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Abstract

Trip distribution is the second step of the transport modelling process. Errorsin trip
distribution will propagate through the other stages of transport modelling and will
leads to inaccurate projected traffic volumes. Finding a robust and efficient method of
estimating trip distribution has therefore always been an objective for transport
modellers. The problem of trip distribution is nonlinear and complex. Neural networks
(NN) have been used effectively for solving nonlinear problems and have been used in
different disciplines including traffic engineering. Accordingly, in this research a new
NN model has been researched to estimate the distribution of journey to work trips. This
research is unique in three aspects. (1) the training of the model was based on a
generalized regression neural network (GRNN) agorithm while the maority of
previous studies have used a back-propagation (BP) algorithm. The advantage of the
GRNN model over other feed-forward or feedback neural network techniques is its
simplicity and practicality. (2) The input data for the GRNN model was based on the
land use data for each zone and the corresponding distance between a pair of zones,
while previous NN models have used trip productions, trip attractions and the distance
between a pair of zones as input. (3) The proposed GRNN model will establish aframe
work for combined trip generation and distribution modelling. As a case study, the
model was applied to the journey to work trips in the City of Mandurah in Western
Australia. The results of the GRNN model were compared with the well-known doubly-
constrained gravity model and the BP model. The modelling analysis indicated that a
validated GRNN model could provide slightly better results than both the gravity and
BP models, with a higher correlation coefficient and lower root mean square error
(RMSE), and could be improved if the size of the training data set is increased.

Accordingly, the recommended GRNN model has been presented in the Australasian
Transport Research Forum (ATRF) in 2013 and published in the Road and Transport
Research Journal in 2014. Copies of the papers are also provided in Appendix A of this

thesis.
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1.RESEARCH PROJECT
INTRODUCTION

1.1 Introduction

This research has led to the development of a generalized regression neural network
(GRNN) model as a recommended approach to estimating trip distribution, and the
performance of this model has been compared with multi-layer feed forward back-
propagation (hereafter referred to as BP model) and gravity models. The recommended

approach is unique in three aspects:

e Theinput data for the GRNN model is based on land use data for each zone and
the corresponding distance between the two zones, while previous neural models
have used trip productions, trip attractions and the distance between a pair of
zones as input to the neural models.

e Thetraining of the neural model is based on a GRNN agorithm while previous
studies have used a BP agorithm.

e The proposed model is providing a combined trip generation and distribution

modelling frame work using neural networks.

As a case study, the new approach was applied to the journey to work (JTW) trips for
the Mandurah area in Western Australia. Accordingly, three different models were
developed: the GRNN, BP and gravity models. The recommended GRNN model was
compared with gravity model method and previously established neural models based
on a BP algorithm. The root mean square error (RMSE), mean absolute error (MAE),
and coefficient of determination (R?) between the modelled output and the target data
for training and the testing data set were used for the comparison of the models and
advantage of the GRNN model over the previous models were demonstrated.
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1.2 Research Background

1.2.1 Travel Demand Modelling

There are different approaches for travel demand modelling. The purpose of all of
the travel demand approaches is to estimate the existing or future trips within the study
area and project the traffic volumes on the existing or future road network. Four step
modelling is the most common approach for travel demand modelling and is referred to
as traditional or classica model. The traditional four step model consists of the
following steps:

Trip Generation: The first model stage is to produce travel demand (trips) at zona
level, based on household characteristics or demographic data. The number of trips
attracted to a zone is related to the number and size of the modeled activities available
in each zone. These relationships apply to separate journey purposes.

Trip Distribution: The trip distribution stage distributes the trip productions
amongst attraction zones according to the appropriate costs of travel and the model
sensitivity parameters. Thus, the model creates trip matrices of travel by mode, demand
and journey purpose for 24-hour trips.

Mode Choice: The mode choice model calculates the split between different modes
of transport in the model (car, taxi and public transport).

Trip Assignment: The trip assignment will assign the trip matrices which are
estimated during the trip distribution step for different modes of travel which was
calculated at the mode choice step.

Traditiona four step models have been used for many years since their development
in 1950s in many countries, as they provide reliable and relatively simple method to
estimate the future demand and traffic flows. However four step models have been
criticised by many transport modellers. The maor critics are related to its fixed
sequential order and its aggregated level (Bates 2000). The traditiona four step model,

estimates each step independently and, therefore, some inconsistencies is likely to

Relative simplicity of traditional models does not actually reflect the complexity of

travel behaviour. Four step models are not “behavioural in nature” (Manoj et a., 2012).

2
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They rely on statistical relationships between demographics and traffic flows. Usually
those relationships are averaged over long time periods, or wide areas. Therefore four-
step models would not be able to clearly model small scale changes, dynamic nature,
and changes in travel behaviour that represent complex trade-offs of cost, convenience
and time-savings under different constraints. The issues related to lack of flexibility and
not being policy sensitive (McNally, 2000b, Ortuzar and Willumsen, 1994) resulted in
emerging new generation of demand modelling called “Activity Demand Modelling”
which was introduced in the late 1970s (McNally, 2000a, McNally, 2000b).

The activity-based model is a derivative of a traditional four stage transport model,
which includes trip generation, destination choice, main mode choice (i.e. choice
between car, taxi and public transport), alocation to time periods, and vehicles and
public transport assignment models. The activity- based approach represents trip chains
as travellers move from one activity to another, throughout a 24-hour period. For
example, a member of a household may leave home and travel to work, then later pass
from work to go shopping, finally returning from the shopping trip to home. These
journeys represent three trips, with the destination of each leg or link in the activity
chain being the origin of the next leg (Rasouli, 2013a).

1.2.2 Trip Distribution

Trip distribution is the second important stage in four-step travel demand forecasting.
The purpose of trip distribution forecasting is to estimate trip linkages or interactions
between traffic zones for trip-makers. The distribution of trips between traffic zones can
be demonstrated by an OD matrix or Origin and Destination matrix (Taylor et al.,
2000), as illustrated in Figure 1-1. The rows of the OD matrix represent the attraction
zones (Destination, D) and the columns represent the zones of generation (origin, O).
The number of trips indicated at the intersection of any zone of origin and attraction,
e.g. Tj, represents the number of trips originating in zone i and terminating in zone j.
The total of any individual row, i, represents the total number of trips generated in a
zone, i.e. P.. Similarly the total of any individual column, i, represents the number of

tripsterminating in azonei, i.e. A;.
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Total Productions

j P=2Tj

O
Total Attractions : E|: Y

Figure 1-1: OD Matrix

There are two types of customary method for solving the problem of trip distribution:
growth factor methods and synthetic methods. The Fratar method is the most well-
known of the growth factor methods and the gravity model is a common synthetic
approach.

The Fratar Model is reported as the first aggregate model, which was used about
seven decades ago (Levinson and Kumar, 1994). Fratar model assumes that the future
number of trips between a pair of zones can be estimated by proportioning the relative
increases (growth) in trip ends in those zones. This proportioning process is iterative in
nature. That means the first proportion is worked out based on initia conditions, then
new trip end totals are computed and a new proportion established, and so on until

stable numbers are obtai ned.

The Gravity Modd is the most well-known synthetic model and is based on
Newton’s concept of gravity (Easa, 1993, Ortuzar and Willumsen, 1994). The gravity
model assumes that the trip distribution between zones in an area is dependent upon the
relative attraction between the zones and the spatial separation between them as
measured by an appropriate function of distance. This function of spatial separation
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adjusts the relative attraction of each pair of zones and can be in the form of distance or

time or a combination of different separation factors.

Neural network (NN) models were introduced as aternative methods for traditional
modelling approaches, and have been increasing in use since the 1990s (Tillema
et.a, 2006). Accordingly, the use of NN models for the prediction of trip distribution
has been researched. Previous studies show that the NN approach is able to model
commodity, migration and work trip flows. However, it does not perform as accurate as
the well-known gravity model (Mozolin et a., 2000). According to a review of the
literature, the majority of previous NN studies have utilized the back-propagation (BP)
algorithm to solve the trip distribution problem. Most recent studies have tried to fix the
performance of the BP neura network by training the models with different training
algorithms such as the Levenberg-Marquardt (LM) or different activation functions
(Yadi et al., 2011).

1.3 Shortcomings of the Previous Models

The growth factor methods (Fratar model) are relatively simpler to use and
understand. They are mostly used for small areas and for updating stable and uniform
data. The following are some of the disadvantages of the growth factor methods:

1. Exidting trip distribution matrix has to be prepared first, for large scae OD
studies high sampling sizes are needed so as to estimate the smaller zone-to-zone
movements accurately;

2. The eror in origina data collected on specific zone-to-zone movements gets
magnified through the process;

3. It does provide a measure of the resistance to travel and will imply that
resistance to travel will remain constant. It also ignores the effect of changesin
travel pattern by the construction of new facilities or new network.

Traditional gravity models include constrained/unconstrained gravity models. The
constrained models include production constrained; attraction constrained and fully
constrained models. The most common mode is the fully constrained gravity model

because of its pattern recognition ability and accuracy. The rest of the gravity models
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have various problems, e.g. miss-specification, inconsistency, multi-co-linearity or data
distortion due to the equations transforming into a linear and operational form. Other

disadvantages of the gravity model are:

e it is very unlikely that the travel-time factors by trip purpose would remain
constant throughout the urban area to the horizon period;

e the changing nature of travel times between zones with time of day makes the
use of single values for the travel time factors questionable;

e it tendsto overestimate short trips and underestimate long trips;

e it usualy focuses on impedance (or zonal separation) which lacks a behavioural
basis explaining the choices made by individuals among aternatives;

e it does not include variables that reflect the characteristics of the individuals or
households who decide which destinations to choose in order to satisfy their
activity needs (Tapkin, 2004).

1.4 Application of Neural Network in Trip Distribution

Neural Networks are another approach which is proposed for predicting travel
demand modelling (Teodorovic and Vukadinovic, 1998). Neural Network models have
been used in travel demand modelling since 1990. Dougherty (1995) provides extensive
literature review for the application of NNs in different aspect of transportation
modelling including trip distribution modelling. According to his research the NNs have
been used for various steps of the tradition four-step modelling including trip
generation, trip distribution and mode choice. Cantarella and de Luca (2005) used NNs
for mode choice modelling. His study can be considered as a fundamental step in NN
application for mode choice. Celikoglu (2007) aso investigated the application of NNs

in non-linear utility function specification for travel mode choice modelling.

The problem of trip distribution is of a nonlinear nature and neura networks are
well suited for addressing nonlinear problems. This fact supports the use of artificia
neural networks for trip distribution problems. Previous studies suggest that the neural
network approach can be used to model the commodity, migration and work trip flows.
However, its generalization performance is poor compared to the well-known doubly-
constrained gravity model. The majority of previous studies have used a standard back-

6



Chapter 1 Research Project Introduction

propagation algorithm. Recent studies have tried to improve the performance of the BP
model by training the models with different training algorithms such as the Levenberg-
Marquardt (LM) algorithm or different activation functions. According to the literature
review, recent studies have improved the ability of the BP models to estimate the trip
distribution and the modelling results indicated that the BP model can provide better
estimations than the well-known gravity model.

In most of the relevant cited papers for trip distribution modelling using NNs, the
feed-forward back propagation (FFBP) approach are investigated and proposed. The
FFBP approach suffers from some disadvantages including their sensitivities to the
selected initial weights and the local minima problem which will lead to in accurate

outcomes.

However, the application of NNs for trip distribution modelling is limited in the
literature; no work has been reported that investigate the application of generalized

regression neural networks for modelling the trip distribution problem.

15 Advantage of GRNN Modelling

GRNNs are known for their ability to learn quickly (rapid training) with small
number of data and their application have been investigate in various problems in
different disciplines including Medical, hydrological and electrical science and in many
studies GRNN provided better outcomes than FFBP. For example, the application of
GRNN has been investigated by Celikoglu (2005) in travel mode choice modelling and
its advantage over the FFBP model has been demonstrated. GRNN application is
especially useful for function approximation with multi-dimensional inputs (Ariffin J.
2008). Other benefits of GRNN claimed by Specht (1991) include:

e The network is able to learn from the training data by ‘one-pass’ training in a
fraction of the time it takes to train standard feed-forward networks.

e The spread, Sigma, isthe only free parameter in the network, which often can be
identified by the V-fold or split-sample cross validation.

e Unlike standard feed-forward networks, GRNN estimation is aways able to

converge to a global solution and won’t be trapped by a local minimum.
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1.6  Purpose of this Research

The purpose of this research is to develop a generalised regression neura mode to
estimate the work trip distribution from the land use data of the origin and destination
zones. The finding of this research provides an alternative simple and practical approach
for trip distribution modelling. This research also establishes a frame work for a

combined trip generation and distribution model using neural networks.

1.7 Research Approach

For the purpose of this research, three approaches’ models were developed for the
estimation of trip distribution. GRNN modelling is the new approach and is the focus of
thisthesis, the BP and gravity models are the other approaches.

The BP model developed in this thesis is a two-layer feed-forward network, with a
sigmoid transfer function in the hidden layer which is trained with the Levenberg-
Marquardt algorithm (LM). The LM agorithm was used by previous researchers (Y aldi
et a., 2011) in order to improve the performance of the BP models.

The gravity model used for the purpose of comparison has been developed for trip
distribution of the internal zones in the strategic transport model established for the
Mandurah Strategic Model (Rasouli, 2013b). The internal trips are distributed based on
the gamma function in this model. The transport model is based on the traditional four-
stage model process with five different categories for trip purpose: work, education,
social, other and non-home-based (NHB) trips.

For the purposes of comparison, the results of the GRNN model were compared with
those for the BP and gravity models. The root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R?) between the modelled
output and measures of the training and testing data set were used as indicators to
provide a numerical description of the goodness of the model estimates. The model

development and methodology is illustrated in Figure 1-2 and includes the following
steps:
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Figure 1-2: Model Development and M ethodol ogy

1. Undertaking a comprehensive literature review including library and internet
search and direct contact with local and international people working in thisfield
of research. The objective of this step is to discover whether similar studies had
been undertaken using the neural network method for the prediction of trip
distribution.

2. Collecting an appropriate original OD matrix for work trip distribution as a
benchmark.

3. Estimating the origina OD matrix based on a new NN approach known as the
generaized regression neural network, and comparing the results with another
common NN approach known as the back-propagation, and the customary

gravity model method.
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4. Developing a GRNN model to estimate the work trip distribution between a pair
of zones using the land use data in each zone instead of trip production and
attraction for that zone.

5. Investigating simple data normalization, linear transformation and statistical
normalization methods for the NN input vectors to select the best format for the
input data into the NN model.

6. Investigating the optimum spread (sigma) for the GRNN model by cross
validation method.

7. Validating the proposed GRNN model and checking the satisfaction of gravity
model constrains (total productions and attractions) by the validated GRNN
model.

8. Developing a BP model using the Levenberg-Marquardt (LM) algorithm.
Training the model with 10 different seeds and four different hidden layer
neurons to select the best structure for the BP model.

9. Extracting the work trip matrix from the previously established strategic
transport model for the Mandurah area.

10. Comparing the results with the commonly used doubly-constrained gravity
model and BP model using the root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R?) between the modelled output
and measures of the training and testing data set as indicators to provide a

numerical description of the goodness of the model estimates.

1.8 Research Objectives

The objective of this research is to investigate the application of the GRNN model
for prediction of the work trip distribution using land use data between the OD zones
and the distance between the zones. It is expected the outcome of this research,
supported by comprehensive literature reviews, can establish guidelines for
development of a combined trip generation and distribution model using neurd
networks. The proposed GRNN model can be used as an alternative tool for predicting
trip distribution directly from land use data. The proposed model can be used by

transport modellers, urban planners and software devel opers.

10
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1.9 Research Significance

This research study is unique in its various aspects and a quantity of new knowledge
was developed during the course of this work. The following are some of the major

achievements of this study:

e Travel demand forecast is an essential element for transportation planning in
order to evaluate the future needs of an urban area. A robust and efficient
technique is required to predict the patterns of trips in the future, so that the
desired outcomes and impacts can be achieved and anticipated.

e There is no technique in trip distribution that is universally applicable, so
attempts to develop alternative methods are always needed. This includes the
adoption of approaches from other disciplines. Neural networks are one
possibility, and are proposed as an aternative method in this study.

e The problem of trip distribution is of a nonlinear nature and is complex. Neural
networks have been used successfully for mapping nonlinear problems. This fact
supports the use of artificial neura networks for trip distribution problem.

e According to the literature review, there have not been enough attempts to
investigate the application of GRNN models for the trip distribution estimation.
The advantage of the GRNN model over other feed-forward or feedback neural
network techniques isits simplicity and practicality. This research aims to apply
the GRNN model to improve the ability of neural networks to predict trip
distribution problem.

e All the previous cited papers have used trip productions and attractions as input
to the neural model. This research aims to predict trip distribution directly from
the land use data instead of using trip production and attraction for traffic zones.
This methodology will minimize the risk of error that normally happens during
the trip production and attraction stage of the modelling and propagates through
to other stages of the modelling.

e The proposed validated GRNN model is providing a combined trip generation
and distribution modelling frame work which is another novelty and significance

of this research.

11
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1.10 Research limitations and Expected Outputs

This research aims to develop a new model for trip distribution using the GRNN
method. The trip distribution modeling is undertaken for only work trip purposes. The
data which have been used for this research is the 2006 Journey to Work (JTW) data set
for the Mandurah area in Perth, Western Australia and sourced from the the Department
of Planning (DoP).

The Neural Network modeling undertaken has been done by MATLAB software.
The data preparation for the input to MATLAB software has been undertaken by
Microsoft Excel. The Neural Network outputs are also transferred to Microsoft Excel
for additional analysis and comparison.

The purpose of this research is to investigate the ability of the GRNN model to
predict trip distribution. Therefore the focus of this research is utilization and
improvement of GRNN model to be able to predict trip distribution of the work trips.
The other purpose of this research is to estimate the trip distribution by the land use
data. So the trip generation process is not required for the input to the neural model. In
other words with the land use data for the origin and destination zones the GRNN model
would be able to provide the trip distribution between a pair of zones in the model. This
approach makes the proposed GRNN model very attractive in comparison with the

other available NN approaches which have been undertaken so far, because

1. Trip distribution will be predicted by land use data and there is no need to
estimate the trip generation of the traffic zones. Therefore the errors
associated with the trip generation step of the four step modelling will be
minimised on this process.

2. The structure of the GRNN model is fixed and therefore does not have to be
investigated by trial-and-error unlike the FFBP model, and then this will

remove some of the uncertainty related to the NN model development process.

The output of this research is a combined trip generation and distribution model which
can be used by the transport modelers to estimate the second stage of the 4 step
modeling with asimple and practical tool.

12



Chapter 1 Research Project Introduction

1.11 General Research Findings

The overal finding of this research is that neural network modeling is suitable for
modeling very complicated functions. Trip distribution estimation is a complex
problem. The traditional gravity model uses the simple assumptions through introducing
the decay functions. The decay functions assume that the number of trips between a pair
of zones depend on the generalized cost between the two zones. The generalized costs
are often assumed to be the distance between the traffic zones or travel time or the
combination of these two parameters. However this is not always the case in practice.
The trip distribution depends on the behavior of the trip makers and their personal
preferences as well as the road network facilities and the available mode of travel
between pair of zones. Combining all these factors and parameters together and finding
the relationship between these parameters are very complex. NNs are recommended for
complex problems, when there is no simple mathematical approach to solve the
problem. The use of NNs is not recommended if the conventional approach can provide
satisfying result with an easily solvable and adequate mathematical model which
already exists. Neural networks exhibit nonlinear behavior and learn through processing
example data sets. The user must design training algorithms and provide proper input
data sets for the automatic learning procedure to run the model successfully. Previous
studies used the FFBP approach to estimate the trip distribution, the FFBP method
includes some disadvantages such as their sensitivities to the selected initial weights and
the local minima problem which will generate in accurate outcomes. GRNN modeling
has already been investigated for the mode choice problem by Celikoglu (2007) and its
superiority over the FFBB approach is reported but, there has not been any investigation
for application of the GRNN approach for trip distribution problem.

The GRNN modd is recommended for trip distribution estimation. The anaysis
undertaken indicates that a validated GRNN model can outperform the traditional
gravity model and even the FFBP models in terms of RMSE, MAE and coefficient of
determination (R?) between the modelled output and measures of the training and
testing data. . Simplicity and fixed structure of the GRNN model makes it a very
powerful tool in practice and therefore it is recommended for modellers as an alternative
tool to predict the trip distribution matrices.

13



Chapter 1 Research Project Introduction

The recommended GRNN model uses the land use data for origin and destination zones
as the input to the model. GRNN will learn the relationship between the land use data
of the origin and destination zones and the number of trips associated with them.
Therefore the proposed GRNN model provides a combined trip generation and

distribution technique.

1.12 Thesis Structure

The thesis comprises six chapters:

Chapter 1 is the introduction. This chapter describes the objectives, briefly reviews
the methodology and also discusses the significance of the research. Background and
limitations of the research and general findings of the research are al'so reviewed in this

chapter.

Chapter 2 provided a brief review of the basic concepts in trip distribution. The
concept of the gravity model, deterrence function and generalized cost are also reviewed
in the trip chapter. Different methods of trip distribution will be reviewed and discussed.
The advantages and disadvantages of the existing methods will be presented.

Chapter 3 reviews the concept of the neural network and its application in solving
complex and nonlinear problems. The structure of an artificial neuron and the seven
major components of an artificial neuron are aso discussed in this chapter. A
comprehensive literature review on the available research in the field of trip distribution
estimation using neural networks are provided in this chapter and similar studies are
reviewed and discussed. This chapter also reviews the back-propagation algorithm,
since it is one of the most commonly used neural network models, and many others are
based on it. The generalized regression neural network falls into the category of
probabilistic neural networks which form the basis of anaysis for this thesis and

therefore will be discussed in this section as well.

Chapter 4 discuss the methodology adopted in the research, and consists of five
categories for neural models. model specification/ structure, model training, model

testing, model performance measurement, and the application of the proposed

14
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framework. The neura models are developed and trained with different sets of input
data. The results are reported, analysed, and then discussed in detail in the next chapter.
The Gravity moddl structureis also discussed in this chapter.

Chapter 5 includes the model development and analysis. This chapter discusses the
methodology for the development of the GRNN, BP and gravity models. The process of
data collection and the structure of the gravity model developed for the Mandurah area
in WA will be provided in this chapter. The chapter also discusses model structures for
the GRNN and BP models, normalization of the input data, training of the models and
the modelling outcomes. Comparisons of the models will aso be provided in this

chapter.

Chapter 6 discuss the validation of the proposed GRNN model. Accordingly the
GRNN model will be applied to ten different sample groups and the performance of the
GRNN model will be investigated. The GRNN model outputs will be also investigated
to evaluate the predictive ability of the GRNN model for satisfying the gravity model

constraints.

Chapter 7 draws together the conclusions of this work, and also outlines proposals

for further research in this subject.

Substantial references used in this study are given at the end of thisthesis.
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2. TRIP DISTRIBUTION MODELS

2.1 Introduction

In this chapter the literature review for trip distribution is reported. Different trip
distribution techniques are reviewed and discussed. More discussions are provided for
gravity model which is used in this thesis as a method which is compared with the
neural models. The role of Origin Destination (OD) matrix for trip distribution is
discussed and the concept of generalised costs and deterrence function is reviewed. The
review from this chapter contributes to the development of the research and modelling

methodol ogy.

2.2 Trip Distribution

Trip distribution is the second step of the traditional modelling process, which has
four steps (trip generation, trip distribution, mode split and assignment). The purpose of
trip distribution is to estimate the number of trips distributed between traffic analysis
zones (TAZ). Trip distribution depends on a genera function of time and/or cost of
travel between traffic zones and also the number of trips in both origin and destination
zones. Outputs of trip generation, productions and attractions by trip purpose for each
zone, and travel cost between each pair of zones are the inputs for the trip distribution
model. Outputs of the trip distribution stage are the trips between each pair of zones for
each trip purpose. Since different trip purposes correspond to different functions of time
and cost of travel, trip distribution is applied for each trip purpose separately with a
different cost function (National Cooperative Highway Research Program (NCHRP),
2012).
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2.3 The Origin Destination (OD) Matrix

The new origin-destination (OD) trip matrix for the future is estimated using the trip
distribution model, which specifies future trips resulting from demographic changes in
the existing situation that reflect changes in people’s choice of future destinations. The
changes in demographic and land use data will be used in estimating the origin-
destination pattern of future travel and generating the future OD matrix which can be
assigned to the road network during the assignment step of the modelling process. The
future OD matrix is expected to change due to changes in the land use data and the trip
distribution model which models these changes and enhancements in the transport

system (Davidson & Davidson, n.d.).

The distribution model requires data for the number of trips generated from and
attracted to each traffic zone in order to indicate new levels of generation of future trips
or any changes in land use data. These inputs are called ‘trip ends’. Trip ends are
determined from the OD matrix by summing up the row totals, which gives the total
number of trips generated by each zone (named origin trip ends of that zone), and also
by summing up the column totals for each zone, which gives the total number of trips
attracted to that zone (named destination trip ends of that zone). Therefore, there is an
origin and a destination trip end for each zone.

Base year trip ends should be adjusted for future year trip ends to reflect the future
level of generation/attraction of trips. Therefore, future year trip ends will be used as
inputs for the distribution model while estimating the OD matrix of the future year.
Estimating the future year trip ends from the current year trip ends is the main goa of
the trip end model (Davidson & Davidson, n.d.).

2.4 Methods to estimate the OD matrix

O-D matrices can be estimated by three different ways Taylor et a. (2000):
e Direct observation
e Synthesis
e Modelling procedures

17
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Direct observation means that number of trips for each OD zone is obtained
directly by traffic or questionnaire surveys. The most common method for direct survey
includes the registration plate surveys, road side surveys or road side interview. The
questionnaire surveys can be conducted by individual or home interview. Aeria
photography can aso be used as a direct technique in estimating the O-D matrices
(Cremer and Keller, 1987). Regardless of its accuracy, the weaknesses of this method
were reported in many studies, such as Nihan and Davis (1987), Cremer and Keller
(1987), Sherai et a. (1994), Sherdi et a. (2003), Nie et a. (2005) and Doblas and
Benitez (2005). The drawbacks of the direct observation method include:

e Expensive and time-consuming;

¢ Not sensitive to the changes in trip patterns over time or the impact of land-use
development; and

e Biased results

Synthesis approach is based on the traffic counts for the links in the transport road
network, obtained from traffic counts survey for links. In this method the O-D matrices
are established by using mathematical theory such as the work undertaken by
VanZuilen and Willumsen (1980).

Modelling approach tries to estimate the OD matrices through modelling
procedures. The most common modelling approaches for estimating the OD matrices
are Furness and gravity models. Gravity model proposed by Wilson (1967) is widely
used as a modelling procedure to establish the trip distribution matrices. The Furness
and gravity models are discussed shortly in the next sections and will be reviewed in

detail in section 2.5 (trip distribution techniques)

2.4.1 The Furness Distribution Model

The OD matrix for a future year can be extracted from the trip matrix of the base
year in away that the total values of the rows and columns match the future trip ends.
The Furness distribution model is one of the simplest methods available for this
practice. The procedure for the Furness model is explained in the following steps

(Davidson & Davidson, n.d.):
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1. Each row in the base year matrix is multiplied by the growth factor for its
corresponding zone. The origin trip ends for the new matrix would match those
of the future year; however the sum of the column vaues will not match the
destination trip end for the future year, hence:

2. Thecélls of each column of the matrix are multiplied by the destination trip end
ratio of the future year so that the total value of columns of the final matrix
matches the column total of the destination trip end of the future year.

3. If therow total does not match the origin trip end for the future year, steps 1 and
2 must be repeated successively until both row and column totals become close
to the future year origin and destination trip ends. This process should be

repeated until the values are close enough.

The Furness model converges very quickly in most cases. Studies of this method
have shown that if every matrix cell value is greater than zero, then the model converges
to a unique answer. The Furness method is commonly used in transportation modelling
and even in more complicated cases where advanced distribution models are employed,
this method is usually used for modelling the external to externa movements or
estimation of goods vehicles and freight.

The Furness model has two major disadvantages, the first being that a cell in the
matrix which is zero remains zero regardless of how many times it is factored. Assume
a zone which is undeveloped in the existing year and therefore there is zero trip
generation or attraction for that zone. As the zone becomes fully developed in the future
with houses, shops, factories etc., trips will be generated and attracted to that zone.
However in to the Furness model the trip distribution to/from the zone will remain at
zero in the futureif it is zero in the base year. One method for solving this problem isto
‘seed’ dl the zero cells with a certain value (e.g. single-trip, or to consider a trip
distribution from it to every other zone and from every other zone to it). Hence the

resulting matrix of this zone would become dependent on input assumptions.

The second weakness of the Furness Model is that it is not sensitive to probable
changes or enhancements that might occur in the transport system. Clearly if the
transport system has been improved, people would change their routes and destinations

due to these changes and would make the most of the additional options available to
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them. For example, if anew motorway is built which connects people to a big shopping
centre; people are more likely to go to the new shopping centre. The situation is the
same for job or education opportunities and people would even move to new places to
gain better job opportunities available through the new transport infrastructure. This
issue is more difficult to deal with, and a more complicated mode is required, such as
the gravity model, in order to solveit (Davidson & Davidson, n.d.).

2.4.2 The Gravity Distribution Model

This model takes its name from the theory of gravity; i.e. the ‘pull’ between two
objects is proportional to their size and inversely proportional to (some function of) the
distance between them. The concept is similar to the theory of travel between areas,
where the frequency of travel between two areas can be proven to be proportiona to
their population and the number of jobs, schools, factories, offices etc., yet inversely
proportiona to the distance (or a function of separation or deterrence) between them.
This relationship works quite well in general — the bigger the towns/zones, the more
people travel there, and the greater the distance between towns/zones, the less people
travel between them. The origin and destination trip ends of the origin and destination
zones respectively are a measure of the amount of pull between them (Davidson &
Davidson, n.d.).

As matrix cells of the trip ends that must be fitted, the deterrence function has also a
coefficient which needs to be calibrated. The procedure is called ‘calibration’ and is
performed during the process of building the transport model. The calibration process
may quite change the matrix (the base year observed trip matrix) and proper calibration

can guarantee the accuracy of the model.

The deterrence function can vary according to the different types of people, trips
(e.g. journey to work, education, shopping, leisure, holiday etc.), times of day and
modes of transport (e.g., travelling with/without a car). In order to embed these
differences, various matrices are required which correspond to different types of trips
and/or travellers. This can improve the calibration process. Additionaly, different
movements between areas can have diverse deterrence functions and sometimes
different calibration coefficients. Because several variables are involved, calibration is

sometimes a time-consuming procedure. There is aways the possibility that no
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deterrence function can be determined, i.e. that calibration of the gravity model is not

possible.

The gravity distribution model can be used only after it has been calibrated. In later
stages, the same calibration coefficient can be employed in the deterrence function
assuming it works for the future year. Generalized costs and trip ends for the future year

are also required for forecasting the trip matrix for the future year.

The transport networks and future levels of travel between zones can affect the future
year trip matrix. This can also solve the previously mentioned problem of the zero cells
for the base year matrix in the Furness model, since the generalized cost matrix

extracted from the transport network is used for the calculation of every cell.

The gravity model is more robust compared to the other trip distribution models
since it considers the levels of travel between zones and the transport networks

(Davidson & Davidson, n.d.).

2.5 The Concept of Generalized Cost

In order to express the separation between the origin and the destination, a measureis
required than can reflect it properly. Common measures that can reflect separation
include: distance, travel time, fare, waiting time, walking time, petrol cost, parking

charge and toll.

Generalized cost combines all of these variables together. It is simply the weighted
sum of the aforementioned factors; hence the generalized cost of travelling from origin
to destination is defined as a weighted sum of those factors for the origin to destination
zone in the model. These factors can be taken from the transport networks used in the
assignment process. They can be ‘skimmed’ from the networks as a matrix, each cell of
which represents the value of a variable. Therefore the in-vehicle time skim indicates
the time needed to go from each zone to every other zone, the fare skim indicates the
cost of travel from each zone to every other zone, and so on. These skim matrices are
combined, by weighting each matrix and adding them all together, and form an overall

measure of the ‘separation’ between every zone pair (Davidson & Davidson, n.d.).
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2.6 The Concept of a Deterrence Function

The behaviour of travellers indicates that the further the destination, the less
frequently they travel. Various research has been undertaken to determine a function
that could best demonstrate the relationship between the distance of a trip and its
frequency. A common practice is to consider a negative exponential (deterrence)
function with generalized cost; hence in order to evaluate the measure of separation, one
should calculate e to the power of generalized cost (the power is usually multiplied by a
calibration constant). The constant has a negative value which indicates that the higher
the generalized cost, the smaller the frequency of trips (Davidson & Davidson, n.d.).

2.7 Trip Distribution Techniques

Many mathematical models have been developed to describe and predict the
distribution pattern of trips. They are generally divided into two groups:

e  Growth factor methods, and
e Theoretically based methods.

In the first group, there are four basic types of model known as the Detroit, Fratar,
uniform and average-factor methods. In the second group, the most well-known two
models are the gravity model and the intervening opportunities model. These methods
are explained briefly below.

2.7.1 Growth Factor Methods

Growth factor methods are claimed by Levinson and Kumar (1994) and Easa (1993)
that are the first aggregated models introduced about seven decades ago. These methods
assume that the future number of trips between a pair of zones can be estimated by
proportioning the relative increases (growth) in trip ends in those zones. This
proportioning process is iterative in nature, which means that the first proportion is
worked out based on initial conditions, then the new trip end totals are computed, the
new proportion established, and so on until stable numbers are obtained.

Mathematically, this process is described below.

22



Chapter 2 Trip Distribution Models

The initial growth factor for zone i, F¥, is computed by dividing the forecasted trips
by actual trip ends:

-I__*
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For the whole study area, the trip ends over al zones are summed to calculate the

corresponding area-wide growth factors, F¥.
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By contrast, the Detroit model works as follows:
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where k denotes the k™ iteration, T;; denotes the predicted trips, t;* denotes the actual
trip ends, F¢ denotes corresponding area-wide growth factors. In these models, the
number of trips between zonesi and j increases in proportion to the growth of trip ends

in the origin zone (i) and the growth of trip ends in the destination zone (j).

Another growth factor method is the Fratar model. This model is often used to
estimate externa trips, that is, trips that are either produced and/or attracted outside the
boundaries of the region under study from outlying areas whose character is not
explicitly analyzed (Tapkin, 2004). The Fratar model begins with the base year trip-
interchange data. Usually this model does not distinguish between productions and
attractions and considers the inter-zonal trips irrespective of their direction. Since no
distinction is made between productions and attractions, the trip generation of each zone

is denoted by T;. The following trip balance equation provides the necessary
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relationship between the trip generation of azonei and the trip interchanges that involve

zonei:
Ti=2.Tj 26
j

The estimatation of the target-year trip generation T; (t), which precedes the trip-
distribution phase, is computed by multiplying the base year trip generation, T; (b) by a
simple growth factor, namely G;. This growth factor is based on the anticipated land use
changes that are expected to occur within the zone between the base year and the target

year. Thus:

T (1)=Gi[Ti(b)] 2.7

Subsequently, the Fratar model estimates the target-year trip-distribution Tjj(t) that
satisfies the trip balance for that year. Mathematically, the model consists of successive
approximations and a test of convergence in an iterative procedure. During each
iteration, the target-year trip-interchange volumes are computed based on the
anticipated growth of the two zones at either end of each interchange. The implied
estimated target-year trip generation of each zone is then computed according to
equation 2.6 and compared to the expected target-year trip generation from equation
2.7. A set of adjustment factors, R i, isthen computed by:

Ti (1)

o T; (current)

2.8

If the adjustment factors are all sufficiently close to unity, the trip balance constraint
is satisfied and the procedure is terminated. Otherwise the adjustment factors are used
aong with the current estimate of trip distribution Q; (current) to improve the
approximation. A comparison of equations 2.7 and 2.8 shows that the adjustment factors
used in all but the first iteration and the origina growth factors applied during the first
iteration play the same mathematical role. Their interpretation, however, is not the
same: The growth factors constitute a prediction of the actua growth of each zone
between the base year and the target year, but the subsequent adjustment factors are
merely mathematical adjustments that facilitate the convergence of the solution to the
predicted zonal trip generation.

The basic equation employed by the Fratar model to calculate the portion of the

target-year generation of zonei that will interchange with zonej is:
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) ~ (Tij (currenb)Ri _
Ti (new) = Z(T” (current))Rj T (t) 2.9
j

This equation is similar to that of the gravity model, which will be presented later in
this chapter. The expected trip generation of zone i is distributed among all zones so
that a specific zone j receives its share according to a zone-specific term divided by the
sum of these terms for al ‘competing’ zones j. When equation 2.9 is applied to all
zones, two estimated values result for each pair of zones. The first represents the portion
of the generation of zone i chosen to the interchange due to the influence of zone j (or
Tj;), and the second is the portion of the generation of zone j chosen to the interchange

due to the influence of zonei (or Tj).

An asymmetric form of the Fratar model begins with a base year trip table in the
production-attraction format. In this case, the sum of each row represents the base year
productions, whereas the sum of each column represents the base year attractions of the
corresponding zone. Each zone is given two growth factors. one associated with the
expected growth in residential activity (and therefore productions), whereas the second

captures the zone’s non-residential growth (i.e., attractions).

The uniform growth factor method can be summarized in a compact form as:

E=—ZTiG 2.10
T .
2.2 Tij
F_-T
Tj =Tjj xE 2.11
where:

E = Uniform growth (adjustment) factor;
T, © = Trip generation output for the future;
T;; ' = Total trips today; and

T;; "= Flow fromi toj in the future.

The steps that should be followed are straightforward. First the uniform growth
factor will be calculated. Then this factor will be applied to al current flows. Also the

average growth factor method can be presented mathematically as:
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B = Til = Tii_l 2.12
Ti 2. Ti
k k-1 (E'k_l * Elj(_l)
J i - — 213
where:

E; ¥ = Average growth (adjustment) factor;
T, ®= Total trip generation at i on future date;
T, %1 =Total trips for iteration k at I; and

T k= Flow from i to for iteration k (represents the future).
The steps that should be followed to calibrate the model are:
Run atrip generation model;

Determine the first estimate of ‘average growth factors’;

Apply thefirst set of average growth factorsto all current flows;

A w0 DpRE

Check for closure.

The Fratar and Detroit models are considered to have better mathematical
expressions and to be computationally more efficient than the uniform growth and
average growth factor models. In any case, the growth factor models find most
applications in estimating trips from external to internal or other external zones since

thereis no land use data available for the external areas outside the study area.

These models are advantageous (Tapkin, 2004) because they:

e Aresmple, inexpensive and easy to apply;

e Arewell-tested;

e Require no distance variables;

e Need no calibration,

e Can be applied to peak directiona flows;

e Areuseful in updating origin-destination surveys.
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However, the disadvantages are:

e Only asingle growth factor for each zone, and assumed stable to the horizon
year;

e Inability to account adequately for maor changes in land use or interzonal
activity;

e Noexplicit term relating to any form of travel cost, time or other impedances;

e Zones having zero interchanges in the base will show zero interchanges in the
horizon year;

e Errorsintheorigina distribution due to sampling or other factors will be carried
forward and magnified (Tapkin, 2004).

2.7.2 Theoretically Based Models

The gravity model gets its name from and is conceptually based on Newton’s law of
universal gravitation. This law concerns gravitation and states that the masses of two
bodies divided by the square of the distance between them forms the gravitational force
that exists between them:

Ry =Gx MLZMZ 2.14
d>
where:
F12 = the gravitational force between two bodies,
M1 = mass of first body;
M, = mass of second body;
di2 = distance between two bodies; and

G = gravity constant.

Travel researchers found a notable analogy especially about shopping travel while
analysing the gravity model: the available trips are represented by M, as the mass of
tripsin an inhabited area; the attractiveness of a shopping areais represented by M»; the
distance between these two points is represented by di; and the number of trips
between these two areas is represented by Fio. Incorporating these interpretations
through the gravity model implies that in order to increase the number of inter area
trips, the attractiveness or size of the two areas should increase and the distance between
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them should decrease. So many situations in the real world resemble this equation. For
instance, this equation can model the number of telephone calls that take place between
cities that are far apart, while M1 and M, represent the population sizes of the cities and
dio> represents the distance or perhaps the cost of telephone calls between them.
Applying this formulato trip distribution and replacing the items resultsin:

R
ij = 2.15
g

Where:

Tj; = trips produced from areaii to j;

k = adjustment ratio between zones that inserts the impact on travel patterns of
defined economic or social linkages;

P,= trips that area | produces,

A =tripsthat areai attracts;

dij =distance between areai and areaj; and

¢ = atentative determined exponent which represents the average area-wide effect of

spatia separation between areas on trip interchange.

Equation 2.15 indicates the interchange numbers between these two areas with area |
producing and area i attracting trips. The trip distribution between a pair of zones
increases when the attractiveness of area i or production of area | increases, and

decreases if the distance between these areas increases.

There are dependent and independent variables in this model. The impedance,
productions and attractions are independent and the inter-zonal trip is dependent. k and
c are the model’s constant parameters which are estimated in the calibration process
using base year data. If the trip production balance constraint is considered then
equation 2.15 can be rewritten without parameter k. This constraint states that the sum
of the trips that area i attracts is equal to the trips that areaj produces while considering

specific interchange volumes:

P =2Tj 2.16
|

Ai=2T 217
j
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After replacing these two formulae and carrying out the necessary mathematical
operations, anew equation is achieved:

C

—Z(Ai /dﬁ) 218
J

Tij=F
The term inside the bracket is the trips that area i produces which are attracted by
area |, proportional to al the trips that are attracted in the areas. It is notable that if we
multiply a constant by all attraction terms, the numerical outcome value won’t change.
So it can be concluded that the relative attractiveness of areas can be measured by the
attraction terms. For instance, one employment area can be said to be twice as attractive

as another according to the available employment opportunities.

After applying these terms the following is obtained:

1 _p| AR 210
1] J ZAjFIj .
j
where:
1
Rj = 3 2.20

and F;; is called the travel-time factor (or friction).
Hence the limited number of independent variables included in the model does not
capture all the effects. In order to incorporate them, a set of Kij factors is introduced

while calibrating which are inter-zonal socioeconomic adjustment factors.

Thus the formula can be expressed as:

T+ _p ARy

" n 221
2 ARK;;
=1

where:

Kij = aspecific adjustment factor between areas,
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Fi; = travel-time factor;
Aj = number of tripsthat area attracts,
P, = number of tripsthat areai produces; and

Ti; = number of tripsthat areai produces and areaj attracts.

Because the totals of the rows and columns are not constrained, this is called the
unconstrained gravity model. Instead of unconstrained models we can use constrained

gravity models.

In order to calibrate the gravity model, the numerical value of the parameter ¢ must
be determined. This parameter fixes the model to the one that replicates the observations
of the base year. In order to fix the relationship between the inter-zonal impedance and

the travel-time factor, the proper value of ¢ must be known.

In order to calibrate the gravity formula, an iterative procedure is needed which is
unlike a simple linear regression model calibration where a simple minimization of the
sum squared deviations could solve the parameters. In order to compute Tj;, which are
the inter-zonal volumes, the known base year productions, attractions and impedances
are used in equation 2.21 while assuming an initial value of c. Then the observed results
which are obtained for the base year are compared with these estimated results. The
calibrated value will be the current value of c if the observed volumes and calculated
volumes are sufficiently close to each other. Otherwise, the value of c is required to be
adjusted and as long as the degree of convergence is not acceptable, the procedure needs
to be continued. Most of the time, the friction-factor function F is used in the calibration

procedure instead of parameter c.

Although the gravity model is the most common method for trip distribution, there

are known advantages and disadvantages. Some of the advantages are:

e ltsapplication in particular areas is easy because of being easy to understand;

e By emphasizing trip productions and attractions against each other, trips’
competition between land uses is accounted for; and

e It is senditive to the change in travel times between one zone and another

(Tapkin, 2004).
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The disadvantages of the gravity model are:

e The travel- time factors by trip purpose are unlikely to remain constant in future
throughout the urban areg;

e Thereflection of the characteristics of the households or individuals who make
the decision to choose destinations for satisfying their needs of activity is not
included by variables.

e |t usually focuses on impedance (or zona separation) which lacks a behavioural
basis explaining the choices made by individuals among the alternatives long
trips are underestimated and short trips are overestimated,

e |t is questionable that single values are used for the travel time factors because
the nature of travel times changes between zones with time of day (Tapkin,
2004).

Another approach to this would be employing composite utility, computed with
certain choice models. Recently a new practice has been proposed as an alternative for
the gravity modelling approach, which abandons if there are destination choice models
that are more behaviourally based.

Using K-factors in the adjustment of discrepancies observed between trip-length
frequency distribution for the base year and the results of using only the final friction
factors has become an interesting matter for two reasons. The first one relates to
difficulties in the attempts made to interpret the effects captured via K-factors, and the
second corresponds to these effects being true between the base year and the target year.
Other results imply that K-factors are required in order to rectify possible mismatches
between the engagement and job types of residents in the producing zones and the
employment type that is available in the attracting zones; e.g. workers in the i-th zone
could be employed in the jobs available in the j-th zone by the gravity model, because
the j-th zone is the closest zone to the i-th zone. Some applications based on the gravity-
model report on stratifying jobs based on their industry and employment type or
income, which requires additional computational load. Research has revealed that this

problem corresponds to the unique historical and cultural factors in each local area.
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Invaluable insights can be gained from a good understanding of local conditions and the
likelihood that they will persist over time. This insight can potentially be of help in
interpreting and applying K-factorsin the modeller.

Despite all of its shortcomings, gravity modelling has various applications in many
urban transportation planning packages. There are two options for defining the distance
variable: the first option is to consider the real physical distance, travel time, or cost of
travel; and the second option is to employ a mathematical decay function of distance.
The most common decay functions of distance are power functionsin the form of:

f(dyj) = di” 2.22

and also exponentia functions as in equations 2.23 and 2.24.

—Bd::
f(d;)=e P 2.23

_Bd:
f(d”)zd” e b 2.24

B is an empirical constant which expresses the severity of inhibiting distance effects
(d;) on trip-makers. Increasing the value of beta, while other factors remain constant,
means the number of trips decreases faster with distance. In the second form of negative
exponential function, i.e. equation 2.24, distance decay due to distance increase is
slower; the number of trips in this equation increases over short distances, but would
decrease immediately afterwards. One problem with the power function is that it
becomes zero when the distance is zero, while the gravity model predicts an infinite
number of trips (Hanson, 1986). The intra-region, intra-city or intra-zona trips are
usually excluded from the spatial interaction modelling analysis when studying region-
to-region, city-to-city or zone-to-zone trips, and their distance will be considered zero.
Hence employing a power function (such as a distance decay function or any type of
exponential functions) for such problems in the gravity model leads to an infinite
number of trips in the intra-areas. A common solution to overcome this problem would
be assigning large values to these intra-area distances, enough that the inhibiting effects
become so powerful that trip distribution within these areas will become zero.
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Traditiona gravity models include the constrained/unconstrained gravity models;
and the constrained type models include production constrained, attraction constrained
and fully constrained models.

Thetraditional gravity models can be also categorized as follows:

e Unconstrained gravity mode!;

e Production constrained gravity model;
e Destination constrained gravity model;
e Doubly-constrained gravity model.

Among the models mentioned above, the most common model is the fully
constrained gravity model because of its pattern recognition ability and accuracy. The
rest of the gravity models have different problems, eg. miss-specification,
inconsistency, multi-co-linearity or data distortion due to the equations transforming

into alinear and operational form (Tapkin, 2004).

The intervening opportunities model is an aternative for the gravity model. It is
based on an interestingly simple assumption: there is aways a probability that the
traveller will be satisfied by the next opportunity that shows up. An even simpler
hypothesis is that there is a proportional relationship between the number of trips that
originate from an origin to a destination zone and the number of opportunities available
at the destination zone; this relationship becomes inversely proportiona to the number

of intervening opportunities (Xie, 2000).

The order of destination zones that are far from the origin zone must be determined
in order to compute the intervening opportunities. The following equation gives the
number of trip origins inside the i-th zone (O;) multiplied by the probability of the trip
being terminated inside the j-th zone (Wilson, 1975):

Tij = Oi (P(Vj+l) - P(VJ)) 2.25

LV LV
Tij=0i(e jt1—€ j) -

where:
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P(Vj) = total probability of the trip being terminated before the j-th possible
destination;

Vj = included volume or aready considered possible destinations that have been
reached before the j-th zone; and

L = probability of acceptance of a considered possible destination.

Common statements of the intervening opportunities model are the above equations
(equations 2.25 and 2.26). The mgor difference between the gravity model and the
intervening opportunities model is that the latter is probability based while the former is

adeterministic model.

2.8 Summary

This chapter provided a brief review of the basic concepts in trip distribution. The
concept of the gravity model, deterrence function and generalized cost are reviewed in
the trip distribution section of this chapter. This chapter aso discussed the different
techniques available for trip distribution problems. The advantages and disadvantages of
the trip distribution techniques were reviewed. The gravity model was discussed as the

most popular technique for trip distribution problems.
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3. NEURAL NETWORKS

3.1 Introduction

This chapter starts with reviewing the concept of Neural Networks (NN) and their
elements and learning algorithms. The Multilayer Feed Forward Neural Network
(MLFFNN) which is the most common neural network architecture for forecasting
purposes will be discussed and the Back Propagation (BP) agorithm for training the
MLFFNN will be reviewed. The Probabilistic Neural Network (PNN) is another type of
NNs which is discussed in this chapter. Generalised Regression Neura Networks
(GRNN) fall into the category of PNNs and are used in this research as a recommended
NN for forecasting the trip distribution. The MLFFNN and GRNN form the basis for
the methodology used in this research and are explained in Chapter 4.

3.2 General Concept

As an artificial intelligence technique, the neural network (NN) simulates the
functions of the human brain (including the nerves and neurons). It consists of parallel
interconnected computer processor units that operate simultaneously. The concept of
NN emerged with the discovery of Neuron in year 1836 (Skias, 2006). NN was first
introduced by McCulloch et a. (1943) in the early 1940s (Haque & Sudhakar, 2002).

They designed simple neural networks that could simulate basic logic functions.

Today neural networks are used for solving problems with complicated algorithmic
solutions or even no agorithmic solutions; i.e. it is hard to develop a mathematical
model for solving problems for which a relationship between its inputs and outputs is
hard to distinguish. In order to solve this type of problem, NN employs sample sets and
trains itself to learn the relationship between inputs and outputs. The ability to learn
through samples makes NN a very flexible and powerful tool. Hence, it has been widely
used in regression mapping and problem classification in various disciplines. Neural

networks, in short, are nonlinear algorithms with the ability to learn and classify.
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Artificial neural networks (ANNS) gather information about relationships between
input data and learn (or get trained) through processing input data sets rather than
programming. An ANN consists of a large number of smaller units, called artificial
neurons or processing elements (PE) that are connected to each other with weighted
connections. The neurons and the connections altogether form the neural network
structure and are placed in different layers. Neura networks get their power from the
interconnections between neurons of the network. Each PE is assigned some weighted
inputs, a transfer function and one output. The transfer function, the learning rules, and
the architecture of the neura network determine its performance. The weights of the
connections are adjustable parameters, hence the neural network is considered to be a
parameterized system. Activation of the neuron is based on the weighted sum of the
inputs. When the activation signal is sent to the transfer function, the neural network
generates an output. The non-linearity of the neural network is a result of the transfer
function. The training procedure optimizes the inter-unit connections and must be
repeated until the estimation errors are minimized and the required level of accuracy is
achieved. With proper training, the neural network will be able to predict the output of
new data sets. Various types of artificial neural networks have been introduced, and new
ones are invented every week. All of these networks can be identified by three factors:
the transfer functions, the learning rule, and the weights of the connections. ANNs are a
capable means of modelling, especially for data sets with complex relationships. In the
process of designing an artificial neural network model, no knowledge is needed about
the data source; instead, many weights must be evaluated, therefore large training sets
are required. ANNs can also combine and employ both literature-based and
experimental data in problem solving. ANNs are employed in various applications,
which can be divided into five major Categories (Anderson and McNeill, 1992):

e Prediction,

e Classification,

e Data association,

e Data conceptualization, and

e Data filtering
Jain et a. (1996) reported more categories to be solved by neural models. The
advantages of application of NNs for solving complicated problems are:
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Power: As ahighly complex modelling technique, the ANN is suitable for modelling
very complicated functions. Neural networks exhibit nonlinear behaviour. Since there
are well-known optimization methods for linear models, they have been the most
commonly used modelling technique; however they faced problems wherever linear

approximation was not applicable.

Easy application: Neura networks learn through processing example data sets. The
user must design training agorithms and provide proper input data sets for the
automatic learning procedure to run successfully. In order to successfully employ an
ANN, the user is required to have some level of knowledge about data selection and
preparation, selection of an appropriate type of neural network, and aso interpretation
of the results. However, the required level of user knowledgeis still very low compared

with that required for using traditional nonlinear statistical models.

3.2.1 A Biological Neuron

A biological neuron is a large cell that recelves input data from various sources. It
combines the data and performs nonlinear operations on the results, and sends the final

result to the output. Figure 3-1 illustrates a biological neuron.

Dendrite

| J
Nt; eus ( /D

x Synapses

Cell Body

Figure 3-1: A Biological Neuron

There are numerous varieties of basic neuron types inside the human body, al of
which share the same four basic components:. the cell body (soma), dendrites, axon and

synapses (Anderson & McNeill, 1992).
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Cell body (soma): The soma contains the nucleus and performs vital biochemical

reactions.

Dendrite: Dendrites are fine, hair-like tubular extensions connected to the Soma.

They have severa branches extending from them. Dendrites receive incoming signals.

Axon: The axon isalong, thin, tubular structure and works as a transmission line for

sending data into other neurons.
Synapse: Synapses are complex spatia structures that connect neurons to each other.

Axons are divided into several branches at their extremities; this is called terminal
arborisation. The highly complex and specialized arrangements at the end of the axons
are the synapses which provide the connections between neurons. Dendrites accept
incoming signals via the synapses of other neurons. The input data is then processed by
the cell body over time and an output signal is generated, which is then sent to the axon

to be delivered to other neurons through the synapses.

3.2.2 An Artificial Neuron

An artificial neuron is a PE that can perform the four basic functions of a biological

neuron. Figure 3-2 illustrates the basic structure of an artificial neuron.

Xo
X3 \ ‘\ L?
\ Sum Transfer
J Output PatN

Processing
Element

Xn Inputs Weightsw,,

Figure 3-2: A Basic Artificial Neuron (Anderson & McNelill, 1992)

In Figure 4, input data from the network are represented by X. Each item of data

has a corresponding weight, represented by w,. In the smplest case, the sum of these
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products is sent to the transfer function which generates the fina result. The result is
then sent out. Realization of an artificia neural network is possible with various

network structures, employing different summing functions and transfer functions.

In some applications like text recognition, speech identification and image
processing, the neura network deas with binary data. In these applications, binary
operations like ORing and ANDing may be performed in addition to summing
operations. These functions can be implemented into the summation and transfer
functions of the network. An artificial neuron is built up of seven maor components,
regardless of the neuron being used as input, output, or inside hidden layers (Anderson
& McNeill, 1992).

Component 1, Weighting Factors: Most of the time, a neuron receives many
simultaneous inputs, each having its own relative weight, giving them a corresponding
impact on the summation result. The importance of each input is represented by the
magnitude of its weight. The more important the input, the greater the weight, and the
greater the effect on the output. These adaptive coefficients, i.e. the weights, determine
the influence of the input and are a a measure showing the strength of the corresponding
input connection. These strengths can be adjusted with respect to the training data sets

and the network’s topology and its learning rules.

Component 2, Summation Function: If the inputs and their corresponding weights
are represented as (i1, iz . . . in) and (wy, Wz . . . Wp) vectors, respectively, the total sum

would be the dot product of the two vectors; i.e. (i1 * wy) + (i2* W) +........ + (in * wp).

The summation function, in many cases, is more complex than just a smple
weighted sum of the inputs. Different combinations of the inputs and their
corresponding weights can be defined and passed to the transfer function. Other
functions like minimum, maximum, product, majority and other algorithms may aso be
implemented in the summation function. The selection of a proper agorithm for
combining input data is based on the architecture and paradigm of the network. Thereis
sometimes an additional ‘activation function’ implemented in the summation function,

which alowsthe result to vary beforeit is sent to the transfer function.
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Component 3, Transfer Function: The transfer function is an agorithm that
processes the outcome of the summation function into a working output. In order to
determine the neural output, the transfer function may compare the summation with a
threshold. If the sum is out of range of the threshold, a signal would be generated but if
it is within the range, the processing element would generate no signa or send an
inhibitory one. The threshold function is usually a nonlinear function. Since the output
of linear functions is proportional to the input, they are limited. If the transfer function
is a step function, it would generate 0/1, 1/-1, or other combinations for the
representation of the result. Another way is to mirror the input if it is within the given
range and generate a step function if it is outside the range. In between the minimum
and maximum values, the threshold function behaves linearly, but the clipping
behaviour outside the threshold makes it a nonlinear function. An ‘S’ curve is another
option with asymptotic minimum and maximum values, and is caled a sigmoid within
the range of 0 and 1, and a hyperbolic tangent between -1 and 1. The ‘S’ curve and all

of its derivative functions are continuous functions.

Component 4, Scaling and Limiting: Being modified by the transfer function, the
result passes through additional processes such as scaling and limiting. The scaling
process multiplies a scale factor and adds an offset. In order to make sure that outcome
of the scaling process does not exceed upper or lower limits, the limiting process is
employed. Thisisin addition to the probable hard limits the main transfer function may
have applied.

Component 5, Output Function (Competition): Each one of the processing
elements can generate one single output signal and send it to many other neurons. The
output is often equivalent to the result of the transfer function but sometimes the output
of the transfer function is modified in order to incorporate competition between
contiguous processing elements. In this case, the neurons can compete and even inhibit
other processing elements, except the very strong ones. This type of competition may
also occur at theinput level. At the first level, the competition determines which neuron
will provide the output. At the second level, competition is between inputs and

determines which neuron participates in the learning or adaptation process.

40



Chapter 3 Neural Networks

Component 6, Back-Propagation and Error Function: The difference between the
current and desired output is defined as error in most control schemes. The error is sent
to the error function which must be designed according to the network architecture.
Different architectures may use the error value directly or use its square, cube or other
paradigms depending upon their specific purpose. The error or its modified paradigm is
then propagated back to previous layers. This is called back-propagation. Before back-
propagation, the error may be scaled or often fed to a derivative of the network transfer
function depending on the network type. After being scaled by the learning function,
this back-propagated value will usualy be multiplied by the weights of each incoming
connection and update their values before starting the next learning cycle.

Component 7, Learning Function: The learning function evauates the weights of

the inputs for each processing element based on a certain neural agorithm.

3.2.3 An Artificial Neural Network

An artificial neural network is illustrated in Figure 3-3. The incoming connection is
on the upper left of the processing element. In the first step, each input is multiplied by
its corresponding weighting factor (wg)). The modified values are then fed to the
summing function, which may simply calculate their total sum or apply different
operations, e.g. the largest input, the smallest input, the ORed and the ANDed values.
Severa other types of summing functions may also be implemented in addition to the
activation function which is used to implement the time sensitivity option. In the next
step, the output of the summing function is fed to the transfer function, and turned into
an applicable output (e.g. 0/1, -1/+1) by certain algorithms. The output may aso be
scaled or threshold controls may be applied to it. The final output will be sent to other
processing elements or probable outside connections, according to network structure
(Anderson & McNeill, 1992).
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Figure 3-3: An Artificial Neural Network, (Anderson & McNeill, 1992)

3.2.4 Types of Artificial Neural Network

SINGLE LAYER FEED-FORWARD NETWORK

A neural network in which the input layer of source nodes projects into an output

layer of neurons but not vice versais known as a single feed-forward or cyclic network.

In asingle layer network, ‘single layer’ refers to the output layer of computation nodes

asshown in Figure 3-4.

v

v

\J

Input Layer

\J

Output Layer

Figure 3-4: A Single Layer Feed-forward Network (Gershenson, 2003)
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MULTILAYER FEED-FORWARD NETWORK
As Figure 3-5 illustrates, there are one or several hidden layers in this type of

network, and it has computation nodes which are called hidden units or hidden neurons.
The function of hidden neurons is the interaction between the output and input of the
network with some helpful methods, and the extraction of higher statistics orders. Due
to being hidden from the first layer, the input signal to neurons for the second layer is
supplied by the source nodes of the internal layer. The third layer receives the output
signals of the second layer and so on. The overal response of the network to the
activation pattern is constituted by the set of output signals from the externa layer,
which is supplied by the source nodes of the first layer input (Anderson & McNeill,
1992).

Input Layer Hidden Layer Output Layer

Figure 3-5: A Multilayer Feed-forward Network (Gershenson, 2003)

In brief, the features of feed-forward networks are as follows:

1. Although there are many architectures, feeding of activation is typically done
through *hidden layers’, from input to output.
Execution of static input-output mappings is mathematically performed by them.
Back-propagation algorithmis the most popular supervised training algorithm.
It has been use in many practical applications such as nonlinear function
approximation, and also pattern classification.

RECURRENT NETWORK
The feedback loop is known as a recurrent network, and thereis at least one feedback

loop as well as one or several hidden layers in a feed-forward neural network (Figure

3-6).When a neuron’s output is fed back to its own input, the feedback may be referred
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to as self-feedback. Unit delay elements are sometimes used in feedback loops, and
assuming that the neural network has nonlinear units, this will result in nonlinear

dynamic behaviour.

A
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Figure 3-6: A Recurrent Network (Gershenson, 2003)

There are different types of network, such as Hamming, delta-bar-delta, Hopfield,
probabilistic, counter propagation, adaptive resonance, vector quantization, bidirectional
associative memory, Boltzman, recirculation, spacio-tempora pattern, self-organizing
map etc. (Anderson & McNeill, 1992).

There is at least one cyclic path of synaptic connections in a recurrent neural
network, and its basic characteristics are as follows:

1. All biologica neural networks are recurrent;
Dynamic systems are mathematically implemented;

3. Without recognition of a clear winner, severa types of training algorithms are
known; and

4. So far practical applications have been prevented by theoretical and practical
difficulties.

3.2.5 Training of Artificial Neural Networks

A network is ready for training when it has been constructed for a specific
application. At first, the initia weights are randomly selected, and then the training
starts. Two approaches are used for training: supervised and unsupervised.
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SUPERVISED TRAINING

Both inputs and outputs are available in supervised training; the inputs are processed
by the network and the results are compared with the desired outputs. Errors cause the
system to adjust the weights by propagating back through the system, so the network
can be controlled. This process of adjusting the weights occurs frequently. The “training
set’ isthe set of data used for the training process, The connections between the weights
are continually refined, as the same set of data is processed severa times during the
training of a network. If specific information is lacking in the input data which leads to
the desired output, the network may not learn. If the data is insufficient to enable
complete learning, networks also will not converge. If there is sufficient data, a part of it
can be taken to be tested (as atraining data set). Many classified networks with multiple
nodes can memorize data. It is essential to determine whether the system can simply
memorize its own data in some unimportant way to monitor the network. This can be
done by keeping back a set of data with which to test the system after it has undergone

training.

If anetwork is simply unable to solve a problem, the designer will need to review the
number of layers, the connections between the layers, the number of elements per layer,
the input and outputs, transfer, training functions, the summation, and even the first
weights. The training is governed by the designer's creativity. Adaptive feedback is
required in order to adjust weights during training, and this can be achieved by using
one of the laws (algorithms) which implement adaptive feedback. Back-propagation is
known as the most common technique. The training acts as akind of conscious analysis
to ensure that the network is not over-trained. An artificial neura network can initially
configure itself by using the general statistical trends of the data. The ANN continues to
‘learn” from other aspects of the data; however this can be seen as spurious from a

general viewpoint.

If desired, when no further learning is needed and the system is finally correctly
trained, the weights can be ‘frozen’. In some systems, the finalized network can be
converted into hardware to speed up the process; while other systems continue learning
during the production phase because they are not locked in (Anderson & McNaelll,
1992).
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UNSUPERVISED OR ADAPTIVE TRAINING
The other type of training is unsupervised training. In this type of network there are

only inputs available, and there are no desired outputs. To group the input data, the
system itself decides what features will be used. This is often referred to as adaption or
self-organization. These networks examine the performance of their weights internally
as no externa influence is involved. Adaptations are made according to the function of
the network, and the networks also seek regularities in the input signals. The network
should have some information about how to organize itself even if there is no awareness
of the correct direction. This information determines the network’s rules and its
topology. Cooperation may be emphasized by an unsupervised learning agorithm
among the clusters of processing elements, enabling the clusters to work together in
such a scheme. If some external input motivates any node in a cluster, the entire
cluster's activity could be increased. Moreover, external input could have an inhibitory

effect on the entire cluster, if there is a decrease in the external input to the nodes.

Competition could also be a basis for learning between processing elements. The
responses of specific groups to particular stimuli can be expanded by the training of
competitive clusters. And aso, those groups with a specific response will become
associated with each other. When there is competition for learning, only the weights
which belong to a prominent processing element will normally be updated. There is still
a gap in the knowledge about unsupervised learning, so significant research is required
(Anderson & McNeill, 1992).

LEARNING RATES
Severa controllable factors affect the learning rate of ANNSs. The slower the rate of

learning, the more time is needed to produce an adequately trained system. Fine
discriminations may not be made by a network undergoing a faster rate of learning, but
should be possible by using a slow learning system. There is some provision for a
learning rate (learning constant) in most learning functions. The rate of learning is
usually positive and takes a number between O and 1. The learning agorithm easily
overshoots to correct the weight if it is greater than 1, therefore the network will
oscillate. Small values will not correct a current error quickly, but there will be a good
chance for arriving at the best minimum convergence, if small steps are applied to

correct errors.
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LEARNING LAWS (ALGORITHMS)
There are many commonly used learning laws. Most of them are variations on a

similar theme, and the oldest and most famous is ‘Hebb’s Rule’ (Anderson & McNzeill,
1992).

Hebb’s Rule: If a neuron receives an input from another neuron while both of them
are highly active with the same sign, the weight between them should be strengthened;
this is defined as the basic rule. It was introduced by Donald Hebb in Organization of
Behaviour.

Hopfield Law: There is an increment in the connection of weight by the learning
rate if both desired output and input have the same state, otherwise it decreases the
weight.

Delta Rule: According to this simple rule, in order to reduce the difference (the
delta) between the actual output and the desired output value of a processing element, it
continuously modifies the strengths of the input connections.

The Gradient Descent Rule: There are similarities between this and the Delta Rule.
To modify the delta error before applying to the connection weights, there is still the
derivative of the transfer function. However, an extra appropriate constant factor is
appended to the final modifier factor which operates the weight.

Kohonen’s Law: Processing elements compete for the opportunity to update their
weights. The element with the largest output is successful, and is capable of inhibiting
its competitors and stimulating its neighbours. According to this rule, only the
successful element is permitted to have an output, and only this element and its

neighbours are allowed to adjust their connection weights.

Since the back-propagation algorithm is one of the most common methods used in
ANNSs, and many others are based on it, the back-propagation algorithm for learning the
appropriate weights is discussed briefly here. Probabilistic neural networks are
frequently used to classify patterns based on learning from the examples which will be
reviewed briefly in this chapter. The generalized regression neural network (GRNN)
fallsinto the category of probabilistic neural networks, which is the basis of the analysis
in this thesis, and therefore will be discussed briefly in this section as well. More

discussions on the GRNN model are provided in Chapter 4.
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3.3 Back-Propagation Algorithm

The back-propagation algorithm is used to train a FFMLNN for a given set of input
data with known classifications. When each data is presented to the neural network, the
network compares its output response to the input data. The modelled output is then
compared to the observed output and the error which difference between the modelled
output and observed output is calculated. Based on the reported error, the connection
weights will be adjusted. BP uses gradient descent similar to same algorithm which is
used in solving mathematical optimization problems. In gradient descent algorithm a
step size needs to be selected. This step size is caled the learning rate in back-
propagation algorithm. The learning rate indicates the adjustments to the weights at
different iterations. Initial weights are normally selected randomly for the BP algorithm.
The gradient descent based training algorithm is sensitive to the initial weights and
often experiences local minima issue (Celikoglu, 2006), another disadvantage of BP
algorithm is its convergence rate which is very slow (Rigler et al., 1991, Jacobs, 1988,
Wilamowski et a., 2001) and therefore requires a number of iterations to converge
(Vogl et a., 1988). Significant work has been undertaken to improve the convergence
speed of BP through optimization techniques (Barnard, 1992, Hagan and Menhaj,
1994).

3.3.1 Pros and Cons of Back-Propagation Neural Networks

The flexibility of back-propagation neural networks is one of its attractive features.
This feature is useful for decision-making or pattern recognition problems. Another
advantage of BP isthat the processis highly parallel, and the use of parallel processors
could reduce the calculation time (Specht, 1991; Gupta & Rao, 1993; Cherkassky et al.,
1993).

Back-propagation neural networks also have negative features as discussed in the
above, such as the substantial amount of time required for training the BP network
(Gupta & Rao, 1993). The network performs very fast as soon as the training is
complete. The size of the training data for back-propagation neural networks should be
very large, and in some respects thisis a disqualifying aspect. Providing enough training

samples is amost impossible (Zurada, 1962), for example, when the training samples
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are the result of very expensive experiments or when the data is from observations of

nature which occur very rarely.

3.4 Probabilistic Neural Network

The classification of patterns is undertaken based on learning from examples using
probabilistic neural networks. ‘The Bayes Strategy for Pattern Classification’ is the
basis for probabilistic neural networks. The pattern of statistics is determined by the

different rules from the training samples.

Back-propagation is not based upon statistical methods. Many feedback iterations
and long time periods are required for the back-propagation to gradually approach the
underlying function (Specht, 1991). It is desirable to approach the parameters by a one-
step-only method. The Bayes Strategy for Pattern Classification is used to obtain
characteristics from the training samples that revea knowledge about the underlying

function.

Figure 3-7 illustrates the genera structure of a probabilistic neural network. There
are two hidden layers and one input layer in the probabilistic neura network. The
pattern units include the important functional form which is in the first hidden layer.

Information on one training sample is represented by each pattern unit.
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Figure 3-7: Block Diagram of a Probabilistic Neural Network

Figure 3-8 shows the calculations of the pattern unit. Each pattern unit performs an
estimation of the probability on how well the input vector fits into the pattern unit.
Deciding which pattern the input vector finally belongs to is done through the individual
results for each pattern. Only one summation unit isin the second hidden layer. In order
to give the output a physical meaning, a calculation is again performed by the output
unit. Having multiple outputs is not aways possible for a probabilistic neural network.
There is a large difference between a probabilistic neural network and a back-
propagation neural network which is defined as the process inside the neurons. Some
functions are applied by the probabilistic neural network, based on knowledge from the
Bayes Strategy for Pattern Classification. Therefore, fitting the data in the best way by
the selection of weights is not a defined strength of the probabilistic neural network.

Thisis used inside the neuron that lies in the function.
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Figure 3-8: Processin a Pattern Unit (Anderson & McNeill, 1992)

A probability density function is used in the neuron of a pattern unit. As Figure 3-9
illustrates, there should be a distance between the sample point and the position at
which the prediction takes place that calculates the output. Actually, the probability
density function needs this distance. In the summation unit, the output of each pattern

unit is summed up and then transformed into a result with physical meaning.
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Figure 3-9: Distance between the Training Sample and the Point of Prediction
(Anderson & McNeill, 1992)

The Bayes Strategy for Pattern Classification can aso be used for prediction of

continuous outputs because it is valid for continuous results as well (Parzen, 1962).

3.4.1 Generalized Regression Neural Network

Specht (1991) proposed that the generalized regression neural network (GRNN) falls
into the category of probabilistic neural networks. Like other probabilistic neural
networks, only a fraction of the training samples from a back-propagation neural
network are required in this neural network (Specht, 1991). From the measurements of
an operating system, the available and accessible data is generally never enough for a
back-propagation neural network (Specht, 1990). Since the probabilistic neura network
is capable of converging the underlying function of the data with only a few available

training samples, it is considered as a powerful tool in practice.
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3.5 Probabilistic Neural Networks vs Back-Propagation Neural

Networks

According to Cherkassky et a. (Cherkassky, 1993) statisticians, researchers and
neural network developers have different backgrounds and goals in analytical methods
or designing algorithms, therefore a tension always exists between them. The structure
of the data is the main focus in statistical methods, while it is secondary for neurd
network developers. Therefore, the neural network approach needs a greater quantity of
data than the amount of data needed for statistical methods.

Most methods are asymptotically good (Cherkassky, 1993), while there are severe
drawbacks to most of them. Back-propagation networks require a large number of
training samples and a lot of time in order to gradually approach the good values of the
weights. It is also computationally very expensive to add new information into BP
models which require retraining, while this is not the case for probabilistic neura
networks. The prediction algorithm in probabilistic neural networks works with only a
few training samples, which is a great advantage, and the other main advantages are
flexibility and the ability to add new information immediately without retraining.
Therefore the advantage of PNNs over the BP can be summarised as below:

e Fast training process;
e Always converge to an optimal;
e Nolocal minima issues; and

e Training data can be added or removed without substantial retraining.

3.6 Utilization of the neural networks to model trip
distribution

The application of neural networks in the transport modelling area is growing fast.
The literature indicates that NN have been used for driver behaviour simulation models,
mode choice and trip distribution problems. Table 1 summarizes the maor studies
undertaken so far to estimate trip distribution by applying the NN technique. Table 3-1
indicates that all of the studies undertaken used trip production, trip attraction and
distance between a pair of zones as the inputs to the neural network model. BP was the
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main training algorithm used for most of the studies and RMSE was the main

performance measurement used in the majority of the research.
Table 3-1: Application of Neural Networksfor Trip Distribution Estimation

Network details

Author Date Input Data  Network Structure  Training Performance
Black 1995 P,A,D MLF BP RMSE
Xie 2000 P,A,D MLF BP RMSE, R
Mozolinet al. 2000 P,A,D MLF BP RMSE, AE

GIS,
REMOTE

Dantaset a 2000 SENSING MLF BP MSE
Tapkin 2004 P,A,D Revised MLF GD RMSE
Celik 2004 P,A,D MLF BP, LM RMSE
Tillemaet al. 2006 P,A,D NA NA RMSE
Yaldi et al. 2009 P,A,D MLF BP RMSE, R
Yaldi et al. 2011 P,A, D MLF LM R

Abbreviation definitions: P: production, A: attraction, D: distance, MLF: multi-layer feed-forward, BP:
back-propagation, RMSE: root mean square error, AE: absolute error, NA: not available, R: correlation

coefficient R?: coefficient of determination, LM: Levenberg-Marquardt.GD: Gradient descent

A neurd network is recognized by its key properties, including its learning
algorithm, number of layers (input, hidden and output) and nodes inside each one,
activation function, and learning rate (Teodorovic and Vukadinovic, 1998; Dougherty,
1995). The amount and split of the data used for training, validating and testing
procedures are also important factors in the performance of the network (Carvalho et al.,
1998). It was proposed by Zhang et a. (1998) that an NN model may be developed
through trial and error methods if no appropriate guidelines are available. There is
insufficient research on the behaviour of NN. Some researchers combine the application
of NNs with other algorithms such as genetic algorithm to improve the performance of
the modelling outcome. For example, Fischer and Leung (1998) developed different
models of NN and combined them with the genetic agorithm (GA) in order to predict
traffic flows in aregion in Australia. Their results showed that combining GA and NN

modelling leads to an improvement in results.

It should be noted that employing an NN must be the result of logical and theoretical
considerations; otherwise it would be a naive tool. A neural network is an intelligent

computer system that employs the processing capabilities of the human brain for its
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simulations (Black, 1995). It is a method able to forecast and solve problems through
minimizing errors (the deviation between input and desired output) using complicated
training processes (Black, 1995; Zhang et al, 1998).

Severa studies have been undertaken in order to determine the advantages and
disadvantages of using NN in transportation modelling. Studies have compared NN
modelling results with the results of conventional methods; e.g. NN has been compared
with the discrete choice model in research performed by Carvalho et al. (1998), Subba
Rao et a. (1998) Hensher & Ton (2000) and Cantarella & de Luca (2005). According to
the current literature, the application of NN in trip distribution is not as common as
mode choice studies. Most of the cited papers in trip distribution modelling by NNs
indicate the application of multi-layer feed forward NN trained by BP or LM. No
researcher has investigated the application of the other NN structures such as Radial
Basis Function (RBF) or Generalized Regression Neural Networks (GRNN) for trip

distribution problem.

Celikoglu (2007) investigated the application of RBF and GRNN in non-linear utility
function specification for travel mode choice modeling. The study undertaken by
Cedikoglu investigated the performance evauation of three neural network methods,
RBFNN, GRNN, and FFBPNN, and multivariate linear regression analysis during the
calibration process of abinary logit model, in order to split daily home-based work trips
into private car and public transport modes.

The neura network method established by Celikoglu was not used directly for model
calibration. It was used as a sub-process for identifying an alternative to represent the
non-linear utility function of the selected model. The neural mode choice model was
developed for home-based work trips to split trips into private car and public transport
modes. The calibrated outcomes were compared with a conventional statistical method,
multivariate linear regresson (MVLR), in terms of selected performance criteria. The
results indicated that the all three NNs are able to predict utilities that provide
reasonable estimates for mode choice calibration process. In particular, calibration

involving NNs as a sub-process indicated slightly better performance.
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Black (1995) has investigated the modelling of spatial interactions focusing on
commodity flows with NN. The structure of the model was similar to that of the gravity
model. The production and attraction of trips and distances between production zones
and attraction zones were considered as the input for the NN model developed by Black.
He designed an artificia neural network model that included a three-layer back-
propagation network: The input, output and hidden layers. Three neurons were
employed in each of the input and the hidden layers while the output layer only had one
neuron; bias neurons were selected to be attached to neurons of the hidden and the
output layers. The network structure contained 16 weighted connections, and every
weight was evaluated during the training procedure.

Black analysed Commodity flow data between nine regions in order to make a
comparison between the proposed model and a constrained/unconstrained version of the
gravity model. Inputs for the gravity models included production/attraction of trips and
distances between the regions, while input data for the proposed NN model included
regional production and attraction of trips and interregional distance between the origins
and destinations of the trips. All input data was normalized to between 0 and 1; the
longest distance, the total production flows (row totals of the flow matrix) and the total
attraction flows (column totals of the flow matrix) were aso normalized. As the
normalized data was fed into the proposed NN model, the model would generate
normalized output flows though minimization of the errors via the back-propagation
algorithm.

By comparing the root mean square values for errors (RMSE) of the aforementioned
models, Black inferred that the proposed NN model could reduce error by between 30%
and 50%. He concluded that the errors in the proposed NN model were 50% less than
for gravity models. He aso claimed that modelling accuracy increased from the
unconstrained gravity model to the fully constrained gravity model and further to the
proposed NN model.

Xie (2000) employed a neura network for the modelling and prediction of intercity
passenger flows using the same architecture as the Black model, and this work can be
considered as an extension of Black’s investigations which compared the predictive

abilities of neural networks and conventional models. Xie (2000) also utilized the same
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normalization process that Black used for input data. Flow maps were generated after
assigning the flows to a partial railroad network. Afterwards, the assigned flows and the

flow maps were further statistically analysed.

Xie (2000) used actua passenger flow data from Amtrak for the prediction and
analysis of regiona passenger flow and its patterns for Amtrak. She stated that
insufficient research had been undertaken on Amtrak passenger flows athough there
were severa studies on region-to-region/city-to-city analysis of people and goods
transportation by highway or air. She aso noted that most of the studies excluded
diagona cells with zero values in the intra-city/intra-regional flows and also off-
diagonal cells for these flows. She argued that the zero cells should aso be predicted,
which would help in comparing the prediction accuracy of different models. She

therefore used the data set including al of its zero values.

In her study, Xie (2000) presented a neural network model with back-propagation
and a descent gradient search algorithm. In order to assess the predictive ability of the
model, it was employed to predict monthly inter-city Amtrak passenger flows between
sample stations. Three gravity models were also simulated for comparison, including a
regression model, a log-normal regression model, and a fully-constrained model. The
predictions for passenger trips were designated to the railroad network in order to
acquire the flow maps needed for further network flow pattern and link flow volume
analyses. An additional study was performed to determine the relative order of
importance of al of the variables that were defined in the neural network model. Xie
addressed the temporal stability of the model by cross-validating the Amtrak passenger
flow data for a 12-month period. The training data was a set of 97x97 cases tested with
a sample size of 3104 cases. The root mean sguare errors were calculated for

comparison with the gravity-based models.

Xie (2000) concluded that the neural network model performed satisfactorily when
applied to large data sets and clearly outperformed the regresson methods by
minimizing errors and making more accurate predictions requiring no additional data.
The interaction modelling by the neural network model showed the second best
performance in minimizing the total root mean square error, compared with the fully-

constrained gravity-based model. The neural network model also outperformed the
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fully-constrained gravity-based model in the minimization of root mean square error for

certain volume groups.

Another study in this field was conducted by Mozolin et a. (2000), who researched
the application of multilayer perceptron neural networks and doubly-constrained gravity
models for the analysis of commuter trip distribution. They declared that different
modelling approaches had been developed for modelling the distribution of
tripg/freight/information between origins and destinations, one successful example of
which was the spatia interaction or the gravity-based model with interrelation between
the matrix of flows and the matrix of inter-zonal impedances.

Severa studies (Openshaw, 1993; Fischer & Gopal, 1994; Black, 1995) have
encouraged the application of neural network architecture in modelling complex spatial
interactions; therefore Mozolin et a. (2000) aimed to compare the performance of a
perceptron neural network model with spatia interactions to the constrained gravity-
based model. Journey-to-work patterns in metropolitan Atlanta were selected as an

empirical case for this comparison.

In this study a detailed comparison was made between perceptron multi-layer neural
network models and doubly-constrained models in predicting commuter trip
distribution. Despite the results of the investigations done by Fischer and Gopal (1994)
and Black (1995), which indicated that a neura network model using an iterative
proportional fitting procedure might perform effectively in estimating spatial interaction
flows, Mozolin et al. (2000) believe that it might better fit the data but accuracy of its
predictions is not comparable to that of doubly-constrained models. They also noted that
studies they have conducted show that neural network spatial interaction models display
lower predictive accuracy than doubly-constrained models using an exponential
function of distance decay. A number of probable reasons have been given for the
under-performance of neural network models, including non-transferability of the
model, its insufficient ability in generalization and dependency on sigmoid activation
functions. Further investigations into the application of other perceptron formulations
(i.e. spatial structure used as input for neural network) and other neura networks (e.g.
radia basis functions) is recommended in order to perform highly accurate predictions

of gpatial interaction flows.
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Dantas et al. (2000) used MLFF neural models to estimate travel demand where the
data is mainly sourced from remote sensing (RS) images processed in geographical
information system (GIS). Dantas et a. (2000) developed two different model structures
for function approximation, and pattern classification. The developed model then
applied to Boston Metropolitan Area (Massachusetts State — USA), the first model
aimed to find the relations ship between the input data (which was sourced from the RS
and GIS) and the output data (trip distributions). The second model structure was
developed to forecast the levels of urban movements as main element for evaluation of
strategic planning. The second model’s output classifies the projected trips in different
levels: high, medium-high, medium, medium-low and low.

Recent research by Tapkin (2004) recommended a neura trip distribution model
(NETDIM) as a newly-developed approach, and a comparison was made with the
predictive performance by three models: back-propagation neural, modular neural and
unconstrained gravity models. The ultimate goal was to compare their levels of
prediction rather than demonstrating how well they predicted a given set of data, in
order to precisely investigate the models’ predictive performances. The root mean
square errors (RMSE) of predicted and observed zonal trips for different sizes of

networks were used to compare the models’ prediction levels.

In order to generate various sizes of networks, a network with a size of thirty nodes
was chosen and data sets were taken from the Bursa Transportation Master Plan. The
networks contained various nodes, each related to a network with a specific size, and the

largest network with a size of thirty node zones was selected.

The test results gained for networks with different sizes from the trained neural
models and calibrated gravity model yielded RMSE values for which the first, second
and third lowest values respectively came from the NETDIM, modular model and
gravity model. RMSE has the least predictive capability because of the significant
fluctuations in values obtained from analysing the back-propagation model. The
NETDIM therefore performed the best out of the modelsin the prediction of zona trips,

no matter what size the network.
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Celik (2004b) used the US commodity flow by using the data from US 1993
Commodity Flow Survey (CFS) to develop and calibrate three different neural models.
The neural models were constructed based on the condition of the input data and
compared with the Box-Cox model. The Box-Cox model used in the comparison was an
interregional commodity flow models based on the earlier study by Celik and
Guldmann (2007). The study by Celik (2004b) reported that NN may improve the
performance of the predictive models in freight distribution modeling, in the same way
as they have for passenger flows. An NN with conventional flow distribution variables
may provide moderate performance improvement in comparison with aregression based
statistical model or a gravity model good performance of neural models. Then, the
research was continued in the same year aiming at investigating the “predictive”
capability of neural models (Celik, 2004a).

Tillema et a. (2006) have studied and compared the results of NN and the gravity
model in order to predict trip distribution. This study reveaed that neural networks in
both synthetic and real situations transcend gravity models when data is scarce. These
results show the future of trip distribution modelling and were obtained using both real -
world and synthetic data sets, which provide the chance of controlling the test. Thereis
a significant difference between this study and others such as that of Mozolin et al.
(2000).

These studies clarify the performance of neura networks in various complex cases,
and also show that neural networks perform better than other models in unusual cases.
These results were achieved just using synthetic cases, when real-world cases are used,
the results are stronger. In the study by Mozolin et al. (2000), both synthetic data and
real-world data were not used for changing complexity. Moreover, the results of a
statistical analysis in this research showed that more training samples are required for

gravity models than for neural networks.

Finally, this study compared the performance of two models, doubly-constrained
gravity and neura networks models, in the context of trip distribution. The results
revealed that neural networks outperformed gravity models when data is scarce.

According to the generation of the synthetic data and the research method, when thereis
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alot of data available, it is less certain that the gravity models outperform the neural

networks.

Different studies have been implemented in order to improve the modelling ability of
neural networks, also to satisfy the attraction and production constraints. Yaldi et a.
(2009) have announced that NN modelling can satisfy production and attraction
constraints, with average correlation coefficients (R) of 0.958 for production and 0.997
for attraction while using smple data normalization and a linear activation function
(Purelin) in the output layer. Their research results also demonstrated that areliable NN
can generate a goodness of fit similar to that of a doubly-constrained gravity model.
However, the average root mean square errors indicate that the NN error level is still
greater than that for the gravity model, with the RMSE being 174 and 181 for the
gravity model and NN respectively.

In another study, Yaldi et al. (2011) tried to improve the testing performance of the
NN by training the models using the Levenberg-Marquardt (LM) algorithm, while
standard back-propagation, Quickprop and variable learning rate (VLR) algorithms had
been used in previous research. There is a significant difference between these

algorithms and this is the method used to define the optimum connection weights.

The work trip data used in this study was based on the 2005 home interview survey
conducted in Padang City, West Sumatra, Indonesia. The area of the study included 36
zones. In order to convert the input data to binary mode, a simple data normalization
method was used. Matlab was the software used for developing the network, and the

modelling tool set the initial values for the connection weights randomly.

As the authors claimed, the study was unique because the experiments were repeated
30 times (previous studies had repeated the experiments just five times, e.g. Mozolin et
al. (2000)). Moreover, each experiment had a limit of 100 times for iteration number or
epoch, while there had not been such a limit in previous studies. For example, Black
(1995) iterated up to 150,000 epochs and Mozolin et a. (2000) up to 100,000 epochs.
This high number in training leads to over-fitting of the models.
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It was claimed that the error in NN models trained with the LM algorithm is much
lower than in the doubly-constrained gravity model. It also had a higher goodness of fit
(correlation coefficient/R). The production and attraction constraints are also only
satisfied when the model is trained with the LM algorithm. As a result, none of the BP
or VLR algorithms was suitable for training the problem of fully constrained spatial

movement.

In this study RMSEs of 168, 152 and 125 were obtained for amodel trained with BP,
VLR and LM respectively, while the R? values were recorded as 0.194, 0.315 and 0.505
respectively. The forecasted total trip numbers estimated by the models which had been
trained with BP and VLR were lower than the real ones, while the numbers for the LM
algorithm were reported as being slightly higher. Yaldi et al. (2011) demonstrated that
with the use of LM algorithm, the testing performance of the neural network model
could be improved to the same level as the doubly-constrained gravity model.

3.7 Summary

This chapter provided basic information about neura networks and reviewed
different types of neural networks. Back-propagation, probabilistic and generalized
neural networks were discussed in this chapter. The advantages of the probabilistic
neural networks over back-propagation neural networks were reviewed and a basic

discussion on generalized neural networks was provided.

Reviewing the available research on trip distribution modelling using neural
networks, indicates that neural networks are capable of predicting trip distribution and
can be used as a method of trip distribution estimation. A number of studies claim that
neural networks even outperform the gravity model in the prediction of trip distribution.
NN is recognized by its important characteristics, such as the learning agorithm,
activation function, number of layers (input, hidden and output), number of nodes inside
each layer, and learning rate. The amount of data and the split of the data used for
training, validating and testing purposes are also essential for NN performance. The
literature review indicates that few studies have been undertaken that use land use data

for a pair of zones as an input to the NN model instead of trip productions and

62



Chapter 3 Neural Networks

atractions. There have aso been no/few attempts to utilize a generalized regression
neural network (GRNN) to estimate trip distribution. The advantage of the GRNN

model over other feed-forward or feedback neural network techniques is its ssmplicity

and practicality.
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4. RESEARCH METHODOLOGY
AND FRAMEWORK

4.1 Introduction

This chapter explains the methodology for developing three different models for
estimation of the work trip distribution in Mandurah locality. The first two models are
based on neural networks (GRNN and BP) and the third model is based on traditional
gravity model. According to the literature a number of BP models have aready been
developed and tested for estimation of the trip distribution for commodity, migration
and work trip flows. For the purpose of this research a BP model is developed with the
proposed Levenberg-Marquardt (LM) agorithm which has been clamed by Yaldi
(2011) that performs better than those neural models trained with other algorithms.
Considering that GRNN is the focus of this research the structure and the theory of this
model is discussed in this chapter and the role of spread factor (sigma) in GRNN

modelsis also reviewed.

4.2 GRNN Model

The generalized regression neura network, as proposed by Specht (1991) falls into
the category of probabilistic neural networks as discussed briefly in Chapter 3. The
GRNN is a feed-forward network and is especially useful due to its ability to converge
to the desired outcome with minimal available training data. Relatively little additional
knowledge is required to train the network and develop the GRNN structure, and can be
done without additional input by the user. This makes GRNN is a very powerful tool in
practice. According to Specht (1991), other benefits of GRNN include:

e The network is able to learn from the training data by ‘one-pass’ training in a
fraction of the time it takes to train standard feed-forward networks.
e The spread, Sgma, isthe only free parameter in the network, which often can be
identified by split-sample cross validation.
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e Unlike standard feed-forward networks, GRNN estimation is always able to

converge to a global solution and won’t be trapped by a local minimum.

The fundamentals of the GRNN can be found in Specht (1991), Nadaraya (1964),
Watson (1964), Tsoukalas and Uhrig (1997), and Schioler and Hartmann (1992). A
schematic structure of the GRNN isillustrated in Figure 4-1. A GRNN does not require
an iterative training procedure. It can estimate any nonlinear function between input and
output vectors, learning the relationship between the input and output data directly from
the training data. Furthermore, it has been found that with alarger training set size, the
estimation error approaches zero, with minimum restrictions on the function. The

GRNN is used to predict continuous variables as in standard regression methods.

Input Layer  Pattern Layer Summation Layer Output Layer

Figure 4-1: Schematic Structure of GRNN

The GRNN consists of four layers as shown in above figure: input layer, pattern
layer, summation layer and output layer. The first layer which is the input layer is
connected to the pattern layer. The total number of parameters in the input layer is
identical to the number of input units. The second layer represents the training pattern
and is called the pattern layer, and it calculates the distance between the input and the
stored patterns. The third layer is the summation layer and entails two neurons. the S
summation neuron and the D-summation neuron. Each unit in the pattern layer connects
to the summation layer. The S-summation layer calculates the sum of the weighted
outputs of the pattern layer and the D-summation layer measures the unweighted output

of the pattern neurons. The linkage weight y; in above figure represents the calculated
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weight between the S-summation neuron and the i neuron in the pattern layer; the
target output value links to the i input pattern. In the last layer or the output layer the
output of each S-summation neuron will be split by the output of each D-summation

neuron, which provides the predicted value to an unknown input vector x as:
zin:1yi exfd— D( x, xi)]
zi”:,F:xp[—D (x,xi )]

yi (X) = 4.1

in which n represents the number of training patterns. The Gaussian D function is
calculated as follows:

D (xxi )= _§_1(ngx”)2 42

J =

p shows the number of elements of an input vector. The x; and x;; represent the j"
element of x and x; respectively. The & is generally known as the spread factor. The
optimal value of & is calculated experimentally (Specht, 1991). The larger the spread
factor, the smoother is the function approximation. If the spread factor is too large, it
means that many neurons are involved in function approximation. If the spread factor is
too small then many neurons would be required to fit a smooth function, in which case

the NN may not generalize well.

4.2.1 SIGMA Determination

The smoothness parameter or spread factor (o) indicates the width and slope of the
neurons functions. This factor is the only parameter in GRNN that needs to be adopted.
The other parameters are provided by the training patterns.

According to figure Figure 4-2 when ¢ is too high, the generalization ability is high
as well and the MSE between the estimated training data and target data is significant.
The higher values of ¢ are useful when the data is noisy or when it contains severa
significantly outstanding values because the spikes will be omitted successfully.
However, the value of ¢ should not exceed 1 because the abilities of function

approximation will be lost.
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Figure 4-2: Dependence of Generalization Ability on the Spread Factor
(Svobodova.J 2012)

The holdout method (Specht 1991) is more often used for selecting the o value
because of its simplicity. According to holdout method the training patterns will be
divided into two groups, one third of the training dataset is used for testing while the
rest are alocated to the training data set. After the network training, the MSE is
calculated using the testing data set and will be saved. This process is repeated for a
given number of passes with different division of the dataset (with less training data
than in the previous run). Whole process is repeated for many different values of ¢. The
run with the smallest overall MSE value is picked and its ¢ is used for the whole
network. More discussions on the hold out method and other cross validation techniques
are provided in the GRNN model validation chapter of the thesis.

4.2.2 GRNN model variables

Input data into the GRNN model is in the form of a vector which the components of
this vector reflects the land use data for the origin and destination zones. For the
purpose of this research the following land use information were selected for the input
to the GRNN model:

e Residential dwellings. number of dwellingsin each zone;
e Retail: Gross Floor Area (GFA) of retail in each zone;

e Commercial/ Office: Gross Floor Area of the office in each zone;
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e  Showroom: Gross Floor Area of showroomin each zone, and

e Schools: number of studentsin primary or high schools in each zone;

The output of the GRNN model is the trip distribution between each pair of zones. For
the purpose of this research only work trips are investigated. Therefore the output of the

GRNN model isthe number of work trips between each pair of zones.

It should be noted that, zones with the residential dwellings are generators of the
traffic and zones including the non-residential land uses are considered to be attracting
zones. Work trips generated from the residential zones will be attracted by the zones
which entail retail/ shops, offices, showroom and schools. Therefore the work trip
distribution between two purely residential zones is expected to be zero. There are a
number of zones in practice that are purely residentia (in particular if the zoning system
is small and detailed for the modeling area) and therefore the work trip distribution

between those zones is zero.

It is important that the neural models can predict the zero work trips within an OD
matrix. Therefore for the purpose of this study the work trip distribution with zero
values are not removed from the input vectors. The zero work trips sometimes would
happen for diagonal cells of an OD matrix with zero values in the intra-zonal trips (Xie
2000) but it is recommended that intra-zona trips are also included in the input data to
neural models to be able to investigate the performance of the neura models for

predicting the zero trips.

Accordingly the input layer of the GRNN modé is represented by a vector including
11 components. The first 5 components reflect the land use data for the origin zone and
the second 5 components (components 6 to 10) indicate the land use data for the
destination zone. The Trips (Tj;) between a pair of zones are considered as the output
layer of the neural network. On this basis vector (X) including the input data to the
neural modelsis defined as:

X;;=(RD;, RE;, CO;, SH;, SC;,RD;, RE;, CO;, SH;, SC;, Dj))

wherei and j show the origin and destination zones, respectively.
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Djj is the last component of the Vector Xj; and it reflects the general cost between the
origin and destination zone. The general cost indicates the separation between the origin
and the destination zones and for private cars includes the following measures:

e Operating costs (including fuel costs);
e in-vehicletime;

e parking costs,

e accesstimeto and fromthe car;

e tollsor user charges;

Generalized cost normally combines all of these variables together as a weighted
sum of those factors for the origin to destination zone in the model.

For the purpose of this study distance between the origin and destination zones are
used to reflect the generalised cost between the zones. Studies undertaken by Black
(1995), Mozolin (2000), Tapkin (2006) and Yaldi (2011) are also used distance between

the origin and destination zones as the generalised cost between the zones.

On this basis, total of 441 vectors was produced from 21 zones within the Mandurah
and Murray study area. Table 4-1 summarises the work trip distribution for the 21
destination zones in Mandurah. Appendix B of this thesis shows the destination zones
and OD matrix for Mandurah and Murray. The work trips which are based on the 2006
ABS Census data are sourced from Department of Planning (DOP) in Western
Australia. Appendix C of the thesis also shows the extracted 441 vectors that have been
used for the development of the neural models (GRNN and BP).
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O/D zone 01 [ zone 02 | zone 03 | zone 04 | zone 05 | zone 06 | zone 07 | zone 08 | zone 09 | zone 10 | zone 11 [ zone 12 | zone 13 | zone 14 | zone 15 | zone 16 | zone 17 | zone 18 | zone 19 | zone 20 | zone 21
zone 01 352 3 235 48 37 318 115 43 81 138 82 169 187 18 68 30 8 37 0 0 20
zone 02 9 38 40 15 7 46 56 9 16 42 8 25 0 9 24 7 0 6 0 0 0
zone 03 19 0 143 12 19 65 51 32 26 39 29 52 37 13 21 15 4 22 0 3 8
zone 04 30 5 72 96 26 176 54 32 35 60 14 74 62 16 40 15 5 45 0 4 13
zone 05 64 6 176 46 247 327 140 51 66 140 47 177 100 23 64 45 7 49 0 12 11
zone 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 07 74 19 148 0 0 0 273 19 51 65 46 37 19 0 65 14 0 56 0 0 0
zone 08 46 11 315 117 62 479 383 660 153 415 177 266 237 41 167 157 20 107 0 9 17
zone 09 19 0 57 18 14 29 37 0 70 27 16 31 6 6 33 19 0 19 0 6 8
zone 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 11 4 0 28 4 3 25 8 3 6 36 21 3 25 0 3 3 0 4 0 0 6
zone 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 13 24 0 82 28 6 47 9 39 34 52 30 71 120 15 45 13 0 28 0 6 0
zone 14 11 0 29 10 10 99 41 16 24 55 14 39 50 47 13 11 6 9 0 0 7
zone 15 30 8 109 46 23 213 77 43 58 161 29 120 144 13 176 38 11 45 4 6 14
zone 16 35 3 167 61 46 321 176 140 72 241 70 133 100 18 117 550 52 52 5 6 24
zone 17 13 0 89 33 8 74 87 56 37 106 45 38 37 15 31 91 220 22 0 6 0
zone 18 6 3 27 6 8 56 8 15 12 16 6 22 0 3 6 8 0 279 3 0 15
zone 19 0 0 52 20 9 17 12 20 0 0 9 40 0 0 9 0 0 164 69 17 17
zone 20 29 4 67 22 24 139 33 21 25 104 21 54 44 6 37 18 7 105 5 173 23
zone 21 15 3 67 19 20 136 48 17 19 36 21 58 81 6 28 9 0 76 3 12 193
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4.2.3 GRNN Data Split Method

Data splitting is an important stage of the neural network development. The purpose
of the data split is to produce separate, independent datasets for training, testing and
validating NN models. There are different methods for splitting the data and generating
the datasets for input to the NN models. The most common method is the random data
splitting method. The random data splitting provides a data split using uniform random
sampling to generate training, testing and validating datasets. There are other methods
available for data splitting including systematic data splitting method (Baxter et al.,
2000), SBSS-N data splitting method developed by Bowden (2002) and Kingston
(2006) and duplex data splitting method devel oped by Snee (1977).

The study undertaken by Black (1995) did not report the data split method for each
dataset. Mozolin et al. (2000) and Yaldi et al. (2009) reported that the random data split
method was used for training, validation and testing.

For the purpose of this study random data split was used for the input dataset to NN
model. The following steps were undertaken to prepare the training, testing and
validation data sets:

o All 441 vectorswere stored in the Excel spread shest;

Through the random number generator function in excel software, random

numbers were assigned in the first column for each vector;

e The vectors were sorted by the random numbers and the last 41 vectors were
selected for the testing dataset.

e The 41 testing dataset were checked to insure that it includes all combination
of land use data for the origin and destination zones (i.e. zones with purely
residential land uses with zero work trip distribution and zones with high trip
distributions are included in the testing data set);

e The process of random data selection for training and checking the testing

data set was repeated a few times to insure that the testing data set represents

a good sample of different trip conditions in Mandurah.
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4.2.4 GRNN Data Normalisation Method

Data normalisation means casting the data to a particular range, for example between
0 and 1 or between -1 and +1. The purpose of normalisation is to eliminate the influence
of one model variable over the other variables and is used when the model variables are
not is the same range. Theoretically, it is not necessary to normalize the x-data
(independent data), however, practically it has been proven that when independent data
are normalized, neural network training is more efficient and provides better

estimations.

There are three different normalisation methods as follow:
e Smple data normalization;
e Linear transformation; and,

e Satistical normalization.

Simple normalization uses the following formula
Xn = X0 / Xmax 43
Linear normalization will convert the input data to the range [0,1] with the following
formula:
Xiscaled _ X?ctual — Xmin 44
Xmax ~ Xmin
Statistical normalization will convert the input data based on its mean and standard

deviation using the following formula:

Xi =(xo—X)/SD 45

Some researchers have used combination of the above normalisation methods for
each independent data in the model. This is normally known as “mix sample” method.
Black (1995) and Yaldi et a. (2011) have used mix sample method for normalisation of
the x-data. Accordingly they have divided al the independent data, except the distance,
by the summation of the number of trips for each x-data. The distance is normalized by

its maximum value.

72



Chapter 4 Research Framework

The study by Yaldi et a. (2009) showed that the neura model with simple
normalization method performs better than the statistical and linear transformation

methods for training or calibration.

For the purpose of this research all three methods of normalisation have been applied
to the input data of the GRNN model and the performance of the model has been
reported for each method. According to the Analysis undertaken the GRNN model
provided very similar results for al three different normalization methods. The only
difference was the value of the optimum spread factors. The optimum spread factor or o
value is reported to be different for each data normalisation method and needs to be
adopted empirically or by cross validation techniques to get the best model

performance.

The output layer of the GRNN model was not normalised in this study because
generdly, there is no need to normalize the output data, except in unusua situations.
However the study undertaken by Black (1995) and Yaldi et a. (2011) have used smple

normalisation for the neural model outputs (Tj;).

4.2.5 GRNN Model Testing

The model testing in this study applies to the 41 testing data set (about 10% of the
total vectors). The testing data set are not used in the training process of the GRNN
model and therefore are new to the GRNN model. Table 4-2 summarises the 41
normalized vectors that are used in the testing data set.

When the GRNN model has been trained and the optimum spread factor has been
adopted through the training process, then the model is applied to the testing dataset
with the same spread factor calibrated during the training process and the modelled
output are compared with the actual output to check the performance of the GRNN
model. The performance measurement of the GRNN model is calculated and reported

with three different methods explained in the next section.
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Table4-2: 41 Normalized Vectorsin the Testing Data Set

RDi
0.0
0.1
00
0.0
02
0.1
02
1.0
0.0
04
0.1
02
04
0.1
04
02
0.0
0.0
02
0.1
02
0.0
0.0
02
0.1
0.1
02
02
04
04
02
0.1
1.0
0.0
0.0
02
0.1
0.2
00
06
04

REI|
03
02
10
09
03
02
00
04
03
0.0
00
0.0
0.0
02
0.0
0.3
09
10
03
02
03
03
1.0
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
04
09
09
00
00
0.0
1.0
03
00

COi
0.1
0.0
02
0.1
08
0.0
00
0.1
1.0
0.0
00
0.0
04
00
00
04
0.1
02
08
0.0
08
1.0
02
04
00
00
0.0
0.0
00
00
04
0.0
0.1
0.1
0.1
04
0.0
0.0
02
00
04

SHi
1.0
0.1
0.1
02
0.4
0.1
0.0
0.1
04
0.0
0.0
0.0
0.0
01
00
04
02
0.1
04
0.1
04
04
0.1
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
00
01
02
02
0.0
0.0
0.0
0.1
00
0.0

SCi
0.1
0.2
00
0.0
0.4
0.2
0.0
0.8
0.0
07
0.0
0.0
0.6
02
07
0.0
0.0
0.0
04
0.2
04
0.0
0.0
0.2
0.0
0.0
0.0
0.0
07
0.3
0.2
02
08
0.0
0.0
02
0.0
0.0
0.0
10
0.6

RD]j
0.1
0.3
0.1
08
04
0.1
02
04
02
0.0
02
02
08
00
01
0.0
0.1
10
01
0.0
02
04
04
08
00
0.1
0.0
03
00
02
02
00
08
04
04
0.1
0.1
0.0
04
04
10

74

Rej
0.0
0.0
0.0
06
00
0.0
03
00
0.3
03
03
03
06
03
00
03
0.0
04
00
09
00
0.0
0.0
06
1.0
00
03
0.0
03
02
0.0
03
06
00
0.0
0.0
02
03
0.0
00
04

COj
0.0
0.0
00
0.0
0.4
0.0
0.4
0.0
08
0.1
08
04
0.0
1.0
00
10
0.0
0.1
0.0
0.1
00
0.4
0.0
0.0
02
0.0
0.1
0.0
1.0
0.0
0.0
01
0.0
0.0
04
00
0.0
0.1
04
04
0.1

SHj
0.0
0.0
0.0
0.0
00
0.0
04
00
04
1.0
04
04
0.0
04
0.0
04
00
01
00
02
00
0.0
0.0
0.0
01
00
1.0
0.0
04
04
0.0
10
0.0
0.0
0.0
00
01
1.0
0.0
00
0.1

SCj
0.0
0.0
00
02
06
02
00
03
0.4
0.1
04
00
02
00
00
0.0
00
08
00
0.0
0.0
06
03
02
00
00
0.1
0.0
00
00
0.0
0.1
02
03
06
02
02
0.1
06
06
08

Dij
03
0.0
05
02
0.1
0.0
02
02
0.0
01
0.0
06
02
00
05
0.1
035
0.1
0.0
0.0
03
0.1
04
0.3
05
04
03
04
0.1
04
02
0.0
0.1
03
0.1
02
0.0
0.1
0.1
02
0.1

Tij



Chapter 4 Research Framework

4.2.6 GRNN Performance measurement method

The Root Mean Square Error (RMSE) (also called the root mean square deviation,
RMSD) is a frequently used measure of the difference between values estimated by a
model and the values actually observed. The RM SE has been used in the mgjority of the
previous studies undertaken by Black (1995), Xie (2000), Mozolin et al. (2000) Tapkin
(2004) Tillema et a. (2006) and Yaldi et a (2009). The individua differences between
the modelled data and actual data are called residuals, and the RM SE aims to aggregate

them into a single measure of predictive power. The RMSE formulais shown below:

\ 12
1 2
RMSE:(EZ[Ai—Ti] J 4.6
i1

where:

N = number of observations;
Ti = observed value;

Ai = predicted value; and

The Mean Absolute Error (MAE) reflects the average magnitude of the errors,
without considering their direction. The MAE is the average over the absolute values of
the differences between modelled output and the actual output. The MAE is linear
formula which means that al the individua differences are weighted equaly in the

average.

1 N
MAE:NZ\Ti ~Aj| 4.7
i=1

The coefficient of determination indicates number of data points that falls within the
results of the line formed by the regression equation. The higher the coefficient, the
better is the fit. It means that when the data points and regression line are plotted, the
regression line would pass through higher percentage of points. If the coefficient is
0.70, then 70% of the points would fall within the regression line. Values closer to 0
indicate that regression line represents none of the data. A higher coefficient is an
indicator of a better goodness of fit for the observations. The formula for the coefficient

of determination is as bel ow:
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N —2
Z[Ai —T]
R2 _ iill
_ 4.8
2[5-T)
=
where:

N = number of observations,

T; = observed value;

A; = predicted value; and

T = average vaue of the explained variable on N observations.

For the purpose of this study the root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R?) between the modelled output and
measures of the training and testing data set have been used to provide a numerical
description of the goodness of the model estimates.

4.2.7 Application of the proposed GRNN Model

The proposed GRNN model is applied to the work trip distribution in Mandurah
area. The GRNN model is developed, trained, and tested according to the
recommendations and specifications derived from the discussion in this chapter. For
comparison purposes, the same testing dataset are estimated by using the BP model and
doubly constrained gravity model.

4.3 BP Model

This section of the thesis discusses the model specification for the proposed
Multilayered Feed Forward Neural Network MLFFNN which has been developed to
predict the work trip distribution for Mandurah area and compared with the GRNN
model. Because the BP agorithm is the most common agorithm for the training the
MLFFNN, the proposed model is caled BP model in this thesis. The model network
architecture, training process and input to the BP model and testing the moddl is

discussed in this section as well.
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4.3.1 Training Algorithms

BP is the most famous training algorithm, widely used in previous studies. Black
(1995), Mozolin et a. (2000) and Yaldi et a. (2009) have used BP for training the
proposed neura networks. The Levenberg-Marquardt training algorithm is also used as
an aternative for improving the performance of the BP algorithm by Yaldi et al (2011).
The next sections of the thesis review briefly these two training algorithms.

4.3.2 BP Training Algorithm

The Multilayered Feed Forward Neural Network uses the back-propagation
algorithm (Rumelhart and McClelland, 1986). This means that the artificial neurons are
organized in layers, they send their signals ‘forward’, and then propagate errors
backwards. The input and output of the network are received by the neurons in the input
and output layers, respectively. One or more intermediate hidden layers are aso
provided. Supervised learning is utilized in the back-propagation agorithm, which
means that the algorithm is provided with examples of the inputs and outputs; the
network calculates the errors (the difference between the desired and actual results).The
idea of the back-propagation algorithm is to reduce these errors until the network is
trained. The training starts with random weights, and the model objective is to adjust the

weights to minimize errors.

Implementing the i back-propagation algorithm which is a weighted sum (the sum of
the inputs x multiplied by their respective weights wij)) defined by the activation
function of the artificial neuronsin ANNS:

T o n
Aj(X,W):zi:OXiWij 4.9
It can be seen that only two factors, the inputs and the weights, control the activation.

The neuron will be caled linear if the output function is the identity (output =

activation), the sigmoidal function is the most common output function:

1

Oj (X, W) = — s 4.10

i

For large positive numbers, the sigmoidal function would be very close to one, 0.5 at
zero, and if the numbers are large negative, it would be very close to zero. Therefore,
there will be a plain transition between the high and low output of the neuron (close to

one or close to zero). Only the activation and subsequently the input values and their
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respective weights are factors which the output depends on them. To obtain a desired
output when certain inputs are given is defined as the purpose of the training process.
The error depends on the weights, because there is a difference between the desired and
the actual output (error), so in order to minimize the errors, it is essential to adjust the
weights. The following function defines the error of output for each neuron:

E; (x,w,d) = (O (%,W)-d )2 411

The sguare of the difference between the desired target and the model output reflects
the error. This value is always positive. If the difference is large, the error will be large,
while alower error value corresponds with smaller differences. The sum of the errors of
al the neurons in the output layer will simply be the error of the network, which is

defined as follows:
E(x,w,d)=¥(0 (i,v‘v)—dj)z 4.12
|

The estimation of how the errors depend on input, weight and output is done by the
back-propagation algorithm, and then the gradient descendent method is applied to
adjust the weights:

Awji = = 413

ow ji '

The formula above is explained as follows. The multiplication of a constant eta (1)
by the dependence of the previous weight on the error of the network, which is the
derivative of E in respect to w;;, will make the adjustment of each weight (Aw;;), so that
Aw;; will be a negative value. n and the contribution of the weight to the error of the
function affect the size of the adjustment. This means that when there is alarge error in
the weight, the adjustment will be greater than if the weight contributes a smaller error.
Until the appropriate weights are found (and the error is minimal), the function (4.13) is

used.

Therefore, only finding the derivation of E in respect to w; is required. This is
defined as the purpose of the back-propagation algorithm; to achieve this, we need to
work backwards. First it should be defined as how much the error depends on the
output, which d; is the derivative of E in respect j to O;.

oE

00 =2(Oj _dj) 4.14
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The output depends on the activation, and subsequently depends on the weights. So
for the next step, they need to be estimated by using (4.11) and (4.12):
90;

00 oA
OA; ow;

:O] (1—OJ)X| 4.15

Thefollowing formulais derived from 4.14 and 4.15:

0E  oE 00;

Therefore, the adjustment to each weight is cal culated as:

Awj; = -2n(0; - d{)O;(1-0j)x 4.17

To train an ANN with two layers, the above formula (4.17) can be used. Some
consideration needs to be given to training a network with more than one layer. To
adjust the weights of a former layer vi, it is necessary to estimate how the error is
influenced by the input of the earlier layer. To achieve this, it is necessary to transform
the x; to w;; in (4.15), (4.16), and (4.17). Determining the effect of the network error on

the adjustment of vik is achieved as follows:

AV — — 0 _ oE 6Xi
ik =M Vi n ox; v 4.18
where:
oE
——=2(0;~d;)0;(1-0;)wj; 4.19
]I
It isassumed that inputs u are the neuron with v:
8Xi
— =X (LX) Vik 4.20
Nik

To add another layer, the influence of the weights and the inputs of the first layer
upon the error need to be evaluated. It is essential to be careful with the indexes as there
are different number of neurons in each layer, and they should not be confused. For
practical reasons, ANNs implementing the back-propagation agorithm do not have too
many layers, as the time for training the networks grows exponentialy. According to
Gershenson (2003), the speed of learning can be increased by making some refinements
to the back-propagation agorithm.
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4.3.3 Levenberg-Marquardt Training algorithm

The Levenberg-Marquardt algorithm is a simple and robust method for function

approximation. The LM algorithm tries to solve the following equation:

(JI+A)3=JE 4.21

In this equation:
Jisthe Jacobian matrix for the system;
A is the Levenberg's damping factor;
d is the weight update vector which should be found; and
E isthe error vector containing the output errors for each input vector used for training

the network.

The & is the parameter that indicates the changes to the network weights to achieve a
better solution. The JJ matrix is known as the approximated Hessian.

The A parameter is adjusted at each iteration. The adjustment of A would guide the
optimization process. The smaller value for A leads to rapid reduction of E. changing the
algorithm to the Gauss-Newton agorithm, larger value for A, changes the algorithm to
the gradient descent direction.

The Jacobian matrix is a N-by-W matrix, where N is the number of entries in the
training set and W is the total number of parameters (weights + biases) of the neural
network. The Jacobian matrix has the following form and can be created by taking the
partial derivatives of each output in respect to each weight:

[ OF (1, w) OF (z1,w) T
Ow, o Oww
J = : : .
OF (zn,w) OF (zy,w)
L ey Oww 422

Where F (xi, w) is the network function evaluated for the i™ input vector of the
training set using the weight vector w and w; is the j"™ element of the weight vector w of
the network.
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4.3.4 BP Model Architecture

The standard network used for this study is a two-layer feed-forward network which
is trained by LM training algorithm. The proposed BP model includes 11 input nodes
reflecting the land use data for the origin and destination zones and the distance (d;j)
between the origin and destination zones. There is one node in the output layer which
reflects the estimated trip numbers (Tj;). Each node is connected to hidden layer nodes
by connection weights. Number of hidden layer nodes for the proposed BP model is set
to 10. For the purpose of this study different BP models with 5, 10, 15 and 20 hidden
layer nodes are investigated to assess the impact of different number of hidden layer
nodes on the performance of the BP model. Higher numbers of nodes in hidden layer
increases the computation time. Therefore, it is recommended to use a moderate number
of nodes in hidden layer. The same consideration also is recommended for the number
of hidden layersin the neural model (Y aldi 2012).

The activation function is used by the nodes in hidden layer and output layer to
compute and transform the input information to the output. The activation function
reflects relationship between the inputs and outputs of the neural model. Figure 4-3

illustrates the most common activation functions.

3 F 3 A

1/__ 1/_ 1
0 " —/0 0

-1 -1

v
\ 4

(a) Logsig (b) Tansig (c) Linear

Figure 4-3: Common Activation Functions (Yaldi et al. 2012)

There is no standard rule for selection of the activation function. The sigmoid or
logistic function is the most common activation function as it captures the nonlinear
relationship among the model variables. The sigmoid function can be used for both

hidden and output layer nodes.

In this study a sigmoid transfer function is used in the hidden layer and a linear
transfer function is used in the output layer.
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4.3.5 BP model variables

The model variables for the BP model are similar to the GRNN model. The inputs to
the model are the land use data for the origin and destination zones and the distance
between the two zones and the output is the number of trips between the origin and

destination zones.

4.3.6 BP Data Split Method

Similar to the GRNN model random data split was used for the input dataset to NN
model. Accordingly the testing dataset of 41 vectors which was prepared during the
GRNN model development, were used as the testing data set for the BP model as well,
so comparison between the two models be based on similar testing data set which are

unseen by the neural models.

The 400 training vectors which were prepared during the GRNN model development
were aso used for the purpose of the BP model training and validating process. The
validation process in BP model development is used to control the learning process. The
learning process should be stopped when the error in validation data set is minimum. At
this point the BP model generalizes best. If training continues, overtraining may occur
and the performance of the BP model may decreases, while the error on the training data
still reduces. When training process is finished, the BP model is ready and will be tested
with the third data set, or the testing data set.

4.3.7 BP Data Normalisation Method

The normalisation of the BP model is only for the input data and is based on the
simple normalisation. The output data are not normalised for the BP model similar to
the GRNN mode!.

4.3.8 BP Model Testing

The model testing applies to the 41 testing data set (about 10% of the total vectors).
Similar to the GRNN model the testing data set was hold-out and was not used in the

training process.
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4.3.9 BP Performance measurement method

The root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R?) between the modelled output and measures of the training and
testing data set have been used for the performance measurement of the BP model and

comparison with the GRNN and the gravity models.

4.4 Gravity Model

This section briefly reviews the strategic transport model which is developed for
Mandurah area. The trip distribution of the model is based on the doubly-constrained
gravity model in the EMME software.

4.4.1 Mandurah Strategic Transport Model

The strategic transport model for the Mandurah area is based on the traditional four-
stage model process developed for the City of Mandurah to assist the City in
establishing future transport demand and testing the impact of land use growth, major
developments and road network options (Rasouli, M & Claydon, A. 2012).

The modelled study area entails the Mandurah Local Government Area as described
by the Australian Bureau of Statistics (ABS). Figure 4-4 shows the boundary of the
Mandurah Local Government Area and the corresponding modelling study area coded
in the EMME software (Rasouli 2013). The EMME strategic model aso includes the
surrounding development of Mandurah locality including Pinjarra and all the other

devel opments within the Shire of Murray and Pedl region.
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Figure 4-4: Mandurah Local Government Area and Modeling Study Area

Model Structure
The Mandurah strategic transport model is based on traditional four-stage model

which includes the following stages:
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e Trip generation;
e Tripdistribution;
e Mode Split and

e Trip assignment.

Trip generation

The purpose of the trip generation step is to produce 24-hour trip productions and
attractions from the existing land use data for input into the trip distribution step. The
trips in the Mandurah strategic model are divided into 6 different trip purposes. work,
education, shopping and persona business, social, other and non-home Based trips.
Table 4-3 indicates the percentage of car drivers for each trip purpose in City of
Mandurah. Thefiguresin Table 4 are derived from the Perth and Regions Travel Survey
(Rasouli 2012).

Table 4-3: Percentage of Car Driversfor each Trip Purposes

Purpose of trips % of Total
Home-Based Work 15.8%
Home-Based Education 12.2%
Home-Based Shopping and Personal Business 21.4%
Home-Based Social-Recreational 14.4%
Home-Based Other 6.5%
Non-Home-Based 29.7%
Total 100.0%
Trip Distribution

Trip distribution is the process that two-dimensional matrices of trips are produced
from the one-dimensional production and attraction matrices. In this context, trip
production generaly refers to the number of trips starting or ending at residentia land
uses and trip attraction generally refers to trips starting or ending at other land uses
(shops, offices, factories, schools, etc). Trips internal to the modelling area have been

distributed based on the following gamma function:

Wij = a * dijbrexp(-cxdij) 5.9

where:
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wij - weight between zonei and zonej; and
d;j : distance between zonei and zonej.

Parameters a, b and ¢ were calibrated for each trip purpose so that the model
reflected the proportion of trips for each length as observed in the travel surveys. Figure
4-5 illustrates the calibrated graphs for the gamma function. It is assumed that socia

and other trips would follow a similar graph.
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Figure 4-5: Friction Factors Calibrated for each Trip Purpose

The peak in each graph on the left hand side illustrates that private cars are not an
attractive mode of transport for short distance trips, with other modes like walking or
cycling being preferred. This figure also shows that long distance trips (more than 10km
in the modelling area) are not attractive. The mgjority of car trips occur within a

distance of three to five kilometres (Rasouli, 2012) and (Rasouli, 2013b).
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Mode Split

The trip generation within the model is only based on private vehicle trips and
therefore the mode split stage was not adopted. The mode split was taken into
consideration when generating the trip production rates for the trip generation stage.

Trip Assignment

Assignment of the trips was based on the fixed demand traffic assignment module in
EMME software. Accordingly, the trips are assigned to the modelled road network such
that their total travel timeis minimised. Travel time calculations for the road network
take into consideration the road type, average speed and number of lanes aong each
route. Different road categories have been allocated different traffic capacities and
speeds through the use of Volume Delay Functions (VDF). These functions vary the
travel time based on the amount of traffic using each section of the road. Severa
iterations are undertaken to allow the effects of congestion to be included in travel time
calculations.

Cdlibration

Cdlibration of the model was based on the existing traffic volumes on the road links.
The actua traffic data was provided by the City of Mandurah. Figure 4-6 shows the
modelled traffic volumes against the actual traffic counts. The linear regression analysis
for the 107 traffic count locations indicates that R? of the regression plot is 0.985 which
shows how well the model is calibrated (Rasouli, 2012) and (Rasouli, 2013b).
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Link scatterplot

Figure 4-6: Regression Plot, Calibration

4.4.2 Land Use Data

The number of residential dwellings for the City of Mandurah was calculated for the
38 individual modelling zones as per Figure 4-7. The existing land use data for the
attraction zones (retail, commercial, school, showroom, etc.) was sourced from City of
Mandurah for the detailed zoning system illustrated in Figure 4-7. The zoning system
for Mandurah modelled study area are much smaller than the Department of Planning
zoning system ( for the DoP zoning system refer to Appendix B), therefore the modelled
smaller zones in EMME software needs to be aggregated to reflect the DoP zoning
system to be able to compare the gravity modelling output by the previously established
neural models. Aggregation of the land use data for the smaller zones and preparation of
the land use data for the DoP zoning system was done by Microsoft Excel program.
Table 4-4 summarises the land use data for the 21 aggregated zones which correspond
to the DoP zoning system. This land use data have aso been used for the preparation of

the input vectors to the neural models.
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Figure4-7: Mandurah Model Area and Zoning System
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Table 4-4: Land use data for the aggregated zones (reflecting DoP Zones)

Zones |Residential Lots | Retail floor space (m2) | Office floor space (m2) | Show room (m2)| Primary+Secondary Students
Zone 1l 4050 6964 106 192 2815
Zone 2 1007

Zone 3 1560 6893 14705 5268 1027
Zone 4 1270 7500 683
Zoneb 2784 1868
Zone 6 7042 17365 5400 29
Zone 7 1634 4503 198 4407

Zone 8 6653 10000 973 842 2147
Zone 9 689 1002 0 396

Zone 10 248 23311 1900 2648

Zone 11 223 7555 936 12485 201
Zone 12 27024 3354 930

Zone 13 1187 7921 7614 4836

Zone 14 900 435
Zone 15 2458 7500 1594
Zone 16 5227 15064 357 445 509
Zone 17 2660 823
Zone 18 612 4350 1300 600
Zone 19 916

Zone 20 1907

Zone 21 1231

4.4.3 Extracting Work Trips from Gravity Model

Considering that the destination zones from the DoP are larger than the traffic zones
coded in the EMME model for the gravity model, the following steps were undertaken
to aggregate the data for the small zones in the gravity model to the same size for the
DoP destination zones:

e Therelevant smaller traffic zones from the gravity model that are within each
DoP destination zone are selected and allocated to a zone group;

e The 21 zone groups have been created in the gravity model using EMME
platform; and

e A macroin EMME has been developed to extract the JTW OD matrix for the 21

Zone groups.
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4.4.4 Gravity Model Testing

The model testing applies to the 41 origin destination zones which were prepared
during the GRNN and BP model developments.

4.4.5 Performance measurement method

In order to compare the modelling outputs of the three models the same performance
measurement method as per the GRNN and BP model was applied to the gravity model
as well. The methods are root mean square error (RMSE), mean absolute error (MAE),

and coefficient of determination (R?).

4.5 Summary

This chapter outlined the research frame work and model specifications. Three
different models are developed, GRNN model, BP model and gravity model. The model
specifications and key parameters of the neura models were discussed and explained
how they have been utilised for the development of the neural models. The model
variables, different methods of splitting and normalising data for input to the neural
models were discussed in this chapter. The model testing and performance measured

methods were also documented in detail in this chapter of thesis.

The Mandurah Strategic Transport model developed for Mandura area was aso
briefly reviewed. The model structure, trip distribution method and the land use data for
the model development were also discussed. Aggregation of the Mandurah strategic
model zoning system to reflect the DoP zoning system and extracting work trips from

gravity model were also documented in this chapter.
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5.MODEL DEVELOPMENT
AND VALIDATION

5.1 Introduction

In the previous chapter the frame work of the neural model development has been
established. In this chapter for each neural model the neura model properties and
specifications will be presented. The neural models will be applied to the work trip
distribution matrix for Mandurah area and the results will be compared with the gravity
model.

5.2 Development of the GRNN Model

According to the literature review, the application of the GRNN model for work trip
distribution is not reported yet. However the GRNN model has been applied for the
mode choice step of the traditional four step model (Celikoglu, 2006) and its superiority
over the BP model and gravity model is demonstrated. The proposed GRNN model in
this research will use the land use data for the origin and destination zones and the
distance between them as the input to the model and will estimate number of trips
between the two zones. Since 1995 that Black devel oped a neural network for prediction
of the commodity flow based on US Commodity Flow Survey (CFS), and used
production, attraction and distance as the input to the model. All the other following
studies also used the same proposed three inputs (production, attraction and distance)
for the model development. The proposed GRNN model in this thesis aims to find the
relationship between the land use data of origin and destination zones with respect to
the distance between the two zones and estimate the number of trips between the two

zones. The distance as the only factor for the separation between OD zones is not
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expected to be the best representation of the generalized cost between the two zones but
as the existing gravity model developed for Mandurah strategic transport model used
the distance for the purpose of the separation between the OD zones then neural models
are also used the same parameter as input to the model to be able to compare the neural

models with the gravity model.

5.2.1 Model Data

The 2006 Journey to Work data set for the Mandurah area was sourced from the
Australian Bureau of Statistics (ABS). Journey to Work data is extracted from the five-
yearly Census of Population and Housing conducted by the Australian Bureau of
Statistics and includes data on employment by industry and occupation, and method of
travel to work at alow geographical level known as the travel zone. The travel zones for
the purpose of this study are 21 zones which will generate 441 (21 x 21 =441) input data
for the purpose of model development. The 441 input vectors are provided in appendix
C of thisthesis.

5.2.2 GRNN Model Architecture

People’s activities can be represented by land uses scattered over different zones that
are separated by distance in an area. Therefore, trip distribution relates to the land use
patterns in different zones inside that area. For instance, one zone which is typically
occupied by residential land use patterns generates trips that are attracted to another

zone which isformed by retail, industrial, commercial, etc.

On this basis the input layer of the neural network is represented by land use data in
each zone, which is assigned to RD (residential dwellings), RE (retail), CO (commercial
land use), SH (showroom) and SC (schools). In order to represent the spatial
distribution of apair of zones, the distance Dj; (meters) between zonesi and j is defined.
Accordingly the input vector (X) is defined as:

Xij=(RD;, RE;, CO;, SH;, SC;,,RD;j, RE;, CO;, SH;, SC;, D)

wherei and j show the origin and destination, respectively.

Trips (Tij) between a pair of zones are considered as the output layer of the neural
network. The GRNN has to be able to model the relation between trips Tj; and input
vector Xj;. The model is developed to forecast the work trips. MATLAB software is
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used to develop the network where the optimum spread factor is selected by cross
validation technique.

The model structure used in the MATLAB software isillustrated in Figure 5-1. The
model has 11 input nodes (P) representing the land uses for zone i and zone j, and the
distance between zone i and j (as defined in the above X;; input vector). There is one
node in the output layer (T) which represents the estimated trip number (Tj;). The
preferred spread was chosen through a trial and error process. Different spread factors
were tested through a macro program in MATLAB and for each spread the relevant
RMSE was recorded. The spread that provided the minimum RMSE was used as the
preferred spread factor.

__

400

Figure5-1: GRNN Model StructureUsed in MATLAB Software

Simple data normalization, linear transformation and statistica normalization
methods were used in this study for the input vectors. Simple normalization uses the

following formula:
Xn = X0 / Xmax 5.3
Linear normalization will convert the input data to the range [0,1] with the following

formula:

actual
scaled _ X ~ Xmin
xsoded _ i~ Zmin 54

Xmax ~ Xmin
Statistical normalization will convert the input data based on its mean and standard
deviation using the following formula:
Xi =(Xq—-X)/SD 55
There are usually two kinds of input data sets in neural networks, namely training
and testing data sets. The training data set is used in estimating the model
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parameters/variables while the testing data set is for evaluating the forecasting ability of
the model. For the purpose of this study, about 90% of the data (400 input vectors) was
used for training and aboul10% was used for testing (41 vectors). Table 5-1 summarises
the GRNN model properties.

Table5-1: GRNN Model Property

Model architecture Generalise Regression Neural Network
Number of layers 3 layers (Input, hidden and output layers)
Number of input nodes 11 nodes (land use data for OD zones and

distance between the zones)

Number of output nodes 1 (Trip distribution)
Optimum spread factor Cross validation technique
Data split Random zone based

Data normalisation Simple data normalisation
Performance measurement RMSE, MAE, R®

5.2.3 GRNN Modelling Results

The performance of the GRNN model is investigated in both calibration level and

testing level and are presented in the next sections.

5.2.4 GRNN Calibration Performance

The root mean sgquare error (RMSE), mean absolute error (MAE), and coefficient of
determination (R?) between the modelled output and measures of the training and
testing data set are the most common indicators to provide a numerical description of
the goodness of the model estimates. They are calculated and defined according to
equations 5.6, 5.7, and 5.8, respectively (Sousa et a., 2007):

1/2
1N 2
RMSE=[NZ[Ai—Ti] J 5.6
i=1
1 N
MAEzﬁZ\Ti ~A|| 5.7
i=1
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N —2
Z[Ai —T]
R2 _ iill
_ 5.8
2[5-T)
=
where:

N = number of observations;
T, = observed value;
A; = predicted value; and

T = average vaue of the explained variable on N observations.

RMSE and MAE indicate the residual errors, which give a global idea of the
difference between the observed and predicted values. R? is the proportion of variability
(sum of sguares) in a data set that is accounted for by a model. When the RMSE and
MAE are at aminimum and R? is high (R*> 0.80), amodel can be judged as very good
(Kasabov, 1998).

The GRNN model was trained using a data set with 400 randomly selected vectors
and with different spread factors. Table 5-2 summarizes the modelling results for the
training data set. Analysis undertaken indicates that the GRNN model can produce the
same results for different normalization methods with different optimum spread factors
asindicated in Table 5-2. Therefore for the sake of ssimplicity, simple normalization has
been used for the testing data set.

Table5-2: GRNN Modelling Resultsfor the Training Data Set

Indicators RMSE | MAE | R? | Optimum Spread
Simple Normalization 10 4 0.984 0.1
Linear Transformation 10 4 0.984 1.0
Statistical Normalization 10 4 0.983 0.7

Figure 5-2 illustrates the goodness of fit for the trained GRNN model based on
simple normalization; an R? of 0.984 was obtained from the training process which

shows how well the network is trained.
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Figure 5-2: Modelled Tj; Through the Training Process Against the Observed Tj

Review of the training dataset (400 vectors) indicates that out of the 400 training
vectors 98 vectors (24.5%) include zero trip distributions, which mean there is no
interaction between the OD zones. This could be the case when both zones are purely
residential and there are no work trips between the two zones. In order to investigate
how the GRNN model predicts the zero trips between residential zones, the modelled
trip distribution (T;;) by GRNN model and the actual trip distributions (in this case all
the actual trip distributions are equal to zero) were compared. Figure 5-3 illustrates the
predicted zero trip distribution between the residential OD zones. Analysis undertaken
indicates that the GRNN model could predict 76 vectors correctly and only 26 vectors
are predicted incorrect. The highest difference between the predicted trip distribution
and the actual zero trip distribution is 38 and it happened only in one occasion. The rest

of the non-zero estimated vectors are below 15 trips.
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Figure5-3: Zero Trip Distribution Estimation by GRNN Model,

Training Data Set

5.2.5 GRNN Testing Performance

The trained GRNN mode was then used to test the 41 unseen vectors. Table 5-3

summarizes the modelling results for the testing data set.

Table5-3: GRNN Modelling Resultsfor the Testing Data Set

Indicators

RMSE

MAE

RZ

Simple Normalization

38

22

0.575

Figure 5-4 illustrates the modelled trip distribution against the observed data. The
average RM SE for the tested data was recorded as 38.
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Figure5-4: Error Estimation between the GRNN Modelled and Observed Data

The R? of the tested model is reported as 0.575 as shown in Figure 5-5.
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Figure 5-5: Modelled and Observed Tj; for the Testing Data, GRNN M odel

The analysis undertaken for the testing dataset indicates that out of 41 testing vectors
16 vectors (39%) have zero trip distribution. The modelled GRNN could predict 9
vectors out of 16 vectors correctly and 9 vectors are not predicted correctly by trained
GRNN model. Figure 5-6 illustrates the predictions for the zero trip distribution vectors
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in the testing data set. The highest error is reported as about 70 trips which are about
twice the highest error of the training process of the GRNN model. The second highest
is about 40 and the rest are below 15.
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Figure5-6: Zero Trip Distribution Estimation by GRNN Model,
Testing Data Set

Review of the GRNN model output also indicates that GRNN generates a very small
number close to zero for the zero value trip vectors and this small number is always

positive.

In order to investigate the ability of the GRNN model to predict the non-zero trip
distribution vectors, the difference between the modeled trips and the actual trips was
calculated and illustrated in Figure 5-7. This figure indicates that GRNN model
overestimates the trips for 10 non-zero trip vectors (about 38%), it correctly predict 1

non-zero vector and underestimate the 15 non-zero trip vectors (about 58%).
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Figure5-7: Difference Between the GRNN Model Output and Actual Trip

Distributionsfor Non-Zero Trip Vectors

5.2.6 Observation and Discussions

One of the issues with the neural models discussed in the previous studies is the zero
trip vectors. Zero trips can happen for the internal zones (diagona cells in the OD
matrix) if the internal zones are small and the model do not estimate any trips for the

internal zones.

This issue has been raised in aresearch by Xie (2000), and she noted that most of the
studies exclude diagonal cells with zero values in the intra-city/intra-regional flows. She
argued that the zero cells should aso be predicted, which would help in comparing the
prediction accuracy of different models. She therefore used the data set including all of

the zero values for the internal zones.

The OD matrix used in this study aggregates the small zones within the Mandurah
EMME model to reflect the DoP zoning system and therefore because of this
aggregation the internal zones in the aggregates matrix would provide some trips for the
internal zones and these trips are even larger than some of the non-diagonal trips in the

OD matrix. The reason is that more work trips are expected within the shorter distances.

Yaldi et a (2011) claimed that neural models are unable to predict zero vaue trips

perfectly. The NN models estimate the zero trips as numbers very close to zero. Same
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observation also is expected from the GRNN model as discussed in the above section.
However the study undertaken by Yaldi et al. (2011) indicates that the zero value
observation is estimated as either positive or negative with very small number close to
zero while the GRNN model output aways predict positive small values for the zero

value trips.

The distribution of points in the regression plot (Figure 5-5) indicates that the
majority of the points are clustered at low values, with one or two at much higher levels
(which represent the variety of the work trip conditions in Mandurah for the testing
dataset). Therefore, the regression parameters are dependent on these points.

The x parameter is reported 0.506 in the regression plot, which means that the
GRNN model is underestimating the observed values. This fact is also shown in Figure
5-7 which indicates that for non-zero trips the majority of the estimated trips are lower

than the actual trips.

5.3 Development of the BP Model

5.3.1 Introduction

Previous studies suggest that the neural network approach is able to model
commodity, migration and work trip flows. However, its generalization performance is
poor compared to the well-known doubly-constrained gravity model. Various studies
have subsequently been undertaken to improve the performance of the NN models.
Most of the previous analyses are based on back-propagation agorithm for training the
NN. The latest studies undertaken in this regard aimed to fix the testing performance of
NN by training the models with the Levenberg-Marquardt (LM) algorithm, and
compare the results with standard back-propagation, Quickprop and variable learning
rate (VLR) agorithms (Yadi et a., 2011). The literature review indicates that NN
models trained with the LM algorithm perform better than those trained with other
algorithms. Therefore, for the purpose of this thesis the BP model has been trained with
the Levenberg-Marquardt algorithm and the performance of the BP model has been
compared with the GRNN and the gravity model.
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5.3.2 BP Model Architecture

The input and output to the BP model were kept the same as for the GRNN model.

The BP network specifications are as below:

One hidden layer;

The hidden units have a sigmoidal activation function (tansig or logsig) while
the output units have alinear activation function; and

The training algorithm is back-propagation based on a Levenberg-Marquardt

minimization method.

The learning process is controlled by a cross-validation technique based on a random

division of the initial set of data in three subsets: for training (weights adjustment), for

learning process control (validation) and for evauation of the quality of approximation

(testing). The quality of the approximation can be evaluated by:

Mean sguared error (MSE) which expresses the difference between the correct
outputs and those provided by the network; the approximation is better if MSE is
lower (closer to 0);
Pearson’s correlation coefficient (R) which measures the correlation between the
correct outputs and those provided by the network; the closer R isto 1, the better
the approximation.

The model structure used in the MATLAB softwareisillustrated in Figure 5-8.
Hidden

Figure 5-8: BP Model Structure Used in MATLAB Software

The standard network used for this study is a two-layer feed-forward network, with a

sigmoid transfer function in the hidden layer and a linear transfer function in the output

layer. The number of hidden neurons was set to 10. Simple data normalization was used

for the input vectors. In order to be consistent with the GRNN modelling, 90% of the
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data (400 input vectors) was used for training and validating and about 10% was used

for testing. The testing vectors were not used in the training or validation process.

Table 5-5 summarises the BP model properties.

Table5-4: BP Model Property

Mode architecture

Multi-layer  feed
network/MLFFNN

forward neural

Number of layers

3 layers (Input, hidden and output layers)

Number of input nodes

11 nodes (land use data for OD zones and
distance between the zones)

Number of output nodes

1 (Trip distribution)

Training Algorithm

Levenberg-Marquardt (LM)

Activation Function in Hidden Layer Sigmoid (Logsig)
Activation Function in Output Layer Linear

Data split Random zone based

Data normalisation Simple data normalisation
Performance measurement RMSE, MAE, R®

5.3.3 BP Modelling Results

The performance of the BP model is investigated in both calibration level and testing

level and is presented in the next sections.

5.3.4 BP Calibration Performance

The 400 training vectors which have been selected randomly for the purpose of the

GRNN model development were also used for the purpose of training the BP model.
The BP model needs three sets of data for training:

e Training data set: the training data set will be presented to the network

during the training process,

e Validation data set: the validation data set are used to stop training when the

generalisation of the NN network stops improving for the testing data set;

and,
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e Testing data set: the testing data set is unseen data set which does not affect
the training or validation performance. They just provide independent
measure of network performance.

For the purpose of this study The 400 vectors are divided into the above datasets

using the following data split:

e 70% for training or 280 vectors,
e 15% for validation or 60 vectors,; and,
e 159% for testing or 60 vectors.

The testing data set which was used out of the 400 vectors and explained above are
different than the 41 testing data set which was selected and was hold out during the
development of the GRNN model. In order to compare the results of the GRNN model
and BP model the same 41 testing data set will be used to assess the performance of the
neural networks (BP and GRNN) at the testing level.

There is no standard rule for the data split for training, validation and testing and
therefore the testing data set could be assumed to be zero for the training purpose of the
BP model, because the 41 testing data set has aready been hold out and not included in
the 400 vectors which was used to develop the BP model. However, in order to
investigate the performance of the BP model for different random set of testing vectors
15% of the total 400 vectors were used for the testing.

The selection of the data sets (training, validation and testing) are random based and
is controlled by seed numbers. Different seed numbers will generate different data sets.
In order to investigate the performance of the BP model with different sets of data, the
BP network was trained with 10 different seeds (10 different data stets) and the
performance of the training, validation and testing data set is reported in Table 5-5.
According to the analysis undertaken for the different data sets, the reported R? for the
training data set was between 0.17 and 0.77. The highest R? recorded was 0.77 for seed
number 9. The corresponding R? for the validation and testing data was reported as 0.42
and 0.48. Table 4 indicates that the expected R?for the testing data was between 0.3 and
0.5 and only in one case (seed number 2) the BP model not well trained (i.e. very poor
correlation for training), and subsequently produced poor validation and testing results.
The unsuccessful train could be due to the data split for seed number 2 and the initial

selected weights. The range of RMSE for the testing data set was expected to be
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between 40 and 80. The corresponding RM SE to seed number 9 (best training data set)
isreported as 64.

Table 5-5; Performance of the BP Modd for Different Seeds

Seeds | Training Data | Validation Data Testing Data
RMSE R |RMSE| R* |RMSE| R
1 a7 0.74 54 0.50 52 0.46
2 73 0.17 84 0.20 72 0.02
3 49 0.62 60 0.62 53 0.45
4 50 0.67 65 0.46 46 0.47
5 51 0.62 46 0.45 39 0.46
6 52 0.59 60 0.55 56 0.35
7 43 0.76 a7 0.59 64 0.38
8 60 0.46 61 0.34 49 0.32
9 45 0.77 57 0.42 64 0.48
10 45 0.74 46 0.48 72 0.37

In order to investigate the impact of the different number of nodes in hidden layer
upon the performance of the BP model, different umber of nodes were tested and the
performance of the model was reported in Table 5-6 for each scenario. The analysisis

undertaken for same seed number (seed number 9) for all scenarios.

Table 5-6: Performance of the BP Model for Different Nodesin Hidden Layer

Number Training Data Validation Data Testing Data
of nodes | RMSE R® |RMSE| R* |RMSE| R
5 50 0.62 39 0.40 49 0.47
10 45 0.77 57 0.42 64 0.48
15 65 0.41 73 0.22 45 0.40
20 59 0.56 62 0.29 9 0.25

Table 5 indicates that the best performance was demonstrated by the BP network
with 10 nodes in the hidden layer. Increasing the number of nodes to 15 or 20 nodes did
not improve the performance of the BP model.
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Figure 5-9 illustrates the BP model outputs against the actual trip distributions for
training and validation data sets for the prefered BP model structure with 10 nodes in

hidden layer.
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Figure 5-9: Performance of the BP modél for Training and Validation Data Sets
for Seed Number 9

In the above graphs, Pearson’s correlation coefficient (R) is illustrated whereas in
Tables 5-5 and 5.6 the R? was reported to be consistent with that for the GRNN and

gravity model outputs.

5.3.5 BP Testing Performance

The trained BP model was then used to test the 41 unused vectors. Table 5-7
summarizes the BP modelling results for the testing data set.

Table 5-7: BP Modeling Resultsfor the Testing Data Set

Indicators RM SE MAE R?

BP Model 64 31 0.485

Figure 5-10 illustrates the modelled and observed trip distributions of the testing
data set for the preferred BP model structure.
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Figure 5-10: Modelled and Observed Tj; for the Testing Data, BP M odel

The regression plot in Figure 5-10 provides lower R? than the similar graph for the
GRNN model (refer Figure 5-5), however the x parameter of the BP model (1.084)
better estimates the observed data than the GRNN model.

In order to investigate the ability of the BP model for estimation of the observed data
more detailed analysis are undertaken. Similar to the GRNN model the analysis is
undertaken separately for the zero trips and non-zero trips in the testing data set.
Analysis undertaken for the 16 zero trip vectors indicate that BP model ability to
estimate the zero trips is significantly lower than the GRNN model. The GRNN model
could predict 9 vectors out of 16 vectors correctly while the BP model did not estimate
even one zero trip vector correctly. Figure 5-11 illustrates the predictions for the zero
trip vectors in the testing data set. This figure also indicates that BP model will predict
negative trips for some of the zero trip vectors. This is due to the linear activation

function used in the output layer.
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Figure5-11: Zerotrip distribution estimation by BP model, testing data set

Comparing the non-zero trip estimations with the observed trips (refer Figure 5-12)
indicates that BP model slightly overestimate the observed non-zero trips. Only for two
cases the BP model predicted negative trips.
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Figure 5-12: Comparing Modeled Non-Zero Tripswith the Observed Non-Zero
Tripsfor Testing Data Set.

5.3.6 Observation and Discussions

Reviewing the analysis undertaken for the training data sets indicates that increasing
the number of nodes in the hidden layer would not necessarily improve the performance
of the BP model. Analysis undertaken for 4 different sets of number of nodes (5, 10, 15
and 20) indicated that the BP model performed better with 10 nodes in the hidden layer
and increasing the number of nodes in the hidden layer to 15 or 20 nodes did not
improve the performance of the BP model.
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The BP mode provides negative predictions for some of the observed trips in the
testing data set (about 27%). The negative predictions are mostly related to the zero trip
zones (about 56% of zero trips are predicted with negative values) which mean that BP
model ability to predict zero trips is poor. Using the linear activation function in the
output layer is the reason for producing negative values for the trip estimations. The
linear transfer function do not change the summation results and transfers them after the
summation process, therefore the outputs (predictions) have no limits and can also be
negative. Thisissue was also raised in the study undertaken by Yaldi et a (2009). Yadi
et al. suggested to change the negative values to zero as the mgjority of the negative
predictions were related to the zero trips. He aso tested the other most common
activation functions such as “Transig” and “Logsig” in the output layer, however he
concluded that the linear function in output layer in combination with “Logsig”
activation function in the hidden layer (Logsig-Purelin) is more suitable for forecasting
the work trips.

In order to investigate the impact of replacing the negative trips with zero tripsin the

testing data set, the below regression plot (Figure 5-13) is prepared. According to this
plot R? of the BP model has been improved slightly from 0.48 to 0.50.
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Figure 5-13: Updated Regression Plot for the Testing Data Set with Replacing
the Negative Tripsby Zero Tripsin BP Model Output.
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The distribution of points in the regression plot prepared for the BP model (testing
data set ) indicates that, smilar to the GRNN model, the majority of the points are
clustered at low values, with one or two at much higher levels (which represent the
variety of the work trip conditions in Mandurah for the testing dataset). Therefore, the

regression parameters are dependent on these points.

The x parameter is reported 1.084 in the regression plot, which means that the
modelled values match the observed values over the range of data and therefore it is
expected that BP model provides better match than the GRNN model. The GRNN
model x parameter for the testing data set was reported 0.506 which resulted in
underestimation of the observed data, however, the GRNN model provided better R?
and RM SE for the testing data set.

5.4 Development of the Gravity Model

5.4.1 Introduction

In this section of the thesis, the estimated trip distribution for the 400 training and 41
testing OD zones that were used for the training and testing of the neural models will be
extracted from the gravity model and will be compared with the actual trip distribution
figures for the training and testing OD zones. The results of the analysis then will be
compared with the GRNN and BP modelling results.

The strategic transport model for the Mandurah area is based on the traditional four-
stage model process. The trips on this model are divided into five different categories
based on trip purpose: work, education, social, other and non-home based (NHB) trips.
Trip distribution of the model is based on the doubly-constrained gravity model with

following gamma function (Rasouli 2012):
Wij = a * dijbrexp(-c+dij) 59
where:
wi; : weight between zonei and zonej; and
d;; : distance between zonei and zonej.
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5.4.2 Gravity Modelling Results

The journey to work OD matrix was extracted from the Mandurah strategic transport
model and has been aggregated to reflect the same zoning system that has been used for
the DoP JTW matrix. Table 5-8 summarises the extracted work trip OD matrix from the
gravity model.
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O/ID zone 01 | zone 02 | zone03 | zone 04 | zone 05 | zone 06 | zone 07 | zone 08 | zone 09 | zone 10 | zonell | zone12 | zone 13 | zone 14 | zone 15 | zone 16 | zone 17 | zone 18 | zone 19 | zone 20 | zone 21
zone 01 150 0 376 79 84 484 185 0 3 179 93 231 148 10 91 13 1 37 0 0 0
zone 02 14 10 67 13 13 81 46 0 1 44 23 48 37 3 15 4 0 6 0 0 0
zone 03 21 0 99 40 28 139 82 0 1 84 43 84 73 6 48 13 1 22 0 0 0
zone 04 16 0 105 40 33 143 51 0 1 55 30 101 57 5 58 9 0 45 0 0 0
zone 05 38 0 230 86 100 306 125 0 2 136 73 223 136 11 103 21 1 49 0 0 0
zone 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 07 20 0 121 30 24 142 125 0 1 94 47 116 88 6 40 17 1 12 0 0 0
zone 08 28 0 197 56 36 204 212 100 3 249 126 251 209 15 91 82 6 107 0 0 0
zone 09 10 0 58 19 13 74 44 0 10 38 17 52 32 3 24 10 1 10 0 0 0
zone 10 3 0 19 5 4 22 13 0 0 5 3 19 12 1 7 4 0 0 0 0 0
zone 11 3 0 20 6 4 25 15 0 0 10 3 19 12 1 8 4 0 4 0 0 0
zone 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 13 12 0 83 30 17 100 74 0 1 69 36 93 56 4 42 18 1 13 0 0 0
zone 14 9 0 59 21 13 76 46 0 1 50 25 53 35 2 28 12 1 9 0 0 0
zone 15 22 0 154 76 38 208 99 0 2 138 69 195 132 11 91 31 2 45 0 0 0
zone 16 21 0 165 68 32 203 203 0 3 316 150 248 231 18 119 509 90 52 0 0 0
zone 17 6 0 51 21 9 61 68 0 1 120 55 83 82 6 40 409 148 22 0 0 0
zone 18 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 200 0 0 0
zone 19 4 0 33 40 13 48 14 0 0 19 9 45 22 2 45 3 0 57 100 0 0
zone 20 16 0 130 138 46 183 58 0 1 74 37 170 86 8 156 11 1 105 0 100 0
zone 21 10 0 77 80 28 109 35 0 1 44 22 101 51 5 91 7 0 76 0 0 100
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The OD matrix for the JTW extracted from the gravity model was compared with the
OD matrix from ABS data. Table 5-9 summarizes the modelling results for the testing
data set (400 vectors).

Table 5-9: Gravity Modelling Resultsfor Training Dataset

Indicators RMSE MAE R?

Gravity Model 50 23 0.59

Figure 5-14 illustrates the comparison between the trip distribution (T;;) extracted
from the gravity model and the ABS data. The R? for the trend linein is 0.59.
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Figure 5-14: Observed and Modelled Work Trips Based on the Gravity Model
(Training Dataset)

The gravity model developed for the Mandurah area was then used to estimate the trip
distribution for the testing data set used in the GRNN and BP models. Figure 5-15
illustrates the modelled and observed trip distributions for the testing data set. The R?
from the gravity mode to predict the trip distribution of the testing data set was reported
as 0.446.
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Figure 5-15: Modelled and Observed Tj; for the Testing Data, Gravity M odel

5.5 Comparing the GRNN, BP and Gravity Models

In order to compare the performance of the GRNN, BP and gravity models, the
tested data set was used to estimate the trip distribution based on the various models.
The RMSE, MAE and R? indicators were calculated for each model and are compared
in Table 5-10.

Table5-10: NN and Gravity Modelling Resultsfor the Testing Data Set

M odels RMSE | MAE | R? Regression Par ameter
GRNN Model 38 22 0.575 0.51
BP Mode 64 31 0.485 1.08
Gravity Model 46 31 0.446 0.63

Table above indicates that the GRNN model provides dlightly better results than the
BP and gravity modelsin term of RMSE, MAE and R%. However the x parameter in the
regression plot for BP model is closest to 1 which means that BP model provides better
match for the observed data. The R? for the BP model is slightly higher than for the
gravity model, while the reported RMSE is higher for the gravity model. The mean
average error for both the BP and gravity model is reported as being 31.
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Figure 5-16, Figure 5-17 and Figure 5-18 illustrate the goodness of fit for the
GRNN, BP and gravity models respectively.
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Figure 5-16: Modelled and Observed Tj; for the Testing Data, GRNN Model
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Figure 5-17: Modelled and Observed Tj; for the Testing Data, BP M odel
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Figure 5-18: Modelled and Observed T;; for the Testing Data, Gravity Model
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5.6 Conclusions and Discussions

Comparing the performance of the neural models (GRNN and BP) and gravity model at
training and testing level indicates that:

Neura network models can be used to forecast trip distribution, especially for work
trips. The neura models are able to forecast work trip distribution based on the land use
data for each pair of traffic zones and the corresponding distance between the two

Z0nes.,

GRNN model could provide a slightly better goodness of fit than the BP and gravity
models with alower error level than BP and gravity models, as indicated by the average
root mean square error (RMSE), where the RMSE for the GRNN, BP and gravity
models are 38, 64 and 46 respectively. The estimated R? for the GRNN, BP and gravity
modelsis reported as being 0.557, 0.485 and 0.446 respectively.

The distribution of points in the regression plot for all models indicates that the
majority of the points are clustered at low values, with one or two at much higher levels
therefore, the regression parameters are dependent on these points. As discussed before
the testing data set was selected through the random split method and checked to insure
that testing data represent the variety of the work trip conditions in Mandurah.
Therefore the testing data set includes range of different work trips including zero trips

and higher work trip generators.

The x parameter in the regression plots indicates the slope of the regression line.
Reviewing the regression plots for the 3 model s indicates that BP model provides closer
X parameter to 1 and therefore can provide better match for the observed work trips.

However BP model performance measures are lower than the GRNN model.

Considering that x parameter for both GRNN and gravity models are lower than 1,
then it is expected that these models underestimate the observed data.
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Analysis of the zero work trip vectors indicates that neural models (both GRNN and
BP) are unable to predict zero value trips perfectly. The NN models estimate the zero

trips as numbers very closeto zero.

The BP model provides negative predictions for some of the observed trips in the
testing data set (about 27%). The negative predictions are mostly related to the zero trip
zones. The negative value predicted in BP model for the testing data set is due to the
selection of the linear transfer function in the output layer. Linear transfer function do
not change the summation results and transfers them after the summation process,
therefore the predictions have no limits and can aso be negative. This issue was also
raised in the study undertaken by Yaldi et a (2009). He also tested the other most
common activation functions such as “Transig” and “Logsig” in the output layer
however he concluded that the linear function in output layer in combination with
“Logsig” activation function in the hidden layer (Logsig-Purelin) is more suitable for

forecasting the work trips.

GRNN model performance in predicting zero trips is better than the BP model. BP
model mostly generated a negative value for the zero work trips because of the linear
activation function in its output layer. Replacing the negative value predictions for the
BP model with zero trips will not improve the performance of the BP model

significantly.

5.7 Summary

In this chapter, model development for the neura models and gravity model were
discussed. For each neural model, the neural model properties and specifications were
presented. The neural models then were applied to the work trip distribution matrix for
Mandurah area and the results were compared with the gravity model. Analysis
undertaken indicated that neural models can estimate the work trips between OD zones
based on land use data for the OD zones and the separation distance between the two
zones. The performance of the neural models was investigated at both training and
testing levels and the results were compared with the gravity model. Analysis
undertaken also indicated that BP model provides closer x parameter to 1 and therefore

could provide better match for the observed work trips, however GRNN model could
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provide a dlightly better goodness of fit than the BP and gravity models with a lower
error level than BP and gravity models, as indicated by the average root mean square
error (RMSE), where the RMSE for the GRNN, BP and gravity models are 38, 64 and
46 respectively. The estimated R? for the GRNN, BP and gravity models is reported as
being 0.557, 0.485 and 0.446 respectively.
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6.GRNN MODEL VALIDATION

6.1 Introduction

In the previous chapter the development of the proposed GRNN model has been
discussed and the performance of the proposed GRNN was compared with the BP and
Gravity models in calibration and testing levels. The analysis undertaken indicated that
the performance of the GRNN model in calibration level is very good (with R? of 0.984)
However the performance of the proposed GRNN model in testing level was dlightly
better than the BP and gravity models (with R? of about 0.575).

In this chapter more detailed analysis will be undertaken for the proposed GRNN model
to investigate the validation of the GRNN model by different datasets. Also the
performance of the proposed GRNN model will aso be investigated to see if the
proposed GRNN model would be able to satisfy the gravity model constraints for total
productions and attractions. The performance of the GRNN model for satisfying the
gravity model constraints will be investigated by number of different data sets.

Previous studies by Mozolin et a. (2000) and Yaldi et a. (2009b) indicated that that
the neural model is unable to satisfy the production and attraction constraints of the
gravity model. However, in a different study by Yaldi et al. (2010), he claimed that
training the neural models with the Levenberg-Marquardt algorithm can satisfy the trip
production and trip attraction constraints. Therefore the performance of the GRNN
model for satisfying the above constrains needs to be investigated.

120



Chapter 6 GRNN Model Validation

6.2 Cross Validation

The purpose of NN training is to find a set of NN weights so that the input data
estimates output data with best match for the target data. A simplistic approach is using
all the available data to train the neural network. However, this approach would likely
lead to over fitting issue which means that the data match would be extremely well but
when tested with unseen set of input data (or testing data), the neural network would
perform poor. In order to avoid over fitting, the ideais to separate the available data into
atraining data set and atest set. Training data set will be used for finding NN weights
and the test set is used to evauate the performance of neural network.

Since no independent dataset (demand matrix) is available, it is not possible to provide
the external validation and validate the proposed GRNN model by external independent
set of data. Therefore the validation of the GRNN model is assessed using the cross

validation technique.

6.2.1 Cross Validation Techniques

Cross validation techniques (Refaeilzadeh et al., 2009) and (Picard and Cook, 1984) is
used to insure good generalisation of amodel and avoid over fitting. There are different
methods available for cross validation. The two most common methods are explained
here.

Hold out cross validation is a widely used technique due to its simplicity and
efficiency. This method randomly divides the available data into a training data set and
a test data set. An advantage of this method is that the proportion of these two data
subsets is not restricted. The disadvantage of this approach is that the data split
significantly affects the performance of the model. Therefore an unlucky split of the
data could result in poor neural network performance. One possibility is to repeat the
hold out validation several times. This method is called repeated sub-sampling
validation.

K-fold cross-validation uses the combination of more tests for cross validation
(Mitchell, 1997). The idea of k-fold cross-validation is to divide all the available data
into roughly same size data sets. Each data set is used once as the test set and the
remaining data is used as the training set. Unlike the hold out method, there is not a
separate testing set in this method and proportion of the training and validation subsets
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is dictated by the number of folds k. In most applications k = 10 is selected. The
important parameter of K-fold cross validation is the data split method.

In this research, a variation of hold out method is used to validate the GRNN model
and also check the constrain satisfaction of the GRNN model. The data split and
selection of the sample groups for cross validation is explained in next section.

6.3 Sample Groups

Validation of the GRNN model should be based on a set of vectors which are not
used for the training of the GRNN model. In order to investigate the constraint
satisfaction (productions and attractions), the sample data should include al the trips
generated from or attracted to a set of zones, so the total trip generation or trip attraction
for that zones could be calculated. On this basis and considering the limitation of the
available vectors (total of 441 vectors which is extracted from 21 zones) the validation
was investigated separately for total productions and attractions.

Accordingly 10 different data sets from 5 sample groups were identified for
validating the GRNN model. 5 data sets were used to check the model ability to satisfy
the total productions and other 5 data sets were used to check the model performance
for estimation of the total attractions. For checking the total productions the rows of the
OD matrix were used for training and validation but for the total attractions the columns
of the OD matrix were used for training and validation purposes. The rows of the OD
matrix include al the trip generations and the columns of the OD matrix include all the
trip attractions. Figure 6-1 illustrates the data split (zone split) for checking the total
productions of sample group 1 and Figure 6-2 shows the same figure for sample group
1 which has been used for checking the total attractions. Therefore each sample group
provides two different data sets, one will be used to check the row totals and the other
one will be used to check the column totals.
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Figure 6-1: Sample Group 1 for Checking Total Productions,

Training and Testing Data Sets
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Figure 6-2: Sample Group 1 for Checking the Total Attractions,
Training and Testing Data Sets

On this basis sample group 2 assumed to use the first 4 zones for testing and the rest
of the zones (17 zones) for training. Table 6-1 shows the sample group zones which are
used for validation of the GRNN model and checking the production and attraction

constraints.
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Table6-1: Various Groupsfor GRNN Validation

Groups Sample Zones Validation Zones | Training | Training Zones
(validation) (Percentage) Zones (Percentage)
Gl 1,2 About 10% 3to21 About 90%
G2 1,234 About 20% S5to21 About 80%
G3 1,2,3,4,5,6 About 30% 7t021 About 70%
G4 1,2,3,4,5,6,7,8 About 40% 9to 21 About 60%
G5 1,2,3,4,5,6,7,8,9,10 About 50% 11to 21 About 50%

The zones in each sample group were selected to represent various land uses within
the Mandurah area. The training zones (the reminder of the zones which will be used for
model training) aso include various land use data so the model can find the relationship
between the land use data and the trip distribution between the OD zones. Table
6-2shows the distribution of the land use data for the 21 zones within the study area.

Table 6-2: Land use Distribution for the 21 Zonesin M andur ah

Zones Residential Retail Office Showroom School Comments
Zone 1 Y Y Y Y Y Mixed Use
Zone 2 Y Residential
Zone 3 Y Y Y Y Y Mixed Use
Zone 4 Y Y Y Mixed Use
Zone 5 Y Y Residetial + School
Zone 6 Y Y Y Y Mixed Use
Zone 7 Y Y Y Y Mixed Use
Zone 8 Y Y Y Y Y Mixed Use
Zone 9 Y Y Y Mixed Use
Zone 10 Y Y Y Y Mixed Use
Zone 11 Y Y Y Y Y Mixed Use
Zone 12 Y Y Y Mixed Use
Zone 13 Y Y Y Y Mixed Use
Zone 14 Y Y Residetial + School
Zone 15 Y Y Y Mixed Use
Zone 16 Y Y Y Y Y Mixed Use
Zone 17 Y Y Residetial + School
Zone 18 Y Y Y Y Mixed Use
Zone 19 Y Residential
Zone 20 Y Residential
Zone 21 Y Residential
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6.4 Validation Results

The analyses were undertaken separately for each data set. The optimum spread
factor (o) for each data set was searched through a macro developed in MATLAB
software. Accordingly different spread factors (o) between (0-1) were tested with
0.02 step increase for the o value. Therefore the NN is trained 50 times by 50
different spread factors and the trained network is simulated for the testing data set
for each spread factor. The Sum Square Error (SSE) of the testing data (sample
zones) is recorded for each o and the plot showing the SSE against ¢ is prepared to

easily select the optimum o.

The sample groups then are simulated again with the optimum ¢ and the model
outputs were compared with the target data and the regression plot is prepared for
each sample group to investigate the goodness of fit for the trip distribution. The
same regression plot is also prepared for the total productions and attractions for each
sample group to investigate the GRNN performance for estimating total productions
and attractions for each sample zone. It should be noted that the production plots are
prepared for the sample groups that are trained by rows of the OD matrices and
attraction plots are prepared for the sample zones that are trained with the columns of
the OD matrix.

Appendix D provides the o determination plots, trip distribution regression plots and
total production and attraction regression plots for each dataset. According to the
analysis undertaken the validated GRNN provided better results for sample group 2.
The optimum spread factor is reported as 0.42 for both datasets trained by rows and
columns of the OD matrix for sample group 2. Figure 6-3 illustrates the reported
SSE for different spread factors used to train separately the rows and columns of the

OD matrix for sample group 2.
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Figure 6-3: Optimum Spread Factor for Sample Group 2 Trained by Rows and
Columns of the OD Matrix

Table 6-3 and Table 6-4 summarise the results of the analysis for the 5 sample

groups trained separately by the rows and columns of the OD matrix.

Table 6-3: Validation Results for Production Zones (trained by rows of the OD

matrix)

Groups Optimum Sigma ( RMSE for | R*for T trained | R for total
trained by OD RO\XI% Testing Data by OD Rows Productions

G1 0.42 53.1 0.62 1

G2 0.42 294 0.59 0.92

G3 0.45 49.8 0.48 0.67

G4 0.18 78 0.39 0.94

G5 0.24 70.8 0.41 0.90

Table 6-4: Validation Results for attraction Zones (trained by columns of the

OD matrix)

Groups | Optimum Sigma ( | RMSEfor | R®for Tjtrained | R®for total
trained by OL; Testing Data | by OD Columns Attractions
Columns

G1 0.46 485 0.26 1

G2 0.42 40.1 0.61 0.95

G3 0.44 66.1 0.06 0.02

G4 0.36 76.4 0.44 0.79

G5 0.36 71.2 0.48 0.66
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6.5 Observations and Discussions

Analysis undertaken indicates that:

GRNN predictive ability for total productions is better than total attractions.
The reported R? for total productions are more than 0.9 for all the sample
groups except sample group 3 which is 0.67.However for the attraction zones
lower R? than production zones is reported for the majority of the sample
groups.

There is a poor R? reported for sample group 3 in attraction zones (0.02).
This could be due to an unsuccessful training for the GRNN model which
would be associated with data split pattern for training and validation
vectors.

The optimum & is greater than 0.4 for the first three groups in both
production and attraction zones. Then it drops to less than 0.4 for the
samples in group 4 and 5. One possible reason for adopting a lower spread
factor for the last two sample groups could be the smaller size of the training
data set in comparison with the first three sample groups. With lower number
of training vectors the NN may not generalize well. This is more obvious for
production zones than attraction zones.

The best results for both production and attraction zones are related to
Group 2 with two sample zones and similar optimum & of 0.42.

The reported RMSE for both total productions and attractions is lower for
sample group 2 (refer Figure 6-4)

The data split for Sample group 2 included about 80% data for training and
about 20% for validation. There is no standard rule for the data split but the
80% / 20% training and testing (validation) split seems to be more efficient.

o Sample group 2 includes 4 zones for validation which reflects
different land use data available in the study area, which is
combination of purely residential (zone 2) and Mixed Use( Zones
1,3and 4) and therefore provides a good data split for training and
testing.

The predictive ability of the GRNN model for satisfying the production and
attraction constraints for sample group 2 is very well with R?more than 0.9

and RMSE Less than 41.
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Figure 6-4: Reported RM SE for Total Productions (P;) and Attractions (A;) for
Each Sample Group

6.6 Satisfying the Gravity Model Constrains

In order to investigate the predictive ability of the validated GRNN model for
estimating the entire OD matrix and evaluating GRNN model ability for satisfying the
gravity model constraints , the whole 441 vectors were used by the validated GRNN
model and the modeled output were simulated by the optimum spread factor of 0.42.
Table 6-3 summarizes the GRNN model outputs for the entire OD matrix. Figure 6-5
illustrates the regression plot for al trips (Tj;) within the 21 x 21 Mandurah OD matrix.
The reported R? in this plot is 0.686.
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Figure 6-5: Trip Distribution Estimation for Mandurah OD Matrix by
Validated GRNN Model (Regression Plot).

The x parameter in the above regression plot is 0.422 which indicates that the
validated GRNN model would underestimate the observed data. Analysis undertaken
indicates that the total trips in the observed OD matrix is 19,636 vehicles and the
validated GRNN model projects about 18,046 vehicles with calculated RM SE of 50.34.
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O/D zone 01 [ zone 02 | zone 03 | zone 04 | zone 05 | zone 06 | zone 07 | zone 08 | zone 09 | zone 10 | zone 11 [ zone 12 | zone 13 | zone 14 | zone 15 | zone 16 | zone 17 | zone 18 | zone 19 | zone 20 | zone 21
zone 01 142 47 197 67 76 254 73 141 49 156 99 168 121 46 78 75 42 60 36 40 34
zone 02 21 33 55 30 25 65 36 21 32 47 27 47 40 30 28 25 21 36 19 23 17
zone 03 20 16 67 23 18 69 23 23 17 42 27 46 38 16 25 19 14 19 13 14 13
zone 04 27 27 72 38 31 90 35 28 30 59 31 62 49 29 38 29 22 35 22 26 22
zone 05 66 36 120 51 58 157 51 62 39 98 54 106 76 39 58 51 32 47 28 33 27
zone 06 11 8 36 12 9 35 12 12 9 22 15 24 20 8 12 9 6 10 6 7 5
zone 07 24 29 58 30 25 62 40 24 32 48 32 48 43 30 30 29 22 35 19 24 18
zone 08 148 63 237 89 85 304 105 255 69 221 143 232 160 65 100 150 66 81 56 60 54
zone 09 21 31 54 31 26 63 37 21 33 46 27 46 40 32 29 27 25 36 24 27 23
zone 10 8 8 18 9 7 20 11 9 9 15 10 16 13 9 9 13 7 10 6 7 6
zone 11 11 10 33 12 9 32 16 10 11 26 25 26 23 10 12 10 9 12 9 9 9
zone 12 4 4 9 5 4 10 5 5 4 8 5 8 7 4 5 7 3 5 3 3 3
zone 13 22 22 58 27 21 61 31 24 25 46 30 47 42 24 27 24 18 27 15 18 14
zone 14 23 29 58 32 28 70 37 23 33 50 28 50 43 33 31 29 24 36 21 25 20
zone 15 45 30 103 47 44 133 44 45 34 87 43 93 69 34 55 42 29 41 25 29 24
zone 16 61 40 135 55 51 177 65 117 46 132 73 135 91 44 63 177 50 57 30 37 27
zone 17 29 24 73 31 28 89 35 34 30 63 36 64 48 28 34 41 37 40 16 20 12
zone 18 24 31 58 33 29 68 38 24 33 49 29 50 43 32 32 32 31 37 32 31 32
zone 19 19 19 54 25 20 67 26 21 25 44 27 46 35 21 25 20 14 36 32 24 25
zone 20 22 24 58 30 25 70 31 23 29 48 29 50 39 26 29 26 18 37 25 31 26
zone 21 19 17 55 26 20 69 25 21 24 44 27 47 35 20 25 19 11 37 25 25 28
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Figure 6-6 and Figure 6-7 aso illustrate the performance of the GRNN model for
estimating the total trip productions and attractions for each traffic zone in the OD
matrix. Analysis undertaken indicates that the estimated R® for both productions and

attractions are more than 0.8 which indicates a good fit.
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Figure 6-6: Validated GRNN Model Performancefor Total Productions of Each

Traffic Zone
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Figure 6-7: Validated GRNN Model Performance for Total Attractions of Each

Traffic Zone
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In order to undertake more detailed analysis and investigate the errors for total
productions and attractions for each zone Table 6-6 summarises the percentage error for
both productions and attractions for each individua zone and aso for the total OD

matrix. Figure 6-8 also shows the percentage error for each zone in a plot format.
Table 6-6 and Figure 6-8 are prepared. Table 6-6 summarises the percentage error
for both productions and attractions for each individual zone and aso for the total OD

matrix. Figure 6-8 also shows the percentage error for each zone in a plot format.

Table 6-6: Error (gap) Calculation for Total Productionsand Attractions

Total Productions [Total Productions |Productions| Total Attractions |[Total Attractions Attractions
Zones Observed Modeled Error (%) Observed Modeled Error (%)

Zone 1 1989 2001 -1 780 767 2

Zone 2 357 678 -90 103 547 -434
Zone 3 610 562 8 1902 1607 16
Zone 4 874 800 8 601 700 -16
Zone 5 1799 1289 28 569 641 -13
Zone 6 0 286 NA 2568 1963 24
Zone 7 885 703 20 1606 776 52
Zone 8 3839 2742 29 1215 945 22
Zone 9 415 699 -68 786 613 22
Zone 10 0 220 NA 1732 1351 22
Zone 11 182 323 -78 685 818 -19
Zone 12 0 110 NA 1409 1410 0

Zone 13 650 621 4 1251 1074 14
Zone 14 490 726 -48 249 581 -133
Zone 15 1367 1097 20 947 743 22
Zone 16 2390 1665 30 1043 856 18
Zone 17 1009 812 20 340 502 -48
Zone 18 498 769 -54 1125 735 35
Zone 19 454 627 -38 89 463 -420
Zone 20 961 697 27 261 514 -97
Zone 21 868 620 29 376 439 -17
Total 19636 18046 8 19636 18046 8
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Figure 6-8: Percentage Error for Total Productionsand Attractions

Reviewing the gap (error) between the modelled and observed total productions and
attractions for each zone indicates that performance of the validated GRNN model for
predicting the total productions is better that predicting the total attractions. The
reported error for total attractions of zone 2 and zone 19 are more than 100%.
Reviewing the total productions aso indicates that predictive ability of the GRNN
model is poor for the zones with zero work trip productions (Zones 6, 10 and 12). The
caculated RMSE for the total productions (total row) and total attractions (total
column) are 364 and 326 respectively.

According to the analysis undertaken the validated GRNN model could not perfectly
satisfy the total production and attraction constraints for each individual zone. In order
to address this issue, similar to the gravity model, it is proposed to balance the modelled
OD matrix by the total productions and attractions of the origina observed OD matrix
(2006 ABS work trip matrix). Table 6-7 summarises the balanced OD matrix for the
validated GRNN model.
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O/D zone 01 [ zone 02 | zone 03 | zone 04 | zone 05 | zone 06 | zone 07 | zone 08 | zone 09 | zone 10 | zone 11 [ zone 12 | zone 13 | zone 14 | zone 15 | zone 16 | zone 17 | zone 18 | zone 19 | zone 20 | zone 21
zone 01 141 47 195 67 75 252 72 140 49 155 99 167 120 46 77 75 42 60 36 40 34
zone 02 11 18 29 16 13 34 19 11 17 25 14 25 21 16 15 13 11 19 10 12 9
zone 03 22 17 73 25 20 75 25 25 18 46 30 49 41 18 27 21 15 21 14 15 14
zone 04 30 29 78 41 34 98 38 30 33 64 34 68 53 32 41 32 24 38 24 28 24
zone 05 92 50 167 71 81 219 72 87 55 137 76 148 106 54 80 71 45 66 39 46 38
zone 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 07 30 37 73 37 32 77 50 30 41 61 41 61 54 38 37 37 28 44 25 30 23
zone 08 207 88 332 124 119 425 147 357 97 310 200 325 225 91 140 211 92 113 78 83 76
zone 09 13 18 32 18 16 37 22 12 20 27 16 27 24 19 17 16 15 21 14 16 14
zone 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 11 6 6 19 7 5 18 9 5 6 15 14 14 13 6 7 6 5 7 5 5 5
zone 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zone 13 23 23 61 28 22 64 32 25 26 48 31 49 44 25 29 25 18 29 16 19 15
zone 14 16 20 39 21 19 47 25 16 22 33 19 34 29 23 21 20 17 25 14 17 14
zone 15 56 38 129 58 55 166 54 57 43 108 54 116 85 43 68 53 36 51 31 36 30
zone 16 88 57 194 79 74 255 94 168 66 189 105 193 131 63 91 255 72 81 43 53 39
zone 17 36 30 91 38 35 111 44 43 38 78 44 80 59 34 42 52 47 50 20 25 14
zone 18 16 20 38 21 19 44 25 16 21 32 19 32 28 21 21 20 20 24 21 20 21
zone 19 14 14 39 18 15 49 19 15 18 32 19 34 26 15 18 15 10 26 23 18 18
zone 20 30 33 79 41 34 96 43 32 40 67 39 69 54 36 40 36 25 51 35 43 36
zone 21 27 24 77 36 29 96 35 30 34 62 38 66 49 28 35 26 15 51 36 35 40
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Analysis undertaken for the outcome of the matrix balancing indicates that the R? of
the trip distribution plot for balance matrix will improve from 0.686 to 0.705 (refer
Figure 6-9).

Balanced OD Matrix
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Figure 6-9: Regression Plot for the Balanced OD Matrix

The balance matrix will not only satisfy the model constrains for the total rows and
columns but also will improve the RM SE of the total OD matrix from 50.34 to 43.55.

6.7 Summary

Since no independent dataset (demand matrix) was available, it was not possible to
provide the external validation. Therefore the validation of the GRNN model was

performed using the cross validation technique.

In this research, a variation of hold-out method was used to validate the GRNN
model and also check the production and attraction constrain satisfaction of the GRNN

model. The validation process was applied to 10 different sample groups.

Analysis undertaken indicated that GRNN predictive ability for total productions was
better than total attractions for the mgjority of the sample data sets. The predictive
ability of the GRNN model for production and attraction constraints for a sample group
which included about 20% testing data set and about 80% training data set was very

well with R?more than 0.9 for both productions and attractions.
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The validated GRNN model was applied to the entire OD matrix and the modelling
output indicated that the validated GRNN model could estimate the trip distributions of
the OD matrix with R? of 0.686 and RMSE of 50.34.

The validate GRNN model was able to satisfy both total productions and attractions
for each zone, athough not perfectly. In order to improve the performance of the GRNN
modelling results (similar to the gravity model) the projected OD matrix by validated
GRNN model was balanced with the total production and attractions of the origina
2006 ABS OD matrix.

The analysis undertaken indicated that the balance matrix will satisfy the model
constrains for the total rows and columns and aso will improve the RMSE of the total
OD matrix from 50.34 to 43.55.

The validated GRNN model with balanced OD matrix would outperform the gravity
model in terms of R?and RMSE.

Since the trip production and attraction is not a direct input into the validated GRNN
model, it seems that the GRNN model would not be able to perfectly satisfy the total
production and attraction constraints; hence matrix balancing is required to satisfy the

constraints.
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/.CONCLUSIONS AND
RECOMMENDATIONS

Trip distribution is behavioural in nature and is more complicated to be estimated by
statistical relationships between the socio economic and household demographic data.
The traditional gravity models have been used widely in different countries for many
years since they provide reliable and relatively simple method to estimate trip
distribution, however their smplicity does not reflect complexity of the travel behaviour
in trip distribution. The proposed GRNN model tries to capture the behavioural nature
of the trip distribution and keep the ssimplicity and practicality of the gravity model.

Since 1995 that Black developed a neural network for prediction of the commodity
flow based on US Commaodity Flow Survey (CFS), and used production, attraction and
distance as the input to the model, most of the other following studies also used the
proposed three inputs (production, attraction and distance) to develop a neural model for
predicting the trip distribution. Neural networks are known as powerful tools for their
ability for solving problems with complicated algorithmic solutions or even no
algorithmic solutions through establishing the relationship between number of different
inputs and outputs for a system. Therefore in this study instead of using the three
common inputs (production, attraction and distance) for estimation of number of trips
between origin and destination zones, 10 inputs in the form of a vector which its
components include the land use data for the origin and destination zones were used.
The separation distance between the OD zones are also added to the input vector to
reflect the generalised cost between the two zones. The other novelty of this study is the
application of generalised regression neural networks for predicting the trip distribution
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between the OD zones. The application of NN to trip distribution modelling islimited in
the literature and according to the knowledge of the author; no study has been reported
to investigate the potentia of the GRNN model for better estimation of the trip
distribution.

The application of GRNN model has been investigated for travel mode choice
modelling (Celikoglu, 2007); however this type of neural network has not been used for
trip distribution modelling. the common feed-forward back propagation (FFBP) neural
network approach which has been used in most of the relevant cited papers for trip
distribution modelling inherit some disadvantages including their sensitivities to the
selected initial weights and the local minima problem which will generate inaccurate

outcomes.

GRNNSs are known for their ability to learn quickly with small number of data and
their application has been investigated in different studies including Medical,
hydrological and electrical and many more applications. GRNN application is especialy
useful for function approximation with multi-dimensional inputs and therefore in this
thesis the ability of the GRNN model for trip distribution modelling has been
investigated with multiple inputs in the form of land use data into the GRNN model.
The performance of the GRNN model has been compared with the traditional gravity
model and the FFBP model. In order to validate the GRNN model the performance of
the GRNN model has been investigated by 10 different data sets and the performance of
the GRNN model to satisfy total production and attraction constraints were assessed.

In summary the modelling and analysis undertaken indicated that the accuracy of the
three developed models (GRNN, BP an Gravity models) for estimation of the work trips
for a small area such as Mandurah is almost similar. The reported R? for al three
modelsisin the range of 0.4 to 0.7; however the GRNN model proposed in this research
provides a simple and practica methodology which can be used by the traffic and
transport modellers or software developers to estimate the trip distribution matrices for
the strategic transport models. The proposed GRNN model has been applied to the work
trips in this thesis and provided promising results for work trip estimations. Analysis
undertaken also indicated that the validated GRNN model could outperform gravity

mode!.
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The proposed GRNN model is expected to predict other trip purposes such as
education trips, shopping trips and other trips and therefore the master matrix which
would be the combination of these matrices can be assigned to the road network to

estimate the projected traffic volumes on road network within the modelling study area.

NN is still in its infancy in the field of transportation and more guidelines and
research work are required to improve the performance of the NN models to be able to
effectively utilise their ability in practice. The proposed GRNN model proposes a
simple and practical approach for estimation of trip distribution by land use data. The
proposed approach needs to be investigated further with larger dataset if available and

could be a recommendation for future research work in thisfield.

7.1 Combined Trip Generation and Distribution Modelling

The proposed validated GRNN model is providing a combined trip generation and
distribution modelling frame work which is another novelty of this research. The
transportation planning process has traditionally suggested a four step models for trip
generation, distribution, modal split, and assignment. The traditiona four step model,

estimates each step independently and, therefore, some inconsistencies would appear.

The decision to take a trip by an individual trip maker, involves travel to a
particular destination, using a particular mode, and traverses a particular route. This
process is made simultaneously rather than sequentially. In the last two decades, this
issue has been studied by many researchers. In order to reflect the joint nature of these
decisions and improve the behavioura nature of the trip makers different studies has
been undertaken to simulate these steps simultaneously and provide consistent
outcomes. Nabil et a. (1988) developed a transportation equilibrium model and an
algorithm for the simultaneous prediction of trip generation, trip distribution, modal
split, and trip assignment on large-scale networks. Using the random utility theory
framework, Zhong et a. (2009) recommended an alternative formulations, including
mathematical programming and variational inequality formulations for a combined
travel demand model that integrates trip generation, trip distribution, modal split, and
traffic assignment.
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Accordingly, similar studies have been undertaken for combining two or more of the
above components of the four step modelling. For example, Tomlin (1971) developed a
model that simultaneously estimated trip distribution and assignment; Wilson (1969)
has researched a combined trip distribution and modal choice model; and the presented
model of Quandt et al. (1966) simultaneously estimated trip generation and modal split.
Frank (1975) aso recommended a combined trip generation and distribution model at
the aggregate level.

According to the literature no work has been reported that employ neura networks to
investigate trip generation and distribution simultaneously. Therefore the potential of
the GRNN for better addressing this issue is recommended and investigated in this

research.

7.2 Summary of the Neural Network Modelling

Neura network (NN) models were introduced as aternative methods for traditional
modelling approaches, and have been increasing in use since the 1990s (Tillema
et.al, 2006). A neura model is able to learn the relationship between input and output
datafor a system. According to Shmueli (1998), NNs can overcome the problems faced
by the behavioural or disaggregate models because the neural model learns the
relationship between variables of amodel automatically and discovers the best fit which
isacomplicated task for a disaggregate model; and also the neural model directly works
on the data without the aid of additional models.

The main limitation of NN models is related to its “‘black-box’” nature of NNs
(Dougherty, 1995, Fu and Rilett, 1995, Cantarella and de Luca, 2005). NNs cannot
establish a causal relationship between the model parameters. Therefore it isimpossible
to measure the elasticity of the parameters unlike regression models. Also, the outputs
of the NNs are connection weights for model variable. These weights do not provide a
clear elasticity measure unlike regression models and it is difficult to interpret the
meaning of the final connection weights. However it is aways possible to explore the
behaviour of neural models towards different properties of the NNs. In this thesis the
behaviour of the NNs have been investigated against the format of the input data into
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the model, selection of the best NNs for solving the trip distribution problem, and
specifically for the BP model the number of nodes in hidden layers were investigated.

7.3 Summary of the GRNN Modelling

GRNN is afeed-forward neural network and is known as a powerful tool in practice
because of the following reasons:
e |ts ability to converge to the desired outcome with minimal available training
data;
e |Its flexibility to train the network and develop the NN structure with relatively
little additional knowledge by the user.

The input layer of the GRNN was represented by land use data in each zone, which
was assigned to RD (residentia dwellings), RE (retail), CO (commercial land use), SH
(showroom) and SC (schools). In order to represent the spatia distribution of a pair of
zones, the distance Dj; (metres) between zones i and | is defined. Accordingly the input
vector (X) isdefined as:

Xij=(RD;, RE;, CO;, SH;, SC;,,RD;, RE;, CO;, SH;, SC;, Dy)
wherei and j show the origin and destination, respectively.

Trips (Ti;) between a pair of zones were considered to be the output layer of the
neural network. Simple data normalization, linear transformation and statistical
normalization methods were used in this study for the input vectors to normalize the
input data into the NN model. Analysis undertaken indicated that GRNN performance
in training would be similar with all three different normalisation methods. For

simplicity the simple data normalisation was used for the modelling the testing data set.

There are usually two kinds of input data sets in neural networks, namely training
and testing data sets. The training data set is used in estimating the model
parameters/variables while the testing data set is for evaluating the forecasting ability of
the model. For the purpose of this study, 90% of the data (400 input vectors) was used
for training and about 10% (41 vectors) was used for testing.
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The smoothness parameter or spread factor indicates the width and slope of the
neurons functions. This factor is the only parameter in GRNN that needs to be adopted.
For developing the preferred GRNN model structure, the optimum spread factor was

obtained through cross validation technique.

As a case study the proposed GRNN model was applied to the 2006 Journey to Work
data set for the Mandurah Area. Data was sourced from the Department of planning
(DoP). The travel zones for the purpose of this study were 21 zones which generated
441 (21 x 21 =441) input data for the purpose of the model development.

The modelling and analysis undertaken indicated that:

e The GRNN model could estimate the work trip distribution by land use data
and distance between the OD zones. The model performance indicators at
calibration level were reported as 10 for RMSE, 10 for MAE and 0.984 for
R?, these figures for testing level were reported as 38 for RMSE, 22 for MAE

and 0.575 for R

e Analysis of the zero work trip vectors indicated that GRNN model would be

able to estimate zero trips. The calibrated GRNN could predict 9 zero trip

vectors out of 16 zero trip vectors correctly.

7.4 Summary of the BP Modelling

The standard BP network used for this study was a two-layer feed-forward network
with a sigmoid transfer function in the hidden layer and a linear transfer function in the
output layer. The number of hidden neurons was set to 10. The training algorithm was
based on a Levenberg-Marquardt (LM) minimization method. Simple data
normalization was used for the input vectors. In order to be consistent with the GRNN
modelling, 90% of the data (400 input vectors) was used for training and validation and
10% was used for testing. The testing vectors were not used in the training or validation
process. The BP network was trained with 10 different seeds and five various hidden
neurons. The BP model was applied to the same training and testing data set as GRNN
model and the following observation were reported:
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e The BP mode could estimate the work trip distribution by land use data and
distance between the OD zones. The mode performance indicators at
calibration level were reported as 45 for RMSE and 0.77 for R2, these figures
for testing level were reported as 64 for RMSE, and 0.485 for R%.

e Reviewing the analysis undertaken for the training data sets indicated that
increasing the number of nodes in the hidden layer would not necessarily
improve the performance of the BP model. Analysis undertaken for 4 different
sets of number of nodes (5, 10, 15 and 20) indicated that the BP model
performed better with 10 nodes in the hidden layer and increasing the
number of nodes in the hidden layer to 15 or 20 nodes did not improve the
performance of the BP model.

e The BP model provided negative predictions for some of the observed tripsin
the testing data set (about 27%). The negative predictions are mostly related
to the zero trip zones (about 56% of zero trips are predicted with negative
values) which mean that BP model ability to predict zero tripsis poor.

e Using the linear activation function in the output layer is the reason for
producing negative values for the trip estimations. The linear transfer
function do not change the summation results and transfers them after the
summation process, ther efore the outputs (predictions) have no limits and can
also be negative.

e The x parameter in BP model for testing data set is reported 1.084 in the
regression plot, which means that the modelled values match the observed
values over the range of data and therefore it is expected that BP model
provides better match than the GRNN model.

7.5 Summary of the Gravity Modelling

The gravity model used in this desertion was based on the strategic transport model
developed for the Mandurah and Peel Region. The transport model was based on the
traditional four-stage model process (trip generation, trip distribution, mode split and
traffic assignment). The trips were divided into five different categories based on trip
purposes. work, education, socia, other and non-home-based (NHB) trips. Trips
internal to the modelling area were distributed based on the gamma function.
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The number of residential dwellings for the City of Mandurah was calculated for the
38 individual modelling zones. The existing land use data for the attraction zones (retail,
commercial, school, showroom, etc.) was sourced from City of Mandurah. The zoning
system for Mandurah modelled study area were much smaller than the Department of
Planning zoning system which was the base of the observed data, therefore the
modelled smaller zones were aggregated to reflect the DoP zoning system to be able to
compare the gravity modelling output with the previously established neural models.

The gravity model was applied to the same training and testing data set as neural
models and the model performance indicators at calibration level were reported as 50
for RMSE, 23 for MAE and 0.59 for R?, these figures for testing level were reported as
46 for RMSE, 31 for MAE and 0.446 for R%.

7.6 Models Performance Comparison

The root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R?) between the modelled output and measures of the training and
testing data set are the most common indicators used to provide a numerical description
of the goodness of the model estimates. Accordingly these indicators were calculated
and reported for the three models at the calibration and testing levels. In order to
compare the models’ performance, these indicators at the testing level were summarised
inTable7-1.
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Table 7-1: GRNN, BP and Gravity Modelling Resultsfor the Testing Data Set

Models | RMSE | MAE | R® Regression Comments
X-Parameter
GRNN 38 22 | 0575 0.51 Better results in terms of
Model performance indicators but

low regression x-parameter

BP Model 64 31 | 0485 1.08 Similar results in terms of
performance indicators as
gravity model but better x-
parameter than both models
Gravity 46 31 | 0.446 0.63 Low performance indicators
Modd and low regression x-

parameter

Thistable indicates that the GRNN model provided dlightly better results than the BP
and gravity models in terms of the performance indicators however its x parameter is
reported lower than BP model. The R? of the BP model was slightly higher than for the
gravity model, while the reported RMSE was higher than for the gravity model. The

mean average error of 31 isreported for both BP and gravity models.

Comparing the three developed models indicated that:

GRNN model could provide a slightly better goodness of fit than the BP and
gravity models with a lower error level than BP and gravity models, as
indicated by the average root mean square error (RMSE), where the RMSE
for the GRNN, BP and gravity models was 38, 64 and 46 respectively. The
estimated R? for the GRNN, BP and gravity models was reported as being
0.557, 0.48 and 0.446 respectively.

The distribution of points in the regression plot for all models indicated that
the majority of the points are clustered at low values, with one or two at
much higher levels therefore, the regression parameters are dependent on
these points. The testing data set was selected through the random split
method and checked to insure that testing data represent the variety of the
work trip conditions in Mandurah. Therefore the testing data set included
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range of different work trips including zero trips and higher work trip
generators.

e Reviewing the regression plots for the 3 models indicated that BP model
provides closer x parameter to 1 and therefore can provide better match for
the observed work trips. However BP model performance measures are lower
than the GRNN mode!.

e Considering that x parameter for both GRNN and gravity models are lower

than 1, then it is expected that these models under estimate the observed data.

7.7 Summary of the GRNN Model Validation

The purpose of the GRNN model vaidation was to validate the performance of the
GRNN model with different number of sample groups and check the predictive ability
of the GRNN model for satisfying the gravity model constraints (total productions and
attractions). Since no independent dataset (demand matrix) was available, it was not
possible to provide the external validation. Therefore the validation of the GRNN model
was performed using the cross validation technique. Cross validation techniques are
normally used to insure good generalisation of a neural model and avoid over fitting.
There are different methods available for cross validation. In this research a variation of
hold-out method was used to validate the GRNN model. Accordingly the cross

validation technique was applied to the following 5 sample groups:

e G1:About 10% of the data (zones 1 and 2) used for testing and about 90% was
used for training ;

e G2 : About 20% of the data (zones 1 to 4) used for testing and about 80% was
used for training ;

e G3: About 30% of the data (zones 1 to 6) used for testing and about 70% was
used for training ;

o G4: About 40% of the data (zones 1 to 8) used for testing and about 60% was
used for training ; and,

e Gb: About 50% of the data (zones 1 to 10) used for testing and about 50% was
used for training ;

The above sample groups were trained separately by the rows and columns of the
OD matrix. Analysis undertaken for the above sample groups indicated that:
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The best results obtained were related to Group 4 with two sample zones for
validation. The reported RMSE for both total productions and attractions was
lower for sample group 2;

The data split for Sample group 2 included about 80% data for training and
about 20% for validation. There is no standard rule for the data split but the
80% / 20% training and testing (validation) split seems to be more efficient.
The validated GRNN model could not perfectly satisfy the total production
and attraction constraints for each individual zonein the OD matrix. In order
to address thisissue, similar to the gravity model, it was proposed to balance
the modelled OD matrix by the total productions and attractions with the
original observed OD matrix (2006 ABSwork trip matrix);

The analysis undertaken indicated that the balanced matrix could satisfy the
model constrains for the total rows and columns and also could improve the
RMSE of the total OD matrix from 50.34 to 43.55.and,

The validated GRNN model with balanced OD matrix would outperform the
gravity model in terms of R? and RMSE.
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7.8 Future Research

This research aimed to estimate the work trip distribution by generalised regression
neural networks. The trip distribution was estimated by the land use data for the OD
zones and the distance between the zones. The results of the analysis were aso

compared with the BP model and traditional gravity model.

Despite the efforts devoted to the analysis of all of the approaches discussed in this
dissertation, there are major areas that still need to be researched. The following

sections provide recommendations for the future research in this area.

7.8.1 Using a larger dataset

The GRNN model outputs rely greatly on the amount of data available and the
variety of the training data set vectors. The greater the number of input vectors in the
training data set, the more accurate the results in the output vector. Therefore it is
recommended that the efficiency of the GRNN model be tested and improved with a
larger data set if available. This research used 441 input vectors which were derived
from a 21x21 OD matrix for the Mandurah and Peel Region. It is recommended that
work trip distribution be estimated for a wider area and with larger dataset which would
provide variety of land use data for the OD zones. The GRNN model performance is

expected to improve with the larger input vectors.

7.8.2 Using Different Generalised Costs

The proposed GRNN modé in this thesis aimed to find the relationship between the
land use data of origin and destination zones with respect to the distance between the
two zones and estimate the number of trips between the two zones. The distance as the
only factor for the separation between OD zones is not expected to be the best
representation of the generalized cost between the two zones but as the existing gravity
model used for Mandurah strategic transport model utilised the distance for the purpose
of the separation between OD zones then neural models were also used the same
parameter as input to the model to be able to compare the neural models with the gravity
model.
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The genera cost indicates the separation between the origin and the destination
zones and for private carsincludes operating costs, in-vehicle time, parking costs,
access time to and from the car and tolls or user charges. Generalized cost normally
combines all of these variables together as a weighted sum of those factors for the origin
to destination zone in the model. Therefore it is recommended that different generalized
costs be tested as an input to the model rather than the distance between a pair of zones,

in order to investigate the sensitivity of the model to different generalized costs.

7.8.3 Estimating trip Purposes other than Work Trips

This research concentrated on work trip purposes only, however the other trip
purposes such as education trips, shopping trips, non-home bases trips and other trips
also need to be investigated. According to the Perth and Regions Travel Survey
(PARTYS) data the percentage of car drivers for work trip purpose in City of Mandurah
isabout 15.8% (refer Figure 7-1).

30%

25%

20%

15% -

10% -

o N
&o“ & a“b'-. 0(@‘ <& P

2

]

& oo S o~ @
& & 3 & & ¢

& < &

o
(_}\OQ & o 20

KM

Figure 7-1: Percentage of Car Driversfor each Trip Purposesin Mandurah

In order to estimate the total traffic in a study area the master matrix which combines
all the trip matrices should be assigned to the road network. It is therefore recommended
that different trip purposes be estimated by the GRNN model and the total trip
distribution matrix which is the combination of all the trip matrices be assigned to the
model road network and the projected traffic volumes at links be compared with the
projected traffic volumes by the gravity model distribution.
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7.8.4 Trip Production, Attraction and Distance

All the previous cited papers used trip production, trip attraction and distance as the
input to the neural models. In this study it was suggested to use land use data as input to
the model. In order to investigate the performance of the GRNN model with BP model
and gravity model and be consistence with previous studies, it is recommended that the
GRNN performance be investigated by the common inputs to the model as trip

production, trip attraction and distance between the OD zones.

7.8.5 Combining Land Use Data with Trip Production, Attraction and
Distance

According to the analysis undertaken for the neural models in this thesis, the
predictive ability of the neural models for total productions and attractions or satisfying
the gravity model constrainsis not very good and the projected OD matrix needs to be
balanced to be able to satisfy the constraints. One possible reason for this issue could be
related to the input data which has been used for training the neural models. The input
data includes the land uses activities within the study area which reflects the
distributions of the activities, however the size of the activities which is identified by
trip generation and attraction of the zones are not direct input to the neural models and
therefore the neural model would not be able to predict perfectly the total production
and attractions for each zone. Therefore it is recommended that trip production and
attractions are aso included into the input data in combination with the land use data to

improve the predictive ability of the neural models for total production and attractions.

7.8.6 Household Demographic Data

The proposed GRNN model in this thesis tries to take into account the behavioura
nature of the trip distribution (by land use data instead of trip production and attractions
and also the generalised cost between the origin and destination zones) and keep the
simplicity and practicality of the gravity model. The established strategic model for
Mandurah reflected private cars only and did not include the mode choice step of the
traditional four step model. The trip generation step of the model also estimated from
number of residential dwellings per each traffic zone and therefore the input to neural
models were also kept the same as inputs to the gravity model to be able to compare the

models with similar inputs. However, the trip generation and mode choice of the
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traditional 4-step model uses additional information related to the socio-economic data
and household demographic data at the zonal level. Therefore it is recommended that
the proposed GRNN model be utilised and compared with a more sophisticated strategic
transport models (4-step model) and inputs to the GRNN model be increased to include
additional household demographic data including household car owner ship and house
hold income.

7.8.7 Software Development

In this study all the input vectors to the GRNN model was prepared by Microsoft
Excel program and the developed GRNN model trained by MATLAB software. It is
therefore recommended that all this process be automatic through development of new
software or linking the Excel and MATLAB software packages. Extracting the land use
data information and recording them into excel file, data normalisation and preparation
of the input vectors can be done easily through Excel program. Some modellers also
prefer to use Excel program to prepare the trip generation and attraction files for each
trip purposes. Then the prepared files will be used by strategic transport software
packages such as EMME for trip distribution process including balancing the matrices
and adding the matrices together and preparing them for assignment. This process can
be automatically undertaken without suing those software packages through developing
simple software or program for training the GRNN model. Considering that structure of
the GRNN model is fixed, therefore does not have to be investigated by trial-and-error
unlike the BP model then this will remove some of the uncertainty related to the NN
model development process.
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Abstract

Trip distribution is the second step of the transport
modelling process. Errors in this trip distribution
step will propagate through the other stages of
the transport modelling process and will affect the
reliability of the model outputs. Therefore, finding
a robust and efficient method for trip distribution
has always been an objective of transport modellers.
The problem of trip distribution is non-linear and
complex. Neural networks (NNs) have been used
effectively in different disciplines for solving non-
linear problems. Accordingly, in this paper, a
new NN model has been researched to estimate
the distribution of the journey to work trips. This
research is unique in two aspects: firstly, the training
ofthe model was based on a generalised regression
neural network (GRNN) algorithm, while the
majority of previous studies have used a back-
propagation (BP) algorithm. The advantage of the
GRNN model over other feed-forward or feed-back
neural network techniques is the simplicity and
practicality of the model. The second unique aspect
is that the input data for the GRNN model was
based on land use data for each pair of zones and
the corresponding distance between them, while
the previous NN models used trip productions,
trip attractions and the distance between a pair
of zones as inputs. As a case study, the model was
applied to the journey to work trips in the City
of Mandurah in Western Australia. The results of
the GRNN model were compared with the well-
known doubly-constrained gravity model and the
BP model.

INTRODUCTION

Neural network (NN) models were introduced
as alternative methods to traditional modelling
approaches, and have been increasingly used
since the 1990s (Tillema, van Zuilekom & van
Maarseveen 2006). The use of NN models has been
researched for the prediction of trip distribution.
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Previous studies show that the NN method has
been used successfully to model commodity flows
(Black 1995), inter-city passenger flows (Xie 2000)
and work trip flows. Other researches indicated
that the NN performance is not as good as the
well-known gravity model (Mozolin, Thill & Lynn
2000). According to our review of the literature,
the majority of previous studies utilised a back-
propagation (BP) algorithm to solve the trip
distribution problem. Most recent studies tried
to improve the performance of neural networks
by training the models with different training
algorithms, such as the Levenberg-Marquardt (LM)
algorithm or different activation functions (Yaldi,
Taylor & Yue 2011).

Although the recent studies were able to improve
the performance of the NN models, there have
not been enough attempts to utilise other NN
models such as the generalised regression neural
network (GRNN). The advantage of GRNN models
over other NN models is their ability to converge
to the target data with only limited training data
available. Also, the additional knowledge needed
to develop and train the GRNN is relatively small
and can be done without additional input by the
user (Specht 1991). This makes the GRNN a very
useful tool in practice. In this research, a GRNN
model has been developed as anew approach and
the performance of this model has been compared
with back-propagation and gravity models. This
study is unique in two aspects:

e The input data for the GRNN model was
based on the land use data for each zone and
the corresponding distance between a pair of
zones, while the previous NN models used trip
productions, trip attractions and the distance
between a pair of zones as input into the model.

¢ The training of the model was based on a GRNN
algorithm, while the previous studies used a BP
algorithm.

As a case study, the new approach was applied
to journey to work (JTW) trips for the Mandurah
area in Western Australia. The 2006 JTW data
set for the Mandurah area was sourced from the
Australian Bureau of Statistics (ABS). Accordingly,
three different models were developed: the GRNN,
BP and gravity models. MATLAB! was used to
train and develop the GRNN and BP models. The
gravity model used in this research was based on
the strategic transport model developed for the
Mandurah and Peel Region in Western Australia
with EMME software (Rasouli 2012).

1 http://www.mathworks.com.au/
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Simple data normalisation, linear transformation,
and statistical normalisation methods were used
in this study for the input vectors. The root mean
square error (RMSE), mean absolute error (MAE),
and coefficient of determination (R?) between
the modelled output and target data for training
and testing data sets were used as indicators of
goodness-of-fit of the model estimates.

BACKGROUND

The application of neural networks in the transport
modelling area is growing fast. The literature
indicates that NNs have been used for driver
behaviour simulation models, mode choice and
trip distribution problems. Table I summarises
the major studies undertaken so far to estimate
trip distribution by applying the NN technique.
This table indicates that all the studies undertaken
used trip production, trip attraction and distance
between a pair of zones as the inputs to the NN
model. BP was the main training algorithm used
for the majority of studies undertaken, and RMSE
was the main performance measurement used in
the majority of research.

Black (1995) investigated the application of NNs
for commodity flows. Black’s model was developed
the same as the gravity model, with trip production,
trip attraction and distances between each pair
of zones as inputs to the NN model. The model
developed by Black was a back-propagation model
with three layers (input, output and hidden layers).
He compared the RMSE of the NN model with the
gravity model for the data of commodity flows
between nine regions. Based on this comparison,
he demonstrated that the errors from the proposed
NN model were as much as 50% lower than those
from the gravity model.

Xie (2000) undertook an NN approach to model
inter-city passenger flows. Xie extended the
work undertaken by Black by using the same NN
architecture. In this study, a back-propagation neural
network model with a gradient descent search
algorithm was used to predict monthly intercity
Amtrak passenger flows between various stations
in order to evaluate the model’s predictive ability.
According to the analysis, the application of neural
networks to large data sets produced satisfactory
performance results and the neural network model
outperformed the fully-constrained gravity model
in terms of RMSE for some volume groups.

Mozolin et al. (2000) researched the performance
of NNs and doubly-constrained gravity models for
the distribution of commuter trips. Their research
indicated that the NN models performed better
to fit the data, but their accuracy in predicting
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Table 1
Application of neural networks for trip distribution estimation
Network detail
Network
Author Date Input Data Structure Training Performance
Black 1995 P, A D MLEF BP RMSE
Xie 2000 P, A D MLF BP RMSE, R
Mozolin et al. 2000 P, A D MLF BP RMSE, AE
Tapkin 2004 P, A, D Revised MLF GD RMSE
Tillema et al. 2006 P A D NA NA RMSE
Yaldi et al. 2009 P, A, D MLF BP RMSE, R
Yaldi et al. 2011 P, A, D MLF LM R?

Abbreviation definitions: P: Production, A: Attraction, D: Distance, MLF: Multi-Layer Feed-forward, BP: Back-propagation, RMSE:
Root Mean Square Error, AE: Absolute Error, NA: Not Available, R: Correlation Coefficient R2: Coefficient of Determination, LM:

Levenberg-Marquardt, GD: Gradient Descent.

the target data was not as good as the doubly-
constrained models. They further claimed that
the analysis undertaken proves that the accuracy
of the NN models was poorer in comparison with
that of doubly-constrained gravity models with
the distance decay of exponential function format.
They referred to different reasons for NN under-
performance, including ‘model non-transferability,
insufficient ability to generalise, and reliance on
sigmoid activation functions’

In a study by Tapkin (2004), a recommended
neural trip distribution model (NETDIM) was
developed and its performance was compared
with three different models, including the back-
propagation network, modular neural network and
unconstrained gravity model. The objective of this
research was to demonstrate the performance of the
three models by comparing theirlevels of prediction,
rather than by comparing outputs of the models
for a specific data set. RMSE has been used as an
indicator for comparison of the levels of prediction
of the models. The analysis undertaken indicated
that NETDIM provided more accurate predictions
than the modular approach, unconstrained gravity
model and the back-propagation neural network.

Tillema et al. (2006) undertook a study to compare
the results of the NN and the gravity model in
predicting trip distribution. This study researched
both synthetic data and real-world data. Calibration
of the neural network and gravity models was
based on different percentages of hold-out data.
This research demonstrated that neural networks
outperformed gravity models in both synthetic and
real situations. The modelling results indicated that
the gravity model only gives better results when

the model is very well calibrated. But in reality,
with scarce data, neural networks showed their
capabilities and outperformed the gravity model.

Yaldi et al. (2009) reported that in order to satisfy
the production and attraction constraints in NN
modelling, alinear activation function can be used in
the output layer of the model. Their recommended
model used simple data normalisation for the
inputs of the NN. Their analysis proved that a
validated NN model could perform the same as a
doubly-constrained gravity model with a similar
R2. However, the error level of an NN model is
still more than the gravity model in terms of the
average RMSE.

In another study, Yaldi, Taylor and Yue (2011)
used the Levenberg-Marquardt (LM) algorithm
to improve the performance of NN models. They
compared the results of the new model with standard
back-propagation, Quickprop and variable learning
rate (VLR) algorithms. Their research demonstrated
that with the use of the LM algorithm, the testing
performance of the NN model can be improved to
the same level as the doubly-constrained gravity
model.

A brief description of the neural network

The neural network is an artificial intelligence
method that simulates the operation of the human
brain (nerves and neurons). The NN approach was
developed by Warren S. McCulloch and co-workers
in the early 1940s (Haque & Sudhakar 2002). They
developed simple neural networks to model simple
logic functions.

Nowadays, neural networks are used for complex
problems that do not have algorithmic solutions. In
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Figure 1
Natural neuron

other words, itis not easy to establish a mathematical
model for problems with no clear relationship
between the inputs and outputs of a system. To solve
this sort of problem, the NN uses input samples
and is trained to learn the relationship between
the input and output data.

The ability of an NN to learn by samples makes
this a very flexible and powerful tool. Accordingly,
neural networks have been largely used for mapping
regression and classification problems in many
disciplines, and their usage is growing fast.

There have been a number of different NN models
developed since McCulloch’s first NN model. The
differences in the NN models are related to the
activation functions, the topology, the learning
algorithms, etc. The back-propagation algorithm
is one of the most common methods used in NN
modelling, and many others are based on it. The
GRNN is a feed-forward network. The advantage of
a GRNN over the other NN models is simplicity and
practicality of the GRNN. The required knowledge
for a user to develop a GRNN model is relatively
small. Another advantage of the GRNN is its ability
to converge to the desired outcome with only
limited training data.

Basic concept of neural networks

The artificial neural network (ANN) is a
computational approach inspired by real neurons.
Real neurons have synapses located on their
dendrites or membrane to receive input signals
(Figure 1). Once the received signal becomes strong
enough (exceeds a certain threshold), it can activate
the neuron, which then generates an output signal
and transfers it through the axon of the neuron. The
output signal can be received by other synapses,
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which might activate other neurons successively
(Gershenson 2003).Artificial neurons are highly
abstracted models of complex real neurons.
These neurons consist of three basic parts: inputs
(as synapses), which are multiplied by weights
corresponding to the strength of the signals; a
mathematical function, determining the activation
of the neuron; and an output layer (Figure 2).

The higher the weight of an artificial neuron, the
stronger the input multiplication result will be.
There are negative weights, so signal inhibition
becomes possible. The computation inside each
neuron is different, depending on its weight.
Through adjustment of the weight of an artificial
neuron, any desired output can be obtained for
specificinputs. However, it would be quite difficult
to manually determine all of the necessary weights
in an ANN with hundreds or even thousands of
artificial neurons. There are algorithms which can
calculate the weights foran ANNin order to generate
the desired output. This weight adjustment process
is known as the learning or training procedure
(Gershenson 2003).

Weights

Output

Activation
Function

Figure 2
Artificial neuron (Gershenson 2003)
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MODEL DEVELOPMENT AND
METHODOLOGY

For the purposes of this research, three models were
developed for estimation of the trip distribution.
GRNN modelling is the new model, which is the
focus of this research. The BP and gravity models
are the other approaches. The results of the GRNN
model have been compared with the BP and gravity
model. The root mean square error (RMSE),
mean absolute error (MAE) and coefficient of
determination (R?) between the modelled output
and measures of the training and testing data set
have been used to compare the modelling results.

At the time of preparation of this paper, the 2011
JTW data was not available; hence, the 2006 JTW
data was used. Taking into consideration that the
strategic transport model for the Mandurah area
was developed and calibrated for the year 2011, the
2011 JTW data was estimated from the 2006 data
assuming the same travel pattern for the JTW in
2006. The model development and methodology
is illustrated in Figure 3 and is discussed in the
following sections.

GRNN model architecture

The inputlayer ofthe GRNN modelis represented by
land use data in each zone (Rasouli & Nikraz 2013),
which is assigned to RD (residential dwellings), RE
(retail), CO (commercial land use), SH (showroom)
and SC (schools). In order to represent the spatial
distribution of a pair of zones, the distance Dj
(metres) between zones i and j is also defined.
Accordingly, the input vector (Xij) is defined as:

19
X; = (RD;, RE;, CO;, SH;, SC;, RD;, RE;, CO;, SH;, SC;, Dy)

where i and j show the origin and destination,
respectively.

Trips (T;;) between a pair of zones are considered
to be the output layer of the neural network. The
GRNN has to be able to model the relationship
between trips Tj;; and the input vector X;;. The model
was developed to forecast the work trip. MATLAB
R2011a was used to develop the network, where
the optimum spread factor was selected through a
trial and error process. Simple data normalisation,
linear transformation and statistical normalisation
methods were used in this study for the input
vectors. Simple normalisation uses the following
formula:

Xo
Xn =
xmax
where:
X, = normalised input
Xy = each data input
Xmax = the maximum among all the data.

Linear transformation will convert the input data
to the range [0, 1] with the following formula:

X(actual) — X(min)

x(scaled) Xmax — Xmin
where:
X(scaledy = Thormalised input
X(actua) = e€ach data input
Xnax the maximum among all the data
Xmin = the minimum among all data.

Statistical normalisation will convert the input data
based on its mean and standard deviation using
the following formula:

X0 — X(mean)

S )

where:
x; = normalised input
X = each data input
X(mean) = the mean value of all data

SD = standard deviation of all data.

Vol 23 No 3 September 2014 Road & Transport Research
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Table 2
GRNN modelling results for the training data set
Optimum
Indicators RMSE MAE R? Spread
Simple Normalisation 10 0.984 0.1
Linear Transformation 10 0.984 1
Statistical Normalisation 10 4 0.984 0.7
There are two kinds of input data sets in neural A, = predicted value

networks: the training data set and the testing data
set. The training data set is used to calibrate the
model parameters, while the testing data set is used
to evaluate the forecasting ability of the model. For
the purpose of this study, out of a total 440 vectors,
which cover all the origins and destinations in the
City of Mandurah, 90% (400 input vectors) were
used for training and 10% were used for testing.
The training data set was selected randomly, and
because it contained 90% of the data, it would cover
awide range of work trip conditions in Mandurah.
The remaining 41 vectors were checked to ensure
that they also covered a different range of work
trips (a few to a large number of trips between
different pairs of zones). The process of random
data selection for training and checking the testing
data set was repeated a few times to insure that
the testing data set represents a good sample of
different trip conditions.

The testing data set was hold-out and was not used
in the training process. This set of training data
was used for BP and gravity modelling as well, to
compare the results for one set of testing data. The
RMSE, MAE and R? between the modelled output
and measures of the training and testing data set
were used to demonstrate the performance of the
model according to the following equations:

1
W 2Ty

1
N 2o (T = T2

where:
N = number of observations
T, = observed value
Vol 23 No 3 September 2014 Road & Transport Research

T average value of the explained

variable on N observations.

RMSE and MAE provide a general idea of the
difference between the observed and predicted
values and, therefore, are used as an indication of
the residual errors. R?is the proportion of variability
or sum of squares. When the RMSE and MAE are
at a minimum, and R? is high (R? > 0.80), a model
can be judged as very good (Kasabov 1998).

The training data set (400 vectors selected randomly)
was used for training by the GRNN model and with
different spread factors. Table 2 summarises the
modelling results for the training data set.

Analysis indicates that the GRNN model can
produce the same results for different normalisation
methods with different optimum spread factors as
indicated in Table 2. Therefore, for simplicity, the
simple normalisation method has been used for the
testing data set. Figure 4 illustrates the modelled Tj
through the training process against the observed
data. The R? of 0.984 was obtained from the training
process, which shows how well the network is
trained.

The trained GRNN model was then used to test
the 41 unused vectors. Table 3 summarises the
modelling results for the testing data set. Table 3
indicates that the average RMSE for the tested data
was 38.

BP model architecture

The input and output vectors to the BP model
were kept the same as for the GRNN model. The
standard network used for this study was a two-
layer feed-forward network, with a sigmoid transfer
function in the hidden layer and a linear transfer
function in the outputlayer. The number of hidden
neurons was set to 10. The training algorithm was
back-propagation based on a Levenberg-Marquardt
minimisation method.

The initial set of data was divided into three subsets:
training, validation and testing. For the purpose of
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Table 3
GRNN modelling results for the testing data set
Indicators RMSE MAE R?
Simple Normalisation 38 22 0.575

Table 4
Performance of the BP model for different seeds
Training data Validation data Testing data
Seeds RMSE R? RMSE R? RMSE R?
1 47 0.74 54 0.50 52 0.46
2 73 0.17 84 0.20 72 0.02
3 49 0.62 60 0.62 53 0.45
4 50 0.67 65 0.46 46 0.47
5 51 0.62 46 0.45 39 0.46
6 52 0.59 60 0.55 56 0.35
7 43 0.76 47 0.59 64 0.38
8 60 0.46 61 0.34 49 0.32
9 45 0.77 57 0.42 64 0.48
10 45 0.74 46 0.48 72 0.37

validation, 15% of the total 400 training data set
was selected randomly. The testing data set was
similar to the data set used in GRNN modelling.
The testing vectors were not used in the training
or validation process. Simple data normalisation
was used for the input vectors. The BP network was
trained with 10 different seeds and the performance
of the training, validation and testing data sets is
reported in Table 4.

According to the analysis of the different seeds, the
reported R? for the training data set was between
0.17 and 0.77. The highest R? recorded was 0.77
for seed number 9. The corresponding R? for the
validation and testing data was reported as 0.42 and
0.48. Table 4 indicates that only in one case (seed
number 2) was the BP model not well trained (i.e.
very poor correlation for training), and subsequently
produced poor validation and testing results.

Vol 23 No 3 September 2014 Road & Transport Research
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Table 5
Performance of the BP model for different hidden layers
Hidden Training data Validation data Testing data
layers RMSE R?2 RMSE R? RMSE R?

5 50 0.62 39 0.40 49 0.47
10 45 0.77 57 0.42 64 0.48
15 65 0.41 73 0.22 45 0.40
20 59 0.56 62 0.29 94 0.25

Training: R=0.88244 Validation: R=0.65216

o 600 < 500{| © Data

© - Fit

3 o S a00f[ Y=T

s 400 & a0 o

& 300 = o

o ? 200 K

y 200
- - [¢] Q
3 100 g™ %%o o0 4
3 3 & .
o © Figure 5
T W W 6D D Reported R? for training and
Target validation data sets for Seed
Number 9 and 10 layers

The best training results are related to seed number
9 with an R? of 0.77 and RMSE of 45. Accordingly,
better validation and testing results are also
produced by seed number 9. The reported R? and
RMSE for seed 9 are 0.48 and 64, respectively.

In order to investigate the impact of the different
number of hidden layers on the performance of
the BP model, different hidden layers were tested,
with the performance of the model being reported
in Table 5 for the various hidden layers.

Table 5 indicates that the best performance is related
to the BP network with 10 hidden layers. Increasing
the number of hidden layers to 15 or 20 did not
improve the performance of the BP model. Figure 5
illustrates the BP model outputs against the actual
trip distributions for the training and validation
data sets for the preferred BP model structure with
10 hidden layers.

Gravity model structure

The strategic transport model for the Mandurah
area is based on the traditional four-stage model
process (trip generation, trip distribution, mode
split and traffic assignment); however, the trip
generation within this model considered only
private vehicle trips and, therefore, the mode split
stage was notadopted. The mode split was taken into

Vol 23 No 3 September 2014 Road & Transport Research

consideration when generating the trip production
rates for the trip generation stage (Rasouli 2012).
For the purpose of this study, the trips were divided
into five different categories based on trip purpose:
work, education, social, other and non-home based
(NHB) trips. Trip distribution of the model was
based on the doubly-constrained gravity model in
the EMME software. The following gamma function
was used to reflect deterrence in the gravity model:

_ bxexp (—cx*d;;)
Wij =a=* dU Y
where:
W = weight between zone i and zone j
d = distance between zone i and

ij .

zone j.
Parameters a, b and ¢ were calibrated for each trip
purpose so that the model reflected the proportion
of trips for each length, as observed in the travel
surveys. Assignment of the trips was based on the
fixed demand traffic assignment module in the
EMME software. Calibration of the model was based
on the existing traffic volumes on the road links.
The actual traffic data was provided by the City
of Mandurah. Figure 6 shows the modelled traffic
volumes against the actual traffic counts. The R? for
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Table 6
Gravity modelling results
Indicators RMSE MAE R?
Gravity Model 50 23 0.59
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o
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2 500 L 2
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500 600 700 Observ?d and modelled
work trips based on the
Observed | o1ypity model

the 107 traffic countlocationsis 0.985, which shows
how well the model is calibrated (Rasouli 2012).

The JTW origin-destination (OD) matrix was
extracted from the Mandurah strategic transport
model and compared with the 2011 JTW OD
matrix obtained from the ABS data. The extracted

OD matrix for JTW from the gravity model was
compared with the OD matrix from the ABS data.
Table 6 summarises the modelling results for the
gravity model.

Figure 7 illustrates the comparison between the
trip distribution (Tij) extracted from the gravity
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Table 7
Gravity modelling results for the testing data set
Indicators RMSE MAE R?
Gravity Model 46 31 0.446
Table 8
GRNN, BP and Gravity modelling results for the testing data set
Regression
Indicators RMSE MAE R? parameter
GRNN Model 38 22 0.575 0.51
Gravity Model 46 31 0.446 0.63
BP Model 64 31 0.48 1.08
250
°
9
K] L 4
§° 200
y =0.506x + 10.936
R?=0.575
150
100
. L 4
50 @
* 2
0 T T T 1
0 100 200 300 400 | Figure 8
Observed Modelled and observed T;;
for the testing data, GRNN
model

model and the ABS data. The R?is reported as 0.59.
According to the analysis undertaken, the average
RMSE of the modelled trips is estimated to be 51.

The gravity model developed for the Mandurah
area was then used to estimate the trip distribution
of the testing data set used in the GRNN and BP
models. Table 7 summarises the modelling results
for the testing data set.

COMPARISON OF MODELS

In order to compare the performance of the GRNN,
BP and gravity models, the tested data set was used
to estimate the trip distribution based on the various
models. The RMSE, MAE and R? indicators were
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calculated for each model and are compared in
Table 8.

Table 8§ indicates that the GRNN model provides
slightly better results than the BP and gravity models
for all the performance indicators. However, the
regression parameter value for the GRNN model is
lower than that for the BP and gravity models, which
means that the GRNN model would underestimate
the observed value.

The R? of the BP model is slightly higher than that
of the gravity model, while the reported RMSE for
the BP model is higher than for the gravity model.
The MAE for both the BP and gravity model is
reported as 31. Therefore, it is expected that the BP
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and gravity models will perform the same. The BP
model provides the closest regression parameter (x
parameter)to1, indicating that the modelled values
match the observed values over the range of data.

Figures 8, 9 and 10 illustrate the modelled and
observed T; for the testing data set for the GRNN, BP
and gravity models, respectively. The distribution
of points in these figures indicates that the majority
of the points are clustered at low values, with one
or two at much higher levels, which represent the
variety of the work trip conditions in Mandurah.
Therefore, the regression parameters (and thus
the level of bias) are strongly dependent on these
points.

CONCLUSION AND RECOMMENDATIONS

In this paper, a generalised regression neural
network (GRNN) model was developed as a new
approach, and the performance of this model was
compared with the back-propagation and gravity
models. The modelling and analysis undertaken
indicate that:

¢ Theneural network (NN) models can be used to
forecast trip distribution directly from the land
use data for each pair of traffic zones, instead of
production and attraction for each pair of zones.
¢ Themodelling results indicated that a validated
GRNN model could provide a slightly lower
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error level than the BP and gravity models, as
indicated by the average root mean square error
(RMSE); however, it might underestimate the
observed values compared with the BP and
gravity models.

Despite the efforts devoted to analysing all of
the approaches discussed in this paper, there are
major areas that still need to be researched. The
following recommendations are put forward for
future studies:

* The GRNN outputs rely heavily on the amount
of data available and the variety of the training
data set vectors. The greater the number of input
vectorsin the training data set, the more accurate
the results in the output vector. Therefore, it is
recommended that the efficiency of the GRNN
model be tested and improved with alarger data
set if available.

* The GRNN model needs to be tested with trip
generation, trip attraction, and the distance
between pairs of zones as inputs to the model,
instead of the land use data, and be compared
with the gravity and BP models.
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ABSTRACT

Trip distribution is the second important stage in the 4-step travel demand forecasting. The
purpose of the trip distribution forecasting is to estimates the trip linkages or interactions
between traffic zones for trip makers. The problem of trip distribution is of non-linear nature and
Neural Networks (NN) are well suited for addressing the non-linear problems. This fact supports
the use of artificial neural networks for trip distribution problem. In this study a new approach
based on the Generalised Regression Neural Network (GRNN) has been researched to estimate
the distribution of the journey to work trips. The advantage of GRNN models among other feed-
forward or feedback neural network techniques is the simplicity and practicality of these models.
As a case study the model was applied to the journey to work trips in City of Mandurah in WA.
Keeping in view the gravity model, the GRNN model structure has been developed. The inputs
for the GRNN model are kept same as that of the gravity model. Accordingly the inputs to the
GRNN model is in the form of a vector consist of land use data for the origin and destination
zones and the corresponding distance between the zones. The previous studies generally used trip
generations and attractions as the inputs to the NN model while this study tried to estimate the
trip distribution based on the land uses. For the purpose of comparison, gravity model was used
as the traditional method of trip distribution. The modelling analysis indicated that the GRNN
modelling could provide slightly better results than the Gravity model with higher correlation
coefficient and less root mean square error and could be improved if the size of the training data
set is increased.

Keywords:

Trip Distribution, Neural Network, Generalised Regression Neural Network, Gravity Model.
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1 INTRODUCTION

Conventional transport modelling, known as 4-step modelling is highly depending on the input
data used in different modelling steps. The trip distribution process is relatively complex in
nature and difficult to model without adequate amounts of data. Errors that are generated during
the trip distribution stage, distribute through the other stages of modelling which in turn affects
the reliability of the modelling results. Therefore it is important to ensure that the trip distribution

techniques are able to estimate accurate results.

A robust and efficient technique to estimate the trip distribution is always an essential part of the
modelling process. There is no technique in trip distribution that is universally applicable, so
attempts to develop alternative techniques are always needed. This includes the utilisation of
approaches from other disciplines. Neural Networks are one of them and are proposed as an
alternative method in this study. The problem of trip distribution is of non-linear nature and
complex. Neural networks have been used successfully for solving the non-linear problems. This

fact supports the use of artificial neural networks for trip distribution problem.

Since the beginning of nineties, neural network models were introduced as alternatives for
traditional modelling approaches. The previous studies suggest that the NN approach is able to
model the commodity, migration and work trip flows. However, its performance is not as good
as the well-known gravity model. According to the literature review, the majority of the previous
studies utilised the standard Back Propagation (BP) algorithm and there have not been enough
attempts to utilise the GRNN approach. The knowledge required to develop the GRNN structure
is relatively small and can be done without additional input by the user. This makes GRNN a
very powerful tool in practice. This research aims to apply the GRNN model to test the ability of
the neural network in prediction of the trip distribution problem. One of the differences in this
approach with the previous studies is the use of land use data as an input to the NN model
instead of using the trip generation and attraction. There is direct relation between the land use
data and trip distribution between different land uses in a modeled area. Sometimes estimation of
trip productions and attractions from the land use data involves simplistic assumptions that
generate errors in the trip production and attraction stage. This error would distribute to the other

stages of the modeling process including trip distribution stage which in turn affects the
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reliability of the modeling results. Therefore estimation of the trip distribution directly from the
land use data would remove the errors related to the trip production and attraction stage. This
study also compares the GRNN approach with the gravity model and documents the outcomes of

this comparison.

2 BACKGROUND

The use of NN is growing fast and covers many disciplines, including transport modelling. The
literature indicates that NN were used in some 13 areas of transport modelling studies up to year
1990 where driver behaviour simulation models had the highest usage of NN applications
(Dougherty, 1995). However, more recent research indicates a growing application of NN in

travel demand modelling, mostly by Mode Choice and Trip Distribution problems.

It must be noted that the NN approach must be followed by logic and sensible theory, otherwise
NN is just a naive tool. According to Black (1995), NN is an intelligent computer system that
simulates the processing capabilities of the human brain. It is a forecasting method that generates
output by minimizing an error calculated by the deviation between input and output through the

use of a complex training process (Black, 1995; Zhang et al, 1998).

Various studies in transportation modelling prove the advantages and disadvantages of using
NN. It is usually compared with the existing methods in relevant studies. For example, the neural
network has been compared with the Discrete Choice Model as reported by Cantarella & de Luca
(2005), Hensher & Ton (2000), Carvalho et al. (1998), and Subba Rao et al. (1998). Reviewing
the literature indicates that there is less application of NN in trip distribution problem compared
to mode choice studies. Black (1995) investigated the spatial interaction modelling using NN
focusing on commodity flows. This model was structured similarly to the gravity model.
Mozolin et al. (2000) utilised NN to model trip distribution for passenger flow modelling. The

studies by Black and Mozolin et al. were based on multilayer perceptron neural networks.

NN is recognised by its important characters, such as learning algorithm, activation function,
number of layers (input, hidden and output), number of nodes inside each layer, and learning rate

(Teodorovic and Vukadinovic, 1998, Dougherty, 1995). The amount of data and the split of the
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data which is used for training, validating and testing purpose are also essential for NN
performance (Carvalho et al., 1998). Zhang et al. (1998) suggested that if there is not any
appropriate guideline then NN model can only be developed through trial and error procedures.
There is also a lack of reported researches on the behaviour of NN with respect to these
properties. Lack of knowledge in structuring the main properties of NN could lead to
disadvantages in using NN models, for example if the modeller is not able to enforce the network
to simulate according to the existing constraints. This problem has happened in the study by
Mozolin et al (2000). They reported that NN was not able to meet the double constraints and they
provided adjustment factors for the output of the NN model so that the model satisfied the
Production and Attraction constraints. They also reported that NN had slightly poor
generalization capability. Although this was not comprehensively reported, Black (1995)
provided a small report about this issue in commodity flow estimation using NN. It was not

clearly reported if the model can properly satisfy the constraints.

Accordingly a number of different studies were undertaken to improve the ability of the NN to
satisfy the production and attraction constrains. Gusri Yaldi, M A P Taylor and Wen Long Yue
(2009) reported that a NN with simple data normalization and a linear activation function
(Purelin) in the output layer could satisfy the two constraints, with average correlation
coefficients (r) of 0.958 and 0.997 for Production and Attraction respectively. The test results of
their research also proved that a validated NN could generate a similar goodness of fit as a
doubly-constrained gravity model. However, the error level is still more than the gravity model
as indicated by the average Root Mean Square Error (RMSE), where the RMSE for the NN and

gravity model are reported 181 and 174 respectively.

In another research they tried to fix the testing performance of NN by training the models with
the Levenberg-Marquardt (LM) algorithm, while the previous studies used standard Back
propagation (BP), Quickprop and Variable Learning Rate (VLR) algorithms. The main
difference between those algorithms is the method used in defining the optimum connection
weights. The research results suggest that the RMSE are 168, 152 and 125 for model trained with
BP, VLR and LM respectively, while the R? values are 0.194 0.315, 0.505. The models trained
by BP and VLR have underestimated the forecasted total trip numbers, while the LM algorithm
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has slightly higher numbers. The research concluded that the testing performance of NN
approach can be improved to the same level as doubly constrained gravity model when the

model is trained by LM algorithm.

Fischer and Leung (1998) developed different models of NN by the use of different learning
algorithms, and in conjunction with Genetic Algorithm (GA), to forecast traffic flows in a region

in Australia. They found that GA can improve the NN modelling results.

3 A BRIEF DESCRIBTION OF NEURAL NETWORK

Neural Network is an artificial intelligence method that simulate the operation of the human
brain (nerves and neurons), and consist of number of interconnected computer processors that
perform simultaneously in parallel. NN was founded by McCulloch and co-workers in the early
1940s (Haque ME, Sudhakar KV, 2002). They developed simple neural networks to model

simple logic functions.

Nowadays, neural networks are used for problems that do not have algorithmic solutions or
problems that algorithmic solutions are too complex to be developed. In other words, it is not
easy to establish a mathematical model for problems that with no clear relationship between
inputs and outputs. To solve this sort of problems, NN uses the samples and will be trained to
learn the relationship of such systems. The ability of NN to learn by samples makes them very
flexible and powerful. Therefore, neural networks have been largely used for mapping regression
and classification problems in many disciplines. In short, neural networks are nonlinear

algorithms that perform learning and classification.

In general, neural networks are adjusted/ trained to reach from a particular input to a desired
output. Therefore the neural network can learn the system. This type of learning is called
supervised learning. The learning ability of a neural network depends on its structure and the
training algorithm. Training algorithm can be stopped if the difference between the network
output and actual output is less than a certain tolerance value. When the NN was learned, the
network is then ready to estimate outputs based on the new inputs that are not used in the training

data set. A neural network is usually consisting of three parts: the input layer, the hidden layer
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and the output layer. The information saved in the input layer is transferred to the output layers
through the hidden layers. Each unit can transfer its output to the units on the higher layer only

and receive its input from the lower layer.

3.1 Generalised Regression Neural network

The Generalised Regression Neural Network (GRNN) is a feed-forward network. The use of a
GRNN is especially helpful because it has the ability to converge to the desired outcome with
only few training data available. The additional knowledge required to train the network and
develop the NN structure is relatively small and can be done without additional input by the user.

This makes GRNN a very powerful tool in practice.

The fundamentals of the GRNN can be found from Specht, (1991); Nadaraya—Watson kernel
regression (1964), Tsoukalas and Uhrig (1997), also Schioler and Hartmann (1999). A schematic
structure of the GRNN is illustrated in figure 1. A GRNN does not require an iterative training
procedure. It can estimate any non-linear function between input and output vectors, learning the
relationship between the input and output data directly from the training data. Furthermore, it is
found that if the training set size becomes large, the estimation error approaches zero, with
minimum restrictions on the function. The GRNN is used to predict the continuous variables as

in standard regression methods.

Input Layer  Pattern Layer Summation Layer Output Layer

Figure 1: Schematic structure of GRNN
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The GRNN consist of four layers: Input layer, pattern layer, summation layer, and output layer.
The total number of parameters is identical to the number of input units in the input layer. The
first layer is connected to the second, pattern layer. In pattern layer, each unit represents a
training pattern, and its output calculates the distance between the input and the stored patterns.
Each pattern layer unit is joined to the two neurons in the summation layer: S- summation neuron
and D- summation neuron. Here, the sum of the weighted outputs of the pattern layer is
measured by the summation and the un-weighted output of the pattern neurons is calculated by
the D-summation. The linkage weight between the S-summation neuron and the ith neuron in the
pattern layer is called y; ; the target output value joint to the ith input pattern. The output layer
just splits the output of each S-summation neuron by the output of each D-summation neuron,
providing the predicted value to an unknown input vector x as:

i=1yi exp[=D (x, xi)]
*exp[—D(x,xi)]

yi(x) =

In which the number of training patterns is specified by n and the Gaussian D function is

calculated as:
P, ..
Derxi) = ) (0
j=1

In which p represents the number of element of an input vector. The x; and x;; show the jth
element of x and x;, respectively. The § is generally known as the spread factor, whose optimal
value is often calculated experimentally for the problems. If the spread factor becomes larger, the
function approximation will be smoother. If spread factor is too large, then a lot of neurons will
involve fitting a fast changing function. If the spread factor is small then many neurons will be

required to fit a smooth function, and the network may not generalize well.
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4 MODEL DEVELOPMENT AND METHODOLOGY

The model development and methodology is illustrated in Figure 2 and is described in the
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following sections.
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Figure 2: Model Development and Methodology

5 DATA COLLECTION

The 2006 Journey to Work dataset for the Mandurah Area in Perth WA was sourced from
Australian Bureau of Statistics (ABS). Journey to Work (JTW) data are extracted from the five-
yearly Census of Population and Housing conducted by the Australian Bureau of Statistics. It
includes data on employment by industry and occupation, and method of travel to work at a

small geographical level known as the travel zone.

At the time of preparation of this paper the 2011 JTW data was not available and therefore the
2006 JTW data was used. Considering that the strategic transport model for Mandurah area was
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developed and calibrated for year 2011, then the 2011 JTW data was estimated from the 2006
data assuming the same travel pattern for the JTW in 2006.

6 O-D MATRIX ESTIMATION USING GRAVITY MODEL

6. 1 Mandurah strategic transport model

Due to significant growth in recent years and anticipated future growth the City of Mandurah is
faced with a number of challenges with planning and managing its movement network and
transport system particularly within the City Centre. The City has ambitious plans for the future
to deliver an attractive, dynamic and vibrant City. These plans will generate significant transport
demand which will put pressure on the existing transport infrastructure and systems, particularly

the road network within the City Centre.

In order to assist with its decision-making process, the City has engaged Transcore Pty Litd to
develop a strategic transport model for the greater Mandurah area. The strategic transport model
will assist the City in establishing the future transport demand and test the impact of land use

growth, major developments and road network options.

The modelled study area entails the Inner Peel Region including Mandurah, Pinjarra and
Yunderup. The number of residential dwellings for the City of Mandurah was calculated for the
38 individual modelling zones as per Figure 3. According to the Australian Bureau of Statistics
census results for 2011 the total number of dwellings in Mandurah is estimated to be about

35,372 with about 69,903 people residing in the municipality.
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Zones Dwellings

1 294
2 411
3 331
4 597
5 665
6 777
7 612
8 1341
9 1044
10 1339
11 1165
12 2323
13 1035
14 985
15 806
16 1592
17 495
18 622
19 669
20 522
21 457
22 270
23 675
24 1534
25 1021
26 1212
27 1136
28 785
29 751
30 1321
31 1381
32 1706
33 1095
34 1079
35 1341
36 851
37 200
38 933
Total 35372

Figure 3: Mandurah Model Area and Zoning System

6.2 Model Structure

The traffic model is based on the traditional four-stage model process (trip generation, trip
distribution, mode split and traffic assignment) however, the trip generation within this model
considered only private vehicle trips and therefore the mode split stage was not adopted. The
mode split was taken into consideration when generating the trip production rates for the trip
generation stage. For the purpose of this study the trips were divided into 5 different categories

based on the trip purposes: Work, Education, Social, Other and Non Home Based (NHB) trips.
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Trips internal to the modelling area have been distributed based on the following gamma
function:

Wij = q * dijb*exp(—c*dij)

where:

wij : weight between zone i and zone j

dj : distance between zone i and zone ]

Parameters a, b and ¢ were calibrated for each trip purpose so that the model reflects the
proportion of trips for each length as observed in the travel surveys. Assignment of the trips was

based on the fixed demand traffic assignment module in EMME software.

Calibration of the model was based on the existing traffic volumes on the road links. The actual
traffic data was provided by City of Mandurah. Figure 4 shows the modelled traffic volumes
against the actual traffic counts. The linear regression analysis for the 107 traffic count locations

indicates that R of the regression plot is 0.985 which shows how well the model is calibrated.

Link scatterplot

Model (vpd)
20000

15000

10000 4

5000 5

= . ! | , Actual (vpd)
] 5000 10000 15000 20000

Figure 4: Regression Plot, Calibration of the Base Case (2011)
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6. 3 Extracting and comparing the journey to work OD matrix from Gravity Model

The journey to work OD matrix was extracted from the Mandurah strategic transport model and
compared with the 2011 JTW OD matrix obtained from the ABS data. The R? for the trend line
in Figure 5 is 0.59. According to the analysis undertaken the average Root Mean Square Error

(RMSE) of the modelled trips were estimated to be 51.

600 -
3
S
3
3
S 500 | *

* y = 0.6878x + 10.442
R2=0.5973

400 |

300 -

200 -

0 100 200 300 400 500 600 700

Observed

Figure 5: Observed and Modelled work Trips Base on Gravity Model

7  O-D MATRIX ESTIMATION USING NEURAL NETWORK

7.1 Neural Network Model Architecture

People’s activities can be represented by land uses scattered on different zones that are separated
by distance in an area. Therefore, trip distribution relates to the land use patterns in different
zones inside that area. For instance, one zone which is typically occupied by residential land use
patterns generates trips that are attracted to another zone which is formed by retail, industrial,

commercial, etc.

On this basis the input layer of the neural network is represented by land use data in each zone,

which is assigned to RD (Residential Dwellings), RE (Retails), CO (Commercial Land use), SH
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(showroom) and SC (Schools). In order to represent the spatial distribution of a pair of zones, the
distance Dij (meters) between zones i and j is defined. Accordingly the input vector (X) is
defined as:

Xij=(RDi, REi, COi, SHi, SCi,,RDj, REj, COj, SHj, SCj, Dij)

Where i and j shows the origin and destination, respectively.

Trips (Tij) between a pair of zones are considered as the output layer of the neural network. The
GRNN has to be able to model the relation between trips 7ij and input vector X ij. The model is
developed to forecast the work trip. MATLAB R2011a is used to develop the network where the
optimum spread factor was selected through try and error process. The model structure used in
MATLAB software is illustrated by Figure 6. It has 11 input nodes representing the land uses
for zone i and zone j, and distance between zone i and j (as defined in the above Xij input

vector). There is one node in the output layer which represents the estimated trip number (Tij).

Layer

Input

11

400

Figure 6: GRNN Model Structure Used in MATLAB Software

Simple data normalization method is used in this study for the input vectors. Simple

normalization will convert the input data to the range [0,1].

There are usually two kinds of input data sets in neural networks, namely training and testing
data sets. The training data set is used in estimating the model parameters/variables while the
testing data set is for evaluating the forecasting ability of the model. For the purpose of this study

90% of the data (400 input vectors) were used for training and 10% were used for testing.
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7.2 GRNN modelling results
The training data set (400 vectors selected randomly) were trained using the GRNN model and
with different spread factors. The optimum spread factor of 1 was selected through try and error

process. Figure 7 illustrates the goodness of fit for the trained GRNN model; R? of 0.984 was

obtained from the training process which shows how well the network is trained.

Modelled

@ 2100 200 300 400 500 600 700

Observed

Figure 7, Modeled Tij through the Training Process against the Observed Ones

The trained GRNN model was then used to test the 41 unused vectors. Figure 8 illustrates the

modeled trip distribution against the observed data. The absolute difference (error) is also shown

in this figure. The average RMSE for the tested data recorded as 38.
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Figure 8, Error Estimation between the GRNN Modeled and Observed data

The R? of the tested model is reported as 0.575 as shown in Figure 8.
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Figure 8, Modeled and Observed Tij for the Testing Data, GRNN Model

The R? of the tested data based on the Gravity model is estimated to be 0.446 (refer Figure 9)
with the corresponding average RMSE of 46.
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Figure 9, Modeled and Observed Tij for the Testing Data, Gravity Model

8 CONCLUSION AND RECOMMENDATION

Based on the results of the analysis undertaken, it can be concluded that the Neural Network
model can be used to forecast trip distribution, especially for work trips. GRNN model could
forecast the work trip distribution based on the land use data for each pair of traffic zones and the

corresponding distance between the two zones.

The modeling results have also provided evidence that a validated GRNN could provide slightly
better goodness of fit than a gravity model with the error level less than the gravity model as
indicated by the average Root Mean Square Error (RMSE), where the RMSE for the NN and
Gravity Model are 38 and 45 respectively. The estimated R* for the GRNN model and gravity
model is reported 0.557 and 0.446 respectively.

The GRNN outputs highly rely on the amount of data available and the variety of the training
data set vectors. The more the number of input vectors in the training data set the more accurate
results in the output vector. Therefore it is recommended that the efficiency of the GRNN model

be tested and improved with a bigger data set if available.
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Figure D-1: Sigma deter mination for sample group 1 (trained by rows of the OD

matrix)
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Figure D-2: Trip distribution regression plot for sample group 1 (trained by

rows of the OD matrix)
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Figure D-3: Production plot for sample group 1 (trained by rows of the OD

matrix)

165



Figure D-4: Sigma deter mination for sample group 2 (trained by rows of the OD

matrix)
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Figure D-5: Trip distribution regression plot for sample group 2 (trained by

rows of the OD matrix)
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Figure D-6: Production plot for sample group 2 (trained by rows of the OD
matrix)
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Figure D-7: Sigma deter mination for sample group 3 (trained by rows of the OD

matrix)
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Figure D-8: Trip distribution regression plot for sample group 3 (trained by
rows of the OD matrix)
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Figure D-9: Production plot for sample group 3 (trained by rows of the OD
matrix)
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Figure D-10: Sigma determination for sample group 4 (trained by rows of the
OD matrix)
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Figure D-11: Trip distribution regression plot for sample group 4 (trained by
rows of the OD matrix)
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Figure D-12: Production plot for sample group 4 (trained by rows of the OD

matrix)
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Figure D-13: Sigma determination for sample group 5 (trained by rows of the
OD matrix)
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Figure D-14: Trip distribution regression plot for sample group 5 (trained by
rows of the OD matrix)
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Figure D-15: Production plot for sample group 5 (trained by rows of the OD
matrix)
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Figure D-16. Sigma deter mination for sample group 1 (trained by columns of
the OD matrix)

120 + y=0.2488x+ 28.063

R?=0.2574—
100 T <

—

s

0 50 100 150 200 250 300 350 400

Figure D-17: Trip distribution regression plot for sample group 1 (trained by

columns of the OD matrix)
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Figure D-18: Attraction plot for sample group 1 (trained by columns of the OD

matrix)
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Figure D-19: Sigma determination for sample group 2 (trained by columns of
the OD matrix)
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Figure D-20: Trip distribution regression plot for sample group 2 (trained by
columns of the OD matrix)
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Figure D-21: Attraction plot for sample group 2 (trained by columns of the OD

matrix)
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Figure D-22: Sigma determination for sample group 3 (trained by columns of
the OD matrix)
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Figure D-23: Trip distribution regression plot for sample group 3 (trained by

columns of the OD matrix)
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Figure D-24: Attraction plot for sample group 3 (trained by columns of the OD

matrix)
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Figure D-25: Sigma determination for sample group 4 (trained by columns of
the OD matrix)
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Figure D-26: Trip distribution regression plot for sample group 4 (trained by
columns of the OD matrix)
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Figure D-27: Attraction plot for sample group 4 (trained by columns of the OD

matrix)
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Figure D-28: Sigma determination for sample group 5 (trained by columns of
the OD matrix)
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Figure D-29: Trip distribution regression plot for sample group 5 (trained by

columns of the OD matrix)
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Figure D-30: Attraction plot for sample group 5 (trained by columns of the OD

matrix)
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