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Glossary of symbols and abbreviations 
 

Roman symbols 

Symbol Meaning Units 

A area cm2 

ai activity of species i - 

C capacitance F 

Ci concentration of species i mol cm-3 

d centre-to-centre separation in microdiscs 

or micropores 
cm 

Di diffusion coefficient of species i cm2 s-1 

e elementary charge in spectrometry - 

e- electrons - 

E potential 

electric field strength in spectrometry 

V 

V m-1 

Eeq equilibrium potential V 

E0’ formal potential V 

F Faraday constant C 

i current nA 

ilim limiting current nA 

J flux - 

L recessed depth in microelectrodes  cm 
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or micropores 

m mass g mol-1 

n number of electrons in solid  

electrode electrochemistry 
- 

Ni number of moles of species i - 

o organic phase at liquid – liquid interfaces - 

O oxidised species in redox reactions -- 

Q charge C 

r radius cm 

R reduced species in redox reactions 

resistance 

universal gas constant 

- 

Ω 

J K-1 mol-1 

Rs resistance of solution Ω 

t time s 

T temperature K 

V potential difference V 

w water / aqueous phase at liquid –  

liquid interfaces 
- 

zi charge of species i - 

Z impedance Ω 

Zim imaginary component of impedance Ω 

Zre real component of impedance Ω 
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Greek symbols 

Symbol Meaning Units 

α aqueous phase of a liquid – liquid system - 

β organic phase of a liquid – liquid system - 

Δ difference - 

δ diffusion zone - 

ε relative permittivity of a solvent A2 s4 kg-1 m-3 

γi
α activity coefficient for species i in phase α - 

φ0’ formal potential V 

iߤ̅
α electrochemical potential of species i in phase α kJ mol-1 

µi
α chemical potential of species i in phase α kJ mol-1 

µi
α,0 standard chemical potential of species i 

in phase α 
kJ mol-1 

ν scan rate in voltammetry 

velocity of ions in spectrometry  

V s-1 

m2 s-1 V-1 

 

 

Standard abbreviations 

Abbreviation Meaning 

ACT Aqueous complexation followed by transfer 

ACV Alternating current voltammetry 

AdSV Adsorptive stripping voltammetry 

AOT Bis(2-ethylhexyl) sulfosuccinate 
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ASV Anodic stripping voltammetry 

BTPPA Bis(triphenylphosphoranyliden)ammonium, organic cation 

BESI Biphasic electrospray ionisation 

BSA Bovine serum albumin 

CE Capillary electrophoresis 

Counter electrode 

CSV Cathodic stripping voltammetry 

CV Cyclic voltammetry 

DESI Desorption electrospray ionisation 

DB18C6 Dibenzo-18-crown-6 

1,2-DCE 1,2-dichloroethane 

1,6-DCH 1,6-dichlorohexane 

2-DGE Two dimensional gel electrophoresis 

DHB 2,5-dihydroxy benzoic acid  

DNNS Dinonylnaphthalenesulfonate 

DPPC L-α-dipalmitoyl phosphatidylcholine 

ESI Electrospray ionisation 

EIS Electrochemical impedance spectroscopy 

ESTASI Electrostatic spray ionisation 

ET Electron transfer 

FAP Tris(pentafluoroethyl)trifluorophosphate, room temperature 

ionic liquid anion 
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FIT Facilitated ion transfer 

FT-ICR Fourier transform ion cyclotron resonance 

GC Gas chromatography 

HEWL Hen-egg-white-lysozyme 

IHP Inner Helmholtz plane 

IT Ion transfer 

ITIES Interface between two immiscible electrolyte solutions 

LC Liquid chromatography 

MALDI Matrix-assisted laser desorption ionisation 

MD Molecular dynamics 

MS Mass spectrometry 

NALDI Nano-assisted laser desorption ionisation 

NB Nitrobenzene 

OHP Outer Helmholtz plane 

P14,6,6,6 Trishexyl(tetradecyl)phosphonium, room temperature 

ionic liquid cation  

PVC Polyvinyl chloride 

QELS Quasi laser light scattering 

RE Reference electrode 

RTIL Room temperature ionic liquid 

SECM Scanning electrochemical microscopy 

SICM Scanning ion-conductance microscopy 



10 

SIMS Secondary ion mass spectrometry 

SPE Solid phase extraction 

SV Stripping voltammetry 

TBA Tetrabutyl ammonium, organic cation 

TIC Transfer by interfacial complexation 

TID Transfer by interfacial dissociation 

TOC Transfer to the organic phase followed by complexation  

TOF Time of flight 

TPB Tetraphenylborate, organic anion 

TPBCl Tetrakis(4-chlorophenyl)borate, organic anion  

TPFB Tetrakis(4-fluorophenul)borate, organic anion 
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Abstract 
 

The understanding of the behaviour of biomolecules at liquid – liquid interfaces is 

of considerable importance for investigating fundamental biological processes and 

therapeutics. Electrochemistry at the interface between two immiscible electrolyte 

solutions (ITIES) is based on charge transfer across the polarised soft interface 

formed when bringing two electrolyte solutions (aqueous and organic) into contact. 

This provides the possibility for detecting biomolecules such as proteins in a label-

free manner. Several pre-treatment steps used in proteome analysis such as protein 

pre-concentration and digestion were implemented at the liquid – liquid interfaces in 

order to investigate the possibilities of this methodology as a tool for the detection 

and identification of proteins.  

 

For this purpose, lysozyme, a model protein was investigated. Electroadsorption 

of this protein was studied at an array of thirty micro-interfaces between two 

immiscible electrolyte solutions (µITIES). Optimum adsorption of lysozyme was 

achieved at an applied potential of 0.95 V, which was followed by voltammetric 

desorption to lower potentials. The desorption peak recorded at ca. 0.68 V was 

dependent on the adsorption time and on the concentration of the protein in the 

aqueous phase. The slow process to reach saturation or equilibrium indicated that the 

multilayer formation and/or protein re-organisation at the interface was the rate-

determining step and not the diffusion to the interface. For high concentrations and 

long adsorption times, the formation of multilayers of lysozyme at the gelled liquid – 

liquid interface was suggested when analysing surface coverage values obtained 

from the voltammetric data. The maximum surface coverage measured (550 pmol 

cm-2) corresponds to several layers of the protein if a single monolayer is 13 pmol 

cm-2. The implementation of this adsorption approach followed by voltammetric 

detection for lysozyme detection demonstrated a linear dynamic range of 0.05 – 1 

µM and a limit of detection of 30 nM, for 300 seconds adsorption which is a more 

than ~15-fold improvement over previous lysozyme detection methods at the ITIES.  

 

Based on the mechanism proposed for lysozyme detection at the ITIES 

(adsorption followed by facilitated transfer of organic phase anions), mass 
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spectrometry (MS) analyses were carried out via electrostatic spray ionisation 

(ESTASI-MS) on the hydrophobic gel after protein accumulation by adsorption was 

implemented electrochemically at the gelled liquid – liquid interface. This step was 

performed in a single millimetre-size interface when the organogel was placed in a 

glass pipette (0.075 cm radius). The gel was exposed to the aqueous phase in a 

hemispherical configuration which corresponds to 0.035 cm2. The ESTASI spectra 

demonstrate the presence of protein at the organogel which is enhanced when applied 

potential, pre-concentration time and concentration of lysozyme in solution are 

increased. Moreover, complexes such as [Lysozyme-1TPBCl+9H]+8, [Lysozyme-

1TPBCl+10H]+9, [Lysozyme-1TPBCl+11H]+10 and [Lysozyme-2TPBCl+12H]+10 

were found between the positively charged protein and one or two anions of the 

electrolyte (tetrakis(4-chlorophenyl)borate). This is the first time that ESTASI-MS 

has been employed directly at a hydrophobic gel following electrochemistry at the 

ITIES and confirms the formation of interfacial complexes at the polarisable 

interfaces. Additionally, multilayer formation is also proven as for a monolayer (13 

pmol cm-2) the amount of lysozyme will be 0.45 pmol which is lower than the 

reported limit of detection for ESTASI-MS on a hydrophilic gel used in 

electrophoresis (1.63 pmol). Therefore multilayers are necessary in order to me 

detected via ESTASI-MS. 

 

Lysozyme behaviour was also explored at water / room temperature ionic liquid 

(W/RTIL) microinterfaces. Adsorption of the protein at the soft interface was 

possible with a surface coverage of 311 pmol cm-2 achieved implementing AdSV 

when inducing adsorption at the positive limit of the available potential window (ca. 

0.1 V). Similar to the gelled liquid – liquid approach, lysozyme was detected down to 

~2.5 µM in the aqueous phase for 60 second pre-concentration. Thus, W/RTIL 

provides a new interface for the non-redox detection of biomolecules in a label-free 

manner. Furthermore, a parallel phenomenon was identified under acidic conditions 

where lysozyme is fully protonated. Hydronium cation transfer was reported with the 

formation of a net-neutral capacitive layer at the interface, as this process was 

confirmed by electrochemical impedance spectroscopy and biphasic electrospray 

ionisation - mass spectrometry (BESI-MS). BESI spectra signal for the RTIL anion 

(tris(pentafluorethyl)trifluorphosphate -FAP-) when the ionic liquid is in contact with 
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either hydrochloric acid or acetic acid, decreased significantly (99.8%) which 

suggest the formation of neutral species at the interface. 

 

The behaviour of haemoglobin, a more complex protein was evaluated at the 

gelled µ-ITIES in order to examine the potential of AdSV for analytical purposes. 

Utilising a 60 s adsorption step (0.975 V) and linear sweep voltammetry, 

haemoglobin showed a linear response over the range 0.01 – 0.5 μM. The calculated 

detection limit based on three times the standard deviation was 48 nM for 60 s 

adsorption time, while the relative standard deviation was 13.3 % for 6 successive 

measurements at 0.1 µM haemoglobin. This data supports the methodology using 

lysozyme which can be utilised as a simple and fast preconcentration step. The 

difference in amino acid sequence, size, charge and structure between lysozyme and 

haemoglobin translates in different electroactivity which in this case was favourable 

for haemoglobin as it is believed that the higher degree of charge of the protein and 

the lack of disulfide bonds enhances the electrostatic interactions at the soft interface 

with the anions from the organic phase.  

 

Furthermore, lysozyme, myoglobin, bovine serum albumin and haemoglobin were 

investigated under similar conditions for pepsin and trypsin proteolysis which 

resulted in eight unique voltammograms. This showed the potential of 

electrochemistry at the µ-ITIES as a tool for the identification of proteins. The 

specific fragments produced after digestion present different electrochemical 

behaviour at the soft micro-interfaces. For this purpose, the effect of several 

proteases (pepsin, trypsin and endoproteinase Glu-C) was investigated for lysozyme 

digestion. Complimentary techniques such as matrix-assisted laser desorption 

ionisation – time of flight – mass spectrometry (MALDI-TOF/TOF-MS), liquid and 

gas chromatography - mass spectrometry (LC-MS and GC-MS) were evaluated for 

an extensive analysis of the lysozyme digest composition which would affect the 

voltammetric signal. The results indicate that the protein digest signal varies 

depending on the enzyme used, which cleaves in different parts of the amino acid 

sequence of the protein. Additionally, the degree of pepsinisation is influenced by the 

acidity of the aqueous solution. Then the results open up a new avenue for simple, 

label-free identification and biosensing tool. 
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These results provide the basis for a new analytical approach for simple, portable 

and rapid label-free protein detection based on adsorptive stripping voltammetry 

(AdSV) at the µ-ITIES and identification when combined with proteolysis steps prior 

to electrochemical analysis. ESTASI-MS has also confirmed the detection 

mechanism which can be used as a new tool to optimise the electroactivity of 

biomolecules for their detection at the ITIES.  
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1 
1. Introduction 

The principles of dynamic electrochemistry at solid 

electrodes introduce the fundamental concepts of 

electrochemistry for an increased understanding of 

electrochemistry at liquid-liquid interfaces. The processes at 

these interfaces are governed by the Gibbs free energy of 

transfer of charged species in solution. These processes can 

be subdivided into ion transfer, assisted ion transfer and 

electron transfer. This enables label-free detection of ionised 

molecules. The advantages and importance of using micro-

interfaces in this research are discussed from an analytical 

perspective. An extensive literature review on the most 

relevant research carried out at the Interface between Two 

Immiscible Electrolyte Solutions (ITIES) is presented at the 

end of this chapter, followed by the scope and relevance of 

this research. 
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1. 1. Fundamentals of electrochemistry 

Electrochemistry examines chemical reactions based on charge transfer between 

an electrified surface and an ionic conductor (electrolyte) solution.1 The focus of this 

section is to provide a brief overview of electrochemistry before exploring in more 

detail the principles behind electrochemistry at the Interface between Two 

Immiscible Electrolyte Solutions (ITIES), also called liquid-liquid electrochemistry.  

 

1.1.1. Solid electrode electrochemistry 

Solid electrode electrochemistry involves electron transfer between a carbon, 

metal or semiconductor and a chemical species in solution. 

 

1.1.2. Electron transfer reactions 

Electron transfer occurs at the solid electrode surface causing oxidation or 

reduction of the electroactive species in solution. Oxidation involves the loss of 

electrons from the chemical species to the electrode (anodic process, Equation 1.1.1) 

whilst reduction results in the gain of electrons from the electrode (cathodic process, 

Equation 1.1.2). In both equations, R is the reduced and O is the oxidised species.2 

ܴ → ܱ ൅ ݊݁ି    (1.1.1) 

ܱ ൅ ݊݁ି → ܴ    (1.1.2) 

The equilibrium electrode potential is given by the Nernst equation (Equation 

1.1.3) when electron transfer is thermodynamically or kinetically favourable:3, 4 

௘௤ܧ ൌ ௢ᇱܧ ൅ ோ்

௡ி
݈݊ ஼ೀሺ଴,௧ሻ

஼ೃሺ଴,௧ሻ
    (1.1.3) 

where Eeq is the equilibrium potential, Eo’ is the formal potential of the redox 

couple, T is the Kelvin temperature, n the number of electrons transferred in the 

redox reaction, R the universal gas constant (8.314 J K-1 mol-1), F the Faraday 

constant, the magnitude of electric charge per mole of electrons (96,487 C), CO(0,t) 

and CR(0,t) are the concentration of the electroactive species (O and R) at the surface 

(x=0) at time t. 
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1.1.3. Faradaic and non-faradaic processes 

The current resulting from the oxidation-reduction of the electroactive species is 

the faradaic current. This current obeys Faraday’s law (Equation 1.1.4) and is a 

direct measure of the rate of these chemical reactions.1 

ܳ ൌ ׬ ݐ݀݅ ൌ ݊ ௜ܰܨ
௧
଴     (1.1.4) 

where Q is the charge, i is the Faradaic current and Ni is the number of moles of 

species i in the system. 

 

Conversely, non-faradaic current is the current generated at the electrode from 

processes that do not involve chemical reactions, e.g. adsorption and desorption 

which result in charge accumulation at the interface. This structure formed at the 

solid interface is known as the electrical double layer (see Section 1.1.4). 

 

1.1.4. Electric double layer 

As faradaic and non-faradaic processes occur simultaneously, the non-faradaic 

contribution has to be taken into account in the study of electrode reactions. 

Helmholtz1, 4 was the first to introduce the term electrical double layer in order to 

explain the non-faradaic charging current observed at electrode reactions. In 

Helmholtz’s model, the electrode/solution interface itself is believed to be an 

electrical double layer composed of the electrical charge at the surface of the 

electrode and the charge of the ions disbursed in the solution at a small distance from 

the electrode surface. This double layer is formed when a potential is applied to the 

electrode and causes a charging current (non-Faradaic current) to pass through the 

cell. The electrode/solution interface is analogous to a capacitor (see Figure 1.1.1). 

 

 



19 

 

Figure 1.1.1. a) Helmholtz’s model of electric double layer and b) capacitor 

representation. 

A capacitor is an electrical component which consists of two metal electrodes 

facing each other. When a potential is applied to the capacitor, charges rearrange and 

accumulate on its metal plates as shown in Figure 1.1.1.b, according to Equation 

1.1.5. 

ܥ ൌ ொ

ா
     (1.1.5) 

where Q is the charge, E the potential and C the capacitance. 

 

The phenomenon of the electrical double layer has been explained and modified 

throughout the years. Gouy and Chapman’s theory1 introduced the concept of diffuse 

layer and demonstrates that the charge in solution cannot be confined to the electrode 

surface. At low concentrations, there are fewer charge carriers present in solution, 

therefore a thicker layer would be necessary to neutralise the charge of the electrode. 

The extension of this layer is called the diffuse layer. The concentration gradient of 

counter ions would decrease as the distance from the electrode surface increases as 

the electrostatic forces weaken. Furthermore, the potential applied has also a great 

impact on the thickness of this diffuse layer; the higher the potential, the greater the 

electrostatic forces therefore the diffuse layer result in a reduction of its thickness. 

Neither the model proposed by Helmoltz nor Gouy-Chapman, are realistic 

approaches because both consider the ions as point-charges that can approach the 

surface arbitrarily. Nevertheless, Stern modified the theory defining a plane of 
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closest approach known as Outer Helmholtz Plane (OHP) for the centres of ions, at a 

distance x2 (Figure 1.1.2). 

Grahame also made a contribution introducing the term Inner Helmholtz Plane 

(IHP) for adsorbed species which may be tightly bound to the surface. This plane is 

defined as the distance x1 from the centre of the species to the metallic surface as 

shown in Figure 1.1.2. 

 

Figure 1.1.2. Illustration of the electric double layer including the Inner and Outer 

Helmoltz Plane proposed by Stern and Grahame. 

 

1.1.5. Mass transport 

Mass transport in an electrochemical cell is the movement of electroactive species 

in solution towards or away from the electrode. Mass transport which is commonly 

measured as the flux (J), can be due to three mechanisms in solution: (1) diffusion - 

movement of species due to a concentration gradient; (2) migration - movement of 

charged species under the influence of an electric field and (3) convection - 

movement of species due to mechanical forces such as stirring or temperature 

gradient.1, 5 

 

The flux of a species i to the electrode is described by a differential equation, the 

Nerst-Planck equation:  

ሻݔ௜ሺܬ ൌ െ݅ܦ
ሻݔ೔ሺܥ߲
ݔ߲

	െ		 ܨ݅ݖ
ܴܶ
݅ܥ݅ܦ

߲∅ሺݔሻ
ݔ߲

	൅		ܥ௜ߥሺݔሻ    (1.1.6) 
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where x is the distance, D is the diffusion coefficient (cm2s-1), ߲݅ܥ
ሺݔሻ
ݔ߲

 is the 

concentration gradient, 
డ∅ሺ௫ሻ

డ௫
 is the potential gradient, ߥ(x) is the hydrodynamic 

velocity, zi is the charge and Ci the concentration. 

 

The equation can be simplified by suppressing the migration and convection 

effect by adding an excess of electrolyte and conducting the experiment under 

stationary conditions. Then the movement of the electroactive species is limited by 

diffusion. The first Fick’s law describes the flux of a species i (Ji) as a function of the 

change in its concentration Ci with the position, x, from the electrode at a time t: 

,ݔ௜ሺܬ ሻݐ ൌ െܦ௜
	డ஼೔ሺ௫,௧ሻ

డ௫
	    (1.1.7) 

Fick’s second law describes the dependence of the diffusional flux with the time: 

డ஼೔ሺ௫,௧ሻ

డ௧
ൌ ௜ܦ

	డమ஼݅ሺ௫,௧ሻ

డ௫మ
	    (1.1.8) 

In addition the current (i) is directly proportional to the flux, in other words, it 

measures the rate of flow of the charge: 

݅ ൌ െ݊ܬܣܨሺݔ,  ሻ      (1.1.9)ݐ

As a result of the combination of equations (1.1.9) and (1.1.7) we obtain the 

equation (1.1.10), when migration and convection are suppressed; 

݅ ൌ ܦܣܨ݊ డ஼೔ሺ௫,௧ሻ

డ௫
     (1.1.10) 

where n is the number of electrons exchanged in the process, F the Faraday 

constant and A the area of the electrode. 
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1. 2. Electrochemistry at the Interface between Two 

Immiscible Electrolyte Solutions (ITIES) 

1.2.1. Introduction 

The interface between two immiscible electrolyte solutions, ITIES, is formed 

when an aqueous phase containing a hydrophilic electrolyte and an organic solution 

with a hydrophobic electrolyte present are brought in contact.6 

In the early 1900s Nernst and Riesenfield described the transfer of coloured ions 

across the interfaces water-phenol-water.7 In the 1970s electrochemistry at the ITIES 

gained renewed interest after decades of research purely focused on salt distribution 

within the immiscible phases.4, 7 Gavach et al. demonstrated that the ITIES can be 

polarised, therefore, the Galvani potential difference between the immiscible 

solutions can be used as a driving force for charge transfer reactions.8 Cremer in 

1906 was the first to advise the analogy between the water/oil/water interfaces and 

the cell membrane.4 Following Gavach’s work, Koryta et al. established the theory of 

the transport across the liquid-liquid interface and postulated the similarity to 

conventional redox reactions on solid electrodes.9 This enabled the use of 

electrochemical techniques in the study of charge transfer reactions at the ITIES. In 

1977, Samec et al. designed a four-electrode set-up in order to compensate the ohmic 

drop to study kinetics of these processes.10 Since then there has been a wide range of 

investigations carried out.10 Several studies have also highlighted that the ITIES 

could serve as an approximation of half of the lipid bilayer cell membrane.11 In cells, 

this membrane is composed of a double phospholipid layer where the polar heads are 

oriented to the outer part of the cell (exposed to the extracellular aqueous media and 

the oil-like lipid structure facing the inner intracellular membrane). This has 

increased the interest on electrochemical studies of biomolecules at the ITIES. 

Recently, a broad range of biomolecules has been successfully characterised via 

electrochemistry at the ITIES.12, 13 Relevant biomolecules in biological processes 

such as dopamine (neurotransmitter),14 amylin15 and insulin16 involved in 

Alzheimer’s disease and diabetes have been reported to be electrochemically active 

at the liquid - liquid interfaces. Drugs such as propranolol17 and warfarin18 have been 

reported to transfer across polarised interfaces. At the same time, there has been an 

increasing interest on the application of ITIES for scanning electrochemical 

microscope (SECM) analysis.19 Other recent work is focused on other aspects of 
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electrochemistry, from hydrogen evolution via catalysis at polarised interfaces,20 

nanoparticle assembly at the ITIES21 to photocurrent analysis at the liquid - liquid 

interfaces.22  

 

1.2.2. Theory 

At the ITIES, the two electrically conducting solutions have different Galvani 

potentials: ∅௪ is the potential of aqueous phase (w) and ∅௢ is the potential of the 

organic phase (o). The equilibrium Galvani potential difference, ∆௢௪∅, across the 

interface is defined according to the following equation.2, 6 

∆௢௪∅ ൌ ∅௪ െ ∅௢    (1.2.1) 

The conditions for equilibrium for an ion i at the ITIES are such that their 

electrochemical potentials are equal: 

௜ߤ̅
௪ ൌ ௜ߤ̅

௢     (1.2.2) 

In thermodynamics, the work required to transfer a species i from a vacuum phase 

to a phase α is defined as ̅ߤ௜
ఈ, the electrochemical potential: 

௜ߤ̅
ఈ ൌ ௜ߤ

ఈ ൅  ఈ    (1.2.3)∅ܨ௜ݖ

Equation 1.2.3 illustrates the chemical (ߤ௜
ఈ) and electrical (ݖ௜ܨ∅ఈ) contribution in 

the electrochemical potential equation. When z = 0 (neutral species) in solution the 

electrochemical potential is equal to the chemical potential and can be written as 

follows: 

௜ߤ
ఈ ൌ ௜ߤ

଴,ఈ ൅ ܴ݈ܶ݊ܽ௜
ఈ    (1.2.4) 

ܽ௜
ఈ ൌ ௜ߛ

ఈܥ௜
ఈ     (1.2.5) 

being ai, ci and γi are the activity, concentration and activity coefficient of the ion i 

respectively. 

 

The standard Gibbs free energy to transfer an ion i from the aqueous to the 

organic solution (∆ܩ௧௥,௜
௪→௢) can be related to the standard potential of ion transfer by 

Equation 1.2.6: 
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∆௢௪∅௜
଴ ൌ

∆ீ೟ೝ,೔
ೢ→೚

௭೔ி
ൌ

ఓ೔
బ,೚ିఓ೔

బ,ೢ

௭೔ி
    (1.2.6) 

where ߤ௜
଴,ఈ is the standard chemical potential of i in phase α. α can be either the 

organic, oil phase (o) or aqueous, water phase (w). ݖ௜ is the charge of species i and F 

the Faraday constant. 

 

Hence the distribution of species at the interface can be formulated in an 

analogous equation to solid electrodes. This equation is known as the Nernst-type 

equation: 

∆௢௪∅ ൌ ∅௪ െ ∅௢ ൌ ∆௢௪∅௜
଴ ൅	 ோ்

௭೔ி
݈݊ ൬

௔೔
೚

௔೔
ೢ൰   (1.2.7) 

Since ∆௢௪∅௜
௢ remains constant when the interfacial potential is changed, the ratio 

(ܽ௜
௢/ܽ௜

௪) will change when an external energy source is applied. The resulting 

movement of ions across the interface to equilibrate the system, translates in an 

electrical current across the interface. This means the current can be measured as 

function of the potential applied. The potential difference at the liquid-liquid 

interface can be also manipulated by changing the relative activities of a common ion 

on either side of the interface. 

 

The Nernst-type equation (1.2.7) can be also expressed in terms of concentration 

and activity coefficients of species I, which can be related by ܽ௜
ఈ ൌ ௜ߛ

ఈܥ௜
ఈ: 

∆௢௪∅ ൌ ∆௢௪∅௜
଴ ൅	 ோ்

௭೔ி
݈݊ ൬

ఊ೔
೚஼೔

೚

ఊ೔
ೢ஼೔

ೢ൰   (1.2.8) 

Finally Equation 1.2.8 can be rearranged by replacing the standard Galvani ion 

transfer potential and activity coefficients with the formal Galvani ion transfer 

potential (∆௢௪∅௜
଴ᇲ). 

∆௢௪∅௜
଴ᇲ ൌ ∆௢௪∅௜

଴ ൅	 ோ்
௭೔ி

݈݊ ൬
ఊ೔
೚

ఊ೔
ೢ൰   (1.2.9) 

Thus the following equation is expressed solely in terms of the concentration of 

species i in either phase (w or o): 

∆௢௪∅ ൌ ∆௢௪∅௜
଴ᇲ ൅	 ோ்

௭೔ி
݈݊ ൬

஼೔
೚

஼೔
ೢ൰   (1.2.10) 
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1.2.3. Interfacial structure 

The first theoretical model of the structure of the interface formed at the ITIES 

was proposed by Verwey and Niessen23 based on an adaptation of Gouy-Chapman’s 

model published in 1910.5 The interface at the ITIES was defined as two back-to-

back diffuse layers independent of each other. In 1977 Gavach et al. incorporated the 

compact inner layer hypothesis8 introducing the concept of an ion-free inner layer of 

orientated molecules which are surrounded by ions in the diffuse layer. Further 

research led by Samec et al. followed this idea but including ion penetration in the 

diffuse layer,10 which is known as the Verwey-Niessen model. In 1985, Girault and 

Schiffrin proposed the idea that the inner layer is a mixed solvent layer, constantly 

changing composition (see interface between the organic and aqueous solutions in 

Figure 1.2.2).24 After this, Schmickler pointed out that the thickness of the mixed 

solvent depends on the solubility of the two solvents.25 

 

 

Figure 1.2.2. Schematic representation of structure of the electric double layer formed at 

the ITIES.  

The latest work performed to elucidate the thickness and characteristics of the 

double layer used techniques such as X-ray reflectivity and neutron reflection and 

have provided experimental data which are in agreement with theoretical simulations 

performed by molecular dynamics (MD).26 The combination of MD with 

experimental data introduces the possibility to describe the distribution near the 

charged interface at a molecular scale which was ignored in the mean field theory.27, 



26 

28 Mitrinovic et al. reported the interfacial thickness of water – alkane interfaces to be 

3.5 – 6 Å29 by X-ray reflectivity measurements and experimental results obtained by 

Strutwolf et al. via neutron reflection revealed that the water – dichloroethane 

interface thickness is 10 Å.30 To comprehend the complex interfacial structure, ion-

ion correlations and ion-solvent interactions have to be considered at the nano-scale 

because these affect thickness and structure of the ionic double layer, as shown by 

the different theoretical and experimental studies when changing the ion distribution 

and varying the organic phase. 

 

1.2.4. Polarisable and non-polarisable ITIES 

Polarisation of a liquid-liquid interface formed between two immiscible solutions 

occurs when there is a charge excess in each of the phase, positive in one and 

negative in the other.31 Thus the interface acts as a working electrode where the 

process of interest takes place. The polarisation of the ITIES was illustrated in Figure 

1.2.2 in previous section (1.2.3). The polarisability of the interface depends on the 

electrolyte components of the two immiscible phases. 

 

An ideal polarisable interface refers to ionic electrolytes with infinite Gibbs 

energies of transfer. In reality, real ions have finite Gibbs energy of transfer and this 

is the reason why the electrolytes used will define the polarisability of a system. A 

polarisable interface is formed when a very hydrophilic electrolyte (A+, B-) is present 

in the water phase and a very hydrophobic electrolyte (C+, D-) in the oil phase, see 

Figure 1.2.3. The interface is polarised within a certain potential window which is 

defined by the formal ion transfer potentials of the electrolytes. 
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Figure 1.2.3. Diagram of a polarisable and a non-polarisable interface between two 

immiscible solutions. In the polarisable case A+B- and C+D- are very hydrophilic and 

hydrophobic respectively. However, in the non-polarisable interface there are two cases; 

A+B- are common ions in both solutions or A+ is a common cation in both solutions and B- is 

highly hydrophilic and C- is a very hydrophobic anion. 

A non-polarisable interface is formed if a single binary 1:1 electrolyte (A+ B-) is 

present in both phases (see Figure 1.2.3). Thus the Nernst equation can be written as 

follows for each of the ions: 

∆௢௪∅ ൌ ∆௢௪∅஺శ
଴ ൅ ோ்

ி
݈݊ ൬

௔
ಲశ
೚

௔ಲశ
ೢ ൰   (1.2.11) 

∆௢௪∅ ൌ ∆௢௪∅஻ష
଴ െ ோ்

ி
݈݊ ቀ௔ಳ

ష೚

௔ಳషೢ
ቁ   (1.2.12) 

being zA+ = +1 and zB- = -1 for the cation A+ and anion B- respectively. 

 

As A+ solubility is different in both phases, there is a distribution potential 

established across the interface which is independent of the concentration. Therefore, 

the Nernst equation can be re-written in terms of activity coefficients as shown in the 

following expression: 

∆௢௪∅ ൌ
∆೚ೢ∅ಲశ

బᇲ ା∆೚ೢ∅ಳష
బᇲ

ଶ
൅ ோ்

ଶி
݈݊ ൬

ఊ
ಲశ
೚ ఊಳషೢ

ఊಲశ
ೢ ఊಳష

೚ ൰   (1.2.13) 
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Alternatively, there is another form of non-polarisable interface as shown in 

Figure 1.2.3. This process occurs when there is a common ion (A+) in both 

immiscible phases and B- is really hydrophilic and C- is sufficiently hydrophobic, 

that both ions remain in the aqueous and organic phase, respectively. As a result A+ 

is able to transfer across the interface in any direction resulting in the Galvani 

potential difference controlled by the activity of A+: 

∆௢௪∅ ൌ ∆௢௪∅஺శ
଴ ൅ ோ்

ி
݈݊ ൬

௔
ಲశ
೚

௔ಲశ
ೢ ൰   (1.2.14) 

 

1.2.5. Potential window 

For a better understanding of how the electrochemical signal is generated at the 

ITIES to form a polarisable interface, cyclic voltammetry data obtained when using 

10 mM HCl as the aqueous electrolyte and 

bis(triphenylphosphoranyliden)ammonium tetrakis(4-chlorophenyl)borate (BTPPA 

TPBCl) is shown below in Figure 1.2.4. In this example, deionised water and 1,6-

dichlorohexane (1,6-DCH) were the aqueous and organic phase respectively. When 

conducting cyclic voltammetry, the current is measured while voltage is scanned 

forward and backward between two potential limits. Normally, the voltage is scanned 

from a low initial voltage to a more positive potential on the forward scan and then 

back to the initial potential (see Section 2.4 where electrochemical techniques are 

explained in detail). Thus the convention is that if the current measured on the 

forward scan is more positive when the applied potential is positive (right side of the 

graph) then this represents the transfer of positively charge ions from the aqueous 

phase to the organic and/or the transfer of anions from the organic to the aqueous 

solution. On the contrary, a negative current on the reverse scan represents the back-

transfer of positively charged ions from the organic to the aqueous phase and/or the 

transfer of negatively charged ions from the aqueous into the organic. 

In the example shown in Figure 1.2.4, when the potential applied is between 0.05 

and 0.2 V, BTPPA+ transfers from the organic to the aqueous solution and Cl- 

transfers from the aqueous to the organic. Scanning to more positive potentials (0.2 – 

0.8 V), no electrolyte is transferred and this region is called the potential window or 

polarisation region where there is no background electrolyte transfer which could 

mask the analyte signal. Finally on the more positive region, H+ transfers from the 
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aqueous to the organic and TPBCl- from the organic to the aqueous phase. On 

reversing the potential, the ions previously transferred (H+ and TPBCl- from 1 to 0.8 

V) back transfer to the aqueous and organic respectively and scanning down from 0.2 

to 0.05 V, BTPPA+ will transfer from the aqueous to the organic and Cl- from the 

organic to the aqueous solution. Therefore it can be said that the potential window is 

limited by the transfer of both background electrolytes. From the experimental point 

of view, it is desirable to have a wide potential window in order to observe transfer 

processes without any interference from the background electrolyte. This is the 

reason why a very hydrophilic electrolyte (HCl) in the water phase and a very 

hydrophobic electrolyte (BTPPA TPBCl) in the oil phase are required. Their low 

solubility in each other phase determines the energy required for them to transfer 

across the ITIES and, therefore, the potential window for that system. 

 

Figure 1.2.4. Cyclic voltammetry of 10 mM HCl in the aqueous phase and 10 mM 

BTPPA·TPBCl in the gelled organic solution (10 % w/v polyvinylchloride/1,6-

dichlorohexane). Dashed boxes on the left and right side represent the electrolyte transfer 

across the liquid-liquid microinterface formed with an array of 30 interfaces of 22.4 µm 

diameter. Dotted box in the middle shows the potential window where there is no 

background electrolyte transfer. 
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1.2.6. Types of charge transfer processes 

The simplest charge transfer process is ion transfer (IT). IT consists of the 

movement of ions from both phases across the interface until the accomplishment of 

the concentration ratio defined by Nernst equation. As explained previously, this 

movement is forced by applying an external potential difference across the interface. 

The transfer of an ion across the ITIES occurs when the applied potential difference 

overcomes the Gibbs energy of transfer of that ion across the polarised interface.6 

This process is measurable if the potential required is within the potential window 

limited by the transfer of the background electrolytes. 

 

Another charge transfer reaction is facilitated ion transfer (FIT)6 which can be 

classified into four different categories, (i) TIC stands for Transfer by Interfacial 

Complexation, (ii) TID for Transfer by Interfacial Dissociation, (iii) ACT for 

Aqueous Complexation followed by Transfer, and (iv) TOC for Transfer to the 

Organic phase followed by Complexation. These four assisted ion transfer processes 

are classified based on the mechanism of complexation and charge transfer between 

the ion and the ionophore and are fully described in Figure 1.2.5. 

 

 

Figure 1.2.5. Representation of the three possible charge transfer processes; ion transfer 

(IT), facilitated ion transfer (FIT) which can be subdivided in four different complexation 

reactions – transfer by interfacial complexation (TIC), transfer by interfacial dissociation 

(TID), aqueous complexation followed by transfer (ACT) and transfer to the organic phase 

followed by complexation (TOC) - and electron transfer (ET). 
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Electron transfer (ET) is a significantly more complex process at liquid-liquid 

interfaces than at metallic surfaces. It requires two redox couples (species 1 and 2), 

one each located in the adjacent immiscible phases. If the reaction at equilibrium is: 

ଵܱ
௪ ൅ ܴଶ

௢ ↔ ܴଵ
௪ ൅ ܱଶ

௢   (1.2.15) 

Then the Nernst equation for ET will be: 

∆௢௪∅ ൌ ∆௢௪∅ா்
଴ ൅ ோ்
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݈݊ ൬

௔ೃభ
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೚
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ೢ ௔ೃమ

೚ ൰   (1.2.16) 

 

1. 3. Micro-ITIES 

1.3.1. Advantages of minitiurising the ITIES 

Miniaturisation of the ITIES brings some advantages with respect to larger liquid-

liquid interfaces. Smaller interfaces provide lower currents and therefore reduce the 

Ohmic potential drop caused by the resistive organic phase.4 When the potential is 

measured between the working and the reference electrode, there will be a voltage 

drop observed that is equivalent to iRs, as given by Ohm’s law (Equation 1.3.1). 

Ohm’s law states that the current (i) that flows through a conductor between two 

points is directly proportional to the potential difference (V) across those two points 

and the constant of proportionality is the resistance (R). 

݅ ൌ ௏

ோ
     (1.3.1) 

Thus in the ITIES electrochemical cell R is the resistance of the solution (Rs): 

ܸ ൌ ܴ݅ ൌ ܴ݅௦    (1.3.2) 

Figure 1.3.1 illustrates the current flow through a conductor, the resistance of the 

solution and double layer capacitance at the solid – liquid interface and the similar 

equivalent circuit at a liquid – liquid interface. These last two representations enable 

the comprehension of the Ohmic potential drop at the liquid – liquid interface. Note 

that the aqueous phase presents a high ability to carry current in comparison to 

hydrophobic organic solutions which posses low permittivity values. Therefore the 

contribution of Rs at the ITIES is greater in the case of the organic solution and this is 
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the reason why the resistance from the aqueous solution is not represented in the 

liquid – liquid diagram. 

 

 

Figure 1.3.1. Representation of current flow to explain Ohm’s law (left side), resistance 

of the solution and double layer capacitance in a solid – liquid system (centre) and resistance 

of the organic solution at the liquid - liquid interface and the corresponding double layer 

capacitance (right side).  

If Rs in the system is small (1 – 2 mV) then a two electrode cell can be used 

because a smaller area greatly reduces the current, which reduces the overall value of 

iRs.4 Additionally, smaller interfaces cause an increase in the mass transport flux.  

 

Another important aspect is the fact that minimising the size of the interfaces 

brings a wide range of possibilities in terms of portability, cost, applications and 

integration with other techniques. 

Taylor and Girault introduced micrometer-sized ITIES supported at glass pipette 

tips in the late 1980s.32 Subsequently, the development of micro-ITIES via micro-

pipettes and micro-holes has been widely studied in the last decades. Regarding the 

fabrication method, the combination of photolithography, electron beam lithography 

and chemical etching was developed on silicon and silicon nitride materials for 

micro- and nano-porous membranes.33, 34 Different materials have been considered 

such as silicon,34, 35 silicon nitride,36 glass37 and polymers.38, 39 Nano-size glass 

pipettes have been also developed and are normally fabricated by CO2-laser-based 

glass pullers.37, 40 At present, glass nano-pipettes are extensively used as a probe for 
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scanning electrochemical microscope (SECM) and scanning ion-conductance 

microscope (SICM). In this field, dual micro and nano-pipettes were developed by 

Shao and Mirkin41 in the late 1990s as a novel electrochemical generator/collector 

technique which is in use as an SECM probe.19  

 

1.3.2. Effect of interface arrangement on the electrochemical signal 

In the previous section, the importance of the interface size was described and 

here the effect of interface geometry and arrangement on the diffusion profile is 

discussed. In solid electrode electrochemistry, microelectrodes show different 

voltammetric response when during the fabrication process they present altered 

features such as a hemispherical, inlaid disc42 or recessed disc electrodes43, 44 (see 

Figure 1.3.2). In Chapter 2, Section 2.2, voltammetric techniques and analysis are 

shown. 

 

Figure 1.3.2. Diffusion modes and limiting current equations for a microelectrode where 

the electrode presents different geometries (hemispherical, inlaid and recessed). Ilim is the 

limiting current, n is the number of electrons transferred, F the Faraday constant, D the 

diffusion coefficient, C the concentration, r the radius of the electrode and L the recessed 

depth.  

Similarly, charged soft interfaces formed within micropores act as microdisk thus 

the limiting current equations shown in figure 1.3.2 can be used for characterisation 

purposes. Note that n needs to be replaced by charge number of the ion transferred. 

In this particular research, a microporous membrane has been used for the 

electrochemical analysis at the ITIES. The experimental set-up and the 

electrochemical characterisation of the micro-arrays via simple ion transfer 
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demonstrates that the pores are filled with the organic phase in an inlaid mode 

therefore showing radial diffusion when the ion is transferred from the aqueous to the 

organic phase and planar diffusion when the ion is back-transferred to the aqueous 

solution.35 Figure 1.3.2 is a representation of the diffusion profile of a single 

micropore filled with organic phase, leading to an inlaid disc micro-interface. 

 

Figure 1.3.2. Diffusion profile for a single microinterface where the organic solution fills 

the micropore. The figure on the left shows radial diffusion for the transfer from the aqueous 

to the organic solution whilst illustration on the right presents planar diffusion for the 

transfer from the organic to aqueous phase. 

When each electrode in an array operates at the same potential the overall signal 

depends on the density of the electrode distribution and the dimensions of the micro-

electrodes. If interfaces in the array are too close together, it can result in an overlap 

of the diffusion zones therefore resulting in a decrease in current. The geometry is 

not the unique limiting factor, pore dimensions (radius and depth), pore centre-to-

centre separation; the experimental time scale and diffusion coefficient of the 

transferring species are also parameters to take into account.35 

 

When microinterfaces are too close to each other in a micropore array, 

overlapping diffusion layers are present and this is the reason why the geometrical 

disposition of the interfaces in an array plays an important role. For an optimum 

voltammetric performance, the centre-to-centre separation in microinterfaces as in 

the case of microdisc electrode arrays, needs to be separated enough to avoid 

diffusion zone overlap or shielding. Davies et al. published in 2005 experimental45 

and simulated46 values for microelectrode arrays when using a cubic, hexagonal and 

random arrangement. Figure 1.3.3 represents the cubic and hexagonal arrangement 
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for micro-electrodes. In this thesis, the hexagonal packing is used due to a minimal 

overlapping of the diffusion zones.35 

 

Figure 1.3.3. Cubic (left hand side) and hexagonal (right hand side) arrays of microdiscs 

where d is the distance between pores and r the pore radius. The grey zone corresponds to 

the diffusion zone for a single micro-electrode. 

As a result, when designing arrays it is important to ensure that the micropores are 

sufficiently separated so that the individual diffusion zones remain independent for 

an optimum current signal. 

 

In Figure 1.3.4, different diffusion profiles are detailed for an array of 

microinterfaces. Figure 1.3.4 A) represents the linear diffusion when ion is 

transferring from the organic phase to the aqueous phase, B) shows radial diffusion 

for the transfer of ions from the aqueous to the organic solution, C) describes the 

shielding effect (diffusion overlapping) and D) is the same case as C but when the 

overlapping is an extensive overlap leading to an overall linear diffusion from the 

organic to the water phase.35 
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Figure 1.3.4. Diffusion profile A) linear diffusion from organic to aqueous, B) non-linear 

diffusion from aqueous to organic, C) overlapping diffusion layers and C) heavily 

overlapping diffusion layers resulting in linear diffusion (o→a). 

 

Saito47 studied diffusion overlapping at a microdisc electrode and proposed an 

expression based on the assumption of purely steady-state response at 

microelectrodes then independent of the scan rate. Shielding occurs when microdisc 

centre-to-centre separation (d) is lower than 12 times the radius of the electrode (r): 

݀ ൐  (1.3.3)     ݎ12

Many other groups attempted unsuccessfully to provide a universal formula to 

predict accurately the optimum electrode centre-to-centre separation and radius 

relation for electrochemical analysis. Fletcher and Horne reported the following 

approximation:48  

݀ ൒  (1.3.4)     ݎ20
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And Davies and Compton also formulated an equation to estimate the diffusion 

zone (δ) at microelectrode arrays.46 

ߜ ൐ ට2ܦ௜
௱ቀ௱ഁ

ഀథቁ

జ
    (1.3.5) 

where D is the diffusion coefficient of the species i, v is the scan rate, and Δ൫Δఉ
ఈ߶൯ 

is the potential range from the onset faradaic current to the steady state current or 

attainment of a peak. 

 

Equation (1.3.5) shows the dependence on the time via scan rate potential but not 

individual electrode or pore size unlike Equation 1.34 and 1.35 and this is because 

for this expression (Equation 1.3.5), the diffusion is assumed to be unidimensional. 

 

All the expressions presented (Equation 1.3.3 to 1.35) have been proven to be 

unsuitable for r < 1 µm.46-48 As a consequence, no universal equation allows us to 

estimate accurately the relation between d and r for optimum voltammetric analysis. 

 

Arrigan’s group has characterised silicon micropore arrays varying the 

arrangement of the pores and sizes. Strutwolf et al. demonstrated that experimental 

values using water/gelled 1,6-DCH micro-interfaces were in agreement with 

simulations performed with the program COMSOL. These were used to locate the 

interface within the pores and analyse the possible diffusion overlapping in the 

membrane array. For some of the designs studied, diffusion overlapping was 

observed when equation 1.3.3 was not fulfilled. Also designs that did not meet the 

criteria of equation 1.3.5 showed diffusion overlapping resulted in a peak-shaped 

wave on the forward scan instead of steady-state currents (radial diffusion-

controlled).35 

The micropore arrays used in this thesis were composed of 30 pores of ca. 10 µm 

pore radius, 200 µm pore centre-to-centre distance and 100 µm depth. The pores are 

displayed in a hexagonal arrangement design which fulfils Equation 1.3.3 and 1.3.4 

as d is 20 times the pore radius (݀ ൌ  .(ݎ20
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1. 4. Bioelectrochemical analysis at the ITIES 

Since 1984, there has been a wide range of investigations targeting biomolecules 

at polarisable soft interfaces. That year, Vanysek et al. reported for the first time 

ovalbumin and bovine serum albumin adsorption at the ITIES in Cs+ transfer studies 

at the water/nitrobenzene interface.49 The variety of articles published after this 

discovery ranges from mimicking the cell membrane, adsorption studies, extraction 

and detection of drugs, DNA hybridization and finally label-free detection of 

biological molecules. 

In 1998, Horrocks and Mirkin established a new approach to characterise ion-

binding to DNA. They reported DNA detection by non-redox facilitated ion transfer 

by interfacial binding to oligonucleotides.50 Since then, very little work has been 

carried out to develop the electrochemical studies of DNA at the ITIES. Osakai et al. 

showed how the transfer of the surfactant dimethyldistearylammonium 

tetraphenylborate from the organic phase to the aqueous phase was facilitated by 

DNA adsorbed at the water/1,2-dichloroethane (W/1,2-DCE) interface.51 Vagin et al. 

employed impedance spectroscopy to detect DNA hybridisation down to 0.01 µM 

using an organic film shielded electrode.52 Then Kivlehan et al. presented the 

interaction of acridine-calix[4]arene with DNA at the ITIES. This study also takes 

advantage of sensitive impedance measurements to assess the DNA interactions at 

low nanomolar level of double stranded DNA.53 

In terms of small molecules which are involved in biological processes, the 

oxidation of L-ascorbic acid was studied at the electrified liquid – liquid interfaces as 

a synergistic antioxidant effect between L-ascorbic acid and α-tocopherol at the cell 

membranes is well known and studied.54 Also the redox process between β-

nicotinamide adeninedinucleotide (NADH) and quinone derivatives were also 

addressed in 1998.55 This process is considered essential in energy accumulation at 

the mitochondrial inner membrane. Other types of low molecular weight molecules 

which have an important role in biology have been also investigated at the ITIES. 

Dopamine, a neurotransmitter, was successfully detected by facilitated protonated 

dopamine transfer using different ionophores56 such as dibenzo-18-crown-6 

(DB18C6) across the liquid – liquid interface.56 Arrigan’s group evaluated the effect 

of ascorbate and other interference using DB18C6 in the organic phase.57 In this 

work, the lowest detectable concentration of dopamine when performing differential 
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pulse voltammetry followed by background subtraction, corresponded to 2 µM.57 

Further research when using micro-sized interfaces was probed to lower the 

measurable dopamine concentration down to 0.5 µM.14 Latest work carried out by 

Pereira’s group has also shown the electroactivity of another neurotransmitter, 

noradrenaline, when using DB18C6 at the W/1,6-DCH interface.58  

Determination of the Gibbs energy of transfer of drugs across liquid - liquid 

interfaces via electrochemistry has become of interest in pharmacokinetics studies. 

Propranolol detection in artificial saliva17 and in the presence of bovine serum 

albumin,59 has been reported by Collins and Arrigan. In 2012, propranolol and 

warfarin were measured at rotating liquid - liquid interfaces.18 Chiral discrimination 

of propranolol enantiomers was achieved by using α1-acid-glycoprotein60 at the 

water/1,2-DCE interfaces. This protein has the ability to bind stereoselectively to 

enantiomers and through these experiments, S-propranolol has been found to bind 

more strongly to α1-acid-glycoprotein than the R enantiomer. 

Carbohydrates e.g. heparin (average molar mass of ~12KDa) used clinically as 

anticoagulant, interacts with antithrombin III via ionic forces. Samec et al. proposed 

ITIES as a new strategy to study heparin.61 The first report demonstrated the activity 

of heparin when using polyvinyl chloride (PVC) – 1,6-dichlorohexane membranes,61 

Amemiya’s group used 1,2-dichloroethane62 and the latest publication includes the 

use of room temperature ionic liquids to promote the extraction of heparin.63  

A model of half cell membrane was studied by Mendez et al. when forming a 

lipidic monolayer at the water/1,2-dichloroethane interface.64 This provided a 

platform to analyse melittin, a cell membrane peptide with antimicrobial activity. 

Under these conditions, melittin undergoes adsorption at the interfaces, then interacts 

with a monolayer of L-α-dipalmitoyl phosphatidylcholine (DPPC) disrupting the 

phospholipid layer.65 Previous work also performed by Mendez et al. showed the 

peptide-lipid complex formation when DPPC was present in the organic solution. 

Angiotensin III and Leuenkephalin are two small peptides formed by 7 and 5 amino 

acids, respectively. These small peptides (molecular weight < 1 KDa) interact with 

receptors embedded in the cell membrane and are linked to regulation of blood 

pressure and inflammatory immune response by acting as neurotransmitters.64 

 

Single amino acids and small oligopeptides are also electrochemically active at 

water/1,2-dichloroethane or water/1,6-dichlorohexane interfaces. The ionophore 
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DB18C6 is added in the organic phase and this crown-ligand complexes the amino 

acids facilitating the transfer of amino acids66 and small peptides.34 These studies 

highlight the fact that amino acid position in the peptide sequence and composition 

are key factors in order to determine their electrochemical activity across the ITIES.  

 

As mentioned at the beginning of this section, in 1984, Vanysek et al. reported for 

the first time the influence of large biomolecules (ovalbumin and bovine serum 

albumin) at the water/nitrobenzene interface.49, 67 It was until 2002 that the study of 

large proteins at the ITIES took a new avenue. The use of more hydrophobic 

solvents such as 1,6-dichlorohexane and the incorporation of surfactants into the 

organic phase, opened up a new approach to study protein behaviour and explore the 

potential of label-free protein detection at the ITIES for analytical purposes.  

In 2002, Dryfe’s group evaluated the electron transfer process between 

cytochrome c and 1,1-dimethylferrocene at the electrified liquid - liquid interfaces. 

This redox reaction is analogous to the in vivo situation where cytochrome c acts as 

an electron transfer protein (redox carrier) within the membrane in the mitochondrial 

electron transfer chain.68 A year after this publication, Amemiya et al. published the 

electrochemical behaviour of protamines at the water/1,2-dichloroethane interface. 

This protein is an arginine-rich small protein (~4 KDa) which is highly positively 

charged and was reported to transfer across the interface.69 Further research led by 

Amemiya determined the effect of the addition of different organic electrolytes and 

anionic surfactants (DNNS).70 Following this research, Vagin et al characterised the 

influence of different surfactants in the organic phase: cationic, anionic or neutral 

molecules in the presence of proteins such as α-chymotrypsin, soybean trypsin 

inhibitor and lysozyme. Micelles formation was reported when bis(2-ethylhexyl) 

sulfosuccinate (AOT) and cetyltrimethylammonium bromide (CTAB) were present 

in the organic phase whilst neutral polyoxyethylen(4)-laurylether (Brij-30) and 

polyoxyethylen(2)-cetylether (Brij-52) did not show the same protein-surfactant 

interactions.71 Shinshi et al. observed similar behaviour in the case of cytochrome c, 

protamines and ribonuclease A at the W/(1,2-DCE + AOT) interfaces.72 Trojanek’s 

work on protamines by changing the organic electrolytes and characterizing the 

water/1,2-dichloroethane by quasi-elastic laser light scattering (QELS) showed the 

complex mechanism composed of facilitated protamine transfer with an intermediate 

adsorption step.73  
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Recent work presents the use of surfactants as an approach to enhance the protein 

detection signal. O’Sullivan and Arrigan analysed myoglobin,74 cytochrome c and 

haemoglobin using an anionic surfactant (AOT) which can complex with the 

positively charged protein, increasing the signal by 17-fold in terms of interfacial 

coverage.75 Matsui et al. have also implemented these surfactant-protein interactions 

for the detection of albumin in urine in a flow cell. In this case, they employed 

dinonylnaphthalenesulfonate (DNNS-) and achieved a limit of detection of 1.2 µM in 

the artificial urine sample.76  

On the contrary, Arrigan’s research has mainly focused on the analytical 

perspective of the methodology. Most of this group’s publications present surfactant-

free organic phases for the detection of molecules such as insulin,77 lysozyme,78, 79 

and haemoglobin.80, 81 Herzog et al. carried out voltammetric measurements after 

haemoglobin was chemically denatured82 and digested with enzymes resulting in a 

peptide mixture in solution.83 The results open-up a new strategy in protein detection 

and identification via electrochemistry at polarisable liquid - liquid interfaces.  

As it is been detailed in this section (1.5), a small range of proteins (3.2 - 66 

KDa.) has been investigated during recent decades. Additional examples not 

described in the section are summarised in Table 1.4.1. 
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Table 1.4.1. Large biomolecules electrochemical studies at liquid – liquid interfaces. 

Biomolecule 
Size 

/ KDa 
pH 

Aqueous 

electrolyte 

Organic 

electrolyte 

Organic 

Solvent 

Surfactant 

/ Ionophore 

Interface Size 

/ cm2 
Technique Mechanism 

[Protein]

/ µM 
Reference 

Amino acids 
Amino acids 
(Aa) 

20 Aa 1 
5 mM Mg2Cl 

+ H2SO4 
TBATPBCl 1,2-DCE DB18C6 

2×10-6, 3×10-6 
and 8×10-7 

CV 
Transfer by interfacial 

complexation/dissociation 
0.02 – 0.2 66 

Oligopeptides 

Oligopeptides 2-4 Aa 2 10 mM HCl BTPPA TPBCl 
1,6-DCH 
+ PVC 

DB18C6 
0.785 and 
1.7×10-4 

(8 µpore array) 

CV 
DPSV 

Oligopeptides transfer 
assisted by DB18C6 

0.4 34 

Proteins 

Rat-amylin 3.2 2 
10 mM HCl 
1 mM PBS 

BTPPATPBCl 
1,6-DCH 

(gel) 
- 

1.18×10-4 
(30 µpore 

array) 
CV Amylin transfer 2 15 

Protamine 
4 
– 

4.25 

7.4 
(Tris) 

0.1 M LiCl 
0.05 M Tris 

buffer 
TDDATPBCl 1,2-DCE DNNS- 

1.3 – 2.8 ×10-7, 
3×10-6 and 
1.5×10-5  

CV 
Chronoampe

rometry 

Facilitated transfer of 
protamine through 

interfacial complexation 
with DNNS 

16 70 

3.4 - 
7 

0.1 M KCl 
TPnAAOT 
TPnATPB 

1,2-DCE AOT 0.05 CV 
Protein extraction by 

reverse micelle formation 
10 72 

- 0.1 M LiCl 
TBA TPB 

TPeA TFPB 
BTPPA TPBCl 

1,2-DCE - 0.189 
CV 

QELS 

Facilitated protamine 
transfer with intermediate 

adsorption step 

50 
2.5 

73 

- 10 mM LiCl TBA TPB 
NB 

1,2-DCE 
1,6-DCH 

- ~ 8×10-7 CV 
Facilitated protamine 

transfer with intermediate 
adsorption step 

12 69 

Insulin 6 

7.4 10 mM PBS BTPPA TPFB 1,2-DCE - 1.3 
CV 

Interfacial 
impedance 

Adsorption kinetics 0.1 84 

1-9.7 
10 mM LiCl 

± HCl /NaOH 

BTPPA TPBCl 
BTPPA TPB 

BTPPA TFPB 
1,2-DCE - 0.785 

CV 
SWSV 

Ion-pairing interactions + 
adsorption 

1 
2 

77 
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Table 1.4.1. Large biomolecules electrochemical studies at liquid – liquid interfaces. 

Biomolecule 
Size 

/ KDa 
pH 

Aqueous 

electrolyte 

Organic 

electrolyte 

Organic 

Solvent 

Surfactant 

/ Ionophore 

Interface Size 

/ cm2 
Technique Mechanism 

[Protein]

/ µM 
Reference 

Insulin 6 

2 10 mM HCl BTPPATPBCl 
1,6-DCH 

(gel) 
- 

2.12×10-5 
(8 µpore array) 

CV 

Adsorption + FIT of anion 
from organic phase 

Comparable to dendrimer 
DAB-AM-4 behaviour 

1 79 

2 
10 mM HCl 
1 mM PBS 

BTPPATPBCl 
1,6-DCH 

(gel) 
- 

1.18×10-4 
(30 µpore 

array) 

CV 
AdSV 

Adsorption + FIT of TPBCl 0.01 16 

Cytochrome c 13 

3.4 - 
7 

0.1 M KCl 
TPnA AOT 
TPnA TPB 

1,2-DCE AOT 0.05 CV 
Protein extraction by 

reverse micelle formation 
10 72 

- 
10 mM 

Borate buffer 
BTPPA TPB 1,2-DCE - 1.13 CV 

Direct e- transfer, between 
cytochrome c and a 
ferrocene derivative 

400 68 

3-7.1 0.1 M KCl 
TPnAX’ 

TPnATPB 
1,2-DCE 

DNNS 
AOT 

BDFHS 
BEHP 

0.0278 CV 
Adsorption/desorption of 

the proteins 
100 85 

2 10 mM HCl BTPPA TPBCl 
1,6-DCH 

(gel) 
AOT 

1.03×10-5 
(8 µpore array) 

CV 
Protein adsorpt-interaction 

AOT, enhances signal 
6 75 

Ribonuclease 
A 

13.7 
3.4 - 

7 
0.1 M KCl 

TPnAAOT 
TPnATPB 

1,2-DCE AOT 0.05 CV 
Protein extraction by 

reverse micelle formation 
10 72 

13.7 3-7.1 0.1 M KCl 
TPnAX’ 

TPnATPB 
1,2-DCE 

DNNS 
AOT 

BDFHS 
BEHP 

0.0278 CV 
Adsorption/desorption of 

the proteins 
100 85 

Lysozyme 14.3 7.4 10 mM PBS TBA TPB 1,2-DCE 

AOT 
CTAB 

Brij-30/52 
PVS-St 

0.38 CV 
Ionic surfactants facilitates 

micelles formation 
~14 71 

Lysozyme 14.3 
0.9 – 
11.9 

10 mM HCl 
1-100 mM 

LiCl 

BTPPA TPBCl 
BTPPA TPB 

BTPPA TFPB 
1,2-DCE - 1 CV 

Adsorption + FIT of anion 
from organic phase 

10 78 
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Table 1.4.1. Large biomolecules electrochemical studies at liquid – liquid interfaces. 

Biomolecule 
Size 

/ KDa 
pH 

Aqueous 

electrolyte 

Organic 

electrolyte 

Organic 

Solvent 

Surfactant 

/ Ionophore 

Interface Size 

/ cm2 
Technique Mechanism 

[Protein]

/ µM 
Reference 

Lysozyme 14.3 2 10 mM HCl BTPPA TPBCl 
1,6-DCH 

(gel) 
- 

2.12×10-5 
(8 µpore array) 

CV 

Adsorption + FIT of anion 
from organic phase 

Comparable to dendrimer 
DAB-AM-4 behaviour 

0.5 79 

Lysozyme 14.3 

2 10 mM HCl BTPPA TPBCl 
1,6-DCH 

(gel) 
- 

1.18×10-4 
(30 µpore 

array) 

CV 
AdSV 

Adsorption and facilitated 
transfer of TPBCl 

0.03 Chapter 3 

2 10 mM HCl BTPPA TPBCl RTIL - 
1.18×10-4 
(30 µpore 

array) 

CV 
AdSV 

Adsorption and facilitated 
transfer of the organic anion 

2.5 Chapter 5 

Myoglobin 16.7 
- 

10 mM HCl 
1-100 mM 

LiCl 
BTPPATPBC 

1,6-DCH 
(gel) 

- 
1.03×10-5 

(8 µpore array) 
CV 

Adsorption and facilitated 
transfer of TPBCl 

1 74 

2 10 mM HCl BTPPATPBCl 
1,6-DCH 

(gel) 
AOT 

1.03×10-5 
(8 µpore array) 

CV 
Protein adsorpt-interaction 

AOT, enhances signal 
1 75 

Soybean 
trypsin 
inhibitor 

22 

 
0.01 – M KCl 
20 mM Acetic 

Acid 

Shielded 
electrode 

PPTA 
n-octane 

AOT- 
DAP+ 

0.25 
CV 

Impedance 
Adsorption on shielded 

electrodes 
120 86 

7.4 10 mM PBS TBATPB 1,2-DCE 

AOT- 
CTAB+ 

Brij-30/50 
PVS-St 

0.38 CV 
Ionic surfactants facilitates 

micelles formation 
~10 71 

α-
Chymotrypsin 

24 7.4 10 mM PBS TBATPB 1,2-DCE 

AOT- 
CTAB+ 

Brij-30/50 
PVS-St 

0.38 CV 
Ionic surfactants facilitates 

micelles formation 
~8 71 

Ovalbumin 45 - 10 mM LiCl TBA TPB NB - 0.18 
CV 
AC 

impedance 

Adsorption of protein 
disrupts Cs+ transfer 

~0.09 49 
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Table 1.4.1. Large biomolecules electrochemical studies at liquid – liquid interfaces. 

Biomolecule 
Size 

/ KDa 
pH 

Aqueous 

electrolyte 

Organic 

electrolyte 

Organic 

Solvent 

Surfactant 

/ Ionophore 

Interface Size 

/ cm2 
Technique Mechanism 

[Protein]

/ µM 
Reference 

Haemoglobin 64.5 

2 
7.4 

10 mM HCl 
0.1 M PBS 

BTPPA TPBCl 
BTPPA TPB 

BTPPA TFPB 
1,2-DCE - 

0.785 and 
1.7×10-4 

CV 
Adsorption forming 

multilayer + facilitated 
transfer of organic anion 

0.55 80 

2 10 mM HCl 
BTPPA TPBCl 
BTPPA TPB 

BTPPA TFPB 
1,2-DCE - 1.16 

CV 
ACV 

Adsorption + facilitated 
transfer of organic anion 

1.25 
0.1 

81 

2 10 mM HCl BTPPA TPBCl 
1,2-DCE 
1,6-DCH 

(gel) 
- 

0.785 and 
1.7×10-4 

CV 
DPSV 

Peptide detection after 
digestion 

0.55 83 

2 
10 mM HCl 

+ urea 
BTPPA TPBCl 1,2-DCE - 1.12 

CV 
DPSV 

Chemical denaturation 
(Unfolding) 

0.1 82 

2 10 mM HCl BTPPA TPBCl 
1,6-DCH 

(gel) 
AOT 

1.03×10-5 
(8 µpore array) 

CV 
Protein adsorption-

interaction AOT, enhances 
signal 

6 75 

2 10 mM HCl BTPPA TPBCl 
1,6-DCH 

(gel) 
- 

1.18×10-4 
(30 µpore 

array) 

CV 
AdSV 

Adsorption and facilitated 
transfer of TPBCl 

0.048 Chapter 6 

Bovine Serum 
Albumin 

66 

- 10 mM LiCl TBA·TPB NB - 0.18 
CV 
AC 

impedance 

Adsorption of protein 
disrupts Cs+ transfer 

~0.02 49 

2 – 
7.6 

10 mM LiCl TBA·TPB NB - 0.0314 
CV 
AC 

impedance 
Adsorption ~0.02 67 

3.4 Urine control TPnA TPB 1,2-DCE DNNS- 0.023 
Amperometr

y 
Protein complexation with 

DNNS- 
1.2 76 

[Protein] refers to the lowest measured protein concentration or the limit of detection 

NB: nitrobenzene, 1,2-DCE: 1,2-dichloroethane, 1,6-DCH: 1,6-dichlorohexane 
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Tables 1.4.1 detail the most relevant work performed at the ITIES towards 

biological processes elucidation. This thesis focuses on large proteins and this review 

highlights the importance of parameters such as aqueous and organic electrolytes, 

organic solvent, interfacial dimensions, the electrochemical techniques employed 

and the presence of ionophores or surfactant all serve to enhance complexation of the 

biomolecule at the interface. The size of the protein, number of charged amino acids 

and hydrophobic component defines its Gibbs energy of transfer of the protein to 

cross the polarisable interface. Early studies used nitrobenzene which posses a high 

dielectric constant (ε = 34.8),87 however the trend has been to increase the 

hydrophobicity of the organic solvent in order to widen the potential window to 

measure charge transfer processes. The most common solvents are 1,2-

dichloroethane (ε = 10.45), 1,6-dichlorohexane (ε = 8.83)87 and gelled-1,6-DCH by 

adding PVC. From the mechanistic point of view, it is been proven that ionic 

ionophores and surfactants are able to complex the charged protein in a similar way 

than the organic electrolyte employed at the ITIES. Thus, the selection of the 

ionophore/organic electrolyte will affect protein behaviour at liquid – liquid 

interfaces. Recently, Girault’s group in Switzerland have implemented electrospray 

ionisation mass spectrometry techniques to confirm the formation of complexes at 

the liquid – liquid interfaces. Their result illustrates the strong interactions between 

protein and organic electrolyte after creating a chemical imposed potential difference 

across the liquid – liquid interfaces formed when using a microchip prior ionisation. 

This techniques is known as biphasic electrospray ionisation mass spectrometry 

(BESI-MS) and has been applied to angiotensin III and leuenkephalin,64 melittin65 

and lysozyme88 showing complexes such as [DPPC-angiotensin III], [DPPC-

melittin] or [lysozyme – TPBCl or TPFB] at different charge states. 

It is clear the need for complementary techniques at the ITIES to fully 

comprehend biomolecule interactions at the soft interfaces and the improvement in 

terms of sensitivity and selectivity across this field of electrochemistry. This could 

be achieved by simply integrating established methodology employed in proteomics 

such as capillary electrophoresis, sample preparation strategies and mass 

spectrometry which has been the driving purpose of this thesis. 
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1. 5. Proteomics 

Proteomics is the science that investigates biological processes through the 

analysis of proteins expressed in a cell or tissue. It determines, characterises, 

identifies and quantifies gene and cellular functions at protein level. Before Tanaka89 

and Fenn90 gave “Electrospray Wings for Molecular Elephants”91 with the 

development of soft ionisation techniques for mass spectrometry in the detection of 

large biomolecules, the available techniques in proteomics were limited to genetic 

experiments, cell imaging, and light and electron microscopy amongst others. Since 

the 1980s with the breakthrough of soft ionisation techniques including the 

ionisation of bovine albumin via matrix-assisted laser desorption ionisation 

(MALDI) achieved by Karas and Hillenkamp,92 mass spectrometry-based techniques 

such as matrix-assisted laser desorption ionisation – time of flight (MALDI-TOF), 

electrospray ionisation (ESI-MS), liquid chromatography (LC), two-dimensional gel 

electrophoresis (2-DGE) and capillary electrophoresis (CE) separation prior to MS 

have become indispensable analyses for molecular and cellular biology studies.93  

 

1.5.1. Mass spectrometry 

Mass spectroscopy in proteome research can be classified as bottom-up or top-

down. Bottom-up proteomics or “shotgun” proteomics requires trypsin or other 

enzymatic digestion of the protein and then the peptide fragments generated can be 

identified in a protein database.94 The protein digestion is typically coupled to liquid 

chromatography or capillary electrophoresis for peptide separation followed by 

tandem MS. This process can be automated and with a high throughput and 

sensitivity. However, the identification of the proteins is based on the identification 

of a low number of peptides. This low peptide sequence coverage is the main 

disadvantage of bottom-up proteomics. On the contrary, top-down proteomics 

primarily separates the proteins present in the sample. Then high resolution MS is 

used to determine molecular weight accurately. The inconvenience is the expensive 

mass spectrometers required, low throughput and the difficulties obtaining a 

complete separation especially in samples with low levels of the target protein. 
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1.5.2. Shotgun proteomics, sample preparation 

As discussed in section 1.5.1, bottom-up proteomic analysis requires digestion of 

the protein as a first step towards identification of the target molecule. This step 

provides a large amount of small peptides which can be evaluated using 

mathematical algorithms and identified from sequence databases. Proteins, unlike 

deoxyribonucleic acid (DNA), possess a high degree of complexity, they are 

heterogeneous in terms of size, charge and structure which make them very 

challenging to be isolated. Another aspect to consider when preparing the target 

molecule is the possible low level of protein in the original sample. For this reason, 

separation, pre-fractioning and enrichment of the protein are essential in 

proteomics.95 Other techniques applied in proteomics such as optical methods, and 

structural proteomics also require extensive sample preparation.95 These pre-

treatment steps depend on the sample and method employed and they can be very 

tedious, time consuming and costly. Sample preparation steps can be classified into 

cell disruption, de-salting, purification, enrichment, fractioning, separation, protein 

solubilisation, enzymatic digestion and sample labelling.95 

 

For shotgun protein identification and quantification, LC, ESI and MALDI-MS 

are routinely performed after an extensive treatment of the sample. Figure 1.5.1 

illustrates several steps required in proteome analysis prior to identification or 

quantification. In some cases, denaturation, reduction and alkylation are required in 

order to prevent reoxidation of intra- and intermolecular disulfide bonds.95 
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Figure 1.5.1. Scheme of the sample preparation in bottom-up proteome analysis. 

The advantages of using this methodology are the possibility to detect amino acid 

substitutions or post-translational modifications. In addition, MS provides high 

resolution measurements and the capability to be integrated with separation 

techniques such as LC and CE. Further separation and enrichment can be also 

obtained by incorporating solid phase extraction (SPE) columns prior to analysis. An 

example of this is the work of Wang et al.,96 a multifunctional chip fabricated for 

protein detection. The chip integrates trypsin digestion, solid phase extraction and 

capillary electrophoresis separation which is coupled to ESI-MS for mass analysis.96 

However, as mentioned previously, one of the disadvantages in this technology is the 

low sequence coverage which makes difficult the determination of the target 

biomolecules and the low levels of the protein of interest in the sample.  

 

Consequently, bioelectrochemistry at liquid - liquid interfaces could be an 

alternative or complementary technology in label-free detection of biological 
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molecule. For this reason, combination of electrochemical methods and advanced 

sample preparation methods such as enzymatic digestion has been assessed in this 

thesis with a view to developing a new proteomic analysis technology.  

 

The next sections explore the instrumentation routinely used in proteomics as a 

way of understanding the advantages, disadvantages and challenges faced by mass 

spectrometry. 

 

1.5.3. Mass spectrometer 

A mass spectrometer consists of an ion source, a mass analyser and a detector.93, 

97 The mass analyser measures the mass-to-charge ratio (m/z) of the ionized analytes 

and the detector registers the number of ions at each m/z value. The ionisation 

methods most commonly used for proteins and peptides are electrospray ionisation 

(ESI) and MALDI. There are four types of mass analysers:93, 98 ion-trap, TOF, 

quadrupole and Fourier transform ion cyclotron resonance (FT-ICR), which can be 

also be put in tandem to enhance resolution and sensitivity. Finally, there are several 

types of detectors available for ion detection after being separated by their 

mass/charge ratio in the mass analyser. Commonly an ion detector requires an 

electron multiplier due to the low ion current measured.  

 

1.5.3.1. Ionisation Methods 

Soft ionisation of large biomolecules includes ESI and MALDI as the most 

widely used technique in proteomics. 

Electrospray ionisation consists in pumping the liquid sample through a needle at 

high voltage to electrostatically disperse (electrospray) small droplets (see Figure 

1.5.2a). The solvent rapidly evaporates imparting the charge onto the analyte. This 

ionisation occurs at atmospheric pressure and is therefore a gentle process with no 

fragmentation in the gas phase.99 The liquid sample is composed of the analyte 

which is dissolved in an acidified aqueous solution with a high concentration of 

organic solution (i.e. 1% acetic acid in 49% water and 50% methanol). This acidic 

solution facilitates the protonation of the protein and its transfer into the gas phase. 

When proteins are electrosprayed using ESI, they become multiply protonated and 
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they normally appear as a series of different peaks in the spectrum which correspond 

to different charge states of the protein.95  

 

Figure 1.5.2. Ionisation process in a) ESI and b) MALDI prior to MS 

In the case of MALDI ionisation, the sample (protein or peptides) is deposited on 

a metallic plate and co-crystallized with a high concentration of matrix solution (low 

molecular weight organic compound, for instance 2,5-dihydroxybenzoic acid, α-

cyano-4-hydroxy-cinnamic acid and sinapinic acid).100 This matrix is typically added 

in excess (matrix to analyte volume ratio of 1000:1 or larger) to absorb the laser 

energy and disperses the sample. After deposition, a pulsed laser of known 

wavelength is applied to the cocrystallite resulting in desorption of the analyte into 

the gas phase and its ionisation (see Figure 1.5.2b). Upon irradiation, a photo-

chemical process (photo-ablation and photo-ionisation) takes place although the 

precise ionisation mechanism is still unknown.99 Then the charged ions produced are 

accelerated via an electric field between the sample plate and the detector. Unlike 

ESI, this method produces mainly single charged ion peaks in the m/z spectrum.95  

Recent research has been focused on different ionisation methods that have 

opened up a new way to analyse samples. New strategies consist in direct ionisation 

onto different substrates. These are also known as imaging mass spectrometry 

techniques.101, 102 Amongst mass spectrometry imaging, such as electrostatic spray 

ionisation (ESTASI),103 desorption electrospray ionisation mass spectrometry 

(DESI),104 matrix-assisted laser desorption ionisation mass spectrometry imaging 

(MALDI-MSI) and time of flight secondary ion mass spectrometry (TOF-SIMS), the 

sample preparation steps has been reduced considerably due to the possibility to 

measure via MS directly onto the sample. Qiao et al. have demonstrated the 

versatility of ESTASI which has been tested in different geometries (polymer coated 
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silica capillaries, plastic micropipette tips and polyimide microchips).105 Their latest 

publication reports the combination of isoelectric gel electrophoresis with MS via 

ESTASI.103 TOF-SIMS has been used in biomedical imaging analysis for decades106, 

107 such as lipid composition imaging in cell membranes.108 MALDI102 and DESI 

also provide a new platform for mass determination on biological tissues with 

minimal pre-treatment of the sample. For instance, Eberlin et al. have published a 

classification method to discern between gliomas (malignant tumour with origin in 

the brain or spine) and meningiomas (usually benign tumour) to delimit the tumour 

boundaries by using DESI-MS. This could be of use to provide diagnostic 

information and guide decision making during brain tumour surgery.109 They also 

published a study of nano-assisted desorption ionisation mass spectrometry 

(NALDI)110 to image lipid biomarkers in melanoma tumours111 and nano-DESI for 

tissue imaging .112 

 

1.5.3.2. Mass analyser 

There are four main types of mass analyser: ion trap, quadrupole, time of flight 

and Fourier transform ion cyclotron resonance mass spectrometer.  

In the first type (ion trap), the ions produced by previous ionisation are trapped 

when various radio frequency voltages are applied. The motion of the ions depends 

on the voltage applied and their (m/z) ratios. Then the steam of ions is focused to the 

detector to produce the mass spectra. The Fourier transform ion cyclotron resonance 

(FT-ICR) mass spectrometer is also a trapping mass spectrometer. The main 

difference is that it captures the ions under high vacuum in a high magnetic field. In 

the case of the quadrupole, oscillating electric fields are applied through four 

metallic cylindrical rods. Those four rods are connected two opposite to each other 

and the potential applied between both affects the motion of the ions towards the 

detector allowing the determination of the mass-to-charge ratio. However, TOF 

analysers measure the time ions require to reach the detector after being accelerated 

by an electric field of known strength, therefore the mass-to-charge (m/z) ratio can be 

determined using the following expression:113 
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    (1.4.1) 

where v is the velocity of the ions, E is the electric field strength, e is the 

elementary charge and d the width of the electric field. 

 

Figure 1.5.3 presents a scheme of the four mass spectrometers described above.  

 

Figure 1.5.3. Mass analyser types used in mass spectrometry. 

1.5.3.3. Ion detector 

The mass of each ion produced by ionisation is accelerated through the mass 

analyser towards the detector. The detector generates a signal from the incident ions 

by either generating secondary electrons which are further amplified or by inducing a 

current generated by a moving charge which can be then related to the ions m/z.  

 

Complex and costly instrumentation is required in routine proteomic analysis and 

extensive sample preparation becomes indispensable in bottom-up proteomics for 

protein identification. Therefore implementation of bioelectrochemistry at the ITIES 



54 

could be an alternative for the label-free detection of biological molecules. 

Preparation procedures employed at shotgun proteomics have been also evaluated in 

this thesis. 

 

1. 6. Aims 

The aim of this work is to study the pre-concentration of proteins at liquid – liquid 

interfaces via electrochemical adsorption. This method has been evaluated as an 

electrochemical enhancement of the protein signal followed by label-free 

voltammetric detection and also as a pre-treatment step prior to more complex 

analysis such as electrostatic spray ionisation. This methodology was tested in 

different conditions either different organic phases or protein of interest. In addition, 

combination of advanced sample preparation methods such as enzymatic digestion 

with electrochemistry at the ITIES, was targeted and has been assessed with a view 

to developing a new proteomic analysis technology.  

 

Adsorptive stripping voltammetry (AdSV) was implemented in order to achieve 

lower limits of detection when enriching the interfacial protein concentration via 

electrochemistry at the liquid – liquid µ-interfaces. These results are described in 

Chapter 3. 

 

In Chapter 4, electrostatic spray ionisation – mass spectrometry (ESTASI-MS) 

has been used as a complementary technique in order to elucidate the mechanism of 

lysozyme detection proposed in Chapter 3 when implementing AdSV. In addition, a 

proof-of-principle study is also presented in this chapter which consisted in the 

coupling of a gelled hydrophobic phase after electrochemical protein pre-

concentration with this soft ionisation technique prior to MS. 

 

In Chapter 5, a new organic phase, room temperature ionic liquid (RTIL), was 

investigated for lysozyme detection via adsorptive stripping voltammetry. Using 

cyclic voltammetry at the water (W) – RTIL µ-interfaces, lysozyme detection was 

unsuccessful. However when performing AdSV, lysozyme was successfully 

detected. In parallel to this work, proton interactions at the W-RTIL interfaces were 

observed when a positive potential difference was applied. 
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Following this work, haemoglobin, a bigger protein molecule (almost 6-folds 

bigger in molecular weight than lysozyme), highly charged and with a quaternary 

structure, was studied under similar conditions reported in Chapter 1, consisting of 

electrochemical adsorption as a protein pre-concentration step prior to 

electrochemical analysis. The results are detailed in Chapter 6. 

 

Chapter 7 presents the effect of protein digestion prior to electrochemical 

analysis. This pre-treatment step was implemented to mimic proteomic sample 

preparation steps for protein identification. This approach was carried out as a new 

label-free fingerprint platform. 

 

Finally, general conclusions and future work are discussed in Chapter 8. 
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2 2. Experimental section 

This chapter contains a general summary of the 

procedures performed in this study. The electrochemical 

cells employed and several electrochemical characterisation 

tools such as cyclic voltammetry, adsorptive stripping 

voltammetry, alternating current voltammetry and 

electrochemical impedance spectroscopy are fully described. 

There is also a detailed description of the silicon membranes 

used to form the liquid-liquid microinterfaces, showing the 

importance of the geometric arrangement of the micropores. 

The methodology for electrospray ionisation – mass 

spectrometry of the gel after protein pre-concentration at the 

gelled liquid - liquid interfaces is also described. Finally 

information regarding the enzymatic digestion of 

biomolecules and complementary analysis carried out in 

order to mimic proteomic methods prior to electrochemical 

characterisation are illustrated. In this case, small peptides 

were analysed via liquid chromatography – mass 

spectrometry and single amino acids were measured by gas 

chromatography – mass spectrometry after a derivatisation 

step. 
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2. 1. Electrochemical cell 

An electrochemical glass cell is commonly used in a four–electrode configuration 

to perform electrochemical measurements at liquid – liquid interfaces as represented 

in Figure 2.1.1. It consists of two reference and two counter electrodes, one of each 

in a different phase.4 Platinum-mesh is usually employed as the counter electrode and 

silver/silver chloride electrode as the reference electrode. 

 

Figure 2.1.1. Representation of a four-electrode set-up at the ITIES where w and o refer 

to the respective aqueous and organic phase, RE is the reference electrode and CE the 

counter electrode in the water phase (w) and organic solution (o). 

 

The above cell is extensively used for millimetre- or centimetre-scale ITIES 

because it compensates the Ohmic drop caused by the resistive organic solution. 

However in the experiments performed and shown in this thesis, a two–electrode cell 

was used to conduct all the electrochemical measurements. This is only possible 

since the size of the interfaces are drastically decreased which translates into a 

reduction of the Ohmic drop. In the case of a two-electrode cell, two reference 

electrodes (Ag/AgCl) serve as both reference and counter electrodes, one in each 

phase. All the voltammograms shown in Chapter 3 to 7 correspond to the signal 

obtained at the µ-ITIES array when using a microporous membrane sealed onto a 
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glass cylinder. The organic phase is introduced into this glass cylinder and then 

immersed in a beaker containing the aqueous solution.34 Therefore microinterfaces 

are formed at the edge of the membrane when both (aqueous and organic) phases 

come into contact. Figure 2.1.2 is a schematic of the two-electrode electrochemical 

cell when using the microporous membrane to define the µ-ITIES array. Both the 

reference solution in which the Ag/AgCl is immersed and the organic phase contain a 

common cation (BTPPA+), resulting in a non-polarisable interface between the 

reference solution and the organic phase. 

 

 

Figure 2.1.2. Two-electrode set-up of the liquid-liquid electrochemical cell. The analyte 

and electrolyte used in each experiment will be specified in the following chapters for 

specific measurements. w and o refer to the aqueous and organic solutions. 

 

In order to improve the mechanical stability of the organic phase during the 

electrochemical characterisation, polyvinyl chloride (PVC) was added to the organic 

solution (1,6-dichlorohexane). This results in a hydrophobic 10% w/v gel.79, 114 In 

addition, the organic electrolyte (BTPPA TPBCl) present in the gelled 1,6-DCH was 

kept at a concentration of 10 mM. The organic electrolyte salt was synthesized via 

metathesis.38 The protocol for the organic electrolyte preparation is outlined in more 

details in Appendix A. 
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The cell described in Figure 2.1.2 was modified in order to perform the room 

temperature ionic liquid – water (RTIL/w) interface experiments. The properties of 

the hydrophobic ionic liquid selected (trihexyl(tetradecyl) phosphonium 

tris(pentafluoroethyl) trifluorophosphate) limited the cell characteristics requiring a 

fritted glass tube to support the reference solution (trihexyl(tetradecyl) phosphonium 

chloride in 10 mM LiCl) and position of the immiscible solutions having to be 

inverted.115 Now the RTIL rests at the bottom of the beaker and the aqueous phase 

remains in the glass cylinder. Figure 2.1.3 shows a scheme of the two-electrode cell 

used. The same micro-pore array design was sealed onto a glass tube which is then 

immersed in the ionic liquid.34 The silicon membrane design and fabrication is 

described in the next section (Section 2.2). 

 

 

Figure 2.1.3. Two-electrode set-up of the electrochemical cell when using a room 

temperature ionic liquid (RTIL) as an alternative organic phase. The very hydrophobic ionic 

liquid employed in this research is known as [P14,6,6,6][FAP], trihexyl(tetradecyl) 

phosphonium tris(pentafluoroethyl) trifluorophosphate. 

All electrochemical measurements were performed using an Autolab 

PGSTAT302N electrochemical analyser (Metrohm Autolab, Utrecht, The 

Netherlands).  
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2. 2. Micropore arrays 

The liquid-liquid microinterfaces were formed using a silicon membrane 

consisted of 30 micropores of 22.4 µm diameter which provides a total geometric 

cross-sectional area of 1.18·10-4 cm2 (see scanning electron microscopy images in 

Figure 2.2.1). The 30 micropores were fabricated through a combination of dry and 

wet etching. During the pore fabrication by deep reactive ion etching (DRIE), the 

inner part of the pores was coated with a fluorocarbon film to create a hydrophobic 

layer on the walls of the micropore array.33, 35 

 

Figure 2.2.1. Scanning Electron Microscopy (SEM) images of the silicon membrane. 

SEM images were recorded using a Zeiss Neon 40 EsB FIBSEM microscope (Carl Zeiss 

Nano Technology Systems) and were taken with a beam of 5 kV, using the In Lens 

secondary electron detector at Curtin University. 

In Section 1.3.2, the design and filling of the pores have been shown to determine 

the voltammogram shape and behaviour due to their impact on the mass transport 

profile. For this reason, the design illustrated in Figure 2.2.1 is been shown to 

provide an optimum arrangement of the pores to prevent diffusion overlap. The pores 

in the membrane are etched in a hexagonal distribution (see Figure 2.2.2) with a 

pore-to-pore distance of twenty times the pore radius or ten times the pore diameter.  

 

 

 

22.4 µm 

500 µm 
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Figure 2.2.2. Scheme of the hexagonal arrangement of the micropore array where r is the 

pore radius and d the pitch (d = 20r). 

 

2. 3. Reference electrodes 

The reference electrodes utilised in this research were silver/silver chloride 

electrodes: 

ሻݏሺ݈ܥ݃ܣ ൅ ݁ି → ሻݏሺ݃ܣ ൅  ሻ   (2.3.1)ݍሺܽି݈ܥ

These electrodes provide a stable and reproducible potential which behaviour 

approaches that of an ideal non-polarisable electrode. There are a wide variety of 

reference electrodes such as saturated calomel electrode (Hg/Hg2Cl2/KCl (saturated)) 

and silver/silver salt (Ag/AgX/X- where X is an ion of charge -1). High stability is 

reached when the concentration ratio of the redox species is constant.4, 116 The Nernst 

equation for Ag/AgCl (Equation 2.3.2) shows the dependence of the potential of 

Ag/AgCl on the activity (a) of the Cl- ions. 

஺௚/஺௚஼௟ܧ ൌ ஺௚/஺௚஼௟ܧ
଴ െ ோ்

ி
݈݊ܽ஼௟ష   (2.3.2) 

The standard potential (E0) of Ag/AgCl when measured against a standard 

hydrogen electrode (considered 0 V at 1 atmosphere and 25 ˚C) is + 0.222 V:  

Ag | AgCl | K+ Cl- || Cl- H+ | H2 | Pt  ∆Ecell
0 = + 0.222V 

Therefore if the concentration of Cl- is constant, the electrode possesses a stable 

potential and this potential corresponds to the standard potential of the Ag/AgCl. 
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2. 4. Electrochemical techniques 

2.4.1. Cyclic Voltammetry (CV) 

Cyclic voltammetry (CV) is one of the most common techniques in 

electrochemistry. This technique allows to scan the system on a forward linear scan 

from an initial potential (E1 in Figure 2.4.1) to a different potential (E2 in Figure 

2.4.1) and scan back towards the initial potential (E1) in a cycle.116 Cyclic 

voltammetry can provide information about reversibility, kinetics, diffusion, 

adsorption, lipophilicity and number of electrons or charge transferred in a charge 

transfer reaction.5, 116 

 

Figure 2.4.1. Cyclic voltammetry waveform when representing the applied potential 

versus time. 

At the ITIES, the initial and final applied potential (E1 and E2) will be determined 

by the organic and aqueous background electrolytes. As previously discussed in 

Chapter 1, the transfer of the background electrolytes limit the potential window 

where charge transfer reactions are detectable. Scanning to potentials where 

background electrolyte transfers provides little information on the analyte ion of 

interest due to the analyte transfer being masked by the background electrolyte 

current. 

Figure 2.4.2 shows two different voltammograms of the reversible transfer a 

cation (A+) at the ITIES: a) in the case of a purely planar diffusion transfer at a 
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millimetre-interface and b) in the case of an asymmetric diffusion of A+ across the 

polarisable interface at a micro-interface. 

 

Figure 2.4.2. CV of a) A+ transfer at an interface and b) A+ transfer at a micro-interface. 

The arrows refer to the transfer from aqueous to organic (aq → org) via radial diffusion or 

organic to aqueous (org → aq) via linear diffusion. 

In the case of linear diffusion, peak current is described by the Randles-Sevcik 

equation (2.4.1) for an electrochemically reversible process: 

݅௣ ൌ ሺ2.69 ∙ 10ହሻݖ௜
ଷ
ଶൗ ௜ܦܣ

ଵ
ଶൗ ௜߭ܥ

ଵ
ଶൗ    (2.4.1) 

where ip is the peak current, zi the charge of ion i, Di the diffusion coefficient of 

species i, Ci the concentration of species i and A the area of the interface. Peak 

current is proportional to the square root of the scan rate (υ1/2) making the assumption 

that one-dimensional diffusion is occurring, that the interface is flat and there is a 

large excess of supporting electrolyte. Nonetheless, quasi-reversible processes can be 

described with the following equation which includes α as the transfer coefficient, za 

the charge involved in the charge transfer step and α=nFν/RT. 

݅௣ ൌ ሺ2.99 ∙ 10ହሻݖሺݖߙ௜ሻ
ଵ
ଶൗ ௜ܦܣ

ଵ
ଶൗ ௜߭ܥ

ଵ
ଶൗ   (2.4.2) 

In the case of an adsorption process, equation 2.4.3 shows the proportional 

relationship between the peak current and the scan rate. 

݅௣ ൌ
௭మிమ௰஺జ

ସோ்
    (2.4.3) 
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where z is the number of charges transferred, F is the Faraday constant, Γ is the 

surface coverage, R is the universal gas constant and T the temperature. 

Experimentally, if the peak measured is integrated when current is plotted versus 

time, the charge can be calculated in Coulombs. This charge can then provide more 

information about the adsorption process. Equation (2.4.4) shows that this charge (Q) 

is directly proportional to the surface area, surface coverage, the Faraday constant 

and zi the charge of the species i. 

ܳ ൌ  (2.4.4)     ߁ܣܨ௜ݖ

In radial diffusion, the characteristic steady state current for a radial diffusion 

process (see forward scan in Figure 2.4.2.b) in which the diffusion characteristic in 

an interface is similar to that around and inlaid electrode described by: 

௟௜௠ܫ ൌ  (2.4.5)    ݎܥܦܨ௜ݖ4݊

where n is the number of microinterfaces, F the Faraday constant, zi the number of 

charges of species i transferred, D and C are the diffusion coefficient and bulk 

concentration of the transferring species, and r is the radius of one interface. 

 

However when the organic is recessed L distance within the pore, the analogue 

equation is: 

௟௜௠ܫ ൌ ݊ ସగ௭೔ி஽஼௥

ସ௅ାగ௥
    (2.4.6) 

And in the case of a hemispheric organic phase (see Figure 2.4.3), the limiting 

current is described as follows: 

௟௜௠ܫ ൌ  (2.4.7)    ݎܥܦܨ௜ݖߨ2݊
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Figure 2.4.3. Diffusion profiles for a micropore where the organic phase presents 

different geometries (hemispherical, inlaid and recessed). 

All cyclic voltammograms presented in this thesis were generally implemented at 

a scan rate of 5 mV s-1 due to the analysis of slow processes. Higher scan rates were 

normally applied for mechanism elucidation and will be indicated in the 

corresponding sections of this document when necessarily. 

 

2.4.2. Stripping Voltammetry (SV) 

Stripping voltammetry (SV) is a two-step technique, (1) pre-concentration and (2) 

detection step. The pre-concentration step involves holding the applied potential for 

a period of time which causes the extraction or adsorption of the analyte of interest.5 

Then the second step is also known as the stripping step which consists in scanning 

in the positive/negative direction causing the back transfer of the analyte into the 

aqueous phase. Figure 2.4.4 illustrates the two-step waveform of the SV. 

 

Figure 2.4.4. Galvani potential-time waveform used in stripping voltammetry. 
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Stripping techniques have been widely used for metal detection at electrode 

electrochemistry, in particular at mercury electrodes in polarography. SV can be 

divided into: anodic stripping voltammetry (ASV) which consists of a cathodic 

deposition and the potential is scanned positively in the detection step; cathodic 

stripping voltammetry (CSV) involves anodic deposition of the analyte followed by 

stripping in a negative potential scan (cathodic detection step); and adsorptive 

stripping voltammetry (AdSV) which is based on the accumulation of a 

surface/interface active analyte. The response is directly related to the analyte 

concentration, amongst other parameters and to surface concentration in the case of 

AdSV.5 

The applied potential and pre-concentration time were optimised for each set of 

experiments when adsorptive stripping voltammetry was performed (see details in 

the corresponding chapters (3, 4, 5 and 6)) being the scan rate 5 mVs-1. 

 

2.4.3. Alternating Current Voltammetry (ACV) 

Alternating current voltammetry (ACV) allows the investigation of non-faradaic 

processes e.g. adsorption. The initial (E1) and final (E2) applied potential is limited 

by the background electrolytes in both immiscible phases. A sinusoidal alternative 

voltage is applied across the liquid-liquid interface from E1 to E2 at a fixed frequency 

and amplitude (see Figure 2.4.5). Thus ACV can give information on the charging 

current, how the capacitance of the ionic double layer is altered when adsorption 

occurs at a potential between E1 and E2.
117 

 

Figure 2.4.5. Potential versus time waveform for alternating current voltammetry at a 

fixed frequency and amplitude. 
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ACV has the ability to scan the frequency domain to excite different processes 

with different time constants. The excitation signal V(t) is defined as it follows: 

ܸሺݐሻ ൌ ௢ܸ ሻݐሺ߱݊݅ݏ ൌ ௢ܸ݁௜ఠ௧   (2.4.8) 

where Vo is amplitude, t is the time, ω is the radial frequency (ω = 2πf) and f the 

frequency. As a result, the sinusoidal current I(t) generated is described in equation 

2.4.9 where θ is the phase difference between the voltage and the current and is zero 

for purely resistive behaviour.4, 117 

ሻݐሺܫ ൌ ௢ܫ ݐሺ߱݊݅ݏ ൅ ሻߠ ൌ  ௢݁௜ఏ݁௜ఠ௧   (2.4.9)ܫ

Due to the non-faradaic nature of the current measured, this is directly related to 

Ohm’s law. Consequently, impedance can be written as the alternating current 

resistance of an electric conductor (see Equation 2.4.10).4, 117 

ܼ ൌ ௏

ூ
ൌ ௏೚

ூ೚
݁௜ఏ     (2.4.10) 

Impedance is also associated to the capacitance (C) in a RC (resistor/capacitor) 

circuit: 

ܼ ൌ ଵ

௝ఠ஼
     (2.4.11) 

where j is a complex number, √െ1. Then the impedance (Z) was given by Zre and 

Zim which are the real and imaginary parts of the impedance respectively.  

Z = Zre + Zim    (2.4.12) 

ߠ ൌ ଵି	݊ܽݐ ௓೔೘
௓ೝ೐

    (2.4.13) 

Alternating current voltammetry was performed for adsorption analysis at the 

liquid-liquid microinterfaces when a very hydrophobic room temperature ionic liquid 

(trihexyl(tetradecyl)phosphonium tris(pentafluorethyl)trifluorphosphate) was used as 

an alternative organic phase. All ACV measurements were carried out at 6 Hz 

(frequency), 5 mV (amplitude) and scanned at phases angles of 0˚ and 90˚and are 

described and discussed in Chapter 5.3. 
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2.4.4. Electrochemical Impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a complex technique that 

involves the measurement of impedance obtained when a sinusoidal potential of a  

certain amplitude is superimposed on a fixed DC potential (E1) as function of 

frequency.117 Figure 2.4.6 represents the profile of the potential versus time 

waveform. Equations 2.4.8 to 2.4.13 are of interest for impedance characterisation. 

 

Figure 2.4.6. Potential-time waveform for electrochemical impedance spectroscopy at a 

fixed potential (E1) and Amplitude (A). 

In this work, EIS was performed at an amplitude of 5 mV over the frequency 

range from 100 kHz to 0.1 Hz. The DC potential was also fixed and varied 

depending on the process under study. In addition, ZView software from Scribner 

Associates Inc. (North Caroline, USA) was used to fit the impedance data to 

equivalent electrical circuits to provide a better understanding of the processes taking 

place at the liquid – liquid interfaces. 

 

2. 5. Enzymatic reactions 

One of various pre-treatment methods in proteomics for protein identification is 

the study of multiple enzymatic digestions to increase the sequence coverage and 

therefore to enhance the probabilities for determining the unknown protein.95 In this 

investigation, the same approach was evaluated by electrochemistry at liquid – liquid 

interfaces. Protein digestions were carried out according to published procedures.83 

The enzyme-to-protein molar ratio was fixed at 1:25 for the different enzymatic 
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reactions. For peptic digestion, the protein and pepsin were dissolved in hydrochloric 

acid (HCl) at the required pH of 1.3 or 2, and the mixture was incubated at 37 °C for 

2 h. In the case of tryptic digestion, the mixture was prepared in 0.2 g L-1 of 

ethylenediaminetetraacetic acid (EDTA) at pH 7.0-7.6. Then the enzyme-protein 

mixture was incubated at 37 °C for 16 h. In addition, the endoproteinase Glu-C – 

protein mixture was incubated in phosphate buffered saline (PBS) at pH 7.8 or 

employing 10 mg mL-1 of ammonium bicarbonate at pH 8. Both incubations were 

carried out at 37 °C for 16h. 

The protein digest was then separated from undigested material by filtration using 

3 kDa centrifugal filter devices (see Figure 2.5.1). 

 

 

Figure 2.5.1. Schematic representation of the enzymatic digestion prior to analysis. 

In the literature, the preferential cleavage sites of the enzymes employed for this 

study has been reported and this information is summarised in Figure 2.5.2. This 

table also shows the amino acid structure and the incubation conditions specified 

above. Pepsin exhibits preferential cleavage for hydrophobic amino acids, in 

particular aromatic amino acids. Trypsin cleaves predominately at the carboxylic site 

of arginine and lysine except when they are bound to a C-terminal proline whilst in 

the case of endoproteinase Glu-C, the enzyme also hydrolyzes peptide bonds at the 

carboxylic side in the presence of ammonium at the glutamic and aspartic acid and 

only aspartic acid in the absence of ammonium ions in solution.118, 119 
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Figure 2.5.2. Representation of the preferential cleavage sites (blue arrow) depending on 

the different enzymes used under different incubation condition. A list of 11 amino acids 

which determine the preferential cleavage is shown on the right side of the diagram and is 

divided in 3 groups (hydrophobic, positively and negatively charged amino acids). 

 

2. 6. Mass Spectrometry 

Mass spectrometry (MS) is an analytical technique that can provide quantitative 

and qualitative information on ionizable analytes. The development of soft ionisation 

techniques such as electrospray ionisation (ESI) and matrix-assisted laser desorption 

ionisation (MALDI) opened up a new form to study biomacromolecules.120 For this 

reason, such systems are the perfect candidates for a full characterisation of the 

proteins and peptides investigated in this research. Gas and liquid chromatographic 

techniques (GC and LC) were also combined in order to separate the compounds 

prior to mass analysis. In terms of mass determination of the sample, numerous mass 

analysers can be used that can isolate the ions based on their mass-to-charge ratio 

(m/z) and are described in the corresponding chapters. 

Table 2.6.1 summarizes the different mass spectrometry techniques which have 

been applied during this research. All the MS measurements were performed as a 
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complementary investigation for further understanding of complex processes at the 

ITIES or, as in the case of the electrostatic spray ionisation, the integration of 

electrochemical protein pre-concentration on an organic gel with mass spectrometry 

via electrospray ionisation. This table also provides the nature of the sample, the pre-

treatment required and the chapter where the results will be discussed. 

 

Table 2.6.1. Summary of the mass spectrometry analysis performed in this thesis, 

sample nature, pre-treatment and location of the results and discussion.  

Technique Sample Sample preparation Chapter

ESTASI-MS* Protein 
Electrochemical protein pre-concentration 
on the gelled organic phase as detailed in 

Chapter 3 
4 

MALDI-TOF* Protein 
Protein extraction from organogel after 

electrochemical pre-concentration using the 
method explained in Chapter 3 

4 

BESI-MS* 
Room 

temperature 
ionic liquid 

No sample preparation required 6 

GC-MS 
Single amino 

acids 

Enzymatic digestion prior analysis 
followed by derivatisation using EZFaast 

kit from Phenomenex 
7 

MALDI/TOF-
TOF 

Peptides Enzymatic digestion prior analysis 7 

LC-MS Peptides Enzymatic digestion prior analysis 7 

*ESTASI – Electrostatic spray ionisation 

*TOF - Time of flight 

*BESI – Biphasic electro spray ionisation 

 

2.6.1. ElectroSTAtic Spray Ionisation – Mass Spectrometry (ESTASI-MS) 

Most of the electrochemical measurements presented in this thesis have been 

performed at the gelled liquid – liquid interfaces. When coupling this technique with 

mass spectrometry via electrostatic spray ionisation, the organogel was fixed on a 0.2 

mm GelBond®PAG film from Lonza Group Ltd. (Basel, Switzerland) after 

electrochemical protein pre-concentration. The ESTASI-MS was performed as 

illustrated in Figure 2.6.1. A gold electrode was placed beneath the bottom plastic 
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layer (GelBond®PAG film) and the gel was placed close to the MS inlet to induce 

the electrostatic spray ionisation.103 The electrode was connected with a DC high 

voltage (9 kV) source via switch 1 or grounded via switch 2. A special LabView 

program controls the switches in order to synchronize their work.  

 

Figure 2.6.1. Illustration of ESTASI-MS set-up. 

Drops of an acidic buffer (50% methanol, 49% water and 1% acetic acid) were 

deposited manually on top of the gel.103 During ESTASI, the spray voltage of the 

internal power source of the LTQ Velos (mass analyser from Thermo Fisher 

Scientific Inc., Hampton, New Hampshire) was set to 0 although an external power 

source (explained above) was used to apply a high voltage of 9 kV to induce the 

spray. An enhanced ion trap scan rate (10,000 1Th/s) was selected to obtain a good 

spectral resolution. 

 

Electrospray ionisation - mass spectrometry work was performed at Prof. Hubert 

Girault’s Laboratory of Physical and Analytical Electrochemistry (LEPA), École 

Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland. 

 

 

 

2.6.2. Matrix-Assisted Laser Desorption Ionisation – Time of flight (MALDI-

TOF) 

                                                 
1 Th stands for Thomson and is the unit of mass-to-charge ratio proposed by Cooks and 

Rockwood. Th = 1.036 x 10-8 Kg C-1 Cooks and Rockwood, The Thomson - A suggested unit for 
mass spectroscopists. In Rapid Commun. Mass Spectrom., 1991; Vol. 5, pp 93-93.  



75 

The MS analyses were performed on a positive mode Microflex MALDI-TOF 

instrument (Bruker Daltonics GmbH, Faellanden, Switzerland) equipped with a 

nitrogen laser (wavelength 337 nm). Two microliters of the extracted protein solution 

from the organogel was deposited on a steel target plate and left to dry at room 

temperature. The extraction procedure after electrochemical pre-concentration on the 

gel consists in dissolving the gel in 5 µL of 1,6-dichlorohexane and swirl with a 

vortex for 5 minutes. Due to the high hydrophobicity of the solvent chosen for 

extraction, 1 µl of the matrix solution (10 mg/mL 2,5-dihydroxy benzoic acid (DHB) 

in 50% acetonitrile, 0.1% trifluoroacetic acid, and 49.9% water) was added after the 

1,6-dichlorohexane was evaporated. Normally, DHB is deposited at the same time 

than the sample so the protein co-crystallises with the matrix but in this case the 

solvents are incompatible. After this addition, the sample was also left to dry at room 

temperature prior to measurements. Finally, data analysis was performed using 

flexAnalysis software from Bruker in the range of 4,000 - 85,000 m/z. 

 

Matrix-assisted laser desorption ionisation - mass spectrometry work was 

performed at Prof. Hubert Girault’s Laboratory of Physical and Analytical 

Electrochemistry (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) in 

Lausanne, Switzerland. 

 

2.6.3. Biphasic Electrospray Ionisation – Mass Spectrometry (BESI-MS) 

For the biphasic electrospray ionisation mass spectrometry (BESI-MS) analysis, a 

three-channel microchip fabricated on polyimide (PI) was used as a mixing reactor 

and an emitter in ESI-MS. This microchip was fabricated via laser ablation 

performed on a PI substrate which was then laminated with 25/10 µm 

polyethylene/polyethylene terephthalate (PE/PET) composite sheets (Morane Ltd., 

Banbury, UK).122, 123 The microchannels are 50 µm in depth and 100 µm in width 

and the electrode was fabricated by filling one of the microchannels with carbon ink 

and placed 2 mm from the solution channel to induce electrospray.123 Figure 2.6.2 

shows the microchip design where the tip of the microchannel shows a V-shape to 

facilitate electrospray ionisation and the dimensions of the chip.  
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Figure 2.6.2. BESI microchip design (diagram on the left) and integration of the 

microchip with the mass spectrometer (diagram on the right). 

The BESI-MS experiments were performed on a Thermo LTQ Velos mass 

spectrometer as in ESTASI-MS (see section 2.6.1). During ESI, the spray voltage of 

the internal power source of the LTQ Velos was set to 0 V although an external 

power source was used to apply a high voltage of 9 kV to induce the spray. An 

enhanced ion trap scan rate (10,000 Th/s) was selected to obtain a good spectral 

resolution. MS data were processed using the program Xcalibur from Thermo. 

 

Biphasic electrospray ionisation - mass spectrometry work was performed at Prof. 

Hubert Girault’s Laboratory of Physical and Analytical Electrochemistry (LEPA), 

École Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland. Figure 

2.6.3 illustrates the BESI-MS set-up at EPFL on the left hand side whilst on the right 

side, there is a comparison between the polyimide microchip and an Australian dollar 

coin of 20.50 mm diameter.  
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Figure 2.6.3. Image of the PI microchip and the ionisation source (left hand side). This 

picture was taken in the laboratory at EPFL, Lausanne, Switzerland. On the right side, 

comparison between the microchip dimensions and a $2 Australian dollar coin. 

 

2.6.4. Gas Chromatography - Mass Spectrometry (GC-MS) 

In order to determine the single amino acid content of some protein digested 

samples (see Chapter 7), gas chromatography mass spectrometry was performed. 

This technique can provide quantitative and qualitative information of analyte of low 

molecular weight and volatile compounds. For this reason, the samples are treated 

prior to GC-MS analysis. The pre-treatment consisted of the addition of a 

chloroformate agent (see Figure 2.6.4) which derivates the amines, carboxylic and 

hydroxyl groups. This reaction produces derivatives of amino acids more volatile and 

therefore easier to detect via mass spectrometry (see Figure 2.6.4). The Kit:EZFaast 

from Phenomenex Inc. (Australia) was used to carry out the sample preparation. This 

kit provides all the reagents necessary to accomplish the derivatisation, addition of an 

internal standard (norvaline), separation from more complex analyte and extraction 

of the amino acid derivates in 15 minutes. 

 

Figure 2.6.4. Schematic diagram illustrating the derivatisation reaction using the EZFaast 

kit for GC-MS.  
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To finally assess the amino acid content, gas chromatography – mass 

spectrometry (GC-MS) was carried out using a gas chromatograph from Agilent 

equipped with a ZB-AAA (10 m x 0.25 mm) Amino Acid Analysis GC Column that 

was directly connected to a 7000 Series GC/Triple Quad mass spectrometer. The 

injection volume was 2 µL at a carrier gas flow of 1.1 ml min-1 helium with a split 

ratio of 1:15 with hot needle (250 °C). The initial oven temperature of 110 °C was 

raised to 320 °C at 30 °C min-1. Other settings were 240 °C ion source temperature 

and auxiliary of 310 °C. Mass spectra were analysed in the range of 45-450 m/z at a 

sampling rate of 2², 3.5 scans s-1. MS data were processed using the program 

MassHunter from Agilent Technologies Australia Pty. For quantification purposes, a 

mixture of 23 amino acid standards was prepared as described previously using the 

EZFaast kit. 

Mass spectrometry work was performed by the Centre for Metabolomics at the 

faculty of Life and Physical Sciences at the University of Western Australia. 

 

2.6.5. Matrix-Assisted Laser Desorption Ionisation / Time of Flight – Time of 

Flight (MALDI/TOF-TOF) 

In the case of peptide identification, matrix-assisted laser desorption ionisation 

followed by tandem time of flight (MALDI/TOF-TOF) was selected to determine the 

amino acid sequence of the digested proteins of interest. The protein samples were 

enzymatically digested and peptides extracted according to Figure 2.5.1. Peptides 

were then analysed by MALDI/TOF-TOF mass spectrometer using a 5800 

Proteomics Analyser from AB Sciex Australia Pty Ltd. (Mt Maverley, Victoria, 

Australia). Spectra were analysed to identify protein of interest using Mascot 

sequence matching software (Matrix Science Ltd., London, UK) with Ludwig NR 

Database and Taxonomy set to metazoa (June 2012, 3831323 sequences). The search 

parameters for use on the mass spectrometer were: ± 0.4 of peptide tolerance (tol) 

and MS/MS tol ± 0.4, peptide charge of +1, monoisotopic, one miss cleavage and 

trypsin digestion. 

 

The proteomics analyses were performed in facilities funded by the (WA) 

Lotterywest State Biomedical Facility – Proteomics Node, Western Australian 

Institute for Medical Research, Perth, Australia. The proteomics data analyses were 



79 

performed with the support of the facilities at the Australian Proteomics 

Computational Facility. 

 

2.6.6. Liquid Chromatography - Mass Spectrometry (LC-MS) 

For a complementary amino acid sequence coverage of the peptides produced 

after trypsinisation, LC-MS was carried out using the Ultimate 3000 nano HPLC 

system (Dionex, Thermo Fisher Scientific) coupled to a 4000 Q TRAP mass 

spectrometer from Applied Biosystems (Life Technologies Australia Pty Ltd., 

Mulgrave, Australia). Tryptic peptides were loaded onto a C18 PepMap100, 3 µm 

(LC Packings) and separated with a linear gradient of water/acetonitrile/0.1% formic 

acid (v/v). Spectra were analysed to identify proteins of interest using Mascot 

sequence matching software with Ludwig NR database and Taxonomy set to 

metazoa (September 2012, 3958669 sequences). 

 

The proteomics analyses were performed in facilities funded by the (WA) 

Lotterywest State Biomedical Facility – Proteomics Node, Western Australian 

Institute for Medical Research, Perth, Australia. The proteomics data analyses were 

performed with the support of the facilities at the Australian Proteomics 

Computational Facility. 
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3 
Electrochemical adsorption and voltammetry of hen-egg-

white-lysozyme (HEWL) was studied at an array of micro-

interfaces between two immiscible electrolyte solutions 

(µITIES). Adsorption of the protein was achieved at an 

optimal applied potential of 0.95 V, after which it was 

desorbed by a voltammetric scan to lower potentials. The 

voltammetric peak recorded during the desorption scan was 

dependent on the adsorption time and on the aqueous phase 

concentration of lysozyme. The slow approach to saturation 

or equilibrium indicated that protein re-organisation at the 

interface was the rate-determining step and not diffusion to 

the interface. For higher concentrations and longer 

adsorption times, a lysozyme multilayer surface coverage of 

550 pmol cm-2 was formed, based on the assumption that a 

single monolayer corresponded to a surface coverage of 13 

pmol cm-2. Implementation of adsorption followed by 

voltammetric detection as an adsorptive stripping 

voltammetric approach to lysozyme detection demonstrated 

a linear dynamic range of 0.05 – 1 µM and a limit of 

detection of 0.03 µM, for 5 minutes preconcentration in 

unstirred solution; this is a more than ten-fold improvement 

over previous lysozyme detection methods at the ITIES. 

These results provide the basis for a new analytical 

approach for label-free protein detection based on 

adsorptive stripping voltammetry at the µ-ITIES. 

3. Electrochemical detection of lysozyme 

via adsorptive stripping voltammetry at liquid 

– liquid microinterfaces 
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3. 1. Introduction 

Proteins are essential components of organisms and participate directly or 

indirectly in every process within a biological cell. The understanding and control of 

the fundamental processes in which proteins are involved is of great importance and 

may lead to new applications in biomedical diagnostics and therapy.124 

Lysozyme is a compact globular protein consisting of 129 amino acid residues 

stabilized by four cysteine disulfide bonds.125-127 Hen-egg-white lysozyme (HEWL) 

possesses a molecular weight of ~14,600 g mol-1 128 and has an ellipsoid structure.129 

At physiological pH, lysozyme is positively charged due to its isoelectric point (pI) 

of 11.35.130 The primary function of lysozyme is to promote the hydrolysis of 

polysaccharides in the cell walls of Gram-positive bacteria.131 It is present in mucosal 

secretions such as saliva, mucus, tears and human milk.132 Increased levels of 

lysozyme can be used as indicators of some diseases, for instance Crohn’s disease,133 

breast cancer,134 gastric cancer,135 leukaemia, meningitis.136 In contrast, some studies 

have suggested that lysozyme has potential in HIV treatment137 and as an anti-cancer 

drug138. 

Electrochemistry at the interface between two immiscible electrolyte solutions 

(ITIES), or at the liquid-liquid interface,139-142 has been shown to offer an excellent 

capability for label-free biomolecular detection and quantification. Over the past 30 

years, bioactive molecules such as neurotransmitters, carbohydrates, drugs, peptides 

and DNA have been studied at the ITIES.12 Amemiya et al. have reported the transfer 

of the highly charged polypeptide protamine across the water/1,2-dichloroethane 

interface.69 Facilitated transfer of amino acids66 and peptides64, 66 in the presence of 

dibenzo-18-crown-6-ether (DB18C6) has been used as a method for their detection. 

Vagin and co-workers reported the spontaneous formation of micelles at polarized 

interfaces and used these as carriers to transfer proteins into the organic phase71, 143 

whilst Osakai et al. have recently studied the effect of surfactants and micelle 

formation at the water/oil interface in the presence of polypeptides and proteins 

including protamine, lysozyme, albumin, myoglobin and alpha-lactalbumin.72, 85 

They have suggested that adsorption is dependent on the relative densities of 

charged, polar and nonpolar regions of the protein.85 Lysozyme has already been 

subjected to a number of studies at the ITIES. Scanlon et al. studied its 

electrochemical behaviour at the ITIES and demonstrated adsorption at both liquid 
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ITIES and at a gel-supported µITIES array. The detection mechanism was proposed 

to involve protein adsorption in its cationic state at the ITIES and facilitated transfer 

of organic phase anion across the ITIES to form a complex with the protein on the 

aqueous side of the interface,78, 79 as suggested for protamine by Samec et al.144 The 

interfacial formation of complexes of lysozyme and hydrophobic anions was recently 

confirmed using an on-line mass spectrometry approach by Hartvig et al.88 Other 

proteins and polypeptides were seen to undergo a similar detection mechanism at the 

ITIES, such as haemoglobin81, 145 and insulin.77 In the case of haemoglobin, 

multilayer adsorption at the ITIES was suggested and independent evidence for the 

interaction of cationic haemoglobin with hydrophobic anions was obtained using 

acoustic sensor technology.146 

To-date, the detection limits for proteins based on voltammetric detection at the 

ITIES have been in the low micro-molar range, with one report of the detection of 

0.5 µM lysozyme 79 using background-subtracted cyclic voltammetry at a µITIES 

array. For detection in biomedical areas, such as disease diagnostics, detection limits 

orders of magnitude lower are needed. In voltammetric methods of analysis, a 

widely-used strategy for improving detection limits is to preconcentrate the target 

analyte onto or into the working electrode surface prior to the voltammetric 

measurement. This approach is referred to as stripping voltammetry, with variants 

such as anodic, cathodic, adsorptive, abrasive and catalytic adsorptive stripping 

voltammetry. The use of adsorption as a preconcentration step has been widely 

studied for detection of organic, inorganic and biological molecules147 at especially 

mercury electrodes via the method of adsorptive stripping voltammetry (AdSV). A 

prime example of the AdSV approach is the detection of trace nickel by its 

adsorptive preconcentration as a complex with dimethylglyoxime.148 Such an 

approach was suggested by Amemiya and co-workers for detection of heparin, a 

mixture of sulphated carbohydrates, at a micropipette-based µITIES. 62 

Although the adsorption of proteins at the ITIES has been studied with various 

methods, examination of adsorptive accumulation as a way to improve protein 

detection limits has not been addressed. Consequently, the purpose of the work 

reported here is to examine the adsorption of lysozyme at the ITIES, in this particular 

case at the gelled µITIES array, as a basis for preconcentration prior to voltammetric 

detection, and to assess any improvement in detection limits brought about by this 

adsorption.  
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3. 2. Experimental Section 

3. 2. 1. Reagents 

All the reagents were purchased from Sigma-Aldrich Australia Ltd. and used as 

received unless indicated otherwise. The organic phase was gelled and prepared 

using bis(triphenylphosphoranylidene) tetrakis(4-chlorophenyl)borate 

(BTPPA+TPBCl-, 10mM) in 1,6-dichlorohexane (1,6-DCH) and low molecular 

weight poly(vinyl chloride) (PVC)79, 114. The BTPPA+TPBCl- salt was prepared by 

metathesis of bis(triphenylphosphoranylidene)ammonium chloride (BTPPA+Cl-) and 

potassium tetrakis(4-chlorophenyl)borate (K+TPBCl-), se Appendix A. Stock 

solutions of hen-egg-white lysozyme (HEWL) were prepared in 10mM HCl of pH 2 

on a daily basis. Tetraethylammonium (TEA+) chloride was also dissolved in 10 mM 

HCl of pH 2. All the aqueous solutions were prepared in purified water, from a USF 

Purelab plus UV, with a resistivity of 18 MΩ cm. 

 

3. 2. 2. Apparatus 

All experiments were performed using an AUTOLAB PGSTAT302N 

electrochemical analyser (Metrohm, The Netherlands). The micropore arrays used to 

form the micro-ITIES array were fabricated in silicon.33 The fabrication procedure 

provided hydrophobic micropore walls so that the organic phase filled the pores.33, 35 

The micropore array consisted of thirty micropores arranged in a hexagonal close-

packed arrangement, each with a diameter of 22.4 µm and a pore centre-to-centre 

distance of 200 µm. These microporous silicon membranes were sealed onto the 

lower orifice of a glass cylinder using a silicone rubber (Acetic acid curing Selleys 

glass silicone (Selleys Australia & New Zealand)). The gelled organic phase solution 

was introduced into the silicon micropore array via the glass cylinder,34 and the 

organic reference solution was placed on top of the gelled organic phase. The silicon 

membrane was then immersed into the aqueous phase (10mM HCl, lysozyme in 

10mM HCl and/or TEA+ in 10 mM HCl). The electrochemical cell employed is 

summarised in Scheme 3.2.2.1. Contact angle measurements were performed with a 

contact angle goniometer (KSV Instruments LTP, Finland) on a glass slide spin-

coated with a film of gelled organic phase. 
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Scheme 3.2.1. Electrochemical cell. 

3. 2. 3. Electrochemical measurements 

The interfacial potential difference was applied and measured between a pair of 

Ag/AgCl electrodes. The geometric area of the micro-interfaces was 1.18 x 10-4 cm2. 

Cyclic voltammetry (CV), linear sweep voltammetry (LSV) and linear sweep 

stripping voltammetry (LSSV) were carried out at a sweep rate of 5 mV s-1, unless 

otherwise stated, and parameters such as protein concentration, applied potential and 

duration of the adsorption stage were varied. 

 

3. 3. Results and Discussion 

3. 3. 1. Distortion of simple ion transfer by adsorption 

A qualitative indication of whether a macromolecule is adsorbed at the ITIES 

can be obtained by not only examination of the CV of the macromolecule at the 

interface, but also by comparison of the voltammetric response for a simple ion 

transfer process in the presence and absence of the macromolecule.79, 149 If the 

macromolecule is adsorbed at the µITIES, then the CV for simple ion transfer should 

be distorted, depending on the extent of adsorption. Figure 3.3.1 shows CVs for 

lysozyme adsorption at the µITIES array. Figure 3.3.1(A) shows the background CV 

response, obtained when both phases contain only the background electrolyte 

species. The rise in current at the positive end of the voltammogram is indicative of 

background electrolyte transfer across the ITIES.79 Figure 3.3.1(B) shows the 

situation when the aqueous phase contains 15 M lysozyme. There are differences 

between the CV in the presence and absence of lysozyme, which indicates that 

lysozyme can be detected, most easily by the reverse scan peak, which may be 

attributed to desorption of lysozyme from the interface. The broad increase in current 

between ca. 0.6 and 0.9 V is due to the adsorption of lysozyme at the interface but it 

is not useful for detection purposes because of its broadness. The response of 
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lysozyme at the ITIES is complex and, as discussed previously,78, 79, 88 is a 

combination of lysozyme adsorption at the interface and its facilitation of the transfer 

of background electrolyte anion from the organic phase to the aqueous phase where it 

forms a complex with the cationic protein. In contrast to the complex nature of 

lysozyme detection, the transfer of TEA+ (Figure 3.3.1(D)) is a simple ion-transfer 

process dominated by mass transport: radial diffusion on the forward (positive-

going) scan provides a steady-state voltammogram and linear diffusion (in the 

micropores used to form the µITIES) on the reverse scan (negative-going) produces a 

peak-shaped response.79 However, this ideal response to TEA+ is severely distorted 

in the presence of aqueous phase lysozyme (Figure 3.3.1(C)). Although a transfer 

current for TEA+ can be discerned on the forward scan, it is smaller and less well-

defined than that in the absence of lysozyme (Figure 3.3.1(D)). A peak for the 

reverse transfer of TEA+ can be seen at ca. 0.6 V. The peak at ca. 0.7 V is due to 

desorption of lysozyme from the interface. Transfer of the TEA+ from the aqueous 

phase to the organic phase in the presence of lysozyme was distorted from the 

expected steady-state response for TEA+ transfer across the interface. This behaviour 

indicates an adsorbed protein layer is formed. The reverse sweep for TEA+ in the 

presence of lysozyme was affected also, despite apparent desorption of protein 

before the TEA+ reverse peak potential. This is because the adsorbed protein results 

in a decreased concentration of TEA+ for the reverse transfer in comparison to that in 

the absence of protein. Also, as discussed by Hartvig et al.,88 adsorption of protein 

may occur at potentials positive of the potential of zero charge so that protein 

adsorption occurs over a wide potential range.  
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Figure 3.3.1. Cyclic voltammetry of the µITIES array in the absence and presence of 

aqueous phase lysozyme and TEA+. (A) Aqueous phase: 10 mM HCl, (B) aqueous phase: 15 

M lysozyme + 10 mM HCl, (C) aqueous phase: 15 M lysozyme + 15 M TEA+ + 10 mM 

HCl, (D) aqueous phase: 15 M TEA+ + 10 mM HCl. In all cases the organic phase was as 

described in Scheme S-1. Scan rate for all experiments: 5 mV s-1. 

 

3. 3. 2. Potential-dependent adsorption of lysozyme 

The influence of applied potential on lysozyme adsorption at the µITIES array 

was investigated by holding the applied potential at pre-determined values for a 

certain time, followed by scanning to lower potentials in order to desorb the protein 

and produce a stripping voltammogram. The influence of the applied potential on 

lysozyme adsorption is shown in Figure 3.3.2 Since the potential for protein 

adsorption was close to the region where background electrolyte transfer occurs, the 

optimum potential was assessed by examining both the peak current and the ratio of 

peak height : half-peak width for the desorption voltammogram. The optimum 

protein adsorption potential is a compromise between the maximum desorption 

current and the minimum background signal. The optimum adsorption potential was 
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determined to be 0.95 V for lysozyme. At this adsorption potential, the peak current 

reaches a shoulder, but continues to rise at higher applied potentials (due to 

contributions from background electrolyte transfer). In contrast, the ratio of peak 

height:half-peak width reaches a plateau at this potential, indicating there is no added 

benefit to applying higher applied potentials during the adsorption process. 

 

Figure 3.3.2. Influence of the applied potential during the adsorption step on the peak 

current and ratio of peak current: peak half-width. Concentration of lysozyme: 10 µM in 

10mM HCl. Adsorption time: 60 s, without stirring. The organic phase was as described in 

Scheme 3.2.1. 

Interestingly, at potentials ≤0.8 V, the peak currents are low, indicating that the 

amount of lysozyme adsorbed to the interface at these applied potentials is not high. 

This suggests that the simple ion transfer of TEA+ (Figure 3.3.1(C)) should be 

evident at potentials ≤0.8 V. It may well be that the minute amounts of lysozyme 

adsorbed at these potentials are sufficient to distort the TEA+ transfer described 

above. Indeed, low surface coverages for protamine, a polypeptide of lower RMM 

than lysozyme, were determined73 in an equivalent potential region, where no charge 

transfer current was measured. Protamine surface coverages of ca. 8 x 10-11 mol cm-

2, consistent with a monolayer or so of this polypeptide, were found. Similar 

adsorption of a monolayer of lysozyme in this potential region (≤0.8 V) would also 

distort the TEA+ voltammogram. 
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3. 3. 3. Scan rate dependence 

The influence of the scan rate on the voltammetric desorption peak was examined, 

following adsorption at constant potential from unstirred solution (see Figure 3.3.3). 

The shift in the stripping peak potential is attributed to the uncompensated resistance 

in the cell. The linear dependence of the desorption peak current on the scan rate was 

as expected for a charge transfer process involving an adsorbed species. 

Consequently, the peak current is directly proportional to the surface coverage (Γ) as 

well as the potential scan rate (υ), according to the equation 3.3.1:5 

݅௣ ൌ
௭೔
మிమ௰௮జ

ସோ்
     (3.3.1) 

where ip is the peak current, zi is the number of charges transferred per molecule, 

F is the Faraday constant, R is the universal gas constant, T is the temperature and A 

is the total interfacial area, 1.18 x 10-4 cm2. At a temperature of 21 °C and assuming 

that the number of ions transferred per molecule is the same as the protein charge, 

+17,150 the surface coverage obtained from the slope of the line of the inset graph in 

Figure 3.3.3 is 4 pmol cm-2, for a 0.5 µM lysozyme aqueous concentration and a 60 

second adsorption time. 

 

Figure 3.3.3. Influence of the voltammetric scan rate on the desorption peak: stripping 

voltammograms of 0.5 µM lysozyme in 10 mM HCl at a) 5, b) 10, c) 20, d) 30 and e) 40 mV 



91 

s-1 scan rates following 60s adsorption from unstirred solution. The organic phase was as 

described in Scheme 3.2.1. Inset: the linear dependence of the peak current on the scan rate. 

 

3. 3. 4. Time dependence 

Figure 3.3.4 shows the influence of adsorption time on the voltammetric 

desorption response. Without any time for adsorption (i.e. 0 s adsorption), it was not 

possible to detect 0.1 µM lysozyme in the aqueous phase. However, LSV following 

adsorption of lysozyme at the µITIES for times longer than 60 s provided stripping 

peaks at this low concentration. Figure 3.3.5 indicates that after each desorption 

voltammogram, the protein is stripped away from the interface, so that there is no 

carryover between experiments.  

 

Figure 3.3.4. AdSV of 0.1 M lysozyme at different preconcentration times from 0 s (—) 

to 1800 s (- -) via times of 5, 60, 150, 180, 240, 300, 480 and 900 s.  
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Figure 3.3.5. LSV of 0.1 µM lysozyme in 10mM HCl before (a) and after (b) 

preconcentration steps where dotted line (c) is LSV of 0.1 µM lysozyme after a 

preconcentration time of 1800 s at 0.95 V.  

The kinetics of the adsorption process was examined across a range of aqueous 

phase lysozyme concentrations by varying the adsorption time prior to initiation of 

the LSV desorption step. For these results, the charge under the voltammetric peak 

was determined and this is plotted in Figure 3.3.6 as a function of the adsorption time 

and the aqueous phase concentration of lysozyme. It can be seen that the charge for 

lysozyme desorption from the µITIES array increased with the adsorption time at an 

applied potential of 0.95 V. The electrochemical data revealed that the adsorption of 

lysozyme at the ITIES can be controlled by the solution concentration and the 

adsorption time. The charge required for desorption of the protein from the surface 

for any given adsorption time, Qt , is given by5 

ܳ௧ ൌ ܳ௘ሾ1 െ ݁ି௄஼௧ሿ    (3.3.2) 

where Qe is the equilibrium surface charge passed, K is the adsorption rate 

constant, C is the concentration and t is the time. For the fitting of the data to this 

equation (Figure 3.3.6), R2 values between 0.83 and 0.99 were obtained, while values 

of K obtained from the fitting increased with the aqueous phase concentration of 

lysozyme. It is clear from Figure 3.3.6 that long adsorption times are needed in order 

to reach a saturation or equilibrium surface coverage at any given aqueous 

concentration. This may be reflected in the transport of protein molecules to the 
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interface and their subsequent adsorption and reorientation within the adsorbed 

layer.151, 152 Furthermore, the possibility for structural rearrangements when the 

protein is present in low pH solutions was noted by Kleijn et al.152 A purely 

diffusion-controlled adsorption process seems unlikely given the long times involved 

to reach saturation/equilibrium, together with the fact that the experiments are 

implemented with microinterface arrays. Under such conditions, with radial diffusion 

to the interface, surface saturation/equilibration should be reached quickly for a 

diffusion-controlled process. As discussed later, multi-layer adsorption of lysozyme 

L may occur at the interfaces employed here. 

 

Figure 3.3.6. Kinetics of lysozyme adsorption at the µITIES array at different 

concentrations: (ᇝ) 0.05 µM, (■) 0.1 µM, (∆) 0.5 µM, (▼) 1.0 µM, (○) 5 µM, (●) 10 µM 

lysozyme, in aqueous 10mM HCl. The solid lines (—) are the best fits to equation 3.3.2. 

 

3. 3. 5. Concentration dependence 

The adsorption of lysozyme at the µITIES was analysed as a function of the 

concentration of lysozyme in the aqueous phase. As above, the analytical signal may 

be taken as the charge under the voltammetric peak. Figure 3.3.7 shows charge 

versus concentration plots for five sets of experiments in which different adsorption 

times were used, from 0 to 300 seconds, at an adsorption potential of 0.95 V. The 

lysozyme concentration in the aqueous phase was varied between 0.05 µM and 10 

µM. 
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After a period of 5 minutes adsorption at elevated lysozyme concentrations, the 

amount of adsorbate at the ITIES reached a saturation point (see Figure 3.3.7). 

However at lower concentrations, up to ca. 1 µM, a linear dependence between the 

desorption charge and the concentration of lysozyme in the aqueous phase exists, 

which can be clearly used for analytical purposes. The surface saturation charge, ca. 

100 nC, is reached for the higher concentrations and longer adsorption times (Figures 

3.3.6 and 3.3.7).  

 

Figure 3.3.7. Concentration-dependence of lysozyme in 10 mM HCl determined by 

voltammetry following adsorption for various times: (●) 0 s, (○) 30 s, (▼) 60 s, (∆) 120 s 

and (■) 300 s. Experiments were performed in unstirred solutions. The organic phase was as 

specified in Scheme 1. The solid lines (—) are guides to the eye. 

 

3. 3. 6. Sensitivity and detection limits 

The adsorption process at the gelled µITIES array has been studied as it may 

provide a means to better analytical performance via adsorptive preconcentration 

prior to voltammetric measurement. Peak current values plotted versus lysozyme 

concentration show the same features as Figure 3.3.7, reaching a saturation current 

value of 5 nA for a maximum preconcentration time of 300 seconds. The linear range 

for the stripping current response to lysozyme concentration was between 0.05 and 1 

µM lysozyme. As shown in Table 3.3.1, the longer preconcentration times provided a 

greater calibration graph slope (sensitivity) and lower calculated limits of detection 

(LOD) (based on 3σ). With this AdSV approach at the µITIES array, a 
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preconcentration time of 300 seconds enabled a LOD of 0.03 µM lysozyme to be 

achieved, which corresponds to 0.44 µg ml-1. Concentrations of 0.05 µM lysozyme 

were detected, compared to 0.5 µM detection with CV at a similar µITIES array79 or 

to even higher concentrations at ITIES77, 78, 81 This is the lowest concentration of a 

protein detected by electrochemistry at the ITIES to-date.  

 

Table 3.3.1. Analytical characteristics for AdSV of lysozyme at µITIES array.  

Pre-

concentration 

times / s 

Sensitivity 

(calibration graph 

slope) / 

nA µM-1 

Limit of 

detection (LOD) / 

µM 

Linear range / 

µM 

Correlation 

coefficient (r) 

30 0.22 0.10 0 - 1 0.928 

60 0.91 0.06 0 - 1 0.978 

120 1.41 0.05 0 - 1 0.977 

300 4.31 0.03 0 - 1 0.989 

 

3. 3. 7. Surface coverage 

In this discussion we aim to relate the voltammetric desorption charges reported 

above to surface coverages for lysozyme at the µITIES array. Table 3.3.2 

summarizes the surface coverages for lysozyme monolayers on a variety of 

interfaces. A variety of interfaces have been studied but not aqueous-organic 

interfaces. The pH values of data reported in the literature are far from the acidic 

conditions used in this study. Most of the surfaces employed are highly hydrophilic, 

with contact angle values lower than 10°. Materials such as mercury exhibit a 

reactive surface where the disulfide groups within the protein can react with mercury. 

In contrast, Su et al.151 employed a silicon dioxide surface modified with a self-

assembled monolayer of octadecyltrichlorosilane (OTS), forming a hydrophobic 

surface with a contact angle of 110°.151 In the present study, the organogel phase 

forms one side of the adsorbing interface while lysozyme is present initially in the 

aqueous phase under acidic conditions, where is has a charge of +17. The water 

contact angle of the organogel surface was determined to be ~80°, confirming the 

hydrophobic property of the organic phase. Therefore the ITIES employed here is 

more like the SiO2-OTS surface than the other interfaces presented in Table 3.3.2. 
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The monolayer surface coverage on SiO2-OTS may be taken as that for the protein at 

the ITIES, noting that there are differences, such as the ITIES is charged and 

electrified as well as soft, and the aqueous phase is acidic. Such differences may alter 

the way the protein interacts and folds/unfolds at the interface. The soft interface 

nature of the ITIES may lead to its being deformed or changed upon protein 

adsorption. Nevertheless, for now, the surface coverage of a lysozyme monolayer at 

the µITIES is assumed to be 13 pmol cm-2. 

 

Table 3.3.2. Surface coverage values for lysozyme adsorption on solid - liquid and 

mercury - liquid interfaces. 

Substrate pH 

Surface Coverage 

Technique Reference Side-on 

pmol/cm2 
 

End-on 

pmol/cm2 

Mercury 7  9  AC polarograms 153 

Mercury 5  9  Electrochemistry 154 

Silica 4  34  Streaming potential 155 

Silica 7.4  17  Dual polarization interferometry 156 

SiO2 4 / 7  12  Spectroscopic Ellipsometry 151 

SiO2-OTS 7  13  Spectroscopic Ellipsometry 151 

Germanium 7.4  10  
Fourier Transform Infrared 

Spectroscopy (FTIR) 

151, 156, 

157 

Gold 7 12  19 
* lysozyme dimensions / 

orientation 
152 

Quartz 7 14  21 
* lysozyme dimensions / 

orientation 
 

Silica 7 16  31 Forster Resonance  
Energy Transfer (FRET) 

139, 155, 

156 
Silica 4 1  16 Dual polarization interferometry 156 

Silica 7 5  22 Dual polarization interferometry 156 

Si(Ti)O2 8 15  21 
Optical Waveguide Light mode 

Spectroscopy (OWLS) 
158 

* Hexagonal packing (lysozyme dimensions 4.6 x 3.0 x 3.0 nm3)159 

 

From Figures 3.3.6 and 3.3.7, the maximum charges (Q) measured can be related 

to surface coverage (Γ) by equation (3) 5  

ܳ ൌ  (3.3.3)     ߁ܣܨ௜ݖ
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Taking into account the charge of the protein (zi) at pH 2, +17,150 the area (A) of 

the interface array, as patterned by the geometric area of the micropore array, 1.18 x 

10-4 cm2, and the value of the Faraday constant (F), the surface coverage can be 

calculated. The corresponding maximum surface coverage values determined from 

Figures 3.3.6 and 3.3.7 are 550 pmol cm-2. If, as discussed above, we take a 

monolayer of adsorbed lysozyme to be 13 pmol cm-2, then ca. forty monolayers of 

lysozyme are formed at the liquid-liquid interface for a five minute preconcentration 

period. Such a multilayer formation at the gelled µITIES array requires that the 

proteins have attractive interactions with each other. As the protein is highly charged 

(+17 charges), presumably the positive interactions come from exposure of the 

hydrophobic amino acid residues and then hydrophobic interactions drive the 

attachment of the protein to the interface and to each other. The acidic nature of the 

aqueous phase may contribute to partial unfolding of the lysozyme, exposing the 

internal hydrophobic regions and thus promoting multilayer adsorption at the ITIES. 

Furthermore, Herzog et al. 81 suggested ca. seven monolayers of haemoglobin 

formed at the aqueous–1,2-dichloroethane ITIES during a single CV cycle, without a 

preconcentration step as used here. Thus employing a preconcentration step at an 

optimum applied potential for five minutes may indeed result in an order of 

magnitude increase in protein adsorption at the interface. As discussed by Wei et al., 

the non-equilibrium nature of the adsorptive process may also promote multilayer 

build-up of lysozyme.157 Furthermore, the formation of lysozyme multilayers on 

hydrophilic solid surfaces such as mica,160 germanium crystal157 and Si(Ti)O2
158 and 

on a hydrophobic surface (quartz modified with octadecyl trichlorosilane)161 have 

been reported, as have the multilayer formation of two other proteins, albumin and 

cytochrome c, under the influence of applied potential.162  

 

Figure 3.3.8 summaries the pre-concentration process at the ITIES. According to 

the results, this pre-treatment step is pre-concentrating the protein at the liquid-liquid 

interface of the microporous membrane where desorption is observed after AdSV 

was performed toward the open circuit potential of the system. This reversible 

system does not require further cleaning steps as it is been demonstrated in Figure 

3.3.5.  
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Figure 3.3.8. Reversible adsorption-desorption process proposed for a pre-concentration 

step of lysozyme at the liquid-liquid interface. A) Diagram of lysozyme in solution and B) 

diagram showing the adsorption and accumulation of protein on the micro-pore interface 

after a certain potential applied during a X period of time. 

 

3. 4. Conclusions 

Adsorption of the protein lysozyme at miniaturised liquid-liquid interfaces has 

been investigated as a preconcentration strategy prior to voltammetric detection by 

desorption of the adsorbed material. Studies as a function of adsorption potential and 

adsorption time revealed that maximum protein adsorption occurs at higher positive 

potentials, just below the potential limit set by background electrolyte transfer. This 

is consistent with protein adsorbing at potentials positive of the potential of zero 

charge. The time-dependence of the adsorption indicated that it was a slow process, 

associated with multi-layer formation and molecular re-orientations within the 

adsorbed film. This may be promoted by the acidic nature of the aqueous phase 

employed. Using a preconcentration (adsorption) time of 300 s, a LOD of 0.03 µM 

lysozyme was achieved, which is the lowest concentration of protein detected by 

electrochemistry at the ITIES to-date. The results of this study show that the limit of 

detection at µITIES has been improved by preconcentrating the protein at the 

interface. Prospective lower LODs may be achieved using advanced electrochemical 

methods in conjunction with the adsorptive preconcentration, such as differential 

pulse voltammetry and square wave voltammetry. 
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4 
4. Electrochemical lysozyme pre-

concentration at the gelled liquid – liquid 

interface studied by ESTASI-MS 

Based on the mechanism of lysozyme detection at the 

liquid-liquid interfaces, which is believed to follow an initial 

protein adsorption process at the polarized interface 

followed by facilitated transfer of organic phase anions, 

adsorption of lysozyme at the interface was implemented as a 

pre-concentration step by applying an optimum adsorption 

potential prior to electrochemical analysis. In order to 

confirm the protein adsorption and the detection mechanism 

proposed at the gelled liquid – liquid micro-interfaces, mass 

spectrometric (MS) analyses were performed by electrostatic 

spray ionisation (ESTASI) from the surface of the organogel 

where protein was previously electrochemically pre-

concentrated. The spectra demonstrate the presence of 

protein at the organogel which is enhanced when applied 

potential, pre-concentration time and concentration of 

lysozyme in solution are increased. Moreover, complexes 

between the charged protein and one or two anions of the 

electrolyte ([Lysozyme-1TPBCl+(x+1)H]+x where x can be 8, 

9 or 10 and ([Lysozyme-2TPBCl+12H]+10) were detected by 

ESTASI-MS. This is the first time that ESTASI-MS has been 

employed directly at a hydrophobic gel following 

electrochemistry at the ITIES. The combination of these two 

techniques provides a new platform for label-free 

biomolecule detection and elucidation of complex processes 

occurring at soft liquid – liquid interfaces, which are difficult 

to characterise. 
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4. 1. Introduction 

Adsorption of protein at the liquid – liquid interfaces was first reported in 1984 by 

Vanysek et al., when bovine serum albumin was observed to interfere in ion transfer 

studies at the water/nitrobenzene interface.49  Since then, several publications have 

addressed the electroactivity of biomacromolecules such as proteins at the interface 

between two immiscible electrolyte solutions (ITIES) from different perspectives, 

from mimicking the cell membrane, DNA hybridization, label-free detection of 

biological molecules to adsorption studies.12 Hen-egg-white-lysozyme was 

characterised at the ITIES by Scanlon et al.78 The detection mechanism was believed 

to undergo two sequential steps, adsorption and facilitation of anion transfer from the 

organic phase to the aqueous via interfacial complexation of the charged protein with 

the negatively charged organic electrolyte.78 A different approach based on this 

proposed mechanism was implemented (see Chapter 3) in order to enhance the 

electrochemical signal to achieve better sensitivity in a label-free form. This 

consisted in pre-concentrating lysozyme at its optimum adsorption potential for a 

period of time followed by stripping voltammetry, also called adsorptive stripping 

voltammetry (AdSV). A detection limit of 30 nM was achieved. 

However the study of interfacial complexes and interfacial adsorption at the 

ITIES is a challenging task. For this reason very limited techniques mainly 

electrochemical techniques such as electrochemical impedance spectroscopy,49, 67, 84, 

86 alternating current voltammetry81, 84 and classic voltammetry have been used to 

evaluate the capacitive properties of the soft liquid-liquid interfaces containing 

adsorbed protein.  

Electrospray ionisation - mass spectrometry (ESI-MS) is a highly sensitive 

strategy which can softly ionize macromolecules and providing information such as 

protein molecular weight, protein 3D structures, posttranslational modifications, 

amino acid sequence and non-covalent interactions.93, 97 For instance non-covalent 

complexes such as protein-DNA, protein-low molecular ligand supramolecules and 

double-stranded oligonucleotides have been studied via ESI-MS.163 Biphasic 

electrospray ionisation (BESI) was implemented recently to investigate non-covalent 

interfacial complexes that can be formed at the liquid – liquid interfaces.88, 164, 165 

Several complexes between lysozyme and different organic electrolyte anions were 

reported via BESI-MS.88 In addition, the complex formation between peptides such 



102 

as melittin65 and the phospholipids have been also elucidated via BESI-MS by 

Mendez et al.64, 65 

Previous attempts induced a potential difference by tuning the electrolyte 

concentrations in the immiscible solutions88 whilst in this study, the potential 

difference is induced by applying a voltage. For this reason, the use of electrostatic 

spray ionisation – mass spectroscopy (ESTASI-MS) was thought to provide an 

alternative in the study of forced adsorption on the gelled liquid - liquid interface. 

The advantage of ESTASI-MS versus conventional ESI-MS are the possibility to 

ionize directly from a soft surface and the contactless approach which avoids 

electrochemical reactions166 occurring at the electrode used to electrospray the 

sample. ESTASI-MS was developed and implemented by Qiao et al. in different set-

ups and geometries (microfluidic chip, micropipette and microdroplets).105 More 

recent work have proven the potential of this methodology with the publication of 

isoelectric focusing electrophoresis (IFE) coupled trough ESTASI-MS.103 

The aim of this work is to study via ESTASI-MS the electrochemical adsorption 

process at the hydrophobic gelled liquid – liquid interface including interfacial 

complexes formation and the influence of parameters such as applied potential, time 

and protein concentration in the adsorption of lysozyme. In particular, it was 

anticipated that the approach would enable direct detection of protein-anion 

complexes, in order to help confirm an aspect of the protein detection mechanism at 

ITIES and gelled ITIES. 

 

4. 2. Experimental Section 

4. 2. 1. Reagents 

The organic phase was gelled and prepared using bis(triphenylphosphoranylidene) 

tetrakis(4-chlorophenyl)borate (BTPPA+TPBCl-, 10 mM) in 1,6-dichlorohexane (1,6-

DCH) and low molecular weight poly(vinyl chloride) (PVC). The BTPPA+TPBCl- 

salt was prepared by metathesis of bis(triphenylphosphoranylidene)ammonium 

chloride (BTPPA+Cl-) and potassium tetrakis(4-chlorophenyl)borate (K+TPBCl-) as 

indicated in Appendix A. Hen-egg-white-lysozyme (HEWL) solutions were freshly 

prepared in 10 mM HCl of pH 2 prior to electrochemical experiments. All these 

reagents were purchased from Sigma-Aldrich Switzerland Ltd. and all the aqueous 
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solutions were prepared in purified water, from alpha Q Millipore system (Zug, 

Switzerland). 

 

4. 2. 2. Apparatus 

All electrochemical experiments were performed using an Autolab PGSTAT302N 

electrochemical analyser (Metrohm Autolab, Utrecht, The Netherlands). The 

millimetre size interface was formed using a glass pipette of 0.075 cm radius. The 

total geometric area of the water/organogel interface was calculated to be 0.035 cm2 

assuming that the droplet formed is a perfect hemisphere. The electrochemical cell is 

summarised in Scheme 4.2.1, where x is the concentration of lysozyme in the 

aqueous phase. 

 

Scheme 4.2.1. Diagram of the electrochemical cell. 

 

4. 2. 3. Electrochemical measurements 

A three-electrode system was employed for all measurements. Electrochemical 

pre-concentration at a fixed potential was implemented before ESI-MS from the gel. 

In contrast to Chapter 3, the protein adsorbed at the interface was not stripped away 

by Stripping Voltammetry (SV) so the protein remained on the organogel for further 

studies via mass spectrometry. Therefore, no voltammograms are presented in this 

chapter. 

 

4. 2. 4. ESTASI-MS 

After pre-concentration of lysozyme at the water/organogel interface, the gel was 

cut and fixed on a 0.2 mm GelBond®PAG film (Lonza), as shown in Figure 4.2.1 for 

ionisation. In addition, drops (1-2 µL) of an acidic buffer consisted of 1% acetic acid 

in a 50:50 water:methanol solution were deposited manually on top of the organogel. 

For electrostatic ionisation a gold electrode was placed underneath the plastic layer 

(GelBond®PAG film) and the gel was placed close to the MS inlet to induce the 
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electrostatic spray ionisation.103 The electrode was then connected with a DC square 

wave with maximum high voltage (9 kV) source via switch 1 or grounded via switch 

2 (0 V) to reduce the surface charge that cannot be consumed by the electrode. For 

this, a LabView program controls the switches in order to synchronize their 

application. The spray voltage of the internal power source of the LTQ Velos was set 

to 0 V. An enhanced ion trap scan rate (10,000 Th/s) was selected to obtain a good 

spectral resolution. These experiments were performed on a dual pressure ion trap 

Thermo LTQ Velos mass spectrometer and all the MS data were processed using the 

program Xcalibur from Thermo Fisher Scientific Inc. (Hampton, New Hampshire, 

USA). 

 

Figure 4.2.1. Three electrode set-up electrochemical cell. 

ESTASI-MS experiments were carried out in Prof. Hubert Girault’s Laboratory of 

Physical and Analytical Electrochemistry (LEPA) at École Polytechnique Fédérale 

de Lausanne (EPFL) in Lausanne, Switzerland.  

 

4. 2. 4. MALDI-TOF 

Firstly, extraction of lysozyme electrochemically adsorbed at the organogel was 

performed by dissolving the gel in 5 µL of 1,6-dichlorohexane and swirl with a 

vortex for 5 minutes. After that, 2 µL of the extracted protein solution from the 

organogel was deposited on a steel target plate and left to dry at room temperature. 

Then 1 µL of the matrix solution (10 mg/mL 2,5-dihydroxy benzoic acid (DHB) in 

50% acetonitrile, 0.1% trifluoroacetic acid, and 49.9% water) was added after the 

1,6-dichlorohexane was evaporated. After this second addition, the sample was left 

again to dry at room temperature prior to measurements. Matrix-assisted laser 
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desorption ionisation - mass spectrometry (MALDI-TOF) analyses were performed 

on a positive mode Microflex MALDI-TOF instrument (Bruker Daltonics GmbH, 

Faellanden, Switzerland) equipped with a nitrogen laser (wavelength 337 nm). Data 

analysis was performed using flexAnalysis software from Bruker in the range of 

4,000 - 85,000 m/z. 

MALDI-TOF experiments were carried out in Prof. Hubert Girault’s Laboratory 

of Physical and Analytical Electrochemistry (LEPA) at École Polytechnique Fédérale 

de Lausanne (EPFL) in Lausanne, Switzerland.  

 

4. 3. Results and Discussion  

ESTASI is a contactless spray ionisation technique which prevents from 

electrochemical reactions from occurring at the electrode/solution interface as 

happens in traditional ESI-MS when a high voltage is applied between the electrode 

and the mass analyser (counter electrode). By applying a DC high voltage between 

the electrode placed at a small distance from the sample and the mass spectrometer 

(Figure 4.3.1.a), two capacitors are formed: C1) electrode-insulator-sample solution 

and C2) sample solution-gas-MS inlet (see Figure 4.3.1.b). After the application of 

high voltage, charges accumulate at the solution/gas interface (see Figure 4.3.1.b) 

and electrostatic spray is induced when the charge accumulated at this interface is too 

large and the electrostatic pressure (pe) is greater than the Laplace pressure between 

the solution and the gas phase.  

 

Figure 4.3.1. Sketch of the electrostatic spray ionisation (a) and an amplification of the 

ionisation processes followed by evaporation of the liquid and charged molecules reaching 

the mass analyser (b). C1 and C2 are the capacitors formed when applying the potential 

difference at the electrode-insulator-sample and the sample-gas-MS. 
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Laplace pressure (pL) is defined as the pressure difference between the spherical 

meniscus formed between a hemispherical solution droplet and the gas phase, which 

is caused by surface tension, see Equations 4.3.1 and 4.3.2. 

௘݌ ൌ  ଴    (4.3.1)ߝଶ/2ߪ

௅݌ ൌ  (4.3.2)     ݎ/ߛ2

where σ is the surface charge density, ε0 the permittivity of vacuum and the γ is 

the surface tension of the solution and r is the radius of the droplet hemisphere. Then 

when electrostatic spray is forced, the surface charge density must be larger than 

4γε0/r as described in Equation 4.3.3.  

ଶߪ ൐  (4.3.3)    ݎ/଴ߝߛ4

After electrospray the electrode is disconnected and grounded to discharge both 

capacitors and avoid counterion charge build-up once the sample is ionized. In this 

case, the gel is placed on the insulating polymer film and a drop of acidic buffer is 

added on top of the gel to provide an acidic medium that enables protonation of the 

protein and also facilitates the transfer of the molecule into the gas phase. Figure 

4.3.2 illustrates the new set-up showing the hydrophobic gel on the insulating film 

and the acidic solution deposited onto the organogel.  

 

Figure 4.3.2. Schematic representation of the electrostatic spray ionisation. 
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Consequently this technique was the ideal candidate to characterise the gelled 

organic phase after electrochemical pre-concentration of lysozyme as this 

methodology enables the direct analysis of the electro-adsorbed protein. 

 

4. 3. 1. Organic electrolyte in the gel 

Firstly, the organogel was prepared with different concentrations of organic 

electrolyte (1, 5 and 10 mM) in order to evaluate signal via ESTASI-MS. The 

organic electrolyte, bis(triphenylphosphoranylidene) tetrakis(4-chlorophenyl)borate 

(BTPPA+ TPBCl-), was dissolved in 1,6-dichoroheaxene and then gelled by adding 

polyvinyl chloride (10%w/v). Then a droplet of the organogel was placed on the 

GelBond®PAG film. As mentioned in Section 4.2.4, 1-2 µL of 1% acetic acid in 

49% water and 50% methanol were deposited manually on top of the gel to facilitate 

the protonation and also the transfer of the analytes into gas phase. Figure 4.3.3.a and 

Figure 4.3.3.b show the spectra of the organogel containing 10 mM BTPPA TPBCl. 

The results for lower concentrations are not shown as the signal for the organic ions 

was either non-existent or not as intense as that observed for 10 mM organic 

electrolyte. In Figure 4.3.3.a, a sharp peak corresponding to the cation of the 

electrolyte (BTPPA+) was detected at a mass-to-charge ratio of 538.26 which 

correspond to the molecular weight of bis(triphenylphosphoranylidene)ammonium 

with one charge. In the negative mode, the anion of the organic electrolyte was also 

detected when the electrolyte concentration in the gel was 10 mM. Figure 4.3.3.b 

represents the percentage relative intensity over the mass-to-charge ratio (m/z) 

measured for the 10 mM BTPPA TPBCl organogel in the negative mode. The peak 

observed at m/z 457.16 corresponds to tetrakis(4-chlorophenyl)borate with z = -1, 

which is in agreement with the monoisotopic molecular mass of tetrakis(4-

chlorophenyl)borate (TPBCl). 

In addition, no interference was observed from the gel composed of low 

molecular weight polyvinyl chloride (averaged molecular mass 48,000 g mol-1) in 

1,6-dichlorohexane. This is attributed to its low solubility in the acidic buffer. 

Assuming that the polymer (PVC) was ionised, repetitive peaks with interval of m/z 

62.5/n, where n is the charge number, should be observed to present the different 

polymerization states of the PVC, as the molecular mass of the PVC monomer (–

CH2CHCl–) is 62.5 g mol-1. They were not observed in any of the mass spectra 
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obtained by ESTASI-MS on the organogel, implying that PVC was not detected by 

this ESTASI-MS method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3. Electrostatic-spray spectra of 10% w/v organogel (10 mM BTPPA TPBCl 

in PVC/1,6-DCH); a) in the positive mode and b) in the negative mode.  

 

4. 3. 2. Lysozyme in solution 

Before characterizing the organogel with electro-adsorbed protein via mass 

spectrometry, lysozyme in an acidic buffer solution was characterised by ESTASI-

MS. A drop (1 µl) of 10 µM lysozyme in 1% acetic acid in water:methanol (50:50) 

was placed on the plastic film for ionisation. This experiment was performed to 

evaluate the lysozyme spectrum when this protein is softly ionized via ESTASI. 
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Lysozyme has been reported to show several protonated states depending on the 

unfolding conformation of the protein.167, 168 In the case of lysozyme, higher charged 

states have been reported when the four disulfide bonds in lysozyme molecules were 

reduced by dithiothreitol (DTT), which led to unfolding of the protein and 

consequently exposing the buried residues of the protein in its native compact 

structure.167 Another study on lysozyme fibril formation reported protonated states of 

lysozyme up to +15 charges when lysozyme was denatured at a low pH and high 

temperatures (65˚C for 14 and 96 h).168 These reports indicate that low charge states 

(7+ to 10+) of lysozyme correspond to its native conformation with intact disulfide 

bridges. The unfolded conformation present peaks in the mass spectra corresponding 

to lysozyme protonated with 9 to 16 protons. In Figure 4.3.4, the spectrum obtained 

for lysozyme illustrates four charge states of the protonated protein. Hen-egg-white-

lysozyme has been reported to be charged with 17 positive charges at pH 2 when 

carrying out acid-base titration curves.150 However, based on the amino acids 

sequence of the protein, lysozyme is expected to present +18 charges (11 arginine, 6 

lysine and 1 histidine residues)169 if within the protein, all the possible protonatable 

sites (arginine, lysine and histidine) are protonated with one proton (+ 1H+). In soft 

ionisation techniques such as ESTASI – MS, the charge states measured in the mass 

analyser depends on the physical conformation of the protein due to the gentle 

ionisation.  

 

Figure 4.3.4. Spectrum of 1 µl of 10 µM lysozyme in 1% acetic acid in water:methanol 

(50:50) deposited on the plastic film which theoretically corresponds to 10 pmoles. 
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The spectrum in Figure 4.3.4 is dominated by one peak at 1590 m/z followed by 

1787, 2043 and 1430 mass-to-charge ratio values. ESI-MS protein spectra normally 

possess broad multiple charge peaks when protonated (positive mode) which 

correspond to different charge states of the protein when ionized in an acidic 

medium. Moreover, the broadness of the peaks is attributed to isotopic peaks 

detected in the large biomolecule, which is mainly composed of carbon, nitrogen, 

oxygen and hydrogen and a low percentage of sulfur when methionine and/or 

cysteine residues are present in the amino acid sequence of the protein.  

 

In order to confirm that the peaks obtained in the spectrum (Figure 4.3.4) 

correspond to lysozyme, mathematical deconvolution was performed using ProMass 

(Thermo Fisher Scientific Inc., Hampton, USA). Equation 4.3.4 and 4.3.5 are a 

summary of the mathematical expressions employed to develop the algorithm that 

can resolve the convoluted date obtained from the mass analyser and detector. 

ݖ/݉ ൌ ሺܯ ൅  (4.3.4)    ݖ/ሻܣݖ

For adjacent peaks z1 = z2 + 1 for protonated proteins (+1 hydrogen), then; 

ଶݖ ൌ ሺ݉ݖଵ െ ଶݖሻ/ሺ݉ܣ െ݉ݖଵሻ    (4.3.5) 

m/z is the mass-to-charge peak from the spectrum, z is the charge, M is the mass 

of the protein and A is the adduct providing charge. In the case of a protonated 

protein, the adduct corresponds to the sum of the molecular mass of the protein and n 

(A=M+n), being n the number of hydrogen (~1 g mol-1). When cations such as 

potassium or sodium are present in the sample, the adducts could correspond to the 

mass of the protein plus the atomic mass of these cations which therefore would form 

the charged molecule detectable via mass spectrometry. 

From the ProMass deconvolution, the calculated mass was 14,296 g mol-1 whilst 

the monoisotopic molecular mass of lysozyme (C613H951N193O185S10) would 

correspond to 14,295.8 g mol-1.170 Then the peaks detected via ESTASI-MS 

correspond to lysozyme protonated with 10 protons (m/z = 1430 being z = +10), 1590 

is [Lysozyme+9H]+9, 1787 corresponds to lysozyme protonated with 8H+ and the 

peak at m/z 2043 is the signal obtained for [Lysozyme+7H]+7 complex. 
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These data also reveal that the protein in the acidic buffer remains in its native 

configuration as the m/z values correspond to low charge states of the protein which 

is in agreement with a 3D compact conformation of lysozyme; i.e. it is not de-

natured. 

 

4. 3. 3. Effect of the applied potential 

Before exploring the effect of pre-concentration of lysozyme at the organogel 

surface via electrochemistry at the ITIES, a control experiment was performed in 

triplicate in order to determine the possible natural adsorption of the protein under 

open-circuit conditions at the gelled liquid – liquid interface. After immersing the 

organogel in a 10 µM lysozyme aqueous solution for 30 minutes at open circuit, 

there was no detectable protein in the spectrum (see spectrum in Figure 4.3.5). 

 

Figure 4.3.5. Spectrum of the organogel (10 mM BTPPA TPBCl in 10%w/v PVC in 1,6-

DCH) after incubation in 10 µM lysozyme acidic solution (10 mM HCl) for 30 minutes 

under open-circuit conditions. 

Based on previous experiments (see Chapter 3), adsorption of lysozyme at liquid-

liquid micro-interfaces has been demonstrated to be concentration and time-

dependent. In addition, the results showed that the maximum protein adsorption 

potential was 0.95 V. Thus, this adsorption phenomenon could be tuned by changing 

the pre-concentration conditions. For this reason, adsorption of lysozyme was 

implemented, as described in Chapter 3, but was not followed by electrochemistry 

but by ESTASI-MS. Figure 4.3.6 illustrates the difference between the approach 
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utilized in Chapter 3 (Adsorptive Stripping Voltammetry, AdSV) and the 

electrochemical pre-concentration prior to ESTASI-MS. Figure 4.3.6.a represents the 

adsorption of lysozyme at a constant potential (Eads) for a period of time (t), which is 

the pre-concentration step, followed by the desorption of the protein back to the 

aqueous phase via stripping. In this step the potential is scanned back to the potential 

of open-circuit potential. On the contrary, Figure 4.3.6.b shows the electrochemical 

pre-concentration step which is then interrupted after a period of time and subjected 

to ESTASI-MS on the organogel. There is no electrochemical characterisation prior 

to the ESTASI step. This prevents electrochemical desorption of the protein from the 

interface which would lead to the loss of the biomolecule from the interface. 

 

Figure 4.3.6. Diagram of a) Adsorptive Stripping Voltammetry (AdSV) and b) 

electrochemical adsorption at Eads, without a desorption step, followed by ESTASI-MS. 

The influence of different applied potentials was studied between 0.6 and 1.0 V, 

as this range which was reported in Chapter 3 (Section 3.3.2) as the potential region 

where the charged protein undergoes adsorption and complexation with TPBCl- from 

the organic phase. The gelled organic phase was immersed in 10 µM lysozyme in 10 

mM HCl and a constant potential was applied for 30 minutes. Immediately following 

the electrochemical adsorption, the organogel was removed from solution and placed 

onto the insulating film located between the electrode and the mass analyzer inlet 

(Figure 4.3.2). For 0.6, 0.7 and 0.8 V, no MS signal distinguishable from background 

signal was detected. This data is in agreement with the electrochemical response 

when AdSV was implemented (see Figure 3.3.2). However from 0.85 V upwards to 

1.0 V, the m/z signal increased in intensity. Figure 4.3.7 shows the spectra for 10 µM 

lysozyme in the aqueous solution after pre-concentrating the protein for 30 minutes 

at 0.85 (Figure 4.3.7.a), 0.95(Figure 4.3.7.b) and 1.0 V (Figure 4.37.c). For an 
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adsorption potential of 0.85 V, the charge states of the protein are more difficult to 

distinguish from the background noise, although peaks corresponding to 

[Lysozyme+10H]+10 and [Lysozyme+9H]+9 were observed at 1430 and 1590 m/z. At 

0.95 V, [Lysozyme+8H]+8 was detectable and [Lysozyme+7H]+7 appeared at 2044 

m/z for 30 minutes pre-concentration at 1.0 V. It was also noticed that for 0.95 and 

0.975 V, there was a slight increase in the intensity of peaks at ca. 1641 and 1847 

m/z which were hard to isolate from the background signal; these peaks correspond 

to Lysozyme-1TPBCl complexes in their +9 and +8 protonated state, respectively. 

[Lysozyme-1TPBCl+(n+1)H]+n complexes for n = 10, 9 and 8 were identified at 

1477, 1641 and 1847 m/z, respectively. However, for higher Eads values such as 1.0 

V, those peaks increased in intensity (see asterisks in Figure 4.3.7.c).  
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Figure 4.3.7. Mass spectra of the gel (10 mM BTPPA TPBCl in 10%w/v PVC in 1,6-

DCH) after pre-concentration of 10 µM lysozyme aqueous solution for 30 minutes at: a) 0.85 

V, b) 0.95 V and c) 1.0 V. *Complexes formed between lysozyme and TPBCl-.  
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The most prominent peak in the spectrum is at m/z 1524 (see Figure 4.3.8), which 

corresponds to the complex formed between a positively charge molecule of lysozyme and 2 

molecules of the anion from the organogel (TPBCl-), i.e. [Lysozyme-2TPBCl+12H]+10. 

Increasing the potential applied across aqueous – organogel interface increased the amount 

of protein detected at the organogel surface, as confirmed by the increased intensity of m/z 

peaks in the spectra. Additionally, new m/z peaks were observed at higher applied potentials, 

which is in agreement with the detection mechanism proposed in Chapter 3 for lysozyme 

detection at the ITIES. This consists of adsorption followed by complexation of the 

positively charged protein with the organic anion from the organogel; this complexation 

facilitates its transfer, resulting in changes in the current measured.  

 

Figure 4.3.8. Spectra of the organogel after previous pre-concentration of 10 µM 

lysozyme for 30 minutes at 1.0 V. This figure corresponds to an expansion of a section of 

Figure 4.3.7.c. 

Figure 4.3.9.a illustrates how the spectra have been analysed in order to study the 

signal-to-noise ratio evolution with the applied potential. The peak intensity of the 

signal is measured and the average of the noise calculated together with the 

corresponding standard deviation of the noise. Then the ratio (signal/noise) was 

calculated and normalised to a percentage, the signal-to-noise ratio of the data 

obtained at 1.0 V being set at 100%. 
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Figure 4.3.9. a) Sketch of how the signal-to-noise ratio was measured in the ESTASI-MS 

spectrum and b) percentage of signal-to-noise ratio against the applied potential for 30 

minutes in a solution of 10 µM lysozyme (●) and percentage of height of the peak after 

performing adsorptive stripping voltammetry of 10 µM lysozyme for 60 s pre-concentration 

time (×) at liquid-liquid microinterfaces (30 micropore array, see results in Chapter 3, 

Section 3.3.2). Note that the error bars corresponding to the standard deviation (STD) of the 

noise are represented although they are lower than 0.01%. 

The data illustrated in Figure 4.3.9b is based on the ESTASI-MS spectra for 

different applied potentials and electrochemical data obtained after pre-concentrating 

10 µM lysozyme for 30 min and 60 s, respectively. In both cases, the intensity of the 

signal either ESTASI-MS or electrochemical increases rapidly from 0.85 V onwards. 

A summary of the raw data (peak current, ESTASI-MS signal and noise) is presented 

in table 4.3.1. 
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Table 4.3.1. Stripping voltammetry and ESTASI-MS values for the pre-

concentration of lysozyme at liquid-liquid interfaces. 

 

Electrochemical data 

after AdSV at liquid-

liquid µ-interfaces a 

ESTASI-MS after pre-concentration on the gel b 

Adsorptive 

potential / V 

Peak 

current / 

nA 

% Relative 

peak 

current 

Signal 

ESTASI-

MS peak / 

a.u. 

Noise 

intensity / 

a.u. 

ESTASI-

MS signal-

to-noise / 

a.u. 

ESTASI-

MS / % 

Relative 

intensity 

0.600 0.000 0.00 0.00 0.00 0.00 0.00 

0.700 0.000 0.00 0.00 0.00 0.00 0.00 

0.800 0.000 0.00 213.60 50.71 4.21 0.61 

0.850 0.044 1.61 476.73 34.27 13.91 2.02 

0.875 0.401 14.57 - - - - 

0.900 0.991 35.987 - - - - 

0.925 1.838 66.76 - - - - 

0.950 2.723 98.89 58.35 1.62 35.93 5.21 

0.975 2.753 100.00 667.24 1.912 347.80 50.44 

1.000 2.746 99.73 1473.85 2.14 689.56 100.00 

a Adsorptive Stripping Voltammetry data when pre-concentrating 10 µM lysozyme in solution for 60 s. 
b 30 min pre-concentration of 10 µM lysozyme in the aqueous solution with no desorption potential applied. 

The intensity of the signal (peak current or MS peak intensity) was measured and the average of the noise. 

Then the ratio (signal/noise) was calculated and normalised to a percentage where 100% corresponds to the 

strongest signal (peak current – 2.753 nA – and ESTASI-MS – 1473.85 a.u.).  

 

Another remarkable feature found in the spectra was the shift in the intensity of 

the predominant peak in the ESTASI-MS spectra. At low adsorption potentials, the 

predominant peak corresponded to [Lysozyme+9H]+9, however, [Lysozyme+8H]8H+ 

becomes the most intense m/z peak at more positive potentials which could indicate 

that the charged protein adopted a more compact configuration when a higher 

quantity of protein is adsorbed onto the organogel. In the literature, larger charged 

ions of lysozyme measured via ESI-MS were attributed to an unfolded conformation 

of the protein167, 168 which is attributed to the reduction of disulfide bonds in the 

molecule, leading to greater exposure of the amino acid residues of protein. Figure 

4.3.10.a shows the spectrum of 10 µM lysozyme droplet in an acetate buffer obtained 
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by ESTASI-MS. For comparison, an ESTASI-MS spectrum showing the theoretical 

signal generated by unfolded lysozyme is depicted in Figure 4.3.10.b. These peaks 

represented in Figure 4.3.10.b have been generated based on previously reported 

studies167 and allocating 100 % relative intensity to the peak corresponding to 

[Lysozyme+13H]+13. The difference between Figure 4.3.10.a and 4.3.10.b indicates 

that the protein is not unfolded, at least to a significant extent, in the electrochemical 

adsorption-ESTASI-MS experiment reported here. 

 

Figure 4.3.10. ESTASI-MS spectrum of a droplet of 10 µM lysozyme in 1% acetic acid 

in water:methanol (50:50) deposited on the plastic film (a) and the theoretical m/z peaks that 

the unfolded conformation of lysozyme would show (b) after electrostatic spray.  

 

4. 3. 4. Pre-concentration time influence 

The adsorption time was varied from 5, 10, 20 to 30 minutes at 1.0 V and 10 µM 

lysozyme as under these conditions the spectra obtained showed optimum results 

regarding sensitivity of the ESTASI-MS on the organogel. Figure 4.3.11 summarises 

the spectra acquired for several pre-concentration times after pre-concentrating 10 

µM lysozyme onto the organogel then followed via ESTASI-MS or 

electrochemically at liquid-liquid microinterfaces. As demonstrated by results 

presented in Chapter 3, the m/z signal is enhanced significantly when the time of 

adsorption is increased as it is noted in Figure 4.3.11, the voltammetric analysis at 

the micro-interfaces is more sensitive to this variation.  
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Figure 4.3.11. (●) Percentage of signal-to-noise ratio versus pre-concentration time of 10 

µM lysozyme in 10 mM HCl at 1 V (optimum for ESTASI-MS) and (×) percentage of peak 

current after AdSV of 10 µM lysozyme at 0.95V  at liquid-liquid microinterfaces (see 

Chapter 3, Section 3.3.4). Note that the error bars corresponding to the standard deviation 

(STD) of the noise are represented although they are lower than 0.01%. 

Figure 4.3.12 shows an example of the data spectra used to produce the presented 

in Figure 4.3.11, which was obtained when pre-concentrating lysozyme in a solution 

of 10 µM in 10 mM HCl at a fixed potential of 1.0 V for 10 minutes. As mentioned 

previously, the signal-to-noise ratio is lower than the spectra obtained for longer 

adsorption times. On the other hand, larger charged states are present such as +11. 

This shift in the abundance of the different lysozyme ions detected at lower times 

and the possibility to measure more positively charged states could be related to the 

different adsorbed layers at the gelled organic phase. In Chapter 3, multilayer 

formation of protein at gelled liquid – liquid micro-interfaces was proposed as a slow 

process taking place under diverse conditions.  
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Figure 4.3.12. Spectrum of the organogel after pre-concentration of 10 µM lysozyme 

(aqueous phase) for 10 minutes at 1.0 V. 

 

4. 3. 5. Concentration dependence 

The adsorption of lysozyme was studied as a function of its concentration in the 

aqueous phase. Figure 4.3.13.a and b show two ESTASI-MS spectra for two sets of 

experiments (2.5 µM and 5 µM lysozyme in the aqueous phase) at a fixed adsorption 

potential of 1.0 V following 30 minutes adsorption. Again the lower charged ions 

were found to become more intense when the amount of lysozyme in the bulk 

solution was higher. This process satisfies the hypothesis of a higher surface 

coverage and possible multilayer formation linked to more compact proteins in the 

outer layer. This process is achieved at larger applied potential, concentration in 

solution and time required for electrochemical adsorption. Consequently, based on 

this investigation, the lower the degree of adsorption in terms of multilayer 

formation, the higher the charged peaks measured via MS which could show a direct 

correlation with the re-arrangement of the protein at the monolayer level. 

 

Figure 4.3.14 is a summary of the different lysozyme concentrations analysed via 

ESTASI-MS after electrochemical adsorption. Pre-concentration time and potential 

was fixed at 30 minutes and 1.0 V, respectively, as these values were optimum for 

previous spectra. 
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Figure 4.3.13. Spectra of the organogel after electrochemical pre-concentration of a) 2.5 

µM and b) 5 µM lysozyme in the aqueous solution for 30 minutes at 1 V. 

When lysozyme concentration was evaluated at 0.5 and 1 µM, the signal-to-noise 

ratio decreased considerably. Lower concentrations were studied although the protein 

signal was indistinguishable from the background signal. This behaviour is similar to 

the observed for different pre-concentration times. In comparison to the AdSV 

results presented in Chapter 3, the sensitivity of AdSV is greater than the obtained 

for ESTASI-MS based on the signal intensity for the various experiments although 

factors such as the interruption of the electric field has to be taken into account for a 

fully comparison.  

From 2.5 µM and higher, it was found that m/z peaks corresponding to 

[Lysozyme-1TPBCl+(n+1)H]+n (being n = 8 – 10) increased slightly with the 

concentration of protein adsorbed.  
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Figure 4.3.14. Mass spectra of the organogel after electrochemical pre-concentration of 

a) 0.5 µM, b) 1 µM, c) 2.5 µM, d) 5 µM and e) 10 µM lysozyme in the aqueous solution for 

30 minutes at 1 V. 
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4. 3. 6. MALDI-TOF 

Matrix-assisted laser desorption ionisation – time-of-flight (MALDI-TOF) 

experiments were carried out in order to evaluate the content of protein in the 

organogel and also to provide another platform to characterise the formation of 

complexes between the cationic form of the protein and the anion from the organic 

phase. The samples were treated under the same conditions as the gel used for 

ESTASI-MS. The only difference was the extraction of the protein from the gel by 

using 1,6-dichlorohexane. The sample was then deposited and co-crystallized with a 

high concentration of matrix solution (10 mg/ml 2,5-dihydroxy benzoic acid in 50% 

acetonitrile, 0.1% trifluoroacetic acid, and 49.9% water) on a metallic plate. A pulsed 

nitrogen laser of 337 nm wavelength was applied to the crystals deposited on the 

plate which resulted in desorption of the analyte into the gas phase and its ionisation. 

Finally, the charged ions are accelerated via an electric field between the sample 

plate and the mass detector. Unlike ESTASI-MS, this method produced low charged 

ion peaks in the m/z spectrum (see Figure 4.3.15). In this figure, lysozyme was 

detected in two forms, protonated with one or two protons, which corresponds to 

14,336 and 7,231 m/z values, respectively. Acetonitrile and ethanol were also tested 

as alternative solvents to extract the protein and/or protein complexes from the gel 

although 1,6-dichlorohexane was the solvent with better results in terms of detectable 

ions. 
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Figure 4.3.15. MALDI-TOF spectrum of the organogel after electrochemical pre-

concentration of 10 µM lysozyme in the aqueous solution for 30 minutes at 1.0 V. 

Lower concentrations in the aqueous solution used to pre-concentrate lysozyme 

under a constant potential applied were analysed via MALDI-TOF. Figure 4.3.16 

illustrates similar information to Figure 4.3.15, although the main difference is the 

concentration which was lowered down to 0.5 µM of lysozyme in the aqueous phase. 

A broad shoulder can be appreciated at m/z 14,772 which starts at 14,333 m/z and 

two peaks at 8,246 and 4058. This first peak 14,772 could be attributed to the 

protonated lysozyme and its complex with TPBCl although the signal is too broad 

and unresolved.  
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Figure 4.3.16. MALDI-TOF mass spectra of extracted 0.5 µM lysozyme in the aqueous 

solution for 30 minutes at 1 V. 

 

4. 3. 7. Sensitivity and multilayer formation 

Regarding the sensitivity of soft ionisation mass spectrometry, limits of detection 

of picomole and femtomole have been reported for electrospray ionisation (ESI-MS) 

when coupled with LC.171-173 Nevertheless, the size of the molecule of interest can 

affect this figure of merit as larger molecules hit the detector with lower velocity, 

which results in a lower signal and therefore lower sensitivity. The limit of detection 

for isoelectric focusing gel electrophoresis coupled to ESTASI-MS analysis was 

reported to be in the picomole range and this system is the most similar to the 

approach presented here out of all the different set-ups studied via ESTASI-MS.105 

This could be a limitation in the study of electrochemical adsorption and could 

explain the high concentrations (0.5 to 10 µM lysozyme in solution) and times (30 

minutes) required to detect the presence of the protein after pre-concentration at the 

organogel. If for a monolayer of lysozyme, the surface coverage corresponds to 13 

pmol/cm2 (see Chapter 3, section 3.3.7)151 and assuming that a perfect hemispherical 

gel area (0.035 cm2) is 100% exposed to ionisation, then the amount of lysozyme 

detected via MS will be 0.45 pmol of lysozyme. However, for the same monolayer 

but employing the 30-micropore array (1.18 x 10-4 cm2) employed previously and 

reported in Chapter 3, the amount of lysozyme at the micro-interfaces would 
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correspond to 1.5 fmol. This corresponds to a 300-fold difference in sensitivity 

between both techniques which raises the potential of AdSV as a new analytical 

approach. The amount of protein calculated for a perfect monolayer form on the 

hemispheric gel (0.45 pmol) is below the limit of detection reported for this 

technique103 and confirms the need for multiple layers of protein adsorbed via 

electrochemistry at gelled liquid – liquid interfaces. In addition, if we consider that 

the drop of acidic buffer occupied partially the area of the gel, this value will 

decrease considerably, then the lysozyme ionized will be orders of magnitude lower 

than the reported limit of detection (1.63 pmol)103 when using polyacrylamide on the 

insulating film for ESTASI-MS. Moreover, using the experimental data presented in 

Chapter 3, Section 3.3.5 and 3.3.6, the maximum surface coverage (550 pmol/cm2) 

data obtained from the charge under the desorption peak will represent 19.25 pmol of 

lysozyme on the gel with an area of 0.035 cm2 which also corresponds to multilayers 

as proposed in Chapter 3. In addition, the abundance of the multiply charged states of 

the protein was found to shift with the three factors studied (potential, time and 

concentration). The lower the value of these parameters, the higher was the signal-to-

noise ratio and also the more abundant was the protonated lysozyme with +10 and 

+11. In both extremes, the charges are still lower than those expected for unfolded 

lysozyme. However, this phenomenon may describe the difference in the adsorption 

process and the multilayer formation. When the applied potential, the time of 

adsorption and the concentration of protein in the aqueous solution is high, the 

lysozyme detected is more abundant in a more compact form, [Lysozyme+8H]+8. 

This might provide some information regarding the conformation and orientation of 

lysozyme within the multilayer. This data suggest a more compact form of the 

protein in the outer layer in comparison with the values obtained for conditions when 

a lower of lysozyme was detected. 

 

4. 4. Conclusions 

For the first time, a highly hydrophobic gel has been used as a substrate to 

characterise lysozyme via ESTASI-MS after electrochemical pre-concentration. The 

formation of lysozyme-TPBCl interfacial complexes has been observed at the gelled 

liquid-liquid interfaces via ESTASI-MS, which confirms the proposed mechanism 



127 

for the detection of lysozyme at the ITIES.78, 79, 88 This is the most direct study 

performed at the ITIES and serves as a new platform for further investigations 

combining electrochemistry at the liquid – liquid interfaces monitored by ESTASI-

MS. It is also observed that higher charged states of the protein allows the detection 

of complexes with a larger number of anions from the organic phase. This data 

supports previous spectra reported when using biphasic electrospray ionisation – 

mass spectrometry (BESI-MS) in a microfluidic chip which put in contact 100 µM 

lysozyme in an acidic solution and 10 µM TPBCl- in 1,2-dichloroethane.88 In that 

investigation,88 the potential difference is achieved chemically whilst herein, the 

potential difference is produced electrochemically then measured directly via 

ESTASI-MS. It should be noted that the ionisation method differs to BESI-MS and 

the concentrations detected here are 10-fold lower in the aqueous solution than the 

work reported by Hartvig et al.88 Moreover, the highly resistive nature of the gel 

could affect the efficiency of the electrochemical adsorption as the gel area was 

0.035 cm2 and probably a 4-electrode system would have reduced the resistance of 

the system. The low abundance of these interfacial complexes in the ESTASI-MS 

spectra could be explain due to the interruption of the electric field which promotes 

the interaction between the protonated lysozyme and tetrakis(4-chlorophenyl)borate. 

The interruption of the electric field after 30 minutes of constant potential applied at 

the gelled liquid – liquid interface, leads to a new equilibrium at the previously 

polarized interface. This equilibrium can be therefore altering the spectra obtained 

from the potential spectra that would be generated if the m/z could be analyzed 

straight after the electrochemical pre-concentration.  

Moreover, mass spectrometry analyses also support the trend observed when 

adsorptive accumulation of lysozyme was followed by AdSV. Adsorption can be 

controlled by tuning the applied potential, the pre-concentration time and the 

concentration of lysozyme in solution. The minimum measurable protein via 

ESTASI-MS (0.5 μM lysozyme in aqueous solution) corresponds to several layers of 

lysozyme which is in agreement the limit of detection reported when using ESTASI-

MS on polyacrylamide (1.63 pmol)103 which corresponds to ca. 3 layers of lysozyme.  

Therefore when the conditions promote submonolayer or monolayer coverage of 

the hemispherical gel surface, re-arrangement of the protein at the gelled liquid – 

liquid interface could explain the difference in the mass spectra as shift towards 

higher charge states is observe for low surface coverage. In Figure 4.3.17 the 
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multilayer formation is represented to show the differences in the protein structure 

within the various layers as proposed based on the different charge states observed in 

the spectra obtained.  

 

Figure 4.3.17. Diagram of the proposed multilayer formed onto the hydrophobic gel. 

Note that the electrolyte present in the gel which interacts with the protein is not illustrated 

in this diagram.  

Optimization of the gel geometry and the integration of ITIES and ESTASI-MS 

could improve the limit of the detection of this technology and elucidate interfacial 

processes which are particularly relevant in cell membrane biology. 
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5 
 

Electrified interfaces between immiscible liquid phases 

provide a basis for the non-redox detection of ions and 

ionised molecules via interfacial transfer or adsorption 

processes. In this chapter, the behaviour of water / room 

temperature ionic liquid microinterfaces was explored in the 

presence of aqueous phase acid and protein (hen egg white 

lysozyme). Under voltammetric conditions, hydronium cation 

transfer was identified, with the formation of a net-neutral 

capacitive layer at the interface, as confirmed by 

electrochemical impedance spectroscopy and biphasic 

electrospray ionisation - mass spectrometry. It was possible to 

detect hydronium cation transfer at concentrations down to 10 

mM although lithium cation transfer was not detectable. In 

the presence of lysozyme, adsorption of the protein at the 

interface was possible, with surface coverage of 311 pmol cm-

2 achieved following potential-induced adsorption at the 

positive limit of the available potential window. Application of 

a subsequent voltammetric desorption enabled the detection of 

lysozyme at concentrations down to ca. 2.5 µM. The water / 

ionic liquid interface thus provides a new interface for the 

non-redox detection of ions and ionised biomolecules in a 

label-free manner. 

5. Electrochemistry at the water – 

room temperature ionic liquid 

microinterfaces 
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5. 1. Introduction 

The fundamental properties of room temperature ionic liquids (RTILs), such as 

low volatility, high thermal stability, high intrinsic conductivity, high polarity and 

the ability to dissolve a wide range of compounds,174, 175 make them highly attractive 

for various studies, including electrochemistry,176 where potential windows as wide 

as 6.8 V177, 178 have been found at solid/liquid interfaces. These properties have 

focused a lot of attention on RTILs in different fields including the study of 

proteins.176, 179, 180 For instance, recent work has shown an improvement in lysozyme 

crystallization using a hydrophilic ionic liquid as an additive.181 RTILs have been 

tested as refolding enhancers of lysozyme and the anti-oxazolone single–chain 

antibody fragment182 and as thermal- and activity-stabilizers183 in protein liquid 

formulations.184 Efficient and fast separation of basic proteins including lysozyme 

has also been achieved by employing ionic liquid-modified capillary electrophoresis 

(CE).185 Haemoglobin extraction in the presence of a hydrophobic ionic liquid was 

first reported in 2008.186 Since then, studies based on selective adsorption of proteins 

into RTILs have emerged and researchers have explored this phenomenon as a new 

extraction and separation methodology.187 For example Zhao et al. employed a 

polymer (chloromethyl polystyrene resin), which was functionalized to expose 

methylimidazolium chloride on the polystyrene surface, to separate selectively 

haemoglobin.188 In addition, the presence of co-extractants, such as dicyclohexano-

18-crown-6, in the ionic liquid was shown to enhance the solubility of the protein of 

interest and to facilitate the extraction process.189, 190 Ionic liquid matrices (ILMs)191, 

192 have also been investigated for the detection of biomolecules, such as 

oligodeoxynucleotides, peptides, and small proteins, by matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS).192 In the 

electrochemistry of biomolecules, RTILs have been used as immobilisation matrices 

to attach proteins to electrode surfaces193, 194 and have been considered to be 

incorporated in biofuelcell as a replacement of aqueous media.176 In addition, an 

ionic liquid - human serum albumin glassy carbon electrode was implemented to 

discriminate between fenoprofen enantiomers based on selective binding.195  

The electrochemical behaviour of bioactive molecules at the interface between 

two immiscible electrolyte solutions (ITIES) has been undertaken recently as part of 

a better understanding of biological processes and as the foundations for new label-
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free and sensitive detection tools. To-date, drugs, neurotransmitters, carbohydrates, 

proteins, peptides, amino acids and DNA have all been studied at this polarized 

interface.12 For instance, proteins such as protamine73 insulin,77, 84 haemoglobin,80 

myoglobin,74, 85 albumin76 and lysozyme78, 85 seem to undergo a similar detection 

mechanism. When the protein is present in the aqueous phase, it is a cationic species. 

It then undergoes adsorption to the interface at positive applied potentials and 

facilitates the transfer of anions from the organic phase to the aqueous side of the 

interface where it forms a complex with the cationic protein.73, 77-81, 88 The transfer of 

the organic phase anions provides the charge transfer step that is detected by 

voltammetry at the ITIES. The two immiscible solutions consist of a water phase and 

an organic solvent phase, both containing dissolved electrolyte species. The 

electrochemical behaviour of proteins has been investigated at these polarized 

interfaces using solvents such as 1,2-dichloroethane,66, 69, 78, 85 1,6-dichlorohexane79 

and nitrobenzene67, 69 as the organic phases. Recently, the electrochemistry of water - 

RTIL (W/RTIL) interfaces has become of interest after pioneering work published by 

Bard et al.196 and further studies carried out by Samec and co-workers197, 198 and 

Kakiuchi’s group.3, 178, 198, 199 Their work focused on simple and facilitated ion 

transfer across the polarisable water - ionic liquid interfaces when varying the ionic 

liquid under study and in the presence of ionophores such as dibenzo-18-crown-6.178 

Stockmann et al. compared the ferrocene/ferrocenium redox couple at a µ-W/RTIL 

interface formed within a 25 µm diameter borosilicate glass pipette to that observed 

at a micro-Pt electrode (with the same dimensions as the W/RTIL interface) and 

investigated simple ion transfer at the water/trihexyltetradecylphosphonium 

tetrakis(pentafluorophenyl)borate micro-interface.200 Silvester and Arrigan studied an 

array of water – RTIL microinterfaces115 using a commercially available 

hydrophobic RTIL at 25 °C (trihexyl(tetradecyl)phosphonium 

tris(pentafluorethyl)trifluorphosphate) and established the basis of the work 

presented in this chapter. Recent work has shown the electroactivity of heparin at the 

polarisable water/ ionic liquid membrane.63 However, protein characterisation at the 

W/RTIL interface has not yet been addressed. 

The purpose of the work reported in this chapter is to explore the behaviour of a 

model protein, hen-egg-white-lysozyme (HEWL), at the W/RTIL interface, building 

on the previous work on formation of a W/RTIL microinterface array115 and on the 

behaviour of proteins at electrified water - organic interfaces as described in Chapter 
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3. The microinterface array helps to minimise the impact of cell resistance, critical in 

the case of highly viscous ionic liquids, and also increases the rate of mass transport, 

which is beneficial from a detection and mechanistic point of view. Since previous 

work on protein behaviour at water-organic ITIES identified that the best responses 

to proteins were obtained with acidic aqueous phases,77, 78 the behaviour of the acidic 

aqueous – RTIL interface is also assessed here. Simultaneously, acidic µ-W/RTIL 

interfaces are also characterised. For the first time the interaction of acid species and 

ionic liquid at an aqueous – RTIL interface has been assessed. 

 

5. 2. Experimental Section 

5. 2. 1. Reagents 

All the reagents were purchased from Sigma-Aldrich Australia Ltd. except the 

ionic liquid (Merck) and used as received. The ionic liquid used is 

trihexyl(tetradecyl)phosphonium tris(pentafluorethyl)trifluorphosphate 

[P14,6,6,6][FAP] (Figure 5.2.1) of ultra-high purity grade (halide content <100 ppm). 

Trihexyl(tetradecyl)phosphonium chloride [P14,6,6,6]Cl was purchased in highly pure 

form. Stock solutions of hen-egg-white-lysozyme (HEWL) were prepared in 10 mM 

HCl (pH 2) on a daily basis. Tetrapropylammonium (TPrA+) chloride was also 

prepared in 10 mM HCl (pH 2). Different concentrations of aqueous hydrochloric 

acid and lithium chloride solutions were prepared in purified water (resistivity: 18 

MΩcm), using water from a USF Purelab plus UV unit (Elga Lab Water, 

ThermoFisher Scientific Australia Pty Ltd). 

 

Figure 5.2.1. Room temperature ionic liquid structure used as organic phase at the ITIES: 

trihexyl(tetradecyl)phosphonium tris(pentafluorethyl)trifluorphosphate [P14,6,6,6][FAP]. 
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5. 2. 2. Apparatus 

All experiments were performed using an Autolab PGSTAT302N electrochemical 

analyser (Metrohm Autolab, Utrecht, The Netherlands). The microinterface array 

was formed using a silicon membrane containing micropore array of thirty 

micropores arranged in a hexagonal close-packed arrangement, each with a diameter 

of 22.4 µm and a pore-to-pore separation of 200µm. The fabrication of these 

membranes was previously reported.33, 35 The fabrication procedure provided 

hydrophobic micropore walls. The silicon membranes were sealed onto the lower 

orifice of a glass cylinder using silicone rubber (Acetic acid curing glass silicone 

(Selleys Australia & New Zealand)). The aqueous phase solution was introduced into 

the glass cylinder, and the reference solution was placed in a fritted glass tube. The 

silicon membrane and fritted glass cylinder were then immersed into the ionic liquid 

as described previously.115 The total geometric area of the W/RTIL microinterface 

array was 1.18 x 10-4 cm2. The electrochemical cell is summarised as follows, where 

x is the concentration of HEWL or TPrA+ in the aqueous phase: 

 

Scheme 5.2.1. Electrochemical cell. 

 

5. 2. 3. Electrochemical measurements 

A two-electrode arrangement was employed for all measurements. Alternating 

Current Voltammetry (ACV) was carried out at 6 Hz (frequency) and 5 mV 

(amplitude); Cyclic Voltammetry (CV) was implemented at a scan rate of 5 mVs-1 

unless specified; Adsorptive Stripping Voltammetry (AdSV) was implemented using 

parameters described in the text and figures. Electrochemical impedance 

spectroscopy (EIS) was performed at an amplitude of 5 mV over the frequency range 

from 100 kHz to 0.1 Hz. 
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5. 2. 4. Mass Spectrometry 

Biphasic electrospray ionisation - mass spectrometry (BESI-MS) analyses were 

performed using a three-channel microchip fabricated via laser ablation. The 

microchip was fabricated on polyimide laminated with polyethylene/polyethylene 

terephthalate films (Morane Ltd., Banbury, UK). The microchannels are 50 and 100 

µm in depth and width respectively.122, 123 One of the channels was filled with carbon 

ink to induce the spray (see Chapter 2, Section 2.6.3). Then the carbon electrode is 

connected to an external power source to apply the high voltage required for 

electrospray ionisation (ESI) of the sample.123 These modifications to the ionisation 

procedure have been reported by Girault’s group.122, 123 The microchip was fixed in a 

holder connected to a syringe pump (KDScientific, Holliston, MA, USA) and three 

100 mL syringes (Hamilton, Bonaduz, Switzerland) were used to inject the different 

solutions. These experiments were performed on a Thermo LTQ Velos mass 

spectrometer. During ESI, the spray voltage of the internal power source of the LTQ 

Velos was set to 0 V although the external power source was set up to ± 9 kV. An 

enhanced ion trap scan rate (10,000 Th/s) was selected to obtain a good spectral 

resolution. All the MS data were processed using the program Xcalibur from 

ThermoThermo Fisher Scientific Inc. (Hampton, New Hampshire, USA). 

BESI-MS experiments were carried out in Prof. Hubert Girault’s Laboratory of 

Physical and Analytical Electrochemistry (LEPA) at École Polytechnique Fédérale 

de Lausanne (EPFL) in Lausanne, Switzerland.  

 

5.3. Results and Discussion  

5.3.1. Acidic W/RTIL 

5.3.1.1. Cyclic voltammetry 

Previous studies demonstrated that acidic conditions promote the best detection of 

proteins, because the protein is cationic and can interact with many organic phase 

anions at the interface, leading to more sensitive detection.77 Hence the behaviour of 

the acidic W/RTIL interfaces was examined before the study of protein behaviour. 

Figure 5.3.1 shows CV at the micro-interface array formed between either aqueous 

10 mM LiCl or aqueous 10 mM HCl and the room temperature ionic liquid, 
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[P14,6,6,6]
+[FAP]-. The potential window observed (~500 mV) is limited by chloride 

transfer at -0.45 V and by [FAP]- transfer at +0.10 V. An increase in current at -0.01 

V in the forward CV sweep (Figure 5.3.1) of the 10 mM HCl W/RTIL interface 

suggests a charge transfer process takes place at this interface. This charge transfer is 

absent when the aqueous phase is comprised of 10 mM LiCl. It appears that the 

presence of aqueous phase protons results in voltammetry which is different from 

that of a cell with only background electrolytes present in each phase, i.e. a 

conventional organic phase like 1,2-dichloroethane with an acidic aqueous 

solution.78, 79 

 

Figure 5.3.1. Cyclic voltammetry at the micro-interface array between water and the 

RTIL [P14,6,6,6][FAP]. The aqueous phase is either 10 mM LiCl (black line) or 10 mM HCl at 

pH 2 (grey line). Scan rate: 5 mVs-1. 

The influence of the aqueous phase acid concentration on this charge transfer 

process was investigated. Concentrations of HCl between 1 mM and 500 mM were 

employed in the aqueous phase and CV experiments implemented. Figure 5.3.2 

shows some of these results. In these experiments, the aqueous phase contained only 

HCl at the stated concentration, and no other electrolyte was intentionally added. It 

was not possible to detect HCl at 1 mM concentration, whereas at 5 mM a shoulder 

appeared towards the positive end of the potential window. As shown in Figure 5.3.2, 

concentrations of HCl at 10, 50 and 100 mM were easily detected on the forward 

sweep towards the upper limit of the potential window, and on the reverse sweep at 

the higher concentrations shown. Thus the forward current may be attributed to 
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transfer of a cation species, probably H3O
+, and the reverse current to its back 

transfer.  

 

Figure 5.3.2. Cyclic voltammetry at the micro-interface array between water and the 

RTIL [P14,6,6,6][FAP]. The aqueous phase is 10, 50 or 100 mM HCl at different scan rates: 5, 

10, 25, 50, 75 and 100 mVs-1. 
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The CVs in Figure 5.3.2 exhibit some notable features. The current on the forward 

sweep reaches a steady-state, which is consistent with radial diffusion to 

microinterfaces, whereas the reverse scans exhibit a peak-shaped voltammogram, 

consistent with linear diffusion or an adsorption/desorption process. Furthermore the 

steady-state forward current increases with the scan rate. The diffusion-limited 

steady-state current (Ilim) at a micro-interface array is described by the equation  

௟௜௠ܫ ൌ  (5.3.1)    ݎܥܦܨ௜ݖ4݊

(where n is the number of microinterfaces, zi, D and C are the charge, diffusion 

coefficient and bulk concentration of the transferring species, and r is the radius of 

one interface). Thus for the diffusion-controlled transfer of hydronium species at a 

W/RTIL interface array consisting of 30 microinterfaces, the limiting current is 

expected to be 13µA, 65µA and 130µA at each of the concentrations shown in 

Figure 5.3.2 (10, 50 and 100 mM). These values are in disagreement with the 

experimental data which show limiting currents several orders of magnitude lower 

than the estimated for DH3O+ ~ 10-4 cm2s-1,201 for hydronium in bulk solution. 

However, this does not fully explain the voltammetry obtained for acidic 

W/[P14,6,6,6][FAP] interfaces which suggest hydronium reverse transfer on the reverse 

scan (see Figure 5.3.2 and 5.3.3) based on the shape of the reverse wave. If the 

reverse waveform was diffusion-controlled, a peak-shaped voltammogram would be 

generated according to the linear diffusion of the cationic species from RTIL to the 

aqueous phase. 

 

Upon changing the acid concentration of the aqueous phase, it is notable that the 

width of the potential window decreased with increasing HCl concentration, 

consistent with the lower limit being marked by chloride transfer (see Figure 5.3.3a). 

However, by maintaining a constant total chloride concentration by preparation of 

mixtures of HCl and LiCl, a current wave on the forward CV scan was seen to 

increase with acid concentration (see Figure 5.3.3b). 
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Figure 5.3.3. CVs at the W/[P14,6,6,6][FAP] micro-interface array of a) different 

concentrations of HCl: 100 µM (—), 10 mM (····), 50 mM(- - -), 100 mM (- - -) and 500 

mM (—) and b) different concentrations of HCl:LiCl solution with increasing concentrations 

of HCl as follows; 0:100, 0.1:99.9, 1:99, 10:90, 50:50 and 100:0 mM.  

For simple ion-transfer voltammetry at µITIES such as used here, a forward 

transfer wave and a reverse transfer peak is expected for diffusion-controlled forward 

and reverse processes.35, 115, 202 The shape of the voltammogram in Figure 5.3.3b 

suggests that there is radial diffusion of the transferring species, hydroniums, during 

the forward scan, but no linear diffusion of the transferring species during the reverse 

scan.  

 

The data in Figure 5.3.2 show that under the conditions employed, the limiting 

currents change with scan rate. Although the charging current (before the transfer 

wave) also changes, the latter change is smaller than that occurring on the limiting 

current region. However, for a micro-interface such as used here, the limiting current 

is expected to be independent of the scan rate or square root of the scan rate, if radial 

diffusion is the controlled factor. The scan rate dependence of the reverse scans in 

Figure 5.3.2 is expected, if the process involves either linear diffusion or a desorption 

process. In addition, the shift in the half-peak potential was evaluated for different 

concentrations of HCl. Due to the short potential window and the simultaneous 

transfer of TPrA+ and H3O
+, the measurement of the half-peak potential of H3O

+ 

transfer against TPrA+ became challenging. For this reason, different concentrations 

of HCl were characterised in the presence and absence of TPrA+. To quantity the 

shift in potential caused by the increase of hydroniums in solution, the potential 
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difference between the half-peak potential (E1/2) of the H3O
+ transfer and the 

potential corresponding to 5 nA on the forward current (E5nA) was measured as 

shown in Figure 5.3.4a. Then these values were referred to the transfer potential of 

TPrA+ (ETPrA+) obtained from the CVs (see Figure 5.3.4b). 

 

Figure 5.3.4. CVs at the W/[P14,6,6,6][FAP] micro-interface array of a) 500 mM HCl in 1 

mM LiCl (—) and b) 500 mM HCl in 1 mM LiCl + 100 µM TPrA+ (- - -). E1/2 is the half-

peak potential of the H3O
+ transfer, E5nA is the potential corresponding to 5 nA on the 

forward current and ETPrA+ is the transfer potential of TPrA+. 

The half-peak potential (E1/2) varies linearly with proton concentration which 

slope corresponds to 64mV, see Figure 5.3.5. The results of the forward potential 

shift as a function of pH (remember pH = -log[H3O
+]), this shows the similarity to a 

one electron transfer in a redox reaction at solid electrodes (59 mV variation in the 

half cell potential per 10-fold change in the concentration of the species) which could 

be comparable to a one positively charge species (H3O
+) transferring across the 

interface.  
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Figure 5.3.5. CVs at the W/[P14,6,6,6][FAP] micro-interface array of a) 100 µM HCl in 1 

mM LiCl (—) + 100 µM TPrA+ (···), b) 5 mM HCl in 1 mM LiCl (—) + 100 µM TPrA+ (···) 

and c) 500 mM HCl in 1 mM LiCl (—) + 100 µM TPrA+ (···). The graph in the bottom right 

hand side represents half-peak potential of hydronium versus pH (pH = -log[H3O
+]).  
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Figure 5.3.6. Current values of the forwards peaks at 5 and 50 mV/s versus the 

concentration of H3O
+ and half-peak potential versus pH (pH = -log[H3O

+]).  

One possibility for the scan rate dependence shown by the forward limiting 

currents (Figure 5.3.6) is that the ion transfer process leads to the formation of a new 

phase at the interface which adds to the capacitance of the system. Studies using EIS 

and ACV were implemented to investigate this possibility.  

 

5.3.1.2. Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (see Figure 5.3.7) and alternating 

current voltammetry techniques were performed in order to elucidate the mechanism 

involved at the W/RTIL micro-interface array. Figure 5.3.7A shows a Nyquist plot of 

50 mM HCl in 1 mM LiCl (dotted line) and 1 mM LiCl (solid line) in the absence of 

HCl at the W/RTIL interface polarised at -0.2 V which corresponds to a potential 

where there is no charge transfer process across the W/RTIL interface. Figure 5.3.7B 

presents the Nyquist plot of 50 mM HCl in 1mM LiCl at two different potentials: -

0.2 V (dotted line) and 0.0 V (solid line) where the latter corresponds to the potential 

where protons are interacting at the polarized micro-interfaces. On the right side of 

both Nyquist plots, the corresponding equivalent circuits which best fit the 

experimental data are shown. The fitted equivalent circuit shows a series and parallel 

combination of resistances (Rs, Rm and Rdl) and capacitances (non-ideal CPm-CPdl 

and ideal capacitor Cnew). Rs corresponds to the resistance of the solution and Rm 

and CPm can be attributed to the membrane-pores because it is constant and 
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independent of the potential applied. Rdl and CPEdl correspond to a slower diffusion 

process at lower frequencies (right part of the Nyquist plot).  

 

Figure 5.3.7. Electrochemical Impedance Spectroscopy (EIS) of: A) ( ̶) 1 mM LiCl, and 

(- -) 50 mM HCl in 1 mM LiCl at a potential where there is no transfer processes involved (-

0.2 V) and B) (- -) 50 mM HCl in 1 mM LiCl at -0.1 V where there is proton – ionic liquid 

interaction. Right hand side of the graphs correspond to the equivalent circuit which fits A) 

impedance at -0.2V and B) impedance at -0.1 V in the presence of HCl. 

In the case of 50 mM HCl in 1 mM LiCl, where the impedance is measured at 

different excitation potentials, a new feature is observed. It consists of a round 

shoulder (camel-shaped) between 100 and 160 kΩ on the real impedance axis. This 

new rounded peak increases, reaching an impedance maximum of 30 kΩ. The new 

feature (Rnew and Cnew) occurs at high frequencies meaning that this is a fast 

process which is 2 or more orders of magnitude faster than the diffusion observed at 

lower frequencies (Rdl and CPdl). Similar experiments were carried out for different 

hydrochloric acid concentrations, all of which produced a similar Nyquist plot (see 

Figure 5.3.8). The camel-shaped peak is independent of the hydrochloric acid 

concentration above a certain concentration, perhaps due to saturation (Figure 5.3.8). 
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Figure 5.3.8. Electrochemical Impedance Spectroscopy (EIS) analysis of: A ) 50 mM 

HCl in 1 mM LiCl at different applied potentials and B) 10 mM HCl in 1 mM LiCl different 

applied potentials from -0.3 V (···) to -0.05 V (—). 

This new feature fits to a circuit with an additional capacitor, which suggests a 

change at the W/RTIL interface due to the transfer of hydronium cations and their 

interaction with [P14,6,6,6][FAP]. Relative dielectric permittivity (εr) values reported in 

the literature for a wide range of ionic liquids vary between 8 and 16,203, 204 although 

is not available for the RTIL used here. Assuming that the dielectric permittivity (εr) 

of [P14,6,6,6][FAP] is within this range and the geometric area (A) of the 

microinterface array is 1.18 x 10-4 cm2 then the thickness of this capacitor can be 

calculated using Equation 5.3.2. The capacitance of the new capacitor (C) 

corresponds to 3.7 x 10-10 F which was obtained from the equivalent circuit (Cnew in 

Figure 5.3.7B) which best fit the experimental data. Therefore, the new capacitive 

layer at the W/RTIL microinterface array corresponds to a thickness of ~2.3 – 4.5 

nm.  

ܥ ൌ ఌబఌೝ஺

ௗ
      (5.3.2) 

where C is the capacitance, εr is the relative dielectric permittivity, ε0 is the 

electric constant (8.5 x 10-12 F·m-1), d is the thickness and A is the area. 

 

Recently Fedorov and Kornyshev have suggested the formation of ‘voids’ in the 

ionic liquid structure in order to explain the camel-shaped capacitance of the 

electrical double layer at metal/RTIL interfaces.205, 206 The idea of cavities is well-

known in crystallography and it has been suggested that ionic liquids may contain 

voids which can accommodate small molecules. This theory is in accordance with 
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the transfer of hydronium cations across the W/RTIL microinterfaces to form a 

mixed-ionic liquid layer which introduces an additional capacitance into the 

electrochemical cell. Solvated lithium cations are approximately three times bigger in 

terms of hydrodynamic radius than solvated protons. If Li+ is solvated with n number 

of water molecules (n = 1-6 and 8 H2O),207 the theoretical diameter for Li(H2O)4
+ 

would be ca. 6 Å assuming that Li-O bond length is 1.942 Å208 and O-H distance is 

1.1 Å.209 For the hydronium, solvated proton, the diameter is ~ 2.8 Å.210 If the anions 

[FAP]- are considered as spheres and the cation [P14,6,6,6]
+ as an ellipsoid both 

surrounded by counter ions, the calculated voids based on a closed packing 

arrangement are approximately between 3 and 4 Å is diameter size. These data have 

been calculated based on bond length (C-P 1.87 Å, C-C 1.54 Å, C-F 1.33 Å, C-H 

1.09 Å.211) and are only illustrative. Thus, H3O
+ would fulfill the ionic liquid voids 

theory reinforcing the idea of a capacitive neutral layer formed at the water/ionic 

liquid interface which reduces the mobility of hydronium within the ionic liquid.  

 

5.3.1.3. Alternating current shift potential 

AC voltammetry of LiCl and HCl (see Figure 5.3.9) was also analysed at different 

phase angles (0° and 90°) as another qualitative analysis of interfacial behaviour. 

This method has been used previously to study adsorption at the ITIES of 

nanoparticles212 and biomacromolecules.81 A shift of the potential of zero charge 

(pzc) towards more negative potentials in the presence of acid in the aqueous 

solution suggests adsorption of hydronium ions at the water - [P14,6,6,6][FAP] 

microinterface. Studies of positively charged haemoglobin at water/organic solvent 

interfaces213 suggest a shift of the pzc to more negative potentials, as indicated in this 

case. The dashed line in Figure 5.3.9 also reveals the reversibility of this process; AC 

voltammograms remain the same (with the same pzc) in a 10mM LiCl solution 

before and after W/RTIL was exposed to hydrochloric acid (solid and dotted lines). 

There is no potential shift at the LiCl/[P14,6,6,6][FAP]interface after the exposure to a 

highly protonated solution. Another interesting feature is the shoulder which appears 

in the range of -0.2 to 0 V under acidic conditions. This increase in capacitance is in 

agreement when the transfer of hydronium cations at more positive potentials.  
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Figure 5.3.9. Alternating Current Voltammetry (AC) of 10 mM LiCl (solid line), 10 mM 

HCl (dashed) and 10 mM LiCl after ionic liquid exposure to HCl (dotted line). 

The electrochemical results suggest a combination of hydronium cation transfer 

and association with the ionic liquid material to form a new capacitive layer at the 

interface. This may explain why the CV limiting current changes with scan rate but 

remains as a steady-state current. These interactions involve hydronium diffusion 

into [P14,6,6,6][FAP] up to a certain concentration where no more H3O
+ can cross the 

interface. This saturation could be explained by the formation of a new layer, maybe 

of [FAP]- anions and H3O
+ cations due to strong electrostatic interactions. Strong 

interactions between H+ and [FAP]- have also been reported in an electrochemical 

study of hydrogen gas oxidation in a range of RTILs.214 This hypothesis is in 

agreement with the formation of a new layer at the W/RTIL with capacitor properties 

which are observed in the EIS measurements. Additionally, cyclic voltammograms at 

different scan rates with hydrochloric acid have demonstrated H3O
+ reversible 

transfer across the W/[P14,6,6,6][FAP] microinterfaces. However this process is not 

purely diffusion controlled. This diffusion limitation may be explained due to the 

strong interactions between the hydronium cations and [FAP]- anions from the ionic 

liquid which led to the formation of a net neutral layer.  
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5.3.1.4. IR and NMR spectroscopy 

In order to assess this process, NMR and IR spectroscopy measurements were 

carried out after saturation of the ionic liquid with water or hydrochloric acid. In both 

case, the data did not reveal any change in the spectra of the RTIL under the different 

environments (see Appendix B). 

 

5.3.1.4. Biphasic electrospray ionisation - mass spectrometry 

Finally biphasic electrospray ionisation - mass spectrometry (BESI-MS) using a 

microfluidic device was used as another alternative to study charge interactions. 

Figure 5.3.10 illustrates the microfluidic chip and the ionisation process prior to MS. 

The solutions of RTIL, methanol and water, hydrochloric acid or acetic acid were 

injected at 40 µL/h and monitored in the negative mode to follow the interactions of 

the anion of the ionic liquid.  

              

Figure 5.3.10. BESI microchip design (diagram on the left) and integration of the 

microchip with the mass spectrometer (diagram on the right). 

The MS spectra plotted in Figure 5.3.11 show the m/z values for [FAP]-, 445.09 

and for [FAP/P14,6,6,6/FAP]- 1,373.11 when the ionic liquid and water are in contact. 

When the ionic liquid is in contact with 0.5 M HCl, the spectrum is similar regarding 

the anionic composition.  
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Figure 5.3.11. Mass spectrum of [P14,6,6,6][FAP] when electrosprayed with water. 

However, the relative intensity of the ions with respect to the initial signal (Figure 

5.3.11) when RTIL was exposed to HCl, decreased dramatically. There is a decrease 

in the signal of 99.8% in 2 minutes (see Figure 5.3.12a). In Figure 5.3.12b, similar 

data is shown. In this case (Figure 5.3.12b), the aqueous solution contained 1% of 

acetic acid instead of 0.5 M HCl. This information confirms the hypothesis of strong 

interactions between hydroniums and [FAP]- at the W/RTIL interface. As the 

hydroniums are present in the biphasic mixture, they interact neutralizing the anionic 

form of the ionic liquid which is not detectable form in MS. Thus, this results in a 

significant decrease in the signal intensity (99.8%), which is in agreement with the 

proposition of a neutral layer formation at the W/RTIL when performing 

electrochemical analysis. 

 

 

Figure 5.3.12. Spectra of [P14,6,6,6][FAP] in contact with a) 0.5 M HCl and b) 1% acetic 

acid (HAc) with respect to 100% relative intensity for RTIL and water. 
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Taking into account all the data obtained, a charge transfer process has been 

revealed to take place at the W/RTIL involving hydronium interactions with [FAP]-, 

the anion present in the ionic liquid. Figure 5.3.13 summarises the suggested process 

taking place at the W/[P14,6,6,6][FAP] micro-array interface. Figure 5.3.13A 

corresponds to the interface composition at the equilibrium when there is no potential 

difference applied while Figure 5.3.13B shows the diffusion of hydronium molecules 

across the polarized interface forming a new H3O
+ / RTIL layer which behaves as an 

electrical capacitor.  

 

Figure 5.3.13. Sketch of the suggested process involved at the polarised interface 

between water and [P14,6,6,6][FAP]. A) Shows the typical unpolarised W/RTIL 

interface and B) in the presence of protons at a certain potential applied where H3O
+ 

interacts with the ionic liquid forming a new thin layer of H3O
+ / RTIL. 
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5.3.2. Lysozyme at W / RTIL 

Besides the phenomenon described in the previous section, the µ-W/RTIL 

interfaces were evaluated under acidic conditions in order to detect a model protein, 

hen-egg-white-lysozyme (HEWL) as reported in Chapter 3 and several 

publications.77, 78 The possible interference of hydronium during protein analysis is 

also under study in this section. 

 

5.3.2.1. Alternating current shift potential 

Initial studies by cyclic voltammetry (CV) with lysozyme dissolved in an aqueous 

10 mM LiCl phase did not reveal any charge transfer processes within the available 

potential window. However alternating current (AC) voltammetry (Figure 5.3.14) 

showed a shift (ca. 100 mV) in the potential of minimum capacitance to negative 

values when lysozyme was present. This negative shift is consistent with the 

adsorption of a cationic species at the interface.81, 212 In such a case, it is possible that 

there is potential–dependent adsorption of lysozyme at the interface but no interfacial 

charge transfer, so that any changes are not easily detectable by CV. 

 

Figure 5.3.14. Alternating Current Voltammetry (ACV) at the μ-array 

W/[P14,6,6,6][FAP] interface of 10 mM LiCl (dashed line), 10 µM lysozyme (solid line), 

and 10 mM LiCl (grey line) after protein exposure.  
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5.3.2.2. Distortion of simple ion transfer by adsorption 

In previous work,79 the most sensitive detection of lysozyme at aqueous-organic 

interfaces was obtained when the aqueous phase was acidic, at a pH lower than the 

protein’s isoelectric point. At pH 2, lysozyme is fully protonated (pI = 11.35) with 17 

positive charges150, 215 and the best sensitivity was obtained under these aqueous 

conditions at water-organic interfaces. When the aqueous phase is 10 mM HCl in the 

W/RTIL system, there was no obvious response in the CVs for 10 and 100 µM 

lysozyme. This could be because of the limited potential window at the W/RTIL 

interface, which is much narrower than that at aqueous/organic interfaces or the 

possible interference caused by the capacitive layer formed when hydroniums 

interact at the W/RTIL interface. However, a qualitative indication of some 

interactions of lysozyme with the interface under these conditions was obtained by 

undertaking CV of a simple ion transfer process in the absence and presence of 

lysozyme in the aqueous phase. Ion transfer CV of 100 µM tetrapropylammonium 

(TPrA+), from the water phase to the hydrophobic ionic liquid [P14,6,6,6][FAP] phase, 

was undertaken in the absence and presence of 100 µM lysozyme (Figure 5.3.15). 

The ion transfer of TPrA+ is dominated by mass transport, with radial diffusion on 

the forward scan producing a steady-state voltammogram, and linear diffusion on the 

reverse scan producing a peak-shaped voltammogram.115 As shown in Figure 5.3.15, 

this ideal response is distorted to some extent by the presence of lysozyme in the 

aqueous phase (dotted line). This can be attributed to the presence of a layer of 

adsorbed protein material at the interface. Although no obvious charge transfer 

process was obtained by CV, it should be noted that even at aqueous/organic 

interfaces operated under conditions of a gelled organic phase and in a 

microinterface array format, no obvious voltammetric waves or peaks were observed 

on the forward CV scans (see Chapter 3, Section 3.3.1). 
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Figure 5.3.15. Cyclic voltammetry at the μ-array W/[P14,6,6,6][FAP] interface of 

aqueous phase 100 µM TPrA+ in the presence (- - -) and absence (—) of aqueous phase 100 

µM lysozyme in 10 mM HCl. 

 

5.3.2. 3. Adsorption of lysozyme 

The reverse scans of these CVs usually reveal a peak-shaped voltammogram due 

to desorption of the protein from the ITIES. Thus adsorptive-desorption strategies 

employing a constant-potential adsorption followed by a desorptive voltammetric 

scan can be employed to collect the protein at the W/RTIL interface and 

subsequently to detect it by desorption. A variety of potentials between -0.2 V and 

+0.1 V, at intervals of 50 mV, were investigated for lysozyme adsorption at the 

W/RTIL interface (Figure 5.3.16). It was found that only at the very positive edge of 

the potential window, where the RTIL anion [FAP]- commences transfer across the 

interface, was a peak recorded on the scan to lower potentials (Figure 5.3.16). 

Interestingly, another feature is observed at the voltammogram (-0.15 V) which 

could correspond to the hydronium desorption wave described in the previous 

section. Thus the peak at -0.02 V could potentially be attributed to lysozyme being 

desorbed from the water/ionic liquid interface. 
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Figure 5.3.16. AdSV of 10 µM lysozyme after a constant potential adsorption of 60 s at 

different applied potential.  

Implementation of this procedure for 10 µM lysozyme at different adsorption 

times is illustrated in Figure 5.3.17. When increasing the pre-concentration time at 

0.1 V, the desorption peaks observed also increase in terms of peak height and area 

and the wave attributed to hydronium-[FAP] interactions remains constant under the 

different conditions.  

 

Figure 5.3.17. AdSV at the μ-array W/[P14,6,6,6][FAP] interface of 10 µM lysozyme in the 

aq. phase (10 mM HCl) following constant potential adsorption for 60, 120, 240, 480 and 

600 s at an adsorption potential of 100mV. 
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Similar experiments performed in the absence of aqueous phase lysozyme did not 

produce any peaks on the voltammetric scan to lower potentials, indicating that the 

peaks shown in Figure 5.3.16 and 5.3.17 were due to the presence of lysozyme. In 

separate experiments (Figure 5.3.18), in which the RTIL was dissolved in an organic 

phase of 1,6-dichloroethane and polyvinyl chloride, [FAP]- transfer from organic to 

aqueous phase was found to be the limiting process at the positive side of the 

available potential window; this means that application of sufficiently high potentials 

can be employed to drive [FAP]- transfer to the aqueous phase. However in the pure 

RTIL phase, reverse scan peaks were only obtained in the presence of aqueous phase 

lysozyme. 

 

Figure 5.3.18. CV of 10 mM HCl at the W / gelled 1,6-DCH which contains 10 mM 

[P14,6,6,6][FAP]. Peak-shaped is due to linear diffusion of [FAP]- from the organic phase to the 

aqueous phase. Flat voltammogram correspond to the signal of 10 mM HCl at the W / gelled 

1,6-DCH when there is no RTIL present in the organic phase.  

 

5.3.2.4. Scan rate dependence 

The magnitude of these reverse-scan peaks was seen to vary with the 

voltammetric scan rate, with higher scan rates leading to larger peaks (Figure 5.3.19). 

It was found that the peak currents varied linearly with the square root of the scan 

rate (ip=0.443υ1/2+0.208, r=0.999, where ip is the peak current, ν is the voltammetric 
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scan rate and r is the linear correlation coefficient), which is contradictory to 

expectations based on the bell-shaped peak obtained on the voltammetric scans 

towards lower potentials. These bell-shaped voltammetric curves are usually 

indicative of adsorption or desorption processes. 

 

Figure 5.3.19. AdSV at W/[P14,6,6,6][FAP] μ-interfaces of 100 µM lysozyme in 10 mM 

HCl (aqueous phase) at different scan rates (5, 10, 20, 30, 40, 50, 75 and 100 mV s-1) 

following 60 s adsorption at an applied potential of 100 mV.  

Nevertheless the background charging current also increased substantially when 

the scan rate was increased, making measurement of the peak currents at different 

scan rates difficult. As a result, these desorption peaks represent the disruption of the 

lysozyme-[FAP] complex that has formed at the interface during the constant-

potential adsorption time and the removal of lysozyme from the interface back to the 

aqueous phase. By integration of the area under the peaks (Figure 5.3.17 or Figure 

5.3.19), values of the surface coverage of lysozyme at the W/RTIL interface can be 

determined by relating the peak charge (Q) to the total moles of substance using 

Faraday’s law (Q = m·zi·F; m is the moles of substance, zi is the charge transferred 

per molecule and F is Faraday’s constant) and assuming that under these conditions 

the lysozyme is fully protonated (+17 charge) and that each of these charges on 

lysozyme is compensated by a [FAP]- anion when the complex forms at the W/RTIL 

interface. A surface coverage of 311 pmol cm-2 was obtained for 50 µM of lysozyme 

in the bulk solution when subjected to adsorption at the W/RTIL interface for a 
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period of 600 s. These surface coverage values are in agreement with those obtained 

at the water-organogel µITIES array (550 pmol cm-2), see Chapter 3. Determining 

the surface coverage from voltammograms following adsorption from more 

concentrated aqueous phases (e.g. 75 and 100 µM lysozyme) was not possible due to 

the distorted voltammograms produced. Nevertheless, the results suggest a multilayer 

formation of lysozyme at the water-[P14,6,6,6][FAP] micro-interfaces, assuming a 

single layer of lysozyme adsorbed at the W/[P14,6,6,6][FAP] is 13 pmol cm-2 (see 

Chapter 3, Section 3.3.7).  

By varying the protein concentration in the aqueous phase while implementing a 

constant adsorption potential and constant adsorption time, the voltammetric 

desorption peak current was seen to vary linearly with the aqueous phase 

concentration of lysozyme. The slope of the linear relationship between current and 

lysozyme concentration was 0.022 nA µM-1 and the calculated limit of detection 

(LOD) was 2.5 µM for a 60 s adsorption period; the corresponding values obtained 

for experiments at the water/gelled (1,6-DCH) µITIES array were 0.91 nA µM-1 and 

0.06 µM, respectively (Chapter 3, Section 3.3.6). This lower sensitivity and higher 

LOD at the W/RTIL interface may be a result of the lower potentials that can be 

applied during the adsorption step at the W/RTIL interface, however a contribution 

from increased background current is also likely. Hydronium desorption from RTIL 

to the aqueous phase is visible at -0.15 V in the voltammogram (Figure 5.3.19) which 

also contributes to the distortion of the background signal. This process appears to 

co-exist with lysozyme-FAP disruption at the interface as both steps occur at 

different potentials (ca. 100 mV separation potential). It may be possible to lower the 

LOD by the use of a more hydrophobic ionic liquid, as this may lead to a wider 

potential window enabling more efficient adsorptive accumulation of the protein at 

the W/RTIL interface. Longer pre-concentration times may also be of benefit. 

 

The electrochemical behaviour of protonated lysozyme at the W/RTIL 

microinterface array displayed here is very similar to that reported by Scanlon et 

al.78, 79 and Hartvig et al.88 for lysozyme at the water/organic ITIES. Two steps are 

believed to take place: charged lysozyme adsorbs at the W/RTIL interface under the 

influence of positive applied potentials; the adsorbed protein facilitates the transfer of 

RTIL phase anions to form a lysozyme-[FAP] complex at the interface (Figure 
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5.3.20). The influence of simultaneous hydronium transfer does not seem to interfere 

significantly in the protein detection.  

 

Figure 5.3.20. Proposed lysozyme adsorption-desorption mechanism at the water / ionic 

liquid ([P14,6,6,6][FAP] ) microinterfaces with facilitated anion transfer. 

 

5. 4. Conclusions 

Hydronium - tris(pentafluorethyl)trifluorphosphate [FAP]- interactions have been 

observed at the water – room temperature ionic liquid microinterfaces. 

Electrochemical studies such as impedance spectroscopy and voltammetric analysis 

suggest that H3O
+ transfers across the W/[P14,6,6,6][FAP] forming a neutral capacitive 

thin film layer. Additional techniques have shown their limitations to provide extra 

information of this process although the biphasic electrospray ionisation – mass 

spectrometry studies seem to confirm the neutralisation of [FAP]- ions in the 

presence of H3O
+ in a biphasic environment. 

Moreover, the electrochemical behaviour of a protein, lysozyme, has been studied 

for the first time at a W/RTIL interface. An approach based on constant-potential 

adsorption followed by voltammetric desorption enables the detection of lysozyme in 

acidic aqueous solution down to 2.5 µM (following 60 s adsorption), where cyclic 

voltammetry was unable to detect the presence of the protein. The reaction is 

attributed to lysozyme adsorption at the interface, in conjunction with facilitated 

transfer of [FAP]- anions across the interface to form a complex with positively 

charged lysozyme, similar to the behaviour seen at water-organic79 and water-

organogel interfaces (Chapter 3).  
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Both processes take place at the W/RTIL micro-interfaces and hydronium-[FAP] 

interactions are compatible in the detection of lysozyme.  

The challenge remains in using a more hydrophobic ionic liquid which is 

maintained in its liquid state at room temperature for electrochemical studies at 

liquid-liquid interfaces. A good example is trihexyltetradecylphosphonium 

tetrakis(pentafluorophenyl)borate, [P14,6,6,6][TB], which has been proven to provide a 

larger potential window (ca. 0.8 V)200 at a µ-W/IL interface although this is achieved 

at 60ºC since it solidifies at room temperature.  
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6 
The behaviour of haemoglobin (Hb) at the interface 

between two immiscible electrolyte solutions (ITIES) has been 

examined for analytical purposes. When Hb is fully protonated 

under acidic conditions (pH < pI) in the aqueous phase, it 

undergoes a potential-dependent adsorption and complexation, 

at the interface, with the anions of the organic phase 

electrolyte. This can be utilised as a simple and fast 

preconcentration step, consisting of adsorbing the protein at 

the interface, in conjunction with voltammetric desorption. 

This opens up the ITIES to the adsorptive stripping 

voltammetry (AdSV) approach. Utilising a 60 s adsorption step 

and linear sweep voltammetry, a linear response to Hb 

concentration in aqueous solution over the range 0.01 – 0.5 

μM was achieved. The equation of the best-fit straight-line was 

Ip = 7.46 C - 0.109, R = 0.996, where Ip is the peak current 

(nA) and C is haemoglobin concentration (μM). The calculated 

detection limit (3σ) was 48 nM for a 60 s preconcentration 

period, while the relative standard deviation was 13.3 % for 6 

successive measurements at 0.1 µM Hb. These results 

illustrate the prospects for simple, portable and rapid label-

free detection of biomacromolecules offered by 

electrochemistry at arrays of liquid-liquid microinterfaces. 

6. Adsorptive stripping voltammetry of 

haemoglobin at a liquid – liquid 

microinterface array  
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6. 1. Introduction 

Haemoglobin is a metalloprotein from red blood cells responsible for oxygen 

transport in the blood of vertebrates. It possesses a quaternary structure comprised of 

four subunits, two α and two β polypeptide chains, in a tetrahedral arrangement. Each 

of these subunits is associated with a haem group.216 The study of haemoglobin is 

especially relevant as it is an important biomolecule particularly in the fields of 

medicine, pharmacology and diagnostics. Studies on this molecule may also be 

transposed to other important molecules of biological significance such as glycated 

haemoglobin (HbA1c), myoglobin and cytochrome c. Simple and rapid 

determination of low concentrations of haemoglobin is desirable as the 

biomacromolecule may be present in samples, either as an analyte of interest that 

indicates an incidence of disease, or as a possible interferent in the measurement of 

other analytes. For instance, Shi et al. developed a non-invasive micro-sensor to 

diagnose gastrointestinal bleeding based on an electron transfer 

microelectromechanical system (MEMS) which achieved a detection limit of 0.1 

mg/mL (1.6 µM) of Hb under physiological conditions (phosphate buffered 

saline).217  

 

To-date, the detection of a wide range of haemoglobin molecules such as glycated 

(HbA1c), fetal (HbF), and C (HbC) haemoglobin has been performed mostly by 

colourimetric assays or immunoassays. For instance, several point-of-care testing 

(POCT) devices are commercially available for HbA1c detection in diabetes 

diagnosis.218 Colourimetric assays are constrained by the detection limits and the 

interference of other biomolecules, while immunoassays require expensive reagents, 

several pre-treatment steps and longer periods of time from the collection of the 

sample until final analytical results are available. However, over recent decades 

electrochemistry has shown its potential as a possible selective, sensitive, portable, 

disposable, inexpensive and relatively simple technology for biomedical 

applications. The best example is the commercially-available glucose sensor for 

monitoring of blood glucose levels in diabetic patients. This biosensor represents 

about 85 % of the biosensor market.219 Additionally, determination of blood 

electrolytes using ion selective electrodes is another important group of sensors 
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widely accepted and under continuous development for biomedical diagnosis 

purposes.220 

Electrochemistry at the liquid-liquid interface (or at the interface between two 

immiscible electrolyte solutions, ITIES) has been developed over the last 40 years.6, 

12 Processes studied at the ITIES do not necessarily depend on electron transfer, but 

more generally charge transfer involving either ion transfer or electron transfer (or 

both) can be studied and manipulated for detection and determination purposes. The 

electrochemistry and electrochemical determination at the ITIES of a range of 

biomolecules such as dopamine,221 heparin,222 insulin,77 lysozyme,78 cytochrome c,85 

myoglobin74 haemoglobin,80 small peptides34 and DNA53 has been explored by 

diverse groups worldwide. The latest studies have focused attention towards reaching 

lower limits of detection basing the detection on voltammetric techniques combined 

with pre-treatment steps. For example, Collins et al. reported the detection of 

propranolol in artificial saliva using differential pulse stripping voltammetry.17, 59 

Previous work (see Chapter 3 and 4) has already shown the potential of adsorptive 

stripping voltammetry (AdSV) as an important tool for achieving lower limits of 

detection at the microITIES.  

 

The aim of the present work was to investigate whether the adsorptive stripping 

voltammetry approach at the microITIES was generically applicable to 

biomacromolecules, with haemoglobin chosen as a protein that has been studied at 

the ITIES previously, but not subjected to adsorptive accumulation, and that is also 

of interest as a possible biomarker for disease. The present work provides the basis 

for a new reagentless, simple, fast and competitive technique with the capability to 

be miniaturised and integrated other analytical technologies. 

 

6. 2. Experimental Section 

6. 2. 1. Reagents 

All reagents were purchased from Sigma-Aldrich Australia Ltd, and used as 

received. The electrolyte salt of the organic phase, bis (triphenylphosphoranylidene) 

ammonium tetrakis (4-chlorophenylborate) (BTPPA+ TPBCl-) was prepared by 

metathesis of bis (triphenylphosphoranlidene) ammonium chloride (BTPPA+Cl-) and 
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potassium tetrakis (4-chlorophenyl) borate (K+TPBCl-). The organic phase consisted 

of 10 mM BTPPA+ TPBCl- in 1,6-dichlorohexane, which was gelled using low 

molecular weight poly(vinyl chloride),79, 114 see Appendix A. Aqueous stock 

solutions of haemoglobin (from bovine blood) were prepared in 10 mM HCl on a 

daily basis. All aqueous solutions were prepared in purified water from a USF 

Purelab Plus UV (resistivity: 18 MΩ cm). 

 

6. 2. 2. Apparatus 

All measurements were performed using an Autolab PGSTAT302N analyser 

(Metrohm, The Netherlands). The micropore membranes, used to form an array of 

microITIES, were fabricated using photolithographic patterning and a combination 

of wet and dry silicon etching. Deep reactive ion etching was used for pore drilling 

and produces hydrophobic fluorocarbon-coated internal pore walls which 

subsequently are filled with the organic phase. The array employed here consisted of 

30 micropores in a hexagonal close-packed arrangement, each with a diameter of 

22.4 µm and a pore centre-to-centre distance of 200 µm.33, 35 The microporous 

silicon membranes were sealed onto a glass cylinder using silicone rubber (acetic 

acid curing Selleys glass silicone, Selleys Australia & New Zealand). Then the gelled 

organic phase solution was introduced into the silicon micropore arrays, and the 

organic reference solution was placed on top of the gelled organic phase.34 The 

gel/membrane/glass assembly was then inserted into the aqueous phase (10 mM HCl 

or haemoglobin in 10 mM HCl) and voltammetric experiments implemented. 

Transfer of tetraethylammonium (TEA+) across the interface was performed to 

characterise the array and confirm the correct filling of the pores. TEA+ transfer at 

the microITIES (data not shown) exhibited steady-state voltammetry on the forward 

scan (ion transfer from aqueous to organic phase) and peak-shaped voltammetry on 

the reverse scan (organic to aqueous phase), consistent with pores filled with organic 

phase, as previously reported.33, 35 

 

6. 2. 3. Electrochemical measurements 

A two-electrode electrochemical cell was employed, whereby, the micro-interface 

array was polarised by applying a potential difference between two Ag/AgCl 
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electrodes (one in each phase). Scheme 6.2.1 represents the electrochemical cell 

used, where x is the concentration of haemoglobin in the aqueous phase. 

 

 

Scheme 6.2.1. Schematic representation of the electrochemical cell. 

Cyclic voltammetry (CV) and adsorptive stripping voltammetry (AdSV) were 

carried out at a sweep rate of 5 mV s−1. Parameters such as protein concentration, 

applied potential, and duration of the adsorption stage were varied. 

 

6. 3. Results and Discussion  

The experiments presented below have been performed at pH 2, which is below 

the isoelectric point (pI = 6.8)216 of haemoglobin and where it is assumed to be fully 

protonated with a charge zi of +62.80 It is reported that at pH < 2.5, haemoglobin 

retains a large amount of tertiary structure and is only partially denatured.223 Under 

these conditions, this protein has shown electroactivity at liquid-liquid interfaces and 

can be detected via the facilitated anion transfer mechanism at the micro-interface 

array, in agreement with previous reports.80 CV analysis (Figure 6.3.1) confirmed 

this proposed mechanism at the gelled microITIES array, involving adsorption of the 

positively-charged haemoglobin on the interface at the more positive potentials in 

conjunction with facilitated transfer of organic phase anions. The sharp peak 

observed on the reverse sweep at ca. 0.65 V is characteristic of a desorption process, 

whereas on the forward sweep, an increase in current, relative to the background, and 

the presence of a pair of shoulders are indicative of charge transfer occurring. 

However the latter processes (shoulders) are insufficiently defined to be used for 

analytical purposes. Thus, Hb is electroactive at the microITIES array, but 

implementation of an advanced voltammetric strategy may offer better detection 

capability and that is the focus of this paper.  
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Figure 6.3.1. Cyclic voltammetry of 10 M Hb (solid line) at the microITIES array. 

Sweep rate: 5 mV s-1. The dashed line is the response in the absence of haemoglobin. The 

full cell description is given in Scheme 6.2.1. 

 

6. 3. 1. Potential dependence 

AdSV is an electroanalytical technique that involves two steps: first, 

preconcentration of the analyte by adsorption at the electrified interface, and second, 

the voltammetric desorption of the analyte from the interface. This methodology has 

been proven to enhance the detection capability in electrochemical analysis224 and 

specifically at the micro-ITIES when employing lysozyme (Chapter 3), a model 

globular protein. Previous reports on haemoglobin behaviour at the ITIES have 

suggested that the protein undergoes a complex process consisting of adsorption and 

facilitated anion transfer of the organic electrolyte.80, 81 In order to optimise the 

conditions where haemoglobin is maximally adsorbed, a series of applied potentials 

across a range from 0.45 to 1.1 V was investigated (see Figure 6.3.2). When the 

applied potential was greater than that required for the protein to adsorb, 

haemoglobin facilitated an ion transfer involving charged protein and organic anion 

interactions. This is followed by desorption of the biomacromolecule from the 

interface and back transfer of the organic electrolyte anion to the organic phase 

during the subsequent voltammetric scan. As can be seen from Figure 6.3.2, Hb 

adsorption starts at 0.8 V, reaching the maximum current peak height at 0.975 V with 
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a peak current of -15 nA. When increasing the potential beyond this optimum value, 

organic electrolyte transfer across the interface without complexation of the protein 

dominates this process. Additional peak analysis (not shown here) confirms an 

optimum potential applied of 0.975 V when the ratio between the half-width and the 

peak height of the reverse peak was also analysed. Moreover, this optimum potential 

differs to that obtained for lysozyme (0.950 V) under the same conditions (see 

Chapter 3, Section 3.3.2), indicating some selectivity of the system in the 

electrochemical adsorption. Furthermore, the voltammetric peak during the 

desorption process was also different, 0.65 V for Hb and 0.7 V for lysozyme. 

Nevertheless, the possible interference of other proteins, such as serum albumin 

present in blood samples, must be addressed in order to determine the capability of 

this method within a more complex sample matrix. 

 

Figure 6.3.2. AdSV of 5 M Hb at the microITIES array following application of 

different applied potentials (between 0.45 and 1.10 V) for the adsorption step of 60 s. Inset: 

evolution of the peak current with the applied potential of the adsorption step. 

Electrochemical cell composition as indicated in Scheme 6.3.1. Error bars represent ±1 

standard deviation (n = 3). 
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6. 3. 2. Preconcentration time dependence 

The influence of the preconcentration time at a fixed haemoglobin concentration 

also investigated. Figure 6.3.3 shows the evolution of the desorptive voltammograms 

with preconcentration time following adsorption of the protein at 0.975 V for 

different periods of time, from 0 to 1800 s. The inset in Figure 6.3.3 shows a 

hyperbolic increase of the desorption peak current when the preconcentration time is 

increased. However, adequate sensitivity to Hb is obtained at short preconcentration 

times. Furthermore, it can be seen that the peak shape becomes skewed at the longer 

times, indicating a possible loss of sensitivity or resolution. 

Thus both the applied potential and time for adsorption have an impact on the 

detection signal and were fully characterised before studying the performance 

potential of the approach under different concentrations of the protein in the aqueous 

phase. The electrochemical response suggests that the adsorption of haemoglobin at 

the µITIES can be controlled by the solution concentration and the preconcentration 

time.  

 

Figure 6.3.3. AdSV of 1 M Hb at different preconcentration times, from 0 to 1800 s. 

Inset: plot of peak current versus preconcentration time for (○) 1 µM and (●) 0.1 µM Hb. 

Electrochemical cell composition as given in Scheme 6.3.1. Error bars represent ±1 standard 

deviation (n = 3). 
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6. 3. 3. Concentration range for haemoglobin detection 

AdSV of haemoglobin was performed using fixed adsorption times (0, 60, 120 

and 300 s) across an extensive concentration range (0.005 – 7.5 μM). Figure 6.3.4 

shows the resultant voltammograms for (A) 0 s and (B) 60 s preconcentration times. 

The minimum measurable desorptive (stripping) peak corresponds to a concentration 

in the aqueous phase of 30 nM, for a preconcentration time of 60 s, whilst without 

pre-treatment (i.e. 0 s preconcentration) this value increased up to 70 nM, in line with 

previous studies by CV. A common feature was noticed in all of the voltammograms 

at 2 µM Hb in the bulk aqueous phase (see Figure 6.3.4). At that critical 

concentration, a crossover at 0.8 V is observed and the peak current regresses 

significantly. This process breaks the linearity observed at lower protein 

concentration in the aqueous solution. As noted in Chapter 3 and 4, multilayer 

formation has been demonstrated to occur at the liquid-liquid interfaces when protein 

is concentrated at the interface. Consequently, protein conformational changes are 

possible within the multilayers that built up at the microITIES, and perhaps there is 

less interaction between haemoglobin and the organic phase anion at higher 

concentrations due to the difference between interfacial and bulk concentration. 

Further studies on this observation are required for a fuller explanation.  
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Figure 6.3.4. AdSV of different concentrations of Hb, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 1.5, 

2.5, 5 and 7 µM. (A) with 0 s preconcentration step and (B) after 60 s preconcentration. 

The build-up of multilayers was characterised by determining the interfacial 

coverage of the adsorbed protein at the microITIES. Interfacial coverage (Γ) values 

were estimated using equation (6.3.1) where Q is the charge under the desorption 

peaks, assuming the charge of the protein zi is +62 when fully protonated at pH 2, F 

is the Faraday constant and A is the geometric area of the microinterface array (1.18 

x 10-4 cm2).  
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ܳ ൌ  (6.3.1)     ߁ܣܨ௜ݖ

Taking into account that a molecule of haemoglobin occupies a cross-sectional 

area of 30 nm2 and that for the formation of a single monolayer,81 only 87 % of the 

interface is occupied by haemoglobin in a close-packed hexagon configuration,225 

then 3.4 x 108 molecules would be absorbed and occupying the available geometric 

area of the micro-interface array (1.18 x 10-4 cm2). Without preconcentration 

conditions, the experimental interfacial coverage values for Hb bulk concentrations 

lower than 2.5 µM correspond to less than a monolayer, while the formation of 

multilayers occurs at higher concentrations (between 8 to 19 monolayers in the 

concentration range 5-10 µM, without preconcentration).  

 

Subsequently linearity was investigated at low concentration of haemoglobin in 

the bulk aqueous solution. Table 6.3.1 summarises the analytical behaviour of this 

method over the range from 5 to 500 nM Hb using four different preconcentration 

times (0, 60, 120 and 300 s). At 0 s preconcentration time, the calculated limit of 

detection (LOD) was 0.265 µM, while amongst the results obtained from the longer 

preconcentration times, 60 s preconcentration gave best performance in terms of 

LOD, linearity, minimum observable peak and enhanced peak current (at 0.5 µM). 

The calibration curve obtained after the 60 s preconcentration step was: Ip (nA) = 

7.46 (nA μM-1) · C (µM) - 0.109 (nA), R = 0.996, where ip is current of the desorptive 

voltammetry peak and C is the concentration of the protein in bulk aqueous solution 

(see Figure 6.3.5). The relative standard deviation was 13.3 % for 6 successive 

measurements at 0.1 µM of haemoglobin following 60 s preconcentration. This 

experiment showed that haemoglobin was completely stripped away from the 

interface, with intermediary blank scans displaying no peaks. The lowest observable 

and measurable desorption peak corresponded to 30 nM while the calculated limit of 

detection (LOD) was 48 nM for a preconcentration period of 60 s. This calculated 

LOD is based on three times the standard deviation of the intercept and the value 

larger than the experimentally detectable concentration reflects the precision of the 

measurements. Previous work based on cyclic voltammetry reported by Herzog et al. 

presented a non-linear behaviour80 of Hb at a millimetre-sized ITIES (not gelled as in 

the present work) whilst the detection of 0.55 μM Hb was achieved after 

haemoglobin digestion and the use of differential pulse stripping voltammetry as a 
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more sensitive voltammetric technique.83 However, the LOD under similar 

conditions to those presented here (AdSV for 60 s) was 60 nM of lysozyme (Chapter 

3, Table 3.3.1). Based on these results, AdSV at arrays of liquid-liquid 

microinterfaces is a viable analytical approach for simple, fast and label-free 

detection of haemoglobin.  

 

Table 6.3.1. Analytical characteristics of Hb at different pre-concentration times. 

Pre-
concentration 

times / s 

[Hb]min 
observa

ble / 
nM 

Peak 
current 

of 
[Hb]min 

/ nA 

Peak 
current at 
0.5 µM Hb 

/ nA 

Calibrati
on graph 

slope / 
nA µM-1 

Linear 
range / 

µM 

Numbe
r of 

points 
(N) 

Limit of 
detection 
(LOD)/ 

nM 

Correlati
on 

coefficien
t (r) 

0 70 0.04 0.63 1.32 0.07 - 
0.5 

8 265 0.997 

60 30 0.04 3.41 7.46 0.03 – 
0.5 

12 48 0.996 

120 30 0.05 4.47 9.07 0.03 – 
0.5 

12 68 0.991 

300 30 0.08 6.72 13.5 0.03 – 
0.5 

12 89 0.984 

 

 

Figure 6.3.5. Current versus concentration curve of haemoglobin (0.01-0.5 µM) for 60s 

preconcentration time. Error bars represent ±1 standard deviation (n = 3). 
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6. 4. Conclusions 

An analytical approach based on constant-potential adsorption of protein followed 

by voltammetric desorption enables the detection of lower levels of haemoglobin in 

aqueous solution. A calculated detection limit of 48 nM was achieved following 60 s 

adsorption at the aqueous-organogel micro-interface array. Previous studies have 

highlighted that protein detection at the ITIES may be attributed to a combination of 

adsorption and protein-facilitated transfer of organic phase electrolyte anions. The 

results of this study show that this adsorption event may be exploited for analytical 

purposes, in this case within a thirty-member array of micro-interfaces. The 

improvement in detection limit is two orders of magnitude better than has been 

achieved by cyclic voltammetry at macro liquid-liquid interfaces83 and the same 

order of magnitude as obtained when applying the strategy to lysozyme detection. A 

lower measurable peak was obtained when analysing haemoglobin than lysozyme, 

which can be attributed to haemoglobin’s higher positive charge (+17 in the case of 

lysozyme, +62 for haemoglobin). A higher degree of charge of the 

biomacromolecule enables a higher interaction with the anions from the organic 

phase, increasing the sensitivity of the system. The interference of other proteins in 

matrices such as blood must be addressed. Nevertheless, this report presents the 

fundamentals for a new area based on the capability of this technology which may be 

extrapolated to an extensive range of molecules. 
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7 
Electrochemical analysis of different protein fragments 

at liquid – liquid interfaces was implemented as a new 

methodology for protein identification. For this purpose, 

the effect of several proteases was investigated for 

lysozyme digestion. Complementary studies such as matrix-

assisted laser desorption ionisation – time of flight - mass 

spectrometry (MALDI/TOF-TOF-MS), liquid and gas 

chromatography - mass spectrometry (LC-MS and GC-MS) 

were also performed for an extensive analysis of the 

lysozyme digest composition which would affect the 

voltammetric signal. The results indicate that the protein 

digest signal varies with the enzyme used, which cleaves in 

different parts of the amino acid sequence of the protein. 

Additionally, the degree of pepsinisation is influenced by 

the acidity of the aqueous solution. Subsequently, lysozyme, 

myoglobin, bovine serum albumin and haemoglobin were 

investigated under identical conditions for pepsin and 

trypsin digestions resulting in eight unique voltammograms 

which showed the potential of electrochemistry at the µ-

ITIES as a tool for the identification of proteins. The results 

presented in this chapter open up a new avenue for a 

simple, label-free identification and biosensing tool. 

7. Enzymatic digestion of proteins 

prior to electrochemical analysis at liquid 

– liquid microinterfaces 
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7. 1. Introduction 

Proteins are formed in the ribosomes which transcribe the messenger-ribonucleic 

acid (mRNA) into polypeptides. These polypeptides are the precursors of the protein 

which then undergo post-translational modifications (chemical and structural 

changes) to form the final protein. Transcription increases enormously the 

complexity of the proteins generated within cells as a single gene is capable to 

generate multiple proteins as a result of various factors such as different single-

nucleotide polymorphism, splicing in the transcription and post-translational 

modifications. Therefore, the amino acid sequence and structure in a protein is 

directly link to the genetic code which highlights the significance of protein 

determination.124 

Proteomics is the science that investigates systematically gene and cellular 

functions through protein analysis. The breakthrough in the late 1980s with the 

development of techniques for soft ionisation (electrospray ionisation90 and matrix-

assisted laser desorption ionisation92) of biomacromolecules made accessible the 

accurate measurement of protein and peptide masses as this soft ionisation is 

performed prior to mass spectrometric analysis. Shotgun proteomics requires 

proteolysis of the protein and then the mass spectra of the peptide fragments 

generated can be analysed through suitable software to deduce the amino acid 

sequence in the protein.94 This makes possible the detection of amino acid 

substitutions or post-translational modifications and also provides high resolution 

measurements with capability to be integrated with separation techniques such as 

liquid chromatography and capillary electrophoresis.226 However, tedious, inefficient 

and time consuming pre-treatments steps, costly instrumentation and low sequence 

coverage of the proteolysed protein are the disadvantages of this technology.95, 99 

Biomolecule detection via electrochemistry became popular with the development 

and commercialisation of the glucose biosensor.219 Numerous attempts with the view 

to developing selective and sensitive sensors focused on the surface modification of 

metal electrodes.227 One strategy was primarily based on the formation of self-

assemble monolayer to immobilise, for example, an antibody to detect specific 

interactions (antigen-antibody binding) in order to avoid interferences from complex 

matrices and enhance the electrochemical signal.227 Nonetheless from the 
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commercial point of view, none of these approaches have been successful in terms of 

its application in the medical community or general public. 

An alternative to conventional solid electrode electrochemistry is electrochemistry 

at the liquid-liquid interface. This method has been developed over the last 40 years6, 

12 and is able to detect charge transfer processes, not necessarily redox, which 

provided a label-free platform for protein detection. In the last decade, a range of 

proteins such as protamine,69, 73 insulin,77 lysozyme,78 cytochrome c,85 myoglobin74 

and haemoglobin80 has been explored at the liquid - liquid interfaces (or at the 

interface between two immiscible electrolyte solutions, ITIES). The detection 

mechanism has been proposed to undergo a two step process, (1) protein adsorption 

and(2) facilitated transfer of the anion from the organic phase via positively charge 

protein-anion complexation which was discussed in previous chapters and confirmed 

for lysozyme in Chapter 4 via ESI-MS analysis. Also small oligopeptides34, 228 and 

amino acids66 have been detected at the ITIES in the presence of an ionophore in the 

organic phase. This ionophore is a crown-ether ligand that complexes these 

biomolecules hence facilitating their transfer across the interface. This is possible as 

there is hydrogen bonding between the oxygen atoms in the macrocycle and the 

protonated amines from amino acids. Moreover, protein folding and unfolding has 

been studied at the liquid – liquid interfaces by Herzog et al.82, 229 and the first 

attempt to study the digestion of proteins as a pre-step before electrochemical 

analysis at the ITIES was also performed by Herzog et al.83 The aim of this work 

reported here was to investigate the analytical utility of enzymatic digestions prior to 

electrochemical measurements with a calculated limit of detect of 0.55 µM when 

using differential pulse voltammetry. Following this line of research, several 

enzymes have been characterised to digest lysozyme before performing 

electrochemical analysis at liquid – liquid micro – interfaces. In addition, a series of 

mass spectrometry techniques was used to determine the peptide fragments and 

amino acids present in the proteolysed mixture to complement the electrochemical 

analysis. In order to examine the perspectives of this methodology as a label-free 

fingerprinting tool, four different proteins in terms of size and structure were also 

evaluated in this chapter. 
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7. 2. Experimental Section 

7. 2. 1. Reagents 

All reagents were purchased from Sigma-Aldrich Australia Ltd. and used as 

received. Hen-egg-white-lysozyme, equine heart myoglobin, haemoglobin from 

bovine blood, bovine serum albumin, trypsin (from porcine pancreas), pepsin (from 

porcine gastric mucosa) and endoproteinase Glu-C (from Staphylococcus Aureus 

V8) were stored at 4ºC or -21ºC as specified.  

Protein and enzyme solutions were freshly prepared in the corresponding 

electrolyte solution (hydrochloric acid, phosphate buffer saline, 

ethylenediaminetetraacetic acid or ammonium bicarbonate) for the enzymatic 

digestion (see Section 7.2.2). Tetraethylammonium (TEA+) chloride was prepared in 

10 mM HCl of pH 2. 

Electrochemical measurements required an organic phase which was gelled (10 % 

w/v) and prepared using bis(triphenylphosphoranylidene) tetrakis(4-

chlorophenyl)borate (BTPPA+TPBCl-, 10mM) in 1,6-dichlorohexane (1,6-DCH) and 

low molecular weight poly(vinyl chloride) (PVC)79, 114. BTPPA+TPBCl- is a 

hydrophobic salt used as the organic electrolyte and was prepared by metathesis of 

bis(triphenylphosphoranylidene)ammonium chloride (BTPPA+Cl-) and potassium 

tetrakis(4-chlorophenyl)borate (K+TPBCl-) as detailed in Appendix A.  

All the aqueous solutions were prepared in purified water, from a USF Purelab 

plus UV, with a resistivity of 18 MΩ cm. 

 

7. 2. 2. Proteolysis and denaturation 

The enzyme-to-protein molar ratio was fixed to 1:25 for the different enzymatic 

reactions. When using pepsin, hydrochloric acid (HCl) was the acidic aqueous 

solution employed during the incubation at 37 °C for 2 h. In the case of tryptic 

digestion, the enzyme solution was prepared in 0.2 g L-1 of 

ethylenediaminetetraacetic acid (EDTA) at pH 7.0-7.6 which was then incubated at 

37 °C for 16 h (overnight). Endoproteinase Glu-C was prepared in phosphate 

buffered saline (PBS) at pH 7.8 or 10 mg mL-1 of ammonium bicarbonate at pH 8 

and left in a circulating bath at 37 °C for 16 h. The protein fragments were then 

separated from undigested material by filtration using 3 kDa centrifugal filter devices 

(amicon ultra 0.5 from Millipore Corporation, Billerica, USA) in a microcentrifuge 
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(Gyrospin, Thermo Fisher Scientific Australia Pty Ltd.). Aliquots of the filtered 

digest material were added to the acidic aqueous phase (10 mM HCl, pH 2) in order 

to protonate completely the peptides or amino acids formed. 

Denaturation of the protein was carried out by incubating the protein (1 mM) with 

9.5 M urea overnight at room temperature in either PBS or 0.15 M KCl + 0.15 M 

HCl. Then an aliquot (10 µL) was added to 10 mM HCl for electrochemical analysis.  

 

7. 2. 3. Protein sequences 

The amino acid sequence of hen-egg-white-lysozyme (129 residues) and 

myoglobin (153 residues) are illustrated in Sequences 7.2.1 and 7.2.2, respectively. 

For more detail see Appendix D where the single amino acids (individual letters) are 

defined. 

 

KVFGRCELA AAMKRHGLDN YRGYSLGNWV CAAKFESNFN TQATNRNTDG 
STDYGILQIN SRWWCNDGRT PGSRNLCNIP CSALLSSDIT ASVNCAKKIV 
SDGNGMNAWV AWRNRCKGTD VQAWIRGCRL 

Sequence 7.2.1. Lysozyme amino acid sequence. 

GLSDGEWQQ VLNVWGKVEA DIAGHGQEVL IRLFTGHPET LEKFDKFKHL 
KTEAEMKASE DLKKHGTVVL TALGGILKKK GHHEAELKPL AQSHATKHKI PIKYLEFISD 
AIIHVLHSKH PGDFGADAQG AMTKALELFR NDIAAKYKEL GFQG 

Sequence 7.2.2. Myoglobin amino acid sequence. H is the distal histidine and H is the 

proximal. 

The isoelectric point (pI) of lysozyme is 11.4215 and possesses +17150 charges 

when fully protonated, whilst myoglobin pI is 7.3230 and is charged with positively 

32 charges under acidic conditions. Myoglobin is lysine and histidine rich with 19 

and 11 residues, respectively while lysozyme has 11 arginine residues in its 

sequence. In myoglobin, the hemin group is held by two histidine residues: H64 is 

known as the distal histidine and H93 is the primal histidine which binds via a 

covalent bond to the hemin group. However the distal histidine stabilizes the protein 

structure because it protects it from oxidation in the presence of O2. 

 

7. 2. 4. Electrochemical measurements 

All electrochemical experiments were performed using an Autolab PGSTAT302N 

electrochemical analyser (Metrohm Autolab, Utrecht, The Netherlands). Cyclic 
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voltammetry was conducted at a scan rate of 5 mV s-1. The microinterface was 

formed using a silicon membrane consisted of 30 micropores of 22.4 µm diameter 

which provides a total area of 1.18x10-4 cm2. The fabrication process of these 

membranes combines dry and wet etching with hydrophobic micropore walls. The 

micro-arrays were then sealed to a hollow glass cylinder using silicone rubber 

(Acetic acid curing glass silicone (Selleys Australia & New Zealand)) where the 

gelled 1,6-DCH was introduced. Then the glass cylinder with the microarray 

membrane sealed on one edge was immersed in a beaker containing the aqueous 

solution. Therefore the microinterfaces are formed when both phases come in 

contact. Finally two silver/silver chloride wires act as reference electrode in each of 

the phases. See Figure 2.1.2 (Chapter 2 Section 2.1) which summarises the 

components of the two-electrode electrochemical cell set-up used in all voltammetric 

measurements.  

 

Scheme 7.2.1. Electrochemical cell. 

 

7. 2. 5. Gas chromatography – mass spectrometry (GC-MS) 

Free amino acid content of the protein digest was evaluated by GC-MS after its 

extraction and derivatisation. This process was performed using Kit:EZFaast 

(Phenomenex Inc. Australia) which is designed to accomplish the extraction of free 

amino acids and their derivatisation in 15 minutes preceding GC-MS analysis. This 

kit provides a chloroformate agent in order to derivatise the amines, carboxylic and 

hydroxyl group in the amino acid sample resulting in a more volatile product. GC-

MS was carried out using a gas chromatograph from Agilent equipped with a ZB-

AAA (10 m x 0.25 mm) Amino Acid Analysis GC Column that was directly 

connected to a 7000 Series GC/Triple Quad mass spectrometer. The injection volume 

was 2 µL at a carrier gas flow of 1.1 mL min-1 helium with a split ratio of 1:15 with 

hot needle (250 °C). The initial oven temperature of 110 °C was raised to 320 °C at 

30 °C min-1. Other settings were 240 °C ion source temperature and auxiliary of 310 

°C. Mass spectra were analysed in the range of 45-450 m/z at a sampling rate of 2², 

3.5 scans s-1. MS data were processed using the program MassHunter from Agilent. 
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Technologies Australia Pty. For quantification purposes, a mixture of 23 amino acid 

standards was prepared as described previously using the EZFaast kit. In addition, an 

internal standard (norvaline, 23.43 ng/µL) was added at the beginning of the sample 

treatment which undergoes the same derivatisation reactions and extraction than the 

amino acids in the sample. For quantitative analysis, a mixture of 23 amino acid 

standards was prepared as described in the EZFaast kit. 

 

Mass spectrometry work was performed by the Centre for Metabolomics at the 

faculty of Life and Physical Sciences at the University of Western Australia. 

 

7. 2. 6. Matrix-assisted laser desorption ionisation / time of flight – time of 

flight (MALDI/TOF-TOF) 

Peptides obtained after protein digestion (see Section 7.2.2) were analysed by 

MALDI/TOF-TOF mass spectrometer using a 5800 Proteomics Analyser from AB 

Sciex Australia Pty Ltd. (Mt Maverley, Victoria, Australia). Spectra were analysed to 

identify the protein of interest using Mascot sequence matching software (Matrix 

Science Ltd., London, UK) with Ludwig NR Database and Taxonomy set to metazoa 

(June 2012, 3831323 sequences). The search parameters for use on the mass 

spectrometer were: ± 0.4 of peptide tolerance (tol) and MS/MS tol ± 0.4, peptide 

charge of +1, monoisotopic, one miss cleavage and trypsin digestion. 

 

7.2.7. Liquid Chromatography - Mass Spectrometry (LC-MS) 

LC-MS was carried out using an Ultimate 3000 nano HPLC system (Dionex, 

Thermo Fisher Scientific) coupled to a 4000 Q TRAP mass spectrometer from 

Applied Biosystems (Life Technologies Australia Pty Ltd., Mulgrave, Australia). 

Tryptic peptides were loaded onto a C18 PepMap100, 3 µm (LC Packings) and 

separated with a linear gradient of water/acetonitrile/0.1% formic acid (v/v). Spectra 

were analysed to identify proteins of interest using Mascot sequence matching 

software with Ludwig NR database and Taxonomy set to metazoa (September 2012, 

3958669 sequences). 

 

The proteomics analyses were performed in facilities funded by the (WA) 

Lotterywest State Biomedical Facility – Proteomics Node, Western Australian 
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Institute for Medical Research, Perth, Australia. The proteomics data analyses were 

performed with the support of the facilities at the Australian Proteomics 

Computational Facility. 

 

Figure 7.2.1 illustrates the steps performed before any analysis. 

 

Figure 7.2.1. Sketch of the procedure prior to peptides or free amino acids 

measurements: protein digestion, separation and analysis performed. 

 

7. 3. Results and Discussion  

7. 3. 1. Effect of enzymes in the digestion of lysozyme 

In the literature, the preferential cleavage sites of the enzymes employed for this 

study has been reported.118, 119, 231 A general diagram (Figure 7.3.1) shows the 

importance of the amino acid sequence for the specific cleavage performed by the 

enzyme and the specific residues of cleavage for pepsin, trypsin and endoproteinase 

Glu-C.  
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Figure 7.3.1. Sketch of enzyme digestion of an amino acid sequence. The cleavage sites 

are highlighted for the different enzyme used in this thesis. Note that the abbreviations 

correspond to amino acids: tryptophan (W), phenylalanine (F), tyrosine (Y), alanine (A), 

valine (V), leucine (L), isoleucine (I), arginine (R), lysine (K), aspartic acid (D) and glutamic 

acid (E). 

Pepsin exhibits a broad specificity. Hydrophobic residues are the preferential 

cleavage sites, in particular aromatic amino acids such as tryptophan, phenylalanine, 

tyrosine, alanine, valine, leucine and isoleucine. Trypsin cleaves predominantly at 

the carboxylic site of arginine and lysine except when they are bound to a C-terminal 

proline. However, in the case of endoproteinase Glu-C, the enzyme also hydrolyses 

peptide bonds at the carboxylic site in the presence of ammonium at the glutamic and 

aspartic acid. And endoproteinase Glu-C cleaves only at aspartic acid residues, in the 

absence of ammonium ions in solution.118, 119 Figure 7.3.2 illustrates the molecular 

structure of the amino acids involved in the digestions carried out when using pepsin, 

trypsin and endoproteinase Glu-C.  
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Figure 7.3.2. Representation of 11 amino acids that are crucial in the cleavage performed 

by pepsin, trypsin and endoproteinase Glu-C and these are divided into 3 groups 

(hydrophobic, positively and negatively charged amino acids). 

In this study, the fragmentation of hen-egg-white-lysozyme (HEWL) resulted 

from digestion by several enzymes was implemented. Based on this principle, a wide 

variety of oligopeptides and free amino acids were formed for the same protein under 

different conditions. Figure 7.3.3 shows six cyclic voltammograms obtained for 

lysozyme after being digested with: pepsin at pH 1.3 and 2; trypsin; pepsin digestion 

followed by trypsinisation; and finally, endoproteinase Glu-C in phosphate buffered 

saline and ammonium bicarbonate. These results were obtained after the appropriate 

incubation time at 37ºC, filtration of the mixture in order to separate the undigested 

protein and the enzyme and finally, the addition of different aliquots of the reaction 

product mixture to 10 mM HCl which results in concentrations of 5, 10, 15, 30, 60, 

100 µM of the initial lysozyme. Analysis of the buffers used during the incubation 

time was carried out to evaluate possible interference of these salts on the 

electrochemical detection. Ammonium bicarbonate was the only buffer which 

showed electrochemical activity within the concentration studied. For 1.12 mg/mL 
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NH4HCO3 (14 mM), a new feature is observed at 0.9 V on the reverse scan which 

can be attributed to NH4
+ transfer across the interface. Therefore, this phenomenon 

could explain the voltammogram obtained when lysozyme is digested with 

endoproteinase Glu-C in ammonium bicarbonate, as it became distorted at 60 and 

100 µM of lysozyme. At 60 µM lysozyme, the reverse peak became wider and 

shifted from 0.70 V to 0.75 V (Figure 7.3.3f). In addition, when lysozyme aqueous 

concentration is 100 µM and NH4HCO3 reaches 14 mM, then the electrochemical 

contribution of both charge transfer processes overlaps resulting in an unresolved 

peak at ca. 0.92 V on the reverse scan. However for remaining electrolyte solutions 

employed during digestion (HCl, PBS and EDTA), there was no observable change 

in the voltammetry which therefore provided a better platform for peptide analysis. 

 

Pepsin 

For pepsin digestion, two acidic solutions were investigated (pH 1.3 and 2) as this 

enzyme is known to cleave at hydrophobic sites and the degree of pepsinisation 

depends on the pH studies.231 As confirmed by the voltammograms in Figure 7.3.3a 

and 7.3.3b, the more acidic pH enhances the cleavage performed by pepsin. This 

results in higher currents in Figure 7.3.3a, 15 nA on the forward scan for 100 µM 

lysozyme compared to 10 nA in pH 2. The reverse peak also becomes wider at pH 

1.3 and the peak intensity reaches 13 nA for 100 µM concentration, while the peak at 

pH 2 was 8 nA. 

 

Pepsin and trypsin 

Another digestion approach was the sequential combination of pepsin and trypsin 

for a further digestion of the initial protein. This mimics the process in the 

mammalian digestive tract that starts in the saliva followed by further digestion in the 

stomach (pepsinogen), pancreas (trypsinogen) and intestine.232 This double digestion 

resulted in a single peak (Figure 7.3.3c) at 0.94 V of 1.6 nA height. If the extended 

digestion resulted in a higher fragmentation where the neutral components were 

higher and the positively charged peptides or amino acids were reduced or become 

more hydrophilic, then the energy of transfer from the aqueous to the organic phase 

would be higher and in the case of too small molecules, undetectable due to a 

possible overlap the background signal.  
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Figure 7.3.3. CVs of lysozyme digested using a) pepsin at pH 1.3, b) pepsin at pH 2, c) 

pepsin (pH 2) followed by trypsin, d) trypsin, e) endoproteinase Glu-C in PBS and f) 

endoproteinase Glu-C in NH4HCO3. Note that all the voltammograms are at 5 mV/s and the 

electrochemical signal increases with the peptide concentration (from 5, 10, 15, 30, 60, 100 

µM). 
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Trypsin 

Figure 7.3.3d corresponds to trypsinised lysozyme which shows a slight increase 

in the forward current but a peak-shaped voltammetry on the reverse (ca. 1.8 nA 

peak height at 0.7 V).  

 

Endoproteinase Glu-C 

Finally endoproteinase Glu-C was studied in PBS and NH4HCO3. Both 

voltammograms (Figure 7.3.3e and f) showed limited activity and, in the case of the 

incubation in the presence of ammonium, the electrochemical signal was 

compromised by the background transfer of ammonium at very positive potential. In 

both cases, there is a reverse peak at 0.7 V which showed higher currents for the 

sample incubated in phosphate buffered saline. A higher signal was expected for the 

digestion in PBS solution because under these conditions, the protease is able to 

fragment the protein at 9 sites118 whereas in the presence of ammonium cations, 

lysozyme is cleaved in position 6 and 17 producing 3 fragments. After the digestion 

under these conditions, theoretically the peptide mixture obtained is formed by 3 

peptides of ca. 0.7, 3.1 and 10.5 kDa. Thus after the filtration the only peptide in 

solution correspond to a 6 amino acid sequence (KVFGRC). However in phosphate 

buffered saline conditions, 10 fragments under 3 kDa were potentially in solution 

which was expected to present larger voltammograms. The potential peptide-peptide 

interaction and the ammonium interference could be sources of which would be 

discuss in the next sections. 

 

The main observation from the above is the fact that each of the enzymes 

employed produces different voltammetry for a single protein. Accordingly, Figure 

7.3.4 has been plotted to summarize the results obtained for the different enzymatic 

conditions for an initial protein concentration of 30 µM. In this figure, the 

differences in CVs produced by the various conditions are clearly distinguishable by 

visual inspection. The signal measured for the samples digested with trypsin and 

endoproteinase Glu-C present a similar reverse peak. Nevertheless, there is an 

increase of current on the forward wave in the case of the protein being fragmented 

at the glutamic and aspartic acid residues (NH4CO3 media). Pepsinised lysozyme in 

two acidic solutions (pH 1.3 and 2) also presents a significant increase of current on 

the forward scan. From approximately 0.85 to 0.93 V a shoulder was found for both 
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voltammograms although the CV run in a lower pH appears to produce higher 

current intensity during the full cycle (forward and reverse wave) and also showed a 

sharper shoulder ca. 0.9 V. The particular shape of each voltammogram has been 

assessed and it is described in section 7.3.2 in order to elucidate the detection 

mechanism of these matrices composed of single amino acids and oligopeptides. 

 

Figure 7.3.4. Cyclic voltammetry of 30µM of initial lysozyme after digestion with pepsin 

at pH 1.3 (—), at pH 2 (—), trypsin (—), endoproteinase Glu-C (—) in ammonium 

bicarbonate and phosphate buffer saline (—). CV of lysozyme digested with pepsin followed 

by trypsin is not shown in this graph due to its voltammetry did not differ from the blank 

signal for 30 µM of the protein digested. 

As the data for endoproteinase Glu-C and the sequential digestion (pepsin 

followed by trypsin) present low currents for 30 µM lysozyme, the voltammograms 

of 100 µM lysozyme fragments under those conditions were illustrated in Figure 

7.3.5. A qualitative analysis of these data demonstrate, as in the case of Figure 7.3.4, 

the ability of this methodology to provide unique voltammograms based on label-free 

charge transfer of digested biomolecules across liquid-liquid interfaces. However, the 

sensitivity has been found to be compromised when the protein undergoes enzymatic 

digestion. The lowest concentration that produces an observable change in current is 

at least one order of magnitude higher than the obtained for the native protein 

(lysozyme) via cyclic voltammetry.79 
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Figure 7.3.5. Cyclic voltammetry of 100µM pepsin-trypsin, 100µM PBS, 600µM NH4
+ 

of initial lysozyme after digestion. 

For these measurements, 3 experiments were run under identical conditions 

(buffer solution, incubation time and µ-ITIES design) but on different days and with 

different micropore membranes. These reproducibility studies showed a relative 

standard deviation (RSD) of approximately 17.5% when the reverse peak height was 

measured and 9.7 % for the evaluation of the peak area for lysozyme. Relative 

standard deviation for the reverse peak height and area are summarised in Table 

7.3.1. 

 

Table 7.3.1. Summary of the relative standard deviation for the reverse peak 

height and area measured by cyclic voltammetry.  

Lysozyme 
Relative standard deviation (RSD) / % 

Pepsin pH 1.3 Pepsin pH 2 Trypsin 

Peak height 9.2 13.4 30 

Peak area 13.4 8.9 6.8 
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These results are in agreement with previous relative standard deviation values 

reported in Chapter 6 (Section 6.3.3) for these water/organogel micro-interface 

arrays. 

 

In addition, the theoretical peptide sequences formed by the digestion process 

were evaluated. Table 7.3.2 summarises the expected small sequences or free amino 

acids and their hydrophilicity values omitting fragments larger than 3 KDa. In 

appendix C (Table appendix C1 to C6), the lysozyme digest are detailed for each of 

the enzymatic reactions. 

 

Table 7.3.2. Summary of the theoretical number of small oligopeptides, amino 

acids, total number of digest fragments, average and total hydrophilicity of their 

mixture in solutions. 

Lysozyme Pep 1.3 Pep 2 Tryp 
Pep 2 + 

Tryp 

Endo 

PBS 

Endo 

NH4+ 

single amino acids 12 5 4 13 0 0 

di-peptides 6 1 1 3 0 0 

tri-peptides 1 1 1 3 0 0 

average 

hydrophilicity a 

(STD) 

-0.97 

(1.50) 

-0.09 

(0.86) 

0.53 

(1.34) 

0.35 

(1.40) 

0.06 

(0.39) 

0.2 

(NA) 

sum hydrophilicity b -28.1 -1.1 9.5 11 0.6 0.2 

Average GRAVY 

(STD)c 

0.47 

(2.08) 

1.49 

(2.09) 

-1.08 

(2.08) 

-0.82 

(2.14) 

-0.56 

(0.69) 

-0.4 

(NA) 

total amino acids and 

oligopeptides 
29 14 18 31 10 3 

a average value of the hydrophilicity data allocated for each digest fragment produced for 1 molecule 
of lysozyme based on the Hop-Woods scale.233 
b sum of all the hydrophilicity values corresponding to for each digest fragment produced for 1 
molecule of lysozyme, also based on the Hop-Woods scale.233 
c grand average of hydropathy index234 for each digest fragment produced for 1 molecule of lysozyme 

STD is the standard deviation of the hydrophilicity or hydropathy index values of the total number of 
fragments employed to calculate the corresponding average value. 

*data assuming 100% cleavage efficiency  
 

The hydrophilicity values quoted in Table 7.3.2 represent the hydrophilicity or 

lipophobicity of single amino acids, being tryptophan, the most hydrophobic with -
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3.4 (hydrophilicity value), and arginine, lysine, aspartic and glutamic acid which 

present positive value of 3 as the four are highly ionisable amino acids (see Table 

appendix D1 in Appendix D).233 These values are the hydrophilicity values in Hopp-

Woods scale233 which are based on the experimental energy of transfer of amino 

acids from water to ethanol or estimated values reported by Levitt.235 Grand average 

of hydropathy index (GRAVY) is also another way to estimate the solubility of 

peptides or amino acids based on their sequence which was proposed by Kyte and 

Doolittle.234 The hydropathy index values allocated to each amino acid in the Kyte-

Doolittle are summarised in Table appendix D1 (Appendix D) and were also based 

on the partition coefficient of amino acids between water and ethanol as the ethanol 

phase was estimated to resemble the interior of the protein.236  

 

Evaluation of current intensity (forward or reverse signal) and charge under the 

voltammetric peaks versus the number of di-peptides, tri-peptides, average 

hydrophilicity, total number of digest fragments, hydrophobic single residues and 

average hydrophilicity of the mixture were investigated. There was no noticeable 

trend in most of the cases, although the effect of hydrophobic single residues and the 

average hydrophilicity seemed to play an important role in the electrochemical 

detection of these complex mixtures. Figure 7.3.6 a and b illustrate the effect of the 

number of hydrophobic single amino acids in solution and the average hydrophilicity 

of the mixtures on the forward current of the voltammograms (see CVs in Figure 

7.3.4) 

 

Figure 7.3.6. Peak height of the forward sweep of the CVs represented versus the number 

of hydrophobic amino acids and average hydrophilicity after several digestions. 
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From Figure 7.3.6, the increase of peak current is clear when there is higher 

presence of hydrophobic amino acids in solution or higher hydrophobic contribution 

from the mixture. This is the case of pepsinisation at a low pH which is known to 

cleave at hydrophobic residues points in the amino acid sequence of the protein. 

However, when a sequential enzymatic digestion is implemented, the size of the 

peptides decreases significantly leading to a dramatic diminution of the current peak. 

Therefore, this could translate into a more electrochemically significant contribution 

of the oligopeptides in comparison to the single amino acids in solution or their co-

existence in the aqueous phase. 

 

7. 3. 2. Mass spectrometry  

In an attempt to identify the composition of the samples after enzymatic digestion 

and thus better understanding the contribution to electrochemical signal, 

complementary techniques such as liquid chromatography - mass spectrometry and 

gas chromatography mass spectrometry were employed. In addition, the theoretical 

composition of each of the samples was predicted assuming that the enzyme is 100% 

efficient and cleaves at the residues described in the literature.  

Matrix-assisted laser desorption ionisation time of flight/time of flight 

(MALDI/TOF-TOF) was the first technique employed to identify peptide sequences. 

The disadvantage of MALDI is that the peptide coverage is low which limits the 

identification of a protein. Trypsinised lysozyme was the only sample that provided 

significant matches. This could be attributed to the small peptide size when pepsin is 

used to digest lysozyme. The sequences found via MALDI are shown below for 

lysozyme after trypsin digestions which correspond to 26% peptide coverage. 

 

32 – 39 K.RHGLDNYR.G 

32 – 41 K.RHGLDNYRGY.S 

33 – 39 R.HGLDNYR.G 

33 – 41 R.HGLDNYRGY.S 

52 – 63 K.FESNFNTQATNR.N 

53 – 63 F.ESNFNTQATNR.N 

72 – 79 S.GILQINSR.W 

135 – 143 K.GTDVQAWIR.G 
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For the rest of the fragmentation via enzymatic reactions, the matches were not 

significant. Then, nano-high performance liquid chromatography - mass 

spectrometry (nanoHPLC-MS) was carried out to improve the sequence coverage for 

the trypsinised lysozyme. However the percentage was within the same range as the 

previous measurements (19%, corresponding to the oligopeptides 32 – 39, 52 – 63 

and 135 – 143). 

 

One of the factors to consider for this lack of sequence coverage is that the 

enzymes used were not proteomics grade, except for the endoproteinase Glu-C. In 

addition, denaturation (either chemical or thermal), reduction and alkylation were not 

performed prior to the enzymatic digestion of the protein. These pre-treatments are 

well established to enhance the peptide coverage in MALDI, although they were not 

implemented before electrochemical analysis in an attempt to simplify the steps 

required for a successful protein identification and detection at the liquid-liquid 

interfaces. 

 

Single amino acid content was also studied by GC-MS. Derivatisation was 

required to increase the volatility of the residues for detection via GC-MS. Table 

7.3.3 shows the concentration of free amino acids in the sample after digestion of 1 

mM lysozyme in a 1:25 enzyme-to-protein ratio. These values as expressed in 

micromoles per liter. The raw data obtained via GC-MS for 100 µL of the digested 

protein (1 mM) is summarised in Table appendix E1 (see Appendix E) and presented 

as the amount of free amino acid detected in nanomoles. Then the amino acid 

concentration in the initial sample of lysozyme was calculated and illustrated in 

Table 7.3.3. 
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Table 7.3.3. Free amino acid concentration of 1 mM lysozyme digested in the 

presence of 40 µM enzyme and measured via GC-MS after derivatisation. 

Amino acid 

Amino acid concentration / µM 

Pep pH 
1.3 

Pep pH 2 Pep pH 3 Tryp 
Pep pH 

1.3 - Tryp 
Pep pH 2 

- Tryp 
Endo 
PBS 

Endo 
NH4

+ 

Alanine 875 390 34 7 93 71 23 23 

Sarcosine** 9 7 8 9 9 8 12 10 

Glycine 75 51 20 13 26 55 26 33 

Valine 29 35 44 0.0 6 8 6 4 

Leucine 6058 2840 237 30 646 501 44 29 

Isoleucine 0 0 6 0 0 0 5 0 

Threonine 11 15 10 0 0 0 7 4 

Serine 20 25 0 0 0 11 14 12 

Proline 6 6 0 1 2 2 4 8 

Asparagine 224 89 5 0 29 12 29 73 

Aspartic acid 75 41 5 3.0 14 7 58 81 

Methionine 68 62 20 0 0 7 0 0 

Glutamic acid 30 30 0 0 5 4 15 17 

Phenylalanine 563 320 80 5 77 50 6 1 

Glutamine 201 134 82 113 118 108 120 170 

Ornithine* 13 12 9 0 0 0 6 0 

Lysine 16 13 10 20 12 30 11 8 

Histidine 0 0 0 0 0 0 0 0 

Tyrosine 494 254 82 4 44 50 6 0 

Tryptophan 4325 2162 187 2 819 437 2 4 

*Ornithine is the degradation product of arginine 

**Sarcosine is the degradation product of glycine. 

 

In the actual electrochemical cell the measurement were performed with a 1/10 

dilution of the samples represented by the data in Table 7.3.3, which corresponds to a 

maximum of 100 µM of the starting protein. High concentrations of hydrophobic 

amino acids such as tryptophan (4.3 mM), leucine, (6.1 mM), tyrosine (0.50 mM) 

and phenylalanine (0.56 mM) were present in the digest obtained when lysozyme 

was cleaved by pepsin under acidic conditions (pH 1.3). It was also noticed that the 

higher the pH the lower the hydrophobic amino acid content in the samples when 

digesting lysozyme via pepsin. Moreover, the content of lysine is slightly higher in 

trypsinised lysozyme although the content of amino acids is a lot lower than 

pepsinised samples, specifically hydrophobic residues. Sequential digestions (pepsin 
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+ trypsin) resulted in lower concentration of amino acids compared to the lysozyme 

digested with pepsin. One of the possible reasons for this unexpected observation 

could be the change of buffer conditions. Lastly, histidine levels are undetectable via 

GC-MS. The reason is the low amount of this residue in the amino acid sequence of 

the lysozyme (1 out of 129). 

 

The electrochemistry of free amino acids in solution was conducted to elucidate 

the nature of the signal produced by the lysozyme fragments. In order to mimic the 

single amino acid concentrations determined via GC-MS, a solution containing the 

most relevant amino acids such as tryptophan, tyrosine, lysine, phenylalanine, 

glutamic acid, aspartic acid, proline, leucine, valine, glycine and alanine was 

prepared. These amino acids were selected for electrochemical characterisation as 

they showed significantly high concentrations in the GC-MS data obtained after 

derivatisation (see Table 7.3.3). For this study, a solution was prepared simulating 

the digestion with pepsin (pH 1.3) in hydrochloric acid. Then a 1/10 dilution of the 

free amino acid mixture was electrochemically characterised via cyclic voltammetry 

(data not shown) in the same way as the protein digest were previously. The CV of 

pepsinised lysozyme showed a slight increase (1.6 nA) on the forward current at the 

most positive applied potential which is in accordance with the increase of current 

when using pepsin which cleaves at hydrophobic sites, but it does not fully explain 

the features observed in the CV obtained for the lysozyme digested with pepsin. 

Tryptophan and leucine were spiked in this solution. The additional 4.2 mM of 

tryptophan increased the forward current by 1.6 nA and leucine by 0.85 nA for the 

same concentration although neither of them presented any reverse peak. 
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7. 3. 2. Detection mechanism of lysozyme peptides  

In terms of the detection mechanism, there are many different factors that affect 

the Gibbs energy of transfer for each the biomolecules present in solution. As 

mentioned before, size, charge, hydrophobic component and protein-peptide, 

peptide-peptide, protein-amino acid, peptide-amino acid and amino acid-amino acid 

interactions have to be taken into account. 

As a first approach, tetraethylammonium transfer at the µ-ITIES in the presence 

of digested biomolecules was examined. In previous studies, the distortion of simple 

ion transfer has been used to follow adsorption processes at the ITIES.78 In Figure 

7.3.7, tetraethyl ammonium (TEA+) transfer is shown (from a to f) after being added 

to a 100 µM solution of lysozyme digest.  

The experimental data illustrates the distortion of the steady-state profile expected 

for radial diffusion-controlled TEA+ transfer from the aqueous phase to the 

organogel. This is the case for Figure 7.3.7a, b, e and f. These four CVs have 

different degrees of distortion, with Figure 7.3.7b being the most affected which 

could be due to the digest being composed of large peptide sequences that might 

adsorb at the micro-ITIES. For Figure 7.3.7c and d, the voltammogram of TEA+ in 

the presence of the lysozyme digest mixture overlaps no interfering with the signal 

from the digest. The forward scan for TEA+ presents steady-state current and peak 

shaped at 0.64 V on the reverse which corresponds to radial and linear diffusion from 

the aqueous to the organogel and its back transfer respectively. These data suggest 

that digestion of lysozyme produces peptide mixtures that adsorb differently at the 

µITIES. 
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Figure 7.3.7. CVs of 100 µM lysozyme after digestion (solid line) and following addition 

of 10 µM TEA+ for different enzymatic conditions: a) pepsin at pH 1.3, b) pepsin at pH 12, 

c) pepsin followed by trypsin, d) trypsin, e) endoproteinase Glu-C in the presence of 

ammonium and f) endoproteinase Glu-C in PBS. 
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7. 3. 3. Influence of temperature and filtration step 

In order to determine the influence of temperature, filtration and the continuous 

cycling of applied potential on the voltammetry, the pepsinisation process was 

followed via cyclic voltammetry for 2 hours at room temperature and 37˚C with 

measurements taken every 5 minutes. Figure 7.3.8a shows the last CV after the 2h 

digestion. The voltammograms obtained every 5 minutes are not shown but the 

reverse peak observed at approximately 0.76 V increased progressively from ca. -2.1 

nA to -3.2 nA and from ~ -6 nA to -9.2 nA at room temperature and 37ºC, 

respectively. Comparing Figure 7.3.8a and 7.3.8b, it is clear that the increase of 

temperature promotes faster and more efficient digestion and the filtration of 

unreacted molecules prevents the interference of these for the digest detection. The 

effect of protein and enzyme separation from the aqueous reaction mixture was also 

investigated as those unreacted molecules could alter the electrochemistry of the new 

complex mixture via adsorption at the liquid-liquid interface. This is illustrated in 

Figure 7.3.8b.  

 

Figure 7.3.8. CV of 10 mM HCl (—), 100 µM lysozyme + 4 µM pepsin after 2h 

incubation at room temperature (RT) (···) and 100 µM lysozyme + 4 µM pepsin after 2h 

incubation at 37˚C (- - -); a) without filtration and be after filtration (3 KDa filters). 

This demonstrates the importance of the temperature in achieving the optimum 

performance of the enzyme since the temperature modifies the rate constant (k) of a 

reaction (Equation 7.3.2).  
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݇ ൌ  ோ்    (7.3.2)/ீ∆ି݁ܣ

where A is frequency factor, ∆G is the Gibbs energy (activation energy), R the gas 

constant and T the temperature. 

 

This preliminary data also bring the possibility to study the kinetics of the 

enzymatic reaction, the influence of multiple scans (every 5 minutes) and the effect 

of the undigested protein. 

 

7. 3. 1. Protein identification  

Following the detailed characterisation of lysozyme by enzymatic digestion, other 

proteins were evaluated to study the potential of the ITIES as a label-free 

biomolecule identification technique in combination with enzyme digestion prior to 

electrochemical measurements. 

Firstly, myoglobin was investigated as it presents a similar molecular size than the 

lysozyme but it possesses a higher charge (+32) in the acidic conditions than 

lysozyme. Figure 7.2.9 shows the current intensity versus applied potential of 

myoglobin digests corresponding to protein concentrations of 1, 5, 10, 15, 30, 60 and 

100 µM after enzyme (pepsin and trypsin) digestion. 
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Figure 7.3.9. CV of myoglobin after enzymatic digestion with a) pepsin at pH 1.3, b) 

pepsin at pH 2 and c) trypsin followed by filtration prior to electrochemical analysis. 

As expected for myoglobin, the electrochemical signal is larger than for lysozyme 

voltammetry for the same aqueous concentrations, which is attributed to how the 

higher positive charge enhances the interactions between the charged residues in the 

oligopeptides with the anions from the organic phase (TPBCl-). 
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Figure 7.3.10. CV of 30µM lysozyme (—) and myoglobin (- - -) after enzymatic 

digestion with A) pepsin at pH 2 and B) trypsin followed by filtration prior to 

electrochemical analysis. 

Figure 7.3.10 shows a comparison between 30 µM lysozyme and 30 µM 

myoglobin digested with pepsin and trypsin, (Figure 7.3.10a and 7.3.10b 

respectively). A similar approach for the extensive characterisation and comparison 

to lysozyme was also applied to myoglobin. MALDI/TOF-TOF-MS analysis was 

carried out for this protein digested with (pepsin at pH 1.3, 2 and 3, trypsin and 

pepsin (pH 1.30 and pepsin pH 2 followed by trypsin). This time pepsinisation at pH 

3 was also carried out in order to determine the effect of the pH in the activity of 

pepsin therefore in the electroactivity of the digest fragment which would translate in 
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different voltammetric response. The peptide coverage ranged between 9% and 34 % 

for these 6 types of digestions. The lack of disulfide bonds in the structure of 

myoglobin could facilitate the enzymatic digestion and the impossibility to re-fold as 

the disulfides bonds were not reduced in the lysozyme sample. The sequences 

identified via MALDI/TOF-TOF-MS were as follows: 

 

Pepsin (pH 1.3): 21 – 30, 22 – 30, 34 – 41, 111 – 124, 111 – 126, 111 – 127, 112 – 124 

and 112 – 127 

Pepsin (pH 2): 13 – 20, 34 – 52 and 139 – 154 

Pepsin (pH 3): 139 – 154 

 

Decreasing the acidity of the digestion solution limited the protein digestion so 

that the number of cleavages was dramatically reduced, as shown by MALDI/TOF-

TOF-MS. 

When using trypsin, the peptide coverage was 9% peptide. The peptides identified 

are: 

18 – 32 K.VEADIAGHGQEVLIR.L 

26 – 32 H.GQEVLIR.L 

 

From the theoretical point of view, the cleavage of lysozyme or myoglobin by the 

same enzyme (either pepsin or trypsin), results in a higher number of free amino 

acids for myoglobin and higher number of small oligopeptides (2 or 3 residues) 

which translates into a higher total variety of molecules in solution (see Table 7.3.4). 

These values support the electrochemical fingerprint of lysozyme and myoglobin 

(Figure 7.3.10). See Appendix C where all the myoglobin digest fragments (Table 

appendix C7 to C9) produced after enzymatic digestion are summarised. 
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Table 7.3.4. Comparison of lysozyme and myoglobin digest fragments content. 

Peptide mixture 

Composition 

Lysozyme Myoglobin 

Pepsin pH 2 Trypsin Pepsin pH 2 Trypsin 

single amino 

acids 
6 4 16 3 

di-peptides 1 2 8 3 

tri-peptides 1 1 3 2 

total amino acids 

and oligopeptides 
15 18 38 21 

*data assuming 100% cleavage efficiency  

 

Again, the free amino acid content in the aqueous phase following digestion was 

determined via GC-MS. For this purpose, 1 mM myoglobin was incubated with the 

corresponding enzyme (40 µM) for either 2h or overnight (ca. 16 h). The results 

obtained via GC-MS for 100 µL of the digested protein (1 mM) are summarised in 

Table appendix E2 (see Appendix E) and presented as the amount of free amino acid 

detected in nanomoles. Then the amino acid concentration in the initial sample was 

calculated and illustrated in Table 7.3.5. A higher content of hydrophobic amino 

acids at pH 2 comparing to the concentrations obtained for the pH 3 digestion 

confirms the importance of the pH in enzyme activity. Moreover the content of 

lysine is substantially higher in the trypsinised sample than in the other digests. In the 

case of trypsinisation, the levels of histidine increased which could be due to a higher 

component of histidine residues in the amino acid sequence (11 out of 153 in 

myoglobin to 1 in 129 in the case of lysozyme) but also because histidine groups in 

positions 48, 64, 97 and 119 are bonded to lysine residues which is one of the 

specific targets for trypsin. All the amino acid levels in solution are summarised in 

Table 7.3.5. 
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Table 7.3.5. Free amino acid concentration of 1 mM myoglobin digested in the 

presence of 40 µM enzyme and measured via GC-MS after derivatisation. 

Amino Acid 

Amino acid concentration / µM 

Pepsin 

pH 2 

Pepsin 

pH 3 
Trypsin 

Pepsin pH 1.3 - 
Trypsin 

Pepsin pH 2 - 
Trypsin 

Alanine 92 31 60 237 149 

Sarcosine 13 9 11 12 15 

Glycine 47 22 245 37 39 

Valine 38 156 37 21 8 

Leucine 494 27 687 174 217 

Isoleucine 26 13 0 7 0 

Threonine 19 10 50 23 88 

Serine 15 8 20 0 0 

Proline 4 0 0 14 0 

Asparagine 0 0 29 0 0 

Aspartic acid 22 5 43 39 8 

Methionine 50 0 32 66 13 

4-Hydroxyproline 0 13 0 0 0 

Glutamic acid 91 50 154 108 40 

Phenylalanine 434 0 508 240 141 

Glutamine 333 691 396 369 175 

Ornithine 20 13 0 0 0 

Lysine 76 24 7808 190 828 

Histidine 0 0 406 0 0 

Tyrosine 130 0 1572 66 209 

Tryptophan 32 1 28 104 11 

 

Mechanistically, the mixture measured is a complex matrix difficult to elucidate 

due to all the possible interactions within the molecules which can affect their 

transfer across the liquid – liquid interfaces. As a rough attempt to understand the 

contribution of these molecules to the electrochemical signal, TEA+ was spiked to a 

final concentration of 10 µM in the final digest solution. Thus, a qualitative analysis 

could prove the co-transfer of several molecules with TEA+ and/or the adsorption of 

some which would alter the TEA+ voltammetry. Figure 7.3.11 summarizes this 

information. It was found that for the mixture obtained after trypsinisation of 

myoglobin, the TEA+ transfer peak was distorted, which is due to the adsorption of 

the large peptides at the micro-interfaces.  



204 

 

Figure 7.3.11. CV of 30µM lysozyme (—) and myoglobin (- - -) after enzymatic 

digestion with A) pepsin at pH 2 and B) trypsin followed by filtration prior to 

electrochemical analysis. 

 

Two larger proteins were also investigated, bovine serum albumin (BSA) and 

haemoglobin. Four different CVs for 30 µM of protein incubated at 37˚C for 2h in a 

pepsin-to-protein 1:25 ratio at pH 2 (10 mM HCl), are illustrated in Figure 7.3.12.  

 

Figure 7.3.12. CV of pepsin digest lysozyme (—), myoglobin (—), BSA (—) and 

haemoglobin (—). Concentrations correspond to 30µM of initial protein. 

The analogous voltammograms for trypsinisation of lysozyme, myoglobin, 

albumin and haemoglobin are plotted in Figure 7.3.13.  
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Figure 7.3.13. CV of 30µM lysozyme (—), myoglobin (—), BSA (—) and haemoglobin 

(—) after trypsination and filtration. 

The extension of the mixtures voltammograms relies on the protein configuration 

and charge. The degree of unfolding is linked to the content of disulfide (S-S) 

bridges in the protein. Therefore, when comparing lysozyme to myoglobin and 

albumin to haemoglobin, it was expected to measure higher current for myoglobin 

and haemoglobin respectively, as both lack S-S bonds which leads to a more unstable 

conformation in acidic conditions exposing larger parts of the protein which 

facilitates its protonation. Nonetheless, when comparing the four proteins together 

other factors have to be taken into account as for instance size and structure. In Table 

7.3.6, the number of digest fragments, free amino acids, di-peptides and tri-peptides 

for the four proteins studied have been reported. As expected, the total number of 

digest fragments increased for proteins such as albumin and haemoglobin as their 

amino acid content is approximately 4-fold larger than lysozyme and myoglobin. As 

pointed previously, values such as the small oligopeptides or free amino acids are 

only one of the factors that influence the voltammetry of the digested proteins. This 

is confirmed as the albumin signal when trypsinised is significantly lower than the 

other three proteins which is contradictory to the number of small fragments 

expected (see Table 7.3.6). 
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Table 7.3.6. Comparison of the digest composition of the four proteins when 

digested with pepsin or trypsin. 

Peptide 

mixture 

composition 

Lysozyme Myoglobin Albumin Haemoglobin 

Pepsin 

pH 2 
Trypsin 

Pepsin 

pH 2 
Trypsin 

Pepsin 

pH 2 
Trypsin 

Pepsin 

pH 2 
Trypsin 

single amino 

acids 
6 4 16 3 56 3 56 2 

di-peptides 1 2 8 3 18 6 22 8 

tri-peptides 1 1 3 2 8 7 21 0 

total amino 

acids and 

oligopeptides 

15 18 38 21 146 79 160 63 

*data assuming 100% cleavage efficiency  

 

On the contrary, these preliminary results seem promising as each of the protein 

presents different signatures under the same conditions and also different features 

when varying the enzyme to cleave the amino acid sequence of the protein. 

 

Mathemical examination of the current measured over a period of time when a 

potential difference is applied across the µ-liquid – liquid interfaces was proposed as 

an alternative methodology to obtain more information from the electrochemical 

signature of the digest mixtures. In a cyclic voltammogram, the current measured is 

represented versus applied potential (5 mV/s in the experiments shown in this 

chapter). In this case, the first and second derivative237 were calculated for the 

current measured versus applied potential. Figure 7.3.14 and 7.3.15 correspond to the 

first derivative of the electrochemical data obtained for lysozyme, myoglobin, 

albumin and haemoglobin after pepsin digestion (pH 2) for the forward (Figure 

7.3.14) and the reverse scan (Figure 7.3.15). The first derivative illustrates the 

tangent of the curve (Δi/ΔE) over time which shows the inflexion points in the 

original data.  
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Figure 7.3.14. First derivative of the forward current versus the applied potential of a) 

lysozyme, b) myoglobin, c) BSA and d) haemoglobin after pepsinisation at pH 2. 

Concentrations correspond to 30µM of initial protein. 

In Figure 7.3.14, lysozyme showed a maximum in Δi/ΔE values at 0.91 V, and 

myoglobin and haemoglobin at 0.94 and 0.97 V, respectevily. Albumin, however, 

presents an exponentional increase in the tangent value of the voltammogram data 

with no maximum or inflexion point within the potential range measured. On the 

reverse scan of the voltammetric analysis of the digest fragments produced after 

pepsinisation, the first derivative provides higher resolution of the process 

characterisefd via cyclic voltammetry (see Figure 7.3.15). Whilst in the standard CV 

performed for the four different samples (lysozyme, myoglobin, albumin and 

haemoglobin) only one single reverse peak was observed (Figiure 7.3.12). 
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Figure 7.3.15. First derivative of the reverse current over time of a) lysozyme, b) 

myoglobin, c) BSA and d) haemoglobin after pepsinisation at pH 2. Concentrations 

correspond to 30µM of initial protein. 

Higher derivatives such as the second derivative of current versus applied 

potential were also investigated. The second derivative (∆ ቀ∆௜
∆ா
ቁ  (versus time ܧ∆/

gives the minimum or maximum values of the tangent of the first derivative (Figure 

7.3.14 and 7.3.15) over applied potential. Herein the second derivative of the reverse 

scan is illustrated in Figure 7.3.16 as the results when evaluating the forward sweep 

showed insignificant changes (see Figure appendix F1). 
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Figure 7.3.16. Second derivative of the reverse voltammogram obtained for 30 µM 

pepsin digest (pH 2) of a) lysozyme, b) myoglobin, c) albumin and d) haemoglobin. 

The same approach was applied for the digestion of four proteins (lysozyme, 

myoglobin, BSA and haemoglobin) with trypsin. The CVs from Figure 7.3.13 were 

also derivatised. The first order derivatives are shown in Figure 7.3.17 and Figure 

7.3.18.  
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Figure 7.3.17. First derivative of the forward sweep voltammetry obtained for 30 µM 

trypsin digest of a) lysozyme, b) myoglobin, c) albumin and d) haemoglobin. 

 

Figure 7.3.17 presents less characteristic features compared to the previous 

derivatives from the digestion performed using pepsin at pH 2 (Figure 7.3.14), which 

is in agreement with the voltammetry of these proteins. Nonetheless, there is a 

significant difference in the ∆i/∆E values for the four samples providing a certain 

degree of resolution between the first derivatives of the proteins studied. Again as in 

the case of pepsin digestion, the first derivative of the reverse voltammogram 

provided more significant changes. In Figure 7.3.18, lysozyme posses a minimum 

∆i/∆E value at 0.68 V, myoglobin at 0.92 V, albumin at 0.87 V and haemoglobin at 

0. 85 V. 
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Figure 7.3.18. First derivative of CVs obtained for 30 µM pepsin digest (pH 2) of a) 

lysozyme, b) myoglobin, c) albumin and d) haemoglobin. 

 

Lastly the second derivative was also evaluated for the tryptic digestion of the 

four proteins. The analysis performed on the forward scan is represented in Figure 

appendix F2 and the corresponding to the reverse is illustrated in Figure 7.3.19. 

The second derivatives (Figure 7.3.16 and 7.3.19) could complement the analysis 

of the results obtained when performing the first derivative although based on the 

data presented here, the first derivatives of the voltammograms might provide 

enough evidence of differences in the charge transfer processes at the ITIES which 

are undistinguishable in the voltammetric analysis (current versus potential). 
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Figure 7.3.19. Second derivative of current versus time of a) lysozyme, b) myoglobin, c) 

BSA and d) haemoglobin after trypsinisation. Concentrations correspond to 30µM of initial 

protein. 

This mathematical approach could be of use for protein identification in a protein 

mixture where cyclic voltammetry is incapable of discerning inflexion point 

characteristic of the specific analytes. 

 

7.3.4. Denaturation with urea  

The effect of chemical denaturation (presence of urea in the aqueous solution) was 

evaluated as an alternative or complementary characterisation of different proteins. 

Urea can interact with polar residues in the protein, stabilizing non-native 

conformation.  

The experiment carried out consisted in a preliminary incubation of the protein 

with urea overnight at room temperature followed by electrochemical analysis. 

Therefore the possible electroactivity of urea was evaluated as a control experiment. 

For the experiments performed to denature the protein, an aliquot of protein + urea 
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was added to the 10 mM HCl resulting in 10 µM of the protein + 0.095M urea in 10 

mM HCl. There was no measurable change in the voltammetry for 0.095 M of urea 

in 10 mM HCl. Only ion transfer was observed when the urea concentration in the 

aqueous solution was higher than 0.23 M (see Figure 7.3.20).  

 

Figure 7.3.20. CV of increasing concentrations of urea in 10 mM HCl (0/ 0.095/ 0.238/ 

0.475/ 0.713/ 0.950 M). 

When lysozyme was incubated with urea prior to the voltammetric analysis, the 

electrochemical signal did not vary significantly in comparison to the native protein 

in 10 mM HCl (see Figure 7.3.21). In addition, 5 µM haemoglobin was also 

incubated with 9.5 M urea in 0.15 M KCl and 0.15 M HCl prior to the 

electrochemical analysis. The voltammetry before and after chemical denaturation 

with urea is shown in Figure 7.3.21. There is a slight decrease in the peak intensity (1 

nA) but the voltammetric shape is very similar to haemoglobin in 10 µM in its native 

form. This could be due to partial re-folding of the protein after changing aqueous 

conditions, from 9.5 M urea in the media to 0.095 M. Moreover, the different 

structural nature of the lysozyme and haemoglobin can also explain the voltammetry 

(Figure 7.3.21) for these proteins. Lysozyme is a compact globular protein and 

haemoglobin is a large metalloprotein which contains four globular subunits. 

Lysozyme possesses four disulphide bonds238 that keep the protein in its folded state 

therefore maintaining lysozyme in its native configuration. However the lack of 

disulphide bonds in haemoglobin124 makes the protein more susceptible to unfolding. 

This is believed to disturb the voltammetry of haemoglobin after it has been 
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denatured via urea-protein destabilization, which is in agreement with Herzog’s 

work.82  

Herzog et al. performed electrochemistry of haemoglobin in the presence of 

urea229 or after urea and guanidine denaturation82 at a water/1,2-dichloroethane 

interface. These studies introduced the potential of this technique for the 

investigation of protein denaturation. 

 

Figure 7.3.21. CV of a) 10 µM lysozyme in 10 mM HCl after being incubated in PBS + 

urea overnight and b) 5 µM haemoglobin after incubation in 0.15 M KCl and 0.15 M HCl 

then measured in 10 mM HCl. 

 

Further investigation of denaturation prior to enzymatic digestion could enhance 

the enzymatic efficiency and affect the voltammetry, as the unfolded state of the 

protein exposes the hydrophobic core and inaccessible parts of the protein to further 

digestion.  
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7.3.4. The use of ionophores to enhance the peptide signal 

As an attempt to enhance the electrochemical signal of the digested protein, 

dibenzo-18-crown-6 (see Figure 7.3.22) was studied because this macrocycle is able 

to complex single amino acids and peptides via their protonated states. This is via 

interaction of the crown ether through hydrogen bonding between the oxygen atoms 

in the crown and the protonated amine.34, 66 DB18C6 has also been proven to 

complex several metal ions such as K+,239 Li+ by electrostatic interactions at liquid-

liquid interfaces.240  

Consequently, the effect of the aqueous electrolyte was under examination as a 

potential interference in the detection of oligopeptides or single amino acids. 

Initially, 10 mM HCl, 10 mM LiCl and 10 mM HNO3 were evaluated at the 

water/gelled-1,6-DCH micro-interfaces when 10 mM DB18C6 was present in the 

organic phase in combination with 10 mM TPPBA TPBCl. 

  

Figure 7.3.22. Ionophore dibenzo-18-crown-6 (DB18C6) structure on the left hand side 

and primary ammonium cations interacting via hydrogen binding to DB18C6. 

Figure 7.3.23 shows the CVs obtained for the different aqueous electrolytes. The 

nitrate starts transferring at 0.4 V from the aqueous to the organic phase whilst the 

chlorine transfers at ca. 0.1 V. However, HCl and LiCl present two different features 

in their corresponding voltammograms. Both showed a peak at 0.6 V on the reverse 

scan which can be attributed to complexation of DB18C6 to either H+ or Li+ 

respectively via electrostatic interactions. In the case of HNO3, the potential window 

shortened which makes difficult the direct comparison to the HCl and LiCl 

voltammetry.  
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Figure 7.3.23. CV of 10 mM of HCl (—), LiCl (···) and HNO3 (- - -) at the W/gelled 

DB18C6-1,6-DCH microinterfaces. 

Even though the background electrolyte signal is quite significant and the 

complexation observed for DB18C6-H+ could interfere the protein detection, the 

lysozyme digest was measured via cyclic voltammetry at these new gelled 

microinterfaces. In Figure 7.3.24, the different voltammograms for several lysozyme 

digestions in 10 mM HCl are presented. These results are compared with the native 

protein (lysozyme) at the W/gelled DB18C6-1,6-DCH microinterfaces (Figure 7.3.24 

inset) and the background signal (10 mM HCl, solid black line in Figure 7.3.24 

inset). 
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Figure 7.3.24. CV of 10 mM HCl (—), 30 µM lysozyme in pepsin pH 1.3 (···), pH 2(- - -

), and trypsin (—) at the W/gelled DB18C6-1,6-DCH microinterfaces. Inset corresponds to 

CV of 10 mM HCl (solid line) and 30 µM of native lysozyme with no digestion at the same 

micro-interfaces at a scan rate of 5 mV/s. 

From an analytical point of view, the use of dibenzo-18-crown-6 enables signal 

enhancement via biomolecule complexation to DB18C6. However, there was no gain 

in resolution of the voltammetric peaks, which agrees with the low selectivity 

reported by Chen when using DB18C6 at the water/dichloroethane interface.66 They 

attributed this to steric effects from the hindrance by the side group of the amino 

acids and lipophilic stabilization in the bulk solution. 

 

The above experiments repeated in a shorter potential window to avoid the 

background signal associated with the organic phase electrolyte and ionophore, and 

also the complexation of the aqueous electrolyte by DB18C6. Figure 7.3.25 

illustrates similar data to Figure 7.3.24 but in a shorter potential range (0.05 – 0.75 

V) as reported in several publications.34, 66, 228, 241 
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Figure 7.3.25. a) CV of 10 mM of HCl (—), LiCl (···) and HNO3 (- - -) and b) CV of 10 

mM HCl (—), 30 µM lysozyme in pepsin pH 1.3 (···), pH 2(- - -), and trypsin (—). Inset CV 

of 10 mM HCl (solid line) and 30 µM of lysozyme with no digestion. 

In this situation (Figure 7.3.25), the current generated in the presence of complex 

peptide mixtures is substantially lower than that in a wider potential range (Figure 

7.3.24). For instance, for trypsinised lysozyme, the CV is indistinguishable from the 

background signal (HCl). As a result, dibenzo-18-crown-6 has been shown to 

enhance the electrochemical signal of complex peptide mixtures. However, the 

resolution was limited. 

 

7.3.5. SV of protein digest 

Pre-concentration of the protein digest followed by Stripping voltammetry (SV) 

was assessed in order to achieve lower limit of detections as performed in previous 

Chapters (3, 4, 5 and 6). Protein digestion resulted in a decrease current intensity 

when the new matrix is present in the aqueous solution compared to the signal of the 

native protein. For example, Figure 7.3.26a illustrates the differences in the cyclic 

voltammetry of bovine serum albumin and its digest product. The data reveal that 

changes in the aqueous matrix after digestion were not measurable for higher 

concentration of the initial protein (5 µM of BSA and 10 µM of BSA digest). Here 

the importance of supplementary analysis either to enhance the signal by pre-

concentration or a better understanding of the detection mechanism of these complex 

matrices. Figure 7.3.26b presents stripping voltammograms of different applied 

potentials for the native BSA. Then Figure 7.3.26c and Figure 7.3.26d consist of SV 

of 10 µM BSA after pepsinisation and trypsinisation respectively at several applied 

potentials for a pre-concentration time fixed to 60 seconds. These two last graphs 
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show the different behaviour of the digested albumin when its fragmentation occurs 

at different residues. In the case of albumin, its structure is stabilized by 17 disulfide 

bridges242 in the molecule which holds three homologous domains and can reduce 

the degree of digestion. As mention in Section 7.3.4, denaturation should be 

evaluated as a pre-treatment step before enzyme incubation and reduction of the 

disulfide bonds for a further residue exposure when the protein is in its unfolded 

conformation. 

 

Figure 7.3.26. a) CV of 5 µM BSA (—), 10 µM BSA after pepsin digest (pH 2) (···) and 

10 µM BSA after trypsin digest (- - -), b) SV of 5 µM BSA of different applied potential, c) 

SV of 10 µM BSA after pepsin digestion (pH 2) at different applied potential and d) SV of 

10 µM BSA after trypsinisation at different applied potential. All SV were implemented at 

60 s pre-concentration time and 5 mV/s scan rate. 

Similar results are presented in Figure 7.3.27 for haemoglobin which is a disulfide 

free protein. The conformation of the protein in acidic conditions seems to play a key 
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role in the detection of the molecules, as the theoretical number of charges at acidic 

pH based on the amino acid sequence should be higher for albumin than 

haemoglobin, as both are similar in size (average ~65 kDa). However, the 17 

disulfide bonds stabilize the protein in a more compact conformation than 

haemoglobin which is partially unfolded at pH 2. Figure 7.3.27b and Figure 7.3.27c-

d illustrate the loss of sensitivity when haemoglobin is fragmented by pepsin and 

trypsin.  

 

Figure 7.3.27. a) CV of 10 µM Hb (—), 10 µM Hb after pepsin digest (pH 2) (···) and 10 

µM Hb after trypsin digest (- - -), b) SV of 5 µM Hb different applied potential, c) SV of 10 

µM Hb after pepsin digestion (pH 2) at different applied potential and d) SV of 10 µM Hb 

after trypsinisation at different applied potential. All SV were implemented at 60 s pre-

concentration time and 5 mV/s scan rate. 

These preliminary results which are a continuation of the work performed in 

Chapters 3, 5 and 6 present the potential of stripping voltammetry as a possible tool 
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after electrochemical pre-concentration by tuning the applied potential and pre-

concentration time prior to further analyses. Cyclic voltammetry presented the 

limitation of sensitivity when the protein of interest is digested which could be 

overcome by the application of this technique. Herzog et al. have already reported 

the improvement in protein digest detection when implementing differential pulsed 

stripping voltammetry at liquid – liquid interfaces. The lowest concentration reported 

was 0.55 µM haemoglobin tryptic digest at micro-interfaces83 which agrees with the 

presented work here.  

 

7. 7. Conclusions 

Four proteins (lysozyme, myoglobin, albumin and haemoglobin) were proteolised 

with several enzymes prior to electrochemistry at water/gelled 1,6-dichlorohexane 

micro-interfaces. It has been observed that unique voltammetry is obtained for the 

distinctive protein fragment mixtures. The use of various enzymes such as pepsin, 

trypsin and endoproteinase Glu-C, has been also shown to increase the selectivity of 

the protein electrochemical signal as it increases the specific signatures obtained for 

a unique protein, in this case lysozyme. However, the gain in selectivity has 

compromised the sensitivity of the system, as the minimum detectable concentration 

has increased relative to the voltammetry of the native protein. For instance, the 

minimum digest detectable for lysozyme varied from 10 µM to 30 µM via CV, 1-3 

orders of magnitude higher than reported values of the native protein at the liquid – 

liquid interfaces.78 These results follow up on previous work carried out by Herzog et 

al.83 and show the potential of this approach as a label-free identification by 

electrochemical analysis. This could lead to a new methodology that could be 

nominated as ‘electroproteomics’, the combination of proteomics and 

electrochemistry. 

Mass spectroscopy data revealed the importance of proteolysis in the 

electrochemical signature. When using pepsin at low pH, the concentration of free 

amino acids and smaller oligopeptides was higher than when employing trypsin or 

endoproteinase Glu-C. Also, by GC-MS, it was proven that the hydrophobic content 

of the digest mixture enhances the electrochemical signal. Preliminary experiments 

confirmed how this is not the unique factor as isolated amino acids in the aqueous 
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solutions only provided a slight change in the forward voltammetric scan. Therefore, 

amino acid-peptide interactions should be considered. Moreover, MALDI-TOF 

confirmed the activity of pepsin which was correlated to the corresponding 

voltammetry.  

In terms of proteolysis by endoproteinase Glu-C, the unique oligopeptide in 

solution when using ammonium bicarbonate as buffer and after filtration, is KVFGRC, 

a 6 residue peptide with a charge of 2+ (lysine and arginine) under acidic conditions. 

When the different buffer conditions were compared, similar reverse peaks were 

observed in both (0.7 V). This could be explained as the same peptide (KVFGRC) is 

present in both solutions but for digestion in PBS, the forward signal increases. This 

increase could be due to larger oligopeptides (1.2 – 2.5 kDa) in solution which can 

adsorb at the interface and distort at the same time the reverse peak magnitude. 

As there are still open questions at the time of submission of this thesis, further 

studies are recommended for a better understanding of the protein digest at the 

ITIES. Firstly, address the electrochemical signal of isolated peptides from the 

digest. For instance, the three main peptides (32 – 39 , 52 – 63 and 135 – 143) obtained 

for lysozyme when trypsinised, should be characterised in the presence and absence 

of amino acids and other oligopeptides. Secondly, pre-concentration steps to enhance 

the signal should be also optimised with either several stripping techniques following 

previous work (see Chapter 3 and 6) or the use of solid phase extraction columns 

after digesting the protein prior to electrochemistry at the ITIES. As mentioned in 

this chapter, chemical and thermal denaturation and disulfide bridge (S-S) reduction 

to prevent re-folding of the peptides/proteins before protein digestion should also be 

evaluated. For this, several mutations including addition or removal of S-S bonds in a 

single protein such as lysozyme could provide significant information regarding 

parameters such as hydrophobicity, size, total charge, exposed charge, number of 

disulfide bonds and interactions (amino acid-amino acid, amino acid-peptide and 

peptide-peptide) of the digest components in solution. Moreover, enzymes of 

proteomic grade should be also investigated to determine their effect in the 

electrochemical signal as the digestion efficiency can be compromised.  

Finally, identification of proteins in a protein mixture could potentially require 

more advanced data analysis techniques than those introduced in this chapter (first 

and second derivatives), such as principal component analysis or other chemometric 

approaches.  
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8 
8. Conclusions 

This final section summaries the findings through the 

investigation shown in this thesis and points out some further 

studies that could be implemented for a better understanding 

of soft polarisable interfaces and particularly as a label-free 

biosensing platform.  
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General conclusions 

The work presented in this thesis attempts to bring proteomics and 

electrochemistry at the interface between two immiscible electrolyte solutions 

(ITIES) together. Pre-treatment steps widely used in proteomics such as pre-

concentration and proteolysis have been implemented. The first, electrochemical pre-

concentration via adsorption has been investigated at gelled liquid – liquid micro-

interfaces and water/RTIL interfaces for lysozyme detection. Haemoglobin has also 

shown to be susceptible to pre-concentration when using adsorptive stripping 

voltammetry to achieve lower limits of detection. Secondly, proteolysis prior to 

electrochemical analysis at the liquid – liquid interfaces has been shown its potential 

as the analogous process carried out in shotgun proteomic for protein identification. 

Complementary mass spectrometry analyses have been also performed at these soft 

interfaces to characterise interfacial processes and peptide composition. 

 

Adsorption of lysozyme has been investigated at micro liquid-liquid interfaces. 

Electrochemical pre-concentration followed by voltammetric detection has been 

implemented to enhance the electrochemical signal. The pre-concentration step 

corresponds to adsorption of the protein at the gelled liquid – liquid interface. This 

process occurs at highly positive potentials, just below the potential where the 

background electrolyte transfers. The influence of time in the adsorption process 

indicates that this is a slow process which could be associated to multilayer 

formation and molecular re-orientation of lysozyme within the adsorbed film. Using 

a pre-concentration (adsorption) time of 300 s at 0.95 V, a limit of detection of 30 

nM lysozyme was achieved which is more than 15-fold lower than the reported in the 

literature for lysozyme at the ITIES. Differential pulse voltammetry and square wave 

voltammetry are more sensitive techniques than in combination with adsorptive pre-

concentration may lead to achieve lower limits of detection.  

 

Moreover, hydrophobic gelled liquid – liquid interfaces were characterised for the 

first time by electrostatic spray – mass spectrometry (ESTASI-MS) after 

electrochemical pre-concentration of lysozyme. Interfacial complexes such as 

[Lysozyme-2TPBCl+12H]+10 have been observed between lysozyme and one or two 

anions from the organic electrolyte (tetrakis(4-chlorophenyl)borate -TPBCl--) at the 
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gelled liquid-liquid interfaces. These data confirms the proposed mechanism for the 

detection of lysozyme at the ITIES. In addition, ESTASI-MS spectra support the 

behaviour observed when electrochemical adsorptive accumulation of lysozyme was 

followed by stripping voltammetry. The limit of detection reported when 

implementing ESTASI-MS on polyacrylamide corresponds to approximately 1.6 

pmol and the estimated amount of protein adsorbed on the organogel for a single 

monolayer of lysozyme is ca. 3-folds lower. This data confirms the formation of 

several layers of protein at the hydrophobic gel after electrochemical adsorption. 

Integration of ITIES and ESTASI-MS may improve the resolution and the limit of 

detection for the elucidation of interfacial reactions.  

 

Lysozyme, has been also investigated at water / room temperature ionic liquid 

(RTIL) micro-interfaces. This is the first time a macrobiomolecule has been reported 

electroactive at these interfaces. While cyclic voltammetry is unable to detect the 

presence of lysozyme, AdSV enables the detection of this protein in a short potential 

window (ca. 400 mV) with a limit of detection of 2.5 µM when adsorbing lysozyme 

at the W/RTIL for 60 s. This process is also attributed to protein adsorption at the 

interface, in conjunction with facilitated transfer of [FAP]- anions across the interface 

to form a complex with positively charged lysozyme. These data reveal the similar 

behaviour seen at liquid – liquid and gelled liquid – liquid interfaces to the presented 

in this thesis. Simultaneously, interactions between the anion of the RTIL 

(tris(pentafluorethyl)trifluorphosphate [FAP]-) and hydronium molecules have been 

observed at the W/RTIL microinterfaces when applying an electrochemical potential 

difference. Electrochemical characterisation studies such as impedance spectroscopy 

and several voltammetric techniques suggest that H3O
+ transfers across the 

W/[P14,6,6,6][FAP] forming a neutral capacitive thin film layer. In addition, biphasic 

electrospray ionisation – mass spectrometry data suggest the neutralisation of [FAP]- 

ions in the presence of H3O
+ in a biphasic environment as the mass-to-charge ration 

decreases in more than 99% when [P14,6,6,6][FAP] is sprayed with hydrochloric acid 

or acetic acid. However, both processes take place at the W/RTIL micro-interfaces 

and hydronium-[FAP] interactions are compatible in the detection of lysozyme. The 

use of more hydrophobic RTILs may provide a better platform for protein detection 

if the energy of adsorption can be lower down or the potential window increased.  
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Additionally, haemoglobin was studied in order to evaluate the analytical utility of 

AdSV for label-free protein detection. A detection limit of 48 nM was estimated 

following 60 s adsorption at 0.975V at the gelled liquid - liquid micro-interfaces. The 

improvement in detection limit is two orders of magnitude better than has been 

achieved by cyclic voltammetry at millimetre size interfaces. The enhancement of 

the signal for similar conditions than the implemented for lysozyme can be explained 

taking into account the degree of protonation of the proteins. A higher degree of 

charge of the biomacromolecule (+17 in the case of lysozyme, +62 for haemoglobin) 

enables a higher interaction with the anions from the organic phase, increasing the 

sensitivity of the system. The results show the capability of this label-free 

methodology which present some degree of selectivity as it is based on the Gibbs 

energy of transfer of different molecules although the influence of interferences must 

be addressed.  

 

Finally, four proteins (lysozyme, myoglobin, albumin and haemoglobin) were 

proteolised prior to electrochemical analysis at the gelled liquid – liquid micro-

interfaces with several enzymes. The results have evidenced the unique signature 

obtained for the distinctive protein fragments under the same conditions. Enzymes 

such as pepsin, trypsin and endoproteinase Glu-C have shown to produce specific 

fragments for a unique protein (lysozyme) which may be used as a label-free cheap 

fingerprint technology which that could be denominated ‘electroproteomics’ as a 

combination between proteomics and electrochemistry. However, the main 

disadvantage is the fact that detection limit is significantly higher than the 

electrochemical signal obtained when analysing the native protein. Furthermore, 

mass spectroscopy data confirmed the electrochemical data were in agreement with 

the degree of digestion by pepsin when changing the pH. When the concentration of 

small oligopeptides and free amino acids was higher, the exposed hydrophobic 

content enhances the electrochemical signal. Experimental data confirmed how this 

is not the unique factor as isolated amino acids in the aqueous solutions only 

provided a slight change in the forward scan. Therefore, amino acid-peptide and 

peptide-peptide interactions should be considered.  
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Future perspective 

Future work to enhance the electrochemical signal therefore achieving more 

competitive limits of detection for label-free protein detection includes more 

sensitive techniques such as differential pulse voltammetry and square wave 

voltammetry. This, in combination with adsorptive pre-concentration steps may lead 

to sub-nanomolar concentration which is within the levels of biomarker present in 

the blood stream for early disease diagnosis. The use of more hydrophobic room 

temperature ionic liquids could also improve its analytical utility for protein 

detection although the gelled liquid possesses a larger potential window which 

translated into more sensitive measurements. 

Moreover, the integration of electrochemistry at the polarisable soft interfaces and 

mass spectrometry via electrospray ionisation may improve elucidation of interfacial 

processes which are vital in cell membrane understanding which have relevant 

implications in biological processes and pharmaceutical industry (drug delivery). 

This technique could provide further information to optimise the counterion that 

complexes with the charge protein which might result in a more selective analysis of 

biomolecules by tuning the organic phase components. In addition, a four-electrode 

set-up for the characterisation of millimetre-size gelled liquid-liquid interfaces might 

improve the ESTASI-MS spectra resolution after pre-concentrating the protein at 

these liquid-liquid interfaces. Combination of both techniques might also increase the 

detection limits and resolution as the interfacial complexes would be characterised 

via MS straight after the electrochemical pre-concentration with no time to undergo 

through disassociation when there is no electric field applied. 

Regarding the work performed when mimicking the shotgun proteomics 

methodology, the isolated peptides must be fully characterised for a better 

understanding of the electrochemical signal produced as the work presented here 

(Chapter 7) requires further analysis which has not been possible to address before 

the submission of this thesis. The use of enzymes of proteomic grade is one of the 

recommendations to improve the digestion efficiency. Moreover the use of different 

filter sizes after digestion to collect different fractions of the digest fragments and 

evaluate their influence in the voltammetric response. Pre-treatment steps such as 

pre-concentration via solid phase extraction and electrochemical pre-concentration 

should be optimised to improve the sensitivity of this approach. Protein denaturation 
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prior digestion should be also evaluated as this process could provide a more 

efficient proteolysis step which will result in lower detectable concentrations. 

Finally, parameters such as hydrophobicity, size, total charge, exposed charge, 

number of disulfide bonds and interactions should be studied using a unique protein 

with modifications in its amino acid sequence. 
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APPENDIX A 

BTPPA·TPBCl metathesis  

Metathesis of bis(triphenylphosphoranylidene)ammonium chloride (BTPPA+Cl-) 

and potassium tetrakis(4-chlorophenyl)borate (K+TPBCl-) to form 

bis(triphenylphosphoranylidene)ammonium tetrakis(4-chlorophenyl)borate 

BTPPA·TPBCl was performed as follows: 

 

- BTPPA+ Cl- (1.157 g) was dissolved in 10 mL of H2O/MeOH (1:2 v/v) 

solution and added drop-wise to a 20mL solution of K+ TPBCl- (1 g) in 

H2O/MeOH solution (1:2 v/v). 

- The product formed BTPPA·TPBCl (see Figure appendix A) is filtered under 

vacume using a Buchner funnel and covered with parafilm with holes pierced 

in it. This process takes approximately 2 hours. Then the product is placed in a 

dessicator over night. 

 

Figure appendix A. Chemical equation of the metathesis reaction between BTPPA+Cl- 

and K+TPBCl- which occurs at a 1 to 1 molar ratio. 

 

- BTPPA·TPBCl is re-crystallised by its dissolution in acetone. The acetone solution is 

filtered under gravity. 

- The beaker containing the product is covered with parafilm, holes are pierced in the 

parafilm and the beaker placed in a fume-hood to allow the acetone to evaporate (~ 1 

day). 

- The resulting precipitate is washed in H20/Acetone solution (1:1 v/v) and allowed to 

dry overnight in a desicator. 

 

The final product (BTPPA·TPBCl) must be stored in a refrigerator and covered 

with aluminium foil as the product is photo- and thermo-sensitive.  
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Gelled organic phase 

To improve mechanical stability, the organic solution is gelled by adding low 

molecular weight polyvinyl chloride in 10% w/v. 

Firstly, 10mM BTPPA·TPBCl (0.025 g) solution is prepared in 2.5 ml of 1,6-

dichlorohexane. The solution is stirred at 50-70°C until the organic electrolyte is 

completely dissolved. Then polyvinyl chloride (0.25 g) is added in stoges to form the 

gel (10% w/v). The temperature is increased to 100°C over 30min until solution is 

clean. This procedure requires the sealing of the container with parafilm to avoid 

solvent evaporation. Then added while is hot into the glass cylinder which has been 

modified previously by sealing the pores membrane onto one of the hollow sides. 

One hour of cooling is required before performing any electrochemical 

measurements. 
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APPENDIX B 

Infrared (iR)  

Figure appendix B shows the infrared spectra of [P14,6,6,6][FAP] and the same 

ionic liquid after its saturation with water and 1 M HCl. 

Some of the more characteristic absorption bands for this ionic liquid are 

illustrated here: C-H stretch are in 3000 – 2850 cm-1 range, C-F in 1000 – 1360 cm-1, 

C-P within 1400 – 900 cm-1 and P-F around 900 cm-1 (See Figure appendix B). The 

infrared spectra do not present any difference when the ionic liquid is saturated with 

water or hydrochloric acid. This means that under these conditions there is no change 

in the chemical structure of the RTIL. 

 

Figure appendix B1. iR of [P14,6,6,6][FAP] before (···), after saturation of the ionic liquid 

with water (- -) and 1 M HCl (—). The spectra are difficult to distinguish as they three 

overlap.  
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Nuclear magnetic resonance (NMR) 

1H, 19F and 31P NMR spectra were measured on a Bruker Avance III 400 MHz 

spectrometer (400.13 MHz for 1H and 376.46 for 19F) and CDCl3 was used as 

internal reference for 19F NMR and the proton spectra correspondingly. The room 

temperature ionic liquid (trihexyl(tetradecyl)phosphonium 

tris(pentafluorethyl)trifluorphosphate, [P14,6,6,6][FAP]) was analysed before and after 

being saturated with H2O or HCl in order to analyse the proton - [(C2F5)3PF3]
- 

interactions. In the case of proton and phosphorous NMR, the net sample was 

measured although in the case of fluorine NMR the RTIL was dissolved with CDCl3 

due to its high viscosity. Once the ionic liquid was dissolved (10% v/v), the ionic 

liquid was saturated with H2O or HCl. 

The NMR details are summarised below: 

 
1H NMR  

1H NMR spectrum, d, ppm: 0.860 – 0.912 m (4CH3), 1.257 – 1.304 (16CH2), 

broad peak 1.459 m (8CH2), 1.953 – 1.993 m (4CH2). 

 
31P NMR 

31P NMR, d, ppm: 31.6 m (1P); 149.0 d, t, m (1P). 

 
19F NMR  

19F NMR spectrum, d, ppm: 43.5 d, m (PF); 80.1 m (CF3); 81.7 m (2CF3); 86.7 

d, m (PF2); 115.3 d, m (1CF2); 115.8 d, m (2CF2); 1JP,F = 892 Hz; 1JP,F = 1208 

Hz; 2JP,F = 83 Hz; 2JP,F = 98 Hz. 

 

The data presented are in agreement with Ignat’ev’s NMR spectra corresponding 

to the same ionic liquid, trihexyl(tetradecyl)phosphonium 

tris(pentafluorethyl)trifluorphosphate.177 
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APPENDIX C 

Tables of cleavage sites and peptide sequences after 

digestion 

Lysozyme 

Table appendix C1. Lysozyme fragments using pepsin (pH 1.3). 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

2 KV 2 245.3 

8 FGRCEL 6 723.8 

19 AAAMKRHGLDN 11 1183.4 

20 Y 1 181.2 

22 RG 2 231.3 

24 YS 2 268.3 

25 L 1 131.2 

27 GN 2 189.2 

28 W 1 204.2 

33 VCAAK 5 490.6 

34 F 1 165.2 

37 ESN 3 348.3 

38 F 1 165.2 

52 NTQATNRNTDGSTD 14 1494.5 

53 Y 1 181.2 

55 GI 2 188.2 

56 L 1 131.2 

62 QINSRW 6 802.9 

74 WCNDGRTPGSRN 12 1362.4 

82 LCNIPCSA 8 820. 

83 L 1 131.2 

84 L 1 131.2 

107 SSDITASVNCAKKIVSDGNGMNA 23 2282.5 

108 W 1 204.2 

110 VA 2 188.2 

111 W 1 204.2 

122 RNRCKGTDVQA 11 1247.4 

123 W 1 204.2 

129 IRGCRL 6 716.9 
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Table appendix C2. Lysozyme peptides after pepsinisation at pH 2. 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

2 KV 2 245.3 

8 FGRCEL 6 723.8 

24 AAAMKRHGLDNYRGYS 16 1810.0 

25 L 1 131.2 

33 GNWVCAAK 8 848.0 

34 F 1 165.2 

37 ESN 3 348.3 

38 F 1 165.2 

55 NTQATNRNTDGSTDYGI 17 1827.8 

56 L 1 131.2 

74 QINSRWWCNDGRTPGSRN 18 2147.3 

82 LCNIPCSA 8 820.0 

83 L 1 131.2 

84 L 1 131.2 

129 
SSDITASVNCAKKIVSDGNGMNA
WVAWRNRCKGTDVQAWIRGCR
L 

45 4939.6 

 

Table appendix C3. Lysozyme fragments when trypsinised. 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

1 K 1 146.2 

5 VFGR 4 477.6 

13 CELAAAMK 8 836.0 

14 R 1 174.2 

21 HGLDNYR 7 873.9 

33 GYSLGNWVCAAK 12 1268.5 

45 FESNFNTQATNR 12 1428.5 

61 NTDGSTDYGILQINSR 16 1753.8 

68 WWCNDGR 7 936.0 

73 TPGSR 5 516.6 

96 NLCNIPCSALLSSDITASVNCAK 23 2337.7 

97 K 1 146.2 

112 IVSDGNGMNAWVAWR 15 1675.9 

114 NR 2 288.3 

116 CK 2 249.3 

125 GTDVQAWIR 9 1045.2 

128 GCR 3 334.4 

129 L 1 131.2 
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Table appendix C1. Lysozyme fragments in pepsin pH 2 and tryptic digestion. 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

1 K 1 146.2 

2 V 1 117.1 

5 FGR 3 378.4 

8 CEL 3 363.4 

13 AAAMK 5 490.6 

14 R 1 174.2 

21 HGLDNYR 7 873.9 

22 G 1 75.1 

23 Y 1 181.2 

31 SLGNWVCA 8 849 

32 A 1 89.1 

33 K 1 146.2 

35 FE 2 294.3 

36 S 1 105.1 

45 NFNTQATNR 9 1065.1 

53 NTDGSTDY 8 871.8 

54 G 1 75.1 

61 ILQINSR 7 843 

68 WWCNDGR 7 936 

72 TPGS 4 360.4 

73 R 1 174.2 

80 NLCNIPC 7 775.9 

81 S 1 105.1 

96 ALLSSDITASVNCAK 15 1492.7 

97 K 1 146.2 

112 IVSDGNGMNAWVAWR 15 1675.9 

114 NR 2 288.3 

116 CK 2 249.3 

125 GTDVQAWIR 9 1045.2 

128 GCR 3 334.4 

129 L 1 131.2 
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Table appendix C5. Lysozyme peptides when endoproteinase Glu-C in PBS. 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

6 KVFGRCE 6 708.9 

17 LAAAMKRHGLD 11 1196.4 

34 NYRGYSLGNWVCAAKFE 17 1964.2 

47 SNFNTQATNRNTD 13 1496.5 

51 GSTD 4 378.3 

65 YGILQINSRWWCND 14 1768 

86 GRTPGSRNLCNIPCSALLSSD 21 2161.4 

118 
ITASVNCAKKIVSDGNGMNAWV
AWRNRCKGTD 

24 2464.8 

129 VQAWIRGCRL 11 1316.6 

 

Table appendix C6. Lysozyme digest using endoproteinase Glu-C in NH4
+. 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

6 KVFGRCE 6 708.9 

17 
LAAAMKRHGLDNYRGYSLGNW
VCAAKFE 

28 3142.6 

129 

SNFNTQATNRNTDGSTDYGILQI
NSRWWCNDGRTPGSRNLCNIPCS
ALLSSDITASVNCAKKIVSDGNG
MNAWVAWRNRCKGTDVQAWIR
GCRL 

95 10497.7 
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Myoglobin 

Table appendix C7. Myoglobin fragments using pepsin (pH 1.3). 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

1 G 1 75.1 
2 L 1 131.2 
6 SDGE 4 406.3 
7 W 1 204.2 
10 QQV 3 373.4 
11 L 1 131.2 
13 NV 2 231.3 
14 W 1 204.2 
28 GKVEADIAGHGQEV 14 1409.5 
29 L 1 131.2 
32 IRL 3 400.5 
39 FTGHPET 7 787.8 
40 L 1 131.2 
42 EK 2 275.3 
43 F 1 165.2 
45 DK 2 261.3 
46 F 1 165.2 
47 K 1 146.2 
48 H 1 155.2 
60 LKTEAEMKASED 12 1351.5 
61 L 1 131.2 
68 KKHGTVV 7 767.9 
69 L 1 131.2 
71 TA 2 190.2 
72 L 1 131.2 
75 GGI 3 245.3 
76 L 1 131.2 
85 KKK GHHEAE 9 1063.2 
88 LKP 3 356.5 
102 LAQSHATKHKIPIK 14 1571.9 
103 Y 1 181.2 
105 LE 2 260.3 
106 F 1 165.2 
114 ISDAIIHV 8 867 
122 LHSKHPGD 8 890 
123 F 1 165.2 
134 GADAQGAMTKA 11 1020.1 
136 LE 2 260.3 
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137 L 1 131.2 
138 F 1 165.2 
145 RNDIAAK 7 786.9 
146 Y 1 181.2 
148 KE 2 275.3 
150 LG 2 188.2 
151 F 1 165.2 
153 QG 2 203.2 

 

Table appendix C8. Myoglobin peptides obtained after pepsinisation (pH 2). 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

1 G 1 75.1 

2 L 1 131.2 

10 SDGEWQQV 8 948.0 

11 L 1 131.2 

28 NVWGKVEADIAGHGQEV 17 1809.0 

29 L 1 131.2 

32 IRL 3 400.5 

39 FTGHPET 7 787.8 

40 L 1 131.2 

42 EK 2 275.3 

43 F 1 165.2 

45 DK 2 261.3 

46 F 1 165.2 

48 KH 2 283.3 

60 LKTEAEMKASED 12 1351.5 

61 L 1 131.2 

68 KKHGTVV 7 767.9 

69 L 1 131.2 

71 TA 2 190.2 

72 L 1 131.2 

75 GGI 3 245.3 

76 L 1 131.2 

85 KKKGHHEAE 9 1063.2 

88 LKP 3 356.5 

103 LAQSHATKHKIPIKY 15 1735.1 

105 LE 2 260.2 

106 F 1 165.2 

114 ISDAIIHV 8 867.0 

122 LHSKHPGD 8 890.0 

123 F 1 165.2 
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134 GADAQGAMTKA 11 1020.1 

136 LE 2 260.3 

137 L 1 131.2 

138 F 1 165.2 

148 RNDIAAKYKE 10 1207.4 

150 LG 2 188.2 

151 F 1 165.2 

153 QG 2 203.2 

 

 

   

Table appendix C9. Myoglobin digest after trypsinisation. 

Position of 
cleavage site 

Peptide sequence 
Peptide length 

(number of 
amino acids) 

Molecular weight 
/ g mol-1 

16 GLSDGEWQQVLNVWGK 16 1816.0 

31 VEADIAGHGQEVLIR 15 1606.8 

42 LFTGHPETLEK 11 1271.4 

45 FDK 3 408.5 

47 FK 2 293.4 

50 HLK 3 396.5 

56 TEAEMK 6 707.8 

62 ASEDLK 6 661.7 

63 K 1 146.2 

77 HGTVVLTALGGILK 14 1378.7 

78 K 1 146.2 

79 K 1 146.2 

96 GHHEAELKPLAQSHATK 17 1854.1 

98 HK 2 283.3 

102 IPIK 4 469.6 

118 YLEFISDAIIHVLHSK 16 1885.2 

133 HPGDFGADAQGAMTK 15 1502.6 

139 ALELFR 6 747.9 

145 NDIAAK 6 630.7 

147 YK 2 309.4 

153 ELGFQG 6 649.7 
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APPENDIX D 
 

Hydrophilicity scales 

Table appendix D1. Amino acid hydrophilicity in the Hopp-Woods and Kyte-

Doolittle scales. 

Amino acid 
Amino acid 

abbreviation 

Amino acid 

letter 

Hopp-Woods 

scale233 
Kyte-Doolittle scale234 

Alanine Ala A -0.5 1.8 

Arginine Arg R 3.0 -4.5 

Asparagine Asn N 0.2 -3.5 

Aspartic acid Asp D 3.0 -3.5 

Cysteine Cys C -1.0 2.5 

Glutamic acid Glu E 0.2 -3.5 

Glutamine Gln Q 3.0 -3.5 

Glycine Gly G 0.0 -0.4 

Histidine His H -0.5 -3.2 

Isoleucine Ile I -1.8 4.5 

Leucine Leu L -1.8 3.8 

Lysine Lys K 3.0 -3.9 

Methionine Met M -1.3 1.9 

Phenylalanine Phe F -2.5 2.8 

Proline Pro P 0.0 -1.6 

Serine Ser S 0.3 -0.8 

Threonine Thr T -0.4 -0.7 

Tryptophan Trp W -3.4 -0.9 

Tyrosine Tyr Y -2.3 -1.3 

Valine Val V -1.5 4.2 
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APPENDIX E 
 

Free amino acid content (GC-MS data) 

Table appendix E1. Free amino acid amount in 100 µL of sample (1 mM lysozyme 

digested in 40 µM enzyme) treated with the EZ:faast GC kit and measured via GC-

MS after derivatisation. 

Amino acid 

Amino acid concentration / nmol 

Pep pH 
1.3 

Pep pH 2 Pep pH 3 Tryp 
Pep pH 

1.3 - Tryp 
Pep pH 2 

- Tryp 
Endo 
PBS 

Endo 
NH4

+ 

Alanine 87.52 39.03 3.38 0.7 9.33 7.14 2.29 2.25 

Sarcosine 0.93 0.73 0.76 0.92 0.92 0.75 1.19 1.03 

Glycine 7.54 5.13 2.01 1.34 2.6 5.52 2.6 3.33 

Valine 2.88 3.54 4.41 0 0.64 0.81 0.63 0.38 

Leucine 605.83 283.97 23.73 3.03 64.61 50.1 4.37 2.93 

Isoleucine 0 0 0.6 0 0 0 0.49 0 

Threonine 1.14 1.54 0.98 0 0 0 0.67 0.39 

Serine 2.02 2.46 0 0 0 1.11 1.36 1.17 

Proline 0.57 0.57 0 0.14 0.18 0.16 0.4 0.82 

Asparagine 22.44 8.9 0.54 0 2.94 1.23 2.87 7.29 

Aspartic acid 7.45 4.07 0.52 0.3 1.42 0.68 5.78 8.14 

Methionine 6.76 6.23 1.96 0 0 0.74 0 0 

Glutamic acid 3 2.98 0 0 0.45 0.37 1.53 1.73 

Phenylalanine 56.27 31.99 8 0.51 7.74 4.96 0.56 0.12 

Glutamine 20.05 13.39 8.16 11.34 11.77 10.75 12 17.04 

Ornithine 1.33 1.23 0.94 0 0 0 0.57 0 

Lysine 1.59 1.29 1.04 2.04 1.22 3.02 1.09 0.79 

Histidine 0 0 0 0 0 0 0 0 

Tyrosine 49.35 25.36 8.23 0.44 4.44 4.95 0.56 0 

Tryptophan 432.46 216.24 18.69 0.22 81.86 43.67 0.17 0.37 

*Ornithine is the degradation product of arginine 

**Sarcosine is the degradation product of glycine. 
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Table appendix E2. Free amino acid amount in 100 µL of sample (1 mM 

myoglobin digested in 40 µM enzyme) treated with the EZ:faast GC kit and 

measured via GC-MS after derivatisation. 

Amino Acid 

Amino acid concentration / nmol 

Pepsin 

pH 2 

Pepsin 

pH 3 
Trypsin 

Pepsin pH 1.3 - 
Trypsin 

Pepsin pH 2 - 
Trypsin 

Alanine 9.18 3.09 5.99 23.68 14.86 

Sarcosine 1.25 0.94 1.12 1.2 1.49 

Glycine 4.74 2.15 24.47 3.71 3.93 

Valine 3.8 15.64 3.72 2.12 0.83 

Leucine 49.41 2.65 68.68 17.38 21.71 

Isoleucine 2.55 1.25 0 0.66 0 

Threonine 1.94 0.98 5.03 2.32 8.82 

Serine 1.5 0.78 1.96 0 0 

Proline 0.44 0 0 1.37 0 

Asparagine 0 0 2.88 0 0 

Aspartic acid 2.19 0.46 4.33 3.87 0.75 

Methionine 5.02 0 3.21 6.64 1.3 

4-Hydroxyproline 0 1.27 0 0 0 

Glutamic acid 9.12 4.95 15.36 10.82 3.97 

Phenylalanine 43.45 0 50.8 23.95 14.12 

Glutamine 33.26 69.07 39.63 36.92 17.48 

Ornithine 2 1.27 0 0 0 

Lysine 7.61 2.43 780.77 19.02 82.83 

Histidine 0 0 40.61 0 0 

Tyrosine 12.95 0 157.23 6.58 20.94 

Tryptophan 3.23 0.1 2.8 10.41 1.07 

*Ornithine is the degradation product of arginine 

**Sarcosine is the degradation product of glycine. 
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APPENDIX F 
 

Second derivative graphs 

 

Figure appendix F1. Second derivative of forward current versus potential of a) 

lysozyme, b) myoglobin, c) BSA and d) haemoglobin after pepsinisation at pH 2. 

Concentrations correspond to 30µM of initial protein. 
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Figure appendix F2. Second derivative of forward current versus potential of a) 

lysozyme, b) myoglobin, c) BSA and d) haemoglobin after tryptic digestion. Concentrations 

correspond to 30µM of initial protein. 
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APPENDIX G 

Journal Publications 

1. Stripping voltammetric detection of insulin at liquid-liquid microinterfaces in 

the presence of bovine albumin 

S. O'Sullivan, E. Alvarez de Eulate, Y. H. Yuen, E. Helmerhorst, D. W. M. Arrigan 

Analyst (2013), 138, 6192-6196 

 

2. Ion transfer electrochemistry of rat amylin at the water-organogel 

microinterface array and its selective detection in a protein mixture  

E. Alvarez de Eulate, S. O’Sullivan, S. Fletcher, P. Newsholme, D. W. M. Arrigan 

Chemistry an Asian Journal (2013), 8 (9), 2096-2101 

*Back cover (Chemistry an Asian Journal, page, (2013)) 

 

3. Detection of haemoglobin using an adsorption approach at a liquid–liquid 

microinterface array 

E. Alvarez de Eulate, L. Serls, D. W. M. Arrigan 

Analytical & Bioanalytical Chemistry (2012), 405 (11), 3801-3806 

 

4. Behaviour of Lysozyme at the Electrified Water / Room Temperature Ionic 

Liquid Interface 

E. Alvarez de Eulate, D. S. Silvester, D. W. M. Arrigan 
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Analytical Chemistry (2012), 84 (5), 2505–2511 

*Kali-Alexander HDR Publication Prize (2012) 
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*Oral Presentation Awards, Honourable mention  

  



271 

Poster presentations 

1. Protein detection and identification via electrochemistry at liquid – liquid 

interfaces  

E. Alvarez de Eulate, D. W. M. Arrigan 

Biological Surfaces and Interfaces, FEBS workshop 

Sant Feliu de Guixols (Spain) July 2013 

 

2. Proton and protein voltammetry at a water/ionic liquid microinterface array  

E. Alvarez de Eulate, D. S. Silvester D. W. M. Arrigan 

5th Australian Symposium on Ionic Liquids (ASIL-5) 

Melbourne (Australia) May 2012 

 

3. Proton and protein voltammetry at a water/ionic liquid microinterface array  

E. Alvarez de Eulate, D. S. Silvester D. W. M. Arrigan 

10th Spring meeting of International Society of Electrochemistry (ISE)  

Perth (Australia) April 2012 

 


