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Abstract 

Environmental impact regulations require that marine industrial operators quantify 

their contribution to the underwater noise scene. Automation of such assessments 

becomes feasible with the successful categorisation of underwater sounds into 

broader classes based on the type of source – biological (e.g. echolocation clicks, 

whistles and moans), anthropogenic (e.g. vessel noise, offshore construction and 

airgun surveys) and natural (e.g. underwater quakes and eruptions, rain and ice-

cracking). Such an automatic characterisation system would enable regulators and 

operators to readily determine “noise budgets” (the contribution to underwater 

acoustic energy by source type) on a large spatiotemporal scale. Though industry and 

national governments alike are being increasingly concerned with mitigating human 

impact on marine life, little progress has been made in developing a unified approach 

for the study of underwater soundscapes. 

Previous approaches to detection and classification in underwater passive acoustic 

monitoring (PAM) have mostly been limited to one or a few specific sources of 

interest such as dolphin whistles or signature noises of vessels. A fundamental 

problem in employing such techniques for soundscape characterisation lies in the 

varied notion about noise. A majority of these approaches are designed to discard or 

overcome interfering sounds that are considered “noise” for the particular 

application. Successful soundscape characterisation cannot afford to overlook any 

class of sounds. Also, some of the existing techniques exhibit claimed levels of 

performance only in specific recording scenarios. A recording scenario involves a 

combination of factors including recording environment, time of year, recording 

equipment configurations, etc. On the other hand, assembling a soundscape 

characterisation system as a combination of carefully handpicked independent PAM 

techniques is prohibitive given the variety of sounds prevalent in aquatic 

environments and the vast repertoire of available PAM techniques. 

I propose to tackle the automatic categorisation problem by embracing a different 

perspective of underwater sounds – as classes of spectro-temporally distinguishable 
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units, without regard to the source producing the sounds. Such a perspective enables 

viewing of an automatic characterisation system as a broader 2-phase detection-and-

classification system where the first phase involves only the detection of individual 

sound units and the second phase would perform classification upon examining the 

characteristics of the detected units. In this thesis, robust independent signal detectors 

are proposed for the automation of the detection phase. The proposed detectors are 

developed as modular units with emphasis on achieving a high degree of spectro-

temporal context-insensitivity while maintaining faster than real-time performance. 

A framework is suggested for realising an automated underwater soundscape 

characterisation system utilising the proposed detectors. 
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Chapter 1.  

Introduction 

 

The soundscape of an environment is the superposition of acoustic signals from all 

the sources within it (Krause, 1987; Schafer, 1977). These acoustic sources can be of 

geophysical, anthropogenic or biological origin. Geophysical sources include 

underwater earthquakes, volcanic eruptions and polar ice events, as well as weather-

related sources, such as surface waves, wind and rainfall. Anthropogenic sources 

include, for example, ship noise, seismic airgun surveys and pile driving. Biological 

sources include marine fauna vocalisations and fish choruses. The acoustic 

characteristics of sounds change as they propagate through the environment due to 

spreading losses of acoustic energy, reflections from boundaries, surface and volume 

scatters. The superposition of sounds produced by various sources at different 

locations results in soundscapes that are both spatially and temporally heterogeneous. 

Soundscapes can be characterised by classifying and quantifying the contributions 

from the various sources. 

 

Wenz (1962) summarised data on ambient sound sources and their spectra, in 

particular those of geophysical and weather-related origins. The sounds arising out of 

sea surface agitation caused by rainfall, wind and ice mechanics were further 

reviewed by Kerman (1988). Examples of geophysical contributions include 

underwater seismic and volcanic activities and polar ice events (calving, cracking, 

etc.).  

 

Anthropogenic contributions to marine soundscapes have significantly increased 

since the onset of industrialisation, and in some regions seem to be steadily 

increasing (Andrew et al., 2002; Andrew et al., 2011; Chapman and Price, 2011). 

Some of the most common sources of anthropogenic noise in the ocean include 

commercial and recreational vessel traffic, seismic exploration of the sea floor, 

marine construction, as well as military, commercial and fisheries sonar (Richardson 

and Thomson, 1995; Wyatt, 2008; Hildebrand, 2009). 
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Cetaceans (whales, dolphins and porpoises), pinnipeds (seals, sea lions and walruses) 

and sirenia (dugongs and manatees) are all known to produce sounds underwater 

(Richardson and Thomson, 1995) not only as a means of communication, but also to 

aid in foraging and navigation as in the case of cetacean biosonar. Other sounds of 

biological origin in underwater soundscapes include those of fish (Tavolga, 1971) 

and invertebrates (Popper et al., 2001; Hazlett and Winn, 1962; Schmitz, 2002). 

Some of the other known reasons that marine organisms produce sounds include 

establishing territories, locating conspecifics, attracting mates and warding off 

predators (Tyack and Clark, 2000; Madsen et al., 2005; Valinski and Rigley, 1981). 

 

Apart from actively producing sounds, marine animals also passively utilise sounds 

for various purposes, e.g. for habitat selection as in the case of pinnipeds (Miksis-

Olds and Madden, 2014), fish (Simpson et al., 2008; Radford et al., 2011) and coral 

larvae (Vermeij et al., 2010). As soundscapes vary spatially across marine 

environments resulting from their local geophysical conditions and inhabiting biota, 

some species utilise sounds as environmental cues (Clark and Ellison, 2004) (e.g. 

avoidance of predatory regions) and navigational cues (Tolimieri et al., 2000; Leis et 

al., 2003; Radford et al., 2011). 

 

Sound propagates faster and farther in marine environments than in the atmosphere 

and over longer ranges with less attenuation than does light (Urick, 1983). While 

marine organisms have evolved to use this to their advantage (Tyack and Clark, 

2000), the very same beneficial property of water as an excellent medium for sound 

transmission turns detrimental as man-made acoustic disturbances can reach far 

distances with low attenuations. As a result, added anthropogenic sounds may have 

several impacts on marine ecosystems (Erbe, 2012), including behavioural responses 

(Southall et al., 2007), masking of communication and echolocation signals (Clark et 

al., 2009), an increase in organisms’ stress levels (Wright et al., 2007) and temporary 

or permanent damage to sensory organs (McCauley et al., 2003; Solé et al., 2013; 

Kastelein et al., 2013). Over the past few decades, growing awareness of the impacts 

(Laiolo, 2010) have prompted various organisations and national governments to 

consider acoustic impact mitigation programmes. In consideration of the tight 

coupling between an environment’s ecology and soundscape (Farina and Piretti, 
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2012), environmental impact assessment programmes have also recently started to 

broaden the scope of their studies to incorporate soundscape assessments. 

Soundscape assessments as well as noise impact mitigation and monitoring 

programmes often involve Passive Acoustic Monitoring (PAM). It is commonly used 

as a complement to visual monitoring, and in some situations replaces visual 

methods (e.g. in conditions of poor visibility or at night time; Erbe et al., 2013). 

Cabled or autonomous underwater acoustic recording equipment can be deployed for 

extended periods for the collection of long-term data. Recordings are also commonly 

performed onsite from research vessels using on-board equipment. The collected 

acoustic data are analysed, either in-situ or after retrieving the recording equipment, 

to extract ‘signals of interest’ (e.g., dolphin whistles, odontocete echolocation clicks, 

seismic survey pulses). Some of the aims of past analyses have been to – 

• detect the presence/absence of species of interest (e.g. Klimley et al., 1998),

• map species’ migratory patterns (e.g. Clark et al., 1996),

• estimate species abundance (e.g. Lewis et al., 2007; Marques et al., 2009),

• monitor anthropogenic noise from industrial operations (e.g. Bailey et al.,

2010), and

• determine animal responses to noise (e.g. Tyack et al., 2011).

The use of software programs for the automatic identification of signals of interest in 

audio recordings has made PAM more time- and cost-effective. Some of the early 

efforts in automatic analysis of underwater recordings include the works of Stafford 

et al. (1994), Gillespie and Leaper (1996), Mellinger and Clark (1997), Mann and 

Lobel (1995a, 1995b) and Chen et al. (2000). Since then, automatic PAM approaches 

have become an increasingly common tool in the monitoring of underwater fauna 

and have been widely and successfully employed over the last two decades. 

The major goal of this study is to develop software tools to help automate the process 

of underwater soundscape characterisation. The significance of improved tools for 

soundscape studies is described in Section 1.1. The challenges in their development 

are discussed in Section 1.2. A brief review of existing automatic detection and 

recognition techniques is given in Section 1.3. An overview of the proposed 

approach and its motivations are described in Section 1.4. 
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1.1. Significance 

 

Environmental impact assessments of marine industrial operations often require that 

the marine soundscape be measured and quantified prior to industrial operations, in 

order to understand the baseline conditions before anthropogenic noise is added. 

Such “before” conditions are assumed to represent the “natural” soundscape. Data 

analysis typically involves the identification of marine fauna present in the local 

environment, as well as a statistical analysis of “natural” noise levels and spectra. A 

baseline soundscape assessment is performed for a certain period either directly 

preceding operations, or a year earlier during the same season, or over much longer 

periods to capture any seasonal changes in ambient noise levels and fauna presence. 

The soundscape is also commonly recorded during industrial operations in order to 

monitor fauna around the operation sites and to monitor anthropogenic noise 

emission. Finally, soundscapes may be studied after industrial operations have 

ceased to determine whether there were any long-term changes as a result of the 

industrial operations. 

 

Given the efficiency of PAM (unmanned data collection, low cost) and the ongoing 

technological advances (lower power consumption, higher storage capacity, higher 

sampling rates, improved recording quality), vast amounts of underwater acoustic 

data are collected by PAM around the globe every year. An analysis of such high 

volumes of data is often laborious and the scientific community at large has been 

looking beyond manual methods. As such, there is an ongoing need to improve 

automatic analysis tools. Automated soundscape analyses enable quick and efficient 

processing of real-time data as well as archived data. In addition, automatic tools 

allow consistent, repeatable and objective analyses.  

 

Given the potential of an automatic system to process large amounts of data quickly 

and efficiently, archived data can be reused in the analysis of historical soundscapes. 

Consequently, automatic soundscape analysis may provide a new perspective and 

methodology for assessing marine ecosystems by enabling researchers to study the 

long-term dynamics of ecosystems as they respond to climatic and human-induced 

interferences. 
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1.2. Challenges and expectations 

 

Our understanding of the origins of the myriad of sounds observed in underwater 

environments is still very limited. This is because simultaneous visual observation or 

other means of sampling are necessary to associate sounds with their sources. Given 

that acoustic signals are capable of propagating over long distances in aquatic media, 

the sources might be far away and inaccessible for sampling non-acoustically. As a 

result, the set of underwater sounds currently known to us is only a small fraction of 

the sounds heard underwater. Furthermore, even in cases where the calls of certain 

marine species have been described, the automatic detection of species-specific 

sounds is made difficult by various factors such as variations in the calling behaviour 

of vocalizing species (Au, 1993, p. 121) and variations in the spectrotemporal 

characteristics of received sound due to effects of hydro- and geo-acoustic 

environmental conditions on sound propagation (Dashen et al., 2010). 

 

The evolution of automatic PAM solutions has made available numerous 

independent ad hoc approaches to the detection and/or classification of underwater 

sounds, each targeted at a subset of acoustic signals. These approaches have designs 

that are rooted in the nature of not only the targeted sounds, but also of the ambient 

noise at the recording site. A fundamental problem in employing such approaches for 

soundscape characterisation lies in the varied notion about noise. A majority of these 

approaches are designed to discard or overcome interfering sounds that are 

considered “noise” for a particular application. Comprehensive soundscape 

characterisation cannot afford to overlook any class of sounds. Integrating all of the 

available disparate approaches to recognise the variety of sounds in the ocean into a 

single software solution would be prohibitive, from both implementation and 

operational perspectives. 

 

Another major hurdle in realising a universal solution from existing approaches is 

that most of the existing techniques were optimised to excel in specific situations that 

are a combination of the target signals of interest and the ambient noise at the 

specific time and location. For example, some tools are well suited to work with 

recordings from a particular sonic environment that is a factor of the underlying 
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bathymetry and the different habitats in the area; some are designed to work only 

with audio that was recorded at a particular sampling frequency; some techniques 

produce reasonable results only when applied to non-noisy recordings. Applying 

software tools that were developed for a specific scenario (i.e., target signals, 

background noise, sound propagation conditions and recording equipment) to a new 

environment is difficult. Certain techniques are based on the use of a previously 

trained neural-network or a statistical model, and training a new model for use in a 

different scenario may not be feasible and sometimes may not produce results of high 

quality. The challenge is to develop algorithms that deliver desirable characteristics 

such as: 

• Robustness ‒ must exhibit little or no degradation in performance in dynamic 

noise environments; 

• Flexibility ‒ must be capable of working with data obtained via different 

collection methods, with little or no performance variation; 

• Adaptability ‒ must exhibit an acceptable level of consistency in performance 

across recordings from different data collection sites.  

While achieving a system with the aforementioned characteristics, it is vital for the 

research and development phases to maintain focus on achieving high operational 

throughput, i.e. high efficiency. 

 

1.3. A brief review of available automatic recognition methods 

 

A variety of ad hoc methods have been developed for the identification of one or 

more specific types of underwater sounds. As the literature often uses the terms 

“detection”, “classification”, “identification” and “recognition” interchangeably, 

these terms will be redefined here for convenience in distinguishing different facets 

of processing in this study. Generally, the goal of an automatic approach is to 

“recognise” or “identify” sounds that are of interest to a particular application. 

Automatic recognition of sounds of interest involves separating them from other 

interfering sounds and background ambient noise. Separation of sound units, which 

have well-defined temporal and/or spectral bounds, from background noise will be 

referred to as “detection”. The detection process does not identify the sources that 
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produce the sounds. Often, multiple sounds are of interest to certain PAM 

applications and the goals of such applications may include “classification” which 

separates sounds into classes or types of sources. The distinction between detection 

and classification algorithms in existing literature is rather fuzzy. In some 

approaches, simple operations achieve recognition without explicitly distinguishing 

detection and classification steps, e.g. those described in Mellinger and Clark, 2000 

and Woodman et al., 2004. Some approaches achieve recognition with explicit 

detection and classification steps, e.g. Soldevilla et al., 2008; Madhusudhana et al., 

2009; Thode et al., 2012. 

 

Some of the earlier attempts in the PAM of underwater sound sources involved the 

use of simple matched filtering methods for the detection of blue whale 

(Balaenoptera musculus) calls (Stafford et al., 1998; Stafford et al., 1994) and sperm 

whale (Physeter macrocephalus) clicks (Gillespie and Leaper, 1996), a semi-

automatic approach using an automatic pulse detector for identifying fish sounds 

(Mann and Lobel, 1995a; Mann and Lobel, 1995b) and an amplitude peak-counting 

algorithm for isolating ice-cracking sounds in Arctic underwater ambient noise 

(Zakarauskas, 1993). Spectrogram correlation has been effectively and widely used 

for many mysticete calls (Mellinger and Clark, 1997) including bowhead whales 

(Balaena mysticetus) (Mellinger and Clark, 2000), right whales (Eubalaena) 

(Munger et al., 2005; Urazghildiiev et al., 2009) and sei whales (Balaenoptera 

borealis) (Baumgartner et al., 2008). Methods based on sine wave modelling and 

Bayesian inference (Halkias and Ellis, 2006) and those built on tracking time × 

frequency peaks in a spectrogram (Roch et al., 2011b) have been used for odontocete 

whistles. Certain other types of time × frequency tracking methods have been used in 

the detection of mysticete tonal calls (e.g. Mellinger et al., 2011). Madhusudhana et 

al. (2009) combined frequency contour tracking with a rule-based expert system for 

the classification of blue whale calls. Energy- and frequency-based methods have 

been examined for odontocete echolocation clicks (Houser et al., 1999), and have 

been recently improved by Klinck and Mellinger (2011) in their Energy Ratio 

Mapping Algorithm (ERMA). Erbe and King (2008) utilised Shannon entropy 

measures in the frequency domain for the detection of marine mammal vocalisations 

in recordings. The Teager-Kaiser energy operator (Kaiser, 1990a) aids in the 



8 

 

detection of short-duration high-energy impulses in recordings, and is popularised by 

its widespread use in the detection of echolocation clicks, e.g. Kandia and Stylianou, 

2006; Soldevilla et al., 2008; Roch et al., 2008; Gervaise et al., 2010. It is most 

dominantly used as a first-pass operation to pick out sound waveform sections that 

contain the signals of interest. Other techniques are also used as a first-pass or signal-

conditioning operation for subsequent classification operations. Examples include the 

use of chirplet transform in blue whale call characterisation (Bahoura and Simard, 

2008), Hilbert-Huang transform for killer whale (Orincus orca) calls (Adam, 2008) 

and wavelet transform for sperm whale calls (Adam et al., 2005). Image processing 

techniques such as edge detection and ridge detection have been employed for 

identifying spectrographic features of bioacoustic signals in spectrograms, e.g. 

Gillespie, 2004; Kershenbaum and Roch, 2013. Thode et al. (2012) employ 

thresholding and morphological processing of spectrograms in the detection phase of 

their approach for recognising bowhead whale sounds. 

 

A relatively less studied area is the use of techniques successfully employed in 

human speech recognition, such as dynamic time warping (DTW) (Sakoe and Chiba, 

1978), vector quantisation (VQ) (Gray, 1984), Gaussian mixture models (GMM) 

(Huang et al., 2001) and hidden Markov models (HMM) (Rabiner, 1989). The use of 

DTW was explored in Buck and Tyack (1993) for distinguishing the “signature 

whistles” of bottlenose dolphins (Tursiops truncatus). Weisburn et al. (1993) used 

HMMs for separating bowhead whale calls from white Gaussian noise. HMMs with 

cepstral features were used for the first time in the classification of different call 

types of a single marine mammal species, northern resident killer whales, in Brown 

and Smaragdis (2009). GMMs have been used in Roch et al. (2007) and Roch et al. 

(2011a) for the classification of echolocation clicks of a specific population of 

odontocetes, and in Mouy et al. (2008) for distinguishing bowhead whale calls from 

other biological sounds. With neural networks, almost all known implementations for 

classifying whale calls use raw spectrogram data as features (Thode et al., 2012) , 

e.g. Erbe (2000). 

 

Automatic recognition of ship noise has in the past received much attention from 

defence organisations. Hence, there is relatively little apposite literature available in 
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the public domain. The dominant component of ship noise is propeller cavitation 

while the other components originate at the engines and other machinery (Urick, 

1983). Chen et al. (2000) used a two-pass split-windows algorithm in the pre-

processing stage and evaluated the relative performance of four types of neural 

network classifiers in the classification of ship sounds. Yang et al. (2002) compared 

the effectiveness of six different feature extraction methods, used with a 

Mahalanobis distance based classifier, in the classification of sounds from six ships. 

They have shown that a wavelet analysis and three different fractal-based methods 

perform better than traditional spectrum-based methods. Bao et al. (2010) proposed a 

novel approach based on a non-linear analysis of acoustical signals via empirical 

mode decomposition. Some researchers have narrowed the focus of their work on the 

identification of small vessels, e.g. Ogden et al., 2011; Sorensen et al., 2010. 

Relatively little work has been done on the automatic recognition of some of the 

other anthropogenic sounds such as those of underwater explosions, airgun surveys, 

pile driving, etc. In the method proposed by Woodman et al. (2004), sound pressure 

levels exceeding a pre-determined threshold value trigger detection of dynamite 

fishing events.  

 

The automatic recognition of underwater sounds of geophysical origin (e.g. seismic, 

volcanic, ice cracking and breaking) presents a different problem altogether. Much of 

the existing research related to seismic sounds has been carried out by researchers in 

geophysics and related fields, with little or no emphasis on fully automatic 

recognition techniques (e.g. Fox et al., 2001). Much of the work was previously 

limited to terrestrial observations (e.g. Gledhill, 1985). Increasing interests towards 

fully understanding the earth’s interior through measurements from global seismic 

networks have resulted in expanding the networks across ocean floors (Webb, 1998). 

Hanson et al. (2001) compared the ratios of short-term to long-term signal energy 

averages computed over a series of frequency bands against pre-set thresholds for the 

detection of high-intensity low-frequency signals received at the hydroacoustic 

stations of the International Monitoring System (IMS) of the Comprehensive 

nuclear-Test-Ban Treaty (CTBT). With a subsequent classification step, their work 

distinguished several types of anthropogenic and geophysical sounds. Sukhovich et 

al. (2011) used wavelet analysis with a similar “ratio of averages” approach for 



detecting acoustic signals generated in water by teleseismic P-waves. With an added 

processing step in the form of Gradient Boosted Decision Trees (GBDT), a machine 

learning technique, Sukhovich et al. (2014) extended the method of Sukhovich et al. 

(2011) to automatically distinguish T- and P-waves. Polar ice cracking and breaking 

has been studied as an indicator of global climate change (e.g. Scambos et al., 2000) 

and hydroacoustic detection methods are well suited for remote monitoring of such 

events. Li (2010) described a method that utilises prior knowledge about propagation 

characteristics and a multivariate classification method for the detection of Antarctic 

ice events. Automatic recognition of other natural sounds generated from events such 

as rain and sea-surface waves are of importance for weather forecasting and 

oceanography as they enable remote detection and measurement of phenomena such 

as precipitation, sea-surface winds, sea state, etc. (Scrimger, 1985). The 

characteristics of sounds generated during such events have been widely studied over 

many decades (e.g. Heindsmann et al., 1955; Scrimger et al., 1987; Farmer and 

Vagle, 1988; Medwin et al., 1992; Prosperetti and Oguz, 1993). Consequently, 

passive acoustic detection and measurement of such events have also been 

quite popular (e.g. Shaw et al., 1978; McConnell, 1983; Bourassa, 1984; Nystuen 

et al., 2000; Manasseh et al., 2006). 

1.4. Aim of the thesis 

Given the innumerable variety of sounds occurring in underwater environments, it is 

not feasible to realise an automatic soundscape characterisation system by employing 

a limited set of the available recognition techniques. On the other hand, a 

characterisation system made up of many independent techniques would be 

computationally cumbersome and would therefore lose its utility in real-world 

applications. Another impediment in realising a comprehensive automatic 

characterisation system is the gap in our knowledge on the sources of a variety of 

observed sounds. However, by analysing an acoustic signal aurally and/or visually 

(waveform analysis, Fourier analysis, etc.), human analysts are generally able to say 

with some confidence whether a sound is of bio logical, anthropogenic or geophysical 

origin based on prior encounters of similar sounds and their recognisable features 
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and patterns. Acoustic signals that are separable from the background ambient noise 

are readily detected by analysts who are then able to associate a source with the 

detected signal. A schematic emulation of the two-step analysis process is shown in 

Figure 1.1. 

Acoustic signals can be considered to fall into a time and frequency continuum. In 

the frequency domain, signals occur either as narrowband (tonal) signals where the 

spectral energy is concentrated in very narrow frequency bands, or as broadband 

signals where the spectral energy is distributed over a relatively wider range of 

contiguous frequency bands. Examples of tonal signals include odontocete whistles, 

tonal components of ship noise and harmonic tremors emitted by icebergs. Examples 

of broadband signals include sounds of snapping shrimp, some fish choruses, 

earthquakes, underwater explosions and cavitation noise of ship propellers. In the 

time domain, signals occur in various durations from short pulsed signals (e.g. 

echolocation clicks and airgun discharges) to long continuous signals (e.g. baleen 

whale song, dredging and drilling noises). The spectro-temporal characteristics of 

acoustic signals discussed here are illustrated in Figure 1.2 using underwater 

recordings. Narrowband and broadband signals are shown in Figure 1.2(a) and 

Figure 1.2(b), respectively. They are both examples of long continuous signals. The 

contrasting nature (temporal) of short pulsed signals is shown in Figure 1.2(c). 

Detect Acoustic Activity 

Source Association 

Audio Signal 

Classification Result 

Figure 1.1. Schematic representation emulating the two-step process in the manual 

analysis of underwater soundscapes. 



The goal of this thesis has been to develop a system for the automatic detection of 

acoustic activity in underwater soundscapes. Three independent signal detectors were 

developed. Two of these cater to an extreme each in the time and frequency 

continuum. Very short and pulsed signals, henceforth referred to as transients for 

convenience, are handled by a transient signal detector. Note that the exact meaning 

of transients may differ in other literature where they are generally considered to be 

signals of limited duration. The durations considered for transients in the literature 

varies from tens of microseconds (e.g. Gillespie and Chappell, 2002; Gerard et al., 

2009) and milliseconds (e.g. Baumgartner and Mussoline, 2011; Mellinger and 

Clark, 2000) to seconds (e.g. Helble et al., 2012) and minutes or longer (e.g. Li and 

Gavrilov, 2008; Hanson et al., 2001). Chapter 2 describes the functioning of the 

transient signal detector. A description of the transient signal detector along with 

detailed performance analysis was also presented in Madhusudhana et al., 2015. 

Tonal signals are handled by a tonal detector, which is described in Chapter 3. 

12 

Figure 1.2. Waveforms (top row) and spectrograms (bottom row) of acoustic 

recordings containing (a) an instance of a Z-shaped call of an Antarctic blue whale 

(Balaenoptera musculus intermedia), (b) undersea earthquake and (c) sperm whale 

(Physeter macrocephalus) echolocation clicks. 
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Observed signals that occur between the two extremes generally appear as “blobs” in 

a time × frequency representation. This is particularly true in the case of signals from 

distant sources, because sound propagation affects the spectrum: acoustic energy at 

higher frequencies gets attenuated faster and multipath arrivals cause spreading of 

signals in time. Detection of such signals is handled by the broadband detector, 

which is described in Chapter 4. 

Chapters 2, 3 and 4 start with a review of the relevant detection approaches available 

in the literature. These are followed by a description of the respective detectors and 

finally, analyses of the detectors’ performances are presented. Suggestions for 

integrating these detectors into a comprehensive, automatic underwater soundscape 

characterisation system are proposed in Chapter 5. 
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Chapter 2.  

Transient Detection 

 

Prior research has shown that echolocation clicks of several species of terrestrial and 

marine fauna can be modelled as Gabor-like functions. In this chapter, a system is 

proposed for the automatic detection of a variety of such signals. By means of 

mathematical formulation, it is shown that the output of the Teager-Kaiser Energy 

Operator (TKEO) applied to Gabor-like signals can be approximated by a Gaussian 

function. Based on those inferences, a detection algorithm involving the post-

processing of the TKEO outputs is presented. The ratio of the outputs of two 

moving-average filters, a Gaussian and a rectangular filter, is shown to be an 

effective detection parameter. Detector performance is assessed using synthetic and 

real (taken from MobySound database) underwater acoustic recordings. The 

detection method is shown to work readily with a variety of echolocation clicks and 

in various recording scenarios. The system exhibits low computational complexity 

and operates several times faster than real-time. Performance comparisons are made 

to other publicly available detectors including PAMGuard. 

 

2.1. Introduction 

 

Odontocetes emit biosonar signals, commonly referred to as echolocation clicks, for 

navigation and foraging purposes. They emit short-duration (up to a few 

milliseconds) impulsive signals, called clicks, and interpret the received echoes to 

detect and identify objects and obstacles. Beaked whales, porpoises, sperm whales 

and some delphinids also produce clicks for communication purposes. The 

characteristics of echolocation clicks differ between different species by their 

duration, frequency content, inter-click intervals (ICI; temporal separation of 

successive clicks), inter-pulse intervals (IPI; temporal separation of successive pulses 

in a composite click), etc. Indicative echolocation clicks of a few species are shown 

in Figure 2.1. Notice the frequency modulation in the beaked whale click and the 

multi-pulsed nature of a sperm whale click. 
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Clicks or impulsive signals from non-biological sources in underwater acoustic 

recordings include those from underwater sonar systems and impulsive noise 

artefacts arising from electronic glitches, mechanical impacts on the recording 

equipment, etc. It has been shown that echolocation clicks of several species of 

marine and terrestrial fauna can be approximated by Gabor-like functions 

(formulation presented in section 2.2). Examples include odontocetes (Kamminga 

and Beitsma, 1990; Kamminga et al., 1996; Kamminga et al., 1993; Kamminga and 

Stuart, 1995) and Egyptian fruit bats (Holland et al., 2004). A Gabor function 

(Gabor, 1946) is a harmonic function localised by a Gaussian envelope. Several other 

studies, albeit without using the term “Gabor function” explicitly, acknowledge the 

presence of a Gaussian-like amplitude envelope resulting in small time-bandwidth 

products in the biosonar signals. Some of the species covered by these studies 

include Blainville’s beaked whale (Mesoplodon densirostris) (Johnson et al., 2006), 

finless porpoise (Neophocaena phocaenoides) (Goold and Jefferson, 2002), Hector’s 

 
Figure 2.1. Waveforms (top row) and spectrograms (bottom row; FFT parameters: 

500 μs Hanning window, 90% overlap) of indicative echolocation clicks of (a) rough 

toothed dolphin (Steno bredanensis), (b) Risso’s dolphin (Grampus griseus), (c) 

Blainville’s beaked whale (Mesoplodon densirostris) and (d) sperm whale (Physeter 

macrocephalus). 
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dolphin (Cephalorhynchus hectori) (Thorpe and Dawson, 1991) and Mediterranean 

bottlenose dolphins (Tursiops truncatus) (Greco and Gini, 2006). A Gabor wavelet 

transform (Gabor, 1946) or a Gabor filter (Marčelja, 1980) applied to an acoustic 

time series could thus help to highlight the underlying clicks. In another study, van 

der Schaar et al. (2007) attempted identification of individual sperm whales based on 

modelling their clicks by Gabor functions. It will be shown how the application of 

the Teager-Kaiser Energy Operator (TKEO) (Kaiser, 1990a) to such signals 

simplifies and enhances their detectability with automatic detectors. 

 

The TKEO has been used by several bioacousticians for automatic detection of 

underwater echolocation clicks (Kandia et al., 2006; Roch et al., 2008; Soldevilla et 

al., 2008; Roch et al., 2011a; Klinck and Mellinger, 2011). Several non-TKEO based 

methods have also been proposed, such as those based on kurtosis (Gervaise et al., 

2010), on phase slopes (Kandia et al., 2008), on spectrogram correlation (Harland, 

2008; Dobbins, 2009) and thresholding (Morrissey et al., 2006), on stochastic 

matched filtering (Caudal et al., 2008), on amplitude envelope levels (DeRuiter et 

al., 2009), on using noise-variable adaptive thresholds in an energy-based detector 

(Moretti et al., 2006; McCarthy et al., 2011) and on the use of support vector 

machines (Jarvis et al., 2008). Most of the existing click-detection algorithms based 

on the TKEO either use a simple moving-average filter comparing the outputs to a 

fixed threshold, rely on a noise floor that is pre-computed over a large time interval 

or perform some form of forward-backward peak selection operation within large 

audio segments (Kandia et al., 2006; Roch et al., 2008; Soldevilla et al., 2008; Roch 

et al., 2011a; Klinck and Mellinger, 2011). Some of the approaches that avoid the 

pitfalls of employing a fixed threshold perform multi-pass processing over large 

segments of recordings with an inherent assumption that spikes of echolocation 

clicks do not constitute a majority of the considered segment. The threshold is 

computed in an initial pass and then the spike locations corresponding to clicks in the 

segment are identified over one or more subsequent passes over the entire segment in 

consideration. The dependence of a detector on the assessment of certain signal 

statistics over long durations not only affects its response time, but also bears an 

impact on the consistency of its performance when employed in highly dynamic 

noise environments. Hence, such methods are not ideal for application in an online 
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scenario. They also run the risk of discarding weaker clicks in a temporal 

neighbourhood of multiple higher energy clicks. The method proposed by Kandia et 

al. (2006) is targeted at detecting sperm whale clicks and is based on measuring the 

deviation of the distribution of the TKEO output from a Gaussian shape. Analysis is 

performed iteratively on short successive frames. Barring the other elements meant 

for precisely locating the onset of a click, the algorithm would report detections 

when the deviation exceeds a pre-estimated skewness threshold. The method 

proposed by Roch et al. (2008) also performs operations frame-wise. The 40th 

percentile of the TKEO outputs in a frame is taken as the ‘noise floor’ and parts of 

the TKEO output that lie over 50 times this noise floor are considered to represent 

clicks. Similar approaches are employed in Roch et al. (2011a) and Soldevilla et al. 

(2008). Contrary to the usual practice of applying the TKEO directly to audio 

signals, Klinck and Mellinger (2011) apply the TKEO to the ratio of the outputs of 

two different band-pass filters and compare the result to a dynamic detection 

threshold. The threshold also relies on measurements from frames of 60 s duration.  

 

In this chapter, I present an algorithm that employs two short moving-average filters 

to provide near-instantaneous spike detection in the TKEO output and that is well 

suited for processing continuous input audio samples. 

 

The next section presents an analysis of applying the TKEO to Gabor signals. Then, 

the inferences made from the analysis are verified with a case study. The subsequent 

sections describe the detection algorithm and discuss its performance. 
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2.2. Applying the TKEO on a Gabor-like signal 

2.2.1. Theoretical analysis 

 

The TKEO output of an arbitrary continuous signal x(t) is given by (Kaiser, 1990b) 

[ ] )()()()( 2 txtxtxtxc  −=Ψ , (2.1a) 

where the operators ˙ and ¨ denote  the first and second derivatives, respectively. The 

TKEO output of an arbitrary discrete signal xn is given by (Kaiser, 1990a) 
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For a Gabor function, there are several equivalent ways of mathematically expressing 

its Gaussian amplitude envelope (e.g., Kamminga et al., 1990; Holland et al., 2004). 

For ease of establishing a relationship with the width of a click, I chose the following 

representations for continuous and discrete Gabor signals: 
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where A is the signal amplitude, to and σ are the mid-epoch and standard deviation of 

the Gaussian envelope, respectively, and Ts is the sampling interval in the discrete 

case. The cosine term represents the carrier signal with phase ϕ and angular 

frequency cTπω 2= , where Tc is the period of the carrier wave. 

 

Harmonic signals localised by a Gaussian envelope can be represented more 

generally as 
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where ωt describes the angular frequency as a function of time. Of particular interest 

to us are the cases with constant frequency carrier waves (CFCW) and those with 

linearly chirped carrier waves (LCCW), due to their similarity to commonly 

encountered echolocation clicks. An example of each case is shown in Figure 2.2. 
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The term ‘Gabor-like’ used in this chapter refers to these two types of signals. 

Signals of the latter form are commonly known as Gabor chirps (Mann and Haykin, 

1991). The time dependence of their carrier frequency can be expressed as 

)( 00 tttt −+= ωωω  . (2.4) 

Note that in this form, ωo corresponds to the carrier wave’s central frequency which 

is its instantaneous frequency at to. The carrier’s instantaneous period corresponding 

to the central frequency will be denoted as To. For Gabor-like signals of CFCW type, 

tω = 0 in Eq. (2.4). The carrier wave’s effective instantaneous frequency resulting 

from Eq. (2.4) must remain positive and finite within the full width of the Gaussian 

envelope, which can be defined as 6σ. This constrains the values of tω  to the range 

)3(0 0 sωω <≤ t . 

 

 
Figure 2.2. Gabor functions (bottom row) produced as per Eq. (2.3) with A = 1, 

σ = 0.091 ms and ϕ = 0, shown along with their constituent carrier waves (middle 

row) and Gaussian envelopes (top row). tω  is so chosen to yield a carrier frequency 

of 32 kHz for the CFCW type and a carrier frequency sweep from 24 kHz to 48 kHz 

(over the 6σ duration) for the LCCW type. The discrete signals were generated with 

a sampling frequency of 192 kHz. 
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Substituting G(t) in Eq. (2.3) for x(t) in Eq. (2.1) and simplifying the result using 

trigonometric identities, we arrive at the following form of the TKEO output for 

Gabor-like signals – 
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 (2.5) 

Ψc consists (in order of appearance) of a constant (A2), a Gaussian component and a 

component comprising three additive terms that affect the shape of the Gaussian 

component. For convenience, I will refer to the three additive terms as T1, T2 and T3 

in the order they appear in Eq. (2.5). By denoting the standard deviation of the 

Gaussian curve component in Ψ  as σTK, we can express its relationship to the 

Gaussian envelope of G(t) as 

2
ss =TK

. (2.6) 

Using Eq. (2.4), Eq. (2.5) can be rewritten for Gabor-like signals as 
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 (2.7) 

Let us consider separately the effect of T1, T2 and T3 on Ψ. The term T1 is a 

quadratic quantity and its minimum occurs at tωω 20−  relative to the Gaussian 

component’s maximum. The magnitude of this temporal offset at its minimum is 

23 TKs  at the maximum sωω 3ot =  and it increases with decreasing tω . With 

its minimum occurring sufficiently away from to, the term T1 introduces a skew in 

the Gaussian component of Ψ. Notice that T1 is a constant ( 2T1 oω= ) for Gabor-like 
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signals of CFCW type and, consequently, the Gaussian shape of Ψ is not skewed. 

The effects of T2 and T3 on Ψ can be examined by considering their values at the 

limits of tω . For the maximum value of tω , Eq. (2.7) can be rewritten as 
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where λ = 6σ/To is the number of periods of the carrier wave’s central frequency 

contained within the full width (6σ) of the Gaussian envelope of G(t). The harmonic 

elements of T2 and T3 introduce distortions in an otherwise smooth curve of Ψ. The 

scaling of these distortions, viz. 1/πλ and 9/π2λ2 (hereafter referred to as distortion 

scaling factors), are driven by λ. These terms are, however, small relative to unity 

when the Gabor-like signal is well-formed, i.e., contains at least a few periods of the 

carrier. Figure 2.3 shows the variation of the distortion scaling factors in T2 and T3 

for a few values of λ at sωω 30=t . Since T1 approaches unity at to in Eq. (2.8), the 

maximum cumulative distortion produced by T2 and T3 can be seen from Figure 2.3 

as being small relative to T1 in the region around to for well-formed signals. For any 

 
Figure 2.3. Scaling (dashed lines) of the distortion produced by the harmonic 

elements of T2 and T3 in Eq. (2.8), shown for a few values of λ. The solid line is 

indicative of the upper limit on the magnitude of distortion as a cumulative effect of 

T2 and T3. 
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particular value of λ, the maximum distortion of the Gaussian in Ψ occurs at 

maximum tω  and, as tω approaches 0, the distortion results only from T3. So, it can 

be inferred in general that for well-formed Gabor-like signals, the magnitude of the 

distortions caused by T2 and T3 are small compared to the scaling and skewing 

caused by T1 over a significant extent of the Gaussian component of Ψ in the vicinity 

of to. Hence, the resulting nature of Ψ is largely dominated by a Gaussian. This is 

demonstrated in Figure 2.4 for a synthetic signal with a reasonably high rate of tω . 

Similarly high rates of frequency change in echolocation signals have been observed 

only in some subspecies of beaked whales (Zimmer et al., 2005; Rankin et al., 2011). 

Although the distortion of Ψ is visible at large tω , it is not significant compared to 

the non-skewed Gaussian output of the TKEO. 

 

Thus far, I have shown that applying the TKEO to Gabor-like signals suppresses the 

harmonic component and that its output is well approximated by a scaled Gaussian 

impulse which is narrower than the amplitude envelope of the input signal by a factor 

of 21 . 
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Figure 2.4. Waveforms (top row) and spectrograms (middle row) of synthetic Gabor 

functions produced with A = 1, σ = 0.091 ms and ϕ = 0. tω  is chosen as to yield a 

carrier frequency of 38 kHz in the CFCW case and a frequency sweep from 21 kHz 

to 55 kHz over the 6σ in the LCCW case. Grey overlays show the Gaussian 

envelopes. The bottom row plots show the corresponding Gaussian and quadratic-

approximate (T1+T2+T3; scaled here, by 2
01 ω , to enable comparisons) components 

of the analytical TKEO output. Discrete TKEO output is overlaid over the pure 

Gaussian. The discrete TKEO output in the LCCW case indicates the introduced 

skew causing a forward shift of ~0.01 ms in its peak. 
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2.2.2. Case study 

 

In order to verify the findings from the above analysis for real echolocation clicks, I 

performed a curve-fitting exercise on 200 handpicked killer whale clicks from a 

recording made during May 2011 over the Australian Northwest Shelf using an 

omnidirectional hydrophone (Teledyne Reson TC 4033, bandwidth 1 Hz–140 kHz, 

receiving sensitivity −202 dB re 1 V/μPa) and a CMST underwater sound recorder 

(http://cmst.curtin.edu.au/products/underwater-sound-recorder/; accessed on Sept 13, 

2016). The recorded audio was sampled at 192 kHz. Gabor curves were fitted to the 

waveforms of each click, and Gaussians fitted to their corresponding TKEO outputs 

(see Figure 2.5). The Levenberg-Marquardt (LM) algorithm (Gill et al., 1981) is 

known to perform well in non-linear curve-fitting tasks and hence it was chosen for 

this analysis. The averages of the estimated parameters of the individual curve-fits 

were considered in producing the overlaid (dark) Gabor and Gaussian curves. The 

Gabor fitting of the waveforms yielded parameter estimates of σ = 0.0116 ms and To  

= 0.0324 ms resulting in λ ≈ 2.15. A σTK estimate of 0.0079 ms supports the 

relationship expressed in Eq. (2.6). For the Gaussian fit of the TKEO outputs, an 

average Summed Square of Errors/Residuals value of 0.01 and a Root Mean Squared 

Error value of 0.03 confirmed the usefulness of the model for fitting purposes, and 

an average Adjusted R2 value of 0.98 indicated a ‘good fit’. 

 
Figure 2.5. Curve fitting of killer whale click waveforms with a Gabor function (top) 

and of their corresponding TKEO outputs with a Gaussian curve (bottom). Grey lines 

show clicks’ waveforms and their corresponding TKEO outputs in respective plots. 
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2.3. Automatic detection 

 

So far, I have shown that, for signals that can be modelled as Gabor-like functions 

(e.g., underwater echolocation clicks), the corresponding TKEO values tend to 

approach a Gaussian shape. Based on these inferences, I will now describe a simple 

system for the detection of Gabor-like clicks in acoustic recordings. 

 

2.3.1. Detector design 

 

A short rectangular moving-average filter produces an averaging or smoothing effect 

on an input signal. Since the outputs of the TKEO are predominantly non-negative, a 

longer moving-average filter produces a flattening effect on the TKEO outputs. In 

contrast, a bell-shaped averaging filter (e.g., Hamming, Hanning or Gaussian 

function) has the potential of highlighting short-duration energy surges in TKEO 

outputs while flattening non-spiked high-energy sections. I chose a scaled Gaussian 

function for our first moving-average filter (MAF1) as it allows for easy control of 

the acuteness of the bell shape. Convolution operation with MAF1 can be expressed 

as 
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for a filter of length 2N + 1, where n is the sample index and σG is the standard 

deviation of the Gaussian function. The factor )2( πs GsT  ensures that the filter 

gain (area under the curve) approaches unity. The acuteness of the Gaussian can be 

controlled with σG. The choice of values for σG and N is discussed in the next sub-

section. 

 

Consider a second moving-average filter (MAF2) – a rectangular averaging filter of 

the same length as MAF1. The amplitude of the filter is chosen such that the filter 

gains of MAF1 and MAF2 are the same. Similar gains allow for fair comparisons to 

be made of the two filters’ outputs. 

 



27 

 

For an input unit impulse, hMAF1(n) peaks at the point corresponding to the non-zero 

element of the impulse and falls off on either side of it. In contrast, the response of 

MAF2 (hMAF2(n)) is flat. The proposed detection algorithm exploits this difference in 

characteristics of the responses of the two filters. Consider the difference [hMAF1(n) - 

hMAF2(n)] expressed as a fraction of hMAF1(n). This quantity will be denoted as Filter 

Difference Ratio (FDR) which is a normalised measure of the extent of hMAF1(n) over 

hMAF2(n). 

)(
)()(

)(
1

21

nh
nhnh

nFDR
MAF

MAFMAF −
=  (2.10) 

Impulse responses of typical filters and the ensuing FDR are shown in Figure 2.6.  

The dotted horizontal line in the FDR plot highlights the maximum value of FDR 

(FDRpeak). For a chosen combination of MAF1 and MAF2, there are four noteworthy 

properties of FDR – 

i) The FDR curve and FDRpeak remain the same for input impulses of any given 

amplitude scaling. 

ii) The difference [hMAF1(n) - hMAF2(n)] and the ensuing FDR are maximum 

when the impulse is at the centre of the filters. 

iii) The value of the numerator never exceeds the denominator. Hence, the 

resulting ratio is less than 1. 

iv) hMAF1(n) is smaller than hMAF2(n) at input samples sufficiently away (in time) 

from the non-zero element of the impulse. The numerator and hence the 

ensuing FDR are negative for such points. 
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Similar to a unit impulse, acute Gaussian curves also have a steep rise followed by a 

steep fall. We can see from Eq. (2.6) that the Gaussian-like outputs (hereafter 

referred to as spike) obtained from applying the TKEO to Gabor-like signals also 

have an acute profile. When the outputs of the TKEO applied to audio recordings 

containing Gabor-like signals are convolved with MAF1 and MAF2, and the FDR is 

determined, we can expect to see curves similar to those in Figure 2.6 at locations 

corresponding to clicks in the original audio. As with unit impulses of different 

amplitudes, the FDR curve would remain similar for clicks with different intensities. 

Hence, I chose to set the detector threshold to be a function of FDRpeak for the 

chosen combination of MAF1 and MAF2. However, TKEO outputs of real clicks 

differ from a unit impulse in two ways. Firstly, a combination of factors (like noise 

and choice of sampling rate) results in a possibility of bearing small negative values 

in the neighbourhood of the energy pinnacle of the TKEO output corresponding to a 

Gabor-like signal. Secondly, the width of the spike is wider than a unit impulse. As a 

result of these two factors, the tip of the FDR corresponding to a click would be 

lower than the FDRpeak computed for the chosen filters. Hence, the detection 

threshold can be set as a fraction of the employed filters’ FDRpeak. Figure 2.7 

demonstrates the outcome of filtering and FDR computation for synthetic data 

imitating TKEO outputs with different amplitudes. Notice how a fixed threshold, that 

is 85% of the FDRpeak, can serve as a reasonable cut-off for detecting spikes. 

 
Figure 2.6. Impulse responses (top) of filters MAF1 (σG = 0.169 ms) and MAF2 and 

the corresponding FDR (bottom). FDR plot restricted to the range [0, 1]. Dotted line 

in the FDR plot indicates the peak FDR value. 
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Thus far, I have established that the output of MAF1 remains high for TKEO values 

corresponding to Gabor-like signals and in turn the FDR value produces a local 

maximum. However, the TKEO may produce non-positive outputs for sections of 

input audio that do not correspond to clicks. Depending on the length of MAF1 (and 

MAF2) and the negative strength of the TKEO output, this may sometimes translate 

to non-positive outputs from MAF1 and MAF2. This, in turn, would yield FDR 

values that are not meaningful for our application (e.g., ±∞). In certain 

implementations, FDR computation with such values may even cause undesirable 

exceptions (e.g., divide-by-zero exception). Since we know that a non-positive value 

in either filters’ output does not indicate the presence of a spike in the TKEO output, 

we can safely bypass calculation of FDR for such values. Considering property (iv) 

of the FDR, we also bypass computation of FDR when hMAF1(n) ≯ hMAF2(n). 

 

Considering property (iii) of FDR and the constraints described above (hMAF1(n) > 0; 

hMAF2(n) > 0 and hMAF1(n) > hMAF2(n)) for the computation of meaningful FDR 

values, we can see that the useable range of FDR values is effectively reduced to 

[0, 1]. Further, FDR values that are beyond the threshold value (fraction of FDRpeak) 

indicate the presence of Gaussian-like spikes in the TKEO outputs, in turn indicating 

the presence of Gabor-like signals in the input audio. 

 

2.3.2. Implementation 

 

The width of a Gaussian at half its peak value, commonly known as full width at half 

maximum (FWHM ( )s2ln22= ≈ 2.355σ) provides a better feel for the width of the 

Gaussian pulse in visual observations. I will denote the FWHM and the standard 

deviation of the Gaussian envelope in the target click as FWHMEC and σEC, 

respectively. The standard deviation, σTK, of the Gaussian curve resulting from 

applying the TKEO to Gabor-like signals can be derived using Eq. (2.6) as 

( )2ln42
ECEC

TK
FWHM

==
s

s . (2.11) 
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The value of σTK obtained using estimates of FWHMEC made from visual 

observations of representative clicks’ waveforms can be used as a guide in designing 

the needed filters. We can set the standard deviation of the Gaussian in MAF1 to be 

the same as σTK where it would function as a matched filter. We know that 99.7% of 

the area under a Gaussian curve is contained within a distance of 3σ on either side of 

its mean. Setting the length of the filter to 6σG would account for contributions only 

from the bulk of a spike without consideration for the points in its immediate 

neighbourhood. Extending the filter length would not only weigh the high energy 

regions, but also appropriately penalise low energy regions, thereby enabling only 

those sections to stand out that correspond to actual spikes in the TKEO output. 

However, a very long averaging filter stands the risk of clubbing close lying spikes. 

This causes smearing in the output thereby affecting their detectability with the FDR. 

Figure 2.8 demonstrates the effect N has on FDR and on the subsequent detection. 

Let us consider the faint pulse occurring at ~10.4 ms. As the energy of the pulse is 

not significant compared to background noise, a shorter MAF2 produces a larger 

output resulting in smaller FDR values as compared to the corresponding FDRpeak. 

For the same pulse, the FDR curves corresponding to different N show that larger N 

yields larger FDR. While increasing N is beneficial for pulses that are temporally 

well-separated from other high-energy signals, the resulting larger MAF2 increases 

the risk of accounting for energy from neighbouring signals (including other pulses) 

for pulses that are not temporally well-isolated. For the pulse occurring at ~8 ms, 

notice that its FDR is influenced by the preceding pulse for N = ⎾6σG/Ts⏋ and is 

influenced on both sides for N = ⎾7σG/Ts⏋. Based on such observations made from 

a few dozen instances, I have empirically arrived at a value of N = ⎾5σG/Ts⏋ for 

MAF1 (and in turn, for MAF2). Note here that all σG values are expressed in time 

units and may bear non-integer values and hence rounding N up to the next higher 

integer is necessary. Considering the widths of the different types of echolocation 

clicks commonly encountered, this value of N does not make the full filter length (2N 

+ 1) unwieldy and at the same time enables fair weighting of points both on and in 

the neighbourhood of a spike. Once the values for σG and N are identified as 

described, MAF1 can be realised as 
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where n = - N, …, -3, -2 -1, 0, 1, 2, 3, …, N is the index of the sampled point in the 

filter. MAF2 can be realised as 
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The value of FDRpeak for the combination of MAF1 and MAF2 can be obtained by 

setting n = 0 in Eq. (2.12) and Eq. (2.13) and substituting the resulting values in Eq. 

(2.10). The product of the obtained FDRpeak and a user-controlled value (in the range 

0-1) becomes the detection threshold for the system. A schematic of the proposed 

detection system is presented in Figure 2.9. 

 

 
Figure 2.8. Demonstration of the effect of N on click detection using a segment of 

underwater acoustic recording (sampled at 192 kHz) containing sperm whale clicks. 

The top panel shows the waveform of the recording consisting of three distinct 

pulses. The bottom panel shows the corresponding FDR for different values of N. 

The range of y-axis values is restricted to enable clarity. A detection threshold of 

80% of the resulting FDRpeak is also shown as dashed lines for each value of N. 
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2.4. Performance evaluation 

 

The performance of the system was evaluated using both synthesised data and real 

audio recordings. For the latter, publicly available underwater audio recordings from 

MobySound archive (Heimlich et al., 2011) were used. The recording sets used are 

listed in Table 2.1. Synthetic data were generated using pieces of real underwater 

recordings. A 28s long audio fragment of ambient sea noise free of echolocation 

clicks was handpicked to serve as background noise. Two sets of twenty short audio 

clips containing single echolocation clicks were extracted from underwater sound 

recordings. Clips with sperm whale clicks, representing the CFCW type, constituted 

one set and clips with beaked whale clicks, representing the LCCW type, constituted 

the other. Two hundred instances of clicks were randomly drawn (with repetition) 

from one set and then superimposed at uniformly distributed random points in time 

across the ambient sea noise recording. The amplitude of each superimposed click 

was altered to yield a particular Signal-to-Noise Ratio (SNR) value. The SNR values 

chosen were uniformly distributed within the range from 5 dB to 30 dB. The SNR 

value was defined from the energy of the click being superimposed and the energy of 

background noise, both values determined within the frequency band of interest (3 – 

30 kHz for sperm whales and 20 – 80 kHz for beaked whales) and integrated over the 

 
Figure 2.9. Schematic of the proposed click-detection system. Dashed lines are used 

to indicate that the input could either be pre-recorded audio or live real-time inputs. 
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time interval containing 90% of the click energy. The noise fragment along with the 

superimposed clicks constitutes a synthetic test input. The start and end times of each 

superimposition were recorded for later comparison with detection results. Synthesis 

was repeated 1000 times for each species while generating different insertion points, 

different clip permutations and different SNR values at each repetition. In order to 

emulate the diversity in click characteristics prevalent in real underwater audio, a 

certain level of click dissimilarity was ensured within each clip set based on a “by 

eye” assessment. 

 

The FWHM (and in turn σG) of MAF1 can be tuned as described in the previous 

section to achieve optimal performance in each of the aforementioned tests, i.e. for 

each species. However, I chose to use a single setting for all the tests in order to be 

able to show that the algorithm is capable of performing detection regardless of the 

species producing the clicks. The chosen value of FWHM = 0.40 ms translates to a 

filter length of 329 points for a sampling rate of 192 kHz, and 165 points for a 

sampling rate of 96 kHz. 

 

For comparative performance analysis, tests with synthesised data were repeated 

with two other detectors - PAMGuard (http://www.pamguard.org/) and a TKEO-

Table 2.1. Datasets obtained from MobySound for testing the proposed detector. The 

last column shows the number of clicks that were in the annotations. Note that the 

number of clicks occurring in the recordings may be higher. 

Species Dataset identifier and audio file(s) Sampling 
Rate (Hz) 

Duration 
(s) 

No. of 
clicks 

Rough 
Toothed 
Dolphins 

RoughToothed_Marianas(MISTC)-Annotated 
MISTCS070316-113000.wav 

 
96000 

 
412.7 

 
57 

Risso’s 
Dolphins 

Rissos-SCORE-annot 
Set1-A2-H17-081406-0000-0030-1225-1255loc.wav 

 
96000 

 
1800 

 
172 

Beaked 
Whales 

Mesoplodon_CanaryIsles-Annotated 
md05_294a10590-11850.wav 

 
192000 

 
1260 

 
1037 

Sperm 
Whales 

Sperm whales_Bahamas(AUTEC)-Annotated 
SpermWh_A2_030306-H16_short.wav 

 
96000 

 
870.2 

 
2270 

Spotted 
Dolphins 

SpottedDolphin_Bahamas(AUTEC)-Annotated 
Set3_A4_042705_CH5_H40_A0600-0630.wav 

 
96000 

 
1800 

 
408 

Striped 
Dolphins 

StripedDolphin_Marianas(MISTC)-Annotated 
MISTCS070309-092000.wav 
MISTCS070309-083000.wav 

 
96000 
96000 

 
600 

426.5 

 
40 
31 
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based detector described in Roch et al. (2011a). PAMGuard is a publicly available 

software program that provides automatic detection/classification capabilities. The 

default “Click Detector” module was employed. It is a non-TKEO based detector 

which works by comparing signal levels to estimated background noise levels. The 

detector’s various parameters were set as shown in Table 2.2. The latest version of 

PAMGuard available at the time of this work, viz. v1.13.02 BETA, was used. For 

testing the method of Roch et al. (2011a), a MATLAB based implementation was 

employed. The implementation used is available as a part of the Silbido (Roch et al., 

2011b) package at http://roch.sdsu.edu/software/silbido_JASA2011baseline.zip 

(accessed on Dec 13, 2014). The detector’s parameters were set as shown in Table 

2.3. While some of the parameter values given in Table 2.2 and Table 2.3 were 

chosen based on a priori knowledge, others were arrived at following short trials 

using a small subset of the synthesised test data. While results better than those 

shown here may be possible for the compared methods, determining the optimal 

combination of parameter values is a non-trivial task and is beyond the scope of this 

study. 

 

 

Table 2.2. Parameter settings used to configure the click detector module in 

PAMGuard for tests with synthesised data. 

Parameter 
Sperm 
Whale 

Beaked 
Whale 

Pre-Filter High Pass: 
  200 Hz 

High Pass: 
  10 kHz 

Trigger Filter Band Pass: 
  3-30 kHz 

Band Pass: 
  20-80 kHz 

Long Filter 0.00001 0.00001 
Long Filter 2 0.000001 0.000001 
Short Filter 0.1 0.1 
Min. Click 
Separation 

100 samples 100 samples 

Max. Click 
Length 

1024 samples 1024 samples 

Pre Sample 40 samples 40 samples 
Post Sample 0 samples 0 samples 
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Tests with synthetic data were repeated for different sensitivity settings for all three 

methods. For the proposed detector, the threshold settings were varied from 0.4 to 1. 

In PAMGuard, the Trigger Threshold parameter of the click detector module was 

varied from 7 dB to 14 dB. The method described in Roch et al. (2011a) uses 

different thresholds in the two stages of the detection algorithm. The stage 1 

threshold parameter was varied from 2 dB to 16 dB with the stage 2 threshold set at 

5, 10, 25 and 50. Testing was repeated for the proposed detector, with pre-filtered 

inputs, where the synthesised data were bandpass filtered (using a Butterworth filter; 

passbands of 3 – 30 kHz for sperm whales and 20 – 80 kHz for beaked whales) 

before being fed to the detector. 

 

With all three methods reporting detections as intervals (start and end times), a click 

present in input data (real or synthesised) is considered ‘detected’ if any of the 

following are true – 

• The known/recorded interval of the click in the input audio completely 

envelops the intervals of any reported detections. 

• A reported detection’s interval completely envelops the known/recorded 

interval of the click. 

• The temporal overlap with any reported detection is at least 60% of the 

known/recorded duration of the click. 

Table 2.3. Parameter settings used to configure the click detector of Roch et al. 

(2011a). 

Parameter 
Sperm 
Whale 

Beaked 
Whale 

Ranges 3 – 30 kHz 20 – 80 kHz 
MinClickSaturation 1.5 kHz 10 kHz 
MaxClickSaturation 30 kHz 60 kHz 
MeanAve_s 3 s 3 s 
TransitionBand 0.2 – 3 kHz 3 – 20 kHz 
FrameLength_s 0.01 s 0.01 s 
ClickPad_s 0.0075 s 0.0075 s 
MinClickSep_s 0.5 s 0.5 s 
ClipThreshold (disabled) (disabled) 
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In the case of synthesised data, a significant portion of each click occurs around the 

midpoint of the containing clip. Therefore, 60% overlap ensures that the click is 

appropriately accounted for by any partially overlapping detection. Reported 

detections that enable any of the above three conditions to be satisfied are considered 

to be ‘true detections’. With these definitions of ‘detected’ clicks and ‘true 

detections’, performance metric ‘recall’ can be defined as the ratio of the number of 

‘detected’ clicks to the number of clicks present in the test inputs, and the metric 

‘precision’ can be defined as the ratio of the number of ‘true detections’ to the 

number of reported detections. Figure 2.10 shows the precision-recall (PR) trade-off 

characteristics for the three detectors. The various curves in the middle row plots 

show the PR characteristics for the different stage 2 threshold settings considered. 

Threshold settings that produced optimal PR trade-off values were identified from 

Figure 2.10 for the three detectors and the variation of the detectors’ recall as a 

function of clicks’ SNR were assessed at these thresholds. The corresponding results 

 
Figure 2.10. Detector performance on synthesised data – Precision-Recall trade-off 

curves. 
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are shown in Figure 2.11. Figure 2.12 summarises the detector’s performance in 

capturing the pre-annotated clicks of different species in real underwater audio 

recordings. 

 

 

 
Figure 2.11. Detector performance on synthesised data – Recall vs. SNR. Results for 

the proposed detector are shown for tests performed with bandpass-filtered inputs. 

Results for the detector of Roch et al. (2011a) are shown for tests performed with a 

stage 2 threshold of 10 and the plot legend indicates the stage 1 threshold. 
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For the proposed method, comparing the PR curves for filtered and unfiltered inputs, 

we can see that improvements in performance can be achieved with appropriate 

filtering of the input signals. The apparent performance inconsistency for different 

species, as seen in Figure 2.12, may be attributed to the use of a fixed width MAF1 

across all tests. With an appropriate tuning of FWHM (or σG) in MAF1, more 

consistent results may be achieved in the case of tests with real audio and further 

performance improvements may be possible in the case of tests with synthesised 

data. However, this is a subject for further investigation. 

 

The real-time factor of a detection/classification system is an indicator of its 

speed/throughput and is defined as the ratio of the time taken by the system for 

processing a given input to the duration of the input. Smaller the real-time factor, 

faster is the system. When tested on a desktop computer with an Intel® i7 CPU and 

16 GB of RAM (running Microsoft® Windows 7), a MATLAB implementation of 

the proposed detector exhibited an average (over different thresholds) real-time 

factor of 0.019 for 192 kHz audio and 0.007 for 96 kHz audio. For the optimal 

threshold setting identified from Figure 2.10, the real-time factor was 0.019 as well. 

When run on the same computer, PAMGuard processed the synthesised data with an 

average real-time factor of 0.058 at the threshold setting of 10 dB. Meaningful real-

time factors could not be determined for the implementation of the method of Roch 

et al. (2011a) owing to the serialisation and the subsequent reloading of intermediate 

results across stages. 

 
Figure 2.12. Detector recall (as a function of threshold) on real underwater 

recordings containing echolocation clicks of different species. 
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2.5. Discussion 

 

An automatic detector of Gabor-like signals was suggested and tested in this study. 

As shown with the mathematical formulation, the carrier frequency component of a 

Gabor-like signal virtually disappears in its TKEO output when the carrier frequency 

is either constant or varying nearly linearly with time. An additional benefit of this 

property is that it makes an implementation of the detector immune to species’ 

calling behaviour variations that would affect the clicks’ frequency content (Au, 

1993, p. 121). This was validated by the performance of the detector on a variety of 

recorded clicks with no changes in detector settings. The robustness of the system 

with varying SNRs was demonstrated in the tests with synthesised data. The 

evaluation with the audio procured from MobySound also showed that the detector 

worked well with different recording scenarios. The audio recordings were obtained 

from different geographical locations while the data collection in each set was 

performed with different recording equipment configurations. The detector exhibited 

consistency in performance across all recordings used in the tests. In the tests using 

synthesised data, all the three detectors compared in this analysis exhibited good PR 

characteristics (satisfactorily high area under the PR curves in Figure 2.10) and, the 

proposed detector showed improved performance with pre-filtered data. From Figure 

2.11 we can see that, at lower SNRs, the proposed detector offered higher recall than 

PAMGuard for the beaked whale set and higher recall than the method of Roch et al., 

(2011a) for the sperm whale set. The proposed detector also offers significant 

throughput improvements over PAMGuard – improvements of 67% and 88% for 

audio sampled at 192 kHz and 96 kHz, respectively. Consequently, the proposed 

detector can also be used for targeted species’ click detection with significant gain in 

processing speed. Coupled with the simplicity in detector settings, the indicated 

performance improvements make the proposed detector an attractive choice for 

various applications. 

 

The angle between the direction of a click’s direct propagation path to a receiver and 

the orientation of the individual producing the click has been shown (e.g.: Au, 1993; 

Møhl et al., 2003; Au and Würsig, 2004; Madsen et al., 2004; Au et al., 2012) to 

have an impact on the waveform of the recorded clicks. While it can be argued that 
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the theoretical signals considered may closely represent on-axis (having little or no 

relative angles) recorded clicks (Johnson et al., 2006), it can be safely assumed that a 

majority of the clicks captured in open water recordings were off-axis (having high 

relative angles). Together, the theoretical proof and the experimental validation show 

that the detector performs well regardless of the calling species’ orientation with 

respect to the recording equipment. A formal analysis of this sub-topic is a subject 

for further investigation. 

 

The high processing speed and its simple control-flow make the proposed system 

feasible for pipelined hardware implementations. The few basic mathematical and 

logical operations that make up the system would take little processing time on 

modern hardware. Although, there is already noticeable difference in the throughput 

as compared to PAMGuard (see real-time factors above), an implementation of the 

proposed system in C/C++ or Java has potential in yielding much higher speeds. 

Also, the response latency of the system is very small involving a one sample delay 

caused by the TKEO computation followed by a filter group delay of ⌈5σG/Ts⌉+1, 

resulting in (N + 2) samples. Assuming that an implementation performs the two 

averaging/filtering operations in a parallel fashion, for the settings considered in the 

above tests, it can be shown that the maximum delay in reporting detections would 

be within ~0.8 ms of the occurrence of the clicks. 
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Chapter 3.  

Tonal Detection 

 

Among various types of sounds observed underwater, narrowband acoustic signals 

occur prominently and are commonly used to characterise the source producing it. 

Disparate systems have been developed for the detection or recognition of several 

forms of narrowband signals produced by specific sources. In this chapter I present a 

generic system, based on post-processing of spectrograms, for the automatic 

extraction of time-frequency contours of narrowband signals produced by any source 

– biological, anthropogenic or geophysical. A two-phase approach is proposed where 

the first phase is based on an image-processing technique for detecting intensity 

ridges and the second phase is a Bayesian filtering approach for tracing the trajectory 

of detected ridge apices. The rationale for the various conditionals and choice of 

system parameters are geared to result in a generic (non-targeted) system and the 

theoretical motivation for the same are detailed. The performance of the system is 

tested with real underwater audio containing odontocete whistles and is compared to 

one of the existing methods. 

 

3.1. Introduction 

 

Numerous approaches are available for the automatic detection of specific types of 

narrowband (tonal) sounds in underwater audio recordings. Examples of underwater 

tonal signals include odontocete whistles, mysticete vocalisations, vessel noise and 

quasi-tonal low-frequency sounds from ice events, such as harmonic tremors from 

icebergs (Li and Gavrilov, 2008; Talandier et al., 2006). Figure 3.1 shows examples 

of tonal signals from underwater acoustic recordings. The spectral and temporal 

characteristics of tonal signals in underwater soundscape vary widely. In the time 

domain, tonal signals may vary from a few milliseconds to minutes or hours. Based 

on spectral content, tonal signals may occur with constant frequency or varying 

frequencies over time. Commonly, tonal signals occur with one or more harmonics. 

Received tonal signals often have amplitude variations which may be the result of 
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change in source behaviour and orientation, acoustic interferences, properties of the 

local bathymetry, etc. The range of frequencies that a single tonal signal spans varies 

for different sources. Characteristics of tonal signals produced by marine mammals 

varies with species and, for some species (e.g. bottlenose dolphins), varies from one 

individual to another. Some species, such as humpback whales (Megaptera 

novaeangliae) and blue whales, form songs by repeating patterns of tonal call units 

and both, the songs and independent units, may change over time.  A majority of the 

available recognition approaches are targeted at identifying one or more specific 

 
Figure 3.1. Spectrograms of underwater acoustic recordings showing (a) a 

component of a humpback whale (Megaptera novaeangliae) song, (b) rapidly 

downsweeping tonals from an unidentified source and (c) long-duration sounds from 

a passing vessel. The diffuse regions of higher energies in (c), besides the sharp tonal 

components, are a result of interference effects (striations) changing with time due to 

ship’s motion relative to the hydrophone and local bathymetry. 



45 

 

types of tonal sounds and some of these approaches generally excel in specific 

recording scenarios. A recording scenario involves the specific marine environment, 

its ambient soundscape, the recording and mooring equipment, etc. – all of which can 

affect the performance of a signal detector. Some of the earlier attempts in the 

automatic detection of targeted underwater tonal sounds involved the use of simple 

matched filtering methods for the detection of blue whale calls (Stafford et al., 1998; 

Stafford et al., 1994). Spectrogram correlation has been effectively and widely used 

for many mysticete calls (Mellinger and Clark, 1997) including bowhead whales 

(Balaena mysticetus) (Mellinger and Clark, 2000), right whales (Eubalaena) 

(Munger et al., 2005; Urazghildiiev et al., 2009) and sei whales (Balaenoptera 

borealis) (Baumgartner et al., 2008). Li (2010) described a method for the detection 

of remote Antarctic ice breakup events based on multivariate classification of 

frequency dispersed signals from such events. Ogden et al. (2011) used 

autocorrelation in conjunction with comb-like filters and discrete Kalman filtering 

(Kalman, 1960) for the extraction of harmonic components from the sounds of small 

boats. Sorensen et al. (2010) used wavelet decomposition coupled with filter-banks 

for initial detection followed by comparative correlation with known reference 

signals for the subsequent extraction of harmonically related components from 

sounds of small vessels. 

 

My work is an attempt to realise a generalised system for the automatic extraction of 

various forms of tonal signals present in underwater acoustic data procured under 

different recording scenarios. The systems proposed by Baumgartner et al. (2011) 

and Roch et al. (2011b) are attempts towards achieving a generalised system and are 

shown to perform well with the extraction of baleen whale tonal calls and 

odontocetes whistles, respectively. Mellinger et al. (2011) also proposed a 

generalised tonal signal detector and showed the method to work well with minke 

whale (Balaenoptera acutorostrata) “boing” sounds (Thompson and Friedl, 1982). A 

majority of signal pre-conditioning operations (e.g. spectral means normalisation) 

normally employed in the existing systems are targeted at enhancing the detectability 

of the tonal signals of interest by suppressing unwanted and interfering signals. 

Contrary to the considerations made in the existing methods, in this study only non-

tonal signals (e.g. short pulsed signals and long-lasting broadband sounds) are 
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considered as “noise.” Since the goal in the current approach is simply to detect and 

trace as many tonal signals as there are in the inputs without regard to the sources 

producing the underlying sounds, application-specific de-noising of the inputs will 

not be considered within the algorithm. As will be shown later, one of the 

components of the proposed system is inherently capable of ignoring a majority of 

non-tonal signals. The reader must note that the proposed system performs detection 

alone. Subsequent classification of the detected tonal signals may be task-specific 

and is beyond the scope of this study. 

 

Spectrograms based on Fourier analysis provide visual representations of the 

frequency content of audio signals, enabling quick and easy assimilation by human 

observers in both onsite and offsite monitoring applications. For convenience in 

dealing with the wide range of spectral power levels P, they are commonly expressed 

in a logarithmic (dB) scale as 10log10(P/Po) where Po is a reference level. Several 

alternative spectro-temporal representations are available for the analysis of acoustic 

signals. Examples include chirplet analysis (Mann and Haykin, 1991), cepstral 

analysis (Oppenheim and Schafer, 1975) and Hilbert analysis (Huang et al., 1998). 

Some recognition techniques based on other spectral analysis methods have been 

shown to yield better performance over using Fourier analysis in certain targeted 

automatic passive acoustic monitoring (PAM) applications (e.g. Yang et al., 2002; 

Ioana et al., 2006). However, given the availability of highly efficient 

implementations of fast Fourier transform (FFT) and the widespread use of 

spectrograms as a means of human-aided analysis, spectrograms are still a very 

attractive choice as a tool in generalised automatic analysis of underwater audio 

recordings. Some of the existing automatic tonal detection approaches based on post-

processing of spectrograms involve the use of image-processing operations such as 

image-thresholding and edge-detection (e.g. Datta and Sturtivant, 2002; Gillespie, 

2004; Ou et al., 2013; Thode et al., 2012). Esfahanian et al. (2014) employed a 

family of 32 two-dimensional (2D) Gabor kernels as spatial filters in their approach 

targeted at dolphin whistles. The approaches described in Halkias and Ellis, 2006; 

Madhusudhana et al., 2008; Roch et al., 2011b and Mellinger et al., 2011 tackle the 

contour extraction problem in two phases where prominent spectral peaks in 

individual frames (spectra) of a spectrogram are identified in the first phase 
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following which closely lying peaks (in the frequency axis) from neighbouring 

frames are “connected” to eventually trace the underlying tonal signals’ contours. 

The specifics of the peak-picking and the subsequent contour-tracing sub-processes 

vary in those approaches. Carevic (2013) proposed a system based on the use of 

Bayesian modelling and particle filter. However, the efficacy of the system on real 

audio signals remains yet unassessed. The method described in this chapter is closely 

related to the approach of Kershenbaum and Roch (2013) in treating spectrogram 

regions corresponding to tonal signals as intensity ridges. In the approaches of 

Kershenbaum and Roch (2013) and this study, emphasis lies on utilising additional 

information which is inherently available in spectrograms within the immediate 

spectro-temporal neighbourhood of putative tonal signals. The dissimilarities in the 

two approaches will be highlighted in the following sections. 

 

Ridge-detection is a common technique widely employed in image-processing and 

computer vision operations (Szeliski, 2010) such as automatic feature selection and 

image segmentation. In a topographical sense, a ridge is a narrow elongated region of 

high elevation between two regions of relatively lower elevations. Spectrograms are 

analogous to 2D greyscale images where spectral intensities at time-frequency (TF) 

points in the spectrogram correspond to image’s pixel intensity. Tonal signals result 

in narrow ridge-like regions of relatively higher intensities in a spectrogram. Hence, 

it can be argued that a method based on ridge-detection is well suited for the purpose 

of extraction of TF contour tracks in spectrograms. 

 

The following section describes the proposed system and its various components. 

The subsequent sections present tests of the system using real underwater data and 

provide a discussion on the system’s performance. 

 

3.2. Algorithm 

 

The proposed approach employs a modified form of the numerical method developed 

by Lindeberg (1998a) for the automatic extraction of ridges in images. The suggested 

modifications are geared specifically to handle spectrograms. Lindeberg (1998a) has 
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also proposed a method based on a nearest-neighbour approach for tracing the 

contours formed by ridge apices. Lindeberg’s method assumes that putative ridge-

like structures are fully contained within an input image. This makes it infeasible for 

on-site PAM applications where spectrogram frames are continuously generated 

from input audio. Also, disambiguation of intersecting TF contours requires 

additional processing and the problem complexity increases when several contours 

are involved. Kershenbaum and Roch (2013) also employ a similar search scheme 

within a 3 × 3 pixel neighbourhood. In contrast to these, a tracking approach based 

on Bayesian filtering is used for “connecting” detected ridge apices across successive 

frames of a spectrogram. The benefits of this hybrid scheme will become evident in 

the rest of the chapter. 

 

3.2.1. Input preparation 

 

Spectrograms present a simple means to visually distinguish tonal signals amongst 

other sounds. This nature of spectrograms could be easily exploited for the purposes 

of automatic extraction of tonal signals using image-processing based methods. The 

choice of parameters for spectrogram computation is application specific and is 

beyond the scope of this chapter. Mellinger et al. (2011) proposed an iterative 

‘Parameter Optimisation Procedure’ for choosing an optimal combination of all 

algorithm parameters which also include spectrogram parameters. Such an elaborate 

approach may be exhaustive and often unnecessary. As indicated in Kershenbaum 

and Roch, 2013, for successful application of image-processing based methods, the 

time resolution ∆t and frequency resolution ∆f resulting from the chosen spectrogram 

parameters must allow for spectral and temporal variations in tonal signals to be 

discernible in a visual sense. On the other hand, choosing fine-grained time or 

frequency resolutions increases the overall processing time and may not always 

result in improved detection performance. On the choice of analysis windows, 

Hamming and Hanning windows, being well suited for the spectral analysis of 

continuous (non-transient) sounds (Svend and Herlufsen, 1987), are commonly used 

in the measurement of random noises. With a significantly higher side-lobe falloff 

rate, the Hanning window offers better separation for weak signals in the spectral 

vicinity of stronger signals (Harris, 1978). Given the vast variety of sounds possible 
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in underwater recordings, this benefit of the Hanning window outweighs the 

marginal loss in frequency resolution as compared to the Hamming window and, 

hence, could be a favourable choice. The uncertainty principle resulting in a trade-off 

between time and frequency resolutions dictates that a single set of spectrogram 

parameters cannot yield similar distinguishing capability across wide ranges in the 

frequency domain. Spectrogram parameters can be chosen to yield a desired level of 

distinguishability in the range of frequencies that are of interest to a specific 

application and the input to the proposed system could be a frequency band-limited 

portion of the spectrogram. The proposed system is generic in its functionality or 

control-flow which would remain the same for the processing of any arbitrary band-

limited portion of a spectrogram. 

 

3.2.2. Detection of ridge points 

 

The spectrogram of an acoustic signal is analogous to a surface where the elevation 

at any point on the surface corresponds to spectral intensity at the corresponding TF 

point. Denoting the first and second derivatives of spectral intensity along the T- and 

F-axes as ∂T, ∂F, ∂TT, ∂FF and ∂TF, eigenvalues of the Hessian matrix of second 

derivatives at each TF point are given as 
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By definition, the two eigenvectors determined at each TF point are mutually 

orthogonal. Local directional derivatives can be defined at each TF point with the 

introduction of a local (p, q)- system that is aligned with the corresponding 

eigenvectors. For simplicity, the p- direction βp shall be considered to correspond to 

the direction of the eigenvector with larger absolute magnitude, i.e. qp λλ > . As 
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such, for TF points that correspond to a ridge-top, βq aligns with the direction of the 

contour formed by the ridge-top. Local directional derivatives of intensity in the 

(p, q)- system can be expressed in terms of the surface derivatives as 
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The intensity is locally maximal in the direction of the dominant eigenvector when 
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Note that ∂pp (and ∂qq) is equivalent to λp (and λq). An additional constraint 

qqpp ∂<<∂  (3.5) 

would hold only for narrow elongated features such as ridges. As such, the 

conditions of Eq. (3.4) and Eq. (3.5) suffice in finding points corresponding to tonal 

signals in a spectrogram. The notion of intensity ridges is demonstrated in Figure 3.2 

using a section of a spectrogram of real underwater audio containing bottlenose 

dolphin (Tursiops truncatus) echolocation clicks and whistles. Some detection 

outcomes corresponding to the ridges in the spectrogram are also shown. 



51 

 

 

Performing spatial smoothing of the spectrogram prior to estimation of surface 

derivatives improves ridge detection by suppressing high-frequency noises on the 

intensity surface. Spatial smoothing of an intensity surface χ using a 2D Gaussian 

kernel 

 
Figure 3.2. Approximated intensity profile curves (middle panel) and some ridge-

detection results (bottom panel) corresponding to a sample spectrogram (top panel). 

In the middle panel, differences in intensity magnitudes are shown using different 

greyscale colours for different levels - darker curves represent higher intensities. In 

the bottom panel, TF points where Eqs. (3.4) and (3.5) hold are indicated with black 

diamond markers. The grey lines emerging out of such points indicate the estimated 

angle βq that the non-dominant eigenvector makes with the horizontal axis. 
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is defined by the convolution 

)();();( ⋅∗⋅=⋅ χss GG gL , (3.7) 

where σG is the root mean square (RMS) width of the Gaussian kernel and L is the 

scale-space representation of the surface at scale σG. Spatial smoothing is applied to 

a linear-scale spectrogram rather than a spectrogram in a logarithmic (decibel) scale 

since the 2D Gaussian kernels are more akin to the ridge-like features in a linear 

scale spectrogram. The similarity of ridge-like features in a linear scale spectrogram 

to Gaussian kernels is shown using a spectrum (a spectrogram frame) as an analogy 

in Figure 3.3. This contrasts from the approach of Kershenbaum and Roch (2013). 

 
Figure 3.3. Discrete power spectra of a pure sinusoidal signal in logarithmic scale 

(top panel) and linear scale (middle panel) showing differences in their similarities to 

1-dimensional Gaussian kernels (bottom panel). 
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Also, a linear-scale spectrogram offers better separation of closely-lying ridges. For 

notational convenience, derivatives ∂u and ∂uv (where u and v are one of T, F, p or 

q) obtained post spatial smoothing shall be represented as Lu and Luv, respectively. 

Ridge-defining Eqs. (3.4) and (3.5) can now be expressed in terms of scale-space 

representation as 
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and 

qqpp LL << , (3.9) 

respectively. The quantity |Lpp| is indicative of the sharpness of a ridge and hence can 

be used as a measure of ridge strength. Alternative measures of ridge strength that 

are more appropriate for spectrograms are presented later. Spectral leakage in FFT 

computation can dilate the acuteness of intensity ridges corresponding to tonal 

signals. The dilation becomes more prominent for tonal signals having moderate-to-

high absolute rates of frequency modulation (FM), i.e. when | βq | > π/4. Spatial 

smoothing using a single kernel may not yield optimal results when applied to 

spectrograms containing intensity ridges of different widths. Spatial smoothing at 

multiple scales (using kernels with different σG) allows for narrow and coarse ridge-

like features in spectrograms to be detected at appropriate scales. For effective spatial 

smoothing, the width of the kernel must be comparable to the width of the ridge 

along its dominant curvature. A convenient way to compare ridge and kernel widths 

is to consider the spectrum’s half-power bandwidth (-3dB bandwidth) and the 

smoothing kernel’s “full width at half-maximum” (FWHM). The FWHM of a 

Gaussian kernel equals Gs)2log(22  ≈ 2.355σG. The half-power bandwidth for 

some of the commonly used spectral analysis windows is smaller than 2.355 

frequency bins (e.g. 1.54 bins for a Hanning window and 1.30 bins for a Hamming 

window) (Harris, 1978). Therefore, a smoothing kernel with σG ≥ (2.355-1 × half-

power bandwidth) becomes a natural choice. Lindeberg (1998a) proposed a way of 

choosing multiple scales such as to enable meaningful comparisons of ridge strengths 
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determined across different scales. Using the notion of a γ-parameterised normalised 

derivative (Lindeberg, 1998b) 
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Lindeberg (1998a) expressed the γ-normalised second directional derivatives as 
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and showed that at any scale, the scale-space representation approximates the width 

of an underlying ridge when γ = ¾. Having better correspondence to true ridge 

widths, |Lpp,γ-norm| offers a better alternative over |Lpp| for making ridge strength 

comparisons across scales. Selection of ridge points detected in different scale-spaces 

is based on their strengths forming local maxima across successive scale-spaces, i.e. 
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Empirical analysis with a few spectrograms containing tonal signals showed that 

spatial smoothing at two scales, σG = 1 and σG = 2, sufficed in successfully 

extracting the corresponding ridges. 

 

Both |Lpp| and |Lpp,γ-norm| values are sensitive to the height of a ridge as well as the 

signal-to-noise ratio (SNR) resulting from the background levels and surrounding 

noises in the ridge’s TF neighbourhood. Comparing |Lpp| or |Lpp,γ-norm| against fixed 

thresholds would manifest a bias to strong signals. To overcome this, the γ-

normalised second directional derivatives are further normalised with the height of 

the intensity ridge in the corresponding scale space, i.e. 
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This allows us to express ridge strength measurements as relative values, thereby 

making comparisons against predefined thresholds more convenient. In the ridge-

tracing procedure described in Section 3.2.3, use of |Lpp,scale-norm| as the preferred 

ridge strength measure better aids the tracing of ridges corresponding to amplitude 

modulated tonal signals and ridges spanning time intervals with varying noise levels. 

 

The utilization of the ridge detection criteria described above is demonstrated here 

using synthetic tonal signals. Three sinusoidal signals having frequencies of 6 kHz, 

12 kHz and 18 kHz and peak amplitudes of 1.6, 0.5 and 0.27, respectively, were 

superimposed to produce a composite signal. Gaussian noise with an RMS amplitude 

of 0.7 was added to the composite signal. This resulted in average signal-to-noise 

ratio (SNR) values of 20 dB, 10 dB and 5 dB for the three tonal signals. 

Spectrograms were calculated from both the clean composite signal and its noise-

added variant following which spatial smoothing was applied at scales 

σG = 1 and σG = 2. The resulting |Lpp,γ-norm| and |Lpp,scale-norm| values are shown in 

Figure 3.4. The values of |Lpp,γ-norm| are higher for scale σG = 1 than scale σG = 2 

indicating the suitability of smaller scale for narrow ridge-like structures as per Eq. 

(3.12). High sensitivity of |Lpp,γ-norm| to signal intensity and SNR  is evident at both 

scales. In the case of non-noisy signals, the similarities in the peak |Lpp,scale-norm| 

values indicate that the additional normalisation eliminates sensitivity to signal 

intensity. In the case of added noise, drops of 10 dB and 15 dB in SNR correspond to 

lowering of |Lpp,γ-norm| by 90% and 97%, respectively. In contrast, the respective 

drops observed in |Lpp,scale-norm| were 13% and 34% for scale σG = 1, and 22% and 

46% for scale σG = 2. Closely lying unrelated local spectral peaks in TF space 

sometimes produce ridge-like structures in scale-space representations and result in 

moderate |Lpp,scale-norm| values at non-ridge TF points. Examples of this can be seen in 

Figure 3.4 for the noise-added case. Detection of such spectral structures, which 

would otherwise result in false-positives, can be avoided by ignoring TF points 

having |Lpp,scale-norm| values smaller than a limit. In the noise-added variant, a limit of 

0.25 allowed for the acceptance of all ridge points corresponding to the high and mid 

intensity signals. Over all frames of the spectrogram, the mid intensity signal’s 

effective SNR in each frame varied in the range 4 – 15 dB. In the case of the weakest 

signal, its effective per-frame SNR ranged from -12 dB to 13 dB and its |Lpp,scale-norm| 
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values exceeded 0.25 in nearly 60% of all spectrogram frames. Since the |Lpp,scale-norm| 

values are nearly independent of signal SNR and intensity, it can be argued that the 

check 

25.0, >−normscaleppL  (3.14) 

would have similar effect for other well-generated spectrograms as well. 

 
Figure 3.4. Comparison of normalised ridge strength measures |Lpp,γ-norm| and |Lpp,scale-

norm| shown for synthesised data (see text for details). The first column shows 

spectrograms (parameters: 2.6 ms Hanning window, 1.3 ms overlap) produced using 

clean (top) and noisy (bottom) signals. The corresponding |Lpp,γ-norm| and |Lpp,scale-norm| 

are shown in the second and fourth columns, respectively, for the considered scale-

spaces. For TF points that satisfy Eq. (3.8) (i.e. ridge points), |Lpp,γ-norm| and |Lpp,scale-

norm| values are averaged over time and the averages in each frequency bin are shown 

with black lines in the third and fifth columns, respectively. The averages 

corresponding to the three tonal signals are highlighted with diamond markers. Time 

averaged scale-space values L at each frequency bin are shown as grey lines in the 

third column (clipped for overall clarity). In the case of added noise, the full range of 

|Lpp,scale-norm| values corresponding to all ridge points are shown with grey arrows. 
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For discrete systems, the first of the conditions in Eq. (3.8) is realised by determining 

zero-crossings in Lp between neighbouring TF points. The condition in Eq. (3.9) is 

realised by checking that the difference |Lpp,scale-norm – Lqq,scale-norm| is not small. As 

seen in Figure 3.4, even for free-of-noise tonal signals, |Lpp,scale-norm| remains less than 

1. In comparison to possible range of values that |Lpp,scale-norm| could have, i.e. 

0.25 – 1, a difference of 0.1 is a significant quantity. As such, the check in Eq. (3.9) 

is achieved as 

( ) 22
,, 1.0>− −− normscaleqqnormscalepp LL . (3.15) 

Note that the left-hand side quantities in Eqs. (3.14) and (3.15) are analogous to the 

ridge strength measures Mγ-normL and Aγ-normL, respectively, as defined in Lindeberg, 

1998a. Sometimes, it may be appropriate for certain analyses to ignore weak tonal 

signals having energy lower than some pre-defined value. Identified ridge points are 

discarded by the algorithm where the smoothed spectral intensities L at the 

corresponding TF points are lower than min_intensity 1. 

 

At this point, I would like to highlight three characteristics of the ridge detection 

component. First, the form of spatial smoothing employed and the subsequent 

computation of intensity derivatives ensures that only local information from 

immediate spectral and temporal vicinity is factored into decision making. Such an 

approach is well suited for acoustically dynamic environments. Second, Eq. (3.9) 

ensures that TF points corresponding to non-ridge-like structures, such as blobs, are 

rejected although they may correspond to local maxima in spectral intensity. Third, 

ridge points for which |βq| approaches 90° correspond to vertical ridges in a 

spectrogram that are likely caused by short broadband signals and hence can be 

ignored. 

 

The ridge strength measure |Lpp,scale-norm| and the orientation of the ridge-top βq are 

included in the ridge-detector outputs for each detected ridge point. In computing the 

angle βq that Lqq makes with the time axis, restricting the arctangent calculations to 

just the first and fourth quadrants ensures that βq is always in the direction of 

                                                
1 User-settable algorithm parameters will be denoted using monospaced font. 
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increasing time. Note that in the determination of angles βp and βq, unit values 

considered along the T- and F-axes are the input spectrogram’s time and frequency 

resolutions, respectively. Appropriate scaling is necessary wherever the angles are 

used. For convenience with the use of subscripts through the remainder of the 

chapter, the quantity |Lpp,scale-norm| and the angle βq shall be represented with the 

symbols τ and ψ, respectively. 

 

3.2.3. Tracing ridge contours 

 

Tracing of a TF contour along increasing time in a spectrogram is analogous to 

tracing the path of a point object moving in a 2D space with zero acceleration along 

one of the dimensions. Bayesian filtering approaches are a popular choice in solving 

2D and 3D object tracking problems. Correct modelling of the underlying process 

driving the object’s motion enables successful tracking of the object. The process 

models proposed in Mallawaarachchi, 2008; Roch et al., 2011b and Kershenbaum 

and Roch, 2013 for TF contour tracing or smoothing only utilise a TF contour’s peak 

frequency and its derivatives. The spectral power (ρ) of narrowband signals is 

generally overlooked in TF contour tracing operations; however, its consideration 

may aid with the disambiguation of intersecting contours and also help with the 

separation of closely spaced contours. The ridge detection phase (Section 3.2.2) 

makes available additional local information at each ridge point – ridge strength τ 

and orientation ψ. The frequency f at a detected ridge point will be referred to as peak 

frequency in this section. Including f, ρ, τ and ψ together in the list of contour 

features enable a more complete stochastic model for the purposes of predictive 

contour tracing. 

 

Changes in the peak frequency f of a narrowband signal across successive frames in a 

spectrogram can be formally expressed as 

tfff iii ∆+=+


1 , (3.16) 

where fi and if  are the underlying signal’s peak frequency and FM rate respectively, 

at the ith frame. The underlying process driving the frequency modulation of 
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narrowband signals is dependent on the source and cannot be modelled. Although it 

can be measured post hoc, prediction of if  with acceptable levels of accuracy is 

problematic. Since ψ provides an indication of the orientation of a TF contour’s ridge 

at each frame, it can be considered as the contour’s “steering” factor at the 

corresponding frame. Therefore, if  can be determined at each frame as 

t
ff ii ∆

∆
= )tan(ψ . (3.17) 

This is contrary to the process model used in Mallawaarachchi, 2008, where if  is 

predicted at each step from ongoing state updates in the Kalman filtering process. 

Note that the estimation of ψ in Section 3.2.2 considered unit lengths along time and 

frequency axes to be ∆t and ∆f, respectively. Hence the trigonometric tangent value 

in Eq. (3.17) is scaled with the quantity (∆f / ∆t). The measured spectral power and 

estimates of the ridge strength of narrowband signals can be affected by several 

factors such as amplitude modulation at the source, multipath sound propagation in 

the underwater sound channel resulting in constructive and destructive interferences, 

presence of overlapping sounds and varying background noise levels. As such, ρ and 

τ of a TF contour can vary considerably over its duration. However, I shall treat them 

as temporally invariant quantities – 

ii

ii

ττ
ρρ

=
=

+

+

1

1 ; (3.18) 

and allow for the intra-contour variations in their magnitudes to be addressed using 

variance estimates obtained a priori using training data, which will be discussed later 

in this section. 

Given that the observable quantities f, ρ and τ can be predicted as per Eqs. (3.16) and 

(3.18), the state of a contour at frame i shall be defined using these quantities as 2 

2 Labelling of vectors and matrices in the Kalman filtering steps follows common convention. Vectors 

shall be represented using lowercase boldface letters and matrices shall be represented using capital 

letters. 
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A linear time invariant (LTI) stochastic state-space model for the prediction of a 

contour’s new state (at the next frame) can be defined as 

,  
000
000
00

ˆ

3

1















∆
=

=
+=+

t
B

IA
BA iii uxx

(3.20) 

where ^ indicates that the vector is a prediction, A is the state transition matrix, B is 

the control matrix, I3 is a 3×3 identity matrix and ui = [ ]Tif 00  is the TF 

contour’s control vector at the ith frame which drives its instantaneous frequency 

changes. 

Kalman filtering methods include two types of errors or noises in modelling a 

problem – process noise and measurement noise. These will be briefly explained here 

as they apply to the problem of TF contour tracing. The estimation of f, ρ, τ and ψ 

suffers from noises from multiple stages of signal processing. Since the tracing 

operation only considers data available from a spectrogram, the noises in f and ρ 

estimations caused by PAM hardware and the spectrogram generation process itself 

(artefacts and spectral leakage) can be conveniently ignored. An undesired effect of 

the spatial smoothing performed in Section 3.2.2 is the apparent shifting of a TF 

contour’s ridge points towards high energy regions in the immediate TF vicinity of 

the underlying tonal signal. As a result, the estimation of f, ρ, τ and ψ as described in 

Section 3.2.2 are bound to have errors. These errors constitute the tracing process’ 

“measurement” noise. In contrast to measurement noise, process noise quantifies the 

differences in a contour’s observed and predicted states. With the process model 

defined in Eq. (3.20), an assumption that the estimates of ψ are free of measurement 

noise allows us to treat the underlying estimation errors as process errors in f. As 

such, characteristics of process errors in f, ρ and τ can be quantified using hand-

60 
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traced contours from training data as the process error covariance Q (see Appendix 

A.1). Determining the measurement error covariance R is, however, not a 

straightforward process. As will be described later, employing an alternate view on R 

will enable us to choose meaningful values for the independent measurement error 

variances for f, ρ and τ. 

 

The process errors can be assumed to be Gaussian distributed based on the analysis 

presented using training data in Appendix A.1. Taking this into consideration and 

given the LTI system presented in Eq. (3.20), Kalman filtering becomes a natural 

choice for solving the tracking problem. In Kalman filtering, the state prediction 

error 3 covariance is estimated as 

QAAPP T
ii +=+1

ˆ , (3.21) 

and subsequently, the innovation covariance Si+1 and the Kalman gain Ki+1 are 

determined as 

RHPHS T
ii += ++ 11

ˆ , and (3.22) 

1
111

ˆ −
+++ = i

T
ii SHPK , (3.23) 

where H = I3 is the observation matrix. 

 

Multiple ridge points Γn (n = 1, 2, …, N) may be detected at any frame. The process 

of choosing the most suitable ridge point for extending a contour is described later in 

the section. The f, ρ and τ values of a detected ridge point Γn make up its 

measurement vector zn. Due to the occurrence of process and measurement errors, a 

contour’s predicted state x̂  may not align with the chosen ridge point’s measurement 

vector. Extension of a contour using the chosen ridge point Γn is brought about via 

the innovation, state update and prediction error covariance update steps described 

respectively in Eqs. (3.24), (3.25) and (3.26) below 

1ˆ~
+−= in Hxzy  (3.24) 

                                                
3 Kalman filtering elements are denoted using italicised font in this section. 
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yxx ~ˆ 11 Kii += ++  (3.25) 

11
ˆ)( ++ −= ii PKHIP  (3.26) 

 

During the frame-wise processing of a spectrogram, multiple contours (m = 1, 2, …, 

M) may be active at any frame. At frame i + 1, the frontier of an active contour m is 

described by the f, ρ and τ values in its predicted state mi 1ˆ
+x  and its orientation mψ~  at 

frame i. The orientation mψ~  is determined using the ridge point Γn which had 

extended the contour at frame i and the difference in f values of xi|m and zn as 

described in Figure 3.5. For each of the M × N pairwise combinations of active 

contours and ridge points available at frame i + 1, a cost function C(m, n) is 

determined based on the 4-dimensional (f, ρ, τ and ψ) Mahalanobis distance 

(Mahalanobis, 1936) between Γn and contours’ frontiers. Contrary to the 

consideration of only f, ρ and τ in state and measurement vectors, inclusion of ψ in 

the cost function allows for penalising candidate extensions that may otherwise lead 

the tracing astray. 
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Considering good candidate extensions to be those that lie within three standard 

deviations of the respective means along each of the four dimensions, an upper limit 

on C(m, n) can be defined as 2222 3333 +++ . Sudden and extreme directional 

changes in ridge contours are uncommon in spectrograms. An upper limit on the 

disparity in orientations of an active contour and a candidate extension ridge point 

was empirically chosen to be 100°. Further, ridge points occurring considerably 

away from a contour’s frontier, along the frequency axis, are not considered 

extension candidates. The acceptable range of frequencies for a contour is 

determined from its mψ~  and its frequency at the previous frame fi|m. Possible dubious 

pairings are discarded where any of the below checks fail: 

 

i. C(m, n) ≤ 432 × , 

ii. | mψ~  - ψn| ≤ 100°, 

 

Frame 

i i + 1 i - 1 
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Figure 3.5. Elements required for the computation of a contour’s orientation, shown 

using synthetic data. The grey arrows emerging from the ridge points indicate their 

orientations. The “difference in f “ and ψn are used to determine mψ~  such that the 

contour’s frontier and Γn point to the same location in the succeding frame as 

indicated with broken lines. 
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iii. f_min(fi|m, mψ~ )  ≤  fn  ≤  f_max(fi|m, mψ~ )  4, 

iv. ( )( )ftf n ∆∆⋅−Farctan  < ψn < ( )( )ftf n ∆∆⋅+Farctan   5. 

 

The last of the above checks discards candidate pairs containing ridge points that 

likely correspond to vertical ridges. From the set of candidate pairings that pass the 

above checks, a subset is to be chosen such that a one-to-one mapping of contours to 

ridge points exists in the subset and that the resulting sum of the costs C of the 

pairings in the subset is a minimum. This is achieved using the Munkres algorithm 

(Munkres, 1957), which solves the assignment problem with a computational 

complexity of O(n3). The measurement vectors corresponding to the ridge points so 

chosen for each contour are used in the extension of the corresponding contours as 

described with Eqs. (3.24) through (3.26). 

 

At any frame, if no suitable Γn is available for the extension of a traced contour, the 

contour is extended using the predicted state, i.e., xi+1 is set to 1ˆ +ix . This is helpful 

with tonal signals having short temporal discontinuities (apparent or real) in a 

spectrogram. Since ψ values are unavailable through the discontinuities, the control 

vector ui remains unaltered through the predicted extensions. Making extensions 

using predicted states is only permitted for up to a few successive frames and tracing 

of contours will cease when the limit, controlled by the parameter 

max_contour_inactivity, is reached. Contours whose tracing have ceased are 

reported if their durations without the trailing predicted extensions exceed 

min_contour_length and are otherwise discarded. Also, while a contour being 

traced is shorter than min_contour_length and has 40% or more predicted 

extensions, then it is immediately discarded. 

 

At any frame, detected ridge points that passed check (iv) above are gathered into 

groups of contiguous points. If any group has local minima in ridge strength, the 

corresponding valley points are eliminated and the group becomes further divided. In 
                                                
4 To enable clarity in algorithm flow, descriptions of functions f_min(·) and f_max(·) have been 

provided in Appendix A.2. 

5 The functions )(F ⋅+  and )(F ⋅−  are defined in Appendix A.1. 
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each of the resulting groupings, if one or more contained ridge points were used in 

contour extensions, the corresponding group is marked as used. Of the groups not 

marked as used, ridge points corresponding to local maxima (in τ) within the groups 

are identified and are used for starting new contour traces. Allowing non-maximal 

ridge points to also be considered for extensions is beneficial in the case of 

intersecting contours. Restricting the starting of new traces to just the strongest ridge 

points suppresses concurrent non-dominant traces. 

 

The noise in measurements of f, ρ and τ caused by spatial smoothing may be 

characterised using training data for a specific combination of spectrogram and 

smoothing kernel parameters. Obtaining such characteristics for a general purpose 

solution would be impractical. R influences how the chosen observation zn and the 

state prediction 1ˆ +ix  are relatively weighted in determining the state update xi+1. 

Small values in R are indicative of higher confidence in measurement, and result in 

xi+1 occurring closer to zn than 1ˆ +ix . Smoothing of the traced contour in both f and ρ 

dimensions can be achieved by increasing the respective measurement error 

variances in R. Smoothing in the τ dimension is not of much concern as the ridge 

strength measure is not part of algorithm outputs. Setting the corresponding value in 

R to zero simply forces strict adherence to measured values of τ. Spatial smoothing 

performed in the ridge detection phase (Section 3.2.2) may shift ridge apices by one 

or more frequency bins. Since frequency values in zn are multiples of ∆f, choosing a 

standard deviation value considerably smaller than ∆f for the measurement error in 

the f dimension may result in sharp inflections in tracing results. Preliminary trials 

showed that a measurement error covariance of 















∆
=

000
0100
002f

R  (3.27) 

resulted in satisfactory smoothing of the traced contours in the f dimension. The 

degree of smoothing in the ρ domain was not evaluated, and choosing an appropriate 

value for ρ measurement error variance is a subject for further investigation. The 

current value chosen to be 10, corresponds to a 5 dB standard deviation in the 

measurement error of ρ. 
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3.2.4. A note on algorithm parameters 

 

In the algorithm presented in this chapter, the values suggested in almost all of the 

heuristics checks are expected to yield similar performance for different inputs, and 

the reasoning for the values chosen have been provided wherever appropriate. 

However, choosing globally optimal values for the parameters min_intensity, 

min_contour_length and max_contour_inactivity is not a trivial task. 

It is, sometimes, a subjective matter. For example, some applications may choose to 

ignore very weak or very short signals; the notion of whether closely spaced 

successive ridges in a spectrogram are to be considered as fragments of a single tonal 

signal or as different individual signals varies from one analyst to another. As such, it 

is up to an end user to choose values for these three parameters as may be 

appropriate for an application, while all other numeric criteria in the algorithm can be 

retained unchanged. 

 

3.3. Testing 

 

The performance of the proposed algorithm was evaluated using a MATLAB based 

implementation. For a general purpose TF contour tracker, such as the one proposed 

in this study, developing systematic tests to cover a variety of testing conditions 

(analysis bandwidths, noise levels, overlapping contours, etc.) is problematic. A 

performance analysis approach that yields five quality metrics was proposed in Roch 

et al., 2011b. An implementation of that analysis approach, available at 

http://roch.sdsu.edu/software/silbido-1.1-beta2.zip (accessed on August 24, 

2015), was employed for assessing performance of the proposed algorithm. The 

definitions of the different metrics are briefly reiterated here. A reported detection is 

considered to correspond to a ground truth TF contour when the average frequency 

deviation across the duration of their temporal overlap is less than 350 Hz. The 

metric “deviation” indicates the average disparity in frequency. Reported detections 

that correspond to any ground truth TF contours are considered valid detections, 

otherwise they are considered as false positives. A ground truth TF contour that has 

correspondence to one or more reported detections is said to be matched. The metric 
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“recall” is defined as the ratio of the number of matched TF contours to the total 

number of ground truth TF contours. The metric “precision” is defined as the ratio of 

the number of valid detections to the total number of reported detections. Multiple 

temporally-disjoint detections may correspond to a single ground truth TF contour. 

The metric “fragmentation” is the average number of reported detections per ground 

truth TF contour. The metric “coverage” is the average measure of the percentage of 

ground truth TF contours’ durations covered by reported detections. 

The study presented in Roch et al., 2011b demonstrates the performance of two 

approaches tested with real world underwater audio recordings available from the 

MobySound archive (Heimlich et al., 2011). The proposed algorithm was tested 

using the same dataset, restricting the tests to only those audio files for which 

annotations made by a trained analyst were available. The audio data were 

downsampled to 96 kHz after bandpass filtering to suppress acoustic energies below 

5 kHz and above the resulting Nyquist frequency of 48 kHz. Most of the annotated 

signals were known to occur within this frequency range (Roch et al., 2011b). Using 

MATLAB’s spectrogram function, linear magnitude spectrograms were

calculated using Hanning-windowed frames of 8 ms duration (resulting in ∆f = 125 

Hz) with 50% overlap (resulting in ∆t = 4 ms). As with the tests described in Roch et 

al., 2011b, only those annotated contours that are longer than 150 ms and having 

SNR >= 10 dB for at least one third of their duration were considered to represent 

ground truth detections. A total of 2686 annotated TF contours passed the chosen 

criteria. The list of audio files and the corresponding test results are presented in 

Table 3.1. 
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Since no calibration data was available, all spectral intensity levels mentioned in this 

section are relative to that of the maximum amplitude of the recordings in normalised 

units. Annotated whistles having peak spectral levels lower than -115 dB re 1 

unit2/Hz were observed and the lower extremes differed for each file. For effective 

detection of low-intensity ridge points, the min_intensity parameter had to be

set appropriately for each file. Setting a high value resulted in many missed 

detections (low recall). Setting a very low value resulted in faint signals being 

reported as well. As the available annotations do not include such low intensity 

signals, this results in an apparent drop in precision. Values were chosen to achieve a 

balance between precision and recall rates. The min_intensity values chosen for

each file are listed in Table 3.2. When calibration data is available, these values need 

to be adjusted appropriately. The other algorithm parameters, chosen empirically, 

remained the same across all testing and are listed in Table 3.3. 

Table 3.2. Test-specific settings of the parameter min_intensity. The values of 

intensity levels are relative to the highest intensity in the respective audio files. 

Audio File min_intensity
Qx-Tt-SCI0608-N1-060814-121518.wav -105 dB
palmyra092007FS192-070924-205305.wav -75  dB
palmyra092007FS192-070924-205730.wav -65  dB
Qx-Dc-CC0411-TAT11-CH2-041114-154040-s.wav -115  dB
Qx-Dc-SC03-TAT09-060516-171606.wav -103  dB
QX-Dc-FLIP0610-VLA-061015-165000.wav -87  dB
palmyra092007FS192-070925-023000.wav -78  dB
palmyra092007FS192-071004-032342.wav -90  dB
palmyra102006-061020-204327_4.wav -100  dB
Qx-Dd-SCI0608-N1-060815-100318.wav -85  dB
Qx-Dd-SCI0608-Ziph-060817-100219.wav -105  dB
Qx-Dd-SCI0608-Ziph-060817-125009.wav -109  dB

Table 3.3. Parameter settings chosen for the proposed algorithm across all test inputs. 

Parameter Value 
min_contour_length  50 ms
max_contour_inactivity  25 ms



70 

At the time of this study, there were no publicly available pre-annotated datasets 

containing tonal signals from non-biological sources. Hence, performance of the 

proposed detector for non-biological tonal signals is demonstrated with indicative 

examples. Figure 3.6 and Figure 3.7 show the results of tonal extraction for sounds of 

anthropogenic and physical origins, respectively. In both examples, the detector has 

successfully extracted most of the human-discernible tonal signals. Detailed analysis 

showed that there were few false positives overall. Some of the wrongly reported 

detections were a result of “tonal hijacking” (e.g. TF contour jump from about 760 

Hz to 920 Hz immediately past 4 s in Figure 3.6; TF contour jump from about 185 

Hz to 135 Hz around 60 s in Figure 3.7) which will be discussed in more detail in the 

following section. 

Figure 3.6. Extracted TF contours (bottom panel) from a spectrogram (top panel; 

FFT parameters: 180 ms Hanning window, 120 ms overlap) of a recording 

containing tonal sounds of a jetski. Traced contours (or fragments) are coloured 

differently to ease disambiguation. Algorithm parameters: min_intensity = -65 

dB, min_contour_length = 240 ms, max_contour_inactivity = 180

ms. 
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3.4. Performance analysis and discussion 

A method has been presented for the tracing of arbitrary TF contours in spectrograms 

of underwater acoustic recordings. The core of the proposed system is a 2D ridge-

detection component whose outputs feed into a tracking subsystem based on Kalman 

filtering. The choice of criteria and parameter values of the ridge-detection 

component were driven by theoretical rationales. Most of the stochastic parameters 

of the tracing subsystem were obtained using training data while others were chosen 

heuristically. An implementation of the proposed method was tested using real-world 

underwater acoustic recordings. Of the different performance metrics considered, 

recall and precision rates are used predominantly in automatic detector analyses. The 

Figure 3.7. Extracted TF contours (bottom panel) from a spectrogram (top panel; 

FFT parameters: 600 ms Hanning window, 300 ms overlap) of a recording 

containing Antarctic iceberg harmonic tremors. Traced contours (or fragments) are 

coloured differently to ease disambiguation. Algorithm parameters: 

min_intensity = -50 dB, min_contour_length = 1.275 s,

max_contour_inactivity = 975 ms.



72 

 

results presented in Table 3.1 show a general improvement in precision and recall 

over those resulting for one of the existing methods (see Table III in Roch et al., 

2011b). 

 

Treating TF contours as intensity ridges enables the effective extraction of not just 

the signals’ spectral peaks but also ridge orientation and strength related to TF 

contours. These features guide the subsequent tracing process. The ability of the 

system to inherently reject spectral peaks corresponding to non-ridge-like structures 

in a spectrogram leads to higher precision in overall performance. The benefit of this 

ability is demonstrated by a noticeable improvement in performance compared to 

that of the method presented in Roch et al., 2011b. For instance, with the file 

Qx-Dc-CC0411-TAT11-CH2-041114-154040-s.wav which contains sounds from 

long-beaked common dolphins, improvements of over 350% and 237% were seen in 

precision and recall rates, respectively, over the results of Roch et al., 2011b. A 

sample clip from the file is shown in Figure 3.8 and the tracing results presented may 

be compared to those shown in Fig. 9 in Roch et al., 2011b. 
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The ridge point detection mechanism yields best results with TF contours that are 

free of clutter from other ridge-like TF structures. At the intersection of two or more 

ridge-like structures, the mathematical definition of a ridge point as per Eq. (3.5) or 

Eq. (3.9) may not hold true. Depending on the time and frequency resolutions of a 

spectrogram, no ridge points may be reported at or near the intersection. Examples of 

this can be seen in Figure 3.9a. Two TF contours cross each other at 16.54 s and 

three ridge-like structures (two tonal signals and an echolocation click) occur in close 

proximity between 16.70 s and 16.77 s. The detection of ridge points is affected for 

one or more signals in both examples. 

 

The continued tracing of TF contours through temporal discontinuities in detected 

ridge points is expected to be handled by the mechanism of predicted extensions 

proposed in Section 3.2.3. The success of such “bridging” relies on the value chosen 

for the parameter max_contour_inactivity. Smaller values may be 

ineffective with bridging contours’ fragments whereas larger values may run the risk 

of joining successive contours or fragments from different contours. In the example 

shown in Figure 3.9a, the chosen value of 25 ms for max_contour_inactivity 

suffices in bridging of the first gap occurring between 

16.52 s and 16.54 s while the same is ineffective for the second discontinuity 

occurring between 16.68 s and 16.78 s. Some tonal signals of biological origin 

exhibit sudden jumps in frequency and are commonly referred to as stepped whistles 

(e.g. Oswald et al., 2003, Roch et al., 2011b). Discontinuities in TF contours caused 

by frequency steps are not expected to be identified or bridged by the proposed 

algorithm and portions of a whistle on either side of a step are likely to be reported as 

independent detections. Handling of steps is better suited in a post-processing stage 

(for example, in a classifier system as indicated in Section 5.2). 
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Sections of TF contours having moderate-to-high |ψ| produce multiple closely-

occurring ridge points per frame. When this occurs over a series of frames, it may 

result in multiple parallel and/or leapfrogging contours to be reported by the tracing 

component. The example in Figure 3.9b shows a pair of parallel traces beyond 

16.3 s. The example is an interesting case deserving closer analysis. Beyond the 

intersection at 16.3 s, there is a noticeable drop in the downswept tonal’s amplitude. 

Coupled with the ensuing clutter from the upswept tonal, this results in no ridge 

points being reported immediately past the intersection for the downswept tonal. 

Both tonal signals exhibit similar f, ρ and τ values prior to the intersection. Past the 

intersection, the absence of pertinent ridge points and the availability of “favourable” 

excess points from the upswept tonal signal result in the downswept tonal signal to 

be wrongly traced along the direction of the upswept tonal signal. Furthermore, over 

a few frames past the intersection, the ridge points reported for the upswept tonal 

signal seem more favourable to the wrongly traced contour. In such cases, a wrongly 

traced contour may “hijack” the available ridge points (past 16.35 s in Figure 3.9b). 

This may result in both reported contours being incorrect. A fraction of the losses in 

the reported precision and recall rates are attributed to such duplication and hijacking 

occurrences. In particular, sections of the spectrogram of the recording in Qx-Dd-

SCI0608-Ziph-060817-100219.wav suffer heavy ridge-clutter due to intersecting 

whistles and echolocation clicks. A sample segment from the recording is shown in 

Figure 3.10. A pre-processing procedure that removes vertical ridge-like structures, 

such as the “short-duration transient suppression” method proposed in 

Mallawaarachchi, 2008, has the potential to improve performance for such 

recordings. 



77 

 

 

 
Fi

gu
re

 3
.1

0.
 A

n 
in

di
ca

tiv
e 

se
gm

en
t o

f r
ec

or
di

ng
 fr

om
 fi

le
 Q

x-
D

d-
SC

I0
60

8-
Zi

ph
-0

60
81

7-
10

02
19

.w
av

 sh
ow

in
g 

a 
hi

gh
 le

ve
l o

f c
lu

tte
r c

au
se

d 
by

 

ov
er

la
pp

in
g 

w
hi

st
le

s 
an

d 
sh

or
t b

ro
ad

ba
nd

 s
ig

na
ls

 f
ro

m
 e

ch
ol

oc
at

io
n 

cl
ic

ks
. T

he
 fr

eq
ue

nc
y 

ax
is

 is
 li

m
ite

d 
in

 o
rd

er
 to

 h
ig

hl
ig

ht
 th

e 
le

ve
l 

of
 c

lu
tte

r. 
Th

e 
to

p,
 m

id
dl

e 
an

d 
bo

tto
m

 r
ow

s 
sh

ow
, r

es
pe

ct
iv

el
y,

 th
e 

sp
ec

tro
gr

am
, o

ut
pu

ts
 o

f 
rid

ge
-p

oi
nt

 d
et

ec
to

r 
an

d 
ou

tp
ut

s 
of

 r
id

ge
 

tra
ci

ng
 c

om
po

ne
nt

. 



78 

 

Spectral means subtraction is usually employed in existing methods as a pre-

processing step for the purpose of noise-suppression. For example, in the methods 

described in Roch et al., 2011b and Mellinger et al., 2011, spectral subtraction is 

performed along each frequency bin using running averages obtained over certain 

predefined durations. The method in Madhusudhana et al., 2008 performs similar 

spectral subtraction using averages obtained from the extremities of a chosen 

spectrogram segment. In testing my method, no means-subtraction or normalisation 

techniques were employed. A direct benefit of this is in the reduction of the system’s 

response latency, thereby making it more suitable for application in an on-site 

scenario. A more significant benefit is that the system’s inertia in adapting to 

changing ambient noise levels is considerably lowered. The audio in the file 

palmyra092007FS192-071004-032342.wav (melon-headed whale) suffers from 

intermittent broadband noise in the 5-25 kHz range due to hydrophone towing (Roch 

et al., 2011b) and the corresponding results in Table 3.1 highlight my method’s 

robustness applied to dynamic noise conditions. 

 

Processing speed of a detection algorithm is usually quantified by its real-time factor 

which is defined as the ratio of the duration of the input signal to the time taken to 

process the input. When tested on a desktop computer with an Intel® i7 CPU and 16 

GB of RAM (running Microsoft® Windows 7), a MATLAB based streaming-mode 

implementation of the proposed approach processed the input band-limited (5-48 

kHz) spectrograms with an average real-time factor of 0.14. 

 

Another performance metric commonly considered, particularly in the case of on-site 

monitoring applications, is a system’s response latency. With the choice of using two 

smoothing kernels, the larger kernel (σ = 2) results in a spatial filter width of 

[2 × (4 × σ)] + 1 = 17 spectrogram frames, and a filter delay of 9 frames. The 

gradient estimation and zero-crossing determination steps add further 5 frames of 

latency. As suggested, normalisation based on long-duration measurements is not 

necessary with this approach. Assuming that an implementation of the proposed 

system is capable of operating at faster-than real-time processing speeds, reporting of 

the TF contours being traced can occur with a response latency of 14 × ∆t seconds. 

For the reported tests, this translates to a response latency of 56 ms. 
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A spectrogram denoising mechanism that removes vertical ridge-like structures, such 

as the one proposed in Mallawaarachchi, 2008, can be incorporated into the existing 

streaming-mode implementation without hindering its robustness or affecting its 

responsivity adversely. Such signal pre-conditioning has the potential of improving 

its performance when applied to heavily ridge-cluttered spectrograms. The approach 

described in Section 3.2.3 for making predicted extensions through short 

discontinuities in traced contours currently only allows for extensions of constant 

frequency slopes. The value of ψ can instead be updated iteratively through the 

discontinuities using successive estimates from fitting polynomial curves to trailing 

segments of the contour being traced. This could result in a more accurate prediction 

for signals with temporally varying rates of frequency modulation. 
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Chapter 4.  

Detection of Broadband Signals 

 

A spectrogram-based approach is presented for the detection of broadband signals in 

underwater audio. The approach employs an iterative 1-dimensional variant of a 2-

dimensional multi-scale blob-detection technique commonly used in image 

processing. In contrast to the referenced 2-dimensional technique subject to an 

inherent bias for circular features, the iterative 1-dimensional approach enables 

detection of features of arbitrary bandwidth and duration. The iterative nature (of 

processing successive frames) makes it an attractive choice for in-situ streaming-

mode applications. The algorithm automatically chooses values for several 

parameters based on the input spectrogram’s frequency bounds and hence is capable 

of being readily employed for a variety of applications. When used with 

spectrograms, the technique’s applications include detection of broadband signals of 

interest, e.g. Bryde’s whale (Balaenoptera brydei) calls, underwater earthquakes, 

explosions. With long-term spectral averages (LTSA), the technique may be used in 

identifying long-lasting sounds contributing to ambient noise, e.g. fish choruses, 

sounds of wind and rain. Systematic testing and performance analysis of the method 

is yet pending and only representative examples of its performance are currently 

provided. 

 

4.1. Introduction 

 

A variety of methods have been developed for the automatic detection or recognition 

of broadband signals in underwater audio. In broadband signals, spectral energy is 

spread over a range of contiguous frequency bands. The appearance of broadband 

transient signals in their spectrograms depends on the choice of spectral analysis 

parameters. The detector proposed in this chapter is developed for signals (and 

spectral analysis settings) that results in broad maxima of spectrogram levels along 

both frequency and time axes. Underwater sources that produce long-duration 

broadband sounds include 
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• anthropogenic sources such as explosions, 

• biological sources such as humpback whale barks and bellows, fish choruses, 

and 

• geophysical events such as earthquakes and volcanic eruptions. 

Most of the existing approaches are usually targeted for the detection of specific 

signals. Woodman et al. (2004) proposed a simple method for the detection of 

dynamite fishing events based on comparing sound pressure levels against a pre-

determined threshold. Methods based on comparing the ratios of short-term to long-

term signal energy averages computed over a series of frequency bands against pre-

set thresholds have been used (Hanson et al., 2001; Sukhovich et al., 2011) for the 

detection of several types of high-intensity sounds occurring at low frequencies such 

as the sounds of undersea volcanoes and seismic activities, polar ice calving, etc. 

 

Use of spectrograms for the analysis of acoustic signals is a popular choice as 

spectrograms provide visual representations of the frequency content of audio signals 

and its variations over time. Spectrograms are used in the manual analysis of 

underwater audio in both onsite and offsite monitoring applications. Fourier 

transforms of broadband signals produce continuous spectra. In spectrograms, long-

duration broadband signals appear as bounded 2-dimensional (2D) regions having 

higher spectral intensities than the regions’ immediate surroundings. Such regions 

are referred to as blobs in this chapter. Broadband signals are differentiable from 

narrowband tonal signals in spectrograms in that the bounds of tonal signals along 

the frequency axis are rather narrow (see Figure 1.2). 

 

Several methods are available for the detection of underwater acoustic signals based 

on post-processing of spectrograms, e.g. Mellinger et al., 2011, Madhusudhana et al., 

2008, Erbe and King, 2008, Lourens, 1990, Fox et al., 1995. Some approaches have 

used image-processing techniques, e.g. Gillespie, 2004; Kershenbaum and Roch, 

2013; Thode et al., 2012. The method proposed in this chapter is based on ideas 

derived from an image-processing technique for detecting blobs in digital images. 

The method described here is meant for the general detection of broadband signals in 

spectrograms without regard to the sources producing the sounds. 
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4.1.1. Blob-detection in image-processing 

 

Lindeberg (1993) proposed a method to detect circular blob-like features in images 

using the Laplacian operator ∇2. Application of the Laplacian operator to a 2D grey-

level image I is described as 

[ ] 2
),(

2

2
),(

2

),(
2

Y
I

X
I

I yxyx
yx ∂

∂
+

∂

∂
=∇ . (4.1) 

An image I is first convolved with a 2D Gaussian kernel 

( ) ( ) ( )2222 2)(exp21;, sπss yxyxG +−=  to achieve spatial smoothing at the 

desired scale σ2 – 

( )( ) ( ) ( )ss ;,, ⋅∗= GIL yxyx , (4.2) 

following which the Laplacian operator ∇2 is applied to the resulting smoothed 

representation L – 

( ) ( )[ ]s;,
22 ⋅∗∇=∇ GIL yx . (4.3) 

The response of ∇2L is high for circular blobs in I that have their radii approaching 

2s  (Lindeberg, 1993). Considering convolution associativity and the derivative 

rule for convolutions, the sequence of operations on the right-hand side of Eq. (4.3) 

can be rearranged  as ( )[ ] ( )yxIG ,
2 ; ∗⋅∇ s . The term ( )[ ]s;2 ⋅∇ G  is commonly referred 

to as the Laplacian of Gaussian (LoG) operator. The LoG operator is more popular 

for its use in edge-detection in images and such a technique was first proposed by 

Marr and Hildreth (1980). Blobs of different sizes are detected by considering scale-

space representations at multiple scales. Feature salience across scales is established 

by choosing the largest of scale-normalised responses (σ2×LoG)*I. An example of a 

2D Gaussian kernel and its corresponding LoG is shown in Figure 4.1. 
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4.2. Algorithm 

 

A spectrogram of an acoustic signal is analogous to a 2D greyscale image where 

spectral intensities at time-frequency (TF) points correspond to grey-level values of 

pixels in the image. A blob-like feature in a spectrogram is a bound region formed by 

contiguous TF points having similar intensity levels and occurring with noticeably 

higher intensities than the TF points surrounding the region. Their bounds are finite 

along the frequency axis and, for well-formed spectrograms, the bounds are generally 

contained within the spectrogram’s bandwidth. Such an assumption cannot be made 

about the bounds along the time axis as their temporal extents are defined by the 

duration of the underlying signal or the variations in its signal-to-noise ratio (SNR). 

 
Figure 4.1. A 2D Gaussian kernel (top) and its corresponding scale-normalised LoG 

(bottom) for a scale of σ = 4. 
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As blobs in spectrograms are of arbitrary shapes, the method summarised in Section 

4.1.1 is not readily suitable for blob-detection in spectrograms. Instead, blob-

detection is tackled here by breaking up the single 2D operation into two successive 

1D operations. First, broad regions of relatively higher intensities within individual 

frames of the spectrogram are identified using a multi-scale 1D LoG approach 

(Section 4.2.2). For convenience, regions of relatively higher intensities spanning a 

considerable frequency range will be referred to as “plateaus” in this chapter. 

Intensity plateaus identified in successive frames are subsequently “joined” in tracing 

the evolution of the blob over time (Section 4.2.3). 

 

4.2.1. Input preparation 

 

Spectrograms present a simple means to visually distinguish continuous broadband 

signals amongst other sounds. This nature of spectrograms could be easily exploited 

for the purpose of automatic extraction of broadband signals using methods based on 

image-processing techniques. The choice of parameters for generating spectrograms 

is application specific and is beyond the scope of this study. General guidelines are 

provided here for calculating spectrograms that enable improved performance of the 

proposed detector. Hamming and Hanning windows are well-suited for the analysis 

of arbitrary continuous (non-impulsive) sounds (Svend and Herlufsen, 1987) and 

hence could be favourable choices. For successful application of image-processing 

based methods for extracting blob-like spectral structures, the time resolution Δt and 

frequency resolution Δf resulting from the chosen spectrogram parameters must 

allow for spectral and temporal variations in broadband signals to be discernible in a 

visual sense. Choosing fine-grained time or frequency resolutions increases the 

overall processing time and may not always result in improved detection 

performance. The spectrogram frame widths and Δt must be smaller than the 

duration of the shortest continuous broadband signal expected to be detected. Having 

moderate-duration broadband signals span over multiple frames readily allows for 

the avoidance of short impulsive signals from being detected. The input to the 

proposed system could be a frequency band-limited portion of the spectrogram or a 

full-bandwidth spectrogram. The proposed system is generic in its functionality or 
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control-flow which would remain the same for the processing of any arbitrary 

spectrogram. 

 

4.2.2. Detection of 1D plateaus 

 

In typical image-processing blob-detection approaches, high-frequency noises in an 

input image are suppressed by applying 2D Gaussian blurring (spatial smoothing 

using a Gaussian kernel) prior to application of a Laplacian operator. In the approach 

proposed here, application of the 1D LoG operators along the frequency axis 

(Section 4.2.2) inherently achieves spatial smoothing along the vertical dimension. In 

order to suppress sudden fluctuations in spectral intensity across successive frames, a 

“horizontal blur” operation is performed by convolving a 1D Gaussian kernel 

( ) ( ) ( )22 2exp21; sπss xxG −=  (4.4) 

along each frequency bin of the spectrogram. 

 

Spectral intensity plateaus in individual frames of a spectrogram are identified using 

a 1D LoG operator. The Laplacian of a 1D Gaussian function is 

[ ] ( ) 






 −
−

−
=∇ 2

2
22

5
2

2
exp

2
1);(

s
s

πs
s xxxG . (4.5) 

Multiplication of the LoG operator by σ2 is a common practice in image-processing 

applications. Normalisation by σ2 renders convolution responses scale-invariant, 

thereby enabling fair comparisons to be made across scales. One-dimensional 

Gaussian functions and their corresponding normalised LoG operators, Gnorm
2∇ , are 

shown for a few different scales in Figure 4.2. 
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Convolution of a spectrogram frame with an LoG operator (normalised or otherwise) 

produces high responses for intensity plateaus whose widths are close to 2σ 

frequency bins. For an ideal 1D plateau such as a boxcar function (von Seggern, 

1993) of width 2σ, the apex of the response occurs at its mid-epoch and the response 

reduces to zero near the edge of the plateau. The behaviour of Gnorm
2∇  is 

demonstrated using synthetic 1D plateaus of different widths and heights in Figure 

4.3. As can be seen in the first column of Figure 4.3, the response of Gnorm
2∇  (σ = 4) 

is maximum for a plateau width of 8 and it peaks at the centre of the plateau. The 

disparities between plateau edges and the points where the respective Gnorm
2∇  

responses reach zero is smallest for the plateau of width 8. As such, the estimates of 

 
Figure 4.2. One-dimensional Gaussian functions (top) and their corresponding 

Gnorm
2∇  (bottom), shown for three different scales. The dotted rectangles in the 

bottom plot indicate the optimal widths of high-intensity regions for which the 

responses of respective LoGs would be maximal. The widths of the Gaussian and 

LoG curves are restricted here to the range [-3σ, 3σ]. 
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plateau widths made from responses of Gnorm
2∇  are more accurate when the scale of 

the LoG operator is chosen appropriately. In such width-matched conditions, the 

height of a plateau has little or no effect on the width estimates. This is evident from 

the plots in the second column of Figure 4.3. 

 

In the case of width-matched Gnorm
2∇  operators and ideal 1D plateaus as considered 

in Figure 4.3, the value at the apex of the response is given by hλ, where h is the 

height of the plateau and 

∑
−

∇=
s

s

λ Gnorm
2 . (4.6) 

 

Figure 4.3. Demonstration of Gnorm
2∇  responses (bottom row) to a variety of 

synthetic inputs (top row). The form of the synthetic inputs were chosen to roughly 

imitate high-intensity 1D plateaus in spectrogram frames. Gnorm
2∇  operator with 

scale σ = 4 was used throughout. The first column demonstrates Gnorm
2∇  responses 

for inputs of different widths. The dashed lines indicate the outer edges of the inputs. 

The second column demonstrates Gnorm
2∇  responses for inputs of different heights. 
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Scaling the operator by λ-1 prior to convolution makes the apex of the response equal 

the height of the plateau. Such a scaled, normalised operator will be denoted as 

Gnorm
2
−∇λ . 

 

The absolute heights of synthetic plateaus considered in Figure 4.3 are analogous to 

the relative elevations of spectral plateaus compared to their immediate 

neighbourhoods in the frequency axis. This relative elevation is a crude estimate of 

the underlying signal’s SNR. By employing Gnorm
2
−∇λ , per-frame SNR estimates of 

broadband signals can be obtained directly. 

 

In summary, at a chosen scale, spectral intensity plateaus in a spectrogram frame are 

said to be detected where the response of Gnorm
2
−∇λ  is positive. The value at a local 

maximum in the response provides an estimate of the SNR of the underlying signal 

and the position of the response apex along the frequency axis is an indicator of the 

position of intensity “centroid” of the spectral plateau. 

 

4.2.2.1. Choice of scales 

 

The frequency bounds of spectrogram blobs differ for different blobs and often vary 

considerably over the duration of the underlying signal. High-intensity plateaus of 

different frequency bounds can be captured by employing Gnorm
2
−∇λ  operators at 

multiple scales σn (n = 1, 2, 3, …). 

 

Considering 3σ extents on either side of the underlying Gaussian function’s mean, 

the full width of a discrete Gnorm
2
−∇λ  operator is [(2 × 3σ) +1] = (6σ + 1) points. For 

meaningful convolution with a spectrogram frame, this width must be smaller than 

the number of frequency bins in the spectrogram. This defines a limit on how large a 

scale σ can be chosen. 

 

Spectrogram blobs having considerably narrow frequency bounds are generally 

produced by narrowband tonal signals. Intuitively, the smallest scale Gnorm
2
−∇λ  
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operator would be chosen such that it would prevent falsely reporting any ridge-like 

features as blobs. However, choosing the smallest scale to be larger than typical ridge 

widths does not guarantee that ridges will always be discarded. Instead, the smallest 

scale is chosen such that ridge-like features are indeed captured, but will be explicitly 

discarded in a later step (see Section 4.2.2.3). This provides better confidence in 

ensuring that ridge-like features do not get falsely reported as blobs. The half-power 

bandwidths or -3 dB bandwidths for common windowing functions are smaller than 

2 bins, e.g. 1.54 bins for a Hanning window and 1.30 bins for a Hamming window 

(Harris, 1978). A value of 2 for the smallest scale σ1 (width of 4 frequency bins) 

suffices in capturing most ridge-like spectrographic features for later rejection. 

 

Successive scale values are chosen to form a geometric sequence within the limits 

considered above. For an input spectrogram having N frequency bins, the range of 

scales σn considered are defined by: 

( )

( ) ( )[ ]  . 161log ..., 3, 2, 1,
2

12

1
1

+−=
= −

s
ss

Nn

n
n  (4.7) 

Note that N influences not only the value of the largest scale, but also the number of 

different scales considered. Furthermore, the width of the widest 1D plateau that can 

be captured with considerable confidence is limited by N as ( )[ ] 161log
1

1222 +−× ss N . 

This limitation can be overcome by simply increasing the number of Fourier 

transform points considered in computing spectrograms. 

 

4.2.2.2. Automatic selection of salient scales 

 

Spectral plateaus of different widths can be detected by employing multiple 

Gnorm
2
−∇λ  operators, as per Section 4.2.2.1. However, a single spectral plateau may 

be detected at different scales. Salience of intensity plateaus detected at different 

scales is established based on Gnorm
2
−∇λ  responses forming local maxima across 

successive scales, i.e. 
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where S is a spectrogram frame. In the 2D grid resulting from the tessellation of 

operator responses at successive scales, local maxima are identified as points where 

the response values are larger than or equal to the values in their 9 neighbouring 

points. Figure 4.4 illustrates an example of the scale selection described here. The 2D 

grid is shown in the second row plot. The response apices occurring near 17.5 Hz and 

26 Hz for the scales σ = 8 and σ = 4, respectively, are discarded as they are not 

 
Figure 4.4. A demonstration of scale selection presented using a frame (top row) 

from a spectrogram (see Figure 4.7) of real underwater audio. The high intensity 

region between 5 Hz and 45 Hz corresponds to sound from an underwater earthquake 

recorded at a long distance. The middle and bottom rows show, in two different 

formats, the operator responses at various scales considered. Each point (f, σ) in the 

middle row plot indicates the operator response at the scale σ for frequency bin f. The 

local maxima over scales are indicated by diamond-shaped markers in the bottom 

row plot. 
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maximal points across scales. The response corresponding to the widest high-

intensity region in the spectrogram forms a local maximum at around 23.5 Hz at and 

in scale σ = 16. Such a 2D local maxima gets considered for further processing. 

 

4.2.2.3. Trimming & winnowing 

 

Spectral plateaus detected at the finest scale will not be considered for further 

processing. Discarding these detections only after examining the maxima across 

scales ensures that small plateaus do not get detected at coarse scales. 

 

Sometimes, it may be appropriate for certain analyses to ignore weak broadband 

signals having relative levels lower than some pre-defined value. A user-controllable 

quantity SNR_threshold 6 is defined for this purpose and any detected plateaus 

are discarded by the algorithm when their corresponding operator response apices are 

lower than SNR_threshold. 

 

The estimates of detected plateau edges may not always be valid. The presence of 

other signals of high relative levels in the neighbourhood can result in additional 

local maxima before the operator response reaches zero. In such cases, the local 

minimum between two neighbouring response apices presents a good separation 

point for the corresponding plateaus. In general, the algorithm defines the frequency 

bounds of a detected plateau by searching on either side of its response apex for 

either a valley point or a zero-crossing, whichever occurs first. 

 

Detection of salient plateaus and their edges at different scales is demonstrated in 

Figure 4.5. Notice that the ridge-like feature occurring at 60 Hz caused by a 

narrowband tonal signal is captured at the finest scale. As discussed above, these 

detections are not considered for further processing. The remaining blob-like features 

are captured at appropriate scales. The horizontal blurring of the spectrogram prior to 

applying Gnorm
2
−∇λ  suppresses some of the short-duration (transient) noises such as 

those occurring at higher frequencies around 78 s, 82 s and 116 s. 

                                                
6 User-settable algorithm parameters will be denoted using monospaced font. 
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Figure 4.5. Multi-scale detection of intensity plateaus demonstrated using a segment 

of a spectrogram produced from an underwater recording containing Bryde’s whale 

calls and other noises. The top row shows the spectrogram and the following rows 

show the operator responses at four different scales. In all of the plots, frequency (in 

Hz) and time (in seconds) are respectively shown along the vertical and horizontal 

axes. Detection was performed with SNR_threshold value set at 10 dB. The 

bounds of the detected 1D plateaus are shown with overlaid vertical lines and the 

corresponding response apices are indicated with a marker along the lines. 
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4.2.3. Tracing temporal evolution of blobs 

 

One-dimensional intensity plateaus detected in each frame are “joined” with those in 

neighbouring frames to trace the 2D blobs representing the underlying broadband 

signal. The “joining” is performed iteratively – processing the spectrogram frame 

after frame along increasing time and extending traced blobs using detected 1D 

plateaus available in succeeding frames. At any frame, a spectrogram blob being 

traced is referred to as an active blob if it had an extension at the previous frame. A 

candidate 1D plateau is assigned to an active blob based on its similarity to the blob’s 

frontier which is the 1D plateau that had extended the blob at previous frame. The 

similarities considered are – 

• value of the response apex (SNR estimate), 

• position of the response apex along the frequency axis (intensity centroid), 

and 

• width of the plateau. 

At any frame there may be multiple active blobs and multiple candidate extensions 

available. For each of the pairwise combinations of active blobs and candidate 1D 

plateaus, assignment costs are determined based on the 3-dimensional Mahalanobis 

distance (Mahalanobis, 1936) quantifying the aforementioned similarities. Possible 

dubious pairings are heuristically discarded when the edges of the 1D plateaus 

exhibit no overlap or when the centroid of the candidate does not occur within the 

edges of the blob frontier. Of the pairings that remain, a minimalistic subset is 

chosen such that a one-to-one mapping of blobs to 1D plateaus exists in the subset 

and that the resulting sum of the assignment costs of the pairings in the subset is a 

minimum. This assignment problem is solved using the Munkres algorithm 

(Munkres, 1957), which finds global-minimum-cost assignments with a 

computational complexity of O(n3). 

 

Tracing of an active blob ceases at a frame when no suitable extensions are available 

in the succeeding frame. Blobs whose tracing have ceased are reported if their 

duration (temporal bounds) is longer than minimum_duration and are otherwise 

discarded. Detected 1D plateaus that were not used for extending an active blob are 
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used for starting a new blob trace. An example of the outcomes of the tracing process 

is shown in Figure 4.6. 

 

 

 

4.3. Analysis 

 

Systematic testing of the algorithm proposed in this chapter requires several 

instances of verifiable hand-annotated inputs. At this moment, I have not been able to 

procure the same. As such, a thorough performance analysis of the algorithm is yet to 

be conducted. At the current stage, the detection performance of the algorithm is 

demonstrated only using a few examples. Figure 4.7 shows an example of the 

detector outcome for a recording corresponding to an underwater quake. Figure 4.8 

shows a few more examples using Bryde’s whale calls. It can be seen from the 

example shown in Figure 4.5 and from the examples shown in this section the 

number of false positives can be kept low by using well-formed spectrograms and 

choosing well-defined values for the algorithm settings. The utility of the algorithm 

in detecting long-lasting acoustic events from LTSAs is demonstrated in Figure 4.9. 

Instances of fish choruses, lasting about 2.5 hours, were successfully detected. 

Detection of the presence of humpback whales (from the detection at mid-

frequencies on day 5), possibly others cetaceans (at lower frequencies) and shipping 

activities are also made possible. 

 

 
Figure 4.6. Outcomes of the described blob tracing process shown with overlaid 

black curves on the spectrogram considered in the example of Figure 4.5. The value 

of the parameter minimum_duration was set to 500 ms. The vertical and 

horizontal axes show frequency (in Hz) and time (in seconds), respectively. 
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Figure 4.7. Demonstration of blob detection in spectrograms using an example of a 

high-intensity low-frequency long-duration sound caused by an underwater 

earthquake. The vertical and horizontal axes show frequency (in Hz) and time (in 

seconds), respectively. 

 
Figure 4.8. Demonstration of blob detection in spectrograms using examples of 

Bryde’s whale calls amidst other noises. The vertical and horizontal axes show 

frequency (in Hz) and time (in seconds), respectively. 
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4.4. Discussion 

 

A generic approach for detecting broadband acoustic activity is presented. 

Demonstration of the algorithm’s detection performance is presented using indicative 

examples of biological, anthropogenic and geophysical sounds. The approach is 

shown to yield reasonable results with both spectrograms and LTSAs. A systematic 

performance analysis of the algorithm using a substantial set of test data covering 

varieties of noisy conditions is pending. 

 

In the proposed algorithm, no long-duration spectral means-subtraction or 

normalisation techniques were employed. A direct benefit of this is that the system’s 

inertia in adapting to changing ambient noise levels is considerably lowered. Not 

having to wait for large amounts of data to be gathered before processing them 

makes the algorithm more suitable for application in an on-site scenario. The time 

taken by successive per-frame 1D convolution operations remains constant over the 

entire spectrogram and the convolutions usually execute faster than real-time on 

modest computers. The tracing sub-process described in Section 4.2.3 is the only 

 
Figure 4.9. Demonstration of blob detection in LTSAs using a multi-day segment as 

an example. The vertical axis shows frequency (in Hz), the horizontal axis shows 

time (in fractional days, starting at midnight) and the color levels indicate average 

spectral power density (in dB re 1μPa2/Hz). Each frame or time slice in the LTSA 

represents 900 s. The value of the parameter minimum_duration was 

accordingly set to 4500 s. The LTSA shows, among other events, fish choruses 

occuring following sunset every day, highly vocal presence of humpback whales 

early on day 5 and several passing ships (at values of 2.7, 3.55, 4.2 and 4.8 on the 

horizontal axis). 
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aspect of the algorithm whose computational complexity is tied to the number of 

putative blobs in each spectrogram frame. Given that its computational complexity is 

polynomial and that the number of underlying mathematical computations is small, 

the tracing process executes faster than real-time as well. A performance metric 

commonly considered, particularly in the case of on-site monitoring applications, is a 

system’s response latency. Seeing that all operations in the algorithm can be 

performed at faster-than-real-time speeds, the response latency of the algorithm is 

defined by the group delay resulting from convolution with the horizontal blur filter, 

i.e. its half width or ⌈3σ⌉× Δt seconds. 

 

Systematic testing of the algorithm would most likely warrant several improvements 

to be considered. Some such considerations are provided here. Currently, tracing of 

blobs from successive frames ceases immediately at the frame where no suitable 

extensions can be found. This may result in fragmented detections to be reported. 

Additional functionality to bridge such fragmented detections can be implemented by 

considering a small limiting factor on the temporal separation. In the example shown 

in Figure 4.7, the per-frame peak energy varies considerably (by about 50 dB) over 

the full duration of the detected blob. Permitting such large variations could be 

detrimental in some situations, especially for spectrograms of recordings that have 

high levels of ambient noise. The temporal extent of a detected blob corresponding to 

a time-limited event could get falsely stretched indefinitely by the background levels. 

In the example of Figure 4.7, the detection could possibly have been reported to start 

at around 100 s instead. In the tracing component of the algorithm, per-frame peak 

(or median) energy levels (within an active blob’s frequency bounds) can be 

considered and limitations can be imposed on the amount of change allowed across 

successive frames. 
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Chapter 5.  

Future Work - Automatic Soundscape Characterisation 

 

Developing a unified solution for the automatic classification of all underwater 

sounds may seem a near-impractical undertaking. The solution becomes more 

tractable with the suggested breakdown of the automatic recognition problem into a 

two-phase detection-and-classification approach as was shown in Figure 1.1. Based 

on this idea, a framework is presented in this chapter for realising an automatic 

soundscape characterisation system using the detectors presented in the preceding 

chapters.  

 

5.1. Considerations for realising an automatic characterisation 

system 

 

5.1.1. Application-specific operating conditions 

 

An implementation of an automatic soundscape characterisation system must 

consider the operating conditions specific to a particular application. The operating 

conditions of an application include the variety of sounds occurring in the 

environment being monitored and the limitations imposed by the PAM hardware 

employed. Soundscapes pertaining to different environments have differing 

characteristics. For example, consider an estuary marked for biota conservation 

where recreational and commercial vessel activity may be banned. Monitoring of 

soundscape in such an environment would not require, within the automatic system, 

components meant for recognising vessel noise. The operational efficiency of the 

automatic characterisation of a soundscape may be improved based on such a priori 

knowledge about the soundscape. Similar examples can be stated for near-shore and 

deep-ocean environments. Also, different PAM hardware configurations result in 

different operating conditions. For example, a recording made at 24 kHz sampling 

rate would not contain a majority of the odontocete echolocation clicks and hence, 
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the automatic system may not need to execute the components pertinent to 

identifying those sounds. 

 

5.1.2. Context of a sound 

 

Automatic classification of sounds becomes more feasible with the consideration of 

their context, particularly in cases where available information about signal’s 

spectro-temporal characteristics do not suffice in decision-making. The notion of the 

use of a sound’s context towards automatic recognition has been garnering interest in 

the marine PAM community. The fourth international workshop on Detection, 

Classification, Localization and Density Estimation (DCLDE) of marine mammals 

held at Pavia, Italy in 2009 was focused on the use of contextual information in 

automatic recognition. Researchers from JASCO Applied Sciences (http:// 

http://www.jasco.com/) presented their study titled “Improving the performance of 

marine mammal call classifiers using contextual information” at the sixth DCLDE 

workshop at St. Andrews, UK in 2013. There was a wider expression of 

acknowledgement of the need for using contextual information during the discussion 

session headed by Dr. Marie Roch of Scripps Institution of Oceanography 

(http://sio.ucsd.edu/) at the succeeding DCLDE workshop held in San Diego, USA in 

2015. There is yet no widely agreed-upon understanding of what constitutes a 

sound’s context. It could include information such as visual sighting records of the 

species producing the received sounds, weather data, seismic activity records, 

information on the sound propagation environment, etc. Where such non-acoustic 

contextual data are unavailable, classification may rely on acoustic context that is 

inherently available in the input audio. The acoustic context of a sound accounts for 

the acoustic activity within its immediate temporal and spectral neighbourhoods. The 

examples below should help with understanding the definition of context as it applies 

to classification. 

 

Without the explicit use of the term “context” in the literature, a few prior studies 

have already benefited from the use of contexts. Sirovic et al. (2013) show that the 

detection of multiple call types within a certain temporal neighbourhood provides a 

more certain estimate of a species’ presence. Oswald et al. (2003) speculate 
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achieving improved performance in their automatic classifier with the inclusion of 

species’ spatial distribution probabilities (non-acoustic context) in its classification 

models. Whistles of many marine mammal species are known to contain one or more 

harmonics. Along with several parameters of the fundamental frequency contour, the 

Real-time Odontocete Call Classification Algorithm (ROCCA) described in Oswald 

et al., 2007 uses information about the presence or absence of call harmonics to aid 

in the classification of delphinid whistles. Note that although harmonics are, in fact, 

components of an odontocete whistle, their consideration in ROCCA as 

supplementary information indicates that they may be viewed as being a part of a 

signal’s spectro-temporal acoustic context. Following the detection of individual 

echolocation clicks, some studies have used, as temporal acoustic context, 

information from click trains (more specifically, the interval between successive 

clicks) (Harland, 2008; Gerard et al., 2009) and information about delayed surface 

reflections (Zimmer and Pavan, 2008) towards classification of the detected clicks. 

Application-specific contextual information considered in classification tasks may 

include other information such as time of day, prevailing season, weather data, a 

priori information on seasonality of species’ presence and migratory patterns, 

proximity of recording equipment to shipping lanes, Automatic Identification System 

(AIS) data on vessel activity, etc. 

 

5.2. System design 

 

A modular implementation framework is presented here for realising an automatic 

soundscape characterisation system. The proposed framework is to be used only as 

guidelines and a particular implementation of the suggested framework needs to 

consider the requirements of the specific application (see Section 5.1.1) for good 

operational efficiency. Successful first-step detection of signals is vital for 

subsequent meaningful characterisation. Most signals that are distinguishable from 

background noise are expected to be detected by one of the three detectors presented 

in the preceding chapters. A composite module comprising of the three detectors 

could hence form the first phase of any implementation of an automatic 

characterisation system. With signal detection handled in a context-free manner, the 
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considerations for operational efficiency indicated in Section 5.1.1 must be dealt with 

in the classifier phase. A schematic of the proposed framework is shown in Figure 

5.1. Implementation of different modules making up the classifier will be 

application-specific and such potential modules are not detailed in this study. 

 

 

The three proposed detectors are part of the corresponding modular “handlers” 

shown in the framework. Following signal detection by the contained detectors, the 

handlers identify and pick out detected signals’ salient distinctive characteristics, 

which are called “features” in this chapter. For example, the Tonal Handler delivers a 

series of contours. Certain features can be measured off such contours, e.g., 

minimum frequency, maximum frequency, start frequency, end frequency, locations 

of local extrema, locations of inflection points, presence or absence of contour 

discontinuities, presence and frequency spacing of overtones, etc. These features can 

be combined into a feature vector that is used by the classifier. The Transient 

Handler could extract features such as peak frequency/frequency band, presence of 

FM, FM rate, transient duration, peak-to-peak amplitude, etc. The Broadband 

Handler could extract features such as the spectral and temporal extents of detected 

blobs, peak and average energy within blob extents, frequency at the peak energy, 

etc. The Signal Preparation module is included in the schematic to indicate the 

potential need for pre-processing input signal appropriately for the different 

 
Figure 5.1. Proposed framework of an automatic soundscape characterisation system. 
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detectors. Certain signal pre-processing operations may be performed inherently 

within the handlers. This is discussed further in Section 5.3. 

 

As indicated in Section 5.1.2, the classification of certain sounds is made easier when 

the various extracted features of detected signals are augmented with contextual 

information. This is enabled by the Context Correlator. Non-acoustic contextual 

information, when available, is generally known beforehand and can be made 

available to the Context Correlator in stored form. Acoustic context of a detected 

signal comprises of other signals detected within its spectro-temporal 

neighbourhood. The bounds of considered neighbourhoods vary depending on the 

type of detected signal in consideration. For example, an individual echolocation 

click detected by the Transient Handler can be associated to an ongoing click-train 

by considering other detected clicks occurring within a short time window; 

individual TF contours reported by the Tonal Handler could be associated as 

harmonic components of a tonal signal if they occurred within a certain frequency 

bandwidth of each other and are contained within similar temporal extents. As input 

audio is continuously processed, detected signals’ features are retained temporarily in 

the Feature Memory to enable establishing of acoustic contexts for other signals. For 

each detected signal, the Context Correlator identifies the necessary context and 

supplies the corresponding features and any pertinent non-acoustic contextual 

information to the Decision Module. Over time, some features retained in the Feature 

Memory become impertinent for any future contexts depending on the bounds of 

temporal neighbourhoods considered for the different signal varieties. The Context 

Correlator is also responsible for the discarding of such stored features that may no 

longer be useful. 

 

The Decision Module brings about the final classification of the detected signals. It 

considers the extracted features of the detected signals and any contextual 

information, whenever available, in its decision-making process. The identification 

of features by the different handlers could sometimes suffice for making direct 

inferences about the type of source without needing contextual information. Several 

choices are available for the implementation of the Decision Module. For example, it 

may be implemented as a rule-based expert system utilising rules derived from 
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human interpretations of the detected signal features, or it may be implemented 

similar to the multivariate discriminant function analysis (DFA) or classification and 

regression tree (CART) analysis as shown in Oswald et al. (2003). The number of 

rules, constraints or parameters, whichever applicable, considered for an 

implementation may be restricted based on the operational requirements of a 

particular application. 

 

5.3. Notes on detector configurations and signal preparation 

 

In order to avoid a sound unit from being multiply classified, detector parameters 

need to be chosen such that a single sound is not detected by multiple handlers. Some 

considerations are provided here. Short impulsive signals such as echolocation 

clicks, which are detected by the Transient Handler, appear as broadband signals in a 

spectrogram. Detection of such signals by the Broadband Handler can be avoided by 

setting the minimum duration for acceptable signals to cover multiple frames in input 

spectrograms. The provision of multiple spatial smoothing scales in the Tonal 

Handler and 1D smoothing scales in the Broadband Handler provide flexibility in 

detecting signals of various spectral bandwidths. The largest scale in the Tonal 

Handler and the smallest scale in the Broadband Handler must be chosen such that 

spectrogram frames containing continuous signals do not trigger detections in both 

handlers. 

 

Both the Tonal Handler and the Broadband Handler handle spectrograms as inputs. 

An implementation of the framework may choose to feed same spectrograms to both 

handlers or different spectrograms may be computed (using different sets of 

parameters) from the input audio for each handler. The frequency band of frequency 

modulated signals is governed in general by the quality factor (a measure of 

sharpness of spectral peaks, defined as the ratio of the central frequency to the width 

of frequency band at -3 dB level) of underwater sources of sound, which varies 

within a limited range for most sources of biological and physical origin. 

Consequently, the rate of frequency modulation in the absolute units of Hz/s is 

typically higher for high-frequency sources than that of low-frequency sounds. This 
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means that time × frequency contours of high-frequency tonal sounds are traced 

better in spectrograms with a shorter time window of spectral analysis. So, when 

input signals have a wide recording bandwidth, it is beneficial to compute multiple 

spectrograms with different width of the FFT window for different frequency ranges. 

Such a frequency-range restricted portion of a spectrogram will be referred to with 

the term segment. When an implementation is chosen to process multiple segments, 

the respective handlers would clone their operations for each segment. With the 

available range of frequencies for any recording and the operational requirement in 

consideration, one may either wish to extract the tonal and broadband signals within 

only one frequency range of interest or wish to extract the contours of all tonal 

signals contained in the recording. In the latter scenario, it is up to the user to 

carefully select segment boundaries (with or without overlap). The choices of the 

boundaries are influenced by three considerations: 

• The need to maximize the efficacy of a set of values chosen for the 

spectrogram parameters imposes limitations on the bandwidth of the segment. 

• On the contrary, excessive segmentation leads to undesirable increase in 

overall processing time. 

• For effective contour tracing, the possibility of TF contours and broadband 

signals cutting across segment boundaries has to be minimized. 

 

5.4. Conclusion 

 

A generic framework is proposed for realising an automatic soundscape 

characterisation system as a two-phase detection-and-classification system using the 

independent detectors presented in this study. The role of an application’s operating 

conditions in specific implementations of the framework is illustrated. The notion of 

context of a signal is introduced and its importance in developing classifiers is 

described. Finally, guidelines are provided for preparation of inputs to the detectors 

and on their configurations within the overall system.  
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Chapter 6.  

Summary 

 

The task of automatic detection of “signals of interest” in underwater audio was split 

into three components based on the signals’ spectro-temporal characteristics. Such 

splitting of the detection process enables pertinent characteristics of detected signals 

to be readily extracted, e.g. temporal extents and energy levels of impulsive signals 

and amplitude and frequency modulation rates of tonal signals. This capability is 

conducive for the development of the signal “handlers” proposed in Chapter 5 as 

parts of an automatic characterisation system.  

 

Detailed performance analyses of the transient and tonal detectors were provided in 

the respective chapters. The performances were also compared against available 

approaches in the literature. Detailed analysis of the broadband signal detector is 

currently pending and only a brief analysis of its performance is provided. The 

limitations of the detectors and considerations for future development were also 

discussed in the respective chapters. In this chapter, general characteristics of the 

detectors are highlighted in view of the expectations outlined in Section 1.2. Note 

that, due to lack of evidence, not all characteristics discussed below are relevant to 

the broadband signal detector. 

 

The transient detector was tested using both synthetic and real audio; and the other 

two detectors were tested using real audio alone. For testing with real underwater 

audio, the transient and tonal detectors were tested using annotated data from the 

MobySound database. The recordings in the data used for testing were gathered at 

different locations by different organisations. The recording equipment employed in 

procuring the various recordings also differed. The consistency exhibited in detection 

performance across the different data sets demonstrates that the “flexibility” and 

“adaptability” requirements were successfully met. “Robustness” of the transient 

signal detector was demonstrated using both real and synthetic data where synthetic 

data were regenerated to produce different SNR conditions; and the robustness of the 
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tonal detector was evident from the provided testing results, and examples of the 

same were demonstrated using indicative segments from the test set. 

 

No long-duration signal measurements (e.g. mean energy, background level 

estimates, etc.) were considered for pre-conditioning detector inputs. So, the 

detectors need not gather chunks of data before beginning processing. The response 

latencies of the three detectors are finite and constant. This makes them well-suited 

for on-site real-time applications, both as independent detectors and as part of the 

categorisation system proposed in Chapter 5. 

 

Summarising the above discussion, automatic detectors of various types of 

underwater acoustic signals were developed and the desired performance 

characteristics (robustness, flexibility, adaptability and operational efficiency) were 

achieved. Together with the simplicity and ease of configuration, these standalone 

detectors can be readily redeployed for different purposes and hence, they provide an 

attractive choice for uptake in targeted recognition applications as well. General 

guidelines are provided in Chapter 5 for realising a comprehensive automatic 

soundscape characterisation system using the detectors presented in this study. 
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List of Abbreviations 

 

AIS Automatic Identification System 

AM Amplitude Modulation/Modulated 

CART Classification And Regression Tree (analysis) 

CFCW Constant Frequency Carrier Wave 

CTBT Comprehensive nuclear-Test-Ban Treaty 

DCLDE Detection, Classification, Localization and Density 

Estimation 

DFA Discriminant Function Analysis 

ERMA Energy Ratio Mapping Algorithm 

FDR Filter Difference Ratio 

FM Frequency Modulation/Modulated 

GBDT Gradient Boosted Decision Trees 

ICI Inter-Click Interval 

IMS International Monitoring System 

IPI Inter-Pulse Interval 

LCCW Linearly Chirped Carrier Wave 

LM Levenberg-Marquardt (algorithm) 

LTI Linear Time Invariant 

LTSA Long-Term Spectral Average 

MAF Moving Average Filter 

PAM Passive Acoustic Monitoring 

PR Precision-Recall (trade-off) 

ROCCA Real-time Odontocete Call Classification Algorithm 

SNR Signal-to-Noise Ratio 

TKEO Teager-Kaiser Energy Operator 
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Appendix A  

 

A.1. Tonal detector: Training data and analyses 

 

The data used for training included 879 hand-traced TF contours from four different 

recordings. Spectrograms computed for the different recordings differed in their time 

and frequency resolutions. The resolutions were chosen to be appropriate for 

analysing the tonal signals contained in the respective recordings. The training 

results thus obtained were more generic and not biased to a particular set of 

spectrogram parameter values. The ridge detection procedure described in Section 

3.2.2 was applied to each spectrogram. The tracing of the TF contours was 

performed by manually connecting spectral peaks corresponding to detected ridge 

points across successive frames. The correspondence of chosen spectral peaks to 

detected ridge points is necessary because of the way process and measurement 

errors have been defined. 

 

At each time step i (spectrogram frame) in a traced contour, the differences between 

fi, ρi and τ i values and their respective estimates obtained using fi-1, ρ i-1, τ i-1 and ψ i-1  

and Eqs. (3.16), (3.17) and (3.18) describe the process error at the time step, as per 

the definition of process error in Section 3.2.3. The process errors in f, ρ and τ 

computed over successive time steps across all hand-traced contours are 

characterised with histogram plots in Figure A.1. Since different spectrograms are 

considered, the training results shown for error in f were normalised by the frequency 

resolution of the respective spectrogram. This enables f error variance to be 

expressed in terms of the number of frequency bins. Considering the bell-shaped 

profile evident in the histograms and the symmetric distribution of values around the 

respective means, I assume that the data in the histograms can be represented by 

Gaussian distributions. The process error covariance Q was determined using the 

computed f, ρ and τ errors. The bottom right plot of Figure A.1 characterises the 

differences in ψ between successive points in a traced contour. This value is used 
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along with f, ρ and τ errors in the determination of Mahalanobis distances in the 

tracing process. 

 

Instantaneous FM rate at each ridge point was determined as the ratio of frequency 

difference with a connected ridge point in the succeeding frame to the time resolution 

of the spectrogram. The magnitudes of the instantaneous FM rates were analysed as a 

function of the start frequency (the frequency of the first ridge point). The recorded 

FM rates are shown in the scatter plots of Figure A.2. Observably, higher rates of FM 

were possible at higher start frequencies than at lower start frequencies. The 

conceptual analogy for bioacoustic tonal signals here is that an animal’s sound 

production system more easily or readily changes the FM rate for high-frequency 

whistles than for low-frequency whistles. I aimed to characterise the limiting positive 

and negative FM rates at different start frequencies. Following empirical analysis, the 

positive and negative FM rate capping functions are defined as 

 
Figure A.1. Histograms of the differences in the predicted and measured values for f 

(top left), ρ (top right) and τ (bottom left). A histogram of the differences in ψ across 

successive contour points is shown in the bottom right panel. 
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where fs is the start frequency, +F  and −F  are the corresponding positive and 

negative FM rate limits, respectively. Note that better modelling of the limits than 

those considered in Eq. (A.1.1) may be available. However, it is not vital for this 

study and the coarse limits considered do suffice. 
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A.2. Tonal detector: Defining frequency range limitations for 

candidate extensions  

 

Candidate ridge points considered at frame i + 1 for the extension of a TF contour 

being traced are restricted to only those ridge points that occur within a certain 

frequency range around the contour’s frontier. Two independent lookup frequency 

ranges are determined, one based on the contour’s mψ~  and the other based on its 

frequency value at the last frame fi|m. The final frequency range restriction is defined 

by combining the two lookup ranges. 

 

The lookup range based on mψ~  is obtained by considering an additional range of 

angles around it. However, consideration of a predefined range of additional angles 

around mψ~  is not a viable option. Given that the f values of ridge points are multiples 

of the spectrogram’s frequency resolution, choosing a small range may not be 

beneficial with small mψ~  as it would allow for few or no additional frequency bins to 

be considered. Choosing a large range, on the other hand, may be detrimental with 

large mψ~  as it would result in a large number of additional bins to be considered. I 

define an angle lenience quantity of  

mψαφφ ~
0 −=  (A.2.1) 

which allows for the specification of an adaptive range of angles around mψ~ . Setting 

ϕo = 60° and α = 2/3 yields a lenience angle of ϕ = 60° for mψ~  = 0° and ϕ approaches 

0° as mψ~  approaches 90°. A frequency lookup range can now be defined as 

( )( )( ) ( )( )( )[ ]ff mm ∆⋅++∆⋅−− 1~tantruncate,1~tantruncate φψφψ . The truncate(·) 

function rounds the specified quantity towards zero. For mψ~  ≈ 0°, added lenience 

angle of 60° translates to a lookup range of two frequency bins on either side of the 

bin corresponding to fi|m. For larger mψ~ , although ϕ decreases, the defined range 

function still allows for a fair number of frequency bins to be considered in looking 

for candidate ridge points. The effect of the added lenience angles and the number of 

additional frequency bins resulting from it are shown in Figure A.3. 
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Based on fi|m, a different frequency range can be specified using the frequency slope 

capping functions +F  and −F  defined in Appendix A.1. The final range of 

frequencies within which to look for candidate ridge points is based on the more 

restrictive combination arising out of the two specified ranges – 
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Figure A.3. Lenience angles (top row) and the corresponding additional frequency 

bins (bottom row) arising from Eq. (A.2.1) for different values of mψ~ , with ϕo = 60° 

and α = 2/3. All angles are specified in degrees. 


	TitlePage
	Shyam Kumar Madhusudhana
	This thesis is presented for the Degree of


	Declaration
	Dissertation
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1.  Introduction
	1.1. Significance
	1.2. Challenges and expectations
	1.3. A brief review of available automatic recognition methods
	1.4. Aim of the thesis

	Chapter 2.  Transient Detection
	2.1. Introduction
	2.2. Applying the TKEO on a Gabor-like signal
	2.2.1. Theoretical analysis
	2.2.2. Case study

	2.3. Automatic detection
	2.3.1. Detector design
	2.3.2. Implementation

	2.4. Performance evaluation
	2.5. Discussion

	Chapter 3.  Tonal Detection
	3.1. Introduction
	3.2. Algorithm
	3.2.1. Input preparation
	3.2.2. Detection of ridge points
	3.2.3. Tracing ridge contours
	3.2.4. A note on algorithm parameters

	3.3. Testing
	3.4. Performance analysis and discussion

	Chapter 4.  Detection of Broadband Signals
	4.1. Introduction
	4.1.1. Blob-detection in image-processing

	4.2. Algorithm
	4.2.1. Input preparation
	4.2.2. Detection of 1D plateaus
	4.2.2.1. Choice of scales
	4.2.2.2. Automatic selection of salient scales
	4.2.2.3. Trimming & winnowing

	4.2.3. Tracing temporal evolution of blobs

	4.3. Analysis
	4.4. Discussion

	Chapter 5.  Future Work - Automatic Soundscape Characterisation
	5.1. Considerations for realising an automatic characterisation system
	5.1.1. Application-specific operating conditions
	5.1.2. Context of a sound

	5.2. System design
	5.3. Notes on detector configurations and signal preparation
	5.4. Conclusion

	Chapter 6.    Summary
	List of Abbreviations
	References
	Appendix A
	A.1. Tonal detector: Training data and analyses
	A.2. Tonal detector: Defining frequency range limitations for candidate extensions


	Blank Page



