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Abstract

Visual perception is our most important sense which enables us to detect and recognise
objects even in low detail video scenes. While humans are able to perform such object
detection and recognition tasks reliably, most computer vision algorithms struggle with
wide angle surveillance videos that make automatic processing difficult due to low reso-
lution and poor detail objects. Additional problems arise from varying pose and lighting
conditions as well as non-cooperative subjects. All these constraints pose problems for
automatic scene interpretation of surveillance video, including object detection, tracking
and object recognition.
Therefore, the aim of this thesis is to detect, enhance and recognise objects by incor-
porating a priori information and by using model based approaches. Motivated by the
increasing demand for automatic methods for object detection, enhancement and recog-
nition in video surveillance, different aspects of the video processing task are investigated
with a focus on human faces. In particular, the challenge of fully automatic face pose and
shape estimation by fitting a deformable 3D generic face model under varying pose and
lighting conditions is tackled. Principal Component Analysis (PCA) is utilised to build
an appearance model that is then used within a particle filter based approach to fit the
3D face mask to the image. This recovers face pose and person-specific shape informa-
tion simultaneously. Experiments demonstrate the use in different resolution and under
varying pose and lighting conditions. Following that, a combined tracking and super res-
olution approach enhances the quality of poor detail video objects. A 3D object mask
is subdivided such that every mask triangle is smaller than a pixel when projected into
the image and then used for model based tracking. The mask subdivision then allows for
super resolution of the object by combining several video frames. This approach achieves
better results than traditional super resolution methods without the use of interpolation
or deblurring.
Lastly, object recognition is performed in two different ways. The first recognition method
is applied to characters and used for license plate recognition. A novel character model
is proposed to create different appearances which are then matched with the image of
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unknown characters for recognition. This allows for simultaneous character segmentation
and recognition and high recognition rates are achieved for low resolution characters down
to only five pixels in size. While this approach is only feasible for objects with a lim-
ited number of different appearances, like characters, the second recognition method is
applicable to any object, including human faces. Therefore, a generic 3D face model is
automatically fitted to an image of a human face and recognition is performed on a mask
level rather than image level. This approach does not require an initial pose estimation
nor the selection of feature points, the face alignment is provided implicitly by the mask
fitting process.
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Notations

A degradation matrix
Crc character template r for character c
Dm 3D coordinate of the centre of the mth mask triangle
E mean error
Efcolour mean colour error for frame f
F number of frame
H height of an image
I 2D image
Ihigh high resolution image
I low low resolution image
J vector of concatenated colour values
Ĵ reconstructed image
JSR super resolved vector of concatenated colour values
L number of mask vertices
M number of mask triangles
N Normal distribution
O column matrix of warping templates
P projection from 3D coordinates to 2D image coordinates
Pl 3D coordinate of the lth mask vertex
Q creates vector of concatenated colour values
R number of templates
S each column is a displacement vector that controls the shape
T template creation function
T0 initial camera parameters
T app camera parameters for appearance based tracking
T geo camera parameters for geometric based tracking
T int intrinsic camera parameters
T ext extrinsic camera parameters
Vh function that returns the hth harmonic image
W width of an image
X principal components
Zrc best 2D image position for template r of character c
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b harmonic image
c character
d distance in feature space
do transformation parameter displacement
dx displacement along x-axis
dy displacement along y-axis
e reconstruction error in feature space
g deformed face mask
g neutral face mask
h error term
ni transformation parameter displacement
l mask vertex point number
o warping template
p mask vertex point in 2D
q vector of coefficients
x average face

x
(i)
t Monte Carlo sample i at time t

w̃
(i)
t weight of particle i at time t

Σ diagonal covariance matrix
α linear coefficient
β linear coefficient
γk parameter that controls the kth mask deformation
ε threshold
η surface normal
κ threshold for adding characters
λ annealing factor
ξ pixel size
ρ albedo
υ annealing factor
φx rotation around x-axis
φy rotation around y-axis
φz rotation around z-axis
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Chapter 1

Introduction

The increasing interest in public and private wide area surveillance and the continuously
growing number of CCTV cameras has been followed by an increasing demand for au-
tomatic image and video analytic methods. Most surveillance cameras are used only for
recording and storing surveillance video whilst the actual video processing is done manu-
ally. However, watching surveillance footage to recognise suspects and to identify events
is laborious and time consuming. Thus, there is a high demand for automatic video
processing methods for scene interpretation and analysis.

The usability of most existing video processing approaches is curtailed by the poor quality
of surveillance videos. Wide area surveillance situations usually require a large number of
sensors, thus making the use of high resolution cameras prohibitive because of high cost
and exponential growth in storage capacity. However, small and low price CCTV cameras
usually use CMOS technology, which produces poorer quality video compared to the more
expensive CCD cameras. However, CCD cameras in wide area surveillance can still yield
low resolution images of the object of interest, due to large distances from the camera.
Thus, low resolution is the main problem faced by video processing methods because of
poor detail in scenes that do not provide reliable features for subsequent processing.

A large number of approaches have been proposed in the literature to address the prob-
lem of automatic video processing but most methods rely on accurate low level feature
extraction to perform object detection and recognition tasks. However, such bottom-up
approaches are difficult in surveillance scenes that only provide poor detail in objects due
to low resolution. Model based methods approach the problem in a top down way by
assuming a priori knowledge of the scene or the object. A generic object model provides
ex ante information that can be used to detect, enhance and recognise the appearance of
an object as a whole without trying to find low level object features first.

All methods developed in this thesis use a model based approach for automatic video
processing in low resolution and thus avoid the use of unreliable detection of low level
image features. The 3D face pose and shape is estimated by automatically fitting a 3D
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generic deformable face model to an image under different pose and lighting conditions.
Furthermore, this thesis explores the use of a 3D face mask for combined tracking and
super resolution. The face mask is subdivided into a fine mesh and several video frames
are combined to increase the resolution of the mask texture without the need for interpo-
lation. Following that, the appearance of planar objects is modelled and a large number of
different appearances, including different resolutions, is created and then used for recog-
nition. Finally, a multi-model face recognition method is proposed that requires a single
training image per subject only. A 3D deformable face mask is fitted to an image and
recognition is performed directly on the mask texture.

1.1 Aims and Approach

The focus of this thesis is the development of model based methods that work automat-
ically with low resolution images as well as under varying pose and lighting conditions.
Therefore, the four objectives of this thesis are:

1. The development of a model based method for accurate pose and shape estimation
in low resolution for different pose and illumination using only a single image,

2. The implementation of a super resolution approach that uses a 3D object model and
avoids the use of interpolation to combine several video frames to create a single
high resolution image,

3. The development of a recognition method for planar objects that uses model infor-
mation to create different object appearances, and

4. The development of a recognition method for non-planar objects under different pose
and lighting conditions, using a single training image.

Each of these aims is addressed in a separate chapter of this thesis. The first specific aim is
achieved by automatically fitting a generic deformable 3D face mask to a previously unseen
image of an object. The pose and person-specific shape parameters are recovered during
the fitting process. The 3D face mask is used to model different illumination conditions
and thus allows for automatic fitting under varying illumination conditions.

The same face mask is furthermore used for object tracking and super resolution. Res-
olution enhancement is achieved by subdividing the object mask into a fine mesh and
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projecting it into each video frame using the tracking results. A novel texture mapping
approach assigns a single colour value to each mask triangle and by combining several
frames, a super resolved texture is created without image interpolation. The key is the
use of a fine mask mesh where each triangle is smaller than a pixel when projected into
the image, making super resolution possible.

The third aim is achieved by creating a large number of different object appearances
to perform template matching based recognition of planar objects. The image formation
process of the camera is parameterised and different templates representing different object
appearances in different resolution are created. Planar objects are recognised directly in
very low resolution images without the use of image segmentation, enhancement or super
resolution techniques.

To tackle the problem of non-planar object recognition a template based approach is not
feasible. Therefore, the fourth aim is achieved by deploying a generic 3D face mask to
recover pose and person-specific shape parameters first. Instead of cropped 2D images,
the texture of the object mask is directly used for recognition. By using the mask texture
no image alignment is necessary and different lighting conditions are accounted for by the
3D object model.

1.2 Contributions and Significance

This thesis makes three main contributions in the area of computer vision:

1. The use of subdivided object models together with a novel texture mapping technique
for combined tracking and super resolution,

2. The development of a parameterised character model for recognition in low resolution
images, and

3. The deployment of a generic 3D deformable face model for automatic face detection
and recognition

The contributions and their significance are detailed in the following sections.
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1.2.1 Model Based Object Super Resolution During Tracking

The first major contribution of this thesis is the development of a combined tracking and
super resolution method using a 3D object model. A model based tracking approach
is deployed to estimate the pose parameters of the 3D object model in each frame of a
video sequence. A novel texture mapping approach then assigns a single colour value to
each vertex of the 3D object model mask. This is contrary to existing texture mapping
techniques that rotate and scale an image area to texture each mask vertex. To make super
resolution possible all mask vertices need to be smaller than a pixel when projected into
the image, therefore subdivision schemes commonly used in computer graphics are applied
to subdivide the 3D object mask into a fine mesh. The super resolved object texture is
then computed as the mean colour value of each vertex across several frames. This super
resolution technique has several advantages over traditional video super resolution:

• The resolution is increased at mask level and only for the selected object instead of
enhancing the entire scene of the image. This reduces computation time and makes
the approach applicable to any non-planar and non-rigid object that can be tracked
using a deformable 3D object model.

• No interpolation is needed to increase the resolution, instead the resolution increase
is determined by the number of subdivisions of the object mask. The finer the mask
mesh the higher the possible increase in resolution. The achieved resolution is equal
or higher compared to traditional methods without the need for deblurring.

• The resolution increases simultaneously during the tracking process and improves
with every frame. A threshold guarantees that only frames with small tracking errors
are used for super resolution to ensure best results.

• The subdivided mask is necessary for super resolution but also improves tracking.
Experiments show that a fine mask mesh improves the tracking accuracy compared
to a coarser mesh.

1.2.2 Low Resolution Character Recognition Using Parametrised Model

The second main contribution of this thesis is the development of a parameterised camera
model to create character templates for low resolution character recognition. The image
formation process of the camera is modelled and parameterised, and then applied to each
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character of the alphabet. By varying the parameters, different character templates show-
ing different appearances and resolutions are created. The proposed character recognition
method applies template matching and clustering techniques to recognise single characters.
This approach has several advantages:

• The simple camera model is parameterised to allow for the efficient generation of
character templates by varying three parameters. The resulting templates precisely
match character images taken by a camera and achieve high correlation.

• The template matching based character recognition approach allows for simultane-
ous character segmentation and recognition. Single characters are separated and
recognised despite merged character edges that hinder character separation in low
resolution. Thus, the recognition of low resolution characters of down to five pixels
in height is possible.

• No image enhancement or super resolution is required to increase the resolution or
enhance the image quality. Each character is recognised by its low resolution grey
scale appearance only.

• Recognition is performed on grey scale images instead of binarising each character
image. The additional information stored in the aliased grey scale character edges
is utilised by the proposed approach for improved recognition in low resolution.

• Due to the small size of each character template, recognition based on a template
matching approach is performed efficiently.

1.2.3 Automatic Face Recognition Using a Single Training Image

The third main contribution of this thesis is the deployment of a generic 3D deformable
face model for automatic face pose and shape detection and recognition using only a single
training image. A model based mask fitting method is developed to automatically fit a
deformable 3D face mask to an image of a face. The fitting recovers the 3D pose and
person-specific shape parameters while the 3D shape of the mask is used to account for
different lighting conditions. Recognition is then performed directly on the extracted face
mask texture instead of the cropped image area and only a single image is required for
training. This method has several benefits:

• By using the mask texture for recognition, no additional image alignment is required
and pose variations are accounted for automatically during the mask fit. Thus,

5



CHAPTER 1. INTRODUCTION

recognition is possible without the need for feature selection to align test and training
images.

• The 3D person-specific shape of the deformable face mask is used to compensate for
different pose and lighting conditions during fitting and recognition.

• Image alignment and scaling is unnecessary because recognition is performed on
the mask texture by comparing the colour values of each mask vertex instead of
comparing pixels. The mask also crops the face area and thus voids the influence of
the background on the recognition performance.

• The model based fitting as well as the recognition methods are suitable for differ-
ent resolutions. The number of mask vertices and not the resolution of the image
determines the resolution of the mask texture.

1.3 Structure of the Thesis

The structure of this thesis is as follows:

In Chapter 2 a review of the current state of the art in video processing, including object
detection, model based fitting, object tracking, image super-resolution and object recog-
nition is given. Different approaches for fitting a 3D deformable model to an image are
reviewed and different 3D face masks are compared. This is followed by an introduction
to model based approaches for object tracking in low resolution, inclusive of both feature
and appearance based methods. Next, the basic problem of super resolution is formu-
lated and existing super resolution approaches are compared. Finally, object recognition
methods for character recognition as well as 2D, 3D and multi-modal face recognition are
elaborated.

Chapter 3 presents a method for automatic object detection and pose and shape estima-
tion, the first step towards automatic video processing. Here, a deformable 3D face model
is fitted to a single image of a human face using an appearance model previously built
from a set of training images. Experiments on two face databases demonstrate the use of
the model based fitting approach under different pose and lighting conditions as well as
in low resolution.

Once the object is detected and its pose is estimated, object tracking can be used to es-
timate the pose parameters for every frame of a video sequence. Thus, in Chapter 4 a

6



CHAPTER 1. INTRODUCTION

method for combined tracking and super resolution is developed. The result of a model
based tracking approach is used to combine several video frames to increase the resolution
of the tracked object. But unlike traditional super resolution approaches only the resolu-
tion of the object is increased on mask level rather than enhancing the image of the entire
scene. Experiments on planar and non-planar, including different faces are conducted and
evaluated.

After object detection, object tracking and super resolution, object recognition is usually
the last step for processing surveillance video. Chapters 5 and 6 present two model based
object recognition methods for planar and non-planar objects respectively. The planar
objects used for recognition in Chapter 5 are characters. Each character of the alphabet
is modelled and a large number of different templates covering different character appear-
ances in different resolutions are created. The recognition approach is based on template
matching and allows for simultaneous character separation and recognition on low reso-
lution images. Experiments on car license plates and text documents show the ability of
the proposed approach to recognise small characters of down to five pixels in size.

Such a template based recognition approach is only feasible for planar objects with a
limited number of parameters that change the appearance of the object. Therefore, the
recognition method presented in Chapter 6 uses a deformable 3D object model to recog-
nise non-planar objects, namely human faces. Only a single training image is used and
recognition is performed directly on the mask texture. The 3D deformable face model is
fitted to a new image of a person’s face and recognition is performed without the need for
additional pose estimation or image alignment. The proposed face recognition approach
is compared with existing methods and experiments on a face database demonstrate its
use for face recognition under different pose and lighting conditions.

Finally, Chapter 7 summarises the findings of this thesis and provides possible future
directions for model based video processing methods.
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Chapter 2

Background

The research in this thesis involves different fields of computer vision, including model-
based fitting, object tracking, image super-resolution as well as object recognition. An
overview of the current state of the art in each of the respective fields is given in the fol-
lowing sections. Firstly, for model-based fitting of a 3D mesh model Principal Component
Analysis (PCA) and PCA based methods are reviewed. Different 3D face mesh models
and their respective fitting approaches are then compared with respect to their advan-
tages and disadvantages for low resolution image processing. Following that, model based
approaches for object tracking in low resolution video are introduced. Feature based and
appearance based tracking methods are presented and the theory of particle filters is ex-
plained. The resolution of low resolution images and videos is enhanced by so called super
resolution methods. The basic problem formulation of super resolution methods is given
and the super resolution optical flow approach is introduced. Subsequently, object recog-
nition methods for images of characters and images of human faces are presented. Existing
approaches for text document recognition and number plate recognition in low resolution
images are compared and an overview of 2D, 3D and multi-modal 2D and 3D face recog-
nition methods are given. Finally, the challenges and open problems of approaches for
model based low resolution image processing are summarised.

The background chapter is organised as follows: Section 2.1 gives an overview of methods
for model-based fitting of a face model to an image, which is the main scope of Chapter 3.
Section 2.2 introduces methods commonly used for tracking objects through video se-
quences, followed by traditional super resolution algorithms in Section 2.3. Both, tracking
and super resolution methods are combined in Chapter 4 of this thesis. Section 2.4 and
Section 2.5 familiarise the reader with the state of the art in object recognition, in par-
ticular character recognition and face recognition, which are the main topics of Chapter 5
and Chapter 6.
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2.1 Model-Based Fitting

Model-based fitting methods adjust a deformable 3D model of an object to fit an image
of a particular type of object. The object types used within this thesis are human faces.
Principal Component Analysis (PCA) is a popular method commonly used in model-based
fitting approaches, its details are described in Subsection 2.1.1 followed by three different
model-based fitting approaches based on PCA. Section 2.1.2 then compares different 3D
face models and reviews methods that use deformable 3D meshes for model-based fitting
in the context of human faces.

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a fundamental method in data processing. It is
a mathematical algorithm that calculates the eigenvalue decomposition, given a square
data matrix A. Image processing methods usually use PCA for dimensionality reduction
or the construction of new images. Therefore, 2D images are vectorised to Ji and the data
matrix Ā is constructed from these vectors as Ā = [JT1 − x̄, JT2 − x̄, .., JTn − x̄]. The data
is centred around the mean and multiplied with its transpose to result in a squared data
matrix as:

A = ĀĀT (2.1)

where the columns of Ā are vectorised 2D images Ji and x̄ is the mean of Ā. The matrix
A can then be decomposed into its eigenvectors and eigenvalues as:

A = XΛX−1 (2.2)

where the columns of X contain the eigenvectors and Λ is a diagonal matrix containing
the corresponding eigenvalues. If the matrix A is constructed from 2D images of faces
only, the eigenvectors are also called Eigenfaces. These eigenvectors span a vector space
for all the data points Ji. The dimensionality of this space is reduced by keeping only the
eigenvectors that correspond to the largest eigenvalues and neglecting the eigenvectors for
which the corresponding eigenvalues are below a defined threshold as:

Areduced = (Ā− x̄)Xreduced (2.3)

where Xreduced contains a reduced set of eigenvectors that correspond to the largest eigen-
values. These eigenvectors span a smaller vector space and thus, reduce the dimensionality
of the data matrix A.
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Additionally, each data point can be represented as a linear combination of eigenvectors
and any new data point can then be reconstructed from these eigenvectors as:

Ĵ = x̄ + XXT (Jnew − x̄) (2.4)

where Jnew is a new vectorised 2D image and Ĵ represents the same image reconstructed
as a linear combination of eigenvectors X. The reconstruction error or the distance from
feature space is then defined as:

e = ||Jnew − Ĵ||2 (2.5)

PCA was first applied to images of faces in the late 80’s (Sirovich and Kirby, 1987) and
later used for face recognition (Turk and Pentland, 1991). In the context of model based
fitting PCA is often used for training, i.e. model building. A set of training images
of a particular object is used for calculating the eigenvectors, which are then used for
reconstructing a new instance of an object that was not included in the training set.

The disadvantage, however, is that in order to represent a large variety of object appear-
ances, the training set needs to cover all these instances. For example, a training set
consisting of male faces only is not sufficient to represent female faces. Thus, the training
set is crucial for the performance of PCA when reconstructing previously unseen images.

The approaches presented in the following sections use PCA to reduce the dimensionality
of the training data and thus new object instances can be represented and compared
efficiently.

2.1.1.1 Active Shape Models

Active Shape Models (ASM) are a statistical model that have first been proposed in Cootes
et al. (1995). They are mainly used to detect feature points along contour lines in images.
These contour lines are learnt from a set of training images with labelled object boundaries.
Figure 2.1(a) shows such an example training image with labelled contours.

Each image of the training set is labelled with a set of feature points connected through
contour lines. These images are aligned to a common coordinate system and PCA is
used to reduce the dimensionality for a concise and efficient representation. Only the
eigenvectors with the largest eigenvalues are kept to model the distribution of the training
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(a) ASM (b) AAM (c) 3DMM

Figure 2.1: Different face models based on learning the vector space from a set of labelled
training images using PCA. (a) Active Shape Models (ASM) model only the intensity
values along object contour lines. (b) Active Appearance Models (AAM) learn the shape
as well as the appearance of a particular type of object, like a human face, from a set of
training images. (c) 3D Morphable Models (3DMM) calculate the eigenvectors from a set
of 3D laser scans and thus, represent 3D shape and texture.

data. Each training contour c can then be approximated as:

c ≈ c̄+ Xb (2.6)

where c̄ is the mean of all training contours, X contains the eigenvectors corresponding
to the largest eigenvalues and b is a vector of coefficients. Thus, varying b will change the
shape of the contour c and to ensure similarity to the training set, b is usually limited by
the eigenvalues λ as ±3

√
λi (Cootes and Taylor, 1999).

When presented with a previously unseen image, the ASM algorithm iteratively improves
the fit of the learnt object shape model. The parameter vector b is initially set to zero and
the position of each feature point along the contour is optimised separately in the local
surrounding area. The parameters of the shape model, i.e. the vector of coefficients b,
a scaling factor and orientation and translation parameters are then updated to fit these
new contour lines. This process is repeated until convergence.

Since the shape model is optimised only locally, the performance is highly dependent on the
initialisation. A poor starting point may result in an unacceptable final fit. Furthermore,
since PCA is used to calculate a shape model from a set of training images, this set needs
to cover all possible object deformations to allow for a sufficient generalisation.

The basic ASM algorithm has been extended for example by Tu et al. (2004) using a
hierarchical CONDENSATION (particle filter) framework and by Yan et al. (2003), where
the shape estimation problem is formulated in a Bayesian framework.
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2.1.1.2 Active Appearance Models

While Active Shape Models only optimise around the contour lines of the object, Active
Appearance Models (AAM) (Edwards et al., 1998) extend this approach and represent
both, shape and texture of a given class of object. During the training process a generative
model is built such that both shape and texture are controlled by a set of parameters.
Again, PCA is applied to a set of labelled and normalised training images. The parameter
vector b of the resulting appearance model then controls both the shape s and texture a
of a new object as:

s = s̄+ Xsb a = ā+ Xab (2.7)

where Xs and Xa are matrices derived from the eigenvectors of the shape model and
the appearance model respectively. The vector of coefficients b controls both shape and
appearance, since they are linearly dependent.

Finding the optimum model parameters b for a previously unseen image then equals to
deforming the shape s and varying the appearance a of the model to fit the image. There-
fore the image residual δI is calculated as the difference between the new image Inew and
the image Ib created with the current appearance model parameter b as δI = Inew − Ib.
Minimising δI then requires the calculation of the first derivatives with respect to b, i.e.
the Jacobian. In practice it is sufficient to estimate the Jacobian from the training set
using numeric differentiation by perturbing each of the coefficients in b and observing the
resulting error (Cootes and Taylor, 1999). Figure 2.1(b) shows an example of a new image
of a face (left) and the face shape and texture modelled by the AAM (right).

This approach improves the ASM algorithm in Section 2.1.1.1 as it takes into account not
only the shape of an object but also its appearance. However this increases the complexity
and decreases the computational performance of the fitting algorithm. Furthermore, the
quality of the fit is only as good as the generalisation ability of the appearance model,
again a diverse training set is needed to achieve best results.

Since it was first proposed, the original AAM algorithm has been extended and modified.
For example the authors of Dedeoglu et al. (2006) include the down sampling of the
camera into the fitting process, and thus fit an AAM model to faces in low resolution
images. In Ayala-Raggi et al. (2008), AAMs have been extended to incorporate lighting
changes using harmonic images. In Xiao et al. (2004), AAMs were combined with 3D
Morphable Models to allow for a three-dimensional fitting.
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2.1.1.3 3D Morphable Models

The previous two methods used PCA to build 2D shape and 2D appearance models from
a set of training images. This concept has been extended to 3D laser scans of human
faces. The authors of Blanz and Vetter (1999, 2003) generate a so called 3D Morphable
Face Model from a set of accurate 3D laser scans. They acquired 200 face scans of 100
male and 100 female persons and similar to the AAM approach in Section 2.1.1.2 PCA is
used to reduce the dimensionality of the 3D scans. The eigenvectors of the 3D shape S
and the texture T are calculated from the training data set and a new 3D face, including
its shape and texture, can then be represented as:

S = s̄+
m−1∑
i=1

αisi, T = t̄+
m−1∑
i=1

βiti (2.8)

where s̄ and t̄ are the average shape and texture vectors respectively and si and ti are
the eigenvectors of the shape and texture respectively that form an orthogonal basis. An
arbitrary 3D face is then modelled as a linear combination of eigenvectors by varying the
linear coefficients αi and βi.

In order to fit the model to a previously unseen image, the model parameters αi and βi

are refined in an analysis-by-synthesis loop. The model is initialised manually and the
residual between the deformed model and the image is calculated. The calculated error is
then used to refine the model such that it converges to its optimum. In Blanz and Vetter
(1999), this optimisation is defined in a Bayesian framework and a stochastic gradient
descent is used to find the optimum.

Morphable models are now widely used, for example, in combination with model-based
bundle adjustment of selected facial feature points (Dimitrijevic et al., 2004) or in combi-
nation with shape-from-silhouette (Wang et al., 2005b). Blanz et al. (2005) extended the
3D Morphable Model approach to accomplish face recognition using the estimated model
parameters. The authors of Zhao et al. (2006) increased the speed of the reconstruction
process by optimising the shape parameters only and extracting the weighted texture in-
formation from different images. In Wang et al. (2005a), an Expectation-Maximisation
(EM) approach is applied to infer shape and texture parameters from their Syncretized
Shape and Syncretized Texture Model respectively.
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2.1.2 Deformable 3D Face Mesh Models

The methods in the previous sections applied PCA to create a face model from a set of
labelled training images or 3D scans. The following approaches use predefined deformable
3D face models to fit images of human faces. These face models are usually 3D polygonal
representations consisting of vertices and edges like in Ahlberg (2001). Such a deformable
model can either be designed by an artist (Zhang et al., 2004) or hand-crafted to fit a
specific face (Goldenstein et al., 2004b). It can also be derived from human facial mus-
cles (Roussel and Gagalowicz, 2005) or include the MPEG-4 points to deform the facial
mesh (Tang and Huang, 2008). The shape of these models can either be controlled by pre-
defined metrics like the MPEG-4 standard or use physics based functions like deformable
fields or radial basis functions to control the person-specific shape and expressions of the
model.

The following Section 2.1.2.1 introduces a number of different 3D face models based on
predefined metrics and more complex models are presented in Section 2.1.2.2. Each model
is compared with respect to its size, the deformability of the mask and selected fitting
methods.

2.1.2.1 Predefined Metrics and MPEG-4

The MPEG-4 standard defines a set of facial feature points and facial animations (Pakstas,
2002). These deformations are defined as fractions of distances between feature points and
thus, the MPEG-4 standard can be used to control any 3D face model by selecting the
feature points of the particular 3D model. This standard is often used to animate avatars
to allow for low bit rate video transmissions (Tang and Huang, 2008).

Similar to the MPEG-4 standard other 3D face models with their own predefined metrics
have been proposed in literature as shown in Table 2.1. Each of these models is described
in more detail.

Directed Search

The CANDIDE-3 face model in Ahlberg (2001) is defined by 104 vertices and 184 triangles
and controlled by 14 shape and 65 animation parameters. The neutral face mask ḡ is
linearly deformed as:

g = ḡ + Sσ + Tα (2.9)
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c© 2008 IEEE. c© 1999 IEEE.
Vertices 184 194 n\a
Triangles 104 360 16 Bézier volumes
Deformability 14 shape and 64 ex-

pression parameters
65 metrics 23 visemes and 6 uni-

versal expressions
Fitting
Method

Locally Exhaustive
& Directed Search

Model-Based
Bundle-Adjustment,
Non-Linear LMS
Optimisation

manual selected fea-
ture points

Reference (Ahlberg, 2001; Dor-
naika and Ahlberg,
2006)

(Zhang et al., 2004;
Lu et al., 2001)

(Tao and Huang,
1999)

Table 2.1: Comparison of different 3D face mesh models using predefined metrics with
respect to their size, deformability and methods for fitting the 3D face model to an image.

where S and T are matrices containing the shape and animation metrics respectively which
are controlled by the linear coefficients contained in vectors σ and α. The conversion from
shape and animation parameters to the MPEG-4 standard is given in Ahlberg (2001).

For fitting this model to an image of a known face a locally exhaustive and directed
search is proposed in Dornaika and Ahlberg (2006). The best parameter vector b =
[dx, dy, dz, φx, φy, φz, α] containing rotations [φx, φy, φz], translations [dx, dy, dz] and the
animation parameter α is calculated by minimising the reconstruction error in feature
space (Equation 2.5). The values of bi are systematically altered to locally explore the
error function until a local minimum is found. The search along the direction of this
local minimum then yields the final b. This heuristic method calculates the best model
parameters without calculating the derivatives of the error function. However, only the
animation parameters α, but not the person-specific shape parameters σ, are optimised.

Model-Based Bundle-Adjustment

Similar to the previous model, the face model in Zhang et al. (2004) is defined by 194
vertices and 360 triangles and 65 metrics control its deformations. The proposed fitting
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approach is based on model-based bundle-adjustment. Given a video sequence of a face,
a large number of image features pij are selected in two images of a video sequence and
3D points Pj are reconstructed using bundle-adjustment as:

min
Pj ,Pi

∑
i

∑
j

Pi(Pj)− pij (2.10)

where Pj is the jth feature point in 3D, Pi is the projection into the ith frame and pij is
the jth 2D feature point in the ith image. This error function is minimised with respect
to the 3D coordinates of all points Pj and the projection parameters for each frame i.

The face model is then fitted to the resulting 3D point cloud. This initial fit is further
refined by utilising model-based bundle adjustment. The original error function is con-
strained by penalty terms based on the face model and all video frames are taken into
account. The penalty terms reduce the search space and allow for a more efficient cal-
culation. The disadvantage is the need for manually selected features and even though
model-based bundle-adjustment is more computational efficiently than bundle adjustment,
it is not applicable for real time applications.

Non-Linear Least Mean Square Optimisation

The authors of (Lu et al., 2001) use the same face model as Zhang et al. (2004) but
instead of model-based bundle-adjustment a feature point driven non-linear least mean
square optimisation is used. Only a single image of a person’s face is used to deform
and fit the model. A trained ASM (Section 2.1.1.1) is used to automatically detect facial
features along contour lines. These feature points pj match predefined 3D points Pj on
the generic face model. The assigned point-to-point and point-to-contour correspondences
are then used to optimise for the initial pose parameters, i.e. three translation and three
rotation parameters, as:

min
P

∑
j

P(Pj)− pj (2.11)

where Pj is the jth feature point in 3D, P is the projection into the image and pj is the
jth 2D feature point.

This is similar to the bundle adjustment approach except that only a single image is used
for optimisation and the quality of the fit depends on the accuracy of the detected image
features. Since the mask fitting is solely dependent on feature points, an erroneous feature
detection will inevitably result in an inaccurate fit.
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Bézier volumes

The face model in Tao and Huang (1999) is defined as a piecewise Bézier volume. The
mesh is surrounded by a top and a bottom Bézier volume and deformations are modelled
by predefined metrics as:

V = BD (2.12)

where D controls the displacement of the Bézier volumes and V contains the resulting
displacements of each mesh point. The matrix B is the mapping function of Bernstein
polynomials. Assuming that V0 represents the neutral face model, expressions can be
modelled as:

V0 + B[D0,D1...DM ]P (2.13)

where each Dm deforms the Bézier volume according to a specific expression and the
vector of coefficients P controls the intensity of these expressions.

This model is used in Tang and Huang (2008) to track head movements and facial expres-
sions of a person through a video sequence. The deformation parameters of the model
are then converted into the MPEG-4 standard to animate an avatar. Thus, the result
of the expression tracking needs to be expressed in terms of MPEG-4 facial animation
parameters (FAP) as:

argmin||∆v̂i −
K∑
k=1

∆v̂ki ||2 (2.14)

where ∆v̂i is the movement of the ith facial feature point resulting from the tracking and
∆v̂ki is the kth facial animation parameter (FAP) defined by the MPEG-4 standard. The
MPEG-4 standard allows for standardised and comparable deformations across different
face models but only allows for basic expressions sufficient to animate avatars, however
more realistic human facial expressions require more complex models.

2.1.2.2 Complex Deformable Models

The complex deformable 3D face models presented in this section use either a multiple
layer architecture (Roussel and Gagalowicz, 2005) or define the model deformation as
radial basis functions (Park et al., 2004) or deformable fields (Goldenstein et al., 2004b).
Because of their complexity these models are in general more flexible and can model
slight shape differences better than models with fewer deformation parameters. However,
adjusting these models to fit a specific face may also be more computationally expensive
and images of high resolution are usually needed for fitting. The three models presented
in this section are summarised in Table 2.2 and each of them are described in more detail.
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c© 2004 IEEE. c© 2004 IEEE.
Vertices ca. 5000 n\a 1,101
Triangles ca. 10,000 ca. 20,000 2,000
Deformability 4-layer architecture

including MPEG-4
and Bézier curves

Radial Basis Func-
tions for 160 key fea-
ture points

11 parameters

Fitting
Method

manual selected fea-
ture points

feature points along
contour lines

manual fitting using
Deformable Fields

Reference (Roussel and Gaga-
lowicz, 2005)

(Park et al., 2004) (Goldenstein et al.,
2004b, 2003)

Table 2.2: Comparison of different 3D face mesh models with respect to their size, their
deformability and methods for fitting the 3D face model to an image. All images are taken
from the respective references.

Hierarchical Anatomy Driven Face Model

The face model in Roussel and Gagalowicz (2005) is inspired by the anatomy of the
human face. The MPEG-4 animation standard is extended to include facial muscles for
more flexible and realistic deformations of the face. The deformations of the face model
are controlled by four layers. The first layer defines radial basis functions for smooth
deformations of selected 3D points, while the second layer uses the MPEG-4 standard to
control specific feature points as well as Bézier curves to deform predefined curves along
the face mesh. The two highest layers then use these predefined deformations to model
specific facial movements like ’lower lip’ or ’left eyelid’ and to construct specific facial
expressions like ’happy’ or ’sad’, at level three and four respectively. Due to the layered
structure, this model is very flexible but requires high resolution images for accurate fitting
and tracking. The layered architecture can be adapted to any face mesh model if desired.

Radial Basis Functions

In Park et al. (2004), a generic 3D head model is created as the mean across a number
of 3D head scans. To accurately adjust this generic head model to a specific person two
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or more high resolution 2D images are required. Radial basis functions are then defined
to fit the generic head to a frontal and side view image of the new person. A number of
image feature points are located along contour lines and the corresponding 3D head model
points are assigned.

A function f(p̄) then deforms every 3D point p̄ of the head model to fit these 2D-3D
feature point correspondences. Deformations are driven by radial basis functions which
are defined around 160 key feature points selected from the 3D head model. The distance
between a 3D point p̄ and a feature point determines the strength of the deformation: the
further away the weaker the deformation. Using constraint optimisation the parameters
of the function f(p̄), i.e. the deformation forces, are estimated. Similar to the previous
approach such a realistic 3D head model can only be created from high resolution images,
like in this example a frontal and a side view.

Deformable Fields

Instead of using a rigid mesh with pre-defined metrics the authors of Goldenstein et al.
(2004b, 2003) use a dynamic face mesh model and deformable fields are used to adjust
the model to a specific face. The deformable face mask consists of 1,101 vertices that are
connected by edges to form 2,000 triangles, but instead of metrics that deform selected
vertices in a pre-defined way, a deformable field is used for modelling deformations. The
position of every 3D model point pi is calculated by a function Fi as:

pi = Fi(q, ui, vi) (2.15)

where q is a vector of deformation parameters and (ui, vi) is a point in (u, v) space. This
vector field applies the deformation in 2D space and then returns the resulting 3D vertices
of the mesh. The deformation parameters affect the vertices close to the centre of the
deformation most, while smaller forces are applied to vertices farther away.

This type of mesh is also defined as a multi-resolution structure. Starting from a coarse
base mesh, binary multi-triangulation is used to generate a higher resolution mesh. The
deformations are decoupled from this as they are defined in (u, v) space. This model has
only been applied to high-resolution images of faces where a sufficient number of feature
points is available for fitting or tracking (Goldenstein et al., 2004a; Metaxas et al., 2004).
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t t+1

(a) Feature Based Tracking

t t+1

(b) Appearance Tracking

Figure 2.2: (a) Single features are tracked from frame t to frame t+ 1 (b) The appearance
of the entire object is used for tracking.

2.2 Model Based Tracking

Tracking describes the process of locating an object in successive frames of a video se-
quence, where the location of the object is usually defined in respect to the camera co-
ordinate system. In 2D tracking the transformation between video frames can be de-
scribed with affine transformations or projective transformation, e.g. homography, while
3D tracking requires the calculation of the 3D pose and orientation of the object. The
pose parameters T ext are then defined as translations [dx, dy, dz] and rotations [φx, φy, φz]
around the camera axis.

Most 2D tracking approaches work well for planar objects and under constant lighting
conditions. However, when tracking non-planar objects, large view point changes may
alter the appearance of the object and cause most 2D based trackers to fail. Model based
tracking tries to overcome these limitations by incorporating the 3D model of an object to
help find the new pose and orientation in the next frame. By knowing the 3D geometry of
the object, changes in pose and lighting can be modelled and thus, better accounted for.

Model based tracking can either be feature based or appearance based as shown in Fig-
ure 2.2. Feature based methods track single features from the previous frame to the current
frame and then estimate the pose parameters and the deformation parameters of the ob-
ject model by fitting it to retrieved feature points in the current frame. Appearance based
tracking methods used the entire texture of the face, rather than single feature points, to
find the new position in the next frame. Representatives of both methods are described
in the following sections.
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2.2.1 Feature Based Tracking

Feature based tracking methods usually calculate a motion field first and then deform
the object model to fit the new feature points. Optical flow (Gautama and van Hulle,
2002) is commonly used for calculating a two-dimensional motion field based on image
intensities. Given a feature at image location (x, y) in frame i the optical flow assumes
that the intensity of this feature is constant in the next frame i+ 1 as:

I(x, y, i) = I(x+ ∆x, y + ∆y, i+ 1) (2.16)

where I(x, y, i) is the intensity of the image feature at location (x, y) in frame i and
(∆x,∆y) is the feature point displacement in image coordinates.

The position of each feature (x + ∆x, y + ∆y) in frame i + 1 can be calculated using
block-matching algorithms (Shi and Tomasi, 1994) or differential methods, for example.
A good overview including a performance evaluation is given by Barron et al. (1994). The
accuracy of the motion field is highly dependent on the selected features. Feature points
lacking a rich local texture are more likely to be mismatched, i.e. their position may not
be recovered accurately.

The facial tracking method proposed in Tao and Huang (1999) uses a template matching
approach to estimate a motion field in two consecutive frames. The 3D motion of the entire
mask, i.e. translation and rotation as well as the expression parameters are then calculated
using a least square estimator by linearising the derivatives. This way single mismatched
image features are corrected by using the deformability of the mask as constraint. This
tracking approach is extended to learn new facial expressions that are not yet represented
by the face model. After each frame the resulting tracking error is analysed and the
predefined deformation parameters are adjusted, if required.

2.2.2 Appearance Tracking

Appearance based tracking methods use a textured 3D model of the object to find the
location of that object in the next frame. Instead of an accurate 3D face model the method
proposed by Cascia et al. (2000) uses a cylindrical head model to track the motion of a
person’s head. It is argued that a more complex head model does not improve the quality
of the track as it requires more parameters and is less robust to perturbations in the
initial position. The cylindrical model is initialised automatically using the result of a
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face detector. The authors reported that it was not possible to automatically initialise a
complex human head model.

The cylindrical model is projected into the first frame of the tracking sequence and a refer-
ence texture J0 is extracted. This reference texture is used to calculate so called warping
templates by perturbing the initial position. A displacement matrix Na = [n1, n2, ..., nK ]
stores the displacements of each pose parameter T = [dx, dy, dz, φx, φy, φz, ]. Each warping
template ok is then calculated as:

J0 = P(I0, T0)

ok = J0 − P(I0, T0 + nk)

where P projects the cylindrical head model into image I0 using parameters T0 and J0 is
the resulting reference texture. In practise, four displacements per parameter are sufficient.

The illumination is modelled similarly as a linear system using illumination templates.
These templates U are calculated by applying Singular Value Decomposition (SVD) to a
large set of training images of different persons under different lighting conditions. The
difference in illumination between two frames can then be approximated as:

J − J0 ≈ Uc (2.17)

where the columns of U are the illumination templates and c is a vector of coefficients.

Tracking is then realised by calculating the difference between the reference texture J0

and the texture of the current frame J . Using the warping templates and the illumination
templates this difference is approximated as:

J − J0 ≈ Oq + Uc (2.18)

where the columns of O contain the warping templates. The linear coefficients q and c are
estimated as a weighted and regularised least square solution.

According to Wen and Huang (2005) the best model-based tracking results in low resolu-
tion video are obtained by combining feature based and appearance based methods. They
initialised the face mask manually in the first frame and for each new frame two texture
residuals are calculated using an appearance based and a feature based tracking approach.
The method that results in the smallest texture residual is then chosen for the current
frame.
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2.2.3 Particle Filters

Particle filters (Kitagawa, 1987; Doucet et al., 2000) are statistical tools to model non-
linear discrete time series and are used for feature based tracking as well as appearance
based tracking. They are a special variant of the Kalman Filter that allows the state
variables to be non-Gaussian distributed. The theory of Monte Carlo samples is applied
to estimate the posterior probability distribution of the current state xt. When used for
tracking, each state represents the location and/or pose parameters of the tracked object
in the current video frame t. The posterior of each state is factorised as follows:

P (xt|y1:t) ∝ P (x1)
T∏
t=1

P (yt|xt)
T∏
t=2

P (xt|xt−1) (2.19)

where xt is the state at time t, t = 1, 2, 3, ...T and yt are the observations at time t, which
can be low level image features, for example. Each state usually describes the location
and/or pose parameters of frame t and all observations are conditionally independent given
the state.

The conditional state density P (xt|y1:t) at time t is represented by a set of samples,
i.e. particles, x(i)

t with corresponding weights w(i)
t representing the sample probability.

Given a set of particles at time t− 1, new samples at time t are drawn depending on the
sampling scheme (MacKay, 1998). The bootstrap particle filter uses importance sampling
and Monte Carlo samples x(i)

t are drawn as:

x
(i)
t ∼ P (xt|xt−1) (2.20)

w̃
(i)
t = P (yt|xt), w

(i)
t =

w̃
(i)
t∑

i
w̃

(i)
t

(2.21)

where ∼ means “sample from” and w(i)
t is the weight associated with sample i. After each

time step t all particles are resampled (Doucet et al., 2000).

There are a number of variations to this particle filter approach which differ in the way the
samples are drawn, or the resampling rate. The annealing particle filter (Deutscher and
Reid, 2005) for example decreases the spread of sampling distribution in order to ensure
convergence.

Such an annealing particle filter tracking approach, combined with incremental weighted
Principal Component Analysis (PCA), is used in Tu et al. (2006) to track faces in low
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resolution. They use a face model that only covers the top part of the face as this part is
mostly undisturbed by facial expressions. The samples are used to represent translation
and rotation parameters in 3D space and incremental PCA is applied to model appearance
variations and thus, track the face.

2.3 Super Resolution

Many computer vision algorithms require images of high resolution. The higher the reso-
lution, the more detailed the scene and the better the performance of the image processing
method. Unfortunately such high resolution images and videos are rarely available, espe-
cially in surveillance tasks. Thus, super resolution offers a cost-effective way to increase
the resolution of videos and images and has been well studied in the last decades (Chiang
and Boult, 2000; Lin and Shum, 2004a; Park et al., 2003; Tanaka and Okutomi, 2005).

In general super resolution methods increase the resolution of a single image or a whole
video sequence and can be formally treated as single frame and multi-frame approaches
using spatial and frequency information (Huang and Tsai, 1984; Borman and Stevenson,
1998). Park et al. (2003) give a good introduction to the technical side of super resolution.
The theory of super resolving low resolution images is introduced in the next sections.

2.3.1 The Inverse Problem

The Observation Model is based on the assumption that every image is warped, blurred
and down sampled by the imaging system. Therefore each high resolution image Ihigh can
be transformed into a low resolution image I low, under the assumption that I low remains
constant during the super resolution process, as:

I low = MIhigh + z with M = SBW (2.22)

where M is the system matrix that represents the imaging system consisting of warping
W , blurring B as well as sub-sampling S and z is additive random noise (Park et al., 2003).
When dealing with colour images the sub-sampling matrix S can be further divided into
S = DA according to Farsiu et al. (2004), where D represents the generic down-sampling
by a constant factor and A specifies the colour filter effects on colour images.

As part of the system matrix M , the warping matrix W contains the transformations
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from the world coordinate system into the camera coordinate system, i.e. global and local
translations and rotations. The estimation of this matrix is crucial as the warping describes
the sub-pixel shifts of the low resolution images with respect to the high resolution image.
The blur which is described by the blurring matrix B is the result of the point spread
function (PSF) of the camera, motion blur or other effects caused by the optical system,
e.g. out of focus or aberrations. The PSF of an optical system is usually approximated
as a Gaussian filter. A more realistic model for the blurring caused by the camera is the
Bessel function.

The problem of finding the high-resolution image is now equivalent to inverting the system
matrix M , e.g. solving the inverse problem. However inverting the system matrix M is
computationally complex because M might be ill conditioned or even singular. Thus, most
approaches approximate Ihigh by defining a cost function and minimising:

Îhigh = argmin
Ihigh

||I low −MIhigh||22. (2.23)

A commonly used cost function is the L2 norm. However Farsiu et al. (2004) report that
using the L1 norm instead of the least mean squares approach is more tolerant to outliers.
Additionally, constraints in the form of Lagrangian multipliers or regularisation terms can
be added to control the smoothness (Baker and Kanade, 2002).

2.3.2 Image and Video Super Resolution

The simplest way of increasing the resolution of a single image is by interpolation using
nearest neighbour or spline interpolation. However, interpolation alone is unable to recover
high-frequency details of the image or video and is therefore not truly regarded as ‘formal’
super resolution (Park et al., 2003).

Super resolution methods that reconstruct high resolution images from video sequences
apply the image formation process of Equation 2.22 to several frames (Farsiu et al., 2004)
or use a Bayesian approach to estimate images of higher resolution (Baker and Kanade,
2002). The four main steps for increasing the resolution of a video sequence according
to Chiang and Boult (1996) are:

1. Finding Correspondences

2. Warping into Coordinate Systems
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3. Fusion of Frames

4. Deblurring

The first step finds pixel correspondences in all images of the sequence in order to detect
sub-pixel movements. Common techniques are block-matching algorithms like the sum
of absolute differences (SAD), optical flow (Gautama and van Hulle, 2002) or KLT (Shi
and Tomasi, 1994). Accurate image registration is important and affects the quality of
the super resolution result as shown in Zhao and Sawhney (2002). The more precise the
motion estimation, the better the resulting high-resolution images. However the precise
detection of sub-pixel movements is particularly hard in low resolution images (Barreto
et al., 2005), especially when dealing with non-planar and non-rigid objects under changing
lighting conditions. According to Baker and Kanade (1999) most existing super resolu-
tion algorithms are therefore not suitable for video sequences of non-planar and non-rigid
objects, like faces.

After the estimation of pixel correspondences and sub-pixel movements, all frames are
warped into one coordinate system. This warping usually involves interpolating the low
resolution images using standard techniques like nearest-neighbour interpolation or spline
interpolation (Chiang and Boult, 1996).

In the third step the different frames are combined to result in a single super resolved im-
age. One of the simplest techniques is calculating the mean or the median. More complex
methods include non-uniform interpolation, weighted nearest neighbour interpolation or
wavelet interpolation.

The deblurring of the resulting high resolution image is an optional last step. Common
deconvolution techniques are the Wiener filter or the Lucy-Richardson algorithm, both
algorithms require an initial guess of the underlying point spread function.

Pre-requisite for increasing the resolution of video sequences by combining several frames
are sub-pixel shifts between consecutive frames. Typical super resolution techniques as-
sume that the camera is moving as the scene is recorded, but a moving camera results
in motion blur which decreases the quality of the images, so according to Ben-Ezra et al.
(2005) traditional cameras should avoid motion blur as much as possible.

Recent studies involve the use of special cameras to capture super resolved video sequences
directly. The so called jitter camera is used in Ben-Ezra et al. (2005) and creates sub-
pixel offsets between frames during recording. They also show that motion blur degrades
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the result of super resolution algorithms, even if the motion blur itself is known, and
should therefore be avoided. The authors of Agrawal and Raskar (2007) use a special, so
called, flutter shutter camera. This camera preserves the high frequencies by opening and
closing the shutter frequently during exposure. A single camera is extended to capture
super resolved stereo images in Gao and Ahuja (2006) by recording the scene through a
transparent rotating plate in front of the camera.

Other existing approaches attempt to obtain a super resolved image directly during the
tracking process. For example the method proposed by Dellaert et al. (1998) presented
a Kalman Filter approach for model-based motion estimation and tracking by simultane-
ously increasing the resolution. Instead of conventional methods for motion estimation like
the sum of squared differences (SSD) or sum of absolute differences (SAD) a Kalman Filter
approach is applied. The novelty is the use of the texture map within the measurement
model of the Kalman Filter. The state variables represent the 3D pose and the texture of
an image patch. The resolution of the image is improved by assuming a high-resolution
image that is then projected into each frame of the sequence using the camera model and
additive noise.

2.3.3 Super Resolution Optical Flow

Super resolution optical flow (Baker and Kanade, 1999) is a common technique to increase
the resolution of a video sequence. It typically comprises the following five main steps:

1. Image Interpolation - interpolate each frame to twice its size

2. Image Registration - estimate the optical flow between consecutive frames

3. Image Warping - warp images into a reference coordinate system

4. Image Fusing - fuse images using mean, median or robust mean

5. Deblurring - apply standard deconvolution algorithms to super-resolved image

After each frame is increased to twice its size, optical flow is used to register consecutive
frame which are then warped into a reference coordinate system and finally fused. While
this approach is well suited to increase the resolution of images of rigid and planar scenes,
image registration is more difficult for non-rigid and non-planar low-resolution objects.
The first step of the super resolution optical flow algorithm interpolates each frame to
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twice its size using standard interpolation techniques such as nearest neighbour or bilin-
ear. However, interpolation cannot recover high-frequency details in images. In addition
it introduces artificial random noise that is difficult to remove in the deblurring step.
Warping images, the third step, also involves the interpolation of pixels which introduces
further noise.

In Yu and Bhanu (2006) super resolution optical flow is extended and planar patches are
used to track different parts of the face individually to account for the non-rigidity of the
face. The resolution of the face is increased for these different facial parts individually.

2.3.4 Super Resolution via a 3D Model

Using a 3D model of a particular object can help calculating super resolved images of this
object. A Bayesian approach based on model-based surface reconstruction is proposed
in Smelyanskiy et al. (2000). Their approach estimates the 3D surface together with
the lighting conditions to synthetically render high resolution images given a set of low
resolution observations of the scene.

They assume a user supplied parameterised surface-model, which includes a triangular
mesh representing the 3D surface and a reflectance model with the albedo of each triangle.
A synthetic image is rendered using the model parameters as well as the parameters from
the camera (position and orientation). The resulting images, one for each camera view,
are then compared with the actual observed low-resolution images and the difference is
used to update the parameters.

The key idea and the difference to traditional rendering in terms of computer graphics is
the different use of pixels and triangles. Traditional computer vision rendering techniques
map each triangle of the 3D model to more than one pixel in the image. The texture of
each triangle consists of several image pixels because each surface triangle is usually much
larger then a pixel. However super resolution is only possible if each triangle is smaller
than a pixel. Therefore, the approach proposed by Smelyanskiy et al. (2000) uses a 3D
mesh with triangles smaller than pixels, when projected into the image.

The approach proposed by Dedeoglu et al. (2006) improves the fitting of Active Appear-
ance Models (AAM) to low resolution video sequences. A so called Resolution Aware
Formulation (RAF) is incorporated into the error function of the AAM. The error func-
tion usually ranges over all pixels in the face appearance template and thus require the

28



CHAPTER 2. BACKGROUND

input image to be of the same size as the template. In case of resolution differences
interpolation is applied which affects and decreases the result of the fitting algorithm.

The RAF algorithm models the camera and the appropriate point spread function (PSF)
and the error function therefore minimises the AAM parameters with respect to the camera
model. The error is calculated as the squared difference between the low resolution input
frame and the simulated low resolution image depending on the AAM parameters and the
PSF. Once fitted correctly the AAM corresponds to the super resolved image of the object
represented by the AAM.

2.3.5 Hallucinating - Face Super Resolution

A learning based super resolution approach that is commonly applied to images of faces is
called Hallucinating. A prior is learnt from a set of training face images on the spatial dis-
tribution of the image gradient (Baker and Kanade, 2000). In a super resolution approach
this prior increases the resolution of the input image by up to eight times in size.

The approach has been further improved by dividing each image into a set of overlapping
patches from which the prior is learnt (Liu et al., 2005). The high resolution image is then
reconstructed from these patches. A further improvement includes tensors to represent
facial expressions (Jia and Gong, 2006).

However, all these approaches are class based and work exclusively on objects represented
within the training set. The applied super resolution methods reconstruct the high resolu-
tion image from the learnt prior rather than inverting the system matrix in Equation 2.22,
which is the more general approach.

2.3.6 Limits on Super Resolution

The first investigations of possible limits of super resolution techniques are conducted
by Kosarev (1990). He showed that there is an absolute limit for resolution enhancement
by Shannon’s theorem. The maximum Shannon resolution limit is:

1
3

log2

(
1 +

Ps
Pn

)
(2.24)
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where Ps is the signal energy and Pn is the signal noise. The ratio between Ps and Pn is
usually called the signal to noise ratio (SNR or S/N).

A more recent study on super resolution limits is done by Lin and Shum (2004b). They
examined reconstruction-based super resolution algorithms. According to them the theo-
retical magnification factor limit is 5.7 whereas the the practical limit is 1.6 or 2.5. They
also determined the number of low resolution images needed for achieving these magnifi-
cation factors M . If M is not an integer the sufficient number of low resolution images is
[2dNh −Me]2, where Nh is the square root of the number of high resolution pixels.

2.4 Character Recognition

The problem of low resolution character recognition arises in many situations such as
number plate recognition in large scale surveillance situations or the recognition of street
signs in surveillance video. Also text documents captured by web cameras or mobile
phones require algorithms that detect and recognise characters in low resolution images
and videos. This section gives an overview of existing approaches for character recognition,
in particular text document recognition and number plate recognition.

2.4.1 Text Document Recognition

Optical character recognition (OCR) is a method widely used for text document recogni-
tion with a large number of commercial software available. It is mainly used to convert
scanned text documents into machine readable text files. In general, OCR algorithms
comprise the following five main steps as illustrated in Figure 2.3:

1. Layout detection

2. Binarisation

3. Segmentation

4. Recognition

5. Spell check
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1) Layout Detection 2) Binarisation 4) Character Recognition 5) Spell Check3) Segmentation

W e     p r o p o s e     a

p a r a m e t e r i s e d     t e m p l a t e

m a t c h i n g        a p p r o a c h      f o r

r e c o g n i t i o n

l o w – r e s o l u t i o n    c h a r a c t e r

We propose a
parameterised template
matching approach for
low – resolution character
recognition

Figure 2.3: The basic steps of common optical character recognition methods include lay-
out detection to separate text paragraphs from images and figures, followed by binarisation
to convert the grey scale image into black and white. Each paragraph is then segmented
into single words and characters, which are then recognised individually followed by an
optional spell check.

The first step is to detect the layout of the provided image document and to separate
images and other non-text areas from the text. A good overview of existing text extraction
techniques is given by Jung et al. (2004). Once the text sections are detected they may be
normalised to increase the contrast for better recognition results before being converted
into binary images. These binary text images are then segmented into single words and
each word is segmented into single characters. The cropped images of binary characters
are then compared against a database of characters or recognised by a trained classifier. A
spell checker can then be used to correct single characters and words based on a dictionary.

The training of classifiers usually requires the extraction of features from a set of training
images of different characters. A good overview of different feature extraction methods for
recognising segmented single characters is given by Trier et al. (1996). Existing methods
are compared and tested with respect to their suitability for different applications.

Even though OCR is the standard method for recognising text documents it cannot be
applied to low resolution images of text. Most existing OCR approaches require a reso-
lution of at least 300dpi for a A4 page of font size ten which corresponds to a character
height of at least 30 pixels (S. Rice and Nartker, 1996). However low resolution characters
can be as small as five pixels in height.

Most OCR algorithms work on binary images only, but characters of less than 20 pixels
in height do not show clear edges but appear instead as amalgamates of aliased pixels.
Binarising these text images will result in degraded and concatenated characters which
are hard to separate into single letters, causing most OCR methods to fail.
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2.4.1.1 Low Resolution Text Recognition

Character and text recognition in low resolution images is a challenging task due to merg-
ing characters and unclear character edges. Existing approaches that tackle these problems
can be separated into approaches that enhance the quality and resolution of the text im-
ages and approaches that recognise the low resolution text directly.

A super resolution based approach is proposed by Dalley et al. (2004) to enhance the
quality of low resolution text images. Pairs of grey scale low and high resolution image
patches of characters are used to train a Bayesian framework. During testing the most
likely super resolved patch is inferred from a given low resolution image patch. This
approach produces a visual improvement only but no recognition results are reported.

Another approach that improves the visual appearance of low resolution text images uses
resolution expansion (Thouin and Chang, 2000). The problem of estimating the high
resolution image is formulated as a constrained non linear optimisation problem that is
solved iteratively. The resulting images of enhanced text achieve better recognition results
than images improved by standard resolution expansion methods.

Enhancement and super resolution methods improve the visual appearance of low resolu-
tion text images and can improve the recognition accuracy of OCR methods. However,
most enhancement methods modify the image in a way that may create artefacts that ad-
versely reduce the performance of standard OCR methods. Thus, the following approaches
recognise low resolution words without prior image enhancement.

A method based on dual eigenspace decomposition for low resolution character recognition
is proposed in Sun et al. (2005). A large set of degraded low resolution characters is
generated synthetically from binary character images of higher resolution. These images
are down-sampled, zoom interpolated and result in blurred and degraded characters that
are then used for training. A heuristic approach is chosen to separate low resolution
words into single characters which are then classified by a dual eigenspace classifier. The
disadvantage of this method is the need for segmented single characters.

The approach proposed by Einsele et al. (2008) recognises low resolution words directly
without prior character segmentation. They specialise on web images with anti-aliased
small size text and utilise a Hidden Markov Model (HMM). A sliding window technique
is used to extract features, i.e. slices, from a set of training images. The HMM is then
trained on these features with states symbolising characters. To recognise a new image of
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a word the HMM is then used to model the entire word.

Another similar algorithm is proposed by Jacobs et al. (2005). Again features are extracted
from a set of training images and a neural network-based character recogniser is trained.
In the recognition step the low resolution word is cut into slices and the neural network
recogniser returns the most likely character for each slice. Dynamic programming is then
used to recognise the entire word given the recognition result of each image slice.

2.4.2 Number Plate Recognition

Number plate or license plate recognition methods are widely used for identifying vehicles
for access authorisation or traffic infringements. A large number of commercial software
solutions are available and number plate recognition methods usually consist of the fol-
lowing four steps as illustrated in Figure 2.4

1. Plate Detection

2. Character Segmentation

3. Character Recognition

4. Regional Syntax Check (optional)

The detection of the number plate within the current frame or image is the first step. Once
the plate is detected it is normalised to adjust for orientation, size and skew as well as
brightness and contrast of the image. In the next step the number plate is segmented into
single characters and standard optical character recognition (OCR) methods are applied to
recognise each character individually. A regional syntax check to improve the recognition
result is optional.

A good overview of different detection, segmentation and recognition approaches is given
by Anagnostopoulos et al. (2008). Most approaches presented in the literature (Anag-
nostopoulos et al., 2006; Lee et al., 2004; Chang et al., 2004; Jiao et al., 2009) achieve
recognition rates of 90% and above when tested on high resolution images of number
plates. Images are considered of high resolution when the characters are at least 20 pixels
in height. This is usually realised by a relatively short distance between the camera and
the vehicle’s number plate. Smaller character heights may result in merged characters
that are hard to separate and recognise using OCR methods.
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1) Plate Detection 2) Segmentation 3) Recognition

ANA KG 806

4) Syntax Check

ANA KG 806

Figure 2.4: The basic steps of number plate recognition methods include plate detection
to localise the plate within the image. The cropped plate is then segmented into single
characters which are then recognised separately. A syntax check is optional.

2.4.2.1 Low Resolution Number Plate Detection and Recognition

Large scale surveillance situations often result in low resolution images of number plates
due to low resolution cameras or large distances between the camera and the plate. Meth-
ods for detecting number plates in low resolution images have been proposed in the liter-
ature (Wu et al., 2006), however the following problems arise for character segmentation
and recognition in low resolution images. Low resolution characters tend to merge along
their edges with the next character, making segmentation difficult, but without character
separation standard OCR methods will fail.

Most methods for detecting number plates in low resolution images use low level image
features. The method proposed by Wu et al. (2006) uses the morphological operation
’bottom-hat’ to detect possible number plate candidates. Heuristic criteria like size and
shape and number of zero crossings are used to validate the plate candidates. No further
recognition is applied to the detection results.

In Zhang et al. (2006), a cascading AdaBoost like classifier is built from local and global
low level image features. Firstly, global features are used to eliminate the background,
followed by classifiers trained with local Haar-like features to accurately detect the license
plates. Detection rates of 93.5% are reported but again no recognition is performed on
the results.

Image enhancement and super resolution methods are also applied to increase the quality
of low resolution number plate images. The method proposed by Suresh et al. (2007) uses a
maximum a posteriori (MAP) based super resolution method to increase the resolution of
low resolution number plates. Several low resolution frames of a video sequence are fused
to result in a high resolution number plate image. By using a different cost function the
MAP based super resolution method is capable of real-time processing (Yuan et al., 2008).
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However, the applied super resolution is for visual improvement only and no recognition
has been applied on the results.

2.5 Face Recognition

Face recognition methods are divided into 2D face recognition, 3D face recognition and
multi-modal approaches. Classical 2D face recognition approaches use a 2D intensity
image of a person’s face to recognise its identity. With the availability of 3D scanners,
3D face recognition approaches became popular in the late 1980s (Bowyer et al., 2004).
Instead of using 2D intensity images 3D face recognition methods use the 3D shape of the
face for recognition. Multi-modal face recognition approaches combine the advantages of
both 2D and 2D face recognition and are assumed to achieve better results than 2D or 3D
face recognition alone (Bowyer et al., 2005).

(a) 2D Face Recog-
nition

(b) 3D Face Recognition (c) Multi-Modal Face Recognition

Figure 2.5: Different approaches for face recognition. (a) 2D face recognition uses 2D
intensity images for recognising faces, while (b) 3D face recognition is applied to 3D data
of the face shape. (c) Multi-modal face recognition approaches combine the advantages of
both methods by fusing 2D intensity and 3D shape information.

2.5.1 2D Face Detection and Recognition

Face detection determines the location of a person’s face within an image whereas face
recognition identifies the actual person. Most approaches for face detection use low level
2D image features to train a classifier. A commonly used face detector is proposed by Viola
and Jones (2001). Haar-like low level image features are used to train a cascade of different
classifiers to obtain a robust face detector. A good survey of face detection techniques is
presented by Yang et al. (2002).
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Face recognition on 2D intensity images dates back to the mid 1960s (Bledsoe, 1966) and a
large number of different algorithms have been proposed since. Common methods include
Principal Component Analysis (PCA) (Turk and Pentland, 1991), Independent Compo-
nent Analysis (ICA) (Draper et al., 2003), Linear Discriminant Analysis (LDA) (Etemad
and Chellappa, 1996), Kernel Methods (Kim et al., 2002), Active Appearance Models
(AAM) (Cootes and Taylor, 1999) or Bayesian Methods (Moghaddam et al., 2000) with
two comprehensive overviews given by Chellappa et al. (1995) and Zhao et al. (2003).

Two standard face recognition methods commonly used for comparison as described
in (Georghiades et al., 2001) are correlation and PCA. Correlation is the simplest recogni-
tion method. A new image is recognised by calculating the distance in image space to all
training images stored in the face database. The image with the highest correlation, ie.
the nearest neighbour is chosen. Depending on the size of the face database this approach
requires a large amount of storage and can be computationally expensive.

In order to decrease the amount of storage needed PCA is commonly used for dimension-
ality reduction. The eigenvectors, also called eigenfaces, of a set of training images are
calculated and only the eigenvectors that correspond to the largest eigenvalues are kept
in order to reduce the dimensionality. A new image is recognised by projecting it into the
reduced feature space and calculating the distance to all other training images. The image
that results in the smallest distance is chosen.

However most 2D face recognition approaches are unable to satisfactorily solve the problem
arising from different pose and illumination conditions as well as facial expressions, occlu-
sions or ageing. 2D image intensity information alone is not sufficient to unambiguously
identify a person’s face under such a variety of environmental conditions.

2.5.2 3D Face Recognition

3D face recognition approaches use the 3D shape of person’s face instead of intensity
images for recognition and are therefore assumed to overcome the problems of 2D face
recognition (Bowyer et al., 2004). The main advantage of using the 3D face shape for
recognition is its robustness against changing lighting conditions, different head positions
or varying facial expressions.

Different methods for acquiring the 3D shape of a person’s face include laser scanners or
range sensors. The main drawback however is, that most 3D acquisition techniques do
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not operate in real time and require the person’s cooperation, and even though the 3D
face shape is illumination-independent, most acquisition methods are not. The lighting
conditions do effect the acquisition process and may result in poorly reconstructed 3D
shapes (Bowyer et al., 2005). Thus, most 3D face recognition approaches to date are not
suitable for large scale surveillance tasks with uncooperative subjects.

2.5.3 Multi-modal 2D + 3D Face Recognition

Recent studies (Bowyer et al., 2005; Husken et al., 2005; Abate et al., 2007) have shown
that in order to improve existing face recognition methods a multi-modal approach combin-
ing 2D and 3D face recognition outperforms 2D or 3D face recognition alone. Multi-modal
face recognition uses either 3D sensors for acquiring the 3D shape of the face or calculate
the 3D shape from a set of 2D images. The third type of multi-modal approaches incor-
porates previously acquired 3D information to fit a 3D face model to the 2D image of the
face. Common to all methods is the use of 3D shape and 2D intensity information for
multi-model face recognition.

Different methods for acquiring the 3D shape from a set of 2D images include depth-from-
stereo, photometric stereo, structured light or shape-from-motion. A good survey is given
by Chan et al. (2002). Different methods are examined with respect to their advantages
and disadvantages for the use of face recognition.

Multi-modal approaches that use pre-recorded 3D information to recognise faces in 2D
images are most promising since they combine the advantages of both methods by min-
imising the disadvantages of 3D sensors. Well known methods like Active Appearance
Models (Xiao et al., 2004) or Graph Matching (Husken et al., 2005) are improved by in-
corporating 3D information, and new approaches like 3D Morphable Models (Blanz and
Vetter, 2003) are introduced.

3D Morphable Models (3DMM) have recently been used for face recognition (Blanz and
Vetter, 2003). Using an analysis-by-synthesis loop for estimating 3D shape, pose, texture
and lighting from a single image, this method is very time intensive and has been applied
to high-resolution images only. In order to improve the run time of 3DMM, in Xiao et al.
(2004) 3DMM have been combined with Active Appearance Models (AAM). This method
optimises 2D texture as well as 3D shape and is less computationally expensive, but again
requires high-resolution images with a sufficient amount of facial features.
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Similarly to the combined AAM and 3DMM approach the authors of Husken et al. (2005)
extend Hierarchical Graph Matching (HGM) to include the 3D shape. The resulting
recognition rates strengthen the assumption that a multi-modal face recognition approach
is more powerful than 2D or 3D face recognition alone.

2.5.4 Face Recognition From A Single Image

Face recognition approaches commonly use a number of different images per person for
training. These images may be taken under different illumination conditions and under
different poses to ensure a diverse training set and thus, accurate and robust recognition
results. However, this requires the person to willingly volunteer and to participate in the
training process, but in large scale surveillance situations no more than a single image per
suspect may be available for training.

Several face recognition methods that use a single training image per person only have
been proposed, with a good survey given by Tan et al. (2006). However most of these
methods modify 2D face recognition approaches (Yang et al., 2004) or utilise the 3D
shape of the person’s face to increase the training set by creating novel views under
different illumination (Hu et al., 2004; Lu et al., 2006).

Recently a face recognition approach based on 3D Morphable Models and spherical har-
monics has been proposed (Zhang and Samaras, 2006). Using only a single training image
the 3D Morphable Model is fitted to the person’s face image on a analysis-by-synthesis
loop and the illumination is expressed as a linear combination of spherical harmonic im-
ages created from the 3D Morphable Model. The model parameters are then used for
recognitions. This fitting method requires either a manual initialisation or the assignment
of facial feature points and high resolution images.

2.5.5 Modelling Illumination for Face Recognition

Different lighting conditions can change the appearance of a person’s face drastically,
presenting a challenge to most face recognition algorithms as illustrated in Figure 2.6.
Different methods for modelling the illumination have been proposed in the past. These
methods are either based on a sub-space representation of 2D images under different
lighting conditions or use the 3D shape of a face for modelling illumination.
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Most 2D face recognition approaches need a large number of training images to suffi-
ciently model illumination changes. These training images are then used to construct a
low-dimensional person-independent subspace that is suitable for modelling varying light-
ing conditions. Since the first attempts in the mid 1990s, a number of approaches using
Principal Component Analysis (PCA) or other dimensionality reduction techniques have
been proposed (Hallinan, 1994; Belhumeur and Kriegman, 1998). In order to increase
the performance of PCA based recognition approaches the first three eigenfaces with the
largest eigenvalues are discarded. In practise this has been proven to increase recogni-
tion under varying lighting conditions (Belhumeur et al., 1997). The Linear Subspace
method (Georghiades et al., 2001) uses a number of training images for each subject un-
der different illumination to construct a three-dimensional linear subspace. New images
are then recognised by calculating the distance to each linear subspace. The subspace of
the subject that is closest is assigned to the new image.

The gradient angles method proposed in Chen et al. (2000) is a 2D face recognition method.
Changes in lighting are accounted for by illumination invariant features - image gradients.
During the pre-training phase the joint probability density function is calculated from a
set of 1280 images of 20 objects, no faces are amongst the objects. Then, only a single
frontal image of each subject under frontal illumination is used for training and recognition
requires the manual location and alignment of the face images.

(a) (b) (c) (d)

Figure 2.6: The appearance of a person’s face changes drastically under different illumi-
nation conditions presenting a challenge to most face recognition methods. Images taken
from the Yale Face Database (Georghiades et al., 2001).

In Shashua and Riklin-Raviv (2001) an illumination invariant representation of face im-
ages, the so called quotient images are presented. Given a single image of a person and a
database of a number of different people under different lighting conditions, the quotient
image can be used to re-render or recognise a new person even under new illumination
conditions. However the disadvantage of this method, as well as PCA based methods, is
the large number of training images needed to construct the subspace.

To overcome this problem, a method has been proposed in recent years that uses only a
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small number of images to construct the illumination subspace. According to (Georghi-
ades et al., 2001) only a small number of training images is required to construct a face
illumination subspace. This so called illumination cone representation is based on the the-
ory that the images of convex shaped objects with Lambertian reflectance under different
illumination form convex cone. A small set of training images under different lighting con-
ditions is used to construct the shape and the albedo of the person’s face using a variant
of photometric stereo. The reconstructed face shape and albedo is then used to synthe-
sise images of the subject under different poses and illumination conditions and these
images are then used to create a low dimensional illumination cone for each pose. During
recognition the identity of the illumination cone with the smallest Euclidean distance is
assigned to the new image. The Cones - cast method constructs the illumination cone
with cast shadows whereas the Cones - attached method only allows for attached shadows
and shading. Another approach that uses photometric stereo is proposed by Zhou et al.
(2004). They use only a single image under unknown illumination to extract the albedo
and surface normals of the face. All appearances of human faces are handled in a single
class and Lambertian reflectance is used to model the illumination.

The illumination cone representation is further investigated by Lee et al. (2001, 2005).
Instead of obtaining or synthesising a large number of images and applying dimensionality
reduction methods to create the illumination cone, the authors of Lee et al. (2005) show
that such a subspace is also spanned by only five to nine images of the subject. Point light
sources are arranged in such a way that a small number of images taken of the subject
under specific illumination settings is sufficient for representing its illumination cone. No
dimensionality reduction methods need to be applied. Real images as well as synthesised
images are used.

The theoretical explanation of the dimensionality reduction was first given by Basri and
Jacobs (2003) and Ramamoorthi (2002), who independently applied the spherical har-
monic representation to images of faces. They showed that the illumination of a convex
Lambertian object can be represented by nine harmonic images which are derived from
lighting functions defined on the surface of a sphere. Each harmonic image only depends
on the surface normals and the albedo of the object. So given a 3D model of an object, i.e.
a human face, the harmonic images can be calculated and the linear combination of the
first nine harmonic images is sufficient to model most illumination conditions, including
multiple light sources.

Instead of obtaining or synthesising a large number of images or taking a few images under
specific lighting conditions, these so called basis images that span the illumination cone of
a subject can also be generated from a 3D shape model according to (Basri and Jacobs,
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2003). Thus, 3D Morphable Models (3DMM) are used together with spherical harmonics
to recognise faces in Zhang and Samaras (2006). Only a single training image of each
subject is required and by semi-automatic fitting a 3DMM the face shape is recovered and
then used for generating nine basis images for each pose. Recognition is then performed
by calculating the distance to each subspace spanned by the basis images. The identity
the corresponds to the smallest distance is assigned to the new image.

2.6 Conclusion

The previous sections reviewed existing model based approaches for processing, enhancing
and recognising objects in low resolution images and video. The first subsection compared
existing methods for fitting a 3D face model to an image of a person’s face. All of the
reviewed methods require high resolution images for accurate model fitting and a large
number also requires manually selected facial feature points. A fully automatic approach
is proposed in Lu et al. (2001). Their method automatically detects feature points and
then fits a deformable face model to these points. However, the fitting of the deformable
mask is only as accurate as the feature point detection and might fail in low resolution
images.

Six different deformable face mesh models are compared with respect to their size, de-
formability and fitting methods. In general, a deformable mesh based on a small set of
predefined metrics can be fitted more efficiently than complex meshes containing several
deformation layers or a large number of possible deformations. However high resolution
images are required for fitting a complex and very flexible model which then results in an
accurate, person-specific 3D face shape approximation.

The review continued by investigating feature based and appearance based tracking meth-
ods. While feature based methods track single features only and may therefore suffer from
accumulated tracking errors, appearance based tracking methods try to match the entire
appearance of the object to find the pose parameters in the next frame. Again low resolu-
tion images pose problems to most tracking approaches due to a lack of prominent image
features. The method by Wen and Huang (2005) combined feature based and appearance
based methods and showed that a combined approach achieves best results especially in
low resolution images.

Super resolution methods enhance the resolution of a single low resolution image or com-
bine several video frames to create an image of higher resolution. Traditionally the image
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formation process is inverted to enhance the resolution of a single image, but this requires
the estimation of the system matrix M in Equation 2.22 that might be ill conditioned
or even singular. To overcome this problem video super resolution uses optical flow to
combine several video frames based on tracked image features (Baker and Kanade, 1999).
However this approach will fail for non-planar and non-rigid objects, because changes in
pose and object deformations will void the underlying assumptions and may result in
distorted super resolution images.

Continuing, different methods for object recognition are reviewed, namely character recog-
nition and face recognition. Standard optical character recognition methods work on bi-
nary images of single characters and thus require a minimum image resolution. Character
images of less than 20 pixels will result in distorted binary images depending on the ap-
plied threshold, and may result in recognition errors. Additionally, characters start to
merge with decreasing image resolution and show no clear edges which impedes character
separation as well as recognition. Existing approaches that recognise low resolution char-
acters without prior character separation are based on Hidden Markov Models (Einsele
et al., 2008) or dynamic programming (Jacobs et al., 2005).

Lastly, face recognition methods based on 2D images, 3D face models and multi-model
approaches combining 2D and 3D are reviewed. The main problems of 2D face recognition
algorithms are changes in pose and lighting. 3D face recognition methods try to overcome
these problems by using the 3D shape of the face. However, acquiring the 3D face shape
requires the person to voluntarily participate which makes these methods unsuitable for
wide area surveillance applications. Multi-modal approaches combine the advantages of
both 2D and 3D face recognition and are believed to outperform both (Bowyer et al.,
2005). The 3D Morphable Model approach is such a method that works on 2D images but
includes the 3D shape information implicitly by fitting the 3D Morphable Model. A face
recognition approach using only a single training image has been proposed (Zhang and
Samaras, 2006). However, their method and a large number of existing face recognition
methods are not automatic, they usually require a number of feature points to align the
faces for training and for recognition. However the precise detection of facial feature points
is difficult especially under different pose and illumination conditions.

The background chapter reviewed a number of different approaches from various fields of
computer vision, including model-based fitting, object tracking, image super resolution as
well as object recognition. In wide area surveillance situations all of the above methods are
faced with poor, low resolution video images. However, most of the presented techniques
require high resolution images or manual intervention to achieve best results. Furthermore,
the revision showed a need for fully automatic methods especially for model-based fitting
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and object recognition. Conclusively, the review identified open problems in computer
vision and the potency to improve the performance of methods in low resolution images.
The following chapters explore methods for model-based fitting, object tracking, image
super resolution and object recognition to handle automatic processing of low resolution
video images.
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Chapter 3

Automatic Fitting of a

Deformable Face Mask

Detecting a person’s face and precisely calculating its pose and shape parameters is indis-
pensable for a large number of image processing algorithms such as model-based tracking
or face recognition. However, the appearance of the face can be affected by a variety of
factors, such as different lighting conditions, different camera viewing angles, facial ex-
pressions or the resolution of the recorded image. All these factors make accurate face
pose and shape detection a challenging task, especially in uncontrolled environments.

Most existing approaches require controlled indoor environments (e.g. access control sys-
tem (Messer et al., 2003)) or recover only a rough estimate of the face position (Viola and
Jones (2001)). However, the height and width of the face alone are insufficient for accu-
rate initialisation or alignment tasks. More precise information like the 3D coordinates of
the face and its shape are needed for tasks like model-based tracking or facial recognition
applications.

Previous methods address the problem of fitting a deformable face model to a new image by
first finding facial features and then fitting the face mask to these points (Lu et al., 2001).
Active Shape Models (ASM) is a common method for detecting such facial features (Tu
et al., 2004) whereas Active Appearance Models (AAM) are used to model the facial shape
and texture, thereby detecting the face as a whole (Edwards et al., 1998).

This chapter proposes a new method for fitting a 3D deformable face model to a single
image of a person’s face. Using Principal Component Analysis (PCA) together with a
novel texture mapping method, an appearance model is built which is then used within a
particle filter based fitting algorithm. Only a single image of a previously unseen person
is needed for accurate 3D model fitting. Lighting invariance is achieved by incorporating
the work of Basri and Jacobs (2003) into the error function of the particle filter. Thus, the
proposed approach tackles the problem of automatic 3D mask fitting, lighting invariance
and unlike most ASM and AAM methods, is also suitable for low resolution images.
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The proposed approach differs from the AAM in that the facial shape is already implicitly
given by the deformable face mask model. Only the facial texture is learnt from a set of
training images using PCA and the deformation parameters are directly taken from the
face model. Furthermore, unlike 3D Morphable Models (Xin et al., 2005) the proposed
approach does not aim to generate a 3D model of a person’s face. The deformable face
model utilised is not flexible enough to model subtle shape differences.

This chapter is organised as follows: The proposed automatic mask fitting algorithm is
described in Section 3.1, including the generation of the appearance model in Section 3.1.1,
the lighting invariance in Section 3.1.2, the particle filter refinement in Section 3.1.3 and the
automatic fitting algorithm in Section 3.1.4. The experiments are outlined in Section 3.2.

3.1 Automatic 3D Face Mask Fitting

The proposed method automatically fits a 3D deformable face mask to a single image of
a previously unseen person under different lighting conditions and in low resolution. An
overview of the proposed algorithm is shown in Figure 3.1.

Face Model Generation Light-Invariance

Automatic Fitting
PCA Average face

EigenfacesTraining Images

Harmonic Images

Particle Filter

Figure 3.1: Overview of the automatic mask fitting approach. The 3D appearance model
is built from a set of training images using Principal Component Analysis (PCA). The
lighting invariance is achieved through harmonic images (Basri and Jacobs, 2003), gener-
ated from the 3D face mask. Lastly, a particle filter based fitting algorithm combines the
3D appearance model and the harmonic images to fit a deformable face mask to a single
image.

The pre-requisite for the fitting algorithm is a 3D appearance model, which is built only
once in the first step of the proposed approach. This 3D appearance model consists of a
mean face and a set of principal components, also called Eigenfaces, which are generated
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from a set of training images using Principal Component Analysis (PCA) (Turk and
Pentland, 1991).

The deformable 3D face mask is also used to generate so called harmonic images, based
on the work of (Basri and Jacobs, 2003), in order to achieve lighting invariance. Finally,
a particle filter based automatic fitting algorithm combines the 3D appearance model
together with the harmonic images to fit the deformable face mask to a single image of
a previously unseen person. Each of these modules is described in detail in the following
sections.

3.1.1 3D Appearance Model Generation

The 3D appearance model used within the proposed fitting algorithm is built off-line
and only once. Therefore, the deformable 3D face mask CANDIDE-3 (Ahlberg, 2001) is
fitted semi-automatically to a set of training images. PCA is then used to calculate the
3D appearance model, consisting of a mean face and a set of Eigenfaces. The following
sections describe the deformable CANDIDE-3 face mask, as well as the model generation
process in detail.

3.1.1.1 3D Face Mask

The deformable 3D face mask CANDIDE-3 (Ahlberg, 2001) is used for generating the 3D
appearance model. This 3D mask is defined by 104 vertices and 184 triangles and a set
of 14 shape and 65 animation parameters control its appearance. Each shape parameter
determines a person-specific face shape, whereas the animation parameters deform the
neutral face to allow for expressions. Thus the deformable mask mesh is described as
follows:

g = g + Sγ (3.1)

where g is the neutral face mask as shown in Figure 3.2, the columns of S are the shape
parameters and the linear coefficient γk ∈ [−1..1] controls the kth shape deformation;
expressions are neglected. Each shape parameter is a list of vertices and the displacement
needed to achieve the particular deformation.
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(a) mask 0 (b) mask 1 (c) mask 2 (d) mask 3

Figure 3.2: (a) Original CANDIDE-3 face mask with 184 triangle, (b), (c) and (d) are
subdivided masks after 1, 2 and 3 subdivision steps resulting in 736, 2944 and 11776
triangles. c© 2008 IEEE.

Table 3.1 lists all shape parameters of the CANDIDE-3 face mask. This list is reduced
to seven shape parameters (left column) which model the most significant person-specific
shape deformations, neglecting the shape parameters (right column) that change the neu-
tral mask only marginally. The reduced set of shape parameters is sufficient to adjust the
deformable mask to fit different faces, the main aim of this approach. The effect of these
shape parameters for γk = 1 and γk = −1 is shown in Figure 3.3. The deformability of the
mask does not allow for a precise modelling of a person’s face shape, like the exact shape
of the nose or the chin region for example. The proposed approach aims to automatically
detect the location of facial features by fitting a generic deformable 3D face mask to an
image of a face. The experiments in Section 3.2 will show that this is sufficient in dealing
with low resolution images under different lighting conditions.

In addition to the original CANDIDE-3 face mask (Figure 3.2(a)) the proposed fitting
algorithm also uses a finer sampled mesh. Therefore, the original face mask is subdivided
three times using the Modified Butterfly algorithm and the Loop subdivision as described

Used parameters Additional parameters
Eyebrows vertical position Head height
Eyes vertical position Eyes height
Eyes width Cheeks z-extension
Eye separation distance Nose z-extension
Nose vertical position Nose pointing up
Mouth vertical position Eyes vertical difference
Mouth width Chin width

Table 3.1: All 14 shape parameters of the CANDIDE-3 face mask. Only the shape pa-
rameters in the left column are used by the proposed approach.
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(a) Neutral Face (b) Eyebrows vertical position

(c) Eyes vertical position (d) Eyes width

(e) Eye separation distance (f) Nose vertical position

(g) Mouth vertical position (h) Mouth width

Figure 3.3: Extreme shape deformations for different shape parameters for γk = 1 (left)
and γk = −1 (right). For comparison the neutral generic face mask g is shown in (a).
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in Appendix A. This subdivision algorithm divides each mask triangle into four new trian-
gles by adding new vertices and keeping the position of the old vertices mainly unchanged.
The result after one, two and three subdivision steps is shown in Figure 3.2(b,c and d).
The finest sampled mask consists of 5984 vertices and 11776 triangles.

3.1.1.2 The 3D Appearance Model

The CANDIDE-3 face mask is used to generate the 3D appearance model. This deformable
mask is fitted semi-automatically to a set of training images of faces. A number of key
features are manually selected and the mask is automatically fitted using the Levenberg-
Marquardt algorithm (Moré, 1977) for optimisation. The sum of the squared distances
between the selected image feature points and the associated mask vertices is minimised
in order to calculate the face-specific shape parameters γ and pose parameters T ext =
[tx, ty, tz, φx, φy, φz] containing the rotation [φx, φy, φz] and translation [tx, ty, tz] of the
mask with respect to the camera.

After the deformable mask is fitted to an image of a face, it is assigned its texture, but
instead of traditionally mapping the texture of an area within the image to a mask triangle,
each mask triangle is assigned with a single colour value only. The centre of each triangle
is projected into the image as:

J = Q(P(g, T )) with T = [Tint,Text] (3.2)

where g is the deformed face mask, P projects the centre of each mask triangle into the 2D
image using camera parameters T . The intrinsic T int camera parameters are determined
by standard camera calibration techniques (Zhang, 2000). Note that a rough camera
calibration is sufficient, since the actual size of the face is not important for the proposed
approach. Q then creates a vector of concatenated colour values from the list of textured
mask vertices.

The method of assigning each mask triangle with a single colour value has several advan-
tages over traditional texture mapping techniques. Each mask triangle is assigned with
a single colour value only. No image warping or interpolation is needed for texture map-
ping the image area to the triangle, only a single projection from the triangle centre to
image coordinates is sufficient. Secondly, the number of triangles in the subdivided mask
determines the resolution of the mask texture. The original CANDIDE-3 mask consists of
only 184 triangles and thus 184 colour values. By subdividing this mask into a fine mesh
the resolution of the mask texture increases with the number of triangles and the more
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triangles, the finer the mesh and the higher the resolution of the mask texture.

More importantly, by using a vector of concatenated colour values J instead of a traditional
textured mask or a 2D image, no image normalisation is necessary to align different faces.
The alignment is already implicit in the vector representation. Thus, Principal Component
Analysis (PCA) (Turk and Pentland, 1991) can be applied to the vectors directly without
the need for additional face alignment or normalisation.

PCA is applied to a set of vectors of concatenated grey values J, generated from training
images of faces. The result is an average face x̄ and a set of principal components X,
called Eigenfaces. Once calculated, a new face Jnew can be represented as a combination
of these principal components X as:

Ĵ = x̄ + XXT (Jnew − x̄) (3.3)

where Ĵ is image reconstructed from Jnew.

(a) mask 0 (b) mask 1 (c) mask 2 (d) mask 3

Figure 3.4: The mean face generated from a set of training images for different mask
resolutions. The finer the mask mesh the higher the resolution of the mask texture.

An example of a mean face x̄ for different mask resolutions is shown in Figure 3.4. The
finer the mask mesh, i.e. the more triangles, the higher the resolution of the mask texture.
The mean face in Figure 3.4 is created as the average across all 40 persons of the IMM
Face Database (Nordstrøm et al., 2004), one image per person.
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3.1.2 Light-Invariance through Harmonic Images

The lighting invariance is achieved through harmonic images (Basri and Jacobs, 2003).
They are derived from spherical harmonics, a set of functions that form an orthonormal
basis for functions defined on the surface of a sphere. All lighting functions that illuminate
the surface of a sphere can be expressed as a linear combination with spherical harmonics.
Furthermore, the authors of Basri and Jacobs (2003) show that given a 3D model and the
albedo of a convex object, any image of this object under different lighting conditions can
be approximated by a linear combination of harmonic images bnm as:

Ii =
∞∑
n=0

n∑
m=−n

αnmbnm(Pi) (3.4)

where αnm are linear coefficients and each harmonic image bnm depends only on the 3D
surface point Pi. Every image can now be represented as a linear combination of harmonic
images and for simplicity Equation 3.4 is rewritten as

I =
9∑

h=1

βhVh(η, ρ) (3.5)

where βh is a linear coefficient of the hth harmonic image and Vh returns the hth harmonic
image given the surface normal η and the albedo ρ of all surface points of the 3D model.
As in Basri and Jacobs (2003) the proposed approach uses the first nine harmonic images,
where each harmonic image is dependent on the albedo ρ and the surface normal η of each
3D surface point P . The first nine harmonic images are:
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π√
4π

V2(η, ρ) = ρ
2π
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3π
4

√
5

12π
xy (3.8)

where x, y and z denote the 3D coordinates of the surface normals η.

Given the 3D model of an object and its texture, i.e. albedo, Equation 3.5 is then used to
generate the first nine harmonic images. An example of a textured 3D face mask and the
first nine harmonic images is shown in Figure 3.5. The colour scheme of this figure ranges
from -1 to +1; bright areas denote positive values whereas dark values denote negative
values.
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(a) Original Face (b) 1. Harmonic (c) 2. Harmonic (d) 3. Harmonic (e) 4. Harmonic

(f) 5. Harmonic (g) 6. Harmonic (h) 7. Harmonic (i) 8. Harmonic (j) 9. Harmonic

Figure 3.5: The original face mask and the first nine harmonic images. The colour map
ranges from -1 (black) to +1 (white). The original image is taken from the IMM Face
Database (Nordstrøm et al., 2004)

These harmonic images can then be used to estimate the lighting conditions of a new image
as shown in Figure 3.6. The 3D model, including its albedo, is shown in Figure 3.6(a) and
the lighting conditions of the new image Jnew in Figure 3.6(b) can be estimated as:

min
β
||Jnew − βV (η,J)||2 (3.9)

where J is the original mask texture, Jnew is a textured mask with new and unknown
lighting conditions and V returns the harmonic images given the surface normals of the
3D model η and the albedo ρ. The result of the light estimation is shown in Figure 3.6(c).

3.1.3 Particle Filter Refinement

Once the 3D appearance model is built according to Section 3.1.1 and the lighting invari-
ance is achieved as described in Section 3.1.2, both approaches are included in a particle
filter based method to estimate the best fit of a deformable face mask to a previously
unseen image.

As described in Section 2.2.3, particle filters are statistical models commonly used for

52



CHAPTER 3. AUTOMATIC FITTING OF A DEFORMABLE FACE MASK

(a) (b) (c)

Figure 3.6: (a) Given a 3D model of a face and its texture, J, (b) a new lighting condition,
Jnew, can be estimated using harmonic images. (c) shows the result of this optimisation
which equals to βV (η,J).

tracking objects across several frames. Based on the state in the previous frame, Monte
Carlo samples are drawn, evaluated and weighted in order to estimate the state in the
current frame. In this section, however, particle filters are used to estimate the pose
parameters Text and shape parameters γ of a deformable mask given a single image, so no
tracking is performed.

Instead, Monte Carlo samples xt = {T ext, γ} are drawn from a normal distribution
N (xt;xt−1,

∑
) in the neighbourhood of the previous state xt−1. Assuming independence,∑

is a diagonal covariance matrix with values set heuristically. The standard deviation
of the three translation parameters is set to equal a shift of about one sixth of the face
mask size and to about 15◦ for the three rotation parameters. The standard deviation for
all shape parameters γk is set to 0.3.

Each sample x(i)
t is then evaluated by deforming the neutral face mask g according to

Equation 3.1 using the sampled shape parameters γ. The deformed face mask is then pro-
jected into the image by applying the sampled pose parameters T ext, i.e. three translation
and three rotation parameters, according to Equation 3.2. The resulting face image vector
of concatenated grey values J is then used to calculate the distance in feature space, given
the 3D appearance model as:

d(xt) = argmin
β
||J− βV (η, Ĵ)||2 (3.10)

where Ĵ is calculated from the 3D appearance model according to Equation 3.3 and η are
the surface normals of the deformed face mask g. From this distance d, the weighting
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function for the particle filter is defined as a normalised vector as:

w̃
(i)
t = [υ − d(x(i)

t )]λ (3.11)

where υ = maxi(d(x(i)
t )) and λ are annealing factors to increase the spread of the particle

weights (Deutscher and Reid, 2005) and λ is empirically set to λ=4.

This particle filter based approach ”iterates” in the same image for each time step t and
thus performs an incremental refinement of the face mask pose and shape parameters,
rather than tracking the face mask. Therefore, the genetic-algorithm like nature of the
particle filter is utilised (Deutscher and Reid, 2005). Convergence is ensured by adjusting∑

after each time step as:
Σ(t) = 0.8 · Σ(t− 1). (3.12)

3.1.4 Automatic Fitting Algorithm

(a) (b) (c) (d)

Figure 3.7: (a) Result after face detection [white rectangle] and mask initialisation, (b)
result after refined initialisation using grid-search, (c) final result of the proposed approach,
(d) ground truth mask that was fitted to the labelled landmarks.

The proposed face mask fitting approach is based on the generated 3D appearance model
(Section 3.1.1) and includes harmonic images to model lighting changes (Section 3.1.2).
A particle filter based refinement (Section 3.1.3) is applied for optimisation. Figure 3.7
illustrates the proposed automatic face mask fitting approach. Given a previously unseen
image of a face, the algorithm developed by Viola and Jones (2001) is used first to detect
a near frontal face. The detected face coordinates are then used as a bounding box and
the deformable face mask is initialised within this box. The neutral face mask is centred
and aligned such that it fills the whole bounding box as shown in Figure 3.7(a).

Since the detected face coordinates are only a rough estimation, this first initialisation is
further refined by a fast grid-search in order to improve the approximation of the z-part of
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the translation parameters [x, y, z]. The parameter z determines the distance of the face
from the camera which also equals the size of the face mask. Therefore, z is assigned with
14 different values ranging from +5% to -5% from the initial z-value. A locally exhaustive
and direct search as proposed by Dornaika and Ahlberg (2006) is used to solve for the best
x and y values for each chosen z. The error function e, that guides this search is defined
as the reconstruction error in feature space as:

e(T ext, γ) = ||J− Ĵ||2 (3.13)

where J is the face image vector and Ĵ is the face image vector reconstructed from the
3D appearance model according to Equation 3.3. The shape parameters γ as well as
the rotation parameters within T ext are set to zero and remain unchanged. The set of
pose parameters (x, y, z) that results in the smallest error e is then used to initialise the
particle filter. This results in a better mask fit around the eye and the nose area as
shown in Figure 3.7(b). Since the person-specific shape parameters γ are kept constant in
this step, the size of the mask will vary depending on the distance between the eyes, for
example narrow eyes will result in a smaller mask.

The initialisation refinement is followed by the particle filter based fitting approach. In
the first time step of the particle filter refinement, the shape parameters γ and the rota-
tion parameters [φx, φy, φz] are set to zero. The next time step t uses the result of the
previous step as initialisation. The particle filter then converges to the correct pose (T ext)
and person-specific shape parameters γ by repeatedly iterating on the same image, thus
performing an incremental randomised search for the global maximum. The final mask fit
after six iterations is shown in Figure 3.7(c). For comparison the manual fit is shown in
Figure 3.7(d).

3.2 Experiments

The performance of the proposed mask fitting approach is tested on two databases, the
IMM Face Database (Nordstrøm et al., 2004) and the Extended Yale Face Database
B (Georghiades et al., 2001). Both databases are publicly available and details are de-
scribed in the following subsections.
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Figure 3.8: (a) Sample image of the IMM face database with annotated facial landmarks,
(b) CANDIDE-3 mask, red dots indicate point-to-point correspondences.

3.2.1 IMM Face Database

The IMM Face Database (Nordstrøm et al., 2004) consists of 240 images of 40 individuals,
23 men and 7 women and six different images per individual. Those six images include
variations in pose, lighting and expression. The resolution of each image is 640×480 pixels.
Additionally, each image of the database is labelled with a set of 58 different landmarks,
depicting facial feature points. An example image with annotated landmarks is shown in
Figure 3.8(a).

These pre-labelled feature points are the main reason for choosing this dataset as they can
be used for building the ground truth for the proposed mask fitting algorithm. For calcu-
lating the ground truth, point-to-point correspondences between the landmarks and the
corresponding CANDIDE-3 mask vertices are assigned. The big red dots in Figure 3.8(a)
and Figure 3.8(b) depict these correspondences.

The CANDIDE-3 mask is then automatically fitted to the images of the IMM Face
Database by minimising the Euclidean distance between the landmark points and cor-
responding mask vertices as:

min
T ext,γ

L∑
l=1

P(g, T, l)− pl (3.14)

where P projects the lth mask vertex into the image using T = [T int, T ext] and pl are
the 2D coordinates of the lth facial landmark. Levenberg-Marquardt is then utilised to
estimate the pose parameters T ext and shape parameters γ of the deformable face mask.
Images with facial expressions are left out.
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3.2.2 Yale Face Database

The subset of the Yale Face Database B (Georghiades et al., 2001) that is used in the
experiment section consists of 10 individuals under 9 different pose and 45 different light-
ing conditions. The Extended Yale Face Database B contains additional 28 individuals
under the same pose and lighting conditions. Example images of each pose are shown in
Figure 3.10. The combined set of 38 individuals is used in the experiments. The images
of each person under different lighting conditions are further divided into four subsets
according to Georghiades et al. (2001).

(a) Subset 1 up to 12◦ (b) Subset 2 up to 25◦ (c) Subset 3 up to 50◦ (d) Subset 4 up to 77◦

Figure 3.9: The Yale Face Database is divided into four subsets depending on the angle
between between the camera axis and the light source. Figures (a)-(d) are example images
of each subset.

The four subsets are created according to the angle between the light source and the
camera axis. Subset 1 contains images with near frontal lighting (up to 12◦), Subset 2
(up to 25◦), Subset 3 (up to 50◦) and Subset 4 contains the least illuminated images (up
to 77◦). An example image of each subset is shown in Figure 3.9. The ground truth for
this dataset is acquired by deforming the CANDIDE-3 face mask manually to fit each
individual. It is assumed that the pose and shape parameters of each individual remain
constant across different lighting conditions.

3.2.3 The 3D Appearance Model

Prerequisite for the proposed mask fitting algorithm is a 3D appearance model, as ex-
plained in Section 3.1.1. This 3D appearance model is built from the first image of each
individual of the IMM Face Database and is used throughout the entire experimental
section, unless otherwise stated.

Using the point-to-point correspondences as shown in Figure 3.8, the CANDIDE-3 face
mask is fitted automatically to the first image of each person in the IMM Face Database as
explained in Section 3.2.1. The first image shows a full frontal face with neutral expression
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(a) Pose 2 (b) Pose 3 (c) Pose 7

(d) Pose 1 (e) Pose 4 (f) Pose 8

(g) Pose 6 (h) Pose 5 (i) Pose 9

Figure 3.10: The Yale Face Database B contains face images under nine different poses,
ranging from frontal (Pose 1) to looking up and far left (Pose 7) and looking down far left
(Pose 9).

under diffuse lighting. Once the mask is fitted, the centre of each mask triangle is then
projected into the image according to Equation 3.2 and the image vector J is extracted for
each of the 40 individuals. PCA is then used to calculate the 3D appearance model, i.e. the
mean face and a set of Eigenfaces from these image vectors as described in Section 3.1.1.
The top 70% of all Eigenfaces are kept, using the Matlab code provided by Cai (2007).

The 3D appearance model is created for each of the four mask sizes. The mean face x for
each mask size is shown earlier in Figure 3.4 and the first seven Eigenfaces for the finest
mask 3 are shown in Figure 3.11.

3.2.4 Fitting Performance

The following subsections describe the different experiments on the two face databases,
namely the IMM Face Database (Section 3.2.1) and the Extended Yale Face Database B
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.11: The first seven Eigenfaces generated from the first image of each of the 40
individuals in the IMM Face Database. Figure (a)-(g) show Eigenfaces 1 to 7 respectively.

(Section 3.2.2) and discuss their results. In Section 3.2.4.1 the performance of the proposed
fitting approach with respect to accuracy and speed is evaluated. Therefore, the number
of particles is varied to find the best trade off between fitting accuracy and run time. The
IMM Face Database is used for the experiments in Section 3.2.4.2 and Section 3.2.4.3.
Section 3.2.4.2 evaluates the fitting performance of the proposed approach on images of
different resolutions as well as under different lighting conditions. In Section 3.2.4.2 these
results are compared with another fitting method based on Active Shape Models. Lastly,
Section 3.2.4.4 uses the Extended Yale Face Database B to test the proposed approach on
images under different pose and lighting conditions.

3.2.4.1 Accuracy versus Speed

The proposed automatic mask fitting approach uses a particle filter to estimate the pose
parameters T ext and the person-specific shape parameters γ. The performance in terms
of accuracy and speed is directly dependant on the number of particles used. The more
particles the higher the achieved accuracy, since more of the parameter space is likely to be
explored or the higher the chance of finding the global maximum. However, an increased
number of particles will also increase the computation time.

For the following experiment the first image of each of the 40 individuals in the IMM
dataset is used. These are the same images that were used to build the 3D appearance
model in the previous Section 3.2.3. Using this 3D appearance model the proposed de-
formable mask fitting algorithm as described in Section 3.1.4 is employed to automatically
fit the CANDIDE-3 mask to each of the 40 images, estimating the pose parameters T ext

and the person-specific shape parameters γ. This is also called testing on training data
since the testing images are also used for building the model.

The testing on the training data experiment is used and the number of particles is varied

59



CHAPTER 3. AUTOMATIC FITTING OF A DEFORMABLE FACE MASK

from 100 to 50,000. The resulting mean vertex difference is used for comparison and the
time needed to evaluate the number of particles is measured on an Intel Core 2 Quad
2.33GHz PC, using only a single core.
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Figure 3.12: The number of particles and the resulting mean vertex point difference (ac-
curacy) versus the run time (speed).

The diagram in Figure 3.12 shows the result of the performance test. The evaluation of 100
particles takes less then 1s but the result is the least accurate with a mean vertex difference
of 3.76 pixels. The evaluation run time increases linearly with the number of particles,
whereas the mean vertex difference drops exponentially. The number of particles closest
to the intersection of these two graphs is chosen as the best trade off between accuracy and
speed. Thus, 10000 particles are chosen for all further experiments since this maximises
the accuracy given a limited computation time.

3.2.4.2 Low Resolution Fitting

Within this experiment, different mask sizes and different image resolutions are used. The
original image resolution of 640×480 pixels is halved three times resulting in images of size
320×240, 160×120 and 80×60 pixels with average face sizes of 250×160, 125×80, 60×40
and 30×20 pixels respectively. Also, each of the four different mask sizes as shown earlier
in Figure 3.2 are used for automatic fitting.

In a second experiment, the CANDIDE-3 mask is automatically fitted to the fifth image
of each individual in the IMM Face Database. These images are similar to the first image
in that they show full frontal faces with neutral expressions, but instead of diffuse lighting
a spot light is added to illuminate the person’s left side. Again, the original image size is
halved three times and all four different mask sizes are used for automatic fitting.
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To evaluate the results of the automatic fitting experiments in this section, the mean
Euclidean distance between the estimated vertex points and the ground truth vertex points
is calculated and the result is shown in Figure 3.13. Each result is averaged over 40 images,
one image for each individual. Both graphs show that the original CANDIDE-3 mask 0
is too coarse, resulting in the least accurate fit. The main reason for this is the applied
texture mapping technique assigning only a single grey value to each mask vertex, and as
shown in Figure 3.14 this is not detailed enough to precisely represent different faces.

The fitting accuracy increases with the increasing number of mask vertices. The finer
the mask the more detailed the texture and the more accurate the fitting. However, an
increasing number of mask vertices will result in an increase in run time as the resolution
of the mask texture increases. The mask 2 hereby is found as the best trade off between
accuracy and speed. The increase in accuracy of mask 3 is minimal compared to the
increase in run time and does therefore not justify its use.

Furthermore, the fitting accuracy decreases with decreasing image resolution as shown in
Figure 3.13. For easier comparison of the results, the mean vertex difference is calculated
with respect to an image size of 640×480 pixels, since the mean vertex difference depends
on the initial image resolution. For images of size 320×240 pixels and below, the esti-
mated pose and shape parameters are used to project the mask into the image of size
640×480 pixels.

Both graphs in Figure 3.13 show clearly that the fitting accuracy depends on the image
resolution as well as on the mask size used. The coarser the mask, the higher the fitting
error. The same is true for the image resolution; i.e. the smaller the resolution, the least
accurate the fit.
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Figure 3.13: Mean vertex point difference for different input resolutions and different mask
sizes used for (a) testing on training and (b) testing in a different lighting condition.
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(a) mask 0 (b) mask 1 (c) mask 2 (d) mask 3

(e) mask 0 (f) mask 1 (g) mask 2 (h) mask 3

Figure 3.14: Different masks sizes fitted to an image (top row) and the resulting mask
texture (bottom row). The finer the mask the higher the resolution of the mask texture.

Figure 3.15 shows the result of the testing on training data for different image resolutions
of the same person. Using mask 2 for fitting, the mean vertex differences are 2.67, 2.95,
3.08 and 4.18 pixels for image resolutions of 640×480, 320×240, 160×120 and 80×60 pix-
els respectively. Note that the 3D appearance model is built from images of resolution
640×480 pixels, but by using different mask sizes and by applying the described texture
mapping technique, the same mask can also be applied to any image resolution smaller
than 640×480 pixels.

In comparison, Figure 3.16 shows the result of the automatic mask fitting approach tested
on the fifth image of the IMM Face Database using mask size 0. These images are taken
under different lighting conditions compared to the images used for creating the 3D ap-
pearance model. Again, mask 0 is too coarse and achieves the least accurate fitting results.
The best results are achieved for images of resolution 640×480 and 320×240 pixels. Dif-
ferent lighting conditions are particularly difficult to estimate at lower resolutions, which
is shown by the decrease in accuracy in Figure 3.13(b). On average, the mean vertex
difference increases by two pixels when fitting the deformable mask to images of lighting
conditions that differ from the training set.
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(a) 640×480 (b) 320×240 (c) 160×120 (d) 80×60

Figure 3.15: Example result of the testing on training for different image resolutions.

(a) 640×480 (b) 320×240 (c) 160×120 (d) 80×60

Figure 3.16: Example result of the testing in different lighting conditions for different
image resolutions.

Furthermore the accuracy of the person-specific shape parameters γ varies for each of the
seven different parameters listed in Table 3.1. Shape parameters that control the position
of the eyes, nose or the mouth are easier to estimate and result in higher fitting accuracies
than shape parameters that only control a small number of triangles, like ’Eyebrows vertical
position’, ’Eyes width’ or ’Mouth width’. Their accuracy drops, especially in low resolution
images where slight parameter variations may not effect the fitting error.

3.2.4.3 Comparison with Active Shape Models

Active Shape Models (ASM) are commonly used for detecting facial feature points as
described in Section 2.1.1.1. A pre-trained ASM model is fitted to a new image by matching
the position of landmark points along the contour lines of a pre-defined shape. Unlike the
proposed fitting approach, only the image area in direct circumference of the contour lines
of the object is used within the optimisation.
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In the following experiment, the proposed mask fitting approach is compared with the
method proposed by Lu et al. (2001). Their approach automatically fits a deformable 3D
face mask to an image using an ASM. First a set of significant facial feature points is
detected using the ASM approach and then the 3D mask model is fitted to these points.
This two step approach differs from the proposed algorithm that directly fits a deformable
face mask to an image without detecting facial feature points first.

For comparing both approaches, the ASM implementation of Hamarneh (2008) is used
for training the ASM with the 58 landmarks of the first image of each individual of the
IMM Face Database. Again the face detector (Viola and Jones, 2001) is used to locate
the face within the image and the ASM is initialised to fill the detected face bounding
box. The pre-trained ASM face model is then used to detect the 58 feature points of the
face. In the final step, the CANDIDE-3 mask is fitted to these landmarks by minimising
the Euclidean distance between the landmarks and the corresponding mask vertices as
described in Section 3.2.1.

This method is compared with the proposed fitting approach by performing the following
experiments on the IMM Face Database:

1. Testing on training data,

2. Leave one out test,

3. Testing with lighting variation.

The testing on the training data experiment from the previous section is repeated by
automatically fitting the mask to all 40 images that are also used to build the appearance
model. The second experiment, using the leave one out test method, is set up to test the
generalisation of both approaches. Therefore, the 3D appearance model as well as the
ASM face model is built from only 39 of the first 40 images of the IMM Face Database.
This model is then used to automatically fit the face mask to the image that was left out
in the model building process. For the last experiment, the fifth image of the IMM Face
Database is used for fitting to examine the robustness against lighting changes. The 3D
appearance model and the ASM face model are again built from the first image of each
individual.

The results of all three experiments are summarised in Table 3.2. They show that the
proposed approach achieves consistently better results. The ASM requires a large set
of parameters for initialisation and is also very sensitive to the chosen set of parameters.
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Proposed Approach ASM Approach
(1) Testing on training 2.6 pixels 6.2 pixels (26/40)
(2) Leave one out test 4.2 pixels 6.4 pixels (26/40)
(3) Lighting variation 4.8 pixels 8.1 pixels (9/40)

Table 3.2: The fitting results of the proposed approach compared to the ASM based
approach on the IMM Face Database.

Choosing a fixed set of initialisation parameters, the ASM was only able to detect the facial
feature points of 26 individuals out of 40 individuals in the testing on training data test. In
14 cases, the ASM drifted completely off the face region in images of size 640×320 pixels.
The mean vertex difference amounts to 6.2 pixels for 26 correctly detected individuals,
compared to 2.6 pixels achieved by the proposed approach.

Furthermore, the ASM failed when trying to detect facial landmark points in images of
resolution 320×240 pixels and lower. This is because the ASM was trained on images
of resolution 640×480 pixels and will fail on any image that differs greatly from this
resolution. This is contrary to the proposed approach that uses different mask resolutions
and assigns a single colour value to each vertex. Using this technique the deformable face
mask can be fitted to any image resolution that is the same or smaller compared to the
training images.

Therefore, different ASM face models are created from images of resolution 320×240 pixels,
160×120 pixels and 80×60 pixels in addition to the ASM face model build from images
of resolution 640×480 pixels. These models are then used to recover the facial features in
images of corresponding resolutions. Again the CANDIDE-3 mask is fitted to these points
and the mean vertex point difference with respect to the ground truth is calculated. Similar
to the previous experiment the mean vertex error is calculated with respect to an image
resolution of 640×480 pixels for better comparison. The result is shown in Figure 3.17.
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Figure 3.17: ASM fitting results for different image resolutions
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(a) 3.96 pixels (b) 12.63 pixels

(c) 4.64 pixels (d) 10.67 pixels

(e) 4.12 pixels (f) 27.03 pixels

(g) 7.56 pixels (h) 25.85 pixels

Figure 3.18: Fitting results of the ASM based approach in the testing on training data for
images of resolution 640×480 pixels (top row), 320×240 pixels (second row), 160×120 pix-
els (third row) and 80×60 pixels (bottom row). The caption of each figure states the mean
vertex distance in pixels. The best fit with the lowest values (a),(c),(e),(g) and the worst
fit corresponding to the highest value (b),(d),(f),(h) are shown for each resolution. The
image on the right of each figure shows the ground truth.
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(a) 3.55 pixels (b) 7.50 pixels (c) 2.29 pixels (d) 6.98 pixels

Figure 3.19: Fitting results of the ASM based approach (a),(b) and the proposed approach
(c),(d) in the leave one out test. The caption of each figure states the mean vertex distance
in pixels. The best fit with the lowest values (a),(c) and the worst fit corresponding to
the highest value (b),(d) are shown.

Even though the training and testing image resolutions are the same, the ASM approach
was only able to detect 37 faces in images of resolution 80×60 pixels, 40 faces in resolution
160×120 pixels, 17 faces in resolution 320×240 pixels and 26 faces in images of resolution
320×240 pixels, out of 40 images. The mean vertex error is only calculated for the detected
faces and not for images where the ASM face model drifted completely off the face.

As shown in Figure 3.17, the fitting error differs between 2 and 12 pixels compared to the
fitting result of the proposed approach using the coarsest mask 0. This increases to about
4 to 14 pixels when using mask 3. These fitting results for different image resolutions
are visualised in Figure 3.18. The best fit with the lowest mean vertex difference and
the worst fit with the highest error are shown for image resolutions of 640×480 pixels,
320×240 pixels, 160×120 pixels and 80×60 pixels.

The second experiment, leave one out test, aims to evaluate the generalisation of both
fitting approaches. The mean vertex point difference across all 40 images increased to
6.4 pixels from 6.2 pixels for the ASM approach. Again only 26 out of 40 faces were
detected. In comparison, the proposed approach results in a mean vertex point difference
of 4.2 pixels across 40 images of size 640×480 pixels using a mask 2 and 10,000 particles.
For an average face size of 250×160 pixels this equals an error increase of about 2%
compared to the testing on training data result.

Figure 3.19 shows the best fit with the smallest mean vertex difference and the worst fit
resulting in largest error for both fitting approaches. The proposed approach generalises
very well with only a small error increase. The achieved mean vertex difference across 40
images is 2.2 pixels less compared to the ASM approach. However, the ASM approach
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(a) 5.16 pixel (b) 12.14 pixel (c) 2.80 pixel (d) 8.12 pixel

Figure 3.20: Fitting results of the ASM based approach in the lighting variation test. The
caption of each figure states the mean vertex distance in pixel. The best fit with the lowest
values (left) and the worst fit corresponding to the highest value (right) are shown.

optimises the position of the facial feature points based on intensity values in the local
circumference as explained in Section 2.1.1.1 and it is therefore less affected by the leave
one out test. In comparison, the proposed approach uses the entire appearance of the face
and, thus depends on the pre-trained 3D appearance model. A large and diverse training
set will result in a 3D appearance model that generalises well.

The last experiment uses the fifth image of the IMM Face Database for fitting in order
to test the effect of different lighting conditions. Since the ASM approach does not allow
for lighting changes the face was only detected in 9 out of 40 images. The mean vertex
difference for these 9 images amounts to 8.1 pixels, with the best and the worst fit shown
in Figure 3.20(a) and Figure 3.20(b) respectively.

In comparison, the proposed approach uses harmonic images to model different lighting
conditions and is therefore superior to the ASM approach in this experiment. The resulting
mean vertex difference across 40 images amounts to 4.8 pixels which is 41% less compared
to the ASM approach. Again the best and the worst fit of the proposed fitting approaches
are shown in Figures 3.20(c) and 3.20(d) respectively.

3.2.4.4 Different Pose and Lighting Conditions

The experiments in this section are aimed at testing the proposed approach on a large
number of different lighting conditions as well as under different poses. Therefore, a subset
of the Extended Yale Face Database is used, which contains images of nine different pose
and 45 different lighting conditions of 38 different individuals divided into four subsets
according to Section 3.2.2. For the first experiment the 3D appearance model is built
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from the IMM Face Database as described in Section 3.2.3. The second experiment then
uses a 3D appearance model that also includes one image for each of the individuals in
the Yale Face Database B under frontal lighting, i.e. zero degrees azimuth and elevation.

The first experiment uses the proposed mask fitting approach to automatically fit the
deformable face mask to the first subset, containing 266 images of size 640×480 pixels,
seven images for each of the 38 individuals. The mean vertex point difference across all
266 images amounts to 6.5 pixels. This equals a mean fitting error of 3.3% with respect
to the face size. Note that none of the 38 individuals are included in the training set used
for building the 3D appearance model.

Furthermore the proposed approach is used to automatically fit the face mask to all 456
images of the second subset, 12 for each individual. The images are 640×480 pixels in
size and the proposed approach was able to fit the mask correctly to 433 out of 456 (95%)
using mask 2 and 10,000 particles. In 23 cases, the lighting condition could not correctly
be modelled resulting in false particle weights (Equation 3.11). The mean vertex point
difference across all 433 correctly fitted images amounts to 6.2 pixels, which is similar to
the first subset. These results worsen with decreasing image resolution and more extreme
lighting conditions.

The images in subset 3 and 4 of the Yale Face Database exhibit extreme lighting conditions
as shown earlier in Figure 3.9. However the CANDIDE-3 face mask is only able to model
a limited number of person-specific facial deformations (Table 3.1). Since the harmonic
images, used for modelling the illumination depend on the exact person-specific face shape,
the proposed approach using the CANDIDE-3 face mask, will fail when trying to fit the
mask to these images. The deformability of the face mask is not sufficient to model extreme
lighting conditions.

The second experiment uses a subset of the Yale Face Database B containing a total
of 4050 images of 10 individuals under nine different pose and 45 different illumination
conditions. Again, the proposed approach is used to automatically fit the mask to each
of 4050 images of size 640×480 pixels using mask 2 and 10,000 particles. However, one
image of each individual of the Yale Face Database is also used to build the 3D appearance
model.

The mean vertex difference in pixels for each pose and each subset containing different
illumination conditions are shown in Table 3.3. Additionally, Figure 3.21 shows example
images of the results for different persons under different pose and illumination condi-
tions. Similar to the first experiment, Subset 1 and 2 achieve best results across all poses.
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Pose Subset 1 Subset 2 Subset 3 Subset 4
1 - frontal 6.48 7.70 25.08 59.81
2 - up 10.52 10.80 30.15 53.77
3 - up left 10.06 10.72 25.67 56.29
4 - left 8.48 10.05 22.47 66.27
5 - down left 6.09 6.87 16.22 51.06
6 - down 5.50 6.06 17.22 52.75
7 - up far left 14.46 19.31 37.27 61.13
8 - far left 11.06 13.25 39.39 63.30
9 - down far left 6.95 7.36 15.97 54.69

Table 3.3: The result of the proposed fitting approach for 10 individuals under nine
different poses and for different lighting conditions in Subset 1 (seven images), Subset
2 (twelve images), Subset 3 (twelve images) and Subset 4 (fourteen images). A total of
4050 images are used. The results for each pose and subset show the mean vertex difference
in pixels.

However in the second experiment the mask is fitted to all images contained in Subset 1
and 2 due to a larger training set that contains one image for each individual of the Yale
Face Database. However, the CANDIDE-3 mask is still unable to model the illumination
conditions of Subset 3 and 4 sufficiently, resulting in large fitting errors.

The quality of the mask fit varies across different poses for each subset, but in general,
the best fitting results are achieved by near frontal poses. The farther left the face is
turned, the worse the mask fit. There is also a great difference between poses that ’look
up’ compared to poses that ’look down’. The mean vertex error for Pose 5 (down left),
6 (down) and 9 (down far left) is up to 50% smaller in comparison to Pose 2 (up), 3 (up
left) and 7 (up far left) for all subsets. The appearance of faces that ’look down’ changes
only marginally compared to the frontal pose. However, when ’looking up’, the nostrils
become more visible as well as a larger part of the eyelids, for example. These larger
changes in appearance decreases the fitting performance because only frontal images are
used to build the 3D appearance model.

3.2.5 Experiments Summary

The results on the IMM Face Database show that the proposed approach is able to correctly
and fully automatically recover the pose parameters Text and the person-specific face shape
parameters γ for different persons. The leave one out experiment showed its generalisation
ability and the experiments with lighting variation show that the proposed approach works
well under unknown lighting conditions.
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(a) Pose 2 (b) Pose 3 (c) Pose 7

(d) Pose 1 (e) Pose 4 (f) Pose 8

(g) Pose 6 (h) Pose 5 (i) Pose 9

Figure 3.21: Fitting results for different persons of the Yale Face Database under different
pose and different lighting conditions.

The experiments on the Yale Face Database B show the performance of the proposed 3D
face mask fitting approach for different pose and illumination conditions. The 3D appear-
ance model for the first experiment is built entirely from the IMM Face Database, thus
these results confirm the generalisation ability of the proposed approach. Furthermore,
this data set contains 45 different lighting conditions of which about 40% are suitable for
fitting using the CANDIDE-3 mask. Extreme lighting conditions, such as in Subset 3 and
4 of the Yale Face Database, cannot be modelled acurately with this face mask.
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3.3 Conclusion

This chapter proposes a new method for fitting a deformable 3D face mask to a single
image, detecting person-specific facial features as well as the overall 3D pose of the face
is performed simultaneously. The CANDIDE-3 mask is used for automatic fitting and
light-invariance is achieved through spherical harmonic images that are created directly
from the 3D face mask. Using a set of training images, Principal Component Analysis
(PCA) is applied for creating a 3D appearance model. A particle filter based approach
then includes the harmonic images as well as the 3D appearance model into an error
function to estimate the best shape and pose parameters for a given image of a face.

The CANDIDE-3 face mesh is subdivided, resulting in a number of different mask mesh
resolutions, ranging from coarse to fine. By applying a new texture mapping function
the same mask is used to fit images of high and low resolution. Using a certain image
resolution for training, the resulting 3D appearance model is suitable for the same size
testing images as well as any input image of smaller resolution, unlike Active Shape Models
(ASM) methods.

Experiments on the IMM Face Database confirm the suitability for different image res-
olutions and different lighting conditions. Generally the fitting accuracy increases with
increasing image resolution as well as with increasing mask resolution. The finer the mask,
i.e. the more triangles, the better the fit.

Further experiments on the IMM Face Database Nordstrøm et al. (2004) and the Yale
Database B Georghiades et al. (2001), both publicly available, showed that the proposed
method generalises well and is suitable for a large variety of different illuminations. How-
ever, the CANDIDE-3 face mask, which is used for all experiments, allows only for non-
extreme lighting conditions, such as Subset 1 and 2 of the Yale Face Database B. Addition-
ally, the Yale Face Database B is used to evaluate the fitting performance under different
pose. The experiments show that faces that ’look down’ result in smaller fitting errors
compared to faces that ’look up’, when the 3D appearance model is built from frontal
images only.

Summarising, the proposed approach is best suited for detecting pose and person-specific
shape parameters of a previously unseen image under unknown non-extreme lighting con-
ditions. The position of facial features is estimated and the mask is fitted for successive
applications like object tracking in the following Chapter 4 or face recognition in Chap-
ter 6.
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Chapter 4

Combined Tracking and Super

Resolution

Wide area surveillance tasks require high resolution images of the object of interest while
only acquiring low resolution video of the scene. This chapter proposes a new method
for combining model-based tracking and super resolution in the context of large scale
surveillance. The key idea is the use of a deformable 3D object model for both tracking
and super resolution. Unlike most existing super resolution techniques, the proposed
method increases only the resolution of the object rather than the entire scene without
using interpolation techniques.

A common super resolution algorithm is the super resolution optical flow (Baker and
Kanade, 1999). This method interpolates each frame to twice its size and optical flow is
used to register previous and consecutive frames, which are then warped into a reference
coordinate system. The super-resolved image is calculated as the average across these
warped frames. However, the first step of interpolation introduces artificial random noise
which is difficult to remove. Secondly, the optical flow is calculated between previous
and consecutive frames preventing its use for an online stream processing algorithm. Also,
accurate image registration requires precise motion estimation (Barreto et al., 2005), which
in turn affects the quality of the super-resolved image (Zhao and Sawhney, 2002). Most
optical flow methods fail in low textured areas and cannot be used to register non-planar
and non-rigid objects. A recent technique proposed by Gautama and van Hulle (2002)
calculates sub-pixel optical flow between several consecutive frames (with non-planar and
non-rigid moving objects), however it is unable to estimate an accurate dense flow field,
which is needed for accurate image warping.

Solving all the issues in a general case is difficult, as the general problem of super resolution
is numerically ill-posed and computationally complex (Farsiu et al., 2004). A specific
issue is addressed here: Simultaneous tracking and increased super resolution of known
object types (i.e. faces, license plates, etc.) acquired by low resolution video. The use of
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an object-specific 3D mesh overcomes the issues with optic flow failures in low textured
images. Interpolation is avoided and a 3D mesh is used to track, register and warp
the object of interest. Using the 3D object mask to estimate translation and rotation
parameters between two frames is equivalent to calculating a dense sub-pixel accurate
optical flow field and subsequent warping into a reference coordinate system. The 3D
mesh is subdivided, such that each triangle is smaller than a pixel when projected into
the image, which makes super resolution possible (Smelyanskiy et al., 2000) and allows for
sub-pixel accurate image registration and warping. In addition, such a fine mesh improves
the tracking performance of low-resolution objects. Each triangle then accumulates the
average colour values across several registered images and a high resolution 3D model
is created online during tracking. This approach differs from classical super resolution
techniques as the resolution is increased at the model level rather than at the image level.
Furthermore, only the object of interest is tracked and super-resolved rather than the
entire scene, which reduces computation costs. Lastly, the use of a deformable mask mesh
allows for tracking of non-rigid objects, like human faces.

This chapter is organised as follows: The image formation process is described in Sec-
tion 4.1 and based on this the proposed method is outlined in Section 4.2. Next, the
3D tracking approach and the model based super resolution method are introduced in
Sections 4.3 and 4.4 respectively. An extension to non-planar and non-rigid objects is pro-
posed in Section 4.5. The experimental evaluations of the combined tracking and super
resolution method are demonstrated in Section 4.6.

4.1 The Image Formation Process

The image formation process is important for understanding the necessity for super res-
olution. When taking a picture with a digital camera, the resulting image is captured
from the (high resolution) 3D world and projected onto the CCD chip - the image plane.
During this process the high resolution image Ihigh is sub-sampled, warped and blurred
resulting in a degraded low resolution image I low:

I low = AIhigh + h (4.1)

where Ihigh and I low are the high and low-resolution images respectively. The degrading
matrix A represents image warp, blur and image sampling; h models the uncertainties due
to noise.
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Figure 4.1: The basic principles of the image formation process: The high resolution 3D
object is warped from the world coordinate system into the camera coordinate system and
is finally projected onto the image plane. After this process the resulting low resolution
image is warped, blurred and sub-sampled.

This image formation process (Faugera, 1993) is illustrated in Figure 4.1. The 3D object
is warped from the world coordinate system into the camera coordinate system and then
projected into the 2D image plane. The resulting image is sub-sampled as an effect of
the finite number of pixels on the imaging chip. Furthermore this image is degraded by
blurring, which is caused by the optical system of the camera, motion and additional
random noise. This image formation process can be described by Equation 4.1, where the
degrading matrix A is used to model all possible degradations. However, the matrix A is
unknown and hard to estimate.

(a) (b) (c) (d)

Figure 4.2: (a) and (c) show high resolution images of a cube being projected on a low
resolution grid representing the image plane. Depending on the position on the grid
different low resolution appearances result as shown in (b) and (d).

Another effect of the sub-sampling process that occurs when a 3D object is projected onto
the 2D imaging chip is shown in Figure 4.2. The low resolution image depends on the
number of pixels on the imaging chip, the size and position of the 3D object in front of
the camera. An imaging chip with a smaller number of pixels results in a lower resolved
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image compared to an imaging chip with more pixels. The position on the imaging chip on
which the object is projected will also change the appearance of the low resolution image,
as illustrated in Figure 4.2.

The high resolution cubes in Figures 4.2(a) and 4.2(c) are projected onto different parts of
the imaging chip. The image formation process is modelled by averaging over the number
of high resolution points that fall within each pixel. The resulting effect is most prominent
along the edges of the cube. Depending on whether the black edge falls in between pixels
and depending on the colour of adjacent pixels, different shades of grey result in the low
resolution image. Using this effect, the key idea of the proposed approach is to assume that
the 3D shape of the high resolution object is known. The 3D object model is projected
back into the image, low resolution images are created and then used to reconstruct the
appearance of the high resolution 3D object.

4.2 Method Overview

Using the effects of the image formation process as outlined in Section 4.1, the proposed
method reconstructs the high resolution appearance of a known 3D object as illustrated
in Figure 4.3.

It is assumed that the 3D object is known and that a 3D model of that object is available.
This is a realistic assumption given that a large number of different 3D object models
are freely available on the internet or can be created with 3D software tools like Google
SktechUp1. Such a 3D model is used within a model-based tracking approach to estimate
translation and rotation parameters between consecutive frames. The model based track-
ing approach allows for accurate tracking of non-planar and non-rigid objects. Once the
pose parameters of the current frame are estimated, the 3D object is projected back into
the image and instead of using traditional texture mapping techniques, the 3D model is
textured by projecting every mask triangle into the image and assigning it with a single
colour value.

In order to achieve a 3D object with a high resolution texture, every mask triangle has to
be smaller than a pixel when projected into the image (Smelyanskiy et al., 2000). This is
achieved by subdividing the 3D object model using standard computer graphics methods.
Depending on the size of the object and resolution of the image, the 3D object mask

1http://sketchup.google.com
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Figure 4.3: The basic outline of the proposed tracking and super resolution approach. The
object of interest is tracked across several frames. Assuming that the type of object is
known, the 3D model of the object is projected back into every image and every quad or
triangle of the 3D model is assigned a single colour value. The super-resolved texture is
then calculated as the mean across several frames.

triangles are subdivided until they are smaller than a pixel when projected into the image.

Following the previous Section 4.1, the number of pixels that the object covers within the
whole image depends on the size of the imaging chip, the optical lens, the size of the object
itself and the distance between object and camera. As the object or the camera moves, it
may be projected onto different pixels of the imaging chip in different frames.

In Figure 4.3, the black edges surrounding the gradient on the front side of the cube are
projected nearly exactly into pixel centres resulting in 14 black pixels on either side of the
cube in the image plane in frame i. The movement of the cube in front of the camera
results in sub-pixel movements on the image plane. The black edges of the cube now fall
between pixels of the imaging chip, resulting in grey edge pixels in frame i+1. As a result,
the two 3D models of the cube in Figure 4.3 are textured differently for each frame. Over
time each model mask triangle will accumulate different colour values and thus, the super-
resolved 3D model is then calculated as the mean colour value of each triangle. Without
loss of generality, Figure 4.3 only shows the projection and super resolution of one side of
the cube; the same is true for non-planar and/or non-rigid objects.

The super-resolved 3D model is created online during tracking and improves with every
frame, whereas super resolution optical flow incorporates consecutive and previous frames
which prohibits its usage as an online stream processing algorithm. Furthermore, using an
object-specific 3D model in a combined tracking and super resolution approach inverses
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the image formation process in Equation 4.1. The subdivided 3D mesh represents the
high-resolution object Ihigh that is down-sampled by projection into the image plane. The
finer the mesh, the higher the resolution of Ihigh and the higher the possible increase in
resolution. Thus, interpolation, the first step of the optical flow algorithm, is unnecessary
and the resulting super-resolved 3D model is less blurred whilst maintaining the same
resolution increase. This in turn makes deblurring (the last step of the optical flow al-
gorithm) unnecessary. Lastly, using the 3D mesh for tracking equals image registration,
warping and the estimation of a dense flow field, comprising steps 2 and 3 of the optical
flow algorithm.

4.3 3D Object Tracking

For tracking low-resolution 3D objects, an object-specific mask and a combined geometric
and appearance based tracking approach similar to Wen and Huang (2005) is used. They
apply a geometric based tracking approach and an appearance based tracking approach
for each new frame. The method that achieves best results is then used for the current
frame. The 3D object tracking approach proposed here uses the same concept but differs
in that different geometric and appearance based tracking algorithms are used.

The tracking of various objects requires the initialisation of the object-specific mask in
the first frame, which is done either automatically (see Chapter 3) or manually. Once
initialised, the tracking runs automatically. For each frame two different tracking methods
are applied, each of which is described in detail:

• Appearance based tracking and,

• Geometric based tracking

4.3.1 Appearance Based Tracking

The appearance based tracking approach that is used here was first proposed by Cascia
et al. (2000). The main difference to the proposed method lies in the use of a subdi-
vided mask mesh and the texture mapping technique. Once the 3D object mesh model
is initialised, it is subdivided into a fine mesh such that every triangle is smaller than a
pixel when projected into the image. This achieves better tracking results than a mesh
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that is coarser with respect to the pixel size. Instead of using traditional texture mapping
techniques, each triangle is projected into the image and is assigned a single colour value,
instead of texture mapping a section of the image onto a single triangle.

After initialisation, the 3D object mask is projected onto the image, and each triangle is
assigned a colour value. These colour values are reorganised, resulting in J0, a vector of
concatenated colour values of the initial frame. During tracking it is assumed that the
difference between the reference vector J0 and a new vector J is small (Cascia et al., 2000)
and thus approximated as:

J − J0 ≈ Oq (4.2)

where the columns of O are called warping templates and q is a vector of coefficients.

Each warping template oi contains the pixel value changes due to translation and rotation
variations with respect to a particular transformation ni. They are created by altering the
initial pose of the 3D object mask as:

oi = J0 −Q(P(D,T0 + ni)) where J0 = Q(P(D,T0) (4.3)

where P is the projection of 3D object points D to image coordinates using the initial
transformation T0. Q creates a vector of concatenated RGB-values from the textured 3D
object mask. D is a vector containing the 3D coordinates of the centre of each mask
triangle, ni is the transformation parameter displacement and J0 is a vector of the con-
catenated RGB-values of each projected triangle. The intrinsic camera transformation
parameters are obtained using standard camera calibration techniques (Zhang, 2000). A
rough camera calibration is sufficient as the actual size of the object is not important.

The warping templates are calculated only once after initialisation. The object is then
tracked by using the pose parameters of the previous frame as initialisation and solving
for q for each frame f as:

J0 −Q(P(D,T appf )) ≈ Oq, (4.4)

where the columns of O are the warping templates oi and T appf contains the transformation
parameters for the appearance-based tracking at frame f .

4.3.2 Geometric Based Approach

The geometric based tracking uses a standard template matching approach restricted
by the object-specific mask. Unlike the method proposed in Wen and Huang (2005) no

79



CHAPTER 4. COMBINED TRACKING AND SUPER RESOLUTION

action units are used to track facial movements. The extension to non-planar and non-rigid
objects for tracking facial expressions is proposed in Section 4.5.

Objects are tracked by projecting each vertex P of the 3D mask mesh into the previous
image using perspective projection. Around each projected vertex in the image, a rectan-
gular template is cropped and matched with the current frame. The size of the patch is
set to 1

6th of the whole object. Normalised cross-correlation is used to match this patch
in the current frame within a window that is double the size of the template. In order to
minimise the effect of outliers, the entire mask is fitted to the new vertex points pl in the
current frame f as:

T geof = min
T geo

L∑
l=1

(P(Pl, T
geo
f )− pl)2, (4.5)

where L is the number of mask vertices P and T geoi contains the transformation parameters
of the geometric-based approach at frame f . Again the transformation parameters are
initialised with the previous frame and Levenberg-Marquardt is utilised for solving for
T geo.

4.3.3 Combined Appearance and Geometric Tracking

During the tracking process each method is applied individually and a texture residual as
the root mean squared error (RMSE) for the current frame f , with respect to the first
frame 0 is calculated as:

RMSE(Tf ) =

√√√√ 1
M

M∑
m=1

(Q(P(Mm, T0))−Q(P(Mm, Tf )))2, (4.6)

where M is the number of mask triangles M . The pose parameters Tf of the method with
the smallest RMSE will be used for the current frame f as:

Tf = min
Tf

([
RMSE(T appf ), RMSE(T geof )

])
, (4.7)

where RMSE(T appf ) and RMSE(T geof ) are the texture residuals of the appearance-based
and the geometric-based approach respectively for frame f . The tracking runs automati-
cally once the mesh mask is initialised in the first frame of the sequence.
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4.4 3D Model Based super resolution

During tracking, the resolution of the low-detail object is gradually increased. To achieve
this, every triangle of the object-specific mask is projected into the video using perspective
projection. However in order to increase the resolution of the object, every triangle needs
to be smaller than a pixel when projected into the image (Smelyanskiy et al., 2000).

As each mask triangle is projected into different frames of the sequence, it is eventually
assigned with different colour values for each frame as shown in Figure 4.3. Therefore the
super-resolved mask JSR is calculated as the mean of the last r frames that result in an
RMSE below a certain threshold ε:

JSR =
1
r

r∑
f=1

(Q(P(M,Tf ))) with RMSE(Tf ) < ε (4.8)

Small tracking errors (RMSE) allow for an exact alignment of the 3D mask across frames,
whereas high RMSE result in blurring and distortion. The threshold ε depends on the
initial object resolution. Low-resolution objects usually result in higher RMSE during
tracking as image pixels are more likely to change due to the down-sampling process of
the imaging chip. Furthermore, the quality of the super-resolved mask JSR also depends on
the total number of frames r. However, as the number of frames increases, the probability
of introducing noise increases as frames might not be aligned perfectly. The issue of
choosing the appropriate number of frames r versus the quality of the super-resolved
mask is evaluated empirically in Section 4.6.2.

The combined tracking and super resolution method uses a 3D object specific mask and
thus only increases the resolution of that object and not of the whole scene. However many
applications, like face recognition or number plate enhancement, only require the object of
interest to be super-resolved. Furthermore this high-resolution 3D object mask can then
be used for a number of applications like generating different high-resolution views of the
object from different viewpoints and lighting conditions.

4.5 Extension to Non-planar and Non-rigid Objects

In order to increase the resolution of non-planar and non-rigid objects the tracking algo-
rithm needs to allow for deformations, i.e. the mask mesh representing the 3D object needs
to be deformable. This is especially an issue when tracking non-rigid objects like faces.
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(a) (b) (c) (d)

Figure 4.4: (a) CANDIDE-3 face mask with 184 triangles, (b), (c) and (d) are subdivided
masks after 1, 2 and 3 subdivision steps resulting in 736, 2944 and 11776 triangles.

Therefore, the proposed combined tracking and super resolution approach is extended to
non-planar and non-rigid objects and is applied to faces, in particular human faces.

For tracking faces, the CANDIDE-3 face model as proposed by Ahlberg (2001) is used.
As shown in Figure 4.4 this triangular mesh consists of 104 vertices and 184 triangles and
is subdivided using the Modified Butterfly algorithm and the Loop subdivision scheme as
described in Appendix A. To allow for the non-rigidity of faces the CANDIDE-3 expression
parameters for tracking mouth and eyebrow movements in low-detailed faces are used.
More complex facial expressions often require a more detailed face model as well as high-
resolution images (Goldenstein et al., 2003; Roussel and Gagalowicz, 2005; Wang et al.,
2005c).

Expression tracking is performed after the actual tracking for each frame. Using the
expression parameters of the last frame, the combined geometric and appearance based
tracking approach is used to determine the position of the mesh model in the current
frame. Next a global random search (Zhigljavsky, 1991) is performed to improve the
RMSE around the mouth and the eyebrow regions. This probabilistic search assumes a
Gaussian distribution of the expression parameters and independence. For the expression
parameters of the mouth and the eyebrow region, this is a suitable assumption. The
mean of this normal distribution is initialised with zero in the first frame and is set to the
expression value of the previous frame after that. The variance is assumed to be constant
and empirically set to 0.2.

This normal distribution is then used to randomly sample 10 to 20 different expression
values for each expression parameter. These samples are evaluated against the observed
image and a RMSE according to Equation 4.6 is calculated. The sample that results in
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the smallest RMSE is chosen for the current frame. Experiments in Section 4.6.1.2 show
that the proposed method for expression tracking reduces the mean tracking error and
thus allows for a better alignment of consecutive frames.

4.6 Experiments

The following subsections describe the experiments and their evaluation to demonstrate
the capability of the proposed combined tracking and super resolution approach. Most
experiments use a video sequence of rigid objects (a cube) or non-rigid objects (human
faces) that has been recorded in the lab or in a real world surveillance environment. In
the lab environment the video sequences are recorded with 15 fps and with a resolutions of
640×480 pixels or 320×240 pixels unless otherwise stated. In the surveillance environment,
the video resolution is 640×480 pixels recorded at 23 fps on average.

The proposed approach is systematically tested starting with the evaluation of the tracking
accuracy in Section 4.6.1, including tracking of non-rigid facial expressions and tracking
with different mask sizes. In the following Section 4.6.2, the proposed approach is tested
on non-rigid and rigid objects at different image resolutions. Lastly, the combined tracking
and super resolution method is compared with an optical flow approach in Section 4.6.3
and applied to real world footage in Section 4.6.3.1.

4.6.1 Tracking Accuracy

The following three sections examine the proposed tracking approach with respect to

• Combined Appearance and Geometric Tracking

• Expression Tracking

• Mask Mesh Size vs. Object Size

The first section examines the use of an appearance tracker and a geometric tracker versus
the use of a combined tracking approach. Next the expression tracking is compared to
tracking without allowing for non-rigid deformations. Lastly, the effect of the 3D mesh
size with respect to the object size on the tracking result is examined.
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(a) 230×165 (b) 115×82 (c) 57×41 (d) 28×20

Figure 4.5: Cropped faces for each image resolution used. The captions indicate the size
of the face in pixels.

4.6.1.1 Combined Appearance and Geometric Tracking

In order to examine the tracking accuracy of the combined geometric and appearance based
tracking algorithm, one video sequence of a face with translation and rotation movements
is recorded at 15 frames per second and an initial resolution of 640×480 pixels. The
face within one frame has an average size of 230×165 pixels. This resolution is divided
into halves three times, resulting in face sizes of 115×82, 57×41 and 28×20 pixels with
corresponding frame sizes of 320×240, 160×120 and 80×60 respectively. A cropped face
for each face size used is shown in Figure 4.5.
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Figure 4.6: Tracking results for different size faces (a) and each tracking method applied
individually to the video of resolution 80×60 pixels with a face of size 28×20 pixels (b).

For tracking faces, the CANDIDE-3 face model, as shown in Figure 4.4, is used. In order
to initialise this mask in the first frame of the sequence, the shape parameters of the
CANDIDE-3 model are adjusted to the face manually. After this initialisation, the mask
is tracked automatically over more than 200 frames using the combined geometric and
appearance-based approach described in Section 4.3.
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The result of the combined tracking algorithm applied to different face sizes is shown in
Figure 4.6(a). The RMSE for measuring the tracking accuracy with respect to the first
frame is defined in Equation 4.6. The variation in RMSE in frames 1 to 100 are due to
translation and rotation around the horizontal x-axis, whereas the peaks at frames 130
and 175 respectively are mainly due to rotation around the vertical y-axis.

Faces between 230×165 and 115×82 pixels in size result in similar RMSE, whereas faces
with a resolution down to 57×41 pixels result in a slightly increased tracking error, that
is 22% larger on average. Even though the RMSE increases by 41% when tracking faces
with a resolution of 28×20 pixels, the algorithm is still able to qualitatively track the face
to the end of the sequence.

(a) 60 (b) 80 (c) 100 (d) 140 (e) 217

(f) 60 (g) 100 (h) 180 (i) 185

Figure 4.7: Cropped sample frames of the geometric based tracking (a)-(e) and the ap-
pearance based tracking (f)-(i). Numbers denote different frames.

In comparison, Figure 4.6(b) shows the result of the geometric and appearance based
tracking approach operating individually on the same video sequence, with the smallest
face size of 28×20 pixels, as this face size is the most difficult to track. The geometric
approach loses track after 40 frames, and as shown in Figure 4.7(a), this is due to small inter
frame movements that cause the mask to stay in the initial position instead of following
the face. The mask then recovers in frame 80 and loses track immediately afterwards as
shown in Figures 4.7(b) and 4.7(c). The geometric approach finally loses track around
frame 140, from which it cannot recover, as shown in Figures 4.7(d) and 4.7(e). This
shows that the geometric approach is not able to handle small inter frame movements due
to image noise and low resolution.
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The appearance based approach, on the other hand, results in small tracking errors from
frame 1 through to frame 170 as shown in Figures 4.7(f) and 4.7(g). However, as the face
turns, the appearance based approach loses track from which it cannot recover, as shown
in Figure 4.7(h) and 4.7(i). This is mainly due to large inter frame movements and the
rotation of the face, resulting in partial occlusion of the face.

Figure 4.6(b) shows that by combining the geometric and appearance based approach,
tracking is improved. Both approaches complement one another resulting in smaller RMSE
than either of them individually. While the appearance based method tends to be more
precise for small inter-frame movements, the geometric method is better for larger dis-
placements. Furthermore the geometric approach applies template matching between the
current and previous frames, while the appearance approach is based on the comparison of
the current frame with the first frame. Thus, the combination is more stable and precise
and able to track even small size faces, down to 28×20 pixels in size.

4.6.1.2 Expression Tracking

In order to evaluate the performance of the expression tracking approach, one video of
a face with mouth and eyebrow movements is recorded. The face within each frame is
about 230×165 pixels. One frame of this sequence is shown in Figure 4.8(a). The graph
in Figure 4.8(b) compares the result of expression tracking with the combined geometric
and appearance based tracking approach without expression tracking. Frames 10 to 22
contain mouth openings and frames 28 to 38 contain eyebrow movements. The graph shows
clearly that expression tracking improves the result of the combined tracking approach by
reducing the RMSE for each frame.

Face With Without Improve-
Resolution Expressions Expressions ment
210×145 10.89 11.50 5.3 %
105×73 10.96 11.60 5.5 %

52×37 13.92 14.51 4.1 %
26×18 16.23 16.40 1.0 %

Table 4.1: The mean tracking RMSE of 56 frames for different face resolutions with and
without expression tracking.

Furthermore, the resolution of the video is cut in half three times resulting in face reso-
lutions of 210×145, 105×73, 52×37 and 26×18 pixels in size. The mean tracking error
across 56 frames for each resolution is shown in Table 4.1. While the difference in RMSE
amounts to about 0.60 (which equals an improvement of 5.5% to 4.1%) for the first three
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Figure 4.8: Results of the expression tracking. Subfigure (a) shows a single frame of the
middle of the sequence and (b) compares the tracking RMSE with and without expression
tracking.

resolution levels, a face of size 26×18 pixels only results in a RMSE difference of 0.17 com-
pared to the tracking approach without expressions. This translates to an improvement
of only 1.0%.

The smaller the resolution of the face, the higher the RMSE as shown in Figure 4.6(a)
and Table 4.1. A face that is captured at high-resolution results in a large number of
pixels that represent the face. However the smaller the number of representative pixels,
the more likely they are to change over time. Due to the discretisation of the imaging chip
certain face regions (e.g. the eyes) result in only a small number of pixels. The colour
value of these pixels is most likely to change over time as the camera or the face moves.
Therefore, tracking expressions of low-resolution faces does not improve the overall RMSE
significantly.

4.6.1.3 Mask Size vs. Object Size

The performance of the combined geometric and appearance-based tracking algorithm is
tested with different mask sizes. As described in Section 4.2, super resolution is only
possible when the mask mesh is subdivided such that every mask triangle is smaller than
a pixel when projected into the image. The following experiment evaluates the effect of
the mesh size on the tracking performance.

The front side of a cube as shown in Figure 4.9(a) is tracked across 100 frames. This
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(a) Example frame

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Frame

R
M

S
E

Actual Cube Size in Image: 31x31 pixels

200x200 pixels
100x100 pixels
50x50 pixels
33x33 pixels
25x25 pixels

(b) Object Size 31x31

Figure 4.9: Mean tracking RMSE across 100 frames for a planar object, the front side of
a cube. The bottom right corner shows a cropped and enlarged image of the cube (a).
Using a object mask mesh that is finer than the actual object results in smaller tracking
errors (b).

planar patch covers an area of 31×31 pixels within the image. For tracking this patch a
3D model mesh similar to the one in Figure 4.1 is used. This mesh is equally subdivided
into 25×25, 33×33, 50×50, 100×100 and 200×200 quads. Figure 4.9(b) shows the result
of the combined tracking approach when different mesh sizes are used.

For tracking a planar patch of size 31×31, the best result is achieved with mesh sizes larger
than 33×33, whereas further subdivision does not improve the tracking. Using a mesh
that is coarser with respect to the pixel size loses track easily and results in higher RMSE
during tracking as shown in Figure 4.9(b). Such a coarse mesh is an under representation
of the object, resulting in higher tracking errors. By using a larger number of quads, the
mesh is able to better account for appearance changes due to sub-pixels movements.

Object Size
Mesh Size 31×31 17×17

13×13 - 20.84
16×16 - 23.49
20×20 - 18.78
25×25 23.88 19.09
33×33 12.06 17.78
50×50 10.03 15.62

100×100 11.88 16.25
200×200 10.40 -

Table 4.2: Mean RMSE across 100 frames for different object sizes and different mesh
sizes used.
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Another video of the same object was recorded at greater distances, resulting in a cube
of size 17×17 pixels. The mask mesh used for tracking consists of 13×13, 16×16, 20×20,
25×25, 33×33, 50×50 or 100×100 quads. The corresponding mean tracking errors are
shown in Table 4.2. Again the best tracking results are achieved by a mask mesh that
contains a larger number of quads than the pixels covered by the object within the image.

Summarising, the combined geometric and appearance-based tracking approach achieves
best results when a fine model mesh is used. In practice a mesh that is double the size of
the object has proven to be the best trade-off between accuracy and speed.

4.6.2 3D Model Based super resolution

In order to increase the resolution of the object of interest, the object-specific 3D mesh
model must be subdivided into a fine mesh. Each quad or triangle must be smaller than
a pixel when projected into the image to make super resolution possible as illustrated
earlier in Figure 4.1. The possible increase in resolution depends on the size of the 3D
model mesh. The finer the mesh, the higher the possible increase in resolution, however
more frames are needed. The following experiments quantitatively evaluate the number of
frames needed to achieve different resolution increases. Therefore planar and non-planar
objects are examined in Sections 4.6.2.1 and 4.6.2.2 respectively.

4.6.2.1 Planar Object - A Cube

(a) (b) (c) (d)

Figure 4.10: Example frame of resolution (a) 80×60 pixels and (c) 40×30 pixels with cube
sizes of 24×24 pixels and 12×12 pixels respectively. Figure (b) and (d) show these frames
after they have been doubled in size using bilinear interpolation.

A small paper cube, as shown in Figure 4.10, is chosen as a representative for planar ob-
jects. This cube is tracked for more than 200 frames of one video sequence, recorded at a
resolution of 320×240 pixels with the cube of size 95×95 pixels. This video is sub-sampled
three times, resulting in resolutions of 160×120, 80×60 and 40×30 pixels and correspond-
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ing cube sizes of 48×48, 24×24 and 12×12 pixels respectively. In order to diminish the
effect of tracking errors, the cube is tracked at the highest resolution of 95×95 pixels. The
estimated pose parameters are then used for the cube of size 24×24 pixels and 12×12 pix-
els. An example frame for both these resolutions is shown in Figures 4.10(a) and 4.10(c)
respectively. For comparison Figures 4.10(b) and 4.10(d) show these frames after their
resolution is doubled using bilinear interpolation.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4.11: Super resolution results of a cube of size 24×24 pixels using mesh consisting
of 25×25 (top row), 50×50 (middle row) and 100×100 quads (bottom row) after 1, 10, 20,
50, 100 and 200 frames respectively.

For increasing the resolution of the cube, a 3D model as shown in Figure 4.3, is used and
subdivided into 25×25, 50×50 and 100×100 equal size quads. Using the video sequence
of a cube of size 24×24 pixels, this mesh is projected onto every frame of the sequence
and the super-resolved 3D model JSR is created according to Equation 4.8 by combining
1, 10, 20, 50, 100 or 200 frames. The results is shown in Figure 4.11.

A mesh with only 25×25 quads cannot increase the resolution of a cube of size 24×24 pixels.
Calculating the mean according to Equation 4.8 across 20 frames removes the camera
noise and partially recovers the eyes of the duck, which are not visible in the first frame
(Figure 4.11(c)). Using a mesh that is double in size (50×50 quads) results in a more
detailed image, but after about 20 to 50 frames the maximal possible resolution is achieved
and adding more frames does not improve the resolution further as shown in Figures 4.11(i)
and 4.11(j) respectively.
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Using a mesh with 100×100 quads equals to increasing the resolution four times in each
dimension. However, to achieve this increase more than 50 frames are needed as shown in
Figure 4.11(p), but taking the mean across such a large number of frames also introduces
noise as shown in Figure 4.11(r). This noise results from slightly miss-aligned frames and
from the averaging process itself.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4.12: Super resolution results of a cube of size 12×12 pixels using a mesh with
20×20 quads (top row), 40×40 quads (middle row) and 80×80 quads (bottom row) after
1, 10, 20, 50, 100 and 200 frames respectively.

The same experiment is performed on a cube of size 12×12 pixels using a mesh with
20×20, 40×40 and 80×80 quads. The result after combining 1, 10, 20, 50, 100 and 200
frames is shown in Figure 4.12. Using a mesh with 20×20 quads, which equals a resolution
increase of 166%, requires about 20 to 50 frames (Figures 4.12(c) and 4.12(d)). Adding
more frames does not improve the result further.

Using a mesh with 40×40 quads translates to a possible resolution increase of 3.3 times
in each dimension and requires about 100 frames as shown in Figure 4.12(k). Trying to
increase the resolution 6.6 times requires a mesh with 80×80 quads and about 200 frames
as shown in Figure 4.12(r). The shape of the duck is recovered in greater detail, however
the overall result is noisy and blurred as a result of taking the mean across 200 frames.

In practice, it is therefore not recommended to increase the resolution of an object by
more than 2 to 3 times. The higher the increase in resolution, the more frames are needed
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to achieve this resolution, which in turn results in more noise. It is therefore a trade-off
between the possible resolution increase and the number of frames. Furthermore, the
tracking error ε in Equation 4.8 influences the resulting super resolution image. Large
tracking errors lead to a misalignment of frames resulting in noisy and blurred super-
resolved images.

4.6.2.2 Non-planar Objects - Faces

Simple objects, like a cube, allow for an equal subdivision of the 3D model mesh. More
complex objects require a 3D model that consists of different size quads or triangles,
thus resulting in a varying resolution increase across the mask mesh. For increasing the
resolution of faces, the CANDIDE-3 mask as shown in Figure 4.4 is used. This mask is
finely sampled around the eyes, the mouth and the nose region. These areas are also the
most important parts of the face and therefore a finer sampled mask with smaller triangles
allows for a larger increase in resolution in these areas.

(a) Person 1 (b) Person 2 (c) Person 3

(d) Person 4 (e) Person 5 (f) Person 6

Figure 4.13: Example images of each of the six sequences, i.e. persons, used for the results
in Figure 4.15. The image resolution is 160×120 pixels.

Evaluating the number of frames needed to achieve a certain resolution is more difficult
using such a complex mask as the resolution increase varies across the entire mask due
to different size triangles. In order to evaluate the minimum number of frames needed
to create a face mask of higher resolution, faces are tracked in videos with minimal head
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movements in order to keep the tracking error to a minimum. The average size of the
faces are 60×40 pixels and 30×20 pixels using videos of resolution 160×120 pixels and
80×60 pixels respectively. These resolutions are sub-sampled from the original video
sequence recorded at 640×480 pixels. The mask mesh is manually fitted to the first
frame of each sequence and then tracked fully automatically across more than 200 frames.
Example frames of each sequence are shown in Figures 4.13 and 4.14.

(a) Person 1 (b) Person 2 (c) Person 3

(d) Person 4 (e) Person 5 (f) Person 6

Figure 4.14: Example images of each of the six sequences, i.e. persons, used for the results
in Figure 4.15. The image resolution is 80×60 pixels.

The super-resolved mask JSR is calculated by using between 1 to 200 frames with the
smallest tracking RMSE according to Equation 4.8. The mean tracking RMSE is 10.9
and 14.9 for faces of size 60×40 pixels and 30×20 pixels respectively. The CANDIDE-3
mask that is subdivided three times, as shown in Figure 4.4(d), is used for both face sizes.
The high-resolution mask created from faces of size 30×20 pixels is then compared with
a single frame of double the resolution (60×40 pixels) and the mask created from faces of
size 60×40 pixels is compared to the face of size 120×80 pixels respectively. In each case,
the mean colour difference Ecolour is used to compare two face masks J1 and J2 consisting
of M triangles each as:

Ecolour =
1
M

M∑
m=1

|J1(m)− J2(m)|2 (4.9)

One short video sequence of six different persons, as shown in Figures 4.13 and 4.14, is
used and the results for these six persons is shown in Figure 4.15. Common to all persons
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and face sizes is the strong error decrease within the first 20 to 30 frames. Within the
first 20 frames, faces of size 60×40 pixels increase most significantly with respect to a face
of double the size. Faces of size 30×20 pixels are smaller and, therefore, more frames are
needed to achieve the same resolution increase using a mask mesh with the same number
of triangles. After about 20 to 30 frames the resolution increases significantly. These
results are comparable to the results of the cube shown in Figures 4.11 and 4.12.

For a qualitative comparison the super resolution results for Person 1 to 6 are shown in
Figures 4.18 to 4.21. The faces on the left show the facial mask that is textured with a
single frame of a face of size 60×40 pixels (Figures 4.18(a) to 4.21(a)) and 30×20 pixels
(Figures 4.18(f) to 4.21(f)) respectively. The second, third and fourth mask show the
increase in resolution after 20 (Figures 4.18(b) and (g) to 4.21(b) and (g)), 50 (Figures 4.18
(c) and (h) to 4.21(c) and (h)) and 200 (Figures 4.18 (d) and (i) to 4.21(d) and (i)) frames
have been added to the super-resolved mask.

The first step of the super resolution optical flow algorithm doubles the size of the input
images using interpolation techniques (Section 2.3.3). Therefore, bilinear interpolation is
used to increase the size of the video of each person. The result after combing 200 frames
of the interpolated input frames is shown in Figures 4.18 (e) and (j) to 4.21(e) and (j) for
face sizes of 60×40 pixels and 30×20 pixels respectively. Even though the input images
are double in size, the resulting super-resolved faces show less detail and are more blurred.
Interpolation does not recover high-frequencies, and on the contrary, introduces further
noise, and should therefore be avoided during the super resolution process.
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Figure 4.15: Quality of the super-resolved 3D face mask using different resolutions
(60×40 pixels, dotted line and 30×20 pixels solid line) and number of frames (x-axis).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.16: Results of the combined tracking and super resolution approach for Person 1
with a face of size 60×40 pixels (top) and 30×20 pixels (bottom) after 1, 20, 50 and 200
frames respectively. The last column ((e) and (j)) shows the result after 200 frames when
the input images are interpolated to double the size using bilinear interpolation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.17: Results of the combined tracking and super resolution approach for Person 2
with a face of size 60×40 pixels (top) and 30×20 pixels (bottom) after 1, 20, 50 and 200
frames respectively. The last column ((e) and (j)) shows the result after 200 frames when
the input images are interpolated to double the size using bilinear interpolation.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.18: Results of the combined tracking and super resolution approach for Person 3
with a face of size 60×40 pixels (top) and 30×20 pixels (bottom) after 1, 20, 50 and 200
frames respectively. The last column ((e) and (j)) shows the result after 200 frames when
the input images are interpolated to double the size using bilinear interpolation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.19: Results of the combined tracking and super resolution approach for Person 4
with a face of size 60×40 pixels (top) and 30×20 pixels (bottom) after 1, 20, 50 and 200
frames respectively. The last column ((e) and (j)) shows the result after 200 frames when
the input images are interpolated to double the size using bilinear interpolation.

96



CHAPTER 4. COMBINED TRACKING AND SUPER RESOLUTION

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.20: Results of the combined tracking and super resolution approach for Person 5
with a face of size 60×40 pixels (top) and 30×20 pixels (bottom) after 1, 20, 50 and 200
frames respectively. The last column ((e) and (j)) shows the result after 200 frames when
the input images are interpolated to double the size using bilinear interpolation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.21: Results of the combined tracking and super resolution approach for Person 6
with a face of size 60×40 pixels (top) and 30×20 pixels (bottom) after 1, 20, 50 and 200
frames respectively. The last column ((e) and (j)) shows the result after 200 frames when
the input images are interpolated to double the size using bilinear interpolation.
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4.6.3 Comparison with super resolution Optical Flow

The proposed approach is compared with the super resolution optical flow technique, using
video sequences recorded in a lab environment as well as surveillance video of faces. The
implementation of the super resolution optical flow follows the first four steps as outlined
in Section 2.3.3. No deconvolution techniques are used as this is an additional option for
both the proposed approach and the optical flow method to further increase the quality
of the super-resolved images. The optical flow between consecutive frames is calculated
using Gautama and van Hulle (2002) and the mean is used to calculate the super-resolved
image.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4.22: Result of the proposed super resolution approach after combining (a) 1,
(b) 5, (c) 10, (d) 20, (e) 50, (f) 100 frames. Figures (g)-(l) show cropped parts of every
Figure (a)-(f) respectively and Figures (m)-(r) show the result after each input image was
doubled in size using bilinear interpolation.

A video sequence of a cube with a resolution 320×240 pixels is used. The actual cube
covers about 100×100 pixels in each frame. The combined geometric and appearance
based approach is used to track this cube across more than 100 frames resulting in a mean
tracking error of 9.16. The pose parameters are then used to project the 3D model into
every image and the top k frames with the smallest tracking error are used to calculate
the super-resolved image JSR according to Equation 4.8.
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The 3D model of the cube is subdivided into 400×400 triangles before being projected into
the image which, under ideal conditions, equals a resolution increase of 400%. The result
is shown in Figure 4.22. After 20 frames (Figures 4.22(d) and 4.22(j)) the maximum reso-
lution increase is reached and further added frames result in increased blur due to tracking
errors. For comparison, the size of each frame is doubled using bilinear interpolation be-
fore creating the super resolution image. Again a cube with 400×400 triangles is used and
the result is shown in Figure 4.22(m) to Figure 4.22(r). Even though the input images are
doubled in size, the resulting super-resolved images after 20 frames (Figure 4.22(p)) do
not show a significant resolution increase compared to the result without initial interpola-
tion (Figure 4.22(j)). On the contrary, the resulting super-resolved images show a greater
amount of blur as interpolation cannot recover high-frequency details (Figure 4.18).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.23: Result of the super resolution optical flow algorithm after calculating the
mean across (a) 1, (b) 5, (c) 10, (d) 20, (e) 50 and (f) 100 frames. A cropped part of each
image is shown in (g)-(l) respectively.

Super resolution optical flow increases the resolution of each frame by interpolation. Sev-
eral frames are then combined to enhance the quality of these interpolated images, but
no further increase in resolution is possible, the resolution increase is fixed at 200%. This
is contrary to the proposed approach as it avoids interpolation to allow for less blurred
images. However, optical flow based methods require less frames as shown in Figure 4.23.
The quality of the optical flow super-resolved image increases most significantly within
the first 5 to 10 frames as shown in Figures 4.23(b) and 4.23(c). This corresponds to
the number of frames most optical flow based super resolution methods use (Baker and
Kanade, 1999). The addition of more frames results in more blurred and noisy images,
as estimating an accurate dense flow field across a large number of frames is difficult and
erroneous, especially in low-resolution images. This is clearly visible in Figures 4.23(e)
and 4.23(f). Estimating a dense optical flow field across 50 to 100 frames is erroneous and
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the calculation of the mean across such a large number of frames results in artefacts and
distortion.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.24: (a) Cropped original frame with a cube of 100×100 pixels, (b) result after
applying bilinear interpolation, (c) result of the optical flow after 10 frames without inter-
polation, (d) result of the optical flow after 10 frames with interpolation, (e) result of the
proposed approach after 20 frames with interpolation (f) result of the proposed approach
after 20 frames without interpolation, and (g) cropped cube of size 400×400 pixels.

Figure 4.24 summarises the results of both methods. The original video is recorded at a
resolution of 320×240 pixels and the cube consisting of 100×100 quads. A single cropped
frame is shown in Figure 4.24(a). The simplest way of increasing the resolution is by
interpolation and the result of bilinear interpolation is shown in Figure 4.24(b). However,
interpolation cannot recover high-frequency details and in addition introduces artificial
random noise. Therefore, the super resolution optical flow algorithm without an initial
resolution increase by interpolation is applied. The result after taking the mean across 10
frames is shown in Figure 4.24(c). The quality of the image is improved, i.e. the image
noise is reduced, but the resolution remains unchanged because no interpolation is applied.
Interpolation is needed to increase the resolution, thus Figure 4.24(d) shows the result of
the optical flow using bilinear interpolation to double the resolution of the input frames.

The proposed combined tracking and super resolution approach is applied to the same
video sequence that has been doubled in size using interpolation. The resulting super
resolved image (Figure 4.24(e)) is more blurred and shows less detail as a result of the
interpolation, compared to the super-resolved image in Figure 4.24(f) that is calculated
from the original input sequence. Furthermore, the subdivision of the 3D model into a fine
mesh allows for a greater increase in resolution compared to optical flow based methods.
Figure 4.24(g) shows a cropped image of the cube of size 400×400 pixels, which equals a
resolution increase of 400% compared to Figure 4.24(a).
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4.6.3.1 Super resolution of Faces in Surveillance Footage

The proposed approach is tested on non-planar and non-rigid objects, in this case that
of surveillance video of six people entering a bus. One video per persons is recorded
with a resolution of 640×480 pixels at 23 frames per second (due to dropped frames).
Each frame is sub-sampled to half the resolution resulting in 320×240 pixels. The face
within one frame is about 32×25 pixels, a single cropped frame of each person is shown
in Figures 4.25(b) to 4.30(b). The combined geometric and appearance based approach is
used to track these faces across 30 to 50 frames.

The use of the extended expression tracking approach is omitted because it is assumed that
people have a neutral expression when entering the bus. Furthermore, the low resolution
of the face does not justify the runtime overhead of the proposed expression tracking
as shown in Section 4.6.1.2. If expressions occur during tracking the tracking error will
increase, but as the super resolved image is created using only frames below a threshold ε
(Equation 4.8), these expression frames will not affect the result.

Optical flow is feasible for tracking planar objects, like the front side of a cube in the
last experiment, but tracking non-planar and non-rigid objects like faces poses challenges,
especially when trying to estimate a dense flow field across a large number of frames. The
result of the optical flow combining only 5 frames is shown in Figures 4.25(d) to 4.30(d).
In most cases the feature tracker (Shi and Tomasi, 1994) was not able to estimate a precise
flow field, especially for Persons 3 and 9 in Figures 4.25 and 4.29 who walk quickly towards
the camera. The same is true for Person 7 in Figure 4.26, who turns while approaching
the camera. A false flow field then results in the erroneous warping of frames into a
reference coordinate system which causes artefacts in the super resolved image as visable
in Figure 4.25(d), 4.29(d) and 4.26(d). Figures 4.25(c) to 4.30(c) show the initial frames
after they have been doubled in size using bilinear interpolation.

A comparative result of the combined tracking and super resolution method after com-
bining 20 frames is shown in Figures 4.25(e) to 4.30(e). The super-resolved faces are less
blurred and show more detail compared to the result of the optical flow. The optical
flow based approach uses interpolation to increase the resolution but this introduces arti-
ficial random noise. However, the proposed method achieves the same or a slightly higher
resolution increase after combining 20 frames without interpolation.

Another advantage of the proposed super resolution approach is the further use of the
created super-resolved 3D model. In the case of faces, these models can be used to generate
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(a) (b) (c) (d) (e)

Figure 4.25: (a) Original image, (b) cropped face, (c) bilinear interpolation, (d) optical
flow result after combining 5 frames and (e) the result of the proposed tracking and super
resolution approach after combining 20 frames.

(a) (b) (c) (d) (e)

Figure 4.26: (a) Original image, (b) cropped face, (c) bilinear interpolation, (d) optical
flow result after combining 5 frames and (e) the result of the proposed tracking and super
resolution approach after combining 20 frames.

(a) (b) (c) (d) (e)

Figure 4.27: (a) Original image, (b) cropped face, (c) bilinear interpolation, (d) optical
flow result after combining 5 frames and (e) the result of the proposed tracking and super
resolution approach after combining 20 frames.

102



CHAPTER 4. COMBINED TRACKING AND SUPER RESOLUTION

(a) (b) (c) (d) (e)

Figure 4.28: (a) Original image, (b) cropped face, (c) bilinear interpolation, (d) optical
flow result after combining 5 frames and (e) the result of the proposed tracking and super
resolution approach after combining 20 frames.

(a) (b) (c) (d) (e)

Figure 4.29: (a) Original image, (b) cropped face, (c) bilinear interpolation, (d) optical
flow result after combining 5 frames and (e) the result of the proposed tracking and super
resolution approach after combining 20 frames.

(a) (b) (c) (d) (e)

Figure 4.30: (a) Original image, (b) cropped face, (c) bilinear interpolation, (d) optical
flow result after combining 5 frames and (e) the result of the proposed tracking and super
resolution approach after combining 20 frames.
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various face images under different pose and lighting in order to improve the training of
classifiers (Hu et al., 2004; Lu et al., 2006) or the super resolved 3D model itself can be
used for 3D face recognition (Scheenstra et al., 2005).

4.7 Conclusion

This chapter proposed a combined tracking and super resolution algorithm that increases
the resolution simultaneously during the tracking process. An object-specific 3D mask
mesh is used to track non-planar and non-rigid objects. This mask mesh is then subdivided
such that every quad or triangle is smaller than a pixel when projected into the image.
This makes super resolution possible and in addition improves tracking performance. This
approach varies from traditional super resolution as the resolution is increased at the mask
level and only for the object of interest, rather than on an image level and for the entire
scene.

Experiments on sequences of different size faces demonstrate that the combined geometric
and appearance based tracking approach is able to track faces down to 28×20 pixels
in size. The combination of these two tracking algorithms achieves better results than
each method alone. The appearance-based method tends to be more precise for small
inter-frame movements, whereas the geometric method is better for larger displacements.
Furthermore the tracking performance increases with the number of quads or triangles per
mask mesh. This way of tracking is not only necessary for creating the super resolution
image, but also benefits from the super resolution process.

The proposed 3D model based super resolution algorithm allows for a high increase in res-
olution, the finer the 3D mesh, the higher is the possible increase in resolution. Therefore,
the number of frames needed to achieve a certain resolution increase is empirically esti-
mated. In practice about 20 to 30 frames are needed to double the resolution. Increasing
the resolution further is limited by the number of frames needed and the tracking error.
Large tracking errors as well as averaging across a large number of frames introduces noise
that is difficult to remove subsequently.

The proposed tracking and super resolution method is tested on low resolution video of
faces that are acquired both in the lab and in real surveillance situations. It is shown that
it outperforms the optical flow based method, and performs consistently better for longer
tracking durations in video that contain non-planar and non-rigid low-resolution objects.
The resolution increases significantly within the first 20 to 30 frames and gives excellent
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super-resolved images. This differs from the use of a smaller number of frames (say 5-9)
by optical flow methods, which are unable to take more frames because of large motion
deviation.

The proposed approach needs three to four times more images to achieve the same resolu-
tion increase compared to optical flow based methods. Super resolution optical flow meth-
ods increase the resolution through interpolation in the first step unlike the proposed ap-
proach, which avoids interpolation. The resulting super-resolved 3D model is less blurred
by achieving the same or a higher resolution increase. This in turn makes deblurring, the
last step of the optical flow algorithm unnecessary. Furthermore the super-resolved 3D
model is created online during tracking and improves with every frame, whereas super
resolution optical flow incorporates consecutive and previous frames which prohibits its
usage as an online stream processing algorithm. However, the resulting super resolved
image depends on the quality of the tracking, large tracking errors will result in additional
noise or even artefacts that decrease the super resolution quality.

The novel super resolution approach proposed in this chapter is based on the effect of the
image formation process as described in Section 4.1. The appearance of the low resolution
images depends on the position on the imaging chip and varies with movement. This effect
is further utilised and used for recognition in the following chapter.
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Chapter 5

Model Based Low Resolution

Character Recognition

Low resolution character recognition is a problem especially in large scale surveillance
situations where the distance between the camera is large and the resolution of the video
is poor. The most common examples are car license plate recognition or text recognition
in surveillance footage. Additionally, text documents captured by mobile devices require
methods for character recognition at low resolution.

Based on the effect of the image formation process described in the previous chapter and
assuming a simple camera model, the key idea of this chapter is to use this effect for
recognition of objects in low-resolution images given a priori knowledge of the particular
object. The objects this chapter focuses on are low resolution characters with applications
to number plate and text recognition.

Existing methods for detecting number plates in low resolution images use low level image
features (Zheng et al., 2005) or morphological operations (Wu et al., 2006). However,
when trying to segment and recognise low resolution characters the following problems
arise. Low resolution characters tend to merge along their edges with the next character,
making it very hard to separate them. Instead of clear sharp character edges only an
amalgamation of aliased pixels is visible. Text document recognition faces similar problems
when recognising words in low resolution images. Merging characters make it hard to
separate the word into single letters and standard Optical Character Recognition (OCR)
methods will fail.

Most existing OCR methods need a minimum image resolution of 300dpi (S. Rice and
Nartker, 1996), which means that a scanned A4 page with font size 10 will result in
characters of at least 30 pixels in height. Unlike current OCR methods, the proposed
approach is suitable for character heights as short as five pixels. However, low resolution
characters of less than 20 pixels in height do not possess clear edges and thus make low
resolution character separation and subsequent successful recognition a challenging task.
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Another disadvantage of standard OCR methods is their limitation to binary images.
After each character is separated, it is converted into a binary image, but low resolution
images of characters are highly dependent on the threshold used to generate the binary
image. Depending on the chosen threshold, they may result in degraded binary images
that are hard to recognise. Furthermore binary images lose the grey scale information
which is necessary for low-resolution character recognition.

This chapter proposes a new method for recognising characters in low resolution with char-
acters down to five pixels in height. The image formation process is synthesised assuming
a simple camera model and given a priori information about each character, this model is
used to generate several low resolution images, i.e. templates of each character. Instead of
segmenting the image into single characters, the proposed approach recognises the word as
a whole by matching the aforementioned templates. Normalised cross-correlation is used
to find the best position of each character template within the word and thus a separate
character segmentation step is unnecessary. The proposed method works directly on grey
scale images and thus avoids any information loss through binarisation, which is required
for OCR methods. Also image enhancement methods like super resolution are unnecessary
since they may create artefacts that could decrease the recognition performance. Recog-
nition experiments are conducted on low resolution number plates down to 30×8 pixels in
size as well as text documents with characters down to five pixels in height.

This chapter is organised as follows: The proposed method for recognising low resolution
characters is introduced in Section 5.1, including the template generation process in Sec-
tion 5.1.1 and the word recognition algorithm in Section 5.1.2. Experimental evaluation
are presented in Section 5.2. Recognition is performed on number plates in Section 5.2.2
and on text documents on Section 5.2.3. The chapter concludes with Section 5.3 including
a discussion about model based face recognition.

5.1 Model Based Character Recognition

The image formation process is important for understanding low resolution images. As
outlined previously in Chapter 4.1, the appearance of the low resolution image depends
on the size of the object, the distance between the object and the camera, the optical
system and the number and size of image pixels. The appearance also changes with the
movement of either the camera or the object itself. This effect is used by the proposed
recognition algorithm and the basic overview is shown in Figure 5.1.
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Figure 5.1: Model based character recognition. A set of templates for each character is
generated in the pre-processing step. The recognition step uses these templates to identify
the best matching character for each position within the word, thus character separation
is unnecessary.

By modelling a simple camera and assuming a priori knowledge of the characters and the
font type, a large set of degraded low resolution appearance for each character is created.
The template generation method is based on the fact that the appearance of the low
resolution character image changes with certain parameters.

This pre-processing step creates a set of different templates for each character before the
actual recognition. A template matching approach is used to identify characters and
calculate their position within the word simultaneously. The proposed method does not
require separated single characters; instead normalised cross-correlation is used to find the
best matching template for each position. Both the pre-processing and the recognition
steps are explained in detail in Section 5.1.1 and Section 5.1.2 respectively.

5.1.1 Template Generation

The image formation process as described in Section 4.1 is used to model the formation
of low resolution images by the camera. When the high resolution object is captured by
the camera, its image is warped, blurred due to the optical system of the camera as well
as motion blur and it is down sampled as a result of the finite imaging chip.

The proposed template generation method assumes a perfect imaging chip, possible motion
blur is neglected and the image warp is constrained to translations in the 2D plane. These
are realistic constraints for recognising characters in images parallel to the camera, i.e.
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the image plane. If blur, in particular motion blur is an issue, existing methods can be
used for deblurring. For example, the authors of Agrawal and Raskar (2007) use a special
camera to create a high resolution image from a single motion blurred image.

High resolution font

dy

dx

Low resolution image

ξ

dy

dx

Figure 5.2: The template generation process. For each character a number of different low
resolution appearances are generated by varying the parameters, dx and dy, the position
on the image plane and ξ, the size of each pixel.

The template generation process is illustrated in Figure 5.2. For each character of each
font type a high resolution image is acquired by using the associated TrueType definition1.
Using the TrueType, each character can be rendered at any required high resolution.

For each character c = {{A..Z, a..z} ∪ {0..9}} of a particular font type, one high resolution
image is created. The size of these high resolution images is H×W, where H defines the
height and W the width of the image. Each high resolution character image c is used
to create a number of different low resolution templates Crc by down sampling the high
resolution image c as:

Crc = T (c, dx, dy, ξ) (5.1)

where the function T generates the low resolution template Crc from the high resolution
image of character c by using the parameters dx, dy and ξ. The integer number r iterates
over all low resolution templates of the same character c.

The parameters dx and dy describe the translation displacement along the horizontal x-
1TrueType is a standard for fonts that describes the outline of each character as a vector graphic.
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axis and the vertical y-axis of the imaging chip respectively, image rotations are neglected
to reduce the number of possible low resolution templates. The parameter ξ defines the
pixel size, which is the number of high resolution points that fit into a single low resolution
pixel. It also indirectly determines the size of the resulting template. A high resolution
image of size H×W will result in an template of size H

ξ ×
W
ξ for a particular ξ. The

parameters dx, dy and ξ are all integer multiples and r indexes all possible combination
of these three parameters, with dx ≤ ξ and dy ≤ ξ.

The function T is realised by overlaying a high resolution image of a character c with a
grid representing the imaging chip as shown in Figure 5.2. The size of the grid is set by ξ
and the parameters dx and dy are used to position the character image on the simulated
imaging chip. Each square of the grid represents one low resolution pixel. The grey value
of each pixel is then defined as the percentage of its coverage. Using these three parameters
the appearance of the resulting low resolution character template can be altered as shown
in Figure 5.2. These templates are generated off-line only once for different characters and
font types.

(a) High Resolution (b) Low Resolution (c) Interpolated

Figure 5.3: Image enhancing methods may alter the appearance of low resolution images
to something that is not modelled by the proposed approach. (a) shows the high resolution
image of character ’A’, (b) shows the low resolution image of character ’A’ and (c) shows
the enhanced low resolution image after B-spline interpolation.

The proposed template generation process models the down sampling process of the imag-
ing chip. These templates are therefore only suited for images of characters that have not
been further modified after capturing. Most image enhancing methods, like super resolu-
tion techniques, will change the appearance of the low resolution character to something
that is not modelled in the proposed template generation process. Such modified images
are not suitable for this approach as shown in Figure 5.3.
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5.1.2 Low-Resolution Word Recognition

The main problem of low resolution word2 recognition are merged characters. As the
resolution decreases, the characters of each word begin to merge and instead of clear
separable white gaps between black characters, the whole word connects, making single
character separation an almost impossible task.

The proposed low resolution word recognition approach, therefore uses a parameterised
template matching based algorithm for combined character detection and recognition. In-
stead of separating the characters first and applying optical character recognition methods
on the separated characters, the proposed method performs recognition on the whole word
in a single step.

Given an input image I that contains a low resolution word, R different possible low
resolution templates Crc are created for each character c according to Equation 5.1. It is
assumed that the input image is cropped using existing pre-processing methods, such that
the height of the input image can be used to estimate a rough range of the parameter
ξ which determines the size of the low-resolution template, the bigger ξ the smaller the
resulting template. It is also assumed that the font type of the word is known, and this
further reduces the number of possible matching character templates.

The generated templates as described in the previous section are then used to perform
character separation and recognition simultaneously. Therefore, each character template
Crc is matched at every possible image position {x, y} using normalised cross-correlation:

zrc = argmax
{x,y}

{ncorr(Crc , {x, y}, I)}, (5.2)

where I is the cropped image containing a single word and ncorr calculates the normalised
cross-correlation of template Crc and the image I at every 2D image position {x, y}. There-
fore zrc is the 2D image position of character template r for character c that achieves the
highest correlation value.

After the image position with the highest correlation value for each character template
Crc is calculated according to Equation 5.2, a global order amongst all these templates
is created with respect to their correlation values. This set of possible character tem-
plates is reduced by deleting variations with correlation values below a certain threshold,
empirically defined to be 0.85.

2The term ’word’ is used to describe a string of alphanumeric characters contained in an image.
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(a) (b) (c)

Figure 5.4: (a) Initial result after the best position is calculated for each low resolution
character template according to Equation 5.2. The templates are ordered with high corre-
lation values on top. (b) Reduced set after clustering leaves only a single template for each
character c at one image position. (c) The top characters are chosen and again clustered
to identify the best matching character for each image position
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Figure 5.4(a) shows the result after these initial steps for the word ’characters’ in low
resolution. For all character templates Crc with c =′ c′ and r = 1..26, the best position
within the image is shown. These templates are also ordered according to their correlation
values, with the highest value at the top. This redundancy of character templates at
identical image positions is reduced by applying clustering techniques. The MATLAB
function ’clusterdata’ is used to cluster all matching low resolution templates of a particular
character c with respect to their position along the horizontal image x-axis. Once the
clusters are found, only the character template with the highest correlation value in each
cluster is considered for further processing. This means that at each image position x,
only a single instance of the character c is kept and all other appearances of the same
character at the same position are deleted as shown in Figure 5.4(b).

From the remaining character set, only the character templates that correspond to the
highest correlation values are considered for further processing. Therefore, starting from
the top, character templates with high correlation values are chosen until all image columns
are covered by a character template. In Figure 5.4(c), the character templates ’t’, ’r’, ’c’,
’s’, ’h’, ’a’, ’e’ and ’c’ are chosen in descending order. This selection stops after the last κ
added templates do not cover additional image columns. In the example in Figure 5.4(c),
κ = 4. The last four character templates that are selected additional to the characters
mentioned before are ’l’, ’b’, ’r’ and ’r’. The image columns covered by these four characters
are already covered by previous ones, thus no more character templates are added.

In the last step of the proposed algorithm the selected character templates are clustered
into non-overlapping areas. Hierarchical clustering is used to find column sets consisting of
one or more characters. These sets are then used to select the character that best fits each
image position. The cluster bounds are shown in the example in Figure 5.4(c)(vertical
lines), with the cropped low resolution image on top and the synthesised character tem-
plates below.

(a) (b)

Figure 5.5: The result of the proposed character recognition approach. (a) shows the
result after the first run. (b) the final result after all characters within the image are
recognised.

113



CHAPTER 5. MODEL BASED LOW RESOLUTION CHARACTER RECOGNITION

After the column sets are bounded, the average correlation values for all valid character
permutations are calculated. A possible permutation is a set of one or more character
templates that cover all image columns in the column set. In the example in Figure 5.4(c),
the third column set consists of the character templates {’a’, ’r’, ’u’, ’u’} and possible
permutations for this set are {’a’, ’r’} or {’u’, ’r’} while the permutation {’u’, ’u’} does
not cover all image columns of this cluster. For each column set, the character templates
of the permutation with the maximum correlation value are selected. The result is shown
in Figure 5.5(a). Please note the gap with the missing character ’a’.

In a post-processing step, image gaps of characters that are not yet identified are detected
and cropped. These cropped image gaps are used as a new input image I for the proposed
character recognition algorithm and recognition starts again until all gaps are filled with
a matching character. The final result is shown in Figure 5.5(b). These gaps are not
common and are most likely to occur in words with several identical characters where all
templates of this particular character are initially matched at the same image position.
These gaps can also result from cutting off too many character templates in the reduced
set (Figure 5.4(c)).

This heuristic template matching approach requires a large set of templates for each possi-
ble character and font type. However, this set is reduced by estimating the rough range of
ξ using the input image height and by assuming that the font type is known. Furthermore,
the use of normalised cross-correlation is practicable since each template is only a few pix-
els in size and so is the low resolution input image I. Parallel programming can also be
used to implement the template matching step of the proposed character recognition algo-
rithm and thus several templates can be matched simultaneously to improve the runtime.
A further speed up in performance could be achieved by using a Field-programmable gate
array (FPGA) hardware implementation.

5.2 Experiments

The following subsections describe the results of the experiments that are conducted in
order to demonstrate the performance of the proposed recognition algorithm for low reso-
lution characters. Most experiments use images or videos recorded with a compact digital
camera of resolution 320×240 pixels unless otherwise stated. The camera automatically
compresses and stores them as JPEG images. These images and video frames are cropped
and used directly as input images without any pre-processing.
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The first experiments in Section 5.2.1 analyse the suitability and interchangeability of dif-
ferent font types for the use with the proposed character recognition algorithm. Following
this, the proposed approach is applied to number plate recognition, both indoors and out-
doors. Section 5.2.3 demonstrates the use of the proposed approach for text recognition.

5.2.1 Suitability and Interchangeability of Different Fonts

The proposed character recognition approach as described in Section 5.1 uses a high reso-
lution image of each character that is down-sampled according to three parameters dx, dy
and ξ and subsequently used for template matching. The following experiment measures
the suitability and interchangeability of different fonts when used for recognition, namely
Arial, Times New Roman, and the fonts used for standard Western Australian number
plates and standard German number plates.

The high resolution images for the template generation of the Arial and Times New Roman
font are created from their TrueFont definitions available on any Windows machine. For
the Western Australian number plate font, high resolution images of each character are
captured manually from different licence plates. These images are normalised in size and
converted into binary images. The high resolution images of the German number plate
font are created from a TrueType definition created by an artist and kindly made available
at Anke-Art3.

Translation

1m
 / 

2m

(a) (b)

Figure 5.6: The experimental setup. The camera is placed about 1m and later about 2m
in front of A4 sheet of paper with printed characters. Several images are recorded while
the paper is translated horizontally.

The experimental set up for this experiment is shown in Figure 5.6. For each font type,
each of the 36 characters (26 letters and 10 numbers) are printed on a piece of cardboard

3http://www.anke-art.de/home/?p=62\&lang=en
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using a bold font size of 130 for Arial and Times New Roman and equivalent font sizes for
the Western Australian and German number plate font. These cardboards are placed in
front of a camera, such that the cardboard is parallel to the imaging chip of the camera.
To achieve variations in the grey value appearance of each character, the position of the
cardboard is manually translated, while several images are recorded at a resolution of
320×240 pixels. This experiment is carried out at two different distances (1m and 2m),
resulting in different character sizes. The following two subsections describe the results of
each experiment.

5.2.1.1 Medium Resolution - 1m Distance

(a) Arial (b) Times (c) Australian (d) German

Figure 5.7: Example images of (a) Arial, (b) Times New Roman, (c) Western Australian
number plate font and (d) German number plate font printed on cardboard which is placed
at a distance of 1m in front of a camera with a resolution of 320×240 pixels.

The four different character fonts are printed on cardboard and placed 1m in front of the
camera. The recorded images have a resolution of 320×240 pixels that results in an average
character height of about nine pixels for each character. Example images for each font,
Arial, Times New Roman, Western Australian number plate font and German number
plate font are shown in Figure 5.7.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5.8: Cropped frames of the sequence showing Western Australian number plate
fonts (Figure5.7(c)). Cropped letter ’A’ (top) and the artificially created template that fit
best (bottom). The distance to the camera is 1m.

As the cardboard is translated in front of the camera the resulting character images change
their appearance according to the proposed model introduced in Section 5.1.1. Several
different cropped example images of the letter ’A’ of the Western Australian number plate
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Arial Australian German Times
Arial 709 (98.47%) 276 (38.33%) 351 (48.75%) 561 (77.92%)
Australian 282 (39.16%) 715 (99.31%) 491 (68.19%) 251 (34.86%)
German 490 (68.05%) 440 (61.11%) 720 (100%) 361 (50.14%)
Times 432 (60.00%) 120 (16.66%) 203 (28.19%) 684 (95.00%)

Table 5.1: Recognition results of four different font types, using four different fonts for
recognition respectively. Each row represents one particular model font used for recogni-
tion and each column denotes the set of images to the test font. The results are given
in percentage of the number of correctly recognised images, where 720 is the maximum
number (20 frames with 36 characters each).

font are shown in Figure 5.8(top row). Note that all these images differ from each other
slightly, because the cardboard is translated slightly during the recording.

The algorithm as described in Section 5.1.2 is then used to determine the character tem-
plate that fits these images best. Therefore, each character image is cropped manually
before it is used as input image I for the proposed algorithm. The result is shown in Fig-
ure 5.8, where the bottom row shows the generated character templates that matched the
above image best. Even though the recorded images of the letter ’A’ are effected by image
noise and compression from the camera, the matched templates in Figure 5.8(bottom row)
model the original appearance very well, achieving an average correlation value of 0.98.

For comparing the suitability and interchangeability of different font types, 20 images of
each character of each font type are recorded and cropped. Each of the four font types,
Arial, Times New Roman, standard Western Australian number plate font and standard
German number plate font, are then used to recognise these fonts. For example, Arial
font templates are used to recognise Arial font as well as the Times New Roman font
and the two number plate fonts. This experiment is set up to identify how the choice of
model font type impacts on the recognition performance over these fonts. The result is
shown in Table 5.1, where each row represents one particular type of model font used for
recognition and each column denotes the set of 720 cropped images (20 images of each of
the 36 characters) belonging to the test fonts.

The main diagonal of this correlation matrix achieves maximal recognition rates as every
character is best recognised using the matching font type for recognition. Times New
Roman appears to be the font that is most difficult to recognise, achieving only 95 %. This
is mainly due to its serif style that results in characters that appear less bold compared to
sans-serif font types of the same size. As a result serif fonts usually consists of less black
and grey pixels compared to a similar non-serif font of same the size, making them harder
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to recognise. This is also reflected in the very low recognition rates for Western Australian
(16.66%) and German (28.19%) number plate fonts using Times New Roman templates
for recognition, as Times New Roman is the only serif font type used. In general all
sans-serif fonts (Arial, Western Australian and German number plate font) achieve better
recognition rates when sans-serif fonts are used for recognition, compared to serif fonts
(Times New Roman). Furthermore, fonts used for number plates are usually more narrow
than standard computer fonts as shown in Figure 5.7, resulting in better recognition rates
for the pair of Western Australia and German number plate fonts compared to using Arial
and Times New Roman, which are both wider.

5.2.1.2 Low Resolution - 2m Distance

(a) Arial (b) Australian (c) German (d) Times

Figure 5.9: Characters of (a) Arial, (b) Times New Roman, (c) Western Australian number
plate font and (d) German number plate font printed on cardboard which is placed in a
distance of 2m in front of a camera with a resolution of 320×240 pixels.

In the second experiment, the distance between the camera and the cardboard is increased
to 2m. Using the same image resolution of 320×240 pixels, the resulting characters are
smaller in size with an average of six to seven pixels in height. An example image of each
font type is shown in Figure 5.9.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5.10: Cropped frames of the sequence showing Western Australian number plate
fonts (Figure 5.7(c)). Cropped letter ’A’ (top) and the artificially created template that
fit best (bottom). The distance to the camera is 2m.

Figure 5.10(top) shows ten different cropped images of the letter ’A’ of the Western Aus-
tralian number plate font. The bottom row in Figure 5.10 shows the artificially created
template that fit best. Note that these images appear more blurred compared to the ones
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Arial Australian German Times
Arial 706 (98.05%) 278 (38.61%) 342 (47.50%) 337 (46.81%)
Australian 305 (42.36%) 669 (92.92%) 434 (60.28%) 165 (22.92%)
German 382 (53.05%) 480 (66.66%) 702 (97.50%) 243 (33.75%)
Times 360 (50.00%) 140 (19.44%) 159 (22.08%) 641 (89.03%)

Table 5.2: Recognition results of four different font types, using four different fonts for
recognition respectively. Each row represents one particular model font used for recogni-
tion and each column denotes the set of images to the test font. The results are given
in percentage of the number of correctly recognised images, where 720 is the maximum
number (20 frames with 36 characters each).

recorded at a distance of 1m in Figure 5.8. Seeing only a single cropped image of the letter
’A’, it is very hard for the human eye to recognise the character since it is merely seven
pixels in height.

Even though each character is no more than seven pixels in height, the recognition rates are
still high as shown in Table 5.2. Only the recognition rate for Times New Roman, the only
serif type, drops below 90%. Arial and the German number plate fonts seem to be best
suited for low-resolution character recognition. Arial is a sans-serif font whose characters
are all quite distinct, unlike the standard Western Australian number plate font, where the
characters ’Q’ and ’O’ or ’1’ and ’I’ look very similar in low resolution. The standard Ger-
man number plate font is a so called FE-Schrift (short for ’fälschungserschwerende Schrift’
- falsification-hindering script). The characters of this font are proportioned such that fal-
sification, for example making an ’E’ out of a ’F’, is hindered. It also eases automatic num-
ber plate recognition as these proportions result in more distinct characters (Wikipedia,
2009).

Summarising the results, the font type of the characters should be known beforehand in
order to choose matching templates and achieve best recognition results especially in low
resolution with character heights down to six pixels. Experiments show that non-matching
fonts decrease recognition rates significantly especially at low-resolution (i.e. the non-
diagonal results in Table 5.2). In cases where the exact font is not available for creating
character templates, a very similar font should be used to achieve good recognition rates.

5.2.2 Number Plate Recognition

After the two different number plate fonts, namely the Western Australian number plate
font and German number plate font, were tested with respect to their interchangeablity
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and suitability within the proposed character recognition approach, the following sections
evaluate their usage for low resolution number plate recognition.

Section 5.2.2.1 presents number plate recognition in an indoor lab environment in order
to test the low resolution limits of the proposed character recognition approach. The
following Section 5.2.2.2 demonstrates the suitability of the approach for low-resolution
number plate recognition in an outdoor setting.

5.2.2.1 Indoor Number Plate Recognition

(a) 1m (b) 2m (c) 3m (d) 4m

Figure 5.11: Number plate recognition in an indoor environment. The distance be-
tween the plate and the camera varies from 1m to 4m. The resolution of the images
is 320×240 pixels. Figures (a) to (d) show example images for each distance.

The experiments in this section are aimed to test the limits of the low resolution character
recognition approach. Therefore, an Australian number plate is placed in front of a camera
at various distances. An increasing distance between the camera and the plate will result
in an decrease in resolution. The characters on the plate will start merging, making
recognition very difficult. Example images are shown in Figure 5.11.

(a) 1m (b) 2m (c) 3m (d) 4m

Figure 5.12: Number plate recognition in an indoor environment. The distance between
the plate and the camera varies from 1m to 4m. Figures (a) - (d) show cropped images
for each distance.

The distance between the camera and the number plate is set to 1m, 2m, 3m and 4m.
The resolution of the captured images is kept constant at 320×240 pixels resulting in
average character heights of 23, 11, 7 and 5 pixels respectively. A cropped sample image
of a number plate at each distance is shown in Figures 5.12(a) to 5.12(d). Note that the
number plate at a distance of 4m in front of the camera is hardly recognisable by the
human eye as shown in Figure 5.12(d).
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1m 2m 3m 4m
Number plate size [pixels] 120x40 64x22 41x13 30x8
Character height [pixels] 23 12 8 6
Recognised number plates 50 (100%) 50 (100%) 42 (84%) 26 (52%)
Recognised characters 350 (100%) 350 (100%) 340 (97.14%) 327 (93.40%)

Table 5.3: Summary of the number plate recognition results in an indoor environment.
50 images are recorded at each distance, resulting in 350 characters as the number plate
consists of 3 letters and 4 numbers.

At each distance from the camera, 50 different images are captured by varying the hori-
zontal position of the plate manually after each image. This allows for different grey scale
appearances of each character in each image. The position of the number plate within
the image is obtained manually and each image is cropped accordingly. The proposed
character recognition approach for low resolution characters is then used to recognise the
number plate without separating the individual characters beforehand. The recognition
results are summarised in Table 5.3.

The number plates of size 120×40 pixels and 64×22 pixels, recorded at a distance of 1m
and 2m in front of the camera respectively, are correctly recognised in each of the 50
images, consisting of three letters and four numbers and resulting in 350 characters in
total. Thus, the character recognition rate as well as the number plate recognition rate
is 100%. A number plate is considered recognised when every character on the plate is
correctly recognised. The recognition rate drops down to 97.14% for the number plate
of size 41×13 pixels at a distance of 3m from the camera and only 340 are recognised
correctly. As a result the number plate recognition drops down to 84% as only 42 plates
are recognised correctly.

The images recorded at 4m show characters with an average height of only six pixels (Fig-
ure 5.12(d)), making recognition with the human eye very difficult. However, the proposed
approach is still able to recognise 93.40% of all characters across all 50 images correctly.
The plate recognition rate drops down to 52% for number plates of size 30×8 pixels, mainly
due to merging and blurred characters. The letter ’B’ was often recognised as an ’8’ and
the number ’2’ was mixed up with a ’Z’. However, such false recognitions can be avoided
by using a regional syntax check after recognition. The syntax check for the Australian
number plate for example would involve checking that the plate consists of seven char-
acters of which the first character needs to be a number, followed by three letters and
followed again by three numbers. Thus, regional syntax checks can avoid mix ups between
letters and numbers.
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Increasing the distance between the camera and the number plate even further to 5m
results in characters of only three to four pixels in height. Additionally, the blue edges of
the number plate start to merge with the characters. These images are unrecognisable by
the proposed method.

5.2.2.2 Outdoor Number Plate Recognition

After testing the limitations of the proposed character recognition approach in an in-
door scenario, this section evaluates the number plate recognition performance on images
recorded outdoor. However, the performance evaluation of number plate recognition ap-
proaches in the literature lacks uniformity due to missing ground truth datasets (Jung
et al., 2004). A first attempt towards a public dataset is made by Anagnostopoulos et al.
(2008). They collected images of Greek number plates under different illumination con-
ditions and under partial occlusion. However, their homepage (Anagnostopoulos et al.,
2009) is still under construction and no ground truth or recognition results are given.

In order to evaluate the proposed approach, a dataset is collected containing images of
35 cars with Western Australian number plates and 35 cars with German number plates,
randomly picked in an outdoor car park. The following paragraphs describe the results of
both experiments.

Western Australian Number Plate Recognition

(a) 1.5m (b) 3m

Figure 5.13: Example images of Western Australian number plates. The distance between
the camera and the car is about (a) 1.5m and (b) 3m respectively. The resolution of the
images is 320×240 pixels.

For capturing images of Western Australian number plates, a standard compact digital
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camera with a resolution of 320×240 pixels is used. The distance between the camera and
the number plate is set to about 1.5m and 3m and the resulting average character heights
for the Australian number plates amount to thirteen pixels and seven pixels respectively.
An example image at each distance is shown in Figure 5.13. For each number plate, 20
slightly different images were recorded. These slight changes in appearance are achieved
by moving the camera slightly during the recording.

(a) 1ACH406 (b) 1ACY856 (c) 1ALX349 (d) 1AOR599 (e) 1AOW555 (f) 1ARK497

(g) 1ASD541 (h) 1AYS476 (i) 1BAX701 (j) 1BDP661 (k) 1BFF922 (l) 1BGK460

Figure 5.14: Cropped example images of Western Australian number plates used for recog-
nition at a distance of 1.5m. Each sub figure shows the original image (top) with the result
(below).

After recording, the position of each number plate in each image is determined manually.
The total number of license plate images is 720, which is made up of 35 different number
plates and 20 different images per plate. Each Western Australian number plate consists
of seven characters (four numbers and and three letters), so the total number of characters
is 5040. Figures 5.14 and 5.15 show cropped example plates at a distance of 1.5m and
3m respectively. Each sub figure shows the original image on top with the result below,
that are the generated characters that best match each position within the image. Note
that the cropped number plates differ in contrast and saturation depending on the lighting
conditions as well as the plate background.

(a) 1ACH406 (b) 1ACY856 (c) 1ALX349 (d) 1AOR599 (e) 1AOW555 (f) 1ARK497

(g) 1ASD541 (h) 1AYS476 (i) 1BAX701 (j) 1BDP661 (k) 1BFF922 (l) 1BGK460

Figure 5.15: Cropped example number plates used for recognition at a distance of 3m.
Each sub figure shows the original image (top) with the result (below).

Once the number plates are cropped, the proposed character recognition algorithm (Sec-
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tion 5.1.2) is used to recognise each character on the number plate without previous
character separation. The position of each character is recovered simultaneously during
recognition.

At a distance of 1.5m and a resulting character height of 13 pixels, 690 Western Australian
plates out of 720 possible are recognised correctly, which equals 95.83%. A number plate is
considered to be recognised if all characters on the plate are recognised correctly. From all
possible 5040 characters (four numbers and three letters per plate), 5010 were identified
correctly which equals 99.41%. By increasing the distance to 3m, the number of correctly
recognised plates drops to 365, which equals 50.69%. Out of 5040 possible characters 4562
(90.52%) were identified correctly. Within the character recognition rate false positives
are neglected. Especially in lower resolution, the dark surrounding edges of the number
plate can be falsely recognised as the letter ’I’ or the number ’1’. These additional false
positives are not taken into account.

The main reason for a false recognition are characters that fit into characters, like the ’U’
fits the letter ’O’, but both characters are of same height and width. The correlation value
for the letter ’U’ might therefore be slightly better than the correlation of the letter ’O’,
leading to false recognition. Furthermore, increasing similarities of the characters ’0’ and
’O’ or ’2’ and ’Z’ with decreasing resolution affect recognition, but such false classifications
could be resolved by incorporating a regional syntax check. Lastly, as shown in Figure 5.14
and 5.15, the number plates also vary in contrast due to different lighting conditions in the
car park. However, by using normalised cross-correlation to match the character templates
the proposed method is robust against such lighting changes.

German Number Plate Recognition

The same number plate recognition experiment was performed on 35 different German
number plates, randomly picked in an outdoor car park. Again 20 different images of
each number plate are recorded at 320×240 pixels by moving the camera slightly. The
distance between the camera and the number plates is about 2m and 3m, with resulting
average character heights of eleven and seven pixels respectively. An example image at
each distance is shown in Figure 5.16.

Again each number plate is manually cropped and 12 example images are shown in Fig-
ure 5.17 and 5.18 for distances of 2m and 3m respectively. The number of characters
on each German number plate varies between six and eight characters per plate, with at
least two numbers and at least two letters. The total number of characters across all 35
different plates and 20 images per plate is 4800.
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(a) 2m (b) 3m

Figure 5.16: Example images of German number plates recorded in an outside car park.
The distance between the camera and the car is about (a) 2m and (b) 3m respectively.
The resolution is 320×240 pixels.

(a) AP XZ77 (b) EF CU333 (c) EF EZ300 (d) EF FW97 (e) EF HY553 (f) EF PT59

(g) EIC IX44 (h) GTH AZ630 (i) KYF VC32 (j) SLF PA18 (k) SM K177 (l) WAK AY825

Figure 5.17: Cropped example images of German number plates used for recognition at a
distance of 2m. Each sub figure shows the original image (top) with the result (below).

The plate recognition rate at a distance of 2m for German number plates is 77.57%, which
drops down to 55.57% for characters with an average height of 7 pixels at a distance of
3m. However, in most cases only a single character per number plate is not recognised
correctly, resulting in character recognition rates of 96.34% and 91.13% for both distances
respectively. Again, the main reason for a false recognition, especially in lower resolution,
are similar characters like ’B’ and ’8’ or ’0’ and ’O’.

Table 5.4 summarises the results of the outdoor number plate recognition of Western Aus-
tralian and German number plates. Both number plate fonts have been tested in a lab
environment in Section 5.2.1 for their suitability. In that test the German number plate
font resulted in slightly higher recognition rates compared to the Western Australian num-
ber plate font. However, when tested on real number plates the difference in recognition
rate is only marginal.

The German number plate font is called FE-Schrift (short for ’fälschungserschwerende
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(a) AP XZ77 (b) EF CU333 (c) EF EZ300 (d) EF FW97 (e) EF HY553 (f) EF PT59

(g) EIC IX44 (h) GTH AZ630 (i) KYF VC32 (j) SLF PA18 (k) SM K177 (l) WAK AY825

Figure 5.18: Cropped example images of German number plates used for recognition at a
distance of 3m. Each sub figure shows the original image (top) with the result (below).

Western Australian NP German NP
Distance 1.5m 3m 2m 3m
Character height 13 pixel 7 pixel 11 pixel 7 pixel
Plate accuracy 95.83% 50.69% 77.57% 55.57%
Character accuracy 99.41% 90.52% 96.34% 91.13%

Table 5.4: Recognition Results. Plate accuracy is the number of correct recognised plates
in percentage of 720 possible frames (20 frames for each of the 35 number plates) and
character accuracy is the number of correctly recognised characters, out of 5040 and 4800
possible for the Western Australian and the German number plate font respectively.

Schrift’ - falsification-hindering script), which should make this font less prone to false
recognition due to similar letters. However, the high resolution German characters are
created directly from the associated TrueType definition, which was created by a designer,
whereas the Western Australian high resolution characters were acquired directly from
the original number plates by taking high resolution images of each character. The high
resolution characters of the Western Australian number plate font are therefore a more
accurate model of the characters.

This experiment showed that the proposed character recognition algorithm for low resolu-
tion characters is able to recognise and simultaneously separate number plate characters
down to seven pixels in height. The result is comparable with the number plate recognition
results in ideal lab conditions in Section 5.2.2.1. In that experiment characters as small
as 6 pixels in height were recognised with 93.40% accuracy.

5.2.3 Text Recognition

The last experiment applies the proposed character recognition approach to text docu-
ments. Therefore, a short text with Times New Roman font size twelve is printed on a
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sheet of paper and captured with a compact digital camera. The resolution of the im-
age is 640×480 pixels and the distance between the text and the camera is set to 20cm,
25cm and 30cm resulting in average characters of about eight, six and five pixels in height
respectively.

The printed text is as follows

the quick brown fox jumps over the lazy dog
to recognise degraded low resolution characters
the image formation process of the camera is
modelled and parameterised templates are generated

The sentence ’the quick brown fox jumps over the lazy dog’ is chosen for recognition
because it is a pangram, it contains every letter of the alphabet at least once. It is
therefore ideally suited for testing the proposed character recognition approach.

(a) 20cm (b) 25cm (c) 30cm

Figure 5.19: Cropped document images used for recognition. The distance between the
text document and the camera is set to 20cm, 25cm and 30cm in (a), (b) and (c) respec-
tively.

After the is image captured, the text is cropped out of the entire image as shown in
Figure 5.19. The individual text lines and the words in each line are separated by using
adaptive thresholding and assuming that the text is straight. The proposed algorithm is
then applied to each word separately without previous character separation.

(a) 20cm

(b) 25cm

Figure 5.20: Text recognition results for distances of 20cm (a) and 25cm (b). Each sub
figure shows the original image (top) with the result (below).
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Figure 5.21: Text recognition results for a distances of 30cm. Each sub figure shows the
original image (top) with the result (below).

The text captured at a distance of 20cm with an average character height of about eight
pixels is recognised without errors achieving a recognition rate of 100%. All 29 words
and 187 characters are identified correctly. The image of the first text line is shown in
Figure 5.20(a), with the recognised character templates below each word.

The same text is captured at a distance of 25cm and results in average character heights
of about six pixels. Again, the image of the first text line is shown in Figure 5.20(b). Only
one character out of 187 is not recognised correctly; the word ’fox’ is recognised as ’tox’.
The reason is the overlap of the letter ’f’ with the following letter ’o’ in this resolution,
leading to a higher correlation value for the letter ’t’ compared to the letter ’f’ at this
position.

In general, the lower case characters ’f’, ’t’, ’i’ and ’l’ are most difficult to recognise
especially in lower resolution. As the resolution decreases to only a few pixels per character,
the appearance of these characters become more alike, as shown in Figure 5.21.

Increasing the distance between the text document and the camera even further to 30cm
results in average lower case characters of about five pixels. With so few pixels single
characters merge and become inseparable for standard methods, as shown in Figure 5.21.
The proposed low resolution character recognition algorithm is still able to identify all 187
characters correctly.
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Even though the proposed algorithm is applied to text documents it is still only a method
for recognising characters at low resolution. Unlike text recognition approaches, no dictio-
nary is used during recognition. This is an optional step that would increase the recognition
performance of the proposed approach even further.

5.3 Conclusion

This chapter proposes a new method for character recognition in low resolution images
by modelling the down-sampling process of the optical camera system. Using this model
different low resolution templates for each character of each font are generated. A template
based matching approach then uses these templates for recognition without the need for
an initial character segmentation. Without using image enhancement or super-resolution
techniques, each character is recognised by its low resolution grey scale appearance only.
Even though a large number of templates is used, the proposed approach is practical, as
the size of the low resolution input image as well as the templates themselves are quite
small.

The proposed method is best suited for applications in which the font type is known
beforehand, like number plate recognition or the transcript of a book. Experiments show
that the chosen font type influences the recognition result. Using character templates
that differ greatly from the actual font will result in low recognition rates, especially at
low resolutions. Best results are achieved when using the same font type for template
generation and recognition.

The performance of the proposed character recognition method is tested on number plates
of Western Australian and German cars captured in outdoor environments. For characters
of only seven pixels in height the resulting character recognition rate amounts to over 90%
for both number plate fonts. The character recognition approach can also be applied to
text documents.

The proposed method uses a priori information about an object for recognition. The high
resolution appearance of the object is used to generate a number of possible low resolution
appearances by modelling a simple camera. The objects in this chapter are limited to
2D characters only. Furthermore, in the template generation process in Section 5.1.1
only translation movements are considered and any rotations are neglected to reduce the
number of possible templates. In order to allow for possible skew or different camera angles,
three additional parameters are required to model adequate templates. Alternatively, the
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rotation can be detected and corrected before recognition.

The proposed template matching based approach is well suitable for low resolution charac-
ter recognition. The generated templates are very small in size and the unknown character
image is cropped before recognition which reduces its size and makes cross correlation fea-
sible. Even though this approach is theoretically applicable to 3D objects given their 3D
model and appearance, it is not feasible nor efficient for complex 3D objects like faces.
The number of templates needed to cover all possible appearances as well as the template
size prohibits an efficient usage.

Therefore, the following chapter proposes a model based face recognition method that
is not based on templates but uses the results of Chapter 3. A deformable face model
mask is fitted to an image of a previously unknown person and is subsequently used for
recognition.
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Chapter 6

Face Recognition

Automatic face recognition in large scale surveillance is still an open problem due to low
resolution video and large changes in face appearance caused by different pose and lighting
conditions, expressions as well as occlusion. This challenging task is further impeded by
uncooperative subjects, the availability of only a single training image for each individual
and the absence of 3D face shape information.

Multi-modal methods combining 2D and 3D face recognition have the potential to achieve
better recognition results than either of the two alone (Abate et al., 2007; Bowyer et al.,
2005). By incorporating the 3D shape of the face, the limitations of most 2D face recog-
nition systems with respect to changing pose and lighting conditions can be overcome.
However, to acquire the 3D face shape most sensors require the subject to cooperate
which is not feasible in large scale surveillance situations.

While most existing multi-modal face recognition methods use 3D sensors to acquire the
person specific face shape, the authors of Zhang and Samaras (2006) propose a multi-
modal approach using only a single training image without additional 3D shape infor-
mation. Instead 3D Morphable Models (3DMM) are used in combination with harmonic
images (Basri and Jacobs, 2003) to perform face recognition under different pose and il-
lumination. However, this approach requires the manual selection of facial features for
accurate image alignment as well as high resolution images for fitting the 3DMM.

Based on the findings in the previous chapter, that a template based recognition approach
is infeasible for complex 3D objects, this chapter proposes a model based approach for
automatic multi-modal face recognition in low resolution using only a single training image
per subject. A deformable 3D face model is utilised to extract 3D shape information from
a single 2D image for training rather than using a 3D face scan acquired by expensive
equipment. The resulting textured 3D face model is then used directly for face recognition
instead of using cropped and aligned 2D images. Pose invariance is achieved indirectly by
fitting the 3D face model and different lighting conditions are modelled by incorporating
the findings of Basri and Jacobs (2003) into the recognition process. This method does
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not require the manual selection of facial feature points and works in low resolution images
which makes it suitable for automatic non-intrusive surveillance and identification.

This chapter is organised as follows: The proposed method is explained in Section 6.1,
including the creation of the face database, the integration of the lighting model and the
face recognition approach. The experimental evaluation is outlined in the subsections of
Section 6.2, followed by the conclusion in Section 6.3

6.1 Multi-Modal Face Recognition from a Single Image

The proposed multi-modal face recognition approach uses a single training image per
subject and does not require any manual feature selection or image alignment. The basic
outline is shown in Figure 6.1. The face database is built from a single image per individual
by manually or automatically fitting a deformable 3D face mask and extracting the face
texture. During the recognition step the automatic face mask fitting method developed
in Chapter 3 is utilised to estimate the 3D pose and person-specific shape parameters of
the person’s face. The mask is textured and the lighting conditions are corrected using
harmonic images. For recognition, the weighted combination of harmonic images that is
closest to the test face is chosen from the database. Each step is described in detail in the
following sections.

6.1.1 Creating the Face Database

The face database is created by registering a single image of each subject under neutral
lighting conditions. It is assumed that the image shows a near frontal face which is
uniformly illuminated without the presence of cast or attached shadows. A passport
photo is a typical example of such lighting conditions. The face registration process for
training is shown in Figure 6.2.

Given an image of a new person, a deformable 3D face mask is used to estimate the 3D
pose, the person-specific shape parameters and to extract the face texture. Therefore,
automatic or manual 3D mask fitting methods can be utilised since the face database
is created offline. For automatic face registration the method proposed in Chapter 3 is
applied to detect the face and to fit a deformable 3D face model to the 2D image as shown
in Figure 6.2.
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Creating Face Database

Face Detection for Recognition

Lighting Correction

Recognition

Face Database

Figure 6.1: System Overview of the proposed automatic face recognition system. For
creating the face database a deformable face mask is fitted to a single image per person.
The resulting textured 3D mask is used to calculate harmonic images and then stored in
the face database. During recognition the deformable 3D mask is automatically fitted to
an image and the 3D face mask together with the harmonic images are used to adjust the
lighting conditions and to match the mask texture with the face database.

After the mask is fitted to the 2D image the face texture is extracted by projecting the
centre of each triangle into the image and assigning each mask triangle with a single colour
value as:

J = Q(P(g, T )) with T = [Tint,Text] (6.1)

where g is the deformed face mask and P projects the centre of each mask triangle into the
2D image using the intrinsic and extrinsic camera parameters T int and T ext (Equation 3.1
and 3.2). Q then creates a vector of concatenated colour values from the textured mask
vertices.

To achieve lighting invariance during recognition, nine harmonic images are constructed
from each fitted and textured 3D face mask. The authors of Basri and Jacobs (2003)
showed that any image I of a convex Lambertian object can be approximated as a linear
combination of so called harmonic images by using spherical harmonics to model lighting
conditions. These harmonic images are dependent on the surface normal η and the albedo
ρ of each surface point of the 3D model as:

I =
9∑

h=1

βhVh(η, ρ) (6.2)

where I is the intensity image, βh are coefficients and the function Vh returns the hth

harmonic image given a set of surface normals η and their albedo ρ. The first nine
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(a) Face Detection (b) Mask Fit (c) 3D Model

Figure 6.2: Face Registration for Training. To register a new person into the face database,
the face is automatically detected (a), the deformable face mask is automatically fitted
(b) and the 3D mask is textured (c).

harmonic images are a sufficient approximation of the illumination cone according to Basri
and Jacobs (2003) and are used within the proposed face recognition method.

The function Vh is then used to calculate the first nine harmonic images given the albedo
ρ, i.e. the mask texture J , and the surface normals η of each triangle of the deformed
3D face mask g. The texture vector J , the shape parameters γ which are necessary to
deform the mask and the nine harmonic images are then stored in the face database for
recognition.

6.1.2 Pose and Lighting Invariant Recognition

For automatic face recognition of a previously unseen person, the mask fitting method as
proposed in Chapter 3 is applied first to recover the 3D pose and person-specific shape of
the face. This pre-processing step, necessary for automatic face recognition, includes 2D
image based face detection and the automatic fitting of a deformable 3D face mask to the
image. This overcomes the first limitation of traditional 2D face recognition - variance in
pose - since the mask automatically and implicitly recovers the 3D pose of the face.

Most traditional 2D face recognition approaches require the face images to be normalised
such that the spatial position of the facial features (like eyes and mouth) are aligned
throughout the dataset. However, by using a textured mask instead of a 2D image for
recognition, all facial features are aligned implicitly. After the mask is fitted to the 2D
image, it is subdivided and textured by assigning a colour value to each mask triangle.
The centre of each triangle is projected onto the image according to Equation 6.1 and the
texture vector Jnew is extracted.
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(a) Jnew (b) J (c) minβ ||J−βV (η,J)||2

Figure 6.3: Given a new, unknown face texture Jnew, the first nine harmonic images are
used to recover the lighting conditions and the face texture J is adjusted accordingly. The
result after minimising minβ ||Jnew − βV (η,J)||2 is shown in 6.3(c).

Lighting invariance, the second main limitation of most 2D face recognition methods,
is achieved by integrating spherical harmonics in the form of harmonic images during
recognition. Given the mask texture of a new face, Jnew a weighted combination of
harmonic images is recovered for every individual in the face database and the distance
to the unknown texture vector Jnew is minimised as:

min
β
||Jnew − βV (η,J)||2 (6.3)

where Jnew is the texture vector of the unknown face, J is a face in the database and
V returns nine harmonic images given the surface normals of the 3D model η and its
texture J. QR decomposition with pivoting is used to find the parameter vector β that
minimises this equation. The weighted combination of harmonic images in the database
that is closest to the unknown face Jnew is chosen. An example is shown in Figure 6.3.

6.2 Experiments

The Yale Face Database B (Georghiades et al., 2001) is used throughout this section. This
dataset contains ten individuals and over 400 images for each subject which sample nine
different poses under 45 different illumination conditions. Despite its relatively small size
it has become a standard for comparing face recognition methods for variable lighting
conditions as well as different poses.

This data set is subdivided into four subsets depending on the angle between the light
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(a) Subset 1 up to 12◦ (b) Subset 2 up to 25◦ (c) Subset 3 up to 50◦ (d) Subset 4 up to 77◦

Figure 6.4: The Yale Face Database is divided into subsets depending on the angle between
between the camera axis and the light source. Figures (a)-(d) show example images of
each subset.

source and the camera axis according to Georghiades et al. (2001). The resulting Subset 1
contains seven images of each subject under near frontal illumination (up to 12◦). The
lighting conditions become more extreme towards Subset 4 with up to 70◦ between the
light source and the camera axis. Sample images of each subset are shown in Figure 6.4
with Subsets 2 and 3 both containing twelve and Subset 4 containing fourteen different
images of each individual.

The face recognition experiments on the Yale Face Database B described in the follow-
ing sections are evaluated with respect to different image resolutions, pose and lighting
conditions and fully automatic mask fitting. The results are compared with a 2D face
recognition method based on image tensors (Rana, 2009) as well as with a large number
of different approaches reported in literature (Georghiades et al., 2001; Lee et al., 2005;
Chen et al., 2000; Zhang and Samaras, 2006).

6.2.1 Recognition under Different Resolutions

The experiments in this section are designed to evaluate the face recognition performance
for different image resolutions as well as for different mask sizes, i.e. for different number
of mask subdivisions. The Yale Face Database B contains images of size 640×480 pix-
els, this resolution is cut into half three times successively to result in images of size
320×240, 160×120 and 80×60 pixels with average face sizes of 280×200, 140×100, 70×50
and 35×25 pixels respectively. Furthermore, the original coarse CANDIDE-3 mask is sub-
divided three times to result in a fine mesh. Example images of different image resolutions
and mask sizes are shown in Figure 6.5.
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(a) mask 0 (b) mask 1 (c) mask 2 (d) mask 3

(e) mask 0 (f) mask 1 (g) mask 2 (h) mask 3

(i) 80×60 (j) 160×120 (k) 320×240 (l) 640×480

(m) 80×60 (n) 160×120 (o) 320×240 (p) 640×480

Figure 6.5: Different mask sizes (a)-(d) and the resulting mask textures (e)-(h) and differ-
ent image resolutions (i)-(l) and the resulting textured mask 2 (m)-(p) used for recognition.
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Figure 6.6: Recognition rates for different image resolutions and mask sizes used for
testing. Each graph shows the results for one particular subset of the Yale Face Database
B. A single image of size 640×480 pixels under frontal illumination is used for training.

The proposed face recognition approach as described in Section 6.1 is used for recognising
the individuals in the Yale Face Database B under different lighting conditions in Subsets
1 to 4 by using different image resolutions and mask sizes. For the first experiment a single
frontal image of size 640×480 pixels of each subject under frontal illumination is used for
training and the 3D face mask is fitted manually during training and testing.

The mean recognition error across ten individuals for each subset are shown in Figure 6.6.
Best recognition rates are achieved for Subsets 1 and 2 containing seven and twelve images
respectively. The recognition error increases for all image resolutions and mask sizes for
Subsets 3 and 4 that contain more extreme lighting conditions with twelve and fourteen
images respectively.

Common across all subsets is the increase in error rates for low resolution images of size
80×60 pixels and a coarse mask 0 (Figure 6.5(e)). The error rate increases with both,
decreasing image resolution and decreasing number of mask triangles, i.e. a coarser mask.
The highest recognition rate is achieved by images of resolution 640×480 pixel and a
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Figure 6.7: Recognition rates for different image resolutions and mask sizes used for
training and testing. Each graph shows the results of one particular mask size as the
average recognition error across all persons and subsets of the Yale Face Database B.

mask 3 (Figure 6.5(h)) resulting in error rates of 0, 0, 0.035 and 0.137 for Subsets 1 to 4
respectively and corresponding false alarm rates of 0, 0, 0.03 and 0.238.

The second experiment uses different image resolutions for training and testing. Again
different mask sizes are used and the resulting recognition errors as the mean across all
four subsets for all individuals (450 images) are shown in Figure 6.7. Each graph shows
the result for a particular mask size used for training and testing.

Noticeable in all four graphs is that the lowest recognition error are along the main di-
agonals. This means that the best recognition results are achieved by using the same
image resolution for training and testing. However, the off-diagonal results do not dif-
fer greatly from the error rates along the diagonals, especially for training images of size
640×480 pixels. As a result, a high resolution passport photo for example can be used
to texture different mask sizes. These masks are then sufficient for recognising images of
lower resolution without the need for image resizing or scaling because the resolution is
determined by the size of the mask or the image resolution, whichever is smallest.
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Figure 6.8: Detailed recognition errors for all ten individuals of the Yale Face Database B
for different subsets.

Furthermore, the mask size affects the resulting error rates only slightly. The original
CANDIDE-3 mask 0 is too coarse, showing only little detail (Figure 6.5(e)) and therefore
the resulting error rates are highest. The recognition error decreases with the number
of subdivisions, the finer the mask, the smaller the recognition error. However the error
difference between mask 1 to 3 amounts to only 0.02%. The reason for this are differences
in the triangle size for different parts of the 3D face mask. After one or two subdivisions
the eye and mouth area are already represented by a fine mesh compared to areas like the
cheeks or the forehand as shown in Figure 6.5. Since the eyes and the mouth areas are
most important for recognising subjects, these parts are already sufficiently represented
by a fine mesh such that the recognition rates improve only slightly.

Lastly, the detailed recognition rates for all ten individuals and different subsets are shown
in Figure 6.8. The recognition rates are calculated by using mask 3 (Figure 6.5(h)) and
images of resolution 640×480 pixels for training and testing. The graph shows that all
images in Subset 1 and 2 are recognised without errors. Persons 8 and 10 were not
recognised in two and three images respectively in Subset 3 and the error rates for nearly
all subjects are highest for Subset 4 that contain images with extreme lighting conditions.

As mentioned previously in Chapter 3, the deformations of the CANDIDE-3 face mask do
not allow for a precise modelling of a person’s face shape. As a result it can only be used
to model non-extreme lighting conditions like in subsets 1, 2 and partially 3. Furthermore,
the example images of each subject in the Yale Face Database B in Figure 6.9 show that
the face shape of Person 8 differs from most others and is not accurately represented by
the CANDIDE-3 mask. The training image used for Person 10 in Figure 6.9(j) shows a
bright reflection on his forehand which also hinders recognition.
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(a) Person 1 (b) Person 2 (c) Person 3 (d) Person 4 (e) Person 5

(f) Person 6 (g) Person 7 (h) Person 8 (i) Person 9 (j) Person 10

Figure 6.9: The image of each subject of the Yale Face Database B with frontal lighting
that is used for training.

6.2.2 Recognition Under Different Pose and Lighting Conditions

The following experiment demonstrates the ability of the proposed face recognition algo-
rithm under varying pose and lighting conditions. Again, the Yale Face Database B is
used which contains images of nine different poses and 45 different illumination conditions
for ten individuals. An example image of each pose is shown in Figure 6.11.
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Figure 6.10: Recognition rates for the Yale Face Database B for different pose and different
lighting conditions. The recognition rates shown are the average over ten persons and 7,
12, 12 and 14 different lighting conditions for Subset 1, 2, 3 and 4 respectively.

For the following experiment the mask is fitted to each image manually. The mask is then
subdivided three times, each mask triangle is assigned a colour value and the illumination is
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(a) Pose 2 (b) Pose 3 (c) Pose 7

(d) Pose 1 (e) Pose 4 (f) Pose 8

(g) Pose 6 (h) Pose 5 (i) Pose 9

Figure 6.11: The Yale Face Database B contains face images under nine different poses,
ranging from frontal (Pose 1) to looking up and far left (Pose 7) and looking down and
far left (Pose 9).

adjusted according to Section 6.1.2 using a single frontal image of each subject as reference.
The face alignment as well as the correction for pose is implicitly done by fitting the mask
to the person’s face. The identity of a new face then equals the weighted combination of
harmonic images that is closest to the new image.

The average recognition error across ten persons and 45 different lighting conditions for
each pose are detailed in Figure 6.10. The recognition rates for each pose and each subset
are shown separately. As expected the recognition rates are best for Subset 1, with only
slight illumination changes. These rates decrease for Subsets 2, 3 and 4 with extreme
lighting conditions, the darker and less illuminated the face, the more challenging the
recognition task. Furthermore, frontal images achieve best results while poses diverting
from the frontal view show increased errors. As the person’s face turns away from the
camera, its face as well as the fitted mask become more and more occluded, resulting in
decreasing recognition rates.
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(a) Automatic Fitting
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(b) Automatic Recognition

Figure 6.12: The results of the automatic fitting approach (a) are used for automatic face
recognition (b). The fitting error is shown as the mean vertex point different and the
recognition error is the mean across ten individuals in each subset and for each pose.

These results show the limitations of the proposed approach. The images in Subset 3 and
4 show extreme lighting conditions with large shadows but the generic face shape provided
by the CANDIDE-3 face mask is not sufficient to model these conditions. Accurate 3D
scans are needed for such illumination conditions. Similar to the pose and shape estimation
results in Section 3.2.4.4, near frontal poses as well as ’looking down’ poses are recognised
best. Poses that differ most from the frontal pose, where large parts of the face are
occluded result in the highest recognition errors.

6.2.3 Automatic Face Recognition

The experiments in this section all apply the automatic 3D mask fitting approach as
proposed in Chapter 3 to recover the 3D pose and the person-specific shape parameters
during recognition. Again, only a single training image of each subject with frontal lighting
is used for training. The CANDIDE-3 face mask is automatically fitted, subdivided three
times and recognition is performed on images of size 640×480 pixels using the recognition
approach outlined in Section 6.1.2.

For comparison the results of the automatic fitting are shown Figure 6.12(a) as the mean
vertex point difference in pixels. Using these fitting results, the resulting recognition
errors are shown in Figure 6.12(b). The two graphs show that the recognition errors
depend on the fitting accuracy, larger fitting errors result in larger recognition errors due
to the misalignment of training and testing images. Furthermore, the limitations of the
CANDIDE-3 face mask are shown in the high recognition errors for Subset 3 and 4 as
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well as for non frontal poses. These results show that accurate alignment of training and
testing images is necessary for high recognition rates and that the fitting accuracy of the
proposed approach is not sufficient for accurate face recognition.

6.2.4 Comparison with Tensor based method

The proposed recognition approach is compared with a tensor based method for 2D face
recognition using only a small number of training images. The authors of Rana (2009)
propose a method for incomplete and unbalanced datasets and assume a complete (in
terms of different pose and varying lighting conditions) dataset of friendly and cooperative
people is available for training. Using this complete dataset a tensor is trained and person-
identity vectors are calculated for friendly people as well as for hostile people with only a
few training images available.

This tensor based algorithm is used for the following facial recognition task on the Ex-
tended Yale Face Database B, which includes images of 38 people in nine different poses
and under 45 different lighting conditions. For this experiment only the frontal images
of each person are used. For this experiment the dataset is divided into a set of friendly
people, with all images available, and hostile people, with only a single image available.
The frontal image under frontal lighting, i.e. zero azimuth and zero elevation, is chosen
as the only image available for each hostile person in the training set. The complete set
of images of the friendly people is used for training using methods in Rana (2009) and
the single image for each hostile person is used to calculate the person-identity vector.
The remaining images in Subset 1 to 4 for each hostile person are used for recognition.
Thus, the recognition of hostile persons requires only a single training image similar to
the proposed recognition method based on a 3D face model.

Number of
Hostile Persons

11 14 17 20 23 26

Subset 1 0.0 6.12 4.2 4.29 6.83 6.59
Subset 2 0.0 0.0 0.0 2.92 7.61 15.71
Subset 3 14.29 18.37 23.53 30.36 39.13 47.8
Subset 4 43.94 53.57 52.94 61.25 66.67 75.32

Table 6.1: Tensor based face recognition based on Rana (2009). The recognition error for
different subsets and varying number of hostile people.

The results are shown in Table 6.1. Each column contains the recognition error for each
of the four subsets for different numbers of hostile people. In the last column for example,
the first 12 people of the Extended Yale Face Database B are used for learning the tensor
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structure and the remaining 26 hostile people are used for recognition. Recognition rates
are best for the first subset with only slight lighting changes. Large angles between the
light source and the camera axis cause dark shadows on the face, which in turn decrease the
recognition performance. Furthermore, with the number of friendly people decreasing and
the number of hostile people increasing at the same time, the recognition error increases
as shown in Table 6.1.

Number of
Hostile Persons

11 14 17 20 23 26 34

Subset 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Subset 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Subset 3 6.3 9.25 13.24 14.29 15.13 17.65 25.0
Subset 4 14.46 19.61 25.74 29.41 35.54 40.2 62.0

Table 6.2: The proposed face recognition approach. The recognition error for different
subsets and varying number of hostile people.

For comparison the same experiment is repeated using the proposed method for face
recognition based on a deformable 3D face mask. The face mask is manually fitted to
all individuals of the Extended Yale Face Database B, the texture is extracted and the
proposed recognition approach is applied.

The proposed method does not require any learning unlike the tensor based face recogni-
tion method. During the recognition, the textured mask of each hostile person is compared
against the mask texture of the unknown person as described in Section 6.1.2. The recog-
nition errors for different number of hostile persons and different lighting conditions are
shown in Table 6.2.

The proposed face recognition method uses only a single image for each hostile person
and outperforms the tensor based approach for each subset and for each number of hostile
people. The generic 3D face mask is able to model the different lighting conditions more
accurately than the tensor method in Rana (2009) leading to better recognition rates when
only a single image is available for training. The mask only approximates the shape of
the person’s face because the number and amount of deformations is limited. However,
these additional 3D shape information are sufficient to model different lighting conditions
which are necessary for accurate face recognition.
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6.2.5 Comparison of Recognition Results

The Yale Face Database B, despite its relatively small size, is commonly used for comparing
different face recognition methods. As mentioned earlier, the face images contained in this
dataset sample sufficiently the whole illumination space and have therefore become a
testing standard. Following is a summary of different face recognition methods proposed
in the literature and their results in comparison to the results of the proposed approach.
Table 6.3 gives a quick overview of the different methods and their recognition results for
ten different persons under seven, twelve, twelve and fourteen different lighting conditions
in Subset 1, 2, 3 and 4 respectively. Each of these methods is described in detail in
Section 2.5.

Methods Subset 1 Subset 2 Subset 3 Subset 4
Correlation

0.0 0.0 23.3 73.6
(Georghiades et al., 2001)
Eigenfaces

0.0 0.0 25.8 75.7
(Georghiades et al., 2001)
Eigenfaces w/o 1st 3

0.0 0.0 19.2 66.4
(Georghiades et al., 2001)
Linear Subspace

0.0 0.0 0.0 15.0
(Georghiades et al., 2001)
Cones - attaches

0.0 0.0 0.0 8.6
(Georghiades et al., 2001)
Cones - cast

0.0 0.0 0.0 0.0
(Georghiades et al., 2001)
9PL

0.0 0.0 0.0 2.8
(Lee et al., 2005)
9PL (real images)

0.0 0.0 0.0 0.0
(Lee et al., 2005)
Gradient Angles

0.0 0.0 0.0 1.4
(Chen et al., 2000)
3DMM + harmonic images

0.0 0.0 0.0 2.8
(Zhang and Samaras, 2006)
CANDIDE + harmonic images 0.0 0.0 3.57 13.73

Table 6.3: Face recognition results for different face recognition methods proposed in
literature. Recognition errors are taken from the respective references and are shown as
the average over ten individuals for each subset.

For easier comparison of the face recognition methods a detailed summary is given in
Table 6.4. The first three methods, namely Correlation, Eigenfaces and Eigenfaces without
the first three largest eigenvectors, are standard face recognition methods commonly used
for comparison. These methods do not specifically model different illumination conditions
and thus result in the largest recognition errors especially for Subset 3 and 4. The linear
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subspace method constructs a three-dimensional illumination subspace for each subject
but does not allow for shading, thus resulting in an error rate of 15% for Subset 4.

The first four methods in Table 6.3 use all seven images in Subset 1 for training, there-
fore the resulting recognition errors for Subset 1 are almost by definition zero. The two
illumination cone methods also use all images in Subset 1 for each subject to reconstruct
the surface of the face. This 3D surface is then used to render 121 images under differ-
ent illumination conditions from which the cone is calculated for each person. These 121
images cover almost the entire illumination space resulting in very low recognition errors.
Similarly, the nine points of light methods (9PL) uses specific point light source config-
urations to acquire the basis images directly instead of using a large number of training
images and the resulting recognition errors are equally small.

The last two methods, namely the Gradient Angles and 3D Morphable Models (3DMM)
with harmonic images, use only a single image of each subject for testing and training.
While the Gradient Angles method is a 2D face recognition approach that requires the
manual alignment of all images for training and testing the 3DMM method fits a 3DMM
to the training image to recover its shape. However, the fitting of the 3DMM also requires
the manual assignment of facial feature points.

The proposed method is similar to the 3DMM based method in Zhao et al. (2006) in that
the 3D shape of the face is used to generate nine harmonic images, also called basis images.
This differs from the illumination cone and 9PL method that use a large set of training
images or specific point light source configurations to acquiring these basis images. The
advantage of using a 3D face model is that only a single training image is sufficient for
estimating the 3D shape which can then be used to render the harmonic images. However,
the precise 3D face shape is needed for accurate illumination modelling.

Using only a single training image of Subset 1 for each individual, the proposed face
recognition approach is able to recognise all images of Subset 1 and 2 without errors,
provided the mask is fitted manually. The recognition error increases to 3.57% and 13.73%
for Subset 3 and 4 respectively due to inadequate face shape representation.
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6.2.6 Experiments Summary

The experiments in this chapter show that by using a subdivided mask, face recognition can
be performed independent of the image resolution. The number of subdivisions determines
the size of the mask triangles and thus the resolution of the mask texture. A finer mask
results in a higher resolved mask texture and in turn leads to higher recognition rates
compared to a coarse mask.

The automatic recognition results indicate the limitations of the proposed face recognition
approach. Precise image alignment is important for accurate face recognition, however the
fitting accuracy of the proposed approach is not accurate enough and thus its use for face
recognition is limited. However, the CANDIDE-3 face mask is sufficient for modelling
non-extreme lighting conditions without the use of an accurate 3D face scan and good
recognition results are achieved when the mask is fitted manually.

Comparative experiments with a tensor based 2D face recognition approach in Section 6.2.4
show that face recognition methods which include the 3D face shape for modelling illumi-
nation are superior to 2D based methods, especially when only a small number of training
images is available for each subject.

Compared to a number of different face recognition approaches, the proposed approach
achieves good recognition results for non-extreme lighting conditions without the need for
precise 3D shape recovery. The CANDIDE-3 face mask can be used for modelling different
illumination conditions without accurate person-specific 3D face scans.

6.3 Conclusion

The face recognition method proposed in this chapter utilises a deformable 3D face mask
to recover the 3D pose and person-specific shape parameters given a 2D image. Only a
single frontal image under uniform illumination is used for training and lighting invariance
is achieved by incorporating spherical harmonics into the recognition approach.

The harmonic images are chosen for modelling the lighting conditions because they only
require a 3D model of the object along with its albedo. Instead of an exact 3D scan of
a person’s face, which to this date can not be obtained in a non-cooperative large scale
surveillance situation, the proposed face recognition algorithm uses the result of the face
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mask fitting approach in Chapter 3. The fitted, subdivided, person-specific deformed face
mask provides a good approximation of the person’s face and is used instead of a more
accurate 3D face scan.

Fitting a deformable 3D face mask recovers the spatial position of all facial features and
thus makes normalisation and alignment redundant. The vectors of concatenated triangle
colour values are used for recognition, which makes the proposed approach independent
of the input image resolution of the face. Cropping and adjusting the size of the image is
unnecessary.

However, experiments showed that the accurate alignment of testing and training images is
indispensable for accurate face recognition. The fitting accuracy achieved by the automatic
fitting approach in Chapter 3 is not sufficient for accurate face recognition. A manual mask
fit is required to achieve good recognition rates for non-extreme lighting conditions (as in
Subset 1 and 2 and in parts of Subset 3). The CANDIDE-3 face mask represents a generic
face shape that does not allow for precise face shape modelling however, this generic face
is sufficient to model non-extreme lighting conditions.
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Conclusion

This thesis has investigated model based methods for automatic processing of low resolu-
tion video objects under different pose and illumination conditions where standard feature
based methods are particularly difficult to apply. The developed methods include face pose
and shape estimation, object tracking, super resolution and low resolution character and
face recognition.

The method for automatic pose and shape estimation, the first step towards automatic
video processing, is described in Chapter 3. The deformable 3D face mask CANDIDE-3
is utilised within a particle filter based fitting approach to recover the 3D pose and the
person-specific shape parameters. Harmonic images (Basri and Jacobs, 2003) are included
into the error function of the particle filter to allow for accurate mask fitting under different
illumination conditions. However, only non-extreme lighting conditions can be modelled
accurately due to the limited deformability of the CANDIDE-3 face mask. The precise 3D
shape of a person’s face is necessary for precise modelling of extreme lighting conditions.
Using computer graphics subdivision schemes, the face mask is subdivided into a fine mesh
to allow for accurate fitting in different image resolutions, as demonstrated in experiments
on the IMM Face Database (Nordstrøm et al., 2004). A comparative evaluation of the
proposed method and an Active Shape Models based approach shows that the particle
filter based fitting works consistently better especially in low resolution and under different
lighting conditions.

A novel approach combining tracking and super resolution is presented in Chapter 4. Only
the resolution of the object is increased during tracking while the rest of the image scene
remains unchanged. This form of super resolution is made possible by subdividing the
object mask into a fine mesh, such that every triangle is smaller than a pixel when pro-
jected in to the image. Experiments show that such a fine mesh is not only necessary for
super resolution it also benefits the tracking. Furthermore, the combined appearance and
geometric tracking approach achieves better results than either of the tracking methods
alone. When applied to non-planar and non-rigid objects like human faces, the combined
tracking and super resolution approach outperforms traditional super resolution optical
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flow. Unlike optical flow based methods no interpolation is needed to increase the res-
olution, resulting in less blurred images. The larger the number of mask triangles, the
higher the possible increase in resolution, however more frames are required to achieve this
increase. In contrast to optical flow based methods, more frames are needed to achieve
the same resolution increase because interpolation is omitted for less blurred results.

Based on the effect of the image formation process utilised in the previous chapter, a
character recognition method is developed in Chapter 5. For recognising low resolution
characters, the simple camera model is parameterised with three different parameters
for an efficient generation of low resolution character templates. Experiments on four
different font types show that this model generates character templates that accurately
match character images taken by a compact digital camera, achieving average correlation
values of 0.98. Best recognition results are achieved by using identical fonts for template
generation and character recognition. The small size of the character templates allow for
an efficient recognition using template matching and clustering techniques. Characters are
recognised without prior character separation and without binarising the images, unlike
traditional optical character recognition (OCR) methods. In contrast, the grey scale edges
of each character contain important information and benefit the recognition. Experiments
on German and Western Australian car license plates demonstrate the practicability of
the approach for automatic plate recognition in low resolution images, typically taken by
wide area surveillance cameras.

Based on the automatic fitting of a deformable 3D face mask proposed in Chapter 3, a
face recognition method is developed in Chapter 6. The 3D face mask is used to implicitly
recover the 3D pose of the face as well as person-specific shape parameters. The fitted,
subdivided and textured mask is then used for recognition instead of cropped 2D images,
making image alignment and resizing unnecessary. Provided with a precise fit the generic
shape of the mask is sufficient to model non-extreme lighting conditions and good recog-
nition results are achieved. However, precise image alignment is indispensable for high
recognition rates and the automatic mask fitting approach is not accurate enough for the
use within a face recognition approach.

7.1 Future Work

The methods developed in this thesis aim to improve automatic video processing for
automatic scene interpretation and analysis. However, there are certain limits that are
worth investigating in the future. Foremost is the deformable 3D face model CANDIDE-3
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used in nearly all chapters. The fourteen hand defined shape parameters allow for an easy
deformation of the face mask. However, this face mask is too rigid to model the exact
shape of a person’s face, like the form of the cheek bones or the nose shape. As a result,
harmonic images can only be applied in conjunction with this mask to model non-extreme
lighting conditions for mask fitting and face recognition.

Further research should investigate different 3D deformable face masks that accurately
model a specific face like Tao and Huang (1999); Roussel and Gagalowicz (2005) but allow
for efficient and accurate fitting, preferably in real time for surveillance applications. A
first attempt that uses 3D Morphable Models together with harmonic images is proposed
by (Zhang and Samaras, 2006). However, the fitting requires the manual assignment of
feature points which prohibits automatic face recognition.

Another area that can be readily improved is the character recognition method proposed
in Chapter 5. As mentioned earlier in Section 5.3, the transformations allowed for in the
template generation process are limited to translations parallel to the image plane and
scaling in order to keep the number of possible templates low and to allow for efficient
recognition. However, to be applicable in real world surveillance scenarios, the algorithm
should also include rotation and skew by either detection and correction of the image or
by including it into the template generation process. However, including additional pa-
rameters into the template generation process would increase the run time of the template
matching algorithm, thus detecting and image rectifying would be favourable.
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Appendix A

Face Mask Subdivision

A number of different subdivision algorithms have been proposed in the literature (Zorin
and Schroder, 2000). The following two have been selected for the use within this thesis:

• Loop Subdivision

• Modified Butterfly Subdivision

Both methods are face-split schemes for triangular meshes. Each existing surface triangle
is subdivided into four smaller triangles by inserting three new vertex points in the centre
of each triangle edge. Special rules apply for boundary and extraordinary vertices (Zorin
and Schroder, 2000). Figures A.1(a) and A.1(b) show the top section of the CANDIDE-3
mesh (green) and the result after one subdivision (red) using the Loop and the Modified
Butterfly scheme respectively.
The advantage that both subdivision schemes offer is that the deformability of the original
CANDIDE-3 mask can be transferred onto the subdivided model. The deformation matrix
S in Equation 3.1 contains a list of vertices and their displacement which are controlled by
the parameter γ. During the subdivision each triangle is split into four triangles and new
vertex points are added. These new vertex points may then be added to the deformation
matrix S to ensure the deformability of the new subdivided and finer mask.
The main difference between the two subdivision schemes is the calculation of the new
vertex points after each triangle is split into four. The Loop subdivision scheme is an
approximating scheme based on splines and, thus produces piecewise polynomial surfaces,
whereas the Modified Butterfly Subdivision scheme is interpolating which means that the
position of the old vertex points remains unchanged.
The result after one, two and three subdivisions of the CANDIDE-3 face mask using the
Loop and the Modified Butterfly subdivision scheme is shown in Figure A.1. The Modified
Butterfly scheme preserves the location of all mask vertices and only interpolates the
position of the inserted vertex points, whereas the Loop subdivision smooths the entire
mask using spline approximation and none of the original vertex points are preserved.
To achieve a subdivided CANDIDE-3 mask with a smooth surface while keeping close to
the position of the original CANDIDE-3 vertex points both subdivision schemes are used.
The original mask is subdivided using the Modified Butterfly Subdivision scheme first and
then subdivided twice using Loop Subdivision scheme. The result is shown in Figure A.2.

165



APPENDIX A. FACE MASK SUBDIVISION

(a) Loop Subdivision (b) Modified Butterfly Subdivision

(c) 1 Loop Subdivision (d) 1 Modified Butterfly Subdivision

(e) 2 Loop Subdivisions (f) 2 Modified Butterfly Subdivisions

(g) 3 Loop Subdivisions (h) 3 Modified Butterfly Subdivisions

Figure A.1: The Loop subdivision scheme and the Modified Butterfly subdivision scheme
are used to subdivide the CANDIDE-3 mask. The result after one, two and three subdi-
visions is shown in figures (c)-(h). Figure (a) and (b) show the top section of the original
CANDIDE-3 mask (red) as well as the result after one subdivision (green) to visualise the
different between the two subdivision schemes.
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APPENDIX A. FACE MASK SUBDIVISION

(a) Original CANDIDE-3 (b) 1. Modified Butterfly Subdivision

(c) 2. Loop Subdivision (d) 3. Loop Subdivision

Figure A.2: For this thesis the original CANDIDE-3 face mask (a) is subdivided using the
Modified Butterfly Subdivision scheme (b), followed by two Loop subdivisions (c),(d).
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