
 

School of Applied Science 

 

 

Reducing the Dimensionality of Hyperspectral 

Remotely Sensed Data with Applications for 

Maximum Likelihood Image Classification 

 

 

 

 

Norman Ty Santich 

 

 

Presented as Part of the Award of the Degree of Doctor of Philosophy of Curtin 

University of Technology 

 

December 2007 



2 

Abstract 

As well as the many benefits associated with the evolution of multispectral sensors 

into hyperspectral sensors there is also a considerable increase in storage space and 

the computational load to process the data.  Consequently the remote sensing 

community is investigating and developing statistical methods to alleviate these 

problems. 

The research presented here investigates several approaches to reducing the 

dimensionality of hyperspectral remotely sensed data while maintaining the levels of 

accuracy achieved using the full dimensionality of the data.  It was conducted with 

an emphasis on applications in maximum likelihood classification (MLC) of 

hyperspectral image data.  An inherent characteristic of hyperspectral data is that 

adjacent bands are typically highly correlated and this results in a high level of 

redundancy in the data.  The high correlations between adjacent bands can be 

exploited to realise significant reductions in the dimensionality of the data, for a 

negligible reduction in classification accuracy. 

The high correlations between neighbouring bands is related to their response 

functions overlapping with each other by a large amount.  The spectral band filter 

functions were modelled for the HyMap instrument that acquires hyperspectral data 

used in this study.  The results were compared with measured filter function data 

from a similar, more recent HyMap instrument.  The results indicated that on average 

HyMap spectral band filter functions exhibit overlaps with their neighbouring bands 

of approximately 60%.  This is considerable and partly accounts for the high 

correlation between neighbouring spectral bands on hyperspectral instruments. 

A hyperspectral HyMap image acquired over an agricultural region in the south west 

of Western Australia has been used for this research.  The image is composed of 512 

× 512 pixels, with each pixel having a spatial resolution of 3.5 m.  The data was 

initially reduced from 128 spectral bands to 82 spectral bands by removing the highly 

overlapping spectral bands, those which exhibit high levels of noise and those bands 

located at strong atmospheric absorption wavelengths.  The image was examined and 
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found to contain 15 distinct spectral classes.  Training data was selected for each of 

these classes and class spectral mean and covariance matrices were generated. 

The discriminant function for MLC makes use of not only the measured pixel spectra 

but also the sample class covariance matrices.  This thesis first examines reducing 

the parameterization of these covariance matrices for use by the MLC algorithm.  

The full dimensional spectra are still used for the classification but the number of 

parameters needed to describe the covariance information is significantly reduced.  

When a threshold of 0.04 was used in conjunction with the partial correlation 

matrices to identify low values in the inverse covariance matrices, the resulting 

classification accuracy was 96.42%.  This was achieved using only 68% of the 

elements in the original covariance matrices. 

Both wavelet techniques and cubic splines were investigated as a means of 

representing the measured pixel spectra with considerably fewer bands.  Of the 

different mother wavelets used, it was found that the Daubechies-4 wavelet 

performed slightly better than the Haar and Daubechies-6 wavelets at generating 

accurate spectra with the least number of parameters.  The wavelet techniques 

investigated produced more accurately modelled spectra compared with cubic splines 

with various knot selection approaches.  A backward stepwise knot selection 

technique was identified to be more effective at approximating the spectra than using 

regularly spaced knots.  A forward stepwise selection technique was investigated but 

was determined to be unsuited to this process. 

All approaches were adapted to process an entire hyperspectral image and the 

subsequent images were classified using MLC.  Wavelet approximation coefficients 

gave slightly better classification results than wavelet detail coefficients and the Haar 

wavelet proved to be a more superior wavelet for classification purposes.  With 6 

approximation coefficients, the Haar wavelet could be used to classify the data with 

an accuracy of 95.6%.  For 11 approximation coefficients this figure increased to 

96.1%. 

First and second derivative spectra were also used in the classification of the image.  

The first and second derivatives were determined for each of the class spectral means 
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and for each band the standard deviations were calculated of both the first and 

second derivatives.  Bands were then ranked in order of decreasing standard 

deviation.  Bands showing the highest standard deviations were identified and the 

derivatives were generated for the entire image at these wavelengths.  The resulting 

first and second derivative images were then classified using MLC.  Using 25 

spectral bands classification accuracies of approximately 96% and 95% were 

achieved using the first and second derivative images respectively.  These results are 

comparable with those from using wavelets although wavelets produced higher 

classification accuracies when fewer coefficients were used. 
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1 Introduction 

As satellite remote sensing technology advanced, it was inevitable that the number of 

bands would increase, the bands would become narrower and that multispectral 

sensors would evolve into hyperspectral sensors.  The first airborne 

spectroradiometer was developed in 1978 (Chiu & Collins 1978; Collins et al. 1983) 

and was referred to as the Collins Airborne Spectrometer by Bodechtel (2001).  This 

was followed by many other airborne hyperspectral sensors such as the Airborne 

Imaging Spectrometer (AIS) (Vane & Goetz 1988), the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) (Vane et al. 1993; Green et al. 1998) and the 

Hyperspectral Mapper (HyMap) (Cocks et al. 1998).  On November 21, 2000, 

Hyperion was launched on board the Earth Observing One (EO-1) satellite from 

Vandenburg Air Force Base (Ungar et al. 2003) and was the first satellite-borne 

imaging spectrometer to routinely collect data from an earth orbit (Pearlman et al. 

2003).  Kramer (1994) gives a comprehensive list and description of many 

spaceborne and airborne sensors and the more significant hyperspectral sensors are 

summarised in Appendix D on page 158. 

The number of spectral bands in hyperspectral data is frequently referred to as the 

dimensionality of the data.  Many of the spectral bands are highly correlated and the 

effective number of uncorrelated bands is sometimes referred to as the intrinsic 

dimensionality of the data.  Most hyperspectral data sets have an intrinsic 

dimensionality of approximately 5% (or 5 – 10 bands), which is significantly less 

than the original dimensionality. 

The "hyper" prefix in hyperspectral implies an excess of spectral data and this can 

have several different implications.  Historically, hyperspectral sensors have had at 

least 48 spectral bands with a spectral resolution of 20 nm or better (Aspinall, 

Marcus & Boardman 2002).  This compares with multispectral sensors which 

traditionally have had less than 10 bands.  Typically, hyperspectral sensors have had 

more than 100 spectral bands.  These spectral bands are usually located in the 

visible/near infrared region of the electromagnetic spectrum between wavelengths of 

400 – 2500 nm.  The data sets associated with these high numbers of bands can be 
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extremely large.  Data sets of this magnitude have a significant influence on the data 

transmission times, amount of storage space required and the computational power 

and times needed for processing. 

Despite these problems, hyperspectral imagery is a valuable tool in many different 

applications of remote sensing.  In atmospheric science, hyperspectral imagery has 

been used for atmospheric correction (Sanders, Schott & Raqueño 2001) and trace 

gas detection (Gallagher, Wise & Sheen 2003).  Over oceans and other marine 

features; water quality has been sensed (Hakvoort et al. 2002), concentrations of 

chlorophyll and suspended sediments have also been estimated (Herutet et al. 1999) 

and coastal bathymetry has been mapped (Sandidge & Holyer 1998). 

For terrestrial environments, hyperspectral imagery has applications in geology, 

agriculture and vegetation monitoring.  Geological applications have included soil 

and mineral mapping (Vaughan, Calvin & Taranik 2003), detecting rock weathering 

(Riaza et al. 2001) and also mine site waste (Mars & Crowley 2003).  Farmers and 

agricultural scientists have been assisted by hyperspectral imagery for precision 

agriculture (Yang et al. 2002), weed detection (Goel et al. 2003), mapping of saline 

affected areas (Metternicht & Zinck 2003) and monitoring crop conditions such as 

nutrient status (Strachan, Pattey & Boisvert 2002), vegetation water content (Serrano 

et al. 2000) and chlorophyll concentrations (Haboudane et al. 2002). 

Remotely sensed data frequently contains pixels having more than one type of land 

cover class within each pixel.  Each class within the pixel is known as an 

endmember.  Endmember analysis (also known as spectral unmixing) involves 

determining what endmembers occupy each pixel and what fraction of the pixel they 

occupy.  When used for land cover classification and spectral unmixing, 

hyperspectral data has the advantage in that the narrower bands are able to detect 

finer spectral details and characteristics.  As a result the data is able to detect less 

predominant endmembers within image pixels.  This is significant, as an analyst may 

be looking to detect the presence of a particular endmember within a pixel.  If the 

fraction of the endmember is relatively small compared to the pixel size, data from 

broad band sensors will lack the spectral resolution required to be able to detect it.  
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The fine spectral resolution of hyperspectral data however makes it more suitable for 

detecting the presence of low prevalence signals within pixel spectra. 

The accuracy of thematic maps can also be improved by using hyperspectral data.  

The capacity to detect finer spectral details gives the classification algorithms more 

power when discriminating between spectral classes.  There are many different 

spectral classification algorithms and Mallet, Coomans and de Vel (1996) reviews 

several of these.  Established traditional discriminant analysis techniques such as 

Fisher's linear discriminant analysis and Bayesian classification are reviewed.  New 

emerging techniques such as flexible discriminant analysis, regularized discriminant 

analysis and penalized discriminant analysis are also introduced.  The latter two are 

both able to handle data with large dimensionalities and where the ratio of training 

samples to spectral bands is low. 

The most widely used classification technique is maximum likelihood classification 

(MLC).  When deciding on which class label to allocate to a pixel, MLC makes use 

of both the sample class means and the class covariance statistics.  One of the 

disadvantages of using MLC for hyperspectral data is that if the number of training 

samples for a class is low there can be problems in reliably estimating the class 

covariance statistics.  When the number of training pixels is less than the 

dimensionality, N, the resulting class covariance matrix will be singular, and it is 

recommended that at least 10N or even as high as 100N training samples be used in 

the estimation of the class covariance matrices (Richards & Jia 1999).  The measured 

pixel spectra will be represented as N × 1 column vectors and the class covariance 

information will be contained in N × N matrices.  When N is large, as with 

hyperspectral data, there is an enormous number of parameters needed by the MLC 

algorithm and the computational load is massive. 

It is for these reasons that this work focuses on the problems of reducing the 

dimensionality and redundancy inherent in hyperspectral remotely sensed data, with 

an emphasis on applications in MLC of hyperspectral imagery.  Also, the MLC 

algorithm is widely available and supported on several image processing software 

platforms, such as ENVI, ER Mapper and MultiSpec.  The spectral bands on 

hyperspectral sensors are closely spaced giving near-continuous spectral 
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measurements.  Consequently, neighbouring spectral bands exhibit very high 

correlations which can be exploited as a large source of redundancy within the data.  

It may be possible to remove a significant number of these highly correlated bands 

yet still retain the levels of classification accuracy possible when using the full set of 

available bands. 

This research begins with an overview of established dimensionality reduction 

techniques in Chapter 2.  The MLC algorithm is introduced in Chapter 3 as well as a 

review of previous approaches to significantly reduce the parameterization of the 

covariance matrix.  Many of these make use of the typically sparse nature of the 

inverse covariance matrices associated with hyperspectral data.  The nature of the 

spectral band filter functions is examined in Chapter 4 and the degree to which these 

filter functions overlap is assessed.  In Chapter 5, methods are applied to reduce the 

parameterization of the class covariance matrices and these are subsequently used 

with the MLC algorithm to classify the data.  The hyperspectral image data used was 

acquired at Toolibin in the south west corner of Western Australia by the HyMap 

sensor.  Training data was selected for 15 distinct spectral classes and from this the 

original class covariance matrices were generated.  The benefit of having the full 

dimensionality of the measured pixel spectra is retained yet the number of 

parameters used in the computation is significantly reduced.  Chapter 5 extracts the 

spectra from a randomly selected strip of 20 pixels and trials different methods for 

estimating the spectra using significantly fewer spectral bands/parameters.  The 

methods used include wavelet techniques and cubic splines using different knot 

selection approaches.  Cubic splines are used for interpolating the data by taking 

advantage of the fact that the digitized spectra approach smooth spectral curves.  In 

Chapter 7 the entire image is reduced dimensionally using similar approaches to 

those employed in Chapter 6.  By using pixel spectra of a much lower 

dimensionality, the associated class covariance matrices are also significantly smaller 

automatically and no further processing is required to reduce their size.  The problem 

of insufficient training samples to reliably estimate the class covariance matrices is 

also eased.  The resulting dimensionally reduced images are then classified using 

MLC.  Chapter 7 summarises and compares the performance of the approaches taken 

and suggests some possible extensions to the work performed. 
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2 Previous Approaches to Dimensionality 

Reduction of Hyperspectral Data 

As remote sensing instruments advance from multispectral to hyperspectral the 

demands on processing time, computational load and storage space increase.  Even 

though hyperspectral data typically has greater than 100 bands, it has been suggested 

that the intrinsic spectral dimensionality is significantly less, perhaps even lower than 

10 (Harsanyi & Chang 1994).  By definition, the term hyperspectral implies that 

there is an excess of spectral information.  In this chapter, previous approaches to 

reducing the dimensionality are reviewed.  These approaches can be grouped into 

two main categories: approaches where the data are spectrally transformed, and those 

approaches in which individual bands are selected to approximate the entire suite of 

bands. 

2.1 Dimensionality Reduction via Spectral Transforms 

A common approach to the problem of dimensionality reduction involves spectrally 

transforming the original set of bands into a new set of component images.  The new 

set of component images will typically be ordered according to variance or 

information content and the effective number of bands can be reduced by discarding 

those new image components exhibiting low variances.  Even though the 

dimensionality will be significantly reduced, ideally the loss in information content 

will be negligible.  In this section, the Principal Components Transform (PCT), 

Maximum Noise Fraction (MNF) and Noise Adjusted Principal Components 

(NAPC) transforms are presented.  These transforms decorrelate the original data and 

reorder the resulting features according to variance or noise content.  Finally, 

canonical variate analysis (CVA) is reviewed.  CVA transforms the data so that the 

classes have maximum spectral separability. 

2.1.1 Principal Components Transform 
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The PCT (also known as the Karhunen-Loève or Hotelling Transform) is a method 

for decorrelating multispectral data and arranging the resulting components in order 

of decreasing variance.  If x
T
 = (x1, x2,…, xN) is a pixel vector in an N-band scene 

containing L pixels, the mean pixel vector is given by 
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The PCT can then be defined as 

 xAz T

PCT=  (2.3) 

where T

PCTA  is the (N × N) matrix of normalized eigenvectors of Cx and z is the 

newly transformed pixel vector. 

The transformed data will be uncorrelated and the components will be in order of 

decreasing variance.  Because the majority of the data variance will be contained in 

the lower order principal components, the higher order principal components can be 

rejected, resulting in a negligible loss of information content and a significant 

reduction in the data dimensionality.  As the components are ordered in terms of 

global variance, and not local detail, the components need to be examined before 

they are rejected (Richards & Jia 1999).  Higher order components may contain local 

detail that is not present in the lower order components.  As a result of this, the PCT 

may not be optimal for class discrimination or separability (Chang et al. 1998). 

As the transformed data is uncorrelated, its covariance matrix will be diagonal, with 

the diagonal elements being the eigenvalues of Cx (Roger 1996a).  The diagonal 

elements, e are arranged such that e1 > e2 > … >eN and also represent the variances of 
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the principal components.  The proportion of the variance of the entire scene 

contained in the j
th

 component is given by: 

 

∑
=

N

i

i

j

e

e

1

. (2.4) 

However, the PCT has several disadvantages.  Green et al. (1988) have noted that 

even though the PCT orders components by decreasing variance, this does not 

necessarily result in the components being ordered by image quality, or signal-to-

noise ratio (SNR).  Noise may contribute significantly to the variance of a 

component and as a result, the component may contain less information than a 

component with lower variance (Roger 1994a).  The PCT is not invariant to changes 

in radiometric scale and is biased to high variance bands.  An example of this is the 

effect of the shape of the solar irradiance spectrum where the shorter wavelength 

bands will have much higher variances and consequently bands in the visible/near 

infrared will tend to dominate the PCT. 

Implementing the PCT on hyperspectral data has a huge computational load, which 

can be made more efficient if the segmented PCT devised by Jia and Richards (1999) 

is used.  Jia and Richards (1999) have observed that neighbouring bands are highly 

correlated and that these high correlations appear in blocks within the correlation 

matrix.  If the data set is partitioned into H subgroups, the PCT can be performed 

separately on each individual subgroup.  Ideally, each subgroup should be composed 

of highly correlated bands and if the number of bands in subgroups 1, 2, …, H is N1, 

N2, …NH respectively then 

 ∑ =
=

H

h h NN
1

. (2.5) 

Whereas the conventional PCT requires N
2
 multiplications to transform each pixel, 

the segmented PCT only requires Nh
2
 multiplications for each subgroup.  The total 

number of multiplications needed to transform a pixel using the segmented PCT is 

therefore ∑ =

H

h hN
1

2 .  As well as reducing computational time, the segmented PCT 

will also ease the problem of solar spectrum weighting (Jia & Richards 1999). 
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2.1.2 Maximum Noise Fraction 

As a result of the PCT being unable to order components in terms of image quality, 

Green et al. (1988) developed the MNF.  The data measured by the sensor, x, can be 

thought of as having a signal component, xs, and a noise component, xn, 

 x = xs + xn. (2.6) 

The covariance matrix of x can then be expressed as: 

 Cx = Cs + Cn (2.7) 

where Cs and Cn are the signal and noise covariance matrices respectively.  The 

MNF transform is defined as 

 xAz T

MNF=  (2.8) 

where z is the transformed data and T

MNFA  is the eigenvector matrix of Cn Cx
–1

.  Cx
–1

 

is the inverse covariance matrix of x. 

If dark current measurements are available, these can be used to estimate Cn.  When 

the dark current measurements are not available, Green et al. (1988) describe a 

method to estimate Cn using near neighbour differences.  The technique assumes that 

the signal at any point in an image will be strongly correlated with the signal at 

neighbouring pixels and that noise will only exhibit weak spatial correlations.  The 

technique is applicable to salt and pepper noise and also image striping. 

The components generated by the MNF transform will be ordered by increasing 

image quality, or decreasing noise fraction.  Noise fraction is defined as 

 Var {xn} / Var {x}, (2.9) 

That is, the ratio of the noise variance in a band to the total variance of that band. 
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Using the MNF transform, noise can be effectively removed from multispectral data.  

This is accomplished by either smoothing or rejecting the noisiest MNF components 

and then retransforming back to the original space.  Unlike the PCT, the MNF 

transform is invariant to scale changes in any bands as it depends on the noise 

fraction which is a ratio of the noise variance to the total band variance.  MNF is 

equivalent to the PCT when the noise is uncorrelated and has equal variance across 

all bands.  This could explain the success of the PCT at ordering bands in terms of 

image quality for many remotely sensed data sets: the noise may have had equal 

variance and been uncorrelated across all bands (Green et al. 1988). 

2.1.3 Noise Adjusted Principal Components 

Lee, Woodyatt and Berman (1990) have modified the MNF transform to produce the 

NAPC Transform.  The NAPC is a variation of the PCT and is mathematically 

equivalent to the MNF transform.  The NAPC transform is derived in Roger (1994a) 

using the following steps: 

1) Compute the orthonormalized eigenvector matrix, Vort, and the diagonal 

eigenvalue matrix, En, of Cn. 

2) Using the renormalization matrix, F = VortEn
–1/2

, generate the noise adjusted data 

covariance matrix, Cadj 

    Cadj = F
T
CxF.  (2.10) 

3) Compute the eigenvector matrix, Vadj, of Cadj 

4) The NAPC transformed data, z, is then given by 

 xAz T

NAPC=  (2.11) 

 where T

NAPCA  = FVadj = VortEn
–1/2

Vadj and is the NAPC transform matrix. 
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From the above steps, the NAPC transform can be summarised as a two-stage 

transformation.  First, the data covariance matrix, Cx, is weighted so the noise 

covariance matrix becomes the identity matrix, that is, a matrix with a value of 1 for 

every element along the main diagonal and a value of 0 for every element off the 

main diagonal.  This results in the noise being decorrelated and obtaining unit 

variance across all bands.  Secondly, a PCT is implemented on the resulting 

transformed data set (Lee, Woodyatt & Berman 1990).  The transformed data set will 

have components ordered by decreasing SNR, with band 1 having the highest SNR 

and band N having the lowest SNR. 

2.1.4 Canonical Variate Analysis 

With CVA (Campbell 1984; Kiiveri 1992; Richards & Jia 1999), uncorrelated, linear 

combinations of the original set of variables/bands are chosen to maximize the ratio 

of the between class to within class variances.  CVA is different to the PCT in that 

CVA utilizes the within and between class covariance matrices, whereas the PCT 

examines the global covariance matrix of the data.  CVA is therefore more sensitive 

to class structure and more suited for class separation. 

Given N dimensional data consisting of G classes, the within class covariance matrix, 

CW, is defined as 
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where Lk is the number of pixels in the k
th

 class, Ck is the covariance matrix for the 

k
th

 class and ∑
=

=
G

k

kG LL
1

, i.e., the total number of training pixels used.  The between 

class covariance matrix CB is given by 
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where L is the total number of pixels, x k is the mean of the k
th

 class and x 0 = 

(ΣLk x k)/L.  CVA involves finding canonical vectors, t, such that the ratio ok = 

t
T
CBt/t

T
CWt is maximized.  ok is the ratio of between class to within class variance 

and gives an indication of the separability of the classes.  This leads to the 

generalized eigenvalue equation 

 (CB – OCW)T = 0 (2.14) 

where O is the diagonal matrix of the canonical roots ok and T is the matrix of the 

canonical vectors.  O and T need to be solved for in (2.14), subject to the constraints 

 T
T
CWT = I,  T

T
CBT = nwO    (2.15) 

where nw is the within class degrees of freedom.  The diagonal elements of O will be 

in order of decreasing magnitude and if N > G – 1, there will only be G – 1 non-zero 

roots for (2.14).  The dimensionality of the transformed data will therefore be 

reduced. 

2.2 Feature Selection 

Feature selection involves selecting a subset of the original bands to reduce the 

classification cost and minimize the classification error.  By reducing the number of 

features, the number of training samples required for classification is also reduced 

and classification will become more computationally efficient.  In this section, 

previous approaches to the problem of feature selection/reduction are described. 

2.2.1 Spectral Basis Functions 

Price (1975) developed a method to significantly reduce the number of spectral 

bands/independent variables that are required to explain observed spectra to within 

the noise level of the instrument.  The method also determines the spectral location 

and width of these spectral bands.  Initially, the method was developed for use with 

Infrared Interferometer Spectrometer (IRIS) data having dimensionality N = 862 in 

the spectral range 6.6 – 25 µm (400 – 1600 cm
–1

).  However, the methodology was 
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awkward and inefficient when the number of independent variables was > 12 – 15.  It 

has since been improved (Price 1994; 1997) to allow for the simultaneous selection 

of multiple spectral bands.  The evolved methodology is described in Price (1994; 

1997) and is summarised here. 

Spectral basis functions can be used to approximate observed N-dimensional 

reflectance spectra as 

 ∑
=

≈
H

h

hhW
1

ϕϕϕϕx  (2.16) 

where x are the observed spectra, Wh are spectral integrals relating to the original x 

and ϕϕϕϕh are the N-dimensional spectral basis functions.  Each ϕϕϕϕh has an associated 

spectral band, [λh(min) – λh(max)] that corresponds to the interval over which Wh is 

integrated.  Within this interval, the mean value of ϕϕϕϕh is 1, and this value decreases 

outside the spectral interval according to the spectral correlation inherent in the 

reflectance data.  Each term in the expansion of (2.16) represents a successive 

approximation to x.  For the approximation of x to be practical, the number of basis 

functions, H, needed to estimate x to within a very small residual must be < N. 

If δxh is the difference between the measured reflectance and its approximation to 

order h, then Wh is defined as the average value of δxh over the selected spectral 

interval, [λh(min) – λh(max)], i.e. 
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Initially, δx1 = x.  The basis function ϕϕϕϕh is defined as 
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where the angle brackets represent averaging over the L measured spectra.  By 

definition, δxh will have a value of zero somewhere in the interval [λh(min) – 
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λh(max)].  As h increases, δxh passes through zero at more values of λ and the 

magnitude of the residuals ∫(δxh)
2
dλ decreases. 

The basis function at level h is computed by subtracting the contribution of lower 

order basis functions and integrating the residual over a spectral interval.  Hence, we 

need 
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However, for γ < h, ϕϕϕϕγ are already known so we can set 
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i.e., bhγ is the integral over the h
th

 spectral interval of the γth
 basis function.  Also, we 

define 
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where W1 = w1 and for h > 1 
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Rewriting (2.22) in terms of the original spectra wh gives 
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where ahγ = 1 and for ah > γ 
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Finally, the basis functions ϕϕϕϕh are given by 
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where 

 ∑∑
= =
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h

hh wwaaJ
1 1α

γ

β
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The computational sequence for generating the basis functions is: 

For h and γ from 1 to H 

1) Calculate 〈xwh〉 and 〈whwγ〉 and generate the first basis function 

ϕϕϕϕ1 = 〈xwh〉 / 〈wh
2〉 

For h = 2, 3, …, H 

2) Calculate bhγ using (2.20) 

3) Calculate ahγ using (2.24) 

4) Generate the ϕϕϕϕh using (2.25) 

The above discussion shows how to approximate spectral reflectance data in terms of 

basis functions without mentioning how to determine the spectral intervals associated 

with the basis functions.  The procedure for determining these intervals is discussed 

here.  The dimensionality of the data is reduced by first dividing the range of the data 

into equal broad-band intervals and averaging each of the spectral data points within 
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these broad-band intervals.  ie, ∑∑ +==
== h

h

h N

Ni i

N

i i xxxx
2

1211 , , etc. where i is the 

original spectral band number and Nh is the number of spectral data points in each 

broad-band interval.  Then a cosignal matrix is calculated 

 ∑ 〉〈===
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hh xxxxLy γγγ )/1(][Y  (2.27) 

where Y is a symmetric matrix and the trace, given by ∑ 〉〈
h hx

2 , gives an indication 

of the total variance of the data.  If a spectral interval ∆λ is selected for the 

description of the basis functions, then the other spectral intervals can be reduced by 

their correlation with ∆λ, i.e., λλλ σσ ∆∆∆−=′ xrxx hhhh / , where )/( λλλ σσ ∆∆∆ 〉〈= hhh xxr  

and 〉〈= 22

hh xσ .  After selecting ∆λ the new cosignal matrix becomes Y' = [y'hγ] = yhγ 

– (yh∆λyγ∆λ)/σ∆λ
2
 and with row and column ∆λ deleted the trace of Y' becomes 

∑ ∆≠ ∆−
λ λσ

h hh r )1( 22 .  The spectral interval ∆λ should be chosen so that the residual 

trace is minimized.  Once this is chosen then Y' is used to select the next spectral 

interval.  The procedure is continued until H spectral intervals are chosen. 

The method just described only selects preliminary spectral intervals and does not 

yield an optimum set of basis functions.  To find the optimum spectral intervals, the 

preliminary basis functions need to be examined.  The range of the spectral intervals 

needs to be adjusted so that the value of ϕϕϕϕ within the range exceeds 0.85.  If adjacent 

basis functions overlap where the value of both basis functions is above 0.9 then a 

wavelength should be selected that separates the two intervals where the preliminary 

basis functions are equal.  With the improved spectral intervals, the spectral basis 

functions can be recalculated. 

2.2.1.1 Applications of the Price (1994, 1997) Method to Hyperspectral Data 

The concept for band selection as described above has been applied to several 

different applications.  Price (1975) applied an earlier version of the method to 

Infrared Interferometer Spectrometer (IRIS) data.  The IRIS, aboard the Nimbus 4 

satellite, measures spectral data over 6.25 – 25 µm with a spectral dimensionality of 
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N = 862.  It was found that 9 spectral bands were able to describe the majority of the 

spectra to within the noise levels of the IRIS data. 

The method was then modified in Price (1990) for use with visible/near infrared data 

and applied to a collection of 564 soil spectra.  The spectral data were acquired with 

an Exotech Model 20 radiometer in the spectral range 0.55 – 2.32 µm with a spectral 

resolution of 0.01 µm.  The dimensionality of the data is N = 178.  4 spectral bands 

were found that could describe 99.6% of the variability of the data.  The same 

method was then applied to two different crop data sets (Price 1992).  The first was 

field data measured with an Exotech model 20C spectroradiometer.  The data was 

measured in the spectral range 0.5 – 2.31 µm at a resolution varying between 0.0007 

– 0.0024 µm and contained 1387 crop/soil spectra.  The different crops included 

corn, soybeans, winter wheat, sunflowers and alfalfa.  The spectral resolution of the 

data was reduced to 0.01 µm resulting in a dimensionality of N = 147.  5 spectral 

bands were found that could describe 99.8% of the spectral variability of the data. 

The second crop data set was acquired by a helicopter-borne Field Spectrometer 

System (FSS) in the spectral range 0.4 – 2.4 µm.  The spectral resolution of the data 

was 0.02 µm and 0.05 µm between the ranges 0.4 – 1.1 µm and 1.1 – 2.4 µm 

respectively.  The data set showed more noise than the field data, and as a result, 5 

spectral bands could describe only 98.7% of the spectral variability of the data. 

In Price (1997) 45 AVIRIS scenes, which are representative of most surface types on 

Earth, are analysed using the band selection method described above.  5 spectral 

bands described 98.45% of the spectral variability of the data and 20 spectral bands 

described 99.90%.  39 spectral bands were found that were able to describe 99.95% 

of the spectral variability of the data. 
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A comparison of the different applications of Price's (1994; 1997) band selection 

method for VIS/NIR reflectance data is shown in table 2.1.  The first five spectral 

intervals selected by the method in each application have been shown as well as the 

residuals resulting from the approximations.  In the spectral regions 1.35 – 1.47 µm 

and 1.81 – 2.02 µm, the atmospheric transmittance is strongly affected by water 

vapour.  For this reason, these spectral regions were omitted while spectral intervals 

were selected to approximate the spectral reflectance data. 

2.2.2 Spatial Autocorrelation 

Warner and Shank (1997) have devised methods for feature selection that utilizes the 

spatial autocorrelation information contained within an image.  Three broad classes 

of feature selection are considered: 

1) narrow-band feature selection 

2) broad-band feature selection 

3) non-adjacent, multiple-band feature selection 

Normalized difference ratio images are formed for each combination of spectral 

bands and then the autocorrelation of these ratio images is calculated.  Band ratios 

are used, as they tend to suppress illumination effects.  Only neighbouring pixels are 

considered when calculating the spatial autocorrelation. 

Table 2.1: A comparison of the applications of Price's (1994; 1997) band selection method. 

 

 Price (1990) Price (1992) Price (1992) Price (1997) 

Measuring 

Instrument 

Exotech Model 20 

Radiometer 

Exotech Model 20C 

Spectroradiometer 

Field Spectrometer 

System 
AVIRIS 

Surface type soils crops/soils crops/soils all 

Spectral 

Band 

Spectral 

Interval 

(µm) 

Residual 

(%) 

Spectral 

Interval 

(µm) 

Residual 

(%) 

Spectral 

Interval 

(µm) 

Residual 

(%) 

Spectral 

Interval 

(µm) 

Residual 

(%) 

1 0.93 – 1.13 25.8 0.99 – 1.13 37.5 1.05 – 1.38 41.1 0.99 – 1.08 26.4 

2 2.03 – 2.31 5.8 1.48 – 1.80 2.5 2.03 – 2.38 6.8 2.08 – 2.20 11.7 

3 0.63 – 0.74 2.0 0.57 – 0.71 1.3 0.55 – 0.69 3.9 0.44 – 0.55 3.88 

4 1.61 – 1.80 0.4 2.03 – 2.31 0.5 0.77 – 0.85 1.8 1.12 – 1.16 1.92 

5   0.73 – 0.83 0.2 1.53 – 1.78 1.3 0.66 – 0.69 1.55 
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With the narrow-band feature selection approach the spatial autocorrelation is 

calculated for each normalized difference ratio image.  The pairs of ratioed bands are 

then sorted in order of decreasing spatial autocorrelation.  The first two narrow-band 

features to be selected are the two bands that result in the normalized difference ratio 

image with the highest spatial autocorrelation.  The next feature to be selected is the 

one that when ratioed with each of the features already selected, has the highest 

spatial autocorrelation for both.  Additional narrow-band features are selected in a 

manner similar to that used to select the third feature. 

For the class of broad-band feature selection there are two different approaches.  The 

first selects the pair of adjacent bands that when ratioed have the lowest spatial 

autocorrelation (i.e., the pair of adjacent bands that are the most similar).  This pair 

of adjacent bands is then grouped together to form the first feature.  This is repeated 

until the final number of desired features has been selected.  The second approach for 

broad-band feature selection begins with the same best bands selected by the narrow-

band feature selection method.  The number of narrow-band features to begin with is 

the same as the final number of desired features.  Adjacent bands are added to each 

of the selected narrow-band features.  A spectral band should only be added to a 

group if it improves the spatial autocorrelation. 

The non-adjacent, multiple-band feature selection technique is similar to the broad-

band feature selection approach except it is not constrained by the necessity of only 

selecting adjacent spectral bands.  As with the broad-band case, the procedure begins 

by selecting the best narrow-band features or the two most similar bands (although 

not necessarily the two most similar adjacent bands).  Bands are added to these 

features by selecting other similar bands, ensuring that the spatial autocorrelation is 

improved at each step. 

After testing with synthetic data, Warner and Shank (1997) applied the above 

methods to AVIRIS data of part of the Arid Lands Ecology (ALE) preserve near 

Richland, Washington.  Warner and Shank (1997) note that the AVIRIS SNR is poor 

at wavelength regions below 400 nm and above 2400 nm.  The results from the 

narrow-band feature selection method are shown in table 2.2, with the best 10 

selected bands shown.  Only 2 bands were selected at wavelengths greater than 1400 
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nm and the majority of bands were from the VIS/NIR.  The broad-band feature 

selection method selected 20 broad-band features from the AVIRIS data with an 

average width of ∼ 50 nm.  It is noted that the growth of these features was limited 

by the growth of adjacent groups. 

Twenty features were selected from the AVIRIS data using the non-adjacent, 

multiple-band feature selection approach.  All groups selected between 440 nm and 

718 nm were constituted of contiguous bands.  Because there are so many spectral 

bands on AVIRIS, the non-adjacent, multiple-band feature selection algorithm takes 

much longer to execute.  The groups are generally larger at the infrared wavelengths, 

particularly between 2000 – 2500 nm. 

 

Table 2.2: First ten narrow-band features selected by Warner and 

Shank (1997) using spatial autocorrelation information. 

Rank AVIRIS Band Number Central Wavelength (nm) 

1 19 557 

1 64 962 

3 124 1521 

4 31 676 

5 39 723 

6 47 799 

7 25 616 

8 186 2123 

9 37 704 

10 93 1240 
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3 Maximum Likelihood Classification of 

Remotely Sensed Data and Methods for 

Simplifying the Covariance Matrices 

This chapter begins with an overview of the maximum likelihood classification 

(MLC) process and examines the structure of the covariance information used by 

MLC.  It will be shown that this structure can easily be simplified or modelled and 

existing methods to achieve this are reviewed.  The first of these is the minimum 

distance classifier, which forgoes the covariance information completely.  This 

simplification can be improved by incorporating the standard deviation information.  

Other methods are introduced which assume that either the inverse covariance matrix 

has a band-diagonal form or the correlation matrix has a block-diagonal form.  These 

assumptions are then relaxed and two algorithms are presented, which set individual 

terms in the inverse covariance matrix to zero, and thus reduce the number of 

parameters required to reliably estimate the covariance information. 

In this chapter the focus shifts from dimensionality reduction towards a major 

application for remotely sensed data — image classification.  Each remotely sensed 

scene will contain several different elements, such as roads, forests, houses and 

lakes, etc.  These different elements (referred to as classes) can be identified using 

either supervised or unsupervised classification techniques.  The most commonly 

used supervised classification technique for multispectral remotely sensed data is 

maximum likelihood classification.  When applied to hyperspectral data, MLC is 

time consuming and computationally expensive.  It is therefore highly beneficial to 

be able to simplify the process and hence reduce the amount of computation and time 

required for the task of classification. 

3.1 Maximum Likelihood Classification 

The process of MLC assumes that the data has a multivariate normal distribution and 

is distinguished by making use of the second order class statistics.  The discriminant 

function for MLC is 
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 gk(x) = – ln|Ck| – (x – x k)
T
 Ck

–1
(x – x k). (3.1) 

A pixel will be classified as being a member of class k if gk(x) is a maximum over all 

classes.  If x is normally distributed, the quadratic term on the right of (3.1) will have 

a χ2
 distribution with N degrees of freedom.  Unlike simpler classifiers, the decision 

surfaces are not restricted to being linear, but are instead quadratic.  Theoretically, 

the minimum number of training samples per class required for MLC is N + 1.  Any 

less than this and the covariance matrix will be singular and as a result its inverse 

will be impossible to calculate.  In practise, however, the number of training samples 

should be at least 10N and desirably 100N (Swain & Davis 1978).  When a class only 

has a small number of pixels present in a scene, problems can arise as there may be 

insufficient training samples to estimate the covariance information. 

3.2 Minimum Distance Classification 

One of the biggest simplifications that can be made to MLC is to completely 

disregard the second order statistics and replace the inverse covariance information 

in (3.1) with the identity matrix.  The resulting discriminant function becomes 

 gk(x) = (x – x k)
T
 (x – x k), (3.2) 

where a pixel x will be classified as belonging to class k if gk is a minimum over all 

classes.  This new classifier is known as the minimum distance classifier and is 

essentially a measure of the Euclidean distance between the pixel and the class mean. 

The minimum distance classifier is faster than MLC, although without the covariance 

information the minimum distance classifier lacks the flexibility when allocating 

classes to pixels.  Unlike MLC, where the decision surfaces are second order 

multidimensional curves, the decision surfaces for the minimum distance classifier 

are linear.  However for small classes where the number of available training 

samples is limited, the minimum distance classifier proves to be much more effective 

than MLC (Richards & Jia 1999).  With hyperspectral data, MLC will perform 

poorly, as a large number of training samples are required to reliably estimate the 

covariance information. 
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The minimum distance approximation to MLC can be improved by incorporating the 

class standard deviation information into the discriminant function.  The class 

covariance matrix, Ck, can be rewritten in terms of the correlation matrix, i.e., 

 Ck = SkRkSk,  (3.3) 

where Rk is the correlation matrix and Sk is a diagonal matrix whose elements 

contain the class standard deviations.  The inverse covariance matrix can therefore be 

written as 

 Ck
 – 1

 = Sk
 – 1

Rk
 – 1

Sk
 – 1

.  (3.4) 

If this new expression for Ck
 – 1

 is substituted into (3.1) and the inverse correlation 

matrix replaced with the identity matrix, the resulting quadratic term in (3.1) 

becomes 

 Q = (Sk
 – 1

d)
T
 (Sk

 – 1
d), (3.5) 

where d denotes the difference vector, x – x k.  This is known as the standardized 

distance to the mean (Roger 1996b).  Because Sk
 – 1

 is diagonal, a significant saving 

in processing time can be realized. 

A further improvement to the minimum distance classifier is possible if the Ck
 – 1

 is 

expressed in terms of the partial correlation matrix.  The elements of the partial 

correlation matrix are the negative values of the partial correlation coefficients.  

Partial correlation coefficients indicate how strongly correlated two variables are 

when the effect of other variables has been removed or held constant (Minium, King, 

& Bear 1993).  For three bands labelled A, B and C, the partial correlation 

coefficient of bands A and B with band C held constant is given by (Kendall & 

Stuart 1961) 
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where rij is the correlation coefficient between bands i and j.  When there are four 

bands A, B, C and D, the partial correlation coefficient is given by 
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and for N bands this generalizes to (Roger 1994b) 
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So the inverse covariance matrix can be written as 

 C
 – 1

 = UPU (3.9) 

where P is the partial correlation matrix and U is a diagonal matrix whose elements 

are the square roots of the elements of the main diagonal of the inverse covariance 

matrix.  The elements in U can be thought of as representing the reciprocal of 

standard deviations of the residuals or ‘unexplained standard deviations’ (Roger 

1996b). 

This allows the quadratic term in (3.1) to be written as 

 Q = (Ukd)
T
Pk(Ukd). (3.10) 

With hyperspectral data, P typically takes on a sparse band-diagonal form, and can 

be approximated by the identity matrix.  This gives 

 Q = (Ukd)
T
(Ukd), (3.11) 

which has been termed as the ‘residual-scaled distance to the class mean’ (Roger 

1996b).  Because Uk is diagonal, the processing time is significantly reduced, as was 

the case with the standardized distance to the mean classifier. 
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3.3 Maximum Likelihood Classification Assuming Block-Diagonal 

Correlation Matrices 

The correlation matrices for hyperspectral remotely sensed data typically exhibit 

highly correlated blocks along the main diagonals and blocks containing lower 

correlations at a distance from the main diagonal.  Jia and Richards (1994) have 

recognised this and have modified the MLC methodology to exploit this observation 

and achieve faster classification times.  Their method assumes that hyperspectral 

correlation matrices have a band-diagonal form.  The global correlation matrix is 

examined for boundaries between highly correlated blocks and the complete set of 

bands is divided into subgroups of these highly correlated blocks.  It is possible for 

highly correlated blocks to appear off the main diagonals.  If this should occur, the 

bands need to be reordered so that these highly correlated regions are moved closer 

to the main diagonal of the correlation matrix.  When classifying classes containing a 

small number of pixels, this new approach is more effective than the standard MLC 

as the number of training pixels required only depends on the number of bands used 

in the largest subgroup. 

If the x – x k terms in (3.1) are substituted as d and d is then partitioned into H 

subvectors corresponding to the H chosen subgroups, d can be represented as 

 TT

H

T ],,[ 1 ddd L= . (3.12) 

A significant reduction in the computational load can be achieved by realising that 

the determinant of the associated block-diagonal covariance matrix will be the 

product of the determinants of the individual blocks, i.e. 

 ∏
=

=
H

khk

1h

CC  (3.13) 

which leads to 

 ∑
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lnln CC . (3.14) 
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Also, the inverse of a block-diagonal matrix can be calculated by inverting each 

constituent matrix.  The quadratic term in (3.1) can then be written as 

 ∑
=

−− =
H

h

hkh

T

hk

T

1

11
dCddCd . (3.15) 

The new MLC discriminant function that exploits the typical block-diagonal nature 

of correlation matrices to save on the computation time is given by 

 ( ) ( ){ }1
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where G is the number of classes.  An alternative to subdividing the original set of 

bands into groups of highly correlated blocks is to divide the original set of bands 

into regular sized blocks of, say, 2 × 2 or 3 × 3 bands. 

Jia and Richards (1994) have tested the block-diagonal technique on two poorly 

separated classes and compared the results with those from the conventional MLC 

approach.  The data originated in an AVIRIS scene measured over the Jasper Ridge 

Biological Preserve in California.  The conventional method was 85% accurate 

whereas the new method achieved an accuracy of 89% and only required 20% of the 

processing time. 

In a second experiment both variable and uniform sized blocks were used as well as 

the minimum distance classifier.  Each was used for the classification of two AVIRIS 

scenes — one from Jasper Ridge, California and the other from Moffett Field, 

California.  Seven classes were identified in the Jasper Ridge scene and 9 classes 

were identified in the Moffett Field scene.  Using variable sized highly correlated 

blocks, the overall classification accuracy for the Jasper Ridge and Moffett Field 

scenes were 96% and 100% respectively.  For uniform block sizes of 3 × 3, 2 × 2, 

and 1 × 1 the overall accuracy for the Jasper Ridge and Moffett Field scenes were 

94% and 99% respectively.  The minimum distance classifier performed the poorest 

of the classifiers, only achieving accuracies of 91% and 82% for the Jasper Ridge 

and Moffett Field scenes, respectively.  In terms of the classification time needed 
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relative to the conventional MLC approach, the variable sized block classification 

required only 23 – 30% of the time and the other methods (i.e., minimum distance 

classification and uniform block size classification) only required 3 – 4% of the time 

(Jia & Richards 1994). 

3.4 Maximum Likelihood Classification Assuming Band-diagonal 

Partial Correlation Matrices 

The inverse covariance matrix can be written in terms of the partial correlation 

matrix, as shown in section 3.2 (3.9).  The partial correlation matrix has a similar 

form to the correlation matrix, in that it is symmetrical, has values of 1 along the 

main diagonal and all other elements have values between ± 1.  If the correlation 

matrix is thought of as a scaled version of the covariance matrix, the partial 

correlation matrix can be regarded as a scaled version of the inverse covariance 

matrix.  Dividing the elements in the covariance and inverse covariance matrices by 

the square roots of the corresponding diagonal elements will result in the correlation 

and partial correlation matrices respectively. 

Roger (1996b) notes that with hyperspectral data, both the inverse covariance and 

partial correlation matrices tend to take on sparse, band-diagonal forms and 

demonstrates how this can be used to reduce the number of parameters required for 

MLC.  If the approximate bandwidth of the partial correlation matrix is determined, 

all off-band elements can be set to zero.  So in the case of a partial correlation matrix 

having a bandwidth of 3, the partial correlation matrix can be approximated by 
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This approximation may not result in positive definite matrices, in which case Q 

would take on negative values.  One way to avoid this problem is to find the 

Cholesky factor (Watkins 1991) of the matrix P and then set the off band terms to 

zero.  The approximation for P is then obtained by multiplying the band-diagonal 

Cholesky factor by its transpose. 

The Cholesky decomposition theorem (Watkins 1991) states that any positive 

definite matrix can be expressed as the product of a lower triangular matrix with its 

(upper triangular) transpose.  This lower triangular matrix is known as the Cholesky 

factor.  Alternatively, the product of any lower triangular matrix with its transpose 

will result in a positive definite matrix.  The Cholesky factor will also preserve the 

determinant of the original matrix.  The determinant of any triangular matrix will 

always be the product of the diagonal elements (Fraleigh & Beauregard 1990, 

Schwarz, Rutishauser & Stiefel 1973).  Therefore, if the off-diagonal terms of the 

lower triangular matrix are set to zero, the determinant will not be affected. 

3.5 Algorithm for Fitting Covariance Selection Models Based on 

Simple Graphs 

The covariance matrix (and its inverse) can be thought of as being a set of ½N(N + 1) 

parameters.  By setting elements in the inverse to zero, the number of parameters can 

be reduced and the covariance structure simplified.  This is convenient, as the inverse 

covariance matrices associated with hyperspectral data typically take on a sparse 

form.  The idea of covariance selection was introduced by Dempster (1972) and has 

since been studied by Wermuth (1976a, b), Wermuth and Scheidt (1977) and Speed 

and Kiiveri (1986). 

Speed and Kiiveri (1986) have developed two similar algorithms that allow elements 

in the inverse covariance matrix to be set to zero, yet, unlike the method suggested 

by Roger (1996b), are not limited by the assumption that the inverse must take on a 

band-diagonal form.  The methods link the elements of the inverse covariance matrix 

with a simple, undirected graph, where non-zero elements are denoted as pairs of 

adjacent nodes.  Once the elements to be set to zero have been determined, maximal 

sets of vertices where every pair is adjacent (known as cliques) are identified.  These 
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cliques are then sorted such that each successive clique contains a node not contained 

in any of the previous cliques.  The algorithms then proceed to cycle through each of 

the cliques, constructing the maximum likelihood estimate of the covariance matrix 

from the sample covariance matrix.  This new estimate of the covariance matrix will 

have the property that elements in the positions of the non-zero elements in the 

inverse will agree with those in the sample covariance matrix and all other elements 

in the estimated inverse are set to zero. 

The first algorithm in Speed and Kiiveri (1986) is a backward selection procedure 

and begins with the sample inverse covariance matrix.  As it cycles through the 

cliques of the associated complementary graph, off-diagonal terms are set to zero.  

Starting with CΣ =0
ˆ , if f is any non-negative integer, H is the number of cliques and 

h is the clique number, a sequence of estimates )ˆ(ˆ
1−++ = hfHhhfH ΣZΣ is generated 

using the equation 
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where 1)ˆ( −= WΣZh , X
–1

 = Σ̂ , a denotes the set of bands in the h
th

 clique and Ba
–1

 is 

the diagonal matrix formed by the diagonal elements of  ( Σ̂
–1

)a
–1

. 

The second algorithm is a forward selection procedure and starts off with the identity 

matrix, ie, with all off-diagonal terms in the inverse covariance matrix set to zero.  

As it cycles through the cliques, the covariance matrix is constructed by adding in the 

non-zero terms.  Starting with 0Σ̂ as the identity matrix, a sequence of estimates 

)ˆ(ˆ
1−++ = hfHhhfH ΣYΣ is generated using the equation 
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where WΣY =)ˆ(h , X = Σ̂ , a' denotes the complete set of bands not contained in the 

h
th

 clique and B = C.  If the cliques are ordered properly, the second algorithm will 
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converge after one cycle.  In order for the cliques to be ordered properly, the graph 

must be triangulated.  This means that all cycles in the graph must contain a chord.  

A cycle is a sequence of (≥ 4) nodes where each successive node is connected to the 

previous one and the first and last nodes are also connected. 

The choice of which algorithm to use is influenced by the number and size of cliques 

in both the graph and the complementary graph.  However, because the first 

algorithm initially requires C to be inverted and the second algorithm converges after 

one cycle, the second algorithm is more likely to be chosen. 
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4 Overlapping Spectral Bands — A Source for 

the Correlation Between Hyperspectral Bands 

One of the reasons why measured spectra approach smooth curves is due to the close 

spacing between the large number of spectral bands.  Targets measured by remote 

sensing instruments tend to have broad spectral features and when measured by 

hyperspectral sensors, these features span across many adjacent spectral channels.  

These spectral channels are capable of detecting small variations in the level of the 

reflected/emitted signal, and hence the resulting spectra can resemble smooth curves. 

Another contributing factor to the relative smoothness of the measured spectral 

curves is due to the fact that the spectral bands have filter functions that are much 

wider than the spectral band separations.  As a result the spectral bands will overlap 

with neighbouring spectral bands.  The amount of overlap becomes significant with 

adjacent spectral bands.  The affect of this on spectral measurements is to smooth the 

spectra and increase the level of correlation between neighbouring bands.  Clearly, 

the level of overlap between spectral bands will be a function of the width and 

separation of the bands. 

If the central wavelengths and Full Width at Half Maximum values are known for 

each spectral band, the spectral band filter functions can be modelled as rectangular, 

triangular or Gaussian functions.  For HyMap spectral filter functions, Jupp (2001) 

reports that they are said to be well approximated by triangular functions.  When 

modelling spectral filter functions, it is important to ensure that each filter function 

has a constant area of 1.  The peak value for each spectral band filter function will be 

dependant on the FWHM value. 

In this chapter, the HyMap spectral band filter functions will be modelled as 

triangular functions and the amount of overlap between adjacent bands will be 

estimated.  In section two, the band filter functions are then modelled as Gaussian 

functions and again the overlap between adjacent bands will be assessed.  The filter 

functions were not available for the 128 band HyMap instrument that acquired the 

data used in this research, only the band central wavelengths and the FWHM values 
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were known.  For comparison with actual measured filter function data, the spectral 

bands on a more recent 126 band HyMap instrument will be modelled as both 

triangular and Gaussian functions in section three and the overlaps between 

neighbouring spectral bands will be assessed.  These calculations will then be 

compared with the measured filter functions for the more recent HyMap instrument.  

These were measured during November 2000. 

4.1 Estimating the Amount of Band Overlap Using Triangular Filter 

Functions 

In this section, the HyMap spectral band filter functions will be modelled as 

triangular functions, as suggested by Jupp (2001).  For spectral band i, given the 

band central wavelength (λic) and the FWHM (λi½) values, the peak value of the filter 

function, (φip), is calculated to give the area under the curve is equal to one.  This will 

be ensured if φip is given by: 
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ip λ
φ =  (4.1) 

The left hand edge of the triangular filter function can be modelled as a linear 

equation with respect to the wavelength, λ, and is given by: 
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Similarly, the right hand edge is given by the equation: 
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For two neighbouring bands i and j, with central wavelengths of λic and λjc 

respectively, and FWHM values of λi½ and λj½ respectively, their spectral filter 

functions will intersect at a wavelength given by: 
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At this wavelength the filter functions will have a value of: 
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With the coordinates of where the two neighbouring bands intersect being known, it 

then becomes possible to calculate the amount of overlap between the two bands.  

The overlapping region will form a triangle with a height found in (4.5) and a base 

width given by (λic + λi½) – (λjc – λj½).  The area of the overlapping region will 

therefore be given by: 
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  (4.6) 

Because the filter functions all have a total area of one, the area calculated in (4.6) 

will also be the proportion of the total area. 

Most spectral bands will overlap with the neighbouring spectral bands on both sides.  

For example, band i will overlap on the left with band i – 1 and on the right with 

band i + 1.  It is not uncommon for bands i – 1 and i + 1 to also overlap with each 

other.  When this occurs, it should be noted that the total overlap of a band i with its 

neighbours is not the sum of the overlap with the left hand neighbour i – 1 and the 

overlap with the right hand neighbour i + 1.  In this case, the overlapping region 

between bands i – 1 and i + 1 needs to be subtracted. 

The spectral bands in the HyMap instrument used to acquire the data for this research 

were modelled as triangular functions from their central wavelengths and their 

FWHM values.  The results are summarised in the plot of the fractional spectral filter 

function overlaps versus the spectral band central wavelengths in figure 4.1.  The 
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plot shows that the average value of the total fractional filter function overlap is 0.6, 

or 60%. 

The spectral bands on HyMap are arranged in banks of four modules, with each 

module having 32 spectral bands.  The first module spans the spectral range between 

450 nm – 890 nm, with the bands having an average spacing of 15 nm.  The second 

module spans 890 nm – 1350 nm, also with an average spacing of 15 nm between 

bands.  The third module spans 1400 nm – 1800 nm and the fourth module spans 

1950 nm – 2480 nm.  The average band spacing of these modules is 13 nm and 17 

nm respectively.  The location of the spectral modules is evident in figure 4.1, where 

the region between modules 3 and 4 at 1800 nm – 1950 nm can be seen as a 

reduction in the total fractional overlap between neighbouring spectral bands.  A 

similar effect can also be seen between 1350 nm and 1400 nm, corresponding to the 

region between the second and third modules.  The opposite effect is evident at 890 

nm and this is due to the fact that there is no separation between modules one and 

two.  As a result, the spectral bands in this region are much closer and hence the 

amount of spectral overlap is significantly increased. 

Spectral Band Overlap Derived from Modelled Triangular Filter Functions
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Figure 4.1: Fractional overlap of spectral band filter functions with neighbouring spectral bands when 

the filter functions are modelled as triangular functions.  The plot shows the total overlap between a 

spectral band i and its neighbours (i ± 1), the overlap with bands that are ± 2 bands away (i ± 2), the 

overlap with those that are ± 3 bands away (i ± 3) and the overlap between a spectral band and those 

that are ± 4 bands away (i ± 4) 
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In modules 2 and 4, figure 4.1 shows that the average total spectral overlap is 

approximately 0.6.  For module 3, the total spectral overlap has a value ranging from 

0.6 – 0.74.  In the first module the total overlap between spectral bands tends to be 

between 0.38 – 0.74.  These are large fractional overlap values and an argument 

could be made that the number of spectral bands could be reduced by increasing the 

average spacing between them for only a small reduction in information content. 

When looking at a spectral band and those that are separated by ± 2 bands, the 

amount of spectral overlap between them decreases significantly.  This can be seen 

in figure 4.1 (i ± 2).  The average overlap between a band i and its neighbours i ± 2 

reduces to 0.05.  Excluding the region where module 1 and 2 overlap, module 3 

exhibits the highest level of overlap, with the values peaking at 0.14.  Spectral bands 

in module 1 show the lowest levels of overlap with their (i ± 2) neighbours, with the 

values typically being approximately 0.003, but getting as high as 0.075.  When 

modelled as triangular functions most spectral bands have an overlap of zero with 

their (i ± 3) and (i ± 4) neighbours, except for a few bands where the first and second 

modules overlap. 

4.2 Estimating the Amount of Band Overlap Using Gaussian Filter 

Functions 

Spectral filter functions can also be modelled as functions having a normal or 

Gaussian distribution.  If a Gaussian probability distribution function is used, the 

spectral filter function for band i can be modelled by 
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where σi is the standard deviation about the central wavelength of the filter function 

and can be related to the FWHM.  At wavelengths of (λic ± λi½/2), (4.7) should have 

a value of 
222

1

iπσ
.  If λ = λic ± λi½/2 is substituted into λ in (4.7), it can be shown 

that σi
2
 is related to the FWHM by 
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To calculate the amount of overlap between two spectral bands, the wavelength at 

which the filter functions intersect needs to be determined.  This can be found by 

equating the filter functions for two bands i and j and then by solving for λ in (4.7).  

When λi½ is not equal to λj½ this yields: 
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If λi½ and λj½ are equal then the denominator in (4.9) will be equal to zero.  When 

this occurs the wavelength at which the two filter functions intersect will be equal to 

the mean of the two central wavelengths of the two filter functions and is given by: 
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Once the wavelength at which two spectral bands intersect at has been determined, 

the overlapping area of the two filter functions can then be determined by referring to 

normal distribution cumulative probability lookup tables.  These are included with 

most scientific calculators, spreadsheet programs and mathematical software 

packages such as Maple or Matlab. 

Given two bands i and j (λic < λjc) that have been modelled as Gaussian functions and 

intersect at a wavelength λ, the left hand area of the intersecting region is found by 

using λjc and σj as the mean and standard deviation values to look up the 

corresponding cumulative probability at a value of λ.  This cumulative probability is 

the area of the left hand region.  The area of the right hand region is found by using 

λic and σi as the mean and standard deviation values to look up the corresponding 

cumulative probability at a value of λ.  This cumulative probability then needs to be 

subtracted from unity to give the area of the right hand region.  The total area of the 
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overlapping region is then simply the sum of the areas of the left and right hand 

regions. 

The spectral bands on the HyMap instrument used to acquire the data for this 

research have been modelled as Gaussian functions and for each band i, the total 

spectral overlap has been calculated. The overlap with bands i ± 2, i ± 3 and i ± 4 has 

also been calculated.  The results from this are shown in figure 4.2, and appear to be 

very similar to those in figure 4.1.  When modelled as Gaussian functions, the 

spectral filter functions have an average total overlap of 0.56.  This is slightly less 

than the value of 0.60 calculated when the filter functions were modelled as 

triangular functions. 

When examining the results for the amount of overlap between bands i and i ± 2, the 

Gaussian modelled filter functions show an average overlap of 0.09.  This is greater 

than the value of 0.05 calculated for the overlap when the filter functions were 

modelled as triangular functions.  This is to be expected as triangular functions are 

limited to a width that is twice the FWHM value. 

Spectral Band Overlap Derived from Modelled Gaussian Filter Functions
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Figure 4.2: Fractional overlap with neighbouring spectral bands when modelled as Gaussian functions.  

The plot shows the total overlap between a spectral band and its neighbours (i ± 1), the overlap with 

bands that are ± 2 bands away (i ± 2), the overlap with those that are ± 3 bands away (i ± 3) and the 

overlap between a spectral band and those that are ± 4 bands away (i ± 4) 
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4.3 Comparing Modelled Filter Functions with Measured Filter 

Function Data 

The filter functions for a more recent HyMap instrument (having only 126 spectral 

bands) have been measured and this data was recently made available by Dr Tom 

Cudahy from the Division of Exploration and Mining, CSIRO.  It is now possible to 

do a direct comparison between the modelled filter functions and the actual measured 

filter function responses.  From the measured filter function data the central 

wavelengths and FWHM values can be determined for each spectral band and hence 

the spectral band responses can be modelled as triangular or Gaussian functions as 

outlined in sections 4.1 and 4.2, respectively.  It is also now possible to assess how 

well the modelled filter functions can predict the amount of overlap between the 

spectral bands. 

Figure 4.3 shows, as an example, a plot of the measured filter function responses for 

bands 75 – 82 of the more recent HyMap instrument.  Also shown are plots of the 

same spectral band filter functions when modelled as Gaussian and triangular 

functions.  It can be seen that there is fairly good agreement between the measured 

and modelled data.  One noticeable difference between the measured and modelled 
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Figure 4.3: Measured spectral band responses for bands 75 – 82 of the more recent 126 band HyMap 

instrument (solid lines).  Also shown are the responses modelled as Gaussian functions (dotted lines) 

and triangular functions (dashed lines) 
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data is that the modelled data tend to underestimate the tails and hence the overall 

width of the filter functions.  Another difference is that the modelled triangular 

functions overestimate the peak response value of the actual filter functions.  The 

higher estimated peak response values can be explained, as the modelled triangular 

functions only have a finite width of 2 × FWHM and underestimate the tails of the 

measured filter function responses. 

Root Mean Square (RMS) errors have been calculated for each HyMap spectral band 

filter function when they were modelled as triangular and Gaussian functions.  The 

RMS errors are plotted in figure 4.4.  The Gaussian modelled functions perform 

consistently better than the triangular modelled functions.  The mean RMS error for 

the Gaussian modelled functions was 0.00169 and the triangular modelled functions 

had a mean RMS error of 0.00238.  This is a difference in the RMS error of 0.00069 

between the Gaussian and triangular modelled spectral filter functions. 

With the measured filter function data being available in digital form, the amount of 

overlap between neighbouring bands can be calculated as follows.  Given two 

overlapping spectral bands i and j (where it is assumed λic < λjc) having response 

functions φi and φj, respectively, the wavelength, λx, at which their two response 
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Figure 4.4: RMS errors of HyMap spectral band filter functions when modelled as triangular and 

Gaussian functions. 
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functions intersect needs to be identified.  For values of λ ≤ λx, the sum of values for 

φj needs to be found and this is added to the sum of values of φi for λ > λx.  This total 

then needs to be multiplied by the wavelength sampling interval of the measured 

filter function data to obtain the total overlapping area. 

The areas of the overlapping regions between neighbouring spectral filter functions 

have been calculated for the measured data.  Figure 4.5 shows a plot of the total 

spectral overlap for each band as calculated from the measured filter function data.  

Excluding those bands that are near the edges of the spectral modules, the total 

fractional overlap between the bands ranges between 0.44 and 0.71.  Module 3 

exhibits the highest amount of overlap between bands, with an average value of 0.68, 

and module 1 shows the lowest, with an average value of 0.47.  When comparing 

with the plots of total overlap values predicted by the modelled functions (see figure 

4.1 and figure 4.2) for the 128 band HyMap instrument that was used to acquire the 

data for this research, the overlaps calculated from the measured data appear very 

similar. 

Figure 4.5 also shows the total overlap for each band of the 126 band HyMap 
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Figure 4.5: Total fractional overlaps for the spectral bands on the more recent 126 band HyMap 

instrument.  Note: Shown are the values calculated from the measured response data (solid line), the 

values predicted from Gaussian-modelled filter function data (dotted line) and the values predicted 

from the triangular-modelled filter function data (dashed line) 
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instrument as predicted by the modelled filter function data.  The plot in figure 4.5 

shows that the total overlaps predicted by the modelled filter function data agree well 

with the measured data, particularly when the filter function data is modelled by 

Gaussian functions.  Using Gaussian modelled filter functions the total overlap 

between each band is overestimated in the first and fourth module and 

underestimated in the second module.  Very good agreement is demonstrated in the 

third module between the total overlaps predicted by the Gaussian modelled 

functions and the actual total overlaps as calculated from the measured data.  When 

modelled as triangular functions, the calculated total overlap between each band is 

overestimated in all four modules. 

Figure 4.6 shows the fractional overlaps between bands i and i ± 2 as calculated from 

the measured filter functions and also for those modelled from Gaussian and 

triangular functions.  The modelled data captures the trends of the overlaps well 

when compared with the overlaps that were calculated from the measured data.  In 

the second module though, the measured data does give values higher than those 

predicted by the modelled filter functions.  The overlap values calculated from the 

measured data in the second module average approximately 0.19 compared with an 

average value of 0.09 for the Gaussian modelled filter functions and 0.04 for the 

triangular modelled filter functions.  As the distance between neighbouring spectral 

bands increases the triangular modelled filter functions will consistently 

underestimate the fractional overlap between the two bands.  This is because of the 

finite width of the triangular functions when compared with the overall width of the 

measured filter responses and the Gaussian modelled functions. 

When the fractional overlaps between bands i and i ± 3 were calculated from the 

measured spectral band responses, the results showed negligible values in modules 1 

and 4 and in modules 2 and 3 the average fractional overlaps were found to be 0.08 

and 0.06 respectively.  The Gaussian modelled responses showed negligible overlaps 

in modules 1, 2 and 4, and in module 3 the average fractional overlap was found to 

be less than 0.02.  The overlaps calculated from the triangular modelled responses 

were all found to be zero except for the region where module 1 overlaps with module 

2.  Here, the maximum overlap between the triangular functions was 0.09. 
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It has been shown in this chapter that the amount of overlap between neighbouring 

bands on hyperspectral sensors can be considerable.  In the example shown here, the 

measured filter functions from a 126 band HyMap instrument exhibited total 

fractional overlaps for each band averaging approximately 0.6 and being as high as 

0.7.  This high level of overlap between the spectral band response functions will 

have a significant contribution to the correlations between neighbouring bands, as the 

neighbouring bands are not completely unique and are measuring part of the same 

data.  As the separation between bands increases, the amount of overlapping reduces.  

When examining the overlap between a band i and bands i ± 2, the average amount 

of overlap reduced to approximately 0.1. 

With regard to being able to model the spectral band filter functions, the results 

presented here are very encouraging.  The results indicate that the filter functions for 

spectral bands on hyperspectral instruments such as HyMap can be well 

approximated by using either triangular or Gaussian functions.  Modelling of the 

filter functions may be required if the actual filter function data for a hyperspectral 

remote sensing instrument are not available, as is the case with this research.  

Gaussian functions were found to perform better than triangular functions as 

triangular functions are restricted because their overall width is limited.  The total 
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Figure 4.6: Fractional overlaps between bands i and i ± 2 for the spectral bands on the more recent 126 

band HyMap instrument.  Shown are the values calculated from the measured response data (solid line), 

the values predicted from Gaussian-modelled filter function data (dotted line) and the values predicted 

from the triangular-modelled filter function data (dashed line) 
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width of a triangular function is 4λ½, whereas the measured response functions 

typically had overall widths that were much wider than this.  Gaussian functions are 

much more suited to capturing this characteristic than are triangular functions.  In the 

example presented here, Gaussian functions achieved an average RMS error of 

0.0017.  The average RMS error when triangular functions were used was 0.0024.   

As a result of being able to accurately model the spectral band responses, it also 

proved possible to approximate the total amount of overlap for each spectral band, 

particularly when Gaussian functions were used to model the band responses and 

when the spectral bands were closer together.  The results from calculating the total 

overlapping areas between neighbouring filter functions from the measured and 

modelled data were very similar.  The results also implied that a different HyMap 

instrument with a similar configuration of spectral bands would have similar levels 

of overlap between the spectral bands. 
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5 Maximum Likelihood Classification Using 

Parameter-Reduced Covariance Matrices 

In Chapter 3, the idea was introduced that the (inverse) covariance matrix could be 

thought of as a set of ½N(N + 1) parameters, where N is the dimensionality of the 

data.  Methods were presented which could approximate the covariance matrix by 

setting a high percentage of the parameters in the inverse covariance matrix to zero 

and hence simplify the covariance structure.  In this chapter some of the methods that 

were presented in Chapter 3 are tested on remotely sensed, hyperspectral data in an 

attempt to significantly reduce the number of parameters needed to describe the 

covariance information while still achieving comparable accuracies in the application 

of MLC.  The covariance matrix is an important and significant component of the 

MLC discriminant function and has a considerable influence on the computational 

load of MLC particularly with hyperspectral data. 

The covariance matrices are initially modelled by approximating the partial 

correlation matrices as band-diagonal matrices.  The assumption that the partial 

correlation matrix takes on a band-diagonal form is then relaxed and a method that 

identifies low valued terms in the partial correlation matrix using thresholds is used 

instead.  The remaining terms having absolute values greater than the threshold are 

used to model the covariance matrix using an algorithm in Speed and Kiiveri (1986).  

The modelled (inverse) covariance matrices will then be used for MLC of the data by 

replacing the full covariance matrix in the MLC discriminant function (3.1) with the 

modelled covariance matrices.  The data can then be classified and the accuracy of 

the resulting classified images will be assessed and compared. 

5.1 The Data 

The scene used in this work is a 512 × 512 pixel subset of a 128-band HyMap image 

acquired over Toolibin, Western Australia, and is shown as a false colour RGB 

composite in figure 5.1.  Toolibin, located at 32°57’ S, 117°37’ E, is in the south-

west corner of Western Australia approximately 200 km south of Perth and 
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approximately 40 km east of Narrogin.  The Toolibin scene (TB3) was acquired 

during clear conditions on the afternoon of November 20, 1998 (Newnham, Renzullo 

& Lynch 1999) and has been atmospherically corrected for atmospheric absorption 

and scattering using ATREM (Dunne 1999).  For this mission, the HyMap 

instrument was flown on a twin engine Cessna Titan at an altitude to produce data 

having pixel resolutions of 3.5 m at nadir.  This resolution was due to a special 

request by CSIRO Mathematical and Information Sciences (CMIS).  HyMap is 

generally flown at an altitude to produce data with a spatial resolution of 5 m at 

nadir.  The data was collected as part of the CSIRO Earth Observation Centre’s 

(EOC) Hyperspectral Task campaign.  The data have been recorded as 16-bit, signed 

integers. 

HyMap has four spectrometers, with each spectrometer taking measurements in 32 

spectral bands.  The 128 spectral bands cover the 0.43 – 2.5 µm spectral region and 

have spectral resolutions varying between 13 – 23 nm.  A list of all 128 spectral 

bands can be found in Appendix C, showing the band central wavelengths and the 

full width at half maximum (FWHM) values.  At a solar zenith angle of 30° and a 

 
Figure 5.1: A false colour RGB (bands 111, 31 and 9, respectively) composite of the HyMap scene 

used for this work.  The data was acquired over Toolibin in Western Australia on 20/11/1998. 
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reflectance of 0.5, the signal-to-noise ratio is greater than 500 (Cocks et al. 1998).  A 

plot of the SNR values for each HyMap band is shown in figure 5.2. 

The data were examined and of the original 128 spectral bands, 82 were retained for 

analysis.  There were a number of factors which contributed to the other 46 bands 

being omitted.  Several of the spectral bands are located in regions of significant 

atmospheric absorption and hence exhibit high noise levels and very low signal 

content.  Other bands contained pixels with negative values.  It is possible that this is 

an artefact from part of the atmospheric correction process, specifically, the dark 

current correction process.  A high level of spectral overlap between bands was 

another reason for bands being omitted.  The first two bands of the second 

spectrometer (bands 33 and 34) overlap with bands 31 and 32 and were removed.  

All other bands were examined for unusually high noise levels due to reasons other 

than those just stated.  Those bands that were found to exhibit unusually high noise 

levels were also omitted. 

 
Figure 5.2: Signal-to-noise ratio for the HyMap sensor for a target having a 

reflectance of 0.5 when the solar zenith angle is 30° (Cocks et al. 1998). 
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The TB3 scene was examined and 15 distinct spectral classes were identified.  

Training data was selected for each of these classes and these were used to generate 

the class first and second order statistics such as the spectral means and the 

covariance matrices for each class.  Table 5.1 contains a list of the 15 classes 

identified and the number of training samples used for each class.  The covariance 

matrices were then used to generate the correlation, inverse covariance, and partial 

correlation matrices.  Both the global and class correlation matrices are shown in 

Appendix E and show regions of highly correlated blocks along the main diagonals 

as is typical for hyperspectral data.  With these matrices available, the methods for 

covariance matrix parameter reduction can be tested on the class covariance 

matrices. 

 

Figure 5.3: Training data selected for each of the 15 classes.  On the 

right is a list of the class names and the colour scheme used in 

subsequent classification images. 
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Table 5.1 shows that the determinants of the class covariance matrices are enormous.  

This is due to the large size of the covariance matrices (82 × 82 elements) and also 

because the image data are 12-bit integer digital counts and not reflectance values 

ranging between 0 – 1.  Several classes such as “Bright soils”, “Bright tree veg”, 

“Dark tree veg” and “Water” occupy relatively small regions within the image, 

unlike other classes which cover large areas within the image.  Consequently, there 

were significantly fewer training pixels available to determine the class statistics for 

these smaller classes.  These classes tend to exhibit even larger determinants for their 

covariance matrices.  This is likely to be due to the possibility that some of the 

training pixels selected may not have been 100% “pure” pixels and actually 

contained a fraction of other classes within the pixels.  As a result a higher degree of 

variability could have been introduced to the class statistics. 

5.1.1 Significance of the Toolibin Region 

The scene shown in figure 5.1 is located just south of Toolibin Lake.  Toolibin is a 

long term research site and was selected as a primary EOC hyperspectral task field 

site.  A priority for the area is the assessment of vegetation health, including both 

agricultural crops and native vegetation species.  Toolibin Lake is situated at an 

altitude of 310 m above sea level and is one of the last wooded freshwater lakes in 

the southern wheatbelt and is the only wetland in the wheatbelt to have swamp 

sheoaks (Casuarina obesa) growing on the lakebed (Hooper & Wallace 1994).  

Other species growing on the lakebed include paperbarks (Melaleuca strobophylla) 

Table 5.1: Number of training samples selected for each spectral 

class and the determinant of the covariance matrix (|C|). 

Class Number of Training Samples |C| 

Bare damp field 10028 1.3068E+148 

Bare dry field 11059 5.1608E+153 

Bare field 475 2.1823E+145 

Bright soil/veg 6319 1.5716E+155 

Bright soils 1742 3.4548E+190 

Bright tree veg 307 1.1233E+166 

Bright veg 1889 1.2265E+156 

Dark soil/veg 5516 1.6046E+148 

Dark tree veg 1282 2.2526E+161 

Lush veg 5367 7.3142E+152 

Shadow 1809 5.1606E+154 

Soil 2384 2.5919E+150 

Soil/veg 5010 7.7316E+152 

Veg 3036 1.9423E+152 

Water 346 7.2247E+168 
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and flooded gums (Eucalyptus rudis).  The surrounding catchment has an area of 483 

km
2
 and farming in the catchment area is primarily for cereal crops (i.e. wheat, 

barley) and livestock grazing.  The area surrounding the lake is vegetated with 

Sighing Sheoak (Allocasuarina huegeliana), Acorn Banksia (Banksia prionotes), 

York Gum (Eucalyptus laxophleba) and Jam Wattle (Acacia acuminata). 

The vegetation on and around Toolibin Lake provides shelter for many species of 

waterbirds.  More species of rare and protected waterbirds use the Toolibin reserve 

for breeding than any other wetland.  Twenty four species of waterbird have been 

recorded breeding at Toolibin Lake and 41 species have been observed using the lake 

(Smith 1999).  Without Toolibin Lake, many species of waterbirds may not be able 

to breed in the south west of Australia.  Toolibin Lake is recognized as a lake of 

international significance under the Ramsar Convention and has been listed on the 

Register of the National Estate (Toolibin Lake Recovery Plan 1994). 

Freshwater wetlands were common in the south west of Western Australia until 

clearing of the land began in the 1890s for agricultural purposes.  This caused 

waterlogging and salinity, which killed many of the trees.  By the 1950s and 1960s, 

freshwater wetlands downstream from Toolibin Lake had become highly saline and 

there was concern that Toolibin Lake would follow.  Toolibin Lake is being 

threatened by salinity from rising groundwater levels and saline surface water 

inflows.  In the 1970s, trees along the western edge of Toolibin Lake started dying 

and the surrounding farmland became increasingly salty and waterlogged. 

In the 1980s, an effort to revegetate the surrounding land of Toolibin Lake 

commenced.  A recovery plan was prepared in 1994, which outlined both emergency 

short-term actions and longer-term solutions to the salinity problem.  The short-term 

actions are expensive to maintain, yet they are required until the longer-term 

solutions start to have an effect.  These actions will hopefully both lower the 

groundwater level and significantly reduce the amount of saline surface water 

flowing into the lake. 

In order to lower the groundwater levels, bores have been installed to pump the 

saline groundwater.  This is then pumped to Taarblin Lake, southwest of Toolibin 
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Lake, which was also a freshwater lake but is now badly affected by salinity.  A 

long-term revegetation program has also started, with perennial woody vegetation 

being planted as well as deep-rooted grasses.  In April 1995 a 5.5 km diversion drain 

and gate was constructed to prevent the highly saline surface water from flowing into 

Toolibin Lake.  The gates are opened to allow the highly saline water to be diverted 

to Lake Taarblin.  Once the saline water has been removed, the gates are closed and 

the relatively fresh surface water rises up over the levee and flows into Lake 

Toolibin. 

If these actions are not successful, Toolibin Lake will inevitably become saline.  This 

would result in the trees on the lakebed and in the surrounding catchment areas 

dying.  The waterbirds that use the lake for breeding and nesting would not be able to 

survive with these conditions and would disappear.  Early results however have been 

positive.  The groundwater level has been lowered by up to 15 m and trees in the 

vicinity of the pumps appear visually healthier. 

5.2 Approximating the Inverse Covariance Matrix with Band-

Diagonal Partial Correlation Matrices 

In this section the inverse covariance matrix for each of the classes are approximated 

as being band-diagonal before being used in an MLC of the data.  An overview of the 

theory behind this is given in section 3.4, which was developed in Roger (1996b).  It 

will be shown that even though setting off-diagonal terms to zero in the inverse 

covariance matrix may make a good approximation, the resulting covariance matrix 

shows little resemblance to the original covariance.  This is not necessarily a problem 

for MLC however, as the full covariance matrix does not appear in the MLC 

discriminant function (3.1). 
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The first step in approximating the inverse covariance matrix as a band-diagonal 

matrix is to determine the effective bandwidth of the inverse covariance matrix.  To 

do this the RMS (root-mean-squared) value of each off-diagonal in the partial 

correlation matrices was calculated and plotted against the off-diagonal number for 

each class.  This is shown in figure 5.4 for the first 40 off-diagonals, where each 

curve represents one of the 15 classes identified in the data.  The elements of the 

partial correlation matrices have a value of one along the main diagonal and as was 

expected, figure 5.4 shows that the RMS value sharply decreases from the main 

diagonal.  This means that the partial correlation between neighbouring bands is, in 

general, higher than that between bands with large separations.  Eventually the 

curves start to level off from about the fifth off-diagonal.  Beyond the fifth off-

diagonal, the RMS values are very low and suggest that the off-diagonal elements in 

the partial correlation matrices could be set to zero.  Therefore, the inverse 

covariance matrices will be approximated as band-diagonal using bandwidths of 5, 6 

and 7. 

By just setting the off-diagonal elements to zero, there is a possibility that the 

resulting matrix will no longer be positive definite.  A non positive definite matrix 

can be prevented by first finding the Cholesky factor for each of the partial 
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Figure 5.4: Partial correlation RMS values as a function of distance from the main diagonal.  Each 

curve represents the values for a different class. 
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correlation matrices and then making the resulting lower triangular matrices band-

diagonal by setting the off-diagonal terms to zero.  Calculating the Cholesky factor 

for each matrix ensures that the resulting matrices remain positive definite.  It also 

ensures that the determinants of the resulting matrices stay the same as those of the 

original matrices.  The approximated inverse covariance matrices are then 

reconstructed using (3.9), replacing P with LcLc
T
, where Lc is the band-approximated 

Cholesky factor of P. 

A symmetric 82 × 82 inverse covariance matrix will contain 6724 elements, or 3403 

parameters.  When approximated as a band-diagonal matrix, the number of 

parameters decreases significantly.  For example, when bandwidths of 5, 6 and 7 are 

used the number of parameters required reduces to 477, 553 and 628, respectively.  

These represent only 14% – 18.5% of the original number of parameters. 

As a final check, the band-approximated class inverse covariance matrices were 

inverted, plotted and compared visually with the original class covariance matrices.  

Due to the initial Cholesky factorization the determinants will be preserved but this 

does not guarantee the resulting matrices will look similar.  In fact, it was found that 

the resulting matrices showed little resemblance to the original covariance matrices.  

At first, this would seem to nullify any value of using this method for MLC.  

However, referring to (3.1) it is realised that the full covariance matrix is not actually 

used in the MLC discriminant function.  The determinant of the covariance matrix 

appears which does not change as a result of the initial Cholesky factorisation of the 

partial correlation matrix.  Also, the inverse covariance matrix appears in (3.1), 

which is what has actually been approximated. 

To illustrate this finding, figure 5.5 shows both the original covariance matrices and 

those resulting from approximating the inverse covariance using a bandwidth of 6 for 

the classes “Soil/veg” and “Veg”.  These classes have been chosen purely because 

they contain the number of training samples (5010 and 3036 respectively) closest to 

the average number of training samples for all classes (3771 training samples).  The 

plots have not been generated with the same scale in order to enhance the structure in 

each matrix and produce the maximum contrast.  Despite this, it is still obvious that 

the matrices resulting from a band-approximated inverse covariance matrix show 
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little resemblance to the original covariance matrix in terms of actual values or 

structure. 

5.3 Setting Low Valued Terms in the Partial Correlation Matrix to 

Zero in the Inverse Covariance Matrix 

In section 5.2 the inverse class covariance matrices were approximated by forming 

the generalization that values away from the main diagonals are approximately zero.  

The inverse covariance matrices were assumed to be band-diagonal and all off-

diagonal values were set to zero.  In this section, the band-diagonal assumption is 

relaxed and low values in the inverse covariance matrix are identified by 

  
(a) (c) 

 

  
(b) (d) 

Figure 5.5: Comparison of selected class covariance matrices with those generated from band-

approximated inverse covariance matrices: (a) Soil/veg covariance matrix, (b) Matrix resulting from 

inverse covariance matrix using bandwidth = 6, (c) Veg covariance matrix, (d) Matrix resulting from 

inverse covariance matrix using bandwidth = 6. 
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thresholding the partial correlation matrix and setting the corresponding low values 

to zero in the inverse covariance matrix. 

The theory for setting individual terms in the inverse covariance matrix was outlined 

in section 3.5 and was developed in Speed and Kiiveri (1986).  To select a threshold 

to use for identifying which terms to set to zero, figure 5.4, which shows the partial 

correlation RMS values as a function of distance from the main diagonal, was 

examined.  For most classes the partial correlation RMS values level off below a 

value of 0.04.  It was decided therefore to test the method developed in Speed and 

Kiiveri (1986) on the class covariance matrices using thresholds of 0.030, 0.035, 

0.040, 0.045 and 0.050. 

With the thresholds selected, the first step involved generating the adjacency 

matrices to show those elements which have an absolute value greater than the 

selected threshold in the partial correlation matrices.  Elements in the adjacency 

matrix will have a value of one if their corresponding partial correlation value has an 

absolute value of greater than the threshold.  If the absolute value in the partial 

correlation matrix was less than the threshold then the element in the adjacency 

matrix was set to zero.  The adjacency matrices can be thought of as simple 

undirected graphs, where each vertex represents a spectral band.  A value of one 

indicates a connection between two vertices/bands.  The maximal sets of vertices 

where every pair is adjacent are known as cliques.  Once the adjacency matrices were 

generated for each threshold and for each class, the graphs were triangulated and the 

cliques extracted.  Before the cliques were used as input into the algorithm outlined 

in section 3.5, they were ordered in such a way that each successive clique contained 

a band not present in the preceding cliques.  This was done so that the modelled 

covariance matrices would converge after one cycle. 

For each class, the original class covariance matrix was input into the algorithm and 

for each of the selected thresholds the corresponding list of ordered cliques was also 

input into the algorithm (3.19) to generate the modelled covariance matrices.  Tables 

5.2, 5.3 and 5.4 summarise the results showing for each class and threshold used: the 

determinant of the modelled covariance matrix, the number of zero terms in the 

adjacency matrix, the number of cliques and the number of terms in the longest 
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clique.  In the tables, a threshold of zero corresponds to the original class covariance 

matrix which can be thought of as being modelled from a single clique containing all 

the bands and having no zero terms in its adjacency matrix. 

The tables show that for thresholds of 0.030, 0.035, 0.040, 0.045 and 0.050, a 

significant number of terms in the partial correlation matrix have absolute values less 

than the threshold.  This ranges from 29% (i.e., 1972 out of 6724 elements) for class 

“Bright tree veg” when using a threshold of 0.03 to almost 86% (i.e., 5778 out of 

6724 elements) for classes “Bared damp field” and “Bare dry field” when using a 

threshold of 0.05.  An average of 57.8% of the elements in the class partial 

correlation matrices had values less than a threshold of 0.03.  For a threshold of 0.05, 

this figure increases to 75.5% of the elements.  When thresholds of 0.03 and 0.04 are 

used on the class “Bright soils” the resulting modelled covariance matrices are not 

Table 5.2: Summary of Results from Modelling Class Covariance Matrices on the First Group 

of 5 Classes Using the Method Developed in Speed and Kiiveri (1986). 

Class Threshold Determinant 
# of Zero 

Terms 
# of Cliques 

# of Terms in 

Longest Clique 

Bare damp field 0 1.3068E+148 0 1 82 

 0.03 1.7138E+148 4846 24 54 

 0.035 2.2423E+148 5172 30 47 

 0.04 4.3137E+148 5460 30 42 

 0.045 1.1838E+149 5636 35 36 

 0.05 2.8948E+149 5778 38 32 

Bare dry field 0 5.1608E+153 0 1 82 

 0.03 6.9744E+153 4898 24 55 

 0.035 9.9588E+153 5206 27 47 

 0.04 3.3475E+154 5460 35 35 

 0.045 1.712E+155 5664 41 29 

 0.05 4.315E+155 5778 42 25 

Bare field 0 2.1823E+145 0 1 82 

 0.03 2.2219E+145 2604 6 77 

 0.035 2.2397E+145 2990 6 77 

 0.04 2.2856E+145 3366 8 74 

 0.045 2.363E+145 3736 8 74 

 0.05 2.6216E+145 4028 11 71 

Bright soil/veg 0 1.5716E+155 0 1 82 

 0.03 2.1746E+155 4824 24 58 

 0.035 3.0905E+155 5168 31 47 

 0.04 5.9475E+155 5436 39 37 

 0.045 1.006E+156 5586 34 32 

 0.05 2.0412E+156 5728 35 30 

Bright soils 0 3.4548E+190 0 1 82 

 0.03 -9.3842E+195 3616 9 74 

 0.035 7.3348E+195 4066 14 69 

 0.04 -6.3443E+209 4458 17 65 

 0.045 6.7584E+219 4770 19 62 

 0.05 1.2285E+213 5038 21 60 
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positive definite.  This presents a problem, as MLC requires that the covariance 

matrices are positive definite. 

It is to be expected that as the selected threshold is increased then: the number of 

parameters set to zero increases, the number of cliques increase and the length of the 

shortest clique decreases.  This is demonstrated in tables 5.2, 5.3 and 5.4.  What is 

not apparent from the tables is that there is also a relationship between the number of 

training pixels used to calculate the statistics for each class and the number of 

parameters set to zero.  It was found that as the number of training pixels used for a 

class increased, so to would the number of parameters set to zero for a given 

threshold.  For example, Bright tree veg was the smallest class, having 307 training 

pixels.  At thresholds of 0.03 and 0.05 the number of parameters set to zero was 1972 

and 3186 respectively.  This compares with the largest class Bare dry field which had 

Table 5.3: Summary of Results from Modelling Class Covariance Matrices on the Second 

Group of 5 Classes Using the Method Developed in Speed and Kiiveri (1986) 

Class Threshold Determinant 
# of Zero 

Terms 
# of Cliques 

# of Terms in 

Longest Clique 

Bright tree veg 0 1.1233E+166 0 1 82 

 0.03 9.1584E+165 1972 5 78 

 0.035 1.4549E+166 2276 5 78 

 0.04 1.1842E+166 2596 6 77 

 0.045 1.2271E+166 2870 6 77 

 0.05 1.0938E+166 3186 7 76 

Bright veg 0 1.2265E+156 0 1 82 

 0.03 1.2896E+156 4008 11 72 

 0.035 1.3697E+156 4462 11 71 

 0.04 1.6515E+156 4834 15 66 

 0.045 2.0395E+156 5112 18 61 

 0.05 3.1781E+156 5346 24 53 

Dark soil/veg 0 1.6046E+148 0 1 82 

 0.03 2.1007E+148 4730 19 63 

 0.035 3.2183E+148 5146 28 50 

 0.04 4.3429E+148 5404 29 44 

 0.045 6.4809E+148 5580 27 40 

 0.05 1.0842E+149 5704 30 35 

Dark tree veg 0 2.2526E+161 0 1 82 

 0.03 2.3516E+161 3568 9 74 

 0.035 2.6021E+161 3990 12 71 

 0.04 2.7086E+161 4388 12 70 

 0.045 3.5329E+161 4700 15 67 

 0.05 4.3673E+161 4974 18 62 

Lush veg 0 7.3142E+152 0 1 82 

 0.03 9.4561E+152 4566 21 58 

 0.035 1.1132E+153 4970 26 53 

 0.04 1.5541E+153 5232 33 46 

 0.045 2.6919E+153 5438 33 41 

 0.05 6.6284E+153 5614 32 37 
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11059 training pixels.  At thresholds of 0.03 and 0.05 the number of parameters set 

to zero was 4898 and 5778. 

Figure 5.6 shows a few examples of the modelled covariance matrices for the classes 

“Soil/veg” and “Veg”.  The original class covariance matrices are compared to the 

modelled results using a threshold of 0.05.  Visually, the modelled and the original 

covariance matrices look extremely similar and it is difficult to spot any differences 

between them.  In terms of their determinants, the modelled covariance matrices also 

show good agreement with the originals.  For Soil/veg, the determinant of the sample 

covariance matrix was 7.7316 × 10
152

 compared with 5.9237 × 10
153

 for the modelled 

covariance matrix using a threshold of 0.05.  For Veg, the determinants for the 

original covariance matrix and that using a threshold of 0.05 were 1.9423 × 10
152

 and 

5.1014 × 10
152

, respectively. 

Table 5.4: Summary of Results from Modelling Class Covariance Matrices on the Last 

Group of 5 Classes Using the Method Developed in Speed and Kiiveri (1986) 

Class Threshold Determinant 
# of Zero 

Terms 
# of Cliques 

# of Terms in 

Longest Clique 

Shadow 0 5.1606E+154 0 1 82 

 0.03 5.9557E+154 3780 11 71 

 0.035 6.3954E+154 4238 13 70 

 0.04 6.2731E+154 4606 20 63 

 0.045 8.8182E+154 4910 23 58 

 0.05 1.0851E+155 5202 25 53 

Soil 0 2.5919E+150 0 1 82 

 0.03 2.8512E+150 4044 15 68 

 0.035 2.8882E+150 4498 15 67 

 0.04 3.6388E+150 4872 19 56 

 0.045 4.435E+150 5142 21 53 

 0.05 6.8095E+150 5368 24 49 

Soil/veg 0 7.7316E+152 0 1 82 

 0.03 9.5241E+152 4510 18 63 

 0.035 1.2127E+153 4946 25 53 

 0.04 1.6592E+153 5224 30 46 

 0.045 2.5867E+153 5452 32 41 

 0.05 5.9237E+153 5632 34 35 

Veg 0 1.9423E+152 0 1 82 

 0.03 2.166E+152 4392 17 66 

 0.035 2.3611E+152 4752 20 63 

 0.04 2.8855E+152 5100 24 57 

 0.045 3.8233E+152 5358 29 51 

 0.05 5.1014E+152 5538 33 45 

Water 0 7.2247E+168 0 1 82 

 0.03 3.2898E+172 1966 6 77 

 0.035 1.7289E+171 2278 7 76 

 0.04 1.3326E+173 2626 8 75 

 0.045 3.3692E+172 2932 8 75 

 0.05 9.5759E+172 3232 8 75 
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5.4 Classification Results Using Parameter-Reduced Class 

Covariance Matrices 

The sparse nature of the hyperspectral can be exploited to set a large number of terms 

to zero and the approximated inverse covariance matrices can then be used with 

MLC to classify the data.  The commercially available software ER Mapper 6.2 was 

used to perform MLC with the data.  The class covariance matrices needed for MLC 

can be found in the ER Mapper header file associated with the image data, and 

before a classification was performed, each class covariance matrix was replaced 

with the newly modelled covariance matrix.  Once this had been done the standard 

  
(a) (c) 

  

(b) (d) 

Figure 5.6: Comparison of selected class covariance matrices with those generated from Speed and 

Kiiveri (1986) algorithm: (a) Soil/veg covariance matrix, (b) Modelled Soil/veg covariance matrix 

using a threshold of 0.05, (c) Veg covariance matrix, (d)  Modelled Veg covariance matrix using a 

threshold of 0.05. 
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MLC was executed using ER Mapper.  As well as a standard MLC, ER Mapper also 

includes an option to use the spatial correlations and use neighbouring pixels in the 

classification.  It was decided to use the Maximum Likelihood Standard option and 

not use neighbouring pixels.  This is because in this work the spectral correlations are 

being examined, and not the spatial correlations. 

Table 5.2 shows negative determinants for thresholds of 0.03 and 0.04, indicating 

that the resulting covariance matrices for “Bright soils” are not positive definite, and 

therefore are not suitable for MLC.  To overcome this problem, the original sample 

covariance matrix for the class Bright soils was used in place of the covariance 

matrix resulting from a threshold of 0.03.  The covariance matrix resulting from a 

threshold of 0.04 was replaced with the covariance matrix for Bright soils resulting 

from a threshold of 0.035. 

Some of the resulting classified images are shown in figure 5.7.  The result from a 

standard MLC is shown along with classifications using a bandwidth of 6 in the 

inverse covariance matrix and thresholds of 0.035 and 0.045 applied to the partial 

correlation matrix.  The colour scheme used for the classification images is the same 

as that used to depict the training data shown in figure 5.3.  The result from using a 

standard MLC is very similar to the result from using an MLC with a threshold of 

0.035.  When a threshold of 0.045 was used, the Bright soils class was clearly over-

classified.  In fact, both the standard MLC and the MLC using a threshold of 0.035 

have also over-classified Bright soils, but not to the extent as that when using a 

threshold of 0.045.  A possible explanation is that some of the pixels erroneously 

classified as Bright soils could in fact be mixed pixels that contained a proportion of 

Bright soils and other classes.  Another possible explanation relates to the original 

training data.  Unlike many of the classes, Bright soils did not occur in large 

contiguous regions within the image.  As a result, when training the data, in order to 

get enough samples to reliably estimate the covariance information for Bright soils, 

individual pixels had to be selected.  It is probable that some of the pixels selected 

were not 100% pure but were a mixture of Bright soils and other classes.  This would 

have an effect on the estimation of the mean spectra and the covariance information 

for the class, and this would propagate into the classification results. 
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At the time when the image was acquired, no adequate ground truth data had been 

collected.  In order to assess the accuracy of the classifications then, the original 

training data was used for comparison.  Table 5.5 shows the accuracies of the 

different schemes implemented when assessed against the original training data.  

When using the Speed and Kiiveri (1986) algorithm with thresholds of 0.03, 0.035 

and 0.04, the classification accuracies are very similar and comparable to those from 

the standard MLC (96.46%).  As the threshold is increased to 0.045 and 0.05, the 

classification accuracies decrease to 77% and 61% respectively.  When using band-

diagonal inverse covariance matrices for classification, the classification accuracies 

(a) (c) 

(b) (d) 

Figure 5.7: Comparison of selected classified images: (a) Standard MLC image, (b) Classification 

image resulting from a bandwidth of 6, (c) Classification image resulting from a threshold of 0.035, (d) 

Classification image resulting from a threshold of 0.045. 
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are slightly lower than that from a standard MLC, yet still range between 92% – 93% 

for bandwidths of 5, 6 and 7. 

The classification accuracies for each class using each of the different MLC 

implementations are shown in table 5.6.  The classes that were classified with the 

lowest accuracy (Bright tree veg, Shadow, Dark tree veg, bright soils and Water) 

were those whose spatial distributions did not occur in large contiguous groups 

within the image, but were scattered throughout the image in small groups containing 

only a few pixels of the same class.  This further reinforces the idea that the training 

data selected for these classes may not have been 100% pure.  If this was the case, it 

was unavoidable as at least (N + 1) training samples are required to avoid the 

covariance matrices being singular and to get reliable estimates of the covariance 

information, at least 10N training samples are needed (Swain & Davis 1978).  The 

poorly classified classes were also the classes which had the fewest number of 

training pixels selected, with the exception of the class Bare field, which only had 

475 pixels selected as training data, yet was accurately classified. 

When classified using a threshold of 0.045 both Lush veg and Bright veg 

unexpectedly had significantly lower classification accuracies (15% and 33% 

respectively) than when they were classified using a threshold of 0.05.  For the other 

classes, lower thresholds resulted in higher classification accuracies.  Looking at the 

classification images in figure 5.7, it can be seen that these classes have actually been 

classified predominantly as Bright soils.  When modelling the covariance matrix for 

Bright soils using a threshold of 0.045, the determinant is 6.7584 × 10
219

.  This is 

considerably higher than the determinant when using a threshold of 0.05, i.e. 1.2285 

× 10
213

.  In the majority of cases, as the threshold is increased, the determinant of the 

modelled covariance matrix also increases. 

Table 5.5: Accuracies from the Different  MLC Implementations 

Speed and Kiiveri (1986) Band-diagonal Approximated Inverse 

Threshold Classification Accuracy (%) Bandwidth, ω Classification Accuracy (%) 

0.03 96.465 5 93.070 

0.035 96.458 6 92.985 

0.04 96.417 7 92.362 

0.045 76.929   

0.05 60.949 Standard MLC 96.460 
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Table 5.6 demonstrates the success of the methods tested, particularly when using the 

method from Speed and Kiiveri (1986) with thresholds ≤ 0.04.  When approximating 

the inverse covariance matrices as band-diagonal with bandwidths of 5, 6 and 7, 10 

of the 15 classes were classified with accuracies > 90%, giving an overall 

classification accuracy ranging from 92% – 93%.  Using thresholds of ≤ 0.04 with 

the method from Speed and Kiiveri (1986) resulted in 10 out of the 15 classes being 

classified with accuracies > 95%.  This compared very well with the results from a 

standard MLC.  Overall, the classification accuracies from both the standard MLC 

and thresholds ≤ 0.04 gave accuracies of 96%. 

These results demonstrate that there is a large degree of redundancy inherent in the 

covariance structure of hyperspectral, remotely sensed data.  Many of the terms in 

the inverse covariance matrices can be set to zero and yet still achieve comparable 

classification accuracies when compared with the results from a standard MLC.  This 

indicates that a significant saving in the number of parameters required can be 

realised, by identifying parameters having values close to zero and systematically 

setting them to zero.  The structure of the covariance matrices is considerably 

simplified and the amount of disk space needed for storage is also significantly 

reduced. 

This chapter has examined ways of reducing the number of parameters required to 

describe the class covariance information of hyperspectral remotely sensed data, with 

Table 5.6: Classification Accuracies (%) for Each Class for the Different MLC 

Implementations 

Thresholds Bandwidths 
Class 

Standard 

MLC 0.03 0.035 0.04 0.045 0.05 5 6 7 
Average 

Shadow 53 53 54 53 50 36 34 35 35 45 

Lush veg 100 100 100 100 15 93 97 97 95 89 

Veg 100 100 100 100 90 86 99 99 97 97 

Dark soil/veg 100 100 100 100 100 77 99 98 98 97 

Dark tree veg 57 58 57 57 57 45 46 48 46 52 

Bright soil/veg 100 100 100 100 90 71 99 99 99 95 

Soil/veg 100 100 100 100 87 78 97 96 96 95 

Soil 100 100 100 100 99 51 96 97 97 93 

Bright soils 86 86 86 85 83 86 52 54 53 75 

Bright veg 99 99 99 99 33 95 99 99 99 91 

Bare field 98 98 98 98 79 57 99 99 99 92 

Bare dry field 100 100 100 100 84 55 99 99 99 93 

Bare damp field 100 100 100 100 83 18 97 97 96 88 

Bright tree veg 35 35 35 31 39 25 31 31 32 33 

Water 88 87 86 88 71 46 77 77 77 77 

Overall 96 96 96 96 77 61 93 93 92  
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applications in MLC.  The class covariance matrices play an important role in MLC 

and when the data is of a hyperspectral nature, these matrices will be large.  

Consequently, there will be a large number of elements in each class covariance 

matrix, which requires larger amounts of storage space and increases the amount of 

processing time considerably.  Two approaches were used, one that approximates the 

inverse covariance matrices as band-diagonal and one that identifies low valued 

elements within the partial correlation matrices using thresholds and subsequently 

sets the low valued elements to zero. 

When a bandwidth of 7 was used, 5550 out of 6724 elements were set to zero in each 

inverse covariance matrix.  Using these band-diagonal approximated inverse 

covariance matrices, the resulting MLC achieved an accuracy of 92.4%.  When a 

threshold of 0.04 was used to identify low valued elements in the class partial 

correlation matrices an average of 4604 elements were set to zero.  The overall 

classification accuracy from using the resulting modelled class inverse covariance 

matrices was 96.4%.  In this work the selected threshold was applied to all class 

partial correlation matrices.  It was noticed later that the number of terms in the class 

partial correlation matrix having absolute values less than the threshold was also 

dependant on the number of training pixels selected for each particular class.  In 

future work, class inverse covariance matrices having a small number of training 

pixels could be modelled by using a smaller threshold than for larger classes. 

The individual pixel spectra also play a major role in MLC and are used in the MLC 

discriminant function.  The pixel spectra are a possible source of redundancy in 

hyperspectral data and if the effective dimensionality of the pixel spectra can be 

reduced, then this will reduce the amount of processing time needed for MLC of the 

data.  Not only will the size of the spectra be reduced, the size of the resulting class 

covariance matrices will also decrease considerably.  This issue is examined in the 

next chapter. 
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6 Dimensionality Reduction for the 

Characterization of Remotely Sensed Spectral 

Curves 

The covariance matrix is a potential source of redundancy in hyperspectral remote 

sensing.  This is significant in applications such as MLC, where the covariance 

matrix is required for the discriminant function.  As well as the class covariance 

matrix, the individual pixel spectra and the mean class spectra also appear in the 

discriminant function for MLC (3.1).  When working with hyperspectral data, these 

spectra are also a potential source of high redundancy.  The spectral bands on 

hyperspectral sensors are spaced close together (typically < 20 nm separation) and 

neighbouring bands located in atmospheric windows are usually very highly 

correlated.  The spectra measured by hyperspectral sensors can resemble smooth 

curves, and this combined with the high inter-band correlations can be exploited to 

approximate the spectral curves using a significantly smaller number of parameters.  

This will ease the problems of storage and transmission of the data.  A reduction in 

the dimensionality of the data will also lead to a reduction in the size of the 

covariance matrices used for the classification of the data. 

In this chapter, methods are investigated to characterize the measured spectral curves 

using fewer bands or parameters, with an emphasis on minimizing the RMS error.  

The spectra from 20 selected pixels have been extracted and this is presented in 

section 1.  The 20 sample spectra are then approximated using the discrete wavelet 

transform (DWT).  Unlike the PCT, the DWT is a relatively new technique when 

used for the analysis of remotely sensed hyperspectral data (Li et al. 2001; Koger et 

al. 2003; Bruce, Koger & Li 2002).  As the measured spectra resemble smooth 

curves, piecewise cubic smoothing splines will be used for their approximation. 

6.1 The Data 

A row of 20 pixels has been selected from the image in figure 5.1 in order for the 

methods to be tested.  The pixels are from line 196 in the image and stretch between 
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columns 406 – 425.  These pixels were chosen as they cover several different classes 

and will therefore exhibit diverse spectra having different characteristics.  The 82-

band spectra have been extracted from each of the pixels and are shown in figure 6.1. 

6.2 Approximating Spectra Using Wavelets 

The field of wavelet analysis is a relatively recent development in applied 

mathematics (Daubechies 1992) and particularly in hyperspectral remote sensing (Li 

et al. 2001).  Wavelets are oscillating functions with compact support.  The compact 

support of a wavelet function ψ(t) refers to the maximal interval outside of which the 

wavelet function has a value of zero.  When compared with traditional Fourier 

analysis techniques wavelets are a significant advancement.  Wavelets have 

advantages for representing discontinuous functions or functions with sharp peaks.  

Wavelets are also better for deconstructing and reconstructing finite or non-periodic 

functions.  The wavelet functions are formed from dilated and translated versions of 

a single basic wavelet, known as the mother wavelet.  Unlike Fourier analysis which 

is a global analysis, wavelets operate on the signal simultaneously at different scales 

and different locations. 

Measured Spectra of 20 Selected Pixels
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Figure 6.1: Spectra of the 20 pixels used in this study.  The pixels are from row 196 between columns 

406 – 425 in the HyMap image used for this research. 
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A wavelet analysis simultaneously separates a signal into a coarse approximation and 

coefficients representing the finer details.  These finer detail coefficients (the wavelet 

coefficients) are saved and the coarse approximation is submitted to the next level of 

the wavelet analysis.  The coarse approximation is then separated into a coarser 

approximation and finer detail wavelet coefficients.  This process continues 

recursively until a predetermined level has been reached.  At each level the wavelet 

analysis can be thought of as a simultaneous high-pass and low-pass filtering of the 

data. 

In order for an oscillating function to be considered as a wavelet function it must 

meet certain criteria.  The first is that it must have an average value of zero.  The 

second criteria is that the wavelet function ψ must have a magnitude of one, i.e. 

||ψ|| = 1.  The final criterion is that the function must satisfy the admissibility 

condition, i.e. 
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where ψ̂  denotes the Fourier transform of the wavelet function. 

The continuous wavelet transform (also known as the integral wavelet transform) of 

a signal f is given by 
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where α and β are the dilation and translation parameters respectively, and the over 

bar notation represents the complex conjugate.  Equation (6.2) is a function of two 

real variables.  To arrive at the discrete wavelet transform, the dilation and 

translation parameters first need to be discretized.  The dilation parameter, α, is 

recast as j

0α  and the translation parameter, β, is recast as 00 βα j
n .  The j and n terms 

are both integers.  A typical value used for α0 is 2 and for β0 a good choice is a value 
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of 1.  If the original signal, f, has been discretized then (6.2) can be rewritten to 

become the discrete wavelet transform 
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The inversion formula for the continuous wavelet transform is given by 
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where Cψ is given by 
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This should be recognized as the admissibility condition from (6.1). 

A wavelet analysis of a signal is essentially a multiresolution analysis consisting of a 

sequence of successive approximation subspaces …V2 ⊂ V1 ⊂ V0 ⊂ V–1 ⊂ V–2 ⊂ … ⊂ 

L
2
 (Daubechies 1992; Blatter 1998; Kaarna et al. 2000).  These Vj have the properties 

that }0{=I
j

jV  and 2
LV

j

j =U .  If the orthogonal compliment of Vj is denoted as Wj 

then Vj–1 = Vj ⊕ Wj.  But Vj = Vj+1 ⊕ Wj+1, and Vj+1 = Vj+2 ⊕ Wj+2, etc., and so it can 

be written Vj = Wj+1 ⊕ Wj+2 ⊕ Wj+3 ⊕ … ⊕ Wj+J ⊕ Vj+J for some level J.  The V 

subspaces constitute the low-pass filters (lk) and the W subspaces constitute the high-

pass filters (hk).  A function φ ∈ V0 exists such that its translates {φ(t – n)|n ∈ Z} 

form an orthonormal basis for V0.  The function φ is known as the scaling function 

and is sometimes referred to as the father wavelet (Aboufadel & Schlicker 1999).  

φ(t) can be expressed as 

 ∑
∞
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k

k ktlt )2(2)( φφ , (6.6) 
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where lk are the low-pass filter coefficients and can be calculated from lk = 〈φ,φ–1,k〉.  

The value of k ranges from 0 ≤ k ≤ 2N – 1.  The φj,k are defined as 

 
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In (6.6), φ(t) was defined in terms of the filter coefficients lk.  In much the same way, 

ψ(t) can be defined as 

 ∑ −=
k

k ktht )2(2)( φψ , (6.8) 

where the hk are the high-pass filter coefficients and are related to lk by 

 kN

k

k lh −−−= 12)1( . (6.9) 

The first stage in analysing a signal f is to generate the approximation coefficients 

aj,n.  Initially, a0,n is set to f(n) and as j increases the approximation of f becomes 

coarser (by a factor of 2).  Both φj,n and ψj,n can be written recursively as 

 njl
k

knjknj ∀∀=∑ +− ,2,1, φφ  (6.10) 

and 

 njh
k

knjknj ∀∀=∑ +− ,2,1, φψ . (6.11) 

The aj,n are given by 
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k
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Recursively, this can be written as 
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 ∑ +−=
k

knjknj ala 2,1, . (6.13) 

The next stage involves generating the actual wavelet coefficients, dj,n (i.e the detail 

coefficients) and these are given by 

 ∑ 〉〈=〉〈= +−
k

knjknjnj fhfd 2,1,, ,, φψ . (6.14) 

As before, this can be written recursively as 

 ∑ +−=
k
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The wavelet analysis algorithm is shown diagrammatically in (6.16).  The maximum 

number of steps, J, in the algorithm is determined by the length of the digitized 

signal, f(n).  If f has a length of 2
J
 then the wavelet analysis should be terminated 

after ≤ J steps. 
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To reconstruct the signal with a wavelet synthesis, the process in (6.16) needs to be 

reversed.  An equation for the aj–1,n is 

 ∑ ∑ 〉〈+〉〈= −−−
k k

njkjkjnjkjkjnj daa ,1,,,1,,,1 ,, φψφφ  (6.17) 

which becomes 
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k k
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The wavelet synthesis algorithm is shown schematically in (6.19) 
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It should be noted that apart from the aJ,n coefficients, the aj,n resulting from the 

analysis phase are only temporary coefficients and it is not necessary for them to be 

stored in order to reconstruct the original signal at a later date.  It is only the aJ,n and 

the wavelet coefficients dj,n that need to be retained for a perfect reconstruction of the 

signal.  By storing all the dj,n and aJ,n, no reduction in the amount of storage space is 

achieved.  A significant reduction in the amount of storage space can be realised 

however by recognizing that a significant number of the dj,n are relatively close to 

zero.  If a threshold is set and all dj,n with an absolute value less than this threshold 

are set to zero, the number of remaining non-zero dj,n terms is usually quite small, 

depending on the form of the original signal.  The reconstruction of the signal will be 

reasonably accurate, although the accuracy will depend on the size of the threshold 

used. 

Interestingly, neither the wavelet function ψ nor the scaling function φ appears in the 

wavelet analysis and synthesis algorithms, nor do they need to be known.  All that is 

needed is the lk and hk values, and these can be found in many texts covering 

wavelets (e.g. Daubechies (1992)) for many existing wavelets, such as the Haar 

wavelet or the Daubechies family of wavelets.  There is also commercially available 

software such as S-Plus that can be used for generating the lk and hk. 

The Haar wavelet and some of the Daubechies wavelets are presented in the next two 

sections.  These will be used to analyse the spectra presented in section 6.1.  

Different thresholds will be used and many of the wavelet coefficients will be set to 

zero.  The original spectra will then be approximated from a wavelet synthesis using 

the remaining non-zero wavelet coefficients. 

6.2.1 The Haar Wavelet 
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The Haar wavelet was the first of the orthonormal wavelets and is one of the more 

popular wavelets.  It is not continuous and resembles a simple step function.  The 

wavelet function has compact support of [0, 1] and the function is given by: 
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The corresponding scaling function φHaar(t) is given by: 
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Both the Haar wavelet and the associated scaling function are shown graphically in 

figure 6.2.  The low and high-pass filter coefficients lk and hk are given in table 6.1.  

It should be noted that with the lk 
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Figure 6.2: (a) The Haar Wavelet and (b) The Haar scaling function 
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The Haar wavelet was used to analyse each of the spectra shown in figure 6.1 and 

using different thresholds the low valued wavelet coefficients were set to zero.  The 

spectra were then approximated by synthesizing them from the remaining non-zero 

wavelet coefficients.  For each approximated spectra, the number of non-zero 

wavelet coefficients used was determined and the RMS error was calculated.  The 

RMS values for each of the spectra approximated with the Haar wavelet are given in 

table 6.2.  As expected, lower thresholds resulted in more accurately approximated 

spectra.  With a threshold of 50, the RMS errors for the 20 spectra ranged from 15.3 

– 20.41, at an average of 17.46.  When the threshold was increased to 150, the range 

of RMS errors increased to 35.39 – 56.61 with an average of 46.12. 

The number of wavelet coefficients used to approximate each of the spectra can be 

found in table 6.3.  The analysis of the spectra was terminated after J = 5 levels and 

Table 6.1: Filter Coefficients for the Haar Wavelet. 

k lk hk 

0 0.7071068 0.7071068 

1 0.7071068 –0.7071068 

Table 6.2: RMS Values of Approximated Spectra When Using the 

Haar Wavelet with Various Thresholds 

Threshold 
Pixel 

50 75 100 125 150 

1 17.27 30.58 37.60 44.93 47.57 

2 18.41 29.81 35.55 43.22 48.48 

3 17.54 27.16 34.86 36.97 43.55 

4 16.49 29.17 35.78 41.48 51.25 

5 15.30 26.37 41.62 43.18 56.61 

6 15.40 32.29 33.33 39.75 47.37 

7 18.69 29.52 34.57 43.82 51.16 

8 20.41 25.65 39.11 42.43 53.13 

9 16.63 22.58 32.74 37.25 40.02 

10 16.44 26.35 29.74 31.48 35.39 

11 17.44 23.61 34.10 37.57 41.45 

12 16.21 22.83 24.80 37.77 40.43 

13 18.96 24.31 29.31 35.11 38.37 

14 17.24 25.02 34.37 40.99 43.81 

15 20.20 24.06 36.46 39.96 52.11 

16 17.88 26.53 36.05 45.38 47.61 

17 18.50 26.97 34.19 42.29 47.42 

18 15.66 23.53 32.89 34.99 42.80 

19 17.91 28.58 30.52 39.75 42.38 

20 16.55 29.06 38.42 42.59 51.41 

Average 17.456 26.700 34.301 40.046 46.116 
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at this stage the number of temporary coefficients had been reduced to 3.  These have 

not been included in the values in table 6.3.  For a threshold of 50, an average of 41 

wavelet coefficients had not been set to zero and were used in the reconstruction of 

the spectra.  This decreased to an average of 22 wavelet coefficients when using a 

threshold of 150.  For pixel 10, as few as 12 wavelet coefficients were used when the 

threshold was 150, but for pixel 1 and a threshold of 50, as many as 50 wavelet 

coefficients were used.  This is still a significant reduction compared to the 82 bands 

required to characterize the original spectra. 

As a graphical example of the results, the spectra from pixels 6, 10 and 14 are shown 

in figures 6.3, 6.4 and 6.5, respectively, as well as the resulting approximations from 

using the Haar wavelet with thresholds of 50, 100 and 150.  These particular pixels 

were chosen to be used as examples as their spectra exhibit different forms.  For 

comparability, the spectra are plotted using the same scale.  One thing that is evident 

with the approximations produced by the Haar wavelet is that they resemble a series 

of step functions.  This effect is more pronounced at slow changing sections of the 

spectral curves. 

Table 6.3: Number of Wavelet Coefficients Used to Approximate Spectra 

With the Haar Wavelet at Different Thresholds. 

Threshold 
Pixel 

50 75 100 125 150 

1 50 37 32 28 27 

2 47 36 32 28 26 

3 42 33 28 27 25 

4 47 34 29 26 22 

5 47 37 26 25 19 

6 44 27 26 23 20 

7 45 34 30 25 22 

8 41 36 27 25 21 

9 28 24 17 15 14 

10 26 17 15 13 12 

11 33 27 20 17 15 

12 41 35 34 29 28 

13 41 36 33 31 30 

14 48 40 34 31 30 

15 47 43 35 33 28 

16 45 37 31 26 25 

17 37 28 23 19 17 

18 31 24 18 17 14 

19 38 27 26 22 21 

20 49 35 28 26 22 

Average 41.35 32.35 27.20 24.30 21.90 
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Figure 6.3 shows that the measured spectrum for pixel 6 is well approximated when 

using the Haar wavelet with thresholds of 50, 100 and 150. When a threshold of 50 

was used, the Haar wavelet was able to approximate pixel 6 using 44 wavelet 

coefficients to an RMS error of 15.40.  The RMS error increased to 33.33 and the 

number of wavelet coefficients decreased to 26 when the threshold was increased to 

100.  When the threshold was raised to 150 the RMS error increased to 47.37 while 

the number of wavelet coefficients used decreased to 20. 
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Figure 6.3: Spectra for pixel 6 when approximated with the Haar wavelet using thresholds of 50, 100 

and 150. 
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For all 5 thresholds used, the approximations for pixel 10 (figure 6.4) consistently 

used the least number of wavelet coefficients and for thresholds of 125 and 150 they 

also had the lowest RMS error.  Of the 20 sample spectra, the spectrum for pixel 10 

is relatively flat and void of absorption features.  This would explain the fact that the 

approximations for pixel 10 used the fewest wavelet coefficients: the spectrum does 

not have many fine details that need to be characterized.  The RMS errors of the 

approximations ranged between 16.44 and 35.39 and the number of wavelet 

coefficients used ranged from 12 – 26. 
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Figure 6.4: Spectra for pixel 10 when approximated with the Haar wavelet using thresholds of 50, 100 

and 150. 
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The spectrum for pixel 14 shows a lot more variability than is present in the spectra 

for pixels 6 and 10, including a “red edge” feature between bands 10 and 12.  As 

with the other two spectra, the Haar wavelet was able to well approximate the 

spectrum using as few as 30 and as many as 48 wavelet coefficients for thresholds 

ranging from 50 to 150.  The corresponding RMS errors ranged from 43.81 down to 

17.24. 

6.2.2 The Daubechies Family of Wavelets 

As well as the Haar wavelet, there are many other famous existing orthonormal 

wavelets such as the Battle-Lemarié wavelets, the Meyer wavelets and the Shannon 

wavelet.  Another popular group of wavelets is the Daubechies family of wavelets.  

The Daubechies wavelets were developed by Ingrid Daubechies to be orthogonal and 

have compact support of 0 ≤ t < 2N – 1.  Unlike the Haar wavelet, the Daubechies 

wavelets are continuous and as N increases, the interval of support gets wider and the 

wavelet functions become smoother (Mallet et al. 1997; Walnut 2002).  The number 

of filter coefficients for each of the Daubechies wavelets is given by 2N.  In this 

section some examples of the Daubechies wavelets are given and these will then be 

used to approximate the 20 spectra shown in figure 6.1. 
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Figure 6.5: Spectra for pixel 14 when approximated with the Haar wavelet using thresholds of 50, 100 

and 150. 
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Software packages such as Maple and S-Plus are available which have the 

capabilities to calculate the scaling functions, wavelet functions and filter 

coefficients for many of the existing popular wavelets, including those from the 

Daubechies family.  The wavelets module in S-Plus can calculate these for the first N 

= 10 wavelet functions from the Daubechies family.  As an example, the scaling and 

wavelet functions for N = 2, 3 and 5 are shown in figures 6.6 and 6.7.  In this study, 

the Daubechies scaling functions for N = 2, 3 and 5 will be denoted as φD4, φD6 and 
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Figure 6.6: Examples of some of the Daubechies Scaling functions and Wavelets. (a) Scaling function 

for N = 2, φD4; (b) Wavelet function for N = 2, ψD4; (c) Scaling function for N = 3, φD6; (d) Wavelet 

function for N = 3, ψD3. 
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φD10 and the corresponding wavelet functions will be denoted as ψD4, ψD6 and ψD10.  

The corresponding filter coefficients for ψD4, ψD6 and ψD10 are given in table 6.4, and 

were generated with the wavelets module in S-Plus. 

Each of the spectra in figure 6.1 were analysed to J = 5 levels using the ψD4, ψD6 and 

ψD10 wavelets and were reconstructed by thresholding the wavelet coefficients.  The 

thresholds used were values of 50, 75, 100, 125, and 150.  Table 6.5 shows the RMS 

error resulting from the spectra being approximated by each of the three wavelets for 

the five different thresholds used.  In terms of the RMS errors, the Daubechies 

wavelets performed significantly better than the Haar wavelet at approximating the 
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Figure 6.7: Examples of some of the Daubechies Scaling functions and Wavelets cont. (a) Scaling 

function for N = 5, φD10; (b) Wavelet function for N = 5, ψD10. 

Table 6.4: Low-pass and High-pass Filter Coefficients for the ψD4, ψD6 and ψD10 Wavelets. 

ψD4 ψD6 ψD10 k 
lk hk lk hk lk hk 

0 0.482962900 -0.129409500 0.332670600 0.035226290 0.160102400 0.003335725 

1 0.836516300 -0.224143900 0.806891500 0.085441270 0.603829300 0.012580750 

2 0.224143900 0.836516300 0.459877500 -0.135011000 0.724308500 -0.006241490 

3 -0.129409500 -0.482962900 -0.135011000 -0.459877500 0.138428100 -0.077571490 

4   -0.085441270 0.806891500 -0.242294900 -0.032244870 

5   0.035226290 -0.332670600 -0.032244870 0.242294900 

6     0.077571490 0.138428100 

7     -0.006241490 -0.724308500 

8     -0.012580750 0.603829300 

9     0.003335725 -0.160102400 
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spectra for a given threshold.  For a threshold of 50, the Haar wavelet could 

approximate the spectra with an average RMS error of 17.5.  The three Daubechies 

wavelets approximated the spectra using the same threshold with an average RMS 

error of 15.1.  With a threshold of 150, the improvement was even greater.  The Haar 

wavelet approximated the spectra to an average RMS error of 46.1, compared with 

the three Daubechies wavelets used which gave an average RMS error of 38.9. 

Of the three Daubechies wavelets used, ψD4 was consistently the better performer.  

For each of the five different thresholds used the spectra approximated using ψD4 had 

a lower average RMS error than the spectra approximated using either ψD6 or ψD10.  

The range in average RMS errors at each threshold was not large, with the largest 

range 37.98 – 40.13, occurring at a threshold of 150.  For the larger valued thresholds 

used (125 and 150), ψD6 produced approximated spectra having lower RMS errors 

than those produced by ψD10.  For thresholds of 50, 75 and 100 however, ψD10 was 

able to approximate the spectra more accurately than ψD6 could. 

Table 6.5: RMS Values of Approximated Spectra Using the ψD4 ψD6 and ψD10 Wavelets with Different 

Thresholds 

Threshold 

50 75 100 125 150 Pixel 

ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 

1 16.02 16.22 14.66 23.45 21.71 20.86 28.47 28.30 26.46 33.52 28.71 34.02 39.86 32.66 41.95 

2 13.12 13.89 14.69 20.84 22.75 22.51 29.76 25.91 24.69 29.86 31.69 32.79 29.87 38.54 38.59 

3 17.74 11.04 15.31 21.94 23.80 21.18 27.85 29.07 27.15 30.48 29.07 33.03 33.97 32.46 47.51 

4 15.37 15.43 16.19 24.73 21.23 19.98 24.75 22.97 27.58 35.06 25.95 34.61 38.67 30.27 41.20 

5 14.90 14.37 13.45 19.39 19.81 24.47 24.57 30.54 28.13 34.94 35.68 28.13 40.38 38.31 42.18 

6 15.26 13.41 15.27 19.30 19.96 20.25 28.55 23.97 26.46 30.67 34.81 26.46 30.67 34.84 30.67 

7 14.53 14.23 14.27 21.94 18.94 18.59 28.18 28.25 23.57 30.58 30.38 32.30 34.28 36.73 40.97 

8 19.49 18.52 18.99 27.26 26.21 26.24 31.17 33.30 29.04 33.71 40.23 31.07 40.25 45.41 47.43 

9 14.71 14.19 15.37 19.29 21.83 24.60 28.89 27.06 26.86 37.46 37.17 31.40 39.93 44.56 35.14 

10 12.31 14.33 15.95 18.84 23.23 22.25 24.54 26.45 28.15 33.11 34.79 36.67 39.02 38.40 36.67 

11 14.37 17.03 14.21 22.74 25.97 18.27 28.90 27.18 29.45 28.90 33.81 40.29 36.51 39.99 45.44 

12 13.88 15.94 15.89 20.87 20.30 23.86 24.06 24.94 30.64 36.86 31.92 34.83 50.58 38.24 41.33 

13 11.05 12.71 11.04 18.93 23.77 21.78 22.77 23.65 29.26 31.54 29.23 34.49 44.85 35.87 38.25 

14 13.87 14.56 11.79 21.57 19.57 17.30 25.72 29.53 30.43 33.18 37.70 33.42 42.07 46.28 34.18 

15 14.65 14.69 14.71 20.99 19.19 20.43 29.32 29.20 24.43 29.35 36.87 39.94 35.99 41.78 48.64 

16 14.83 15.92 13.23 18.19 23.68 18.67 27.53 28.07 24.54 32.90 28.43 36.93 36.79 41.48 39.70 

17 18.05 20.06 18.78 21.04 28.68 24.15 32.39 31.39 29.38 34.91 40.15 36.56 47.78 43.46 37.76 

18 13.48 13.38 14.40 19.03 23.63 19.10 24.15 29.08 27.11 30.08 32.53 29.74 33.38 38.75 29.74 

19 15.77 16.99 16.82 19.96 24.94 25.01 22.64 27.60 34.18 28.54 30.84 36.13 28.70 37.37 45.39 

20 16.65 17.05 16.26 24.20 24.40 20.74 25.61 28.28 26.71 28.32 33.30 29.85 36.07 36.96 39.92 

Average 15.00 15.20 15.06 21.23 22.68 21.51 26.99 27.74 27.71 32.20 33.16 33.63 37.98 38.62 40.13 
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In terms of reducing the number of terms needed to accurately characterize the 

spectra, ψD4 performed better than ψD6 and ψD10.  Table 6.6 shows the number of 

wavelet coefficients needed to approximate the spectra for a given threshold.  It 

shows that on average, ψD4 used fewer wavelet coefficients to approximate the 

spectra than did ψD6 and ψD10, particularly with the lower valued thresholds.  When 

compared with the Haar wavelet, the results are mixed.  For the larger thresholds 

(100, 125 and 150), the Haar wavelet outperformed the Daubechies wavelets, 

although for thresholds of 50 and 75, the Daubechies wavelets performed better.  It 

should be noted that table 6.6 does not include the number of approximation 

coefficients that need to be stored to initialize the synthesis phase to approximate the 

spectra.  For ψD4, the number of approximation coefficients that need to be stored 

after J = 5 levels of analysis is 5.  For ψD6 this increases to 7 and for ψD10 the number 

of stored a coefficients needed is 11.  When taking this into account, ψD4 is clearly 

superior over ψD6 and ψD10 at approximating the spectra, both in terms of accuracy 

and the number of parameters needed. 

To demonstrate some of the results graphically, figures 6.8, 6.9 and 6.10 show the 

Table 6.6: Number of Wavelet Coefficients Used to Approximate Spectra Using the ψD4 ψD6 and ψD10 

Wavelets with Different Thresholds.  These Values do not Include the Approximation Coefficients 

Needed to Initialize the Synthesis Process. 

Threshold 

50 75 100 125 150 Pixel 

ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 ψD4 ψD6 ψD10 

1 42 42 52 36 36 47 33 32 40 29 31 37 27 28 32 

2 43 44 53 36 35 45 31 33 40 30 31 37 29 27 34 

3 38 46 53 34 36 47 31 31 44 30 31 39 28 29 32 

4 39 41 51 33 35 48 32 33 43 28 30 39 27 29 34 

5 37 43 53 34 36 43 30 29 40 26 26 40 24 24 34 

6 36 39 45 33 33 42 28 30 39 26 26 38 26 25 36 

7 38 42 47 31 38 43 28 30 41 27 29 35 25 27 30 

8 42 48 49 34 38 41 30 32 35 28 27 33 25 25 28 

9 31 32 35 26 24 23 20 21 19 15 15 16 14 10 15 

10 26 25 24 20 16 17 15 11 14 12 8 10 10 6 10 

11 29 30 30 20 20 25 16 16 19 16 13 14 14 10 12 

12 43 41 47 37 34 39 35 32 31 28 28 28 22 26 26 

13 46 48 53 38 37 43 36 36 38 33 34 35 27 31 31 

14 45 48 54 38 43 45 34 37 37 31 31 35 28 28 32 

15 45 48 51 40 43 44 34 37 40 32 33 32 30 29 26 

16 38 41 50 35 34 44 29 31 39 27 29 31 24 25 30 

17 35 38 41 31 26 32 24 22 27 23 18 21 17 16 19 

18 27 26 31 22 17 24 19 14 16 16 10 14 14 7 14 

19 35 37 47 30 26 37 27 23 29 25 22 25 24 19 22 

20 38 39 49 30 32 44 29 28 40 27 25 37 25 23 33 

Average 38 40 46 32 32 39 28 28 34 25 25 30 23 22 27 
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spectra for pixels 6, 10 and 14, along with the spectra approximated using ψD4 with 

thresholds of 50, 100 and 150.  The spectra have been plotted using the same scale 

for comparability.  When the ψD4 wavelet was used to approximate the measured 

spectrum for pixel 6, the number of wavelet coefficients used was 36, 28 and 26 for 

thresholds of 50, 100 and 150 respectively.  At these thresholds the corresponding 

RMS errors were 15.26, 28.55 and 30.67.  These approximations were more accurate 

than those produced by the Haar wavelet although more parameters were required 

with thresholds of 75 – 150.  The improvement in accuracy resulting from the use of 

ψD4 can be seen in figure 6.8.  The shape of the spectrum has been better captured 

and it is no longer being approximated as a series of step functions, as compared to 

figure 6.3. 

When the ψD4 wavelet was used to approximate the measured spectrum for pixel 10, 

the results produced (figure 6.9) were more accurate than those for the Haar wavelet 

at lower valued thresholds, but not for thresholds of 125 and 150.  It can be seen in 

figure 6.9 that for a threshold of 150, the approximation does not adequately capture 

the sharp features in the spectrum.  This would indicate that 150 is too high a 

threshold to represent these types of features.  In terms of parameterisation, fewer 
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Figure 6.8: Pixel 6 spectra: original and approximated using ψD4 wavelet with thresholds of 50, 100 

and 150. 
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wavelet coefficients are used with the ψD4 wavelet for thresholds of 125 and 150 than 

when the Haar wavelet was applied. 

When used to approximate pixel 14, the ψD4 wavelet performs better than the Haar 

wavelet for all thresholds trialled, both in terms of accuracy and reducing the number 

of wavelet coefficients needed.  The results from using ψD4 to approximate pixel 14 

with thresholds of 50, 100 and 150 are shown in figure 6.10.  The spectral curve 

exhibits many different features and these are all well characterized by the ψD4 

wavelet. 

It has been shown that of the three members from the Daubechies family of wavelets 

used, the ψD4 wavelet performs better at accurately approximating remotely sensed 

spectra.  The ψD4 wavelet also uses fewer parameters to characterize the spectra than 

both ψD6 and ψD10, particularly when the number of approximation coefficients used 

is considered. 
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Figure 6.9: Pixel 10 spectra: original and approximated using ψD4 wavelet with thresholds of 50, 100 

and 150. 
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6.3 Approximating Spectra Using Cubic Splines 

Spectra can also be characterised using fewer parameters by approximating the 

spectra with piecewise polynomials.  The spectra are divided into subintervals and 

subject to continuity conditions at the join points of the subintervals, or knots, the 

spectra are fitted with a different polynomial at each subinterval.  A subset of the 

bands is chosen for the knots and the rest can be interpolated from the fitted 

polynomials.  Typically, more knots are selected in rapidly changing regions of the 

curve. 

When linear functions are used to approximate the spectral curves, the resulting 

functions will not have continuous first derivatives at the knots and hence are not 

smooth curves.  Quadratic functions are the simplest polynomials that will result in 

smooth curves and can be defined with only three constants.  However, cubic 

polynomials are most commonly used as they are the lowest order polynomials that, 

unlike quadratic functions, give points of inflection.  For these reasons, cubic splines 

will be used in this work.  Given a function f defined on the interval [a, b] and a set 

of n + 1 knots, a = x0 < x1 < … < xn = b, cubic splines, S, are fitted to the n 

subintervals so that the following continuity conditions are satisfied: 
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Figure 6.10: Pixel 14 spectra: original and approximated using ψD4 wavelet with thresholds of 50, 100 

and 150. 
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1) Sj is a cubic polynomial defined on the subinterval [xj, xj + 1] for each j = 0, 1, 

…, n – 1; 

2) S(xj) = f(xj) for each j = 0, 1, …, n; 

3) Sj + 1(xj + 1) = Sj(xj + 1) for each j = 0, 1, …, n – 2; 

4) S'j + 1(xj + 1) = S'j(xj + 1) for each j = 0, 1, …, n – 2; 

5) S''j + 1(xj + 1) = S''j(xj + 1) for each j = 0, 1, …, n – 2; 

6) Either S'(x0) = f'(x0) and S'(xn) = f'(xn) for clamped boundary conditions or 

S''(x0) = S''(xn) = 0 for free or natural boundary conditions. 

For higher order polynomials, there are additional continuity conditions for each 

additional derivative.  Discontinuities will exist at the highest order derivatives for 

each knot, regardless of the degree of the polynomials used at each subinterval.  If 

the highest order derivatives were continuous at a knot, then this would imply the 

polynomials fitted to the subintervals adjoining the knot are identical and the knot 

would then be superfluous. 

With selected knots, cubic splines are constructed by applying the continuity 

conditions to the cubic polynomials.  For each subinterval, j = 0, 1, …, n – 1 

 Sj(x) = aj + bj(x – xj) + cj(x – xj)
2
 + dj(x – xj)

3
, (6.22) 

where clearly at xj, 

 Sj(xj) = f(xj) = aj. (6.23) 

Applying condition 3) for each j = 0, 1, …, n – 2 gives 

 aj + 1 = Sj + 1(xj + 1) = Sj(xj + 1) = aj + bj(∆j) + cj(∆j)
2
 + dj(∆j)

3
 (6.24) 

where ∆j = xj + 1 – xj.  Similarly as with aj, bj = S'j(xj), and applying condition 4) for 

each j = 0, 1, …, n – 1 gives 

 bj + 1 = bj + 2cj(∆j) + 3dj(∆j)
2
. (6.25) 

Applying condition 5) for each j = 0, 1, …, n – 1 gives 
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 cj + 1 = cj + 3dj∆j. (6.26) 

Equation (6.26) can be rearranged to solve for dj, and this is then substituted into 

(6.24) and (6.25), to yield, 

 )2(
3

1

2

1 ++ +
∆

+∆+= jj

j

jjjj ccbaa  (6.27) 

and 

 )( 11 ++ +∆+= jjjjj ccbb . (6.28) 

Equation (6.27) can be rearranged to solve for bj and also for bj – 1 by reducing the 

index.  If the resulting equations are substituted into (6.28) after reducing the indices 

by 1, the resulting equation is 
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If one of the boundary conditions from condition 6) is applied and it is recognized 

that cn = S''(xn)/2, the cj can be calculated by solving a linear system of the form 

Ax = b, where in the case of A is the (n + 1) × (n + 1) matrix 
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for natural cubic splines, x and b are the (n + 1) × 1 vectors 
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Once the cj coefficients have been obtained, it is then simply a matter of substituting 

them into (6.27) and (6.26) to get the bj and dj coefficients respectively.  Press et al. 

(1986) provide standard subroutines that will calculate the coefficients aj, bj, cj and dj 

and fit polynomial splines to the data.  These subroutines are available in most of the 

scientific languages (e.g. FORTRAN, Pascal and C) and there are commercial 

packages available that have there own spline routines included.  One example is 

Maple, which will fit natural splines to the data given a set of knots and offers a 

choice as to the degree of polynomial to use. 

Thus, given a set of knots, it is a relatively straightforward process to fit cubic splines 

to spectral data.  It remains to find a suitable knot selection strategy that will 

approximate spectra with a minimised RMS error.  With hyperspectral data it is 

impractical to trial every possible combination of knots from the available list of 

bands in order to find the best combination.  For example, if 40 knots were to be 

chosen from a list of 80 bands, the number of possible combinations would be more 

than 1.075 × 10
23

.  If only 20 knots were to be selected, the number of combinations 

would reduce to 3.535 × 10
18

.  This is too many combinations to have to trial and 

assess.  The most convenient method is to select the knots at evenly spaced intervals, 

although this is unlikely to select the most optimal set of knots. 

A review of the different knot selection schemes that have been used in the statistical 

literature is given in Wand (2000).  More recently, He, Shen & Shen (2001) 

presented a two stage method that recognises the fact that more knots are required in 

rapidly changing regions of the curve.  He, Shen & Shen (2001) propose that a 

wavelet decomposition scheme be used to find an initial subset of knots and then 

reduce this subset using a stepwise knot deletion scheme. 
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Cubic splines have found applications in hyperspectral remote sensing.  Furby, 

Kiiveri and Campbell (1990) used them for analysis of a hyperspectral data set prior 

to executing a CVA.  After the data had been approximated by cubic splines, it was 

found that important spectral information was retained.  Gao, Liu and Davis (1998) 

used cubic splines to smooth hyperspectral AVIRIS data for geological applications.  

After atmospheric correction of the data, small spikes are systematically present in 

the spectral curves, which can mimic important spectral absorption or reflectance 

features and can be a distraction when analysing the data.  The authors successfully 

used cubic smoothing splines to smooth the data and retain the significant mineral 

features. 

The results from fitting cubic splines to the data shown in figure 6.1 are presented 

next.  At first, evenly spaced knots are used with cubic splines to approximate the 

spectra.  These results are then compared with those from a forward stepwise knot 

selection technique.  Starting with the first and last band as end points, each 

additional knot is selected as the band which approximates the spectrum with the 

lowest RMS error.  This is continued until the required number of knots has been 

selected.  A backward stepwise knot deletion scheme is then trialled, where initially 

all available bands are used as knots and one by one a knot is subsequently removed.  

The knot to be removed is that for which all other remaining knots produce an 

approximated spectrum having the lowest RMS error.  This is continued until the full 

set of knots has been reduced to the required number.  Either the band numbers or the 

wavelengths could be supplied as knots to the spline fitting procedure.  In order for 

the results to be comparable with those from approximating the spectra using 

wavelets, the band numbers will be used as knots and not the band wavelengths. 

6.3.1 Cubic Splines Fitted with Regularly Spaced Knots 

When the number of knots to be used for a cubic spline fit of the data is known, the 

most straightforward knot selection technique is to select the knots at evenly spaced 

intervals.  If n +1 knots are to be selected from N bands, the band number xj to be 

selected as knot j (j = 0, 1, …, n) is given by 
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 1
)1(

+
−

=
n

Nj
x j  

and xj is rounded off to the nearest integer to correspond with the nearest band 

number. 

A cubic polynomial is characterized by four parameters.  If the number of parameters 

needed to approximate the spectra is to be reduced then each spectral curve needs to 

be approximated using a maximum of 20 knots.  The spectra shown in figure 6.1 

were approximated using cubic splines with 16 – 20 regularly spaced knots.  The 

results are summarised in table 6.7, which shows that of the five combinations of 

knots used, the best result was achieved on average using 19 regularly spaced knots.  

When 19 knots were used to approximate the spectra the average RMS error was 

58.4.  The largest average RMS error of 85.0 occurred when 18 regularly spaced 

knots were used.  Of the 20 spectra approximated, pixel 18 was approximated with 

the most accuracy.  The RMS errors for this pixel ranged from 21.8 when 19 

regularly spaced knots were used to 32.6 when the number of regularly spaced knots 

used was 18.  Pixel 13, conversely, was approximated by cubic splines the least 

accurately; with the RMS errors ranging from 124.5 – 206.2 when the number of 

Table 6.7: RMS Errors of Spectra Approximated Using Cubic 

Splines with Knots Spaced at Regular Intervals 

Number of Regularly Spaced Knots 
Pixel 

20 19 18 17 16 

1 96.55 78.00 129.04 85.59 119.98 

2 79.61 66.05 101.79 71.33 99.27 

3 59.16 52.06 70.04 54.40 71.21 

4 54.74 47.08 73.38 53.81 65.97 

5 40.14 39.41 40.36 33.21 45.39 

6 36.40 35.23 58.14 42.45 44.19 

7 50.59 50.57 86.80 61.10 63.81 

8 72.41 68.40 120.96 83.56 78.79 

9 38.13 33.79 56.88 39.20 45.53 

10 30.85 28.04 41.70 31.75 37.83 

11 47.65 42.84 53.34 37.57 58.84 

12 116.40 100.48 140.77 95.84 159.77 

13 145.11 126.77 176.87 124.49 206.19 

14 124.62 109.09 148.63 105.92 174.93 

15 112.46 93.53 139.95 95.68 151.69 

16 53.83 45.69 71.94 53.31 72.84 

17 45.61 42.97 70.75 48.40 51.25 

18 23.22 21.78 32.61 24.91 29.61 

19 50.83 41.01 46.07 37.09 56.80 

20 52.53 44.75 40.24 39.18 54.85 

Mean 66.54 58.38 85.01 60.94 84.44 
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regularly spaced knots used was 17 and 16 respectively. 

Given the set of knots, the process of fitting a cubic spline approximation is quite 

fast. Hence, instead of storing the cubic spline coefficients, it may be desirable to 

save only the knots and the associated data values.  The cubic splines could then be 

generated for each spectral curve at a later date.  In this case, it is now possible to 

reduce the number of stored parameters by fitting cubic splines with up to 40 knots.  

With more knots, it would be expected that the spectra could be approximated more 

accurately.  Table 6.8 summarises the results when the measured pixel spectra are 

approximated using cubic splines with 36 – 40 regularly spaced knots.  The accuracy 

of the approximations has improved significantly, with the largest average RMS 

error decreasing from 85.0 to 48.8.  The lowest average RMS error was 42.3, and this 

was achieved using 37 knots spaced at regular intervals.  Pixel 18 was approximated 

the most accurately, having RMS errors ranging from 13.8 – 20.6 when the number 

of knots used was 37 and 40 respectively.  Pixel 13 was again approximated with the 

least accuracy for all combinations of knots used.  In this instance the RMS errors 

ranged from 78.8 – 87.7 when the number of knots used was 39 and 40 respectively. 

Table 6.8: RMS Errors of Spectra Approximated Using Cubic 

Splines with Knots Spaced at Regular Intervals 

Number of Regularly Spaced Knots 
Pixel 

40 39 38 37 36 

1 72.79 63.04 64.85 60.02 65.29 

2 58.75 48.27 51.24 46.48 51.82 

3 43.68 33.05 35.56 32.94 36.31 

4 47.44 38.85 40.07 36.51 40.49 

5 25.26 21.33 22.76 25.29 24.54 

6 40.86 33.79 32.91 30.57 32.20 

7 53.27 42.30 42.32 36.84 41.56 

8 80.12 70.71 69.84 66.25 70.35 

9 34.50 29.30 29.72 26.88 29.61 

10 26.23 20.91 22.05 19.53 22.39 

11 30.47 27.90 30.44 32.12 30.81 

12 73.29 66.71 71.43 72.62 71.16 

13 87.66 78.81 84.52 83.97 85.60 

14 73.46 65.73 71.42 70.53 72.63 

15 71.36 63.77 67.84 65.48 67.72 

16 39.50 33.67 34.70 30.84 35.17 

17 43.75 41.39 41.93 39.84 41.54 

18 20.57 15.63 16.73 13.78 16.80 

19 26.87 25.56 27.33 27.73 27.23 

20 25.68 26.51 27.10 28.23 27.58 

Mean 48.78 42.36 44.24 42.32 44.54 
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To illustrate the results graphically, figures 6.11, 6.12 and 6.13 show the spectra 

from approximating pixels 6, 10 and 14 respectively using cubic splines with 20, 36 

and 40 regularly spaced knots.  The plots generally show good agreement between 

the original and approximated spectra.  The main anomalies between the measured 
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Figure 6.11: Pixel 6 spectra: original and approximated using cubic splines with 20, 36 and 40 knots 

spaced at regular intervals. 
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Figure 6.12: Pixel 10 spectra: original and approximated using cubic splines with 20, 36 and 40 knots 

spaced at regular intervals. 
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and the approximated spectra occur where there are rapid changes in the measured 

spectra, particularly near bands 45 and 68.  This is the main disadvantage to using 

knots at regularly spaced intervals.  Ideally, more knots should be located in regions 

where the spectral curve undergoes rapid changes and fewer knots in regions where 

the curve changes slowly. 

When compared with the results from the measured spectra approximated with 

wavelets, the results from splines are significantly more inaccurate.  Even when a 

threshold of 150 was used with the Haar wavelet to set the wavelet coefficients to 

zero, the average RMS error was as low as 46.1.  Cubic splines with 40 evenly 

spaced knots could only achieve approximations with an average RMS error of 48.8. 

The pixels that were approximated with the least accuracy (pixels 12 – 15) are those 

whose spectra possess the largest range between their maximum and minimum 

values.  Another characteristic of the spectra that were not as accurately 

approximated by cubic splines is that they exhibit many undulating features and 

rapidly varying regions within the curves.  These accuracies could theoretically be 

improved by locating the knots where the spectral curves are changing faster than in 

other regions.  In the next section, a knot selection scheme is trialled that commences 
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Figure 6.13: Pixel 14 spectra: original and approximated using cubic splines with 20, 36 and 40 knots 

spaced at regular intervals. 
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with the end points and sequentially selects the next knot that gives the lowest RMS 

error. 

6.3.2 Cubic Splines Using Forward Stepwise Knot Selection 

In the previous section the spectra shown in figure 6.1 were approximated using 

cubic splines with regularly spaced knots.  The resulting approximations gave 

generally good fits to the spectral curves, although in rapidly varying regions of the 

curves, the approximations did not perform as well.  In this section, the spectra are 

again approximated using cubic splines, this time with knots selected from a forward 

stepwise selection technique.  Stepwise selection techniques are reviewed in Wand 

(2000) and have been used with hyperspectral data in Furby, Kiiveri and Campbell 

(1990) and He, Shen and Shen (2001).  The method begins with bands 1 and N as the 

endpoints and selects the next knot as the band which gives the approximation 

having the smallest RMS error.  This process continues until a predetermined number 

of knots have been selected. 

The results from fitting the spectra using cubic splines with knots selected from the 

Table 6.9: RMS Errors of Spectra Approximated Using Cubic 

Splines with Knots Selected with a Forward Stepwise 

Procedure 

Number of Knots 
Pixel 

40 39 38 37 36 

1 47.95 48.01 48.09 48.46 48.52 

2 43.40 43.49 43.59 43.81 43.92 

3 38.91 38.91 38.91 38.92 38.93 

4 45.16 47.27 52.15 53.97 65.92 

5 20.29 21.04 21.25 22.31 22.37 

6 36.92 37.88 38.35 38.88 50.52 

7 30.55 30.60 30.69 30.80 30.85 

8 60.04 60.08 60.13 60.37 60.63 

9 28.19 28.26 28.30 28.32 28.35 

10 22.31 22.43 22.43 22.43 22.44 

11 53.07 53.12 53.11 53.11 53.11 

12 53.74 54.99 56.07 56.51 56.84 

13 182.53 182.53 182.53 182.53 182.53 

14 64.70 64.82 64.99 65.88 67.82 

15 87.51 87.51 87.52 87.54 87.55 

16 34.04 34.06 34.08 34.11 34.14 

17 41.60 41.60 41.60 41.61 41.65 

18 14.53 14.88 15.09 15.71 15.75 

19 70.95 70.95 70.95 71.06 70.96 

20 29.41 29.45 29.49 29.52 29.57 

Mean 50.29 50.59 50.97 51.29 52.62 
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forward stepwise selection scheme are summarised in table 6.9.  Unexpectedly, the 

results show that for the same number of knots there has been a slight decrease in the 

overall accuracy of the approximations when compared to those fitted with splines 

with regularly spaced knots.  For some of the pixels the accuracy has improved, but 

in the majority of cases the spectra have actually been approximated with less 

accuracy. 

The reason for the decrease in accuracy resulting from the use of the forward 

stepwise selection scheme is likely to be due to the fact that the technique only 

selects one knot at a time.  A fluctuating region within a spectral curve will typically 

need to be fitted using several knots.  By starting to fit the fluctuating section of the 

curve one knot at a time, the RMS error of the approximation to that section of the 

curve will possibly increase until a sufficient number of knots have been selected to 

fit the curve adequately.  The forward stepwise selection technique chooses the next 

knot according to which band will give the lowest RMS error.  Given the choice of 

choosing a knot in a relatively linear section of the curve over starting to fit a 

fluctuating section of the curve which will initially result in a higher RMS error, 

naturally the knot selection technique will opt for the knot within a linear section of 

the curve.  A possible solution, therefore, is to use all available bands as knots and 
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Figure 6.14: Pixel 6 spectra: original and approximated using cubic splines with 40 knots selected 

using a forward stepwise selection technique.  The positions of the 40 knots selected are shown as 

larger diamonds. 
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one by one remove those knots which are redundant, i.e., a backwards knot deletion 

scheme. 

The results for pixels 6, 10 and 14 are shown graphically in figures 6.14, 6.15 and 

Pixel 10 Approximated with Cubic Splines (Forward Stepwise Selected 

Knots)

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Band

D
ig

it
a
l 
C

o
u
n

ts

40 knots

38 knots

36 knots

Original

 
Figure 6.15: Pixel 10 spectra: original and approximated using cubic splines with 40 knots selected 

using a forward stepwise selection technique.  The positions of the 40 knots selected are shown as 

larger diamonds. 
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Figure 6.16: Pixel 14 spectra: original and approximated using cubic splines with 40, 38 and 36 knots 

selected using a forward stepwise selection technique.  The positions of the 40 knots selected are 

shown as larger diamonds. 
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6.16 respectively.  The locations of the first 40 knots selected for each pixel are 

shown as the larger diamonds along the original pixel spectra.  The plots appear 

similar to those generated from using regularly spaced knots.  One obvious 

difference occurs when pixel 6 is approximated using 36 knots selected using the 

forward stepwise technique.  There is an absence of selected knots between bands 48 

and 65 and consequently the convex nature between these bands has not been 

sufficiently captured.  Band 55 was selected as the 37
th

 knot and it can be seen that 

the fit to the convex feature has been improved in the plots for 38 and 40 knots. 

6.3.3 Cubic Splines Using Backward Stepwise Knot Selection 

Fitting cubic splines by selecting the knots with a forward stepwise approach actually 

gave less accurate results than from using regularly spaced knots.  Given a set of 

knots that had already been chosen, the subsequent knot to be selected would be the 

one which resulted in the minimum RMS error in the approximation to the spectral 

curve being fitted.  This resulted in knots being selected in regions of the curve that 

were already well fitted, and contradictory to the objective, would actually increase 

the redundancy.  In this section the reverse approach is taken.  The spectral curves 

are fitted using the full set of available bands as knots, and one by one knots are 

subsequently removed from the fitted curve to minimize the RMS error in the 

resulting approximation to the curve.  All the “redundant” knots are removed from 

the well approximated regions of the spectral curves first, leaving the more essential 

knots to fit the spectra. 

When the backwards knot deletion method was used to select a subset of knots to 

approximate the spectra shown in figure 6.1, the results were significantly improved 

upon when compared with those from the forward stepwise selection procedure.  In 

most cases, even using only 20 knots resulted in an improvement in the RMS errors 

from the approximated spectral curves when fitted with 40 regularly spaced or 

forward stepwise selected knots.  A subset of the results from using the backwards 

knot deletion method is summarised in table 6.10.  The table shows the RMS errors 

for the 20 pixel spectra when approximated using 40, 35, 30, 25 and 20 knots.  When 

using 40 knots, the average RMS error for the 20 approximated spectra was 9.3.  
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This increases to 16.1 when the number of knots selected is reduced to 30 and to 35.3 

when the number of selected knots is further reduced to 20. 

The results for pixels 6, 10 and 14 are shown graphically in figures 6.17, 6.18 and 

6.19 respectively.  For each pixel, the graphs show the resulting approximation using 

40, 30 and 20 knots, and for comparison, these are shown along with the original 

spectral curve.  The approximations are in good agreement with the original spectra 

and fit the curves well.  The main factor affecting the goodness of fit is clearly the 

number of knots used for the fit and their location along the curve. The other 

significant factor is the number of spectral features present in the curve being 

modelled.  As an example, the spectral curve for pixel 10 (figure 6.18) shows a 

relatively flat spectral curve with few spectral features.  The resulting 

approximations show a high level of accuracy, with RMS errors ranging from 5.4 – 

16.2 for 40 – 20 knots used respectively.  This contrasts with the spectral curve for 

pixel 14 (figure 6.19) which exhibits several absorption/reflectance features and 

consequently the accuracy of the approximations is reduced.  When using 40 knots 

selected with the backward deletion scheme, the RMS error in the approximation for 

pixel 14 is 12.1.  This increases to 24.9 with 30 knots and 53.6 when only 20 knots 

Table 6.10: RMS Errors of Spectra Approximated Using 

Cubic Splines with Knots Selected with a Backward Stepwise 

Procedure 

Number of Knots 
Pixel 

40 35 30 25 20 

1 8.8 14.1 17.2 26.3 35.6 

2 6.4 10.7 16.6 23.6 30.4 

3 7.2 11.3 15.5 23.7 38.2 

4 9.7 12.0 18.3 21.3 30.5 

5 7.7 10.9 14.2 17.8 29.0 

6 7.5 10.4 12.6 18.5 24.5 

7 10.4 12.0 13.5 17.1 22.2 

8 19.7 22.7 23.9 32.1 39.9 

9 7.2 8.4 10.1 12.4 19.7 

10 5.4 7.2 7.5 9.0 16.2 

11 8.1 10.3 13.1 17.6 28.8 

12 11.2 16.0 25.6 38.1 54.6 

13 9.0 12.6 17.0 39.8 74.1 

14 12.1 14.8 24.9 37.8 53.6 

15 7.7 12.1 22.3 37.7 76.7 

16 6.5 8.9 12.9 20.7 34.1 

17 12.9 18.1 18.5 25.3 29.0 

18 4.6 5.3 6.8 9.2 13.7 

19 9.4 11.8 15.3 28.2 32.3 

20 13.6 14.6 16.8 18.8 23.9 

Average 9.3 12.2 16.1 23.7 35.3 
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are used.  The decrease in accuracy is visibly noticeable when only 20 knots are 

used, particularly near bands 36, 67, 72 and 80, where the spectral features have not 

been fully emphasized. 

It has been shown in this chapter that to fit spectral curves with cubic splines, the 

location of the knots is critical to the accuracy of the approximations.  Regularly 

spaced knots gave adequate approximations to the spectral curves although there is 

no guarantee that important spectral features will be properly modelled.  Given a 

predetermined number of knots to use, the optimal solution would be found by 

testing each combination for the highest accuracy.  When dealing with hyperspectral 

data however, this solution is completely impractical as the number of combinations 

to assess is enormous.  In the examples presented here, the data set was composed of 

82 spectral bands.  In order to choose 20 knots, the number of combinations to assess 

in order to find the optimal solution would be > 6.4 × 10
15

.  This is if the first two 

knots are automatically chosen as bands 1 and 82 for the end points.  If 40 knots are 

required, the number of combinations increases to > 9.7 × 10
22

.  A more strategic 

method is needed that does not require so many combinations to be tested. 
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Figure 6.17: Pixel 6 spectra: original and approximated using cubic splines with 40, 30 and 20 knots 

selected using a backward stepwise selection technique.  The positions of the 40 knots selected are 

shown as larger diamonds. 
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Two different stepwise knot selection techniques were investigated which 

sequentially select or remove a knot.  The first was a forward stepwise procedure 

which commences with the first two knots as the end points and selects each 

subsequent knot as the one giving the smallest RMS error.  This process continues 

until the total number of required knots has been selected.  The other stepwise 

technique was a backward stepwise procedure.  Initially all knots are used to fit the 

curve and a knot is removed at each step.  The knot chosen to be removed is the one 

which once deleted results in the approximated curve having the lowest possible 

RMS error. 

When trialled on 20 sample pixel spectra the forward stepwise procedure chose knots 

which gave unexpectedly poor results.  In 48% of the cases tested the cubic splines 

using knots from the forward stepwise scheme gave less accurate approximations 

than those from when the same number of regularly spaced knots was used.  Upon 

closer examination it was found that knots were sometimes being selected which 

were actually redundant.  Typically, a spectral feature within a curve would need 

several knots to be well approximated.  By selecting the first of these knots could 

actually increase the RMS error in the fit significantly, so the procedure would opt 

for a knot in a region of the curve that was already well characterized.  Choosing a 
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Figure 6.18: Pixel 10 spectra: original and approximated using cubic splines with 40, 30 and 20 knots 

selected using a backward stepwise selection technique.  The positions of the 40 knots selected are 

shown as larger diamonds. 
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knot in a region of the curve which is already accurately described is superfluous, 

and contradicts the objectives of this research. 

The backward stepwise technique was shown to be successful at selecting knots to fit 

cubic splines to the data.  Instead of choosing the superfluous knots, it would actually 

remove them one by one.  This resulted in cubic spline fits to the data that needed 

fewer knots to produce spectra with higher levels of accuracy.  It should not be 

assumed though that the set of knots chosen by this method is necessarily the best 

possible combination of knots.  The backward stepwise knot selection scheme is 

however a much more successful method than the forward stepwise knot selection 

scheme or by simply choosing knots at regularly spaced intervals.  The forward 

stepwise knot selection scheme could perhaps be improved by selecting the next knot 

at the point at which the difference between the actual and approximated spectra is a 

maximum.  Choosing knots in this manner is unlikely though to outperform the 

backward stepwise selection technique. 
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Figure 6.19: Pixel 14 spectra: original and approximated using cubic splines with 40, 30 and 20 knots 

selected using a backward stepwise selection technique.  The positions of the 40 knots selected are 

shown as larger diamonds. 
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To compare the performance of wavelets and cubic splines at approximating the 

spectra the average RMS errors were plotted against the number of parameters.  For 

each of the different wavelets used, the RMS errors and the number of parameters 

were averaged over the 20 pixels at different thresholds and the RMS error was 

plotted against the equivalent number of parameters used.  For comparison, the same 

was done in the case of cubic splines where the knots had been selected using the 

backward stepwise procedure.  The average RMS error and number of parameters 

used were averaged over the 20 pixels for the different numbers of knots used.  The 

number of knots trialled was restricted to a maximum of 40.  The results are shown 

in figure 6.20 and show the results from using the Haar, ψD4, ψD6 and ψD10 wavelets 

with thresholds of 50, 75, 100, 125 and 150.  Also shown are the results from 

approximating the spectra with cubic splines with knots selected with the backward 

stepwise procedure.  To make the comparison clearer, lines of best fit have been 

fitted for equations of the form y = ax
–b

, where b is a positive integer.  In all five 

cases, the lines of best fit had Pearson product-moment correlation coefficients > 

0.99.  Ideally, these curves would occupy the lower left corner of the graph, where 

both the RMS errors and the number of parameters needed have low values.  Figure 

6.20 shows the ψD4 wavelet is the best method of those trialled for approximating 
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spectra, both in terms of accuracy and efficiency.  This is closely followed by the 

Haar and ψD6 wavelets.  Figure 6.20 also shows that the least successful methods 

used are the ψD10 wavelet and cubic splines with knots selected by the backward 

stepwise technique. 

The approaches presented in this chapter have been tested with the emphasis of 

minimizing the RMS error in the approximations to the spectra.  There is no 

indication that these methods can be used to accurately classify remotely sensed 

hyperspectral data.  This issue will be investigated in Chapter 7.  In this instance, the 

focus will shift from an emphasis on the accuracy of the approximated spectra to the 

maximization of the class separability and classification accuracy. 
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7 Maximum Likelihood Classification Using 

Dimensionally-Reduced Spectra 

In Chapter 6 various techniques such as wavelets and cubic splines were used to 

investigate how well the measured spectra could be approximated using significantly 

fewer coefficients.  Some of those techniques are adapted slightly and the focus 

moves away from minimizing the RMS error in the approximation towards an 

emphasis on the accuracy of the classification of the entire scene.  Instead of 

reconstructing the measured spectra, the output coefficients from the analysis are 

used as direct inputs to the classification algorithm. 

After each successive level of a wavelet analysis the numbers of approximation and 

detail coefficients are both halved.  Given that both these sets of coefficients are 

characteristic of the original spectra at a particular scale, they can be used to 

calculate the corresponding sample mean and covariance statistics for each class and 

then used as direct inputs to a maximum likelihood classifier.  Dimensional reduction 

will be achieved if the coefficients from any one particular level of analysis are used. 

This will avoid the need to further use either a statistical feature selection method or 

threshold out the detail coefficients as was the focus of the previous chapter. 

Koger et al. (2003) note that when analysing hyperspectral signatures with the Haar 

mother wavelet, the resulting detail coefficients are equivalent to first-order 

approximations of the first derivatives of the original signatures.  Derivative analysis 

is an established technique in analytical chemistry and has been used for many years 

in spectroscopy (Demetriades-Shah, Steven & Clark 1990; Bruce & Li 2001; Koger 

et al. 2003).  Derivative spectra show great promise for dealing with hyperspectral 

remote sensing problems although this area has not been researched widely by the 

remote sensing community (Demetriades-Shah, Steven & Clark 1990; Tsai & Philpot 

1998). 

An object may be more easily identifiable based on the shape of its spectral signature 

rather than on the magnitude of the spectral values.  It was noted by Furby, Kiiveri 

and Campbell (1990) that the first and second derivatives of a spectral curve give 
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information on the slope and curvature of the curve respectively.  If the first and 

second derivative spectra are used for classification purposes, this offers another 

possibility for dimensional reduction of the spectra.  Regions of the spectral curves 

that are fairly linear will be reduced to zero in the second derivative spectra.  Spectral 

bands in which this occurs frequently could be removed from the data and not used 

for the classification. 

Both the approximation and detail wavelet coefficients are investigated for their 

ability to classify the scene shown in figure 5.1.  The research then examines using 

dimensionally-reduced first and second derivative spectra as a means for classifying 

the same scene.  The bands are selected by finding the first and second derivatives of 

the class means and then selecting those bands exhibiting the highest standard 

deviations amongst the mean derivative spectra.  This typically occurs where the 

spectral bands are located near reflection/absorption features or where there are steep 

slopes/edges in the spectral signatures. 

7.1 MLC Using Wavelets 

Wavelets have found applications in hyperspectral remote sensing, in particular, 

discriminating between classes.  It has not been common however for wavelets to 

have been used for entire scene based classifications.  Mallet et al. (1997) used 

optimized adaptive wavelets with Bayesian linear discriminant analysis to 

discriminate between three different classes using simulated spectral data.  The 

authors also compared their adaptive wavelets with the Daubechies and Coiflet 

families of wavelets when discriminating between spectral data of five different 

mineralogical groups (amphilolites, calsilicates, granite, mica and soil).  In each case 

the Coiflet wavelets gave the lowest classification accuracies with the adaptive 

wavelets tending to achieve slightly higher classification accuracies than those from 

the Daubechies wavelets. 

Koger et al. (2003) used the detail coefficients from 36 different mother wavelets to 

detect Pitted Morning Glory (Ipomoea lacunosa) amongst soybean (Glycine max).  A 

portable field spectroradiometer was used to collect spectral measurements of 

soybean and soybean intermixed with Morning Glory at different growth stages.  The 
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measurements were taken at a height of 1.22 m to achieve a 0.25 m spatial resolution 

and to ensure that the measurements contained a background soil reflectance 

component.  Measurements were also taken from close range (6 cm) of each of the 

three components (soybean, Morning Glory and bare soil) so that synthetically mixed 

reflectance spectra could be generated.  Of the 36 mother wavelets used, 10 of them 

achieved classification accuracies of 90% or better and included mother wavelets 

from the Daubechies, Symlet, and Biorthogonal families of wavelets plus the Haar 

wavelet.  Fisher's linear discriminant analysis was used to discriminate between the 

two classes.  The ability of the Haar wavelet detail coefficients to discriminate 

between the two classes was compared with a PCA.  In every case, the Haar wavelet 

was able to discriminate between the two classes at different growth stages with a 

higher accuracy than that of the PCA. 

7.1.1 Approximation Coefficients 

The same mother wavelets used in section 6.2 are now investigated for their ability to 

classify an entire scene, specifically, the one shown in figure 5.1.  First, the 

approximation coefficients from different levels of analysis are used and then in the 

next section the detail coefficients will be tested.  Dimensional reduction of the data 

is achieved due to the fact that after each successive level of analysis the number of 

coefficients is halved.  To ensure the size of the resulting image files are smaller than 

the originals, the coefficients are rounded off to the nearest whole number and saved 

as 16 bit signed integers and not as 32 or 64 bit reals.  This would have negligible 

effect on the data as the approximation coefficients tend to range from 10
2
 – 10

4
 in 

magnitude. 

Table 7.1: Classification Accuracies Resulting from Using Wavelet 

Approximation Coefficients After Different Levels of Analysis 

Classification Accuracies (%) 
Mother Wavelet 

J = 1 J = 2 J = 3 J = 4 J = 5 Mean 

Haar 96.33 96.30 96.10 95.61 93.20 95.51 

Daub4 96.37 96.29 96.18 95.42 95.32 95.92 

Daub6 96.41 96.31 96.20 95.86 95.51 96.06 

Daub10 96.38 96.29 96.16 95.98 95.63 96.09 

Mean 96.37 96.30 96.16 95.72 94.92  
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Table 7.1 shows the resulting classification accuracies when the approximation 

coefficients are used as inputs to a standard MLC algorithm.  The wavelets used were 

the Haar, Daub4, Daub6 and Daub10 wavelets.  Approximation coefficients were 

generated after J = 1 – 5 levels of analysis and the table shows the classification 

accuracies from each level of analysis.  As the level of analysis increases, the 

classification accuracies decrease.  This is to be expected though, because each time 

the level of analysis increases the number of coefficients is reduced by a factor of a 

half.  Upon examining the average results the Daub10 wavelet gives the higher 

classification accuracies and the Haar wavelet gives the lower accuracies when using 

the approximation coefficients. 

When the number of coefficients used for the classification is taken into account 

however, the situation changes.  Figure 7.1 shows the classification accuracies 

plotted as a function of the number of approximation coefficients used.  When the 

number of coefficients is small (< 25), the Haar wavelet gives the best classification 

results and between 11 and 25 coefficients the Daub10 wavelet yields the lowest 

classification accuracies.  In terms of classification accuracy the differences between 

the four wavelets used is negligible and the four curves in figure 7.1 are relatively 
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Figure 7.1: Classification accuracies as a function of the number of approximation coefficients used 

for different wavelets. 
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close together. 

The number of approximation coefficients used in the classifications for a particular 

level of analysis is shown in table 7.2.  The numbers do not reduce by exactly 0.5 

after each level of analysis due to the width of the wavelet filter used, edge effects at 

the first and last few spectral bands and N initially not being equal to 2
n
.  Also, when 

attempting to classify the scene with the Daub6 and Daub10 wavelets for J = 3 – 5 

and J = 2 – 5 respectively, the determinants of some of the class covariance matrices 

were equal to zero.  This was due to the fact that for each pixel the last few 

approximation coefficients had values close to zero.  To overcome this problem the 

low valued coefficients had to be removed and as a result the total number of 

approximation coefficients input to the classifier was reduced.  When J increases 

from 4 to 5, the number of approximation coefficients for the Haar wavelet reduces 

to 3 and the corresponding classification accuracy reduces sharply from 95.6% to 

93.2%. 

7.1.2 Detail Coefficients 

As with the approximation coefficients, when the wavelet detail coefficients were 

used for classifying the data at specific levels of analysis, the Daub10 wavelet 

performed the best of the four wavelets used, with the Haar wavelet resulting in 

lower classification accuracies.  The results are summarised in table 7.3 and show 

that the best results overall were achieved at J = 2.  When compared with the results 

from the approximation coefficients, the detail coefficients give more accurate results 

at higher levels of analysis (J = 4, 5).  This suggests that for a small number of 

coefficients, wavelet detail coefficients will result in a more accurate classification 

than will the approximation coefficients.  When the number of coefficients used to 

characterize the pixel spectra is higher, i.e. at J = 1, 2, 3, the approximation 

Table 7.2: Number of Approximation Coefficients 

Generated by Wavelets at Different Levels of Analysis 

Mother Wavelet J = 1 J = 2 J = 3 J = 4 J = 5 

Haar 42 21 11 6 3 

Daub4 43 23 13 8 5 

Daub6 44 24 14 9 6 

Daub10 46 25 15 11 8 



122 

coefficients proved to be better for classifying the data. 

The number of detail coefficients used at each particular level of analysis for each 

wavelet used is shown in table 7.4.  When the classification accuracies are plotted as 

a function of the number of detail coefficients used (figure 7.2), it is apparent that the 

Daub10 wavelet gives the lowest classification accuracies with an exception at 11 

coefficients (corresponding to J = 4).  The Haar wavelet produced the highest 

classification accuracies except for when 11 detail coefficients were used 

(corresponding to J = 3). 

In both figures 7.1 and 7.2, it is ideal to have the data points located in the top left 

portions of the plots.  This is where the classification accuracy is the highest and the 

number of coefficients used is the lowest.  It is not ideal for points to be located in 

the bottom right section of the plots.  There is not a significant difference between 

the approximation and detail coefficients in the top left sections of the plots however 

for higher numbers of coefficients used the detail coefficient points are situated 

closer to the bottom right corner than the approximation coefficient points.  Based on 

these results, it is recommended that the approximation coefficients be used for a 

maximum likelihood classification of remotely sensed hyperspectral image data 

given the choice of using wavelet detail or approximation coefficients. 

Table 7.3: Classification Accuracies Resulting from Using Wavelet 

Detail Coefficients After Different Levels of Analysis 

Classification Accuracies (%) 
Mother Wavelet 

J = 1 J = 2 J = 3 J = 4 J = 5 Mean 

Haar 96.27 96.19 95.90 95.56 94.19 95.62 

Daub4 96.11 96.08 96.10 95.73 95.40 95.88 

Daub6 96.06 96.12 96.08 95.98 95.23 95.89 

Daub10 95.77 96.09 95.95 96.04 95.77 95.92 

Mean 96.05 96.12 96.01 95.82 95.15  

Table 7.4: Number of Detail Coefficients Generated by 

Wavelets at Different Levels of Analysis 

Mother Wavelet J = 1 J = 2 J = 3 J = 4 J = 5 

Haar 42 21 11 6 3 

Daub4 43 23 13 8 5 

Daub6 44 24 15 9 7 

Daub10 46 27 17 11 9 
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7.2 MLC Using First and Second Derivative Spectra 

It was noted in Koger et al. (2003) that when the Haar wavelet is used to analyse a 

hyperspectral signal the resulting detail coefficients approximate the first derivative.  

As with extracting wavelet detail coefficients from a signal, the process of 

differentiation is effectively a high-pass filtering operation (O'Haver 1982).    The 

high-pass filtering nature of differentiation has seen it find applications in reducing 

low frequency background noise in signals (Demetriades-Shah, Steven & Clark 

1990). 

One advantage of finding derivatives is that for second or higher orders there should 

be little variation with changes in illumination intensity (Tsai & Philpot 1998).  The 

solar angle, topography and cloud cover will all have an influence on illumination 

intensity and this will affect the magnitude of the measured spectra for an 

object/pixel.  The location of spectral features and the spectral shape, however, will 

only be slightly affected by changes in illumination.  Information on the shape of 

spectral curves can be derived by taking derivatives of the spectra.  For example, the 

first derivative gives information on the slope of the spectra and the curvature of the 
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measured spectra is given via the second derivative.  If information on the shape of 

spectra is characteristic of the object then the derivative spectra could be useful 

information to submit to a classification algorithm. 

The idea of derivative spectra was first proposed in the early 1920s by Rutherford 

(Fell & Smith 1982) and has since become a well established spectroscopic 

technique.  Initially, researchers were not enthusiastic in adapting derivative spectra 

for remote sensing applications, but the concept has recently started to gain in 

popularity.  Demetriades-Shah, Steven and Clark (1990) used spectral derivatives to 

detect chlorosis in vegetation and showed how derivative spectra can be used to 

remove background soil signatures from the spectra.  Philpot (1991) used derivatives 

to develop the derivative ratio algorithm to avoid atmospheric effects in 

hyperspectral data. 

Chen, Curran and Hansom (1992) investigated the use of spectral derivatives for 

estimating the suspended sediment concentrations (SSC) in water.  It was found that 

the first derivative produced higher maximum correlation coefficients between SSC 

and wavelength than did the measured spectral reflectance.  Their results were based 

on both laboratory and in situ measured reflectance spectra.  Spectral derivatives 

have been used by Gong, Pu and Yu (1997) for vegetation species discrimination.  

Both neural networks and linear discriminant analysis were used with in situ first 

derivative spectra as the input and training data to discriminate between six different 

conifer species.  The effect of smoothing and band separation on derivative spectra 

has been investigated by Tsai and Philpot (1998) and as an application they applied 

derivative spectroscopy to band decomposition and locating absorption features 

within remotely sensed spectra.  Blackburn (1998) used spectral derivative 

approaches to quantify vegetation pigment concentrations at both leaf and canopy 

scales.  First and second derivatives of pseudo absorbance (log[1/reflectance]) were 

found to be strongly related to pigment concentration per unit area but were better 

suited to estimating the concentration per unit mass.  The pigments for which 

concentrations were being quantified in the study were chlorophyll a, chlorophyll b 

and the carotenoids. 
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Most recently Tsai and Philpot (2002) have used derivative spectra for classifying 

vegetation in an AVIRIS image.  A principal components analysis was initially 

performed on the 97-band image data and the first 10 principal components were 

used to construct a new base image.  An MLC was performed on the new base image 

and to improve the classification accuracies, derivative spectral features were 

iteratively appended to the 10-band base image.  After each derivative feature was 

added the new image would be classified with the ML classifier.  The added 

derivative features were selected such that larger Jeffries-Matusita (JM) distances 

resulted between classes.  The JM distance between normally distributed classes k 

and l is given by 

 Jkl = 2(1 – e
–α

) (7.1) 
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Differential calculus defines the derivative of a function as 

 
x

xfxxf
xf

x ∆
−∆+

=
→∆

)()(
lim)('

0
 (7.3) 

(Thomas & Finney 1988).  The previous chapter demonstrated that hyperspectral 

data curves could be accurately represented by piecewise polynomial cubic spline 

functions.  Cubic spline functions have both continuous first and second derivatives 

and these are straightforward to compute given the parameters for the cubic spline 

functions.  If each cubic spline piece is given by 

Sj(x) = aj + bjx + cj(x)
2
 + dj(x)

3
 

then the first derivative for the piece is given by 

Sj'(x) = bj + 2cjx + 3dj(x)
2
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and the second derivative will be given by 

Sj"(x) = 2cj + 6djx 

The task of fitting cubic splines to an entire hyperspectral scene for the purpose of 

differentiating the spectra would be computationally enormous.  However, the 

continuous nature of hyperspectral data lends itself to numerical approximations for 

differentiation and it is possible to avoid having to initially fit cubic splines to the 

data.  Given pixel spectra x, the first derivative for each of the spectra can be 

approximated using 
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where i is the band number and ∆i is the separation between bands.  The 

differentiation in (7.4) is with respect to band number and not wavelength in order to 

simplify any associated algorithms and further reduce the computational load.  If the 

derivative is required with respect to wavelength it is simply a matter of exchanging i 

with λ and ∆i with ∆λ in (7.4).  An approximation for the second derivative is 

similarly obtained from that for the first derivative as 
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In regions where the spectra are fairly flat, the first and second derivatives at those 

points will have values close to zero.  Alternatively, steep edges or strong 

absorption/reflection features in the original spectra will have correspondingly large 

values in the first and second derivative spectra.  This presents a potential 

opportunity for effective dimensionality reduction.  Significant features within the 

original spectra can be identified with the first and second derivative spectra and the 

corresponding bands can be retained and used for subsequent classification.  

Conversely, the insignificant bands can be removed from the data and excluded from 

any further classification. 



127 

Equation (7.4) was used to calculate the first derivative of the sample mean spectra 

for each of the classes identified in figure 5.3.  Figure 7.3 shows the first derivatives 

of each of the class means for a band separation of ∆i = 1 and shows that most of the 

classes have similar values of the first derivative at many of the bands.  At several 

bands however, the value of the first derivatives are somewhat varied.  These bands 

correspond to the location of significant features in the original spectra.  The 

standard deviation in the first derivatives was calculated for all 15 classes at each 

band and these were sorted in order from highest to lowest.  The first N bands 

exhibiting the highest standard deviations were selected and the first derivatives were 

calculated at these bands for every pixel in the scene.  The resulting image was then 

classified with a maximum likelihood classifier.  This was done for band separation 

values of ∆i = 1, 2 and 3 and reduced dimensionalities of N = 5, 10, 15, 20, 25 and 

30. 

The classification results when using the first derivative spectra are summarised in 

table 7.5.  It can be seen that for different band separations there is little effect on the 

classification accuracies.  For a given dimensionality N, the variation in classification 

accuracy as the band separation changes is small.  When N = 10 and the difference in 

classification accuracy changes by ~ 3% from 88.7% to 91.8% when the band 
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Figure 7.3: First derivatives of the sample class mean spectra with a band separation of ∆i = 1.  The 

values are very similar between classes except for where significant spectral features occur. 
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separation changes from ∆i = 3 to ∆i = 1, but generally the change in classification 

accuracy with change in ∆i is much less.  Also apparent in table 7.5 is that both 

wavelet approximation and detail coefficients perform better than the first derivative 

spectra when used for classification purposes.  Even when as few as 11 coefficients 

were used, the wavelet approximation and detail coefficients were achieving 

consistently better than 95% classification accuracies.  For a similar number of 

bands, the first derivative spectra could only achieve classification accuracies of ~ 

90%.  These are still promising results, although when compared to the results from 

using wavelet coefficients they appear inferior. 

The use of second derivative spectra is now investigated.  Using (7.5) the second 

derivatives of the sample class mean spectra were calculated for different band 

separations.  The result for ∆i = 1 is shown in figure 7.4 and shows that as with the 

first derivatives, the values are very close together with the exception at those bands 

where there are significant spectral features.  The standard deviations of the second 

derivatives were calculated between the different classes for each band and were 

ranked from highest to lowest.  The bands corresponding to the N highest standard 

deviation values were selected and the second derivatives were calculated at these 

bands for all pixels in the scene.  The resulting N-band image was classified using a 

maximum likelihood classifier and this was done for band separations of ∆i = 1, 2 

and 3. 

The resulting classification accuracies when using the second derivative spectra as 

input are summarised in table 7.6.  With the exception when N = 5, as the band 

separation is increased, the classification accuracy also increases.  This effect is more 

pronounced for lower dimensionalities (N = 10, 15) than at higher ones (N = 25, 30).  

Comparing the classification results with those from using first derivative spectra, 

Table 7.5: Classification Accuracies when Using First Derivative Spectra with Different 

Band Separations, ∆i Using only N Selected Bands  

Classification Accuracies (%) Number of Bands, 

N ∆i = 1 ∆i = 2 ∆i = 3 

5 77.79 78.62 78.15 

10 91.84 90.11 88.71 

15 94.89 94.31 93.68 

20 95.43 95.48 95.41 

25 95.71 95.68 95.81 

30 95.90 95.90 95.97 



129 

the second derivative spectra do not give as accurate classifications.  One possible 

explanation for this is the high-pass filtering nature of the differentiation process. 

When a signal is differentiated, the low frequency signal components are suppressed 

and the high frequency components are amplified.  A side effect of this is that any 

high frequency noise present within the signal will also be amplified as higher order 

derivatives are found for the signal.  Despite the fact that noise increases with 

derivative order, higher order derivatives still have their advantages in spectroscopy.  

An example is that it is easier to identify a peak or a trough in a signal by the 

corresponding minima/maxima in the second derivative than it is by the shape of the 

first derivative (Chadburn 1982). 

Second Derivatives of Sample Class Means (∆i  = 1)
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Figure 7.4: Second derivatives of the sample class mean spectra with a band separation of ∆i = 1.  As 

with the first derivatives, the values are very similar between classes except for where significant 

spectral features occur. 

Table 7.6: Classification Accuracies when Using Second Derivative Spectra with 

Different Band Separations, ∆i Using only N Selected Bands  

Classification Accuracies (%) Number of Bands, 

N ∆i = 1 ∆i = 2 ∆i = 3 

5 64.43 62.48 60.38 

10 80.10 87.15 87.83 

15 86.80 89.60 93.54 

20 90.74 92.34 94.28 

25 93.30 93.92 95.02 

30 93.71 94.67 95.26 
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The results could be improved by first smoothing the pixel spectra prior to 

differentiation, an issue which has been examined by several researches (Savitzky & 

Golay 1964; O'Haver 1982; Tsai & Philpot 1998).  One of the more popular 

smoothing techniques was developed by Savitzky and Golay (1964).  Savitzky and 

Golay (1964) proposed a least squares convoluting method that makes use of 

quadratic, cubic and other higher order polynomial functions.  Simple mean filter 

smoothers distort spectral peaks by attenuating the amplitude and increasing the 

width (O'Haver 1982).  With polynomial convolution functions this effect is reduced.  

As the derivative order is increased, the level of noise also increases and hence the 

SNR is reduced.  The amount of smoothing needed therefore, will also need to be 

increased.  Instead of increasing the width of the smoothing filter to increase the 

amount of smoothing, O'Haver (1982) demonstrated that the data should be filtered 

several times to achieve this.  O'Haver (1982) recommended that the data be filtered 

with n + 1 passes for the nth order derivative. 

When the Savitzky and Golay (1964) method was compared with the mean filter 

smoother, Tsai and Philpot (1998) found there was little difference in performance 

when the spectra contained broad spectral features and relatively high frequency 

noise.  Tsai and Philpot (1998) opted for a mean filter smoothing algorithm based on 

simplicity and the fact that computation time was less.  Tsai and Philpot (1998) also 

found that the band separation ∆i could be chosen to have a quasi-smoothing effect. 

The choice of ∆i is a compromise between noise reduction and loss of spectral detail.  

As ∆i is increased, the level of noise will tend to be reduced but spectral details 

smaller than ∆i will also be eliminated (Tsai & Philpot 1998).  Also, as ∆i is 

increased the values of the resulting spectral derivatives will be attenuated due to its 

presence in the denominator (particularly with higher order derivatives).  Another 

disadvantage of using larger ∆i values is that values within ∆i of the ends of the 

spectra are unable to be calculated. 

For comparison of these results, figure 7.5 shows the classification accuracies plotted 

against the number of bands used for the classification for some of the different 

dimensionality reduction techniques used.  Also shown in the graph is the accuracy 

attained when all 82 bands were used to classify the data (96.46%).  The compromise 
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between classification accuracy and the number of bands used is apparent and ideally 

the results would be located in the top left hand corner of the plot.  This is where the 

classification accuracy is maximized and the number of bands used is minimized.  

Figure 7.5 reveals that the wavelet techniques used performed the best, followed by 

the dimensionally reduced first derivative spectra.  The second derivative spectra are 

revealed to have performed the poorest. 

The most significant feature of figure 7.5 is the level of accuracy attained by the 

wavelet methods when using only a fraction of the original bands.  With as few as 

five bands, both the Haar wavelet approximation and detail coefficients achieve 

classification accuracies above 95.5%.  This is very close to 96.46% which was 

attained using all 82 bands.  For a 94% reduction in the number of bands used, the 

classification accuracy has slipped by less than 1%. 

Comparison of Classification Results Using Different Dimenionality Reduction 
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Figure 7.5: A comparison of the classification accuracies resulting from some of the different 

dimensionality reduction techniques examined by this research.  The horizontal black line represents 

the classification accuracy when all 82 bands are used to classify the data (96.46%). 
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8 Conclusion 

The evolution of hyperspectral sensors has brought both advantages and 

disadvantages to the field of remote sensing.  The finer spectral resolution and 

increase in the number of spectral bands has given geologists, agriculturalists, 

horticulturalists, marine biologists and atmospheric scientists the capacity to measure 

characteristics of the land, oceans and atmosphere with much finer detail.  The 

disadvantages of hyperspectral data relate to the immense increase in the amount of 

data.  Hyperspectral data contains typically more than 100 spectral bands and this is a 

huge increase when compared with multispectral sensors such as Landsat or AVHRR 

which have typically less than 10 bands.  As a result there is a large increase in the 

time required to transmit the data and in the amount of disk space needed to store the 

data.  The analysis of hyperspectral data also increases the demand on computational 

power and processing time significantly. 

This research has examined the problem of reducing the dimensionality and 

redundancy inherent in hyperspectral data.  The emphasis focussed on applications in 

MLC of hyperspectral image data.  As the covariance matrix is a major component of 

the MLC discriminant function the work also examined reducing the number of 

parameters required to adequately describe the class covariance information.  The 

spectra associated with the pixels of hyperspectral images are also used by the MLC 

discriminant function and methods were investigated to model the spectra from 

significantly fewer parameters. 

The research commenced by examining the nature of the spectral bands on HyMap 

instruments.  Under examination was by what amount do the neighbouring spectral 

band response functions overlap with each other?  High levels of overlap between 

spectral bands will have a significant influence on the correlation between 

neighbouring bands.  In the absence of measured spectral filter function data, the 

filter functions can be modelled from triangular functions and especially Gaussian 

functions.  When modelling the spectral filter functions with triangular functions the 

mean RMS error for each band was 0.0024.  When Gaussian functions were used the 

mean RMS error improved to 0.0017.  The main differences between the triangular 
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modelled functions and the Gaussian modelled were that the triangular functions 

tended to underestimate the tails of the band spectral response functions and 

overestimate the central peak.  From these results it was found that the amount of 

overlap between neighbouring HyMap bands is considerable.  The mean total 

overlap for each spectral band with its neighbouring bands was found to be 

approximately 60%.  It would be expected that this high level of overlap between the 

bands would have a large affect on the level of correlation between the bands. 

Two different approaches to reducing the parameterization of the inverse covariance 

matrices were investigated.  Both methods make use of the sparse nature of the 

inverse covariance matrices and the partial correlation matrices to set off-diagonal 

elements in these matrices to zero.  The first approach, developed in Roger (1996b) 

approximates the inverse class covariance matrices as band diagonal and experiments 

with different bandwidths.  The second approach, based on theory developed in 

Speed and Kiiveri (1986) does not make the band diagonal assumption and uses a 

threshold to identify low values in the partial correlation matrices and set them to 

zero.  The resulting approximated class covariance matrices were then used to 

classify a hyperspectral image acquired by the HyMap sensor over Toolibin, WA.  

The number of elements in an 82 × 82 matrix is 6724, but by setting a threshold of 

0.04, an average of 4604 elements were set to zero per classification type and the 

resulting classification accuracy was > 96.4%.  When the threshold was increased to 

0.045 the number of elements with an absolute value less than this increased to an 

average of 4859 and the overall classification accuracy dropped sharply to 77%. 

When assuming a band diagonal form for the inverse class covariance matrices, the 

results were not as successful as using thresholds with the partial correlation 

matrices.  The resulting class covariance matrices showed little resemblance to the 

original matrices, although this need not necessarily result in classification accuracy.  

A review of the MLC discriminant function demonstrated that it is actually the 

inverse covariance matrices that are used by the algorithm.  If these are well 

approximated, it should still be possible to achieve accurate classification results.  

Calculating the Cholesky factor for each partial correlation matrix ensured that the 

determinants of the modelled inverse covariance matrices were the same as the 

original matrices.  While this approach produced classification accuracies greater 
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than 90%, it proved to yield less accurate results than when the values in the partial 

correlation matrix were thresholded.  Bandwidths of 5, 6 and 7 were trialled and 

resulted in classification accuracies of 93.1%, 93.0% and 92.4% respectively.  

Hence, by using these methods it was demonstrated that a significant number of 

parameters in the inverse class covariance matrices can be set to zero with the full 

dimensionality of the original measured pixel spectra being retained.  In this 

instance, using the method based on Speed and Kiiveri (1986) with a threshold ≤ 

0.04 yielded excellent results. 

Several methods including wavelets and splines were tested for the ability to 

accurately approximate the measured pixel spectra.  A variety of commonly 

supported mother wavelets were used and various knot selection techniques were 

trialled to fit cubic splines to interpolate the spectral curves.  The mother wavelets 

used were the Haar wavelet and also the Daub4, Daub6 and Daub10 from the 

Daubechies family of wavelets.  Spectra were analysed and for a number of different 

thresholds, low valued detail coefficients were identified and set to zero.  The 

reduced set of detail coefficients were then used to resynthesize the original spectra.  

When comparing the number of parameters used and the resulting RMS errors in the 

approximations, the Haar, Daub4 and Daub6 wavelets all achieved similar RMS 

errors for the equivalent number of parameters used, with the Daub4 wavelet 

achieving slightly higher accuracies.  Of the four wavelets trialled, the Daub10 

wavelet yielded larger RMS errors and required a larger number of parameters to 

estimate the spectra. 

The different knot selection techniques used were a forward and backward stepwise 

knot selection procedure as well as knots positioned at regularly spaced intervals.  

The forward stepwise selection technique performed the most poorly and resulted in 

spectral approximations having the highest RMS errors.  This is because the points 

that were being selected as knots were already closely fit to the spectral curve.  If a 

point was selected in a region of the curve that was not well defined, the selection 

may increase the RMS error of the fit because the surrounding points were not 

closely fit.  With 40 selected knots, the forward stepwise knot selection technique 

achieved a mean RMS error of 50.3 when fitting the spectral curves.  The backward 

stepwise selection method performed the best of the three techniques trialled as it 
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would actively reject the most redundant knots first.  With 40 selected knots the 

backward stepwise selection technique achieved a mean RMS error of 9.3.  With 40 

knot points selected at regular intervals the mean RMS error was 48.8.  When 

compared with the different wavelets, the backward stepwise knot selection 

technique was similar in performance to the Daub10 wavelet but was not as accurate 

as the other three wavelets trialled.  In terms of the number of parameters used, the 

backward stepwise knot selection technique was slightly more accurate than the 

Daub10 wavelet when less than 40 knots were used.  For more than 40 knots, the 

backward stepwise knot selection technique was slightly less accurate than the 

Daub10 wavelet when using the equivalent number of parameters. 

The methods used to approximate the measured pixel spectra from dimensionally-

reduced spectra were adapted and used to process the entire hyperspectral image.  

The resulting dimensionally-reduced images were then classified.  Both wavelet 

approximation and detail coefficients were generated at different levels of analysis 

and the coefficients from individual levels of analysis were used to estimate the class 

mean and covariance information and then submitted to the MLC algorithm.  There 

was very little difference between using approximation coefficients or wavelet detail 

coefficients when comparing classification accuracies.  After one level of analysis, 

the mean classification accuracies achieved from the approximation coefficients and 

wavelet detail coefficients were 96.4% and 96.1% respectively.  The number of 

coefficients used at one level of analysis ranged from 42 coefficients for the Haar 

wavelet and 46 for the Daub10 wavelet.  These numbers of coefficients were for both 

the approximation coefficients and wavelet detail coefficients.  After four levels of 

analysis, the mean classification accuracies achieved from the approximation 

coefficients and wavelet detail coefficients decreased slightly to 95.7% and 95.8% 

respectively.  The number of coefficients used by both the approximation and 

wavelet detail coefficients for four levels of analysis ranged from 6 coefficients for 

the Haar wavelet and 11 for the Daub10 wavelet.  These results are very close to the 

original 96.5% classification accuracy that was achieved with a standard MLC using 

all 82 bands. 

Interpolating spectral data with cubic splines results in smooth curves with 

continuous first and second derivatives.  The spline coefficients make calculating 
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these first and second derivatives a straightforward task but to fit cubic splines to an 

entire image and then determine the first and second derivatives at particular bands 

would be a considerable computational task.  To overcome this problem a numerical 

approximation was used to generate the first and second derivatives.  A small subset 

of the bands was first selected by finding the first and second derivatives of the class 

means.  Regions of the spectra where the curves were relatively flat or linear would 

have low valued first and second derivative values respectively.  This proved to be 

the case for a large number of bands.  Bands that are located at significant absorption 

or reflectance features exhibit significant first and second derivatives.  The first and 

second derivatives were approximated at these bands and the resulting values were 

used to generate other images of much lower dimensionality.  The resulting images 

were then classified using MLC. 

The results indicated that the first derivative spectra were able to classify the data 

more effectively than the second derivative spectra.  Using 30 bands with different 

band separations, the first derivative spectra gave classification accuracies of 

approximately 96%.  The results from using first derivative spectra compared with 

the second derivative spectra which resulted in classification accuracies between 

93.7% and 95.3%.  When ten bands were used with different band separations, the 

range of classification accuracies using the first derivative spectra was between 

88.7% and 91.8%, while the second derivative spectra classification accuracies range 

between 80.1% and 87.8%. 

One problem that can arise when differentiating signals is that noise present within 

the signal can be amplified.  The results from using derivative spectra for classifying 

the hyperspectral image could be improved if the spectra were smoothed prior to 

differentiation.  By using larger band separations a slight smoothing effect can be 

realised and this was apparent in the results from the second derivative spectra.  

When 10 bands were used for the classification the accuracy increased from 80.1% 

to 87.8% when the band separation was increased from ∆i = 1 to ∆i = 3.  If a proper 

smoothing approach is to be employed it needs to be noted that the amplitude of 

absorption/reflection features will be attenuated and the widths of the features will be 

broadened. 
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One of the main factors affecting the success of MLC is the number of training 

samples selected to represent each spectral class.  For a data dimensionality of N, it is 

recommended that at least 10N training samples be selected to reliably estimate the 

class covariance matrices (Swain & Davis 1978; Richards & Jia 1999).  Many 

classes in the image appear in large contiguous blocks and selecting ample training 

data for these classes is a straightforward matter.  Some classes such as shadow, dark 

tree veg, bright tree veg and bright soils however typically appear in clusters 

comprised of only a few pixels and are not very prevalent within the image.  In order 

to select enough training samples and avoid generating singular class covariance 

matrices, it was necessary to select pixels on edges of these small clusters.  

Inevitably, these pixels would not have been pure pixels, but would have been 

contaminated to some degree by the spectral signatures from neighbouring classes.  

The presence of these foreign endmember signals within the pixel spectra could have 

caused them to be misclassified and this would reduce the classification accuracies.  

In circumstances such as these, spectral unmixing/endmember analysis is desirable. 

Recommendations for future work would include revising the knot selection 

techniques when approximating spectral curves with cubic splines.  The results from 

fitting cubic splines using a forward stepwise selection procedure were inadequate 

and this was due to the knot selection approach used.  Given an existing set of knots, 

each successive knot was selected such that it resulted in the lowest RMS error to the 

approximation to the spectral curve.  This was later observed to be selecting knots in 

regions of the spectral curves that were already well approximated.  It may be 

worthwhile trialling an alternate forward knot selection approach which, given an 

existing set of knots, selects the next knot as the point on the spectral curve which 

has been approximated the worst.  Specifically, the spectral curve needs to be 

compared to the approximation and the point on the curve having the largest 

difference between the original and approximated curve would be selected as the 

next knot. 

This research has principally focussed on the compromise between the accuracy of 

MLC and the number of coefficients used.  The issue of computer processing time 

has not been examined.  Another recommendation for future work would be to 

compare the computer processing times for the different methods tested and compare 
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with the results achieved.  This was not practical as each method was implemented 

with different software on differing computer hardware. 

In summary, it has been demonstrated that despite the wealth of data provided by 

hyperspectral sensors, it is possible to use only a small fraction of this data yet still 

obtain comparable classification accuracies to those when the full suite of data is 

used.  The data typically exhibits very high interband correlations, rendering much of 

the data largely redundant.  This can be exploited to bring about a significant 

reduction in the dimensionality of the data, considerably reducing the amount of 

storage space and processing needed. 
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Appendix A: List of Symbols Used 

In this appendix, a list of symbols used in this thesis is provided for the convenience 

of the reader. 

α Wavelet dilation parameter 

β Wavelet translation parameter 

∆j Separation between knots j and j +1 

φ Wavelet scaling function 

φx Filter function value at intersection with another filter function 

φip Peak value of filter function for spectral band i 

ϕϕϕϕ Spectral basis function 

λ Wavelength 

λic Central wavelength of spectral band i 

λi½ Full width at half maximum value of spectral band i 

λx Wavelength at which two spectral filter functions intersect 

π Pi, 3.14159265 

θ Angle 

ρ Partial correlation coefficient 
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σi Standard deviation about the central wavelength for filter function of spectral 

band i 

Σ̂  Covariance matrix estimate 

τ Atmospheric transmittance 

ω Bandwidth; angular frequency 

ψ Wavelet function 

ψ̂  Fourier transform of wavelet function 

a Set of bands in clique; x
0
 cubic spline parameter 

aj,n Wavelet approximation coefficient 

A First knot 

A Transformation matrix 

b x
1
 cubic spline parameter 

B Last knot 

B Matrix for selecting non zero elements and setting terms to zero in inverse 

covariance matrix 

c Covariance; x
2
 cubic spline parameter 

Cψ Admissibility condition 

C Sample covariance matrix 

d x
3
 cubic spline parameter 
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dj,n Wavelet (detail) coefficient 

d x – x  

e Eigenvalue 

E Eigenvalue matrix 

f A non-negative integer; a signal 

F Renormalization matrix 

g Discriminant function 

G Number of classes 

h Block index; clique number 

hk High-pass filter coefficient 

H Number of blocks; number of cliques 

i Band index 

I Identity matrix 

j Band index; level of wavelet analysis 

J Highest level of wavelet analysis 

k Class index; filter coefficient index 

K Lower Cholesky matrix 

l Pixel index 
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lk Low-pass filter coefficient 

L Number of pixels 

L Lower-triangular Cholesky factor 

m Multiple correlation coefficient 

M Multiple correlation matrix 

n Wavelet coefficient index 

N Dimensionality, number of bands; order of Daubechies wavelet function 

o Canonical root 

O Canonical root matrix 

p Partial correlation element 

P Partial Correlation matrix 

Q Quadratic term in MLC discriminant function 

R Correlation matrix 

r Correlation coefficient 

s Standard deviation 

S Cubic spline polynomial 

S Standard deviation matrix 

t time 
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t Canonical vector 

T Canonical vector matrix 

u “Unexplained” variance 

U Unexplained variance matrix 

v Eigenvector 

Vj Wavelet approximation subspaces 

V Eigenvector matrix 

W New modelled estimate of covariance matrix 

W Wavelet transform 

Wj Wavelet detail subspaces 

x Pixel vector 

X Previous iterative estimate of Σ̂ , Σ̂
–1

 

Y Cosignal matrix; sequence of modelled estimates of covariance matrices 

using forward selection procedure 

z Transformed pixel 

Z Sequence of modelled estimates of covariance matrices using forward 

selection procedure 
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Appendix B: Acronyms 

ALE Arid Lands Ecology 

AVIRIS Airborne Visible Infrared Imaging Spectrometer 

CMIS CSIRO Mathematical and Information Sciences 

CSIRO Commonwealth Scientific and Industrial Research Organisation 

CVA Canonical Variate Analysis 

DWT Discrete Wavelet Transform 

EO-1 Earth Observing One 

EOC Earth Observation Centre 

FSS Field Spectrometer System 

FWHM Full Width at Half Maximum 

HyMap Hyperspectral Mapper 

IRIS Infrared Interferometer Spectrometer 

JM Jeffries-Matusita 

MLC Maximum Likelihood Classification 

MNF Maximum Noise Fraction 

NAPC Noise Adjusted Principal Components 

PCT Principal Components Transform 
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RGB Red, Green, Blue 

RMS Root-Mean-Squared 

SNR Signal to Noise Ratio 

SSC Suspended Sediment Concentration 

VIS/NIR Visible/Near Infrared 
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Appendix C: Spectral Characteristics of the 

HyMap Bands 

Band 

Band # 

in this 

research 

Wavelength 

(nm) 

FWHM 

(nm) 

1  435 15 

2  446.2 15 

3  456.7 14.6 

4  471.2 15.5 

5  486.4 17.1 

6  502.3 15.4 

7  517.1 15.8 

8  533 16 

9  548.4 15.7 

10 1 562.6 12.9 

11 2 579.9 14.4 

12 3 593.6 15.3 

13 4 609 15.9 

14 5 624.5 18.9 

15 6 640.8 15 

16 7 655.5 15.5 

17 8 670.6 15.4 

18 9 685.2 14.4 

19 10 701.7 16 

20 11 716.3 15.4 

21 12 731.4 15.4 

22 13 746.5 15.3 

23 14 761 15 

24 15 777.3 15.5 

25 16 792 15.4 

26 17 807.3 15.6 

27 18 822.4 15.9 

28 19 837.2 15.1 

29 20 853.5 17.3 

30 21 868.2 16 

31 22 883.1 16.3 

32  896.2 15.1 

 

Band 

Band # 

in this 

research 

Wavelength 

(nm) 

FWHM 

(nm) 

33  886.2 17.9 

34  904.6 23.7 

35  919.8 17.6 

36  934.4 19 

37  949.3 16.9 

38 23 966.8 21.7 

39 24 982.3 17.2 

40 25 997.3 17.6 

41 26 1012.4 17.6 

42 27 1030.1 17.7 

43 28 1044.6 16.9 

44 29 1059.6 17.4 

45 30 1074.8 17.3 

46 31 1090 17.6 

47 32 1105.2 16.8 

48  1119.9 17 

49  1134.9 16.6 

50  1149.6 16.7 

51 33 1164.2 16.7 

52 34 1178.9 16.7 

53 35 1193.4 16.4 

54 36 1208.2 16.5 

55 37 1222.5 16.2 

56 38 1236.7 16.1 

57 39 1250.9 16.1 

58 40 1265.3 16.5 

59 41 1279.8 16.4 

60 42 1293.9 16.1 

61 43 1307.7 16.3 

62 44 1321.5 15.7 

63  1334.5 15.8 

64  1347.2 14.5 
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Band 

Band # 

in this 

research 

Wavelength 

(nm) 

FWHM 

(nm) 

65  1401.4 15.9 

66  1416.7 15.4 

67  1431.2 15.3 

68  1444.8 15.6 

69  1458.5 15.9 

70  1472.4 16.3 

71 45 1486.5 16.4 

72 46 1500 16 

73 47 1513.4 16.2 

74 48 1527.4 16.4 

75 49 1540.6 16.2 

76 50 1553.9 16.4 

77 51 1567 16.4 

78 52 1579.9 15.9 

79 53 1592.7 16.3 

80 54 1606 16.1 

81 55 1618.5 16.4 

82 56 1631.4 16.6 

83 57 1643.6 16.1 

84 58 1656.6 15.9 

85 59 1669.1 16.1 

86 60 1681.2 16.3 

87 61 1693.4 16 

88 62 1706.4 15.7 

89 63 1718.3 16.4 

90 64 1730.1 16.2 

91 65 1742.1 16.4 

92 66 1753.9 15.9 

93 67 1766.2 15.8 

94  1778.1 15.4 

95  1790 15.1 

96  1801.1 16 

 

Band 

Band # 

in this 

research 

Wavelength 

(nm) 

FWHM 

(nm) 

97  1948.6 20.2 

98 68 1967.4 21.1 

99 69 1986.4 20.9 

100  2005.2 20.7 

101  2023.9 20.2 

102 70 2042.4 20.3 

103 71 2060.7 20.1 

104 72 2078.7 20 

105 73 2096.9 20.1 

106 74 2114.8 19.6 

107 75 2132.6 19.4 

108 76 2150.2 19.5 

109 77 2167.6 19 

110 78 2184.5 18.4 

111 79 2201.5 19.3 

112 80 2219.8 19 

113 81 2236.8 18.6 

114 82 2253.9 19.3 

115  2270.9 18.1 

116  2287.4 18.7 

117  2304 18.1 

118  2320.6 18 

119  2336.9 18.2 

120  2353.4 17.8 

121  2369.5 18.1 

122  2385.4 17.4 

123  2401.2 17.6 

124  2417.2 17.8 

125  2433.1 17.7 

126  2448.7 17.3 

127  2464.3 17 

128  2479.5 16.9 
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Appendix D: Some Previous and Future 

Hyperspectral Sensors 

Airborne Sensors 
Sensor # of Bands Spectral range (nm) FWHM (nm) 

Airborne Imaging Spectrometer-1 

AIS-1 

128 900 – 2100/1200 – 2400 9.3 

Airborne Imaging Spectrometer-1 

AIS-2 

128 800 – 1600/1200 – 2400 10.6 

Geophysical and Environmental 

Research Imaging Spectrometer 

GER-63 

24, 

4, 

29, 

6 

400 – 1000, 

1500 – 2000, 

2000 – 2500, 

8000 – 12500 

25 

125 

17.2 

750 

Airborne Visible/Infrared 

Imaging Spectrometer AVIRIS 

32, 

64, 

64, 

64 

380 – 690, 

670 – 1270, 

1260 – 1880, 

1880 – 2500 

9.7 

9.5 

10.0 

12.0 

Hyperspectral Digital Imagery 

Collection Experiment HYDICE 

210 400 – 2500 7.6 – 14.9 

Digital Airborne Imaging 

Spectrometer DAIS-7915 

32, 

8, 

32, 

1, 

6 

400 – 1010, 

1500 – 1788, 

1970 – 2450, 

3000 – 5000, 

8700 – 12700 

10 – 16, 

36, 

36, 

2000, 

600 

Digital Airborne Imaging 

Spectrometer DAIS-16115 

76, 

32, 

32, 

6, 

12 

400 – 1000, 

1000 – 1800, 

2000 – 2500, 

3000 – 5000, 

8000 – 12000 

8, 

25, 

16, 

333, 

333 

Hyperspectral Mapper HyMap 128 435 – 2500 13 – 24 

Operational Airborne Research 

Spectrometer OARS 

190 500 – 2500 12 

 

Spaceborne Sensors 
Sensor # of Bands Spectral range (nm) FWHM (nm) 

Hyperion 220 400 – 2500 10 

Linear etalon imaging 

spectrometer array Atmospheric 

Corrector LAC 

256 900 – 1600 2 – 6 

Compact High Resolution 

Imaging Spectrometer CHRIS 

63 400 – 1050 2 – 12 

Atmospheric Infrared Sounder 

AIRS 

514, 

602, 

1262 

3740 – 4610, 

6200 – 8220, 

8800 – 15400 

1.6 – 1.9, 

2.6 – 3.4, 

3.7 – 6.4 
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Appendix E: Sample Global and Class 

Correlation Matrices for Toolibin Data 
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