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ABSTRACT 

This research develops a methodology for determining farm scale land management 

units (LMUs) using soil sampling data, high resolution digital multi-spectral imagery 

(DMSI) and a digital elevation model (DEM).  The LMUs are zones within a 

paddock suitable for precision agriculture which are managed according to their 

productive capabilities.  Soil sampling and analysis are crucial in depicting landscape 

characteristics, but costly.  Data based on DMSI and DEM is available cheaply and 

at high resolution. 

 

The design and implementation of a two-stage methodology using a spatially 

weighted multivariate classification, for delineating LMUs is described.  Utilising 

data on physical and chemical soil properties collected at 250 sampling locations 

within a 1780ha farm in Western Australia, the methodology initially classifies 

sampling points into LMUs based on a spatially weighted similarity matrix.  The 

second stage delineates higher resolution LMU boundaries using DMSI and 

topographic variables derived from a DEM on a 10m grid across the study area.  The 

method groups sample points and pixels with respect to their characteristics and their 

spatial relationships, thus forming contiguous, homogenous LMUs that can be 

adopted in precision agricultural applications.  The methodology combines readily 

available and relatively cheap high resolution data sets with soil properties sampled 

at low resolution.  This minimises cost while still forming LMUs at high resolution. 

 

The allocation of pixels to LMUs based on their DMSI and topographic variables has 

been verified.  Yield differences between the LMUs have also been analysed.  The 

results indicate the potential of the approach for precision agriculture and the 

importance of continued research in this area. 
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CHAPTER 1  

INTRODUCTION 

1. 1 Problem Formulation 
Precision Agriculture has been defined as ‘observation, impact assessment and 

timely strategic response to fine-scale variation in causative components of an 

agricultural production process’, and thus may cover a range of agricultural 

enterprises, and can be applied to pre- and post-production aspects of agricultural 

enterprises (Australian Centre for Precision Agriculture, 2006).  Site-specific crop 

management (SSCM) is one facet of precision agriculture and is defined as 

‘matching resource application and agronomic practices with soil and crop 

requirements as they vary in space and time within a field’ (Whelan and McBratney, 

2000).  A cost effective and practical system of dividing a field into land 

management units that account for the spatial variability of crop production across 

spatially separable zones in Australia, needs to be offered for SSCM to be tested, 

accepted and adopted (Whelan et al., 2002a). 

 

High resolution remote sensing imagery is useful for agricultural spatial planning at 

the farm scale, particularly when it is incorporated into a Geographic Information 

System (GIS) containing other secondary data sources such as terrain attributes.  It 

offers farmers, farm advisors and extension officers, a system to identify areas within 

a paddock which can be managed differently based on their individual 

characteristics, and can be incorporated into various land use scenarios.  Farmers 

have shown considerable interest in the opportunities presented by remote sensing, 

especially where its application can lead to improved farm management. 

 

As with all new management tools, the new techniques require further investigation 

and economic justification before they are widely accepted and adopted by the 

farming community.  This research addresses this requirement by developing a 

framework for determining land management units across an entire farm. 
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1. 2 Background 
In Western Australia, current soil and land capability maps provide information 

suitable for studies at regional or catchment scale.  However, such maps lack the 

level of detail required for sound planning at farm scale.  John Blake (2001), the 

leader of the Western Australian Department of Agriculture and Food’s Precision 

Farming Group, stated that Precision Agriculture has the potential to manage 

variability in the State’s agricultural areas which probably have the most variable 

soils in the world (e.g. farms can have easily five changes of soil type in one circuit 

of the paddock) (Blake and Huffer, 2001). 

 

Remote sensing imagery incorporated into a GIS has the potential to be useful in 

establishing the location and extent of soil variability.  This is important as farmers 

have expressed the need for detailed assessment (at farm scale) of paddock 

conditions (e.g. soil and land capability maps adequate for decisions at farm scale) to 

aid in the planning of alternative land uses or land improvements according to the 

current conditions of the land (Blake and Huffer, 2001).   

 

Dividing a paddock into relatively homogenous management units offers 

opportunities for the manager to exploit sites according to their specific capability. 

The delineation of land management units (LMUs), or zones, has been investigated 

using several techniques.  They include a mechanistic simulation model based on 

detailed soil inventory and climate records (Alphen and Stoorvogel, 1998), multi-

year yield estimates derived from Landsat Thematic Mapper imagery (Boydell and 

McBratney, 1999), multivariate K-means clustering utilising temporal yield data 

(Cupitt and Whelan, 2001; Dobermann et al., 2003; Whelan and McBratney, 2003), 

continuous soil electrical conductivity (EC) measures (Nehmdahl and Greve, 2001), 

morphological and spectral filtering of elevation data and soil EC combined in binary 

form (Zhang and Taylor, 2001) and the classification of remotely sensed imagery 

using supervised and unsupervised methods (Yang and Anderson, 1996; Stewart and 

McBratney, 2001).  These techniques have had differing levels of success.  

Approaches based on intensive sampling or continuous sensors to map crop yield and 

soil properties tend to be expensive and time consuming. 
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More cost effective techniques are clearly required in order to classify LMUs with 

the detail required for applications of precision agriculture.  The methods based on 

cheap high resolution data sets in combination with soil properties recorded at point 

locations, which are investigated here, have the potential to minimise costs while still 

providing an output at the required level of detail.  Sampling strategies for soil 

properties can take numerous forms (Burrough and McDonnell, 1998a; McBratney et 

al., 1999), and a strategy that addresses the variability of soil properties and 

subsequently makes an optimal placement of sampling points can minimise cost.  In 

this research, various strategies will be reviewed and an appropriate method 

implemented, which will result in a spatial database of soil properties for the case 

study area.  

 

An analysis of high resolution data with soil properties and crop attributes will need 

to be conducted to determine their suitability for forming LMUs.  Other high 

resolution data sets include Digital Multi-Spectral Imagery (DMSI) and terrain 

variables derived from a Digital Elevation Model (DEM).  The uses of these data 

have shown some promise.  For example several studies have highlighted 

relationships between terrain attributes and soil properties (Moore et al., 1993a; 

Gessler et al., 1995; Boer et al., 1996; McKenzie and Ryan, 1999) while remotely 

sensed imagery has been used in numerous vegetation studies (Weigand et al., 1991; 

Cloutis et al., 1996; Mogensen et al., 1996; Cloutis et al., 1999; Metternicht et al., 

2000; Senay et al., 2000; Thenkabail et al., 2000; McNairn et al., 2002) and soil 

based applications (Bowers and Hanks, 1965; Stoner and Baumgardner, 1981; 

Karmonova, 1982; Latz et al., 1984; Coleman and Montgomery, 1987; Escadafal, 

1989; Henderson et al., 1989; Epema, 1993; Metternicht and Zinck, 1997).   

1. 3 Research Objectives 

1.3.1 Aims of the Research 

The main objective of this research is to develop a framework for classifying a farm 

into paddock scale, homogenous land management units (LMUs) that can be linked 

to the ‘patch zone management’ approaches used in Precision Agriculture.  There are 

several principles upon which this framework has been based which should be 

understood by users before they adopt the methodology: 
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i. LMUs are based on stable soil properties; 

ii. The scale of LMUs is finer than the minimum size of current paddocks; 

iii. The cost of producing the LMUs is kept low, so that the adoption by farmers’ 

advisory groups is facilitated, and; 

iv. Data sets which are utilised are available in most agricultural regions of WA. 

 

To satisfy these principles further aims of this research are to; 

a) Determine stable soil properties that have the most influence on yield 

variability in the agricultural belt of WA; 

b) Employ high resolution, readily available, cheap ancillary data that are 

related to soil properties and/or landscape variability; 

c) Develop a methodology to combine information derived from high resolution 

data sets and soil properties at point locations;  

d) Produce a LMU map with associated soil properties at paddock scale, and to; 

e) Validate the methodology for forming LMUs. 

 

Addressing these aims encompasses the following steps; 

• Collecting soil information (e.g. physical and chemical soil properties) and 

crop growth attributes across a selected study area; 

• Investigating high resolution ancillary data that could be used in the formation 

of LMUs; 

• Examining relationships between DMSI and crop growth variables to 

determine their use as diagnostic tools for depicting within paddock crop 

variability; 

• Analysis of soil properties and yield data to determine soil properties that 

influence yield variability;  

• Describing the relationship between LMUs and soil properties, and; 

• Examining the success of the LMU classification. 

 

Further derivative aims have evolved which include; 

f) To develop an effective field soil sampling strategy, and; 

g) To determine the opportunities and limitations of using high-resolution digital 

multi-spectral imagery as a diagnostic tool for monitoring crop growth during 

the growing season.  
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1.3.2 Expected Outcomes 

The outcomes of the research are; 

• A framework for rapid and efficient production of farm maps suitable for 

decision making related to site-specific management within paddocks; 

• A soil sampling strategy that reduces the amount and cost of field work and soil 

laboratory analyses while still generating adequate information for producing 

LMUs and their associated soil characteristics, and;  

• Spatial tools for explaining yield variability at farm and paddock level. 

1.3.3 Significance and Benefits of the Research 

The research will develop a framework for rapid mapping of LMUs that can be used 

by extension officers, farm advisors and farmers to make appropriate economic and 

environmental decisions on land uses, while limiting the cost of expensive sampling. 

 

The LMUs will provide spatial zones that can be incorporated into automated land 

evaluation models and used to conduct land suitability analysis.  Outputs that can be 

generated once the LMUs are defined and characterised include; physical suitability 

in terms of current use; proposed scenarios for improvements for paddock/sub-

paddock level management, and; alternative land use scenarios.  

 

An evaluation of the use of DMSI (flown by SpecTerra Systems) to support the 

generation of LMUs will provide potential users with the opportunity to assess 

whether it is an appropriate layer of information to be included in their farm 

management programs.  It is anticipated that the findings will easily be adapted into 

the so-called “next generation” of satellites (e.g. Resource 21, IKONOS, Quickbird, 

OrbView-3) with similar spectral, spatial, and radiometric characteristics. 

1.3.4 Research Methodology 

The study comprises the following major components: 

1) Review of relevant literature to determine techniques appropriate for LMU 

classification, stable soil properties and their relation to plant growth, suitable 

soil and vegetation sampling techniques, potential of remote sensing 

applications for detecting landscape variability, topographic attributes useful 

in soil/landscape studies and LMU classification validation techniques. 



6 

2) Process existing data sets, i.e. calibrate DMSI and interpolate yield point data 

to create a continuous surface. 

3) Design and implement an optimal soil sampling strategy, and collect and 

analyse soil samples to form a comprehensive soil database. 

4) Design and conduct vegetation sampling synchronous with capture of DMSI.  

Perform statistical analysis between in situ crop attributes and DMSI to 

determine the potential of DMSI in detecting landscape variability. 

5) Generate topographic attributes, namely landforms (utilising the 

LANDFORM system), compound topographic index (CTI) and slope 

percentage. 

6) Conduct a statistical analysis between yield and soil properties, topographic 

attributes and DMSI to determine input data for LMU classification.  Perform 

principal component analysis on soil properties to examine appropriate stable 

soil properties for the classification of LMUs. 

7) Use a spatially weighted multivariate classification technique to form 

contiguous, homogenous LMUs. 

8) Perform a validation process to assess the success of the LMU classification 

technique.  
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1. 4 Overview of Thesis 
Figure 1.1 displays a flow diagram indicating the connection of each chapter 

contained within this thesis.  The chapters’ components and their relationship to the 

thesis structure are detailed individually hereafter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Flow diagram of thesis chapters 
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Chapter 1 describes the research problem, providing relevant background 

information and setting the research objectives. 

 

Chapter 2 contains a literature review.  It defines LMUs with a comprehensive 

review of methods for classification of the landscape into spatial zones, culminating 

in the selection of an appropriate methodology for this research.  Stable soil 

properties are identified and described in relation to plant growth.  These properties 

are used in the statistical analysis with yield data (Chapter 6).  Methods of field 

sampling design and implementation for soil and vegetation are described, which 

will be implemented in the field data collection (Chapter 4).  The fundamental 

relationship between remotely sensed imagery and soil and vegetation attributes are 

detailed highlighting the potential of high resolution remotely sensed data for 

characterising landscape variability.  Topographic attributes that are related to soil 

and landscape variables are identified and described; and their generation is 

illustrated in Chapter 5.  Chapter 2 concludes with a description of validation 

techniques which could be considered for the LMU classification. 

 

The selected study area is described in relation to climate, current soil information 

and land use in Chapter 3.  Existing data sets which include high resolution remote 

sensing data, digital elevation model, yield data and field data are detailed.  

Calibration of remote sensing data is included.  The software and hardware used in 

the research are also detailed in Chapter 3. 

 

Chapter 4 includes a detailed description of the soil sampling methodology and 

implementation.  The resulting spatial soil database includes the soil properties to be 

statistically analysed in relation to yield data (Chapter 6) and selected as inputs into 

the LMU classification (Chapter 7).  The collection of field vegetation attributes is 

detailed and a thorough analysis of their relation to DMSI is conducted.  

 

The generation of topographic attributes namely; landform, compound topographic 

index (CTI) and slope derived from the DEM are explained in Chapter 5.  These are 

statistically analysed to determine their appropriateness as inputs to the LMU 

classification in Chapter 6.  Chapter 5 also includes the GIS process devised for 

extracting the yield, topographic and DMSI data at soil points.  This method of 
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constructing the yield data sets is later used in the statistical analysis (Chapter 6).  

The procedure for extraction of the topographic and DMSI data for the remainder of 

the study area is also detailed. 

 

The statistical analysis between yield data and soil properties, topographic attributes 

and DMSI data is implemented in Chapter 6 with the intention of determining the 

most influential properties on yield variability.  These properties are subsequently 

used as the input to the LMU classification (Chapter 7).  Correlation, multiple 

regression, analysis of variance and principal component analysis are performed.  

 

The framework for developing LMUs is described and implemented in Chapter 7.  A 

spatially weighted multivariate classification technique was selected as a 

consequence of reviewing relevant literature (Chapter 2).  The classification has been 

conducted using several parameters and the most appropriate map of LMUs has been 

selected.  The LMUs have been further described based on the soil properties and 

landscape attributes that would be appropriate to farmers and farm advisors. 

 

A validation of the LMU classification is performed in Chapter 8.  Three methods for 

determining the degree of success in the formation of LMUs have been used.  

Finally, conclusions and recommendations for future research are provided in 

Chapter 9. 
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CHAPTER 2  

LITERATURE REVIEW 

The purpose of this research, to “develop a framework for classifying LMUs” and 

the principles upon which the framework has been based , has been presented in the 

introductory chapter along with an overview of thesis structure.  Chapter 2 continues 

with a relevant literature review. 

 

The following literature review covers background information on several topics 

necessary in this research.  Firstly, a review of methods used to classify spatial zones 

is included with emphasis on studies that would be useful at farm scale, incorporate 

multivariate data and produce homogenous zones.  Compiled from the review of 

methods for generating LMUs, the most common landscape attributes used as inputs 

have been identified, namely soil properties, vegetation and topographic attributes.  

Subsequently, these attributes have been reviewed in relation to their effects on plant 

growth and/or use in landscape classification applications.  Methods for the 

collection, measuring and/or derivation of the soil properties, vegetation and 

topographic attributes have been reviewed which range from field sampling, remote 

sensing through to digitally derived by means of  the computation of existing data.  

Finally an overview of methods for validating the LMU classification approach has 

been included.   

2. 1 The Generation of Land Management Units 
As identified in Chapter 1, the main objective of this research is to develop a 

framework for classifying farms at paddock scale into homogeneous LMUs that can 

be linked to site-specific crop management approaches used in precision agriculture.  

The principals of the framework have been detailed, stipulating that the framework 

for forming LMUs should be (i) based on stable soil properties; (ii) at within 

paddock scale; (iii) affordable to farmers, and; (iv) utilise available data.  The 

following section firstly identifies what a LMU is and then goes on to examine 

methods for their generation, summarising with an approach that will be used in this 

research. 
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Dividing a paddock into relatively homogenous LMUs offers opportunities for the 

manager to exploit sites according to their specific capability.  LMUs have been 

defined by various authors, at various scales, for various purposes.  Lloyd (2003) 

defines a LMU as “an area of land, with common soils and landforms that should be 

managed similarly, to maximise production and minimise land degradation”.  Other 

researchers have not used the actual term LMU, but management zones or units.  

Doerge (1998) defines a ‘management zone’ as “a portion of a field that expresses a 

homogeneous combination of yield-limiting factors for which a single rate of a 

specific crop input is appropriate.”  And thus, to be successful, the factors included 

in the delineation method must be based on the true causes that affect the crop yield 

at that site (Doerge, 1998).  Lark et al. (2003) define a ‘management zone’ or ‘zone’ 

as “a region of a field defined according to some criteria on the assumption that all 

sites within a zone are expected to be subject to similar constraints on crop 

performance and, therefore, might be managed in the same way.”  Although not 

stating an actual definition, several researchers (van Alphen and Stoorvogel, 1998; 

Boydell and McBratney, 1999; Fleming et al., 1999; Whelan and McBratney, 2000; 

Cupitt and Whelan, 2001; Stewart and McBratney, 2001; Whelan et al., 2002b; 

Basnet et al., 2003) have described a management zone as being fairly homogeneous 

in terms of yield (either being actual yield, potential yield, plant growth, growth 

conditions, or productivity).  For this research, a LMU has been defined as “an area 

of land, similar in terms of the physical characteristics and production capabilities, 

which can be managed uniformly”. 

 

To begin to identify a method and inputs used to classify LMUs, reviews of 

predictive methods of determining digital soil property maps (McBratney et al., 

2003; Scull et al., 2003) were consulted.  These reviews have discussed the origin of 

work by Jenny (1941), who defined five factors for soil formation, the model taking 

the mathematical form;  

( )...,,,, tproclfS =  (2.1)
where S is a soil property, cl represents climate, o stands for organisms, r relief, p 

parent material and t time.  Numerous surveyors have used this framework as a 

method for understating the qualitative list of important factors in soil formation 

(McBratney et al., 2003).  The general equation is somewhat difficult to solve, but 

the model encouraged pedologists to adopt an experimental approach to field studies 
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(McKenzie et al., 2000).  Several researchers have adopted the model, holding 

factors such as time and organisms constant (McKenzie et al., 2000; McBratney et 

al., 2003).  

 

In the same vein, a LMU will be a function of influential factors and the LMU model 

will take the mathematical form; 

( )nxxxxfLMU ......,, 321=  (2.2)
where LMU is a land management unit, x1 to xn are input landscape attributes that can 

be recorded cheaply and have a dominating influence on within-paddock spatial 

variability of productivity.  Importance not only lies in the x1 to xn factors, but the 

methodology utilised to combine the data layers to create meaningful, useable 

LMUs.  

 

The following review collates several methodologies that have been applied for the 

delineation of fairly homogenous spatial zones within a landscape.  These “spatial 

zones” have been derived for various purposes such as management zones, soil 

mapping, yield maps, salinity maps and vegetation classification to name a few, 

where the outputs are a homogenous class for the purpose of the investigation.  The 

importance here lies with the methodology utilised to incorporate several spatial data 

layers to model the spatial zones. 

2.1.1 Methods of Classification of Spatial Zones 

In a review of approaches for making digital soil maps McBratney et al. (2003) 

discuss several predictive methods, which include, linear models, generalised linear 

models (GLMs), generalised additive models (GAMs), tree models (classification 

and regression), neural networks, fuzzy systems, other methods (genetic algorithms, 

splines), strengthening models: bagging, boosting, expert (knowledge-based) 

systems, unsupervised classification and geostatistical methods.  From the review of 

approximately 70 studies, McBratney et al. (2003) found that GLMs in the form of 

multiple regression to be the most frequently used followed by co-kriging.  While the 

use of regression trees and neural networks was not common. 

 

O’Brien (2004) included a description and comparison of potential modelling 

approaches in search of an applicable method for tropical forage selection.  The 
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models included logistic regression, GLMs and GAMs, artificial neural networks, 

classification and regression trees, environmental envelopes, fuzzy rule-based 

methods and Bayesian probability models.  O’Brien (2004) details these approaches 

and highlights their strengths and weaknesses.  To identify methods for classifying 

spatial zones further, Scull et al.(2003) in a review of predictive soil mapping, 

classify the modelling methods into four main streams namely; geostatistical 

methods, statistical methods, decision tree analysis and expert systems.   

 

The classification of the landscape into spatial zones has also been used widely in 

remote sensing applications.  Jensen (1996b) discusses several image classification 

techniques which are characterised into four main approaches; supervised 

classification, unsupervised classification, fuzzy classification and methods that 

incorporate ancillary data in the classification process.  The methods that incorporate 

ancillary data are of particular interest in this research, and they are further 

subdivided into a) geographical stratification in which ancillary data is used prior to 

classification to subdivide the image into strata, b) classifier operations, which 

incorporate ancillary data during the image classification process and c) post 

classification sorting, which further subdivides an image based on some set of rules 

after an initial classification has been done.  A combination of these methods that 

incorporate ancillary data are d) layered classification and e) expert systems.   

 

The reviews of McBratney et al. (2003), O’Brien (2004), Scull et al.(2003) and 

discussion of Jensen (1996b) have highlighted numerous approaches which could be 

considered in this research.  However, there was not one methodology that could be 

identified from these reviews as the most promising for this research.  Subsequently, 

studies that classify the landscape into spatial zones have been tabulated (Table 2.1) 

identifying their model/method used, input data and scale of study, to assist in 

pinpointing a method to be used to classify LMUs in this case. 

 

 



14 

Table 2.1  Summary, in chronological order of methods for classifying spatial zones 

Spatial Zone 

Name Attribute 

Model Input Landscape 
Attributes 

Scale Study Area Authors 

Non-hierarchical 
classes 

Soil properties  Spatially constrained cluster 
analysis 

-21 soil properties 1400m x 600m (paddock 
scale) 
100m pixels 

(Oliver and Webster, 1989) 

Land Cover mapping Land cover classes in 
mountain 
environment 

Three-stage Classifier: 
1. Quadtree segmentation and 
homogeneity 
2. Minimum distance to means 
3. Ancillary data and spectral 
curves 

-SPOT satellite image 
-Elevation Model: 
geomorphometric 
measures of elevation, 
slope angle, incidence 
value  

National park scale 
11 classes 

(Franklin and Wilson, 1992) 

Geomorphic surfaces Geomorphic Classes 
at three levels. 
-process domain(lv-1) 
-landform(lv-2) 
-sublandform(lv-3) 

Discriminate functions: linear 
discriminant analysis.  

-SPOT HRV: 
Spectral , Spatial 
(Texture analysis of 
SPOT HRV 
-Geomorphometric 
variables (DEM) 

-process domain(lv-1) 4 
classes 
-landform(lv-2) 7 classes 
-sublandform(lv-3) 16 
classes. 

(McDermid and Franklin, 
1994) 

Dryland Salinity Risk Current and future 
salinity 

Decision Tree and rule based 
classifiers (c4.5)  

-Multi-temporal Landsat 
TM 
-DEM-derived variables 
-quantified expert 
knowledge 

Catchment scale 
2 classes 

(Evans et al., 1996) 

Forest Ecosystem 
Classes 

Vegetation types and 
soil types 

Linear discriminant analysis -High resolution compact 
airborne spectrographic 
Imagery (CASI) 
-Geomorphometric 
variables 

Landscape scale 
(1:20,000) classes 

(Treitz et al., 1996) 
(Treitz and Howarth, 2000) 

Management Zones Crop growth 
properties. Height, 
biomass, yield 

Unsupervised Classification -Airborne Videography  
Green, Red and NIR 

2 paddocks (approx 6ha 
and 11ha) 
3 zones 

(Yang and Anderson, 1996) 

14 



15 

Spatial Zone 

Name Attribute 

Model Input Landscape 
Attributes 

Scale Study Area Authors 

Management Units Yield – indicating soil 
variations 

Fuzzy Clustering -Multi-temporal yield 
data. 2-4 years 

5 farms, 23 paddocks in 
total. (Mean paddock 
size 10ha)  
2-7 zones 

(Stafford et al., 1998) 

Management Units Growth conditions Mechanistic simulation model -Detailed soil inventory 
(chemical and physical 
properties) 
-climatic records 

2 paddocks (10ha and 
15ha) 
13 zones 

(van Alphen and Stoorvogel, 
1998) 

Management Zones Stable yield estimate 
zones 

“FuzMe” Modified fuzzy k 
means  

-11 years Satellite based 
yield estimates “Farsite” 
based on Landsat TM 
acquired mid season  

2 paddocks (each 182ha) 
2 zones 

(Boydell and McBratney, 
1999) 

Management Zones Productivity  Hand drawn vector lines -Soil colour aerial 
photography 
-topography 
-expert knowledge 

1 paddock (71ha) 
3 zones 

(Fleming et al., 1999) 

Dryland Salinity Risk Predicted salinity risk 
(predicted discharge 
areas) and non-risk 
areas  

Decision Tree Classifier (c5.0) -Multi-temporal Landsat 
TM 
-DEM-derived variables 
-expert knowledge 

Catchment scale 
2 classes 

(Evans and Caccetta, 2000) 

Land Cover Mapping Land cover classes Multi-step method. 
1. Unsupervised classification. 
2. Aggregation to raster 
polygons 
3. Supervised, nonparametric 
classification 
4. Optional postclassification 
sorting 
 
 

-Landsat TM image 
classification 
-DEM – topographic 
attributes 

1700km2 
12 classes 

(Wheatley et al., 2000) 

15 
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Spatial Zone 

Name Attribute 

Model Input Landscape 
Attributes 

Scale Study Area Authors 

Crop Management 
Zones 

Significant 
differences in yield; 
differences in 
influential soil 
properties on yield 

Multivariate k-mean clustering -Yield -3 years 
-Soil EC 
-Elevation data 

1 paddock (100ha) 
3 zones 

(Cupitt and Whelan, 2001) 

Vegetation classes 
and subsequent bird 
abundance 

Over and understorey 
vegetation species 

Spatially constrained 
clustering 

-9 vegetation variables 45ha 
50m pixels 

(Hall and Maruca, 2001) 

Management Zones Soil properties SEC continuous sensor 
correlated with other soil 
properties 

-Soil electrical 
conductivity 

1 paddock (10ha) 
13 zones 

(Nehmdahl and Greve, 
2001) 

Management Zones 
(Contiguous) 

Soil properties Hard-k-zones algorithm -Yield – 3 years 
-Soil OC and K 

1 paddock (17ha) 
3 – 4 zones 

(Shatar and McBratney, 
2001) 

Management Zones Yield potential 1. Maximum Likelyhood 
classification on soil colour. i.e. 
soil type 
2. Unsupervised 
Classification using k-means 
clustering 
 

-ETM+ of Landsat 7 
30m pixels 

2 paddocks 
(120ha and 150ha) 
3 zones 

(Stewart and McBratney, 
2001) 

Tropical forest 
ecosystems 

Selvas Spatially constrained cluster 
analysis 

-Measures of vegetation 
activity from multi-
temporal AVHRR 
imagery 
-water balance variables 
modelled in GIS 
-elevation from DEM 

Regional scale 
8km resolution 
 

(Mora and Iverson, 2002) 

Management Zones Yield performance User-defined fuzzy set 
membership function 
 

-Standardised Yield (4 
years) 

1 paddock (40.5ha) 
3 zones 

(Basnet et al., 2003) 
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Spatial Zone 

Name Attribute 

Model Input Landscape 
Attributes 

Scale Study Area Authors 

Yield zones Yield performance Ward’s clustering 
k-means and fuzzy k-means 
clustering 

-5 years of yield data 1 paddock (62.7ha) (Dobermann et al., 2003) 

Management zones Yield response Combination of standardised 
yield values 

-5 years of yield data 1 paddock (70.8ha) (Heermann et al., 2003) 

Management Zones Yield potential Multivariate K-means 
clustering 

-2 x Yield 
-EC 
-Elevation data 

1 paddock (75ha) 
2 and 3 zones 

(Whelan and McBratney, 
2003) 

Land Cover classes Managed grassland, 
woodland, rough 
grassland 

Spatially weighted supervised 
classification; Method of 
incorporating spatial 
weighting into supervised 
classification 

-Simulated remotely 
sensed imagery 

Simulated 64 x 64 pixels (Atkinson, 2004) 

Management classes Yield for potential 
management 

Fuzzy k-means on 3 paddocks, 
then multiple discriminant 
analysis across farm 

-Radiometric thorium, 
total counts, potassium, 
uranium 
- Soil EC 
- elevation, slope and 
CTI 

3000ha farm 
7 classes 

(Florin et al., 2005) 

Management Zones Yield response  
Nitrogen levels 

HERMES simulation  2 fields (20ha each) (Kersebaum et al., 2005) 

Soil property maps Soil attributes Linear regression 
ordinary kriging plus 
regression 
simple kriging incorporating 
ancillary data 

-Soil properties: 
Texture, OM, pH, K 
-Bare soil aerial colour 
photograph. BGR 
wavebands 
 
 
 
 

35m x 20m grid of 86 
sample points (6ha) 
 

(López-Granados et al., 
2005) 

17 
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Spatial Zone 

Name Attribute 

Model Input Landscape 
Attributes 

Scale Study Area Authors 

Management zones Soil or landscape 
conditions 
Yield limiting factors 

Fuzzy cluster analysis 3 approaches: 
a) relative elevation, 
organic matter, slope and 
EC 
b) 6 years yield data 
c) relative elevation, 
organic matter, slope and 
EC, yield spatial trend, 
yield temporal stability. 

2 fields: 
32.8ha: 5 classes 
12.5ha: 4 classes 

(Miao et al., 2005) 

Agricultural 
Management Zones 

Soil properties and 
yield 

Cluster using filtering and 
fuzzy k-means 

-Elevation, slope, aspect, 
drainage area 

1 field (9.8ha) 
5 zones 

(Pilesjö et al., 2005) 

Management Units Soil-Landscape 
features 

Spatially Constrained 
classification 

-Soil map. 
-relative elevation, slope 
-soil EC 
-soil surface reflectance 

52ha: 
28 units merged to 6 
units 

(Simbahan and Dobermann, 
2006) 

 

18 
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Table 2.1 lists a literature review of classification methods for producing spatial 

zones highlighting their methodology, input factors and scale of study.  As a 

summary of the works cited in Table 2.1, it can be observed that two thirds of the 

works are applied at paddock scale.  The main focus of the review targeted paddock 

scale studies because the approach in this research will endeavour to provide LMUs 

that subdivide a paddock, however, in this case it will be implemented for the entire 

farm.  As such, other catchment and regional scale applications have also been 

included to review methods and input data sets at those scales.  The approach by 

Florin et al. (2005) is the only farm scale method, and they make the point that whole 

farm applications remain elusive.  Their approach uses a method that firstly forms 

zones on three paddocks and then allocates the classes across the entire farm. 

 

Table 2.1 also shows that the four main input landscape attributes are soil properties, 

yield data, remote sensing data and topographic attributes.  Soil properties have been 

used on more than one quarter of the techniques, almost all of which are paddock 

scale applications.  Yield data have been used in approximately one quarter of the 

techniques, again all of which are paddock scale applications.  Remote sensing data 

(recording vegetation attributes or soil properties) are used in half of the techniques, 

with over 50 percent of these being farm, catchment or regional scale applications.  

While topographic attributes are also used in almost half of the techniques with over 

50 percent of these being farm, catchment or regional scale applications.  It can also 

be summarised that all farm, catchment or regional scale applications used remote 

sensing and topographic attributes, which is not surprising as it is more common that 

such data are widely available at these scales as compared to more expensive point 

based data (i.e. soil properties). 

 

Over one third of the methods included in Table 2.1 are either k-means clustering or 

fuzzy clustering (which is more often fuzzy k-means).  Other more popular methods 

are spatially constrained clustering, decision tree classifiers and discriminant 

analysis.  The k-means and fuzzy clustering methods are all used for paddock scale 

applications while spatially constrained clustering has been used at paddock and 

regional scales.   
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From the studies included in Table 2.1 the spatially constrained classification 

technique has a number of characteristics which make it the best method for this 

research.  As for a number of methods, it can be used at paddock and regional scale 

and has the ability to incorporate multivariate data.  The pivotal feature that makes it 

the best method listed is that it incorporates spatial relationships between objects into 

the classification, which group’s objects that are similar in terms of their attribute 

data.  The resulting groups are spatially compact homogenous zones.  While other 

methods can produce homogenous groups, they can be spatially scattered making 

them impractical for farm management.  This problem is usually solved using post 

classification filters which inevitable introduce greater heterogeneity into the zones.  

The spatially constrained classification optimises the formation of zones with respect 

to both attribute homogeneity and spatial compactness, forming zones that can be 

practically managed by farmers.  More details regarding the spatially constrained 

classification are discussed hereafter.   

2.1.1.1 Spatially Constrained Classification 

Similar to other classification techniques, spatially constrained multivariate 

classification (Urban, 2004) allocates samples to clusters based on their similarity 

with respect to measured variables (i.e. soil or terrain), but also considers their 

proximity to one another.  This forces the clusters to be homogenous in terms of their 

variables, as well as, geographically contiguous (Urban, 2004).  The technique is 

based on a similarity matrix of size n(n+1)/2 (n=number of sample points), which 

becomes very large when classifying high resolution data sets (i.e. >100,000 

individuals).  Urban (2004) suggests that spatially constrained classification shows 

some promise, but is not yet computationally feasible for large datasets.  In addition 

he mentions that while the classifications can yield patches that are better resolved 

spatially, they may be less well defined ecologically (i.e. on their measured 

variables).  The use of spatially constrained classification will depend on the focus of 

the application.  For example Caeiro et al (2003) applied three different classification 

approaches; (1) spatially constrained clustering followed by indicator kriging; (2) 

discriminant analysis; (3) a hybrid of 1 and 2, discriminant analysis with indicator 

kriging, and found method 1 that used the spatially constrained clustering to produce 

the more realistic pattern that was in better agreement with estuary behaviour (the 

measured variable). 
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There have been several differing procedures for incorporating the spatial weighting 

into the classification which are presented here.  Legendre and Legendre (1998) offer 

a detailed description for spatially constraining a clustering methodology based on 

the similarity matrix, while Legendre (1987b) (cited in Legendre and Legendre, 

1998) suggests weighting the values in an ecological similarity matrix by a function 

of geographic distance among sampling locations, prior to clustering.  McIntire and 

Fortin (2006) used spatially constrained clustering which was constrained to only 

those plots that were contiguous to determine the structure of a boundary zone 

created by fires and mountain pine beetle.  Oliver and Webster (1989) used a 

univariate variogram as the spatial weighting function, while Bourgualt et al. (1992) 

applied a multivariate variogram or covariogram.  The methods that utilise the 

variogram are attractive as the spatial weighting incorporated is also modelled on the 

inherent spatial structure of the variables in that study area.  Mora and Iverson (2002) 

developed a spatially constrained ecological classification based on Oliver and 

Webster’s (1989) rationale.  They identify that the spatially constrained technique 

forms not only ecologically different clusters but also indicates their pattern of 

distribution, which is more useful for landscape ecologists.  Gordon (1996) reviewed 

constrained classification methods, not restricted to those constrained spatially, and 

discussed that the most useful developments in this area would be on methods for 

assessing the results. 

 

Spatially constrained classification has also been examined by Atkinson (2004) who 

incorporates a spatial weighting into a supervised classification of remotely sensed 

data.  The idea came from Oliver and Webster (1989) and Atkinson (2004) concurs 

with Urban (2004) stating that the reason why Oliver and Wester’s (1989) method is 

unsuitable in remote sensing applications is that the method requires the use of a 

distance matrix, which would not be viable using remote sensed images as they 

generally contain millions of pixels.  Atkinson’s new approach (which modifies the 

feature-space distance-based metric with a spatial weighting) shows potential with 

only a modest increase in computing time; however it was based on a relatively small 

(64 x 64 pixels) simulated data set. 
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In summary to the above works reviewed, spatially constrained classification which 

incorporates the spatial weighting based on the variogram is the most appealing for 

this research.  As mentioned (Mora and Iverson, 2002; Caeiro et al., 2003; Urban, 

2004) spatially constrained classification produces units that are better resolved 

spatially and produces more realistic patterns to natural phenomena than other 

classification techniques.  In this research homogenous units are a priority and as 

such if the computational feasibility can be overcome, the method is appropriate.  In 

particular, the Oliver and Webster (1989) approach is suitable for several reasons; (i) 

it can be applied to multivariate data; (ii) it uses both a distance component and 

variograms to model the spatial structure of the variability of the properties; and (iii) 

it produces homogeneous units.   

2. 2 Landscape Attributes Required to Form LMUs 
The three main attributes that appear to drive the majority of the LMU classification 

techniques are soil, vegetation and topography.  One of the requirements of this 

research is that the LMUs are based on stable soil properties, as soil properties 

provide information on the ability of the ground to support plant growth and are 

therefore particularly useful for studies that endeavour to classify paddocks into 

zones of differing crop yield potential.  In particular, stable soil properties do not 

change significantly over a growing season and will not alter through the addition of 

fertilizers, thus the LMUs resulting from them are assumed to be more “stable” over 

time.  Vegetation attributes are predominantly useful in studies that are classifying 

landscape into vegetation classes, moreover they provide a surrogate measure of 

landscape variability or change, based on the relationship between a sites’ properties 

(i.e. geology, soil and topography) and vegetation type or growth status.  And 

topographic attributes have been shown to be related to soil properties.  These three 

attributes are discussed individually in the following sections.   

2.2.1 Soil Properties 

Soil supports growing plants by exchanging gases with the atmosphere and suppling 

water and nutrients.  A plant root system is required to carry out these functions and, 

as such, properties that affect root growth will also need to be considered.  If soil is 

non-limiting to plant growth, that is, it can supply all these requirements without 

degrading, the potential yield of plant growth will be governed solely by climate.  In 
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south-western Australia most soils (>80 percent) are not in this category due to 

physical and/or chemical limitations that require management to minimise their 

effect on crop yields (Moore, 1998c). 

 

For this research soil properties that will be considered appropriate for inputs to the 

LMU classification are those that are stable over time and affect plant growth and 

therefore yield potential.  Following, is a review of several works to determine what 

the stable soil properties are, and of those, the ones that govern plant growth. 

 

Moran et al. (1997) in a review of the opportunities and limitations for image-based 

remote sensing in precision crop management, segregates information needs into 

seasonally stable and seasonally variable conditions.  Seasonally stable conditions 

are those that are relatively constant through the crop growing season, such as yield 

based or soil-based management units, and only need to be determined preseason 

and simply updated, when and if necessary.  While seasonally variable conditions 

are those that change continually within the season, such as soil moisture, weed or 

insect infestation, and crop disease, and need to be determined numerous times 

during the season for proper management.  Moran et al. (1997) mention maps of soil 

fertility and physical attributes are being used in precision crop management 

approaches to determine the responsive and non responsive parts of the field in 

relation to seasonally stable management units.  They cite Nielsen et al. (1995) who 

identified soil nitrogen, soil organic matter, relative position and slope of the terrain, 

and Pierce et al. (1995) who suggested that soil physical properties or landscape may 

have a higher priority than soil fertility in explaining yield variations.  Moran et al. 

(1997) discuss eight seasonally variable soil and crop condition variables namely; 

soil moisture content, crop phenology, crop growth, crop evaporation rate, crop 

nutrient deficiency, crop disease, weed infestation and insect infestation with a 

discussion on remote sensing techniques for monitoring these. 

 

Atherton et al. (1999) tabulate several factors that may be used to explain yield 

variability including cultural, soil, topography, pest management and climate.  Not 

all of these factors can be managed equally well and the cost of managing them will 

vary from location to location.  The soil factors include, water holding capacity, 

texture, structure, nutrient availability, organic matter content, cation exchange 
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capacity, pH, compaction, topsoil depth, depth to restricted layer, water table depth, 

infiltration rate and hydraulic conductivity. 

 

Crop yield (or the income derived from it) has the greatest bearing on farm 

management and practices at present (Cupitt and Whelan, 2001).  As such the 

importance of assessing the physical and chemical properties of soils becomes 

evident for optimising the farming system.  The variability of soil attributes and in 

turn crop production potential, at a given site and time is controlled by several 

important processes.  Geology and pedology that define the soil type and govern the 

majority of static soil properties are the most influential (Whelan, 1998).  Through 

literature Whelan (1998) makes a segregation of the soil attributes into those that are 

either static or dynamic in a manner similar to Moran’s et al. (1997) seasonally stable 

or variable parameters, identifying that the magnitude of variability is generally 

lower in those that are static.  He mentions texture, horizon colour and cation 

exchange capacity as static soil properties that are governed by geology and 

pedological processes, while soil management practices and cropping systems can 

greatly influence the properties that are more dynamic such as nutrients, water, air 

and solute regimes.  Reiterating Moran’s et al. (1997) seasonally variable crop 

condition parameters, Whelan (1998) also makes the connection between within field 

crop variation being a function of crop insect pest and diseases and weed infestation, 

which are all important limitations on yield.   

 

Whelan and McBratney (2003) mention that many studies have shown the dominant 

influences on yield variability (other than climate) are the more static soil physical 

factors such as soil texture, associated structure and organic matter which indirectly 

influence cation exchange capacity, nutrient availability and moisture storage 

capacity of the soil. 

 

Fitzpatrick et al. (1999) list six key soil morphological descriptors for assessing the 

quality of soil in dryland farming regions, namely depth changes in consistence, 

colour, texture, structure, segregations/coarse fragments (carbonates and ironstones) 

and abundance of roots in different layers.  Cass (1999) intends to propel 

Fitzpatrick’s et al. (1999) ideas into a more quantitative set of physical descriptors of 

how soils store, supply and regulate the essential physical plant growth requirement, 
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mentioning that this involves an interpretation on how static physical properties, 

dynamic hydrological and mechanical processes influence plant growth 

requirements.  This is difficult to achieve because the measurement of physical 

properties is demanding on time and sampling procedure, and often few physical 

properties are routinely measured in commercial laboratories (Cass, 1999).  In 

summary, Cass (1999) adopted the following arbitrary list of properties that might 

constitute a statement of the physical fertility of soil.  Infiltration rate, total plant-

available water storage, air-filled porosity at the wettest drained condition, 

penetration resistance at the wettest drained condition, structural stability to wetting, 

the balance of salinity to sodicity.  Essentially, these properties act as a surrogate 

measurement of soil structure and resistance to structural breakdown (Cass, 1999).  

 

In summary to the above mentioned soil properties derived from the literature, it 

appears that the stable soil properties that are important to consider in terms of plant 

growth are topography, texture (and coarse fragments), structure, organic matter, 

nutrient availability, pH, salinity / sodicity balance, depth of topsoil and depth to 

restricted layer.  The following sections further discuss the relevant properties in this 

research. 

2.2.1.1 Soil Texture 

Soil texture describes the proportions of sand, silt and clay (the particle size 

distribution).  Sands are mineral particles with a size range of 2 to 0.02mm, silt 0.02 

to 0.002mm and clay particles are smaller than 0.002mm (Moore, 1998a).  Field 

texture is a measure of the behaviour of a small handful of soil when moistened and 

kneaded into a ball (bolus) and then pressed out between thumb and forefinger to 

form a ribbon (McDonald et al., 1990).  The behaviour of the soil during bolus 

formation and the ribbon length determine the field texture grade (Moore, 1998a).  

There is only an approximate relationship between field texture and particle size 

distribution analysis performed in the laboratory, as factors other than sand, silt and 

clay influence field texture (McDonald and Isbell, 1990), such as organic matter, clay 

mineralogy, amount of sodium and the presence of calcium carbonate (Moore, 

1998a).  Texture groups from particle size distribution in WA are based largely on 

the clay content, as the silt content is often small (<15 percent) (Purdie, 1998).  
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Moore (1998a) provides the following Texture grades together with approximate 

clay content (Table 2.2). 

Table 2.2  Texture grades based on clay content (adapted from Moore, 1998a; 
Purdie, 1998) 

Texture Group Approximate Clay Contents 
Sands Sand <5% 
 Loamy sand about 5% 
 Clayey sand 5-10% 
Loams Sandy loam 10-20% 
 Loam about 25% 
 Sandy clay loam 20-30% 
 Clay loam 30-35% 
 Clay loam, sandy 30-35% 
Clays Light clay 35-40% 
 Light medium clay 40-45% 
 Medium clay 45-55% 
 Medium heavy clay >50% 
 Heavy clay >50% 

 

Moore (1998a) mentions that texture is useful for predicting soil behaviour in terms 

of water availability (profile hydrology, available water capacity, waterlogging) and 

erodibility.  It is also significant in relation to other soil properties, including water 

repellence, nutrient deficiencies, nutrient leaching, subsurface compaction, soil 

structure decline and pH buffering capacity. 

2.2.1.2 Coarse fragments 

Fragments within the soil impose limitations on rooting volumes which in turn 

diminish the soils capacity to supply nutrients and water to the plants, while surface 

fragments can effect cultivation and harvesting of crops (Hazelton, 1993).  However, 

in dense soils, the spaces between the coarse fragments may form pathways for water 

drainage and root penetration (Brady and Weil, 1999b) and therefore assist plant 

growth. 

 

Coarse fragments are described as the size of particles greater than 2mm.  Coarse 

fragments are also referred to as gravel and gravely soils are often discussed as 

superior or inferior to soils that are similar but gravel is not present (Moore, 1998a) 
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depending on where in the profile the gravel is present.  Large gravel content reduces 

the effective soil volume, but it inhibits root growth only when the gravel is 

cemented (Moore, 1998a).  The proportion of gravel in the soil can provide an 

indirect indication of several factors; (i) the presence of clayey subsoil deeper in 

profile which can provide water storage, (ii) in the A-horizon the texture can contain 

slightly more clay in some soils and, thus improve nutrient and water storage 

slightly, (iii) gravely soils are generally high in the landscape providing favourable 

implication for drainage, (iv) another common property is their ability to ‘fix’ 

phosphorus, (v) and a large proportion in the A-horizon is likely to reduce the 

susceptibility to traffic compaction (Moore, 1998a; Smolinski, 2005).  Gravel over 

clay soils are also usually better structured and non-sodic (Smolinski, 2005).   

2.2.1.3 Soil Stability 

The decline of soil structure can lead to hardsetting and crusting and the effects of 

this decline can reduce crop yield directly or indirectly via reduced infiltration, poor 

soil workability, delayed seeding, reduced seedling emergence, reduced aeration and 

reduced trafficability (Needham et al., 1998).  Needham et al. (1998) describes an 

ideal soil structure as having a large proportion of aggregates from 0.5 to 2mm, 

which are not easily broken down. It has high porosity for water entry and gas 

exchange, low strength, is stable in wet or mechanically disturbed, and aggregates 

can reform if subjected to adverse management.   

 

A soil stability score can be derived from laboratory analysis and used as a general 

guide to stability.  It is based on four soil properties; sodicity, organic matter, 

calcium:magnesium ratio and electrical conductivity (Needham et al., 1998).  Table 

2.3 provides an example for a soil with a sandy loam or finer surface texture, (i.e. 10 

percent clay or more as according to Table 2.2). 
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Table 2.3  Determining the soil stability score for soils (adopted from Needham et 
al., 1998) 

Soil Property Unit of Measure and 
soil stability score 

Sodicity ESP 
 <6 6-15 >15 
Stability Score 0 -2 -3 
Soil Organic Matter Organic carbon % 
 <0.8 0.8-1.5 1.5-2.5 >2.5 
Stability Score -1 0 +1 +2 
Exchangeable Ca  Ca:Mg ratio 
and Mg <1 1-3 >3 
Stability Score -1 0 +1 
Electrical  EC (mS/m) 
Conductivity <50 50-100 100-150 >150 
Stability Score -2 -1 +1 +2 

 
Soil stability score 

-6  -4  -2 0  3  5 

very low  low   moderate high 
← Decreasing stability    Increasing stability→ 
 

The ratio of Calcium to Magnesium has been discussed in regards to its usefulness in 

determining the stability of soils.  Bruce et al. (1989) (as cited in Bruce, 1999) 

mentions that Calcium saturation is correlated with soil pH and inversely related to 

aluminium saturation.  And Bruce (1999) points out that it is desirable to have the Ca 

as the dominant cation.  However Al may be dominant in acid soils, Na is dominant 

in sodic soils and Mg can be dominant in sub soils.  Hazelton and Murphy (1992) 

provide the following Table 2.4 which are based on USA soils.  Bruce (1999) states 

that Australian soils tend to have lower Ca to Mg ratio’s than USA soils. 

Table 2.4  Ca:Mg ratio for USA soils (adapted from Eckert, 1987) (as cited in 
Hazelton and Murphy, 1992)  

<1 Ca deficient 
1-4 Ca (low) 
4-6 Balanced 
6-10 Mg (low) 
>10 Mg deficient 

2.2.1.4 Organic Matter 

Soil organic matter consists of the remains of plant and animals at various stages of 

decomposition, cells and tissues of soil organisms, and substances, such as humus 
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made by these organisms.  Plants are the primary source of all soil organic matter 

and animal matter is secondary (Brady and Weil, 1999c). 

 

Organic matter plays several roles in relation to the physical and chemical properties 

of soils and therefore needs to be considered here because of the flow on effect to 

plant growth.  Davey (1990) lists several reasons why the structure of soil needs to 

be stable and well balanced; (1) the bulk density does not limit plant growth, (2) the 

soil is well-aerated, (3) available water storage is at a maximum, and (4) the soil will 

withstand cultivation and wind and water erosion.  Organic matter influences all of 

these properties because of its role in the development of soil structure and its action 

in cementing soil structural units.  Nitrogen for plant growth in unfertilised soils 

comes mostly from organic matter through microbial decomposition (Davey, 1990). 

 

A widely used method in Australia is the measure of organic carbon (Walkley and 

Black).  This is reported as Org C (W/B) and expressed as %C.  Table 2.5 can be 

used to apply a rating to the percentage of organic matter by combustion values. 

Table 2.5. Percentage of organic matter ratings at surface horizon (A1) (adopted 
from Purdie, 1998) 

Rating Percentage of organic 
carbon. Org C (W/B)  

Soil properties 

Low < 1% Poor nutrient storage, unstable structure 
Medium 1 - 2%  
High > 2% Good nutrient storage, stable structure 

 

2.2.1.5 Cation Exchange Capacity 

By definition the cation exchange capacity (CEC) is a measure of the total capacity 

of a soil to hold exchangeable cations (Rengasamy and Churchman, 1999), which 

control the fertility and structural stability and hence the productivity of soils (Davey, 

1990).  The clay content and minerals contribute to the CEC of soils (Davey, 1990; 

Purdie, 1998).  For most soils the bulk of the cations present in exchangeable format 

are Ca2+, Mg2+, Na+ and K+.  An effective cation exchange capacity (ECEC), which 

is the sum of the basic cations (Ca, Mg, Na, K) and exchangeable/titratable acidity 

(H+,Al3+,Mn2+), can be calculated to represent the total amount of exchangeable 

cations held by a soil (Rengasamy and Churchman, 1999).  The acidity occurs in two 

forms; hydrogen ion acidity (H+) and metal ion acidity (Al3+,Mn2+) (Allen, 2004).  
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The CEC is usually measured at pH 7 or 8.5 and for neutral/alkaline soils the ECEC 

is usually very close to measured CEC (Allen, 2004).  However, for acidic soils the 

situation is a little different and ECEC is usually intended to approximate the CEC 

measured at  pH 7 (Allen, 2004). 

 

As most soils contain a proportion of pH-dependant electrical charge, there is often 

discrepancy between the CEC and ECEC (McArthur, 1991).  CEC values determined 

for soils at a pH value largely different to that which occurs in the field may be 

misleading (Rengasamy and Churchman, 1999), as the amount of H+ is partly related 

to the pH of the soil.  The greater the difference between pH 7 and field pH, the 

greater the H+ acidity (Allen, 2004).  The Chemistry Centre of WA data show that 

the metal ion acidity (Al3+,Mn2+) is usually much larger than H+ acidity, and the H+ 

acidity is usually <0.05me% if the pH > 4.5 and thus they are fairly confident that 

ignoring the H+ acidity (which can be measured by a tedious method) will provide 

adequate accuracy (Allen, 2004).  The ECEC can be calculated as the sum of 

(Ca+Mg+Na+K+Al+Mn) (Allen, 2004).  If two soils contain similar clay minerals 

and a large proportion of permanently charged components, then a larger CEC 

generally indicates a larger proportion of clay-size particles (Rengasamy and 

Churchman, 1999).  The type of clay mineral has a strong influence on the CEC, for 

soils with high proportions of permanently charged components and if clay content is 

known then CEC values can be used to infer the type of clay mineral present 

(Rengasamy and Churchman, 1999).  

 

Table 2.6 rates soils based on their chemical properties and indicates factors that may 

need to be considered in managing soils.  For CEC values, Purdie (1998) suggests 

that the ratings seem appropriate for WA soils in an international context where high 

and low values indicate that the soil has good and poor capacity to store nutrient 

cations, respectively.  For this reason, these ratings are applied in this research to 

assist in describing the soils ability to store nutrients. 
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Table 2.6  Ratings for chemical properties (adopted from Purdie, 1998) 

Ratings Analysis Low Medium  High 
CEC measured          (me%) <5 5-15 >15 

Ca2+  (me%) <5 5-10 >10 
Mg2+ (me%) <1 1-5 >5 
K+     (me%) <0.5 0.5-1.0 >1.0 
Na+   (me%) <0.3 0.3-1.0 >1.0 
Al3+  (me%) <0.1 0.1-1.0 >1.0 

exchangeable 
cations 

Mn2+ (me%)    

2.2.1.6 Soil Acidity 

Soil acidification is a process that naturally occurs within soils, however it is 

accelerated by agriculture.  The acidification rate is variable and depends on the soil 

type, land use, productivity and management of the farming system.  The activity of 

soil acidity is one measure used for soil acidity.  It refers to the concentration of 

hydrogen ions in soil solution of which pH is an indicator (Moore et al., 1998). 

 

The pH can be measured in distilled water (pHw) and calcium chloride (pHca).  

Using calcium chloride as the dilute salt solution, neutralises the effect of variable 

soil to solution ratio, and represents the ionic strength of most agricultural soils 

(Davey, 1990).  Although pHw is considered closer to what the plants roots would be 

exposed to, it is subject to variation due to seasonal change in soil moisture (Slattery 

et al., 1999).  The measured pH in calcium chloride may represent field conditions 

better than when measured in water (Davey, 1990). 

 

Aluminium toxicity is a major problem associated with acid soils (Moore et al., 

1998).  It is usually not until soil pHca falls below 4.8 that Al becomes measurable 

and can become toxic to plants (Slattery et al., 1999).  Slattery et al (1999) discuss 

the results from several studies of the relationship between Al and grain yield or 

pasture growth highlighting that across a range of soil types exchangeable Al is not a 

particularly good predictor of plant response, while Al saturation is more generally 

applicable, but still varies between locations.  If the analysis is limited to a particular 

soil type or group, correlations between exchangeable Al or Al saturation, with yield 

response are reasonably good. 
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2.2.1.7 Soil Alkalinity, Sodicity and Salinity 

Soils that are alkaline have a pHw >7.5 (measured in a 1:5 soil:water suspension) in 

one or more layers and can have a number of nutrient deficiencies (Scholz and 

Moore, 1998).  High alkalinity leads to sodicity in soils however not all sodic soils 

are alkaline (Scholz and Moore, 1998).  The pHw is a better method for 

differentiation of the alkalinity than pHca (Scholz and Moore, 1998).  Possible 

limitations of alkaline soils can be inferred from pHw and the ECSE (electrical 

conductivity of a saturation extract) (Scholz and Moore, 1998). 

 

Soils that have large concentrations of exchangeable sodium are referred to as sodic 

soils (Scholz and Moore, 1998).  Sodicity can have direct toxic effects on plants 

(Scholz and Moore, 1998) and the effect of sodicity on soil stability has been shown 

in Table 2.3 (i.e. higher sodicity can lead to decreased stability).  If the exchangeable 

sodium percentage (ESP) of soils in Australia is between 6 to 15 they are called 

sodic, and highly sodic if greater than 15 (Scholz and Moore, 1998). 

 

On the other hand, soil salinity refers to soils that have a large concentration of 

soluble salts which is usually measured by the electrical conductivity of a 1:5 

soil:water suspension (EC1:5).  Although EC1:5 does not reflect salt content directly, 

ECSE (electrical conductivity of a saturation extract) is more meaningful as it 

accounts for soil texture i.e. being closer to field water content (Shaw, 1999) and 

plant response (Moore, 1998b) but is a more tedious method (Shaw, 1999) and thus 

often not practical.  Shaw (1999) describes a conversion method from EC1:5 to ECSE, 

which requires the air-dry moisture content and saturation percentage, while Moore 

(1998b) provides the relationship developed by George and Wren (1985) (as cited in 

Moore, 1998b p. 153) that includes the saturation point of soil, which can be 

estimated from a relationship with texture.  Moore (1998b) suggests using this when 

it is not practical to measure ECSE.  ECSE values are 5 to 18 times higher than EC1:5 

(Purdie, 1998).  McArthur (1991) presents relationships between salinity categories 

based on EC1:5 and depth in reference soils, and Purdie (1998) adopted these ratings 

to provide a pointer to potential problems, not to be misinformed as a specific 

evaluation, and the associated effects on plant growth which would vary with species 

and salts present.  Campbell and Bowyer (1990) provide an indication of the effect 
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on crop growth.  Table 2.7 is a combination of the information provided by 

McArthur (1991), Purdie (1998) and Campbell and Bowyer (1990) which will be 

useful in this research to describe the soils. 

Table 2.7  Rating and salinity categories and associated effects (adopted from 
Campbell and Bowyer, 1990; McArthur, 1991; Purdie, 1998) 

EC1:5 
(mS/m) 

Salinity 
Category 

Effect on 
Plant Growth

Effect on Crop Rating 

< 16 Non-saline 

16-31 
Salinity effect 
negligible 

32-45 
Slightly saline 

46-50 

Minimal 
effect on plant 
growth 

Low 

51-62 

Very sensitive crops 
affected 

63-90 

Moderately 
saline 

91-125 
Yields of many 
crops affected 

126-200 
Highly saline 

Plant growth 
is inhibited 

Medium 

200-250 
Tolerant crops may 
grown 

>250 
Extremely 
saline 

Plant growth 
is severely 
restricted 

Only very tolerant 
crops grown 

High 

 

This section has provided a thorough description of selected stable soil properties.  

Field soil samples are collected at point locations and thus strategies for soil 

sampling along with collection via remote sensing approaches are presented in 

Section 2. 3. 

2.2.2 Vegetation 

Vegetation or parent material can provide an indication of the underlying soil and 

geology and can subsequently be used to determine the substance and variability of 

the landscape.  Traditional soil survey methods (McDonald et al., 1990) use 

vegetation as an additional description of the landscape and since the onset of remote 

sensing techniques, vegetation attributes are used in landscape scale classification.  

Using high resolution remote sensing (≤10m spatial resolution), vegetation attributes 

can also be used to help detect variations in growing condition (i.e. variability) at 

within field scales.  The recording of vegetation attributes within a paddock and their 

detection via remote sensing techniques are further discussed in Section 2. 3.  
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2.2.3 Topographic Attributes 

Topographic attributes can be divided into primary and secondary (or compound) 

attributes (Moore et al., 1993a).  Examples of primary attributes include elevation, 

aspect, slope and catchment area, all of which can be directly calculated from regular 

grid digital elevation models (DEMs) using GIS software or the TAPES-G program 

(Gallant and Wilson, 2000).  Secondary topographic attributes are combinations of 

primary attributes and can be used to characterise the spatial variability of processes 

within the landscape (Moore et al., 1993a).  Several studies have correlated terrain 

attributes, derived from a DEM, to soil properties (Moore et al., 1993a; Gessler et 

al., 1995; Boer et al., 1996; McKenzie and Ryan, 1999).  In particular, McKenzie et 

al. (2000 pg 247) refer to several studies (Milne, 1935, Walker et al. 1968, Gerrard 

1981,1990) that have shown close, although often complex, relationships between 

soils and landforms.  Three topographic attributes namely; landforms, the compound 

topographic index (CTI) and slope, have been identified as important drivers in soil 

landscape studies and their derivation (i.e. collection) are further detailed hereafter. 

2. 3 Methods for Recording Landscape Attributes  
Soil, vegetation and topographic attributes have been identified and discussed as the 

attributes required for classifying LMUs.  The recording and compilation of these 

data, which can be achieved through; 1) on ground field sampling techniques, 2) 

remotely with the use of remote sensing applications, and 3) digitally derived 

through the computation of existing data, are discussed in that order, hereafter. 

2.3.1 Field Sampling Techniques for Soil and Vegetation 

2.3.1.1 Soil 

A soil sampling strategy needs to be developed in order to collect soil property 

information across the study area.  Intensive soil sampling that results in detailed soil 

maps is costly and time consuming, and therefore, there is a need to reduce the 

degree of sampling without compromising the accuracy of the information gathered.  

Accordingly, other approaches for cost effective acquisition of soil property 

information at farm and paddock scales, which account for the spatial variability of 

soil properties inherent in agricultural paddocks, need to be explored. 
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When designing a sampling strategy several factors need to be considered; grouping 

and stratification, resolution or sampling frequency, intensity or sampling size and 

pattern of samples in order to determine the layout of points.  Grouping, resolution 

and intensity all relate to variability.  Therefore, there is a need to know something 

about the variability in advance, i.e. prior mapping of some related condition. 

 

At medium scale the variability across a landscape of many soil properties is related 

primarily to differences in particular soil-forming factors, such as topography 

(drainage) or parent material (Brady and Weil, 1999a) which can therefore be useful 

for inferring the soil variability in advance.  Several studies have correlated terrain 

attributes, derived from a DEM, to soil properties (Moore et al., 1993a; Gessler et 

al., 1995; Boer et al., 1996; McKenzie and Ryan, 1999).  Terrain analysis has the 

potential to improve soil surveys in three ways by (1) generating high-resolution 

environmental information of direct use in land evaluation (slope, net radiation, etc); 

(2) creating explicit environmental stratifications for survey design; and (3) 

providing quantitative spatial predictions of individual soil properties (McKenzie et 

al., 2000). 

 

In a preliminary analysis of the relationships between topography and soil attributes, 

Moore et al. (1993a) found that slope was the most highly correlated terrain attribute, 

and suggested that the relationship between terrain and soil attributes could be 

applied as a guide to sampling strategies.  Furthermore, McKenzie et al. (2000) states 

that terrain analysis can be used to generate stratified random sampling schemes in a 

way that previously has not been possible in conventional soil survey.  This indicates 

that topographic attributes can be useful in guiding the soil sampling strategy. 

 

The high cost of collecting soil attribute data at many locations across the landscape 

has created the need for inferring air and water properties of soils using economical 

surrogates derived from soil morphological properties.  This is demonstrated in 

studies by Gessler et al. (1995) and Moore et al. (1993a) which are based on deriving 

relationships between terrain values and soil properties.  The most common 

surrogates used are soil texture, organic matter, structure, and bulk density (Moore et 

al., 1993a).  The rationale is that in many landscapes, catenary soil developments 

occur in response to the way the water moves through the landscape.  Therefore, it 
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may be hypothesised that the spatial distribution of topographic attributes that 

characterise water flow paths also captures the spatial variability of soil attributes at 

meso-scale. 

 

Moore et al. (1993a) suggest that the DEM data at an appropriate scale could be used 

to calculate terrain attributes that would enhance soil surveys as a source of soil 

attribute data.  Their results indicate that slope and wetness index (compound 

topographic index) are the terrain attributes most highly correlated with soil 

attributes.  The terrain attributes could also be used to segment the landscape into 

essentially stationary process zones, where attribute prediction may be done in a 

more statistically robust fashion.  This indicates that DEM derivatives can potentially 

be used to enhance sampling designs for soil properties due the relationship between 

terrain values and soil properties, and therefore they will be investigated to be 

incorporated in the soil sampling strategy in this research.   

 

Optimal soil sampling should characterise the variability within the sampling area, 

and at the same time maximise efficiency of soil sample points.  The variance quad 

tree method by McBratney et al. (1999) demonstrates this concept.  They use crop 

yield variabition to direct sampling for soil attributes that are considered to influence 

crop yield, and suggest that the technique would also be suitable for designing a soil 

or crop sampling scheme based on elevation data and aerial or satellite imagery. 

 

An existing layer of digital multi-spectral imagery could also provide some prior 

knowledge of variability.  This is indicated by Lamb (2000) who states that beyond 

canopy cover closure, spatial variations in the biomass or vigour of the crop canopy 

itself may indirectly indicate variations in underlying soil structure, and hence, be 

useful for delineating soil zones.  Lamb (2000) also states that regardless of the 

seasonal effect, the identification and exact location of soil zone boundaries, either 

directly or indirectly from qualitative multispectral imagery, is a useful basis for 

planning more detailed soil sampling and analysis. 

 

Drysdale et al. (2002) based their soil sampling design on these concepts.  This 

strategy increased the intensity of sampling points in areas of heterogeneous soil 

properties while sampling less intensively in areas of the paddock that appeared 
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homogeneous.  A combination of slope data, derived from a DEM and change in 

NDVI (from high resolution airborne remote sensing), is used to provide a surrogate 

layer of the soil properties variation.  This optimised the location of the sampling 

points by detecting within paddock soil variability prior to field sampling.  Detecting 

the spatial variation in advance addresses the first three factors to be considered in 

sampling designs.  The pattern of soil sampling points is considered in the following 

section. 

2.3.1.1.1 Soil Sampling Pattern 

The location of the sample points can be critical for subsequent analysis.  Ideally for 

mapping, samples should be located evenly over the area however, a completely 

regular sampling network can be biased if it coincides in frequency with a regular 

pattern in the landscape (Burrough and McDonnell, 1998a).  Therefore, Burrough 

and McDonnell (1998a) note that statisticians suggest that some kind of random 

sampling is preferred for computing unbiased means and variances.  However, 

completely random locations of sample points can lead to an uneven distribution of 

points leaving unwanted holes.  Therefore, a good compromise between random and 

regular sampling is stratified random sampling (Burrough and McDonnell, 1998a).  

This method provides an adequate “even" coverage with a sufficient range of inter-

sample distances.  Dicks and Lo (1990) (cited in Jensen, 1996a, p249) also indicate 

that some combination of random and stratified sampling provides the best balance 

between statistical validity and practical application.  This suggests that a stratified 

random sampling pattern should be used in this research to overcome the inherent 

problems of other patterns.  

2.3.1.1.2 Size of Support 

The support is the name used in geostatistics for the area or volume of the physical 

sample on which the measurement is made.  Therefore, while considering factors for 

field soil sampling, the size of support also needs to be determined.  The soil 

properties sampled in this research will be analysed in conjunction with high-

resolution remote sensing imagery in order to determine if relationships exist 

between the two.  If the support sizes of both sets of observations are not matched it 

may be difficult to combine the data sets for modelling and spatial analysis 

(Burrough and McDonnell, 1998a). 
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When data collected on a given support are used to predict values of the same 

attributes at unsampled locations then the predictions refer to the locations that also 

have that support.  Procedures such as bulking or spatial averaging are used to relate 

the observations to larger areas or volumes.  Bulk sampling consists of several small 

samples taken within a defined area around a spatially located sample point, which 

are mixed together before analysis to homogenise the area.  This is useful when data 

collected by different methods need to be combined such as soil and information 

collected by remote sensors.  The remote sensors collect data, which are recorded as 

single grid values (pixel values), and the numbers recorded are area-weighted 

averages of the radiation received, so the pixel area (resolution) defines the size of 

support (Burrough and McDonnell, 1998a).   

 

In this research the size of support will need to be considered for the resolution of the 

remotely sensed imagery.  Sampling units smaller in area than a pixel will lead to 

unrepresentative observations of larger areas.  Sample units equal to the area of one 

pixel are not recommended, because of the problems of accurate ground location in 

terms of an external coordinate reference system.  Justice and Townshend (1981) 

offer a formula (Equation (2.3)) to calculate the minimum dimension of a sample 

area based on the pixel resolution and accuracy of its location.  In general the 

minimum dimension of the sample area, A, chosen may be estimated as follows: 

)21( LPA +=  (2.3)

Where P = the pixel dimensions, and L = the accuracy of the location in terms of the 

number of pixels (Justice and Townshend, 1981).  The accuracy in this scenario also 

relates to the differential global positioning system used to determine the spatial 

location. 

 

In summary to the literature related to the design and implementation of a soil 

sampling strategy, several aspects have been considered.  The optimisation of the 

strategy will place sample points with respect to the inherent variability in soil 

properties in the paddocks, in doing so, place points more intensively in areas of 

heterogeneous properties and less often in areas of similar soils.  Without prior 

knowledge of the current soil variability, data sets that could provide a surrogate 

measure are terrain attributes, in particular slope, and the surface reflectance via 

remote sensing techniques depicting variability in plant/crop growth and/or soil. 
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2.3.1.2 Vegetation 

Vegetation attributes can be recorded by several methods and intensities depending 

on the level of information the collector wants to gather.  In principle, the sample 

intensity should be sufficient to characterise accurately the population under study 

(Cihlar et al., 1987), the population in this case being agricultural crops.  There has 

been little research in this area, and Cihlar et al. (1987) provide a comprehensive 

instruction manual for field collection of information on crops to be used in remote 

sensing studies. 

 

Before sampling, the method of vegetation attribute collection is considered along 

with sample locations and intensity.  The vegetation sampling will need to detect 

variability in crop growth.  Transect sampling can achieve this by setting the length 

of transect and sampling point intervals in situ appropriate to the magnitude of crop 

variation.  The advantage of transect sampling as apposed to other methods (i.e. 

grid/random) is its simplicity to be assembled in the field and spatially located in 

remotely sensed imagery.  Statistical analysis between remote sensing data and 

vegetation attributes will be conducted on a minimum of 30 sampling points per crop 

type.  This will simplify statistical calculations based on the assumption of normality.   

 

Cihlar et al. (1987) describe procedures for characterising agricultural crops in 

remote sensing studies.  Plant height, defined as the distance between the canopy of 

interest and soil surface, is recommended to be recorded by placing a measuring or 

jousting stick vertically near selected plants and measuring the total maximum height 

(to the top of canopy) a minimum of five times.  Plant cover is defined as the 

proportion of the soil surface masked by the plant material.  The authors suggest 

using a nadir-viewing photograph taken at 2m or higher and overlaying the 

photograph with a grid to estimate the percentage of cover.  Visual estimates can also 

be useful, although they tend to be highly subjective and inconsistent (Cihlar et al., 

1987).  Plant density is defined as the number of plant stems per unit area (Cihlar et 

al., 1987).  For row crops, it is recommended to count the number of stems along the 

row, and convert it into density using the average row width, while for randomly 

distributed plants, counting the number of stems in a predefined area is advised.  



40 

The leaf area index (LAI) is defined as the total area of green leaves (one side only) 

from plants within an area, divided by the ground surface area within which these 

plants grow, in units of percent (Cihlar et al., 1987).  Cihlar et al. (1987) suggest the 

most efficient approach is to use a leaf area meter which measures the area of leaves 

that pass through it.  In addition, it is recommended that a minimum of five randomly 

selected plants be included in one sample and then the LAI calculated using the plant 

density value. 

 

The basis of recording field vegetation attributes in this research will be to determine 

whether relationships exist between the crop growth properties and high resolution 

remote sensing data.  And furthermore to establish if the remote sensing layer can be 

used as an input to the LMU classification, based on its ability to depict landscape 

variability.  The methods of field vegetation collection detailed by Cihlar et al. 

(1987) appear appropriate for this research as they are focused on remote sensing 

applications.   

2.3.2 Remote Sensing of Soil and Vegetation 

Remote sensing offers a non-invasive method for detecting information about the 

features on the earth surface.  Reflective optical radiation is defined as propagating 

electromagnetic energy with characteristic wavelengths between the 0.4 and 3μm.  

When optical radiation interacts with a surface, a portion of the radiation is either 

absorbed or transmitted; the remainder is said to be reflected.  The ratio of the 

reflected radiation to the total radiation falling upon the surface is defined as 

reflectance (Baumgardner et al., 1985).  A soil sampling strategy will need to be 

implemented in this research and the use of vegetation indices (i.e. NDVI) derived 

from remote sensing of vegetation have been shown to be useful in soil sampling 

strategies (Drysdale et al., 2002).  The reflectance of the surface (either soil or 

vegetation) is a useful method of determining the characteristics of the landscape and 

as such, could be a layer to be included in a LMU classification.  Accordingly the 

principles behind remote sensing of vegetation and soil and examples of the 

techniques used are discussed hereafter. 
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2.3.2.1 Reflectance of Vegetation 

Vegetation is unique in its three segment partitioning (reflected, transmitted or 

absorbed) of optical radiation (Figure 2.1).  In the visible part of the spectrum (400 - 

700nm), reflectance is low, transmittance is almost zero, and absorptance is high. 

The plant pigmentation is the fundamental control of the energy-matter interactions 

with vegetation (Lusch, 1989). 

 

Within the visible part of the spectrum, absorptance of the bluish (400-500nm) and 

reddish (600-700nm) wavelengths is pronounced by the chlorophyll compounds, 

which are dominant plant pigments.  The absorption of solar energy is required by 

vegetation to support photosynthesis.  The transmittance by vegetation is very low in 

the visible wavelengths as shown in Figure 2.1.  Energy that has not been absorbed 

will be reflected, thus chlorophyll-bearing vegetation appears green as a result of its 

minor peak in the 500-600nm wavelength. 

 

 

 

 

 

 

 

 

Figure 2.1  Spectral Partitioning of solar irradiance by vegetation (adapted from 
Gausman, 1985)(cited in Lusch, 1989) 

 

Other plant pigments, the carotenes and xanthophylls, produce yellow or orange 

reflectance.  These compounds have a single, broad absorptance band centred at 

about 450nm.  While anthocyanins, absorb the bluish and greenish wavelengths, 

producing their red reflectance.  The features of these three compounds are usually 

masked by chlorophyll absorptance.  However, during senescence or a stress period, 

the chlorophyll production usually declines shifting the spectral absorptance and 

allowing these compounds to display their features.  The relative abundance of these 

various pigments change during the plant senescence process, which produces shifts 
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in the spectral absorptance and reflectance.  Figure 2.2 displays the temporally 

dynamic nature of visual foliar reflectance (Lusch, 1989). 

 

 

 

 

 

 

 

 

Figure 2.2  Visible and near-infrared reflectance differences in vegetation due to 
senescence (adopted from Lusch, 1989) 

 
Within the near-infrared part of the spectrum, a relationship exists between leaf 

structure and maturity.  Since young immature plants contain less chlorophyll and 

fewer air voids than older leaves, they reflect more visible light and less infrared 

radiation.  In addition, as the number of leaf layers increases (increasing leaf area), 

infrared reflectance increases, especially in the near-infrared portion (Lusch, 1989). 

2.3.2.2 Remote Sensing of Agricultural Crops 

Based on the understanding of how vegetation reflectance differs through the 

electromagnetic spectrum the use of remote sensing applications for distinguishing 

between agricultural crop types and internal crop characteristics has been extensively 

researched during the past decade (Weigand et al., 1991; Cloutis et al., 1996; 

Mogensen et al., 1996; Cloutis et al., 1999; Metternicht et al., 2000; Senay et al., 

2000; Thenkabail et al., 2000; McNairn et al., 2002).  The trends being developed 

between specific crop types, maturity, nutrient levels and their reflectance values in 

spectral bands and relationship to vegetation indices (VI) are becoming well known 

and useful when limited ground truth data are available (Senay et al., 2000).  An 

explanation of VI followed by examples of their use in agricultural application 

provides an indication that remote sensing of vegetation attributes could depict 

landscape variability and be a useful method of collecting vegetation data and an 

appropriate layer within the LMU classification technique. 
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2.3.2.2.1 Vegetation Indices 

There is a wide range of image transformation/enhancement techniques available, 

such as image reduction and magnification, contrast enhancements, band ratioing, 

spatial filtering and special filtering, which includes principal components analysis 

and vegetation indices (VI).  A VI is a mathematical combination of several bands of 

remote sensing data that utilises the significant differences in reflectance of 

vegetation in the blue, green, red and near-infrared wavebands (as explained in the 

previous section).  The index is typically a sum, difference, ratio or other linear 

combination that reduces multi-band observations to a single numerical index 

(Weigand et al., 1991).  VI are a simple tool for exploring or quickly evaluating the 

state of vegetation over large areas.  They enhance the spectral contrast of vegetation 

and minimise the influence of other factors (e.g. topography, illumination).  Their 

usefulness depends on the empirical relations that may be found between them and 

variables of interest, such as vegetation stress and biomass. 

 

Jackson and Huete (1991) classify VI into two groups; ratios and linear combinations 

and a third group can be added called orthogonal transformations.  Ratio VI or slope-

based indices (Thiam and Eastman, 2003), represent simple arithmetic combinations 

that focus on the contrast of the reflectance in bands (Table 2.8).  Linear VI or 

distance based indices (Thiam and Eastman, 2003), are designed to eliminate the 

effect of background soil brightness and detect the features only of vegetation (Table 

2.8).  Orthogonal transformations, undertake a transformation of the available bands 

to form a new set of uncorrelated bands in which a green vegetation index can be 

defined (Thiam and Eastman, 2003).  Thiam and Eastman (2003) state that the link 

between orthogonal transformation techniques is that they all express green 

vegetation through the development of their second component.  Some examples of 

VIs and their authors are listed in Table 2.8. 
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Table 2.8  Examples of Vegetation Indices 

Name Acronym Group Author 
Ratio Ratio Ratio (Rouse et al., 1974) 
Normalised Difference 
Vegetation Index 

NDVI Ratio (Rouse et al., 1973) 

Transformed Vegetation 
Index 

TVI Ratio (Deering et al., 1975) 

Normalised Difference 
Vegetation Index-Green 

NDVIgreen Ratio (Gitelson and Merzlyak, 
1997) 

Photosynthetic Vigour 
Ratio 

PVR Ratio (SpecTerra Services, 
1999) 

Plant Pigment Ratio PPR Ratio (SpecTerra Services, 
1999) 

Perpendicular 
Vegetation Index 

PVI Linear (Richardson and 
Weigand, 1977) 

Perpendicular 
Vegetation Index 3 

PVI3 Linear (Qi et al., 1994) 

Soil Adjusted Vegetation 
Index 

SAVI Linear (Huete, 1988) 

Weighted Difference 
Vegetation Index 

WDVI Linear (Richardson and 
Weigand, 1977) 

Atmospherically 
Resistant Vegetation 
Index 

ARVI Linear (Kaufman and Tanré, 
1992) 

Soil Adjusted and 
Atmospheric Resistant 
Vegetation Index 

SARVI Linear (Kaufman and Tanré, 
1992) 

Principal Components 
Analysis 

PCA Orthogonal (Singh and Harrison, 
1985) 

Green Vegetation Index 
of the Tasseled Cap 

GVI Orthogonal (Kauth and Thomas, 
1976) 

 

The underlying premise of using remote sensing to monitor crop condition is that 

important crop parameters related to growth and yield are manifested in the multi-

spectral reflectance of crop canopies (Bauer, 1985).  The Leaf Area Index (LAI), 

representing the ratio of leaf surface area to ground area, is the fundamental canopy 

parameter in two basic physiological processes: photosynthesis and 

evapotranspiration, which are most dependant on solar radiation (Bauer, 1985).  

Most models of crop growth and yield require an estimate of green LAI, and 

therefore the strong relationship of infrared reflectance to LAI of crop canopies is the 

basic mechanism for linking multispectral remote sensing data to crop growth and 

condition (Bauer, 1985; Clevers, 1997).  
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In remote sensing a common approach for measuring or monitoring crop growth is 

the correlation of vegetation indices or ratios with crop variables, such as percentage 

of vegetation cover and LAI (Moran et al., 1997).  Moran et al. (1997) suggest that 

measurements of crop properties at sample sites combined with multi-spectral 

imagery could produce accurate, timely maps of crop characteristics for defining 

precision management units.  Some examples of works that have shown relationships 

between remotely sensed data and crop attributes are detailed hereafter. 

 

Senay et al. (2000) used high resolution multi-spectral data to identify corn and 

soybean crops at various growth stages.  They used multi-spectral sensor (MSS) data, 

with 12 spectral bands whose wavelength range included the visible, near-infrared 

and mid-infrared and was obtained at 1m resolution on four occasions representing 

different growth stages.  Spectral analysis of the individual bands and three 

vegetation indices were performed.  The correlation analysis between the MSS and 

ground reference data highlighted that generally the near-infrared bands were more 

highly correlated than were the visible or the mid-infrared band.  On the individual 

acquisition dates the VI performed better than the red and green bands, but similar to 

the near-infrared band.  However, the VI correlated better with plant height and plant 

nitrogen than any of the individual bands.  The strongest correlations were between 

the NDVI and plant height and nitrogen content in the leaves. 

 

NDVI has shown good correlation with plant growth variables (i.e. height, LAI, 

biomass and yield); in particular, it is highly related to yield and could be used to 

estimate yield-based within field management zones (Yang and Anderson, 1996).  

However, Corner et al. (1998) used NDVI from Landsat TM and high resolution 

multi-spectral video to estimate yield at different scales.  Reasonable correlations 

were achieved at a regional scale (paddock scale) using Landsat TM.  However, high 

resolution multi-spectral video, at a local scale (sub-paddock scale), resulted in poor 

correlations.  The regional scale achievement was attributed to a considerable degree 

of spatial and temporal averaging, such as varying sowing dates and localised 

weather events.  At a local scale other factors that cause variation in crop production 

predominate, and therefore high resolution NDVI measurements may be best used as 

a diagnostic tool to determine these factors, rather than as a yield predictor. 
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Previous investigations distinguishing internal canola crop variations using passive 

remote sensors (Cloutis et al., 1996; Mogensen et al., 1996; Cloutis et al., 1999) 

provide support to the hypothesis that variations in canola growth can be depicted by 

remote sensed imagery.  For instance, Mogensen et al. (1996) investigated the use of 

a spectral reflectance index for determining early water stress on canola grown under 

controlled field conditions (lysimeter tanks).  The reflectance index (RI) being 

defined as the ratio of incoming and reflected infrared radiation in the range of 740 to 

820nm, to the incoming and reflected photosynthetically active radiation between 

400 and 700nm.  They simulated a drought type effect within the trial and used a 

relative reflectance index (RRI) defined as the ratio of the reflectance index of the 

droughted crops to the fully irrigated reference crops to analyse the effect of water 

stress on RI.  The authors concluded that the RRI was an index sensitive to water 

stress, seeming most appropriate in the vegetative stage of growth, as changes in 

spectral response of crop surfaces due to senescence or changes in architecture due to 

leaf wilting of the crop may change the RI values.   

 

The above works have highlighted the use of VIs for agricultural applications, in 

particular depicting variations in crop growth and in some cases suggesting their use 

for determining management units.  Five VIs namely, NDVI, NDVIgreen, SAVI, 

PVR and PPR (Table 2.8) will be used to analyse relationships with crop growth 

variables in this research.  The aim is to determine if they are able to depict 

landscape variability and in turn be useful inputs in the LMU classification.  Thus, 

the selected VI are explained in detail hereafter.  

2.3.2.3 Selected Spectral Indexes for Agricultural Applications 

One of the most successful vegetation indices based on band ratioing was developed 

by Rouse et al. (1973).  They computed what is known as the normalised difference 

vegetation index, referred to as the NDVI, whereby a new image is created by 

transforming the pixels according to the equation, 

)(
)(

REDNIR
REDNIRNDVI

+
−

=  (2.4)

The NIR and RED are reflectance values in those bands.  Highly vegetated land 

produces a NDVI close to unity while in non-vegetated areas NDVI is close to zero 

or it assumes negative values (Eastman, 1999; Lamb, 2000). 
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The normalised difference vegetation index-green (NDVI-green) is a VI developed 

for the remote estimation of chlorophyll content in higher plant leaves.  Chlorophyll 

content in the higher plant leaves changes throughout different stages of plant 

development.  The vegetation being exposed to various stresses affects the content of 

the pigments.  Thus, a measure of chlorophyll content can aid as a guide to detection 

of physiological states and stresses in plants (Gitelson and Merzlyak, 1997).  

Gitelson and Merzlyak (1997) found that the use of the reflectance in the green 

channels increases the sensitivity to the chlorophyll content with a wide range of 

chlorophyll variation.  Thus the use of the green channel increases the sensitivity of 

the NDVI to chlorophyll content by about five-fold. The equation is as follows, 

)(
)(

GREENNIR
GREENNIRNDVIgreen

+
−

=  (2.5)

As the chlorophyll content increases, the absorption in the green band increases (i.e. 

small digital number).  Thus, large chlorophyll content lead to a larger NDVI-green 

value. 

 

The soil-adjusted vegetation index (SAVI) is a transformation technique to minimise 

soil brightness influences from the spectral vegetation indices involving red and 

near-infrared wavelengths (Huete, 1988).  A constant soil adjustment factor, L, is 

incorporated into the denominator of the NDVI equation. L varies according to the 

reflectance characteristics of the soil (eg. colour and brightness) (Eastman, 1999). 

The equation takes the form, 

)1(
)(

)( L
LREDNIR

REDNIRSAVI +×
++

−
=  (2.6)

The L factor chosen depends on the density of the vegetation cover being analysed. 

Huete (1988) suggests that for very sparse vegetation, use a L factor of 1, for 

intermediate 0.5 or larger vegetation density, 0.25.  

 

The photosynthetic vigour ratio (PVR) uses the green band, as a reference band, and 

the strong chlorophyll absorption red band. The ratio is calculated as: 

RED
GREENPVR =  (2.7)

This ratio is large for leaves with strong chlorophyll absorption (photosynthetically 

very active) and small for weakly active vegetation with smaller chlorophyll 

absorption (SpecTerra Services, 1999). 
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The plant pigment ratio (PPR) is a combination of the green band, as a reference 

band and the blue band, related to pigment absorption (SpecTerra Services, 1999). 

The PPR is as follows,  

BLUE
GREENPPR =  (2.8)

The green band is intentionally made the numerator so that strongly pigmented 

foliage, absorbing more energy in the blue band, will have a large PPR value while 

the weakly pigmented foliage will have a small PPR (Metternicht, 2003). 

 

The five VIs described above are statistically analysed in this research in relation 

with crop growth attributes collected in the field. 

2.3.2.4 Reflectance of Soil properties 

Optical remote sensing measurements record the radiation emitted and reflected from 

the soil surface, as there is very little penetration of electromagnetic energy through 

the soil body.  Soil reflectance derives from the inherent spectral behaviour of the 

heterogeneous combination of the biogeochemical (mineral and organic) 

constituents, geometrical-optical scattering (particle size, aspect, roughness), and 

moisture conditions of the surface (Baumgardner et al., 1985; Irons et al., 1989; Ben-

Dor et al., 1999).   

 

In an endeavour to effectively interpret soil spectral reflectance for land management 

studies, several researchers have reported good correlations between soil reflectance 

and soil properties such as organic matter, soil moisture, particle size distribution, 

iron oxide content, colour, soil mineralogy, salts, and parent material (Bowers and 

Hanks, 1965; Stoner and Baumgardner, 1981; Karmonova, 1982; Latz et al., 1984; 

Coleman and Montgomery, 1987; Escadafal, 1989; Henderson et al., 1989; Epema, 

1993; Metternicht and Zinck, 1997).  Soil spectral reflectance signatures result from 

the presence or absence, as well as the position and shape of specific absorption 

features of its constituents.  Soils are mixtures of many inorganic and organic 

constituents so it is not straightforward to evaluate the composition of soils from 

their spectral signatures (Ben-Dor et al., 1999). 
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Early studies to quantify soil reflectance, and determine difference in signitures 

between soil reflectance spectra were conducted by Condit (1970), Stoner and 

Baumgardner (1981) and Huete and Escadafal (1991).  Under laboratory conditions, 

Condit (1970) identified three main types of spectral soil curves in the range of 0.32 

to 1μm, though no attempts were made to relate spectral shape to soil properties 

quantitatively.  The five distinct soil reflectance spectral curves of Stoner and 

Baumgardner (1981) are based on curve shape, the presence or absence of absorption 

bands, the predominance of soil organic matter and iron oxide composition in the 

range of 0.52 to 2.32μm.  Whereas the four soil spectral curves identified by Huete 

and Escadafal (1991) using spectral decomposition and mixture modelling 

techniques in the range of 0.4 to 0.9μm, represent soil brightness, red iron oxides, 

organic carbon and reduced iron oxide (goethite) contents (Metternicht et al., 2002).   

2.3.2.4.1 Moisture 

A common observation with most soils is that they appear darker when wet than dry.  

This is due to the decreased reflectance of incident radiation in the visible region of 

the spectrum (Baumgardner et al., 1985).  Strong water absorption bands at 1.45 and 

1.95μm affect the shape of the soil reflectance curve (Baumgardner et al., 1985).  

Increasing soil moisture content generally decreases soil reflectance across the entire 

shortwave spectrum (Irons et al., 1989).  Bowers and Hanks (1965) (cited in 

Baumgardner et al., 1985, p.16) found a lowering in reflectance for Newtonia silt 

loam at six increasing soil moisture contents over the wavelength range of 0.5 to 

2.5μm and is shown in Figure 2.3. 
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Figure 2.3  Soil reflectance spectra for a silt loam soil at varying moisture contents. 
Percentage of moisture content by weight shown above each curve (Bowers and 

Hanks, 1965) (shown in Irons et al., 1989, p.90) 

2.3.2.4.2 Organic Matter 

The soil organic matter content and the composition of organic constituents have a 

strong influence on soil reflectance.  In general, as organic matter content increases, 

soil reflectance decreases throughout the 0.4 to 2.5μm wavelength range (Hoffer and 

Johannsen, 1969) (cited in Baumgardner et al., 1985; Lusch, 1989).  Baumgardner et 

al. (1970) (cited in Baumgardner et al., 1985) found that organic matter content plays 

a dominant role in bestowing spectral properties to soils when the organic matter 

content exceeds 2 percent.  In addition, as the organic matter content diminishes 

below 2 percent, it becomes less effective in masking the effects on reflectance of 

other soil constituents.  The spectra of soils with organic matter contents greater than 

5 percent often have a concave shape between 0.5 and 1.3μm as compared to the 

convex shape of spectra for soils with lower organic-matter content (Stoner and 

Baumgardner, 1981). 

 

Obukhov and Orlov (1964) (cited in Baumgardner et al., 1985) found that organic 

constituents, including humic and fulvic acid and non-specific compounds including 

decomposing plant residues, can influence soil reflectance to differing degrees.  

However, the contribution of each constituent has been difficult to quantify 

(Baumgardner et al., 1985).  Henderson et al. (1992) investigated the high 

dimensional reflectance in the 400 to 2500nm wavelength range with soils ranging in 

organic carbon content from 0.99 to 1.72 percent.  Statistical analysis of the 
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reflectance values indicated that the visible, near-infrared and middle-infrared bands 

provided information about the organic carbon content, but not organic matter 

composition. 

2.3.2.4.3 Texture 

The size and arrangement of the soil particles in relation to the soil air and water also 

influence the soil reflectance.  Soil texture refers to the size distribution of the soil 

mineral particles.  The relative proportions of sand, silt, and clay-sized particles 

determine textural classes as shown in Figure 2.4.  The soil texture has a strong 

influence on the reflectance; in particular, sandy soils tend to be brighter than clayey 

soils (Irons et al., 1989). 

 

 

 

 

 

 

 

 

 

Figure 2.4  The textural triangle defines soil texture on the basis of sand, silt and clay 
(adopted from Irons et al., 1989) 

 

However, Lusch (1989) mentions that if all other factors are equal, the finer particle 

sizes will exhibit greater soil reflectance.  Bowers and Hanks (1965) (cited in 

Baumgardner et al., 1985) found a rapid exponential increase in reflectance at all 

wavelengths between the 0.4 and 1.0μm with decreasing particle size. 

2.3.2.4.4 Colour 

Spatial and temporal variations in soil surface colour provide important clues to land 

degradation processes such as salinization, erosion, and drainage status of a soil 

(Latz et al., 1984; Cihlar et al., 1987; Mougenot et al., 1993; Metternicht, 1996; 

Thompson and Bell, 1996).  The visible soil reflectance, or colour, is one of the most 

useful co-variant soil properties used to identify and describe a particular soil 
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material.  Soil scientists use soil colour as a first indirect measure of soil type and its 

physical, chemical and hydraulic properties in the field (Mattikalli, 1997).  

Furthermore, soil colour provides a simple surrogate measure to estimate many other 

difficult-to-measure soil constituents, and is widely used in soil mapping as an 

indicator of the presence of organic matter, iron oxides, and carbonates as well as 

moisture content (Huete, 2002). 

 

For a few soils, colour is directly derived from the parent material.  However, more 

common organic matter, which consists of dark compounds, tend to mask the colours 

of iron oxides, and manganese oxides darken the soil (Moore, 1998a).  Soils with 

little organic matter often display the iron oxide colours (Brady and Weil, 1999a), 

such as the red of haematite and yellowish colour of goethite (Baumgardner et al., 

1985; Escadafal, 1994; Brady and Weil, 1999a) and in general colour is related to the 

type(s) of oxides present rather than the amount (Bigham et al., 1978), and in turn, 

the type of iron oxides present can be inferred from the colour (Moore, 1998a).  Iron 

compounds, such as organo-iron, amorphous, weakly crystallized and non-silicate 

irons, have dissimilar effects on the visible spectral reflectance of soils.  Moreover, if 

all the non-silicate iron is removed then soil reflectance becomes practically 

identical, as it is controlled by the achromatic grey colour of clay minerals 

(Karmonova, 1982). 

 

The iron oxides geothite, haematite, maghemite, lepidocrocite and ferrihydrite have a 

distinctive colour range from yellow to red in aerobic soils.  Table 2.9 provides that 

specific colour range in regards to hue, value and chroma (Moore, 1998a). 
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Table 2.9  Iron oxides and soil colour (adapted from Moore, 1998a) 

Iron Oxide Munsell Soil Colour Code Colour 
Goethite 10YR →7.5YR Brownish yellow 
Haematite 5YR → 5R Blood red 
Lepidocrocite 7.5YR with value >6 Orange 
Ferrihydrite 5YR →7.5YR with values >6 Brown to dark reddish 

brown 
Other iron compounds 
         Jarosite 

 
5Y (mottles) 

 
Yellow mottles 

         Maghemite 2.5YR → 5YR Can be identified with a 
magnet 

 

Waterlogged soils may lack pigmentation of iron oxides in the anaerobic zones, as 

the oxides have been removed through bacterial reduction and leaching.  For soils 

that have insignificant organic matter, the soil is white, grey or green (Moore, 

1998a).  The drainage status of clayey subsoils can be inferred via their colour 

(Moore, 1998a).  Moore (1998a) mentions that generally permeability decreases as 

subsoil colour changes from red → brown → yellow → dark (black to very dark 

brown) → grey (light greys to bluish and greenish greys).  

 

Fitzpatrick et al. (1999) offer some indication of good and poor soil conditions for 

most forms of plant growth.  They mention that dark brown colours near the surface 

and bright yellowish and reddish colours in the sub-soils are good indicators as the 

darker surface soils are often associated with higher organic matter, well aerated and 

above average nutrient levels.  While yellow and reddish subsoils, indicate iron and 

therefore suggest good drainage.  Poor soil conditions can be identified by mottles 

(varying colours) and rust coloured specks, as both indicate water logging.  Very pale 

grey or white colours may indicate leaching.  

 

Many of the absorption features in soil reflectance spectra are due to the presence of 

iron in some form (Irons et al., 1989).  The redness index, RI (Equation (2.9)) 

(Escadafal and Huete, 1991) has been found to increase the sensitivity of vegetation 

indices (VI), such as the NDVI and SAVI, by estimating the proportion of bare soil 

(soil noise) in a VI with the RI in sparsely vegetated areas.  Based on the findings of 

Escadafal (1989)(cited in Escadafal and Huete, 1991) that the saturation of soil 

colour (or "redness") was correlated with the red band/green band ratios in the case 
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of arid soils, the normalised difference between the two bands has been used to 

express the "redness" of bare soil surfaces.  

GREENRED
GREENREDRI

+
−

=  (2.9)

Stewart and McBratney (2001) had encouraging results when they identified 

potential managements zones from remote imagery of bare soil.  They found 

statistical and agro-economic evidence that suggests red soil (assumed Chromosols) 

and the dark soil (assumed Vertosols) have very different cotton yield potentials.  

They thought that this difference is most likely linked with the differing soil textures 

found in Chromosols and Vertosols and their associated water holding capacity. 

 

The relationship between remote sensing and soil properties may provide a useful 

measure to detect variations in soil properties across the landscape and provide a 

layer for inclusion in the LMU classification.  In particular the RI, which is simple to 

generate, would be a useful surrogate to identify soil variation in areas of sparse 

vegetation.  

2.3.3 Digitally Derived Topographic Attributes 

As mentioned, topographic attributes have been recognised as important inputs into 

many land classification techniques (Table 2.1) and in particular landforms, the 

compound topographic index (CTI) and slope have been identified as important 

drivers in soil landscape studies, and thus their derivations are described individually 

hereafter. 

2.3.3.1 Landforms 

There are several techniques for the development of landform units and these differ 

in terms of categorical structure.  Zinck (1988) defines the geopedological approach 

to landform classification.  This approach is based on a strong integration of 

geomorphology and pedology and uses geomorphology as a tool to improve and 

speed up the soil survey.  Ventura and Irvin (2000) provide a sample of different 

methods for division of the landscape into identifiable sections (Ruhe and Walker, 

1968; Troeh, 1964; Hugget, 1975; Conacher and Dalrymple, 1977; Pennock et al., 

1987; Speight, 1974,1990) (cited in Ventura and Irvin, 2000), which are either based 

on soil-forming processes, landform and landscape elements and/or a combination of 

these concepts. 
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Several studies have correlated terrain attributes, derived from a digital elevation 

model (DEM), to soil properties (Moore et al., 1993a; Gessler et al., 1995; Boer et 

al., 1996; McKenzie and Ryan, 1999).  Ventura and Irvin (2000) propose methods 

for delineating landform elements based on terrain attributes, by partitioning the 

landscape into geomorphologic units using specific terrain attributes that relate to 

soil properties and assigning them to landform elements.  They used continuous 

classification (fuzzy logic) and unsupervised (ISODATA-crisp boundaries) 

classification techniques to classify each pixel in a DEM (10m resolution) according 

to its membership in a landform class based on six primary and secondary 

topographic attributes.  Fuzzy classification permits soil class membership values to 

be treated as continua in geographic space, while crisp models have delineated 

mapping boundaries in geographic space (Burrough et al., 1997).  Both methods 

offer products that can aid those people interested in soil-landscape processes.  

However, although fuzzy models provide additional information at each point, they 

do not offer easily visualized and directly usable output products (i.e. maps) (Irvin et 

al., 1995). 

 
A key Australian classification of landforms was developed by Speight (1974; 1990).  

Speight (1974) proposed a two-level descriptive procedure for a systematic, 

parametric description of landforms into landform patterns and landform elements.  

The landform is viewed as a mosaic of tiles whereby the larger tiles, landform 

patterns are generally on the order of 300m radius.  The smaller tiles, which are 

mosaics within landform patterns, are landform elements that are commonly of the 

order of 20m radius (Speight, 1990).  Speight (1990) defined about 40 types of 

landform patterns including for example flood plain, dunefield and hills and more 

than 70 types of landform elements such as cliff, footslope and valley flat.  Relief 

and stream occurrence describe landform patterns while landform elements may be 

described by five attributes namely slope, morphological type (topographic position), 

dimensions, mode of geomorphological activity and geomorphological agent.  

Speight (1990) distinguished ten types of topographic positions in which landform 

elements fall into, as listed in Table 2.10. 
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Crest 
Simple 
slope 

Flat 
Open 

Depression 

Table 2.10  Morphological type (topographic position) classes by Speight (1990) 

Name Definitions of Speight (1990) 
Crest Area high in the landscape, having positive plan and/or profile curvature 
Depression 
(open, closed) 

Area low in the landscape, having negative plan and/or profile curvature, 
closed: local elevation minimum; open: extents at same or lower elevation  

Flat Areas having a slope < 3% 
Slope planar element with an average slope > 1%, sub classified by relative 

position: 
   Simple slope adjacent below a crest or flat and adjacent above a flat or depression 
   Upper slope adjacent below a crest or flat but not adjacent above a flat or depression 
   Mid-slope not adjacent below a crest or flat and not adjacent above a flat or depression 
   Lower slope not adjacent below a crest or flat but adjacent above a flat or depression 
Hillock compound element where short slope elements meet at a narrow crest < 40m 
Ridge compound element where short slope elements meet at a narrow crest > 40m 

 

A full description of each morphological type can be found in Speight (1990).  

Figure 2.5 provides an example of a profile across the terrain divided into 

morphological types of landform elements as classified by Speight (1990). 

 

 

 

 

Figure 2.5.  Example of a profile across terrain divided into morphological types of 
landform elements (adapted from Speight, 1990) 

 

Speight’s (1990) description of landforms is a key component that contributes 

towards the systematic recording of field observations in Australian soil and land 

surveys, and as such, many existing survey records consist of Speight’s (1990) 

landform descriptions.  Coops et al. (1998) produced a set of techniques that allow 

topographic position to be predicted from 25m DEMs in which the classes are 

equivalent to Speight’s (1990) morphological types that are used by field botanists, 

ecologists and other natural resource scientists and managers.   

 

The strong relationship reviewed between landform elements and soil properties 

highlights landform as a potentially fundamental topographic attribute to be 

incorporated in the LMU classification in this research, with particular emphasis on 

landform elements classified in an Australian context (i.e. Speight (1974; 1990)). 
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2.3.3.2 Compound Topographic Index 

The compound topographic index (CTI) is a quantification of the topographic 

position of a site in the landscape.  Originally formulated for hydrological forecasting 

by Bevan and Kirkby (1979), the CTI is also referred to as the topographic wetness 

index (TWI) (McKenzie et al., 2000; Wilson and Gallant, 2000) or wetness index (w) 

(Moore et al., 1993a).  The CTI is intended to represent the topographic control on 

soil wetness (Wilson and Gallant, 2000), and furthermore, is a guide to water and 

sediment movement in the landscape (McKenzie and Ryan, 1999; McKenzie et al., 

2000).  Moore et al. (1993a) mentions that CTI is one of the potential compound 

indices for predicting the spatial distribution of soil properties and in soil specific 

crop management applications.  

 

The CTI has been used for sampling designs (Gessler et al., 1995; McKenzie and 

Ryan, 1999), classification techniques (Irvin et al., 1995; Corner, 1999; Herron et al., 

2004) and correlation analysis (Moore et al., 1993a) within soil studies, which are 

discussed hereafter. 

 

Gessler et al. (1995) used the CTI to guide soil sampling by postulating that the 

spatial dependence structure of the CTI related, in a general way, to the spatial 

dependence structure of the soil attribute of interest.  Soil attributes show varying 

degrees of spatial dependence, and this reduces the efficiency of random sampling.  

Spacing sample sites using information about the spatial dependence structure 

increases the information content of samples.  Accordingly, Gessler et al. (1995) 

designed the sampling plan following the hypothesis that CTI was a strong 

controlling variable, and their field data supported this. 

 

McKenzie and Ryan (1999) used a classification of the CTI in conjunction with 

climate and geology parameters for a digital stratification of the landscape whereby 

each stratum represents a discrete environment.  Density functions of the CTI and 

climate data were used to calculate quantiles on an equal area basis (McKenzie et al., 

2000).  Potential sample sites were then randomly selected within each stratum.  The 

authors draw the conclusion that statistical sampling plans are explicit, consistent and 

repeatable in contrast to conventional survey methods.  In regards to the predictive 
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relationship between soil properties and environmental variables, when using a 

regression tree approach for the prediction of soil profile depth (m) they found that 

CTI appeared to be one of the explanatory variables. 

 

Corner (1999) demonstrates the use of CTI in several examples of an expert 

(knowledge based) system, namely Expector, to soil mapping.  The CTI forms an 

evidence layer within a system of Bayesian inference to assign a varying probability 

of a soil property occurring with a given study area.  Evidence is weighted according 

to the uncertainty associated with it (Cook et al., 1996).  Irvin et al. (1995) used the 

CTI as one of six topographic attributes to classify each pixel of a 10m resolution 

DEM to a landform class which were determined by the natural clustering of data in 

attribute space.  Furthermore, Herron et al. (2004) used the CTI within the salinity 

benefit index, where by the salinity benefit index is a measure of the relative change 

in stream salinity from current salinity levels, caused by changes in land 

use/management within an area of interest.  Quickflow, which is the surface runoff, 

rapid subsurface flow and interflow component of stream flow, is a function of 

rainfall, soil, topography and land use.  The CTI forms the topography function and 

is used for weighting quickflow zones, and is assumed that a cell’s contribution to 

quickflow was directly proportional to its CTI value. 

 

Moore et al. (1993a) refer to their own works (Moore et al., 1988; 1993b), which 

have used the CTI to characterise the spatial distribution of zones of surface 

saturation and soil water content in landscapes.  Moore et al. (1993a) found that 

slope and CTI were the terrain attributes most moderately correlated to soil 

attributes.  CTI individually accounted for about one quarter the variability of several 

soil attributes, such as silt percentage (r=0.61), organic matter content (r=0.57), A-

horizon depth (r=0.55) and phosphorus (r=0.53) in the soil surface. 

 

These examples highlight that incorporating the CTI in the classification of LMUs 

will include topographic information that is related to soil properties and the way 

water moves through the landscape.  
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2.3.3.3 Slope 

Slope is a key primary topographic attribute, it is utilised in the computation of many 

attributes that describe the topographic position in the landscape, with landform and 

CTI previously discussed to name a few.  Slope is the means by which gravity 

induces flow of water and other materials, so it is of great significance in hydrology 

and geomorphology. It affects the velocity of both surface and subsurface flow and 

hence soil water content, erosion potential, soil formation and many other important 

processes (Gallant and Wilson, 2000).  In a preliminary analysis of the relationships 

between topography and soil attributes, Moore et al. (1993a) found that slope was the 

most moderately correlated terrain attribute to soil attributes (R = 0.45-0.64), and 

suggested that the relationship between terrain and soil attributes could be applied as 

a guide to sampling strategies.  Furthermore, McKenzie et al. (2000) state that terrain 

analysis can be used to generate stratified random sampling schemes in a way that 

previously had not been possible in conventional soil survey.  These examples 

highlight the importance of slope in soil and landscape classifications and 

demonstrate that it would add important topographic information to the proposed 

LMU classification. 

2. 4 Validation Techniques for the LMU classification 
Evaluation techniques are required for ensuring that foreseen models for the creation 

of LMUs are, appropriate for their intended purpose.  In a review on sensitivity 

analysis in multicriteria spatial decision-making, Qureshi et al. (1999) (cited in 

Delgado and Sendra, 2004) states that a model evaluation could be divided into three 

components: a) Verification, b) Validation and c) Sensitivity analysis, which are 

further individually described.  Validation is defined by Qureshi et al. (1999) (cited 

in Delgado and Sendra, 2004 p. 1174) as “Modelers have to ensure that the structure 

of the model is correctly built from a conceptual and operational point of view (if it 

is appropriate for its intended purpose), according to a specific methodology.”  As 

such, validation techniques for the foreseen model for the creation of LMUs are 

reviewed. 

 

Determining the success of a classification technique is difficult, as more often than 

not there is little reference information that can be used.  Crop yield (or the income 

derived from it) has the greatest bearing on farm management and practices at 
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present.  Management zones should display significant differences in yield (or 

production) for variable rate application of crop inputs to be worthwhile.  Ensuring 

the differences displayed in crop yield are genuine, let alone significant, is difficult 

(Cupitt and Whelan, 2001).  However, one method of determining the success of the 

LMU classification would be in comparison with yield data collected across the same 

study area.  Several works have outlined methods for deriving management zones 

based on yield inputs (as shown in Table 2.1). 

 

Methods of utilising yield data for validation purposes are discussed hereafter in 

view of either using the LMUs as a spatial base and assessing whether significant 

differences (in yield) are present between them, or forming a yield based spatial zone 

map for subsequent map comparison. 

2.4.1 Comparisons with Yield Data 

Cupitt and Whelan (2001) use local block kriging with local variograms within 

VESPER (Whelan et al., 2001) to predict five attributes namely; yield data for 1996, 

1997 and 1998, soil EC and elevation data onto a single 5m grid.  From the five 

interpolated attributes multivariate k-means clustering was then used to delineate 

three potential management zones.  The kriging process provides an estimate of the 

mean prediction variance ( krig2σ ) and Cupitt and Whelan (2001) show that the 

confidence interval (95% C.I.) surrounding the mean yield estimate within a field 

(μ ) can be calculated according to Equation (2.10). 

( )96.1..%95 2 ×±= krigIC σμ  (2.10)
 

Cupitt and Whelan (2001) suggest that the absolute difference between the mean 

zone yields ( 21 zonezone YY − ) should then follow Equation (2.11) (Moore and 

McCabe, 2003) for the potential management zones to be considered representative 

regions of significantly different yield (p<0.05). 

 

96.12 2
21 ××≥− krigYY zonezone σ  (2.11)

Whelan and McBratney (2003) also utilise Equations (2.10) and (2.11) to examine 

differences in yield between potential management zones.  This suggests that the 
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LMU classification zones could be compared in terms of significant difference in 

yields using the above mentioned methods. 

 

Whelan and McBratney (2000) present a methodology for assessing the temporal 

variability of a paddock.  The variability across time in crop yield at within-field 

scales can be estimated based on the yield data by Equation (2.12). 
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where; 2
,iTσ = temporal variance at point i, jiY , = yield value at point i in each year j 

and iY = mean yield value at point i for all years.  Fixed points within the field must 

be used for comparison, whereby the data are obtained from spatial prediction onto a 

single grid.  The estimate should provide an indicator of seasonal influences on crop 

yield (Whelan and McBratney, 2000).  In relation to the LMU classification, a mean 

yield value could be calculated for each LMU that could be considered, jiY , .  In this 

way the LMUs could be assessed in terms of their temporal stability.  Unfortunately, 

problems would arise when using different crop types.  

 

Yield map standardisation is essential when combining multiple year and crop type 

yield data.  Stafford et al. (1998) and Basnet et al.(2003) have assessed this issue in 

different ways.  Basnet et al. (2003) delineate management zones using multiple crop 

yield data.  They use four years of consecutive yield that had been interpolated on a 

10m grid with VESPER (Minasny et al., 2002).  The output yield data were 

converted to deciles (i.e. divide each data set into ten equal parts) and then rescaled 

(using linear interpolation between adjacent points) to values between 0 and 1.  The 

four scaled yield layers were then combined spatially using arithmetic operators, 

such as addition and division.  Average yield values were calculated on a cell by cell 

basis, and thus a map of average cell values created (0-100 percent yield).  This was 

then reclassed into high, medium and low yield zones based on even divisions (i.e. 0 

to 0.33 = low).  Unfortunately, Basnet’s et al. (2003) output map of three 

management zones does not produce contiguous zones.  Stafford et al. (1998) used a 

fuzzy classification on the yield data after first standardising the yield for each 

season to zero mean and unit variance (i.e. each value is given its z-score value).  
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Cluster analysis was carried out using the FCM algorithm of Bezdeck et al. 

(1984)(cited in Lark and Stafford, 1997).  Basnet et al. (2003) used deciles to get the 

control points and make some form of standardisation prior to fuzzy input; while, 

Stafford et al.(1998) use zero mean and unit variance (i.e. z-score) for 

standardisation prior input to the fuzzy function. 

 

Several researchers (Boydell and McBratney, 1999; Aspinal, 2000; Whelan and 

McBratney, 2000; Kelly et al., 2002; Basnet et al., 2003) have investigated the use of 

yield data to examine the spatial variability of yield over time. 

 

The development of stable yield zone estimates was the aim of Boydell and 

McBratney’s (1999) research.  Derived from multi-year yield estimates from mid-

season Landsat TM imagery over 11 consecutive years, they wanted to discover the 

number of consecutive years of yield estimates required to give similar ‘stable’ 

estimates of yield zones.  Boydell and McBratney (1999) used modified fuzzy k-

means for predictive classification (FuzME (Minasny and McBratney, 2002)) to 

cluster the data and determine the most suitable number of groups.  Their fields 

showed a strong degree of temporal stability and the general conclusions drawn were 

that stable yield zone patterns may emerge from multi-year yield estimates.  More 

specifically, they state that five years of data (+/- 2 years) seem to give reasonable 

stable estimates of yield zones.  

 

Most previous works have hypothesised that spatial trends in yield data would 

become more stable over time.  However, Blackmore et al. (2003) utilising six years 

of yield data from four paddocks found that historical yield map trends cannot be 

used to extrapolate yield patterns in the future.  Nonetheless, he suggests that spatial 

and temporal trend maps can help create homogenous management zones. 

 

Detailing Blackmore’s et al. (2003) approach, the yield data collected in 1995-2000 

inclusive was standardised on a 20m grid using a 20m search radius (they found that 

larger grids sizes tended to smooth the data too much, while smaller grids became 

too reliant on low number of data points).  Blackmore et al. (2003) firstly produced 

two maps (spatial trend and temporal stability), which were later combined to form a 

spatial and temporal trend map. 
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a) Spatial Trend Map: The spatial trend map is designed to show this trend by 

calculating the arithmetic temporal yield at the same grid point over a number of 

years, which can subsequently be divided into tonne/ha classes.  During this process 

Blackmore et al.(2003) found a large difference between yields from year to year.  

They documented this as the Temporal stability: inter-year offset; which was 

calculated as the difference between the arithmetic mean yield values between two 

years in the same field.  Histograms of yield were computed and an offset judged as 

the difference between the yearly curves. 

b) Temporal stability - temporal variance map: The temporal variance at a point has 

been identified by Blackmore et al. (2003) when one part of the field yields relatively 

high in one year and relatively low in another when compared to the mean.  The 

variance from the mean (point yield minus the field mean) over time (1995-2000); is 

calculated for each year and then divided by the number of years (6 in this case) as 

follows; 
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where: 2
iσ  is the temporal variance at grid point i, t is the time in years between 1995 

and 2000, Y  is the yield in years t at point i, and tY  is the mean of the yield for the 

whole fields in years t.  This variance can be converted to standard deviation and 

maybe more useful as it is in tonnes/ha.  The temporal variance will be small if an 

area of the field were to always yield close to the mean.  This could be considered 

Stable in Time (SIT), as it would have a small temporal variance.  Another area 

could sometimes yield large and sometimes small relative to the mean, this would be 

temporally unstable and it would give a large value of temporal variance (Blackmore 

et al., 2003).  The temporal variance map can be classified into areas that are SIT and 

areas considered UNSIT (unstable in time) by setting a particular threshold in the 

temporal standard deviation data.  However as yet, Blackmore et al.(2003) have no 

conclusive method defined to set this level.  Therefore, they suggest looking at the 

sensitivity of the areas within the map that are deemed UNSIT at several levels.  

c) Spatial and temporal trend map:  The spatial trend map and temporal variance map 

are brought together to form a single overview of the field and classified into four 

homogenous classes: 
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1. high yielding area: above the grand mean (for all years) for the field: 

2. low yielding area: below the grand mean (for all years) for the field: 

3. stable area – low inter-year spatial variance (arbitrary threshold) 

4. unstable area – high inter-year spatial variance (arbitrary threshold) 

As such, four possible combinations are possible: i) High and stable (HS); ii) High 

and unstable (HU); iii) Low and stable (LS) and iv) Low and unstable (LU) 

(Blackmore et al., 2003).   

 

Blackmore’s et al.(2003) work offers an appealing approach as it provides a spatial 

layer based on yield data for comparison purposes that takes in consideration the fact 

that yield patterns do not necessarily become more stable over time.  It is envisaged 

that a spatial and temporal trend map of this kind could be analysed against the map 

of LMUs using map comparison techniques to determine the appropriateness of 

LMUs.  

2.4.2 Spatial Map Comparisons 

The need to compare two maps spatially has been derived mostly from remote 

sensing applications where producers and users of the land-use classification want to 

know its accuracy.  Remote sensing studies use the error matrix to quantitatively 

assess the accuracy of the land use classification (Jensen, 1996b) which Foody 

(2002) state as the “core of accuracy assessment”.  The error matrix is the summary 

of the relationship between two sets of information, which in remote sensing 

application are typically: (1) a remote sensing derived classification map and (2) 

reference information map (Jensen, 1996b).  A pixel-by-pixel comparison is 

performed and reported in the error matrix, and several statistics can be calculated 

such as, the overall accuracy, producer’s accuracy and user’s accuracy.  The overall 

accuracy is calculated by dividing the total correct pixels by the total number of 

pixels in the error matrix (Jensen, 1996b).  The producer’s accuracy is calculated by 

dividing the total number of correct pixels in that category by the total number of 

pixels in that category, while the user’s accuracy is calculated by dividing the total 

number of correct pixels in that category by the total number of pixels that were 

actually classified in that category (Jensen, 1996b).  These statistics provide the 

producer of the map a measure of how well an area is classified and the user of the 
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map a probability that a pixel classified on the map actually represents that category 

on the ground (Jensen, 1996b). 

 

The Kappa statistic is also a measure of agreement or accuracy, expressed as a single 

number, which can be calculated from the error matrix.  It is a discrete multivariate 

technique therefore appropriate for use on remote sensing data because these data are 

discrete, not continuous and also binomially or multinomially distributed not 

normally distributed (Jensen, 1996b).  The Kappa is the fraction of agreement, which 

is corrected for the fraction of agreement statistically expected from the random 

relocation of all pixels in the maps, using the observed frequency distribution for the 

classification map and reference map (Hagen, 2002).  Fitzgerald and Lees (1994) 

conclude that the Kappa statistic is superior to the overall accuracy percentage, as it 

is able to test the null hypothesis that there is no agreement between the two maps.   

 

Foody (2002) mentions that there has been a call for standard measures and reporting 

to be used in accuracy assessment however, this has not been achieved as there is a 

variety of different needs and interpretations that exist and in reality it is probably 

impossible to specify a single all-purpose measure.  However, the Kappa statistics 

has been recommended by analysts to be adopted as one of the standard measures 

(e.g. Smits et al. 1999)(cited in Foody, 2002 pg.189).  The Kappa statistic for 

comparing maps has been used extensively in remote sensing applications, some 

examples include Fitzgerald and Lees (1994), Michelson et al. (2000) and South et 

al. (2004).   

 

South et al. (2004) refer to Montserud and Leamans (1992) who evaluated Kappa 

statistics and classification methodologies and proposed that a Kappa value of 0.75 

or greater indicates a very good to excellent classification performance.  While 

Foody (2002) cite Thomlinson et al. (1999) who set a target of an overall accuracy of 

85 percent with no class less than 70 percent accurate.   

 

Fuzzy set theory (Zadeh, 1965) has also been used by several authors to assess the 

accuracy of maps or map comparisons (Metternicht, 1999; Power et al., 2001; 

Metternicht et al., 2005) and it was introduced to address some of the map 

comparison issues (Hagen, 2002).  Issues include; allowing for some level of 



66 

positional tolerance, finding the spatial distribution of error and to differentiate the 

error magnitude (i.e. some errors are more significant than others) (Hagen, 2002).  

Fuzzy sets deal with inexact concepts in a definable way (Burrough and McDonnell, 

1998b).  Some classes for various reasons cannot, and do not, have sharply defined 

boundaries and fuzziness can characterise this imprecision (Burrough and 

McDonnell, 1998b).  A pixel is given a grade of membership expressed in terms of a 

scale varying continuously between 0 and 1.  The grade corresponds to the degree to 

which that pixel belongs to its class.  There are different kinds of fuzzy membership 

functions and their selection depends on the user’s requirement in defining the partial 

membership.   

 

For the application of accuracy assessment or the comparison of maps Hagen (2003) 

deals with two sources of fuzziness, fuzziness of location and fuzziness of category.  

Fuzziness of location allows for vagueness of a category’s spatial position, i.e. the 

category may be present somewhere in the proximity of that location.  Fuzziness of 

category allows some categories in the map to be more similar to each other than 

others.  In a similar manner to the Kappa statistics, the KFuzzy can also be calculated 

which provides an overall value of similarity between two maps which results in 

values between 1 (identical maps) and 0 (total disagreement).  KFuzzy corrects the 

percentage of agreement for the expected percentage of agreement and differs from 

Kappa in its calculation of the expected similarity (Hagen, 2003).  For further details 

of the KFuzzy derivation, readers are referred to Hagen (2003).  

 

The need to assess the accuracy of a map or simply compare two maps derived from 

differing applications has been addressed by the Research Institute of Knowledge 

Systems in The Netherlands in their development of the Map Comparison Kit 

(MCK)(RIKS, 2005a).  They have bundled together several spatial map comparison 

techniques, including Kappa and KFuzzy outlined above, into user friendly software 

which handles a series of maps.  The Kappa algorithm included in the MCK is 

dissected into further statistics; Kappa location (measuring the similarity of location) 

and Kappa histogram (measuring the similarity of quantity).   
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2. 5 Summary 
The following provides a summary combining the subsections included in the 

literature review and their link to the following chapters. 

 

Several classification techniques have been reviewed concluding that for this 

research the LMU classification will be an adaptation of the spatially constrained 

classification of Oliver and Webster (1989) which in this case has the ability to 

incorporate large datasets (i.e. high resolution remote sensing).  The two stage 

methodology to classify LMUs is described in Chapter 7. 

 

Soil properties, vegetation and topographic attributes have been identified as 

important inputs to the LMU classification.  Soil properties that appear to be stable in 

time and influence plant growth have been identified, namely texture, structure, 

organic matter, nutrient availability, pH, salinity/sodicity balance, depth of topsoil 

and depth to restricted layer.  The relevant properties have been further detailed, 

highlighting the relationships between the properties, which support scientists in 

understanding their effect on plant growth.  The field collection and chemical 

analysis of soil properties is detailed in Chapter 4.  The soil properties are analysed 

statistically in Chapter 6, which will assist in determining the appropriate soil 

properties to be used in the LMU classification.  

 

Based on the evidence of soil sampling strategies, the design will be based on a DEM 

and remote sensing data to provide an indirect (surrogate) measure of soil variability 

providing the opportunity to optimise the strategy.  A stratified random sampling 

pattern that uses bulk sampling of surface soil, respecting the size of support will be 

used in this research.  The soil sampling design is presented and implemented in 

Chapter 4 along with methods for sampling vegetation attributes that are used in 

remote sensing studies.  

 

The potential of remote sensing data to detect landscape variation based on the 

relationships that exist between remote sensing systems and soil and vegetation 

properties has been highlighted.  It appears that the RI would be a useful index on 

bare soil, while the vegetation indices (in particular the NDVI) would be useful for 

cropped areas.  Transect sampling through three crop types, common to the Western 
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Australian wheatbelt, will be conducted depicting variation in crop growth.  An 

analysis between crop variability and high resolution remote sensing data is 

discussed in Chapter 4. 

 

Three topographic attributes namely; landforms, compound topographic index (CTI) 

and slope have been identified as important drivers in soil forming processes and 

their uses in past studies has been discussed.  Their generation utilising GIS software 

is detailed in Chapter 5 and their relationship with soil properties in this instance are 

examined in Chapter 6. 

 

Based on the discussion of validation techniques appropriate for the LMU 

classification, it appears that the use of spatial and temporal yield maps would be the 

most appropriate method which is mentioned in Chapter 8.  The sensitivity of the 

LMU classification to changing parameters (another form of validation) can be 

assessed with algorithms provided in the MCK (RIKS, 2005a) (Chapter 8).  

Specifically, the Kappa, with Kappa location and Kappa histogram provided in the 

MCK, will be useful in this research to assess the sensitivity of the LMU 

classification to differing parameters (i.e. distance applied in the spatial constraint).  

It is preferred over the KFuzzy  in this case, for its simplicity.  

 

The following chapter includes a description of the study area and existing data sets.  

The software and hardware used throughout this research are briefly noted. 
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CHAPTER 3  

STUDY AREA AND DATA SETS 

Chapter 2 provided appropriate background information and reviewed several 

approaches for classifying landscapes into spatial zones.  It was concluded that a 

spatial weighted multivariate classification worth a case study.  This chapter 

introduces the case study region and describes how the various data for the 

experimentation were derived, from the primary data sources; terrain, remote 

sensing and yield data along with the software used.  

3. 1 Study Area 
The study site selected is the Muresk Institute of Agriculture Farm, part of Curtin 

University of Technology.  It lies between latitudes 31º 41’ and 31º 46’S and 

longitudes 116º 39’ and 116º 45E, and is approximately 100km north-east of Perth 

city in the mid southern region of the Shire of Northam in the south-west of Western 

Australia (WA) (Figure 3.1).  It covers approximately 1,780ha of which 

approximately 1,250ha is arable (Muresk Institute of Agriculture, 2005). 

 

Typical to its region in WA, the farm is dominated by dryland agriculture and 

regions of natural vegetation.  The main crops are wheat (Triticum aestivum), barley 

(Hordeum vulgare), oaten hay (Avena sativa), canola (Brassica napus), and lupins 

(Lupinus angustifolius), and pastures for animal grazing.  Animal production 

includes Merino sheep for prime lamb and wool production and beef cattle.  The WA 

Pig Skills Centre Pty Ltd is also on the property. 

 

Certain advantages arise from selecting Muresk farm; yield data have been collected 

in the past, a complete database of paddock history exists, the farm has a variety of 

crop types and has topographic variability.  Being part of Curtin University creates 

cohesion between the campuses and departments, and fosters future research 

relationships in GIS and agriculture.  The farm is close to Perth (approximately 1 ½ 

hours drive) and can provide accommodation. 
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Figure 3.1  Study Area Location 

3.1.1 Climate  

The climate is Mediterranean with hot, dry summers and mild, wet winters (Lantzke 

and Fulton, 1993).  Rainfall received for Northam (approximately 10km away) is on 

average, 440mm per annum.  Average maximum temperatures range from 16.7oC in 

July to 34oC in January, while average minimum temperatures range from 5.6oC in 

August and 17.4oC in February (Weaving, 1999). 

3.1.1.1 Rainfall 

The amount of rainfall falling within a year is an uncontrollable limiting factor for 

dry land agriculture.  For Muresk the rainfall data are recorded at one point which is 

allocated to the entire study area (synonymous with metrological data in general); so 

spatially varying climate data is not available for analysis.  As a consequence, it is 

not possible to include rainfall as a variable in the LMU classification.  However, it 

needs to be considered as a factor when analysing variables that are greatly 

dependent on water availability, such as crop growth and subsequent yield, which 

have been recorded over several years. 

 

Historical records of monthly rainfall have been recorded at Muresk farm from 1926 

to 2001.  The rain gauge is within the campus area of Muresk farm as indicated in 

Figure 3.2.  However, no rainfall has been recorded at the Muresk gauge since 2001 

and therefore daily rainfall data for 2002 and 2003 and monthly data in 2004 have 
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been obtained from neighbouring “Paradym” farm (Dymond, 2004) (Figure 3.2).  

Daily rainfall values for 2002 and 2003 are listed in Appendix A.  There would be 

small differences between the monthly rainfall from Muresk farm and Paradym farm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Rain gauge locations for Muresk Farm 

 

The average monthly cumulative rainfall has declined at Muresk as indicated by the 

historical 76 year average (445mm), 30 year average (413mm), 15 year average 

(390mm) and 5 year average (352mm).  On this basis the years included in the study 

1996-2004 (for which yield data is also available) have been compared to the 15-year 

average rather than a longer term average for a sensible assessment. 
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Figure 3.3  Cumulative rainfall by month for the years 1996 – 2003 as well as the 15 
year average (1987-2001) with ± standard deviation bars 

 

The first year for which yield records are available, 1996, had well above average 

rainfall while the years 2000 and 2001 had well below average rainfall culminating 

with 2002, which had the lowest cumulative total rainfall since 1995.  The remaining 

years, 1997, 1998, 1999 and 2003 had close to average total rainfall.  What is also of 

interest for cropping programs is the growing season rainfall (GSR), as the amount of 

rain that falls during this time has the greatest bearing on crop growth.  The GSR in 

the South West of WA is denoted by the period May – October (inclusive).  This is 

highlighted as the yellow area and by the steeper gradient on the cumulative curves 

in Figure 3.3.  The year 2000 in particular was a dry year for cropping.  It had below 

average total rainfall (269mm), of which only 51 percent (138mm) fell within the 

growing season, while the year 2002 had an even lower total rainfall (253mm) but an 

above average percent (86 percent) falling in the growing season (Figure 3.4).  The 

effect of the drier than average conditions in 2002 on yield was enhanced by the two 

preceding drier than average years, i.e. 2000 and 2001 (Figure 3.3 and Figure 3.4) 

leading to very low levels of soil moisture. 
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Total and Growing Season Rainfall

0

100

200

300

400

500

600

1996 1997 1998 1999 2000 2001 2002 2003

Year

m
m

Total

GSR

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Total and Growing season rainfall for 1996-2003 with the 15 year 
average total and growing season rainfall shown as a dashed line 

 

In summary, 

• 1996 had above average rainfall in relation to recent years. 

• 1997, 1998, 1999 and 2003 were equivalent to an average year (15 year average). 

• 2002 was below average rainfall even in relation to recent years. 

• The years 2000 and 2001 were also below average which would contribute to 

even drier conditions in 2002, through limited water reserves in the soil.  The 

drier than average conditions in 2002 coupled with the below average rainfall in 

the preceding years could lead to anomalies in analysis with yield data for that 

year. 

 

The amount of rainfall does not limit using the study area for this research, but it is 

recommended to consider these factors during statistical analysis.  In particular, 

rainfall is important for understanding the variation in crop growth, which is 

discussed in Chapters 4 and 6. 

3.1.2 Soils 

Soil data are necessary for the study area to gain an appreciation for the landscape 

and highlight the detail that is currently available.  The soil information was gathered 

from the Northam Region Land Resources Survey (Lantzke and Fulton, 1993), which 

is a regional survey intended for use at a scale of 1:100,000 and is currently the most 

Total : 15 yr average   

GSR : 15 yr average   
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detailed survey available.  The survey follows standard procedures, which divide the 

landscape using a six level hierarchy, namely: regions, province, zones, system, sub-

systems and phases (Schoknecht and Tille, 2002).  The features of the units within 

this hierarchy are summarised in Table 3.1. 

Table 3.1  Description of Soil Survey hierarchy 

NAME DESCRIPTION USEFUL SCALE(S) 
Region Broad subdivisions of the Australian 

continent. 
Approx 1:20,000,000 

Province Provides a broad overview of the whole state. Approx 1:5,000,000 
Zone Areas defined on geomorphological or 

geological criteria, suitable for regional 
perspectives. 

Approx 1:1,000,000 

System Area with recurring patterns of landforms, 
soils and vegetation. 

Approx 1: 250,000 

Subsystem An area of characteristic landforms features 
containing definite suites of soils. 

1:150,000 - 1:100,000 

Phase Division of subsystems based on land use 
interpretation requirements. 

1:100,000 – 1:25,000 

 

The case study property, Muresk lies in the Northern Zone of Rejuvenated Drainage, 

which is characterised by dissection of the landscape forming steeper, narrower 

valleys which contain rivers and creeklines that flow every winter.  Small remnants 

of sand plain occur, often bordered by a scarp or breakaway.  In areas where the 

lateritic profile has been completely removed, such as in the Avon Valley, extensive 

areas of rocky, red and greyish soils have developed from fresh rock.  The valley 

floors contain alluvial clays, loams and sands (Lantzke and Fulton, 1993). 

 

Two soil-landscape systems are present on the Muresk property, namely the Avon 

Flats and Jelcobine.  The Avon Flats system follows the Avon River, which cuts 

through the southern corner of the property and falls just outside the boundary 

running from the south to the northwest.  The system is described as alluvial flats 

with brown loamy earth, grey non-cracking clay and brown deep sand vegetated by 

york gum (Eucalyptus loxophleba), salmon gum (Eucalyptus salmonphloia), flooded 

gum (Eucalyptus rudis) and river sheoak woodland (Allocasuarina obesa) (Lantzke 

and Fulton, 1993).  The Jelcobine system covers the remainder of the property 

extending from the adjoining Avon Flats system at the south of the property to the 

northern corner.  There is also an area of the Jelcobine system in the southern most 

corner of the property.  The system is described as isolated steep low hills with 
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undulating low granite hills and isolated lateritic remnants with gravels, and grey 

shallow to deep sandy duplexes vegetated by york gum, jam (Acacia acuminata) 

wandoo (Eucalyptus wandoo), salmon gum and sheoak woodland (Allocasuarina 

huegeliana) predominate (Lantzke and Fulton, 1993). 

 

Existing soil-landscape mapping (Lantzke and Fulton, 1993) has comprehensive 

detail of mapping units down to the subsystem level, with several phases mapped 

only where appropriate, and possible.  The subsystem units are unique in terms of the 

proportions of soils they contain within each system.  However, they often comprise 

of similar landforms and similar broad suites of soils.  Table 3.2 describes each 

subsystem, its landform, major soil types and vegetation found within the study area.  

Figure 3.5 highlights the location of the soil subsystems described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  Muresk farm soils  
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Table 3.2  Description of subsystem, landform and major soil types present in the 
study area (Lantzke and Fulton, 1993) 

Map 
Label 

Subsystem 
Name 

Landform Major soils Dominant 
Vegetation 

256AfW_
RIVER 

Avon flat wet, 
river phase 

River Wet soils, water NIL 

256AfAV Avon Flats Alluvial floodplains which 
may be up to 2km wide in 
upstream areas but much 
narrower (<200m) 
downstream from Northam. 
The gradients of these values 
are about 1 in 250. The unit 
includes small areas of dunes 
that occur immediately 
adjacent to the river channel. 
Soil salinity is rare, though the 
river is quite salty. 

Red brown 
alluvial loam 
(40%). 
Grey alluvial clay 
(30%). 
Orange alluvial 
loamy sand 
(20%). 

Woodland 
containing 
Salmon gum, 
York gum, 
Flooded gum 
and Sheok 

256JcYO Jelcobine York  Irregular, often hilly country 
where streams or rivers have 
dissected the lateritic profile to 
expose bedrock. This unit 
occurs on the mid and lower 
slopes but can occur higher up 
in the landscape adjacent to 
rock outcrop. Slopes are 
generally in the order of 3 to 
12%.  

Rocky red brown 
loamy sand/sandy 
loam (65%). 
Brownish grey 
granitic loamy 
sand (15%). 
Red brown 
doleritic clay 
loam (15%). 
Rock outcrop 
(3%). 

York gum and 
Jam 
woodland. 
Salmon gum 
grows on 
some of the 
heavier soil 
types while 
White gum 
and Sheoak 
generally 
grow on gritty, 
lighter soils. 

256JcHM Hamersley (Jc) First and second order streams 
occur as midslope drainage 
lines. This unit possesses a 
‘V’ shaped morphology but 
can have thin, alluvial terrace 
up to 20m wide. Rock outcrop 
is common. Some areas of this 
unit are saline. Gullies may 
form in the drainage line. 
Slopes of 1 to 6% occur along 
the water course. 

Waterlogged 
grayish loamy 
sand/sandy loam 
(60%). 
Rocky red brown 
loamy sand/sandy 
loam (15%). 
Brownish grey 
granitic loamy 
sand (15%). 
Rock outcrop 
(10%).  

York gum, 
Jam and 
Flooded gum 
in wetter 
areas. 

256JcR2 Steep Rocky 
Hills 2 (Jc) 

Steep sloping hills, which 
contain large areas of rock 
outcrop, generally occuring on 
the mid and upper slopes. 
Slope range from 5% to 
greater than 30%. 

Rock outcrop 
(30%). 
Rocky red brown 
loamy sand/sandy 
loam (30%). 
Brownish grey 
granitic loamy 
sand (20%). 
Red brown 
doleritic clay 
loam (15%). 

Jam, Sheok 
and York 
gum. 
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3. 2 Remote Sensing Data 
The remote sensing data used throughout this research are SpecTerra Services Digital 

Multi-Spectral Imagery (DMSI).  The DMSI is an airborne high resolution remote 

sensing system captured using SpecTerra Services Digital Multi-Spectral Camera 

(DMSC) MkII.  The DMSC MkII system comprises four 12-bit digital CCD cameras 

recording 1024 lines of 1024 pixels per line.  Four interchangeable narrow band-pass 

interference filters were used to generate imagery in the blue, green, red and near-

infrared bands.  Band-pass filters down to 10nm in width, within the range 400-

900nm are easily interchanged for specific applications, and the four spectral bands 

were nominally set as shown in Table 3.3.  The system records the spectral 

characteristics of vegetation, soil and water from a single-engine light aircraft, such 

as a Cessna 182, flying between 380m and 3050m from the target producing images 

with a spatial resolution between 0.25m – 2m and radiometric resolution of 12 bits.  

Imagery was captured of Muresk Farm on four occasions during 2002 through to 

2004 at a flying height of 3048m above sea level.  This equates to an average cell 

resolution of 1.7m, resampled to 2m, the DMSC specifications are outlined in Table 

3.3. 

Table 3.3  DMSC Flight specifications 

Band Channel Name 
Central 

Wavelength 
(nm) 

Band Pass 
(nm) 

1 Blue 450 20 
2 Green 550 20 
3 Red 675 20 
4 Near-infrared 780 20 

 

Image-to-image geo-referencing of the individual frames to historical ortho-rectified 

aerial photography was performed using a first-order polynomial warping and 

bicubic convolution resampling methodology.  The mosaicking was performed using 

a technique based on cut-line feathering over 3 pixels (PCI Geomatica, 2003).  The 

radiometric correction was carried out using an in-house developed software 

(SpecTerra Services, 2003b), based on inversion of the bidirectional reflectance 

model proposed by Roujean et al. (1992).  Current corrections achieve a reduction of 

frame brightness from typically 20 percent of the dynamic range across individual 

frames, to less than 3 percent (SpecTerra Services, 2003a). 
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Atmospheric corrections were not performed on the data set, as the airborne data 

were collected on a clear dry day, close to noontime, when the solar zenith angle 

changes slowly with time.  Although other researchers (Vermote et al., 1997; 

Karnieli et al., 2001) have applied atmospheric corrections on a remote sensing data 

set of characteristics similar to DMSI (e.g. in terms of remote sensing platform, 

spatial and spectral resolution), their studies show that the effects of the atmosphere 

on this type of airborne data are minimal; and given that clear sky conditions 

prevailed during data acquisition for this study, it is concluded that the atmospheric 

effects would also be minimal.  However, image to image calibration has been 

performed where applicable and is discussed in the following sections. 

3.2.1 Calibration of DMSI 

The spectral data extracted from the four images, and in particular the June captured 

data, is used to analyse relationships between soil properties and DMSI.  These 

comparisons require the digital numbers from each scene to be calibrated to  

common reference values, in a similar manner to those utilising images from 

different dates for change detection analysis (Furby and Campbell, 2001). 

 

The calibration technique used in this study is similar to that of Furby and Campbell 

(2001), and it has been adopted because it is a relatively simple method using 

regression techniques.  Furby and Campbell (2001) developed and implemented a 

‘like-values’ calibration procedure that uses robust regression and large numbers of 

targets which are likely to be invariant over time.  Their method converts the raw 

digital numbers of an image(s) so that they are consistent with the digital numbers of 

a reference image.  This technique is an extension of the scene-to-scene correction 

methodology proposed by Casselles and Garcia (1989), which is designed to be 

robust against targets that are not truly invariant (Furby and Campbell, 2001).  The 

calibration is based on the assumption that the relationship between the digital 

numbers for any image and the digital numbers of a chosen reference image for the 

same scene are linear, following; 

iiii oDNgR +=  (3.1)

as derived by Casselles and Garcia (1989) where R is the digital number of the target 

in the reference image, DN is the digital number of the target in the raw image, g and 

o are the gain and offset derived from the linear relationship, used to calibrate the 
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raw image data values, and i signifies the image band (Furby and Campbell, 2001).  

The gain and offset account for atmospheric, sensor and on-ground processing 

differences (Furby and Campbell, 2001).  

 

The ‘like-value’ calibration procedure consists of five steps, namely: (a) selecting a 

reference image; (b) selecting invariant targets; (c) calculating the calibration 

coefficients to calibrate each image to the reference image; (d) examining the 

calibration curves and refine the target selection if necessary; and (e) using the 

estimated coefficients to calibrate the image.  These steps are discussed in more 

detail in Sections 3.2.1.1 to 3.2.1.5. 

3.2.1.1 Select a Reference Image 

The June flights are determined to be the most suitable for soil studies in this 

research because they have been captured when limited vegetation cover was present 

on the ground.  It is important that the reference image is (i) cloud free, (ii) the 

atmosphere is fairly clear, (iii) the data storage are within the format range for all 

bands, (iv) the time of year is appropriate for the application and (v) the image has 

the best possible dynamic range of pixel values.  This concurs with the principles of 

selection advocated by Furby and Campbell (2001).  As all images are free of cloud 

and haze and acquired from the same image source (DMSI), the choice of reference 

comes down to the data storage format, dynamic range of pixel values and time of 

image flight.  Table 3.4 provides the dynamic range of the pixel values for each band 

for each flight. 

Table 3.4  Dynamic range of pixel values for DMSI 

Flight Date Flight 
No. 

Band 1 
Blue 

Band 2 
Green 

Band 3 
Red 

Band 4 
NIR 

28th June 2002 1 0-4222 0-4541 0-3993 0-2214 
17th Sept 2002 2 0-4422 0-4672 0-3902 0-2319 
3rd Sept 2003 3 0-4128 0-4128 0-4118 0-3660 
14th June 2004 4 0-2004 0-3272 0-2825 0-1215 

 

As the imagery is 12-bit radiometric resolution, a maximum range of 4096 is 

possible (0-4095).  However, in Table 3.4 it can be seen that some of the bands 

exceed this range.  This is due to offsets being applied during bidirectional 

reflectance correction (SpecTerra Services, 2003b) and whiteouts (where the 

reflectance value exceeds the maximum recorded digital number).  Therefore, any 
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value greater than 4095 can be truncated to 4095.  From Table 3.4, Flight 4, captured 

during June 2004, is used as the reference image as the data range are all within 0-

4095 for all bands (minimising the uncertainty in bright targets) and it is an 

appropriate time of year for image capture.  However, this comes at the expense of 

compressing the digital range, as the Flight 4 image has the minimum range of pixels 

in contrary to Furby and Campbell’s (2001) suggestion of using a reference image 

where the range of digital numbers is maximum preventing the range being 

compressed further. 

3.2.1.2 Select Invariant Targets 

Invariant targets are features that have constant reflectance over time, and they 

should cover a range of bright, midrange and dark data values.  There are various 

automatic and manual methods for target selection (Hall et al., 1991; Furby and 

Campbell, 2001).  The manual technique can be labour intensive and problematic, 

particularly if the images utilised have a significant time lapse (several years) as 

many targets may have changed due to land use change (Schott et al., 1988; Hall et 

al., 1991).  Automatic techniques also have limitations, such as the method used by 

Hall et al. (1991), which finds only dark and bright features (Furby and Campbell, 

2001).  In this study, the manual target selection technique has been used, as there is 

a good knowledge of the study area’s geographic features and land use from each 

date of image capture, giving rise to appropriate target selection for dark, mid and 

bright ranges.  Once the labour-intensive selection of targets is completed, repeat 

calibrations can be generated easily.  The number and size of bright and dark targets 

should be balanced in order to estimate the calibration coefficients successfully using 

regression.  Furby and Campbell (2001) suggest selecting 10-20 targets that contain 

four to nine pixels with good geographic distribution across the image.  Some 

suggested dark targets in the Western Australian wheatbelt include lakes, water in 

dams and reservoirs.  Potential mid-range targets are rock outcrops, airfield runway 

crossings, quarries, gravel scrapes and open mines, bright targets could be selected 

from roaded catchments, beach sand and bare ground.  However, vegetated targets 

should be avoided as they are inclined to show seasonal trends (Furby and Campbell, 

2001).  The presence of midrange targets allows for the confirmation of a linear 

relationship between the images (Furby and Campbell, 2001).   
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The targets selected consisted of man-made and natural features and each target 

contained a minimum configuration of two-by-two pixels.  Narrow targets were 

avoided where possible in order to eliminate mixed pixel effects.  During the 

selection process the reference image (Flight 4) was used as a base for heads-up 

digitizing the targets.  Other images (Flight 1,2 and 3) were overlayed and pixels 

analysed to assist in the selection of targets that were consistent across each image.  

Table 3.5 lists the features that were selected for each target and its predefined range, 

while Figure 3.6 displays the geographic location of the selected targets used in the 

following regression analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6  Geographic distribution of target locations overlayed on reference image 
(DMSI June 2004).  Where B, represents bright targets; M, the midrange targets; and 

D, represents dark targets  
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Table 3.5  Targets selected for calibrations.  Only those highlighted in grey were 
used in the final estimation of calibration coefficients 

Range Target No. GIS Layer 
No: 

Feature No. of 
Pixels 

D1 1 1 River water 8 
D2 2 2 Dam water 20 
D3 3 3 Dam water 24 
D4 4 4 Dam Water (limited amount of water 

not consistent across all images) 
9 

D5 5 5 River water 16 
D6 6 6 Water in dam 6 
D7 7 7 Water in Dam 16 
D8 8 8 Water in Dam 12 
D9 9 9 Shadow (are not good targets) 4 

Dark 
Targets 

D10 10 10 Water in Dam 
(Sept 03 looks empty of water in 
image) 

6  

M1 11 1 Bitumen roadway 7 
M2 12 2 Gravel track 9 
M3 13 3 Rocky outcrop 12 
M4 14 4 Bitumen Road crossway 12 
M5 15 5 Gravel track 9 
M6 16 6 Gravel track 8 
M7 17 7 Gravel track 6 

Mid 
Targets 

M8 18 8 Bitumen road 12 
B1 19 1 Dam bank/bare ground (whiteout) 6 
B2 20 2 Rock outcrop 20 
B3 21 3 Bare sand 9 
B4 22 4 Sand/roaded catchment 11 
B5 23 5 Roaded catchment 9 
B6 24 6 Building roof (whiteout) 8 
B7 25 7 Building roof (whiteout) 32 

Bright 

B8 26 8 Building roof (whiteout) 9 
B2_1 27 1 Sand in river (small patch and 

inconsistent across images) 
4 

B2_2 28 2 Sand in river 6 
B2_3 29 3 Sand near tree (Not a good target small 

and inconsistent) 
4  

B2_4 30 4 Cement slab 9 

Bright 
New 

B2_5 31 5 Sand contour bank 6 
 

The pixel values for each band for each flight of imagery were extracted using the 

zonal statistics module of Spatial Analyst in ARCGIS.  The median value for each 

target was used for regression analysis.  Furby and Campbell (2001) would typically 

use the values from each pixel in each target and ensure that the number of pixels, 

rather than the number of targets, is balanced if the sizes are uneven.  However, 

Furby (2004) suggests use of the median for each target as the most robustly 

representative measure. 
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3.2.1.3 Calculate the Calibration Coefficients 

The calibration coefficients were calculated by the least-squares approach following 

Equation (3.1) where R is the digital number of the target in the reference image, DN 

is the digital number of the target in the raw image.  The least-squares approach was 

used because it is simpler to apply than other methods (unweighted least-squares 

regression and robust regression) if a good set of targets are used.  Furby and 

Campbell (2001) demonstrate the calculation of coefficients using two approaches: 

(i) unweighted least-squares regression and (ii) robust regression based on S-

estimation followed by weighted least-squares regression.  The robust regression 

procedure is proposed and utilised by Furby and Campbell (2001) because it is 

assumed that up to 50 percent of selected targets are not invariant, and those targets 

that change between image and reference image are automatically omitted from the 

calculation.  Robust regression approaches have been shown to be less affected by 

outliers caused by clouds and over emphasis on dark and bright targets (Furby and 

Campbell, 2001).  The unweighted least-squares approach is demonstrated by Furby 

and Campbell (2001) for comparison purposes and to highlight the strong influence 

of atypical values from targets that have changed between image dates on the 

calibration line.  The authors note that if a good set of targets is used then there is 

very little difference between the S-estimation and weighted least-squares calibration 

lines.  While, it can be visualised in the scatter plots provided by Furby and 

Campbell (2001) that the same would apply between robust regression and 

unweighted least-squares with appropriate target selection.  As stated in Section 3. 2, 

the images in this study are cloud free, and the manual selection of targets has 

ensured that the proportion, type and variant nature of targets is carefully controlled 

and recorded (Table 3.5).  Although considered, the robust regression approach was 

not utilised for the above mentioned reasons and the least-squares approach is 

demonstrated hereafter.  The median digital number (pixels values) were imported 

into GenStat® (Laws Agricultural Trust, 2003a) for least-squares linear regression. 

3.2.1.4 Examine Calibration Curves and Adjust Targets 

Following a least squares approach, initial regression equations were formed.  It was 

clear from the residual plots and a re-assessment of the targets that several targets 

were not appropriate due to their variant nature across images and pixel whiteouts 

(Table 3.5).  They were therefore removed from the data set and new targets selected.  
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Table 3.5 lists all targets and those used in the following analysis are highlighted.  

Figure 3.7 to Figure 3.9 provide the scatter plots showing the least squares regression 

calibration line. 

 

 a)     b) 

 

 

 

 

 

 

 

 c)     d) 

 

 

 

 

 

 

 

Figure 3.7  Scatter plots showing the least squares regression line for June 2002 
imagery for a) Band 1, b) Band 2, c) Band 3 and d) Band 4.                                        

(y axis = reference image, x axis = raw image) 
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Figure 3.8  Scatter plots showing the least squares regression line for September 
2002 imagery for a) Band 1, b) Band 2, c) Band 3 and d) Band 4                                 

(y axis = reference image, x axis = raw image) 
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Figure 3.9  Scatter plots showing the least squares regression line for September 
2003 imagery for a) Band 1, b) Band 2, c) Band 3 and d) Band 4                                 

(y axis = reference image, x axis = raw image) 

 

Table 3.6 provides the least-squares regression lines, percentages of the variance in 

the reference bands from June 2004 that each model accounted for, the residual 

standard errors, and significance. 
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Table 3.6  Least-squares regression model for image calibration  

Band Model:  
  iiii offsetDNgainR +=  

Adjusted 
R2 

Standard 
Error 

P 

June 02 – B1 1111 8.233629.0 BBBB DNR −=  82.5 38.6 <0.001 
June 02 – B2 2222 4.364960.0 BBBB DNR −=  87.1 78.6 <0.001 
June 02 – B3 3333 7.85439.0 BBBB DNR +=  94.5 55.5 <0.001 
June 02 – B4 4444 9.85760.0 BBBB DNR −=  91.6 33.9 <0.001 
Sept 02 – B1 1111 5.322771.0 BBBB DNR +=  84.0 36.9 <0.001 
Sept 02 – B2 2222 3.174104.0 BBBB DNR +=  88.1 75.5 <0.001 
Sept 02 – B3 3333 4.444851.0 BBBB DNR +=  82.9 98.2 <0.001 
Sept 02 – B4 4444 2.214242.0 BBBB DNR +=  89.5 38.0 <0.001 
Sept 03 – B1 1111 8.702333.0 BBBB DNR +=  84.3 36.6 <0.001 
Sept 03 – B2 2222 1.943318.0 BBBB DNR +=  85.4 83.6 <0.001 
Sept 03 – B3 3333 1.1033884.0 BBBB DNR +=  89.1 78.4 <0.001 
Sept 03 – B4 4444 4.523061.0 BBBB DNR +=  87.3 41.8 <0.001 
 

3.2.1.5 Calibrate the Image 

The raw band images are calibrated to the reference image by applying Equation 

(3.1) in accordance with the appropriate gain and offset.  The gains and offsets 

applied to each band, derived from the regression line equation, are based on the shift 

required to make the mean and standard deviation of the raw pixel set match the 

reference pixel set (Yuan et al., 1999).   

 

Table 3.7 displays the statistics and highlights that the mean and standard deviation 

of the reference and calibrated image are more closely matched.  The mean and 

standard deviation of the pixel values have been calculated and extracted for each 

band within the reference image, raw image and calibrated image.  For consistency, a 

mask layer was used to ensure the same spatial extent was analysed for each band of 

imagery. 
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Table 3.7  Raw, Reference and Calibrated image statistics 

Image Band Mean Standard 
Deviation 

June 2002 Raw June 02 773.93 81.13 
 Reference June 04 247.98 29.15 
 Calibrated June 02 

B1 
257.06 29.44 

 Raw June 02 981.23 152.46 
 Reference June 04 420.75 72.20 
 Calibrated June 02 

B2 
450.29 75.62 

 Raw June 02 612.06 215.74 
 Reference June 04 344.18 93.75 
 Calibrated June 02 

B3 
341.60 117.34 

 Raw June 02 631.26 163.64 
 Reference June 04 294.66 60.59 
 Calibrated June 02 

B4 
354.70 94.26 

Sept 2002 Raw Sept 02 754.42 101.34 
 Reference June 04 247.98 29.15 
 Calibrated Sept 02 

B1 
241.55 28.08 

 Raw Sept 02 1017.28 184.57 
 Reference June 04 420.75 72.20 
 Calibrated Sept 02 

B2 
434.79 75.75 

 Raw Sept 02 540.78 198.54 
 Reference June 04 344.18 93.75 
 Calibrated Sept 02 

B3 
306.73 96.31 

 Raw Sept 02 870.13 165.73 
 Reference June 04 294.66 60.59 
 Calibrated Sept 02 

B4 
390.31 70.30 

Sept 2003 Raw Sept 03 702.60 105.12 
 Reference June 04 247.98 29.15 
 Calibrated Sept 03 

B1 
234.72 25.52 

 Raw Sept 03 1069.84 190.08 
 Reference June 04 420.75 72.20 
 Calibrated Sept 03 

B2 
449.07 63.07 

 Raw Sept 03 453.60 210.42 
 Reference June 04 344.18 93.75 
 Calibrated Sept 03 

B3 
279.28 81.73 

 Raw Sept 03 1187.45 270.62 
 Reference June 04 294.66 60.59 
 Calibrated Sept 03 

B4 
415.88 82.84 

3. 3 Digital Elevation Model 
The quality of digital elevation model (DEM) has a strong influence on the reliability 

of topographic attributes derived from them, and the effect is amplified for secondary 

topographic attributes.  A DEM covering the study area was provided by the 

Department of Agriculture and Food-Western Australia.  The Department of Land 

Information (DLI) is the custodian of the original DEM data, which were created as 
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part of the National Dryland Salinity Program under the guidance of the Land 

Monitor Group.  Heights have been derived with a vertical resolution of 0.01m on a 

10m grid from stereo aerial photography flown at 1:40,000 scale, using soft copy 

automatic terrain extraction (image correlation) techniques (Allen and Beetson, 

1999).  The correlation technique has an expected vertical accuracy of +/-1.5m at the 

90 percent confidence level.  Due to the automated processes used, isolated large 

errors may be found in this data due to poor correlation in paddocks, large rock 

outcrops, sharply rising breakaway country, sand dunes and heavy tree covered areas 

(Department of Land Information, 2000).  Although the DEM was produced within 

the accuracy specifications, errors are apparent in the Muresk study area and can be 

visualized in a shaded relief as shown in Figure 3.10a.  This undesirable patchwork 

effect is illustrated in Figure 3.10a, which highlights systematic errors that need to be 

minimized prior the derivation of topographic attributes. 

 

a)        b) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10  DEM systematic error in the form of tiling and a seam running north-
south. a) Shaded relief of Landmonitor DEM, b) Shaded relief of smoothed 

Landmonitor DEM after algorithm applied by Cacetta (2000) 

 

This research endeavours to utilise any existing data sets available and as such the 

output can be applied across spatially separable areas of WA for which these data 

sets cover.  Klingseisen (2004a) tested several methods for removing errors, taking 
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into account the findings of López (2002) and in particular investigated the methods 

of Hannah (1981) and Felicisimo (1994).  Klingseisen (2004a) found that both 

methods were limited to the reduction of non systematic errors and, when applied to 

the Muresk study area, the prominent terrain edges were over-smoothed while the 

visible patchwork remained largely unaffected. 

 

The Muresk DEM was smoothed to reduce the discontinuities using Caccetta’s 

(2000) adaptive iterative filter.  Caccetta (2000) developed a method to reduce the 

systematic errors in the Land Monitor DEM.  The algorithm regulates the level of 

smoothing via a height change criteria whereby more smoothing is applied in flat 

areas and less in non flat regions or the level of smoothing is reduced on areas of 

strong curvature (either profile, tangential or plan curvature) (Caccetta, 2000).  The 

portion of the smoothed DEM of Muresk is displayed in Figure 3.10b highlighting 

the improvement post application of Caccetta’s (2000) algorithm. 

3. 4 Yield Data 
Yield data were recorded using the GreenStarTM yield monitor, by John Deere 

Limited, which is coupled with an OmniSTAR differential global positioning real 

time system, mounted on a harvester.  The yield monitor is equipped with a mass-

flow sensor, which measures the slightest movement, or impact of grain flow from 

the top of the clean-grain elevator.  This measurement, along with the clean-grain 

elevator speed, is used to calculate harvested mass (Deere and Company, 2002).  

 

Point yield data were collected at 1-second intervals along the path of the harvester 

with a swath width of 7.493m.  The data were downloaded into JDOffice (version 

1.3) software (John Deere Ag Management Solutions, 2003) then exported as an 

XYZ format (Easting, Northing, kg/ha) for analysis.  The raw yield data contain 

errors in yield estimates from a combination of sources which have been reviewed 

and mitigated as described in Robinson (2004) and Robinson and Metternicht (2005).  

As a consequence, the filtered yield datasets were interpolated onto a 4m grid using 

block kriging and local variograms (Robinson, 2004) within the VESPER (version 

1.5.8) software (Minasny et al., 2002).  This produces interpolated yield surfaces for 

the available paddocks with an associated variance layer. 
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Table 3.8 provides a list of the number of years of yield data available for each 

paddock and the crop type associated with that years data.  The yield monitor was 

not used during 2001 and therefore no yield data were collected during that year.  

Table 3.8 highlights that for some paddocks there is complete coverage of 7 years of 

data while for other paddocks yield data have never been collected.  This suggests 

that these paddocks might not be arable or are used for other farming purposes such 

as grazing. 

 

Post-filtering the field recorded point data is used for interpolating onto a 4m grid (in 

this case).  Figure 3.11 displays an interpolated yield surface with the filtered field 

recorded point yield data overlayed.  It can be visualised in Figure 3.11 that for some 

areas of the paddock there is a higher density of point values that will contribute to 

the interpolated value.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.  An example of an interpolated yield surface overlayed with filtered 
yield points and paddock boundary 
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Table 3.8  Interpolated yield data available for Muresk Farm 
Paddock No. 1996 1997 1998 1999 2000 2002 2003 Total 

Yield 
Layers  

1 Wheat Lupins Wheat Canola Wheat Wheat Wheat 7 
2 and 3 Lupins   Faba 

Beans 
  Wheat Wheat Wheat 5 

4               0 
5 Oaten Hay Lupins   Canola Oats/Wheat Wheat Wheat 6 
6             Wheat 1 
7 Wheat Oats/Oaten Hay Barley Lupins Wheat Canola Wheat 7 
8               0 
9       Barley       1 
10           Oaten 

Hay 
Wheat 2 

11     Lupins       Wheat 2 
12 Faba Beans Wheat Lupins   Barley Wheat   5 
13 and 14 Faba Beans Barley Lupins   Barley Wheat   5 
15               0 
16               0 
17   Lupins     Oats   Barley 3 
18 Wheat Barley Lupins   Lupins Barley   5 
19               0 
20     Oats         1 
21     Wheat   Canola Barley   3 
22 Barley Lupins Wheat   Wheat Barley Canola 6 
23           Wheat   1 
24 Lupins Wheat   Canola     Wheat 4 
25 Barley Lupins       Canola Wheat 4 
26 Wheat Lupins Wheat Canola   Lupins Wheat 6 
27           Oats Oats 2 
28 Wheat Wheat       Canola Wheat 4 
29     Wheat   Canola Barley   3 
30 Wheat/Barley Wheat/Barley Lupins Oats Canola   Barley 6 
31               0 
32 Wheat Faba Beans     Barley Wheat Wheat 5 
33 Lupins   Lupins   Lupins Wheat   4 
34     Wheat   Wheat Oats Oats 4 
35     Wheat   Wheat Barley Lupins 4 
36   Wheat Wheat   Wheat Lupins Wheat 5 
37   Faba Beans/ 

Lupins 
    Lupins Wheat Canola 4 

38 Wheat       Wheat   Wheat 3 
39 Oaten Hay Barley Lupins   Wheat Wheat Lupins 6 
40         Wheat Wheat   2 
41               0 
42 Faba Beans Oats Barley   Wheat Wheat Wheat 6 
43     Faba 

Beans 
  Wheat Wheat Wheat 4 

Total 
Paddocks 

18 18 20 7 23 25 24 136 

                  Shaded cells have available yield data however no soil sampling points fall in the region 
for that year. 
 

Any area outside the perimeter of yield points will in fact extrapolate values rather 

than interpolate and thus these areas must be discarded from analysis.  The paddock 
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boundary is displayed in red in Figure 3.11.  VESPER provides a variance layer 

associated with the kriged interpolated layer, which can be used to guide the user as 

to the degree of confidence one can have with the interpolated value.  Although yield 

data have their limitations, the best possible care has been taken during the 

interpolation process and subsequent extraction of the yield data to avoid any undue 

error that may be associated with the data.  These yield data are the only ones 

available for the study area and as such make a valuable contribution to the research.  

3. 5 Field Data  
Field data were collected on several occasions at Muresk farm to build up a database 

of vegetation and soil attributes.  The two main streams of field data sets are the soil 

sampling and analysis and vegetation sampling and analysis, which are both 

described in Chapter 4.  A field visit was also made synchronous with DMSI capture 

during June 2002 and June 2004 to provide an indication of the vegetation cover 

present.  Attributes recorded include the spatial location, vegetation type, vegetation 

density, digital photo and any other relevant comments.  Approximately 30 locations 

have data recorded for each year.  Figure 3.12 provides visual display of the 1m2 

quadrants in which vegetation data were recorded along with associated attributes. 

 

    a)                                                                b) 

 

 

 

 

 

 
 

Figure 3.12  Field data collection during June 2004 DMSI flight. a) sample point in 
cropped paddock with <2 percent vegetation cover. b) sample point in paddock with 

pasture and 55 percent vegetation cover 
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3. 6 Software and Hardware 

3.6.1 Global Positioning System (GPS) 

The Department of Agriculture and Food-Western Australia in South Perth provided 

the Global Positioning System (GPS) used to locate field sample locations 

throughout the research.  The Trimble GeoExplorer II is a differential GPS system 

(dGPS) and consists of a hand-held receiver that is taken into the field to collect 

point, line or area positions.  The data are then taken back to the office to be 

processed for differential correction.  Differential correction is a technique that uses 

an extra GPS receiver (base station) with a known position to increase the accuracy 

of a GPS position.  The dGPS can provide accuracies of sub-metre to 5m Circular 

Error Probable, meaning 50 percent of the collected points are within a 5m-radius 

circle on a horizontal plane (Trimble Navigation Limited, 1994).  The dGPS 

configuration was set to record data in the AMG coordinate system and WGS84 

datum.  During the post-processing, the data are transferred to AGD84 datum to 

match other spatial data sets used throughout this research. 

3.6.2 GIS Software 

Several suites of GIS software have been used throughout this research namely, 

Intergraph GeoMedia Professional (Intergraph Corporation, 2003) with GeoMedia 

Grid (Keigan Systems Inc., 2003a), MF Works (Keigan Systems Inc., 1999) and 

ARCGIS (ESRI Inc, 2004).  They have been used on a variety of different levels and 

where appropriate highlighted throughout the thesis.  

3.6.3 Statistical Software 

SPSS for Windows (SPSS Inc., 2003) and Genstat® (Laws Agricultural Trust, 

2003a) are the two statistical packages used during this research.  Genstat® is the 

dominant package and was used as the basis for the LMU classification described in 

Chapter 7. 

3. 7 Summary 

In this chapter the selected study area, Muresk, has been described in terms of; 

climate, soil types and land use.  DMSI data for Muresk has been captured on 4 

occasions and provided at a spatial resolution of 2m, along with a DEM of 10m and 
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yield interpolated surfaces (4m) where available.  The GPS, GIS and statistical 

software used throughout this research are mentioned. 

 

The following Chapter 4 uses the described software based on the Muresk case study 

region, and explores the potential of DMSI data for detecting crop growth variability.  

Chapter 4 describes the soil sampling strategy design and the collection and chemical 

analysis of soil properties identified in Chapter 2 as relevant for the formation of 

LMUs. 
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CHAPTER 4  

FIELD DATA COLLECTION AND ANALYSIS 

This chapter presents the strategy adopted for the soil sampling design and its 

implementation.  Explanations of the field data collected and chemical analysis 

performed are also included.  This phase of the research culminates in a soil spatial 

database to be utilised for exploring relationships between soil properties, yield, 

topographic attributes and Digital Multi-Spectral Imagery (DMSI), which are 

explained in Chapter 6. 

 

The chapter also analyses the potential of DMSI for detecting the variability of crop 

leaf area index (LAI) within several paddocks sown to wheat, lupins and canola.  The 

aim is to examine whether DMSI can be used as a layer for detecting variability in 

crop growth and should thus be incorporated into the LMU classification. 

 

Transect sampling within wheat, lupin and canola crops was conducted synchronous 

with the capture of DMSI for two consecutive years, 2002 and 2003.  Statistical 

analysis between DMSI spectral values and crop LAI has been performed and this 

chapter highlights phenological factors affecting the relationship between LAI and 

spectral values. 

4. 1 Soil Sampling Design 
When determining the appropriate number of soil samples, consideration must be 

given to the practicability and economic feasibility of the collection and analysis 

process.  The density of soil observations in Australia is recommended to be a 

minimum density of 0.25 ground observations per cm2 of published map, as 

suggested by FAO in 1979 (Gunn, 1988).  This equates to between 25 to 100 soil 

observations per km2 for published maps scales from 1:10,000 to 1:5,000 

respectively (Gunn, 1988).  However, when integrating remotely sensed data into the 

sampling design, Metternicht et al. (2002) showed that a reduction of 60 to 80 

percent of field observations can be achieved when compared to traditional survey 

methods.  In this research, 250 samples have been determined to be adequate in the 

study area, which covers approximately 1780ha (17.8km2).  This equates to 
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approximately 14 soil observations per km2 which, after taking into account a 

reduction in field observations of approximately 60 percent due to the integration of 

high resolution remote sensing and terrain information, is equivalent to 35 

observations per km2.  

 

The farm scale sampling methodology is a refinement of the paddock scale sampling 

strategy approach of Drysdale et al. (2002), which used slope in a combination with 

NDVI to design an optimal soil sampling strategy.  In this current research slope is 

used to subdivide the landscape into slope strata (classes) based on Australian soil 

survey standards (McDonald et al., 1990) as described in Table 4.1.  Slope on 

Muresk farm ranges from 0 to 28 percent (i.e. Class 1-4). 

Table 4.1  Definition of slope classes (adopted from McDonald et al., 1990) 

Class % Slope Name 
1 <1% Level 
2 1%-3% Very gently inclined 
3 3%-10% Gently Inclined 
4 10%-32% Moderately Inclined 
5 32%-56% Steep 

 

The DMSI captured across the Muresk farm provided some indication of the 

variability through spatial variations reflected in the imagery.  The NDVI  (Rouse et 

al., 1973) was used as a surrogate measure to aid in determining variations in soil 

conditions in areas of high vegetation.  Similarly, the Redness Index (RI) (Escadafal 

and Huete, 1991) was used in areas of minimal vegetation cover due to its 

relationship with the redness of soils, as this typified variations in soil conditions (see 

Section 2.3.2.4.4).  Figure 4.1 is a flow chart that provides a graphical representation 

of the soil sampling design which was performed using commands available in 

MFWorks and GeoMedia GIS software.  The three classes of variability generated 

from the NDVI and RI were combined with the four slope classes present on Muresk 

farm to define 12 sampling zones.  The number of sample points selected from each 

zone was based on the area of each zone and its spatial variability.  Appendix B 

provides a step by step description of the commands used while an overview is 

explained hereafter. 
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Figure 4.1  Flow chart of sampling design 

4.1.1 NDVI and RI Layers 

The NDVI and RI layers were generated from the DMSI imagery (flown 28th June 

2002) for the entire farm following Rouse et al. (1973) Equation (2.4) and Escadafal 

and Huete (1991) Equation (2.9).  Rates of change in NDVI and RI layers were 

computed.  This step detected areas of no change (flat) and areas where rapid 

changes occur over a short distance (steep).  These layers are hypothesised to be 

surrogates for the degree of changes in soil conditions.   

4.1.2 Mask Layer 

A mask layer of the study area was required to delimit the soil sampling strategy to 

arable regions of the farm.  This was formed by heads-up digitizing on a true colour 

image of the study area.  Rocky outcrops, buildings, dams, roads and remnant 

vegetation were masked and individual polygons created for areas that have similar 

visual appearance, i.e. bare soil, cropped paddocks, gullies and drainage lines. 
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The farm had varying levels of vegetation cover (from bare soil to well established 

crops or fallow) during image capture (28th June 2002).  As such, it was required to 

determine which index (NDVI or RI) would be the most appropriate surrogate for 

determining the degree of variability in soil conditions.  If the land presents a 

moderate to dense vegetation cover, then the NDVI would be the most appropriate 

option, whereas areas of bare soil would be best represented with the RI.  This was 

achieved using the NDVI values for each region.  For each unique region the area 

(number of cells) with a NDVI ≤ 0 and the area (number of cells) with a NDVI > 

0.05 was determined.  Thus, if the majority of NDVI values for an area are equal or 

less than 0, the RI values will be used for that particular region.  Conversely, if the 

area presents a majority of NDVI values greater than 0.05, then the NDVI was the 

information layer adopted for determining variability.  

4.1.3 The Variability Map Layer  

The variability map layer is required to provide a spatial representation of the 

variability across the farm based on the change in NDVI and RI.  This map layer 

could subsequently be divided into categories of variability and the soil sampling 

points placed accordingly. 

 

A histogram of the rate of change, as expressed by the percentage of slope for NDVI 

and RI values in their associated regions, is displayed in Figure 4.2.  This provides an 

indication of the area (as indicated by the number of cells) in each variability 

category. 

 

The NDVI and RI output images were grouped into three classes of variability.  The 

class boundaries selected for representing low, medium and high variability in each 

index are displayed in Table 4.2 along with the area (as indicated by the number of 

cells) of each class.  As these categories represent rate of change it is reasonable to 

use the same boundaries for each index. 
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Figure 4.2  Histogram of NDVI and RI change % values for mask region 

 

Table 4.2  Change % range for variability class of NDVI and RI 

NDVI 
Class Change % Range No. of Cells NDVI Variability Class 
1 0 to <1 312946 Low 
2 1 to <2 568287 Medium 
3 2 to <24 527796 High 
RI 
Class Change % Range No. of Cells RI Variability Class 
1 0 to <1 759485 Low 
2 1 to <2 738547 Medium 
3 2 to <13 189567 High 

 

The final variability map (Figure 4.3) was required to provide one layer that 

expressed the 3 classes of variability for the entire study area.  This layer was then 

combined with the slope classes as described in the following section in order to 

produce one map layer consisting of all combinations of variability regions and slope 

strata. 
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Figure 4.3  Variability map generated with a 10m spatial resolution 

4.1.4 Slope Class Map 

The slope class map is an integral part of the sampling strategy because it provides 

the spatial slope strata to which an equal sampling density of soil points will be 

allocated.  The slope layer was generated from the DEM for the entire farm.  The 

output slope map is expressed in percentages (Figure 4.4) and demonstrates that the 

majority of the arable area of the farm is gently inclined (3 to 10% slope).  A 

histogram of the slope values within the study area was generated (Figure 4.5).  The 

slope map was then re-classed into 4 classes according to the Australian Soil and 

Land Survey classification standards (Table 4.1) and the output map layer was 

generated providing the spatial regions in which the soil sampling points could be 

targeted. 
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Figure 4.4  Slope map of study area 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5  Histogram of slope values for the area of interest 

4.1.5 Variability Table 

The sampling strategy was designed with the intention of sampling more intensively 

in areas of high variability (as represented by the rate of change of the NDVI and RI 

layers).  In addition the density of sample points would be distributed equally within 

each slope strata, with respect to the area that each of these strata comprised within 

the total mask region.  Since it is hypothesised that areas of the same slope class 
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would contain similar types of soils, this would ensure that the representation of soil 

types within the sample is proportional to their area.   

 

Sampling theory indicates the sample size for each stratum in a sample should be 

proportional to the product of the size of the stratum and the standard deviation of the 

stratum (Cochran, 1959 pg. 74).  A variability proportion was computed to enable the 

appropriate number of sampling points to be allocated to each variability class.  It 

takes into consideration the percentage of area of each variability class and a weight 

which is intended to reflect the standard deviation of the variability class. 

 

The weight given to each of the three variability classes has a strong influence on the 

number of points assigned to each class and consequently their spatial position in the 

study area.  The pairwise comparison method developed by Saaty in 1980 

(Malczewski, 1999) was implemented to achieve this.  The method involves ratios of 

the standard deviation in each class to create a pairwise comparison matrix (Rij).  It 

takes the pairwise comparison as an input and outputs weights, w1, w2 and w3 

(Malczewski, 1999) such that 1=∑ iw  and (wj/wi) is a good approximation of (Rij).  

The three major steps in the procedure, (i) generation of the pairwise comparison 

matrix, (ii) computation of the criterion weights, and (iii) the estimation of the 

consistency ratio, were performed following Malczewski (1999).  The pairwise 

comparison matrix is developed based on an assigned value to rate the relative 

standard deviation between two classes of variability.  For example, one class may be 

considered 10 times more variable which approximates to 3 standard deviations.  

Likewise for a class considered to be 50 times more variable than another, 7 would 

be the assigned ratio. 

 

The pairwise comparison approach to determine appropriate weights for each 

variability class was implemented using IDRISI GIS software by developing a map 

layer for each class and allocating a value for each layer relative to other layers based 

on the relative standard deviation.  Table 4.3 displays the input value within the ratio 

matrix and the weight generated by the pairwise comparison approach within IDRISI 

for each class.   
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The consistency index (CI) can be calculated by comparing the pairwise comparison 

matrix to the new ratio matrix based on the computed weights.  The consistency ratio 

(CR), the ratio of CI to a random inconsistence index (tabulated values for a range of 

class numbers 1-15, (Malczewski, 1999)), can be used to determine if pairwise 

comparisons are consistent with the weights.  If the CR ≥ 0.1 the values of the ratio 

are indicative of a ratio matrix which is not consistent, and a revision of the original 

values is required until a CR < 0.1 is achieved (Eastman, 1999; Malczewski, 1999).  

The initial selection of pairwise comparisons (Table 4.3) gave a CR of 0.1 and thus 

required re-evaluation.  The CR for the final values assigned was 0.01 (Table 4.3). 

Table 4.3  Initial and final selection of Pairwise Ratio Matrix values and Weights 

Initial Values  
 Low Medium High CR  
Low 1    
Medium 5 1   
High 9 5 1 

0.10 
 

Final Values 
 Low Medium High CR Weight 
Low 1   0.09 
Medium 3 1  0.24 
High 7 3 1 

0.01 
0.67 

 

The variability proportion was then calculated, based on the weight for each 

variability class (Table 4.3) and the percentage of the area that each class comprised 

within the mask region.  By multiplying the percentage of the area of each class by 

its weight, a sample ratio was computed.  The resulting variability proportion was 

then the percentage of the sample ratio for each class in relation to the total sample 

ratio (Table 4.4). 

Table 4.4  Variability proportion determination 

Class Variability Percentage of 
mask region Weight Sample 

Ratio 
Variability 
Proportion 

1 Low 26.47 0.09 2.38 0.08 
2 Medium 47.54 0.24 11.41 0.36 
3 High 25.99 0.67 17.41 0.56 
Total  100.00 1.00 31.20 1.00 

4.1.6 Slope Table 

The Slope Table was calculated to identify the correct proportion of the 250 sample 

points to be allocated to each slope class, based on the area of each slope class within 
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the mask region.  An equal sample density of points were placed within each slope 

strata, and Table 4.5 displays the number of sample points calculated for each slope 

class based on the classes’ areas. 

Table 4.5  Number of sample points per slope class 

Slope Class Percentage of mask region No. of Points 
1 0.89 2 
2 11.93 30 
3 79.00 198 
4 8.17 20 
Total 100.00 250 

4.1.7 Sample Matrix 

The sample matrix (Table 4.6) was generated to determine the number of sample 

points to be randomly placed within each sample zone (slope strata by variability 

class).  The number of sample points to be placed in each sample zone is determined 

by multiplying the variability proportion from Table 4.4 by the number of sampling 

points allocated to each slope strata. 

Table 4.6  Sample Matrix of slope and variability classes 

Variability 1 
(low) 

Variability 2 
(medium) 

Variability 3 
(high) 

 

0.08 0.36 0.56 
Slope 1 2 0 1 1 
Slope 2 30 2 11 17 
Slope 3 198 16 71 111 
Slope 4 20 2 7 11 
Total 250 20 90 140 

4.1.8 Sample Zones and Sampling points 

The 12 sampling zones were formed to generate the spatial regions on the farm 

within which sampling points would be selected according to the sampling matrix 

(Table 4.6).  The sample zones map layer was created using a cross tabulation 

between the slope classes (Slope% Class 1-4) and variability classes (Variability 1-

3); thus generating an output map layer with 12 unique zones derived from all 

possible combinations of the slope and variability classes. 
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Sample points were randomly selected from each sample zone.  The raster output 

map layer was exported as a text file containing the spatial location (easting and 

northing) of the 250 sample points (XYZ file).  The sample points were then overlaid 

with the true colour composite of Muresk farm (Figure 4.6).  This provided a field 

map for use during fieldwork to aid the approximate spatial location of each point.  

The list of coordinates associated with each point in the text file was used to 

accurately locate the points with a hand held differential global positioning system 

(dGPS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  Spatial distribution of the soil sample points used for survey of the 
Muresk farm 
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4. 2 Field Collection 
The collection of soil samples and field description was conducted between 22nd July 

2002 and 15th August 2002.  Point locations were spatially located in the field using a 

hand held dGPS receiver.  The positions generated during the sampling design were 

used as waypoints.  Point locations were recorded with the dGPS.  A site description 

was made at each of the 250 soil samples along with a record of the soil field texture 

and colour at 10cm intervals to a maximum depth of 80cm (where achievable).  The 

field data collection process is shown in Figure 4.7, it includes; (a) auguring the soil 

pit, (b) digging the soil pit, (c) recording the dGPS point and (d) an example of a soil 

pit profile.  A list of attributes collected and classes and units recorded is shown in 

Table 4.7.  Soil samples were collected at the topsoil and 30cm depth for laboratory 

analysis.  The topsoil samples were bulk sampled within a 6m diameter from the 

sampling point following Justice and Townshend (1981) suggestions for the 

minimum size of unit that should be sampled (Section 2.3.1.1.2 Equation (2.3)) based 

on a 2m pixel dimension and dGPS advertised accuracy of 5m, while the subsurface 

was sampled only from that particular location.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7  Soil sampling Field Data Collection. a) Auguring soil pit to maximum 
depth of 80cm, b) Digging soil pit, c) Recording the dGPS position of soil sampling 

point, d) Soil sample point 213, soil pit 

a) b) 

c) 

 

d) 
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Table 4.7  Soil sampling field data collection 

Attribute Measuring technique/scale 
Point Number 1 – 250 
Easting and Northing dGPS – AGD84 UTMz50s 
Date Sampled 22/07/02 
Slope Visual estimation measured in percentage of slope 
Aspect Visual estimation measured in degrees with 

compass 
Drainage Class E: Excessively drained 

S: Somewhat excessively drained 
W: Well drained 
M: Moderately well drained 
I: Somewhat poorly (imperfectly) drained 
P: Poorly drained 
V: Very poorly drained  
(Appendix C contains a full description) 

Vegetation Cover Visual estimation in percentage 
Vegetation Type and 
remarks 

i.e. crop or pasture, height of crop, land use  

Comments Any further remarks relevant to site location 
A-Horizon Depth in centimetres 
Texture* Field texture estimation. (Appendix D contains a 

full description)  
Soil Colour* Munsell Colour Chart Code: (Munsell Color 

Company, 1998 revised edition) 
Comments* Further remarks relevant to identification of 

changes in soil properties (i.e. rock fragments, 
compaction, nodules, mottles etc.) 

* recorded at 10cm depth intervals ≤ 80cm 

4. 3 Chemical Analysis of Soil Properties 
The soil samples collected from the field were transported to the Chemistry Centre 

(WA) for laboratory analysis.  The samples were oven dried and sieved through a 

2mm sieve in preparation for analysis.  Examples of the soil chemical analysis 

process are shown in Figure 4.8 namely; (a) a sieved soil sample; (b) weighing soil 

samples for analysis; (c) particle sizing analysis; (d) organic carbon analysis and (e) 

soil samples prepared for analysis. 
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Figure 4.8  Soil chemical analysis; a) sieved soil sample; b) weighing soil samples 
for analysis; c) particle sizing analysis; d) organic carbon analysis; e) soil samples 

prepared for analysis 

 

The analysis and procedures followed were performed according to the methodology 

advocated by Allen (2004).  These procedures are detailed in Table 4.8.  

a) b) c) 

d) 

e) 



110 

Table 4.8  Methods of soil chemical analysis 

Analyses Measurement Method 
Stones (%) Weight of fractions > 2mm 
pH(H2O) pH was determined using a glass electrode on a 1:5 extract of soil and deionised 

water, following equilibration by shaking (end-over-end) for 1 hour. Values 
corrected to 25oC. Method 4A1 (Rayment and Higginson, 1992). 

EC (1:5) 
(mS/m) 

Electrical conductivity was measured by a conductivity meter in the 1:5 extract 
of soil and deionised water used for measurement of pH (H2O). Values 
corrected to 25oC. Method 3A1 (Rayment and Higginson, 1992). 

pH (CaCl2) pH was determined using a glass electrode on a 1:5 extract of soil and 0.01 M 
CaCl2. Method 4B1(Rayment and Higginson, 1992).  

Sand (%) 
Silt (%) 
Clay (%) 

Particle Sizing was determined using 50g samples of soil (not pre-treated to 
remove organic matter or CaCO3) dispersed with a solution of “Calgon” (water 
containing 1g sodium hexametaphosphate and 0.2g NaOH) by overnight rolling 
at 10rpm. The slurry was then transferred to sedimentation cylinders and made 
up to 1250mL. Silt (0.002 – 0.020mm) and clay (<0.002mm) concentrations 
were calculated using the density of the suspension measured by a plummet 
suspended below an electronic balance at a depth and time determined by 
Stoke’s Law. Method adapted from Loveday (1974). 

OrgC (W/B) % Organic Carbon was determined on soil ground to less than 0.15mm using 
Metson’s colorimetric method (Metson, 1956) a modification of the Walkley 
and Black method (Walkley, 1947).  The procedure is based on oxidation of soil 
organic matter by dichromate in the presence of sulphuric acid.  The heat for the 
reaction is supplied by dilution of the sulphuric acid with the aqueous 
dichromate.  

Fe (AmOx) 
mg/kg 
Al (AmOx) 
mg/kg 

Amorphous forms of hydrous iron and aluminium oxides were extracted from 
soil using acidic ammonium oxalate solution (pH 3.0). Concentrations of iron 
and aluminium in the extract solutions were measured by inductively coupled 
plasma - atomic emission spectrometry (ICP-AES). Method 13A1 (Rayment 
and Higginson, 1992). 

Ca (exch) me% 
Mg (exch) me% 
Na (exch) me% 
K (exch) me% 
Al (exch) me% 
Mn (exch) me% 

Exchangeable Cations were determined by extraction using one of the 
following procedures: 
a) Neutral Soils:  With 1M ammonium chloride (NH4Cl) pH 7.0 – used for 
neutral soils (pH (H20) between 6.5 and 8). The concentrations of cations (Ca, 
Mg, Na and K) were measured by inductively coupled plasma – atomic 
emission spectrometry (ICP-AES). Soluble salts were removed from the soils 
with EC(1:5)>20mS/m by washing with glycol-ethanol. Method 15A1, 15A2 
(Rayment and Higginson, 1992). 
 
b) Acidic Soils:  With unbuffered 0.1M Barium Chloride (BaCl2) pH <6.5 - 
used for acidic soils only. The concentrations of cations (Ca, Mg, Na, K, Al and 
Mn) were measured by inductively coupled plasma – atomic emission 
spectrometry (ICP-AES). Soluble salts were removed from the soils with 
EC(1:5)>20mS/m by washing with glycol-ethanol(Tucker, 1985). 
 
c) Calcareous Soils:  With 1M ammonium chloride (NH4Cl) pH 8.5 – used for 
calcareous soils. The concentrations of cations (Ca, Mg, Na and K) were 
measured by flame atomic absorption spectrophotometry (ASS). Modification 
of Method 15C1 (Rayment and Higginson, 1992). 
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4. 4 Building the Soil Database 
The dGPS soil coordinates along with the field data and chemical analysis results 

were entered into spreadsheets and subsequently transferred to GIS software in order 

to build a spatial soil database of the study area.  Recorded information collected 

during the field sampling was available for the surface and at 10cm intervals to a 

maximum depth of 80cm, while chemical properties were associated with depths of 

10 and 30cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9  Soil database schema 

The statistical analysis between soil properties, yield, remote sensing data and terrain 

attributes (described in the following chapters) will be based on soil information, 

largely available from the 10cm and 30cm depths, and as such has been shown in 

Figure 4.9 while Appendix E shows the full soil database schema. 

4. 5 Vegetation Sampling 
Transect sampling was conducted through three crop types namely wheat (Triticum 

aestivum), lupins (Lupinus angustifolius), and canola (Brassica napus) for two 

consecutive years, 2002 and 2003 (i.e. one transect per crop type (paddock) per 

year).  Crop attributes recorded from the three crop types are used to explore the 
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relationships that exist with DMSI bands and vegetation indices.  Table 4.9 provides 

a detailed description of each transect’s attributes. 

Table 4.9  Transect Attributes 

Transect 
Label 

Growing 
Season 

Crop 
Type 

Seeding 
Date 

Seeding 
Rate 
(kg/ha) 

Field 
Sampling 
Date 

Laboratory 
analysis 
Date 

DMSI flight 
date 

Crop age at 
time of 
sampling 
(weeks /days) 

Wh02 2002 Wheat 18/05/02 80 25/09/02 25/09/02 18w / 4d 
Lu02 2002 Lupins 01/06/02 80 23/09/02 24-25/09/02 16w / 2d 
Ca02 2002 Canola 07/05/02 4 18-20/09/02 19-22/09/02 

17/09/02 
19w / 2d  

Wh03 2003 Wheat 21/05/03 70 3/09/03 4/09/03 15w 
Lu03 2003 Lupins 23/04/03 100 27/08/03 27-28/08/03 18w  
Ca03 2003 Canola 29/04/03 3 25/08/03 26-27/08/03 

3/09/03 
16w / 6d 

 

Transects were placed through variable crop growth conditions.  This was crucial to 

the field sampling approach in order to collect variable crop condition and to 

examine if DMSI could depict this variability.  Transect locations were determined 

by a reconnaissance of the farm paddocks in consultation with the farm manager to 

determine areas of variability.  Once these regions were recognised, transects of 

310m in length were constructed through selected paddocks.  Crop attributes were 

recorded at 10m intervals within a 1m2 quadrant equating to 30 sample sites for each 

transect. Thirty sample sites simplify statistical calculations based on the 

assumptions of normality.  The spatial location of each transect was recorded with a 

dGPS. 

 

Field data were collected synchronous with the capture of DMSI.  At each sample 

location crop density, height, LAI and weed infestation was recorded.  The crop 

density was determined using a combination of the row crop and randomly 

distributed plants methods (TopCrop Australia, 1999a) (Table 4.10).  Cihlar et al. 

(1987) provide detailed descriptions for collecting crop attributes to be used in 

remote sensing studies and as such have been adopted here.  Crop height was 

calculated from the mean of five randomly selected plants.  At each sample location, 

five plants were randomly removed and taken to the laboratory to measure the leaf 

area.  All green leaves were stripped from the stems and weighed.  For large leaf 

samples (larger than 30 grams) a sub sample was taken.  The leaf area was then 

determined for the sub sample, and subsequently calculated for the five plants by 

multiplying by the sub sample proportion.  In the year 2002, the average leaf area of 

five plants within the 1m2 quadrant was then determined using the LI-COR LI-

3000A portable area meter coupled with the LI-3050A transparent belt conveyer 
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accessory.  In the year 2003 it was calculated using the LI-COR LI-3100 area meter 

(Figure 4.10 (d)).  This was then converted to a LAI utilising the density calculated at 

each corresponding field location.  For the canola transects, the flower petal area was 

also determined for each sample and a petal area index (PAI) calculated in a similar 

manner to LAI. 

 

One factor influencing seed yield can be the number of flowers present in a crop 

(Yates and Steven, 1987).  The canola plants were flowering and bright yellow when 

sampled in both years.  The PAI was determined to evaluate the impact of flowers on 

the digital numbers (DN) of DMSI bands.  At the time of field data collection, it was 

unknown what relationship the area of petals (which would be related to the number 

of flowers) would have on the final yield of canola.  Figure 4.10 displays a mosaic of 

photos captured during field and laboratory data collection. 

Table 4.10  Methodology to determine crop density 
Crop Cover Visual density Count Method Density m-2 

Row Crops N/A Pm = No. of stems 
 per 50cm row x 2 rows. )(

100
cmspacingrowSeeder

Pm ×  

High P25 = No. of stems in 25cm2 P25 x 16 
Medium P50 = No. of stems in 50cm2 P50 x 4 

Randomly 
distributed 
plants Low P1 = No. of stems in 1m2 P1 
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Figure 4.10  Field data collection and laboratory analysis a) canola sample, b) lupin 
field quadrant, c) lupin transect, d) leaf area machine, e) wheat leaf sample 

 

The results from the field and laboratory data collection are summarised in Table 

4.11 to highlight the variability in crop attributes which are used to assist in 

explaining the relationships with DMSI discussed in Section 4. 7.  There are fewer 

than 30 samples for some of the transects because of contour banks, rocky outcrops, 

water logging or mis-seeding.  The software SPSS (SPSS Inc., 2003) was used for 

the statistical analysis.  The data sets were tested for normality in order to determine 

if parametric or non-parametric approaches would be required in the correlation 

analysis.  When data sets are less than 50 samples the Shapiro-Wilk statistic (Shapiro 

and Wilk, 1965) is calculated to test for normality and when significance is greater 

than 0.05, normality is assumed (Coakes and Steed, 2001). Table 4.11 displays the 

results from the Shapiro-Wilk statistic and whether parametric or non-parametric 

statistical approaches will be applied in the following Section. 

  a) b) c) 

  d) 

 

e) 
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Table 4.11  Basic descriptive statistics of crop attributes recorded on the transects 
Crop 
Attribute 

Statistic Wh02 Lu02 Ca02 Wh03 Lu03 Ca03 Ca03 
PAI 
sites 
(n=20) 

Min 63 29 108 36 33 56 
Max 92 73 170 57 83 137 
Mean 81 53 149 45 64 97 
Std. Dev. 6.78 10.67 15.02 5.96 15.08 23.55 

Height 
(cm) 

CV% 8.37 20.13 10.08 13.24 23.56 24.27 

 

Min 8 11 4 44 3 4 
Max 120 72 88 359 84 148 
Mean 64.7 42.7 26.41 187.3 46.06 52.1 
Std. Dev. 32.89 17.81 23.23 76.19 20.79 28.65 

Density + 
(m-2) 

CV% 50.83 41.71 87.96 40.68 45.14 54.99 

 

Min 5 3 3 10 
Max 75 65 40 100 
Mean 41.07 23.79 19.59 89.72 
Std. Dev. 18.28 15.50 11.51 24.40 
CV% 44.51 65.15 58.75 27.19 
Shaprio-Wilk Sig. 0.323 0.018 0.045 0.000 

Visual % 
of green 
vegetation 
ground 
cover 

Distribution N NP N
ot

 R
ec

or
de

d 
NP NP N

ot
 R

ec
or

de
d 

 

Min 0.02 0.04 0.28 0.15 0.38 0.08 0.08 
Max 1.34 3.59 5.40 1.88 6.22 7.23 7.23 
Mean 0.39 1.25 1.25 0.84 3.07 1.53 1.98 
Std. Dev. 0.30 0.74 1.03 0.43 1.45 1.83 2.06 
CV% 76.92 59.2 82.4 51.19 47.23 119.6 104.04 
Shaprio-Wilk Sig. 0.027 0.104 0.000 0.171 0.995 0.000 0.002 

LAI 

Distribution* NP N NP N N NP NP 
Min 0 0 
Max 0.27 0.06 
Mean 0.082 0.021 
Std. Dev. 0.074 0.015 
CV% 90.24 71.42 
Shaprio-Wilk Sig. 0.008 0.011 

PAI 

Distribution* N
ot

 R
ec

or
de

d 

N
ot

 R
ec

or
de

d 

NP N
ot

 R
ec

or
de

d 

N
ot

 R
ec

or
de

d 

NP 

 

  Wh02 Lu02 Ca02 Wh03 Lu03 Ca03 PAI 
sites 

+ The magnitude of the wheat densities should not be compared between 2002 and 2003 due to a different 
   counting technique, however this does not affect the LAI. 
* N:normal, NP:non-parametric 
CV%: Coefficient of Variation  

4. 6 Generation of Vegetation Indices 
Using the radiometrically corrected DMSI imagery flown in September 2002 and 

2003, five vegetation indices (VI), namely the normalised difference vegetation 

index (NDVI), normalised difference vegetation index green (NDVIgreen), soil 

adjusted vegetation index (SAVI), plant pigment ratio (PPR) and photosynthetic 

vigour ratio (PVR) were generated.  New images for each index were created by 

transforming the pixels according the Equations (2.4) to (2.8) described in Chapter 2. 
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The PPR and PVR were proposed by SpecTerra Services (2003b) in ratio form and 

as such named in that way, but have been manipulated into an index in this research 

for uniformity in the analysis and comparison of vegetation indices.  This concurs 

with Metternicht (2003), who also utilised the PPR and PVR in index form.   

 

The L factor chosen for SAVI (Equation (2.6)) depends on the density of the 

vegetation cover being analysed.  The SAVI has been calculated using three L 

values, 1 for areas of very low vegetation density and 0.5 and 0.25 for intermediate 

and high vegetation density respectively, following Huete (1988). 

4. 7 Relationship between DMSI and Crop Attributes 
Digital numbers were extracted for each band in a 3 x 3 window (6m x 6m) around 

the sample points to accommodate spatial location errors that may occur.  The mean 

digital number for the 9 cells (36m2) at each point within each band and vegetation 

indices were used for the statistical analysis.  When correlating two variables, 

Spearman’s rho correlation coefficient was applied if at least one of the variables was 

non-parametric while Pearson’s correlation coefficient was used otherwise.  Table 

4.12 and Table 4.13 provide the correlation coefficients obtained from the analysis 

between all crop LAI, canola PAI with the DMSI bands and vegetation indices.  

These will be used to examine the relationships between DMSI individual bands, VI 

and crop attributes.  The SAVI and NDVI correlation coefficients will be equal as the 

adjustments made for the vegetation cover (L factor) is the same for all points along 

the transect, as such only NDVI results have been presented. 
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Table 4.12  Correlation coefficient for crop LAI vs Vegetation Indices 

Transect 
Label (n) 

Vegetation 
Index or 

DMSI band 

Correlation 
Coefficient 

LAI vs DMSI 
NDVI 0.130
NDVIgreen 0.244Wh02 (28) 
PPR -0.471**
NDVI 0.502**
NDVIgreen 0.524**Lu02 (29) 
PPR -0.195
NDVI 0.192
NDVIgreen 0.198Ca02 (29) 
PPR 0.136
NDVI 0.760**
NDVIgreen 0.778**Wh03 (29) 
PPR 0.386*
NDVI 0.279
NDVIgreen 0.476*Lu03 (18) 
PPR -0.644**
NDVI 0.428*
NDVIgreen 0.334*Ca03 (29) 
PPR 0.502**

                                      (n) Number of samples.       *. Correlation is significant at the 0.05 level. 
                                                                                 **. Correlation is significant at the 0.01 level. 

Table 4.13  Correlation coefficient for canola PAI and LAI vs DMSI bands and LAI 
vs Visual % Cover 

Transect 
Label (n) 

DMSI 
Band 

Correlation 
Coefficient 

LAI vs DMSI 

Correlation 
Coefficient 

PAI vs DMSI 

Correlation 
Coefficient 

LAI vs Visual% Cover 
B1 -0.334* -0.306
B2 0.003 0.625**
B3 -0.086 0.641**

Ca02 (29) 

B4 0.320 0.399*
B1 -0.499* -0.388*
B2 0.437* 0.260
B3 0.387* 0.172

Ca03 (20) 

B4 0.443* 0.222
Wh02 (28)  0.110
Lu02 (29)  0.506** 
Wh03 (20)  0.815** 
Lu03 (20)  0.330

(n) Number of samples.                           *. Correlation is significant at the 0.05 level. 

                                                               **. Correlation is significant at the 0.01 level. 

4. 8 Factors Affecting the Relationship between DMSI and Crop Attributes 

Analyses of the variability within each transect will be explored in order to determine 

if each transect has been placed through variable conditions and the relationship 

between crop attributes and DMSI will be used to examine the potential of DMSI for 

detecting variability in crop growth attributes.  There are many factors that play a 

role in crop germination and growth.  The number of plants established depends on 

factors such as soil moisture, surface crusting, seedling vigour, sowing depth, 

fertiliser level, disease and insect attack (Martin and Gill, 1993).  However, 
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evaluating these effects is beyond the scope of this research.  Different crop species 

and/or varieties will also react differently to these factors, and so the crop types 

cannot be compared without some standardisation.  The high variability of crop 

attributes provided in the summary table (Table 4.11) is taken as evidence that the 

sampling strategy depicted the variability that can be present in cropped paddocks 

due to factors outlined above. 

4.8.1 Vegetation Indices and LAI 

An examination of the significant correlations between the vegetation indices and 

three crop types (Table 4.12) revealed little consistency over the years.  The only 

significant correlations that were evident in the two years were between NDVIgreen 

and Lupins, and PPR and Wheat (which was negative in 2002 and positive in 2003).  

The number of days elapsed between flights and LAI measurements differ, and the 

crops were not at the same growth stage during both flights, which could have had an 

influence on the results.  There is no evidence that having sampled within eight days 

of the DMSI flight had an effect on the correlation as there is no trend indicating that 

as the number of days between sampling and flight increased the correlations 

decreased.  Therefore it appears that the growth stage of the crop is the dominating 

cause of the lower than expected correlation coefficients.  Figure 4.11 and Figure 

4.12 show the status of the crops when sampled, however variability occurred in each 

transect. 
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Figure 4.11  Status of crops in year 2002: a) Wheat sample, b) Lupin sample, c) 
Canola sample, d) Wheat in field, e) Lupins in field, f) Canola in field 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12  Status of crops in year 2003: a) Wheat sample, b) Lupin sample, c) 
Canola sample, d) Wheat in field, e) Lupins in field, f) Canola in field 

 

Based on a number of investigations (Hatfield et al., 1985; Cloutis et al., 1999; 

Senay et al., 2000; Xiao et al., 2002; Warren and Metternicht, 2005) which produced 

strong relationships between the LAI of crops and spectral response (e.g. r > 0.70) it 

was hypothesised that the strength of (as indicated by the correlation coefficient) 

 

  a) 
 

 b) 
 

c) 
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  a) 
 

  b) 
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correlations between LAI and vegetation indices in this research would be greater.  

This has lead to an examination into the cause of the weaker than expected results.   

 

Bauer (1985) mentions, there is some concern as to whether a single multi-spectral 

measurement (i.e. one flight, as in this research) contains sufficient information to 

reliably estimate LAI of crop canopies.  Previous studies by Sellers (1985) analysed 

the effects of saturation for large LAIs, and leaf angle for small LAIs.  Sellers (1985) 

displayed the saturation effect of a large LAI for growing wheat canopy data with an 

asymptotic curve, which shows the vegetation index1 responses diminishing for LAI 

values above 2.0.  Sellers (1985) mentions that a near maximum absorption value of 

photosynthetically active radiation is achieved at a LAI the range of 2.0 to 3.0.  He 

(1985) also points out that for extreme solar elevations (towards 90o above the 

horizon) and small values of LAI, leaf angle can cause a wide spread in the 

vegetation index response.  For vertical leaves the effect is extreme because of a zero 

value for optical thickness relative to the direct beam of overhead sun and a 

maximum optical thickness at low solar angles.  Horizontal leaves, show no change 

in vegetation index with solar angle, given that the optical thickness is always the 

same with the direction of incident radiation (Sellers, 1985).  These factors might be 

contributing to the weaker than expected correlation in this research. 

 

                                                 
1 )()( cVIScNIRcVIScNIR aaaa +− ; where cNIRa and cVISa are the hemispherically integrated 

albedo for the near-infrared radiation (0.7 -3.0µm) and visible radiation (0.4-0.7µm) 

respectively. 
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Figure 4.13  Relationship between NDVI and Crops’ LAI 

 

Figure 4.13 displays the NDVI and LAI for each transect.  As the DMSI flights have 

not been spectrally calibrated to each other, the comparison between years should be 

based on the response to LAI values not the absolute values of NDVI.  Figure 4.13 

shows the diminishing differences in response of NDVI as LAI increases, especially 

between 2.0 and 3.0, and beyond.  This concurs with Sellers’ (1985) findings and can 

assist in explaining the correlation results for those crops with LAI values exceeding 

3.0.  This is particularly evident for canola (Ca02, Ca03) and lupins (Lu03) as the 

LAI of lupins collected in year 2003 recorded a mean value of 3.07 with values as 

high as 6.22 (Table 4.11).  Aside from the saturation effect due to full canopy cover, 

the relationship between LAI and NDVI can also be affected by factors such as, leaf 

angle and crop flowering stages.  These factors exert different effects on the crops 

analysed and, as a consequence, the data for each crop are analysed separately in the 

following sections. 

4.8.2 Wheat 

There is a moderately linear relationship between the NDVI and LAI for Wh03 

(0.76), though that is not the case for wheat corresponding to year 2002 (0.13) (Table 

4.12) as shown in Figure 4.13.  The majority of the points for Wh02 produce a 
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random scattering around a NDVI of 0.4 irrespective of the LAI, while there is a 

wider range of LAI values for 2003. 

 

Figure 4.11 (a and d) and Figure 4.12 (a and d) display the wheat at the time of 

sampling and show the different wheat growth stages.  The wheat in year 2002 

(Wh02) is at flowering stage, whereas in 2003 (Wh03) it is early to full boot 

(TopCrop Australia, 1999b).  Thus leaf orientation in Wh02 is vertical, while a 

portion of the leaves present a horizontal direction on the Wh03 transect.  The solar 

angle position would be similar for both flights as the two were at similar times of 

the year and close to noon (when the solar zenith angle changes slowly with time).  

As such, the vertical effect of zero value optical thickness for overhead sun (Sellers, 

1985) may be affecting the Wh02 results, producing weak correlations between LAI 

and the VI. 

 

The weeds within the Wh02 transect might also be contributing to the weak 

correlations between NDVI and LAI for that year.  NDVI accounts for all green 

vegetation present in the sample area (i.e. crop and weeds) whereas the LAI 

corresponds to the crop fraction only.  The visual percentage of green vegetation 

ground cover (crop and weeds) was recorded in the field (Table 4.11) and shows that 

2002 had a larger mean (41.1 percent) and maximum (75 percent) compared to 

Wh03, 19.6 percent and 40 percent respectively.  Correlation was calculated between 

the visual percentage cover and LAI (Table 4.13).  The results show that the visual 

percentage cover is strongly correlated to LAI for Wh03 (0.82) but not for Wh02 

(0.11).  This shows the larger density of vegetation cover recorded for Wh02 (crop 

and weeds) caused an increase in the NDVI which is not correlated to LAI.  It could 

also be argued that the wider range of LAI values has lead to the better relationship 

between LAI and NDVI for 2003 however, crop growth factors are also important. 

4.8.3 Lupins 

There is a significant relationship between the NDVI and LAI for Lu02 (r = 0.50) 

though this is not the case for lupins corresponding to year 2003 (r = 0.28) (Table 

4.12) as shown in Figure 4.13.   The LAI for Lu03 scatters around an NDVI of 0.66 

shows the diminishing differences in response of NDVI at LAIs beyond 2.0, as 

reported by Sellers (1985).  The mean LAI for Lu02 and Lu03 was 1.25 and 3.07 
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respectively, while the mean visual percentage cover for Lu02 and Lu03 was 

approximately 24 percent and 90 percent, respectively.  These values also show that 

the canopy saturation effect (Sellers, 1985) occurs for dense levels of vegetation 

cover evident during the year 2003 (Lu03).  This is shown in Figure 4.12 (e) where 

100 percent canopy cover is shown for 2003, while in Figure 4.11 (e) partial canopy 

cover and soil background is visible.  The layers of leaves present in a lupin plant can 

be seen in Figure 4.11 (b) and Figure 4.12 (b), therefore at a certain value of LAI the 

leaves would have reached full canopy cover, while the actual LAI recorded would 

continue to increase. 

 

At the time of sampling the lupins were 16 weeks and 18 weeks of age for Lu02 and 

Lu03 respectively, and for year 2002 (Lu02) the plants ranged from flowering to mid 

podding, while the lupins for year 2003 (Lu03) was in flower abortion to early 

podding stage (Nelson and Delane, 1991).  There were more flowers in the lupin 

crop when surveyed during 2002 than 2003 (Figure 4.11 (e) and Figure 4.12 (e)).  

These differing growth stages of crops between years would in turn result in differing 

reflective responses in DMSI.  

4.8.4 Canola 

Several aspects may be affecting the results of the canola correlations; namely the 

reflectance of the flowers, leaf position and wilting and canopy saturation.  The 

results of the correlation between the PAI and DMSI bands (Table 4.13) show 

consistency over the two years in terms of band 1 (blue) having a negative 

correlation and bands 2 (green), 3 (red), 4 (NIR) showing positive correlations.  As 

yellow results from the additive reflectance of green and red, and the absence of 

blue, these results are logical as the reflectance of the brilliant yellow colour of the 

canola petals is being depicted in the DMSI bands. 

 

The significant correlations between the PAI and DMSI bands (Table 4.13) (e.g. 

0.388 to 0.641) may provide a reason for the weak correlations between DMSI and 

LAI, as the petals are affecting the leaves’ reflectance.  For the 2002 canola transect, 

the PAI correlation coefficients were larger than that of the LAI for Bands 2, 3 and 4 

indicating that the presence of flowers is affecting the results (Table 4.13).  For the 

2003 transect, the PAI correlation coefficients were lower than the LAI for all bands.  
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The mean PAI for 2003 was 0.021 while in 2002 it was 0.082.  Therefore, it is 

thought that when the PAI reaches a certain threshold it hinders the reflectance of 

leaves. 

 

Due to the nature of the canola plant this means the largest photosynthetically active 

area of the canopy (leaves) is shaded by the flowers and their supporting structure 

(Yates and Steven, 1987).  Figure 4.14 displays the mean spectral curves for each 

crop transect in the year 2002 and 2003 and shows that canola has similar or lower 

digital numbers than other crops in the blue band, though higher digital numbers in 

the green and red bands.  This also follows the principle of colour formation (e.g. 

G+R = Y) indicating that the yellow flowers affect the reflectance captured by the 

DMSI. 

 

 

 

 

 

 

 

Figure 4.14  Spectral Curves for (a) 2002; (b) 2003 

 

These results accord with those of Yates and Steven (1987) who found that the 

flowering canopy of canola had a reduction in absorption between the 500 and 

700nm and a slight increase in absorptivity in the 400-500nm portion of the 

spectrum.  Yates and Steven (1987) conclude that the spectral absorptivity of the 

flowering canopy does not give a true indication of the radiation absorbed by its 

leaves, because the flowers themselves absorb a substantial fraction of radiation they 

intercept. 

 

Warren and Metternicht (2005) correlated the NDVI computed from DMSI and the 

LAI of canola, and found a significant correlation of r = 0.893.  The reasons for such 

a strong correlation have depended on the stage of development of the canola plant.  

Their plants were 9.5 weeks old and the growth stage of the plant ranged from 

a) b)



125 

seedling to vegetative (cabbage) whereas in this research the plants were 19 and 17 

weeks of age for year 2002 and 2003 respectively, and at flowering.  During the 

seeding to vegetative stage of crop growth the broad-leaved canola plant masks the 

soil considerably.  While during flowering (post stem extension) the plant can grow 

up to 170cm tall and the leaves are distributed along the stem and thus as the LAI of 

canola is increasing, the percentage of projected foliage cover by the leaves may not 

be increasing at a similar rate. 

4. 9 The Use of DMSI for Characterising Vegetation Variability 
The results indicate that DMSI portrays variability in crop growth and as such may 

be an appropriate remote sensing tool for further analysis inline with site-specific 

crop management applications.  The analysis showed that the cause of the weaker 

correlation for 2002 and 2003 was that the LAI measurements for that year are not 

directly correlated to the percentage of ground cover due to leaf orientation 

(vertical/horizontal), leaf layering, leaf wilting, weed infestation and the impact of 

flowers.  This suggests that a stronger correlation between DMSI and LAI would be 

during an earlier growth stage, prior to flowering and canopy saturation. 

 

However, it is also important to consider at what stage of crop development 

attributes such as the LAI or other growth variables (i.e. biomass), should be 

recorded if the research involves predicting final yield.  Future research needs to 

determine the balance between the spectral and phenological aspects of field crops in 

order to produce sensible models of crop yield where modelling parameters are 

extracted from remotely sensed data. 

 

Further examination of the relationship between the reflectance of flowering canola 

and final yield would be of interest.  The petal reflectance may prove to be a more 

suitable variable to include in crop growth models than the more commonly 

recorded, LAI.  In this way, the capture of remotely sensed data during flowering 

would be more appropriate. 

4. 10 Relationship between DMSI and Yield  
Halloran (2004) investigated whether there exists a relationship between DMSI and 

yield data from the Muresk farm.  Based on her findings it appears that individual 
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bands and vegetation indices representing vegetation variability or both would not 

aid LMU classification. 

 

Halloran (2004) reviews several studies investigating the statistical relationships 

between remotely sensed data and yield for inclusion in crop growth models, where 

yield predictions seem accurate.  The review suggested that there would also be a 

relationship for Muresk with DMSI.  

 

A detailed methodology and discussion of results shows the limiting factors is 

provided by Halloran (2004) and summarised here.  Her results indicate that there is 

a weak to moderate relationship between DMSI and yield data.  The potential factors 

affecting the results have been attributed to the following. 

(1) The scale of the study.  Corner et al. (1998) found that at a paddock scale 

reasonable correlations were achieved, whereas at a sub-paddock level, as in 

Halloran’s (2004) study, there were weak relationships only. 

(2) The drier than average conditions in 2002 hindered crop growth along with the 

weed and/or insect infestations and occurrences of frost, which were not closely 

monitored. 

The strongest correlating crops with DMSI were Lupins and Canola which still 

produced correlation coefficients’ below 0.4.  Vegetation indices tended to correlate 

stronger than individual bands, although the two varied amongst crop types.  

Halloran (2004) found that imagery acquired closer to harvest produced the strongest 

results.  This concurs with Pinter et al. (2003) who mentions in general the reliability 

of remotely sensed imagery to estimate yields decreases as the time before harvest 

increases, this is because there is more opportunity for factors such as drought, insect 

infestation and disease to impact yield.   

4. 11 Summary  
Chapter 4 describes the soil sampling design, which incorporates the use of slope and 

DMSI data to gather an understanding of the variability of landscape attributes 

present across the study area.  The design is intended to sample more intensively in 

areas of heterogeneous soil properties and less often in homogeneous zones to 

optimise the approach.  The field data collection and laboratory analysis of the soil 

properties are described, culminating in a database of 250 soil sampling points and 
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their associated properties.  These will be used for statistical analysis and 

classification of LMUs which has been described in Chapter 7. 

 

This chapter also provides discussion on factors that may affect relationships 

between DMSI and LAI for different crop types, and it is concluded that DMSI has 

the potential to monitor crop growth conditions.  However, without appropriate field 

scouting, it is difficult to assume that changes in reflectance are purely associated 

with variability in crop growth.  As such vegetation indices derived from the DMSI 

imagery will not be included in the LMU classification (Chapter 7) as a layer that 

depicts vegetation variability.  However the RI will be analysed in Chapter 6 to 

assess its relationship in areas of bare soil. 
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CHAPTER 5  

GENERATION OF TOPOGRAPHIC ATTRIBUTES AND ANCILLARY 
POINT DATA 

This chapter describes the topographic attributes that were generated for input into 

the LMU classification.  The topographic position as described by landform, 

compound topographic index (CTI) and slope have been identified as important 

factors driving soil forming processes in the landscape.  A unique piece of software 

called LANDFORM  was developed by Klingseisen (2004b; Klingseisen et al., 2004), 

in conjunction with this research.  LANDFORM is a customised GIS application for 

semi-automated landform classification based on the definitions by Speight (1990).  

The CTI originally formulated by Bevan and Kirkby (1979) has been implemented to 

provide an indication of the relative average soil wetness, as represented by the 

spatial location of a point within the catchment.  Slope has been described as the 

single most important element of surface form since all surfaces are composed of 

slopes; gravitational force, controlled by slope angle, drives geomorphic processes 

(Evans, 1972). 

 

This chapter also explains the process followed for extracting all variables at soil 

points, and the remaining study area for further analysis discussed in Chapter 6 in 

preparation for the LMU classification described in Chapter 7.  It outlines the yield 

data available and the output consisting of two sets of yield data; (i) an estimated 

potential yield value at soil point locations encompassing yield data from 1996-2003 

(inclusive); and (ii) actual yield at the soil point location during 2002 and 2003 

harvest.  The regression model used for the estimation of potential yield values at 

sample point locations is shown and the two yield data sets derived are utilised for 

subsequent analysis in Chapter 6. 

5. 1 Landform Classification 
Several Landform classification techniques have been reviewed in Chapter 2 

highlighting Speight (1974; 1990) as a key Australian classification.  Coops’ et al. 

(1998) methodology has provided key background information in relation to 

algorithm development and threshold values, and as such it has been utilised in 

conjunction with Speight’s (1990) descriptions of morphological types for the 
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development of LANDFORM (Klingseisen, 2004b; Klingseisen et al., 2004), 

whereby, GeoMedia GIS technology has been customised to implement the software.  

Users can test default threshold values to generate landforms and then adjust them to 

suit a specific landscape type and DEM resolution.  The resulting output landform 

classification can be used as a layer of input parameters in the classification of 

LMUs. 

5. 2 Implementation of Landform Classification 
Landform Classification has been performed using LANDFORM (version 1.0) 

(Klingseisen, 2004b; Klingseisen et al., 2004) and details of the algorithms can be 

found in Klingseisen (2004a) and Klingseisen et al. (2004).  Figure 5.1 provides an 

overview of the LANDFORM classification process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Flow chart of implementation of Landform (adapted from Klingseisen, 
2004a) 

 

Appendix F provides a step by step description of the commands and threshold 

values used for the Muresk study area while an overview is explained hereafter. 
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Based on the Landmonitor DEM, (smoothed using the techniques proposed by 

Caccetta (2000) as explained in Section 3. 3), five topographic attribute layers were 

generated namely; slope, local relief, elevation percentile, plan and profile curvature.  

These were subsequently used as input layers for deriving the primary landform 

classes.  The primary landforms were initially formed as individual layers and then 

combined to create a single primary landforms layer, which consists of four classes 

namely; crests, simple slopes, depressions and flats.  The default values specified in 

each case are outlined in Table 5.1 and explained in more detail hereafter. 

Table 5.1  Default values used for the generation of primary landforms 

Primary Landform Topographic Attribute values 

Crest Elevation Percentile >6.5 and Local Relief >7.5 
Plan Curvature >0.0 or Profile Curvature >0.0  

Simple Slopes Remaining areas not already classified as Crests, 
Depressions and Flats 

Depressions Elevation Percentile <0.4 or Plan Curvature <-0.50 

Connect Depressions Elevation Percentile <0.48; Acceptable elevation 
difference 0.00. 

Flats Slope % < 3; minimum radius 20m. 
 

The crest default values specified in Table 5.1 ensure that crests follow Speight’s 

(1990) definition, in that they are typically areas that stand above most other points 

in the adjacent terrain and have smoothly convex plan or profile curvature (or both).  

The local relief value ensures that a crest is a significant elevation above the local 

terrain (Klingseisen, 2004a). 

 

Depressions, as defined by Speight (1990), are areas that stand below most other 

points in the local terrain and concave upwards.  These requirements are fulfilled by 

the negative plan curvature and low elevation percentile thresholds specified in Table 

5.1.  In rather flat areas of the terrain, distinct depressions are not present and, as 

such, the depressions identified solely on these parameters do not form a connected 

depression network (Klingseisen, 2004a).  As a consequence, Klingseisen (2004b) 

developed the depression connector function to form logical connections between the 

initial classified depressions (step 8 in Figure 5.1).  The function begins with cells 

classified as depressions and investigates the neighbouring cells that lie in a 

downflow direction.  If these cells are below a specified elevation percentile (Table 

5.1), they are subsequently classified as depressions (Klingseisen, 2004a).  
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Furthermore, setting the acceptable elevation difference to zero ensures that the 

subsequent cells in the downflow direction are restricted to equal or lower elevation 

(Klingseisen, 2004b). 

 

Speight (1990) defines flats as areas with a slope gradient of less than 3 percent.  

However, this means that small areas and thin strips could be formed into flats.  

Coops et al. (1998) suggest introducing an additional parameter to overcome this 

anomaly.  Flats have to be of a minimum width and, although not explicitly defined 

by Speight (1990), ensures the minimum dimension of a 20m radius for landform 

elements at map scales of 1:10,000.  This concurs with Speight’s (1990) 

recommendation.  

 

Landform elements are arranged (in sequence) down a slope line called a 

toposequence and the position in the toposequence is used to define the unique 

morphological type of slope elements that can occur between a crest and depression 

(Speight, 1990) (Table 2.10).  Using Boolean algebra, simple slopes are classified as 

areas not previously classified as crests, flat or depressions in step 10 of Figure 5.1.  

The final classifier (step 11 in Figure 5.1) combines the four primary landforms into 

one layer prioritised as; crests > depressions > flats > simple slopes. 

 

Step 12 in the generation of landforms is called the slope classifier which subdivides 

the simple slopes into upper, mid and lower slope classes.  The definition of these 

classes is presented in Table 2.10 and Figure 5.2 shows their position in a 

toposequence.  

 

 

 

 

 

 

Figure 5.2  Position of slope elements in a toposequence 
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The slope classifier function generates slope profiles in areas of simple slopes and 

then scans the profiles for breaks in slope gradient.  Cells within simple slopes zones 

are then subdivided into upper, mid and lower slope classes, depending on the 

number of breakpoints along a profile and the relative position of a cell (Klingseisen, 

2004b).  The resultant slope layer is smoothed, with an optional noise reduction filter 

(e.g. median filter), and combined with the primary landform classes to derive the 

final landform class map (Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  Map of landform classes across Muresk farm 

5.2.1 Comparison between Semi-automated and Manually Derived Landforms 

In order to determine the effectiveness of the LANDFORM software, Metternicht et 

al. (2005) compare the similarity between the map generated by LANDFORM and 

the visual photo interpretation conducted by a soil expert over the same area, using a 

fuzzy set algorithm.  This validation compared the results of LANDFORM against a 
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landform map produced by ‘traditional’ photo interpretation methods following 

guidelines established by Zinck (1988) to determine geomorphic units.  Using the 

Map Comparison Kit (MCK) software the fuzzy set approach proposed by Hagen 

(2003) was used to compare the similarity of both outputs.  

 

The fuzzy map comparison yielded an average similarity of 0.61.  The areas with the 

highest data matching discrepancies tend to correspond with flat and simple slope 

landform elements.  Metternicht et al. (2005) attributed this error to the difficulties in 

expert classification of subtle changes in slope percentage. 

 

Metternicht et al. (2005) found that the most significant differences between outputs 

of the methodologies can be observed visually, and concluded that while the expert 

recognises landforms as larger homogeneous areas, LANDFORM generates smaller 

landform elements.  The differences were attributed to the expert having difficulty 

estimating slope gradation and the inability to determine breaks in slope objectively, 

when differences are subtle.  This resulted in the identification of larger simple slope 

areas, instead of the subdivision of upper, mid or lower slope, and areas, with slope 

less than 3 percent, were often not identified as flats by the expert.  However, experts 

are superior at identifying natural drainage systems with connected depressions.  

These could not be detected by LANDFORM due to roads or other anthropogenic 

buildings causing barriers in the DEM.  

 

Metternicht et al. (2005) conclude that the advantages of LANDFORM, and other 

automated processes, is the standardisation, increased objectivity and repeatability of 

the landform classification procedure.  This would be particularly evident if used in 

case studies over large areas (e.g. catchments, regions), as along with the 

standardisation of the landforms, there is considerable reduction in time required to 

map them compared to using manual photo interpretation and cartographic processes. 

5.2.2 Forming Landform Variables 

Landforms were required to be converted into landform variables so that they could 

be used in the LMU classification (detailed in Chapter 7).  The conversion has been 

achieved using principal coordinate analysis. 
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The principal coordinate analysis is based on a similarity matrix, constructed 

according to the following rational.  Upper slope (US), mid slope (MS) and lower 

slope (LS) are all subsets of simple slope (SS) if a breakpoint(s) (significant change 

in slope) is found in the slope profile of the SS area.  An area will remain classified 

as SS if no breakpoints are found along the profile.  In the case of 1 breakpoint the 

SS area is divided into upper and lower slope.  However, when 2 or more breakpoints 

are detected, SS it divided into US, LS and one or more MS subsets.  Flats (F) can be 

located high in the terrain adjacent crests (C); however they are more likely to be 

close to depression (D) along the valley floors.  A flat is classified as an area with <3 

percent slope and a minimum width of 40m.  The spatial adjacency of the landform 

elements present on the Muresk study area was also taken into consideration and the 

following landform similarity matrix formed.  

Table 5.2.  The landform similarity matrix 

 C US MS LS SS F D 
Crest 1       
Upper slope 0.2 1      
Mid slope    0 0.4 1     
Lower slope    0 0.5 0.5 1    
Simple slope 0.2 0.5 0.4 0.5 1   
Flat 0.2 0.2 0.1 0.2 0.2 1  
Depression    0    0 0.2 0.2 0.2 0.3 1 

 

The matrix indicates, for instance, that simple slopes are more similar to upper, mid 

and lower slopes than they are to crests, flats and depressions.  Based on the 

information above, the best possible allocation has been made; nevertheless a high 

degree of subjectivity will always be apparent in allocating such values.  It is 

recommended that the landform similarity matrix should be based on a particular 

study area.  If the landform is not being used as the topographic model, then the 

rationale behind forming the topographic landscape units will need to be 

reconsidered to create the similarity matrix. 

 

Using the landform similarity matrix (Table 5.2), principal coordinate analysis was 

performed specifying 6 dimensions.  The percentage of variance accounted for by 

each principal coordinate (PCO1-6) is displayed in Table 5.3, and Figure 5.4 shows 

the relative positions of each landform when plotted using the PCO1-6 scores. 
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Table 5.3.  Percentage variance accounted for by 7 landform classes 

PCO 1 2 3 4 5 6 
Percentage of Variance 29.96 23.29 14.90 12.93 10.08 8.84
Cumulative percentage 29.96 53.25 68.15 81.08 91.16 100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4  Plot of principal coordinate scores 

 

The first two principal coordinates account for over 50 percent of the variance and 

together separate slopes, crests, flats and depressions.  Different slopes are separated 

by PCO3-6.  The principal coordinate scores (Table 5.4) were subsequently used to 

form six landform variables, which could be treated as continuous data types in the 

LMU classification. 
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Table 5.4  Principal coordinate scores for landform PC’s 

 PCO1 PCO2 PCO3 PCO4 PCO5 PCO6 
Crest -0.446 -0.763 0.203 0.193 -0.086 -0.121
Upper slope 0.366 -0.233 -0.075 -0.386 -0.293 0.332
Mid slope 0.514 0.072 -0.155 0.570 0.081 0.171
Lower slope 0.398 0.252 0.005 -0.069 -0.237 -0.477
Simple slope 0.239 -0.024 0.300 -0.255 0.518 -0.022
Flat -0.510 0.094 -0.634 -0.117 0.154 -0.044
Depression -0.561 0.603 0.356 0.064 -0.136 0.161

5. 3 Compound Topographic Index 
The use of the compound topographic index (CTI) Equation (5.1) (Gessler et al., 

1995; Irvin et al., 1995) in soil landscape studies has been thoroughly reviewed in 

Chapter 2, and identified as a secondary topographic attribute that represents the 

topographic control on soil wetness.  The CTI is computed as follows; 

CTI = ln (As / tan β) (5.1)

where As is the specific catchment area (area m2 per unit width orthogonal to the flow 

of direction), and β is the slope angle (in degrees) (Gessler et al., 1995; Wilson and 

Gallant, 2000).  The CTI can also be calculated using the TAPES-G program (Irvin 

et al., 1995).  The equation incorporates seven key assumptions and limitations 

which are mentioned in Wilson and Gallant (2000 pg. 108).  The specific catchment 

area As is the ratio of the contributing area to the contour length, A/l.  The upslope 

contributing area (A) is the area above a certain length of contour that contributes 

flow across the contour (Figure 5.5) (Gallant and Wilson, 2000).  For a raster data 

type, the contour length (l) is approximately the size of a grid cell, and in the 

simplest case, the contributing area is determined by the number of cells contributing 

flow to a grid cell (Gallant and Wilson, 2000).  

 

 

 

 

 

Figure 5.5  Upslope contributing area (A) is the area of land upslope of a length of 
contour (l). Specific catchment area (As) is A/l (reproduced from Gallant and Wilson, 

2000) 
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The calculation of upslope contributing area (A) and resultant specific catchment area 

(As), depends on the algorithm for the calculation of flow direction.  Gallant and 

Wilson (2000) provide four different approaches for calculating contributing areas:  

D8, Rho8, FD8/FRho8, and DEMON.  Only the D8 (deterministic eight node) 

algorithm has been used in this instance.  However, other algorithms have been 

analysed by Gallant and Wilson (2000) and they mention that the D8 algorithm is 

frequently used primarily because of its simplicity as has been done here.  

Depressions and flat areas must be dealt with prior to the application of these 

algorithms. 

 

The D8 algorithm guarantees that the slope calculated at a cell corresponds to the 

slope in the primary flow direction (Gallant and Wilson, 2000).  Flow is only 

possible to one of eight nearest neighbours (based on primary flow direction).  

However, D8 is subject to limitations such as an inability to model flow divergence.  

Nonetheless it is adequate for delineating catchment boundaries (Gallant and Wilson, 

2000).  The number of cells that drain into each cell is determined post calculation of 

flow direction for each cell.  The upslope contributing area (A) is then determined by 

multiplying the number of contributing cells with the cell resolution.  The flow 

width, w (in terms of cells i.e. l in Figure 5.5) is equal to the cell width for flow in all 

cardinal directions and the cell diagonal for the flow in diagonal directions: 

                                                  h               cardinal directions 

                                    w =                                                        where h =cell width 

                                                  2h          diagonal directions 

 

Specific catchment area (As) is calculated as the ratio of the contributing area to the 

flow width, w (Equation (5.2)). 

As = A / w (5.2)

Therefore, for a cell resolution of 10m, in cardinal directions w = 10 and for diagonal 

directions w = 14.142.  

 

The D8 algorithm calculates slope using the steepest downhill slope to one of the 

eight nearest neighbours according to the following equation; 
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where; 1)( =Φ i  for cardinal (north, south, east, and west) neighbours (i =2, 4, 6 and 

8); 2)( =Φ i  for diagonal neighbours (in order to account for the extra distance to 

those cells) (Gallant and Wilson, 2000); and h is the cell width.  For the computation 

of CTI, if the slope (S) is in units of percent the tan is not taken, as slope (in a 

mathematical sense) = rise/run = tan β.  However, slope percent is often S x 100 and 

therefore, the slope computed from the algorithm may need to be divided by 100.  It 

is envisaged that the CTI will provide information about topographic position and 

relative average soil wetness for the LMU classification (Chapter 7), as the 

contributing area represents how much water arrives at a specific location while the 

slope gives an indication on how long it will linger. 

5. 4 Implementation of CTI  
The CTI was generated with GeoMedia Grid using the mathematical concepts 

described above (Section 5. 3), and the series of steps flowcharted in Figure 5.6.  A 

more detailed description of the commands used and values set, are described in 

Appendix G along with a detailed description of the algorithm for the slope function 

(Appendix H). 

 

Like the landform generation, the CTI is generated from the Landmonitor DEM, 

which was smoothed using the algorithm proposed by Caccetta (2000).  Firstly, a 

“depressionless” DEM is formed filling pits, ponds and depressions, which is useful 

for hydrological analysis commands.  The downhill path is then computed to produce 

a grid layer of downhill path directions, where the value of each cell represents the 

direction of steepest slope (Keigan Systems Inc., 2003b).  When based on a 

“depressionless” DEM, flow is possible in only one of the eight directions.  This is 

synonymous with the D8 algorithm discussed in Section 5. 3.  The upslope 

contributing area (m2) is calculated by firstly generating a downhill accumulation 

layer that assigns each cell a value representing the number of cells on a direct uphill 

path from the selected cell (Keigan Systems Inc., 2003b).  The cell value is 

multiplied by the cell area, which in this case is 100m2 (i.e. 10m cell resolution).
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Figure 5.6  Flow chart of implementation of CTI in GeoMedia Grid 

 

The specific catchment area (As) layer is generated by dividing the catchment area by 

flow width (w).  Flow width is determined using a series of steps (6-8 as shown in 

Figure 5.6), which assigns a value of w=10 and w≈14.14 for cells with flow in a 

cardinal and diagonal direction, respectively.  The maximum slope in percent is 

generated and subsequently divided by 100 to compute S. This is because the slope 

command in GeoMedia Grid follows Equation (5.3) of Gallant and Wilson (2000) as 

shown in steps 10 and 11 of Figure 5.6.  Finally CTI is calculated as follows: 

( )SAselog  (5.4)

where As is the Specific Catchment Area layer and S the slope layer. 

 

In order to preclude the generation of very large values along major streams and void 

values due to a denominator of zero for slope, the parameters of McKenzie and Ryan 

(1999) were adopted for the generation of CTI, by editing cells with a value of 0 in 

the slope layer to 0.0001 and assigning a value of 100,000 to values ≥ 100,000 in the 

specific catchment area layer.  McKenzie and Ryan (1999) used the CTI as one of 

the parameters for a digital stratification of the landscape in which they limited the 

contributing area (i.e. upslope contributing area in m2) to a maximum value of 
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<100,000m2.  They also recoded zero slope cells with a small value (0.01 percent) to 

avoid a denominator of zero, and slopes above 300 percent were set to that value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  CTI layer across Muresk Farm 

 

The CTI in Figure 5.7 is somewhat stripy.  This is indicative of CTI layers created 

using D8 algorithm approaches.  The image could be enhanced visually by applying 

a smoothing filter or more simply by re-classing the values into integer ranges 

following Herron et al. (2004) and Moore et al. (1993a).  Herron et al. (2004) 

computed the CTI and reclassed the values into integer classes with all CTI values 

greater than 19 being classed as 19, as these areas coincide with stream networks, 

while Moore et al. (1993a) provides a 3D representation of CTI for the study area in 

which integer classes have been selected.  However, this would be for only visual 

enhancement and therefore has not been performed.  Instead, CTI was grouped into 

0.05 range classes, and these values were extracted for further analysis.  Some cells 
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(5 percent of the layer) within the final CTI layer have a void value.  This was 

derived from a value of zero present within the Specific Catchment Area layer, i.e. 

cells, which are high in the landscape with no other cells contributing flow to that 

cell, as is the case along crests. 

5. 5 Generation of a Slope Percentage Map 

Slope percentage has been identified as one of the most highly correlated terrain 

attributes to soil attributes (Moore et al., 1993a), and identified as the single most 

important element of surface form (Evans, 1972).  Therefore it will subsequently be 

analysed for its use in the LMU classification in Chapter 7.  The slope in percent was 

generated across the study area using GeoMedia Grid and the algorithm is described 

in Appendix H.  The slope layer was imported into ARCGIS for subsequent 

extraction of data.  Figure 5.8 displays the slope layer generated across the Muresk 

farm.  It shows that the majority of the Muresk farm consists of gently inclined 

slopes with a mean slope of 5 percent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  Slope percentage map of the Muresk farm based on McDonald et al. 
(1990) slope classes  
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5. 6 Extracting Ancillary Data at Soil Point Locations 
For analysis between variables, all variables need to be extracted at the 250 soil point 

locations surveyed in the field, so they can be used as input data for the LMU 

classification.  However, yield data is not available for all 250 soil points and 

therefore it will not be used as an input to the LMU classification.  Nevertheless, 

yield data will be used for statistical analysis against soil properties to provide an 

indication of soil variables in order to explain the variability in yield (Chapter 6).   

 

The extraction of yield data at points have been defined by two yield data sets 

explained in Section 5. 7.  The soil physical and chemical properties, at each of the 

soil points, has been stored against a unique identifier with associated geographical 

coordinates in the soil database.  The unique identifier has been used for the 

following extraction of ancillary variables. 

5.6.1 Extracting Topographic Attributes 

Landform, CTI and slope were extracted at each soil point location as they will be 

used as inputs in the LMU classification described in Chapter 7.  Firstly, the 

landform, CTI and slope layers were exported from GeoMedia Grid software and 

imported into ArcGIS as raw binary files.  For each soil point the topographic value 

for the 10m cell was extracted.  For the CTI layer, some soil points did not have any 

data, as they were associated with a specific catchment area of zero and therefore a 

void CTI value was assigned instead.  Figure 5.9 displays a section of the study area 

where the soil sampling points are overlayed on the landform map. 
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Crest (C); Upper slope (US); Mid slope (MS); Simple slope (SS); Lower slope (LS); Depression (D) 

Figure 5.9  Soil sampling points converted to 10m raster cells overlayed on 
landforms 

5.6.2 Extracting DMSI for Soil Points in Areas without Vegetation Cover  

DMSI data based on each soil point location will be used as an input in the LMU 

classification described in Chapter 7.  The Redness Index (RI) (Escadafal and Huete, 

1991)(Equation (2.9)) was generated for the entire study area and thus it was 

appropriate to determine DMSI locations with minimum vegetation cover referred to 

in this case as bare soil.  Two flights (Table 3.3: Flights 1 and 4) of DMSI data were 

acquired during June, in order to capture the farm with minimum vegetation cover. 

 

Seeding offers an optimal time when most of the soil is bare.  In liaison with the farm 

manager, the appropriate time for image capture was determined to be when the 

majority of the crops were seeded, but prior to extensive leaf growth.  The window of 

capture time is varied by the winter break, crop types and cloud cover.  During 2002 

the imagery was captured on 28th June (Table 3.3: Flight 1) while in 2004 the 

imagery was captured on 15th June (Flight 4).  The other two flights of imagery, 

acquired during September, also provide some locations where vegetation cover is 

minimal and as a consequence, will be analysed. 

 

Figure 5.10 provides and overview of the steps used to extract DMSI data at each 

soil point ensuring that the location has minimum vegetation cover.  The steps are 

discussed hereafter. 
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Figure 5.10  Overview of process for extracting DMSI data at soil points with bare 
soil 

5.6.2.1 Selecting Locations with Minimum Vegetation Cover 

The DMSI data has a spatial resolution of 2m: However, when trying to create a 

similarity matrix for the entire property, a 2m grid will form over 3 million points for 

the study area.  This scenario requires a powerful computer to process the data.  

Therefore, DMSI data were resampled to a 10m grid.  This divided the total points by 

25 using the median value.  There are several options that could be considered 

including the mean, mode and minimum.   

 

In this study the median was used.  The mean or median are the most common choice 

when the objective is neither to highlight nor smooth features in the imagery.  The 

mean and median value provides a good measure of the central value of the data; 

however the mean can be influenced by extreme values and as such if the distribution 

of the data is unknown using the median would be more sound. 
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Not all soil points are located in cropped areas and nor will they have minimum 

vegetation cover in all years.  During the June flights (1 and 4) image capture, field 

data were collected (Section 3. 5) in order to provide an indication of the amount of 

vegetation present at the time of flight.  A visual density was not recorded in the 

field, but was estimated from the photos captured.  Several paddocks were visited on 

that day, photos taken and crop and vegetation attributes recorded.  The NDVI 

(Equation (2.4)) has been calculated for Flights 1 and 4 and compared against field 

samples to determine a NDVI threshold value that indicates minimum vegetation 

cover.  This provides a quantitative method of determining whether a point location 

can be considered for analysis between spectral data and soil properties.  By 

comparing the field vegetation density measures with the NDVI for June 2002 and 

2004, it appears that a NDVI equal to 0 is the appropriate threshold, as any value 

higher than this may contain vegetation cover at levels greater than 10 percent. 

 

A NDVI layer was generated for each flight and the value of NDVI extracted for 

each soil point.  Table 5.5 provides an indication of the number of sampling points 

from each flight with NDVI ≤ 0.  This can subsequently be used for extracting DMSI 

values and then used in the statistical analysis with soil properties. 

Table 5.5  Number of soil points with NDVI ≤0 

 June 2002 Sept 2002 Sept 2003 June 2004 Total Points 
Unique points 10 11 0 185 206 
 

From Table 5.5 all soil points available for the June 2004 image will be used with 

DMSI from that associated image.  Any new unique points for Sept 2002 followed 

by June 2002 will be used with DMSI extracted from there associated image.  The 

order of imagery is selected based on the descending order of number of unique 

points available with NDVI ≤ 0. 

 

5. 7 Yield Data Sets 
A discussion and presentation of the available yield data are in Section 3. 4 however, 

the following table (Table 5.6) summarised the number of points where yield data are 
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available, the range of crop types and years for each of the yield data sets.  The 

method for extracting the yield data is explained below. 

Table 5.6  A description of the two yield data sets and their attributes 

Yield 
Data Set Description 

No. of points 
with yield 
data 

Range of 
Crop 
Types 

Range of 
Years 

1 Estimated Potential Yield 
at Soil Points 

184 7 7 

2 Actual Yield at Soil Points 125 6 2 
 

5.7.1 Extraction of Interpolated Yield Values 

Using ArcGIS spatial analyst, a 3 x 3 (12m x 12m) neighbourhood window was 

generated around each soil point.  Figure 5.11 provides a visual display of some of 

the soil sampling points and their 3 x 3 window overlayed on a true colour DMSI 

composite (Blue: Band 1, Green: Band 2, Red: Band 3). 

 

 

 

 

 

 

 

 

 

 

Figure 5.11  Soil sampling points with 3 x 3 neighbourhood window overlayed on a 
true colour DMSI composite 

 

Using the interpolated surface as a base, the mean yield value (kg/ha) for the 3 x 3 

window (i.e. nine, 4m2 raster cells) was extracted and recorded along with the 

associated crop type and year.  In the same manner, the mean variance value from the 

variance surface created during the interpolation was also extracted.  During the 

extraction process it was recognised that some of the soil sample points lay at some 

distance (or on the perimeter) from the field recorded GPS yield points that were 

used for the interpolation (e.g. point’s 157 and 158 Figure 5.12).  As such, the 
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distance from these points or perimeter location was noted, as it was thought that this 

could provide useful information during the regression analysis.  If some points were 

giving large standardised residuals or leverage in the model, it may be due to the 

confidence of the interpolation.  A spreadsheet containing each soil point with the 

attributes discussed above, as listed in Table 5.7 was formed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12  Soil sampling points and their distance from field recorded GPS yield 
points overlayed on yield interpolated surface 

 

Table 5.7  List of attributes recorded for soil and vegetation point locations during 
yield extraction 

Attribute 
Paddock Number 
Crop Type 
Year 
Sample Point Number 
Mean Yield (kg/ha) 
St. Deviation 
Distance from GPS yield 
points (m) 
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5.7.2 Potential Yield Estimation at Sample Points (Yield Data Set 1) 

Due to concerns of herbicide resistance, plants or weeds that host disease, fertiliser 

history, nutrient balance, stubble residue (TopCrop Australia, 1999a) and economical 

factors, paddocks undergo a rotation of crop types.  Consequently, each paddock and 

thus the soil sampling point location within them, will have experienced a range of 

crop types between the years 1996 – 2003 inclusive (excluding 2001, as yield data 

was not recorded).  Yield data for paddocks from which GPS yield data was recorded 

were interpolated to produce continuous surfaces of estimates of yield at each soil 

sample point (Figure 5.12).  Some soil sampling points were not located in arable 

areas of the farm, and thus not all 250 points have interpolated yield values. 

 

A standardised value of yield is required at each soil sampling point location, as an 

indicator of the yield potential across all years and crop types.  Such a value is 

calculated by adjusting the interpolated yields at each sampling point according to 

the effects of crop type and year on measured yield values.  A multiple regression 

model incorporating crop type and year effects (i.e. weather impacts), as well as, 

sample point effects, was used to estimate a potential yield at each point for use in 

subsequent analyses.  The dependent variable in the regression was the interpolated 

yield available for each soil sampling point and year. 

5.7.2.1 Multiple Regression Analysis 

The data were imported into GenStat® (Laws Agricultural Trust, 2003a) for analysis 

and model building. Crop Type, Year and Sample Pt, are all set as factors2 while 

Mean Yield (kg/ha) is a variate2.  In total there were 691 records of yield for 184 soil 

sample points with yield data available.  The regression model fitted was as follows; 

jkkjiijk CYrYrCSY ++++= μ  (5.5)

where ijkY  is the average interpolated yield for sampling point i in year k with crop 

type j; μ  is intercept; iS  is the effect of sample point i; jC  is the effect of crop j; 

kYr is the effect of year k; and jkCYr  is the effect of the interaction between crop j 

and year k. 

                                                 
2 Structures that store lists of numbers in GenStat® are known as variates whereas the categorical 
structures are called factors Laws Agricultural Trust (2003b) Introduction, GenStat for Windows 7th 
Edition, VSN International, Oxford, UK. 336 pp. 
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Figure 5.13  Plot of residuals against fitted values following Equation (5.5) 

 

Statistical assumptions underlying regression analysis were examined using plots of 

residuals.  The plot of residuals against fitted values (Figure 5.13) indicates that the 

variance of the residuals increases with mean yield.  This is of some concern.  

However, it was eliminated by transforming the yield data using a natural log 

transformation.  Subsequent models incorporated the log Yield data, and the second 

model tested took the form; 

jkkjiijke CYrYrCSY ++++= μ)(log  (5.6)

Three sample points (i.e. 167, 169 and 176) were measured only once in 1998 for 

oats sown, and were the only points where oats were measured in 1998.  Therefore, a 

good estimate of adjusted yield at these sample points is not possible unless a lack of 

significant difference between oats and another crop type is shown.  The most logical 

comparison is between oats and oaten hay, and this was performed and found to be 

highly significant (P<0.001; see Appendix I) indicating that sample points 167, 169 

and 176 should be removed from the data set. 

 

The regression analysis highlighted three records with large standardised residuals 

and 21 records with high leverage.  The later were all sampling points that had been 

measured only once and thus were left in the data set.  However, the three records 

with large standardised residuals were removed from the following model, as those 

sampling points had yield data associated on four or more occasions. 
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The final regression model accounted for 54.2 percent of the variance in log Yield 

with a standard error of 0.204 and was highly significant (P<0.001).  The residual 

plot shown in Figure 5.14 indicates an adequate model and therefore, this model was 

used to estimate yield values for each sampling point in the model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14  Plot of residuals against fitted values for the final model 

5.7.2.2 Estimation of Potential Yield at Sample Point locations 

Based on the above model, standardised log yield values, representing an average 

across crop types and years, were estimated for each of the 181 sample points.  

Appendix J lists the log Yield, transformed Yield (kg/ha) and standard error 

associated with their estimations.  This will be utilised as the potential estimated 

value at available soil points in subsequent analysis. 
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Figure 5.15.  Frequency distribution of the Standardised Yield Estimations for the 
Soil Points  

5.7.3 Actual Yield Data at Soil Points for 2002 and 2003 (Yield Data Set 2) 

Yield data set 2 contains the actual yield data recorded at the soil points that are 

available for the years 2002 and 2003.  The values were extracted as described in 

Section 5.7.1 and their frequency is displayed in Figure 5.16 and Figure 5.17. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16.  Frequency distribution of the yield 2002 at soil points 
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Figure 5.17.  Frequency distribution of the yield 2003 at soil points 

5. 8 Extracting Ancillary Data for the Mask Area 

DMSI, Landform, CTI and Slope are the ancillary data available for the entire study 

area.  These data layers were extracted and stored in a spreadsheet to be utilised in 

Part B of the LMU classification described in Chapter 7. 

 

The entire study area includes areas of remnant vegetation, rocky outcrops, 

creeklines, tracks, and dams.  A layer was formed by heads-up digitizing to exclude 

these type of features on a true colour base image and the remaining area to be 

included in the classification has been named the mask area.  The mask area file was 

converted to a raster layer of 10m pixel resolution and subsequently, each 10m pixel 

allocated an ID, and its easting and northing assigned based on the centre of each 

10m pixel.  This formed a file of 118864 points which equates to approximately 

1190ha of arable land (approximately 67 percent of total area of Muresk farm) to be 

included in the classification. 

5.8.1 Extracting Topographic and DMSI Variables on a 10m Grid 

Using the mask points located at the centre of each 10m pixel, the landforms, CTI, 

slope% and the Redness Index (RI) were extracted for the 118864 pixels in the mask 

region of the study area.  Of these points, 242 are soil points and, as such, only 

118622 will be included as the mask area for the LMU classification and the 

remaining 242 as soil points. 
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The following flow diagram (Figure 5.18) displays the methodology for extracting 

DMSI across the entire study area on a 10m grid.  Ensuring pixels used with the RI 

are associated with bare soil, in a similar manner as described for the soil points in 

Section 5.6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18  Overview of process for extracting DMSI data from 10m cells 

5. 9 Summary 
This chapter has presented the generation of landforms, CTI and slope layers.  All 

three layers were generated using GeoMedia software and will be analysed for their 

appropriateness as inputs to the LMU classification in the following chapters.  

Landform variables have been formed from the landforms using principal coordinate 

analysis.  This chapter has also described the extraction of variables to be used for 

statistical analysis and classification of LMUs.  The process of estimating a potential 

yield value at soil points to be used in subsequent analysis has been shown.  The 
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following chapter (6) uses these extracted data layers in statistical analysis to 

determine the appropriate input attributes in the LMU classification (Chapter 7). 
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CHAPTER 6  

SELECTION OF VARIABLES FOR USE IN FORMING LAND 
MANAGEMENT UNITS 

The purpose of this chapter is to determine what information should be used to form 

land management units (LMUs) and to examine the methods available for making 

this decision.  In this study a very large number of soil properties were measured at 

two depths at each soil sampling point.  It is expected that only a subset of these 

properties will be required to form LMUs and that data collection will be restricted 

to these variables if the methodology is successfully applied on-farm afterwards.  

 

However, since the subset of soil properties selected for forming LMUs at Muresk 

may not be the best set in diverse environments, it is also important to examine ways 

of selecting an appropriate subset.  In addition to the soil properties at soil sampling 

points, other data sets available include yield measurements over seven years and a 

number of ancillary variables (landform, CTI, slope and RI) at very high resolution 

which cover the remaining study area.  The yield data will be used in statistical 

analysis with the soil properties and ancillary variables to determine the landscape 

attributes most influencing yield variability. 

6. 1 Selecting and Deriving Stable Soil Properties from Existing Literature 
Based on the literature review undertaken in Section 2.2.1, stable soil properties that 

are important for plant growth are; position in the landscape (topography), texture 

(and coarse fragments), structure (stability), organic matter, nutrient availability, pH, 

salinity / sodicity balance, depth of topsoil and depth to restricted layer.  The soil 

properties available for this project that could be considered to represent these 

aspects of soil are; landform, CTI, slope, soil particle size distribution (percentage of 

sand, silt and clay) and percentage of stones, organic carbon, ECEC, pH, EC, ESP, 

depth of A-horizon and depth to restricted layer (i.e. compaction or impeding stones) 

(Table 6.1). 
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Table 6.1  Stable soil properties and variables from literature review 

Property Variable 
Topography Landform, CTI, Slope 
Texture Percentage of sand, silt and clay 
Coarse fragments Percentage of stones 
Organic matter Percentage of Organic Carbon 
Capacity of soil to store nutrients 
cations 

Effective cation exchange capacity (ECEC) 

Acidity/Alkalinity pH 
Salinity EC 
Sodicity Exchangeable sodium percentage (ESP) 
Soil stability Ca:Mg ratio 
Depth of topsoil Depth of A-Horizon 
Depth of restricted layer Depth of compaction or impeding stones 

 

Some derivative soil properties needed to be formed from the soil properties that 

were determined in the chemical analysis of soils (Section 4. 3).  The effective cation 

exchange capacity (ECEC) in this research has been calculated as the sum of the Ca, 

Mg, Na, K, Al and Mn (Allen, 2004) as shown in Equation (6.1) (see Section 2.2.1.5 

for further information).  The exchangeable sodium percentage (ESP) is determined 

as the percentage of sodium relative to ECEC (Allen, 2004) shown in Equation (6.2), 

while the Calcium to Magnesium ratio was determined as the proportion of Ca 

(me%) divided by the proportion of Mg (me%) (Allen, 2004) shown in Equation 

(6.3). 

 

( )MnAlKNaMgCaECEC +++++=  
 

(6.1)

100∗= ECEC
NaESP  

 
(6.2)

Mg
CaMgCa =:  (6.3)

 

The ancillary variables, landform, CTI and slope percentage account for the 

topographic position and are considered an indication of the potential water 

availability in the terrain.  The redness index (RI) derived from DMSI provides an 

indication of soil colour as an indirect indicator of soil type as mentioned in Section 

2.3.2.4.4. 
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6. 2 Selecting Variables Based on their Association with Crop Yield 
One rationale for selecting variables for use in forming LMUs is that they can be 

viewed as drivers influencing the productivity of a paddock.  The following 

statistical analysis was performed to determine the variables that explain the 

variability in yield.  The potential yield, actual yield in the year 2002 and actual yield 

in the year 2003 data sets (Section 5. 7) will be used to this end.  

6.2.1 Transforming Variables 

Regression analysis is generally most successful when the explanatory (independent) 

variables have reasonably symmetric distributions.  Accordingly, the histogram and 

the skewness statistic were used to examine visually and statistically the distribution 

of each variable.  Following this a decision was made whether to transform the data 

to form more symmetrical distributions. 

 

Variables with an absolute skewness coefficient greater than one were transformed.  

Subsequently box-plots were used to detect outliers, and extreme outliers were 

examined and removed if appropriate.  Table 6.2 lists the variables examined and the 

transformation applied (if required) while Appendix K and L provide the summary 

statistics, histograms and box-plots for each of the variables.  The resultant normally 

distributed variables will be used in the statistical analysis presented in the following 

sections. 



158 

Table 6.2  Variable transformations and resultant skewness 

Variable Transformation 

Resultant 
No. of 
Sample 
Points 

Resultant 
skewness Variable Name 

A-Horizon  
depth (cm) Loge(A-Horizon+1) 246 -0.814 Log_A_HORIZ 

Restricted Depth (cm)  229 0.800 RESTRICT_DPTH_CM 
10_Stones_%  250 0.762 S10_STONES_% 
10_EC(1:5) Loge(10_EC) 250 0.729 Log_10_EC 
10_pHw Loge(10_pHw+1) 250 0.737 Log_10pHw 
10_pHca Loge(10_pHca+1) 250 0.880 Log_10_pHca 
10_Sand Loge(100-10_Sand) 250 0.646 Log_10_SAND% 
10_Silt Loge(10_Silt) 250 0.368 Log_10_SILT 
10_Clay Loge(10_Clay) 249 0.714 Log_10_CLAY% 
10_OrgC  250 0.944 S10_OrgC_% 
10_ECEC Loge(10_ECEC) 250 0.480 Log_10_ECEC 
10_ESP Loge(10_ESP+1) 250 0.931 Log_10_ESP 
10_Ca_Mg  250 0.188 S10_Ca_Mg 
30_Stones_% Loge(30_Stones+1) 231 -0.908 Log_30_STONES 
30_EC(1:5) Loge(30_EC+1) 230 0.830 Log_30_EC 
30_pHw  231 0.418 S30_pH_H20 
30_pHca  231 0.494 S30_pH_CaCl2 
30_Sand Loge(100-30_Sand) 231 0.348 Log_30_SAND% 
30_Silt Loge(30_Silt) 231 0.078 Log_30_Silt 
30_Clay Loge(30_Clay) 231 0.253 Log_30_CLAY 
30_OrgC Loge(30_OrgC+1) 230 0.930 Log_30_OrgC 
30_ECEC Loge(30_ECEC+1) 231 0.814 Log_30_ECEC 
30_ESP Loge(30_ESP+1) 230 0.935 Log_30_ESP 
30_Ca_Mg  231 0.860 S30_Ca_Mg 
CTI Loge(CTI) 237 -0.085 LogCTI 

Slope%_DEM Loge 
(Slope%DEM+10) 

250 0.167 LogSlope%DEM 
RI_10m  206 -0.092 RI_10m 
PredYield   181 0.1 PredYield  
Yield 2002   125 0.5 Yield 2002  
Yield 2003   114 0 Yield 2003  
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6.2.2 Correlation Analysis 

Initially, all pairwise correlations were calculated between soil properties, 

topographic variables, the redness index (RI) and yield (Table 6.3) to examine 

possible variables related to yield. 

Table 6.3  Correlation coefficients from analysis between yield and other variables 
Potential Yield 

(n=132) 
Actual Yield 2002 

(n=98) 
Actual Yield 2003 

(n=85) Variable 
Correlation Probability Correlation Probability Correlation Probability 

Log_A_HORIZ 0.052 0.551 0.118 0.245 -0.020 0.855 
Restrict_Depth -0.121 0.167 0.106 0.301 -0.224 * 
S10_STONES_% 0.167 0.055 0.078 0.445 0.237 * 
Log_10_EC 0.002 0.979 -0.110 0.282 0.030 0.788 
Log_10pHw -0.045 0.608 -0.265 ** 0.125 0.255 
Log_10_pHca -0.069 0.432 -0.277 ** 0.105 0.337 
Log_10_SAND% a 0.022 0.805 -0.298 ** 0.323 ** 
Log_10_SILT 0.053 0.546 -0.329 ** 0.279 ** 
Log_10_CLAY% -0.006 0.942 -0.239 * 0.333 ** 
S10_OrgC_% -0.022 0.806 -0.328 ** 0.169 0.122 
Log_10_ECEC -0.021 0.815 -0.354 ** 0.238 * 
Log_10_ESP 0.180 * 0.319 ** 0.154 0.159 
S10_Ca_Mg 0.083 0.344 -0.045 0.659 -0.099 0.368 
Log_30_STONES 0.148 0.091 -0.003 0.979 0.157 0.152 
Log_30_EC -0.085 0.332 -0.135 0.186 0.136 0.214 
S30_pH_H20 -0.200 * -0.072 0.482 0.090 0.415 
S30_pH_CaCl2 -0.171 0.052 -0.060 0.559 0.123 0.263 
Log_30_SAND% a -0.046 0.603 -0.243 * 0.184 0.092 
Log_30_Silt 0.005 0.956 -0.355 ** 0.309 ** 
Log_30_CLAY -0.027 0.760 -0.188 0.064 0.145 0.185 
Log_30_OrgC -0.027 0.759 -0.232 * 0.183 0.094 
Log_30_ECEC -0.045 0.605 -0.201 * 0.147 0.178 
Log_30_ESP -0.207 * -0.028 0.788 0.009 0.937 
S30_Ca_Mg 0.121 0.167 0.050 0.628 -0.033 0.768 
LogCTI -0.009 0.915 -0.052 0.609 0.173 0.114 
LogSlope%DEM 0.148 0.091 0.148 0.146 0.066 0.549 
RI_10m 0.117 0.181 0.063 0.538 0.031 0.776 

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
a: An inverse transformation was performed on Sand and subsequently correlations that would 
normally be expected to be negative are positive and vice versa. 
n:  number of records 

 

Given the large number of samples it is surprising that there are minimal significant 

correlations.  Only three soil properties have a significant correlation with potential 

yield, although they are all weak (r ≤ 0.207).  ESP at 10cm depth has a significant 

positive correlation with potential yield, whereas ESP at 30cm has a significant 
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negative correlation. pHw at 30cm depth also has a significant negative correlation 

with potential yield. 

 

Correlations with actual yield in 2002 and 2003 show more promising results.  In 

2002 at the 10cm depth, properties pH (water and Ca), sand, silt, clay, organic carbon 

and ECEC are all significantly negatively correlated with actual yield, while ESP has 

a significant positive correlation.  At a depth of 30cm, sand, silt, organic carbon and 

ECEC have significant negative correlations.  In 2003 actual yield has a significant 

negative correlation with restricted depth and significant positive correlations with 

stones, sand, silt, clay and ECEC at 10cm depth.  At the 30cm depth a significant 

positive correlation with silt is evident.  

 

In summary, there are significant correlations between actual yield and soil texture, 

organic matter and capacity of the soil to store nutrient cations at both 10cm and 

30cm depths, and between actual yield and restricted depth, course fragments, pH 

and ESP at the 10cm depth, however they are all weak (r ≤ 0.355).  The number of 

significant correlations between soil properties and yield are not only fewer than 

expected, but the nature of the correlations varies between 2002 and 2003.  Perhaps 

this can be attributed to the large difference in the total rainfall between those years 

(177mm) (Figure 3.4).  It is notable that the topographic variables or RI are not 

significantly correlated with any of the yield data sets.  

6.2.3 Associations between Yield and Landforms 

A simple analysis of variance was performed to examine the effect of landform on 

potential yield.  The statistical assumptions underlying analysis of variance were 

examined using plots of residuals.  The effect of landform was subdivided into the 

difference between primary landforms (Crests, Primary slopes, Flats and 

Depressions) and the difference between slope classes (Upper slope, Mid slope, 

Simple slope and Lower slope).  This subdivision of landform effects is appropriate 

because the slope classes (US, MS, SS, LS) are a further subdivision of existing 

simple slopes, which have been labelled primary slopes in this case (Section 5. 2). 

 

There was no effect of primary landforms (P=0.514) or slope classes (P=0.635) in 

2003 but there were significant differences in 2002 (P=0.045 and P=0.054, 
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respectively) when rainfall was less.  It appears that crop growth was limited in some 

landforms in 2002 due to low rainfall, as average yields for primary slopes and crests 

in 2002 are higher than average yields for flats and depressions (Table 6.4).  The 

potential yield, which is an average over several years (maximum 7 years), showed a 

slight effect of primary landforms (P=0.067) with crests and primary slopes having 

higher average yields than flats.  

Table 6.4  ANOVA for Yield against Landforms 
  LANDFORMS   

Variable C US MS SS LS PS F D 
Significance 
of Primary 
Landforms 

Significance 
of Slope 
Classes 

Mean 1661 1553 1581 1657 1541 1574 1307 1501 
N 15 23 46 17 37 123 14 29 

Potential 
Yield  
kg/ha S.Error 102 83 59 96 65 36 106 73 

0.067 0.784 

Mean 1441 1198 1667 1391 1418 1468 1063 1111 
N 12 19 35 9 22 85 10 18 

Yield 
2002 
kg/ha S.Error 178 139 102 201 129 67 195 145 

0.045 0.054 

Mean 2128 2284 2113 2483 2158 2190 2693 2399 
N 10 13 35 8 27 83 3 18 

Yield 
2003 
kg/ha S.Error 244 216 131 275 150 85 446 182 

0.514 0.635 

Crest (C); Upper slope (US); Mid slope (MS); Simple slope (SS); Lower slope (LS) 
Primary slope (PS) = (US+MS+SS+LS); Flat (F); Depression (D). 

6.2.4 Multiple Regression between Yield and Soil Properties 

Many of the soil properties recorded are correlated and the pairwise correlations 

examined above, while identifying individual variables related to yield, do not 

identify a group of variables for use in forming LMUs.  Therefore, further analysis 

through multiple regression was performed in an endeavour to choose a group of soil 

properties that are influencing final yield.  

 

Backward elimination multiple regression was performed using yield as a response 

variate and the soil properties as explanatory variables.  In addition, a factor 

characterising crop type (wheat, barley, canola, lupins, oats and oaten hay) was 

included as an explanatory factor.  The pHw at 10cm and 30cm depths was not 

included in the models, as it is highly correlated with pHca.  The percentage of silt at 

10cm and 30cm depth was also not included as silt percent, sand percent and clay 

percent sum to 100 percent.  In backward elimination the full model, including all 

explanatory variables, is fitted initially.  Terms are then progressively dropped 

according to the value of the variance ratio corresponding to the change in the 

regression mean square when a particular term is dropped.  Terms giving the smallest 
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variance ratio are dropped first.  The process continues until the dropping of any term 

gives a variance ratio greater than a specified value; 2 in this case.  Statistical 

assumptions underlying regression analysis were examined using plots of residuals.  

The significance, percentage of variance accounted for and residual standard 

deviation are shown for the full model and final model in each case, as well as, the 

significance of the terms remaining in the final model (Table 6.5). 

Table 6.5  Regression results from analysis between yield and soil properties 

Variable 

Potential Yield  
Significance of 

terms remaining in 
Model 

Actual Yield 2002 
Significance of 

terms remaining 
in Model 

Actual Yield 2003 
Significance of 

terms remaining 
in Model 

Log_A_HORIZ   0.055 
Restrict_Depth    
S10_STONES_% 0.035 0.019 0.007 
Log_10_EC  0.001  
Log_10_pHca   0.006 
Log_10_SAND%    
Log_10_CLAY%    
S10_OrgC_%   0.007 
Log_10_ECEC   <0.001 
Log_10_ESP <0.001 <0.001  
S10_Ca_Mg 0.060  0.085 
Log_30_STONES    
Log_30_EC    
S30_pH_CaCl2   0.006 
Log_30_SAND%  0.103  
Log_30_CLAY  0.160 0.002 
Log_30_OrgC    
Log_30_ECEC   0.001 
Log_30_ESP <0.001 0.008  
S30_Ca_Mg 0.128  0.078 
Crop Type (Factor) Not Included <0.001 <0.001 

Sig 0.012 <0.001 <0.001 
Variance % 12.2% 40.1% 52.6% 

Full 
Model  

Residual SD 373 485 539 
Sig <0.001 <0.001 <0.001 
Variance % 16.3% 47.2% 55.9% 

Final 
Model 

Residual SD 364 456 520 
 

Although only a low percentage of variance in yield has been accounted for, 

especially for potential yield <20 percent, these regressions indicate groups of soil 

properties that are associated with yield.  Soil properties that had a significant effect 

on potential yield or actual yield in 2002 or 2003 include: stones, EC, pHca, OrgC%, 

ECEC and ESP at 10cm depth, and pHca, clay, ECEC and ESP at 30cm depth. 
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6.2.5 Discussion of Results 

It is not within the scope of this thesis to analyse the strengths and weaknesses of 

various soil measurements with respect to land management. Rather, given a 

comprehensive set of measurements, the intention is to examine methods for 

choosing a subset of those variables and choose a subset appropriate for this 

particular study area.  

 

The small percentage of variance in yield, explained by the multiple regressions 

incorporating a wide range of soil properties and crop types, highlights that other 

variables not considered have a significant influence on final yield.  In dryland 

agriculture, rainfall is an overriding, uncontrollable limiting factor on productivity.  

However, multiple regressions for potential yield, which is effectively adjusted for 

rainfall since year effects have been removed (see Section 5.7.2), explain 

considerably less variance than those for yield in 2002 and 2003.  Factors, such as 

weed and insect infestation, frost, fertilizer application and management decisions, 

are among those not considered in this analysis which has a substantial effect on 

yield. 

 

In Western Australia, texture groups derived from particle size distribution are based 

largely on clay content (Purdie, 1998).  Kramer and Boyer (1995) mention that, in 

general, larger clay content increases the storage capacity of soils for water and 

minerals (cation exchange capacity) but decreases aeration which is essential for 

good root growth and functioning.  In turn, the proportion of clay in the soil is crucial 

in determining the suitability of a soil for plant growth (Kramer and Boyer, 1995). 



164 

Sand Sandy
loam

Loam Silt
loam

Clay
loam

Clay

10

20

30

40

Available water

Unavailable water

Total water

Lower storage limit

Upper storage
limit

Vo
lu

m
e 

pe
r c

en
t s

oi
l w

at
er

0.1

0.2

0.3

0.4

W
at

er
 c

on
te

nt
 (c

m
/c

m
 o

f s
oi

l)

 

 

 

 

 

 

 

 

 

Figure 6.1  The relative amounts of water available and unavailable for plant growth 
in soils with textures from sand to clay (redrawn from Kramer 1983, as shown in 

Kramer and Boyer, 1995) 

 

If factors such as the interception of plant canopy, evaporation, transpiration, deep 

drainage, surface runoff and lateral water movement are ignored, and instead the 

relationship between available water and texture (Figure 6.1) are viewed; it can be 

seen that as the percentage of clay increases, the available water to the plant 

increases (with the exclusion of heavy clays) leading to positive correlation between 

yield and percentage of clay in years when rainfall is not limiting.  However, as the 

percentage of clay increases, the lower storage limit also increases.  In years of low 

rainfall the lower storage limit might not be reached in soils with large clay content, 

and thus, water would not be available to the plant leading to a negative correlation 

between yield and percentage of clay. 

 

Not only was rainfall below average in 2002 but the two years prior were in fact 

limiting in terms of water availability to plant growth (Figure 3.3 and Figure 3.4)  

There was a lack of water penetrating the soil over several years and subsequently, it 

would take a considerable amount of rain to fill the lower storage limit of soils.  

Rainfall in 2003 was average for the study area.  This helps to explain why 

correlations between clay content and yield have been weaker than expected and also 

alternate, from negative in 2002 to positive in 2003.  
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Other soil properties show a similar pattern of correlations to yield in 2002 and 2003, 

to the percentage of clay, because of their correlation with percentage of clay.  

Log_10_SAND%, Log_10_Silt and Log_10_ECEC are highly correlated with 

Log_10_CLAY% (0.958, 0.797 and 0.793, respectively) while Log_10_pHw, 

Log_10_pHca and S10_OrgC% have lower correlations with Log_10_CLAY% 

(0.287, 0.306 and 0.422, respectively) (Appendix M). 

 

In summary, the results from the statistical analysis between yield and potential 

predictors for LMUs does not provide thorough evidence to determine which 

variables should be used in the classification.  As such, principal components 

analysis was undertaken and is explained hereafter. 

6. 3 Selecting Variables Using Principal Component Analysis 
The next step in determining important variables to include in defining LMUs was to 

perform principal components analysis.  This analysis enabled the identification of 

variables that explain variance between sampling points and to examine relationships 

between variables in the multivariate data set.  In a principal components analysis, 

the first principal component (PC1) is the linear combination of the variables and 

accounts for the largest percentage of variance between sampling points.  The second 

principal component (PC2) is independent of PC1 and is the linear combination of 

the variables and accounts for the next largest percentage of variance between the 

sampling points and so on. 

 

The biplot is a graph of PC1 versus PC2 (or other pairs of components) and shows 

both the sampling points and the original variables as vectors.  It is the two 

dimensional graph that shows the separation between sampling points best and is 

most useful when the first two principal components account for a large proportion 

of variation between sampling points.  The biplot can be used to examine the 

relationships between variables, as well as the relative position of the sampling 

points.  In this case, biplots have been used for exploratory data analysis to indicate 

the level of redundancy in the data set (i.e. variables that are highly correlated) and 

assist with the selection of appropriate variables for subsequent analysis.  The 

principal components were calculated and the biplots were drawn using GenStat®. 
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Table 6.6  Percentage of variance explained by each principal component and 
loadings of variables for each principal component from the 250 soil points 

 PC1 PC2 PC3 PC4 PC5 
Percentage  37.95 11.82 8.86 5.87 5.58 
Cumulative 37.95 49.77 58.63 64.50 70.08 
Variable Loadings 
Log_10_SAND% a -0.300 -0.057 -0.093 0.099 -0.003 
Log_30_SAND% a -0.282 0.012 -0.123 0.206 0.003 
Log_10_SILT -0.277 -0.091 -0.100 0.056 -0.030 
Log_30_Silt -0.233 -0.045 -0.104 0.079 -0.139 
Log_10_CLAY% -0.289 -0.022 -0.086 0.130 0.024 
Log_30_CLAY -0.267 0.008 -0.116 0.211 0.042 
Log_10_ECEC -0.292 -0.112 0.172 -0.054 0.090 
Log_30_ECEC -0.296 0.001 -0.086 0.204 -0.069 
S10_OrgC_% -0.195 -0.061 0.055 -0.191 0.324 
Log_30_OrgC -0.226 -0.241 -0.061 0.130 0.058 
S10_Ca_Mg 0.147 -0.317 0.097 -0.049 0.000 
S30_Ca_Mg 0.165 -0.350 0.029 -0.084 0.031 
Log_10_ESP 0.006 0.378 -0.166 -0.219 0.142 
Log_30_ESP -0.035 0.480 -0.012 -0.238 0.058 
Log_10_EC -0.183 -0.099 0.121 -0.322 0.460 
Log_30_EC -0.192 0.089 0.061 -0.256 0.171 
Log_10pHw -0.147 -0.075 0.532 -0.091 -0.148 
S30_pH_H20 -0.205 0.319 0.084 -0.060 -0.212 
Log_10_pHca -0.155 -0.103 0.540 -0.116 -0.004 
S30_pH_CaCl2 -0.201 0.266 0.109 -0.111 -0.196 
S10_STONES_% -0.112 -0.199 -0.328 -0.291 0.042 
Log_30_STONES -0.035 -0.157 -0.276 -0.542 -0.262 
Log_A_HORIZ 0.056 0.044 -0.118 0.135 0.608 
Restrict Depth 0.134 0.203 0.206 0.247 0.214 

a: An inverse transformation was performed on Sand and subsequently loadings that would normally 
be expected to be positive are negative and vice versa. 
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a) PC 1 & 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) PC 1 & 3 

Figure 6.2  Biplots based on 250 soil points and the stable soil variables.                    
a) PC1 vs PC2; b) PC1 vs PC3 
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a) PC 1 & 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) PC 1 & 5 

Figure 6.3  Biplots based on 250 soil points and the stable soil variables.                   
a) PC1 vs PC4; b) PC1 vs PC5 
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The first five principal components, based on the correlation between all 

measurements from 10cm and 30cm depths at all 250 soil points (Appendix M), 

account for 70.08 percent of the total variance between soil sampling points (Table 

6.6).  PC1 (Table 6.6 and Figure 6.2) is associated with texture (Sand%, Silt%, 

Clay%) and ECEC for the 10cm and 30cm depths.  ESP at 10cm and 30cm depths, 

dominates PC2 along with the Ca:Mg ratio (10cm and 30cm) and to a lesser extent, 

pHw and pHca at 30cm.  PC3 is loaded with pHw and pHca at 10cm and the 

percentage of stones at 10cm and 30cm.  The percentage of stones at 10cm and 30cm 

along with restricted depth and EC at 10cm and 30cm, contributed to PC4; while 

PC5 is loaded with A-horizon, EC and OrgC at 10cm.  

Table 6.7  Correlation of texture and ECEC  

a: Shaded variables have been removed from further analysis 
b: An inverse transformation was performed on Sand and subsequently correlations that would 
normally be expected to be negative are positive and vice versa. 
 

The biplots and principal component loadings indicate that ECEC and texture 

variables are correlated with one another.  As explained in the literature review 

Section 2.2.1.1, soil texture is described by the percentage of sand, silt and clay sized 

particles in each soil sample.  These variables are correlated with one another (Table 

6.7) because they sum to 100 percent.  Sand at 10cm is very highly correlated with 

silt, clay and ECEC at 10cm and ECEC and sand at 30cm.  The sand at 30cm is also 

very highly correlated with clay and ECEC at 30cm.  Some of these variables can be 

eliminated without removing any information about the differences between 

sampling points. 

 

As mentioned, texture groups from particle size distribution in Western Australia are 

based largely on clay content, so for subsequent analysis of results it would be useful 

to retain the clay content.  Therefore, the sand variable was removed for both depths.  

Variables a 
log 

10_Sand 
log 

10_Silt 
log 

10_Clay 
log 

10_ECEC 
log 

30_Sand 
log 

30_Silt 
log 

30_Clay 
log 30 
ECEC 

Log10_Sandb 1               
Log10_Silt 0.935 1             
Log10_Clay 0.958 0.797 1           
Log10_ECEC 0.833 0.782 0.793 1         
Log30_Sandb 0.721 0.636 0.725 0.603 1       
Log30_Silt 0.681 0.717 0.577 0.580 0.613 1     
Log30_Clay 0.675 0.569 0.705 0.566 0.979 0.471 1   
Log30_ECEC 0.779 0.701 0.771 0.709 0.888 0.629 0.852 1 
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After excluding sand at 10cm and 30cm, many of the remaining stronger correlations 

in Table 6.7 involve ECEC at 10cm or 30cm.  This indicates that at least one of these 

variables may be eliminated.  ECEC at 30cm was retained while ECEC at 10cm was 

removed.  This is because; as ECEC relates to the capacity of the soil to store 

nutrients it was thought this was more important at root depth (i.e. 30cm).  The 

percentage of silt particles at 10cm and 30cm depths are also highly correlated, as 

such only silt at 10cm was retained.  Of the variables retained, ECEC at 30cm 

provides an indication of the soils capacity to store nutrients, whilst clay content at 

10cm and 30cm and silt content at 10cm, provide a texture component at both 

depths. 

 

Other variables that are correlated (i.e. correlation coefficient greater than r = 0.500) 

are; OrgC at 10cm with EC (r=0.603) and silt (r=0.553) at 10cm; EC at 30cm with 

sand (r=0.507), clay (r=0.511) and ECEC (r=0.510) at 30cm; pHca at 30cm with 

ECEC at 30cm (r=0.539); OrgC at 30cm with silt (r=0.545) and clay (r=0.594) at 

10cm and clay (r=0.594) and ECEC (r=0.680) at 30cm; ESP at 30cm with ESP at 

10cm (r=0.525)and Ca:Mg at 30cm (r=-0.522). 

 

As indicated previously the OrgC at 30cm is correlated with silt and with clay at 

10cm and clay and ECEC at 30cm.  It also has moderate correlation with OrgC 

(r=0.437), EC (r=0.390), stones (r=0.354) and pHca  (r=0.301) at 10cm and restricted 

depth (r=-0.363).  OrgC at 30cm does not dominate any of the PC’s while OrgC at 

10cm is dominant in PC5.  Expectedly, the amount of OrgC is much higher at a 

depth of 10cm than at 30cm (median of 1.12 vs 0.26, respectively) as it consists of 

plants and animals at various stages of decomposition. 

 

Significant correlations exist between actual yield in 2002 and OrgC at 10cm (r=-

0.328) and OrgC at 30cm (r=-0.232) (Table 6.3).  OrgC at 10cm has a slightly 

stronger correlation with actual yield 2002, it is dominant in PC5 and is not 

correlated with as many other soil properties as OrgC at 30cm.  As a consequence, 

OrgC at 30cm was removed. 
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The Ca:Mg ratio at both 10cm and 30cm are dominant in PC2 (Table 6.6).  As 

Ca:Mg at 10cm and 30cm have a mixture of moderate correlation with other 

variables, only Ca:Mg at 30cm was retained. 

 

ESP at 30cm is moderately correlated with ESP at 10cm (r=0.525) and Ca:Mg at 

30cm (r=-0.522).  ESP at 10cm and 30cm are dominant in PC2 with ESP at 30cm 

being the most dominant.  Although both weak, ESP at 30cm is a less weak 

correlation with potential yield (r=-0.207) than ESP at 10cm (r=0.180).  In view of 

the summary statistics of the ESP levels against indicators of sodic soils (Section 

2.2.1.7), 98.5 percent of the samples at 10cm are non sodic with the remaining 1.5 

percent being sodic, while ESP at 30cm has 85 percent of samples non sodic, 12 

percent sodic and 3 percent highly sodic.  Thus, ESP at 30cm provides a better 

indication of levels that may affect yield and it was therefore retained, while ESP at 

10cm was eliminated.  

 

The evaluation of the summary statistics for EC at 10cm and 30cm and the 

relationship of these values to effects on plant growth show that, 97 percent of 

samples from 10cm and 30cm are non saline, and the remaining 3 percent only 

slightly saline (i.e. minimal effect on plant growth or only very sensitive plants 

affected).  There is only one outlier in the 30cm depth which is highly saline. 

 

This indicates that soil salinity is currently not a land degradation issue at Muresk.  

As the levels of EC are not affecting plant growth, both variables could be excluded 

from the analysis.  However, EC at 30cm was retained because its high loading in 

PC4 indicates that it can assist in explaining the variability in the data set.  

Furthermore, subsurface salinity is a good indicator of the possibility of surface 

salinity occurring in the future.  Neither EC at 10cm or 30cm are significantly 

correlated with potential yield.  Therefore, EC at 10cm was eliminated. 

 

The biplots and correlation matrix indicate that pHw and pHca are very highly 

correlated at both 10cm and 30cm (0.960 and 0.956, respectively).  pHca represents 

field conditions better than when pH is measured in water (Section 2.2.1.6) and 

consequently, pHw was removed. 
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Examining the correlations of pHca and other soil properties, pHca at 10cm has 

significant correlations with clay at 10cm (r=0.306), EC at 30cm (r=0.335), while 

pHca at 30cm is correlated with silt at 10cm (r=0.424), clay at 10cm (r=0.431), OrgC 

at 10cm (r=0.308), EC at 30cm (r=0.451), clay at 30cm (r=0.352), ECEC at 30cm 

(r=0.539), ESP at 30cm (r=0.322) and Ca:Mg at 30cm (r=-0.389).  pHca at 30cm is 

dominant in PC2 and less so in PC1, while pHca at 10cm is dominant in PC3.  

 

In relation to the amount of pHca that can cause restriction to plant growth, soils with 

a pHca < 4.8 are acidic and may have associated aluminium toxicity (Section 2.2.1.6) 

while soils that are alkaline have a pHw >7.5, and is equivalent to pHca of 

approximately > 6.5 (Figure 6.4) which can lead to sodicity (Section 2.2.1.7).  Only 2 

percent of the soils at 10cm, and 7 percent of the soils at 30cm are alkaline, while 34 

percent at 10cm and 9 percent at 30cm are acidic.  Given the dominance of pHca at 

both 10cm and 30cm depths in the principal components and the percentage of 

samples that indicate acidity, it would be useful to include both variables in the LMU 

classification. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4  Relationship between pHw and pHca for 10 and 30cm depths.  Linear 
best fit regression line.  

 

The percentage of stones at 10cm and 30cm have high loadings in PC3 and PC4, 

with stones at 10cm being slightly greater for PC3 and stones at 30cm dominating 

PC4.  There is a significant positive correlation between the two stone variables 

r = 0.96 

r = 0.96 
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(r=0.432) and between stones at 10cm and restricted depth (r=-0.385).  This indicates 

that shallower soils have a higher percentage of stones.  In terms of correlations with 

potential yield, the stone variables were very close to significant with a correlation 

coefficient of 0.167 for stones at 10cm and 0.148 with stones at 30cm (Table 6.3).  

As discussed in Section 2.2.1.2, gravely soils or soils with a high percentage of 

stones, can be superior as they can have improved drainage and clayey subsoils, 

providing water storage.  Stones at 10cm have a stronger correlation with potential 

yield and significant correlation with actual yield in 2003 (Table 6.3).  This provides 

useful information about sample points.  However, stones at 30cm are eliminated 

from further analysis because they have weaker correlations to yield. 

 

Thirteen soil variables have been chosen to define LMUs on the basis of their 

contribution to the principal components, and their correlations with other soil 

variables, yield and properties that affect plant growth (Table 6.8). 

Table 6.8  List of 13 soil variables to be included in LMU model 

Variable 
Log_A_Horizon 
Restricted Depth (cm) 
S10_STONES_% 
Log_10_pHca 
Log_10_SILT 
Log_10_CLAY% 
S10_OrgC 
Log_30_EC 
S30_pHca 
Log_30_CLAY 
Log_30_ECEC 
Log_30_ESP 
S30_Ca_Mg 

6. 4 Relationships between Selected Soil properties and ancillary data 

It is only sensible to define high resolution boundaries for LMUs using the ancillary 

data, if the ancillary variables are associated with stable soil properties.  Therefore, 

correlation analysis was used to examine associations between continuous ancillary 

variables and soil properties, while analysis of variance was used to examine the 

association between categorical ancillary data and soil properties.  This analysis will 

identify if the ancillary variables are appropriate inputs to the LMU classification. 
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6.4.1 Correlation Analysis 

Correlation analysis was performed between the 13 selected soil properties and the 

continuous ancillary data (Table 6.9).  Correlations between RI and soil properties 

measured at 30cm depth were not performed as DMSI properties relate to surface 

reflectance only. 

Table 6.9  Correlation between 13 selected soil properties and ancillary variables 
CTI 

n= 193 
Slope% 
n=205 

RI 
n=169 Variable 

Correlation Probability Correlation Probability Correlation Probability 
Log_A_HORIZ -0.023 0.752 -0.193 ** 0.263 ** 
Restricted Depth (cm) 0.207 ** -0.006 0.928 -0.071 0.362 
S10_STONES_% -0.175 * 0.086 0.220 0.244 ** 
Log_10_pHca -0.032 0.658 -0.023 0.742 -0.273 ** 
Log_10_SILT 0.031 0.664 -0.092 0.188 -0.054 0.484 
Log_10_CLAY% 0.139 0.054 -0.178 * -0.132 0.086 
S10_OrgC_% 0.098 0.173 -0.064 0.360 -0.156 * 
Log_30_EC 0.035 0.626 -0.183 ** -0.028 0.720 
S30_pH_CaCl2 0.102 0.159 -0.058 0.410 
Log_30_CLAY -0.017 0.813 -0.052 0.458 
Log_30_ECEC -0.058 0.425 -0.027 0.698 
Log_30_ESP 0.352 ** -0.299 ** 
S30_Ca_Mg -0.311 ** 0.199 ** 

 

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
 

All ancillary variables are correlated with some soil properties but not all soil 

properties are associated with an ancillary variable.  It is notable that of the texture 

variables and the associated ECEC, only clay at 10cm is correlated with an ancillary 

variable (Log_10_CLAY% vs Slope%: r=-0.178; P<0.05).  

6.4.2 Analysis of Variance with Landforms 

An analysis of variance was carried out to determine whether there were differences 

between landforms for each of the selected properties.  The effect of landform was 

subdivided into the difference between primary landforms (Crests, Primary slopes, 

Flats and Depressions) and the difference between slope classes (Upper slope, Mid 

slope, Simple slope and Lower slope). 
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Table 6.10  ANOVA for Soil Properties against Landforms 
  LANDFORMS   

Variable C US MS SS LS PS F D 
Sig. of 
Primary 
Landform 

Sig. of 
Slope 
Classes 

MeanL 1.970 2.089 2.101 1.913 2.050 2.059 2.409 2.012 
Mean 6.2 7.1 7.2 5.8 6.7 6.8 10.1 6.5 
N 28 31 60 21 50 162 16 40 

Log  
A-
Horizon 

S.Error 0.162 0.155 0.111 0.188 0.122 0.067 0.215 0.136 

0.386 0.852 

Mean 25.54 22.66 34.33 28.57 32.72 30.56 43.33 37.71 
N 28 32 52 21 46 151 15 35 

Restricted 
Depth 
(cm) S.Error 3.27 3.01 2.36 3.72 2.51 1.41 4.47 2.93 

0.002 0.017 

Mean 7.893 6.676 6.500 9.714 8.700 7.612 4.765 5.625 
N 28 34 60 21 50 165 17 40 10 

STONES 
S.Error 0.727 0.640 0.482 0.814 0.528 0.299 0.933 0.608 

<0.001 <0.001 

MeanL 1.841 1.785 1.795 1.815 1.786 1.793 1.810 1.799 
Mean 5.30 4.96 5.02 5.14 4.97 5.01 5.11 5.04 
N 28 34 60 21 50 165 17 40 

Log 
10_pHca 

S.Error 0.017 0.015 0.011 0.019 0.013 0.007 0.021 0.014 

0.062 0.586 

MeanL 2.073 1.882 1.753 2.121 2.030 1.910 1.855 2.018 
Mean 7.95 6.57 5.77 8.34 7.61 6.75 6.39 7.52 
N 28 34 60 21 50 165 17 40 

Log 
10_SILT 

S.Error 0.077 0.068 0.051 0.086 0.056 0.032 0.099 0.065 

0.097 <0.001 

MeanL 1.825 1.701 1.679 2.015 1.959 1.810 1.749 1.830 
Mean 6.20 5.48 5.36 7.50 7.09 6.11 5.75 6.23 
N 28 34 60 21 49 164 17 40 

Log 
10 CLAY 

S.Error 0.092 0.082 0.062 0.104 0.068 0.038 0.118 0.077 

0.946 0.002 

Mean 1.210 1.243 1.195 1.158 1.216 1.206 1.171 1.207 
N 28 34 60 21 50 165 17 40 10_OrgC 
S.Error 0.085 0.078 0.058 0.099 0.064 0.035 0.109 0.071 

0.992 0.913 

MeanL 1.853 1.559 1.477 1.733 1.644 1.577 1.569 1.625 
Mean 5.4 3.8 3.4 4.7 4.2 3.8 3.8 4.1 
N 25 29 57 21 44 151 17 37 

Log 
30_EC 

S.Error 0.094 0.087 0.062 0.102 0.070 0.038 0.114 0.077 

0.056 0.117 

Mean 5.716 5.403 5.423 5.819 5.641 5.538 5.418 5.784 
N 25 29 57 21 44 151 17 38 30 

pH CaCl2 
S.Error 0.125 0.115 0.082 0.135 0.093 0.051 0.152 0.101 

0.068 0.032 

MeanL 2.554 2.382 2.281 2.673 2.601 2.448 2.128 2.196 
Mean 12.86 10.83 9.79 14.48 13.48 11.57 8.40 8.99 
N 25 29 57 21 44 151 17 38 

Log 
30 CLAY 

S.Error 0.165 0.152 0.109 0.179 0.124 0.067 0.200 0.134 

0.137 0.133 

MeanL 2.148 1.753 1.631 2.155 1.942 1.818 1.455 1.778 
Mean 7.568 4.772 4.109 7.628 5.973 5.160 3.284 4.918 
N 25 29 57 21 44 151 17 38 

Log 
30_ECEC 

S.Error 0.144 0.131 0.094 0.154 0.107 0.059 0.174 0.117 

0.020 0.017 

MeanL 1.081 1.174 1.368 1.109 1.513 1.337 1.622 1.501 
Mean 1.948 2.235 2.927 2.031 3.540 2.808 4.063 3.486 
N 25 29 57 21 44 151 17 37 

Log 
30_ESP 

S.Error 0.112 0.102 0.073 0.120 0.083 0.046 0.136 0.092 

0.005 0.014 

Mean 4.440 5.168 3.908 4.559 3.182 4.029 3.231 0.326 
N 25 29 57 21 44 151 17 38 30 

Ca_Mg 
S.Error 0.472 0.428 0.305 0.503 0.347 0.192 0.573 0.383 

0.103 0.003 

 C US MS SS LS PS F D  
Crest (C); Upper slope (US); Mid slope (MS); Simple slope (SS); Lower slope (LS) 
Primary slope (PS) = (US+MS+SS+LS); Flat (F); Depression (D). 
L= Log Mean. Sig.=Significance. 
 
Nine out of the 13 selected soil properties show significant differences between 

either primary landforms, slope classes or both.  Although they were significant in 

the general the percentage of variance accounted for was <10 percent.  In particular, 



176 

silt and clay at 10cm and ECEC at 30cm show significant differences between 

landforms.  Upper slopes and mid slopes have lower silt and clay at 10cm and ECEC 

at 30cm, than lower slopes and simple slopes.  This indicates that landforms contain 

information about soil properties and will be a useful ancillary data set for input into 

the LMU classification.  

6. 5 Summary 
From the statistical analysis performed in this Chapter, 13 soil properties (from a 

possible set of 24) have been selected as inputs into the LMU classification.  This 

was achieved by analysing their correlation with yield data, principal components 

analysis and the properties effects on plant growth.  A particular soil property was 

eliminated if it could be shown that it was highly correlated with, and/or its effect on 

plant growth was already accounted for by other soil properties retained.  This 

method for selecting soil properties is a practical approach which can be adopted by 

others.  However, the resultant selected soil properties in this research are specific to 

this study area.  Other properties that will be used to further define the LMU 

boundaries for the remainder of the study area are landform, CTI, slope percentage 

and RI, as the correlation and analysis of variance confirms that it is valid to use 

these ancillary data to define higher resolution boundaries.  The LMU classification 

using the selected inputs is applied in the following Chapter 7. 
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CHAPTER 7  

A FRAMEWORK FOR CREATING LAND MANAGEMENT UNITS 

The framework for creating LMUs is described and implemented in Chapter 7.  The 

processes of selecting the most appropriate variables for input to the LMU 

classification and classification technique have been described in the preceding 

Chapters.  The 13 stable soil properties collected at the 250 soil points, topographic 

attributes (landform, CTI and slope) and DMSI (RI) are the selected variables for 

deriving LMUs across Muresk farm.  The process uses a two stage methodology 

based on Oliver and Webster’s (1989) spatially weighted multivariate classification.  

The methodology initially classifies soil sampling points into LMUs based on a 

geographically weighted similarity matrix.  The second stage delineates higher 

resolution LMU boundaries by using the geographic location, topographic attributes 

and DMSI on a 10m grid across the remaining study area, and assigning each pixel 

to an appropriate LMU.  The method groups sample points and pixels with respect to 

their variables and their spatial relationship on the ground, thus forming contiguous, 

homogenous LMUs.  A LMU map with associated soil description is provided, 

highlighting the use of discriminant analysis based on a selection of soil properties 

for identifying the soil properties that differentiate the LMUs and ranking them in 

terms of their similarity. 

7. 1 The Land Management Unit Classification  
The methodology used to form LMUs is an extension of Oliver and Webster’s (1989) 

spatially weighted multivariate classification from the family of spatially constrained 

classification techniques.  These techniques group samples based on the values of 

multiple variables, as well as, their spatial position.  This forces the groups to be 

homogenous in terms of their variables’ values and geographically contiguous 

(Urban, 2004).  The techniques are based on a similarity matrix with dimension N2 

(N=number of sample points).  When classifying high resolution data sets, such as 

DMSI or DEM data at a resolution of 10m, for a study area of only 2000ha this 

produces a matrix the size of 200,000 x 200,000.  Urban (2004) mentions that this 

has led to the development of specialised supervised and unsupervised classification 

methods for these data sets, and suggests that spatially constrained classification 
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shows some promise in this regard, but is not yet computationally feasible for large 

datasets. 

 

The LMU classification consists of two distinct sections:  Part A, which uses Oliver 

and Webster’s (1989) spatially weighted cluster analysis to subdivide the 250 soil 

points into LMUs based on the stable soil properties; and Part B, which uses an 

additional spatially weighted multivariate analysis to further define the LMU 

boundaries using high resolution ancillary data.  As such, the two stage methodology 

is an evolutionary coupling of spatially constrained classifications designed to 

accommodate large datasets. 

 

In both sections the usual multivariate methods have been modified by adjusting 

dissimilarities between points according to the distance between the points and the 

spatial structure of the input variables.  At several stages the classification offers the 

opportunity of adjustments appropriate to the study area, including the choice of 

input variables and their spatial structure.  The LMU classification is described in the 

following sections according to the flowchart presented in Figure 7.1. 

 

When dealing with large data sets i.e. high resolution remote sensing data (>100,000 

individuals), the amounts of computer time and memory required to form LMUs are 

prohibitive for current personal computers.  The process described in this thesis 

minimises the resources required by compartmentalising sub-processes wherever 

possible and taking advantage of commands available in GenStat®.  Similar 

commands will be found in other statistical packages. 
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Figure 7.1  Flowchart of LMU classification 
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7. 2 Part A: Forming LMUs from Soil Point Data 

7.2.1 Transforming Input Variables 

Variables with skewed distributions and extreme outliers can influence the resulting 

cluster analysis.  For example, outlying values at a soil point can cause that point to 

be in a cluster by itself, and similarly extreme values in a skewed distribution can 

result in clusters containing few points with extreme values.  This outcome is 

generally not useful or practical.  When skewness is apparent, transformations can 

assist to make the variable approximately symmetric.  Outliers can be removed, but 

their removal must be treated with care, as they may be of interest. 

 

The selection of input soil variables has been discussed in Chapter 6.  The stable soil 

properties selected as the input variables have been described via summary statistics 

including histograms and box-plots (Appendix K) and transformed if required as 

discussed in Chapter 6.  The resulting transformed data has been used in the LMU 

classification.   

7.2.2 Estimating Geographical Parameters from Variograms 

A spatially weighted classification is performed by modifying the dissimilarities 

between soil points according to the geographic distance between the sampling 

points and the spatial variation of the input variables (Oliver and Webster, 1989).  

Following Oliver and Webster (1989) this can be achieved by multiplying the 

dissimilarity matrix of variables by a function of geographical separation; 

)( jiijij zzfee −⋅=∗  (7.1)
where eij is the dissimilarity and ∗

ije  is the modified dissimilarity between soil points i 

and j and iz  and jz are the locations of i and j in one, two or three dimensions.  

Subsequently, whichever scale and form best describes the spatial variation for the 

particular investigation can be inserted into Equation (7.1).  The geographic distance 

between the sampling points can be calculated from the easting and northing 

locations, while the scale and form of spatial variation can be examined through 

geostatistical analysis according to the variogram parameters of the individual 

variables. 
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7.2.3 Determining the Scale and Form of Spatial Variation 

Variograms are used to describe the spatial variation of a variable.  They show the 

range over which values of a variable are correlated and the variance between values 

separated by distance h and direction.  Their derivation from the Regionalized 

Variable Theory is detailed in Appendix N. 

 

Bourgault et al. (1992) suggest the multivariate variogram or its counterpart, the 

multivariate covariogram, as spatial weighting functions rather than the univariate 

variogram.  The multivariate variogram is used to increase dissimilarities between 

distant samples while the multivariate covariogram is used to decrease similarities 

between distant samples.  In addition Bourgault et al. (1992) propose that the metric 

that has been used to calculate dissimilarities between sampling points should also be 

used for the multivariate variogram or covariogram.  Bourgault et al. (1992) make 

the observation that the main difficulty with Oliver and Webster’s (1989) approach is 

the choice of the variogram model which is a univariate spatial function used to 

represent the spatial structure of a multivariate measure (dissimilarities). 

 

However, from an initial investigation of the experimental variograms for each of the 

selected properties the form and range appear to be consistent, indicating that an 

appropriate variogram model representing the multivariate data set may be derived 

without resorting to a multivariate variogram. 

 

Experimental variograms were plotted for all soil variables to be used in the model 

for the entire study area and in several directions.  Variograms of the first few 

principal components were also plotted to take into account the multivariate 

character of the dissimilarities as did Oliver and Webster (1989).  The study area was 

also split into two regions which, from knowledge of it, appeared to have different 

underlying geology, and the range and spatial structure were examined.  Inspection 

of the experimental variograms indicated that the differing directions and regions 

have no effect.  Voltz and Webster (1990) suggested that you need over 300 samples 

to detect anisotropy properly and, as such, it is not really feasible to explore 

directional effects from this dataset. 
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Subsequently, experimental variograms were based on all of the soil points and in all 

directions with a maximum distance of 800m, and lag interval of 20m.  The 

experimental variograms for the 13 selected soil properties, and the first 6 principal 

components (which accounted for approximately 80 percent of the variance as shown 

in Table 7.1) from those variables, were plotted.  In some cases there were outliers, 

which had undue influence on the model fitting and parameters.  The soil points 

contributing to the outliers were identified in a variogram cloud (Webster and Oliver, 

2001a) and appropriate points were removed.  The resultant experimental variograms 

are displayed in Appendix O. 

Table 7.1  Principal components of correlation matrix of 13 soil properties 

Principal Component 1 2 3 4 5 6 
Percentage of Variance 37.35 13.46 8.75 7.45 6.71 6.21 
Cumulative percentage 37.35 50.80 59.56 67.01 73.72 79.93 

 

The three most common variogram models namely, spherical (Equation (7.2)), 

exponential (Equation (7.3)), and Gaussian (Equation (7.4)) were fitted (Figure 7.2) 

to the experimental variograms. 

 

                     ⎥⎦
⎤

⎢⎣
⎡ −+= 3

10 )/(2/1
2
3)( ah

a
hcchγ                      for 0 < h < a  

                             10 cc +=                                                   for h ≥ a  
                             = 0                                                           for h = 0 
 

(7.2)

                    rarhcch 3)];/exp(1[)( 10 ≈−−+=γ            for h > 0 
                             = 0                                                           for h = 0 
 

(7.3)

                    222
10 3];)/exp(1[)( rarhcch ≈−−+=γ      for h > 0 

                             = 0                                                           for h = 0 
(7.4)

 

where a  is the range, h is the distance between points or lag, 0c is the nugget 

variance, 10 cc + equals the sill variance.  The exponential and Gaussian models 

approach their sills asymptotically and therefore do not have a finite range.  

Parameter r controls the rate at which the variogram approaches the asymptote.  In 

these models the effective range is defined as ra 3≈ and ra 3≈  respectively, and is 

the distance at which the variance is approximately 95 percent of the sill variance.  
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Figure 7.2.  Commonly used variogram models: (a) spherical; (b) exponential; and 
(c) Gaussian (adapted from Burrough and McDonnell, 1998c; Webster and Oliver, 

2001c) 

 

The best fit model was selected in the least squares sense.  For seven variables, none 

of the variogram models accounted for a significant percentage of variation in 

experimental variogram.  The exponential model provided the best fit for eight of the 

12 fitted variables, the Gaussian model for only three variables and the spherical 

model for only one of the variables.  Subsequently, the exponential model was used 

for all 12 variables for which a variogram could be fitted (Figure 7.3) and the range 

and the nugget variance as a percentage of the sill variance were determined (Table 

7.2). 
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Table 7.2  Exponential variogram models for soil properties and principal 
components 

Soil Property % Nugget variance Effective 
Range (m) r2 

Restricted Depth (cm) 4.86 160 75.26
10_Stones% 32.57 297 81.17
Log (10-pHca) 6.96 253 90.68
Log (10-Silt) 10.53 409 93.59
Log (10-Clay) 4.36 268 89.44
Log (30-EC) 36.22 339 74.06
30-pHca 0.00 114 83.65
Log (30-Clay) 0.00 190 86.39
Log (30-ECEC) 0.00 137 88.18
Log (30-ESP) 0.00 341 89.25
30-Ca:Mg 0.00 207 80.19
PCP-3 16.16 129 51.13

 

The mean and median effective range equate to approximately 240m and 230m 

respectively, with a standard deviation of approximately 95m and a standard error of 

8m.  The nugget variance is zero for five of the 12 variograms and ranges up to 36 

percent.  Exponential models with a nugget variance of 10 percent and effective 

ranges of 200m, 250m and 300m were used as a function of geographical 

separation, )( ji zzf − , to weight spatially the classification of soil points into LMUs.  
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Figure 7.3  Experimental and exponential model variograms for soil properties and 
principal components after outliers have been removed 
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7.2.4 Forming the Similarity Matrix on Soil Variables 

For every pair of individuals i and j there will be a distance separating them in 

character space, often known as the Pythagorean distance, Euclidean distance, or 

taxonomic distance  and a corresponding similarity, Sij, referred to as the similarity 

coefficient or similarity index (Webster and Oliver, 1990c).  The similarity index is 

based on the complement of the dissimilarity, which is scaled so it lies in the range 0 

(identity) to 1 (maximum dissimilarity).  Using the soil variables, two sample points 

(individuals) will have a similarity of unity when both have identical values for all 

variables and a similarity of zero when the values for both samples differ maximally 

for all variables.  If there are N sample points, the similarity matrix will be of the size 

N x N.  Dissimilarity is related to similarity as shown in Equation (7.5), which is  

equivalent to the definition used by Oliver and Webster (1989) and this definition has 

been used hereafter. 

ijij Se −= 1  (7.5)
where ijS  measures the similarity and eij measures the dissimilarity between the soil 

points i and j. 

 

The coefficient of similarity, Sij, presented by Oliver and Webster (1989), following 

the Gower (1971) generalization, takes the form; 
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 (7.6)

where xik and xjk are observed values of the kth soil property (variable) and rk is the 

empirical range of the variable sampled (or the range of that variable known to exist) 

and vijk is the weight assigned to the kth property in the comparison of individuals i 

and j.  The division by rk standardises quantitative variables. 

 

In summary, the measure of similarity is formed by multiplying each contribution by 

the corresponding weight, summing all these values, and then dividing by the sum of 

the weights.  The similarity shown in Equation (7.6) is called the city block method, 

when vijk = 1.  It is based on the sum of the absolute difference for each soil variable 

divided by the number of soil variables (p) and is usually known as the mean 
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character distance (Webster and Oliver, 1990c).  The similarity measure was 

converted to dissimilarity using Equation (7.5). 

7.2.5 Determining the Geographic Distance between Sample Points 

The distance between the sampling points can be calculated using Pythagoras 

theorem (synonymous with Euclidean distance); 

∑ −=
=

2

1

2)(
k

jkikij yyD  (7.7)

where yi1 and yi2 are the easting and northing values at soil point i.  As mentioned 

earlier, when dealing with large data sets distance matrices become extremely large 

and computationally demanding.  Utilisation of low level programming languages, as 

used in the Genstat® command to form a similarity matrix will improve the 

efficiency of the calculation.  Accordingly, a Euclidean measure of similarity based 

on easting and northing was used as it gives a similarity between two sampling 

points (i and j) following the form; 
2
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where Rk is the range for each variable.  Ensuring that the range for both eastings and 

northings is equal (R) then; 

∑ −−=
=
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k
jkikij yy

R
P  (7.9)

or, 

2

2
11 ijij D
R

P −=  (7.10)

where, Dij is the geographic distance between two sample points i and j.  Thus, we 

can calculate Dij from, 

)1(2 ijij PRD −=  (7.11)
In order to minimise computer resources it is useful to calculate dissimilarities, dij, 

from the distances as follows;  

)1(
2 ij

ij
ij P

R

D
d −==  (7.12)

As such, the dissimilarity matrix proportional to distance (dij) for N points can be 

efficiently calculated by adding an extra point, with appropriate easting and northing, 

to equalise the range of the easting and northing data.  Then the similarity can be 

calculated using the Euclidean measure, which forms Pij ((N+1) * (N+1)) matrix.  

This is transformed to the dij matrix following Equation (7.12) and the extra point is 
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deleted leaving a matrix of dissimilarity proportional to distances between each of 

the N points. 

7.2.6 Forming Matrix of Spatial Weights 

The spatially weighted dissimilarity matrix ( ∗
ije ) is formed through the product of the 

dissimilarity matrix of soil variables (eij) and a function based on the variogram 

(Equation (7.1)).  When the function is evaluated at all soil points the values can be 

stored in a matrix of spatial weights (wij).  Subsequently, the spatially weighted 

dissimilarity matrix is formed as follows; 

ijijij wee ⋅=∗  (7.13) 

 

Using a spherical model, Equation (7.2) as in Oliver and Webster (1989) the weights 

take values; 
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(7.14)

Note that division by the sill variance ( 10 cc + ) ensures that ijw will lie between 0 and 

1. 

Equation (7.14) can be re-written as; 
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where; 
10

0
0 cc

c
c

+
=∗  is called the adjusted nugget variance 

and 
2R

aa =∗  is called the adjusted range 

If an exponential model is used; 

                    )]/3exp(1)[1( 00
∗∗∗ −−−+= adccw ijij                   for 0 < ijd  < ∗a  

                    1=ijw                                                                   for ijd  ≥ ∗a  
(7.16)

Alternatively, if a Gaussian model is used; 

                      ])/3exp(1)[1( 2
00

∗∗∗ −−−+= adccw ijij            for 0 < ijd  < ∗a  

                      1=ijw                                                                 for ijd  ≥ ∗a  
(7.17)
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A similarity matrix for use in a cluster analysis is calculated from the spatially 

weighted dissimilarity matrix as follows;  
21 ∗∗ −= ijij eS  (7.18)

7.2.7 Forming Principal Coordinates from a Similarity Matrix 

The similarity matrix ∗
ijS can be used for a wide variety of clustering techniques and 

is the starting point for most agglomerative hierarchical techniques (Webster and 

Oliver, 1990a).  However, it has been suggested that non-hierarchical cluster analysis 

is more appropriate for variables that are not hierarchically structured, such as soil 

properties (Oliver and Webster, 1989).  Mora and Iverson (2002) follow Oliver and 

Webster’s (1989) rationale.  Unfortunately, the similarity matrix cannot be used 

directly in non-hierarchical methods, as they use information in variables.  Oliver 

and Webster (1989) propose that the similarity matrix can be converted to variables 

through principal coordinate analysis. 

 

Principal coordinate analysis takes a similarity matrix, which describes relationships 

between a set of objects, and forms variables which give an ordination of the objects 

in multidimensional space.  When the similarity matrix is a correlation matrix, the 

principal coordinate analysis is the same as principal component analysis. 

 

Using a similarity matrix, which has been spatially modified using a variogram with 

a selected range (200m, 250m and 300m), a principal coordinate analysis was 

performed specifying 250 dimensions.  The percentage of variance accounted for by 

the first 13 principal coordinates (PCO’s) for each of the three ranges are listed in 

Table 7.3. 
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Table 7.3  Percentage of variance accounted for by 13 PCO’s for effective ranges of 
200m, 250m and 300m 

 Range = 200m Range = 250m Range = 300m 

PCO Percentage 
of Variance 

Cumulative 
percentage 

Percentage 
of Variance 

Cumulative 
percentage 

Percentage 
of Variance 

Cumulative 
percentage 

1 21.55 21.55 21.53 21.53 21.61 21.61 
2 9.02 30.57 9.03 30.56 9.14 30.75 
3 7.54 38.11 7.58 38.14 7.59 38.33 
4 5.96 44.07 5.96 44.10 6.02 44.35 
5 4.57 48.64 4.70 48.80 4.72 49.07 
6 3.91 52.56 3.99 52.79 4.01 53.09 
7 3.65 56.20 3.75 56.54 3.78 56.87 
8 3.21 59.41 3.35 59.89 3.40 60.26 
9 2.77 62.18 2.81 62.70 2.91 63.17 

10 2.50 64.68 2.64 65.34 2.70 65.88 
11 2.12 66.80 2.29 67.63 2.37 68.25 
12 1.98 68.78 2.17 69.80 2.27 70.52 
13 1.89 70.67 2.03 71.83 2.15 72.66 

 

The first 13 principal coordinates, which account for more than 70 percent of the 

variance between sampling points (Table 7.4), were used for non-hierarchical 

clustering described hereafter.  There is no guarantee that a modified similarity 

matrix will generate positive roots, but in this case there are very few negative roots 

and they only occur well after most of the variance between sampling points has 

been accounted for.  This concurs with Webster’s (2006) research, who concludes 

that under these circumstances when the negative roots are all small in absolute value 

they can be ignored as they have no important effect on the final result.  

Table 7.4  Summary of principal coordinate analysis over several spatial ranges 

 Spatial Range 
 200m 250m 300m 
Sum of positive roots 65.41 67.57 69.37 
Sum of negative roots -15.39 -17.68 -19.60 
Sum of roots 50.02 49.90 49.76 
First negative root 143 134 127 
No. of PCO 13 13 13 
Percentage of variance accounted
for by 1st 13 PCO’s 70.67 71.83 72.66 

7.2.8 Selecting the Appropriate Number of LMUs 

Non-hierarchical cluster analysis forms a pre-determined number of clusters (LMUs) 

and therefore, some knowledge of an appropriate number is required.  It is always 

difficult to make a decision on the correct number of clusters and the choice is often 

based on the desires or needs of the users.  Users may consider practicability, scale 
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and size of clusters, and the within cluster variance of soil properties that one is 

prepared to accept. 

 

After preliminary testing of the LMU classification it appeared that eight or more 

clusters would lead to divisions of the landscape at a finer scale than paddock 

boundaries, while any number greater than 15 would create too many management 

options.  When the number of well-defined clusters is unknown a priori, Oliver and 

Webster (1989) suggest computing Wilks’ criterion for each subdivision to 

determine the optimal number.  Wilks’ criterion L, proposed by Friedman and Rubin 

(1967), is given by the ratio of the determinants 

T
W

L =  (7.19) 

 

where W is the within clusters sums of the squares and products matrix, for the 

original variables and T is the total sums of the squares and products matrix (Webster 

and Oliver, 1990b).  Following Marriott (1971), Oliver and Webster (1989) plotted 

g2L against g, the number of groups (from 2 to m), and the appropriate number of 

clusters was identified at the value of g, at which g2L has a sharp decline below the 

general trend. 

 

The appropriate number of clusters in this case has been determined following Oliver 

and Webster’s (1989) approach.  However, a modified Wilks’ ( ∗L ) and sums (S) 

criterions’ were used.  The modification of Wilks’ criterion is a ratio of the 

determinants of means squares rather than sums of squares, and is as follows; 

( )
( )gn
n

T
W

L
−
−

∗=∗ 1  (7.20) 

 
The sums criterion is calculated as; 

)(WTraceS =  (7.21) 

 
The modified Wilks’ criterion ∗L , is synonymous with GenStat ® within criterion 

that minimises the variance within clusters, whereas the Wilks’ criterion minimises 

the sum of squares within clusters.  The sums criterion maximises the total between-

group sums of squares (Digby, 2003).  The sums criterion has been selected as the 
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most appropriate for this methodology as explained in the following Section 7.2.9 

while the modified Wilks’ criterion ∗L  (within) should also provide an indication of 

the appropriate number of groups when plotted as described above. 

 

Using the 13 selected soil variables non-hierarchical classification was performed 

with the sums and within criterion selected.  For non-hierarchical cluster analysis no 

‘missing values’ can be present, and as such 46 soil points were excluded.  Non-

hierarchical cluster analysis was used to classify the remaining 204 soil points into 2 

to 21 groups (Figure 7.4).  The procedure was repeated using the largest subset of 

linearly independent soil variables.  It was not possible to include all 22 soil variables 

because of the linear dependency between sand, silt and clay percentages at 10cm 

and 30cm depths. Thus sand at 10cm and sand and silt at 30cm depths were not 

included resulting in 19 soil variables (Figure 7.5). 

 

   a)           b)               c) 

 

 

 

 

 

 

 

Figure 7.4  Plot of a) g2S against g, b) Criterion S against g and c) logS against g 
based on 13 soil variables 
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   a)          b)             c) 

 

 

 

 

 

 

Figure 7.5  Plot of a) g2S against g, b) Criterion S against g and c) logS against g 
based on 19 linearly independent soil variables 

Using the within criterion, criterion ∗L  was calculated as specified in Equation (7.20) 

and g2 ∗L , ∗L  and log ∗L  were plotted against g based on 13 selected soil variables 

(Figure 7.6) and 19 soil variables (Figure 7.7). 
 

   a)            b)             c) 

 

 

 

 

 

 

Figure 7.6  Plot of a) g2 ∗L  against g, b) Criterion ∗L  against g and c) log ∗L  against g 
based on 13 soil variables 

 

   a)             b)            c) 

 

 

 

 

 

 

 

Figure 7.7  Plot of a) g2 ∗L  against g, b) Criterion ∗L  against g and c) log ∗L  against g 
based on 19 linearly independent soil variables 
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Figure 7.4 through to Figure 7.7 give an indication, however weak, that at g =11 

criterion S falls below the general trend and criterion ∗L  does not provide any reason 

for this choice to be changed.  As such, 11 LMUs will be specified for the clustering 

described in the following section.  

7.2.9 Non-hierarchical Clustering of 250 Soil Points 

Non-hierarchical cluster analysis subdivides a group of objects on which a number of 

measurements have been made into a specified number of clusters such that a 

specified criterion is optimised (Webster and Oliver, 1990b).  In GenStat® both the 

modified Wilks’ criterion and the sums criterion are available. 

 

Utilising the 13 PCOs and a selection of ranges as indicated in Table 7.4, the non-

hierarchical clustering was performed specifying 11 LMUs and the sums criterion, 

which maximises the between-group sum of squares (Payne, 2003).  The sums 

criterion has been selected as it seems logical that the formation of a new LMU is 

only necessary if it is different to its neighbouring LMU.  Farmers will make the 

choice to manage an area differently only if there is a substantial difference in the 

landscape properties and the potential for an economic gain.  The resulting LMUs 

using spatial ranges between 200m to 300m are provided in Figure 7.8.  

 

a)        b)          c) 

 

 

 

 

 

 

 

Figure 7.8  Soil point LMU groups based on 250 soil points for a range of a) 200m, 
b) 250m and c) 300m 
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7.2.10 Utilising Landform Variables 

While Gowers’ (1971), equation (Equation (7.6)) and subsequently GenStat® has the 

ability to accommodate both quantitative and some qualitative variables into the one 

equation for similarity, an appropriate measure of similarity is not available for 

landforms.  The methodology to create landforms is described in Section 5. 2 and the 

resultant location of landform types within the landscape is displayed in Figure 5.3.  

Based on the methodology used to identify landform types, it is inappropriate to 

apply a similarity measure that was used for continuous or binary data types, as 

landform outputs have a quantitative and qualitative nature.  As such, the landform 

classes were converted into variables using principal coordinate analysis and new 

landform variables namely, LF_PC1 to LF_PC6 are scores from the principal 

coordinates described in Section 5.2.2.  This process has not been displayed in the 

flow diagram as it is unique to this particular data set.  

7.2.11 Analysis of Variance of Ancillary Data and LMUs 

Part B of the model utilises ancillary variables, i.e. landform (PCO1-6), CTI, slope% 

and RI, for the remainder of the study area (called mask data) to map the LMU 

boundaries at higher resolution.  For Part B to be viable a relationship must exist 

between the ancillary data and the LMUs just formed.  A simple analysis of variance 

(ANOVA) was performed for each of the ancillary variables at each soil point with 

respect to the LMU groups to which the soil points have been allocated (Table 7.5). 

Table 7.5.  Significance of differences between LMUs formed at each range for 
ancillary variables 

  Significance 

Variable No. soil 
points 

Effective 
Range = 200m 

Effective 
Range = 250m 

Effective 
Range = 300m 

LF-PCO1 250 0.047 0.567 0.924 
LF-PCO2 250 <0.001 <0.001 <0.001 
LF-PCO3 250 0.002 0.010 0.011 
LF-PCO4 250 0.004 0.022 0.033 
LF-PCO5 250 0.520 0.516 0.614 
LF-PCO6 250 0.069 0.092 0.104 
Log CTI 237 <0.001 <0.001 <0.001 

Log Slope% 250 <0.001 <0.001 <0.001 
RI 206 <0.001 <0.001 <0.001 

 

The results confirm that LMUs are associated with changes in most of the landform 

variables, CTI, slope% and RI, and that it is appropriate to use them for identifying 

the LMU boundaries at higher resolution.  Although LF-PCO1 and LF-PCO5 do not 
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show a significant difference between LMUs they are included in Part B of the 

model.  This is because they are available at all mask points and may provide 

information about LMUs in association with other variables. 

7. 3 Part B: Further Defining LMU Boundaries using High Spatial Resolution 
Ancillary Data 

Part B of the LMU classification delineates higher resolution boundaries based on 

ancillary data collected on a 10m resolution grid across the entire study area.  The 

method assigns each mask pixel to one of the existing LMUs formed in Part A.  This 

assignment is based on the pixels similarity in terms of landform types, CTI, slope% 

and RI.  Initially a dissimilarity matrix (fkl) is formed between the mask points and 

LMUs from: (1) a similarity between each mask point and the median values of 

landform, CTI, slope% and RI for each LMU; or (2) a discriminant analysis based on 

the landform types, CTI, slope% and RI using the Mahalonobis squared distance 

between each mask point and each LMU. 

 

The dissimilarity matrix is then modified using a spatially weighted matrix (wkl) 

based on the distances between the mask points and LMUs.  At the final step each 

mask point is assigned to a LMU based on the minimum dissimilarity.  The 

modification of the dissimilarity matrix in this case will take the form; 

klklkl wff ⋅=∗  (7.22)

where fkl and wkl are the dissimilarity and spatial weighting between mask points k 

and LMU l. 

7.3.1 Transforming Ancillary Variables 

Following the same methodology as for the stable soil properties, the ancillary 

variables, CTI, slope%, RI and LF-PCO1-6 (landform variables) were inspected for 

symmetry and transformed if appropriate.  Appendix L contains the summary 

statistics, histograms and box-plots.  The CTI and slope% required logarithmic 

transformation. 

7.3.2 Similarity between Mask Pixels and LMUs; Option 1 

Using the soil points that form each LMU, a median value was calculated for the six 

landform variables, CTI, slope% and RI.  The similarity between each mask point 
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and the median for each LMU was then calculated following the city block method as 

shown in Equation (7.6).  The similarity measure was then converted to a 

dissimilarity following Equation (7.5) to form klf . 

7.3.3 Discriminant Analysis between Mask Pixels and LMUs: Option 2 

Option 2 uses discriminant analysis to form a dissimilarity between each mask point 

and each LMU.  A discriminant analysis (canonical variate analysis) forms linear 

combinations of the landform variables, CTI, slope% and RI (canonical variates) 

measured at each soil point that best discriminate between the LMUs defined in Part 

A.  Using measurements of the same variables for each mask point, canonical variate 

scores and Mahalanobis squared distances to LMU means are then calculated for all 

mask points.  Unfortunately, any point with a missing value in any of the variates is 

excluded from the analysis.  Missing values are apparent in this data set for some 

variables.  In order to overcome this problem, discriminant analysis was performed 

several times to calculate Mahalanobis distances based on as many variables as are 

available at each mask point.  Initially all variables were included in calculating 

Mahalanobis distances.  The variables with missing values were subsequently 

removed and Mahalanobis distances were then calculated for mask points, which 

previously could not be included.  This forms a matrix of Mahalanobis distances (fkl) 

which can be transformed to dissimilarities between each mask point and LMU by 

dividing by a suitable constant.  

7.3.4 Forming the Geographically Weighted Dissimilarity Matrix between Soil 

Based LMUs and Mask Data Set 

In a similar manner to that described in Section 7.2.5, a matrix of N x M (soil points 

x mask points) similarities was formed using easting and northing data and the 

programming language of Genstat®.  Firstly, the maximum range of the eastings and 

northings was calculated, and the easting and northing range set to be equal by 

adding an extra point at the appropriate spatial location.  Similarity between the soil 

points and mask points using an Euclidean measure was calculated following 

Equation (7.8).  The LMU to which each soil point had been assigned, was 

associated with the similarities and the nearest neighbour similarity (i.e. maximum 

similarity; Figure 7.9) between each mask point and each LMU was stored in an M x 

P matrix (mask points x LMUs). 
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Figure 7.9  Nearest neighbour similarity assigned to a mask point for each LMU 

 

The matrix of similarities between the mask points and LMUs was converted to 

dissimilarities (dkl) as in Equation (7.5).  The spatially weighted matrix (wkl) between 

soil based LMUs and mask data is formed by evaluating the appropriate function, as 

in Equation (7.15) to (7.17) using the dissimilarities (dkl) and appropriate range and 

nugget values.  

 

The dissimilarity matrix, or the Mahalanobis distance matrix, is then modified 

spatially by multiplying by the spatially weighted matrix klw , following Equation 

(7.22) to form, ∗
klf , a spatially weighted dissimilarity or distance matrix (M x P) 

between each mask point and each LMU.  Each mask point is then assigned to the 

LMU to which it has minimum dissimilarity or Mahalanobis distance. 

7. 4 Provisional LMUs 

Using a selection of ranges and the two options for forming the LMUs, the 

provisional maps of LMUs are provided in Figure 7.10.  When comparing the Option 

1 (Cluster / Cluster) with Option 2 (Discriminant) outputs, the maps are visually 

similar.  In view of adopting farm management options, preference would be given to 

the Cluster / Cluster output due to the more homogeneous unit outputs.  An effect 

called ‘bullseyeing’, which refers to small circular LMUs, which occur when the 

distance between the sample points is greater than the range used for weighting, is 

visible in Figure 7.10 (a) and (d) and to a lesser extent Figure 7.10 (b) and (e).  This 

problem is overcome when the range equals 300.  However, as the mean range was 
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in fact 240m, it seems that an over smoothing would be applied in the latter case, 

loosing some of the higher level details.  The 250m range with the Cluster/Cluster 

method has thus been selected as the appropriate classification to further examine a 

practical way of describing the units.  However, the final decision will always be up 

to the user’s requirements i.e. level of detail (size of units), homogeneity, etc. 
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Figure 7.10  LMU groups based on Option 1: Cluster/Cluster analysis for a range of a) 200m, b) 250m and c) 300m and Option 2; Discriminant analysis for a range of d) 200m, e) 250m and f) 300m 
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7. 5 The Land Management Unit Map and Unit Descriptions 
Discriminant analysis based on a selection of soil properties (Table 7.6) has been 

used to identify the soil properties that differentiate the LMUs.  These soil properties 

were chosen as they are commonly used in soil survey classification.   

Table 7.6  Soil variables used in discriminate analysis 

Variable 
Log_A_Horizon 
Restricted Depth 
Log_10_Clay 
S10_OrgC 
Log_30_Clay 
Log_30_Stones 
S30_pHca 
Log_30_EC 
Log_30_ECEC 
Log_Slope% 

 

Some of the sampling points had missing values for some of the variables.  In this 

case the mean of the variable for that LMU was used as a substitute.  The ten 

variables were then standardised and discriminant analysis performed.  In a 

discriminant analysis, linear combinations of the original variables (canonical 

variates) are found that maximise the ratio of between-group to within-group 

variation, thereby giving functions of the original variables that can be used to 

discriminate between the groups (LMUs).  The first canonical variate (CV1) 

maximises the discrimination between groups.  The second canonical variate (CV2) 

maximises discrimination between groups that have not been differentiated by CV1.  

The maximum number of canonical variates equals either the number of original 

variables or one less than the number of groups, whichever is smaller, and will be 10 

in this case. 

 

Canonical variate means were calculated for the soil sampling points in each LMU to 

indicate the principal differences between LMUs.  Biplots were used to graph values 

of CV1 versus CV2 (or other canonical variates) for each sampling point, as well as, 

their associated LMUs and the contribution of the soil variables to each canonical 

variate (Figure 7.11 to Figure 7.13).  The position of the LMUs, with respect to the 

variables on the biplot, has been used as a tool to identify important differences 
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between LMUs.  The discriminant analysis was performed in GenStat® and Excel 

(Microsoft Corporation, 2003) was used to draw the biplots.  The first four canonical 

variates accounted for over 95% of the variance (Table 7.7).  

Table 7.7  Percentage of variance explained and variable loadings of variables for 
each canonical variate 

 CV1 CV2 CV3 CV4 
Percentage  56.88 21.12 11.42 5.81 
Cumulative 56.88 78.00 89.42 95.23 
Variable Loadings 
Log_A_Horizon 0.258 1.704 0.443 0.145 
Restricted Depth 0.470 0.170 -1.297 0.051 
Log_10_Clay -0.520 0.100 0.159 0.555 
S10_OrgC -0.277 -0.011 0.021 0.404 
Log_30_Clay -0.739 0.386 -0.546 -0.753 
Log_30_Stones 0.004 0.159 0.469 -0.555 
S30_pHca -0.155 0.374 -0.185 -1.079 
Log_30_EC -0.004 0.033 -0.287 -0.350 
Log_30_ECEC -1.039 -0.045 -0.092 1.102 
Log_Slope% -0.074 -0.280 0.014 0.242 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11  Biplot showing soil points within LMUs and canonical variate loadings 
for CV1 vs CV2  
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Figure 7.12  Biplot showing soil points within LMUs and canonical variate loadings 
for CV1 vs CV3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13  Biplot showing soil points within LMUs and canonical variate loadings 
for CV1 vs CV4  
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CV1 is associated with ECEC at 30cm depth, clay at 10cm and 30cm depth, and soil 

restricted depth.  The A-Horizon depth dominates CV2, while CV3 is dominated by 

restricted depth and, to a lesser extent, clay at 30cm depth and stones at 30cm depth.  

CV4 is loaded with ECEC and pHca at 30cm depth and, to a lesser extent, clay at 

30cm depth.  Categories have been identified and represented by circles drawn on the 

biplots to help describe the main discriminating features for each LMU. 

 

It can be seen in Figure 7.11 that while groups 1,3 and 4 all have high clay content, 

group 3 can be separated from groups 1 and 4 because it has a shallower A-horizon.  

Figure 7.12 indicates that groups 1 and 4 can be differentiated using restricted depth.  

Table 7.8 provides a classification tree which shows the characteristics that 

discriminate between the 11 LMUs, however other characteristics will be associated 

with these variables (i.e. the dominant variables for each CV).  Since CV1 gives the 

best discrimination between groups, the median value of CV1 for each LMU has 

been used to form a new order of LMUs.  This ranks them in terms of their similarity 

(New LMU: alphabetical A to K) (Table 7.8).  Outputs from non-hierarchical cluster 

techniques do not form such order.  

Table 7.8  Discriminating tree for LMU groups 
Clay 
content 

A horizon 
Depth 

Restricted 
depth 

pH at 30cm ECEC at 
30cm 

LMU Median 
CV1 

New 
LMU 

High Deep Shallow     1 -3.94 A 

    Deep     4 -2.85 C 

  Shallow       3 -3.52 B 

Medium Deep   Higher than 
average. 

Lower than 
average. 10 -0.08 F 

      Lower than 
average 

Higher than 
average. 2 -0.23 E 

  Shallow       7 -0.67 D 
Lower 
than 
average 

Deep Shallow     9 1.42 G 

    Medium     5 1.59 H 

    Deep     6 2.53 J 

  Shallow       8 2.10 I 

Low Medium       11 4.13 K 

 

The final LMU map is provided in Figure 7.14 with a description for each unit, 

which is based on summaries of values for soil variables of sampling points located 

within each LMU.  The descriptors are provided with reference to the associated 
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rating tables provided in the soil properties literature review Section 2.2.1.  Boxplots 

for several soil properties and ancillary variables are displayed in Appendix P.  A 

further description of the major characteristic of dominant landscape is provided in 

Table 7.9. 
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Sandy loam A-horizons (7-13cm) over sandy clay loam to light
medium clay
Subsoils contain stones (8-17%),Restricted depths (10-30cm)
Neutral, Non saline soils
Medium levels of organic carbon in the topsoil (1.3-1.7%)
Good capacity to store nutrient cations (ECEC 14.2-24.7)

Loamy sand A-horizons (10-20cm) over clayey sand
Subsoils contain stones (3-8%)
Neutral soils, Non saline soils
Medium levels of organic carbon in the topsoil (1.0-1.4%)
Poor capacity to store nutrient cations (ECEC < 3.8)

Clayey sand A-horizons (<3cm) over sandy clay loam to medium
clay
Subsoils contain stones (7-17%), Restricted depths (10-20cm)
Neutral, Non saline soils
Medium levels of organic carbon in the topsoil (1.0-1.7%)
Medium to good capacity to store nutrient cations (ECEC 7.0-24.2)

Sandy loam A-horizons (5-12cm) over sandy clay loam to light 
medium clay
Subsoils contain stones (6-16%), Some restricted depths at 30cm
Some subsoils slightly sodic (pHca 6.0-7.1)
Some subsoils slightly saline (EC1:5 7-20mS/m)
Medium levels of organic carbon in the topsoil (0.9-1.5%)
Medium to good capacity to store nutrient cations (ECEC 12.5-20.0)
Clayey sand A-horizons (<3cm) over clayey sand
Subsoils contain stones (13-23%)
Some restricted depths at 20cm
Neutral, Non saline soils
Medium levels of organic carbon in the topsoil (0.8-1.4%)
Poor capacity to store nutrient cations (ECEC < 6.7)

Clayey sand A-horizons (8-14cm) over sandy loam
Subsoils contain stones (7-20%)
Restricted depths (15-30cm)
Neutral, Non saline soils
Medium levels of organic carbon in the topsoil (1.1-1.6%)
Poor capacity to store nutrient cations (ECEC < 5.9)

Sand with A-horizons depths(6-11cm)
Restricted depths (<20cm), Topsoils contain stones (5-7%)
Some topsoils slightly acidic (pHca 4.4-5.1), Non saline soils
Low levels of organic carbon in the topsoil (0.7-1.1%) indicating
poor nutrient storage and unstable structure.
Poor capacity to store nutrient cations (ECEC < 4.0)

Loamy sand A-horizons (10-15cm) over clayey sand
Subsoils contain stones (12-22%), Restricted depths (20-30cm)
Neutral, Non saline soils
Low levels of organic carbon in the topsoil (0.8-1.1%) indicating
poor nutrient storage and unstable structure.
Poor capacity to store nutrient cations (ECEC < 3.9)

Loamy sand A-horizons (10-15cm) over clayey sand
Subsoils contain stones (9-17%), Some restricted depths at 30cm
Neutral, Non saline soils
Low levels of organic carbon in the topsoil (0.8-1.4%) indicating 
poor nutrient storage and unstable structure.
Poor capacity to store nutrient cations (ECEC < 4.0)

Sand A-horizons (1-5cm) over loamy sand
Subsoils contain stones (6-10%)
Neutral, Non saline soils
Low levels of organic carbon in the topsoil (0.7-1.1%) indicating
poor nutrient storage and unstable structure.
Poor capacity to store nutrient cations (ECEC < 3.1)

Sand A-horizons (10-15cm) over sand
Subsoils contain stones (1-7%)
Some subsoils slightly acidic (pHca 4.7-5.3)
Non saline
Low levels of organic carbon in the topsoil (0.6-1.0%) indicating 
poor nutrient storage and unstable structure.
Poor capacity to store nutrient cations (ECEC < 2.3)
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Figure 7.14  The Land Management Unit map for Muresk Farm 
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Table 7.9 Description of LMUs present in Figure 7.14 

LMU  Major characteristics of dominant soil 

Major 
characteristic of 
dominant 
Landscape 

1 : A Sandy loam A-horizons (7-13cm) over sandy clay loam to 
light medium clay 
Subsoils contain stones (8-17%)  
Restricted depths (10-30cm) 
Neutral, Non saline soils 
Medium levels of organic carbon in the topsoil (1.3-1.7%) 
Good capacity to store nutrient cations (ECEC 14.2-24.7) 

Dominated by somewhat 
poorly drained soils 
Predominately mid and 
lower slopes 
Gently inclined slopes 

3 : B Clayey sand A-horizons (<3cm) over sandy clay loam to 
medium clay 
Subsoils contain stones (7-17%) 
Restricted depths (10-20cm) 
Neutral, Non saline soils 
Medium levels of organic carbon in the topsoil (1.0-1.7%) 
Medium to good capacity to store nutrient cations (ECEC 7.0-
24.2) 

Dominated by well 
drained and moderately 
well drained soils, 
Predominately crests 
Gently inclined slopes 

4 : C Sandy loam A-horizons (5-12cm) over sandy clay loam to 
light medium clay 
Subsoils contain stones (6-16%) 
Some restricted depths at 30cm 
Some subsoils slightly sodic (pHca 6.0-7.1) 
Some subsoils slightly saline (EC1:5 7-20mS/m) 
Medium levels of organic carbon in the topsoil (0.9-1.5%) 
Medium to good capacity to store nutrient cations (ECEC 
12.5-20.0) 

Dominated by somewhat 
poorly drained soils 
Predominately lower 
slopes and depressions 
Gently inclined slopes 

7 : D Clayey sand A-horizons (<3cm) over clayey sand 
Subsoils contain stones (13-23%) 
Some restricted depths at 20cm 
Neutral, Non saline soils 
Medium levels of organic carbon in the topsoil (0.8-1.4%) 
Poor capacity to store nutrient cations (ECEC < 6.7) 

Dominated by well 
drained soils 
Predominately lower and 
mid slopes 
Gently inclined slopes 

2 : E Clayey sand A-horizons (8-14cm) over sandy loam 
Subsoils contain stones (7-20%) 
Restricted depths (15-30cm) 
Neutral, Non saline soils 
Medium levels of organic carbon in the topsoil (1.1-1.6%) 
Poor capacity to store nutrient cations (ECEC < 5.9) 

Dominated by well 
drained soils 
Predominately slopes 
Gently inclined slopes 

10 : F Sand with A-horizons depths(6-11cm) 
Restricted depths (<20cm) 
Topsoils contain stones (5-7%) 
Some topsoils slightly acidic (pHca 4.4-5.1) 
Non saline soils 
Low levels of organic carbon in the topsoil (0.7-1.1%) 
indicating poor nutrient storage and unstable structure 
Poor capacity to store nutrient cations (ECEC < 4.0) 

Dominated by well 
drained soils 
Predominately upper 
slopes 
Gently inclined slopes 

9 : G Loamy sand A-horizons (10-15cm) over clayey sand 
Subsoils contain stones (12-22%) 
Restricted depths (20-30cm) 
Neutral, Non saline soils 
Low levels of organic carbon in the topsoil (0.8-1.1%) 
indicating poor nutrient storage and unstable structure 
Poor capacity to store nutrient cations (ECEC < 3.9) 

Dominated by well 
drained soils 
Predominately crests and 
upper slopes 
Gently inclined slopes 
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LMU  Major characteristics of dominant soil 

Major 
characteristic of 
dominant 
Landscape 

5 : H Loamy sand A-horizons (10-15cm) over clayey sand 
Subsoils contain stones (9-17%) 
Some restricted depths at 30cm 
Neutral, Non saline soils 
Low levels of organic carbon in the topsoil (0.8-1.4%) 
indicating poor nutrient storage and unstable structure 
Poor capacity to store nutrient cations (ECEC < 4.0) 

Dominated by well 
drained soils 
Predominately mid and 
lowers slopes to 
depressions 
Gently inclined slopes 

8 : I Sand A-horizons (1-5cm) over loamy sand 
Subsoils contain stones (6-10%) 
Neutral, Non saline soils 
Low levels of organic carbon in the topsoil (0.7-1.1%) 
indicating poor nutrient storage and unstable structure 
Poor capacity to store nutrient cations (ECEC < 3.1) 

Dominated by well 
drained soils 
Predominately 
depressions 
Gently inclined slopes 

6 : J Loamy sand A-horizons (10-20cm) over clayey sand 
Subsoils contain stones (3-8%) 
Neutral soils, Non saline soils 
Medium levels of organic carbon in the topsoil (1.0-1.4%) 
Poor capacity to store nutrient cations (ECEC < 3.8) 

Dominated by well 
drained soils 
Predominately flats and 
mid slopes 
Very gently to gently 
inclined slopes 

11 : K Sand A-horizons (10-15cm) over sand 
Subsoils contain stones (1-7%) 
Some subsoils slightly acidic (pHca 4.7-5.3) 
Non saline 
Low levels of organic carbon in the topsoil (0.6-1.0%) 
indicating poor nutrient storage and unstable structure 
Poor capacity to store nutrient cations (ECEC < 2.3) 

Dominated by well 
drained and somewhat 
excessively drained soils 
Predominately mid 
slopes 
Gently inclined slopes 

7. 6 Summary 
The LMU classification framework has been described in detail concluding with a 

map of LMUs and their associated soil and dominant landform descriptions.  The 

two stage methodology described uses the application of a spatially weighted 

multivariate classification to high resolution data sets (i.e. DEM and DMSI) 

demonstrating the technique is computationally feasible for large data sets.  The 

usefulness of multivariate methods for discriminating between LMUs and colouring 

map units in a way that highlights progressive change, has been demonstrated.  

 

The spatially weighted multivariate classification procedure has formed clusters that 

are similar in terms of their multivariate data and spatially contiguous.  The 

classification incorporates the scale and form of the spatial variation of the soil 

variables by spatially weighting the dissimilarities between locations via a 

geostatistical function.  The process may be adjusted at several steps to suit any other 
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study area location, scale and application.  The success of the LMU classification is 

analysed in the following chapter. 
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CHAPTER 8  

VALIDATION OF LMU CLASSIFICATION 

This chapter describes the analytical procedures that have been carried out to 

examine the success of the LMU classification explained in Chapter 7.  Success is 

defined as how well the classification procedure has performed.  The procedures 

include the use of simulation to verify the allocation of points to LMUs using 

ancillary data, the use of Kappa map comparisons to compare LMU groups under 

varying parameters, and an analysis of variance of yield with respect to each LMU. 

8. 1 Choosing a Validation Procedure 
In essence, the hypothesis underlying the classification procedure is that 

homogeneous LMUs based on soil properties can be managed to maximise profits by 

being able to match inputs to potential yield more accurately than is possible with 

present paddocks.  Ultimately, success is measured by confirming that this is true.  

However, the validation of higher profits is beyond the scope or aims of this thesis, 

which aims to develop a framework for classifying a farm into paddock scale LMUs 

using soil properties sampled at low resolution coupled with less expensive high 

resolution ancillary data sets. 

 

One aspect of this underlying hypothesis, that the LMUs formed are associated with 

potential yield has been examined.  The association between LMUs and actual yield 

over recent seasons has been examined on the basis that actual yield should be 

correlated with potential yield.  While an association would support the hypothesis 

that LMUs are correlated with potential yield, a lack of association would not 

indicate LMUs are not correlated with potential yield, as it could result that actual 

yield is not correlated with potential yield.   

 

The success of the classification procedure itself has been examined by 

experimentation.  A simulation has been performed using ancillary data for 

allocating points to LMUs with similar soil properties.  The sensitivity of the process 

to the choice of method and distance parameters has been examined by comparing 

LMU maps resulting from different choices using a Kappa statistic.  No further 
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validations have been carried out to address other aspects of the classification 

procedure itself as there are several variables and parameters, which will inevitably 

alter the classification output if their values are changed (i.e. the choice of number of 

groups). 

8. 2 Validation of LMU Allocation using Ancillary Data  

One way to test that the LMU classification technique has correctly represented the 

landscape is to take further field soil samples within the LMUs and analyse their soil 

properties.  Then determine how similar the extra field samples are to the LMU to 

which they have been assigned based on the 13 selected stable soil properties 

identified to be included in the formation of LMUs (Table 6.8). 

 

In order to achieve this without further field sampling, the existing 250 points have 

been randomly subdivided into two subsets.  Only points in the first subset have been 

used for the LMU classification using stable soil properties.  Points in the second 

subset (verification subset) have been allocated to the LMUs they would normally be 

assigned, if they only had ancillary data available (landform, CTI, slope, RI).  In 

addition, the LMU to which each point is most similar based on the 13 selected soil 

properties has been identified as the correct LMU.  An analysis has been carried out 

to evaluate how often the LMU based only on ancillary data corresponds to the 

correct LMU.  This is discussed in the following section. 

 

The validation of the process of LMU allocation using ancillary data consists of three 

parts after S soil points are randomly excluded from the available 250 soil points 

(Figure 8.1).  Part A uses a spatially weighted cluster analysis to subdivide the 

remaining soil points into LMUs based on the stable soil properties.  Part B uses an 

additional spatially weighted multivariate analysis to assign the S excluded soil 

points to the LMUs using the high resolution ancillary data (landform, CTI, slope, 

RI).  Part C assigns the S excluded soil points to LMUs using a spatially weighted 

multivariate analysis based on the 13 stable soil properties and compares the LMUs 

selected for each soil point in parts B and C.  The random selection of points for 

exclusion and Parts A to C are repeated c times and a summary of the comparisons 

are displayed as a histogram. 
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The program used for Parts A and B is the same used to classify the LMUs (Chapter 

7) with an identical set of parameters.  The random comparison validation process is 

explained in the following sections according to the flowchart in Figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
NB.  Transformed (if required) variables used as in Chapter 7 (Figure 7.1) 

Figure 8.1  Flowchart of random comparison/validation process 
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8.2.1 The Random Selection 

Using the 250 soil points, S points are randomly excluded for the validation process.  

In order to ensure that the points are relatively evenly spatially distributed across the 

farm, the 250 soil points are assigned to 10 strata based on their easting and northing 

coordinates.  The S points are then selected with an equal number from each stratum.  

As such, S has a minimum value of 10 and must be a multiple of 10. 

 

The question of how many points should be used for validation purposes is open for 

debate.  McBratney et al. (2003) suggest one quarter to one third of the total sample.  

However, this is not based on empirical evidence.  In this study fifty random points 

(i.e. 20 percent) is determined as the minimum number required to examine how well 

the ancillary data process is working.  In addition, the remaining 200 soil points are 

sufficient to generate a useful LMU classification.  

8.2.2 Part A: Forming LMUs based on Soil Point Properties 

Following the process identical to that used for Part A of the LMU classification 

(Section 7. 2), the remaining (n-S) soil points are allocated to LMUs using a spatially 

weighted multivariate classification based on the 13 selected soil properties.  Several 

parameters, which were trialled and selected in the initial LMU classification, have 

been used.  These include the exponential variogram model with a 250m range and 

nugget variance of 10 percent, along with 11 LMU groups specified for the non-

hierarchical cluster analysis on the 13 PCO’s derived from the 13 soil properties.  At 

the end of Part A all (n-S) soil points are assigned to one of 11 LMUs. 

8.2.3 Part B: Assigning Random Points to LMUs based on Ancillary Data 

Part B follows a methodology identical to that in the original LMU classification 

(Section 7. 3), but uses S randomly excluded points as mask pixels in this instance.  

Option 1 (Cluster/Cluster) with a range of 250m has been chosen as the most 

appropriate output map in Chapter 7.  This results in the S random points being 

assigned to one of the 11 existing LMUs based on the similarity in ancillary data 

with an exponential spatial weighting.  
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8.2.4 Part C: Assign Random Points to LMUs based on Soil Properties 

In Part C the S random points are assigned to one of the 11 existing LMUs using a 

spatially weighted similarity based on the 13 stable soil properties and methodology 

similar to Part B.  Firstly, the similarity between the S random points and (n-S) soil 

points is determined based on the 13 stable soil properties and converted to 

dissimilarity. 

 

The geographic distance between the S random points and (n-S) soil points is 

calculated using an Euclidean measure of similarity based on the easting and 

northing.  This ensures the range for both easting and northing are equal.  A spatially 

weighted distance matrix is generated using an exponential variogram model with a 

range of 250m and nugget variance of 10 percent. 

 

Using the spatially weighted distance matrix, a spatially weighted dissimilarity 

matrix between the S random points and (n-S) soil points is computed and converted 

to similarity.  The final step allocates each of the S random points to the LMU group 

with which it has maximum similarity.  This is regarded as the correct LMU to 

which the point should have been allocated and is compared to the LMU chosen in 

Part B using only ancillary data.  

 

The above process is run in a loop c times and a frequency histogram showing the 

distribution of percent correct for c cycles is displayed.  With c = 100 and S = 50 the 

results are displayed in the histogram in Figure 8.2. 
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Figure 8.2  Histogram of the percentage of correct assignment of S (50) random 
points to LMUs for c (100) cycles  

 

In the absence of soil properties, the ancillary data (landform, CTI, slope, RI) has the 

potential to assign points to the appropriate LMU.  The results indicate a mode of 70 

percent correct, which ranges from a minimum of 52 percent to a maximum of 82 

percent.  As such, 84 percent of the time, greater than 60 percent of the points are 

correctly allocated.  This confirms that it is possible to define high resolution 

boundaries using ancillary data with reasonable accuracy. 

 

An important point to note is that the allocation of points to LMUs as either correct 

or incorrect is rather harsh, as some of the LMUs have similar soil properties.  While 

the histogram above indicates that greater than 15 percent of the time the number of 

points incorrectly allocated will be approximately 40 percent, many of these 

misallocations are to LMUs with properties that are similar to the correct LMU.  A 

fuzzy comparison approach will be briefly discussed in Section 9.2.4 and is 

recommended here in order to include partial associations to LMUs with similar soil 

properties. 

 

A natural comparison would be to assess the LMU group output when some points 

have been removed, with, the original LMU classification selected in Section 7. 5.  

However, as soon as one or more soil points are removed the parameters associated 

with each original LMU change and therefore, points may be assigned to different 

LMUs.  It is quite possible, for instance, that even though the LMUs are similar, they 
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may be re-ordered.  Under these circumstances it is difficult to measure the 

correctness of the classification with regard to the original.  

8. 3 Sensitivity Analysis of LMU Classification 
The impact of the different distance parameters and choice of method on the spatial 

variation in LMUs can be observed using the resulting LMU maps.  These LMU 

maps, resulting from different parameters, were compared utilising the tools of the 

Map Comparison Kit (MCK) © (RIKS, 2005a).  It is of interest to know spatially 

areas of agreement/disagreement that occur when comparing classification 

parameters. 

 

MCK offers several comparison options including the Kappa statistic, which has 

been used here.  The Kappa statistic which results from a pixel-by-pixel comparison 

between Map A and Map B, is dissected into two further statistics (Kappa Location 

and Kappa Histogram) that focus on different aspects of differences between the 

maps.  Kappa Location (KLoc) measures similarity of location and Kappa Histogram 

(KHisto), measures similarity of quantity.  Location refers to the spatial distribution 

of LMUs in Maps A and B and histogram refers to the frequency distribution of 

LMUs in the maps (RIKS, 2005b).  The dissection of the kappa statistics, which the 

MCK utilises, results from Pontius’ clarification (Pontius, 2000) of Klocation and 

Kquantity.  However, Hagen (2002) defines Khisto as a replacement for Kquantity, 

which avoids many of the practical problems of Kquantity by scaling it using the 

Expected Fraction of Agreement, P(E) (Equation (8.2)). 

 

The calculation of Kappa is based on the contingency table (confusion or error 

matrix) (Hagen, 2002), which details how pixels in each category in Map A are 

categorised in Map B (Table 8.1).  Each row contains the fractions of the pixels in 

the map, which have been identified in a particular category in Map A and each 

category in Map B.  For example, a value of 0.75 for cell P21 indicates that 75 

percent of the mapped area is category 2 in Map A and category 1 in Map B.  The 

last column gives the total fraction of pixels in each category in Map A.  Since all 

categories together make up the whole map, the total sum of these fractions equals 1.  

Similarly, the last row gives the fraction of pixels in each category for Map B and 

must add up to 1. 
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  Map B categories 
  1 2 … C 

Total 

1 p11 p12 … p1C p1T 
2 p21 p22 … p2C p2T 

…
 

…
 

…
 

… …
 

…
 

M
ap

 A
 

ca
te

go
ri

es
 

C pC1 pC2 … pCC pCT 
Total pT1 pT2 … pTC 1 

Table 8.1.  The contingency table in its generic form (redrawn from Hagen, 2002) 

 

The following three statistics presented in Hagen (2002) can be calculated from the 

contingency table and are used here to further explain the calculation of Kappa and 

the dissection of Kappa into Klocation and Khisto. 
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P(A) stands for the Fraction of Agreement (Equation (8.1)), P(E) is the Expected 

Fraction of Agreement subject to the observed distributions of categories in Maps A 

and B (Equation (8.2)) and P(max) is the Maximum Fraction of Agreement subject to 

the observed distributions of categories (Equation (8.3))(Hagen, 2002). 

 

Hagen (2002) defines the Kappa statistic K as follows; 

)(1
)()(

EP
EPAPK

−
−

=  (8.4)

Therefore, the Kappa statistic is the fraction of agreement P(A), which is corrected 

for the fraction of agreement statistically expected from a random allocation of all 

cells in the map using the observed frequency distributions for Map A and Map B 

(Hagen, 2002).  Klocation is calculated according to Equation (8.5) and Khisto 

according to Equation (8.6). 
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=  (8.6) 

 

As such, K is the product of Klocation and Khisto (Equation (8.7)).  A more detailed 

description can be found in Hagen (2002) which is based on, and further described 

in, Pontius (2000).  Hagen (2002) indicates the relative merits of the Kappa statistic 

and points out that the Kappa statistic by itself offers insufficient information.  This 

is because the value of 0.7 in one case may be considered very high, while in another 

case can indicate a poor result and, as such, suggest using a reference level of 

similarity via a reference map.   

KhistoKlocationK ∗=  (8.7)
 

Using the MCK, the Kappa statistic separated into Klocation and Khisto has been 

calculated for all LMUs combined and per LMU.  

8.3.1 Results from the Kappa Map Comparison 

The Cluster/Cluster 250m map has been selected as the final LMU map in Chapter 7 

and, as such, has been set as Map A and compared to all other LMU maps.  In this 

case the Cluster/Cluster 250m map (Map A) can also be considered the reference 

map and the results for other maps are interpreted relative to each other.  The 

resultant agreement/disagreements maps are shown in Figure 8.3 and a summary of 

the Kappa statistics and P(A) listed in Table 8.2, while the matrix for each map 

comparison are provided in Appendix Q. 

 

The unequal areas of the agreement/disagreement maps (Figure 8.3) are scattered 

throughout the study area with the majority in all maps occurring in the south west of 

the farm where the sandier soils are known to be.  Visually, the Discriminant 250m 

(Figure 8.3 d) is the most similar to the Cluster/Cluster 250m map. 
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Figure 8.3  Kappa Map Comparison resultant agreement/disagreement maps for 
differing parameters a) Cluster/Cluster 200m b) Cluster/Cluster 300m c) 

Discriminant 200m d) Discriminant 250m e) Discriminant 300m 
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Table 8.2.  The Kappa statistics; overall and for individual LMUs, used for 
comparison with the LMU map based on a Cluster/Cluster method with a range of 

250m 
 Cluster/Cluster 200m Cluster/Cluster 300m 
P(A) 0.595 0.597 
 Kappa KLoc KHisto Kappa KLoc KHisto 
Overall 0.55 0.69 0.81 0.55 0.68 0.82
LMU 1 0.87 0.92 0.95 0.83 0.92 0.90 
LMU 2 0.76 0.92 0.83 0.81 0.88 0.91 
LMU 3 0.82 0.94 0.87 0.49 0.84 0.59 
LMU 4 0.82 0.87 0.94 0.79 0.81 0.98 
LMU 5 0.43 0.62 0.71 0.71 0.76 0.94 
LMU 6 -0.01 -0.02 0.45 -0.01 -0.06 0.13 
LMU 7 0.82 0.83 0.99 0.33 0.36 0.92 
LMU 8 0.60 0.81 0.74 0.08 0.11 0.73 
LMU 9 0.84 0.85 0.98 0.83 0.91 0.92 
LMU 10 0.76 0.86 0.88 0.82 0.83 1.00 
LMU 11 -0.08 -0.12 0.69 0.13 0.22 0.61 

 
 Discriminant 200m Discriminant 250m Discriminant 300m 
P(A) 0.543 0.762 0.539 
 Kappa KLoc KHisto Kappa KLoc KHisto Kappa KLoc KHisto 
Overall 0.49 0.58 0.85 0.74 0.81 0.91 0.49 0.60 0.82
LMU 1 0.79 0.80 0.99 0.80 0.86 0.93 0.74 0.82 0.90 
LMU 2 0.66 0.75 0.88 0.77 0.82 0.94 0.72 0.77 0.93 
LMU 3 0.65 0.69 0.95 0.75 0.76 0.98 0.47 0.71 0.66 
LMU 4 0.65 0.82 0.78 0.70 0.86 0.81 0.67 0.79 0.85 
LMU 5 0.34 0.39 0.86 0.76 0.82 0.94 0.62 0.67 0.93 
LMU 6 0.01 0.02 0.59 0.76 0.76 1.00 -0.02 -0.04 0.52 
LMU 7 0.72 0.73 0.98 0.76 0.76 0.99 0.29 0.31 0.92 
LMU 8 0.56 0.62 0.89 0.57 0.67 0.85 0.06 0.09 0.71 
LMU 9 0.76 0.80 0.95 0.79 0.82 0.96 0.75 0.81 0.93 
LMU 10 0.69 0.72 0.96 0.76 0.76 0.99 0.72 0.80 0.90 
LMU 11 -0.07 -0.10 0.67 0.65 0.87 0.74 0.14 0.24 0.57 
#. KLoc refers to Klocation and KHisto refers to Khistogram. 

 

In terms of the overall Kappa values, the discriminant method with a range of 250m 

provided the best results with a Kappa value of 0.74, which comprises Klocation of 

0.81 and Khistogram 0.91.  This highlights that the range parameter has had a greater 

influence on the distribution of LMUs over the methodology (i.e. Cluster/Cluster or 

Discriminant).  For each comparison the Klocation value is at least 0.10 lower than 

the Khistogram.  This indicates that the spatial location of the LMUs is not as 

reliable when compared to the frequency distribution of categories.  The 

Cluster/Cluster 200m and Cluster/Cluster 300m are the next most similar with an 

overall Kappa of 0.55 in each case.  Discriminant 200m and Discriminant 300m have 

an overall Kappa result of 0.49 in each case.  This also suggests the strength of the 

range parameter over method in the comparisons.  
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Looking at the results for each LMU group comparison, the Klocation results are 

often lower than the Khistogram.  In each case, this brings down the overall Kappa 

value.  The results for each LMU group highlight that LMU 6 and LMU 11, and less 

often LMU 8, have very low Kappa values with the Klocation being the lowest in 

each case.  Table 8.3 displays a summary of how some of the individual LMUs are 

mapped based on the results in Appendix Q. 

Table 8.3  Summary of the individual LMU group comparisons that have not been 
mapped well (≥20 percent to another LMU) and LMU legend ranking 

  Cluster/Cluster 250m 
LMU 3 5 6 7 8 11 Total of 

Other 
LMUs 

5  38%    37% 25% 
6   15%   72% 13% 

Cluster/Cluster  
200m 

11   87%   4% 9% 
6   0  28% 55% 17% 
7 53%   37%   10% 
8    30% 20%  50% 

Cluster/Cluster  
300m 

11     38% 17% 45% 
5  36%    36% 28% 
6   13%   70% 17% 

Discriminant  
200m 

11   62%   5% 33% 
Discriminant  
250m 

Mapped well 

6   <1%  22% 57% 20% 
7 44%   33%   23% 
8    30% 18%  52% 

Discriminant  
300m 

11     44% 17% 39% 

LMU 1 

LMU 3

LMU 4

LMU 7

LMU 2

LMU 10

LMU 9

LMU 5 

LMU 8

LMU 6

LMU 11

A

B

C

D

E

F

G

H

I

J

K

 

LMUs 6 and 11 are the least well mapped followed by LMUs 5,7 and 8.  Depending 

on the method and variogram range selected, pixels in LMU 11 often move to LMUs 

5 and 6, and pixels in LMU 6 move to LMU 11 with corresponding changes in the 

definition of map units.  LMU 6 has been mapped as LMU 11 72 percent in the 

Cluster/Cluster 200m map and 55 percent in the Cluster/Cluster 300m map along 

with 70 percent in the Discriminant 200m map and 57 percent in the Discriminant 

300m map (Table 8.3).  LMU 5, 8, 6 and 11 are the sandier soils and have been 

ranked similarly as shown in the final LMU map (Figure 7.14) and reproduced 

legend above (Table 8.3).  It appears that when using the different classification 

techniques and ranges, the boundaries (both spatial and in terms of their soil 

properties) between LMUs with similar soil properties are likely to change. 
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8. 4 Relationship between LMUs and Yield 
The LMU to which each soil point has been assigned was added to the Yield Data 

Set 1 (detailed in Section 5.7.2).  A multiple regression model incorporating crop 

type, year effect and LMU was then used to determine whether yield varied 

significantly between LMUs and to estimate a yield for each LMU.  The regression 

model fitted was as follows; 

ljkkjijkl LMUCYrYrCY ++++= μ  (8.8)

where ijklY  is the average interpolated yield for sampling point i in year k with crop 

type j and LMU l; μ  is the intercept; jC  is the effect of crop j; kYr is the effect of 

year k; jkCYr  is the effect of the interaction between crop j and year k; lLMU  is the 

effect of LMU l. 

 

Statistical assumptions of normality, independence and constant variance underlying 

regression analysis were examined using plots of residuals.  The plot of residual 

against fitted values indicated that the variance of the residuals increases with mean 

yield.  While this is of some concern, it was overcome by transforming the yield data 

using a natural log transformation.  Subsequent models incorporated the log Yield 

data and took the form; 

ljkkjijkle LMUCYrYrCY ++++= μ)(log  (8.9)

Results of the model fitting process have been summarised in an analysis of variance 

table with the effect of each term in the model reported after removing the effects of 

the terms above it in the table (Table 8.4).  There was a highly significant difference 

in yield for LMUs after adjusting for effects of crop type and year indicating there 

will be significant differences in yield between some LMUs.  The variance between 

LMUs is over 3 times the unexplained variance within LMUs as indicated by the 

variance ratio (3.07).  The model accounted for 43.9 percent of the variance in yield 

and the residual standard error of observations is 0.228.   
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Table 8.4  Accumulated analysis of variance for regression model in Equation (8.9).  
The model accounted for 43.9 percent of the variance in yield and the residual 

standard error of observations is 0.228.   

Factor Degrees of 
freedom 

Sum of 
squares 

Mean 
square 

Variance 
Ratio 

F. 
probability 
significance

Crop Type 6 16.04066 2.67344 51.58 <.001
Year 6 8.23235 1.37206 26.47 <.001
CropYear 22 4.37249 0.19875 3.83 <.001
LMU 10 1.59152 0.15915 3.07 <.001
Residual 646 33.48137 0.05183  
Total 690 63.71839 0.09235  
 

From the regression model, yield was predicted for each LMU (Table 8.5).  These 

values are comparable because differential effects of year and crop type have been 

eliminated.  

Table 8.5  Predicted Yield for each LMU based on the regression model 

Yield 
kg/ha 

LMU Texture group from final LMU 
classification 

Approximate 
Clay Content %  

1093.10 8 Sand A-horizons (1-5cm) over 
loamy sand 

<5% over  
about 5% 

1296.63 11 Sand A-horizons (10-15cm) over 
sand 

<5% over  
<5% 

1391.32 4 Sandy loam A-horizons (5-12cm) over 
sandy clay loam to light medium clay 

10-20% over 
20-45% 

1466.36 5 Loamy sand A-horizons (10-15cm) over 
clayey sand 

About 5% over 
5-10% 

1511.66 6 Loamy sand A-horizons (10-20cm) over 
clayey sand 

About 5% over 
5-10% 

1549.62 2 Clayey sand A-horizons (8-14cm) over 
sandy loam 

5-10% over 
10-20% 

1550.13 1 Sandy loam A-horizons (7-13cm) over 
sandy clay loam to light medium clay 

10-20% over 
20-45% 

1560.10 10 Sand with A-horizon depth (6-11cm) <5%  

1588.41 3 Clayey sand A-horizons (<3cm) over 
sandy clay loam to medium clay 

5-10% over 
20-55% 

1591.26 7 Clayey sand A-horizons (<3cm) over 
clayey sand 

5-10% over 
5-10% 

1636.48 9 Loamy sand A-horizons (10-15cm) over 
clayey sand 

About 5% over 
5-10% 

 

Looking at the soil properties that are associated with each LMU from the final soil 

map (Table 8.5), it is found, in general, that the very low clay content top soil and 

sub soils are associated with the lower yield values.  The difference in yield between 
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LMUs has a maximum of just less than 600kg.  At this level a farmer would consider 

alternative management in view of increased productivity if a cost benefit can be 

shown.  However, it would not be worth while managing LMUs differently with only 

a 1kg/ha change (i.e. LMU 1 and 2) and in this case a farm manager may choose to 

manage these units in the same way.  However, providing the results in such detail 

gives the farmer a decision management tool. 

8. 5 Summary  
Analyses of the success of the LMU classification in this chapter have resulted in 

three conclusions: 

a) the method of allocating points/pixels to a LMU based on ancillary data has 

resulted in the correct allocation of 60 percent of points over 80 percent of the 

time; 

b) the LMU classification is not very sensitive to the change in variogram range 

or alternative techniques, except for a small number of individual LMUs (i.e. 

6 and 11) which are less well discriminated in terms of their soil properties; 

and  

c) there is a relationship between the LMUs formed from the classification 

procedure and yield, giving farmers an opportunity to look at different 

management practices based on the LMU classification. 

 

This LMU classification incorporating soil information from a small number of 

sample points and high resolution ancillary data has been successful. The 

implications of these results are discussed further in the following Chapter 9. 
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this research has been to develop a framework for classifying 

a farm into homogeneous LMUs that can be used in precision agriculture 

applications.  The framework has been described in Chapter 7 and the success of the 

classification technique analysed in Chapter 8. 

 

The principles underlying the LMU framework have been addressed in Chapters 4, 6 

and 7.  The main conclusions based on the findings of this research and 

recommendations for further research are presented below. 

9. 1 Conclusions 
This research has provided a framework for creating LMUs.  The process starts with 

the compilation of data sets and finishes with the production of a final map of soil 

properties relevant to site-specific crop management.  The strength of the framework 

lies in the integrity of each of the steps (aims) which make up the process.  These 

aims are reiterated and dealt with individually below. 

9.1.1 Determine Stable Soil Properties that have the most influence on Yield 

Variability in the Agricultural belt of WA 

A set of 11 stable soil properties (Table 9.1) were established from the 24 soil 

properties measured by examining the relevant literature and using statistical 

methods to select those having the greatest effects on yield. 

 

No conclusive subset of soil properties could be identified from a regression analysis 

between yield and soil properties.  At best, only just over 50 percent of the variance 

in yield in 2003 was accounted for using the full set of soil properties. 
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Table 9.1  Stable soil properties and variables from literature review 

Property Variable 
Topography landform, CTI, slope 
Texture Percentage of sand, silt and clay 
Coarse fragments Percentage of stones 
Organic matter Percentage of Organic Carbon 
Capacity of soil to store 
nutrients cations 

Effective cation exchange capacity 
(ECEC) 

Acidity/Alkalinity pH 
Salinity EC 
Sodicity Exchangeable sodium percentage (ESP) 
Soil stability Ca:Mg ratio 
Depth of topsoil Depth of A-Horizon 
Depth of restricted layer Depth of compaction or impeding stones 

 

Principal components analysis was used to reduce the initial set of 24 soil properties 

to a subset of 13.  It aided in the identification of relationships between soil 

properties and the soil properties that explain variance between sampling points.  

This approach would be useful in diverse environments with large multivariate data 

sets or scenarios that do not have the luxury of historical yield data. 

9.1.2 Employ High Resolution, Readily Available, Cheap Ancillary Data Sets that 

are related to Soil Properties and/or Landscape Variability 

The research focuses on the appropriateness of the ancillary data which, on the basis 

of utility, have been constrained to meet a number of criteria.  These criteria do not 

limit the framework to this particular set of data.  The criteria are: 

i. High Spatial Resolution - the spatial resolution of differing remote sensing 

systems range from sub-metre (0.5m) to 1000m, with high resolution referring to 

the sub-metre end of the scale.  Jensen (1996a) offers a useful rule that the spatial 

resolution of a system should be less than half the size of the feature measured in 

its smallest dimension.  Since the intention of this research was to delineate LMUs 

at within paddock scales (with an average paddock size of greater than 35ha), a 

spatial resolution less than or equal to 10m is considered appropriate. 

ii. Readily available to farmers - the data sets can be easily purchased from a 

government organisation or private company, and are not exclusive to any 

particular study region or limited study area.  This criterion limits the process to 

data sets that are not historical in nature, i.e. there is no requirement that a farmer 

has collected data prior to the project. 
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iii. Low cost - it is difficult to stipulate what constitutes low cost ancillary data.  Low 

cost is a relative statement and depends on the funds available for a project.  What 

may be considered high to one user, might not to another.  However, this research 

undertakes a comparison of the commercial cost of the data sets used, against 

other high resolution data sets widely available.  This is illustrated in Table 9.2, 

which shows that the ancillary data used in this research are relatively low cost. 

 

Table 9.2  Comparison of the cost of some high resolution data sets January 2007  

Ancillary 
Data 

Products Resolution Source Total Cost 
based on 
3000ha 

Cost/ha 
$AUD 

DEM Landform, 
CTI, Slope 

0.01m vertical 
+/-1.5m 
accuracy 
10m spatial 

Department of 
Agriculture-WA 

$300 $0.10 

DEM (with  
EM38 
inclusive) 

DEM  0.02m vertical 
2m spatial 

Precision 
Agronomics  

$33,000 $11.00 

DEM 0.02m vertical 
20m swath 
transects 

DEM and 
EM38  

EC soil 
variability 

20m swath 
transect 

Australian Centre 
of Precision 
Agriculture 

$22,500 $7.50 

EM38 EC soil 
variability 

35m swath 
transect 
interpolated 
onto 
5m spatial 

Precision 
Agronomics 

$19,500 $6.50 

DMSI B, G, R, NIR 
450-780nm 
RI, NDVI  

1.5m spatial SpecTerra 
Services 

$6,900 $2.30 

HyMap 0.45-2.5um  3-10m spatial HyVista 
Corporation 

$5,000-
$10,000 

$1.60 - 
$3.35 

Quickbird B&W  
B,G,R,NIR 

0.65m  
2.5m 

Sinclair Knight 
Merz 

$3000 $1.00 

Radiometrics Potassium 
(K), 
Thorium 
(Th) 
Uranium (U)  
Total Counts 

25m spatial Fugro Airborne 
Surveys 

$4950 
(excluding 

mobilization 
cost)  

$1.65 

     data sets used on this research highlighted in grey 

 

Other elevation data sources are approximately 10 times more expensive than the 

DEM used in this case, although it is acknowledged that they have higher spatial 

and vertical resolution.  The DMSI used in this research is similar in cost to other 
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high resolution multi-spectral data i.e. Hymap.  The Quickbird imagery appears to 

be another option that future projects may investigate as it is half the cost of the 

DMSI used in this case.  However, Quickbird imagery is captured from satellite; 

therefore the data must be captured during the satellite pass and additional charges 

may apply.  EM38 data, which is used to detect EC soil variability, is almost 3 

times more expensive than DMSI, while radiometrics, which have been used to 

detect site-specific management zones (Florin et al., 2005), are comparable in cost 

but have a coarser spatial resolution (25m).  From Table 9.2 it can be seen that the 

elevation data used in this research is low cost in comparison to other sources, 

while the DMSI is similar to other high resolution multi-spectral data sets. 

 

iv. Related to soil properties and/or landscape variability – vegetation indices (VI) 

were generated from the DMSI and analysed in relation to in situ crop attributes to 

test the hypotheses that VIs could be used as high resolution inputs to the LMU 

classification.  It was concluded that although the VIs captured the spatial 

variation in crop growth, they were not suitable as inputs to the LMU 

classification in this case.  The results of this analysis have been discussed in 

Chapter 4 and further concluded below (Section 9.1.7).   

 

A correlation analysis between the ancillary variables CTI, slope, RI and the 13 

selected soil properties was performed in Chapter 6, demonstrating that all these 

ancillary variables were correlated with some of the soil properties.  An analysis 

of variance of the selected soil properties with respects to landforms showed 

significant differences between either primary landforms, slope classes or both, 

for nine of the 13 selected soil properties (Chapter 6) indicating that the landforms 

contain information about soil properties. 

 

The justification of the use of the ancillary data (landforms, CTI, slope, RI) has 

also been demonstrated in Chapter 8.  A validation process was performed in 

which pixels with known soil properties were allocated to a LMU based on their 

ancillary data only.  Sixty percent of the pixels were allocated correctly over 80 

percent of the time. 
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9.1.3 Develop a Methodology to combine information derived from High 

Resolution Data Sets and Soil Properties at Point Locations 

The framework for classifying LMUs is a spatially weighted multivariate 

classification procedure that combines soil properties sampled at low resolution and 

high resolution ancillary data.  The two stage methodology described in Chapter 7 

forms clusters that are spatially contiguous and similar in terms of their multivariate 

data and is computationally feasible for large data sets.  The classification 

incorporates the scale and form of the spatial variation of the soil variables by 

spatially weighting the dissimilarities between locations via a geostatistical function.  

The process may be adjusted at several steps to suit other study areas, scale, input 

variables and applications.   

 

The success of the LMU classification was addressed in Chapter 8 by showing that: 

a) the output LMUs show significant differences (P<0.001) in actual yield, b) the 

LMU classification is not very sensitive to changes in parameters (e.g. variogram 

range), and c) the ancillary data satisfactorily defined high resolution LMU 

boundaries associated with stable soil properties.  

 

It has been clearly shown that, by utilising the two stage approach, a spatially 

weighted multivariate classification technique may now be applied to high resolution 

data sets.  The expense of data acquisition can be kept low by supplementing high 

cost soil data with lower cost ancillary data which is related to the stable soil 

properties influencing plant growth and appropriate for defining high resolution 

boundaries.   

9.1.4 Produce a LMU Map with associated Soil Properties at Paddock Scale 

A LMU map, with a description of the stable physical and chemical soil properties 

(e.g. texture, pH) associated with each LMU, has been produced (Figure 7.14) for the 

Muresk farm.  Several LMUs make up each paddock, and the output can be given to 

farmers for use in site specific management. 
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Figure 9.1 (a) Muresk soil map versus (b) LMU map generated in this research.  
Legends of map units are provided in Chapter 3 and 7 respectively 

 

Figure 9.1 a) is the current Muresk soils map, while Figure 9.1 b) shows the map of 

LMU produced in this research.  The comparison illustrates the greater detail of the 

LMU map.  The current Muresk soils map has only five classes, one of which is the 

Avon flat wet, river (256AfW_RIVER) and another non arable, Steep Rocky Hills 

(256JcR2).  In essence there are only three soil classes with the Jelcobine York unit 

(256JcYo) dominating the arable farming area.  This renders the Muresk soils map 

unsuitable for farm management applications although it is useful at regional scales. 

 

The new LMU map has subdivided the arable area of the paddocks into 11 LMUs 

enhancing the detail of information on the soil properties, and providing a product 

that could be used for site specific precision agriculture.  It is envisaged that other 

land use scenarios and optimisation approaches to farming could also be based on the 

new LMU map. 

 

Multivariate methods for discriminating between LMUs and colouring map units 

(doubled-ended colour plan (Dent, 1999)) according to progressive changes in soil 

properties has overcome the issue of a non-hierarchical output (Chapter 7).  The non-

hierarchical cluster analysis used for the LMU classification has been suggested as 

most appropriate when classifying objects that are not hierarchically structured, such 

as soil (Oliver and Webster, 1989).  The corollary of this is an output that is not 

graduated.  The use of discriminant analysis to identify the soil properties that 
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differentiate the LMUs, then using the median value of the first canonical variate for 

each LMU to rank them in the map legend, has overcome this problem and provides 

a process that could be adopted by other users in a similar predicament. 

9.1.5 Validate the Methodology for forming LMUs 

The methodology for forming LMUs has been validated in Chapter 8.  Three themes 

have been addressed; a) points will be allocated to the correct LMU using only 

ancillary data, b) the LMU classification is insensitive to changes in parameters and 

c) there is a relationship between LMUs and yield. 

 

a) Subsets of 50 randomly chosen soil points from the total sample of 250 soil 

points have been allocated to LMUs as if they had only ancillary data 

(landform, CTI, slope, RI).  Using the known values for the 13 selected stable 

soil properties they have been compared to other soil points in the LMUs to 

which they have been assigned.  The process highlighted that in the absence 

of soil properties the ancillary data can be used to assign points to the 

appropriate LMU with greater than 60 percent of the points being allocated 

correctly 84 percent of the time.  This has confirmed that it is possible to 

define high resolution boundaries using ancillary data with reasonable 

accuracy. 

 

b) LMU maps were produced using differing parameters (variogram range and 

classification methodology) and the resulting maps were compared using the 

Kappa statistic within the Map Comparison Kit © (RIKS, 2005a).  The 

results indicated that while the variogram range had a greater influence on the 

distribution of LMUs than the classification methodology, the LMU 

classification is not very sensitive to changes in either of these parameters.  A 

small number of LMUs which were less well discriminated in terms of their 

soil properties appeared to be the major contributor to spatial differences 

between the maps.  

 

c) An analysis of variance of potential yield with respect to each LMU showed a 

highly significant difference in yield between LMUs (P<0.001).  In general, it 

was found that the top soils and sub soils with very low clay content were 
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associated with the lower yields.  A difference in potential yield of 

approximately 500kg/ha was shown between soils with high and low clay 

contents. 

 

The three validation procedures performed confirm that the LMU classification has 

been successful. 

9.1.6 Develop an Effective Field Soil Sampling Strategy 

The soil sampling strategy developed in this research used a GIS based approach for 

assessing soil variability.  The strategy utilises the RI and NDVI spectral indices 

(derived from DMSI) in combination with slope classes (derived from DEM) as a 

surrogate layer to identify soil variability based on their relationship with soil 

properties.  The location of soil sampling points is intensified in areas of 

heterogeneous soil types, and less concentrated in homogeneous areas. 

 

The approach is effective, more strategic (i.e. based on variability rather than random 

or grid based placement of soil observations) and uses low cost procedures which 

combine basic image processing and spatial modelling techniques.  The strategy is 

easy to implement in any GIS and offers an alternative to the more sophisticated and 

expensive field surveys that account for spatial variability of soil properties within 

agricultural fields. 

9.1.7 Determine the Opportunities and Limitations of using High-Resolution 

Digital Multi-spectral Imagery as a diagnostic tool for monitoring Crop 

Growth during the Growing Season  

An analysis between the four individual bands and VIs derived from DMSI with crop 

growth attributes across two years was performed in Chapter 4.  The analysis has 

demonstrated the opportunity for high resolution DMSI to detect seasononal crop 

growth variability at within paddock scale, and as such may be an appropriate remote 

sensing tool for further use with site-specific crop management applications.  Field 

scouting still needs to be undertaken to provide an indication of the cause and effect 

of relationships. 
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Three commonly grown crops in the WA wheatbelt, Wheat, Lupins and Canola, were 

correlated with LAI measurements.  An initial view of the linear correlation 

coefficients showed somewhat poorer results than expected, particularly in terms of 

consistency across the two years.  As the NDVI is the most common VI used, a more 

in depth analysis was carried out between the NDVI and LAI for the three crop 

types. 

 

A plot of the relationship between NDVI and all crop types LAI (Figure 4.13) 

showed the diminishing changed in NDVI at values of LAI above 2.0.  This 

concurred with Sellers’ (1985) findings and helped explain the weaker than expected 

linear correlations.  There was a significant correlation between the NDVI and Wheat 

LAI in the year 2003 (0.76; P≤0.01), but a poor correlation in the year 2002 (0.13) 

which could be attributed to the effect of a weed infestation and crop growth stage.  

The correlations between NDVI and Lupin LAI was significant in 2002 (0.50; 

P≤0.01) and low in 2003 (0.28).  The low correlations for Lupins case were 

attributed again to crop growth stage, leaf layering and saturation effect that occurs at 

a LAI of 2.0 and 3.0 and beyond.  For the canola crop, canopy saturation, the 

reflectance of flowers, leaf position and wilting, which are all associated with the 

crop growth stage, have been identified as the causes of lower correlations (0.19 and 

0.42; P≤0.05 for the year 2002 and 2003 respectively).  An analysis between the 

canola petal area index (PAI) and individual DMSI bands indicated that when the 

PAI reaches a certain threshold, it hinders the reflectance of the leaves.  

9. 2 Recommendations 
The research has thoroughly investigated the proposed objectives and has provided a 

framework for determining LMUs that can be used in precision agriculture 

applications.  During the implementation of this research some limitations have been 

identified and the following recommendations are proposed for future work. 

9.2.1 Data Sources 

When producing primary and secondary topographic attributes from a DEM it is 

recommended to ensure that the DEM is “hydrologically sound” (Ryan, 2003), in 

particular for hydrological applications, and the use of such products as ANUDEM 

(Hutchinson, 1989) to form these.  When deriving the CTI and landforms a 
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depressionless DEM was formed by filling pits, ponds and depressions which was 

considered to be “hydrologically sound”, thus transforming a readily available data 

set.  Future works may address this issue in more detail, comparing outputs from 

ANUDEM with those used within this study. 

9.2.2 Opportunities of DMSI 

The study presented in Chapter 4 has identified possibilities for further use of DMSI. 

Aspects that should be considered are: 

• Examine the relationship between canola petal (flower) reflectance and final 

yield.  If a strong relationship exists, then DMSI data captured during the 

flowering stage of canola growth may indicate that DMSI could be used for 

within season models of final canola yield; 

• Examine whether the relationship between LAI and DMSI to can be improved 

using non-liner regressions; 

• Compare high resolution DMSI and broader scale remote sensing systems (i.e. 

30m spatial resolution) for depicting large scale variations, taking into account 

the cost differences. 

9.2.3 GIS Programming 

The successful implementation of the spatially weighted multivariate classification 

has been programmed in Genstat ® using GIS data sets derived in ArcGIS and 

Intergraph GeoMedia.  There is potential to program the LMU classification in GIS 

or remote sensing software.  This would provide software users with the ability to 

perform spatially weighted multivariate classification more simply by avoiding the 

tireless task of extracting and importing data between software.  The LMU 

classification could also be implemented in the statistical package R which is free to 

all users. 

9.2.4 Validations techniques 

Several validation processes have been implemented to analyse the success of the 

LMU classification technique presented in Chapter 8, further options have been 

identified and are suggested hereafter. 
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While the ancillary data are doing a good job of assigning pixels to LMUs in the 

absence of soil properties (Section 8. 2), assessing the result as either correct or 

incorrect (e.g. a Boolean type assessment) is not informative, as some of the LMUs 

have similar soil properties.  It is therefore recommended that a fuzzy method (e.g. 

based on the principles of fuzzy logic proposed by Zadeh (1965)) would be more 

appropriate where pixels would be given a probability of being in a number of LMUs 

including the correct LMU.  The Map Comparison Kit (RIKS, 2005a) offers a fuzzy 

map comparison set which should be investigated. 

 

The LMUs show significant differences in actual yield after adjusting for crop type 

and year effects (Section 8. 4).  It would be interesting to assess the merits of spatial 

and temporal trend maps that Blackmore (2003) provides (Section 2.4.1), and 

analyse them in relation to the LMUs to determine whether the LMUs are spatially 

similar to areas that can be considered stable in time, based on yield data.  

 

To test the hypothesis that the LMUs are an improvement on current paddock 

boundaries, the LMUs would need to be adopted and tested on-farm over several 

years (due to the nature of dry land agriculture and climatic effects) and analysed 

against existing paddock records.  Such research would require a large amount of 

resources and the willingness of a farmer to offer a study area.  Promisingly, in 

discussion with a local farm consultant group (Farmanco Management Consultants) a 

proposal is being put together to assess the commercial costs and quantitative 

benefits of the LMU framework developed in this research. 
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APPENDIX A 

DAILY RAINFALL 2002 AND 2003 
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 RAINFALL - PARADYM FARM 2002       
             
  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1             3.5   4       
2         4   4.5   7.5       
3           1     3       
4           10.5   5         
5           4 2.5 7         
6         5.5 2.5       9     
7         2 2 3           
8       1.5 4               
9       2 3     7         

10               4         
11         7   6.5           
12             13           
13           3.5 3           
14           5 1.5           
15 3               11       
16       15.5       1         
17       6                 
18       6.5                 
19       0.5   8 4.5           
20           0.5             
21                         
22           8             
23                 1.5       
24                         
25             7.5 2 1       
26           4 1           
27             1 6         
28           8.5             
29                         
30               12.5         
31             1 0.5         
                          
  3 0 0 32 25.5 57.5 52.5 45 28 9 0 0
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 RAINFALL - PARADYM FARM 2003       
             
  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1           0.5             
2           2.5             
3           0.5   18.5         
4               3         
5             10     0.5     
6              0.5     0.5     
7               1       3.5
8       14.5                 
9       20 15   2   5       

10   5   5     9.5   3       
11             8 16 2.5       
12         4.5     4.5 3       
13         3.5       3   5   
14             2.5           
15         1   3.5           
16         22     2         
17   5     3           28.5   
18                       3
19               2.5         
20             1.5 2.5 2.5       
21     2 2 7   1           
22       1 2 5.5   23.5 7       
23           10.5     6       
24                         
25           2.5   1.5         
26           13             
27       1   12.5 1     4     
28           8             
29           23   0.5         
30     3.5     3 9   8.5       
31     17   2   2.5           
                          
  0 10 22.5 43.5 60 81.5 51 75.5 40.5 5 33.5 6.5
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APPENDIX B 

SOIL SAMPLING DESIGN 
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Figure A.1 is a flow chart that provides a graphical representation of the soil 

sampling design implementation that will be referred to hereafter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Flow chart of soil sampling design 
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1) Generate NDVI and RI layers from DMSI across the entire study area 

following Equations (2.4) and (2.9) respectively with a cell resolution of 2m, 

Figure A.1 (1). 

2) Determine rates of change in NDVI and RI layers using the grade module 

within MFworks and output as percentage slope.  NDVI_Change% and 

RI_Change% were created in this way, Figure A.1. (2).  The gradient is 

calculated as the average slope (rise over run) multiplied by 100.  Flat areas 

(no change) are assigned a 0 percent, whereas a 45o slope (e.g. steep, rapid 

changes) takes a value of 100 percent (Keigan Systems Inc., 1999). 

3) Generate a true colour image of the study area by combining the Blue, Green 

and Red bands of DMSI.   

4) Create a mask layer by heads-up digitizing within GeoMedia software.  

Rocky outcrops, buildings, dams, roads and remnant vegetation masked out.  

Individual polygons created with similar visual appearance, i.e. bare soil, 

cropped paddocks, gullies and drainage lines.  The vector file was exported 

from GeoMedia and imported into MFworks as a raster layer with 2m-cell 

size.  Each polygon is associated with a unique number, Figure A.1 (3), so 

they can be identified individually.   

5) Generate a 10m mask, (Figure A.1 (4)).  Created using the re-space module 

and the average of values option, in which the resulting cell values are the 

average of the cell values in the corresponding area in the input map layer 

(2m_Mask) (Keigan Systems Inc., 1999).   

6) Create the NDVI_2mMask (Figure A.1 (5)) by combining the 2m_Mask and 

the NDVI layer.  The combine module within MFworks generates unique 

values for all existing combinations of two or more maps layers (Keigan 

Systems Inc., 1999), and thus could be used to determine the distribution of 

NDVI values within a unique region of the mask layer. 

7) Export and analyse the NDVI_2mMask layer.  For each unique region of the 

mask, the area (number of cells) with a NDVI ≤ 0 and area (number of cells) 

with a NDVI > 0.05 was determined.   

8)  Reclass the NDVI_2mMask layer into regions predominantly vegetated 

(majority of area NDVI > 0.05) labelled NDVI or bare soil (majority of area 

NDVI ≤ 0) labelled RI.  Resulting in the output layer 2mMask_NDVI_RI, 

shown in Figure A.1 (6). 
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9) Generate output layers for the NDVI (NDVI_Change%_NDVI) and the RI 

(RI_Change%_RI) by combining the mask layer (2mMask_NDVI_RI) with 

each of the ‘Change percent layers’ (NDVI_Change% and RI_Change%) as 

shown in Figure A.1 (6), using the combine module. 

10) Generate histograms of the rate of change as expressed by the percentage of 

slope for the NDVI and RI values and their associated regions. 

11) Determine the number of variability classes and class boundaries for each 

index (NDVI and RI) by assessing the histograms.  Three classes of 

variability (high, medium and low) applied with class boundaries located at 

the natural breaks highlighted in the histograms for each index. 

12) Reclass the NDVI and RI layers into 3 classes of variability (Figure A.1 (8)). 

13) Create final variability map (3 classes) by combining the NDVI and RI 

variability layers.  The cover operation, used to assemble map layers into a 

final product, was applied (Keigan Systems Inc., 1999).  The 2m spatial 

resolution layers were resampled to a 10m-cell resolution image using the 

average of values option with the re-space module of MFworks.  This 

operation smoothed the layers, and produced the final variability layer shown 

in Figure 4.4, (Variability 1-3 at 10m, Figure A.1 (9)).   

14) Generate the slope layer from the DEM for the entire farm using the grade 

module with the average slope option within MFworks (Slope%, Figure A.1 

(10)). 

15) Combine the slope map with the 10m mask layer (Figure A.1 (4)) to generate 

an output slope layer that coincides with the area of interest on the variability 

map. 

16) Generate a histogram of the slope values for the study area. 

17) Reclass the slope map into 4 classes according to the Australian Soil and 

Land Survey classification standards (Table 4.1).  This forms the output map 

layer (Slope% Class 1-4, Figure A.1 (11)) providing the spatial regions in 

which the soil sampling points could be targeted.   

18) Compute the variability proportion to enable the appropriate number of 

sampling points to be allocated to each stratum.  This takes into consideration 

the percentage of area of each variability class, and a weight is assigned to 

each class in terms of high, medium and low variability in order to increase 

the intensity of sample points in areas of high variability. 
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19) Determine the appropriate weight for each variability class based on pairwise 

comparison method developed by Saaty in 1980 (Malczewski, 1999). 

20) Determine the correct proportion of the 250 sample points to be assigned to 

each slope class based on the area of each slope class within the mask region. 

21) Generate the sample matrix to determine the number of sample points to be 

randomly located with each sample zone (Figure A.1 (12)).  This is 

determined by multiplying the variability proportion by the number of 

sampling points allocated to each slope class. 

22) Generate the sample zones map layer (Figure A.1 (12)) using the cross 

module, which performs map layer cross tabulation cell by cell (Keigan 

Systems Inc., 1999) between the slope classes map and variability class map; 

thus generating an output map layer with 12 unique zones derived from all 

possible combinations of the slope and variability classes. 

23) Randomly select the appropriate number of sample points from each sample 

zone producing a new raster output layer ‘Sample Points’ (Figure A.1 (13)). 

24) Export ‘Sample Points’ as a XYZ file-a text file (Sample Pts.xls) (Figure A.1 

(14)) containing the spatial location (easting and northing) of the 250 sample 

points. 

25) Overlay the sample points onto the true colour composite generated using the 

DMSI blue, green and red bands. 
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APPENDIX C 

DRAINAGE CLASSES  
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Drainage Classes defined in the Manual for Guidelines for Soil Descriptions (FAO, 

1990). 

Code Name Description 
E Excessively drained Water is removed from the soil very rapidly. The soils are 

commonly very course textured or rocky, shallow or on 
steep slopes. 

S Somewhat 
excessively drained 

The water is removed from soil rapidly.  The soils are 
commonly sandy and very pervious. 

W Well drained Water is removed from the soil readily but not rapidly. The 
soils commonly retain optimal amounts of moisture, but 
wetness does not inhibit growth of roots for significant 
periods. 

M Moderately well 
drained 

Water is removed from the soil somewhat slowly during 
periods of the year. The soils are wet for short periods 
within the rooting depth. They commonly have an almost 
impervious layer, or periodically receive heavy rainfall. 

I Somewhat poorly 
(imperfectly) drained 

Water is removed slowly so that the soil is wet at a shallow 
depth for significant periods. The soils commonly have an 
almost impervious layer, a high water table, additions of 
water by seepage, or very frequent rainfall.  

P Poorly drained Water is removed so slowly that the soils are commonly 
wet at a shallow depth for considerable periods. The soils 
commonly have a shallow water table which is usually the 
result of an almost impervious layer, seepage, or frequent 
rainfall. 

V Very poorly drained Water is removed so slowly that the soils are wet at shallow 
depths for long periods. The soils have a very shallow water 
table and are commonly in level or depressed sites or have 
very high rainfall almost every day. 
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APPENDIX D 

FIELD TEXTURE ESTIMATION 
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Field texture is the measure of behaviour of a small handful of soil when moistened 
and kneaded into a ball (bolus) and then pressed out between thumb and forefinger 
to form a ribbon. The behaviour of the soil during bolus and formation and the 
ribbon length determine the field texture grade Table A.1 (Moore, 1998a). 
 
Table A.1 Field texture grades and approximate percentage of clay content when 
determined from laboratory particle size analysis (reproduced from McDonald and 
Isbell, 1990). 

Code Texture 
Grade 

Behavior of moist bolus Approximate 
clay content 

S Sand Coherence nil to very slight, cannot be moulded; sand 
grains of medium size; single sand grains adhere to 
fingers. 

< 5% 

LS Loamy 
sand 

Slight coherence; sand grains of medium size; can be 
sheared between thumb and forefinger to give minimal 
ribbon of about 5mm. 

About 5% 

CS Clayey 
sand 

Slight coherence; sand grains of medium size; sticky 
when wet; many sand grains stick to fingers; will form 
minimal ribbon of 5-15mm; discolours fingers with clay 
stain. 

5%-10% 

SL Sandy 
loam 

Bolus coherent but very sandy to touch; will form ribbon 
of 15-25mm; dominant sand grains are of medium size 
and are readily visible. 

10%-20% 

L Loam Bolus coherent and rather spongy; smooth feel when 
manipulated but with no obvious sandiness or ‘silkiness’; 
may be somewhat greasy to the touch if much organic 
matter present; will form ribbon of about 25mm. 

About 25% 

ZL Silty loam Coherent bolus; very smooth to often silky when 
manipulated; will form ribbon of about 25mm. 

About 25% 
and with silt 
25% or more 

SCL Sandy clay 
loam 

Strongly coherent bolus, sandy to touch; medium size 
sand grains visible in finer matrix; will form ribbon of 
25-40mm. 

20%-30% 

CL Clay loam Coherent plastic bolus, smooth to manipulate; will form 
ribbon of 40-50mm. 

30%-35% 

CLS Clay loam, 
sandy 

Coherent plastic bolus; medium size sand grains visible 
in finer matrix; will form ribbon of 40-50mm. 

30%-35% 

ZCL Silty clay 
loam 

Coherent smooth bolus, plastic and often silky to touch; 
will form ribbon of 40-50mm. 

30%-35% 
and with silt 
25% or more 

LC Light clay Plastic bolus; smooth to touch; slight resistance to 
shearing between thumb and fore-finger; will form 
ribbon of 50-75mm. 

35%-40% 

LMC Light 
medium 
clay 

Plastic bolus; smooth to touch; slight to moderate 
resistance to ribboning shear; will form ribbon of about 
75mm. 

40%-45% 

MC Medium 
clay 

Smooth plastic bolus; handles like plasticine and can be 
moulded into rods without fracture; has moderate 
resistance to ribboning shear; will form ribbon of 75mm 
or more. 

45%-55% 

MHC Medium 
heavy clay 

Smooth plastic bolus; handles like plasticine; can be 
moulded into rods without fracture; has moderate to firm 
resistance to ribboning shear; will form ribbon of 75mm 
or more. 

50% or more 

HC Heavy clay Smooth plastic bolus; handles like stiff plasticine; can be 
moulded into rods without fracture; has firm resistance to 
ribboning shear; will form ribbon of 75mm or more. 

50% or more 
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APPENDIX E 

FULL SOIL DATABASE SCHEMA 
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SOIL SURFACE
#  Point Number

Easting_DGPS
Northing_DGPS
Elevation_DGPS
Easting_Sampling
Northing_Sampling
Date Sampled
Slope %
Aspect
Drainage Class
Veg Cover
Veg Type
Veg Remarks
A-Horizon
Texture
Max Depth
No. of Lab samples
Northing_DGPS
Comments

SOIL 10
#  Point Number

Texture
Colour
Comments
ChemCentre No.
Stones %
EC 1:5
pH H20
pH CaCl2
Sand %
Silt %
Clay %
OrgC%
Fe mg/kg
Al mg/kg
Ca me%
Mg me%
Na me%
K me%
Al me%
Mn me%

SOIL 30
#  Point Number

Texture
Colour
Comments
ChemCentre No.
Stones %
EC 1:5
pH H20
pH CaCl2
Sand %
Silt %
Clay %
OrgC%
Fe mg/kg
Al mg/kg
Ca me%
Mg me%
Na me%
K me%
Al me%
Mn me%

SOIL 20
#  Point Number

Texture
Colour
Comments

SOIL 40
#  Point Number

Texture
Colour
Comments

SOIL 50
#  Point Number

Texture
Colour
Comments

SOIL 60
#  Point Number

Texture
Colour
Comments

SOIL 70
#  Point Number

Texture
Colour
Comments

SOIL 80
#  Point Number

Texture
Colour
Comments
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APPENDIX F  

IMPLEMENTATION OF LANDFORM CLASSIFICATION 
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1. Import DEM: The LandMonitor DEM (smoothed by Caccetta (2000)) is 

imported into GeoMedia Grid  

Generate Topographic Attributes: The input layer used in the following commands 

for steps 2-5 was the Smoothed DEM at 10m resolution. 

2. Compute Slope Layer: The Grade command was used to calculate average 

slope in percent. The output layer was saved as “Grade_percent”. 

3. Compute Local Relief: The Local Relief… command was used with the 

default window radius of 150m. The output layer was saved as 

“Local_Relief”. 

4. Compute Elevation Percentile: The Elevation Percentile…command was used 

with a default window radius of 150m. The output layer was saved as 

“Percentile”. 

5. Compute Plan and Profile Curvature: The Curvature 

Zevenbergen…command was used to generate plan and profile curvature. The 

output layers were saved as “PlanCurve” and “ProfileCurve” respectively. 

Generate Primary Landform Classes: The input layers for the following commands in 

steps 6-11, are those derived from steps 2-5 above. 

6. Classify Crest: The Classify Crests…command was used with the predefined 

mask view. Input layers and there default values were as follows; 

(Percentile > 0.65 and Local_Relief >7.5) and (PlanCurve >0.0 or 

ProfileCurve >0.0). The output layer was saved as “Crests”. 

7. Classify Depression: The Classify Depressions…command was used with the 

predefined mask view. Input layers and there default values were as follows; 

Percentile <0.40 or PlanCurve <-0.50. The output layer was saved as 

“Depressions”. 

8. Connect Depressions: The initial depressions were not connected and 

therefore the Depression Connector was implemented. The Connect 

Depressions… command was used with the following input layers; DEM, 

Depressions and Percentile <0.48. The acceptable elevation difference default 

of 0.00 was set, which restricts the following cells in downflow direction to 

equal or lower elevation. The output layer was saved as “ConDepressions”. 

9. Classify Flats: The Classify Flats…command was used with input layer 

Grade_percent. The default threshold for grade percent <3 percent was 
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specified and a minimum radius of flat areas of 20m. The output layer was 

saved as “Flats”. 

10. Classify Simple Slope: Simple slopes are the remaining areas not already 

classified as crest, depressions or flats. The Classify Simple 

Slopes…command with input layers Crests, ConDepressions and Flats was 

used. The output layer was saved as “SimpleSlopes”. 

11. Generate Primary Landform layer: The Final Classification…command was 

used to combine the individual landform layers into one layer and remove 

noise from the resultant layer. Input layers were Crests, SimpleSlopes, 

ConDepressions and Flats. The optional noise reduction filter was applied 

with a 5x5 window and Median filter. The output layer was saved as 

“PrimaryLandforms”. 

Generate Slope Classes and Final Landform Classification layer 

12. Classify slope classes and Final Landforms: The Slope Classification… 

command was used to break up simple slopes into upper, mid and lower 

slope, remove noise and combine the resultant layer with the Primary 

Landforms to produce the Final Landforms layer. Input layers were the DEM 

and PrimaryLandform layers. The slope difference threshold was set at 0.1 

and optional noise reduction filter applied with a 5x5 window and Majority 

filter. The optional overlay with final results layer was also specified and the 

output layer saved as “FinalLandforms”. 
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APPENDIX G 

IMPLEMENTATION OF COMPOUND TOPOGRAPHIC INDEX 
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64

128

1

2

4

8

16

32

1. Import DEM: The LandMonitor DEM (smoothed by Caccetta (2000)) is 

imported into GeoMedia Grid  

2. Fill Depression: The Fill Depressions command creates a “depressionless” 

DEM by filling pits, ponds and depressions and is useful in hydrological 

analysis commands such as Downhill Path (Keigan Systems Inc., 2003b). 

3. DownHill Path: The Downhill Path command produces a grid layer of 

downhill path directions, in which the value of each cell represents the 

direction of the steepest slope (Keigan Systems Inc., 2003b). When this 

command is run on a “depressionless” DEM, flow is possible in one of only 

eight directions and each cell will be assigned one of nine values (0 = No 

Flow) as follows; 

 

 

 

 

Figure A.2.  Flow direction for Downhill path command of GeoMedia Grid. 

 

This simulates the D8 algorithm discussed in Section 5. 3, which downhill 

path values 1, 4, 16 and 64 are in cardinal flow direction while values 2, 8, 32 

and 128 are assigned to diagonal flow direction. 

4. Compute Upslope Contributing Area in cells: The Downhill Accumulation 

generates a flow accumulation grid layer from a flow direction grid layer 

generated from the Downhill Path command. The algorithm assigns each cell 

a value that represents the number of cells on a direct uphill path from that 

cell (Keigan Systems Inc., 2003b). 

5. Compute Upslope Contributing Area in m2 (A): Using the Calculator, 

upslope contributing area in square metres is determined by multiplying the 

cell value by the cell area, which in this case is 100m2 (i.e. 10m cell 

resolution). 

6. a). Extract cells for flow in cardinal directions: Using the Calculator cells that 

represent flow in cardinal directions are extracted from the Downhill Flow 

Path layer. i.e. Cell value = 1,4,16 and 64 and Cardinal Flow Direction layer 

created. 
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b). Cardinal flow directions are assigned flow width: Assign a value of 10 to 

cells in Cardinal Flow Direction layer. 

7. a). Extract cells for flow in diagonal directions: Using the Calculator cells 

that represent flow in diagonal directions are extracted from the Downhill 

Flow Path layer. i.e. Cell value = 2,8,32 and 128 and Diagonal Flow 

Direction layer created. 

b). Diagonal flow directions are assigned flow width: Assign a value of 

14.142136 to cells in Diagonal Flow Direction layer. 

8. Create Flow Width layer (w): Using the Overlay command the Cardinal Flow 

Direction and Diagonal Flow Direction layers are joined to create Flow 

Width layer, whereby cells that have a cardinal and diagonal flow direction 

have a value of 10 and 14.142136 respectively. 

9. Calculate Specific Catchment Area (As): Using the Calculator command the 

Upslope contributing area layer is divided by the Flow width layer. Ie (As = A 

/ w). 

10. Generate maximum slope in percent: Use the Grade command and specify a 

maximum slope with an output in percent. These parameters within 

GeoMedia Grid follow Equation (5.3) of Gallant and Wilson (2000) which is 

then multiplied by 100 for percent slope. The maximum slope in percent layer 

is created. 

11. Calculate Slope (S): Using the Calculator command, divide the maximum 

slope in percent layer by 100 to compute S. 

12. Generate CTI: Using the Calculator command the CTI is created as follows: 

( )SAselog  (A.1)

where As is the Specific Catchment Area layer and S the slope layer. 
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APPENDIX H  

SLOPE ALGORITHM 
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Slope in GeoMedia Grid is calculated using the Grade operation. 

 

The user can select Average slope or Maximum slope results, expressed as percents 

or degrees. 

 

When the Average slope option is selected, Grade determines gradient by calculating 

the average slopes of the lines that run from north to south and diagonally through 

the centre cell. It then calculates average slopes for the lines that run from east to 

west cells and diagonally through the cell centre. 

 
 
 
 
 
 
 

The two averages are squared and added together. The square root of this result is 

multiplied by 100, yielding the average grade (intersection of the north-south plane 

with the east-west plane) of the cell:  

100*
22

yxGrade +=  (A.2)

If the Maximum slope option is selected, the result value is the maximum of the eight 

slopes: 

 

 

 
(reproduced from Keigan Systems Inc., 2003b) 
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APPENDIX I 

SIGNIFICANT DIFFERENCE BETWEEN OATS AND OATEN HAY CROP 
TYPES 
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Determining whether there is a significant difference between the crop type oats and 

oaten hay was performed by creating a new factor called Crop Type Recode, in 

which oats and oaten hay have the same value and then Crop Type ( jC ) is fitted 

after Crop Type Recode ( jCr ) (i.e. adding the difference between oats and oaten 

hay) and the accumulated variance analysed.  The regression model fitted was as 

follow; 

jkjkjjkiijke CYCrYCCrYSY ++++++= μ)(log              (A.3) 

where ijkY  is the average interpolated yield for sampling point i in year k with crop 

type j; μ  is intercept; iS  is the effect of sample point i; jCr  is the effect of crop j 

recoded; jC  is the effect of crop j; kY is the effect of year k; jkCrY  is the effect of the 

interaction between crop j recoded and year k; and jkCY  is the effect of the 

interaction between crop j and year k. 

 

The regression model accounted for 52.2 percent of the variance in log Yield with a 

standard error of 0.210 and was highly significant (P<.001). The accumulated 

analysis of variance is shown in Table A.2. 

 

Table A.2  Accumulated analysis of variance. 

Change d.f. Sum of 
squares 

Mean 
Square 

Variance 
Ratio F 

Significance

+ Sample_Pt 183 20.27636 0.11080 2.51 <0.001 
+ Year 6 8.26105 1.37684 31.16 <0.001 
+ CropTRecode 5 9.78625 1.95725 44.30 <0.001 
+ CropType 1 0.55424 0.55424 12.54 <0.001 
+ Year.CropTRecode 20 3.86786 0.19339 4.38 <0.001 
+ Year.CropType 1 0.02903 0.02903 0.66   0.418 
Resdiual 474 20.94360 0.04418   
Total 690 63.71839 0.09235   
 

As shown in Table A.2 the difference between CropTRecode ( jCr ) and Crop Type 

( jC ) is highly significant (P<0.001) and as such the difference between oats and 

oaten hay is highly significant indicating that sample points 167, 169 and 176 should 

be removed from the data set. 
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APPENDIX J  

ESTIMATED YIELD AT SAMPLE POINTS 
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Sample Estimated Std Estim_Yld  Sample Estimated Std Estim_Yld 
Point 
NO. LogYld Error (kgha)  

Point 
NO. LogYld Error (kgha) 

1 8.0140 0.0885 2023.0489  63 7.6591 0.1075 1119.9370 
2 7.9782 0.0973 1916.6664  65 7.6517 0.1250 1104.2647 
8 7.7169 0.1239 1245.8941  66 7.4911 0.1051 792.0514 
9 7.8208 0.1191 1491.9024  67 7.5989 0.1051 995.9302 
10 7.8269 0.0942 1507.1067  69 7.8536 0.1051 1574.9482 
12 7.6303 0.0861 1059.7261  70 7.6441 0.1051 1088.2034 
13 8.0158 0.1236 2028.3078  71 7.8003 0.1051 1441.4496 
14 7.5642 0.0948 927.9671  74 7.5725 0.1051 944.0700 
15 7.9685 0.1191 1888.5328  76 7.5635 0.1202 926.6537 
16 8.0388 0.1191 2098.8000  80 8.0878 0.1203 2254.4896 
17 7.7904 0.1191 1417.3162  81 7.7401 0.1044 1298.7771 
19 7.6765 0.1454 1156.9928  84 7.6196 0.1051 1037.8459 
20 7.8102 0.1191 1465.6160  85 7.8574 0.1215 1584.8587 
23 7.8590 0.1191 1589.0271  86 7.5598 0.1051 919.4750 
24 7.7908 0.1053 1418.1661  87 7.7602 0.0940 1345.3764 
25 7.9269 0.1454 1770.7969  88 7.6973 0.1219 1202.3060 
26 7.9057 0.1459 1712.5779  89 7.6824 0.1051 1169.9253 
28 7.8809 0.1191 1646.3007  91 7.8177 0.1202 1484.1095 
29 7.9713 0.1191 1896.7292  92 7.6036 0.2069 1005.4935 
30 8.1194 0.1454 2359.0518  93 8.1396 0.2075 2427.5651 
31 8.0252 0.1454 2057.0305  94 7.7970 0.0940 1433.2760 
32 8.0056 0.1191 1997.7870  95 7.8337 0.0940 1524.3169 
33 8.0019 0.1191 1986.6721  99 7.8228 0.0946 1496.8832 
34 7.7391 0.1053 1296.4251  100 7.8913 0.1050 1673.8546 
35 8.1300 0.1454 2394.8246  101 7.8086 0.1050 1461.7999 
36 7.8590 0.1053 1588.8170  102 7.8419 0.1050 1544.9289 
37 7.7519 0.1454 1326.0750  103 7.8382 0.0997 1535.7575 
40 7.7779 0.1053 1387.2960  104 7.8706 0.0940 1619.1802 
41 7.9778 0.2055 1915.5298  105 7.5824 0.0997 963.2949 
42 7.8049 0.1053 1452.5924  106 7.9909 0.0946 1954.0729 
43 7.8257 0.1053 1504.1659  107 7.8627 0.0946 1598.4781 
44 7.7245 0.1224 1263.1670  108 7.7491 0.0780 1319.4683 
45 8.0975 0.0938 2286.3633  109 7.8737 0.1214 1627.2443 
46 7.6700 0.1113 1143.0124  110 7.8024 0.0946 1446.5370 
47 7.8967 0.1290 1688.2681  111 7.4652 0.1207 746.1670 
49 7.7793 0.1250 1390.6507  112 7.4680 0.1207 751.1632 
50 7.7772 0.1113 1385.6401  113 7.9295 0.0946 1778.1579 
51 7.7723 0.1290 1373.9357  114 7.8893 0.1237 1668.5610 
53 8.0538 0.1271 2145.5772  116 7.6912 0.1237 1189.0902 
55 8.0403 0.1054 2103.5497  117 7.7631 0.1237 1352.2620 
57 7.7480 0.1250 1316.8223  118 7.8821 0.1203 1649.3010 
59 8.0367 0.1054 2092.3263  119 7.6295 0.1207 1058.0499 
60 7.9564 0.1271 1853.6589  120 7.8470 0.1042 1558.1106 
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Sample Estimated Std Estim_Yld  Sample Estimated Std Estim_Yld 
Point 
NO. LogYld Error (kgha)  

Point 
NO. LogYld Error (kgha) 

121 7.7490 0.1042 1319.2392  194 7.7019 0.1202 1212.5613 
122 7.8135 0.1042 1473.6766  196 7.9136 0.2054 1734.1349 
123 7.5473 0.1494 895.6291  197 7.7744 0.2055 1378.9475 
124 7.7688 0.1042 1365.5637  198 7.8330 0.1230 1522.5909 
126 7.6440 0.1042 1088.0937  199 7.8759 0.1230 1632.9924 
127 7.8924 0.1203 1676.8651  200 7.9143 0.1230 1736.1148 
128 7.9946 0.0841 1964.9947  201 8.0448 0.1038 2117.5974 
129 7.9181 0.0780 1746.5799  202 7.9285 0.0945 1775.3148 
130 7.8800 0.1042 1643.8689  203 8.0000 0.0857 1981.0887 
131 7.7767 0.2143 1384.2871  205 7.9280 0.0927 1773.7619 
132 7.8486 0.2075 1562.1261  206 7.7615 0.0953 1348.3486 
133 7.8555 0.1042 1579.9643  207 7.9612 0.0953 1867.3858 
134 7.9420 0.1042 1812.9918  208 7.8987 0.1230 1693.7820 
135 7.8938 0.1042 1680.7121  209 7.8525 0.0945 1572.1886 
136 7.4264 0.0780 679.8249  212 7.9840 0.0927 1933.5431 
137 8.0039 0.1528 1992.5414  213 8.0377 0.1038 2095.5380 
139 7.9998 0.0780 1980.3159  215 8.0253 0.1230 2057.4401 
141 7.9259 0.1528 1767.9830  217 7.9883 0.2101 1946.1821 
148 7.8634 0.1528 1600.2223  218 7.8578 0.2057 1585.9155 
149 7.8364 0.0780 1531.1124  219 7.7924 0.2057 1422.1124 
150 7.9482 0.0949 1830.3986  221 7.8876 0.2055 1664.0244 
152 7.5147 0.0780 834.7726  222 8.1207 0.1473 2363.4603 
153 7.6149 0.0780 1028.1474  223 8.0095 0.2057 2009.3175 
155 8.1548 0.2065 2479.8992  224 7.7633 0.1204 1352.6053 
157 7.8930 0.1071 1678.4049  225 7.7699 0.1038 1368.2678 
158 7.9116 0.1071 1728.7455  226 7.9695 0.1038 1891.5396 
159 7.7448 0.0848 1309.4949  227 7.4502 0.1455 720.1545 
161 7.6929 0.1475 1192.7632  229 7.7563 0.0947 1336.1428 
162 7.6183 0.2107 1035.1088  230 7.9938 0.0857 1962.4441 
163 7.6058 0.0848 1009.8102  231 7.5633 0.2066 926.1769 
164 7.6821 0.0848 1169.0990  232 7.7544 0.1196 1331.8542 
165 7.7187 0.0848 1250.1240  233 7.9553 0.1039 1850.6738 
170 7.7085 0.0859 1227.1298  234 7.9750 0.1039 1907.4035 
171 7.9439 0.0848 1818.2840  236 7.9595 0.0857 1862.5122 
172 7.6521 0.0931 1105.1345  237 7.9761 0.0857 1910.5721 
173 7.9348 0.0859 1792.9184  238 7.8267 0.0947 1506.6606 
177 7.7936 0.0859 1425.1406  239 8.0980 0.2047 2287.9845 
178 7.9806 0.1039 1923.6517  240 7.8620 0.0959 1596.7745 
179 7.8950 0.1032 1683.7924  241 7.8770 0.1067 1636.0423 
181 7.7864 0.0940 1407.7280  242 7.4407 0.0959 703.9177 
184 7.6390 0.1214 1077.6274  244 7.7039 0.0959 1216.8832 
186 7.7187 0.0859 1250.1323  245 7.7004 0.0959 1209.2794 
187 8.0759 0.2057 2216.0202  246 7.8368 0.0959 1532.1602 
189 8.1211 0.2055 2364.7765  247 7.6966 0.0959 1200.9558 
190 7.7970 0.0945 1433.2351  248 7.7509 0.0959 1323.7519 
191 8.0938 0.2193 2273.9907  249 7.7799 0.1203 1392.0521 
192 7.9620 0.2055 1869.6751  250 7.6421 0.0959 1084.0712 
193 8.1417 0.2055 2434.6354      
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APPENDIX K 

SOIL VARIABLES TRANSFORMATIONS 
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Stable Soil Properties: Data Summary. 

 
A Horizon: 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Log A-Horizon = loge(A-Horizon+1) 
 
 
 
 
RESTRICTED DEPTH 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

n 246 
Mean 9.45 
Median 10 
SD 6.59 
Skewness 0.69 

n 246 
Mean 2.064 
Median 2.398 
SD 0.858 
Skewness -0.814 

No. of Mild Outliers 0 
No. of Extreme Outliers 0 

n 229 
Mean 31.88 
Median 30.00 
SD 17.78 
Skewness 0.80 

No. of Mild Outliers 1 
No. of Extreme Outliers 0 
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10cm STONES 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
10cm EC(1:5) 
Untransformed   Transformed 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Log EC = loge(EC) 
 
 
 
 
 
 
 
 
 
 
 
 
 

n 250 
Mean 7.13 
Median 7 
SD 3.95 
Skewness 0.76 

No. of Mild Outliers  
No. of Extreme Outliers 0 

n 250 
Mean 1.769 
Median 1.792 
SD 0.481 
Skewness 0.729 

n 250 
Mean 6.69 
Median 6 
SD 4.37 
Skewness 3.85 

No. of Mild Outliers 2 
No. of Extreme Outliers 0 
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10cm pH (H2O) 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 

 
 
 

Log 10_pHw = loge(10_pHw+1) 
 
 
10cm pH (CaCl2) 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Log 10_pHca = loge(10_pHca+1) 
 
 
 
 
 
 
 
 
 
 

n 250 
Mean 5.936 
Median 5.900 
SD 0.544 
Skewness 1.051 

n 250 
Mean 1.934 
Median 1.932 
SD 0.076 
Skewness 0.737 

No. of Mild Outliers  
No. of Extreme Outliers 0 

n 250 
Mean 5.075 
Median 5.0 
SD 0.562 
Skewness 1.221 

n 250 
Mean 1.8 
Median 1.792 
SD 0.089 
Skewness 0.880 

No. of Mild Outliers 3 
No. of Extreme Outliers 0 



291 

10 SAND % 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Log_10_SAND%=Loge(100-10_SAND) 
 
 
 
 
 
 
10 Silt % 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Log 10_Silt = loge(10_Silt) 
 
 
 
 
 
 

n 250 
Mean 85.23 
Median 87.75 
SD 7.87 
Skewness -2.15 

n 250 
Mean 2.588 
Median 2.505 
SD 0.437 
Skewness 0.646 

No. of Mild Outliers 7 
No. of Extreme Outliers 0 

n 250 
Mean 7.62 
Median 6.50 
SD 3.56 
Skewness 1.70 

n 250 
Mean 1.942 
Median 1.872 
SD 0.412 
Skewness 0.368 

No. of Mild Outliers  
No. of Extreme Outliers 0 
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10 Clay % 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 

Extreme outlier removed as had a look at point 
191 notes and remember it was a very strange profile 
 
 
 
 

 
Log 10_Clay = loge(10_Clay) 
 
 
 
 
 
 
 
 
 
10 Org C% 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 

n 250 
Mean 7.14 
Median 5.50 
SD 5.04 
Skewness 3.57 

n 249 
Mean 1.811 
Median 1.705 
SD 0.486 
Skewness 0.714 

No. of Mild Outliers  
No. of Extreme Outliers 0 

No. of Mild Outliers 4+ 
No. of Extreme Outliers 0 

n 250 
Mean 1.204 
Median 1.120 
SD 0.448 
Skewness 0.944 
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10 ECEC 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Log 10_ECEC = loge(10_ECEC) 
 
 
 
 
 
 
 
 
 
 
10 ESP 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 

 
 
 

Log 10_ESP = loge(10_ESP+1) 
 
 
 

n 250 
Mean 6.63 
Median 5.20 
SD 4.30 
Skewness 2.02 

n 250 
Mean 1.733 
Median 1.649 
SD 0.541 
Skewness 0.480 

No. of Mild Outliers 2 
No. of Extreme Outliers 0 

n 250 
Mean 0.934 
Median 0.877 
SD 0.387 
Skewness 0.931 

n 250 
Mean 1.77 
Median 1.40 
SD 1.39 
Skewness 3.14 

No. of Mild Outliers  
No. of Extreme Outliers 1 
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10 Ca/Mg 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
30 STONES% 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 

 
 

Log 30_STONES = loge(30_STONES+1) 
 
 
 
 

n 250 
Mean 6.351 
Median 6.261 
SD 2.264 
Skewness 0.188 

No. of Mild Outliers 4 
No. of Extreme Outliers 0 

n 231 
Mean 14.11 
Median 13 
SD 10.38 
Skewness 2.34 

n 231 
Mean 2.488 
Median 2.639 
SD 0.735 
Skewness -0.908 

No. of Mild Outliers  
No. of Extreme Outliers 0 
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30 EC(1:5) 
Untransformed         Transformed 
 
 
 
 
 
 
 

 
 
 

Pt 64 very extreme outlier removed. 
 
 
 
 

 
 
Log 30_EC = loge(30_EC+1) 
 
 
 
 
 
 
 
 
30 pH H2O 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 

n 231 
Mean 5.13 
Median 4 
SD 7.19 
Skewness 9.59 

n 230 
Mean 1.614 
Median 1.609 
SD 0.474 
Skewness 0.830 

No. of Mild Outliers  
No. of Extreme Outliers  

n 231 
Mean 6.549 
Median 6.500 
SD 0.693 
Skewness 0.418 

No. of Mild Outliers  
No. of Extreme Outliers 0 
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30 pH CaCl2 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
30 SAND% 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Log_30_SAND= loge (100-30_SAND) 
 
 
 
 
 
 
 
 
 

n 231 
Mean 5.589 
Median 5.6 
SD 0.630 
Skewness 0.494 

No. of Mild Outliers  
No. of Extreme Outliers 0 

n 231 
Mean 77.10 
Median 83.50 
SD 16.20 
Skewness -1.50 

n 231 
Mean 2.928 
Median 2.803 
SD 0.622 
Skewness 0.348 

No. of Mild Outliers 1 
No. of Extreme Outliers 0 
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30 SILT% 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 

  

 
 

 
 
Log 30_Silt = loge(30_Silt) 
 
 
 
 
 
 
 
 
30 Clay% 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
Log 30_CLAY = loge(30_CLAY) 
 
 

n 231 
Mean 1.909 
Median 1.872 
SD 0.375 
Skewness 0.078 

n 231 
Mean 7.240 
Median 6.50 
SD 2.864 
Skewness 1.221 

No. of Mild Outliers 4 
No. of Extreme Outliers 0 

n 231 
Mean 2.395 
Median 2.251 
SD 0.830 
Skewness 0.253 

n 231 
Mean 15.66 
Median 9.5 
SD 14.79 
Skewness 1.68 

No. of Mild Outliers 1 
No. of Extreme Outliers 0 
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30 Orc C 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 

  Remove 1 extreme outlier Pt 81: 
 
 
 
 
 

Log 30_OrgC = loge(30_OrgC+1) 
 
 
 
 
 
 
 
 
 
 
30 ECEC 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Log 30_ECEC = loge(30_ECEC+1) 
 

n 231 
Mean 0.309 
Median 0.260 
SD 0.208 
Skewness 3.140 

n 230 
Mean 0.255 
Median 0.227 
SD 0.126 
Skewness 0.930 

No. of Mild Outliers  
No. of Extreme Outliers 0 

n 231 
Mean 1.820 
Median 1.605 
SD 0.729 
Skewness 0.814 

n 231 
Mean 7.40 
Median 3.98 
SD 7.93 
Skewness 2.01 

No. of Mild Outliers  
No. of Extreme Outliers 0 



299 

 
 
 
30 ESP 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 

Remove extreme outlier: Pt 64 ESP of 
10 greater than other points. Pt along creek line 
also. 

 
 
 
 
 
 

Log 30_ESP = loge(30_ESP+1) 
 
 
 
 
 
 
 
 
30 Ca Mg 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

n 231 
Mean 3.86 
Median 2.48 
SD 4.39 
Skewness 3.94 

n 230 
Mean 1.356 
Median 1.238 
SD 0.570 
Skewness 0.935 

No. of Mild Outliers  
No. of Extreme Outliers 0 

n 231 
Mean 3.887 
Median 3.493 
SD 2.376 
Skewness 0.860 

No. of Mild Outliers 1 
No. of Extreme Outliers 0 



300 

APPENDIX L 

ANCILLARY VARIABLES TRANSFORMATIONS 
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CTI: 

Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Log CTI = loge(CTI) 
 
 
 
Slope%_DEM: 
Untransformed         Transformed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

LogSlope%DEM = loge(Slope%DEM+10) 
 
 
 
 
 

n 237 
Mean 7.531 
Median 7.450 
SD 1.377 
Skewness 0.843 

n 237 
Mean 2.003 
Median 2.008 
SD 0.181 
Skewness -0.085 

No. of Mild Outliers 7 
No. of Extreme Outliers  

n 250 
Mean 4.832 
Median 5.000 
SD 2.324 
Skewness 0.591 

n 250 
Mean 2.685 
Median 2.708 
SD 0.154 
Skewness 0.167 

No. of Mild Outliers 1 
No. of Extreme Outliers 0 
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RI: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
PredYield kg/ha: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

n 206 
Mean -0.056 
Median -0.057 
SD 0.0535 
Skewness -0.0921 

No. of Mild Outliers 0 
No. of Extreme Outliers 0 

n 181 
Mean 1549.0 
Median 1532.2 
SD 400.1 
Skewness 0.1 

No. of Mild Outliers 0 
No. of Extreme Outliers 0 
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Yield 2002 kg/ha: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
Yield 2003 kg/ha: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

n 125 
Mean 1382.1 
Median 1298.8 
SD 628.4 
Skewness 0.5 

No. of Mild Outliers 0 
No. of Extreme Outliers 0 

No. of Mild Outliers 0 
No. of Extreme Outliers 0 n 114 

Mean 2231 
Median 2169 
SD 770 
Skewness 0 
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APPENDIX M 

CORRELATIONS BETWEEN SOIL VARIABLES 
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Variable 
n=204 

Log_A_HORIZ 
Correlation 

Log_A_HORIZ 
Probability 

RESTRICT 
DPTH_CM 
Correlation 

RESTRICT 
DPTH_CM 
Probability 

S10_STONES_% 
Correlation 

S10_STONES_% 
Probability 

Log_10_EC 
Correlation 

Log_10_EC 
Probability 

Log_A_HORIZ 1.000        
RESTRICT_DPTH_CM 0.163 * 1.000      
S10_STONES_% -0.017 0.809 -0.310 ** 1.000    
Log_10_EC 0.056 0.429 -0.213 ** 0.265 ** 1.000  
Log_10pHw -0.279 ** -0.096 0.170 -0.070 0.322 0.285 ** 
Log_10_pHca -0.165 * -0.092 0.190 -0.049 0.488 0.445 ** 
Log_10_SAND% a -0.128 0.069 -0.356 ** 0.341 ** 0.423 ** 
Log_10_SILT -0.158 * -0.359 ** 0.318 v 0.404 ** 
Log_10_CLAY% -0.088 0.211 -0.322 ** 0.319 ** 0.396 ** 
S10_OrgC_% -0.051 0.469 -0.190 ** 0.192 ** 0.603 ** 
Log_10_ECEC -0.163 * -0.288 ** 0.226 ** 0.622 ** 
Log_10_ESP 0.098 0.164 0.072 0.308 -0.042 0.548 0.014 0.848 
S10_Ca_Mg 0.053 0.449 0.025 0.720 -0.046 0.515 -0.170 * 
Log_30_STONES -0.175 ** -0.385 ** 0.432 ** 0.091 0.196 
Log_30_EC -0.003 0.969 -0.241 ** 0.214 ** 0.480 ** 
S30_pH_H20 -0.160 * -0.071 0.310 0.007 0.923 0.177 ** 
S30_pH_CaCl2 -0.134 0.057 -0.092 0.189 0.055 0.435 0.217 ** 
Log_30_SAND% -0.085 0.225 -0.356 ** 0.297 ** 0.349 ** 
Log_30_Silt -0.056 0.423 -0.393 ** 0.238 ** 0.258 ** 
Log_30_CLAY -0.080 0.256 -0.324 ** 0.284 ** 0.346 ** 
Log_30_OrgC -0.106 0.132 -0.363 ** 0.354 ** 0.390 ** 
Log_30_ECEC -0.131 0.061 -0.346 ** 0.277 ** 0.348 ** 
Log_30_ESP 0.039 0.576 0.126 0.073 -0.134 0.055 -0.007 0.915 
S30_Ca_Mg 0.109 0.121 0.020 0.782 0.016 0.818 -0.156 * 

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
a: An inverse transformation was performed on Sand and subsequently correlations that would normally be expected to be negative are positive and vice versa. 
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Variable 
n=204 

Log_10pHw 
Correlation 

Log_10pHw 
Probability 

Log_10_pHca 
Correlation 

Log_10_pHca 
Probability 

Log_10_SAND% a 
Correlation 

Log_10_SAND% a 
Probability 

Log_10_SILT 
Correlation 

Log_10_SILT 
Probability 

Log_A_HORIZ         
RESTRICT_DPTH_CM         
S10_STONES_%         
Log_10_EC         
Log_10pHw 1.000        
Log_10_pHca 0.960 ** 1.000      
Log_10_SAND% a 0.291 ** 0.304 ** 1.000  1.000  
Log_10_SILT 0.242 ** 0.248 ** 0.935 ** 0.797 ** 
Log_10_CLAY% 0.287 ** 0.306 ** 0.958 ** 0.553 ** 
S10_OrgC_% 0.170 * 0.252 ** 0.502 ** 0.782 ** 
Log_10_ECEC 0.561 ** 0.610 ** 0.833 ** -0.059 ** 
Log_10_ESP -0.166 * -0.208 ** -0.032 0.654 -0.300 0.399 
S10_Ca_Mg -0.092 0.191 -0.054 0.446 -0.397 ** 0.137 ** 
Log_30_STONES -0.074 0.290 -0.087 0.216 0.099 0.157 0.329 * 
Log_30_EC 0.307 ** 0.335 ** 0.394 ** 0.433 ** 
S30_pH_H20 0.244 ** 0.219 ** 0.470 ** 0.424 ** 
S30_pH_CaCl2 0.273 ** 0.262 ** 0.451 ** 0.636 ** 
Log_30_SAND% 0.253 ** 0.266 ** 0.721 ** 0.717 ** 
Log_30_Silt 0.231 ** 0.242 ** 0.681 ** 0.569 ** 
Log_30_CLAY 0.238 ** 0.251 ** 0.675 ** 0.545 ** 
Log_30_OrgC 0.271 ** 0.301 ** 0.603 ** 0.701 ** 
Log_30_ECEC 0.283 ** 0.285 ** 0.779 ** -0.062 ** 
Log_30_ESP -0.026 0.717 -0.035 0.621 -0.004 0.954 -0.290 0.376 
S30_Ca_Mg -0.154 * -0.133 0.059 -0.361 ** 1.000 ** 

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
a: An inverse transformation was performed on Sand and subsequently correlations that would normally be expected to be negative are positive and vice versa. 
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Variable 
n=204 

Log_10_CLAY% 
Correlation 

Log_10_CLAY% 
Probability 

S10_OrgC_% 
Correlation 

S10_OrgC_% 
Probability 

Log_10_ECEC  
Correlation 

Log_10_ECEC  
Probability 

Log_10_ESP 
Correlation 

Log_10_ESP 
Probability 

Log_A_HORIZ         
RESTRICT_DPTH_CM         
S10_STONES_%         
Log_10_EC         
Log_10pHw         
Log_10_pHca         
Log_10_SAND% a         
Log_10_SILT         
Log_10_CLAY% 1.000        
S10_OrgC_% 0.422 ** 1.000      
Log_10_ECEC 0.793 ** 0.700 ** 1.000    
Log_10_ESP -0.005 0.943 -0.046 0.517 -0.133 0.057 1.000  
S10_Ca_Mg -0.433 ** -0.109 0.120 -0.251 ** -0.389 ** 
Log_30_STONES 0.057 0.418 0.044 0.531 0.068 0.336 -0.004 0.950 
Log_30_EC 0.413 ** 0.279 ** 0.430 ** 0.059 0.405 
S30_pH_H20 0.454 ** 0.330 ** 0.484 ** 0.181 ** 
S30_pH_CaCl2 0.431 ** 0.308 ** 0.482 ** 0.124 0.077 
Log_30_SAND% 0.725 ** 0.370 ** 0.603 ** -0.028 0.686 
Log_30_Silt 0.577 ** 0.332 ** 0.580 ** -0.043 0.545 
Log_30_CLAY 0.705 ** 0.353 ** 0.566 ** -0.028 0.687 
Log_30_OrgC 0.594 ** 0.437 ** 0.632 ** -0.204 ** 
Log_30_ECEC 0.771 ** 0.373 ** 0.709 ** -0.060 0.396 
Log_30_ESP 0.046 0.517 0.090 0.200 -0.044 0.528 0.525 ** 
S30_Ca_Mg -0.388 ** -0.223 ** -0.278 ** -0.247 ** 

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
a: An inverse transformation was performed on Sand and subsequently correlations that would normally be expected to be negative are positive and vice versa. 
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Variable 
n=204 

S10_Ca_Mg 
Correlation 

S10_Ca_Mg 
Probability 

Log_30_STONES 
Correlation 

Log_30_STONES 
Probability 

Log_30_EC 
Correlation 

Log_30_EC 
Probability 

S30_pH_H20 
Correlation 

S30_pH_H20 
Probability 

Log_A_HORIZ         
RESTRICT_DPTH_CM         
S10_STONES_%         
Log_10_EC         
Log_10pHw         
Log_10_pHca         
Log_10_SAND% a         
Log_10_SILT         
Log_10_CLAY%         
S10_OrgC_%         
Log_10_ECEC         
Log_10_ESP         
S10_Ca_Mg 1.000        
Log_30_STONES 0.037 0.597 1.000      
Log_30_EC -0.244 ** 0.091 0.197 1.000    
S30_pH_H20 -0.406 ** -0.040 0.568 0.356 ** 1.000  
S30_pH_CaCl2 -0.338 ** -0.006 0.932 0.451 ** 0.956 ** 
Log_30_SAND% -0.324 ** 0.026 0.717 0.507 ** 0.436 ** 
Log_30_Silt -0.277 ** 0.135 * 0.238 ** 0.427 ** 
Log_30_CLAY -0.300 ** 0.013 0.855 0.511 ** 0.380 ** 
Log_30_OrgC -0.178 ** 0.120 0.088 0.276 ** 0.168 * 
Log_30_ECEC -0.403 ** 0.035 0.620 0.510 ** 0.558 ** 
Log_30_ESP -0.340 ** -0.032 0.649 0.288 ** 0.438 ** 
S30_Ca_Mg 0.612 ** 0.065 0.353 -0.275 ** -0.478 ** 

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
a: An inverse transformation was performed on Sand and subsequently correlations that would normally be expected to be negative are positive and vice versa. 
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Variable 
n=204 

S30_pH_CaCl2 
Correlation 

S30_pH_CaCl2 
Probability 

Log_30_SAND% 
Correlation 

Log_30_SAND% 
Probability 

Log_30_Silt 
Correlation 

Log_30_Silt 
Probability 

Log_30_CLAY 
Correlation 

Log_30_CLAY 
Probability 

Log_A_HORIZ         
RESTRICT_DPTH_CM         
S10_STONES_%         
Log_10_EC         
Log_10pHw         
Log_10_pHca         
Log_10_SAND% a         
Log_10_SILT         
Log_10_CLAY%         
S10_OrgC_%         
Log_10_ECEC         
Log_10_ESP         
S10_Ca_Mg         
Log_30_STONES         
Log_30_EC         
S30_pH_H20         
S30_pH_CaCl2 1.000        
Log_30_SAND% 0.405 ** 1.000      
Log_30_Silt 0.396 ** 0.613 ** 1.000    
Log_30_CLAY 0.352 ** 0.979 ** 0.471 ** 1.000  
Log_30_OrgC 0.171 * 0.600 ** 0.448 ** 0.594 ** 
Log_30_ECEC 0.539 ** 0.888 ** 0.629 ** 0.852 ** 
Log_30_ESP 0.322 ** 0.108 0.124 0.016 0.823 0.097 0.166 
S30_Ca_Mg -0.389 ** -0.500 ** -0.263 ** -0.489 ** 

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
a: An inverse transformation was performed on Sand and subsequently correlations that would normally be expected to be negative are positive and vice versa. 
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Variable 
n=204 

Log_30_OrgC 
Correlation 

Log_30_OrgC 
Probability 

Log_30_ECEC 
Correlation 

Log_30_ECEC 
Probability 

Log_30_ESP 
Correlation 

Log_30_ESP 
Probability 

S30_Ca_Mg 
Correlation 

S30_Ca_Mg 
Probability 

Log_A_HORIZ         
RESTRICT_DPTH_CM         
S10_STONES_%         
Log_10_EC         
Log_10pHw         
Log_10_pHca         
Log_10_SAND% a         
Log_10_SILT         
Log_10_CLAY%         
S10_OrgC_%         
Log_10_ECEC         
Log_10_ESP         
S10_Ca_Mg         
Log_30_STONES         
Log_30_EC         
S30_pH_H20         
S30_pH_CaCl2         
Log_30_SAND%         
Log_30_Silt         
Log_30_CLAY         
Log_30_OrgC 1.000        
Log_30_ECEC 0.680 ** 1.000      
Log_30_ESP -0.293 ** -0.009 0.900 1.000    
S30_Ca_Mg -0.159 * -0.447 ** -0.522 ** 1.000  

**:Significant correlations ≤ 0.01 
  *:Significant correlations ≤ 0.05 
a: An inverse transformation was performed on Sand and subsequently correlations that would normally be expected to be negative are positive and vice versa. 
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APPENDIX N 

REGIONALIZED VARIABLE THEORY 
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The “regionalized variable theory” assumes that the spatial variation of any variable 

can be expressed as the sum of three major components (Burrough, 1996)  

1. a structural component, associated with a constant mean value or constant 

trend; 

2. a random, spatially correlated component 

3. a random noise or residual error 

If x is a position in 1, 2, or 3 dimensions, then the value of a variable Z at x is given 

by; 

εε ′′+′+= )()()( xxmxZ  (A.4)
where )(xm  is a deterministic function describing the ‘structural’ component of Z at 

x, )(xε ′  is the term denoting the locally varying, spatially dependent residuals from 

)(xm , and ε ′′  is a residual, spatially independent noise (Burrough, 1996). 

 

The variogram describes the spatial variation of a random variable, and estimating an 

experimental variogram is the first step in kriging interpolation techniques.  A 

suitable function for )(xm  is required.  When no trend or drift are present, 

)(xm equals the mean value in the sampling area and the average or expected 

difference between any two places x and x + h separated by a vector h, will be zero 

(Burrough, 1996).  The variability in space of the data is characterised by the 

semivariance, which is a measure of the deviation between pairs of z values at a 

certain distance and direction.  Stationarity of difference and variance of differences, 

define the requirements for the intrinsic hypothesis of regionalized variable theory.  

This means that once the structural effects have been accounted for, the remaining 

variation is homogeneous in its variation so the differences between sites is merely a 

function of the distance between them (Burrough, 1996).  If these conditions are met 

the semivariance can be estimated from sample data as follows: 

{ }
2

1
)()(

2
1)( ∑ +−=

=

n

i
ii hxZxZ

n
hγ  (A.5) 

where n is the number of pairs of sample points separated by distance h (referred to 

as the lag).   

 

The function )(hγ  is known as the semivariogram.  The ‘semi’ refers to the fact that 

it is half of a variance; it is half the variance of a difference in this instance.  It is the 
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variance per point when the points are considered in pairs.  The semivariogram is 

now usually termed the variogram (Webster and Oliver, 2001b). 

 

 

 

 

 

 

 

 

Figure A.3  General characteristics of a variogram 
 

An experimental variogram is computed from the data and the best fit model 

selected.  Commonly used variogram models include a) spherical, b) exponential, c) 

bounded linear and d) Gaussian.  Variograms are used in interpolation methods such 

as kriging, co-kriging and other kriging derivatives.  
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APPENDIX O 

EXPERIMENTAL VARIOGRAMS 
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Experimental Variograms with outliers removed via Variogram Clouds 
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APPENDIX P 

BOX-PLOTS OF SOIL PROPERTIES AND ANCILLARY VARIABLES 
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RESULTS FROM KAPPA MAP COMPARISONS 
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Method Kappa                       
Map1 Cluster250m                       
Map2 Cluster200m                       
Kappa 0.55                       
KLocation 0.69                       
KHisto 0.81                       
Fraction correct 0.60                       
  LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11   
Kappa 0.87 0.76 0.82 0.82 0.43 -0.01 0.82 0.60 0.84 0.76 -0.08   
KLoc 0.92 0.92 0.94 0.87 0.62 -0.02 0.83 0.81 0.85 0.86 -0.12   
KHisto 0.95 0.83 0.87 0.94 0.71 0.45 0.99 0.74 0.98 0.88 0.69   
Map 1 \ Map 2 LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11 Sum Map 1 
LMU 1 8902 18 10 118 11 36 114 915 128 225 116 10593 
LMU 2 99 9324 15 246 2355 130 97 819 145 143 235 13608 
LMU 3 54 3 4740 92 0 58 772 291 180 120 94 6404 
LMU 4 14 59 0 8265 12 60 55 643 119 52 52 9331 
LMU 5 125 193 6 649 5513 345 604 1185 246 244 5334 14444 
LMU 6 5 35 8 48 8 959 28 230 433 55 4663 6472 
LMU 7 8 4 75 478 28 145 10808 620 289 286 20 12761 
LMU 8 149 64 27 67 32 212 61 6008 392 58 185 7255 
LMU 9 107 70 43 189 42 137 252 465 11647 291 132 13375 
LMU 10 8 4 0 112 19 28 6 304 60 3690 10 4241 
LMU 11 121 303 89 166 306 17767 115 351 109 168 850 20345 
Sum Map 2 9592 10077 5013 10430 8326 19877 12912 11831 13748 5332 11691 950478 
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Method Kappa                       
Map1 Cluster250m                       
Map2 Cluster300m                       
Kappa 0.55                       
KLocation 0.68                       
KHisto 0.82                       
Fraction correct 0.60                       
  LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11   
Kappa 0.83 0.81 0.49 0.79 0.71 -0.01 0.33 0.08 0.83 0.82 0.13   
KLoc 0.92 0.88 0.84 0.81 0.76 -0.06 0.36 0.11 0.91 0.83 0.22   
KHisto 0.90 0.91 0.59 0.98 0.94 0.13 0.92 0.73 0.92 1.00 0.61   
Map 1 \ Map 2 LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11 Sum Map 1 
LMU 1 9868 172 23 65 14 100 64 134 133 15 5 10593 
LMU 2 267 12228 23 19 362 0 265 108 123 29 184 13608 
LMU 3 295 40 5507 27 59 142 40 46 121 18 109 6404 
LMU 4 186 429 92 7691 525 0 87 125 104 69 23 9331 
LMU 5 79 88 1 105 10242 0 1774 161 145 29 1820 14444 
LMU 6 70 335 4 0 162 0 14 1834 457 12 3584 6472 
LMU 7 394 75 6810 83 325 5 4738 49 224 35 23 12761 
LMU 8 459 387 492 404 232 219 2202 1419 687 77 677 7255 
LMU 9 195 80 116 51 198 0 67 297 12278 81 12 13375 
LMU 10 95 14 11 0 44 0 258 56 233 3514 16 4241 
LMU 11 845 1980 1306 1191 834 0 1626 7769 948 345 3501 20345 
Sum Map 2 12753 15828 14385 9636 12997 466 11135 11998 15453 4224 9954 950478 
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Method Kappa                       
Map1 Cluster250m                       
Map2 Discrim200m                       
Kappa 0.49                       
KLocation 0.58                       
KHisto 0.85                       
Fraction correct 0.54                       
  LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11   
Kappa 0.79 0.66 0.65 0.65 0.34 0.01 0.72 0.56 0.76 0.69 -0.07   
KLoc 0.80 0.75 0.69 0.82 0.39 0.02 0.73 0.62 0.80 0.72 -0.10   
KHisto 0.99 0.88 0.95 0.78 0.86 0.59 0.98 0.89 0.95 0.96 0.67   
Map 1 \ Map 2 LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11 Sum Map 1 
LMU 1 8668 289 88 385 124 22 99 410 282 148 78 10593 
LMU 2 253 8490 98 1118 2196 275 144 378 282 165 209 13608 
LMU 3 191 31 4107 97 30 34 1010 236 515 125 28 6404 
LMU 4 77 173 123 7872 426 7 97 339 118 61 38 9331 
LMU 5 265 343 78 1398 5264 223 313 785 318 227 5230 14444 
LMU 6 35 77 30 118 14 873 57 123 562 52 4531 6472 
LMU 7 267 150 630 649 371 50 9381 530 485 243 5 12761 
LMU 8 238 425 102 643 62 150 172 4723 493 142 105 7255 
LMU 9 276 201 60 505 121 74 271 585 11014 213 55 13375 
LMU 10 11 15 168 239 122 73 72 104 338 3097 2 4241 
LMU 11 579 683 323 841 2566 12593 739 624 270 124 1003 20345 
Sum Map 2 10860 10877 5807 13865 11296 14374 12355 8837 14677 4597 11284 950478 
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Method Kappa                       
Map1 Cluster250m                       
Map2 Discrim250m                       
Kappa 0.74                       
KLocation 0.81                       
KHisto 0.91                       
Fraction correct 0.76                       
  LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11   
Kappa 0.80 0.77 0.75 0.70 0.76 0.76 0.76 0.57 0.79 0.76 0.65   
KLoc 0.86 0.82 0.76 0.86 0.82 0.76 0.76 0.67 0.82 0.76 0.87   
KHisto 0.93 0.94 0.98 0.81 0.94 1.00 0.99 0.85 0.96 0.99 0.74   
Map 1 \ Map 2 LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11 Sum Map 1 
LMU 1 9255 238 34 264 179 5 79 62 255 95 127 10593 
LMU 2 214 11494 93 798 219 45 134 107 240 31 233 13608 
LMU 3 180 82 4795 81 6 69 477 52 498 105 59 6404 
LMU 4 101 216 170 8142 367 9 67 51 128 56 24 9331 
LMU 5 99 323 47 1079 12152 141 63 85 148 76 231 14444 
LMU 6 29 87 148 110 587 4987 14 58 265 33 154 6472 
LMU 7 349 357 410 623 256 173 9904 251 276 160 2 12761 
LMU 8 460 518 58 675 365 32 191 3764 527 126 539 7255 
LMU 9 263 451 25 513 255 99 150 227 11315 50 27 13375 
LMU 10 39 71 98 157 74 1 144 31 373 3216 37 4241 
LMU 11 1067 1310 325 746 1692 937 1352 761 386 222 11547 20345 
Sum Map 2 12056 15147 6203 13188 16152 6498 12575 5449 14411 4170 12980 950478 
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Method Kappa                       
Map1 Cluster250m                       
Map2 Discrim300m                       
Kappa 0.49                       
KLocation 0.60                       
KHisto 0.82                       
Fraction correct 0.54                       
  LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11   
Kappa 0.74 0.72 0.47 0.67 0.62 -0.02 0.29 0.06 0.75 0.72 0.14   
KLoc 0.82 0.77 0.71 0.79 0.67 -0.04 0.31 0.09 0.81 0.80 0.24   
KHisto 0.90 0.93 0.66 0.85 0.93 0.52 0.92 0.71 0.93 0.90 0.57   
Map 1 \ Map 2 LMU 1 LMU 2 LMU 3 LMU 4 LMU 5 LMU 6 LMU 7 LMU 8 LMU 9 LMU 10 LMU 11 Sum Map 1 
LMU 1 8873 422 132 164 195 129 92 125 350 93 18 10593 
LMU 2 390 10926 197 714 504 85 181 85 296 53 177 13608 
LMU 3 377 172 4759 62 52 303 50 44 509 40 36 6404 
LMU 4 144 445 352 7560 492 26 62 20 185 40 5 9331 
LMU 5 166 395 85 1190 8981 55 1618 138 183 60 1573 14444 
LMU 6 49 262 52 85 221 36 20 1425 635 17 3670 6472 
LMU 7 573 248 5582 578 373 576 4273 96 339 114 9 12761 
LMU 8 519 452 321 533 319 801 2148 1340 541 142 139 7255 
LMU 9 303 383 55 463 358 135 287 157 11170 51 13 13375 
LMU 10 73 155 117 68 81 117 286 72 448 2819 5 4241 
LMU 11 1216 1427 632 918 1127 73 2075 8969 457 81 3370 20345 
Sum Map 2 12683 15287 12284 12335 12703 2336 11092 12471 15113 3510 9015 950478 
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