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Abstract 

I 

Abstract

Not until recently did we see an enormous surge of interest in the study of machining 

of advanced ceramics. This has resulted in significant advances lately in their 

development and usage. Machinable glass ceramics, boron nitride and silicon carbide 

are commonly used in the industry and their major features of attraction are their 

inherent properties. Previous studies on machining of these materials were mainly 

performed by other machining methods, such as electrode discharge machining, laser 

beam machining and abrasive jet machining. Although chemical machining is one of 

the oldest machining methods employed, the literature survey reveals a lack of 

knowledge in this particular aspect. Further understanding is required on the 

chemical machining characteristics of advanced ceramics as well as their 

performance and relationship between the variables and parameters involved in the 

process. Therefore, the aim of our study is to examine and establish the relationship 

between etching rate, surface roughness and dimensional accuracy with the relevant 

variables involved and at the same time to develop the predictive models for all 

outputs that we believe are beneficial to the manufacturing industries.  

A comprehensive review was written and published recently in a Journal on the 

current advanced ceramics machining techniques [1]. The chemical machining 

process was successfully conducted in this study with a variety of selected etchants. 

Using the RSM methodology the first and second order models were developed to 

study the chemical machining process and relationship between the outputs (etching 

rate, surface roughness and dimensional accuracy) with the selected variables, 

namely, etching temperature, etching duration, etchant and etchant’s concentration. 

A number of predictive models were developed followed by optimisation studies of 

chemical machining to obtain the best performance of chemical machining of 

advanced ceramics. Artificial neural network was also used as the analytical tool to 

evaluate the experimental data and validate the results generated by response surface 



Abstract 

II 

roughness, and both results were found to be in good agreement with each other. 

Artificial neural network was performed by software of NeuroSolution 5. 

From the chemical etching studies both the etching temperature and etchant used 

have significant influence on the etch rate. Generally, the higher the etching 

temperature the greater the etch rates was observed for the substrates. The best etch 

rate was found in HBr etchant for MGC and BN, and the highest etch rate 

performance for SiC was found in H3PO4 etchant. For surface roughness, different 

substrates were found to be influenced by different variables. For MGC and BN, 

these substrates were affected by etching temperature and the best surface roughness 

occurred at high etching temperature of   90oC. Etching duration was also found to be 

critical in determining the quality of SiC surface roughness during chemical 

machining.   

Experimental data revealed that etching rate was closely correlated to surface 

roughness as well as the etching ratio. However, using the best etching rate it failed 

to yield the quality surface roughness, but produced the best etching ratio. Each 

variable presented different level of significance for each output of chemical 

machining. The results of etch rate and etch ratio also showed that etching 

temperature and etching duration imparted significant impact on the chemical 

machining of all substrates. In the analysis of surface roughness, etching temperature 

was found to be the critical variable in chemical machining of machinable glass 

ceramics. Etching temperature and etchant influenced the surface roughness of boron 

nitride whereas surface roughness of silicon carbide was more dependent on etching 

duration and etchant used.  

Predictive models were developed using DE 7 once the analysis of data was 

completed. A total of 27 predictive models were developed for each substrate and 

each output. This predictive model can be used directly in the industry with the 

selected substrate and etchant. Optimisation of chemical machining was also 

performed. For machinable glass ceramic, the optimum of chemical machining 

happened at 100oC in 10.5 molarity HCl etchant for 30 minutes. Results of chemical 

machining of machinable glass ceramics were obtained with optimal etching rate of 

0.0008g/min, surface roughness improvement of 81.818nm (48% improvement) and 
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etching ratio of 3.403. In chemical etching of boron nitride, the best result occurred 

at 40oC in 6 molarity HBr for 62 minutes. The etching rate obtained for BN is 

0.00025g/min, with surface roughness improvement of 0.01nm (16% improvement) 

and etching ratio of 3.153. For the chemical etching of silicon carbide, the best 

performance occurred at 75oC in 8.5 molarity of HBr for 240 minutes. The optimal 

value of etching rate for silicon carbide is 0.0009g/min, with surface roughness 

improvement of 128.71um (35% improvement) and etching ratio of 10.004. 
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1.1 BACKGROUND 

Chemical machining has been used since 2500 B.C. as an engraving process. During 

engraving, chemical machining was employed to dissolve unwanted materials by 

masking or indentation. In patterning process, only selective areas are being attacked and 

this is controlled by masking or indentation. The development of chemical machining is 

growing with the advances in printed circuit board and growth of semiconductor industry. 

This is due to the micro and nano-patterning which is required in the patterning process. 

Chemical machining is also used in the aerospace industry to remove shallow layers of 

material from large aircraft components, missile skin panels, and extruded parts for 

airframes. The advantages of chemical machining are attributed to its cost effectiveness 

and absence of tool life problems. 

 

The study of chemical machining of advanced ceramics focuses on the behaviour of the 

substrates that influence the efficiency and quality of chemical machining process. Hence, 

the development of advanced ceramics is the primary focus in the industry [1, 2]. The 

technology of advanced ceramics has improved as a result of the contribution from all the 

branches of industry with an interest in machining. Productivity has also increased 

through the replacement of conventional machining with non-conventional machining for 

some difficult-to-cut materials. 

 

With the introduction of reliable electron microscopes and micro-probe analyzers in the 

1950s, an extensive growth in physical metallurgy has been observed. The evolution of 

raw materials for mechanical and civil engineering has  focused on the ceramics materials 



Chapter 1 Introduction 

 

2 
 

[2]. With their ability to operate under high temperatures, their high resistance to abrasion, 

high corrosion resistance, and better dimensional stability, advanced ceramics have been  

widely used in industries, such as space shuttle building, power generation, and 

electronics industry [1, 3-5].  

 

Increasingly, chemical machining is used in the industry to pattern advanced ceramics. 

The difficulties of chemical machining are related to its etch rate, surface roughness and 

accuracy. The etching variables and material properties are always of interest to 

researchers who aim to improve the production and the machining process efficiency. 

The etch rate is the main concern in terms of cost and productivity. The quality of etching 

will be affected significantly once any of the variables are varied [6-10]. Due to advanced 

ceramics physical properties, etch rate is always an issue and it does require thorough 

investigation in order to bring the chemical machining process to a more productive level. 

Surface quality with low value of roughness and without surface damage is desired. 

Accuracy and surface quality of etched materials is affected by the etch ratio due to the 

presence of indented and non-indented areas. Under certain condition, etch ratio is too 

low and  affects the patterning or causes undercutting [11]. To optimise the process, 

chemical machining must be able to deliver product with high etch rate, good surface 

roughness and high accuracy in patterning. 

 

The properties of microstructures of the etched material are known to be the 

uncontrollable parameters in this process. The material microstructure differs from one 

material to another, and it can strongly influence the physical properties, including the 

strength, toughness, and corrosion resistance of the material, which in turn govern the 

application of these materials in industrial practice. These properties are strongly related 

to the production of each material. Another problematic parameter is etchant quality. The 

quality of chemical etchant can significantly affect the result of chemical machining. The 

mixing process of etchant has to be very precise [6]. Thus, different results could be 

achieved for the same material etched in the same media when the same processing 

parameters were used. In addition, certain ranges of concentration are suited for specific 

ceramic materials. Besides, the results due to changes of the etchant concentration in 
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etching process at high temperature are difficult to predict due to the vaporisation and 

uncontrollable water content [7]. 

 

 

The objective of the current ceramic chemical machining study is to establish a predictive 

theory that would enable us to predict etch rate, surface roughness and accuracy. Thus, 

modeling and prediction of etching process will be carried out. 

 

The statistical and artificial tools will be used in analysing and predicting etching process 

under various ranges of parameters. These models would be able to improve the etching 

process and reduce the number of experiments, which are used traditionally for tool 

design, process selection, and machinability evaluation. The predictive models generated 

will be used to predict the relationships and interaction of the variables involved.  

 

1.2 MOTIVATION AND RESEARCH MAIN OBJECTIVES 

Due to chemical machining history and the hazards in material preparation and 

processing, it rarely attracts the interest of researchers. Besides, it is also related to the 

substrate’s mechanical properties (high resistance to abrasion and excellent hot strength), 

which discourage the researchers from applying chemical machining as the process 

method. The present  research works  focus mainly on the improvement of current 

method by adding stirring process or aided material to enhance the process. Substrates 

and etchants used are limited, and this further constrains the choice and development of 

advanced ceramics in the industry.  However due to the  growing demand of advanced 

ceramics  and also the growth of patterning industry, there is still a good deal of  

motivation to extend the research studies to other types of advanced ceramics instead of 

the existing conventional  substrates. 

 

The motivation of this study is driven first, by the lack of information or reports on the 

performance of chemical machining of advanced ceramics. It is envisaged that this study 

would provide more insight on the performance of the chemical machining by 

establishing the relationships between key parameters such as etch rate, surface 
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roughness and dimensional accuracy of the machining process. From current reports, 

most of the research conducted focus on either one or two of the parameters and there 

remains a gap in the knowledge and understanding in regard to the performance of 

chemical etching of advanced ceramics. The study aspires to provide a more holistic 

understanding on the performance of chemical machining of advanced ceramic from the 

analysis of the etchant used and the results from the etch rate, surface roughness and 

dimensional accuracy studies. 

 

The second motivation factor is that presently, no reports of any predictive models 

developed for the chemical etching of ceramic materials are available. Based on the 

statistical analyses of the results obtained from the machining performance for the 

selected number of advanced ceramics, predictive models can then be developed for the 

machining process. The models that are developed would strengthen the establishment of 

the relationship between the variables studied and output involved in the machining 

processes. Besides, the predictive model that is developed can be considered for 

application to mass production in the industry if the process is accurately assessed. This 

could save a lot of time and costing on the testing as well as resources. 

 

Last but not least, this study would provide me with the opportunity to explore the use of 

micro-scratch technique for the patterning process in chemical machining. The old 

technique of patterning (mask patterning) is faced with challenges associated with 

undercutting, mask adhesive issues and its unstable resistivity against chemical reagents. 

This relatively new technique would be carried out to improve the patterning process. 

Similar technique, known as nano-scratch has been used for patterning in research field, 

but further improvement on the technique is required. 

 

The major objectives of the current research work are summarized as follows: 

 

a) To establish relationships for the chemical machining process of advanced ceramics 

in terms of etch rate, surface roughness and accuracy, based on specified range of 

variables involved. 
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b) To predict the cutting performance and optimise cutting parameters that would 

eventually lead to improved productivity. 

 

 

1.3 SCOPE 

The current study involved the developments of predictive models for etch rate, surface 

roughness and accuracy by employing the response surface method (RSM) and artificial 

neural network (ANN). The experiments were carried out with selected ranges of etching 

variables (etching temperature, etching duration, etchant and it concentration). The range 

of these variables was selected based on the preliminary experimentation. Chemical 

machining experiments were conducted according to the principles of design of 

experiment (DoE) so as to eliminate the large number of experiments that would 

otherwise be needed. Experimental data was then analysed with statistical method based 

on the response surface roughness – central composite method (CCM) and Artificial 

Neural Network (ANN).  

 

 

1.4 THESIS OUTLINE 

This thesis is organised into eight chapters as outlined below. The structure of the thesis 

is graphically presented in Figure 1-1. 

 

 Chapter 1 defines the motivation and objectives, scope, overall aims and the structure 

of this thesis. 

 Chapter 2 reviews the background areas relevant to this PhD research. It also covers 

the advantages and limitation of each machining method. This chapter also identifies 

the existing gaps, from which the specific objectives of this research are developed. 

 Chapter 3 summarises the research methodology, as well as the experimental and 

analytical techniques employed in this study. In this chapter, it describes the tools and 

equipment used in this research study. 
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 Chapter 4 discusses the characterisation of the etch rate by analysing the ANOVA 

data and also discusses the relationship between the main variables with etch rate of 

each material. 

 Chapter 5 discusses the characterisation of the surface roughness by analysing the 

ANOVA data and also discusses the relationship between the main variables with 

surface roughness of each material. 

 Chapter 6 discusses the characterisation of the dimensional accuracy by analysing the 

ANOVA data and also discusses the relationship between the main variables with 

dimensional accuracy of each material. 

 Chapter 7 investigates the optimisation of chemical machining. This chapter also 

discussed the predictive mathematical models produced by RSM and ANN, and 

compared the results obtained by both analytical tools and with the experimental 

results. 

 Chapter 8 draws conclusion from this study and outlines the recommendations for 

future research. 
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Chapter 1 Introduction 
- Scope of studies 
- Overall aims and objectives of studies 
- Outline of thesis structure 

Chapter 2 Literature Review 
- Review of past and current knowledge 
- Identification of research gaps

Chapter 3 Research Methodology and Techniques 
- Choice of materials and sample preparations 
- Approach to experimental setup 
- Applications of analytical techniques (RSM and ANN) 

Chapter 4 Development of Etch Rate Models and 
Experimental Studies 

- Development of first and second order each rate models 
- Etch rate experimental studies  
- Analysis of variables involved and their influences on etch rate 

Chapter 5 Development of Surface Roughness Models and 
Experimental Studies 

- Development of first and second order surface roughness models 
- Surface roughness experimental studies  
- Established of variables interactions and analysis of influences on 
surface roughness 

Chapter 6 Development of Dimensional Accuracy Models 
and Experimental Studies 

- Development of first and second order dimensional accuracy 
models 
- Dimensional accuracy experimental studies  
- Identification of variables and their influences on dimensional 
accuracy 

Chapter 7 Predictive Models and Optimisation  
- Establishment of mathematical predictive models 
- Identification of relationship between variables 
- Optimisation studies and output analysis 

Chapter 8 Conclusion and Recommendation 

Figure 1-1 Thesis presentation 
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2.1 INTRODUCTION OF ADVANCED CERAMICS 

The term “ceramics” covers inorganic non-metallic materials that are formed by the 

action of heat to increase mechanical hardness and strength. Ceramics are classified into 

two types, namely, traditional ceramics and advanced ceramics (engineering ceramics). 

Nowadays, advanced ceramics can be classified into three distinct categories: oxides of 

(alumina, beryllium and zirconia), non-oxides (carbides, borides, nitrides and silicates), 

and composites (particulate reinforced combinations of oxides and non-oxides) [1].  

 

The most common type of starting material for making ceramics is the chemically 

prepared powders. In the making of ceramics, additional materials are added to the 

powder to form the ceramic particles into the desired shapes. Some of the most common 

methods for processing ceramics include extrusion, slip casting, pressing and injection 

molding. Following these processes, ceramics are subject to heat treatment or sintering to 

increase the strength of the products formed [12].  

 

 

2.2  ADVANCED CERAMICS 

The development of advanced ceramics has opened a whole new approach to 

manufacturing industry. In the past, the applications of advanced ceramics were limited 

to certain industries due to their inherent properties. With the new tailored materials, 

engineers literally create the necessary materials and the structure for integrated 

manufacturing. Thus, with tailored materials, the old concept of materials, design and 
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fabrication processes are merged together into the new concepts of integrated design and 

manufacturing. 

 

The 20th century has produced the greatest advancement in ceramics and material 

technology. The extensive metallurgical development in this period has now produced 

almost every conceivable combination of metal alloys and their capabilities are well 

known and continuously been exploited. The push for ever faster, more efficient, less 

costly production techniques continues up to today.  

 

As the limits of metal-based systems are surpassed, new materials capable of operating 

under higher operating condition, longer service life and lower cost are required to keep 

pace with technological advancements. Metals, by virtue of their unique properties, such 

as, ductility, tensile strength, simple chemistry, and relatively low cost of production have 

occupied the vanguard position in regard to materials development. By contrast, ceramics 

are brittle by nature, having a more complex chemistry and requiring advanced 

processing technology and equipment to produce, and they perform best when combined 

with other materials, such as metals and polymers which can be used as support 

structures. This combination enables large shapes to be made. The Space Shuttle is a 

typical example of the application of advanced materials and an excellent testimony to 

the high capability of the advanced ceramics. 

 

Given the advances in the understanding of ceramics and the knowledge gained from, 

crystallography analysis and their production in the ceramic industry, advanced ceramics 

have been widely used in many sectors of industry, especially in the electronics industry. 

The manufacturing techniques that involved metals previously were now considered 

applicable to ceramics systems. Many other techniques involving phase transformation, 

alloying, quenching and tempering techniques were applied to advanced ceramics 

production. As a result, the physical properties of advanced ceramics have been found to 

be significantly improved in terms of fracture toughness, ductility and impact resistance. 
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The new and emerging family of ceramics is referred to as advanced, and utilises highly 

refined materials and new forming techniques. These advanced ceramics posses several 

superior properties including high resistance to abrasion, excellent hot strength, chemical 

inertness and dimensional stability.  

 

Advanced ceramics [12, 13] can be classified into three distinct material categories: 

oxides, non-oxides and composites. Each of these possesses unique properties and 

production method. Oxides ceramics contains alumina and zirconia, and these materials 

are highly resistant to oxidation, chemically inert and electrically insulating with low 

thermal conductivity. The production cost of zirconia is slightly higher compared to 

alumina. Non-oxides ceramics: carbides, borides, nitrides and silicates. They are 

extremely hard, chemically inert, and expensive and have high thermal conductivity, low 

oxidation resistance and electrical conductivity. Ceramic-based composites are 

particulate reinforced, combinations of oxides and non-oxides. These types of ceramics 

have great toughness, variable thermal and electrical conductivity, but the complex 

manufacturing processes involved require high cost.  

 

To produce advanced ceramics, it requires demanding and complex procedure. High 

purity starting materials and precise methods of production must be employed to ensure 

the desired properties of these materials are achieved in the final product. As minor 

impurities can have a dynamic effect, for example, small amounts of Magnesium Oxide 

(MgO) can have a marked effect upon the sintering behaviour of alumina.  

 

Oxide ceramics [1, 12, 14]are produced by using high purity starting materials. These 

materials are then cleaned or removed of unwanted impurities and other unnecessary 

compound with mineral processing technique. After the purification stage, small amounts 

of wax are added to bind the ceramic powder. Then, it undergoes heat treatment to 

produce a dense product. Production of non-oxide ceramics involves three stages of 

process: preparation of starting powders, mixing to create desired compounds, and 

formation and sintering of final component. The final stage has to be carefully controlled 

to ensure the absence of oxygen during heating as these materials will readily oxidise 
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during firing. As for the ceramic-based composites, they are produced from a 

combination of oxide ceramics and non-oxide ceramics or mixtures of different oxide 

ceramics or non-oxide ceramics respectively.  

 

Advanced ceramics are now well established and their improvement in physical and 

chemical properties is clear evidence of their benefits.  However, the production cost is 

high due the complex and precise production equipment. It is envisaged that the future 

ceramic materials will exploit the properties of polycrystalline phase combinations and 

composite ceramic structures to produce product of high and distinct quality. 

 

 

2.3 MACHINING OF ADVANCED CERAMICS 

The machining that is employed for ceramic shaping can be divided into two categories, 

namely conventional machining and non-conventional machining. Conventional 

machining includes grinding, drilling, turning, boring and milling, and non-conventional 

machining includes chemical machining, ultrasonic, abrasive water jet (AWJ), electrical 

discharge machining (EDM), laser beam machining (LAM). The type of machining used 

for ceramic shaping is dependent on the industry requirements. Industries such as 

aerospace and automobile require products with high strength, while semiconductor 

industry requires high dimensional accuracy and high surface quality product. Machining 

operations need to be chosen carefully in terms of time and cost efficiency, and the 

emerging environmental concerns.  

 

2.3.1 Conventional Machining 

Conventional machining is one of the most important material removal methods that uses 

mechanical energy. It can be classified as turning, milling, drilling and grinding. Each of 

these processes requires a sharp tool to mechanically cut the material to achieve the 

desired geometry. The disadvantages of conventional machining include the use of 

lubricant, which is environmentally unfriendly, long processing time, the use of high cost  

tools, high energy consumption and relatively low product quality, and, in some cases 

conventional machining is not  feasible.  



Chapter 2 Literature Review 

 

12 
 

 

Turning operation is commonly used to produce cylindrical products from ceramics. A 

few studies have been conducted on turning operation of advanced ceramics. The major 

issues found are tool wear and surface damage. Tool wears that take place in machining 

of advanced ceramics are mainly affected by the tool materials and cooling condition [15]. 

The extremely high tool wear rate and surface damage of ceramics produced during 

machining are due to the high cutting temperature and the extreme hardness of the 

substrate. Wang et al. [16] introduced liquid nitrogen (LN) cooling to control the 

temperature in the cutting zone. The results showed that LN cooling was able to decrease 

the temperature in the cutting zone and better surface roughness was produced. Dabnum 

et al. [17] presented turning process in glass-ceramics using RSM method and showed 

that conventional machining was able to machine ceramics with some additives or 

supportive methods. He showed that the feed rate was the main influencing factor on the 

roughness, followed by the cutting speed and depth of cut. Yan et al. [18] indicated that 

the sintering temperature of ceramics materials plays a significant role in the turning 

process. It was found that polycrystalline diamond (PCD) tool is superior to the other 

tools, whilst the carbide inserts and the ceramics tool are unsuitable for machining 

ceramics. It was also found that turning ceramics with a sucker in cool and highly humid 

weather moistens the tool face and promotes tool wear. Few researchers have attempted 

to enhance the turning performance in ceramics materials. Vermaeulen et al. [19]  

designed an optical diamond turning machine to create the deterministic behaviour 

required for submicrometer shape accuracy and mirror surface quality, thereby 

minimizing tolerances in the manufacturing, and reducing requirements on conditioning 

of ambient temperature as well as the effort on software error compensation. 

 

Grinding process tends to introduce strength-inhibiting defects into ceramics. A few 

methods have been used  to prevent this damage, such as ‘ductile-regime’ grinding, 

lapping, polishing or ion beam implantation, but these processes resulted in raising the  

machining cost [20]. Pre-machining processes, such as surface polishing are known to 

weaken the flexural strength. There are doubts, however, as to the effectiveness or 

economics of such treatments, and alternative measures need to be undertaken. Huang 
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and Liu [21] investigated advanced ceramics machining characteristics and removal 

mechanisms. They observed that fractured and smeared areas were generated on Al2O3-

TiO3 surface after grinding process. These defects increased with smaller depths of cut. 

Chipping and cracking were clearly observed under SEM. The damage layer right 

underneath the machined surface seemed to be generated via ‘chipping’ [21]. The work at 

university of Tokyo [22] used a modified Norton Co. controlled milling centre and cast-

iron-bonded diamond grinding tools for creep-feed grinding, and reported stock removal 

rates in complicated 3D shapes from Silicon Nitride (Si3N4) and Silicon Carbide (SiC). 

Tsutsumi et al. [23] found that the application of electric-discharge machining in grinding 

showed an increased in wheel cutting ability. The surface roughness of Si3N4 ground with 

the in-process decreases with decreasing grit diameter. 

 

2.3.2 Non-Conventional Machining  

Non-conventional machining is well known in ceramics processing due to its high 

productivity and cost effectiveness. In the past, many researchers have studied machining 

of advanced ceramics conducted by chemical machining (CHM), electrical discharge 

machining (EDM), laser assisted machining (LAM) and ultrasonic machining (USM). 

Non-conventional machining utilises other forms of energy different from mechanical 

energy. The energies used in non-conventional machining are thermal energy, chemical 

energy and electrical energy.  

 

Chemical machining (CHM) is the oldest manufacturing technology. This process applies 

reactive etchants to remove unwanted part from the substrate surface. It is a corrosive-

controlled process .Many studies have been done on CHM to investigate its etch rate, 

surface roughness and accuracy. CHM includes photochemical machining (PCHM). 

PCHM is a method of fabrication component using reactive etchants to corrosively 

oxidise selected areas of the component. This process can produce highly complex 

products with very fine details, at high accuracy and low cost. They present a number of 

advantages, such as simple set up, quick preparation and no tool is required, hence 

problems such as tool wear, machine tool deflections, vibrations and cutting forces are 

eliminated. In addition, chemical machining minimises the effect of ceramics brittleness 
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and low fracture. The disadvantages of chemical machining include chemical disposal, 

the presence of uncontrollable parameters, especially material structure and their rate of 

chemical reaction with etchants. In addition, high attention is required during processing. 

Zubel et al. [24] studied the silicon anisotropic etching process in water etchant of KOH 

and TMAH with and without both organic and inorganic addition. This study showed the 

etch rate was affected by the presence of organic and inorganic agents. Kim et al. [25] 

employed the etching process with a lower O2 gas flow ratio and found that this action 

reduced etching damage to the low-k materials. 

 

Abrasive water jet (AWJ) is a technique that involves forceful impingement of abrasive 

particles to achieve the removal of surface material. AWJ depends on the water jet 

pressure, stand-off distance, abrasive size and flow rate. However, these choices are 

significantly affected by external factors such as the machined material structure and 

geometry of the jet nozzle [20]. The most common advantage of AWJ is that it yields 

little heat during machining process and therefore, there is no heat affected zone (HAZ), 

and hence the process does not require heat treatment. Compared to traditional machining 

technologies, AWJ offers the following advantages: fast speed, able to cut thick material, 

good accuracy, finishing surface and it cuts virtually anything with no HAZ. 

Unfortunately, some burr will occur near the cutting area. AWJ is widely used in metal, 

glass, ceramic, marble and granite cutting machines. Gi and Gi [26]  concluded in their 

research that AWJ has a great potential as a machining method for brittle and hard 

materials. Unfortunately, they found a large-scale fracture could easily develope on the 

backside of the substrate and affect surface finish. Although AWJ has been recognized as 

the most efficient method to machine ceramics, Chen et al. [27] reported  that damage 

tends to occur in the lower zone of the surface, where a lot of pits were found and this 

reduced the surface quality. To overcome this problem, a new cutting head oscillation 

technique has been introduced. This technique applied to the cutting process produces 

superior results and shows the smooth zone depths increase by more than 30% with 

oscillation as compared to that without oscillation. However, further study is proposed to 

reduce the pits effect that occurs at the lower surface layer [28, 29]. 
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Electrical discharge machining (EDM) uses spark erosion to remove small particles from 

electrically conductive material. The acceleration of EDM material removal rate is 

increased with the discharge current and working voltage, but decreased with increasing 

pulse duration. EDM is especially well-suited for cutting intricate contour that would be 

difficult to produce with traditional machining. Advantages of EDM include high 

dimensional accuracy, good surface finish, lack of burr and little HAZ. Ti3SiC2 with 

excellent electrical conductivity and thermal conductivity is easily machined by EDM, 

but high power is needed [30]. In order to obtain a high material removal rate and better 

surface roughness, Liu et al. [31] suggested using a suitable chemical additive, dielectric 

strength, washing capability and viscosity of the machining fluid. They also suggested 

using a water-based emulsion as the machining fluid since harmful gas is not generated 

during machining, and the equipment will not corrode. Another suggestion by Muttamara 

et al. [32] to improve the material removal rate is by employing positive polarity in case 

where the conductive layer is sufficient. Study on the EDM of conductive ceramics 

shows EDM performance is purely dependent on the level of intensity. It has been 

observed that increasing intensity will tend to increase surface roughness and electrode 

wear [33]. Hu et al. [30] investigated EDM on Titanium Silicon Carbide (Ti3SiC2) using 

water as dielectric and found typical thermal shock cracks and loose grains in subsurface, 

which resulted in about 25% of strength degradation.  

 

Electrochemical Discharge Machining (ECDM) is a modification of EDM. Materials are 

removed or deposited with the transferring of ions based on the anodic dissolution 

mechanism, where high precision is achievable and it has the feasibility of 

micromachining. In order to obtain better machining accuracy and smaller machining size, 

much research has been done on electrolyte, electrode’s insulation and systematic control 

of machining process [34-37]. Bhattacharyya et al. [38] found that machining rate and 

accuracy could be enhanced through effective and precise control of the spark generation. 

Taper side wall and flat front tool tip are the most effective parameters for controlled 

machining. The advantages of ECDM include higher material removal rate, use of 

nontoxic electrolyte components with very little changes in their composition during 

operation, minimal waste disposal, monitoring and control of electrolyte [39]. 
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The laser assisted machining (LAM) is a thermal process. The laser is used as a heat 

source with the beam focused on the un-machined section of the substrate. The addition 

of heat softens the surface layer of the material, allowing ductile deformation rather than 

the brittle deformation to occur during cutting. LAM power requirements depend largely 

on the material and the nature of the machining process [40]. The possibility of 

vapourising material during LAM may cause surface problems due to its severity in much 

the same way as in discharge machining [20]. The advantages of laser are that it provides 

high speed and precise cut when cutting thin material and the method yields no burr and a 

little heat affected zone (HAZ). LAM has demonstrated its ability to reduce cutting force 

and lower dynamic forces, allowing less sharp segmented chip and smooth surface finish 

to be  produced [41]. It is suitable to cut non reflection mild steel. LAM, however, 

requires high energy and cost to operate and must be conducted under a specified 

condition. The power of laser must be controlled properly to obtain a satisfactory result 

and a lot of power is needed to archieve this machining. Chang et al. [42] showed that 

LAM is able to predict the temperature distribution of difficult-to-machine materials 

during the machining process. Tool wear is a major factor affecting the surface roughness 

of the substrate. The authors [40] found that cutting resistance of processing aluminum 

oxide ceramics are extremely large, thus increasing the tool wear and reducing surface 

quality. Tsai et al. [43] reported that  generation of tensile stress was concentrated at the 

edge of groove-crack and induced the extension of the groove-cracks during LAM. Black 

et al. [44] also showed that surface glaze usually possesses a different linear expansion 

rate to the underlying substrate. The large thermal gradient caused by the laser beam 

causes the lower substrate to expand at a different rate, resulting in cracking of the glaze. 

 

Ultrasonic machining (USM) is a process where material is removed primarily by 

repeated impact of the abrasive particles. The main parameters, namely, static force, 

vibration amplitude, and grit size, have significant effects on the material removal rate 

[45-47]. Material removal occurs when the abrasive particles, suspended in the slurry 

between the tool and substrate, impact the substrate due to the down stroke of the 

vibrating tool. It is mentioned in many reports [45-47] that, for deeper cut, a vacuum-
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assisted machining is strongly recommended to ensure adequate flow of the suspension. 

Another type of USM is rotary ultrasonic machining (RUM). RUM combines material 

removal mechanism of diamond grinding and USM. The difference between USM and 

RUM is in the tool used. USM uses a soft tool and slurry is loaded with hard abrasive 

particles while in RUM the hard abrasive particles are bonded on the tools. The major 

advantage of USM is that the machining does not involve thermal, chemical, or electrical 

process. Therefore, metallurgical, chemical and physical properties of the substrate 

remain unchanged. However, in USM, the material removal is considerably slow and 

even stops as penetration depth increases. The slurry may wear away the wall of the 

machined hole as it passes back towards the surface, which limits the accuracy and 

causes considerable tool wear. Efforts have also been made to develop models to predict 

the material removal rate in RUM from control variables [47, 48]. Zeng et al. [48] 

demonstrated  that RUM tools could be designed in a way so that the lateral face is 

shorter. Tools with shorter latter face use less diamond grains and hence incurring lower 

manufacturing cost. The relationship between the cutting force and tool wear stage could 

be used indirectly to monitor tool wear during the machining processes. Thoe et al. [45] 

summarised that tool materials should have high wear resistance, good elastic and fatigue 

strength properties, and have optimum values of toughness and hardness for application. 

Table 2-1 below presents a summary of the non-traditional machining methods. 

 

Table 2-1 Summary of Nontraditional Machining [14] 

Process 

Typical 
Penetration/ 

Feed rate 
mm/m 
(ipm) 

Typical 
Surface 
finish 
AA, 

µm(uin.) 

Typical 
accuracy, 
mm (in.) 

Typical 
substrate or 

feature 
size, cm 

(in.) 

Comments 

 
Chemical  

 
Chemical 
milling 

0.013- 
0.076  

(0.0005-
0.003) 

1.6-6.35; 
as low as 

0.2 

Greater 
than 0.127 

(0.005) 

365x1524 
(144x600)  
up to 1.27 
(0.5) thick 

 
 

 No burrs 

 No surface stresses 

 Tooling cost low 
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Process 

Typical 
Penetration/ 

Feed rate 
mm/m 
(ipm) 

Typical 
Surface 
finish 
AA, 

µm(uin.) 

Typical 
accuracy, 
mm (in.) 

Typical 
substrate or 

feature 
size, cm 

(in.) 

Comments 

Photochemical 
machining 

As above As above 
0.025-0.05 

(0.001-
0.002) 

30x30 
(12x12) 

Up to 0.15 
(0.06) thick 

 Limited to thin 
material 

 Burr-free  

 Tooling cost low 

 Used in 
microelectronics 

Electrochemical 

Electrochemic
al machining 

(ECM) 

2.5-12.7 
(0.1-0.5) 

0.4-1.6 
(16-63) 

0.013-0.13 
(0.0005-
0.005) 
0.05 

(0.002) in 
cavities 

30x30 
(12x12) 

5(2) deep 

 Stress-free 

 Burr free  

 Tool design expensive 

 Disposal of wastes a 
problem 

 MRR independent of 
hardness 

Electrostream 
drilling 

1.5-3  
(0.06-0.12) 

0.25-1.6 
(10-63) 

0.025 
(0.001) 

Up to 0.5 
(0.2) thick 

 Charged high-velocity 
stream of electrolyte 

 Hole diameters down to 
0.127mm 

 40:1 hole AR 

Shaped tube 
electrolytic 
machining 
(STEM) 

As above 
0.8-3.1 

(32-125) 

0.025-
0.125 

(0.001-
.005) 

Routinely 
up to 127 
(5) thick 

 Special form of ECM 
using conductive tube 
with insulated surface 
and acidic electrolyte  

 300:1 hole AR 

 Hole diameters down to 
0.5mm  

 
Mechanical 

Abrasive jet 
machining 

76 (3) 
0.25-1.27 
(10-50) 

0.12 
(0.005) 

Up to 0.15 
(0.06) thick 

 Used for cutting brittle 
materials 

 Produces tapers 

 Inexpensive to 
implement  

 Can cut up to 6.3mm 
thick glass 
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Process 

Typical 
Penetration/ 

Feed rate 
mm/m 
(ipm) 

Typical 
Surface 
finish 
AA, 

µm(uin.) 

Typical 
accuracy, 
mm (in.) 

Typical 
substrate or 

feature 
size, cm 

(in.) 

Comments 

Abrasive 
waterjet 

machining  

15-450  
(0.6-18) 

2.0-6.35 
(80-250) 

0.13-0.38 
(0.005-
0.015) 

Up to 20(8) 
thick 

 Used in glass, titanium, 
composites, nonmetals 
and heat-sensitive or 
brittle materials 

 Produces tapered walls 
in deep cuts 

 No burrs 

Ultrasonic 
machining 

(impact 
grinding) 

0.5-3.8  
(0.02-0.15) 

0.4-1.6  
As low 
as 0.15 

0.013-
0.025  

(0.005-
0.001) 

Up to 
100cm2 
(16in2) 

 Most effective in hard 
materials 

 Rc>40 

 Tool wear and taper 
limit hole AR at 2.5:1 

Waterjet 
machining 

250-200000  
(10-7900)  

Soft 
material 

1.27-1.9 
(50-100) 

0.13-0.38  
(0.005-
0.015) 

Up to 
2.5(1) thick 

 Used on leather, 
plastics, and other 
nonmetals 

 Pressures of 60000pso 
and jet velocity of up to 
3000ft/sec 

Thermal 

Electrical 
discharge 
machining 

(EDM) 

Up to 0.5 
(0.02) 

0.8-2.7  
(32-105) 

0.013-0.05 
(0.0005-
0.002) 

Up to 
200x200 
(79x79); 
5(2) deep 

 Widely used and 
disseminated 

 Dies expensive 

 Cut all type of materials 

 Forms recast layer 

Electron beam 
machining 

(EBM) 

30-1500 
(1.2-60) 

0.8-6.35 
(32-250) 

0.005-
0.025 

(0.0002-
0.001) 

0.025-0.63 
(0.01-0.25) 

thick 

 Capable of 
micromachining thin 
materials 

 Hole sizes down to 
0.05mm (0.002in)  

 100:1 hole AR 

 High vacuum 

Laser beam 
machining 

(LBM) 

100-2500 
(4-100) 

0.8-6.35 
(32-250) 

0.013-0.13 
(0.0005-
0.005) 

Up to 2.5 
(1) thick 

 Capable of drilling 
holes down to 0.127mm 
at 20:1 AR in seconds 

 Heat-affected zone and 
recast layers which may 
require removal 

  
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Process 

Typical 
Penetration/ 

Feed rate 
mm/m 
(ipm) 

Typical 
Surface 
finish 
AA, 

µm(uin.) 

Typical 
accuracy, 
mm (in.) 

Typical 
substrate or 

feature 
size, cm 

(in.) 

Comments 

Plasma arc 
cutting (PAC) 

250-5000  
(10-200) 

0.6-12.7  
(25-500) 

0.5-3.2 
(0.02-
0.125) 

Up to 15(6) 
thick 

 Clean rapid cuts and 
profiles in almost all 
plates 

 5 to 10o taper 

 Cheaper capital 
equipment 

Precision PAC As above As above 
0.25 

(0.01) 

Up to 1.5 
(0.625) 
thick 

 Special form of PAC 
limited to think sheets 
of material 

 Straighter & smaller 
kerf 

Wire EDM 
100-250 
(4-100) 

0.8-1.6  
As low 
as 0.38  

0.0025-0.1 
(0.0001-
0.004) 

As large as 
100x160 
(40x65) 
Up to 
45(18) 
thick 

 Special form of EDM 
using traveling wire 

 Cuts straight narrow 
kerf 

 Wire diameters as small 
as 0.05mm (0.002in)  

 Permit complex 
geometries 

 

 

2.4 THEORY OF CHEMICAL ETCHING (CHM) 

CHM in the early years was mostly involved in the jewelry industry. Back in 4500 years 

ago, Egyptians used citric acid to etch jewelry [14]. Approximately 1000 years back in 

the region of United States, the Hohokam Indians used fermented cactus juice to etch 

jewelry. In 17th century, it was used for the first time as a manufacturing process of steel 

parts. Developments in chemistry provided significant advancement with the discovery of 

new type of acids  during the 18th and 19th  Century [49]. The first patent (British Patent: 

565) was taken by William Fox Talbot (1982) using ferric chloride (FeCl3) for etching 

copper. Later, John Baynes described chemical etching of materials from two sides in the 

US Patent 378,423 in 1888 [50]. 
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Until late 1930s, CHM began with limited use of chemicals in manufacturing. In the 

1940s, North American Aviation patented a process called chemical milling, which was 

used to fabricate aircraft wing panels. During the same period, CHM had begun to 

emerge in producing printed circuit boards. Major developments were noticed after the 

Second World War and the process has been widely used as manufacturing process since 

1950s. First industrial application was conducted by North American Aviation, Inc. 

(California, USA) to etch aluminium components for rockets. The company named the 

process “chemical milling” and patented it (US Patent No: 2 739 047) in 1956. The 

process was used for removing excess mass from aluminium wing skins and other 

airframe parts [51].  

 

Today, CHM is characterised as a process that uses acidic or alkaline etchants to dissolve 

materials in a controlled manner for purpose of milling or blanking parts. CHM is 

popular in producing complex configurations in thin materials and material that could be 

easily damaged by using conventional cutting tools [52]. There are two types of CHM, 

namely, chemical blanking and chemical milling. 

 

Chemical blanking or photochemical machining is the process of producing metallic or 

nonmetallic parts by chemical action. This process consists of placing a chemical-

resistance on the substrate and exposed it to chemical action. All exposed surface are 

dissolved except the desired part.   

 

Chemical milling or chemical etching is the process used to shape substrate to an 

exacting tolerance by the chemical removal of substrate, rather than by conventional 

mechanical milling machining operations. The amount of material removed, or depth of 

etch, is controlled by the several independent variables. Location of the un-etched areas is 

controlled.  

 

Chemical etching is categorised into etching in aqueous etchants and defect selective 

etching. There are two major classes of etching processes, namely, wet etching and dry 
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etching. The major differences are that wet etching is an isotropic process, which have 

selectivity that depends on crystallographic direction, masking and underlying layers. 

 

Wet chemical etching techniques provide high degree of uniformity and repeatability, and 

adjustable etch rate by changing the ratio of components in the etching etchant. The 

versatility of this technique would enhance the etching process since the performance of 

chemical micromachining is determined by etch rate (material removal rate), etch ratio, 

surface roughness and accuracy. Generally, wet chemical etching involves removal of 

unwanted material by the exposure of the substrate to a corrosive etchant. The exposed 

material is oxidized by  reactivity of the etchant to produce the reaction products [53]. 

The etch rate depends strongly on the kinetic and the reaction mechanism between the 

substrate and etchant involved. 

 There are two types of wet etching, namely,  isotropic etching that involves etching  the 

material in all direction and anisotropic etching, that involves etching in selective 

direction. The most popular anisotropic etchant is potassium hydroxide (KOH) given its 

low safety requirement. Anisotropic etching is mostly used in sophisticated design in 

conjunction with photoresist masks. The masks properties, however need to be 

compatible with the selected etchant [52].  

 

Isotropic etchants having dissolution rates independent of orientation are also used. These 

chemical mixtures tend to uniformly remove material, and are limited by the mass 

transport of chemical species to the crystal surface. The actual surface reaction rates are 

so great that variations to atomic structure do not alter the reaction speed relative to 

chemical transport [54]. In order to obtain better results in terms of productivity and 

surface quality of machined ceramics, researchers have created many types of etchants. 

These include molten salt and Secco etch, which are commonly used in the industry and 

others include Dash etch, Jenkins Wright etch and Sponheimer etch. 

 

A number of  factors that influence etch rate are etchant properties, etchant concentration, 

etching duration, temperature, material properties, set up condition, agitation and stirring 

process [7, 8, 55]. A small change in each of these parameters will result in producing a 
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big different product at the end of the process. The nature of the etchants and their 

concentration are the main concerns. In order to obtain good results, etchant and substrate 

must be matched perfectly, in terms of their chemical properties. Due to ceramic 

mechanical properties, its grades are stable even at high temperature conditions. Thus, 

ceramics are always etched at extremely high temperature for several hours. Agitation 

and stirring process are considered as an additional process to stimulate the reactions and 

to enhance its performance. William et al. [6, 7] summarised the relationship between 

etchants and substrate after carrying out chemical etching process at different etching 

parameters. In their papers, they tested with a few variables, such as temperature, etchant 

types and etchant concentration. They highlighted that not all materials were etched in all 

the etchants and only specific etchants and concentrations are suited for certain materials 

[56].  

 

The difficulties in micromachining of advanced ceramics are mostly related to etch rate, 

etch ratio, surface roughness and dimensional accuracy. Etch rate is the main concern in 

term of cost and productivity. Other external parameters are stirring process and aided 

material. From previous research works, it has been proven that stirring action was able 

to increase the etch rate by removing the ion concentration during etching process [57] 

and aided material, such as trithanolamine, supersonic aid, are able to increase the etch 

rate [55, 58, 59]. Undercut is a commonly known limitation phenomena in chemical 

etching. This is because wet isotropic etching has been chosen and this type of process 

etched the substrate at all directions at the same rate. In order to reduce the undercut 

effect, etch ratio between indented and non-indented area is being introduced [60].  

 

Another difficulty mentioned above is the quality of micromachining. This is measured 

by substrate surface condition. With low value of roughness and less damage on surface, 

it is considered as good quality. A few uncontrollable parameters on surface quality are 

substrate microstructure and the chemical reaction between substrate and etchant [7]. 

Islands or isolated high spots can be formed due to the improper agitation [14]. Islands 

can also be formed due to the inadequate cleaning and inhomogeneity with the work 
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material. An overhang can result if the etchant is not properly agitated, particularly on 

deep cuts. 

 

CHM is a very useful and economical method for weight reduction. With minimum set 

up procedures and equipments, CHM can be carried out easily because it does not require 

highly skill labour. During the process, CHM does not induce stress in substrates, nor 

affecting their mechanical properties. CHM, which is the oldest nontraditional machining 

method, can be applied to almost any material and parts of virtually any shape. Thin 

section, such as honeycomb, can be done because there are no mechanical forces 

involved in the process. In some applications, chemical machining can be an economical 

method for mass material removal because material is removed simultaneously from all 

surfaces of the part involved. 

 

Although CHM is cost effective, it requires the handling of dangerous chemicals and the 

disposal of potentially harmful by-products although some recycling of chemicals may be 

possible. Besides, CHM may release existing residual stresses in the substrate and thus 

cause warpage. This is happening because of the different grain structure that exists near 

the welds, since weldments usually are not suitable for chemical machining.  

 

 

2.5 ETCH RATE 

Nowadays, manufacturing industries require high productivity. Thus, etch rate has 

become an important issue. Previous works summarised that etch rate varies as a function 

of temperature, elapsed time from the start of etch and etching period, etchant type and 

concentration, substrate properties and agitation [56]. Commonly, etch rate in CHM is 

very efficient compared with other nontraditional machining processes. However, etching 

proceeds on all exposed surfaces simultaneously which significantly increases the overall 

material removal rate on large parts.  

 

Agitation has been proven to influence etch rate significantly. Additive materials have 

also been shown to affect etch rate in wet etching process. It was found that 



Chapter 2 Literature Review 

 

25 
 

ethylenediamine (EDTA), triethanolamine (TEA), pyrazine and hydrazine, have caused 

reduction in etch rates [55, 59]. These organic compounds probably are adsorbed on the 

silicon surfaces and they could restrict access of etching agent (OH- or H+ ion and water 

molecules). On the other hand, viscosity of the etching etchant might increase. This will 

lower the diffusion rate of the ions produced in the etching processes and decrease the 

etch rate. Cai et al. [61] added hydrochloric acid (HCl), potassium chloride (KCl) and 

sodium chloride (NaCl) into the etchant to investigate their influences on etch rates. Their 

experiments showed that addition of KCl increases etch rate, HCl had no effect on etch 

rate and NaCl had negative effects on etch rate. Peng et al. [57] studied etching process 

on gallium nitride (GaN) and etch rate proved to be increased significantly with photo-

assisted process. Figure 2-1 [57] indicates both the solute (KOH) and solvent (H2O) play 

an important role in the PEC etching of GaN. With an increase of the OH- concentration, 

the hydration effect continuously reduces the H2O concentration. These competing 

effects therefore produce a peak in the etch rate whose location is very sensitive to the 

mean hydration number of solute. Zubel and Barycka [62] found that etch rate was 

decreased significantly when conducting etching process without IPA. UV excitation can 

impart considerable energy to the photo-generated carriers at the GaN/electrolyte 

interface and enhance the oxidative dissolution process. For parts machined by 

immersion, the uniformity of the etchant concentration within the bath can be improved 

by agitation. If the bath is not agitated properly, several defect conditions can result, as 

island, or isolated high spots due to improper agitation on large parts [14]. Other defect 

such as dishing and pitting (due to unequal etch rates) can also be caused by improper 

agitation. 

 
Figure 2-1 pH dependence of the GaN PEC etch rate in aqueous KOH etchants. Inset 

shows the pH dependence of the etch photocurrent density [57] 
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Stirring process is to increase the inflow of the active agent to the surface of silicon 

during etching in diluted etchants. During etching, substrate will react with etchant and 

release hydrogen ions. This reaction stops only when etch product blocks the chemical 

flow and causes an invisible wall between ions and substrate [63]. 

 

Substrate influences etch rate by its microstructure, film stress, and impurities in or on the 

material itself. Vartuli et al. [63] reported a decrease in etch rates with increasing crystal 

quality, as the reactions occurred favourably at the grain boundaries and defect sides. One 

of the most significant reasons for etch rate variation is the mechanical properties of the 

material, which are the result of the production method and subsequent processing. 

Etching process in the deposition method of pure materials tends to produce much greater 

differences in etch rate [7]. Other causes of unequal etch rates can also be due to selective 

etching at micro-cracks and grain boundaries in the materials [14]. 

 

Etchant affects etch rate by loss of reactive ions, loss of liquids to evaporation, etch 

product blocking in the chemical flow and concentration of etchant. William et al. [6, 7] 

provided the information of 620 etch rates of 53 materials in 35 etches that might be used 

in future fabrication of micro-electromechanical systems (MEMS) and integrated circuit 

(ICs). The etch rate in CHM is directly proportional to etchant concentration and directly 

adjacent to the area being machined [14]. Etchant concentration is related to the content 

of ion hydrogen in etchant. Higher concentration etchant or higher ion hydrogen 

facilitated in etching the substrate. This concept is applied to all type of etchants, either 

acidic or alkaline etchants. Zubel et al. [24, 62] concluded that etch rate of various plane 

in low concentration etchants are similar to one another due to the low anisotropy in 

KOH etchant. Peng et al. [57] studied the role of solvent or H2O in etching and its role in 

etching. He concluded that etch rate was not solely depended on etchant concentrations. 

For hydrofluoric-acid-based (HF) etchant, William and Gupta [6] found that for weaker 

concentration of HF, the etch rate increased almost linearly with concentrations, but rose 

much faster with concentrated HF. Liu [64] indicated that etch rate, to a large degree, was 

limited by the removal rate of non-volatile components. This was supported by the 

observation that etch rate was increased significantly by increasing the concentration of 
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etchant. Yuan et al. [58] showed the differences between etchant concentrations through 

the heights of the micro-protuberance. He found the heights of micro-protuberance 

increased with increasing concentration.  

 

Water content in low concentration etchant influences etch rate significantly. Makino et 

al. [56] showed that etch rate had a close relationship with the water content in the 

etchant. Etch rate decreased significantly in the open condition with high temperature 

compared to closed condition. During the open condition, water content in Ortho-

phosphoric acid (PA) was vaporised when the process was carried out, which led to the 

change of water content in PA. 

 

Period of etching affects etch rate significantly in two ways: elapsed time from the start 

of etch and prolonged etch. Temperature is another issue that affects the efficiency of 

chemical etching. Many research works have shown the temperature effect on etch rate at 

range from room temperature up to 800oC for certain type of advanced ceramics [55-57, 

61, 65]. Increasing temperature will increase etch rate and decrease surface quality. 

Niebuhr and Fang et al. [65, 66] observed  similar results. An increase in temperature will 

tend to stimulate corrosive attack by increasing the rate of electrochemical reaction and 

diffusion processes. Gelder and Hauser [67] investigated etching of silicon nitride with 

silicon dioxide as a mask. They showed that etch rate was affected by water content and 

temperature. Etch rate of silicon nitride in refluxed boiling phosphoric acid was measured 

as a function of temperature and all etch rates increased with temperature.  

 

 

2.6 SURFACE ROUGHNESS 

Surface quality is concerned with surface roughness, surface damage and surface 

mechanical properties. Surface conditions determine the quality level of micromachining. 

A good surface has low value of roughness and without surface damage, such as pits. 

Surface quality is usually determined by scanning electron microscopes (SEM), atomic 

force microscope (AFM) or transmission electron microscope (TEM). Surface quality has 

a close relationship with etch rate. Researchers have found that surface quality 
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deteriorates with temperature due to higher etch rate. Increase in etch rate will cause the 

unevenly etching process and eventually higher surface roughness [55, 59]. Different etch 

rates will significantly result in different types of surface quality. Surface quality is also 

affected by etchant concentration, temperature, agitation and etching period [57].   

 

Agitation is known to increase or decrease the etch rate, and thereby affecting the surface 

quality indirectly. Fadaei and Imanian [8] observed an improvement in surface finish by 

adding triethanolamine (TEA) which was able to decrease etch rate. This was due to the 

ability of TEA to decrease the difference between corrosion rate of grain and grain 

boundaries, thus reducing the pitting defects and producing better surface finish. Further 

agitation-isopropyl alcohol (IPA) will improve the surface finish [59, 63]. Besides, 

prolonged etching period is also known to increase etch rate and cause irregular hillocks 

and defects to appear on the material surface. 

 

Vladuta [68] summarised the relationship between material properties, contact angle and 

surface quality with the  surface energy. Surface energy is an important property that is 

affected by the chemical structure of the solid and influences the wettability of the 

material surface. The wettability also depends on the surface morphology and the contact 

liquid. The higher the surface energy is the better the surface quality and the finer the 

grain size. 

 

 

Figure 2-2 Cross-sectional STEM micrograph of RCA cleaned code 1737glass, showing 

leached surface layer [64] 
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Preparation before etching is a necessary procedure to improve the results at the end of 

the process. A few types of preparation methods have been carried out by researchers to 

improve substrate machinability by controlling the composition of ceramics, the type of 

‘green material’ used to produce ceramics, treatment and cleaning process. Kuech et al. 

[69] found the buried interfaces prepared through wet chemical processes resulted in a 

high concentration of traps localised at the interface. Liu et al. [64] applied treatment to 

glass ceramics due to its insensitivity to cleaning process. Through treatment process, the 

microstructure of the glass ceramic would be changed and creating a better machinability 

material. A thin SiO2 layer, as shown in Figure 2-2 [64] was formed in glass ceramics 

during exposure to NH4OH/H2O2. In the buffered HF dip, SiO2 layer was dissolved and 

re-deposition of dissolved elements would take place in these areas. 

 

 

Figure 2-3 The surface of Si(100) - etching at 70oC in (a) before etching in 5M KOH and 

(b) after etching in 5M KOH; and, (c) before etching in 10M KOH and (d) after etching 

in 10M KOH, respectively [24, 63] 
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Etchant concentration is determined by its content. The higher the hydrogen ion content 

the higher the concentration and vice versa. Figure 2-3 [24, 63] showed that quality of 

surface is strongly influenced by the etchant concentration. As the concentration 

increased, surface quality became smoother. This condition will become worse once 

etchant concentration is over the peak limit. Kinder and Tausley [55] found surface 

roughness of GaN reduced significantly while etching by KOH etchant concentration 

from 0.02M to 0.04M. During etching, reaction process takes place in between hydrogen 

ions and substrate to produce reaction material. Reaction material will increase if etchant 

concentration is too high and causing these insoluble reaction products to start forming 

and eroding the material surface [70]. A very smooth surface may be obtained when light 

intensity is high and etchant concentration is low. This corresponds to circumstances in 

which the reaction rate becomes limited by etchant concentration and the diffusion of 

reactants to the surface [71]. Kinder and Tausley [55] showed the surface roughness of 

GaN/SiC (0.2μm) etched surface with decreased KOH concentration. By reducing KOH 

concentration from 0.04M to 0.02M, the surface roughness was significantly reduced as 

seen in Figure 2-4 (surface roughness = 2.5μm while etching in 0.04M KOH). Cook et al. 

[71] studied the different ways of preparing four engineering ceramics to determine the 

most effective etching methods. All materials then underwent different types of etching 

methods. He summarised that SiC, Si3N4 and Sialon, which were polished using a 

Buehler Motopol polisher and underwent different stages of diamond paste on a Textmet 

cloth were etched excellently in molten salt etch. Figures 2-5 and 2-6 [71] are secondary 

electron image of thermally etched SiC, Si3N4 and Sialon. Microstructure in Figure 2-5 

showed a fibrous nature, consisting of elongated, high aspect ratio SiC grains with finer 

grains in between them. The molten salt etch (Figure 2-6) removed the grain boundary 

phase and the Cr rich particles, leaving the matrix untouched. 
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Figure 2-4 SEM image of GaN/SiC (0.2um) etched surface [55] 

 

 

Figure 2-5 Secondary Electron image of molten-salt-etched SiC [71]. 

 

 

Figure 2-6 Backscattered eletron image of molten-salt-etched Si3N4 [71]. 
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Temperature plays a crucial role in surface roughness during ion reaction. Temperature 

changes affect material morphology at the end of the process and thus indirectly affecting 

the surface quality. Many researchers have shown that increasing temperature allows one 

to obtain better surface quality in various concentration of etchant [24, 56, 58, 62-64, 72, 

73]. Increasing temperature will stimulate reaction and increase the surface quality. 

Jardiel et al. [74] observed the shape of grains changed from rounding plate-like grain to 

platelets after etching thermally. 

 

Photoresist is the light-sensitive material used in photolithography and photoengraving to 

form patterned coating on a surface. Indirectly, the adhesive of photoresist change the 

quality of surface roughness at the end of the process. It sometimes produces chemical 

reaction with the chemical etchant during the process that is carried out. This also causes 

peel off of photoresist. Thus, adhesive of photoresist has to be highly resistant to the 

chemical etchant used. Liu et al. [64] reported the surface roughness was closely related 

to photoresist’s adhesive quality. Their results showed that better surface roughness was 

found in chromium photoresist, compared to fused silica wafer.  

 

 

2.7 DIMENSIONAL ACCURACY 

In previous years, masking is used to protect substrate surface from chemical etchant and 

also for fabrication purpose. However, the difficulty and complicated methods in 

applying maskant onto the material surface and defects raised by maskant during CHM 

have increased the production cost and processing period. Thus, direct micro-fabrication 

technique is being introduced to meet the increasing demand of multi-kind and small-

quantity production. 

 

Direct micro-fabrication technique which combines micro-indention and CHM has been 

proposed [75-77]. One of the reasons that direct patterning has received attention from 

industry is that the demand of multi-kind and small-quantity production is increasing in 

the market. The key point of this technology is that the change in etch rate arises from the 
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non-indentation area which facilities contact with the chemical etchant. By applying this 

technique, dimensional accuracy is measured in terms of etch ratio, which is the ratio of 

etch rate at non-indented area to indented area.  

 

 

Figure 2-7 Schematic diagram of the cross section at the glass surface before and after 

CHM 

 

The micro-patterning and CHM presents potential maskless fabrication technique 

because of its operation versatility, low costs for initial facilities, simplicity of process 

and material selectivity. Kurachi et. al. have proposed a novel micro-fabrication 

technique without using photomask on glass surface, which is a combination of micro-

indentation and CHM process [78]. Youn and Kang fabricated the micro-pattern on the 

Pyrex glass by suing nano-scratch with HF etching [77]. These research studies showed 

that patterning on the glass surface becomes possible due to etch rate difference between 

indented and non-indented area. Saito et al. proposed the mechanism for alumino-silicate 

glass in that etch rate change is attributed to the change of leaching reaction. The leaching 

of the glass components other than SiO2 occurred with HF etching was restricted by 

micro-indentation [75]. In their further inspection, they found that etch rate changed with 

the material composition. They indicated etch ratio increased with increasing ratio of 

Al2O3 to SiO2 [76].  

 

 

2.8 ETCHANT 

The selection of an etchant is dependent upon numerous factors, some of which are: 

material to be etched, depth of etch, surface finish required, potential damage to or 
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alteration of metallurgical properties of the material, speed of material removal, 

permissible operating environment, economics of material removal [79]. 

 

The simplest example of a molten salt would be to take sodium choride (table salt) and 

heat it to a red heat (801oC) where it would melt into liquid. This liquid is stable, has a 

heat capacity similar to water and flows much like water does [54]. Molten salt functions 

are not limited to solvent, its properties include good heat transfer characteristics. It is 

also able to attain very high temperatures. Molten salt technology has been used 

commonly in industries, such as diverse technologies, electrochemistry, heat transfer, 

chemical oxidation and nuclear reactors. 

 

Secco etch mainly consists of hydrofluoric and chromium oxide. There are a few types of 

Secco etch being used today, their differences are controlled by their acid composition. 

As an example, Jacque [80] used Secco etch of 2ml Hydrofluoric (HF) and 1ml chromate 

(Cr2O3) to etch Si3N4 and Ravi [54] used 2ml HF, 1ml potassium dichromate (K2Cr2O7) 

and 1ml acetic acid (CH3COOH) in etching advanced ceramics. Secco etch is used to 

delineate crystalline defects on silicon substrate of water. It is a useful chemical etching 

method for characterisation of defects on surface of bare silicon wafer [81]. However, 

Hua [82] concluded that Secco etch alone did not fully de-process the die to substrate 

where crystalline defects may be covered by the oxide. 152 Secco etchant consists of 

hydrofluoric acid and potassium dichromate, its composition is 67%HF: 33% 0.15M 

K2Cr2O7 in water (H2O). This mixture is the innovation of Secco etch, which is created 

by Chu [81] for etching of silicon wafer. 152 Secco etch has the advantages of 

delineating crystalline defects through two main processes, which are well-defined 

etching pits with elliptical shape, and its preparation is simple, fast and reliable. The 

disadvantage of 152 Secco etch is that it cannot identify the orientation of wafer plan 

compared to the other Secco etch [83].  

 

Thermal etch involves heating of polished ceramic specimens to around 200oC of the 

sintering temperature. It is performed under argon in vertical tube furnace with silicon 

carbide hearth. The specimens are then annealed in vacuum or inert atmosphere and used 
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primarily in high temperature [80]. Thermal etching is not normally applied to non-oxide 

ceramics owing to problems with oxidation and it should be carried out under vacuum or 

inert atmosphere. From previous researchers, pressure-less-sintered β-SiC produced by 

sintering SiC powders were successfully etched [74]. Cook et al. [74] successfully built a 

useful guideline in fabricating engineering ceramics. They found that only SiC was 

successfully thermally etched and gave a low value of surface roughness. Jardiel et al. [74] 

tested bismuth titanate (Bi4Ti3O12) and it changed from rounding plate-like grain to 

platelets under the action of the chemical agent [74]. 

 

Other etchants are Sirtl etchant, which contains 1ml HF:1ml C2O3 [80]; Silver etch- 2ml 

HF:1ml HNO3:2mlAgNO3 [54]. Dash etchant with 1ml HF: 3ml HNO3 : 1ml CH3COOH; 

Jenkins Wright, which contains 60ml HF: 30ml HNO3 : 60ml CH3COOH : 30ml (1g 

CrO3 : 2ml H2O) [84]; Sponheimer Mills, contains 5mg H3IO6 : 5mgKI : 50ml H2O : 2ml 

HF [39]; Copper etch, contains 600ml HF : 300ml HNO3 : 28g Cu(NO3)2 : 3ml H2O [80]; 

Copper displacement, contains 55g CuSO4 : SH20 : 950ml H2O : 50ml HF; CP-4, 

contains 3ml HF : 5ml HNO3 : 3ml CH3COOH [6]; and, Sailer etchant, contains 300ml 

HNO3 : 600ml HF : 2ml BS : 24g Cu (NO3)2 : dilute 10:1 with H2O [85]. 

 

 

2.9 ADVANCED CERAMICS 

2.9.1 Machinable Glass Ceramics (MGC) 

The first practical glass ceramics were developed nearly fifty years ago. These glass 

ceramics are prepared by the controlled crystallisation of special glasses. The original 

glass ceramics were produced by inducing volume nucleation in melt-derived bulk 

silicate glasses, usually by the addition of nucleating agents. Since that time, a wide 

variety of applications of these versatile materials have been developed as a result of their 

many outstanding properties and the distinct advantages of the glass ceramic method, in 

certain circumstances, over conventional ceramics processing routes [86]. Stookey is the 

first person to produce glass ceramics industrially in the 1950s. 
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More recently, glass ceramic processing has been greatly extended to include non-

silicates and even non-oxide compositions, and also the preparation of the precursor 

glasses by sol-gel techniques [86]. Ordinary glass is non-crystalline. Glass ceramics 

however, are polycrystalline materials that are manufactured by controlled crystallisation 

of suitable base glasses [87]. Glass ceramics represent an extreme case because the 

material, originally a glass, is deliberately heat treated to transform it into a new material 

whose polycrystalline structure gives rise to totally different set of properties. Because of 

these dependencies, glass properties are listed for glasses in the annealed state, and the 

properties of glass-ceramics are given on the basis of the manufacturer’s standard 

production process [88, 89].  

 

Glass ceramics are mechanically strong material and can sustain repeated and quick 

temperature change up to 800-1000oC. At the same time, they have very low heat 

conduction coefficient and can be nearly transparent for radiation in the infrared 

wavelengths. Chemical durability of glass ceramics is strongly dependent upon their 

composition. In addition, previous thermal history and mode of forming can have 

pronounced effects. For glass ceramics, the amount and composition of the crystalline 

and glass phases, as well as the microstructure, have effects that may well substantially 

alter the intrinsic durability expected on the basis of the overall bulk composition [88, 89].  

 

Glass ceramics are useful in thermally hazardous conditions. This glassy material 

contains crystalline lattices, which give the distinct properties of glass ceramics. Glass 

ceramics possess good resistance to erosion and pressure, as well as excellent hardness, 

and make them widely used in industrial purposes. Moreover, glass ceramics are very 

good electrical insulator [88, 90]. 

 

Machinable glass ceramic (MGC) is a problem solving material combining the 

performance of a technical ceramic with the versatility of a high performance glass. 

MGC’s outstanding property is that its main crystal phase forms micas or other plate-like 

crystals which are easily cleavable. When pieces of these glass ceramics are machined 

with conventional metal-working tools they do not break into pieces as normal glasses 
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typically do, but they can be machined easily to the desired shape. The MGC has this 

ability because the cracks which are created during the machining process do not run 

catastrophically through the whole piece but are deviated at the small plate like crystals 

and, at the same time, split into several others so that the energy which is introduced into 

working piece is absorbed by the formation of many small cracks [91-94]. MGC is 

influenced by the amounts of diopside-based glass quantity, which itself had the lowest 

sintering temperature. This came from the enhancement of crystalline phase in the 

sintered specimens when diopside-based glass was added to the other one gradually [95]. 

 

MGC can be applied in very different areas. One area is the photo-typing of components 

for new equipment or systems in those cases in which fabrication of the few pieces 

needed from the material of optimal choice are too expensive at that time. Other 

applications concern medical areas, for example, dental restoration or bone restoration. 

For these applications, the original idea to produce a MGC has been further extended to 

materials which are at the same time biocompatible or bioactive [92].  

 

Research works done on machining of machinable glass ceramics by chemical etching is 

limited due to their resistance to the chemical effects, and they have become the last 

material to be used in chemical etching. Dry etching of glass had been reported by using 

SF6 [96]. Watanabe obtained a linear relationship between etch rate and temperature 

while compared between wet etching and mechanomachining [97]. Williams et al. [6] 

found that not all materials were etched in all etchants due to time limitations. This was 

probably caused by the limited chemical reaction. Gaiseanu et al. [98] found good 

agreement in the relationship between etching time and etch rate on his analytical and 

experimental result. While, Minhao et al. [99] presented a result at constant etching 

period and reported that the obtained etch rate was surprisingly linear. They concluded 

that a minor change of etching time had slightly changed the linear shape of etch rate to 

curvature; and Olsen et al. [100] also indicated that increase in etching time would 

decrease the bond strength by increasing etch rate. 
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2.9.2 Boron Nitride (BN) 

Boron nitride is a binary compound of boron which consists of equal proportions of 

boron and nitrogen atoms. It is a synthetic material that has been discovered in the early 

19th century but was not developed as a commercial material until the latter half of the 

20th century. In 1842, BN was first obtained by Balmain by heating boron trioxide with 

cyanide of potassium. Founded in 1952, Warren Diamond powder is a manufacturer of 

micron-sized and fine-mesh diamond and cubic boron nitride (c-BN) for grinding and 

polishing applications. Boron and nitrogen are neighbours of carbon in the periodic table 

with same number of outer shell electrons. Atomic radii of boron and nitrogen are similar 

to that of carbon. Thus, BN and carbon exhibit similarity in their crystal structure. Similar 

to carbon, BN can be synthesised in hexagonal (h-BN) and cubic forms (c-BN).  

 

The synthesis of h-BN powder is achieved by ammonia of boric oxide at elevated 

temperature. h-BN is the equivalent in structure of graphite. As shown in figure 2-8, it is 

the most stable and softest among BN polymorphs, and its layered lattice structure give it 

good lubricating properties. In hot pressed state, h-BN is readily machinable using 

conventional metal cutting techniques; hence complex shaped components can be 

fashioned from hot pressed billet. Generally, h-BN has high dielectric breakdown 

strength, high volume resistivity and good chemical inertness. H-BN is resistant to 

sintering and is usually formed by hot pressing. It is frequently shaped into electrical 

insulators and melting crucibles. It can be applied with a liquid binder as temperature-

resistant coating for metallurgical, ceramics, or polymer processing machinery [101].  

 

 

Figure 2-8 h-BN powder 
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C-BN is formed by high pressure, high temperature treatment of h-BN. C-BN has the 

same structures as diamond and its properties mirror those of diamond. Indeed c-BN is 

the second only to diamond in hardness. C-BN is first synthesised in 1957, but it is only 

in the last 15 years that commercial production of c-BN has developed. Commonly, c-BN 

has high thermal conductivity, excellent wear resistance and good chemical inertness. It 

is like synthetic diamond, often bonded onto metallic or metallic-ceramic cutting tools for 

the machining of hard steels. Owing to high oxidation temperature, it has a much higher 

working temperature than diamond [101].  

 

Because of excellent thermal and chemical stability, BN ceramics are traditionally used 

as parts of high-temperature equipment. With high dielectric breakdown strength and 

volume resistivity, h-BN has been used as an electrical insulator. However, its tendency 

to oxidise at high temperatures often restricts its use to vacuum and inert atmosphere 

operation. Its chemical inertness leads to applications, such as thermocouple protection 

sheaths, crucibles and linings for reaction vessels though as above oxidation must be 

avoided. BN ceramics have great potential in nanotechnology. Nanotubes of BN can be 

produced that have a structure similar to carbon nanotubes, however, the properties are 

very different. BN ceramics also applied in moulds and evaporating boats, as machine 

cutting tools and abrasives, as substrates for electronic devices and wear resistant 

coatings. 

 

Research work of chemical machining on BN is relatively less compared to other 

materials and machining methods. Gaiseanu et. al. [98] concluded that etch rate 

decreased with increasing etching duration. He also concluded that the relationship 

between etching and etching duration depended on the material properties of boron 

nitride or the composition of boron. Lavrenko and Alexeev found that the difference in 

oxidation behaviour of powder compacts and pyrolytic BN was due to the pore structure 

of the former sample and to the BN vaporisation from the surface of the latter one [102]. 
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2.9.3 Silicon Carbide (SiC) 

In  year 1891, American inventor Edward G. Acheson created silicon carbide, later sold 

under the trade name Carborundum, by heating a mixture of clay and coke (almost pure 

carbon) [103]. He also developed the electric batch furnace by which silicon carbide (SiC) 

is still made today and formed The Corborundum Company to manufacture bulk SiC, 

initially for use as an abrasive [103]. Historically, the first use of SiC was as an abrasive, 

and then followed by electronic applications. In the beginning of 20th century, SiC was 

used as detector in the first radios, and in 1907 Henry Joseph Round produced the first 

light emitting diode by applying a voltage to a SiC crystal and observing yellow, green 

and orange emission at cathode [104].  

 

SiC is available in reaction bonded and sintered forms respectively. Both materials are 

ultra hard and have high thermal conductivity. This has led to increased hardness and 

conductivity improved seal and bearing performance. SiC materials exhibit good erosion 

and abrasive resistance, and these properties can be utilised various applications such as 

spray nozzles, shot blast nozzles and cyclone components [105]. SiC is derived from 

powder or grain, produced from carbon reduction of silica. It is produced as either fine 

powder or a large bonded mass, which is then crushed. It is washed with hydrofluoric 

acid to purify the powder or grain. Then, it will undergo fabrication [106]. SiC can be 

grouped into four types depending on the processing methods used in the production of 

solid forms, namely, reaction-bonded or reaction-sintered, hot-pressed, sintered, and 

chemical vapor deposition (CVD) [107]. 

 

Reaction bonded silicon carbide (RBSC) is being developed to meet the need of the 

industry, where high temperature strength and high stiffness to weight ratios are required. 

The demand of more energy efficient engines and the need to replace critical metals 

drove RBSC to faster path of development. The primary characteristic of RBSC is the 8-

12% free silicon found in the structure [20, 108]. Reaction bonding is a method for 

producing ceramic matrix composites  [109]. This is accomplished by using silicon 

powder as the starting material followed by porous carbon or graphite with molten silicon. 

In reaction-bonding process, a mixture of SiC powder, graphite and a plasticizer is 
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pressed in a mold to prepare a porous product, and silicon metal, as a liquid or vapour, is 

infiltrated into the pores. The reaction between silicon and carbon forms SiC. The 

finished product is almost fully dense; it contains a mixture of Si, C and reaction-formed 

SiC between original SiC particles. The densification process does not produce any 

shrinkage, so dimensional tolerances are easily achieved. The primary advantage of 

RBSC is the relatively low cost [107, 109, 110].  

 

For 50 years, Carborundum was the second hardest substance known. Mechanical 

properties of RBSC depend on the amount of free silicon and carbon. In the case of a 

fully dense SiC-Si composite, the material demonstrates good bend strength (400MPa) at 

room temperature. RBSC is resistant to wear (tolerates a wide range of acids and alkalis) 

and oxidation. Besides, it has good abrasion resistant; has good thermal shock resistant 

due to low thermal expansion coefficient and high thermal conductivity, and has good 

dimensional control of complex shapes [110].  

 

RBSC has a wide variety of industry applications. It is being produced as low mass kiln 

supports due to its high temperature strength, oxidation resistance and thermal shock 

resistance. This component also lowers the thermal mass of kiln cars. It is an ideal 

material for wear components, thrust bearing and precision components. RBSC is ideal to 

be used as seal face material. Under conditions of seal face contact, this free silicon will 

vaporise, leaving behind free carbon atoms at the interface. This reduces the frictional 

heat at the faces, and promotes good wear characteristic. The disadvantage to RBSC is 

also the free silicon, which reduces chemical resistance. Chemical like caustic or 

hydrofluoric acid will leach out the free silicon and severely limit good seal performance 

[108, 111, 112].  

 

Research of chemical machining on SiC is relatively limited compared to other 

machining methods. Many studies have been reported on surface roughness of SiC to 

minimise the replication of substrate defects into homoepitaxial SiC active device layers 

[113-115]. Kim and Lee studied the relationship between etch rate and roughness of 

etching of SiC. They found that roughness of material surface was correlated to etch rate. 
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It formed a quadratic relationship, where surface roughness achieved an optimum point 

before becoming rougher [112]. Wang et al. reported etching of SiC and stated that SiC is 

the most mature candidate to be used in semiconductors by etching process [116].  

 

 

2.10 ADVANCED CERAMICS APPLICATION 

It was forecast that demand of advanced ceramics in U.S. will increase by 7.0% per year 

to over $12 billion in 2010 [117]. The higher profit as a result will spur more growth for 

industries as advanced ceramics continue to penetrate several applications, such as 

capacitors, cutting tools, joint implants and membranes. The growth of advanced 

ceramics relies heavily on the technology and the brilliance of its application, especially 

in electronic component and electrical equipment industries. Tables 2-2 and 2-3 show the 

prediction of advanced ceramics demand in 2010 compared to 2000 and 2005.  

 

Table 2-2 U.S. advanced ceramics demand by market (million dollars). 

    % Annual Growth 
 2000 2005 2010 2000-2005 2005-2010 

Total demand 9050 8625 12100 -1.0 7.0 
Electronic components 3750 2820 4130 -5.5 7.9 
Electrical equipment 1670 1680 2370 0.1 7.1 
Industrial machinery 1124 1160 1500 0.6 5.3 
Transportation equipment 1060 1135 1600 1.4 7.1 
Other markets 1446 1830 2500 4.8 6.4 

 

Table 2-3 U.S. advanced ceramics demand in the industrial (million dollars). 

    % Annual Growth 
 2000 2005 2010 2000-2005 2005-2010 

Total demand 9050 8625 12100 -1.0 7.0 
Monolithic ceramics 7980 7530 10600 -1.2 7.1 
Ceramics coatings 740 770 1050 0.8 6.4 
Ceramic matrix composites 330 325 450 -0.3 6.7 

 

Cordierite, titanite and glass ceramics have recorded the most rapid rates of growth due to 

their use in environmental, medical product and electronic component markets. However, 
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other advanced ceramics, such as alumina, beryllia, silicon carbide and silicon nitride 

materials showed low average gains due to environmental concerns, competition from 

other ceramics and a reliance on slower-growing markets.   

 

Advanced ceramics have demonstrated their reliable applications in various industries 

with their great service life, cost effectiveness and excellent properties, such as the 

capability to operate under high temperature, high resistance to abrasion, high corrosion 

resistance, longer tool life and dimensional stability. 

 

The production of high technology I.T. devices will continue to spark the demand for 

semiconductors, capacitors and other ceramics-containing electronic components. In 

2005, 38% of total demand was contributed by the insulators and permanent magnets 

usage. Other advanced ceramic electrical equipment includes igniters, heating elements, 

heat shielding components, connectors and seals [118]. 

 

Advanced ceramics, which possess great strength and high resistance to heat, are mainly 

applied in the industrial machinery. The market projected an increment of 5.3% per year 

through 2010 from a weak 2000 base. As users of machine tools begin benefiting from 

the generally stronger macroeconomic environment, the need to expand supply brings 

idled capacity back online and performing of upgrades to existing equipment will provide 

market opportunities for producers of ceramic wear parts. Advanced ceramics are also 

used as cutting tool, which is more of a consumable item. The economic recovery will 

mean greater demand for the tools necessary to cut and form metal.  

 

With good features of resistance to corrosion and wearing, advanced ceramics are also 

used throughout the steel production processes [119]. Oxide-based ceramics of aluminum, 

zirconium, chromium, and magnesium are primarily used in a part of the process where 

contact is made with molten steel and low contamination is desired. Non-oxide ceramics 

of silicon, titanium, tungsten, and aluminum are utilised for hot handling because of their 

inherent thermal shock resistance to acidic species or wear.  
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Advanced ceramics have found greater use in the chemical and plastic market, with the 

most growth arising from the production of membranes. In this application, growth has 

the potential to accrue due to ceramic’s performance advantages such as toleration of 

high temperatures and its ability to overcome more difficult processing conditions. The 

demand is also being driven by greater penetration into specialty applications such as 

natural gas purification and filtration of molecules in liquids. The effort to reduce the 

dependence on oil for energy production will provide opportunities for advanced 

ceramics in the environmental market. Emerging applications include the use of ceramic 

bearings in wind turbines.  

 

In the transportation equipment market, advanced ceramics are used in catalytic converter 

substrates, engine bearings, ceramic armor for military vehicles, diesel engine particulate 

filters and ceramic matrix composite brakes. Advanced ceramics, such as alumina, silicon 

nitride, and aluminum nitride are currently being used to manufacture critical aerospace 

components because of their unique physical properties. These inorganic, non-metallic 

materials retain dimensional stability through a range of high temperatures and exhibit 

very high mechanical strength. They also demonstrate excellent chemical resistance and 

stiffness-to-weight ratio, thereby providing manufacturers with the ability to design 

components that offer optimum performance in their application. 

 

2.11 STATISTICAL METHOD (DESIGN OF EXPERIMENTS) 

Design of Experiment (DoE) is a combination of mathematical and statistical techniques. 

Mathematical models can be used to predict and better analyse result behaviour in 

different condition with a limited number of experimental tests [120]. DoE techniques 

can be used to analyse different kinds of experiments such as two-level factorial design, 

fractional design, response surface methodology and others. Basically, their concepts are 

similar to each other. The differences are in their statistical model and characteristics 

(Figure 2-9). 

 

DoE is used in various industrial applications to optimise processes. In the industry, DoE 

is used to enhance the productivity and product quality. As automation systems become 
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more complex, they can only be analysed using DoE method. DoE also reduces process 

cost and time of trial-an-error. According to Baldassari et al. [121], DoE approach was 

able to reduce the effect of mixing time and enhance the quality of their specimens. 

Pierlot et al. [122] concluded that DoE was able to express the influence of the process 

parameters on the response and statistical method to determine the significance of the 

coefficients of the regression equation. In certain circumstances, DoE is used in 

simulation to enhance data accuracy, and filter out the errors and unnecessary factors. 

Montevechi et al. [123] found that DoE was able to improve the simulation process by 

avoiding the trial-and-error techniques to seek etchants. In their process, they also found 

the significance effects of the interactions were confirmed, aiding the managerial decision 

making process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9 shows the flowchart guide to DoE [124] 
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No All factors quantitative 

Multiple 
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DoE techniques can be divided into three major categories: comparative objective, 

screening objective, and response surface objective [117]. Comparative objective is used 

when experiment goal is primarily to make a conclusion about one a-priori factor, and the 

question of interest is whether the factors is “significant”. Screening objective is chosen 

when primary purpose of the experiment is to select a few important main effects from 

the many less important ones. While, response surface objective is used to optimise the 

process and to make the process more robust against external and non-controllable 

influences. Table 2-4 shows the design selection guideline. 

 

Table 2- 4 Design selection guidelines [117]. 

Number of 
factors 

Comparative 
Objective 

Screening  
Objective 

Response Surface 
Objective 

1 
One factor completely 

randomized design 
- - 

2-4 
Randomized block 

design 
Full/ Fractional factorial 

design 
Central composite/ Box-

Behnken 

5 or more 
Randomized block 

design 
Fractional factorial/ 

Plackett-Burman 
Screen first to reduce 

number of factors 

 

2.11.1 Full Factorial Design 

In statistics, factorial experiment is an experiment whose design consists of two or more 

factors, each with discrete possible values, and whose experimental units take on all 

possible combinations of these levels across all such factors. Factorial design is a tool 

that allows experimenters to experiment on many factors simultaneously. In this design, a 

few assumptions are made to study the process: the factors are fixed, the designs are 

completely randomized, and the usual normality assumptions are satisfied. 

 

The simplest factorial design is two-level factorial which involves a few factors at two 

levels or values (lower and upper bounds). In some cases, they involve different types of 

levels, such as quantitative (temperature, pressure & time); or quantitative (two machines, 

or two operators). A complete replicate of such a design requires 2k observations and is 

called two-level (2k) factorial design, where k is the number of factors in design. 
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Similarly, if the midpoints are included, the design is called 3k factorial design as 

schematically shown in Figure 2-10.  

 

 

Figure 2-10 33 Factorial Design Schematic. 

 

Factorial design can be used in fitting second-order model to improve the optimization 

process. A general second-order model is defined as [120, 125]: 
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where xi and xj are the design variables and apq is the etching parameters. 

 

The construction of a quadratic response surface model in N variables requires the study 

at two levels so that the etching parameters can be estimated. Generally, for a large 

number of variables, the number of experiments grows exponentially and becomes 

impractical. A full factorial design typically is used for five or fewer variables [120, 124, 

125]. 

 

Compared to one-factor-at-a time (OFAT), 2k design provides wider inductive basis, 

which covers a broader area or volume to draw interferences about the process, and it 
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reveals interactions of factors [125]. One of the major disadvantages is 2k factorial design 

is that it limits all factors at two levels, thus assuming that the response is approximately 

linear over the range of the factor level chosen. 

 

2.11.2 Response Surface Methodology (RSM) 

Response Surface Methodology (RSM) is useful for modeling and analysis of problems 

in which a response interest is influenced by several factors [124]. This is a methodology 

of constructing approximations of the system behavior using results of the response 

analyses calculated at a series of points in the variable space. The objective is to optimise 

a series of responses which are influenced by varied independent variables.  

 

The concept of RSM involves the response variable, y, and several independent variables 

x1, x2, x3, …, xk, which can be expressed as [120, 124, 125]: 

 

 );;;( 4321 xxxxfy                                   (eq. 2-2) 

 

where y is etching performance, x1 is the etching temperature, x2 is the etching duration, 

x3 is the etchant concentration, x4 is the type of etchant, and ϵ is the noise or error in 

response.In this methodology, all independent variables are assumed to be continuous 

and controllable by the experimenter with negligible error, dependent variable is assumed 

to be a random variable. 

 

Usually a low order polynomial (first-order and second-order) in some regions of the 

independent variables is employed. The first-order model is expressed as [120, 124, 125]: 
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and the second-order model [120, 124, 125], 
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are generally utilized in RSM problems. The βpq parameters of the polynomials are 

estimated [120, 124, 125]. 

 

RSM is an economical and user-friendly tool to be used and has been employed by many 

researchers. Bezerra et al. [119] summarized that the application of RSM  in optimisation 

was largely diffused and consolidated principally because of its advantages over 

experimentation approach that is based on classical one-variable-a-time optimisation. 

Hung et al. [126] applied RSM to investigate effect of various controlled factors on 

performance of silicon trench etches on Cl2/HBr/O2 predicting surface roughness of 

machinable glass ceramic.  The result of analysis was that all independent variables were 

found to influence the etch rate positively. 

 

Mead and Pike [127], and Hill and Hunter [128] reviewed the earlier work on RSM. They 

used RSM for tool life modeling, surface roughness modeling, and in other machining 

processes. Dabnun et al. [17] concluded that TSM was useful techniques for surface 

roughness tests. Relatively, a small number of designed experiments are required to 

generate much useful information that is used to develop the predicting equations for 

surface roughness.  

 

Desai et al. [129] summarised the application of RSM in fermentation production and 

found that RSM is useful in getting insight information of a system directly, and 

interactions between different components. Benardos et al. [130] stated that the 

experimenter was able to optimise the process after running RSM and knowing whether 

or not transformations on the responses or any of the process variables were required.  

 

Though RSM is a highly recommended method, it still shows data inaccuracy; less 

generalization capability and its performance is not consistent compared to other methods. 
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RSM techniques are being classified into: central composite design (CCD), box-behnken 

and 33 design. 

 

2.11.2.1. Central Composite Design (CCD) 

CCD is the most common experimental design tool, which is used to construct second-

order model. CCD techniques are divided into central composite circumscribed (CCC), 

central composite inscribed (CCI) and central composite face centered (CCF). CCC 

design is the original form of CCD, with axial points at certain distance, α (distance from 

the centre of the design space) from the center based on the properties desired for the 

design and the number of factors in the design [120, 124]. CCI design uses the factor 

settings as the axial points and creates a factorial or fractional design within those limits. 

It is a scaled down CCC design with each factor level of the CCC design divided by α to 

generate the CCI design. In CCF design, start points are the center of each face of the 

factorial space. This variety requires three levels of each factor. Figure 2-11 denotes a 

CCD model.  

 

 

Figure 2-11 Central Composite Model with three input parameters 

 

In Figure 2-11, the design involves 2N factorial points, 2N axial points and 1 central point. 

CCD presents an alternative to 2N design in the construction of second-order model 
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because it reduces the number of experiments as compared to full-factorial design. 

Overall, CCD is the most popular of the many classes of RSM designs due to its ability to 

be partitioned naturally into two subsets of points; the first subset estimates linear and 

two-factor interaction effects while the second subset estimates curvature effects. CCDs 

are efficient, in providing much information in a minimum number of required runs. 

They are also flexible due to their variety of choices that enable them to be used under 

different conditions  

 

 

2.12 NEURAL NETWORK 

2.12.1 Introduction to Neural Network 

Artificial neural network (ANN), usually called neural network (NN) has a history of six 

decades but has found solid application only in the past few years. In 1943, McCulloch 

and Pitts tried to develop the first ANN model based on their understanding of neurology. 

They developed this neuron model based on the fact that the output of the neuron is unity 

if the weighted sum of its inputs is greater than a threshold values, otherwise the output is 

zero [131]. In 1954 Farley and Clark, and in 1956 Rochester and Haibit attempted to 

develop ANN model using computer simulations. They proposed some modification to 

the McCulloch-Pitts neuron model. Instead of a binary output, they created a model with 

real-valued output representing the average firing rate of the cell. Since then, study of 

neural network has rapidly developed. Especially the study in mid of 80’s, it has become 

the key of development in the field of machine learning.  Thus, it is distinctly different 

from the fields of control systems or optimisation, where the terminology, basic 

mathematics, and design procedures have been established and applied for many years 

[132-134].  

 

In engineering, ANN serves two important functions: as pattern classifier and as 

nonlinear adaptive system. Pattern classifier is the act of taking in raw data and taking an 

action based on the category of the pattern. It aims to classify data (or patterns) based on 

statistical information extracted from the patterns. The patterns to be classified are 
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usually groups of observations, defining points in an appropriate multidimensional space 

[135].  

 

As a nonlinear adaptive system, ANN learns to perform functions (an input or output map) 

from data. Adaptive means the system parameters are changed during operation, 

normally called the training phase [136]. After training phase, ANN parameters are fixed 

and system is deployed to solve the problem at hand (testing phase). 

 

This is a system based on the structure and functioning of the biological nervous 

recognition, complex networking and high degree of parallel computing capability [133-

135, 137]. Purpose of the model is to capture the relationship between a historical set of 

model inputs and corresponding outputs [133-135, 138]. ANN assumes that the following 

information processing occurs in a number of simple elements called neurons, signals are 

transmitted between neurons over connection links, each connection link has an 

associated weight that multiplied the signal transmitted; and, each neuron applies an 

activation function to the incoming signal to determine its output signal [139]. 

 

The basic unit of brain is the neuron [133, 134, 136, 137]. Each neuron receives signals 

through synapses (connection) that control the effects of the signal on the neuron. These 

synaptic connections are believed to play a key role in the behavior of the output. The 

input/output training data are fundamental in ANN because they convey the necessary 

information to discover the optimal operating point.  

 

An input is presented to the ANN and corresponding desired target set at the output. An 

error is composed to the difference between the desired target and the system output. 

System parameters are then adjusted when the error information is fed back. This process 

is repeated until the performance is acceptable. Training of ANN includes supervised 

learning, unsupervised learning and reinforcement learning. 

 

The fundamental building block in an ANN is the mathematical model of a neuron as 

shown in Figure 2-12. The three basic components of the artificial neuron are [135, 140]: 
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Figure 2-12 Three basic components of Artificial neuron 

 

1. The synapses or the connecting links that provide weights, wj to the input values, xi 

for j = 1, … m; 

2. An adder that sums the weighted input values to compute the input to the activation 

function 



m

j
iio x

1

 , where o is called the bias (not to be confused with 

statistical bias in prediction or estimation) and is a numerical value associated with 

neuron. It is convenient to think of the bias as the weight for an input o whose value 

is always equal to one, so that 



m

j
iio x
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 ; 

3. An activation function g that maps   to )(g the output value of the neuron. This 

function is a monotone function. 

 

ANN is a learning process and does not require reprogramming, it can be implemented in 

any application without any problem [136]. When an element of ANN fails, its operation 

can continue without error due to its parallel structure nature. ANN also has the ability to 

manage noisy or incomplete data with ease; the process of information is distributed over 

the neurons which operate in parallel, therefore resulting in increase computational power 

in contrast to the sequential operation of today computers. 

 

Unlike most available statistical method, ANN does not need predefined mathematical 

equations of the relationship between model inputs and corresponding outputs, and rather 
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use the data alone to determine the structure of the model and unknown model parameters 

[112, 138]. This enables ANN to overcome the limitation of existing modeling methods. 

Disadvantages of ANN are that the network needs training to operate and it requires high 

processing time for large networks. 

 

2.12.2 Layers 

Neurons, which are the processing unit in ANN, are organized into layers as shown in 

figure 2-13. The common type of ANN consists of a layer of “input” units that is 

connected to a layer of “output” units by layers of “hidden” units. The activity of input 

units represents the raw data that is fed into the network, activity of each hidden units is 

determined by the activities of the input units and the weights on the connections between 

the input and hidden units, and output units is dependant on the activity of hidden units 

and weights between hidden and output units. Each weight between input and hidden 

units determine when each hidden unit is active, and so by modifying these weights, a 

hidden unit can choose what it represents and proceeds to next layers. 

 

 

Figure 2-13 Architecture of neural network 

 

2.12.3 Neuron 

Neurons can exhibit complex global behavior, determined by the connections between 

the processing elements and element parameters. The original inspiration for the 

technique came from examination of the central nervous system and the neurons which 

constitute one of its most significant information processing elements. In ANN model, 
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simple nodes (neurons) are connected together to form a network of nodes [133, 135]. 

The general mathematic definition is as shown in equation (5): 

 

  



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


 


i

n

Di
ii bxgxy                          (eq. 2-5) 

 

where xI is neuron with n is input dendrites (xo ... xn), one output axon y(x), wi is the 

weights, b is biases and g is the transfer function that weight how powerful the output 

should be from the neuron, based on the sum of the input.  

 

The output neuron of each proceeding neuron is modulated by a corresponding weight 

and bias before moving to next hidden layer. This activity is then modified by the transfer 

function. This signal is then propagated to the next layer of the neuron and the same 

procedure is repeated until the end of the hidden layer as shown in figure 2-14. 

 

 

Figure 2-14 Activity of single layer neuron 

 

2.12.4 Connection 

Connections are the paths where all information flows within a ANN model [133, 135]. 

Learning, repetition of a task can cause the connection strengths to change, some neuron 

connections becoming reinforced and new ones being created, others weakening or in 

some cases disappearing altogether. Besides that, essential element of neural connectivity 

is the excitation or inhibition distinction. It is like human brains, each neuron is either 

excitatory or inhibitory, which is to say that its activation will either increase the firing 

rates of connected neurons, or decrease the rate, respectively. Nevertheless, transfer 
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function plays an important role in determining neuron’s response. Transfer function 

describes how a neuron’s firing rate varies with the input it receives. Each of these 

behaviors can be represented mathematically. 

 

2.12.5 Weights and Bias 

As mentioned previously, connections are where information is being stored. Each 

connection is equipped with weight and bias, which are used to modify the signal flow on 

respective connection. Weight is determined the suitable input weight for next layer and 

bias is worked out as an adjustment by which the product of weight and output from 

preceding layer is added. These are important in determining the trend of the model [133-

135]. 

 

2.12.6 Transfer Function 

ANN behavior is dependant on both weights and transfer function that are specified for 

the units [131, 133-135]. This function typically falls into one of three categories: linear 

(or ramp), threshold and sigmoid as depicted in figure 2-15. 

 

      

     Threshold   Linear     Sigmoid 

Figure 2-15 Typical transfer function. 

 

For linear transfer function, the output activity is proportional to the total weight output. 

Threshold units is where the output is set at one of the two levels, depending on whether 

the total input is greater than or less than some threshold value. In a sigmoid unit, the 

output varies continuously but not linearly as the input changes. The most common 

sigmoid units used are log-sigmoid and tan-sigmoid. 
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2.12.7 Learning 

Learning process in ANN can be viewed as the problem of updating network architecture 

and connection weights with bias so that a network can efficiently program a specific task. 

The network usually learns the connection weights and bias from available training 

patterns. Performance is improved over time by iteratively updating the weights in the 

network. Design of learning process for ANN includes following components: 

understanding learning paradigm in which ANN operates, and how the network weights 

are updated from layer to layer [131, 133].  

 

Learning paradigm contains supervised learning, unsupervised learning and hybrid 

learning. Supervised learning, that is, network is provided with correct output for every 

input pattern and weights are determined to provide accurate output. This is of network 

does not require a correct answer associated with each input pattern in the training data 

set. This learning explores underlying structures of data and organises patterns into 

categories from these correlations. For hybrid learning, it is the combination of 

supervised and unsupervised learning in term of weights [131].  

 

2.12.8 Training 

Training is the process of fitting the network to the experimental data. It consists of 

optimising the value of the weight associated with each connection between neurons. The 

strength of the signal of the synapse multiplied by weight of the synapse defines the 

contribution of that synapse to the activation of the neuron for which it is an input. 

Usually, experimental data is divided into three sets: training set, test set and cross 

validation set [141]. During training, it is important to avoid over training in an effort to 

obtain the best fit. This is a potential problem with the use of powerful non-linear 

regression methods in NN modeling. An over-trained model tends to remember the 

relationship between input and output variables and therefore lacks generalisation 

capability [137].  
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2.12.9 Neural Network Type-Feed-Forward Neural Network 

ANN can be classified by their learning paradigm. Each of these classifications is 

dependant upon input’s behavior, input’s pattern, transfer functions and network topology 

required. Feed-forward neural network is one of the most common and simplest types of 

ANN devised. It is a network where connections between the units do not form a directed 

cycle. In this network, the information moves in only one direction, forward, from the 

input unit, through the hidden unit and to the output unit. There are no cycles or loops in 

the network. Feed-forward neural network can be categorized into single layer perceptron 

and multi-layer perceptron.  

 

Single layer perceptron consists of a single layer of output units; the inputs are fed 

directly to the output via a series of weights. The sum of the products of the weights and 

inputs is calculated in each node, and if the values are above some threshold (typically 0) 

the neuron fires and takes the activated value (typically 1); otherwise it takes the 

deactivated value (typically -1). Neurons with this kind of activation function are called 

McCulloch-Pitts neurons or threshold neurons [131, 133].  

 

Multilayer perceptron (MLP) is used a variety of learning techniques, the most popular 

being backpropagation. MLP have become popular technique for modeling 

manufacturing processes, among many other applications. It has been theoretically 

proven that any continuous mapping from an m-dimensional real space to an n-

dimensional real space can be approximated within any given permissible distortion by 

the three-layered feedforward neural network with enough intermediate units [142-145].  

 

MLP is a supervised learning network, that is, output values are compared with the 

correct answer to compute the value of some predefined error-function. This error is then 

fed back through the network and reduced the error function by adjusting the weight of 

each connection. This process is repeated for a sufficiently number of training cycles, the 

network is then converged to some state where the error is minimized [131, 133, 143]. 
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One of the advantages of MLP is its efficiency in modeling process mean and process 

variation simultaneously using one integrated MLP model.  

 

 

2.13 NEURAL LEARNING USING BACKPROPAGATION 

Backprogation (BP) was first described by Arthur and Yu in 1969 and Rumelhart et al. 

described this method through their works in 1986 [146]. The original procedure used the 

gradient descent algorithm to adjust the weights toward convergence using the gradient. 

Because of this, the term “backpropagation” is used to denote an ANN training algorithm 

using gradient descent as the core algorithm.  

 

BP is used to adjust the weights and biases to solve a particular problem. BP network is 

made up of a large number of interconnected neurons. The neurons are arranged in one 

input layer, one output layer, and one or more hidden layer(s). Each neuron in the input 

layer is connected to a neuron in the output layer. There is no connection between 

neurons in the same layers. The connection between two neurons is called synapse, and 

each synapse has a strength or weight attached to it which influences the output of the 

neuron. Neurons in the input layer receive the input variables. The neurons in the hidden 

layer receive the output of the input neurons and a non-linearity in the relationship 

between input and output parameters is introduced at the hidden neuron. The output of 

the hidden neuron is sent to the output neuron. The more the number of hidden neurons, 

the more complex the model becomes. The predicted output is compared with the desired 

output and the error is sent back to the hidden layer for improving the prediction. The 

cycle is repeated until the overall error value drops below predetermined threshold [131, 

137, 144, 147]. 

BP can also be considered as a generalisation of the delta rules for non-linear activation 

function and MLPs. In order for hidden layer to serve any useful function, MLP must 

have non-linear activation function for the multilayers. Equations (6) [131, 133, 144]: 

                    (eq. 2-6) 
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where each output unit, δo and each hidden unit, ho. Equation 6 gives a recursive 

procedure for computing the δ’s for all units in the network, which are then used to 

compute the weight changes according to equation. The procedure constitutes the 

generalized delta rule for a feed-forward network of non-linear units.  

 

Advantages of BP are: 

 It allows quick convergence on satisfactory minimum error in the kind of networks to 

which it is suited 

 It is the generalized delta rule, which allows for adjustment of weights leading to the 

hidden layer neurons in addition to the usual adjustments to the weights leading to the 

output layer neurons. 

 

 Techniques of BP can be shown in figure 2-16. 

 

Figure 2-16 Back propagation schematic design 

 

 

2.14 LEVENBERG-MARQUARDT ALGORITHM (TRAINLM) 

Levenberg-Marquardt algorithm (LMA) provides a numerical solution to the problem of 

minimising a function, generally nonlinear, over a space of parameters of the function. 

LMA is a very popular curve-fitting algorithm and it is more robust compared to the 

others because it is able to find a solution even if it starts far off the final minimum. 
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Limitations of LMA are its sensitivity to initial network weights; outliers are not included 

in the data, which may lead to overfitting noise; and, it requires the storage of some 

matrices that can be quite large for certain problems [148-150].  

 

LMA is designed to approach second-order training speed without having to compute the 

Hessian matrix. As stated earlier, it can be approximated as: 

 

H = JtJ                           (eq. 2-7) 

 

and gradient can be computed as  

 

g = Jte                           (eq. 2-8) 

 

Principally, LMA involves in solving the following equation: 

 

(JtJ + λI)δ = Jte                         (eq. 2-9) 

 

where J is the Jacobian matrix for the system, λ is the Leverberg’s damping factor, δ is 

the weight update vector and e is the error vector containing output errors for each input 

vector used in training the network. The δ provides information on the changes of 

network weights to achieve better solution/output. λ is adjusted at each iteration, and 

guides the optimisation process. If reduction of e is rapid, a smaller value can be used, 

bringing the algorithm closer to the Gauss-Newton algorithm, whereas if iteration gives 

insufficient reduction in residual, λ can be increased, giving a step closer to the gradient 

descent direction [148-150]. 

 

LMA main contribution to the method was the introduction of the damping factor, λ. This 

value is summed to every member of the approximate Hessian diagonal before the system 

is solved for the gradient. Then, LMA equation is solved, weights are updated using δ 

and the network errors for each entry in the training set are recalculated. If the new sum 

of square error (SSE) has decreased, λ is decreased with the iteration ends. If it has not, 
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then the new weights are discarded and the method is repeated with higher value for λ. λ 

is adjusted by using an adjustment factor, v [148-150].   

 

As stated earlier, LMA consists basically in solving different λ values until in SSE 

decreases. So, each learning iteration (epoch) will consist of the following steps:  

1. Compute Jacobian matrix 

2. Compute error gradient, g 

3. Approximate the Hessian using cross product of Jacobian, H 

4. Solve (H + λI)δ = g to find δ. 

5. Update the network weights by δ. 

6. Recalculate SSE with updated weights. 

7. If SSE increased, discard new updated weights and increased λ. Else decrease λ and 

stop. 

 

 

2.15 APPLICATION OF NEURAL NETWORK 

An ANN is an adaptive system that learns relationship through repeated presentation of 

data and is capable of generalising to new, previously unseen data. Neural networks have 

been trained to perform complex functions in various fields, including pattern recognition, 

identification, classification, and speech, vision, and control systems [132]. In the past, 

researchers have reported the excellent performance of ANN in analyzing and predicting 

data of process [142, 151, 152].  

 

Kim et al. applied ANN to characterised oxide film etched in gas chemistry and 

examined etch mechanisms as a function of process factors [112]. Shie and Yang focused 

on the optimisation of photoresist coating process by ANN to identify the process 

parameters in wafer fabrication. Results showed relationship between coating duration 

and coating chemistry was important factor with least MSE. Liao had proved the 

efficiency of ANN in modeling by study of the process mean and process variation 

simultaneously using one integrated MLP model [143]. 
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Mehmet et al. reported that ANN had the ability to predict the output of unseen test data 

accurately. They found that MLP architecture with BP learning algorithm could be used 

as a tool to predict mechanical properties [153]. Shahin et al. too, have good agreement 

with the capability of ANN in accurately predicting the unseen test data. Their results 

indicated accuracy of ANN predicting data in ultimate bending capacity of fabricated and 

cold-formed steel circular tubes [138]. Balestrassi et al. tested the effectiveness of ANN 

and RSM. They pointed out the lack of use of RSM in simulation due to the system not 

being able to read RSM data. It was a real-world experimental tool than a simulation tool 

[154]. 

 

Paliwal et al. had carried out literature review of comparative studies on ANN and 

traditional statistical techniques in various filed of applications. ANN application in 

various fields was listed by them, which showed the success of ANN. The review clearly 

pointed out the potential of ANN being used as a tool for classification and in prediction 

problems. One of the advantageous was that ANN could automatically approximate any 

nonlinear mathematical function. However, the determination of various parameters, such 

as number of hidden layer, nodes in the hidden layer etc. associated with ANN was not 

straightforward and finding the optimal configuration of ANN was very time consuming 

process [155].  

 

 

2.16 Concluding Remarks 

Upon review of the literature, it is concluded that: 

 The previous studies performed on the machining of advanced ceramics generally 

required high technology tool, such as electrode beam, laser beam and so on. Each 

tool has certain life span and maintenance is required throughout the service. In term 

of cost effectiveness, these methods are generally quite high. 

 7% increment of advanced ceramics demand by 2010 [118] is an attractive figure. 

The gain of advanced ceramics demand certainly will benefit as advanced ceramics 

continue to penetrate several applications, such as micro-electromechanical, 

semiconductor, cutting tools, joint implants and membranes. It also motivates the 
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study of machining of advanced ceramics aiming to obtain high output with better 

quality and decrease the overall cost. 

 Chemical machining as the oldest advanced machining method is commonly used in 

patterning industry. This method has been applied since 2500 B.C. till the current day. 

The reason is that chemical machining does not required complicated set up and the 

procedure of chemical machining is simple. However, it has to be carefully handled. 

Problem raised in chemical machining is mostly related to the chemical etchant 

involved. Etchants used are both acid-based and alkali-based, which are hazardous 

and thus requires the process to be carried out in the fume hood. The disposal of 

etchant also has to be carefully handled to avoid unnecessary damage. 

 Precise dimensional accuracy is important in the patterning industry. Currently in 

industry, mask patterning is the most common patterning method. The problem of this 

masking patterning is related to the masking properties and adhesive properties. In 

order to produce a precise and smooth patterning, the masking has to be resistant to 

the chemical reagent. Thus, the usage or choice of chemical reagent is limited due to 

the masking. New method – nano-scratch technique has been introduced and a few 

studies have shown its versatility [11, 75]. By applying this method, the masking cost 

can be reduced and the problem raised by masking can be eliminated as well as to 

reduction in the hazardous resulting from mask application because the process of 

mask application involves toxic materials. 

 Quality of chemical machining is measured by the etch rate and surface roughness. In 

some cases, the dimensional accuracy is also the key of success, especially in 

patterning industry. A small change in the parameters will cause a huge difference in 

the end product. Etch rate, which is related to the speed and time required for the 

whole process is the most important measurement. Without etch rate, it means that 

the process is not working. Of course, the higher the etch rate is, the better is the 

process. Unfortunately, in most of the studies, high etch rate would decrease surface 

roughness quality [20]. 

 In micro- and nano-patterning industry, surface roughness is the key of success. With 

poor surface roughness, the end product will be rejected and cause the increase of 

production cost.  
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 Dimensional accuracy is directly influenced by the quality of surface roughness and it 

is associated with etch rate. The higher the etch rate, the higher the etch ratio. This is 

a preferable phenomena but this might lead to poor surface roughness (as discussed 

above). Though undercut can be eliminated by applying nano-scratch patterning, a 

few questions are being raised, such as how much load should be applied on indented 

area, what is the best etch ratio for the process and is it able to perform any types of 

patterning design.  

 The use of statistical tool to study the performance of the processes is quite common 

in both the industry and research fields. This is because it can reduce the time 

consumed in trial-and-error tests and also increase the effective analysis of the results. 

RSM is commonly used in most of the research field due to its feasibility to fit into all 

type of experiments and it is user friendly [126, 156, 157]. ANN, which is also an 

analytical tool, is less frequently used compared to RSM in machining field. The 

benefit is that it is able to produce significant analysis result, although it requires 

large number of inputs.  
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Chapter 3 Research Methodology and Techniques 

 

  

 

 

3.1 INTRODUCTION 

The literature review discussed in Chapter 2 provides an overview of the present 

understanding of CHM and advanced ceramics as well as its applications and existing 

machining methods. The review indicated that there is a need to perform further research 

to better understand the CHM of advanced ceramics as well as the analytical tools and 

predictive model. The finding will help in mitigating the chemical machining problems 

and provide better understanding in achieving optimisation of the chemical machining in 

industries. Thus, it is necessary to study the CHM and also produce the predictive model 

for each substrate. This chapter outlines the research methodology, experimental 

approach and analytical techniques that were used to achieve these purposes. 

 

To study the characteristic of advanced ceramics in CHM, sample preparation is required 

prior to experimentation and analysis. Atomic force microscopy (AFM) was employed 

for the surface roughness measurement. Measurement of etching rate was based on the 

weight loss of substrate following CHM and that of etching ratio was carried out using 

the digital micrometer. Analysis of experiments data and predictive model were 

performed by RSM and ANN. Accuracy of output was adjusted to 95% confidence level.  
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3.2 WORKPIECE AND MATERIALS 

This study will focus on three types of advanced ceramics namely machinable glass 

ceramics, silicon carbide and boron nitride. These substrates are selected as they have not 

been well-researched and also due to their availability in the industry. Additionally, none 

of these substrates have been analysed by ANN nor has predictive model been developed 

for the CHM process. 

 

3.2.1 Machinable Glass Ceramics (MGC) 

MGC used is manufactured by Goodfellow.Inc. with 46% of SiO2, 16% of Al2O3, 17% of 

MgO, 10% of K2O and 7% of B2O3. The properties of MGC produced by Goodfellow.Inc 

are almost similar to the rest, which is able to remain rigid at high operating temperatures 

with low thermal conductivity and useful as high temperature insulators. It has excellent 

electrical insulation and is widely used in the semiconductor and MEMs industries. 

Besides,  it is white in colour and can be highly polished without damage to its properties 

and this enhances MGC values as manufacturing materials in the medical and optical 

devices [158, 159]. Additionally, outgassing in ultra-high vacuum environments can be 

eliminated, if MGC is degassed before use and since it is non-wetting, it can be bonded to 

itself as well as to various metals, if the surfaces are first metalised. Compared to other 

advanced ceramics, MGC has greater resistance to surface damage and brittle fracture. 

 

MGC’s chemical resistance towards acid is poor, especially concentrated acid. However, 

dielectric properties of MGC are excellent with 5.9 dielectric constant, 40kVmm-1 

strength of dielectric, and more than 1014 volume resistivity. Its compressive strength is 

345MPa, hardness-vickers is 400kgf mm-2 and tensile modulus is 67GPa. MGC possesses 

13x10-6 K-1 thermal expansion coefficient, 790 J K-1 kg-1 of specific heat, and 1.5Wm-1K1 

thermal conductivity and density of 2.52gcm-3 without apparent porosity.  

 

3.2.2 Boron Nitride (BN) 

BN used in this research is manufactured by Goodfellow.Inc. It has a hexagonal structure 

and is sometimes known as white graphite, due to its lubricity, anisotropic properties, 

heat resistance, and high thermal conductivity. This latter property, combined with a low 
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thermal expansion, leads to excellent resistance to thermal shock. For this reason, BN is 

used as crucibles for molten metal. BN used here is produced by densification of powder. 

BN differs from graphite in having a high dielectric strength (40-200kVmm-1) and low 

dielectric constant (4.3) and is often used as an electrical insulator at very high 

temperatures. Chemically it is moderately resistant to dilute and concentrated acid. It is 

also non-toxic and transparent to microwaves. Mechanically, BN has good compressive 

strength (30-120MPa), shear strength (12-25MPa) and average tensile modulus (20-

35MPa). Compare to MGC, BN has 2-15% of apparent porosity and with density of 

1.9gcm-3. 

 

3.2.3 Silicon Carbide (SiC) 

Reinforced Bonded Silicon Carbide (RBSC) used is manufactured by Goodfellow.Inc. 

Silicon is infiltrated into a pre-formed silicon carbide/carbon powder green body which is 

then fired. This gives rise to around 10% free silicon, which fills the pores. The resulting 

microstructure has low porosity and very fine grain. After firing, RBSC is difficult to 

machine. It has high strength up to 1350oC which results in its use as high temperature 

gas turbine components. The high hardness (harder than tungsten carbide) means that it is 

used extensively for bearings and seals. The high thermal conductivity combined with 

low thermal expansion leads to good thermal shock resistance. RBSC can tolerate a wider 

range of acids and alkalis than either MGC or BN. Its oxidation resistance helps to give 

long service life in furnace applications. Mechanical properties of RBSC: 200-3500MPa 

compressive strength, 2500-3500kgfmm-2 hardness-Vickers, and 410GPa tensile modulus. 

Like MGC, RBSC has no apparent porosity with density of 3.10gcm-3. 

 

 

3.3  ETCHANT 

Selection of etchant was done by pre-experimentations to confirm that each chosen 

substrate was able to react with the etchant. Due to the limited choice of etchant, 

hydrochloric acid, hydrobromic acid and hydrophosphoric acid were selected following 

the pre-experimentations.  
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3.3.1 Hydrochloric acid (HCl) 

Research studies conducted on etching of advanced ceramics using HCl as etching 

etchant is relatively less extensive. This might be due to the hazard caused by HCl and 

the need for extra precautions during handling and the etching process. Cook et al. 

studied the etching performance of a few etchants (molten salt bath, HCl and KOH) with 

different advanced ceramics. Their results showed that performance of HCl was relatively 

poor compared to other etchants [71].  

 

3.3.2 Hydrobromic acid (HBr) 

Hydrobromic acid (HBr) is a strong acid formed by dissolving the diatomic molecule 

hydrogen bromide in water. HBr used contains 47.6% HBr by weight with highest 

concentration of 9M. This is the reason HBr is a stronger acid than HCl, but not as strong 

as hydroiodic acid. HBr acid is also known as the strongest mineral acids. 

 

3.3.3 Hydrophosphoric acid (H3PO4) 

H3PO4 is a deliquescent solid at room temperature. It is supplied at 49% concentration 

with greatly reduced vapour pressure. This enhances personal safety and also allows 

room-temperature storage in unpressurised containers [56].  
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3.4 EXPERIMENTAL APPARATUS  

3.4.1 Set-up Glassware 

 

       

Figure 3-1 Set-up of chemical machining. (A) Glass reaction vessel, (B) solution, (C) 

substrate holder, (D) Heating mantle, (E) Water-cooled condenser, (F) Temperature 

controller, (G) Glass encased thermocouple and (H) Outlet Valve. 

 

Figure 3-1 illustrates the laboratory-scale CHM system by employing boron silicate glass 

reaction vessel in this study. Selected etchant was filled in before top glass cover was 

closed and substrate was fed into the vessel by the substrate holder. Condensation unit 

was added to the set-up to reduce the changes of etchant’s concentration. Experiments 

were then carried out as designed by RSM described in Section 2.11.2.  

 

Selection of chemical machining set-up is very important as the concentrated acid is 

corrosive toward glass materials as well as ceramics during the process. This is critical at 

high temperature. Therefore, boron silicate glassware is used. Boron silicate glass has low 

coefficient of thermal expansion, making it resistant to thermal shock, about one-third 

that of ordinary glass. This reduces material stress caused by temperature gradients, thus 

making it more resistant to breaking. Although this material is known to be slightly 

etched by the etchants, it is sufficient for laboratory scale experimentation. As shown in 

Figure 3-2, the etch rate of boron silicate is one of the lowest compared to the rest. This 

indicates that these materials would be suitable for the glassware of an etching apparatus. 
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Figure 3-2 Etch rate of various ceramic materials in refluxed boiling etchant[56] 

 

3.4.2 Heating Mantle 

  

Figure 3-3 Heating mantle model MS-E103 

 

The etchant in boron silicate glass reaction vessel was heated by the heating mantle. The 

heating mantle (Figure 3-3) used in this study is MS-E103 with the temperature controller. 

Its heating element is made of the glass fiber, which is able to minimise the damage of 

flask during etching process. The heating efficiency is promoted greatly because of being 

in good contact between heating element and glass vessel. This heating mantle can heat 

up to 450oC. 
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3.4.3 K-Type Thermometer 

 

Figure 3-4 K-type thermocouple model EA11A 

 

The temperature in the solution was checked by K-type thermocouple model EA11A 

(Figure 3-4). This model offers a single K-type thermocouple with multifunction LCD 

display. This meter is fully tested and calibrated and, with proper use, will provide years 

of reliable service. The measurement range is from -50oC to 1300oC with multi-function 

LCD (Table 3-1).  

 

Table 3-1 Accuracy specification 

Units Range Accuracy (@23 ± 5oC) 

oF 

0oF to 1832oF ± (0.3% reading + 2oF) 

-58oF to 0oF  
and 

1832oF to 1999oF 

± (0.5% reading + 2oF) 

oC 

0oC to 1000oC ± (0.3% reading + 1oC) 

-50oC to 0oC 
and 

1000oC to 1300oC 

± (0.5% reading + 1oC) 

 

3.4.4 Atomic Force Microscopy (AFM)  

Atomic force microscopy (AFM) is used to measure the surface roughness of substrate 

before and after CHM process. AFM is a high resolution type of scanning probe 

microscopy, with demonstrated resolution of fractions of a nanometer. Binnig, Quate and 

Gerber invented the first AFM in 1986 [160-162]. Today, most AFMs use a laser beam 
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deflection system, introduced by Meyer and Amer, where a laser is reflected from the 

back of the reflective AFM lever and onto a position-sensitive detector. AFM tips and 

cantilevers are micro-fabricated from silicon or silicon nitride with a tip radius of 

curvature on the order to nanometers. When the tips is brought into proximity of a sample 

surface, the forces between the tip and sample lead to a deflection of the cantilever [163]. 

Depending on the situation, forces that are measured in AFM include mechanical contact 

force, van der Waals forces and magnetic forces [161-163]. 

 

 

Figure 3-5 The principles of AFM [164] 

 

The measurement of AFM relies on the forces between the tip and sample. Yet, this is a 

non contact scanning where the force is not measured directly. Thus, the force is 

calculated by measuring the deflection of the lever, and knowing the stiffness of the 

cantilever. Hook’s law gives F = -kz, where F is the force, k is the stiffness of the lever, 

and z is the distance the lever is bent [162, 164] as shown in Figure 3-6. 

 

 
Figure 3-6 Measurement of AFM [164] 
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If the tip were scanned at constant height, there would be a risk that the tip would collide 

with the surface, causing damage. Hence, in most cases a feedback mechanism is 

employed to adjust the tip-to-sample distance to keep the force between the tip and the 

sample constant. This can be achieved by mounting the sample on a piezoelectric crystal 

[164]. AFM, however, has the advantage of imaging almost any type of surface and 

provides a true three-dimensional surface profile [162]. Additionally, samples viewed by 

AFM do not required special treatment that would actually destroy the sample and 

prevent its reuse. The main disadvantage of AFM is that it produces a small image size. 

AFM can only show a maximum height on the order of micrometers and a maximum area 

of around 100 by 100 micrometers.  

 

The AFM is one of the foremost tools for imaging, measuring, and manipulating matter at 

the nanoscale. The brand of AFM used in this research is Shimadzu and model name is 

SPM 9500-J2. This is a non-contact scanning with air as the medium. A stiff cantilever is 

oscillated in the attractive regime, meaning that the tip is quite close to the sample, but 

not touching it. The forces between the tip and sample are quite low, on the order of pN 

(10-12N). The detection scheme is based on measuring changes to the resonant frequency 

or amplitude of the cantilever. The cantilever used here is monolithic silicon with 

aluminum coating on the detector side. The scanning rate is 2Hz with 256 x 256 images 

resolution. Surface profiles data is measured in arithmetical mean deviation, Ra. The 

average roughness or deviation of all points from a plane fit to the test part surface, as 

shown in equation 10. Ra is available for profile and area data. 

 

 
L

Oa dxxz
L

R
1

                   (eq. 3-1) 

 

where L is substrate length, z is individual peak to valleys from sample length, and x is 

the distance from the peak to valleys wave within sampling length. 
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3.4.5 Roller tool 

 

Figure 3-7 Roller tool for the indentation. 

 

A new tool - roller tool was designed and fabricated for the purpose of micro-indentation 

as illustrated in Figure 3-7. This roller was designed to be used in CNC machine and the 

insert of CNC machine is shown in Figure 3-8. The fabricated roller tool was attached to 

this insert tool and worked together in the CNC machine. CNC machine is chosen 

because of its ability to accurately apply the required force on the substrate.  

 

        

Figure 3-8 CNC insert  Figure 3-9 EZO-6800rs   Figure 3-10 Stainless  

    Roller    steel spring  

 

Roller tool is a simple tool, which contains only EZO-6800rs roller (Figure 3-9) and also 

a stainless steel spring (Figure 3-10) with spring constant of 0.5 Nm-1. The width of EZO-

6800rs roller is 5mm with 15mm diameter and has a weight of 5.24g. All parts are 

changeable in the roller tool.  

  

The mechanism of the roller tool is simple as shown in Figure 3-11. The roller portion is 

movable and the length of this portion is depends on the stainless steel spring. Before 

CNC 
Roller tool 
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indentation, the depth of indented concave was decided and force was calculated by using 

F= kx, where k is spring constant and x is the displacement of the spring’s end from its 

equilibrium position. Roller tool moved through the substrate surface and created the 

indented concave with required depth (as shown in Figure 3-12). 

 

 

Figure 3-11 Roller tool structure (left) without force and (right) with force. 

 

 

Figure 3-12 Mechanism of roller tool before and after force is applied. 

 

 

3.5 EXPERIMENTATION  

3.5.1 Introduction 

The scope of our research involved studies of chemical machining of advanced ceramics 

in terms of etching rate, surface quality and dimensional accuracy. The main objective of 

the research is to establish the relationships between the above variables with etching 
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temperature, etching duration, chemical reagents and its concentration. Using the 

experimental data obtained, predictive models were developed by RSM based on the 

etching variables studied, namely temperature, etching duration, type of chemical reagent 

and its concentration.  

 

A few assumptions have been taken in RSM to study this experimental process: errors are 

assumed to approximate the normal distribution that has a zero mean and a constant 

variance. Predictive models for etching rate, surface quality and dimensional accuracy 

were subsequently established. The result obtained from the predictive mathematic 

models was compared with previous experimental data and verified by Artificial Neural 

Network (ANN). These predictive models would be very valuable to the industry since 

there is no need to run experiments to estimate the output variables. 

 

The difficulties of CHM of advanced ceramics lie in controlling the variables of this 

process. The combination of these variables directly influences the etching rate, surface 

quality and dimensional accuracy and therefore the quality of CHM. As mentioned earlier, 

a few uncontrollable variables included the quality of substrates and chemical reagents, 

since they were sourced from different manufacturers. External variables such as stirring 

process and aided material also indirectly influence the quality of CHM. In order to avoid 

unnecessary influence, each material was cleaned to eliminate the contamination on top 

of them, and statistical method was used to verify the result of CHM process. 

 

3.5.2 Experimental design 

3.5.2.1 Preparation 

Each substrate was cut into 10mm X 10mm X 10mm dimension and cleaned with 

distilled water for 10 minutes and then dried in the oven for an hour. This procedure was 

to ensure no contamination on the substrate’s surface and no dust on top of the surface 

after cutting process.  

 

Then, all the substrates proceeded to the indentation process, where substrate was 

indented by a roller tool as shown in Figure 3-12. This rolling tool was fabricated to fit 
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into the specific application. The details of this tool are explained in the earlier section. 

Indentation of substrate was carried out by inserting the roller tool into the CNC insert. 

After setting up the CNC machine and force needed, the roller tool was rolled over the 

substrate and a straight line concave was created. Before proceeding to take the essential 

parameters, the substrate was cleaned and dried for about an hour. Figure 3-13 illustrates 

the process of indentation on the substrate by CNC and roller tool. 

 

 

Figure 3-13 Indentation of substrate by the CNC with roller tool 

 

After that, each substrate was sent for measurement before CHM was carried out. In this 

study, parameters involved were etching rate, surface roughness and etching ratio. 

Etching rate was measured by the differentiation of substrate’s weight before and after 

CHM experiment. The weight of substrate was measured by weighing balance – Sartorius 

BT224S (Figure 3-14) with 0.1mg resolution internal calibration. It can measure up to 

three decimal points in gram.  

 

 

Figure 3-14 Sartorius BT 224S weighing balancer 

 

Substrate 

Roller tool 

CNC machine 

Clamp 
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Measurement of surface roughness was done by local government agency – SIRIM. AFM 

- Shimadzu-SPM 9500-J2 was used to measure surface roughness. As mentioned 

previously, surface roughness was measured in µm with deviation of ± 1.5nm. Figure 3-

15 shows the work place for AFM and where the result was obtained during the 

measurement of one of the substrates. 

 

 

Figure 3-15 AFM from Shimadzu-SPM 9500-J2 

 

Lastly, measurement of the depth of indented concave and indented surface were taken 

by digital micrometer – KEN3313010K (Figure 3-16). This apparatus is manufactured by 

Kennedy with accuracy of 0.001mm. Etching ratio is the ratio between depths at indented 

concave compared to the non-indented surface.  

 

 

Figure 3-16 Micrometer 

 

The last step before proceeding to the CHM experiment was the experimental design by 

2k factorial design and CCD. DE 7 was employed as the software to analyse experiment 

all data. For first-order model, thirteen numbers of experimental runs were designed and 

all running sequences were randomised. Each material was investigated with three 

different etchants (HCl, HBr and H3PO4). Then, data was analysed. For second-order 

model, CCD was selected with three numerical variables (etching temperature, etching 
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duration and solution’s concentration) and one categorical variable (etching solution). In 

this study, variables investigated were etching temperature (0oC to etchant’s boiling 

point), etching duration (30 minutes to 270minutes), etching etchant (HCl, HBr and 

H3PO4) and etchant concentration (lowest, medium and highest). 95% confidence level 

was chosen and a table of the experimental run was created by DE 7 (as shown in Table 

3-2 and Table 3-3). All experiments were randomly organised to make sure the 

observation was independently distributed. 

  

Table 3-2 Experimental table generated by 2k Factorial Design for CHM of MGC 

run temperature period concentration 
etching 

rate surface roughness 
etching 

ratio 
1 64 0 1    
2 28 180 -1    
3 64 105 -1    
4 64 105 0    
5 100 105 -1    
6 28 105 0    
7 64 105 0    
8 64 105 0    
9 28 30 1    

10 100 30 0    
11 64 210 1    
12 100 180 1    

 

Table 3-3 Experimental table generated by RSM-CCD for CHM of MGC 

run temperature duration concentration etchant 
Etching 
rate result 

Surface 
roughness 
result 

Etching 
ratio 
result 

1 100 30 -1 HCl     

2 100 135 0 HBr     

3 19 30 -1 HCl     

4 19 240 1 HCl     

5 62 0 0 HCl     

6 100 135 0 H3PO4     

7 19 30 1 HCl     

8 19 30 1 H3PO4     

9 19 30 1 HBr     

10 19 240 1 H3PO4     

11 19 240 1 HBr     

12 62 135 0 H3PO4     
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run temperature duration concentration etchant 
Etching 
rate result 

Surface 
roughness 
result 

Etching 
ratio 
result 

13 100 30 -1 H3PO4     

14 62 135 1.68 HCl     

15 62 135 0 HCl     

16 62 135 0 H3PO4     

17 0 135 0 HCl     

18 62 135 0 HBr     

19 100 30 -1 HBr     

20 100 240 -1 H3PO4     

21 62 135 0 HCl     

22 62 135 0 HBr     

23 100 240 -1 HBr     

24 19 30 -1 H3PO4     

25 19 30 -1 HBr     

26 0 135 0 H3PO4     

27 0 135 0 HBr     

28 62 135 -1.68 HCl     

29 62 135 1.68 H3PO4     

30 62 170 0 HBr     

31 100 30 1 H3PO4     

32 62 135 0 HCl     

33 100 30 1 HBr     

34 62 135 0 H3PO4     

35 62 135 0 HBr     

36 100 30 1 HCl     

37 62 135 -1.68 H3PO4     

38 62 310 0 HCl     

39 62 135 -1.68 HBr     

40 62 135 1.68 HBr    

41 62 300 0 H3PO4     

42 62 310 0 HBr     

43 19 240 -1 H3PO4     

44 19 240 -1 HBr     

45 100 240 -1 HCl     

46 19 240 -1 HCl     

47 62 135 0 H3PO4     

48 100 135 0 HCl     

49 100 240 1 H3PO4     

50 100 240 1 HBr     

51 62 0 0 H3PO4     
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run temperature duration concentration etchant 
Etching 
rate result 

Surface 
roughness 
result 

Etching 
ratio 
result 

52 62 0 0 HBr     

53 62 135 0 HCl     

 

3.5.2.2 Chemical machining process 

CHM experiment was started by pouring 500ml of selected etchant into the boron silicate 

glass vessel and heated until the desired temperature. Then, substrate was inserted to the 

vessel and CHM started as shown in Table 3-2.  At the end of the experiment, substrate 

was removed from the vessel and etchant was removed to a disposal bottle. This was 

followed up by cleaning and drying process. Measurements for etching rate and etching 

ratio were taken after the drying process in the laboratory. For surface roughness 

measurement, samples were sent to SIRIM. 

 

3.5.2.3 Analysis 

The last procedure was to analyse all results by inserting this data into DE 7 and ANN. 

Analysis of Variance (ANOVA) and p-value were generated and results were analysed. 

This was started with the first order model (2k factorial design), where data was analysed 

to determine the behaviour of the process. If this is the linear process, curvature term 

shown in ANOVA with p-value is more than 0.5 or insignificant. Information shown in 

ANOVA was sufficient to study the process. Otherwise, this would be followed by 

second order model (CCD) to proceed on the higher level model (quadratic, cubic and 

etc). At this stage, ANOVA was studied and followed by monitoring the changes of each 

dominant factor and examining the generated graphs. The parameter studied and the 

models’ lacks of fit were as indicated and assessed respectively. Predictive empirical 

model on this experimental model was also generated. 

 

 

3.6 DESIGN OF EXPERIMENT 

DoE is the combination of mathematical and statistical techniques. Mathematical models 

can be used to predict and better analyse result behaviour in different condition with a 

limited number of experiment tests [120]. Software Design Expert (DE 7.0) was used. 
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3.6.1 Factors, Levels and Ranges 

Three materials were used: machinable glass ceramic, boron nitride, and silicon carbide. 

As mentioned in previous section, factors chosen in this research are etchant, etchant’s 

concentration, etching temperature and etching duration. These factors can be categorised 

as one categorical factor (etchant), and three numerical factors (etchant concentration, 

etching temperature and etching duration). Each of these factors is at two levels, which 

are their maximum and minimum values. Selection of range for each numerical factor 

was based on the pre-experiment-two factorial design. Central points were added to the 

experimental design to determine the trend of the process.  

 

3.6.2 Selection of the Response Variable 

Based on research works and the industry requirements, the most important quality of 

machining of advanced ceramics was discussed. Response variables, which were chosen 

here were etching rate (g/min), surface roughness (µm/min) and dimensional accuracy 

(etching ratio). The measurement of each weight, surface roughness and dimensional of 

indented and non-indented areas was taken before and after the etching process.  

 

3.6.3 Choice of Experimental Design 

DoE is divided into three categories: comparative objective, screening objective and 

response surface objective [8]. Comparative objective is chosen if the primary goal of the 

process is to study whether selected factor is significant. Screening objective was chosen 

when primary purpose of the experiment was to select the few important main effects 

from the many less important ones. Whereas, response surface objective was used to find 

and optimise the process and troubleshoot process problems to make the process more 

robust against external and non-controllable influences.  

 

Experimental design was started with the screening objective, which was the two-level 

(2k) factorial design. This was to determine the important factors, the range of factors and 

trend of experimental process. In statistics, factorial experiment is an experiment whose 

design consists of two or more factors, each with discrete possible values, and whose 

experimental units take on all possible combinations of these levels across all such factors. 
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Factorial design is a tool that allows experimenters to experiment on many factors 

simultaneously. The simplest factorial design is two-level factorial which involves a few 

factors at two levels or values. 

 

3.6.3.1 Planning stage for 2k factorial design [4] 

The planning stage for 2k factorial design was carried out as below: 

1. Factors to be investigated were determined. 

2. A 2k factorial experiment was designed and run in a localised region of the response 

surface. 

3. Estimates of the effects and the coefficient of the linear model were calculated: 

y = boxo + b1x1 + b2x2 + b3x3 + ε              (eq. 3-2)  

4. A reference factor was selected and it was used as a guide in determining the 

appropriate steps along the direction of each factor in order to continue moving along 

the path of steepest ascent.  

5. A few experimental conditions along the path response of steepest ascent were 

selected and trials were run to determine if the response continued to increase. If the 

response ceased to increase, a new path should be generated.  

6. If a new path was needed, a new 2k factorial experiment was designed and run again. 

All previous steps were repeated until no substantial improvement in the response 

was obtained. 

 

In this analysis, it will determine either this is a linear or quadratic model. If this is a 

linear process, study of the process can proceed with the ANOVA obtained. Otherwise, 

this is followed with comparative objective, where RSM is required. RSM is useful for 

modeling and analysis of problems in which a response of interest is influenced by 

several factors [2]. There are a few types of RSM: central composite design (CCD), Box-

Behnken and 33design. For this case, central composite design was chosen as the 

experimental design method. CCD is intended for sequential experimentation, thus 

making it flexible for industrial process development. The reasons are due to CCD’s 

ability to be partitioned naturally into two subsets of points; the first subset estimates 

linear and two-factor interaction effects while the second subset estimates curvature 
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effects. CCD is efficient, in providing much information in a minimum number of 

required runs, and flexible due to its variety of choices that enables the design tool to be 

used under different operability.  

 

3.6.3.2 Planning stage for CCD 

1 A three-level factorial experiment in the region was designed and executed, where 

the path of the steepest scent yields no substantial improvement in response.  

2 The coefficients of the model was computed: 

y = boxo + b1x1 + b2x2 + b3x3 + ε             (eq. 3-3) 

3 Using the above model, the nature of the stationary point of the response surface 

was determined. The stationary point was the one where the gradient vanished. 

 

 

3.7 ARTIFICIAL NEURAL NETWORK 

ANN was also used to study the process of CHM and to compare the results with CCD. 

The neural network learns complex data both adaptively and nonlinearly without any 

formulation on the causal relationship between the input and output patterns. Such 

learning ability can be attributed to the fact that the neural network, possessing many 

simple parallel processing units (neurons), resembles the architecture of the human brain. 

These neurons are interconnected in such a way that knowledge is stored in the weights 

of the connections. Each neuron contains the weighted sum of the inputs filtered by a 

transfer functions. The main characteristics of ANN are the neurons arrangement in the 

network architecture that dictates what type of problem can be dealt with and method of 

determining the weights of the connections [139]. In this process, it is assumed that 

information processing occurs in a number of simple elements called neurons. The 

signals are transmitted between neurons over connection links, each connection link has 

an associated weight that multiplied the signal transmitted, and each neuron applies an 

activation function to the incoming signal to determine its output signal [139]. 

 

NeuroSolutions 5 with excel was used and this is a highly advanced simulation 

environment capable of supporting users with varying levels of expertise. A conceptual 
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understanding of the fundamentals of ANN theory is deemed necessary. This software is 

user friendly and making explicit the level of user knowledge required.  

 

 

3.7.1 Planning of ANN 

1 Type of problem was chosen before proceeded on the design. One of the designs 

was function approximation, which was used to determine a continuous value for 

each input pattern.  

2 Input and output files selection. All input values and outputs were determined, 

identified the symbolic data if available. 

3 Cross validation: data was divided into training set and test set. Each of these was 

used to train and checking the network quality. 

4 Data was trained by selecting type of transfer function, number of hidden layers, 

number of epochs and others. A pre-saved hidden layer multilayer perceptron 

(MLP) would be opened for modeling this data. Training data was used to train 

the network. It would continue as setting set when the training was run. 

5 The table of training and cross validation mean-squared error (MSE) was tested. 

6 Test data: The true test of a network is how well it can classify samples that it has 

not seen before. This was used to check the performance of ANN. Again, the 

MSE was checked. 
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Chapter 4 Development of Etch Rate Models and 

Experimental Studies  

 

 

 

 

4.1 INTRODUCTION  

The etch rate of a substrate to be patterned must be known while designing a new 

fabrication process. It is also an important indicator on the quality of chemical machining. 

Generally, the faster the etch rate, the better is the quality. Besides, the quality of 

chemical machining was also found to be correlated to the magnitude of surface 

roughness and etching ratio. This will be discussed in Chapter 5 and 6. Preliminary study 

showed that etch rate of substrate was difficult to control due to the complex variables 

involved. In this study, etch rate was measured in g/min, which is the difference of 

substrate’s weight taken before and after the chemical machining process.  

 

The development of first and second order models of etch rate and the experimental etch 

rate studies were presented in this chapter. First order model was used to decide the 

nature of the model (as mentioned in section 3.6.3.) If the curvature term in ANOVA is 

significant, data is then analysed by the second order model (CCD). This is because the 

first order model is insufficient to analyse the data given. In the etch rate experimental 

studies, the relationships between variables including the etching temperature, etchant 

concentration, the type of etchant, and the etching duration and the etch rate were 

investigated. 
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4.2 DEVELOPMENT OF FIRST ORDER ETCH RATE MODEL 

In this design, 95% confidence interval was set and p-value was used to analyse the 

significance of corresponding variables. Each p-value has to be less than 0.05 (or 5%) 

and the smaller the magnitude of p-value, the more significant the model. 2k factorial 

design is a screening process which is specifically suited for linear process. This means 

that each variable is independent of each other. This is always the first step of experiment 

design to study the relationship between a fixed variable and range of each variable in the 

process. If the curvature term is significant, all data provided in the ANOVA of 2k 

factorial design are useless because these results are analysed linearly and each variable is 

assumed to be independent. 

 

Many researchers found that there are interactions between variables in chemical 

machining process of advanced ceramics [6, 7, 9, 71, 165-169]. Tables 4-1, 4-2 and 4-3 

depict curvature values that are significant in machining of MGC in all etchants. This 

implies interaction between variables exists in these processes and RSM is required to 

study the collected data. Tables 4-4, 4-5 and 4-6 show the results of first order model of 

etch rate of BN in all etchants. These results revealed that RSM is needed to proceed on 

to further analysis of these experimental data. This is because p-values of curvature are 

less than 0.05 and augmentation is required in these processes.  Tables 4-7, 4-8 and 4-9 

suggest augmentation of etch rate of SiC to RSM instead of linear modeling. Curvature 

terms are significant in the etching process of SiC with different etchants.  

 

Table 4-1 ANOVA for selected factorial model for etch rate of MGC in H3PO4 
Source Sum of Squares df Mean Square F Value p-value    
Model 2.27E-08 1 2.27E-08 2.5269 0.163 not significant
B-duration 5.18E-08 1 5.18E-08 5.7535 0.0534   
Curvature 1.13E-07 1 1.13E-07 12.5130 0.0123 significant

 

Table 4-2 ANOVA for selected factorial model for etch rate of MGC in HBr 
Source Sum of Squares df Mean Square F Value p-value    
Model 0.01308 1 0.013081 28.9522 0.0017 significant
B-duration 0.01566 1 0.015667 34.67674 0.0011   
Curvature 0.00429 1 0.004296 9.507459 0.0216 significant
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Table 4-3 ANOVA for selected factorial model for etch rate of MGC in HCl 

Source Sum of Squares df Mean Square F Value p-value    
Model 0.00623 2 0.003 22.43 0.007 significant
B-duration 0.00603 1 0.006 43.40 0.003   
C-concentration 0.00008 1 0.000 0.56 0.497   
Curvature 0.00187 1 0.002 13.45 0.021 significant

 

Table 4-4 ANOVA for selected factorial model for etch rate of BN in H3PO4 
Source Sum of Squares df Mean Square F Value p-value   
Model 0.0034 1 0.0034 867.43 0.022 significant
B-duration 0.0039 1 0.0039 987.49 0.020  
Curvature 0.0008 1 0.0008 193.56 0.046 significant
Residual 0.0000 1 0.0000      

 

Table 4-5 ANOVA for selected factorial model for etch rate of BN in HBr 
Source Sum of Squares df Mean Square F Value p-value    
Model 0.002678 1 0.0027 69.98 0.004 significant
B-duration 0.003168 1 0.0032 82.77 0.003   
Curvature 0.000921 1 0.0009 24.07 0.016 significant
Residual 0.000115 3 0.0000       

 

Table 4-6 ANOVA for selected factorial model for etch rate of BN in HCl 
Source Sum of Squares df Mean Square F Value p-value    
Model 1.2005E-05 1 1.2E-05 0.0666192 0.8205 not significant
C-concentration 0.000012005 1 1.2E-05 0.0666192 0.8205   
Curvature 0.00372076 1 0.00372 20.647567 0.0452 significant
Residual 0.000360407 2 0.00018       

 

Table 4-7 ANOVA for selected factorial model for etch rate of SiC in H3PO4 
Source Sum of Squares df Mean Square F Value p-value    
Model 8.2E-08 1 8.2E-08 3.09 0.177 not significant 
B-duration 1.7E-07 1 1.7E-07 6.25 0.088   
Curvature 2.9E-07 1 2.9E-07 10.72 0.047 significant 
Residual 8.0E-08 3 2.7E-08       

 
Table 4-8 ANOVA for selected factorial model for etch rate of SiC in HBr 

Source Sum of Squares df Mean Square F Value p-value   
Model 1.068E-07 1 1E-07 63660000 < 0.0001 significant 
C-concentration 6.000E-08 1 6E-08 63660000 < 0.0001   
Curvature 8.824E-08 1 9E-08 63660000 < 0.0001 significant 
Residual 0.000E+00 3 0E+00       
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Table 4-9 ANOVA for selected factorial model for etch rate of SiC in HCl 

Source Sum of Squares df Mean Square F 
Value

p-value  
  

Model 6.1E-09 1 6.1E-09 1.84 0.308 not significant 
B-duration 1.6E-07 1 1.6E-07 49.00 0.0198   
Curvature 1.8E-07 1 1.8E-07 52.56 0.0185 significant 
Residual 6.7E-09 2 3.3E-09       

 

 

4.3 DEVELOPMENT OF SECOND ORDER ETCH RATE MODEL 

As shown in the previous section, the etch rate of all materials in etchants studied was 

augmented to second-order model due to the significant curvature is observed in ANOVA. 

Thus, CCD was carried out with the collected data with different higher level model 

fitting. Each of these was checked at 95% confidence interval and p-value was used to 

determine the significance of the model fitting. It was found that all models fitted well 

with no lack of fit in all results. The main variables as mentioned earlier were determined 

by evaluating their p-value. 

 

Table 4-10 shows the etch rate ANOVA for chemical machining of MGC. This process is 

fitted well to 2 factorial interaction (2FI) model. With 99.99% fitness, etching 

temperature and etchant are dominant variables, followed by interaction between etching 

temperature and etchant and etching duration. Equation (11)-(13) are the predictive 

model generated by DE 7 for etch rate in H3PO4, HBr and HCl.  

 

Table 4-11 presents ANOVA for etch rate of BN. Etch rate of BN is fitted 99.98% to 2FI 

model with etchant as the dominant variable and followed by etching temperature. This is 

similar to the etch rate of MGC. The other significant variable is the interaction between 

the individual etchant and its concentration. Predictive models generated are as follows: 

equations (14)-(16) are chemical machining of BN in H3PO4, HBr and HCl respectively. 

 

The etch rate of SiC was studied and ANOVA data is presented in Table 4-12. The result 

indicates that etching temperature is the most significant variable with 99.48% 

confidence and etchant with 95% confidence in the etch rate of SiC. Once again, 
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interaction between etchant and etchant’s concentration appears to be an important 

variable. Equations (17)-(19) are etch rate’s predictive models for SiC in etchants, 

namely H3PO4, HBr and HCl respectively. 

 

Predictive model for MGC’s etch rate in the respective etchant: 

Etch rate in of MGC H3PO4 = -2.57E-4 - 4.30E-6(T) + 1.23E-6(t) + 1.32E-4(c) - 3.1E-

8(T)(t) - 1.46E-6(T)(c) - 1.91E-7(t)(c) + 1.05E-7(T2) + 2.25E-5(c2)   (eq. 4-1) 

 

Etch rate of MGC in HBr = 4.032E-5 + 9.01E-7(T) - 6.79E-7(t) + 1.29E-4(c) - 1.49E-

6(T)(c) - 1.91E-7(t)(c) +1.05E-7(T2) + 2.25E-5(c2)                            (eq. 4-2) 

 

Etch rate of MGC in HCl = - 4.71E-5 - 6.45E-7(T) + 5.93E-5(c) - 1.49E-6(T)(c) - 1.91E-

7(t)(c) + 1.052E-7(T2) + 2.25E-5(c2)      (eq. 4-3) 

 

Predictive model for BN’s etch rate in respective etchant: 

Etch rate of BN in H3PO4 = - 9.34E-4 + 4.59E-6(T) + 3.98E-6(t) - 7.88E-4(c) - 3.53E-

8(T)(t) + 1.54E-6(T)(c)       (eq. 4-4) 

 

Etch rate of BN in HBr = - 1.807E-4 + 8.766E-6(T) + 1.89E-6(t) - 2.27E-4(c) - 3.53E-

8(T)(t) + 1.54E-6(T)(c) + 1.38E-6(t)(c)     (eq. 4-5) 

 

Etch rate of BN in HCl= - 2.63E-4 + 9.88E-6(T) + 1.38E-6(t) - 2.38E-4(c) - 3.53E-8(T)(t) 

+ 1.54E-6(T)(c) + 1.39E-6(t)(c)                                                 (eq. 4-6) 

 

Predictive model for SiC’s etch rate in the respective etchant: 

Etch rate of SiC in H3PO4 = - 0.038 + 7.66E-4(T) - 2.76E-4(t) + 0.015(c) + 1.92E-8(T)(t) 

+ 2.57E-6(T)(c) - 5.094E-4(t)(c) - 6.438E-6(T2) + 2.9E-6(t2) + 0.032(c2) (eq. 4-7) 

 

Etch rate of SiC in HBr = 0.0995 + 7.611E-4(T) - 1.296E-3(t) + 0.122(c) + 1.92E-8(T)(t) 

+ 2.57E-6(T)(c) - 5.094E-4(t)(c) - 6.44E-6(T2) + 2.92E-6(t2) + 0.032(c2)    (eq. 4-8) 
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Etch rate of SiC in HCl = 0.0996 + 7.64E-4(T) - 1.297E-3(t) + 0.00122(c) + 1.92E-8(T)(t) 

+ 2.57E-6(T)(c) - 5.096E-4(t)(c) - 6.44E-6(T2) +  2.92E-6(t2) + 0.032(c2) (eq. 4-9) 

 
Table 4-10  ANOVA for Response Surface 2FI Model for MGC 

Source Sum of Squares df Mean Square F Value p-value    
Model 4.81E-06 17 2.83E-07 12.93857 < 0.0001 Significant

A-temperature 2.05E-06 1 2.05E-06 93.6329 < 0.0001   
B-duration 1.33E-07 1 1.33E-07 6.06528 0.0192   
C-concentration 6.43E-09 1 6.43E-09 0.293934 0.5914   
D-etchant 1.04E-06 2 5.21E-07 23.82329 < 0.0001   
AB 3.87E-07 1 3.87E-07 17.69015 0.0002   
AD 2.39E-07 2 1.19E-07 5.460201 0.0089   
BD 2.19E-07 2 1.09E-07 4.999168 0.0127   
Residual 7.22E-07 33 2.19E-08       
Lack of Fit 6.05E-07 25 2.42E-08 1.652124 0.2354 not significant

 
Table 4-11 ANOVA for Response Surface 2FI Model for BN 

Source Sum of Squares df Mean Square F Value p-value    
Model 8.21E-06 14 5.87E-07 4.993748 0.0002 significant 
A-temperature 6.42E-07 1 6.42E-07 5.466191 0.0274   
B-duration 2.09E-08 1 2.09E-08 0.177808 0.6767   
C-concentration 4.5E-08 1 4.5E-08 0.383452 0.5411   
D-etchant 3.51E-06 2 1.75E-06 14.92901 < 0.0001   
AB 4.38E-07 1 4.38E-07 3.727926 0.0645   
BC 4.07E-07 1 4.07E-07 3.461199 0.0742   
CD 1.06E-06 2 5.3E-07 4.512148 0.0208   
Residual 3.05E-06 26 1.17E-07       
Lack of Fit 3.04E-06 24 1.27E-07 16.38762 0.0591 not significant

 

Table 4-12 ANOVA for Response Surface Quadratic Model for SiC 
Source Sum of Squares df Mean Square F Value p-value    
Model 9.89E-05 17 5.81E-06 15.20579 < 0.0001 significant 
A-temperature 4.09E-06 1 4.09E-06 10.6982 0.0052   
B-duration 1.31E-07 1 1.31E-07 0.342155 0.5673   
C-concentration 5.01E-07 1 5.01E-07 1.309221 0.2705   
D-etchant 2.98E-06 2 1.49E-06 3.897953 0.0433   
BD 7.19E-05 2 3.59E-05 93.95018 < 0.0001   
Residual 5.74E-06 15 3.82E-07       
Lack of Fit 8.62E-07 8 1.08E-07 0.154753 0.9913 not significant
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4.4 ETCH RATE STUDIES 

In general chemical machining process is dependent on the chemical reaction rate and 

diffusing rate of etchant molecules [170]. These two parameters are relatively sensitive to 

etching temperature and etching duration. However, in this experiment, diffusion is not a 

critical factor because all etchants’ concentration was kept constant and condensation was 

applied in the setup of chemical machining, which would minimise the changes of 

concentration, especially at high temperature. Etch rate can be influenced by many 

independent variables and interactions between these variables.  The aim of etch rate 

studies is to assess the influence of a number of physicochemical conditions on the 

quality of chemical machining. If etch rate is zero, it shows that no chemical reaction is 

happening between etchant and substrate or no chemical machining has occurred.  

 

4.4.1 Effect of Etching Temperature 

Temperature was found to be the most significant variable influencing etch rate in 

chemical machining of MGC, BN and SiC as demonstrated by ANOVA which shows 

that the influence of temperature is 99.99% significant in MGC, 97.3% in BN and 99.5% 

in SiC.  

 

Figures 4-1, 4-2 and 4-3 show the profile of etch rate for   MGC, BN and SiC 

respectively with temperature. Generally the etch rate increased with increase in the 

etching temperature. Tehrani and Imanian [8] reported that high temperature greatly 

increased the oxidizing power, which caused a rapid increase in the etch rate. Similarly, 

Makino et al. [56] found that the etch rates in all ceramic materials tested increased with 

increasing etching temperature. Significant faster etch rates at higher temperatures 

observed are typical, but less ideal etching behaviour  is also common with more 

aggressive etch rate [85, 171]. However, for SiC the rate was observed to increase, but 

more sharply than MGC and BN to a peak of about 60oC and then dropped dramatically 

thereafter. This phenomenon was not observed for MGC and BN at the range of 

temperature tested. Similar phenomenon has been observed and reported by Vartuli et al. 

[63] in the case of advanced ceramics wet etching that no etching was found at etching 

temperature up to 75oC. The reason for this trend is not clear, but it seems to suggest that 
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the heat dependent etching of SiC may follow a different reaction mechanism from that 

of MGC and BN. The decline in the etch rate at higher temperature for SiC might be 

attributed to the accumulation of the etching product that could form as a barrier at the 

surface of the ceramic substrate thus limiting the etching reaction [8, 177]. 

 

Figure 4-1 MGC etch rate (g/min) versus etching temperature (oC) 
 

 

Figure 4-2 BN etch rate (g/min) versus etching temperature (oC) 
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Figure 4-3 SiC etch rate (g/min) versus etching temperature (oC) 

 

The Arrhenius plots shown in Figures 4-4, 4-5, and 4-6, further confirm that etch rate 

shows strongly dependency on etching temperature and that a reaction-controlled etching 

process dominates. Thus it is necessary to employ reaction-limited etching in the 

manufacture of devices because it is relatively easy to control other variables in wet 

etching [172]. The changes of etch rate are due to the increase in the chemical reaction 

rate of etchants and frequency of molecules’ collision with etching temperature. 

Arrhenius law stated that the rate of a chemical reaction increases exponentially with the 

absolute temperature [173]. It is well known that chemical machining processes are 

limited by either chemical machining reaction or by the diffusion rate of etchant 

molecules. Diffusion limited processes are relatively insensitive to temperature at lower 

activation energies and are usually encountered at high concentration [174]. Arrhenius 

law’s equation is given as follows: 

 

R = Ro exp (-Ea/kT)         (eq. 4-10) 

 
where R is the etch rate, Ro is the pre-exponential variable, Ea is the activation energy, k 

is the Gasconstant (8.3145 J/mol K) and T is temperature. Ro is taken as the attempt 
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frequency for reaction between anion of etchant and materials’ surfaces. Ea is the 

minimum amount of energy needed to activate molecules to a condition in which it is 

equally likely that they will undergo chemical reaction. This is listed in Table 4-13.  

 

 

 

Figure 4-4 Arrhenius plot of MGC in HBr 

 

 

Figure 4-5 Arrhenius plot of BN in HBr 
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Figure 4-6 Arrhenius plot of SiC in HBr 

 

Table 4-13. Ea value of Arrhenius plot (kJ/mol)

 HCl HBr H3PO4

BN 0.1132 0.6037 0.00132

MGC 0.4592 0.6685 0.1329 

SiC 0.4978 0.7769 0.1548 
 

The results from the Arrhenius plots for MGC, BN and SiC indicate the etching process 

for the selected substrates with different etchants are temperature dependent. The 

different Ea values obtained for the three substrates suggest that reaction mechanisms 

involved in the etching process with the individual etchant are different. Among the three 

substrates, BN exhibited the lowest Ea for all the etchants used and this is in agreement 

with the higher rate of etching observed for BN at 19.5oC as compared to the others. It 

can be seen that etch rate of BN started at the fastest rate at 0.0075 g/min and with MGC 

at 0.000125 g/min and SiC at 0.0010 g/min. Another significant finding as shown in 

Table 4-13 is that among the three etchants used H3PO4 exhibited the lowest Ea value for 

the three respective substrates tested.  This observation further supports the results 

obtained from the ANOVA analysis showing significant influence of temperature on the 

etching rate and the strong interactions between temperature and etchant variables. From 
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this study we can see that the choice of the etchant and the temperature that we use are 

important considerations prior to carrying out the chemical etching process.  

 

4.4.2 Effect of Etchant  

From the earlier study, the rate of etching has been shown to be temperature and etchant 

dependent. In this study the effect of the etchant on the rate of etching for MGC, BN and 

SiC was investigated with respective to medium concentration (10M for HCl etchant, 

12M for H3PO4 etchant and 6M for HBr etchant) of etchant at 65oC.  

 

Table 4-14 shows the list of some chemical reactions taking place during etching of MGC 

with the etchants involved namely, HCl, HBr and H3PO4. Figures 4-7, 4-8 and 4-9 

illustrate how the individual etchant affects the etching rate of MGC, BN and SiC. The 

highest etch rate of MGC was observed in HBr etchant, followed by the HCl and H3PO4. 

Similar trend was observed for the etch rate of BN, with the maximum etch rate at 

0.00008g/min in HBr. For SiC, the respective etch rate in the three etchants used are 

similar.  The results showed that HBr served as the best etchant for MGC and BN.  

 

The different etching rate observed with different etchants is possibly attributed to their 

inherent reactivity toward the substrate. Simon et al. [71] tested four advanced ceramics 

in different etchants and found different etching properties exhibited in these materials. 

Three materials were well etched in molten-salt whereas one material performed better 

with electrolytic etching method. Substitution of Al2O3 for SiO2 enhanced the leaching 

reaction of the alumino silicate glass with HF acid, resulting in an increase of etch rate 

[76]. The different chemical composition and structure of the substrates are other factors 

that are likely to influence the reaction mechanism and reactivity of the etchants involved. 

The different Ea values obtained for the different etchants in the earlier study seem to 

support this idea, although more detail kinetic studies are warranted to establish the 

mechanisms involved.  
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Table 4-14 Chemical reactions taking place in HCl, HBr and H3PO4. 
Material HCl HBr H3PO4 

MGC 

SiO2 
SiO2 + HCl → SiCl4 + 

2H2O 
SiO2 + HBr → SiBr4 

+2H2O 
3SiO2 + 4H3PO4 → Si3(PO4)4 + 

6H2O 

B2O3 
B2O3 + HCl → 2BaCl3 + 

3H2O 
B2O3 + HBr → 2BaBr3 

+ 3H2O 
B2O3 + 2 H3PO4 → 2BPO4 + 

3H2O 

Al2O3 
Al2O3 + HCl → 2AlCl3 

+ 3H2O 
Al2O3 + HBr → 2AlBr3 

+ 3H2O 
Al2O3 + H3PO4 → 3AlPO3 + 

3H2O 

K2O 
K2O + 2HCl → KCl2 + 

H2O 
K2O + 2HBr → KBr2 + 

H2O 
3K2O + 2H3PO4 → 2K2PO3 + 

H2O 
BN BN 

Information on reactions for BN and SiC is not available. 
SiC SiC 

 

 

Figure 4-7 MGC etch rate (g/min) versus etchant 
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Figure 4-8 BN etch rate (g/min) versus etchant  

 

 

Figure 4-9 SiC etch rate (g/min) versus etchant 
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4.4.3 Effect of Etching Duration 

Etching duration appears to be a significant variable in MGC etch rate from the initial 

ANOVA analysis.  Figure 4-10 shows the profile of the etch rate against the duration of 

etching. In the early stage of etching, etch rates did not show any significant increase 

until a period of about 2 hours. Hirota et al found that increase of etch rate was 

proportional to the etching duration [175]. Peng et al. [172] found that etch rate of 

machinable glass ceramics was decreased slightly at the beginning of the process and the 

result become stable after an extended  duration.  This indicates that an induction time 

might be necessary for etching to go through the diffusion barrier as reported. [56, 61, 

176] . This observation seems to be consistent with the notion that at longer etching 

duration, more reactions are taking place with less disruption due to greater extent of 

dissociation of acid. More comprehensive studies are required to established this 

notion.[98]. However, under  certain condition, prolonged etching duration might cause 

damage on the material surface and increase materials’ surface roughness [85, 98]. 

Besides temperature and etchant, the etching duration is worth considering in order 

improving quality of chemical etching. 

 

 

Figure 4-10 MGC etch rate (g/min) versus etching duration (min) 
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4.4.4 Effect of Etchant’s Concentration 

In Tables 4-10, 4-11 and 4-12, etchant’s concentration appears to be the least significant 

variables for all substrate as the p-values are more than 0.05. With 95% confident interval, 

the p-value of variables have to be less than 0.05 to become significant. This is explained 

earlier, which means that 95% of the time the interval will contain the true parameter 

value. As shown in Figure 4-10, the changes of etch rate in MGC is relatively small 

compared to the other substrates. The non-significance of etchant’s concentration can be 

due to condensation that is applied in the chemical machining setup, which reduces the 

changes of etchant’s concentration, especially at high temperature. Besides, reactivity of 

the etchant toward the substrate and nature of the reaction mechanism involved could 

contribute to the etchant’s concentration being the least affected variable in etch rate.  

 

In contrast to MGC, the etch rate of BN and SiC decreased dramatically with increased 

etchant’s concentration as shown in Figures 4-12 and 4-13. It is not clear what causes the 

rate of etching to fall when the concentration of the etchant is increased. One possibility 

is that an increase in the etchant concentration could reduce the ionisation of the etchant 

resulting in a lower concentration of the H+ ions that are essential for the etching process. 

Noor et al. [177] found the etch rate of silicon decreased with increased etchant’s 

concentration. Cakir et al. [60] also found that high etchant’s concentration also 

decreased etch rate of studied chemical machining of Cu-ETP copper. Kendall and 

Shoultz reported that higher concentration of KOH reduced the etching rate of Si based 

on the following rate equation that they developed [178].   

 

R100 = (2.6x106)(W2.5)exp-(W/300+0.48)/k*(T+273) [µm/hr]  (eq. 4-11) 

 

where R is the etch rate, W is the actual concentration of KOH (wt%) in water, k is 

Boltzmann’s contant 8.617x10-5 eV/K and T is the temperature in oC. This observation is 

reflected in Figure 4-14.  
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Further studies are required to develop a kinetic model for the etching reaction of BN and 

SiC in order to understand how changes of the etchant’s concentration affect the rate of 

etching. 
 

 

Figure 4-11 MGC etch rate (g/min) versus etchants’ concentration (Molarity) 
 

 

Figure 4-12 BN etch rate (g/min) versus etchants’ concentration (Molarity) 
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Figure 4-13 SiC etch rate (g/min) versus etchants’ concentration (Molarity) 

 

 

Figure 4-14 Etch rate of silicon in KOH for different concentration and temperatures 

[178]. 
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4.5 CONCLUSION 

From the results obtained we are able to conclude that etch rate was influenced by etching 

temperature and etchant used for the selected materials. In MGC, etch rate was also 

influenced by the etching duration. For SiC, the etch rate shows dependency on the on 

both the etching duration and individual etchant involved. Results also showed that etch 

rate increased with the increase of etching temperature for MGC and BN with exception 

of SiC was obtained. MGC and BN show the best result while etching in HBr etchant; 

and, SiC’s best etch rate occurred in H3PO4 etchant. The difference etch rate was 

observed for the substrates suggests that the reaction mechanism involved for the 

individual etching process could be  different, however further kinetic data are required to 

support this notion. Additionally, the findings confirm that selection of the right etchant 

for specific substrate is important in achieving the best etching result.  
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5.1 INTRODUCTION 

Surface roughness is an important measurement in chemical machining. It affects the 

mechanical properties (friction and wear) of substrates and therefore, it would have 

significant impact on substrate application, notably on the substrate bonding. The 

mechanism of direct substrate bonding at room temperature has been attributed to the 

short range intermolecular and interatomic attraction forces, such as Van de Waals forces. 

High surface roughness will result in small real area of contact, and therefore yield voids 

at the bonding interface. When the surface roughness exceeds a critical value, the 

substrates will not bond at all.  

 

In this study, surface roughness (Ra) was measured in nm by AFM before and after the 

CHM process. The measurement assessed the improvement of surface roughness after the 

chemical machining process. Thus, the value obtained either is negative (the surface 

roughness getting poorer after chemical machining) or positive (the surface roughness 

getting better after the chemical machining). Consequently, the higher the positive value 

of surface roughness, the better it is. Analytical study of surface roughness is similar to 

etch rate, where its first and second order models were developed with DE 7. This is 

followed by surface roughness studies, where the relationships between surface 

roughness and variables such as etching temperature was assessed as well as their 

influence on the surface roughness was investigated.  
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The present study mainly focused on the micro-patterning method, which is used to 

replace mask patterning. AFM is used because this tool functions by measuring a local 

property such as height, optical absorption or magnetism and is equipped with a probe or 

tip placed very close to the sample. Also, it is possible to take measurement over a small 

area as the substrates used in this study which is only 10 mm cube. AFM operates by 

measuring the attractive or repulsive forces between a tip and the sample. In its repulsive 

contact mode, the instrument lightly touches a tip at the end of cantilever to the sample. 

As a raster-scan drags the tip over the sample, the detection apparatus measures the 

vertical deflection of the cantilever, which indicates the local sample height. The, Ra 

value obtained is a measure of the surface roughness of substrates. The lower Ra value 

indicates a better surface quality. Although SEM can provide information on the surface 

topography, grain distribution and size, it is not able to determine and analyse the surface 

roughness of the etched materials. 

 

5.2 DEVELOPMENT OF FIRST ORDER SURFACE ROUGHNESS MODEL 

First order models for surface roughness are presented in Tables 5-1, 5-2 and 5-3 for 

MGC in H3PO4, HBr and HCl respectively; Tables 5-4, 5-5, 5-6 for BN in H3PO4, HBr 

and HCl respectively; and Tables 5-7, 5-8, 5-9 for SiC in H3PO4, HBr and HCl 

respectively. The curvature term for each test is significant as shown in the tables below, 

which means that chemical etching of MGC, BN and SiC has to proceed to CCD for 

analysis.  

 

Table 5-1 ANOVA for selected factorial model for surfce roughness of MGC in H3PO4 
Source Sum of Squares df Mean Square F Value p-value  
Model 23689.41 1 23689.41 17.22 0.0089 significant 
B-duration 29447.14 1 29447.14 21.40 0.0057   
Curvature 12597.04 1 12597.04 9.15 0.0292 significant 
Residual 6880.31 5 1376.06       
Lack of Fit 6880.31 4 1720.08       
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Table 5-2 ANOVA for selected factorial model for surface roughness of MGC in HBr 
Source Sum of Squares df Mean Square F Value p-value  
Model 8523.5 1 8523.5 22.72 0.00 significant 
C-concentration 7727.5 1 7727.5 20.59 0.00   
Curvature 2201.5 1 2201.5 5.87 0.04 significant 
Residual 3001.8 8 375.2       
Lack of Fit 3001.8 7 428.8       

 

Table 5-3 ANOVA for selected factorial model for surface roughness of MGC in HCl 
Source Sum of Squares df Mean Square F Value p-value  
Model 5386.9 1 5386.9 28.71 0.00 significant 
C-concentration 6033.9 1 6033.9 32.16 0.00  
Curvature 1528.5 1 1528.5 8.15 0.04 significant 
Residual 938.1 5 187.6    
Lack of Fit 938.1 4 234.5    

 

Table 5-4 ANOVA for selected factorial model for surface roughness of BN in H3PO4 
Source Sum of Squares df Mean Square F Value p-value  
Model 5101.81 1 5101.81 7.63 0.0328 significant 
B-duration 7206.30 1 7206.30 10.78 0.0168   
Curvature 4369.57 1 4369.57 6.53 0.0431 significant 
Residual 4012.44 6 668.74       
Lack of Fit 4012.44 5 802.49       

 

Table 5-5 ANOVA for selected factorial model for surface roughness of BN in HBr 
Source Sum of Squares df Mean Square F Value p-value  
Model 92309.5 1 92309 39.1 0.00 significant 
B-duration 78572.8 1 78573 33.2 0.00   
Curvature 14258.3 1 14258 6.0 0.04 significant 
Residual 18906.8 8 2363       
Lack of Fit 18906.8 7 2701       
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Table 5-6 ANOVA for selected factorial model for surface roughness of BN in HCl 
Source Sum of Squares df Mean Square F Value p-value  
Model 76429.29 1 76429 149.48 < 0.0001 significant 
B-duration 78364.46 1 78364 153.27 < 0.0001   
Curvature 10804.01 1 10804 21.13 0.0059 significant 
Residual 2556.49 5 511       
Lack of Fit 2556.49 4 639       

 

Table 5-7 ANOVA for selected factorial model for surface roughness of SiC in H3PO4 
Source Sum of Squares df Mean Square F Value p-value    
Model 1637.00 1 1637.00 143.85 0.0012 significant 
B-duration 1341.34 1 1341.34 117.87 0.0017   
Curvature 117.37 1 117.37 10.31 0.0489 significant 
Residual 34.14 3 11.38       
Lack of Fit 34.14 2 17.07       

 

Table 5-8 ANOVA for selected factorial model for surface roughness of SiC in HBr 
Source Sum of Squares df Mean Square F Value p-value    
Model 3790.00 1 3790.00 245.819 < 0.0001 significant 
B-duration 3460.56 1 3460.56 224.452 0.0001   
Curvature 155.36 1 155.36 10.077 0.0337 significant 
Residual 61.67 4 15.42       
 

Table 5-9 ANOVA for selected factorial model for surface roughness of SiC in HCl 
Source Sum of Squares df Mean Square F Value p-value    
Model 114.71 1 114.7 9.41 0.037 significant 
C-concentration 114.71 1 114.7 9.41 0.037   
Curvature 868.86 1 868.9 71.26 0.001 significant 
Residual 48.77 4 12.2       
Lack of Fit 48.77 3 16.3       
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5.3 DEVELOPMENT OF SECOND ORDER SURFACE ROUGHNESS MODEL 

The second-order surface roughness model is required because all the models did not fit 

to the linear model in first-order analysis. In surface roughness analysis, data was 

obtained by inspecting the surface roughness under AFM with power of 5µm. The values 

of surface roughness before and after were marked and the reduction of surface roughness 

was noted and analyzed. Thus, the higher the reduced surface roughness is, the better the 

surface roughness after etching process. 

 

Tables 5-10, 5-11, 5-12 represent ANOVA data for the reduced surface roughness for 

MGC, BN and HCl respectively. Each of them shows different behaviour and responses 

with different significant factors. Yet, all models fitted well without any lack of fit. 

Equations (21)-(29) are predictive models for reduced surface roughness of MGC, BN 

and SiC when treated with H3PO4, HBr and HCl respectively. Temperature was found to 

be the most critical factor in reducing surface roughness of MGC and BN, but for BN and 

SiC, the type of etchant is crucial in determining the quality of the surface roughness. The 

other important factors include the  interaction between etchant and its concentration for 

MGC and SiC, interaction between etching temperature and  duration, etchant and its 

concentration for BN and SiC respectively and etching duration for SiC. 

 

Predictive models for surface roughness of MGC in the respective etchant are as follows: 

Reduced surface roughness of MGC in H3PO4 = - 69.95 + 0.803(T) + 0.095(d) - 11.9(c) + 

4.71E-3(T)(t) - 0.41(T)(c) - 0.395(t)(c)      (eq. 5-1) 

 

Reduced surface roughness of MGC in HBr = 74 - 0.759(T) - 0.286(t) + 89.8(c) - 

0.405(T)(c) + 4.71E-3(T)(t) - 0.395(t)(c)     (eq. 5-2) 

 

Reduced surface roughness of MGC in HCl = - 5.005 + 0.323(T) - 0.235(t) + 119.22(c) + 

4.706E-3(T)(t) - 0.405(T)(c) - 0.395(t)(c)      (eq. 5-3) 
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Predictive models for surface roughness of BN in the respective etchant are as follows: 

Reduced surface roughness of BN in H3PO4 = 14.76 - 0.53(T) - 0.069(t) - 6.54(c) + 

2.12E-4(T)(t) + 0.19(T)(c) + 0.028(t)(c) + 9.35E-3(T2) - 1.46E-3(t3) + 2.59(c2) - 0.69(c3) - 

2.39E-4(T)(t)(c) - 4.96E-5(T2)(t) - 1.89E-6(t3) - 5.82E-4(T2)(c) + 5.07E-5(T)(t2) - 

0.098(T)(c2) -2.82E-4(t2)(c)  + 0.043(t)(c2) -3.41E-5(T3)    (eq. 5-4) 

 

Reduced surface roughness of BN in HBr = 7.803 - 0.698(T) + 0.21(t) - 8.27(c) - 8.79E-

4(T)(t) + 0.223(T)(c) + 0.011(t)(c) + 0.011(T2) - 2.55E-3(t2) + 3.95(c2) - 1.89E-6(t3) - 

2.39E-4(T)(t)(c) - 4.9E-5(T2)(t) - 5.82E-4(T2)(c) + 5.07E-5(T)(t2) - 0.69(c3) - 0.098(T)(c2) 

- 3.41E-5(T3) - 2.82E-4(t2)(c) +0.04(t)(c2)     (eq. 5-5)  

 

Reduced surface roughness of BN in HCl = 11.20 - 0.83(T) + 0.29(t) - 3.31(c) - 3.41E-

5(T3) -9.99E-4(T)(t) + 0.113(T)(c) + 0.049(t)(c) + 0.012(T2) - 2.93E-3(t2) + 0.73(c2) - 

1.89E-6(t3) - 2.39E-4(T)(t)(c) - 4.96E-5(T2)(t) - 0.69(c3) - 5.82E-4(T2)(c) + 5.07E-5(T)(t2) 

- 0.098(T)(c2) - 2.8E-4(t2)(c) +0.04(t)(ct2)                              (eq. 5-6) 

 

Predictive models for surface roughness of SiC in the respective etchant are as follows: 

Reduced surface roughness of SiC in H3PO4 = 886.76 - 45.95(T) - 16.1(t) - 43.05(c) + 

0.28(T)(t) - 0.66(T)(c) - 3.81(t)(c) + 0.69(T2) + 0.1(t2) + 12.07(c2) + 2.62E-3(T)(t)(c) - 

2.21E-3(T2)(t) + 0.015(T2)(c) - 8.62E-5(T)(t2) - 2.79(T)(c2) + 0.0165(t2)(c) + 1.42(t)(c2) - 

2.822E-3(T3) - 2.89E-4(t3) + 76.54(c3)     (eq. 5-7) 

 

Reduced surface roughness of SiC in HBr = 946.2 - 47.46(T) - 17.47(t) + 183.24(c) + 

0.29(T)(t) - 1.043(T)(c) - 4.56(t)(c) + 0.698(T2) + 0.11(t2) - 36.54(c2) - 2.21E-3(T2)(t) + 

2.63E-3(T)(t)(c) + 0.015(T2)(c) - 8.62E-5(T)(t2) - 2.79(T)(c2) + 0.0165(t2)(c) + 1.42(t)(c2) 

- 2.823E-3(T3) - 2.89E-4(t3) + 76.54(c3)                    (eq. 5-8) 

 

Reduced surface roughness of SiC in HCl = 345.12 - 25.93(T) - 19.66(t) - 152.87(c) + 

0.259(T)(t) + 0.034(T)(c) - 3.25(t)(c) + 0.55(T2) + 0.15(t2) + 118.98(c2) - 2.21E-3(T2)(t) + 

2.63E-3(T)(t)(c) + .015(T2)(c) - 8.62E-5(T)(t2) - 2.79(T)(c2) + 0.016(t2)(c) + 1.42(t)(c2) - 

2.82E-3(T3) - 2.89E-4(t3) + 76.54(c3)      (eq. 5-9) 
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Table 5-10 ANOVA for Response Surface 2FI Model for MGC 
Source Sum of Squares df Mean Square F Value p-value   
Model 121552.4 14 8682.3 2.5557 0.0168 significant 
A-temperature 17775.5 1 17775.5 5.2324 0.0299   
B-duration 1844.5 1 1844.5 0.5429 0.4673   
C-concentration 4242.8 1 4242.8 1.2489 0.2733   
D-etchant 4137.2 2 2068.6 0.6089 0.5510   
CD 83076.7 2 41538.3 12.227 0.0002   
Residual 95121.2 28 3397.1       
Lack of Fit 46332.5 24 1930.5 0.1582 0.9987 not significant 

 

Table 5-11 ANOVA for Response Surface Cubic Model for BN 
Source Sum of Squares df Mean Square F Value p-value   
Model 97.504 39 2.5001 6.5717 0.0002 significant 
A-temperature 9.248 1 9.2486 24.310 0.0002   
B-duration 1.1819 1 1.1819 3.1069 0.0998   
C-concentration 0.5380 1 0.5380 1.4142 0.2541   
E-etchant 4.8290 2 2.4145 6.3467 0.0109   
AD 4.7197 2 2.3598 6.2032 0.0118   
BD 11.3842 2 5.6921 14.962 0.0003   
CD 0.4958 2 0.2479 0.651 0.5363   
Residual 5.3260 14 0.3804       
Lack of Fit 0.5797 3 0.1932 0.447 0.7238 not significant 

 

Table 5-12  ANOVA for Response Surface Quadratic Model for SiC 
Source Sum of Squares df Mean Square F Value p-value   
Model 169781 39 4353.358 7.776016 0.008 significant 
A-temperature 1096.908 1 1096.908 1.95931 0.2111   
B-duration 10337.54 1 10337.54 18.46504 0.0051   
C-concentration 656.899 1 656.899 1.17336 0.3203   
D-etchant 7486.236 2 3743.118 6.685999 0.0297   
AD 14103.91 2 7051.955 12.59628 0.0071   
CD 18305.84 2 9152.921 16.34905 0.0037   
Residual 3359.065 6 559.8442       
Lack of Fit 741.5918 4 185.3979 0.141662 0.9513 not significant
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5.4 SURFACE ROUGHNESS STUDIES 

Advanced ceramic plays an important role in semiconductor industries. As nano-

implantation is required in the semiconductor industry, material surface roughness after 

machining is one of the key issues because rough surface will affect the performance of 

the end product. Thus, lower surface roughness is required. Poor surface roughness is 

often caused by extremely high etching rate [151].  The aim of surface roughness study is 

to investigate relationship between surface roughness and selected variables and also to 

obtain better quality of surface roughness at faster rate of etching. 

 

5.4.1 Effect of Etching Temperature 

The selection of etching temperature is important in achieving quality surface finish. In 

industrial application of chemical etching, highest temperature is used to machine the 

substrate because of the better surface roughness that is produced [60].  

 

In our present study, etching temperature was found to significantly influence the surface 

roughness of MGC and BN. As shown in Figures 5-1, 5-2 and 5-3, reduction of surface 

roughness for MGC, BN and SiC was increased with etching temperature. Reduction of 

surface roughness takes place mainly due to the chemical reaction at the desired surface 

area [76, 77]. This phenomenon is similar to etching rate in all materials where it 

increases with rising etching temperature. For MGC and BN (Figures 5-1 and 5-2), better 

surface roughness is obtained at a higher temperature while the best surface roughness of 

SiC was obtained at 80°C (Figure 5-3). However, above this temperature, the surface 

roughness increased and it is considered to be over-etched. This might be due to the 

higher rate of dissociation of etchant into its anions and cation as discussed in Chapter 4, 

which created a protective layer at the etching surface and thus hindering the etching 

reaction [61]. 

 

Generally, a positive reduced surface roughness was observed when temperature was 

increased. Figure 5-4 (a)-(e) are AFM images of MGC in 5M HBr for 180 minutes at 

different temperatures. Reduced surface roughness is around -17nm at 19oC, 30 nm at 

65oC and 77.5 nm at 100oC. For BN and SiC, a quadratic trend was obtained with a peak 
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point of reduced surface roughness, but the roughness increased after 80oC. Figures 5-5 

(a)-(e) are AFM images of BN and SiC in 7.5M of HBr for 75 minutes, and Figures 5-6 

(a)-(e) in 6M of HBr for 180 minutes at different etching temperature. The reduced 

surface roughness of BN at 19 oC is around -10nm, 1.7 nm at 65oC, and 3.5nm at 100oC. 

The reduced surface roughness of SiC is 126nm at 19 oC, 151 nm at 65oC and 96 nm at 

100oC. 

 

Etching temperature has also been found to significantly influence the degree of 

transformation of the surface [179]. More extensive etching is expected to occur at higher 

temperature due to the increasing rate of etchant dissociation with temperature.   

However, higher etching temperature does not necessarily produce better quality surface 

roughness.  Poor surface roughness is reported  at higher etching temperature [179, 180]. 

They found that all the treated surfaces were rougher than that of the untreated surface 

[60]. As temperature of etch increased near to boiling point, roughness values increased 

to about 15nm Ry due to preferential etching of the grain boundary areas [56]. 

 

However, several researchers found that the lower surface roughness was obtained at the 

beginning of the process and increased after certain etching temperature. Jardiel et al. 

found that increasing temperature up to 50oC improves etching and new grain boundaries 

and other structures are clearly observed [74]. Platelets show sharp boundaries instead of 

rounded ones observed in the thermally etched samples.  
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Figure 5-1 MGC reduced surface roughness (nm) with etching temperature (oC) 

 

 

Figure 5-2 BN reduced surface roughness (nm) versus etching temperature (oC) 
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Figure 5-3 SiC reduced surface roughness (nm) versus etching temperature (oC) 

 

 

 

Figure 5-4 (a) AFM images of MGC before etching in 5M HBr for 180 minutes in 19oC, 

Ra = 138.64nm 
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Figure 5-4 (b) AFM images of MGC after etching in 5M HBr for 180 minutes in 19oC, Ra 

= 155.62nm 
 

 

Figure 5-4 (c) AFM images of MGC before etching in 5M HBr for 180 minutes in 65oC, 

Ra = 132.51nm 
 

 

Figure 5-4 (d) AFM images of MGC after etching in 5M HBr for 180 minutes in 65oC, 

Ra= 102.30nm 
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Figure 5-4 (e) AFM images of MGC before etching in 5M HBr for 180 minutes in 100oC, 

Ra = 254.14nm 
 

 

Figure 5-4 (f) AFM images of MGC after etching in 5M HBr for 180 minutes in 100oC, 

Ra = 176.55nm 
 

 
Figure 5-5 (a) AFM images of BN before etching in 7.5M HBr for 75 minutes in 19oC, Ra 

= 125.47nm 
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Figure 5-5 (b) AFM images of BN after etching in 7.5M HBr for 75 minutes in 19oC, 
Ra=135.56nm 

 

 

Figure 5-5 (c) AFM images of BN before etching in 7.5M HBr for 75 minutes in 65oC, 

Ra= 120.39nm 
 

 

Figure 5-5 (d) AFM images of BN after etching in 7.5M HBr for 75 minutes in 65oC, 

Ra=118.99nm 
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Figure 5-5 (e) AFM images of BN before etching in 7.5M HBr for 75 minutes in 100oC, 

Ra = 73.97nm 
 

 

Figure 5-5 (f) AFM images of BN after etching in 7.5M HBr for 75 minutes in 100oC, 

Ra= 70.47nm 
 

 

Figure 5-6 (a) AFM images of SiC before etching in 6M HBr for 180 minutes in 19oC, 

Ra= 180.48nm 
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Figure 5-6 (b) AFM images of SiC after etching in 6M HBr for 180 minutes in 19oC, 
Ra=54.15nm 

 

 

Figure 5-6 (c) AFM images of SiC before etching in 6M HBr for 180 minutes in 65oC, 

Ra=211.02nm 
 

 

Figure 5-6 (d) AFM images of SiC after etching in 6M HBr for 180 minutes in 65oC, 

Ra=60.17nm 
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Figure 5-6 (e) AFM images of SiC before etching in 6M HBr for 180 minutes in 100oC, 

Ra = 125.79nm 

 

 

Figure 5-6 (f) AFM images of SiC after etching in 6M HBr for 180 minutes in 100oC, 

Ra= 89.79nm 

 

5.4.2 Effect of Etchant 

Etching process relied on the reaction between anion of the etchant and the material 

composition. For this reason, the effect of etchant, namely HBr, HCl and H3PO4 on the 

etching and surface roughness of the MGC, BN and SiC was performed. The 

experimental results and the AFM analysis on the effect of the etchants concerned are as 

depicted from Figures 5-7 to 5-12 respectively and is summarized in Tables 5-12 and 5-

13. From Figures 5-10 to 5-12, the effect of etchant was compared at moderate 
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concentration (0 level) of each etchant with temperature and duration are fixed. Thus, the 

effect of etchant towards the substrate can be studied precisely. 

 

The result shown in Figure 5-7 is in good agreement with the result obtained in Table 5-1 

that p-value of etchant in MGC is more than 0.05. Thus, it is not a significant variable in 

the affecting surface roughness of MGC. However, with BN and SiC as indicated in 

Figure 5-8 and 5-9 the etchant is a significant variable and has influenced on surface 

roughness in chemical etching of BN and SiC. The etching of BN in H3PO4 gave the best 

performance with 1.55nm improvement of surface quality. This is followed with 0.15nm 

improvement in HCl and 1nm detriment in HBr etchant on BN’s surface. For SiC, it is 

best etched in the HCl with the improvement of 50nm on the surface roughness. As 

shown in Figure 5-9, H3PO4 contributed 15nm improvement on surface quality and HBr 

gave 10nm of surface’s improvement. The difference of surface roughness observed for 

each substrate could be attributable to the difference in the microstructure of substrate 

and their reactivity towards the anions of etchants. Structurally, all materials are 

crystalline, partially crystalline, or amorphous. These substrates are made up of a large 

number of small crystals, or grains, and separated from one another by the grain 

boundaries. 

 

Table 5-13 Result of surface roughness for MGC at 65oC following 120minutes etching 

process (Figure 5-10 (a)-(f)) 

0 level etchant concentration Before (nm) After (nm) Surface roughness (nm) 

10M HCl 163.89 142.98 + 28 

6M HBr 131.34 101.81 + 37 

12M H3PO4 281.64 224.54 + 42 
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Table 5-14 Result of surface roughness for BN at 65oC for 120minutes etching process 

(Figure 5-11 (a)-(f)) 

0 level etchant concentration Before (nm) After (nm) Surface roughness (nm) 

10M HCl 125.47 145.28 - 12 

6M HBr 84.61 108.56 - 38 

12M H3PO4 204.36 159.62 + 13 

 

Table 5-15 Result of surface roughness for SiC at 65oC for 120minutes etching process 

(Figure 5-12 (a)-(f)) 

0 level etchant concentration Before (nm) After (nm) Surface roughness (nm) 

10M HCl 35.47 29.94 + 5.53 

6M HBr 102.01 102.98 - 0.97 

12M H3PO4 33.82 32.64 + 1.18 

 

The different effect of the individual etchant on the surface roughness improvement from 

the AFM analyses suggest that, the extent of etching caused by the etchant on the surface 

of the respective material is different. This observation also implies a distinct reactivity of 

the etchant towards the material microstructure that is attributable to the different trend of 

surface roughness properties exhibited by MGC, BN and SiC. With the same type of 

etchant and other independent variables, the only difference between these materials is 

their microstructure and composition. Williams et al. summarised that the degree of 

roughening probably depends on the microstructure and thus varies with the method of 

material preparation [6]. Prudhomme  et al. [181] also found  that roughness of the same 

material is different from two etchants used proving that the chemical reactivity is not the 

same at the solid-liquid interface.  

 



Chapter 5 Development of Surface Roughness Models and Experimental Studies 

 

125 
 

 

Figure 5-7 MGC reduced surface roughness (nm) versus etchant 

 

 

Figure 5-8 BN reduced surface roughness (nm) versus etchant 
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Figure 5-9 SiC reduced surface roughness (nm) versus etchant 

 

 

Figure 5-10 (a) AFM images of MGC before etching at 65oC for 120 minutes in 0 level 

etchant - 10M HCl, Ra = 163.89nm 
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Figure 5-10 (b) AFM images of MGC after etching at 65oC for 120 minutes in 0 level 

etchant - 10M HCl, Ra = 142.98nm 
 

 
Figure 5-10 (c) AFM images of MGC before etching at 65oC for 120 minutes in 0 level 

etchant - 6M HBr, Ra = 131.34nm 
 

 

Figure 5-10 (d) AFM images of MGC after etching at 65oC for 120 minutes in 0 level 

etchant - 6M HBr, Ra = 101.81nm 
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Figure 5-10 (e) AFM images of MGC before etching at 65oC for 120 minutes in 0 level 

etchant - 12M H3PO4, Ra = 281.64nm 
          

 
Figure 5-10 (f) AFM images of MGC after etching at 65oC for 120 minutes in 0 level 

etchant - 12M H3PO4, Ra = 224.54nm 

 

Figure 5-11 (a) AFM images of BN before etching at 65oC for 120 minutes in 0 level 

etchant - 6M HCl, Ra = 125.47nm 



Chapter 5 Development of Surface Roughness Models and Experimental Studies 

 

129 
 

 
Figure 5-11 (b) AFM images of BN after etching at 65oC for 120 minutes in 0 level 

etchant - 10M HCl, Ra = 145.28nm 
 

 
Figure 5-11 (c) AFM images of BN before etching at 65oC for 120 minutes in 0 level 

etchant - 6M HBr, Ra = 84.61nm 
 

 

Figure 5-11 (d) AFM images of BN after etching at 65oC for 120 minutes in 0 level 

etchant - 6M HBr, Ra = 108.56nm 
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Figure 5-11 (e) AFM images of BN before etching at 65oC for 120 minutes in 0 level 

etchant - 12M H3PO4, Ra = 204.36nm 
 

 
Figure 5-11 (f) AFM images of BN after etching at 65oC for 120 minutes in 0 level 

etchant - 12M H3PO4, Ra = 159.62nm 
 

 

Figure 5-12 (a) AFM images of SiC before etching at 65oC for 120 minutes in 0 level 

etchant - 10M HCl, Ra = 35.47nm 
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Figure 5-12 (b) AFM images of SiC after etching at 65oC for 120 minutes in 0 level 

etchant - 10M HCl, Ra = 29.94nm 
 

 
Figure 5-12 (c) AFM images of SiC before etching at 65oC for 120 minutes in 0 level 

etchant - 6M HBr, Ra = 102.01nm 
 

 

Figure 5-12 (d) AFM images of SiC after etching at 65oC for 120 minutes in 0 level 

etchant - 6M HBr, Ra = 102.98nm 
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Figure 5-12 (e) AFM images of SiC before etching at 65oC for 120 minutes in 0 level 

etchant - 12M H3PO4, Ra = 33.82.64nm 

 

 

Figure 5-12 (f) AFM images of SiC after etching at 65oC for 120 minutes in 0 level 

etchant - 12M H3PO4, Ra = 32.64nm 

 

5.4.3 Effect of Etching Duration 

In the earlier study, the etching duration has been shown to influence the etching rate. 

The possible effect of etching duration on the surface roughness of the ceramic materials 

was investigated. A significant reduction of the surface roughness in chemical etching of 

SiC was observed as shown in Figure 5-15. Figures 5 (-13, -14 and -15) show similar 

reduction of the surface roughness with etching for all substrates. Figures 5 (-16, -17 and 

-18) are AFM images of each material at different duration. Figures 5-16 (a)-(c) are AFM 
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images of MGC in 6M HBr at 100oC at different etching duration. The surface roughness 

improved at different rate:  30nm for 60 minutes, 19.8nm for 120 minutes, and 45.75nm 

for 180 minutes etching. The summary of result from Figure 5-17 (a)-(c) and Figure 5-18 

(a)-(f), is shown in Table 5-16 and 5-17 respectively. 

 

Figures 5-17(a)-(c) are AFM images of BN in 6M HBr at different duration. Surface 

roughness is improved from 17.58nm (at 30 minutes) to 46.4nm (at 75 minutes), and next 

the improvement of surface roughness is lower, which is 29nm (at 150 minutes). Image 

of SiC surface roughness is shown in Figures 18(a)-(c). The surface roughness in 6M HBr 

for 40 minutes is 14.41nm, for 120 minutes is 20.96nm and for 230minutes is 20.86nm.  

 
Table 5-16 Result of surface roughness for BN at 100oC in 7M HBr (Figure 5-17(a)-(f)) 

Duration of etching (min) Before (nm) After (nm) Surface roughness (nm) 

30 108.56 90.98 + 17.58 

75 120.39 73.97 + 46.40 

150 79.97 44.91 + 29.00 

 

Table 5-17 Result of surface roughness for SiC at 100oC in 6M HBr (Figure 5-18(a)-(f)) 

Duration of etching (min) Before (nm) After (nm) Surface roughness (nm) 

40 54.97 50.56 + 14.41 

120 80.12 59.16 + 20.96 

230 106.41 85.55 + 20.86 

Overall, surface roughness with the exception of BN tends to improve with initial etching 

duration of about 2 hours, but decline upon extended duration of etching. 

 

The results from Prudhomme et al. [182] and Cakir et al. [60, 180] are in good agreement 

with the results that we obtained. One possible explanation for this trend is the 

improvement in the surface state that might occur when the solute was dissolved in the 

etchant at longer etching period, which in turn would increase the energy gap for 

generating etch figure and reduce the damage of material’s surface. It was reported that 

longer etching period produce a more stable etching process in the case of aluminium 
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etching (187). Baranova and Dorosinskii [70] also observed that  as the duration of 

etching was extended , insoluble reaction products started forming and the surface of the 

sample started to erode. This observation is consistent with the poor surface roughness 

that we observed from the AFM analysis upon extended etching for MGC, BN and SiC. 

 

 

Figure 5-13 MGC reduced surface roughness (nm) versus etching duration (minutes) in 

HBr  

 

 

Figure 5-14 BN reduced surface roughness (nm) versus etching duration (minutes) in 

HBr  
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Figure 5-15 SiC reduced surface roughness (nm) versus etching duration (minutes) in 

HBr  

 

 

Figure 5-16(a) AFM images of MGC before etching in 6M HBr at 100oC for 60 minutes, 

Ra = 117.49nm 
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Figure 5-16(b) AFM images of MGC after etching in 6M HBr at 100oC for 60 minutes, 

Ra = 87.40nm 

 

 

Figure 5-16(c) AFM images of MGC before etching in 6M HBr at 100oC for 120 minutes,  

Ra = 167.67nm 
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Figure 5-16(d) AFM images of MGC after etching  in 6M HBr at 100oC for 120 minutes, 

Ra = 147.86nm 

 

 

Figure 5-16(e) AFM images of MGC before etching in 6M HBr at 100oC for 180 minutes, 
Ra = 205.15nm 
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Figure 5-16(f) AFM images of MGC after etching in 6M HBr at 100oC for 180 minutes, 
Ra = 159.40nm 

 
 

 

Figure 5-17(a) AFM images of BN before etching  in 7M HBr at 65oC for 30 minutes, 

Ra= 108.56nm 
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Figure 5-17(b) AFM images of BN after etching in 7M HBr at 65oC for 30 minutes, 

Ra=90.98nm 

 

 

Figure 5-17(c) AFM images of BN before etching in 7M HBr at 65oC for 75min, 

Ra=120.39nm 
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Figure 5-17(d) AFM images of BN after etching in 7M HBr at 65oC for 75min, 

Ra=73.97nm 

 

 

Figure 5-17 (e) AFM images of BN before etching  in 6M HBr at 65oC for 150 minutes, 

Ra = 73.97nm 
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Figure 5-17 (f) AFM images of BN after etching in 6M HBr at 65oC for 150 minutes, 

Ra=44.91nm 

 

Figure 5-18 (a) AFM images of SiC before etching in 6M HBr at 65oC for 40 minutes, 

Ra= 54.97nm 
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Figure 5-18 (b) AFM images of SiC after etching in 6M HBr at 65oC for 40 minutes, Ra = 

50.56nm 

 

 

Figure 5-18 (c) AFM images of SiC before etching in 6M HBr at 65oC for 120 minutes, 

Ra = 80.12nm 
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Figure 5-18 (d) AFM images of SiC after etching in 6M HBr at 65oC for 120 minutes, 

Ra= 59.16nm 

 

 

Figure 5-18 (e) AFM images of SiC before etching in 6M HBr at 65oC for 230 minutes, 

Ra= 106.41nm 
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Figure 5-18 (f) AFM images of SiC after etching in 6M HBr at 65oC for 230 minutes, 

Ra=85.55nm 

 

5.4.4 Effect of Etchant’s Concentration 

The effect of etchant’s concentration on the surface roughness of MGC, BN and SiC was 

also investigated during the etching process. In Tables 5-1, 5-2 and 5-3, ANOVA 

indicated that the influence of etchant’s concentration is less than 80%. Interaction of 

etchant and its concentration was found to be more important in reducing surface 

roughness. Figures 5-19, 5-20 and 5-21 show the graphs of reduced surface roughness 

versus etchant’s concentration of MGC, BN and SiC. All the figures show smoother 

surface roughness at lower etchant’s concentration. The higher the concentration of 

etchant used the higher the surface roughness was obtained. This might be due to the etch 

rate drop with increasing etchants’ concentration. The lower etch rate might result in 

rougher surface roughness being obtained because less surface layer is being removed. 

 

It was reported that  poorer material surface was achieved when higher concentration of 

etchant is used [177, 182]. Sundararaman et al. [174] also observed  that etching at high 

concentration produced a rougher surface. Others also reported that after etching with 

concentrated HCl etchant, the surface roughness of the materials involved increased by 

approximately 102nm in height [168, 183]. 
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Figure 5-19 MGC reduced surface roughness (nm) versus etchant’s concentration 

(Molarity) 

 

Figure 5-20 BN reduced surface roughness (nm) versus etchant’s concentration (Molarity) 

 



Chapter 5 Development of Surface Roughness Models and Experimental Studies 

 

146 
 

 

Figure 5-21 SiC reduced surface roughness (nm) versus etchant’s concentration (Molarity) 

 

 

5.5 CONCLUSION 

Our results showed that surface roughness of MGC is solely affected by etching 

temperature. Generally, better surface roughness was obtained at higher temperature. In 

etching of BN, etching temperature and etchant are the main factors affecting surface 

roughness. Our results showed that better surface roughness of BN was obtained in 

H3PO4 etchant. This was observed when etching process occurred at the high temperature 

zone. For etching of SiC, surface roughness was influenced by etching duration, etchant 

and the interaction between the etchant and its concentration. The best surface roughness 

was obtained in HCl etchant with 6 Molarity concentration following an etching duration 

of 180 minutes.  



Chapter 6 Development of Dimensional Accuracy Models and Experimental Studies 

 

147 
 

 

 

 

Chapter 6 Development of Dimensional Accuracy Models 

and Experimental Studies 

 

 

 

 

6.1 INTRODUCTION 

Dimensional accuracy in this research is defined by the etch ratio representing the ratio 

between etch rate of non-indented area compared to indented area on the surface of a 

substrate. It forms the basis for obtaining a successful pattern on the surface of a substrate. 

A successful pattern is created when the etch rate at indented area is lower than non-

indented area. This would correspond to obtaining an etch ratio of greater than 1. 

Patterning of substrate is to design and produce a desirable pattern on the substrate 

surface. A few methods have been introduced in the industry for micro- and nano-

patterning, such as dry and wet mask patterning. Recently, a new technology has been 

introduced to replace mask by micro-indentation. This technique is versatile due to its 

low cost for initial facilities and manufacture, simplicity of process and substrate 

selectivity [75-77, 167, 184].   

 

Dimensional accuracy model is established based on the etch ratio. In this study, the first 

and second order model were developed for etch ratio by CCD. First order model is used 

to study linear model and this is also to determine the nature of the process, whether the 

process is linear or it requires higher level model as identified by the curvature term 

shown in ANOVA of first order model. ANOVA in first order model will be used as 

analytical tool if curvature term is shown to be insignificant. Otherwise, CCD is needed to 

study the process. In this study, CCD is needed because this process is not linear. Thus, 

discussion of etch ratio is based on the result of the second order model. Predictive 
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models were generated for each substrate in different etchants. Experimental studies to 

establish relationships between substrates and etchants were reported in the later Section 

6.4.  

 

 

6.2 DEVELOPMENT OF FIRST ORDER DIMENSIONAL ACCURACY MODEL 

First order models for etch ratio are represented in the following Tables for MGC, BN 

and SiC in H3PO4, HBr and HCl. Curvature term is significant in all the analyses shown 

below, which means that chemical machining of MGC, BN and SiC have to proceed to 

CCD for analysis.  

 

Table 6-1 ANOVA for selected factorial model for etch ratio of MGC in H3PO4 

Source Sum of Squares df Mean Square F Value p-value   
Model 14.34 1 14.34 31.30 0.0113 significant
C-concentration 24.00 1 24.00 52.36 0.0054   
Curvature 25.50 1 25.50 55.64 0.005 significant
 

Table 6-2 ANOVA for selected factorial model for etch ratio of MGC in HBr 

 Sum of Squares df Mean Square F Value p-value   
Model 25.00 1 25.00 7.58 0.07 not significant
B-duration 25.00 1 25.00 7.58 0.07   
Curvature 35.59 1 35.59 10.80 0.05 significant 

 

Table 6-3 ANOVA for selected factorial model for etch ratio of MGC in HCl 

Source Sum of Squares df Mean Square F Value p-value  
Model 10.49 1 10.5 21.3 0.004 significant 
B-duration 14.84 1 14.8 30.2 0.002   
Curvature 4.47 1 4.5 9.1 0.024 significant 
Lack of Fit 2.95 5 0.6       

 

Table 6-4 ANOVA for selected factorial model for etch ratio of BN in H3PO4 

Source Sum of Squares df Mean Square F Value p-value   
Model 0.0313 1 0.0313 10.339 0.19 not significant

C-concentration 0.0313 1 0.0313 10.339 0.19   
Curvature 0.8352 1 0.8352 276.314 0.04 significant 
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Table 6-5 ANOVA for selected factorial model for etch ratio of BN in HBr 

Source Sum of Squares df Mean Square F Value p-value    
Model 0.0036 1 0.004 0.006 0.9445 not significant 
C-concentration 0.8438 1 0.844 1.459 0.3505   
Curvature 15.5402 1 15.540 26.880 0.0352 significant 

 

Table 6-6 ANOVA for selected factorial model for etch ratio of BN in HCl 

Source Sum of Squares df Mean Square F Value p-value   
Model 0.002060 1 0.00206 0.1536 0.7213 not significant 
C-concentration 0.002604 1 0.0026 0.1942 0.6892   
Curvature 0.153612 1 0.15361 11.4579 0.0429 significant 
Lack of Fit 0.026331 2 0.01317 0.9479 0.5876 not significant 
 

Table 6-7 ANOVA for selected factorial model for etch ratio of SiC in H3PO4 

Source Sum of Squares df Mean Square F Value p-value   
Model 0.563 1 0.563 2.7 0.1989 not significant 
B-duration 0.563 1 0.563 2.7 0.1989   
Curvature 4.688 1 4.688 22.5 0.0178 significant 
 

Table 6-8 ANOVA for selected factorial model for etch ratio of SiC in HBr 

Source Sum of Squares df Mean Square F Value p-value   
Model 3.54 1 3.54 3.353 0.1645 not significant 
C-concentration 8.17 1 8.17 7.737 0.0689   
Curvature 18.13 1 18.13 17.173 0.0255 significant 
Lack of Fit 1.17 2 0.58 0.292 0.7947 not significant 
 

Table 6-9 ANOVA for selected factorial model for etch ratio of SiC in HCl 

Source Sum of Squares df Mean Square F Value p-value    
Model 0.50 1 0.50 63660000 < 0.0001 significant 
C-concentration 0.50 1 0.50 63660000 < 0.0001   
Curvature 0.25 1 0.25 63660000 < 0.0001 significant 
 

 

 

 

 



Chapter 6 Development of Dimensional Accuracy Models and Experimental Studies 

 

150 
 

6.3 DEVELOPMENT OF SECOND ORDER DIMENSIONAL ACCURACY 

MODEL 

 

Based on the dimensional accuracy model the higher the etch ratio, the more accurate is 

the dimensional accuracy. As shown above, the first order model showed that this process 

is not a linear function model. As such, a second-order model was developed to further 

understand the process. 

 

Equations (30)-(38) are predictive model developed for etch ratio in H3PO4, HBr and HCl 

for MGC, BN and SiC respectively. They are all empirical models and no special unit is 

required. Tables 6-10, 6-11 and 6-12 are ANOVA data for etch ratio for MGC, BN and 

SiC. MGC and BN were fitted to 2FI model with 96.4% and 95.6% respectively without 

lack of fit. While, SiC was fitted almost perfectly at 99.99% to quadratic model. Etching 

duration is the main factor affecting the etch ratio of MGC, BN and SiC. Other than that, 

BN and SiC were affected by the etchant’s concentration. Other significant factors are 

interaction between etching temperature and etchant, etching temperature and etchant’s 

concentration. 

 

Etch ratio of MGC in H3PO4 = -1.91 + 0.042(T) + 0.023(t) - 1.40(c) - 2.62E-4(T)(t) + 

0.023(T)(c) -5.71E-3(t)(c)         (eq. 6-1) 

 

Etch ratio of MGC in HBr = - 4.12E-3 + 0.017(T) + 0.029(t) - 0.68(c) - 2.62E-4(T)(t) + 

0.023(T)(c) - 5.71E-3(t)(c)       (eq. 6-2) 

 

Etch ratio of MGC in HCl = - 2.16 + 0.042(T) + 0.027(t) - 0.85(c) - 2.62E-4(T)(t) + 

0.023(T)(c) - 5.71E-3(t)(c)       (eq. 6-3) 

 

Etch ratio of BN in H3PO4 = 26.51 - 0.715(T) + 0.043(t) - 6.52(c) + 5.56E-4(T)(t) + 

0.03(T)(c) + 0.025(t)(c) + 4.81E-3(T2) - 4.55E-4(t2) - 1.53(c2)  (eq. 6-4) 
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Etch ratio of BN in HBr = 61.71 - 1.18(T) + 0.093(t) - 9.76(c) + 5.56E-4(T)(t) + 

0.03(T)(c) + 0.025(t)(c) + 4.81E-3(T2) - 4.55E-4(t2) - 1.53(c2)  (eq. 6-5) 

 

Etch ratio of BN in HCl = 19.21- 0.69(T) + 0.071(t) - 8.34(c) +   5.56E-4(T)(t) + 

0.03(T)(c) + 0.0247(t)(c) + 4.81E-3(T2) - 4.55E-4(t2) - 1.53(c2)  (eq. 6-6) 

 

Etch ratio of SiC in H3PO4 = 0.191 - 5.788E-3(T) - 4.085E-4(t) - 2.55(c) + 7.38E-5(T)(t) 

- 6.405E-4(T)(c) + 8.157E-3(t)(c)      (eq. 6-7)                                         

 

Etch ratio of SiC in HBr = - 5.84 + 0.0582(T) + 0.0303(t) + 0.932(c) + 7.378E-5(T)(t) - 

6.405E-4(T)(c) + 8.158E-3(t)(c)      (eq. 6-8) 

 

Etch ratio of SiC in HCl = 0.389 - 4.91E-3(T) - 1.62E-3(t) – 2(c) + 7.38E-5(T)(t) - 

6.405E-4(T)(c) + 8.157E-3(t)(c)      (eq. 6-9) 

 

Table 6-10 ANOVA for Response Surface 2FI Model for MGC 

Source Sum of Squares df Mean Square F Value p-value    
Model 110.344 14 7.8817 2.17495 0.0376 significant 
A-temperature 0.00045 1 0.0004 0.00012 0.9912   
B-duration 24.1194 1 24.119 6.6557 0.0152   
C-concentration 3.67303 1 3.673 1.0135 0.3224   
D-etchant 12.2488 2 6.1244 1.6900 0.2022   
AB 24.0021 1 24.002 6.6233 0.0154   
AC 17.2937 1 17.293 4.7721 0.0372   
Residual 105.092 29 3.6238     
Lack of Fit 95.4480 24 3.9770 2.0618 0.216 not significant
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Table 6-11 ANOVA for Response Surface 2FI Model for BN 

Source Sum of Squares df Mean Square F Value p-value    
Model 227.07 17 13.35748 7.0012 0.0044 significant 
A-temperature 7.2948 1 7.294831 3.8235 0.0863   
B-duration 32.692 1 32.69273 17.1357 0.0033   
C-concentration 20.530 1 20.53049 10.7609 0.0112   
D-etchant 12.550 2 6.27511 3.2890 0.0907   
AB 28.961 1 28.9611 15.179 0.0046   
AC 5.7031 1 5.70311 2.9892 0.1221   
Residual 15.262 8 1.90787       
Lack of Fit 9.4126 4 2.35316 1.6089 0.3281 not significant
 

Table 6-12 ANOVA for Response Surface Quadratic Model for SiC 

Source Sum of Squares df Mean Square F Value p-value    
Model 60.668 14 4.333448 32.23 < 0.0001 significant 
A-temperature 7.265 1 7.26539 54.04 < 0.0001   
B-duration 4.7716 1 4.771665 35.49 0.0001   
C-concentration 1.2381 1 1.238174 9.21 0.0126   
D-etchant 14.496 2 7.248152 53.92 < 0.0001   
AB 0.5943 1 0.594312 4.42 0.0618   
AC 0.0031 1 0.003176 0.02 0.8809   
Residual 1.344 10 0.134423     
Lack of Fit 0.796 8 0.099509 0.36 0.877 not significant
 

 

6.4 DIMENSIONAL ACCURACY STUDIES 

In a typical dimensional accuracy experimental study a load is applied on the substrate 

surface where patterning is required. Then, it undergoes the etching process. At the end of 

the process, measurement is taken at the indented area and non-indented area. Etch rate 

between non-indented area and indented areas is compared, which is called the etch ratio. 

Etch rate at indented area has been shown to be slower compared to normal surface area 

(non-indented area) because the surface that  has been densified by stress enhanced the 

bonding of the substrate structure and delayed the chemical reaction at the indented area 

[6]. With different etch rate happening at indented area and non-indented area, the desired 

patterning is represented as shown in Chapter 2, Figure 2.7.  
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To achieve a higher dimensional accuracy for the development of patterning, a higher 

etch ratio is required, where higher etch rate occurred at non-indented area and lower etch 

rate at indented area. Figures 6-1, 6-2 and 6-3 show plots of etch rate at indented and non-

indented area for MGC, BN and SiC. These figures indicate that etch rate at non indented 

area is always higher than indented area with increasing etching period. The slower rate 

of etching observed at the indented surface of all the substrates studied is consistent with 

the literature reports [76] [77]. For MGC, the peak etch rate occurred after an etching 

period of about 250 minutes for surface of non-indented and 180 minutes for indented 

surface respectively. Etch rate at both surfaces decreases simultaneously after the 

respective etching periods. The etch ratio in SiC shows a similar trend with etching 

period. The only exception is the etch ratio of BN. This actually agrees with the results 

presented in Section 4.4.3, where etch rate increases with etching duration. The lower 

etch rate at the higher etching duration is possibly due to the insoluble deposit at the 

indented area, which might be formed on the substrate surface with etchant [75]. 

 

In Figure 6-1 and 6-3, the etch rate for both areas are increased to a peak duration of 

about 190 minutes duration and decreased dramatically thereafter for MGC and SiC. The 

result is consistent with the observation made by Hirota et. al. where the thickness 

reduction of the substrate was proportionally increased with etch duration without defects 

[175]. In Figure 6-2, etch ratio in BN is at its highest at duration of 140 minutes longer 

than those observed for MGC and SiC. The longer time required for the etch ratio to peak 

in BN is probably due to the lower relative reactivity at the densified surface compared to 

the other two substrates. Another reason might be due to the contamination on substrate’s 

surface that occurs during the indented process, which forms  a protective layer on its 

surface and delays the etching reaction  [61]. 
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Figure 6-1 MGC etch rate of indented area and non-indented area versus etching duration 

(minutes) 

 

 

Figure 6-2 BN etch rate of indented area and non-indented area versus etching duration 

(minutes) 
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Figure 6-3 SiC etch rate of indented area and non-indented area versus etching duration 

(minutes) 

 

Nagai et al. [185] successfully conducted experiment on macro-size patterning and 

chemical machining, which led to the formation of well-ordered patterns of surface 

crystal steps. Youn and Kang [77] fabricated Pyrex glass by micro-indentation with HF 

etching. Saito et al. [75, 76, 184] proved the feasibility of micro-machining process in 

fabricating glass ceramic in HF etching. These research studies showed that patterning on 

the glass ceramic surface become possible due to etch rate difference between indented 

and non-indented area. One of the key issues of this technology is to increase and control 

the difference of etch rate between intended and non-indented area.  

 

6.4.1 Effect of Etching Duration 

ANOVA revealed that etching duration has a significant impact on the dimensional 

accuracy or the etch ratio for MGC and SiC during the chemical machining process. The 

results presented in Figures 6-4 and 6-6, show that the etch ratio for MGC and SiC 

increased linearly with etching duration. Cakir et al. observed that etch ratio of non-

indented to indented area increased with etching process. Similar phenomena were also 

observed in many research studies [75-77, 167, 184].  

 

 In this study, the best ratio of 3 was obtained for MGC and 2.3 for SiC at the respective 

duration of 240 minutes. The lower ratio observed for SiC could be due to the greater 
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hardness and the lower reactivity of the substrate to the etchant involved. For BN, it fitted 

well to quadratic model with 99.56%. Its peak etch ratio of 5.5 occurred around 90 

minutes, but there is a notable decrease in the etch ratio thereafter. .The decrease in the 

etch ratio is consistent with a significant increase in the etch rate at the indented surface 

of BN in Fig 6.2 when the etching duration was extended beyond 200 minutes. . The 

protective layer formed as a result of product accumulation at the non-indented reaction 

site might attribute to the lower etch ratio observed in BN following the prolonged 

etching period. More detailed kinetic studies are required to establish the real cause for 

the observed phenomenon.  

 

 

                                  Figure 6-4 MGC etch ratio versus etching duration (minutes)   
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Figure 6-5 BN etch ratio versus etching duration (minutes) 

 

 

Figure 6-6 SiC etch ratio versus etching duration (minutes) 
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6.4.2 Effect of Etchant’s Concentration 

With less than 0.05 p-value, etchant’s concentration is considered as one of the key 

influencing factors on etch ratio of MGC, BN and SiC. Overall, etch ratio decreased with 

etchant’s concentration. A peak etch ratio was found in the etching of BN, occurring 

around 6 Molarity HBr. This means that higher etch rate difference between non-indented 

and indented areas could be obtained at lower etchant’s concentration. Saito et al. found 

that higher etch ratio for glass ceramic was obtained at lower pH region [75, 76]. They 

also suggested that etch ratio can be controlled by etchant’s concentration.  The results 

(Figures 6-7, 6-8 and 6-9) also suggest that, in higher etchant’s concentration region, the 

leaching reaction scarcely occurred even at non-indented area, resulting in the decrease of 

etch rate ratio. Leaching reaction is a technique which converts the substrate into soluble 

salts in aqueous media. The etching reaction of the substrate and the leaching reaction are 

considered to be competitive reaction. When leaching preceded the etching reaction, the 

etch rate would be increased. This happens when ions diffuse into the leached layer to 

enhance the dissolution rate. Saito et al. [184] also reported that not only alkali and alkali 

earth metal oxide, but also alumina in alumino silicate glass were leached out in HF 

etchant. 

 

 

Figure 6-7 MGC etch ratio versus etchant’s concentration (Molarity) 
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Figure 6-8 BN etch ratio versus etchant’s concentration 

 

 

Figure 6-9 SiC etch ratio versus etchant’s concentration 
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6.4.3 Effect of Etching Temperature  

Figures 6-10, 6-11 and 6-12 show plots of the etch ratio versus etching temperature of 

MGC, BN and SiC. Although etching temperature plays an important role in the etch rate 

and surface roughness of the substrates, their influence toward the etch ratio for MGC 

and BN is relatively less compared to other variables studied above including the etchant 

concentration and etching duration. The p-value of temperature in MGC and BN is more 

than 0.05. With 95% confident interval, this means that temperature is not a significant 

variable bearing little influence on the etch ratio. This is also clearly reflected in Figure 6-

10 and 6-11 where the changes of etch ratio is relatively small. Although higher etching 

temperature should lead to higher etch rate, it does not seem to affect the etch ratio 

significantly. Etch ratio for MGC is about 1.4 and BN is about 0.2 at room temperature. 

As temperature rises, etch ratio of MGC and BN showed minor increment. One of the 

reasons is because etch ratio is calculated by dividing etch rate at non indented area over 

indented area. If the etch rates for both area are increased with similar rate, this will 

create a phenomenon where etch ratio is relatively low or near to 1. 

 

 

Figure 6-10 MGC etch ratio versus etching temperature (oC) 
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Figure 6-11 BN etch ratio versus etching temperature (oC) 

 

 

Figure 6-12 SiC etch ratio versus etching temperature (oC) 

 

 

Figure 6-12 shows the relationship between SiC’s etch ratio and etching temperature. The 

etch ratio for SiC did not increase linearly with temperature as observed for MGC and 
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BN. Instead the etch ratio decreased from a value of 13 at 19oC to a value of 3 at 65oC 

and increased again to 8.5 at 100oC. The results suggested that at lower temperature 

ranging from about 20oC to 65oC, the reactivity of the indented part of the SiC appeared 

to increase with temperature. However, it is interesting to note that above 65oC the trend 

was reversed.  This observation seemed to suggest that a different reaction mechanism 

could be involved at the higher temperature at 65oC and above. Saxena and Dwivedi [166] 

observed that thermal annealing process was governed by two independent mechanisms, 

which were characterised by activation energies of 22kJmol-1 and 9kJmol-1 at switch over 

temperature of about 150oC.  A more in-depth kinetic study is warranted to support the 

idea of dual reaction mechanisms of SiC involved at the lower and higher range of 

temperature respectively. 

 

6.4.4 Effect of Etchant 

Figures 6-13, 6-14 and 6-15 show the relationship between the etch ratio and etchant in 

CHM of MGC, BN and SiC. The results show that the best etch ratio was obtained for all 

the substrates when they were etched  in HBr. Data shown earlier in Table 6-10 reveals 

that the influence of etchant on the etch ratio is relatively small compared to the etching 

duration. In BN, p-value of etchant is 0.0907, which is higher than 0.05. This shows that 

it was less influenced by the etchants involved. However, in SiC etching, the etchant 

appeared to have a significant impact on the etch ratio obtained as shown in Table 6-10. 

As highlighted by William, not all materials were etched in all the etchants due to 

different material properties, and only specific solutions and concentrations are suited for 

certain materials [56].  

 

Etch ratio of SiC in HBr is about 17, which is the highest value obtained compared to 

other etchants suggesting again the low etch rate at the indented area of SiC. For etching 

of SiC in HCl and H3PO4, the etch ratios obtained are similar, but lower at the respective 

values of 2.75 and 3.0. From this study we concluded that HBr served as the most 

effective etchant compared to HCl and H3PO4 for the substrates involved. However, to 

achieve the required patterning, proper control towards the relative etch rate at the 

indented and non-indented surface is necessary. Therefore, the choice of the etchant and 
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concentration used is critical in order to ensure a successful and the required patterning 

on a specific substrate. 

 

 

Figure 6-13 MGC etch ratio versus etchant 

 

 

Figure 6-14 BN etch ratio versus etchant 
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Figure 6-15 SiC etch ratio versus etchant 

 

 

6.5 CONCLUSION 

We concluded that the etch ratio for MGC is mainly influenced by etching duration and 

favourable etch ratio can be achieved at prolonged etching. For BN’s etch ratio, it is 

strongly influenced by etching duration and the concentration of etchants. Higher etch 

ratio was observed at the etching duration of about 100 minutes and at relatively low 

etchant concentration. The etch ratio for SiC was significantly influenced by etching 

temperature, and etchant concentration and type of etchants, but relatively less by etching 

duration. Higher etch ratio was observed for SiC at prolonged etching with low etchant 

concentration. Relatively higher etch ratio values were observed at temperature of 19oC 

and 100oC with a minimum etch ratio at 65oC. Generally, lower etch rate was found at 

indented area compared to non-indented area due to less reactivity at the densified areas 

where stronger bonding occurs between the particles at the surface of the material. 

Further study using a variety of load pressure would yield better patterning results. 
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Chapter 7 Predictive Models and Optimisation 

 

 

 

 

7.1 INTRODUCTION 

In this chapter, the main objective is to verify the predictive models generated by CCD. 

For this purpose, ANN was employed using NeuroSolution 5 as the verification software. 

The method for performing ANN is described in Section 3.7.1and MLP neural network 

was chosen for this study. The advantage of MLP is due to its ability to model the process 

mean and process variation simultaneously using one integrated MLP model. The ANN 

results will be discussed in Section 7.2.1 and this will be followed with the comparison of 

the ANN, RSM and the experimental results obtained respectively. 

 

Optimisation of chemical machining of advanced ceramics is important in terms of cost 

and time consumed. Currently, manufacturing industries, especially semiconductor 

sectors require high performance of machining with less time consumed and lower 

production cost. In our studies, optimisation of chemical machining of all substrates is 

performed by using optimisation tool in DoE. 

 

 

7.2 PREDICTIVE MODELS 

7.2.1 ANN Results 

In performing ANN, MLP was applied in the study of CHM of MGC, BN and SiC. 

Training of data is part of the MLP analysis. This is to estimate the parameters of the 

model and ensure data is not over-trained. It is then followed by validation, which is 

monitoring the training with a subset of the training exemplars set aside. The data would 



Chapter 7 Predictive Models and Optimisation 

 

166 
 

then proceed on the testing to determine its ability to generalise. At the end of the process, 

mean squared error (MSE) and coefficient of determination (R2) were checked in the 

training and testing. In training, MSE will decrease from the beginning of training until 

the lowest MSE value, where data is well trained. Sometimes, the MSE value would 

increase at the end of the training due to over-training. This is not a preferable scene 

where data has to be trained again. In testing, result of R2 is important to determine the 

goodness of fit of a model. An R2 of 1.0 indicates that the model perfectly fits with the 

respective data. Yet, this is not possible in reality. So, the closest value of R2 to 1.0, the 

better the data fits to the respective model. Each substrate is trained with 1000 number of 

epochs with learning rate of 0.05. The input layer consists of four neurons (corresponding 

to etching temperature, etching duration, etchant and etchant’s concentration) and three 

neurons in the output layer (corresponding to etch rate, surface roughness and etch ratio).  

 

7.2.2 ANN Result for Boron Nitride 

In the analysis of BN etch rate as shown in Figure 7-1, it was found that the MSE in 

training is 0.00989 without over-training. Seven set of experimental data were used as 

testing and the result is shown in Figure 7-2. R2 obtained in the testing is 0.9124 and this 

shows that ANN model reproduces the adsorption in this system, within experimental 

ranges adopted in the fitting model.  

 

 

Figure 7-1 BN etch rate’s variation of mean square error (MSE) in training of ANN 
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Figure 7-2 Comparison of ANN predicted and the measured of average value of BN etch 

rate for testing patterns. 

 

Graph of MSE versus epoch for BN surface roughness training set is shown in Figure 7-3 

and the final MSE obtained is 0.0409 without being over-trained. The fitting of model is 

shown in Figure 7-4, where R2 of 0.987 was obtained with five data for testing purpose. 

They fit well to MLP model.  

 

 

Figure 7-3 BN surface roughness’s variation of mean square error (MSE) in training of 

ANN 
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Figure 7-4 Comparison of ANN predicted and the measured of average value of BN 

surface roughness for testing patterns. 

 

The best MSE obtained in training of BN etch ratio is 0.011834 with 1000 number of 

epochs without being over-trained (Figure 7-5). Compared to etch rate and surface 

roughness analysis, etch ratio required longer period to train the data. For the fitting of 

etch ratio model, R2 is 0.936 as shown in Figure 7-6. 

 

 

Figure 7-5 BN etch ratio’s variation of mean square error (MSE) in training of ANN 
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Figure 7-6 Comparison of ANN predicted and the measured of average value of BN etch 

ratio for testing patterns. 

 

7.2.3 ANN Result for Machinable Glass Ceramic 

Etch rate of MGC was well trained in MLP with MSE of 0.0095 and the line shown in 

Figure 7-7 is stable at the end of the training. Testing of MGC etch rate data is shown in 

Figure 7-8. It is found that the data fitted well to the model with R2 of 0.943. 

 

 

Figure 7-7 MGC etch rate’s variation of mean square error (MSE) in training of ANN 
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Figure 7-8 Comparison of ANN predicted and the measured of average value of MGC 

etch rate for testing patterns. 

 

The MGC surface roughness training graph is shown in Figure 7-9 and the testing graph 

is shown in Figure 7-10. From the result obtained, it was found that the MSE for surface 

roughness training is 0.00125 and R2 for testing data is 0.9823. This result shows that 

MLP model was able to predict the surface roughness of MGC and the data obtained 

fitted well to the model. 

 

 

Figure 7-9 MGC surface roughness’s variation of mean square error (MSE) in training of 

ANN 
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Figure 7-10 Comparison of ANN predicted and the measured of average value of MGC 

surface roughness for testing patterns. 

 

The training graph of MGC etch ratio shown in Figure 7-11indicates that it was well 

trained with MSE of 0.0183 and there was no sign of being over-trained. As for testing, 

the graph of predicted result versus experimental result is depicted in Figure 7-12. R2 of 

0.967 was obtained which demonstrated that MGC etch ratio experimental data fitted 

well to the MLP model. 

 

 

Figure 7-11 MGC etch ratio’s variation of mean square error (MSE) in training of ANN 
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Figure 7-12 Comparison of ANN predicted and the measured of average value of MGC 

etch ratio for testing patterns. 

 

7.2.4 ANN Result for Silicon Carbide 

From the overall ANN analysis, SiC gives the best result compared to that of MGC and 

BN. In the training of SiC for etch rate, a relatively low value of MSE was obtained 

(0.0098) and no over-train was found in the training graph (Figure 7-13). Figure 14 

shows a comparison of experimental data with predictive model of MLP. It is found that 

the data almost fitted perfectly or 98.9% to the predictive model. 

 

 

Figure 7-13 SiC etch rate’s variation of mean square error (MSE) in training of ANN 
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Figure 7-14 Comparison of ANN predicted and the measured of average value of SiC 

etch rate for testing patterns. 

 

Figure 7-15 shows the training graph of SiC surface roughness in MLP.  MSE obtained is 

0.00139 and no over-train is found in the graph. This shows that SiC’s surface roughness 

was well trained. The predictive model of MLP is shown in Figure 7.16, where R2 of 

testing is 0.996.  

 

 

Figure 7-15 SiC surface roughness’s variation of mean square error (MSE) in training of 

ANN 
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Figure 7-16 Comparison of ANN predicted and the measured of average value of SiC 

surface roughness for testing patterns. 

 

Training of SiC etch ratio showed that the data is well trained with MSE of 0.0021. 

Figure 7-17 shows that training line of SiC etch ratio is stable at the end of the epoch. 

Testing of SiC etch ratio is shown in Figure 7-18, where R2 of 0.961 was obtained. Data 

is well fitted to the predictive model. 

 

 

Figure 7-17 SiC etch ratio’s variation of mean square error (MSE) in training of ANN 
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Figure 7-18 Comparison of ANN predicted and the measured of average value of SiC 

etch ratio for testing patterns. 

 

7.2.5 Comparison between Artificial Neural Network and Response Surface 

Method 

 

The Artificial Neural Network (ANN) analysis on the data above was performed and a 

predictive model was generated. These results were then drafted in the graph to facilitate 

comparison of results obtained from the CCD predictive model and experimental study 

(as shown in Tables 7-1, 7-2 and 7-3). These graphs are shown as follows: Figures 7-19, 

7-20 and 7-21 show comparison for etch rate of MGC, BN and SiC respectively; Figures 

7-22, 7-23 and 7-24 show comparison for reduced surface roughness of MGC, BN and 

SiC respectively; and, Figures 7-25, 7-26 and 7-27 show comparison of graphs for etch 

ratio of MGC, BN and SiC respectively. 

 

The results obtained by CCD’s predictive model clearly showed its positive impact as 

indicated in Figures 7-19, 7-22, 7-24 and 7-25. Overall, both techniques demonstrate a 

good agreement with the experimental result. With less than 10% error, CCD’s predictive 

model performed better. 
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Table 7-1 Data comparison between Experimental, Predictive model by RSM and ANN for BN 

 
Etchant 

Temp Duration Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

1 HBr 62 135 7 0.0005 0.0003 -0.0053 -168.00 -105.73 -31.38 -0.500 15.984 -3.84 

2 H3PO4 100 30 10 0.0000 0.0001 -0.0027 0.03 -13.99 -46.07 0.000 6.843 18.93 

3 H3PO4 100 240 10 0.0000 -0.0001 0.0040 101.58 -11.78 -48.58 0.000 -3.426 8.52 

4 H3PO4 62 135 12 0.0000 -0.0004 0.0022 12.98 -1.02 -32.58 0.000 2.831 -21.04 

5 H3PO4 62 135 12 0.0000 -0.0004 0.0022 12.98 -1.02 -32.58 0.000 2.831 -21.04 

6 H3PO4 19 30 14 0.0000 -0.0015 -0.0024 27.10 56.26 7.81 0.000 9.125 18.57 

7 HCl 100 30 7 -0.0001 0.0007 0.0063 2.65 55.55 -41.50 0.000 4.684 -5.93 

8 HCl 62 135 9 0.0000 0.0002 0.0011 -12.28 -30.23 -41.27 0.000 0.830 2.66 

9 HCl 62 135 6 0.0000 0.0002 0.0133 -0.17 17.77 -31.96 0.250 1.743 -4.38 

10 HBr 100 135 7 0.0001 0.0005 -0.0084 -166.63 -93.67 -26.35 0.500 3.578 -5.84 

11 HBr 100 240 8 0.0004 0.0006 -0.0066 3.72 -174.87 -37.63 0.500 -0.993 96.74 

12 H3PO4 62 300 12 0.0001 -0.0001 0.0039 -39.75 -45.95 -38.81 0.500 -17.020 52.12 

13 H3PO4 62 135 12 0.0002 -0.0004 0.0022 12.98 -1.02 -32.58 0.500 2.831 -21.037 

14 H3PO4 100 240 14 0.0000 -0.0007 -0.0023 -75.18 -30.67 -54.46 0.571 1.481 18.380 

15 HBr 62 135 9 0.0005 0.0004 -0.0106 3.72 -90.51 -89.06 0.667 4.044 -9.992 

16 HCl 62 0 9 0.0005 0.0003 0.0090 -87.31 98.45 -39.06 0.750 -5.099 3.759 

17 HCl 100 240 11 0.0008 0.0005 -0.0084 34.61 -160.65 -45.36 0.750 1.534 -9.665 

18 HBr 62 135 7 0.0000 0.0003 -0.0053 76.92 -105.73 -31.38 0.833 15.984 -3.839 

19 H3PO4 100 30 14 0.0000 -0.0011 -0.0070 62.54 32.37 -53.44 0.875 1.357 16.531 

20 H3PO4  62 135 9 0.0074 0.0004 0.0047 -62.55 -0.51 -19.83 1.000 0.690 -25.111 

21 HCl 62 310 9 0.0002 0.0001 0.0022 -47.12 -197.03 -43.21 1.000 -16.146 9.976 

22 H3PO4 62 135 15 0.0003 -0.0013 -0.0022 -193.00 -1.53 -44.64 1.000 -3.672 -12.354 

23 HCl 19 240 1 0.0000 0.0002 0.0010 -95.61 -191.65 -71.02 1.000 -2.183 -3.057 

24 HBr 19 240 4 -0.0002 0.0001 0.0051 -22.22 -213.65 -83.07 1.078 41.485 85.618 
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Etchant 

Temp Duration Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

25 H3PO4 62 0 12 -0.0039 -0.0006 -0.0042 -35.86 35.74 -26.09 1.100 0.662 37.303 

26 HBr 19 240 8 0.0001 0.0004 0.0002 -251.28 -244.39 -236.02 1.333 35.003 93.907 

27 HBr 62 135 4 -0.0001 0.0002 0.0007 12.02 -120.94 9.32 1.833 19.280 4.834 

28 HCl 100 240 7 -0.0023 0.0000 0.0000 41.22 -85.22 -41.68 2.000 0.263 4.638 

29 HBr 100 30 8 -0.0074 0.0006 -0.0171 3.72 19.99 -33.06 2.000 -11.702 -23.632 

30 HCl 19 30 11 -0.0070 -0.0002 0.0083 3.72 71.42 -62.75 2.500 1.310 11.109 

31 H3PO4 100 135 12 0.0000 -0.0004 -0.0001 -235.73 -6.02 -50.97 2.500 8.107 -20.428 

32 H3PO4 0 135 12 -0.0009 -0.0004 0.0050 9.72 7.13 39.84 2.500 24.021 -21.580 

33 HBr 62 135 7 0.0012 0.0003 -0.0053 -43.40 -105.73 -31.38 2.667 15.984 -3.839 

34 HCl 62 135 9 0.0002 0.0002 0.0011 -348.52 -30.23 -41.27 3.000 0.830 2.657 

35 HCl 100 135 11 0.0008 0.0005 -0.0108 3.08 -57.64 -45.75 3.500 3.560 6.004 

36 HCl 19 30 7 0.0074 0.0001 0.0246 -22.22 112.16 -15.51 3.500 15.348 -12.941 

37 HCl 19 240 7 -0.0009 0.0000 0.0124 -37.05 -85.66 -28.05 3.500 1.462 10.787 

38 HCl 62 135 9 0.0007 0.0002 0.0011 -22.22 -30.23 -41.27 4.000 0.830 2.657 

39 HCl 62 135 9 0.0004 0.0002 0.0011 -47.12 -30.23 -41.27 4.500 0.830 2.657 

40 H3PO4 19 240 14 0.0000 -0.0005 0.0046 106.84 -63.84 -12.04 16.000 -0.216 16.135 

41 HBr 62 310 7 0.0004 0.0003 0.0024 -47.12 -263.23 -40.84 5.000 2.956 3.000 

42 H3PO4 19 30 10 -0.0010 0.0000 0.0021 99.84 40.47 45.74 0.387 19.527 22.964 

43 H3PO4 19 240 10 0.0191 0.0004 0.0087 -36.22 -14.38 22.22 1.726 -0.207 6.247 

44 HBr 19 30 6 -0.0002 0.0002 0.0057 -22.22 -26.99 -62.06 2.123 50.635 6.563 

45 HBr 100 240 6 0.0008 0.0000 -0.0001 -22.22 -174.70 -21.49 1.301 0.574 88.117 

46 HBr 100 30 6 -0.0001 0.0007 -0.0080 5.77 -45.09 -14.43 -1.245 0.258 -3.224 

47 H3PO4 62 135 12 -0.0023 -0.0004 0.0022 -32.90 -1.02 -32.58 -0.352 2.831 -21.037 

48 HBr 0 135 7 0.0001 0.0001 0.0009 -301.12 -125.41 -241.09 0.358 66.026 -0.333 

49 HBr 62 0 7 0.0005 0.0004 -0.0076 -30.42 15.78 -22.61 1.608 7.010 2.750 
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Etchant 

Temp Duration Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

50 HBr 62 0 7 0.0005 0.0004 -0.0076 -30.42 15.78 -22.61 1.608 7.010 2.750 

51 HBr 62 135 7 0.0001 0.0003 -0.0053 -34.31 -105.73 -31.38 1.431 15.984 -3.839 

52 HCl 0 135 9 0.0005 -0.0001 0.0136 -47.12 -20.43 -61.37 2.034 20.474 1.683 

53 HCl 100 30 9 0.0006 0.0007 -0.0012 -68.02 50.46 -43.79 -0.038 1.655 6.262 

54 HCl 62 135 12 0.0006 0.0003 -0.0089 -4.82 -78.23 -52.10 1.862 -8.726 7.538 
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Table 7-2 Data comparison between Experimental, Predictive model by RSM and ANN for MGC 

 
Etchant 

Temp Duration  Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

1 H3PO4 62 135 9 0.00003 -.00011 -0.00006 89.400 119.48 90.239 1.833 2.829 1.140 

2 HBr 62 135 4 0.00013 0.00026 0.00023 10.062 -19.54 13.424 4.000 2.735 2.912 

3 HCl 62 135 6 0.00027 0.00029 0.00022 -24.629 -11.63 -20.187 3.000 2.197 1.083 

4 H3PO4 19 30 10 -0.00059 -.00035 -0.00030 23.358 21.97 25.450 0.000 0.555 -0.580 

5 H3PO4 19 240 10 0.00013 0.00003 0.00005 83.918 87.39 81.286 8.000 5.586 2.189 

6 H3PO4 100 30 10 0.00024 0.00036 0.00026 61.352 63.57 68.893 3.963 1.400 3.963 

7 H3PO4 100 240 10 0.00015 0.00022 0.00016 102.757 126.13 116.112 3.000 1.974 2.438 

8 HBr 19 30 6 0.00003 -.00001 -0.00004 -18.688 -6.14 -33.569 0.514 1.439 0.514 

9 HBr 19 240 6 0.00007 -.00003 0.00023 -14.458 -24.02 -10.586 9.000 7.602 7.867 

10 HBr 100 30 6 0.00118 0.00112 0.00080 17.192 27.69 3.244 1.500 0.302 2.691 

11 HBr 100 240 6 0.00051 0.00058 0.00053 29.473 6.93 33.667 0.010 2.008 0.369 

12 HCl 19 240 7 0.00001 0.00010 0.00031 -30.975 -16.03 -22.786 1.268 5.703 1.268 

13 HCl 19 30 7 0.00007 -.00004 0.00000 1.651 6.08 -18.941 1.200 -0.118 1.185 

14 HCl 100 30 7 0.00124 0.00097 0.00058 28.417 33.03 18.784 1.000 0.769 1.371 

15 HCl 100 240 7 0.00059 0.00058 0.00044 7.574 8.05 6.940 1.600 2.132 2.527 

16 H3PO4 0 135 12 0.00000 -.00002 -0.00018 -3.883 -22.38 -14.623 0.000 1.220 -0.538 

17 H3PO4 62 0 12 0.00000 -.00012 -0.00015 -25.939 -38.75 -34.858 0.000 0.670 -1.483 

18 H3PO4 62 135 12 -0.00001 -.00014 -0.00012 32.197 12.07 25.783 1.000 1.611 1.442 

19 H3PO4 62 135 12 0.00002 -.00014 -0.00012 32.197 12.07 25.783 2.000 1.611 1.442 

20 H3PO4 62 310 12 -0.00005 0.00003 0.00007 81.188 77.95 86.500 1.000 2.831 1.389 

21 H3PO4 62 135 12 -0.00015 -.00014 -0.00012 42.197 12.07 25.783 1.250 1.611 1.442 

22 H3PO4 62 135 12 -0.00026 -.00014 -0.00012 42.197 12.07 25.783 3.000 1.611 1.442 

23 H3PO4 100 135 12 0.00003 -.00011 -0.00006 89.400 119.48 90.239 4.511 1.851 4.511 

24 HBr 0 135 7 0.00013 .00026 0.00023 10.062 -19.54 13.424 0.000 3.858 1.608 
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Etchant 

Temp Duration  Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

25 HBr 62 0 7 0.00003 -0.0001 -0.0001 50.237 33.19 47.973 0.000 1.063 0.936 

26 HBr 62 135 7 0.00013 0.00026 0.00023 -6.219 5.47 -5.087 2.593 2.732 2.593 

27 HBr 62 135 7 0.00027 0.00029 0.00022 37.051 36.71 42.037 2.593 2.732 2.593 

28 HBr 62 135 7 -0.00059 -0.0004 -0.0003 19.912 33.97 21.208 4.000 2.732 2.593 

29 HBr 62 135 7 0.00013 0.00003 0.00005 19.912 33.97 21.208 1.667 2.732 2.593 

30 HBr 62 310 7 0.00024 0.00036 0.00026 19.912 33.97 21.208 3.424 4.896 3.424 

31 HBr 100 135 7 0.00015 0.00022 0.00016 19.912 33.97 21.208 1.000 2.042 1.581 

32 HCl 0 135 9 0.00003 -0.00001 -.00004 19.897 30.43 10.488 0.000 1.486 -0.299 

33 HCl 62 0 9 0.00007 -0.00003 0.00023 36.573 51.44 38.773 0.000 0.459 -0.186 

34 HCl 62 310 9 0.00118 0.00112 0.00080 27.208 15.04 18.048 3.826 3.787 3.826 

35 HCl 62 135 9 0.00051 0.00058 0.00053 52.024 43.72 53.586 -1.000 1.908 1.117 

36 HCl 62 135 9 0.00001 0.00010 0.00031 27.759 31.21 29.567 2.000 1.908 1.117 

37 HCl 62 135 9 0.00007 -0.00004 0.00000 48.339 38.27 48.523 1.117 1.908 1.117 

38 HCl 62 135 9 0.00124 0.00097 0.00058 48.339 38.27 48.523 1.117 1.908 1.117 

39 HCl 100 135 9 0.00059 0.00058 0.00044 48.339 38.27 48.523 3.000 2.167 3.348 

40 H3PO4 19 30 14 0.00000 -0.00002 -0.0002 48.339 38.27 48.523 0.000 -1.706 0.080 

41 H3PO4 19 240 14 0.00000 -0.00012 -0.0002 63.220 52.51 66.447 0.000 0.925 1.293 

42 H3PO4 100 30 14 -0.00001 -0.00014 -0.0001 -164.405 -126.2 -132.70 2.500 2.928 3.591 

43 H3PO4 100 240 14 0.00002 -0.00014 -0.0001 -41.548 -30.46 -36.696 1.500 1.101 3.666 

44 HBr 19 30 8 -0.00005 0.00003 0.00007 -89.600 -74.91 -81.491 1.000 0.625 0.162 

45 HBr 19 240 8 -0.00015 -0.00014 -0.0001 13.239 17.96 18.559 8.000 4.388 6.634 

46 HBr 100 30 8 -0.00026 -0.00014 -.00012 62.711 37.28 69.444 5.500 3.276 3.594 

47 HBr 100 240 8 0.00003 -0.00011 -.00006 55.880 49.70 51.653 2.000 2.582 0.689 

48 HCl 19 240 11 0.00013 0.00026 0.00023 97.804 80.79 93.341 1.125 2.149 0.782 

49 HCl 19 30 11 0.00027 0.00029 0.00022 50.237 33.19 47.973 1.250 -1.272 2.327 
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Etchant 

Temp Duration  Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

50 HCl 100 30 11 0.00056 0.00045 0.00063 89.467 90.34 83.070 1.000 3.403 0.453 

51 HCl 100 240 11 0.00005 0.00007 0.00018 56.840 53.39 63.514 5.000 2.367 3.440 

52 H3PO4 62 135 15 0.00016 0.00001 -0.0001 41.875 45.18 33.759 0.667 0.393 1.545 

53 HBr 62 135 9 0.00073 0.00078 0.00075 70.028 81.82 71.704 1.000 2.730 2.410 

54 HCl 62 135 12 0.00044 0.00031 0.00047 91.408 87.15 99.145 2.000 1.620 1.137 
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Table 7-3 Data comparison between Experimental, Predictive model by RSM and ANN for SiC 

 
Etchant 

Temp Duration Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

1 H3PO4 62 135 9 0.104 0.180 0.083 14.867 13.824 14.442 5.059 2.889 5.059 

2 HBr 62 135 4 0.000 0.000 0.061 -27.710 -19.223 -19.248 -11.328 -0.864 -11.328 

3 HCl 62 135 6 0.000 0.000 0.139 -5.577 -5.166 -7.534 2.000 2.065 6.692 

4 H3PO4 19 30 9 0.000 0.000 -0.012 -3.417 -4.040 -2.472 2.500 2.424 -0.513 

5 H3PO4 19 240 9 -0.001 0.215 0.029 44.741 45.942 43.339 1.000 0.920 -2.928 

6 H3PO4 100 30 9 0.000 0.000 0.029 -10.168 -10.365 -13.241 2.000 2.187 3.801 

7 H3PO4 100 240 9 0.000 0.215 -0.003 36.792 38.755 39.776 2.000 1.938 0.587 

8 HBr 19 30 4 0.000 0.000 -0.024 -41.075 -40.290 -40.378 -7.037 -4.945 -7.037 

9 HBr 19 240 4 0.000 0.000 0.013 14.192 11.770 13.456 0.000 0.013 1.330 

10 HBr 100 30 4 0.000 0.000 0.015 -20.338 -37.482 -30.889 0.000 0.000 -3.319 

11 HBr 100 240 4 0.000 0.000 -0.007 15.051 13.717 12.898 6.000 6.213 4.285 

12 HCl 19 30 7 1.000 0.000 0.586 -26.979 -22.892 -25.089 2.000 2.060 5.042 

13 HCl 19 240 7 0.000 0.000 0.023 25.694 24.885 21.429 -6.365 0.300 -6.365 

14 HCl 100 30 7 0.000 0.000 0.067 -28.588 -27.716 -31.352 3.000 1.893 9.012 

15 HCl 100 240 7 0.000 0.000 -0.108 21.337 19.200 21.450 -2.000 1.389 -3.291 

16 H3PO4 0 135 12 0.000 -0.022 0.006 27.588 29.461 28.005 0.000 0.136 -0.853 

17 H3PO4 62 0 12 0.000 -0.015 0.008 -8.879 -9.734 -8.852 0.000 -0.168 1.158 

18 H3PO4 62 135 12 0.003 0.001 -0.002 28.306 22.571 24.162 2.000 0.395 2.179 

19 H3PO4 62 135 12 0.000 0.001 -0.002 21.429 22.571 24.162 1.667 0.395 2.179 

20 H3PO4 62 135 12 0.000 0.001 -0.002 21.429 22.571 24.162 2.000 0.395 2.179 

21 H3PO4 62 310 12 0.000 0.179 0.008 59.831 64.448 63.113 -3.941 1.124 -3.941 

22 H3PO4 62 170 12 0.000 0.022 -0.012 39.214 30.946 32.461 0.333 0.540 0.637 

23 H3PO4 100 135 12 -0.010 -0.010 -0.021 17.722 18.348 18.214 0.667 0.553 3.970 

24 HBr 0 135 8 0.000 -0.022 0.004 -6.331 -3.944 -5.269 0.000 -1.739 1.001 
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Etchant 

Temp Duration Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

25 HBr 62 0 7 0.000 0.122 0.007 -39.768 -37.483 -34.483 0.000 -2.231 -4.921 

26 HBr 62 135 7 0.000 0.000 -0.007 -5.116 -3.843 -4.537 2.000 2.486 3.604 

27 HBr 62 310 7 0.000 0.000 0.002 39.038 39.766 39.469 102.377 8.600 102.377 

28 HBr 100 135 7 0.000 -0.010 -0.027 -5.323 -3.781 -2.555 5.500 5.076 5.166 

29 HBr 62 135 7 0.000 0.000 -0.007 -5.116 -3.843 -4.537 2.000 2.486 3.604 

30 HBr 62 135 7 0.000 0.000 -0.007 -5.116 -3.843 -4.537 3.000 2.486 3.604 

31 HBr 62 135 7 0.000 0.000 -0.007 -5.116 -3.843 -4.537 3.604 2.486 3.604 

32 HCl 0 135 9 0.000 -0.022 0.178 8.508 8.907 6.706 0.000 0.170 -1.608 

33 HCl 62 0 9 0.000 0.122 0.156 -26.883 -27.721 -27.351 0.000 0.085 6.162 

34 HCl 62 310 9 0.000 0.000 -0.042 45.472 43.207 45.756 1.000 0.999 -4.002 

35 HCl 62 135 9 0.000 0.000 -0.065 5.283 3.167 5.560 1.079 0.483 1.079 

36 HCl 62 135 9 0.000 0.000 -0.065 5.283 3.167 5.560 0.333 0.483 1.079 

37 HCl 62 135 9 0.000 0.000 -0.065 5.283 3.167 5.560 0.690 0.483 1.079 

38 HCl 62 135 9 0.000 0.000 -0.065 5.283 3.167 5.560 1.000 0.483 1.079 

39 HCl 100 135 9 0.000 -0.010 -0.089 2.286 -0.352 1.098 0.500 0.675 2.664 

40 H3PO4 19 30 14 0.000 0.000 0.032 8.470 8.029 10.245 0.027 -2.203 0.027 

41 H3PO4 19 240 14 0.000 0.000 -0.008 55.095 59.466 54.087 -0.250 -0.281 1.085 

42 H3PO4 100 30 14 0.000 0.000 0.007 -5.959 -2.787 -3.793 4.233 -2.544 4.233 

43 H3PO4 100 240 14 0.001 0.001 0.007 50.141 47.789 48.658 4.040 0.633 4.598 

44 HBr 19 30 8 0.000 0.214 0.043 -18.854 -20.324 -23.108 -0.214 -2.615 3.186 

45 HBr 19 240 8 0.000 0.000 -0.015 33.965 33.191 31.845 114.702 5.769 114.702 

46 HBr 100 30 8 0.001 0.214 0.002 -20.338 -22.006 -16.747 2.000 2.226 6.963 

47 HBr 100 240 8 0.000 0.000 -0.007 29.682 30.648 27.311 117.226 11.865 117.226 

48 HCl 19 30 11 0.000 0.214 0.119 -10.599 -11.317 -8.607 1.333 -1.482 2.241 

49 HCl 19 240 11 0.000 0.000 -0.075 38.248 37.916 36.300 3.500 0.185 3.462 
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Etchant 

Temp Duration Etchant  ETCH RATE (g/min) SURFACE ROUGHNESS(nm) ETCH RATIO 

 (oC) (minutes) concentration Experiment RSM ANN Experiment RSM ANN Experiment RSM ANN 

50 HCl 100 30 1 0.000 0.214 -0.079 -16.939 -20.631 -19.308 20.000 -1.752 6.030 

51 HCl 100 240 1 0.000 0.000 0.166 30.204 27.740 32.944 1.000 1.170 6.638 

52 H3PO4 62 135 1.68 0.000 0.000 -0.022 31.191 31.318 32.005 2.944 -2.099 2.944 

53 HBr 62 135 1.68 0.000 0.179 -0.033 11.552 11.538 8.887 100.000 5.836 94.815 

54 HCl 62 135 1.68 0.000 0.180 -0.022 12.716 11.499 15.990 3.353 -1.099 3.353 
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Figure 7-19 Predictive of MGC etch rate by RSM and ANN compared to experimental 

result 

 

 

Figure 7-20 Predictive of BN etch rate by RSM and ANN compared to experimental 

result 
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Figure 7-21 Predictive of MGC etch rate by RSM and ANN compared to experimental 

result 

 

 

Figure 7-22 Predictive of MGC reduced surface roughness by RSM and ANN compared 

to experimental result 
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Figure 7-23 Predictive of BN reduced surface roughness by RSM and ANN compared to 

experimental result 

 

 

Figure 7-24 Predictive of SiC reduced surface roughness by RSM and ANN compared to 

experimental result 
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Figure 7-25 Predictive of MGC etch ratio by RSM and ANN compared to experimental 

result 

 

 

Figure 7-26 Predictive of BN etch ratio by RSM and ANN compared to experimental 

result 
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Figure 7-27 Predictive of SiC etch ratio by RSM and ANN compared to experimental 

result 
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7.3   OPTIMISATION 

For optimisation of chemical machining performance, each variable has to be at its peak 

and achieve the highest etch rate with good surface roughness and dimensional accuracy. 

In the optimisation study using DE 7, priority has been set to all features with high etch 

rate, high reduced surface roughness and high etch ratio. Reduced surface roughness has 

been set to maximum because the higher the reduced surface roughness is, the lower the 

value of surface roughness obtained after etching. Similarly, for the best patterning with 

good dimensional accuracy, the etch rate at non-indented area has to be higher compared 

to etch rate at indented area. Thus, a maximum rate of etch ratio is desirable.  

 

Results obtained by DE 7 are shown in Table 7-4. In optimisation, etching temperature, 

etching duration, etchant and etchant’s concentration were set to the range as determined 

earlier in first-order model. Etchant is one of the main significant factors almost in all 

features. It is shown that chemical machining’s optimum point for all substrates occurred 

with HBr as an etchant.  

 

Chemical machining of MGC in HBr etched best compared to other etchants. With 

highest temperature (100oC) and lowest etching duration (30 minutes) at 8.5 molarity, 

MGC can be etched at 0.0011g/min. At this point, etch ratio of 3.277 was the highest 

among other etching etchants with improvement of 80.879nm on the surface roughness. 

Next is HCl where it etched at 100oC for 30 minutes in 8.5 molarity. This is the optimum 

point for HCl with etch rate of 0.0008g/min, 81.2nm reduced surface roughness and 

1.617 etch ratio. With least desirability, optimum etching of MGC in H3PO4 is around 

100oC for 109 minutes in 9.5 molarity, etch rate is 0.0238g/min with reduced surface 

roughness of 0.0003nm and etch ratio of 1.617. 

 

HBr etching showed its best result in chemical machining of BN followed by HCl and 

H3PO4. In 6 Molarity of HBr etching of BN, optimum variables occurred at 40oC after a 

duration of 62 minutes in 6 molarity. Result for etch rate is 0.00025g/min, reduced 

surface roughness is 0.00001nm and etch ratio is 3.153. In 9.5 molarity of HCl etching of 

BN, optimum etch rate is approximately 0.0005g/min with reduced surface roughness of 
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0.000001nm and etch ratio of 0.5332. Extent of BN etching in 9.5M H3PO4 is lowest 

compared to HBr and HCl. At 25oC and 137 minutes, the optimum of BN etching in 

H3PO4 occurred at 0.00017g/min with 0.000001nm improvement of surface roughness 

and 1.4497 etch ratio. 

 

Chemical machining of SiC is the most difficult given that it is the hardest substrate 

among the others. Compared to optimisation of MGC chemical machining, SiC shows 

similar higher etch rate and reduced surface roughness. The only difference is etching of 

SiC in all etchants takes longer. Again, HBr etched the best compared to other etchants 

for etching of SiC. Results obtained for etching of SiC in 8.5M HBr at 75oC for 240 

minutes is 0.0009g/min with 128.71nm of reduced surface roughness and 10.004 etch 

ratio. In SiC, H3PO4 etching is better than HCl with etch rate of 0.0118g/min, reduced 

surface roughness of 34.17nm and etch ratio of 2.018. 

 

In compliance to high desirability and features mentioned above, HBr etching displayed 

the best performance among all substrates. Overall, HBr etching of MGC and SiC 

showed the best result, in terms of etch rate, reduced surface roughness and etch ratio.  

 

Table 7-4 Optimisation by DE 7 

 MGC BN SiC 
Desirability 0.586 0.392 0.240 0.563 0.337 0.242 0.954 0.525 0.419 
Etchant HBr HCl H3PO4 HBr HCl H3PO4 HBr H3PO4 HCl 
Temperature, oC 100 100 100 40 100 25 75 100 74 
Duration, minutes 30 30 109 62 128 137 240 172 240 
Concentration, 
Molarity 8.5M 10.5M 9.5M 6M 9.5M 9.5M 8.5M 9.5M 10.5M 
Etch rate, g/min 0.0011 0.0008 0.0003 0.00025 0.0005 0.00017 0.0009 0.0118 0.0003

Reduced surface 
roughness, nm 

80.7 81.818 87.230 0.00001 0.000001 0.000001 128.71 34.169 62.786

Etch ratio 3.277 3.403 1.617 3.1530 0.5332 1.4497 10.004 2.018 0.858 
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8.1 CONCLUSIONS 

Although the development and studies of CHM have been established decades ago, the 

achievement on CHM of advanced ceramics has not been making significant inroads.  

CHM of advanced ceramics was seen as impractical because of their extreme hardness, 

high strength, and high resistance to corrosive material and to high temperature. Part of 

the reason is due to the lack of knowledge on the characteristics of the CHM process and 

as such the current study demands answers to three important questions: what etchant 

should be used, which variables need to be controlled and what are the levels of 

relationships and interactions between the machining variables? Despite the lack of 

knowledge, and challenges faced by the CHM process of advanced ceramics, its benefits 

including cost effectiveness and space saving have become the reason why CHM has 

recently been receiving a renewed boost. This positive trend is also attributable to the 

increasing demand of micro and nano-technology of advanced ceramics materials from 

the industries.  Hence, the initiation of the research studies to explore and seek the 

answers to the above questions.  

 

Before we draw this thesis to a close we would like to highlight and draw out the 

significance of some key findings that we believe have contributed to the new scientific 

knowledge on the CHM process and characteristics of advanced ceramics. A number of 

these findings have been published in some of the distinguished journals mentioned in the 

beginning.  
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8.1.1 Development of Etch Rate Models  

 The past studies of CHM process of advanced ceramics by others were only able to 

establish the relationship between etch rate with not more than two variables at a time. 

Very few and limited studies had been conducted with the applications of statistical 

tools, and none of these studies had ever produced any predictive models for etch rate 

of CHM.  

 DoE was applied in our studies and we were able to develop the first order model for 

CHM. The initial results showed that the etch rate for the selected materials was 

influenced by a number of variables tested. The second order model was successfully 

established and we were able to demonstrate the significance of the variables on etch 

rate and identify the specific relationship between each variables and the etch rate of 

CHM for BN, MGC and SiC. 

 Further analyses of ANOVA indicated that the etch rate increased with increase in the 

etching temperature within the temperature ranged tested.  Amongst the variables 

studied, the nature of the etchant was found to impact the etch rate.   

 HBr etchant showed considerable impact on the etch rate compared to HCl and 

H3PO4. The result indicated that HBr etchant performed the best in all the substrates 

tested under the selected range of concentration or temperature.  

 In this study the relationships between etchants and other variables, including etching 

temperature, etching duration and etchant’s concentration have been clearly identified. 

This has led us to conclude that the choice of etchant is a critical factor in determining 

the quality and effectiveness of the CHM process. 

 Predictive models were generated for the benefits of further research and the industry. 

 

8.1.2 Development of Surface Roughness Models  

 The quality of CHM determines the characteristic of the surface roughness. Good 

surface roughness is always desired in all kind of machining, especially in nano-

machining. However, there are difficulties in controlling the surface roughness, 

especially for CHM, given the various variables involved in the chemical process. 
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 Most of the research studies were confined to examining the relationship of the 

surface roughness between one or two variables at a time. This is because longer 

period is required to study the effect of more variables without the application of 

statistical tool. None of the past surface roughness studies have produced any 

predictive models.  

 We have successfully established the second order model for the surface roughness 

process and demonstrated that the surface roughness of different substrate responded 

invariably to different dependent variables. For MGC, temperature and relationship 

between etchant and its concentration are affecting surface roughness of the substrate. 

For BN, temperature and the types of etchant were found to influence the surface 

roughness. The relationship between temperature and etchant’s concentration, and 

that of etchant and its concentration also showed significant influence on surface 

roughness. For SiC, etching duration and etchant are the main variables that influence 

surface roughness.  

 Overall, the higher the temperature used, the better is the surface roughness obtained. 

Surface roughness is improved at the optimum etching temperature of approximately 

75oC, however a rougher surface was obtained after the optimum point. 

 Etching duration appeared to exhibit similar effect as etching temperature does. Better 

surface roughness was obtained with longer etching process, however for BN and SiC, 

surface roughness only improved at a varied duration and decreased after the 

optimum duration. 

 Predictive models were generated for the future use in research field and also the 

industry. These models could be applied directly in the future study. 

 

8.1.3 Development of Etch Ratio Models  

 In most cases, the final product is rejected due to the undercut, misalignment or defect 

on the desired pattern. Therefore, the method employed for patterning is crucial in 

ensuring a high level of dimensional accuracy.  

 The old or commonly used method is mask patterning for CHM patterning. The 

disadvantages of mask patterning include the possibility of the adhesive mask peeling 
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off during CHM and undercut and moreover, the methods of applying the mask on the 

substrates are sometimes hazardous to the environment.  

 We introduced, micro indentation, a new method using a simple innovative rolling 

tool that we designed and fabricated on our own. Although this was only an early 

stage of study on patterning by means of a mechanical mechanism, we have 

demonstrated the feasibility of using this new simple procedure for patterning studies.  

 In fact we were able to produce patterning of good quality and although the patterning 

at the moment is simple, micro indentation does show its potential and capability as a 

method for CHM patterning.  

 Etch ratio results obtained were similar to that of etch rate, where it is mainly 

influenced by the etching temperature and etchant. The higher the etching 

temperature, the better the etch ratio.  

 Predictive models were generated and these models could be applied directly in the 

industry and also for further research purposes. One of the advantages is that it is able 

to reduce the pre-examining period with the given predictive models when similar 

variables are applied. 

 

8.1.4 Predictive Models and Optimisation 

 In our study, predictive models were successfully developed using RSM and ANN.  

 We established that the RSM and ANN are capable of analysing the experimental 

data. The proposed predictive models generated by these analytical tools showed 

good agreement with the experimental data as shown in the Figures 7-19 – 7-27. 

These models can be potentially applied in the industry with the added advantage of 

reducing the process duration as no preliminary process is required with predictive 

models.  

 The use of Neural Network (NN) in predicting chemical etching parameters was 

found to be effective. The results obtained by NN were in good agreement with that 

predicted by RSM and indicated that these methods have great potential to be 

employed in predicting optimum chemical etching parameters of MGC, BN and SiC 

without needing extensive iterative trials.  
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 The relationship between etching rate, surface roughness and etching ratio with 

etching temperature, etching duration and solution concentration were successfully 

established. 

 To date no optimisation studies have been reported for CHM process. We have 

established that for chemical etching of advanced ceramics, the optimum conditions 

that are required to maximise the etching rate and etching ratio with lower surface 

roughness are as follows:-  

a. Machinable glass ceramics: optimum etching rate of 0.0011g/min, with surface 

roughness enhancement of 80.789nm and 3.277 etching ratio at 100oC etching 

temperature for 30 minutes in 8.5M HBr. 

b. Boron nitride: optimum etching rate is 0.00025g/min, with surface roughness 

enhancement of 0.0001nm and 3.215 etching ratio at 40oC etching temperature for 62 

minutes in 6M HBr. 

c. Silicon carbide: optimum etching rate is 0.0009g/min, with surface roughness 

enhancement of 128.71nm and 10.004 etching ratio at 75oC etching temperature for 

240 minutes in 8.5M HBr. 

 

We believe, we have achieved the objectives of our research study that we set out in the 

beginning. In summary, our studies have provided some important scientific findings on 

CHM of advanced ceramics, namely MGC, BN and SiC with solution of HCl, HBr and 

H3PO4. We have discussed on various types of DoE and their application, identified 

material machinability, established the relationship between etching rates, surface 

roughness and dimensional accuracy and presented the predictive models by RSM and 

ANN. The results supported the feasibility of wet chemical micro-patterning of advanced 

ceramics for micro-devices applications. Direct patterning was successfully introduced to 

meet the increasingly local demand for multi-kind and small quantity production. In this 

leading-edge research involving the use of micro- and nanotechnology, more flexible 

patterning techniques are desired.  
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8.2 SUGGESTION FOR FURTHER WORKS 

We suggest the following for further improvement and future research direction: 

 Additional chemical reagent and process 

At the current stage, CHM process is purely chemical in nature and does not involve 

additional process or chemical reagent. Research studies showed that the result of CHM 

can be improved by applying specific chemical additives. Similar study might be able to 

carry out using chemical reagents of different properties. Stirring process might help to 

improve the etch rate of CHM. Studies showed that the extent of chemical reaction tends 

to increase with the help of stirring process by avoiding static ion which might form as a 

protective layer on top of substrate layer and thus stopping the etching process from 

proceeding [10, 56]. 

 

 Micro-Indentation 

Micro-indentation is new to the patterning in CHM and more study is required   to fully 

understand the characteristics of this process. It has proven its capability in successfully 

patterning a simple micro type pattern. Further research should be carried out in more 

complex patterning. Given the surge of industry toward nano-technology, further study 

on the improvement of micro-indentation is warranted. 

 

 Robustness 

Currently, CHM was carried out in laboratory scale system, where only one substrate was 

examined each time. This is not practical in the real plant, especially in mass production. 

Different results might be obtained at the end of the process. Thus, further study on mass 

production of CHM should be carried out to reduce the noise of the process.  

 

 Statistical approaches 

For further work, it is suggested that a similar approach to be used to predict chemical 

etching parameters of other advanced ceramics using more variables. In addition, Fuzzy 

logic could be employed to analyse the results. A different kind of NN with different 

learning rule and transfer function could be incorporated. Further work could also be 

extended to the current order to 4th order to find the 3rd and 4th level of interactions.  
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