dpi with 101 TCID50 of G1-A16 (Table 6.3 and Appendix 6.5). Thus, 

although G1 virus passaged in C6/36 cells (G1-C10) showed an unchanged 

(virulence) phenotype compared to that of parental virus (G1-P0), passages in DF1 

cells either sequentially (G1-D10) or alternately (G1-A16) resulted in an attenuated 

phenotype. 

Surviving mice were euthanised 21 dpi and their sera were tested for the presence 

of anti-MVEV antibodies. Almost all mice demonstrated strong seroconversion. 

Only one mouse inoculated with 100 TCID50 (lowest concentration) of G1-A16 did 

not have detectable antibody to MVEV (Appendix 6.8). 

6.3.4.2 G2 Viruses  

Similar to the experiment conducted in Chapter 5 (Section 5.3.2), mice were initially 

inoculated with 102-104 TCID50 of G2-P0 and G2-C10. Inoculation of mice with G2-

C10 resulted in scattered deaths across the dose range, similar to that of G2-P0 

(Table 6.3 and Appendix 6.6). This pattern of mortality is also consistent with that 

observed for the un-cloned G2 laboratory strain OR156 and recent G2 isolate 

K59532, reported in Chapter 5 (Section 5.2.3). Since titres higher than 104 TCID50 

could not be achieved in culture, no higher doses were available for G2-P0 and G2-

C10 viruses to inoculate into mice. Mice that succumbed to infection by G2-P0 and 

G2-C10 displayed comparable viral copy numbers (11.19 to 12.58 log10/g; p=1.00) 

and titres (7.20 to 8.60 log10 TCID50/g; p=0.877) in harvested brains (Appendix 6.7). 

Similar to the results reported in Chapter 5 (Section 5.3.2), no HD50 was achieved 

for G2-P0 and G2-C10. Since higher titres were available for G2-D10 and G2-A16, 

103-106 TCID50 doses were attempted. Surprisingly, no deaths occurred when mice 

were inoculated with these doses of G2-D10 and G2-A16. This contrasts with the 

sporadic pattern of deaths observed for G2-P0 and G2-C10, indicating that G2-D10 

and G2-A16 have a more pronounced attenuation phenotype in mice than G2-P0 
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and G2-C10. As a result, HD50 and AST values could also not be obtained for these 

viruses (Table 6.3).  

Of interest were the clinical signs of disease (loss of weight, and manifestation of 

slightly ruffled fur) at 11 to 13 dpi in 50% of mice inoculated with G2-D10 and G2-

A16 (data not shown). However, these signs of infection only persisted for 24-48 

hours, after which all mice showed a dramatic recovery and survived until the end 

of the experiment. All surviving mice (except two mice that were inoculated with 

the lowest concentration of G2-D10 and G2-A16) demonstrated seroconversions 

(Appendix 6.8). 

6.3.5 Complete Genome Sequencing and Consensus Changes 

In order to examine whether sequential passages of MVE G1 and G2 viruses in a 

single host cell or alternate cycling resulted in nucleotide and amino acid changes, 

the genomes of all viruses were sequenced and compared to their associated 

parental virus.  

6.3.5.1 G1 Viruses 

Table 6.4 summarises the sequencing results of all four G1 viruses. Consistent with 

their phenotypic characterisation, no genetic changes were found in the consensus 

sequence of the complete genome of G1-C10 compared to G1-P0. However, 

nucleotide mutations were observed in the prM, E, NS3 and NS4B genes of G1-D10, 

and the E and NS3 genes of G1-A16. The nucleotide mutations in the prM and NS4B 

genes of G1-D10 were synonymous and did not cause any changes in the encoded 

amino acid sequence. However, two amino acid substitutions in the E protein 

(D390N, and H398Y) and one amino acid substitution in the NS3 protein (A27T) of G1-

D10 were observed. For G1-A16, two nucleotide mutations in the E gene were 

synonymous, whereas one amino acid substitution in the E protein (E308K) and one 

amino acid substitution in the NS3 protein (G477C) were observed. All amino acid 

substitutions were non-conservative. This sequence analysis indicated that 

passaging G1 parental virus in mosquito C6/36 cells preserves the genetic stability 

of this virus. In contrast, sequential passage in avian DF1 cells or alternate cycling  
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Table 6.4. Genetic changes in the passaged viruses of genotype 1 (G1-C10, G1-D10 and G1-A16) compared to their parental virus (G1-P0). 

                 MVE viruses *    

Nt position
†
 G1-P0

‡
 G1-C10

‡
 G1-D10

‡
 G1-A16

‡
 Aa change Location 

◊
 Note 

○
 

737 C - T -  prM  

1259 G - - T  E  

1655 T - - C  E  

1890 G - - A E to K E-308 Non-conservative 

2139 G - A - D to N E-390 Non-conservative 

2163 C - T - H to Y E-398 Non-conservative 

4683 G - A - A to T NS3-27 Non-conservative 

6033 G - - T G to C NS3-477 Non-conservative 

7646 T - C -  NS4B - 
* Dashes denote no changes in the full-length genome sequence 
† Nucleotides are numbered according to the complete genome of MVE-1-51 (NC000943).  

‡ G1-P0: unpassaged; G1-C10: 10 passages in mosquito cells; G1-D10: 10 passages in avian cells; G1-A16: 16 passages alternately between mosquito and avian cells. 

◊ Amino acids are numbered according to the beginning of each individual protein.  

○ Amino acids are categorised as conservative and non-conservative as mentioned in Chapter 2 (Section 2.3.3, Fig. 2.4) 
Nt: nucleotide; Aa: amino acid.
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between mosquito and avian cells led to accumulation of genetic changes in the 

complete genome of G1-P0. The results also suggest that the involvement of 

replication in DF1 cells may have led to the acquisition of mutation in G1 mutants. 

6.3.5.2 G2 Viruses 

Table 6.5 summarises the sequencing results of the G2 viruses. Only one nucleotide 

mutation was found in the complete genome of G2-C10, resulting in a non-

conservative amino acid substitution in the NS4B protein (E253K). In contrast, three 

identical nucleotide mutations were observed in the E, NS2A and NS4B genes of G2-

D10 and G2-A16 when compared to the complete genome of G2-P0. The nucleotide 

mutation in the NS2A gene was synonymous and did not affect the amino acid 

sequence; however, nonsynonymous nucleotide mutations resulted in amino acid 

substitutions in the E protein (E50K) and the NS4B protein (T21I), both of which are 

non-conservative. 

To confirm that the identical mutations in G2-D10 and G2-A16 were authentic and 

not the result of cross contamination, sequencing was repeated using RT-PCR 

amplicons derived from re-extracted viral RNA. In addition, the stage in the 

sequential passages at which mutations occurred was investigated by sequence 

analyses of viruses recovered from selected passages (Table 6.6). For DF1-passaged 

G2 virus (G2-D10), mutations occurred at different stages: G1118A at passage five, 

C3760T at passage three, and C6984T at passage seven. In alternately-passaged G2 

virus (G2-A16), however, all mutations occurred at passage six. Therefore, 

mutations in the two viruses were acquired at different stages of the experiment, 

providing support that the observed mutations were authentic and not result of 

contamination. 

6.3.6 Comparison of Full-Length Genomes of MVE-1-51 and OR156 

Appendix 6.9 shows the observed substitutions in the complete ORF of CDV OR156 

when compared to CDV-1-51. One hundred and nineteen amino acid substitutions 

were observed within all structural (except prM/M) and non-structural proteins. 

These are discussed below (section 6.4). It is notable that substitutions observed in 
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Table 6.5. Genetic changes in the genotype 2 passaged viruses (G2-C10, G2-D10, and G2-A16) compared to their parental virus (G2-P0). 

 

MVE viruses * 

   Nt position † G2-P0
‡
 

G2-C10
‡
 G2-D10

‡
 G2-A16

‡
 Aa change Location 

◊
 Note 

○
 

1118 G - A A E to K E-50 Non-conservative 

3760 C - T T 

 

NS2A   

6984 C - T T T to I NS4B-21 Non-conservative 

7664 G A - - E to K NS4B-253 Non-conservative 

 

For legend please refer to page 22. 

‡ G2-P0: unpassaged; G2-C10: 10 passages in mosquito cells; G2-D10: 10 passages in avian cells; G2-A16: 16 passages alternately between mosquito and avian cells.  
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Table 6.6. Occurrence of mutations during sequential passages of G2-P0 in avian 

DF1 cell (G2-D) or alternate passage between avian DF1 and mosquito C6/36 cells 

(G2-A). 

Passage  

Number 

G2-A 

 

G2-D 

Nucleotide positions * 

 

Nucleotide positions * 

1118 3760 6984 

 

1118 3760 6984 

0 G C C 

 

G C C 

1 

    

 

C 
 

2 

    

 

C 
 

3 

    

G T 
 

4 G C C 

 

G 
  

5 G C C 

 

A T C 

6 A T T 

 

  

C 

7 

    

  

T 

8 A T T 

 

   

9 

    

A T T 

10 

    

A T T 

11 

       12 

       13 

       14 A T T 

    15 

       16 A T T 

     

*.Nucleotide position is according to according to the complete genome of MVE-1-51 (NC000943).  
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the genomes of G1-D10 and G1-A16, associated with an attenuated virulence 

phenotype, were not found in the genomes of OR156 or any of the G2 viruses 

analysed in this study. 

6.4 Discussion 

The aim of this study was to investigate the basis of evolutionary constraints that 

are hypothesised to exist for MVEV by using an experimental approach involving 

sequential or alternate passaging of the virus in mosquito C6/36 cells and avian DF1 

cells, representing vector and reservoir host of MVEV, respectively. In addition, for 

passaged viruses, changes in replicative fitness, adaptation to host cells, mouse 

neuroinvasiveness as well as molecular microevolution underlying observed 

phenotypic changes of MVEV were assessed. This study revealed that sequential 

passage of the parental viruses of both G1 and G2 in mosquito C6/36 cells 

preserved their genetic and phenotypic characteristics. On the other hand, 

passaging parental viruses through avian DF1 cells and alternately between C6/36 

and DF1 cells led to accumulation of mutations which were associated with 

significant differences in their growth kinetics in vitro and neuroinvasiveness in vivo. 

These changes are discussed at genotype level below. 

6.4.1 G1 viruses 

Fig. 6.6 summarises the results of the experimental evolution of G1 of MVEV, 

reported in this chapter. The sequential passage of G1-P0 through mosquito C6/36 

cells did not result in a consensus nucleotide change in the complete genome of the 

virus, nor was its growth kinetics altered in both DF1 and C6/36 cells. This indicates 

that no cell-specific adaption occurred in the virus after ten sequential passages in 

mosquito cells. Furthermore, both viruses exhibited a high virulence phenotype in 

mice with a dose-dependent mortality rate, characteristic of highly virulent strains 

of flaviviruses (Davis et al., 2003b). A lack of genetic and phenotypic changes in G1-

C10 indicates that mosquito C6/36 cells may impose an evolutionary constraint on 

G1 MVEV. This is in accord with DENV studies which revealed that mosquito cells 

preserve the genetic stability of flaviviruses (Chen et al., 2003; Lin et al., 2004; 

Vasilakis et al., 2009). Results also support the findings of Ciota et al. (2009) on 
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Fig. 6.6. Schematic representation of Murray Valley encephalitis virus genotype 1 experimental evolution. 
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SLEV, which demonstrated that the evolutionary conservation of flaviviruses is not a 

result of cycling between invertebrate vector and vertebrate host, but rather it is 

the result of sequential passages separately in either hosts.   

In contrast, the sequential passage of the parental virus in avian DF1 cells (G1-D10), 

and alternate passages between both host cells (G1-A16) resulted in the 

accumulation of mutations in their nucleotide and amino acid sequences, along 

with significantly altered growth kinetics in vitro and virulence in vivo. The 

biological role of many of the mutations observed in these viruses is yet to be 

characterised. For both viruses, mutations were found in the E protein, that are 

likely to be responsible for their attenuation in the mouse model of pathogenesis. 

G1-D10 acquired a D390N mutation in the E protein, which is located in the receptor 

binding RGD motif, involved in cell attachment (Lobigs et al., 1990; Rey et al., 1995). 

Consistent with the virulence phenotype of G1-D10, Lobigs et al. (1990) 

demonstrated that when CDV-1-51 was sequentially passaged ten times in the 

human adrenal cortex carcinoma-derived cell line (SW13 cells), mutations in the 

RGD motif were selected. This mutation caused a reduction in negative charge and 

diminished the acidic property of this motif. In the study reported here, it is also 

likely that adaptation to avian DF1 cell resulted in the acquisition of D390N in the 

RGD motif. Previous studies have demonstrated that this mutation increases the 

binding affinity for glycosaminoglycans (GAGs) on the surface of host cells (Lee and 

Lobigs, 2000, 2002). It was proposed that host tissues containing a high amount of 

GAGs rapidly remove the infectious virus from the blood before it can infect CNS, 

thereby diminishing neuroinvasiveness of the virus (Lee and Lobigs, 2000, 2002). 

The other mutation in the E protein of G1-D10 (H398Y) altered the conserved 

histidine residue that connects domain I and domain III of the E protein (Nybakken 

et al., 2006). Conserved histidine residues are essential for the conformational 

changes of the fusion peptide of the E protein (Roussel et al., 2006). It was 

hypothesised that histidine at position 398 contributes to the formation of 

functionally important salt bridges within the E protein of MVEV (Hurrelbrink and 

McMinn, 2001). Therefore, substitution of the histidine at this position may disrupt 

formation of salt bridges and/or changes the fusion efficiency of the virus with cell 
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membrane. Moreover, the A27T substitution of the G1-D10 NS3 protein is located in 

the serine protease domain, crucial for the cleavage and release of flavivirus non-

structural proteins into the cytoplasm for viral genome replication and translation 

(except NS1; Fig. 1.1A). It is not yet clear that mutation at position 27 of NS3 

enhances or diminishes the proteolytic activity of the NS3 protein. However, in this 

study, A27T substitution may have contributed to the more efficient replication 

kinetics of G1-D10 observed in DF1 cells. Further investigation is required to assess 

the functional role of this and other mutations found for G1-D10. 

The significantly lower replicative ability of G1-D10 in C6/36 cells, combined with its 

higher fitness in DF1 cells compared to G1-P0, suggests that this virus had adapted 

to this cell line during the sequential passaging (Fig. 6.3A and Fig 6.4B). Given the 

observed mutations in the RGD motif of the E protein, a change in receptor usage 

may be a key factor of this adaptation. The adaptation of G1-D10 in DF1 cells is in 

agreement with the theory of cell-specific adaptation, which indicates that 

sequential passages of a virus in a single host increases its fitness in that host, while 

it reduces or does not substantially change the virus fitness in the other host (Ciota 

et al., 2007b).  

The significantly lower replicative ability and titre of G1-A16 compared to G1-P0 in 

both C6/36 and DF1 cells (Fig 6.4) is consistent with the fitness trade-off hypothesis 

which postulates that arboviruses display a lower level of fitness in both hosts 

compared to viruses that specialise to a single host environment (Ciota and Kramer, 

2010; Deardorff et al., 2011). As for G1-D10, non-conservative amino acid 

substitutions in the E (E308K) and NS3 (G477C) proteins were found for G1-A16 (Table 

6.4). The E308K substitution is located on the loop connecting domain I and domain 

III of the E protein (Fig. 2.4). This substitution considerably changes the charge of 

the loop (E is negatively charged while K is strongly positive), which may greatly 

affect the conformation and flexibility of the loop. This may invite speculation that 

E308K may have contributed in reducing the replication kinetics of G1-A16 in both 

C6/36 and DF1 cells. In this regard, Jiang et al. (1993) reported that a substitution at 

position 308 of the E protein of Louping ill virus (Flavivirus, Flaviviridae) was 

associated with the loss of virulence in mice. Moreover, the G477C substitution of 
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the NS3 protein is located on the helicase domain, involved in unwinding dsRNA 

during replication. This substitution may have affected the function of this domain, 

changing the efficiency of this enzyme, contributing to the observed decrease in in 

vitro replication kinetics of G1-A16 and attenuated virulence in mice. Further 

genetic and phenotypic studies may reveal the biological importance of this 

substitution.  

In addition to altered replication kinetics in vitro, G1-D10 and G1-A16 displayed a 

dramatic attenuation when inoculated in 18-day old Swiss ARC mice. This suggests 

that the mutations acquired in these two viruses dramatically attenuated their 

neuroinvasiveness. This is not surprising, since the mutations in the E protein of G1-

D10 (D390N) and G1-A16 (E308K) were previously found to be associated with 

attenuation of the neuroinvasiveness of flaviviruses in mice (Hurrelbrink and 

McMinn, 2001; Jiang et al., 1993; Lee and Lobigs, 2002; Lobigs et al., 1990). It is 

highly likely that altered receptor binding properties may have contributed to the 

attenuated virulence phenotype of G1-D10. 

The results reported here for MVEV G1 viruses contrasts to the experimental 

evolution studies of Jerzak et al. (2007) that involved in vivo passaging of WNV in 

mosquitoes and chickens. Chicken-passed WNV produced similar mortality rates to 

the parental virus, while mosquito-passed WNV strains were less pathogenic than 

the parental virus in mice. The conflicting results may be due to different 

experimental passage conditions (in vitro vs. in vivo) and/or some unique inherent 

as yet unidentified characteristics of these two closely-related flaviviruses. Future in 

vivo passage experiments using relevant vectors and hosts of MVEV may reveal 

whether the experimental strategy used here provides an appropriate model to test 

MVEV evolution in vitro.  

6.4.2 G2 viruses 

Fig. 6.7 summarises the results of experimental evolution study of G2 viruses 

carried out in this chapter. Significantly, consistent with results obtained for G1-C10 

(described above), and those reported in DENV studies (Chen et al., 2003; Lin et al., 

2004; Vasilakis et al., 2009), it appears that sequential passages of G2 parental virus  
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Fig. 6.7. Schematic representation of Murray Valley encephalitis virus genotype 2 experimental evolution. 
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in mosquito C6/36 cells did not significantly alter the genetic and phenotypic 

characteristics of the virus, supporting the hypothesis that passaging MVEV in 

mosquito cells preserves both genetic and phenotypic characteristics of the virus. 

Consistent with the results for G2-P0, as well as the laboratory strain of OR156 and 

the recent G2 isolate (K59532) reported in Chapter 5 (Section 5.3.2), scattered 

mortalities occurred when mice were inoculated with different doses of this virus.  

This pattern of mortalities in the mouse model of pathogenesis is characteristic of 

low virulent strains and has been found in other flaviviruses (Beasley et al., 2002; 

Beasley et al., 2005; Hurrelbrink and McMinn, 2001; Lobigs et al., 1988; Lobigs et al., 

1990; Monath et al., 1980; Prow et al., 2011; Shirato et al., 2004). Therefore, G2-P0 

and G2-C10 were classified as low virulent viruses.  

In the growth kinetics analysis, similar to G1-D10, G2-D10 displayed a cell-specific 

adaptation (lower replicative ability in C6/36 cells, but higher replicative fitness in 

DF1 cells), suggesting that during the sequential passages in DF1 cells, MVEV strains 

belonging to both genotypes, adapt to these cells. Considering the titres of each 

sequential passage (Fig. 6.3), it appears that this adaptation occurred after four 

passages. The observation of identical nucleotide mutations in G2-D10 and G2-A16, 

suggests it is passaging in avian DF1 cells, either sequentially or alternately with 

C6/36 cells, that leads to accumulation of genetic and phenotypic changes in MVEV. 

In contrast, and unlike G1 viruses, the result of the G2 in vitro growth kinetics is not 

in accord with the fitness trade-off hypothesis. Although the initial stages of 

replication dynamics of G2-A16 were lower than G2-P0 and G2-C10 in C6/36 cells, at 

the later stages (>48 hpi), the titre of G2-A16 was comparable or higher than G2-

C10. Several other studies also concluded that there is not enough support that 

cycling imposes a fitness trade-off (Ciota and Kramer, 2010; Vasilakis et al., 2009). 

According to Ciota and Kramer (2010), arboviruses have different capabilities to 

adapt to both host cell environments with no or minimal change in the alternating 

environment due to differences in host utilisation, genome organisation, the size of 

mutant swarm and quasispecies, and the routes and mechanism of transmission. 

Furthermore, the accumulated mutations in G2-D10 and G2-A16 were found to be 

associated with further attenuation of these viruses in mice. The observed 
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mutations in the E and NS4B proteins of G2-D10 and G2-A16 have not previously 

been associated with phenotypic changes, and their potential biological significance 

is not yet clear. However, the E50K mutation in the E protein is in close proximity to 

position 52, which resides at the polar interface that links domain I and domain II of 

the E protein (Hurrelbrink and McMinn, 2001). Mutation at this position of JEV 

(Hasegawa et al., 1992) and YFV (Schlesinger et al., 1996) has been associated with 

low neuroinvasiveness in mice. Further investigation is required to assess the 

functional effect of residue E50K on this interface. 

Taken together, the results of the in vivo experiments in this study support the 

findings of other studies on molecular determinants of flavivirus virulence. Many 

studies have associated a small number of mutations in the flavivirus genome with a 

loss of virulence in mice (Hurrelbrink and McMinn, 2001; Liu et al., 2006b; May et 

al., 2006; McMinn et al., 1995; McMinn et al., 1996; Prow et al., 2011; Wicker et al., 

2006; Ye et al., 2012). Moreover, this study did not find any apparent correlation 

between cytopathicity and replication dynamics of G1-D10 and G1-A16 in vitro and 

their virulence in vivo. Both these viruses demonstrated relatively efficient growth 

kinetics in cell culture while in the mouse model of pathogenesis, they 

demonstrated a dramatic attenuation. A similar pattern was seen in the MVEV 

studies carried out by Lobigs et al. (1990) and Hurrelbrink and McMinn (2001). In 

these studies, the authors reported that mutant viruses had adequate replication 

dynamics in cell culture while they were significantly attenuated in mice.  

Alignment of the clone-derived viruses of G1 (CDV-1-51) and G2 (CDV OR156), 

revealed 119 amino acid differences scattered through the coding region of both 

viruses. The roles of most of these substitutions have not yet been characterised. 

However, OR156 encodes a substitution at position 126, which is located on the 

surface of the E protein on domain II. A study on DENV-2, revealed that a 

substitution at this position is associated with the loss of neurovirulence in mice 

(Gualano et al., 1998). OR156 also exhibits two substitutions in the flexible hinge 

region (S275T and S276G) of the E protein. As mentioned above, substitutions in 

this region can reduce hinge flexibility, and fusion efficiency with the plasma 

membrane, leading to the loss of virulence in mice (Hurrelbrink and McMinn, 2001; 
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May et al., 2006; McMinn et al., 1995; Prow et al., 2011). Moreover, the T157S 

substitution in the E protein of CDV OR156 is adjacent to the glycosylation site of 

flaviviruses (154-156). Previous research has revealed that substitution at the 

glycosylation site of flaviviruses are associated with a loss of neurovirulence (Pletnev 

et al., 1993) and neuroinvasiveness (Beasley et al., 2005; Chambers et al., 2008; 

Prow et al., 2011) in mice. Further research is needed to reveal if the substitution at 

position 157 impacts on the functionality of the glycosylation site too. Similarly, 

there are two mutations just adjacent to position 368 of the E protein in the CDV 

OR156 (A367V and A369S). Position 368 of the E protein is also a molecular 

determinant of flavivirus virulence, with substitutions at this position shown to 

significantly decrease the neuroinvasiveness of TBEV in mice (Holzmann et al., 

1997). Further genetic and phenotypic studies are also needed to determine if 

substitutions at positions 367 and 369 are also associated with any phenotypic 

changes. In the non-structural protein, substitutions at position 106 (A106V) and 

107 (I107V) of the NS3 protein of OR156 are next to position 105 of this protein. Ni 

et al. (1995) demonstrated that substitution in the latter position is associated with 

loss of neurovirulence in wild-type JEV SA14. The roles of other substitutions in the 

non-structural proteins of CDV OR156 compared to CDV-1-51 have not as yet been 

characterised. Taken together, it can be speculated that the sum effect of these 

molecular differences between MVE-151 and OR156 may account for the difference 

observed in virulence phenotype. 

6.5 Conclusion 

Altogether, results from this in vitro study suggest that genetic stability of MVEV is 

not the result of host cycling. The evidence of the existence of a significant fitness 

trade-off in both MVEV genotypes following alternate mosquito-avian cell passage 

was also not found. Contrary to the hypothesis tested, but consistent with DENV 

studies (Chen et al., 2003; Vasilakis et al., 2009), passaging parental virus through 

mosquito cells preserves both genetic and phenotypic characteristics of MVEV, 

whereas passaging it through avian cells and alternating cycles changed these 

characteristics. Taken together, the evolution of MVEV seems to be driven by 

alternating replication in mosquito cells, where purifying selection is strong, and in 
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avian cells in which purifying selection appears to be relaxed. Several associated 

mutations affecting MVEV replication in cell culture and virulence in mice were also 

identified, which may serve as a basis for further mutagenesis study.  

In conclusion, arbovirus evolution studies produced conflicting conclusion regarding 

the effect of cycling on viral genetic stability and fitness. Further studies especially 

experimental in vivo passage studies may shed light and broaden our knowledge on 

the effect of cycling on evolutionary conservation and the phenotypic characteristics 

of flaviviruses. With the new advances in reverse genetics and mutagenesis, the 

biological role of each individual mutation observed in this study can be identified. 
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MVEV is the most important encephalitogenic arbovirus in Australia. The virus has 

shown intermittent increases in activities in recent years. For the first time since 

1974, human MVE cases were reported in the southern and south-eastern states of 

Australia in 2011 (Knox et al., 2012). This outbreak was also associated with 

widespread seroconversion in sentinel chicken flocks and considerable mortality in 

humans (Knox et al., 2012) and horses (Mann et al., 2013; Roche et al., 2013). This 

highlighted the importance of surveillance programs for prediction of MVEV 

activity. In this regard, the MVEV-specific RT-qPCR assay reported in Chapter 3 may 

be a useful diagnostic tool for the detection and quantification of MVEV. 

Application of the MVEV-specific RT-qPCR assay, reported herein, in the research 

laboratory or in surveillance and clinical settings, has the advantage of comparably 

high efficiency, sensitivity and specificity for the amplification of viral RNA from all 

MVEV genotypes (Tables 3.3, and 3.5). Therefore, it is expected that this assay will 

enable detection of G2 MVEV as well as possible circulation of G3 and G4 in 

Australasian region. 

Prior to this study, only five G2 isolates of MVEV had been identified up to 1995 

(Johansen et al., 2007; Liehne et al., 1976), all from the Kununurra district of the 

Kimberley region in WA. It should be noted that prior to the work presented in 

Chapter 2 of this thesis, only representative MVEV isolates from each year were 

sequenced as part of molecular epidemiological studies of MVEV isolates from WA 

(Johansen et al., 2007; Lobigs et al., 1986; Williams et al., 2013). Thus, an accurate 

distribution of MVEV genotypes had not been properly elucidated. A primary aim of 

this thesis was to perform genotyping by sequencing a partial E gene fragment of all 

MVEV strains isolated between 2005 and 2009, in order to accurately estimate the 

prevalence and distribution of different MVEV genotypes. The main finding of this 

study was the detection of four new G2 isolates from the Kimberley region (Fig. 2.2 

and Appendix 2.1). Significantly, these isolates were found for the first time outside 

of the Kununurra district, in Fitzroy Crossing (2006 and 2009) and Broome (2006), 

and extended the known geographic range of G2 viruses by approximately 600km 

west of Kununurra. 
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NGS technology revealed that G1 viruses exist as highly genetically heterogeneous 

populations in vector mosquitoes, while G2 viruses exhibited a more homogeneous 

genetic structure (Table 4.2). Higher levels of genetic diversity and complexity of 

virus populations can directly affect replication, pathogenicity and virulence (Ciota 

et al., 2012; Ciota et al., 2007c; Jerzak et al., 2007; Lancaster and Pfeiffer, 2012; 

Perales et al., 2010; Vignuzzi et al., 2006). Therefore, the low level of genetic 

diversity in G2 viruses may have contributed to its inability to spread and adapt to 

new environments, outside the Kimberley region. However, the level of genetic 

diversity is higher in G1a viruses than those of G1b, which is inconsistent with the 

hypothesis that higher genetic diversity may correlate with superior transmission. 

Therefore, other as yet un-identified factors such as biodiversity of mosquito 

vectors and reservoir hosts may contribute to these relative distributions.  

Mutagenesis studies have also revealed that altering the natural level of genetic 

diversity in a viral population (both increasing or decreasing) significantly reduces 

the viral cytopathicity and virulence in mice (Coffey et al., 2011; Perales et al., 2011; 

Pfeiffer and Kirkegaard, 2005; Vignuzzi et al., 2006; Vignuzzi et al., 2008). For 

example, G64S variant of poliovirus encodes a high fidelity polymerase, generating a 

less genetically diverse viral population (Pfeiffer and Kirkegaard, 2005). Unlike the 

wild-type viruses, the high-fidelity variant was not able to invade the CNS of mice 

(Pfeiffer and Kirkegaard, 2005). When the level of genetic diversity was expanded 

by mutagenesis and reverse genetics, the pathogenicity and virulence of the virus 

was restored (Borderia et al., 2011). Therefore, intra-population genetic diversity 

and the complexity of mutation spectra are hidden virulence determinants of 

replication and pathogenesis in RNA viruses. Unfortunately, due to the availability 

of very small volumes of mosquito homogenates from the samples analysed by 

NGS, a direct comparison of the level of genetic diversity, observed in Chapter 4, 

with the associated in vitro and in vivo phenotypes could not be performed. Instead, 

viruses isolated from tissue culture were used. 

In addition to virological properties influencing the restricted geographic range, 

competition for vectors and hosts by G1 may also play a significant role. Since G1 

MVEV is predominant [67 of the 71 (94.4%) isolates sequenced in this study] and is 
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associated with large epizootics (Broom, 2003; Broom et al., 2002a; Broom et al., 

2002b; Mann et al., 2013), it is plausible that a substantial number of vertebrate 

reservoir hosts have protective antibodies against this genotype. Hence, the 

presence of cross-reacting antibodies against G2 may have a significant impact on 

reducing the levels of amplification in reservoir hosts and the activity of the G2 

viruses. Moreover, as detailed in Chapter 4, a number of G2 viruses were found to 

contain lower concentrations of viral genome in two mosquito vectors (Cx. 

annulirostris and Cx. pullus; Table 4.2), relative to G1 viruses. This may indicate that 

vector competence of these two Culex species is substantially lower for G2 viruses 

than for G1 viruses. Research on vector competence of Cx. annulirostris for MVEV 

has only been reported for G1 isolates (Kay et al., 1989). Further investigation of 

this kind is required to investigate the vector competence of Culex mosquitoes for 

G2 viruses. Furthermore, considering the proposition that it is unlikely that all likely 

hosts of MVEV are fully elucidated (P. Neville 2012; personal communication), it is 

possible that a distinct vertebrate reservoir host(s) exists for G2 viruses, which may 

not be as abundant in nature as those of G1, or is not a preferred source for Culex 

vectors. G2 MVEVs may also not replicate as efficiently as G1 in reservoir hosts and 

do not produce a sufficiently high level of viraemia required for efficient 

transmission. 

Finally, infection of mosquito vectors with G1 viruses may exclude superinfection 

with G2 viruses. Previously, this phenomenon has been postulated to be 

responsible for interfering and suppressing secondary infection with the same or 

closely-related viruses (Folimonova, 2012; Hobson-Peters et al., 2013; Ramírez et 

al., 2010; Zou et al., 2009). Superinfection exclusion has been previously observed in 

flaviviruses such as WNV (Zou et al., 2009), SLEV (Randolph and Hardy, 1988), DENV 

(Pepin et al., 2008) and between PCV and MVEV/KUNV (Hobson-Peters et al., 2013). 

It has been shown that the primary infecting virus competes for or modifies cellular 

factors that are responsible for virus entry and RNA replication (Folimonova, 2012; 

Lee et al., 2005; Ramírez et al., 2010; Zou et al., 2009). Therefore, a primary 

infection of mosquito vectors by MVEV strains of the most prevalent genotype (G1) 

may further contribute to reduced levels of activity observed for G2 viruses. In vitro 
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experimental approaches using mosquito cell lines such as the C6/36 clone, or in 

vivo in Culex species of mosquitoes will be needed to address this possibility. 

Similarly, a prior infection of reservoir hosts with G1 viruses may exclude the 

secondary infection with G2 viruses. Co-infection studies involving infection of 

animal reservoir hosts by both G1 and G2 will address this question too. 

Potential molecular determinants of MVEV virulence and/or attenuation were 

explored in this study. Significantly, the prM protein of OR156 did not show any 

amino acid differences to that of MVE-1-51, indicating that this protein is unlikely to 

be under selection or influence transmission and pathogenesis. In contrast, the E 

protein of OR156 demonstrated 26 amino acid substitutions (including two 

substitutions in the flexible hinge region) that are highly likely to be involved in the 

attenuation of G2. Similarly a high number of mutations were observed in the NS 

proteins of OR156 that may also contribute to the attenuation phenotype, affecting 

replication, translation, assembly and production of G2 MVE viruses. However, due 

to an abundance of mutations throughout the NS proteins, a specific mutation 

could not be reliably associated with attenuation of G2 MVEV strains. A 

mutagenesis and reverse genetics approach may be undertaken in future studies 

using the pMVE-1-51 infectious clone, allowing defined gene swaps, followed by 

site-directed mutagenesis to define the attenuating determinants of G2. In addition, 

results reported in Chapter 6 identified other molecular determinants that may 

have contributed to the attenuation of neuroinvasiveness in mice observed for DF-

1-passaged, and alternately-passaged viruses (Table 6.4 and 6.5). The biological 

importance of these mutations has not yet been investigated. Site-directed 

mutagenesis and reverse genetic studies employing pMVE-1-51 (Hurrelbrink et al., 

1999) could be undertaken to address the effect of the observed mutations in G1-

D10 and G1-A16.  

Results reported in Chapter 2 of this thesis support the hypothesis that MVEV has 

undergone restricted genetic diversity over time. A maximum of 5.7% nucleotide 

differences were observed within consensus sequences of G1 strains isolated 

between 1951 and 2011, while a maximum of 3.3% nucleotide variation was found 

within G2 strains isolated from 1973 to 2009 (Table 2.6). An experimental evolution 
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study, using a cell culture approach, was carried out to examine the evolutionary 

constraints imposed by sequential passaging or cycling of MVEV in mosquito and/or 

avian cells. Genetic diversity was characterised by sequencing the consensus 

sequence of the complete genome of each passaged virus using conventional 

sequencing. Results indicated that contrary to the general belief for arboviruses, 

genetic conservation of MVEV is not a result of cycling between invertebrate 

vectors and vertebrate hosts. Instead, the evolutionary stasis appears to be driven 

by virus passage in mosquito C6/36 cells (Figs. 6.4, and 6.5 and Tables 6.3, 6.4, and 

6.5). These results are in accord with studies on DENV (Chen et al., 2003; Vasilakis et 

al., 2009) and SLEV by Ciota et al. (2009) reporting that passage of these viruses in 

mosquito cells preserved their genetic and phenotypic characteristics. Consistent 

with this, sequential passage of MVEV in avian DF1 cells or alternately between 

C6/36 and DF1 cells was found to result in accumulation of consensus mutations, 

associated with significant differences in virus growth kinetics in cell culture and 

virulence in mice. 

Although no changes in the consensus genome sequence were observed for virus 

derived from passage in mosquito cells (G1-C10), this virus was found to have a 

more pronounced neuroinvasive phenotype, with approximately ten-fold lower 

HD50, and a shorter AST compared to parental G1-P0 (Table 6.3; statistically not 

significant). In this regard, the depth of genetic diversity and complexity of mutation 

spectra may have increased during the sequential passages in C6/36 cells. Research 

has shown that when a clonal population of RNA viruses or even a single infectious 

particle is used to infect an animal or cell culture, it quickly transforms into an 

ensemble of multiple related variants to generate a quasispecies (Biebricher and 

Eigen, 2006; Domingo et al., 2001; Lauring and Andino, 2010; Perales et al., 2010). 

Supporting this hypothesis, Ciota et al. (2007c) revealed that sequential passage of 

clone-derived WNVs in mosquito C6/36 cells resulted in a linear increase in the 

intra-population genetic diversity. The authors suggested that increases in fitness, 

adaptation and replicative ability were not only due to the consensus changes in the 

genome of the virus, but were directly associated with the size of the mutant 

swarm. In the case of G1-C10, ten sequential passages in C6/36 cells may have 
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produced multiple minority yet phenotypically-important variants, which could not 

be detected by the Sanger sequencing, but may have altered neuroinvasiveness of 

this virus in mice. NGS technology could help characterise the depth of genetic 

diversity in the G1-C10 population, but due to constraints in time and resources, 

this analysis was not carried out as part of the investigations of this thesis. 

Taken together, the results and findings of this thesis reveal important insights into 

the genetic and phenotypic diversity of MVEV and how this virus may evolve. In 

particular, clear differences were observed in the level of inter- and intra-

population genetic diversity as well as virulence phenotype between the dominant 

genotype (G1) and the minority (G2). G2 MVEV continues to circulate in the 

Kimberley region of WA, beyond its previously known geographic range of 

Kununurra, and accounted for approximately 5% of all isolates over the study 

period. The intra-population genetic diversity and mutation spectra were also found 

to be significantly lower in G2-infected mosquito samples than those of G1, 

indicating the existence of a highly homogeneous population for G2 viruses. The 

major phenotypic difference found between G1 and G2 viruses was 

neuroinvasiveness in mice, with G1 showing a virulence phenotype and G2 an 

attenuated one. Although differences were observed in genetic diversity between 

viruses belonging to G1a and G1b, both had a virulent phenotype in mice. Results 

obtained from this thesis have led to the proposal that the lower level of genetic 

diversity in G2 viruses is a contributing factor for their geographic restriction in the 

Kimberley region of WA. In addition, this thesis identified several molecular 

determinants of MVEV adaptation, replication and virulence, the roles of some of 

which have already been characterised. Finally, experimental evolution studies in 

cell culture indicated that the observed genetic conservation of MVEV may be 

maintained by alternating cycles between mosquito cells, where purifying selection 

appears to be strong and avian cells, in which purifying selection is relaxed.   
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Appendix 1.1: Members of the genus Flavivirus. 

1. TICK-BORNE VIRUSES 

 

Mammalian tick-borne virus group 

  

Gadgets Gully virus (GGYV) 

   

Gadgets Gully virus (GGYV) 

  

Kyasanur Forest disease virus (KFDV) 

   

Kyasanur Forest disease virus (KFDV) 

   

Alkhumra haemorrhagic fever virus (AHFV) 

  

Langat virus (LGTV) 

   

Langat virus (LGTV) 

  

Louping ill virus (LIV) 

   

British subtype (LIV-Brit) 

   

Irish subtype (LIV-Ir) 

   

Spanish subtype (LIV-Spain) 

   

Turkish sheep encephalitis virus subtype (TSEV) 

   

Greek goat encephalitis virus subtype (GGEV) 

  

Omsk hemorrhagic fever virus (OHFV) 

   

Omsk hemorrhagic fever virus (OHFV) 

  

Powassan virus (POWN) 

   

Powassan virus (POWN) 

  

Royal Farm virus (RFV) 

   

Royal Farm virus (RFV) 

  

Tickborne encephalitis virus (TBEV) 

   

European subtype (TBEV-Eu) 

   

Far Eastern subtype (TBEV-FE) 

   

Siberian subtype (TBEV-Sib) 

 

Seabird tick-borne virus group (probably tick-borne) 

  

Meaban virus (MEAV) 

   

Meaban virus (MEAV) 

  

Saumarez Reef virus (SREV) 

   

Saumarez Reef virus (SREV) 

  

Tyuleniy virus (TYUV) 

   

Tyuleniy virus (TYUV) 

 

Kadam virus group 

  

Kadam virus (KADV) 

   

Kadam virus (KADV) 
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Appendix 1.1. Continued. 

2. MOSQUITO-BORNE VIRUSES 

 

Aroa virus group 

  

Aroa virus (AROAV) 

   

Aroa virus (AROAV) 

   

Bussuquara virus (BSQV) 

   

Iguape virus (IGUV) 

   

Naranjal virus (NJLV) 

 

Dengue virus group 

  

Dengue virus (DENV) 

   

Dengue virus 1 (DENV-1) 

   

Dengue virus 2 (DENV-2) 

   

Dengue virus 3 (DENV-3) 

   

Dengue virus 4 (DENV-4) 

 

Japanese encephalitis virus group 

  

Cacipacore virus (CPCV) 

   

Cacipacore virus (CPCV) 

  

Japanese encephalitis virus (JEV) 

   

Japanese encephalitis virus (JEV) 

  

Koutango virus (KOUV) 

   

Koutango virus (KOUV) 

  

Murray Valley encephalitis virus (MVEV) 

   

Alfuy virus (ALFV) 

   

Murray Valley encephalitis virus (MVEV) 

  

St. Louis encephalitis virus (SLEV) 

   

St. Louis encephalitis virus (SLEV) 

  

Usutu virus (USUV) 

   

Usutu virus (USUV) 

  

West Nile virus (WNV) 

   

Kunjin virus (KUNV) 

   

West Nile virus (WNV) 

  

Yaounde virus (YAOV) 

   

Yaounde virus (YAOV) 

 

Kokobera virus group  

  

Kokobera virus (KOKV) 

  

                     Kokobera virus (KOKV) 

  

                     Stratford virus (STRV) 
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Appendix 1.1. Continued. 

 

Ntaya virus group 

  

Bagaza virus (BAGV) 

   

Bagaza virus (BAGV) 

  

Ilheus virus (ILHV) 

   

Ilheus virus (ILHV) 

   

Rocio virus (ROCV) 

  

Israel turkey meningoencephalitis virus (ITV) 

   

Israel turkey meningoencephalitis virus (ITV) 

  

Ntaya virus (NTAV) 

   

Ntaya virus (NTAV) 

  

Tembusu virus (TMUV) 

   

Tembusu virus (TMUV) 

  

Zika virus (ZIKV) 

   

Zika virus (ZIKV) 

 

Yellow fever virus group 

  

Sepik virus (SEPV) 

   

Sepik virus (SEPV) 

  

Wesselsbron virus (WESSV) 

   

Wesselsbron virus (WESSV) 

  

Yellow fever virus (YFV) 

   

Yellow fever virus (YFV) 

PROBABLY MOSQUITO-BORNE 

 

Kedougou virus group 

  

Kedougou virus (KEDV) 

   

Kedougou virus (KEDV) 

 

Edge Hill virus group 

  

Banzi virus (BANV) 

   

Banzi virus (BANV) 

  

Bouboui virus (BOUV) 

   

Bouboui virus (BOUV) 

  

Edge Hill virus (EHV) 

   

Edge Hill virus (EHV) 

  

Jugra virus (JUGV) 

   

Jugra virus (JUGV) 

  

Saboya virus (SABV) 

   

Potiskum virus (POTV) 

   

Saboya virus (SABV) 

  

Uganda S virus (UGSV) 

   

Uganda S virus (UGSV) 
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Appendix 1.1. Continued. 

3. VIRUSES WITH NO KNOWN ARTHROPOD VECTOR (NKV) 

 

Entebbe bat virus group 

  

Entebbe bat virus (ENTV) 

   

Entebbe bat virus (ENTV) 

   

Sokoluk virus (SOKV) 

  

Yokose virus (YOKV) 

   

Yokose virus (YOKV) 

 

Modoc virus group 

  

Apoi virus (APOIV) 

   

Apoi virus (APOIV) 

  

Cowbone Ridge virus (CRV) 

   

Cowbone Ridge virus (CRV) 

  

Jutiapa virus (JUTV) 

   

Jutiapa virus (JUTV) 

  

Modoc virus (MODV) 

   

Modoc virus (MODV) 

  

Sal Vieja virus (SVV) 

   

Sal Vieja virus (SVV) 

  

San Perlita virus (SPV) 

   

San Perlita virus (SPV) 

 

Rio Bravo virus group  

  

Bukalasa bat virus (BBV) 

   

Bukalasa bat virus (BBV) 

  

Carey Island virus (CIV) 

   

Carey Island virus (CIV) 

  

Dakar bat virus (DBV) 

   

Dakar bat virus (DBV) 

  

Montana myotis leukoencephalitis virus (MMLV) 

   

Montana myotis leukoencephalitis virus (MMLV) 

  

Phnom Penh bat virus (PPBV) 

   

Batu cave virus (BCV) 

   

Phnom Penh bat virus (PPBV) 

  

 

Rio Bravo virus (RBV) 

   

Rio Bravo virus (RBV) 

TENTATIVE SPECIES IN THE GENUS (not approved) 

 

Mammalian tick-borne viruses 

  

Karshi virus (KSIV) 

 

Mosquito-borne viruses 

  

Spondweni virus (SPOV) 
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Appendix 1.1. Continued. 

 

Probably arthropod-borne viruses 

  

Aedes flavivirus (AEFV) 

  

Cell fusing agent virus (CFAV) 

  

Culex flavivirus (CXFV) 

  

Kamiti River virus (KRV) 

  

Nakiwogo virus (NAKV) 

  

Quang Binh virus (QBV)  

 

Viruses with no known arthropod vector 

  

Chaoyang virus (CHAOV) 

  

Lammi virus (LAMV) 

  

Ngoye virus (NGOV) 

  

Nounané  virus (NOUV) 

  

Tamana bat virus (TABV) 

 

The main groups are typed in bold UPPERCASE, subgroups are in bold lowercase; 

species names are in italics; the names of viruses are in normal script. 

The main groups are typed in bold capital scripts, subgroups are in bold lower case; species names 

are in italics; the subtype of each species is in normal script under each species name. 

Adapted from (Simmonds et al., 2012). 
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A.   

 

 

 

  

 P9771/WA-Newman/2009 (CA) 
 K68260/WA-Halls_Creek/2009 (CA) 
 K69051/WA-Kununurra/2009 (CP) 
 K68320/WA-Billiluna/2009 (CA) 
 K69485/WA-Kununurra/2009 (CP) 

 K67234/WA-Parry's Lagoon/2008 (CA) 
 K69052/WA-Kununurra/2009 (CP) 
 P9904/WA-Newman/2009 (CA) 

 K69521/WA-Kununurra/2009 (CP) 
 P9781/WA-Newman/2009 (CA) 

 K66339/WA-Kununurra/2008 (CA) 
 P9950/WA-Newman/2009 (CA) 
 K68463/WA-Wyndham/2009 (CA) 

 K67235/WA-Parrys_Lagoon/2008 (CA) 
 P9978/WA-Newman/ (C) 
 P9929/WA-Newman/2009 (CA) 

 K68834/WA-Kununurra/2009 (CA) 
 K70310/WA-Broome/2009 (CA) 

 K68439/WA-Wyndham/2009 (CA) 
 P9783/WA-Newman/2009 (CA) 
 K68211/WA-Geikie_Gorge/2009 (AM) 

 K69016/WA-Kununurra/2009 (CA) 
 K66298/WA-Kununurra/2008 (CP) 
 K69612/WA-Kununurra/2009 (CP) 

 K69381/WA-Kununurra/2009 (CP) 
 K68473/WA-Wyndham/2009 (CA) 

 P9943/WA-Newman/2009 (CA) 
 P9765/WA-Newman/2009 (CA) 
 P9833/WA-Newman/2009 (CA) 
 P9883/WA-Newman/2009 (CA) 

 P9831/WA-Newman/2009 (CA) 
 K68970/WA-Kununurra/2009 (CA) 

 K69155/WA_Kununurra/2009 (CP) 
 P9937/WA-Newman/2009 (CA) 
 K69474/WA-Kununurra/2009 (CA) 
 P9808/WA-Newman/2009 (CA) 

 K67238/WA-Parry's Lagoon/2008 (CA) 
 P9705/WA-Port Hedland/2009 (CA) 

 K67517/WA-Willare/2008 (CA) 
 K69211/WA-Kununurra/2009 (CA) 

 611W/WA-Kununurra/2008 (HB) 
 P9946/WA-Newman/2009 (CA) 
 K67259/WA-Parry's Lagoon/2008 (CA) 
 K67317/WA-Parrys_Lagoon/2008 (CA) 

 K67812/WA-Broome/2008 (CA) 
 P9753/WA-Newman/2009 (CA) 

 K69679/WA-Kununurra/2009 (CA) 
 P9652/WA-Port_Hedland/2009 (CA) 
 K68838/WA-Kununurra/2009 (CA) 

 PNG6910/PNG/1998 (CS) 
 PNG6523/PNG/1998 (CS) 

Genotype 1a 

 MVE_1-51/VIC-Mooroopna/1951 (HB) 
 TC123130/Culgoa-VIC/1974 (HB) 

 K50609/WA-Billiluna/2003 (AN) 
 K16963/WA-Billiluna/1994 (CA) 

 T69/NA/1969 (HB) 
 OR2/WA-Kununurra/1972 (CA) 
 18403C/QLD-Cape York Peninsula/1996 (CA) 

 OR1109/WA-Kununurra/1977 (CA) 
 PH491/WA-Newman/1981 (CA) 

 OR155/WA-Kununurra/1973 (CA) 

 Genotype 1b 

 Genotype 4 
 Genotype 3 

 Genotype 2 

Intermediate lineages 
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B.   

  

 Genotype 1a 

 MVE_1-51/VIC-Mooroopna/1951 (HB) 
 TC123130/Culgoa-VIC/1974 (HB) 

 K50609/WA-Billiluna/2003 (AN) 
 K16963/WA-Billiluna/1994 (CA) 

 T69/NA/1969 (HB) 
 OR2/WA-Kununurra/1972 (CA) 
 18403C/QLD-Cape York Peninsula/1996 (CA) 

 OR1109/WA-Kununurra/1977 (CA) 
 PH491/WA-Newman/1981 (CA) 

 OR155/WA-Kununurra/1973 (CA) 
 K5686/WA-Kununurra/1989 (CA) 

 K47457/WA-Derby/2001 (CA) 
 K41994/WA-Billiluna/2000 (CA) 

 CY1189/QLD-Cape York Peninsula/1999 (CS) 
 K36687/WA-Kununurra/1999 (CA) 

 GUOO19/QLD-Normanton/2000 (CA) 
 P9990/WA-Newman/2009 (CA) 
 P9777/WA-Newman/2009 (C) 
 P9986/WA-Newman/2009 (CA) 

 145694/NSW-Leeton/2008 (CA) 
 v11-10_mvev/VIC-Callawadda/ 2011 (EB) 
 145507/NSW-Griffith/2008 (CA) 

 08-154300/QLD-Monto/2008 (EB) 
 P8891/WA-Karratha/2006 (AN) 
 K61375/WA-Derby/2006 (CA) 
 P8372/WA-Newman/2006 (CA) 
 P8400/WA-Newman/2006 (AA) 

 K62899/WA-Kununurra/2007 (CA) 
 K61396/WA-Derby/2006 (CA) 
 K60748/WA-Wyndham/2006 (CA) 
 K61299/WA-Kununurra/2006 (CA) 
 K59582/WA-Fitzroy_Crossing/2006 (CA) 
 K60555/WA-Kununurra/2006 (CA) 
 K60365/WA-Kununurra/2006 (CA) 

 K60119/WA-Halls_Creek/2006 (AM) 
 K56445/WA-Parry's Creek/2005 (CA)  
 K68150/WA-Fitzroy_Crossing/2009 (CA) 

 145705/NSW-Leeton/2008 (CA) 
 P9754/WA-Newman/2009 (CA) 

 P9901/WA-Newman/2009 (CA) 
 P9749/WA-Newman/2009 (CA) 

 145649/NSW-Griffith/2008 (CA) 
 P9862/WA-Newman/2009 (CA) 
 P9992/WA-Newman/2009 (CA) 

Genotype 1b 

 Genotype 4 
 Genotype 3 

 Genotype 2  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Intermediate lineages 
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C.  

 

Appendix 2.1. Neighbour Joining phylogeneitic tree constructed using partial E gene 

sequences 

Four genotypes are clearly identified (Genotype 1 to Genotype 4). Genotype 1 is further classified as 

genotype 1a and 1b. Genotypes 1b, 2, 3 and 4 are collapsed in (A). Genotypes 1a, 2, 3 and 4 are 

collapsed in (B). Genotype 1 is collapsed in (C). Numbers above the internal nodes are the bootstrap 

support values from 1000 replicates. The scale represents 0.02 substitutions per nucleotide site. WA: 

Western Australia; NSW: New South Wales; VIC: Victoria; QLD: Queensland; PNG: Papua New 

Guinea; NA: Northern Australia; CA: Cx. annulirostris; CP: Cx. pullus; CS: Cx. sitiens group; CX: Mixed 

culicine; C: Culex species (damaged); AM: Aedes (Macleaya) species; AN: Aedes normanensis; AB: 

Anopheles bancroftii; AA: Anopheles amictus; HB: Human Brain; EB: Equine brain;  

  indicates the isolates that were sequenced in this study.  

  

 Genotype 1 

Genotype 4  NG156/PNG/1956 (HB) 

Genotype 3  MK6684/PNG/1966 (C) 
 OR156/WA-Kununurra/1973 (CA) 

 K109/WA-Kununurra/1986 (CA) 
 K6521/WA-Kununurra/1991 (AB) 
 K6454/WA-Kununurra/1991 (CA) 

 K21413/WA-Kununurra/1995 (CP) 
 K68196/WA-Fitzroy_Crossing/2009 (CA) 

 K59532/WA-Fitzroy_Crossing/2006 (CA) 
 K62017/WA-Broome/2006 (CA) 
 K59536/WA/Fitzroy Crossing/2006 (CP) 

Genotype 2 
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A.   

 Genotype 1b 

 PH491/WA-Newman/1981 (CA) 
 OR1109/WA-Kununurra/1977 (CA) 

 OR155/WA-Kununurra/1973 (CA) 
 T69/NA/1969 (HB) 
 OR2/WA-Kununurra/1972 (CA) 

 K50609/WA-Billiuna/2003 (AN) 
 K16963/WA-Billiuna/1994 (CA) 

 18403C/QLD-Cape York Peninsula/1996 (CA) 
 MVE-1-51/VIC-Mooroopna/1951 (HB) 
 TC123130/VIC-Culgao/1974 (HB) 

 PNG6910/PNG/1998 (CS) 
 PNG6523/PNG/1998 (CS) 

 K68838/WA-Kununurra/2009 (CA) 
 K67517/WA-Willare/2008 (CA) 

 K68211/WA-Geikie Gorge/2009 (AM) 
 K66339/WA-Kununurra/2008 (CA) 
 611W/WA-Kununurra/2008 (HB) 
 K67812/WA-Broome/2008 (CA) 

 K70310/WA-Broome/2009 (CA) 
 K69485/WA-Kununurra/2009 (CP) 
 K68320/WA-Billiluna/2009 (CA) 
 K68473/WA-Wyndham/2009 (CA) 

Genotype 1a 

 Genotype 4 
 Genotype 3 

 Genotype 2  

 

 

 

 

 

 

 

 

 

 

  

 

 

Intermediate 

lineages 
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B.  

 P9990/WA-Newman/2009 (CA) 
 V11-10/ VIC-Callawadda/ 2011 (EB) 
 145507/NSW-Griffith/2008 (CA) 
 08-154300/QLD-Monto/2008 (EB) 
 145694/NSW-Leeton/2008 (CA) 

 145705/NSW-Leeton/2008 (CA) 
 K68150/WA-Fitzroy Crossing /2009 (CA) 
 P9862/WA-Newman/2009 (CA) 

 145649/NSW-Griffith/2008 (CA) 
 K60119/WA-Halls Creek/2006 (AM) 
 K60365/WA-Kununurra/2006 (CA) 

 K56445/Parry's Creek/2005/CA  
 P8372/WA-Newman/2006 (CA) 
 K62899/Kununurra/2007/CA 

 GUOO91/ QLD-Normanton/2000 (CA) 
 K36687/WA-Kununurra/1999 (CA) 

 K41994/WA-Billiuna/2000 (CA) 
 CY1189/QLD-Cape York Peninsula/1999 (CS) 
 K47457/WA-Derby/2001 (CA) 

 K5686/WA-Kununurra/1989 (CA) 

Genotype 1b 

 PH491/WA-Newman/1981 (CA) 
 OR1109/WA-Kununurra/1977 (CA) 

 OR155/WA-Kununurra/1973 (CA) 
 T69/NA /1969 (HB) 
 OR2/WA-Kununurra/1972 (CA) 

 K50609/WA-Billiuna/2003 (AN) 
 K16963/WA-Billiuna/1994 (CA) 

 18403C/QLD-Cape York Peninsula/1996 (CA) 
 MVE-1-51/VIC-Mooroopna/1951 (HB) 
 TC123130/VIC-Culgao/1974 (HB) 

 Genotype 1a 
 Genotype 4 

 Genotype 3 
 Genotype 2  

 

 

 

 
 

 

 

 

 

 
 
 

 

 
 

 

 

 

 

 

 

Intermediate  

lineages 
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C.   

 

Appendix. 2.2. Maximum Likelihood tree demonstrating relationships between 

different strains of MVEV when complete prM-E genes were analysed.  

For legend, please refer to page 76. 

  

 Genotype 1 

Genotype 4  NG156/PNG/1956 (HB) 
Genotype 3  MK6684/PNG/1966 (C) 

 OR156/WA-Kununurra/1973 (CA) 
 K109/WA-Kununurra/1986 (CA) 

 K21413/WA-Kununurra/1995 (CP) 
 K6454/WA-Kununurra/1991 (CA) 
 K6521/WA-Kununurra/1991 (AB) 

 K59532/WA-Fitzroy Crossing/2006 (CA) 
 K68196WA-Fitzroy Crossing /2009 (CA) 

 K59536/WA-Fitzroy Crossing/2006 (CP) 
 K62017/WA-Broome/2006 (CA) 

Genotype 2 
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Appendix 2.3. Nucleotide and amino acid identities within and between complete 

prM-E sequences of genotypes of Murray Valley encephalitis virus. 

Genotypes Nucleotide identity %    Amino acid identity % 

Within G1a 97.5-100 99.7-100 

Within G1b 98.0-99.8 99.1-100 

Within G1 94.3-96.0 98.9-99.4 

Within G2 96.7-99.8 98.9-100 

G1 vs G2 85.5-87.5 95.8-96.7 

G1 vs G3 and G4 88.8-90.6 97.7-98.9 

G2 vs G3 and G4 86.5-88.0 95.9-96.8 

Within all MVEV strains 85.5-100 95.6-100 
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A                                                                                   B 

 

C                                             D 

E 

Appendix 3.1. Amplification plots demonstrating the inter- and intra-assay 

precisions of MVEV RT-qPCR assay. 

The intra-assay precision was tested using seven ten-fold dilution of MVE-1-51 in vitro RNA 

transcripts in triplicate in a single run (A). Inter-assay precision was tested by running three dilutions 

(10
6
, 10

4
, and 10

3
) of MVE-1-51 in vitro RNA transcripts in triplicates over four independent tests run 

in four different days (B, C, D and E). Mean, S.D. and CV were calculated for each dilution, and 

tabulated in table 3. Straight line in each graph represents the threshold. 
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Appendix 4.1. The number of raw reads obtained from each sample with their 

maximum, average and median lengths.  

Samples Genotype 

Number 

of reads 

Maximum 

Length 

Average 

Length 

Median 

Length 

K68320 G1a 1,439 744 492 580 

K69612 G1a 354 744 514 587 

      K68150 G1b 10,250 779 514 561 

K60555 G1b 3,141 770 535 598 

P8891 G1b 21,393 762 521 588 

      K68196 G2 71 738 562 631 

K59532 G2 1,707 744 518 594 

K59536 G2 272 737 501 598 

  

    

pMVE-1-51 8,696 779 533 594 

Ratio control 11,127 764 500 588 
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Appendix 4.2. The read length distribution over the partial envelope gene sequences 

for the samples and controls used in this study. 

A B 

C D 

E F 
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Appendix 4.2. Continued. 

A: K68320; B: K69612; C: H68150; D: K60555; E: P8891; F: K68196; G: K59532; H: K59536; I: Ratio 

control; J: MVE-1-51 control.  

G H 

I J 
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Appendix 4.3. Two-tailed t-tests analysis comparing the number of clones that 

differed from the sample-specific consensus sequence obtained at the completion of 

filtering step. 

Group 

1 Group2 

Ho. 

Diff Mean Diff. SE Diff. t-value DF p-value* 

G1a G1b 0.000 27.655 6.179 4.476 3.000 0.021 

 

G2 0.000 39.808 4.238 9.393 3.000 0.003 

  

      

G1b G2 0.000 12.153 4.912 2.474 4.000 0.006 

 

Ho. Diff: Hypothesised difference 

Mean diff: Mean difference 

SE diff: The standard error of the difference in the means 

DF: Estimated degrees of freedom 

t-value is calculated as (the mean difference of the samples minus hypothesised difference) 

divided by standard error of the difference in the means. 

*A p-value of <0.05 is considered significant. 

 

Appendix 4.4. Two-tailed t-tests analysis comparing the per-nucleotide variance 

within the partial envelope gene sequences analysed at the completion of data 

filtering for each genotype and subgenotypes. 

Group 

1 Group2 

Ho. 

Diff Mean Diff. SE Diff. t-value DF p-value* 

G1a G1b 0.000 0.023 0.002 14.315 3.000 0.001 

 

G2 0.000 0.028 0.002 13.390 3.000 0.001 

  

      

G1b G2 0.000 0.005 0.001 3.342 4.000 0.029 

 

Legends as above. 
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Appendix 5.1.  Mortality profile in mice infected with different strains of G1.  

Numbers in the parentheses indicate the Log10 TCID50 dose of each virus. Days 14-21 post infection 

are not included in the graphs. 
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Appendix 5.2. Mortality profile in mice infected with different strains of G2.  

Numbers in the parentheses indicate the Log10 TCID50 dose of each virus. Days 14-21 post infection 

are not included in the graphs. 
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Appendix 5.3. The copy number and titre of MVEV in the homogenates of mice 

brain. 

Viruses  Dose  

(Log10 TCID50) 

Copy Number/g 

mouse brain (log10) 

Titration/g 

mouse brain (log10) 

Genotype 1 isolates   

MVE-1-51 (G1) 1 12.44 8.20 

1 12.78 8.60 

1 13.21 9.00 

1 12.56 8.20 

2 13.17 9.00 

2 12.63 9.00 

2 13.33 9.60 

2 12.91 8.60 

2 11.61 7.80 

    

K68838 (G1a) 2 12.50 8.00 

2 12.26 8.20 

2 11.78 7.00 

    

K60555 (G1b) 2 11.51 7.60 

2 12.23 8.00 

2 12.73 8.40 

2 11.67 7.40 

2 11.90 7.80 

   

Genotype 2 isolates   

OR156 (G2) 2 12.32 7.40 

    

K59532 (G2) 2 12.08 8.40 

2 11.51 7.60 

3 12.34 8.20 
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Appendix 5.4. Statistical analysis of the viral copy number in the homogenates of 

mice brains inoculated with different isolates of MVEV. 

Group 1 Group2 Ho. Diff Mean Diff. SE Diff. t-value DF p-value 

 

K68838 0 0.558 0.331 1.685 10.00 0.123 

MVE-1-51 K60555 0 0.730 0.285 2.558 12.00 0.025 

 

G2 isolates 0 0.675 0.295 2.292 11.00 0.043 

        
K68838 

K60555 0 0.172 0.328 0.524 6.000 0.619 

G2 isolates 0 0.118 0.289 0.406 5.000 0.701 

        K60555 G2 isolates 0 -0.055 0.299 -0.182 7.000 0.861 

 

 

Appendix 5.5. Statistical analysis of the titres of the virus in the homogenates of 

mice brains inoculated with different isolates of MVEV. 

Group 1 Group2 Ho. Diff Mean Diff. SE Diff. t-value DF p-value 

 
K68838 0 0.933 0.379 2.465 10.00 0.033 

MVE-1-51 K60555 0 0.827 0.279 2.968 12.00 0.012 

 
G2 isolates 0 0.767 0.318 2.411 11.00 0.035 

  
      

K68838 
K60555 0 -0.107 0.355 -0.300 6.00 0.774 

G2 isolates 0 -0.167 0.419 -0.398 5.00 0.707 

  
      

K60555 G2 isolates 0 -0.060 0.286 -0.210 7.00 0.840 

 

Ho. Diff: Hypothesised difference 

Mean diff: Mean difference 

SE diff: The standard error of the difference in the means 

DF: Estimated degrees of freedom 

A p-value of <0.05 is considered significant. 
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Appendix 5.6. The result of Immunofluorescence Assays for antibodies to G1 and G2 isolates 

in mice following intraperitoneal inoculation. 

Viruses Dose  

(Log10 TCID50) 

IFA Results* 

Positive 

Genotype 1 isolates  

MVE-1-51 (G1) 0 6/6 (100%) 

1 2/2 (100%) 

2 1/1 (100%) 

   

K68838 (G1a) 0 5/6 (83.33%) 

1 6/6 (100%) 

2 3/3 (100%) 

   

K60555 (G1b) 0 4/6 (66.67%) 

1 5/6 (83.33%) 

2 1/1 (100%) 

   

Genotype 2 isolates  

OR156 (G2) 2 5/5 (100%) 

3 6/6 (100%) 

4 6/6 (100%) 

   

K59532 (G2) 2 4/4 (100%) 

3 5/5 (100%) 

4 6/6 (100%) 

 

* Denominator is the number of mice that survived the infection. 
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Appendix 6.1. Details of oligonucleotide primers used for the amplification of G1 

viruses in this study. 

Set 

No. 
Primers Region Position size Sequence  

Product 

length 

1 MVEV1F 5ʹUTR 1 20 AGACGTTCATCTGCGTGAGC 720 

MVEV1R prM 720 20 CACGTGTGCACCTTCCATAG 

2 prM-E-368F C 368 24 GATTGATGTGGTGAACAAAAGGGG 720 

prM-E-1086R E 1086 21 GTTTRTCAGCRGCCATGATGG 

3 prM-E-991F E 991 22 GYAGCCGTGAYTTYATTGAAGG 805 

prM-E-1975R E 1795 25 GHRAACTCGACTGGTAYGGCTCCAG 

4 prM-E-1657F E 1657 24 CAARYACGGAMTGGAGGAAYAGAG 905 

prM-E-2562R NS1 2562 25 CAAYCCARGCYTCAACATCATTGTG 

5 MVEV5F NS1 2520 20 GCAGCGGAATATTCATACAC 681 

MKM5R NS1 3200 20 CACTGGGATTATCAACTCCG 

6 MVEV6F NS1 3100 19 CATGGAAACTTGAGAGAGC 613 

MVEV6R NS2A 3710 19 CCAATATGAGATACCGCAC 

7 MVEV7F NS2A 3615 20 CTTGAGGAAGAGGTGGACGG 330 

MVEV7R NS2A 3945 20 GGGCATGGCTATTGCTGAGG 

8 MVEV8F NS2A 3820 21 GTAGATGGACTAATCAAGAG 720 

MVEV8R NS2B 4540 20 GGCCCTTGGAGTGATGGCAG 

9 MVEV9F NS2B 4495 21 AATGACCCTGGAGTTCCATG 690 

MVEV9R NS3 5185 22 AGGTCCAGCACGGTTAGTTG 

10 MVEV10F NS3 5110 20 GTCAGTGCTATTGTTCAAGG 680 

MVEV10R NS3 5790 19 GTATTCCGTATCATAGGAC 

11 MVEV11F NS3 5650 20 GAGTGGATAACCGACTATGC 775 

MVEV11R NS3 6425 21 GACTGGTGGTCTGAATACAC 

12 MVEV12F NS3 6360 21 CGAAGTGGAAATCATAACAAG 370 

MVEV12F NS4A 6730 20 CTACCAAGACGAGTGCTCCG 

13 MKM17F NS4A 6620 20 CCATAACACTCATTGCAGCG 630 

MKM17R NS4B 7250 20 ATCAAGGTGGTGAGCGTCAC 

14 MKM18F NS4B 7110 20 GTTACCACCTCATTGGCATC 655 

MKM18R NS5 8040 21 CCATAGCTCTGCATCAACATG 

15 MVEV13F NS5 7975 22 AGCAACCATGAAGAACGTCC 755 

MVEV13R NS5 8630 21 GATGGCTTCACCTCATAACTC 

16 MVEV14F NS5 8545 20 AACTGAAGGAGGAGTATGC 625 

MVEV14R NS5 9300 20 CAACCAGCTGTGTCATCGGC 

17 MVEV15F NS5 9200 22 GGAGGAGGAGTTGAAGGAG 520 

MVEV15R NS5 9825 20 CTCTGCAGGGCACCACCAAG 

18 MKM19F NS5 9800 20 CTGGTATGACTGGCAACAAG 700 

MKM19R NS5 10320 20 CTATGACTGACCTCACTTGG 

19 MVEV16F NS5 10250 21 CTGGTGCGGAAGTCTCATAG 761 

MVEV16Rb 3ʹUTR 11010 17 AGATCCTGTGGTCTTCTC 
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Appendix 6.2. Details of oligonucleotide primers used for the amplification of 

genotype 2 viruses in this study. 

Set 

No. Primers Region Position size Sequence  

Product 

length 

1 
MVEV1F 5ʹUTR 1 20 AGACGTTCATCTGCGTGAGC 

385 
MKM1R-2 C 385 20 GTTCACCACATCAATCAGTG 

2 

prM-E-368F C 368 24 GATTGATGTGGTGAACAAAAGGGG 
720 

prM-E-1086R E 1086 21 GTTTRTCAGCRGCCATGATGG 

3 

prM-E-991F E 991 22 GYAGCCGTGAYTTYATTGAAGG 
805 

prM-E-1975R E 1795 25 GHRAACTCGACTGGTAYGGCTCCAG 

4 

prM-E-1657F E 1657 24 CAARYACGGAMTGGAGGAAYAGAG 
905 

prM-E-2562R NS1 2562 25 CAAYCCARGCYTCAACATCATTGTG 

5 
OR156_2040F E 2040 23 CCATATGTTGCCTCATCAACTGC 

901 
OR156_2941R NS1 2914 22 CAGACCCTAGTGGACGTTATTC 

6 

OR156_2620F NS1 2620 20 CATAAGAGCGGTATATGTGG 
882 

OR156_3502R NS1 3502 21 GGACCCTCGATTTCACTAAAG 

7 

OR156_3178F NS1 3178 23 CTGATCATTCCAGTGACTCTCGC 
701 

OR156_3879R NS2A 3879 23 GACAGTTCCAGATCTGAAGCTGC 

8* 

OR156F_3769F NS2A 3769 24 CATCGCTGTGTTCAAAGTGCAGCC 
1262 

OR156_5030R NS3 5030 27 CATAAAGACCGACTATCTCTCCATTGC 

9 

MKMV7F_2 NS3 4888 18 GGAATGGAGTGGATGACG 
772 

MKMV7R_2 NS3 5660 20 GTTATCCACTCAAATCCAC 

10* 
OR156_5030F NS3 5030 27 GCAATGGAGAGATAGTCGGTCTTTATG 

1082 
OR156_6112R NS3 6112 23 CTCTTTCAGGACCATACAGCTGG 

11 

MVE_6039F NS3 6039 20 GAACCAGTGAGGATGACACC 
788 

OR156_6827R NS4A 6827 19 GCTCAGGGATTAGCACGAC 

12 

OR156_6747F NS4A 6747 25 GGATGTCAGATGTTTCTGGAACTGG 
737 

OR156_7484R NS4B 7484 24 CACACATAATGATGCTACGCTGGC 

13 

OR156_7406F NS4B 7406 21 GAAAGAACGACTCCACAGATG 
996 

OR156_8401R NS5 8401 21 CACCTGACTAGTCATGTTCAC 

14 

OR156_8360F NS5 8360 23 CGGGAAATATCGTGCATGCTGTG 
817 

OR156_9177R NS5 9177 24 GGCTTCAAATTCCAAGAACCTGGC 

15 
OR156_8945F NS5 8945 23 GAATGCACGAGAAGCCGTAGAAG 

679 
OR156_9624R NS5 9624 24 CAACGCTCTCGATGTCATCTGGTC 

16 

OR156_9489F NS5 9489 22 GAGGAAGTGGACAAGTGGTAAC 
901 

OR156_10390R NS5 10390 19 GTCTTCACTCACATGGGCC 

17 

MVEV16F NS5 10250 21 CTGGTGCGGAAGTCTCATAG 
761 

MVEV16Rb 3ʹUTR 11010 17 AGATCCTGTGGTCTTCTC 

 

*. Elongation step at 72°C for 90 seconds. 
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Appendix 6.3. Statistical analyses of the single growth curve data of the genotype 1 

isolates of Murray Valley encephalitis virus. 

Repeated measures Analysis of Variance for Variable = Titre 

Post Hoc Test For Factor = Viruses 

A. In C6/36 cells 

 

Reference  Viruses Mean Difference Standard 

error 

q statistic* p-value† 

G1-P0 G1-C10 -0.33 0.22 1.54 0.31 

 G1-D10 1.93 0.22 8.95 2.26E-04 

 G1-A16 9.87 0.22 45.67 1.93E-07 

      

G1-C10 G1-D10 2.27 0.22 10.49 1.94E-04 

 G1-A16 10.20 0.22 47.22 2.14E-07 

      

G1-D10 G1-A16 7.93 0.22 36.72 1.93E-07 

 

 

B. In DF1 cells 

 

Reference  Viruses Mean Difference 
Standard 

error 
q statistic* p-value† 

G1-P0 G1-C10 0.33 0.24 1.37 0.36 

 

G1-D10 -9.47 0.24 39.01 1.92E-07 

 

G1-A16 3.40 0.24 14.01 2.40E-05 

      G1-C10 G1-D10 -9.80 0.24 40.38 1.95E-07 

 

G1-A16 3.07 0.24 12.64 1.97E-05 

      G1-D10 G1-A16 12.87 0.24 53.02 2.13E-07 

 

*.The q statistic (studentised range statistic) is used for multiple significance testing across a number 
of means. It is the calculation of the differences in mean divided by the standard error. 
† A p-value of <0.05 is considered significant. Significant values are emboldened. 
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Appendix 6.4. Statistical analyses of the single growth curve data of the genotype 2 

isolates of Murray Valley encephalitis virus. 

Repeated measures Analysis of Variance for Variable = Titre 

Post Hoc Test For Factor = Viruses 

 

A. In C6/36 cells 

 

Reference  Viruses Mean Difference Standard 

error 

q statistic* p-value† 

G2-P0 G2-C10 -0.27 0.18 1.51 0.32 

 G2-D10 2.20 0.18 12.47 5.63E-05 

 G2-A16 1.80 0.18 10.21 9.12E-05 

      

G2-C10 G2-D10 2.47 0.18 13.98 4.32E-05 

 G2-A16 2.07 0.18 11.72 8.85E-05 

      

G2-D10 G2-A16 -0.40 0.18 2.27 0.15 

 

 

B. In DF1 cells 

 

Reference  Viruses Mean Difference Standard 

error 

q statistic* p-value† 

G2-P0 G2-C10 0.33 0.21 1.62 0.28 

 G2-D10 -9.87 0.21 48.02 1.92E-07 

 G2-A16 -5.13 0.21 24.98 2.91E-07 

      

G2-C10 G2-D10 -10.20 0.21 49.64 2.13E-07 

 G2-A16 -5.47 0.21 26.60 3.55E-07 

      

G2-D10 G2-A16 4.73 0.21 23.04 3.85E-07 

*.The q statistic (studentised range statistic) is used for multiple significance testing across a number 
of means. It is the calculation of the differences in mean divided by the standard error. 
† A p-value of <0.05 is considered significant. Bolded values indicate the significant values.   
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Appendix 6.5. Mortality profiles of the genotype 1 MVEV isolates after i.p. injection 
of groups of 18-day old mice with different doses of each virus. 
 
Numbers in the parenthesis indicate the log10 TCID50 concentration of the virus administered in each 
group of mice. Days 14-21 post infection are not included in the graphs.
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Appendix 6.6. Mortality profiles of the genotype 2 isolates after i.p. injection of 
groups of 18-day old mice with different doses of each virus.  
 
Numbers in the parenthesis indicate the log10 TCID50 concentration of the virus administered in each 
group of mice. Days 14-21 post infection are not included in the graphs. 
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Appendix 6.7. The copy number and titre of MVEV strains in the homogenates of 
mice brain inoculated with MVE viruses from different genotypes. 

Viruses Dose 

(Log10 TCID50) 

Copy Number /g of 

mouse brain (Log10) 

Titration/g of 

mouse brain (Log10 TCID50) 

Genotype 1 isolates   

G1-P0 1 13.03 9.20 

G1-P0 2 12.89 9.40 

G1-P0 2 13.51 9.00 

G1-P0 2 12.93 9.20 

G1-P0 2 12.39 9.40 

G1-C10 1 13.47 9.80 

G1-C10 1 12.65 9.40 

G1-C10 1 12.94 9.20 

G1-C10 1 13.43 9.40 

G1-C10 1 13.05 9.40 

G1-C10 2 13.45 9.80 

G1-C10 2 12.58 9.60 

G1-C10 2 13.02 9.00 

G1-C10 2 12.80 9.80 

G1-C10 2 13.46 9.40 

G1-C10 2 12.81 9.20 

G1-A16 2 13.14 9.20 

Genotype 2 Isolates   

G2-P0 2 12.58 8.60 

G2-P0 2 11.19 7.60 

G2-P0 3 12.56 8.40 

G2-P0 4 11.44 7.20 

G2-P0 4 12.19 8.00 

G2-C10 2 12.58 8.00 

G2-C10 2 11.19 8.20 

G2-C10 3 12.56 8.40 

G2-C10 3 11.44 8.60 

G2-C10 4 12.19 7.20 
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Appendix 6.8. The result of Immunofluorescence Assays of G1 and G2 isolates. 

Virus Dose (TCID50) 
IFA Results 

Positive 

Genotype 1 isolates  
G1-P0 0 6/6 (100%) 
G1-P0 1 5/5 (100%) 
G1-P0 2 2/2 (100%) 

   G1-C10 0 6/6 (100%) 
G1-C10 1 1/1 (100%) 
G1-C10 2 N/A 

   G1-D10 0 6/6 (100%) 
G1-D10 1 6/6 (100%) 
G1-D10 2 6/6 (100%) 
G1-D10 3 6/6 (100%) 
G1-D10 4 6/6 (100%) 
G1-D10 5 6/6 (100%) 
G1-D10 6 6/6 (100%) 

   G1-A16 0 5/6 (83.3%) 
G1-A16 1 5/5 (100%) 
G1-A16 2 6/6 (100%) 
G1-A16 3 6/6 (100%) 
G1-A16 4 6/6 (100%) 

   Genotype 2 Isolates  
G2-P0 2 4/4 (100%) 
G2-P0 3 5/5 (100%) 
G2-P0 4 4/4 (100%) 

   G2-C10 2 4/4 (100%) 
G2-C10 3 4/4 (100%) 
G2-C10 4 5/5 (100%) 

   G2-D10 3 5/6 (83.3%) 
G2-D10 4 6/6 (83.3%) 
G2-D10 5 6/6 (100%) 
G2-D10 6 6/6 (100%) 

   G2-A16 3 5/6 (83.3%) 
G2-A16 4 6/6 (100%) 
G2-A16 5 6/6 (100%) 
G2-A16 6 6/6 (100%) 

 

* Denominator is the number of mice that survived the infection. 
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Appendix 6.9. Observed substitutions in the complete genome of CDV OR156 
compared to the complete genome of CDV-1-51.  

G/R G/C G/R G/C G/R G/C G/R G/C 

C K18R E S461T NS3 A106V NS4B A188S 

C M66I E P462Q NS3 I107V NS4B V189L 

C K101N E V474I NS3 A119T NS4B I195V 

C T110A 

  

NS3 I131T NS4B D214E 

C V112A NS1 I21V NS3 I147V NS4B A220V 

C M114L NS1 I29V NS3 K215R NS4B M233I 

C L115A NS1 K33R NS3 A356P 

  C I116G NS1 R105K NS3 S445G NS5 S26N 

C I120V NS1 G167V NS3 D515E NS5 V71I 

  

NS1 T176S NS3 I538L NS5 A91T 

E A15V NS1 H192Y NS3 K562R NS5 M116T 

E V21I NS1 E271D NS3 I583T NS5 I156V 

E L55V NS1 K293R NS3 K590R NS5 I164V 

E V68I 

    

NS5 K194R 

E S72A NS2A A37T NS4A A17V NS5 T274S 

E N89S NS2A R98K NS4A V62I NS5 K277R 

E N123S NS2A T124S NS4A M71L NS5 R278K 

E A126T NS2A I150M NS4A V88A NS5 T374I 

E T157S NS2A I177V NS4A A90V NS5 Q526K 

E V165A NS2A V197I 

  

NS5 A587T 

E T205S NS2A I220V NS4B T11D NS5 V623I 

E A229S 

  

NS4B R14K NS5 I640V 

E E232D NS2B D59N NS4B S20P NS5 V721L 

E I238V NS2B G65E NS4B N25T NS5 V769L 

E V240M NS2B D84N NS4B V27A NS5 T834M 

E S275T NS2B V99I NS4B P30S NS5 S836A 

E S276G NS2B R113W NS4B F32L NS5 N873Y 

E T330A 

  

NS4B P40R NS5 V878I 

E V352I NS3 K11R NS4B I115A NS5 V88M 

E A367V NS3 R33S NS4B M116L NS5 Q889L 

E A369S NS3 N71S NS4B V121I NS5 T897A 

 

G/R: Genomic region; G/C: Genetic changes 

Substitutions are based on the amino acid sequence of the structural and non-structural proteins. 
Numbers indicate the position of the amino acid from the beginning of each protein.  

  


