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Abstract

Optimal control problems arise in many applications, such as in economics,

finance, process engineering, and robotics. Some optimal control problems involve

a control which takes values from a discrete set. These problems are known as

discrete-valued optimal control problems. Most practicaldiscrete-valued optimal

control problems have multiple local minima and thus require global optimization

methods to generate practically useful solutions. Due to the high complexity of

these problems, metaheuristic based global optimization techniques are usually re-

quired.

One of the more recent global optimization tools in the area of discrete op-

timization is known as the discrete filled function method. The basic idea of the

discrete filled function method is as follows. We choose an initial point and then

perform a local search to find an initial local minimizer. Then, we construct an

auxiliary function, called a discrete filled function, at this local minimizer. By min-

imizing the filled function, either an improved local minimizer is found or one of

the vertices of the constraint set is reached. Otherwise, the parameters of the filled

function are adjusted. This process is repeated until no better local minimizer of the

corresponding filled function is found. The final local minimizer is then taken as an

approximation of the global minimizer.

While the main aim of this thesis is to present a new computational method

for solving discrete-valued optimal control problems, theinitial focus is on solving

purely discrete optimization problems. We identify several discrete filled functions

techniques in the literature and perform a critical review including comprehensive
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numerical tests. Once the best filled function method is identified, we propose and

test several variations of the method with numerical examples.

We then consider the task of determining near globally optimal solutions

of discrete-valued optimal control problems. The main difficulty in solving the

discrete-valued optimal control problems is that the control restraint set is discrete

and hence not convex. Conventional computational optimal control techniques are

designed for problems in which the control takes values in a connected set, such as

an interval, and thus they cannot solve the problem directly. Furthermore, variable

switching times are known to cause problems in the implementation of any numeri-

cal algorithm due to the variable location of discontinuities in the dynamics. There-

fore, such problem cannot be solved using conventional computational approaches.

We propose a time scaling transformation to overcome this difficulty, where a new

discrete variable representing the switching sequence anda new variable control-

ling the switching times are introduced. The transformation results in an equivalent

mixed discrete optimization problem. The transformed problem is then decomposed

into a bi-level optimization problem, which is solved usinga combination of an ef-

ficient discrete filled function method identified earlier and a computational optimal

control technique based on the concept of control parameterization.

To demonstrate the applicability of the proposed method, wesolve two com-

plex applied engineering problems involving a hybrid powersystem and a sensor

scheduling task, respectively. Computational results indicate that this method is ro-

bust, reliable, and efficient. It can successfully identifya near-global solution for

these complex applied optimization problems, despite the demonstrated presence

of multiple local optima. In addition, we also compare the results obtained with

other methods in the literature. Numerical results confirm that the proposed method

yields significant improvements over those obtained by other methods.
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Chapter 1

Introduction

1.1 Background

Optimal control describes the task of determining feasiblecontrol policies for a

given dynamical system to achieve a certain optimality criterion. Specifically, an

objective functional is to be minimized subject to a dynamical system governing

the behavior of the state variables and subject to constraints. Usually, the dynamical

system constitutes a set of ordinary or partial different equations.

Optimal control problems can be found in many applications,such as eco-

nomics, finance, engineering, and robotics. The first order necessary conditions of

for an optimal control are described by the Euler-Lagrange equations. However, the

Euler-Lagrange equations do not apply in the presence of bounds on the control.

Instead, the first order necessary conditions of optimalityfor such problems can be

determined by the minimum principle [110]. Application of the minimum principle

developed by Pontryagin and his collaborators can solve many idealized problems

and has found wide application in the theory of economics [50]. Necessary condi-

tions of optimality are essentially stated in the forms of a two-point boundary value

problem. When this cannot be solved analytically, as is often the case, one must

resort to numerical methods. One of the common techniques for solving two-point

boundary value problems is the multiple shooting method. This method divides

the time horizon into several subintervals, solves an initial value problem over each

of these intervals, and imposes additional matching conditions to form a complete

1



solution of the problem [18, 103, 109].

Another well-known principle, known as dynamic programming principle [6],

is introduced by Bellman to solve optimal control problems.In contrast to the min-

imum principle, the technique often yields the optimal control in a feedback form.

While many optimal control problems have been solved by thistechnique, the ap-

plication of the dynamic programming principal requires the solution of Hamilton-

Jacobi-Bellman (HJB) partial differential equation, which then yields the optimal

value function from which the optimal control may be determined. For most prac-

tically significant problems, though, it is difficult to solve the Hamilton-Jacobi-

Bellman equation directly. Many applications based complex optimal control prob-

lems cannot be solved analytically by any of the means discussed above. Even the

numerical solution of the HJB is usually difficult to determine, especially in the case

of high dimensional problems.

Since the introduction of computers in 1950s, many computational procedures

have been developed to solve complex optimal control problems numerically. Over

the years, numerical solution techniques have solved a broad range of practical opti-

mal control problems successfully. Following the publication of [145], new interest

has emerged in the area of optimal control computation. Recent trends in the area

are:

• The recognition that many practical problems involve impulsive or hybrid

systems [22, 126, 157];

• The need to solve practical problems where the control takesvalues from a

discrete set [46, 56, 111, 134];

• The practical need to determine a globally rather than just locally optimal

solution [11];

• The ability to test sufficient conditions for optimality numerically [92, 93, 94].

In this thesis, we focus on optimal control problems involving controls which

take values from discrete sets. Such problems are known as discrete-valued optimal

2



control problems. Solving the discrete-valued optimal control problems has been a

challenging task since the control restraint set is discrete and hence not convex. Fur-

thermore, many practical discrete-valued optimal controlproblems have more than

one locally optimal solution, thus leading to the challengeof determining the best

solution amongst these multiple local optima. The best solution obtained is known

as the global solution. In the next section, we review several computational methods

for solving generic optimal control problems. Then, we briefly discuss the special

nature of discrete-valued optimal control problems followed with a discussion of

global optimization methods.

1.2 Computational Methods for Solving Optimal Con-
trol Problems

Over the years, many computational methods have been developed to solve a broad

class of complex optimal control problems. All methods involve a partition of the

time horizon and many require a discretized approximation of the control in some

form. Some methods also discretize the state of the problem and therefore the differ-

ential equations describing the system dynamics. Most methods ultimately arrive

at an approximating mathematical programming problem which, in turn, can be

solved by a variety of optimization techniques. In this section, we look at several of

the more popular numerical solution techniques for optimalcontrol problems.

1.2.1 Direct Collocation (DIRCOL)

A special transcription method, DIRCOL converts a constrained optimal control

problem into a finite dimensional nonlinear constrained optimization problem by

an appropriate discretization of both control and state variables. The transformed

problem, the dimension of which depends on the discretization grid, can be solved

by standard quadratic programming (SQP) methods [28, 118, 119]. A detail de-

scription of the method is given in [148, 149]. Although it can readily solve small

scale problems, the discretization of both control and state variables for large scale

3



problems requires excessive computational time and storage.

1.2.2 Dynamic Programming and Iterative Dynamic Program-
ming (IDP)

Bellman’s principle of optimality has made a significant contribution in a wide

range of applications in optimal control. Some extensions and variation of the

principle are discussed in [47, 72, 73, 74, 75, 86]. The IDP technique is loosely

based on Bellman’s principle of optimality. The method usesa grid structure for

discretizing both the state variables and the controls. Accessible points in the state

trajectory and admissible control values are defined on grids constructed in the state

and control space, respectively. The grids are refined iteratively until a satisfactory

control policy is obtained. The technique was initially developed in [74] and then

refined in [72, 78] to improve the computational efficiency. The early version of the

method used piecewise constant controls and this was later extended to piecewise

linear continuous control policies [75]. Constraints are incorporated into the objec-

tive function using a penalty function method. It has found widespread application

in the area of chemical engineering [76, 78, 79, 82, 117, 135]. However, the method

can be difficult to use due to the presence of many user defined parameters driving

the algorithm.

1.2.3 Luus-Jaakola (LJ) Optimization Procedure

The LJ optimization procedure [85] is a direct search optimization technique based

on randomly chosen points and an adaptive reduction of the search space. An initial

control estimator is taken at each of a predetermined numberof stages along with

an initial region size for the control used at each stage. In each iteration, a set of

control values is generated randomly and is used to evaluatean augmented objective

function. The best of these over a predetermined number of iterations is then taken

as the solution of that stage. The search region is contracted by a chosen region

contraction factor. This process is repeated until a specified number of passes is

reached or the convergence criterion is satisfied. The LJ optimization procedure has

4



been successfully applied to solve a broad class of practical problems, such as those

in [77, 80, 81, 83, 84]. A major problem with the method is the large number of

function evaluations required. The method also requires careful tuning making it

more suitable for expert users.

1.2.4 Control Parameterization

In control parameterization, the time horizon of an optimalcontrol problem is par-

titioned into several subintervals such that each control can be approximated by a

piecewise polynomial function consistent with the corresponding partition. Often,

the control function is expressed as a linear combination ofa polynomial spline

where the coefficients of the function determine the control. These coefficients

are known as the control parameters. The more intervals usedin a partition, the

more accurate are the solution it yields. As a results, an optimal control problem

becomes a finite dimensional optimal parameter selection problem, which is essen-

tially a mathematical programming problem. Thus, the solution of the resulting

problem can be readily obtained by existing optimization software packages, such

as NPSOL [33], NLPQL [119], FFSQP [164], based on the sequential quadratic

programming method. A convergence analysis of this approach can be found in

[130, 131, 132, 133, 140]. In addition, [121] discusses the appropriate choice of

both the control parameterization and the numerical solution scheme for the under-

lying dynamical system. Calculation of the gradients with respect to the control

parameters needs to be preformed in a roundabout manner and usually requires the

solution of a set of costate differential equations [140]. Some applications of the

control parametrization technique can be found in [9, 35, 36, 42, 48, 49, 130, 131,

132, 133, 136, 137, 138, 139, 140, 141, 142, 143, 144, 152].

1.2.5 Recursive Integration Optimal Trajectory Solver (RIOTS)

RIOTS is one of the toolbox designed for Matlab [123] for solving optimal con-

trol problems. The basic idea behind RIOTS is to approximatecontrols by finite-

dimensional B-splines, which is an example of the control parameterization ap-

5



proach. The integration of the system dynamics is carried out using fixed step-size

Runge-Kutta integration. A detailed description of the implementation of RIOTS

in the application examples can be found in [100, 122, 123]. However, RIOTS has

some limitations on type of problems it can solve effectively [123]. For instance, it

has difficulty in solving problems involve inequality stateconstraints which require

a high level of discretization; the computation of gradients for path constraints are

not handled as efficiently as expected; and the selection of the control subspaces

affects both the accuracy of numerical integration and the approximate solutions to

the original problem.

1.2.6 Sequential Gradient Restoration Algorithms

While this approach is also based on control parameterization, the underlying math-

ematical programming problem is not solved in the usual manner. Instead, its so-

lution involves a sequences of two phase cycles: a gradient phase and a restoration

phase. The first phase minimizes the augmented objective function while the latter

reduces the resulting constraint violation. A detailed description and analysis of the

method can be found in [96, 97, 98, 99].

1.2.7 Leap-Frog Algorithm

Initially developed in [108], the leap-frog algorithm is used to solve a special types

of two point boundary value problems. The algorithm is further developed in [53,

54] to handle general nonlinear systems with unbounded and bounded controls. A

piecewise optimal trajectory is obtained in each subinterval, where the junctions of

these sub-trajectories are updated through a scheme of midpoint maps. A thorough

description of the algorithm is outlined in [53, 54] to solvea class of optimal control

problems with bounded controls in the plane.

1.2.8 Switching Time Computation (STC) Method

The STC is a computational procedure developed in [52] to determine suitable

places of switchings for single-input nonlinear systems. Aconcatenation of constant-
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input arcs is applied to solve the dynamics from a given initial point to the target.

The gradients with respect to the switching times variablesare computed without

the use of costate equations. The method is incorporated in atime optimal bang-

bang (TOBC) control algorithm in [51, 71]. Although the STC method can be fast

compared with other optimal control software, there is a limited class of problems

which can be solved by this method. For instances, many typesof constraints cannot

be handled directly without using penalty methods.

1.2.9 MISER3.3

MISER3.3 [48] is an optimal control software package based on the control param-

eterization technique as described above. It can handle several types of constraints

in solving optimal control problems, including all time inequality constraints on the

state. The package is designed to deal with a general canonical form of optimal

control problems, thus making it widely applicable. MISER has been successfully

applied to solve many practical optimal control problems [11, 21, 48, 59, 61, 62,

60, 63, 64, 66, 67, 68, 111, 140, 142, 143, 146].

1.3 Discrete-Valued Optimal Control Problems

In discrete-valued optimal control problems, the control is restricted to a set of

discrete values. Examples include the design of operating procedures of a chemical

plant (start up, shut down, and changeovers) [56], management of batteries in a

submarine [111], optimal driving strategies for a train [46], the submarine transit

path problem [11], and switched amplifier design [134]. To solve such problems, it

is necessary to find the optimal sequence of discrete controlvalues and the optimal

switching times between changing control actions. Solvingdiscrete-valued optimal

control problems involves several additional challenges which as not encountered

with continuous valued optimal control problems. These include:

• The feasible region of the underlying mathemtical programming problem is

discrete and hence not convex.
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• The gradients of the objective and constraint functions with respect to the

switching times are not differentiable [140], thus making it difficult to imple-

ment efficient gradient based optimization methods to calculate exact values

for the switching times.

• Numerical integration of the dynamics become difficult whenvariable switch-

ing times are involved, as the knot points in the integrationscheme require

updating whenever the switching times change [70].

• The number of possible switching sequences is extremely large in many ex-

amples. In fact, finding an optimal switching sequence is a combinatorial

optimization problem which is well known to be difficult to solve [64].

A variety of approaches to solve discrete-valued optimal control problems in

the literature is reviewed in [129]. This include the control parameterization enhanc-

ing technique (CPET) [64], stochastic methods [13, 114, 158], standard methods

using excessive refinement [79], and exact semi analytical methods [55]. Among

these methods, CPET appears to be the only effective numerical technique which is

widely applicable to this class of optimal control problems[129]. CPET transforms

a discrete-valued optimal control problem into an equivalent optimal parameter se-

lection problem. Under this transformation, the switchingpoints are mapped onto

a set of fixed knots in the new time scale, and the transformed problem is an or-

dinary optimal control problem with known and fixed switching instants. Hence,

such problems can be readily solved by many existing optimalcontrol techniques

such as control parameterization. The effectiveness of CPET in determining exact

switching instants of a control policy has been proven in [59, 60, 61, 62, 63, 143]

for various nontrivial problems.

Although CPET overcomes the first three difficulties mentioned above, it does

not handle the last issue effectively as it introduces many artificial switchings in or-

der to capture more possible orderings of the sequence of discrete control values

when solving the transformed problem. Furthermore, the CPET approach is gener-

ally not able to determine a global or near global optimal switching sequence. With
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the addition of a large number of artificial switches, the resulting optimization prob-

lem has many more local minima and many of these have relatively high objective

values. Note that many practical discrete-valued optimal control problems exhibit

similar behavior, thus making it harder to determine the global optimal solution of

such problems.

1.4 Global Optimization

Most practical discrete and mixed discrete optimization problems are nonlinear and

known to have more than one locally optimal solution. This suggests the need for

global optimization techniques which seek the best solution amongst multiple local

optima. Global optimization problems may be unconstrainedor constrained, and

different algorithms have been developed, depending on whether constraints are

present as well as on the nature of these constraints.

The challenge in global optimization is to avoid being trapped in the basins

surrounding local minimizers. Several global methods havebeen proposed for solv-

ing discrete optimization problems. These techniques can be classified into two

main categories: exact methods and metaheuristic methods.The branch and bound

method [41, 65, 87], the cutting plane method [23, 29, 163], Lagrangian relax-

ation [27, 32], the nonlinear Lagrangian relaxation method[157, 159], the discrete

Lagrangian methods [155, 156], dynamic programming [90], and relaxation tech-

niques [15, 40, 113] are popular exact methods. These exact methods can ensure

that a global solution is found when solving small size discrete optimization prob-

lems. However, such methods require excessive computational time when solving

large scale problems. Furthermore, only well-structured problems with good ana-

lytical properties can be solved efficiently using these exact methods.

Since nonlinear discrete optimization problems are generally NP-hard, there

are no exact algorithms with polynomial-time complexity for solving them. Hence,

a metaheuristic computational approach is required, especially for high-dimensional

problems. The term metaheuristic is derived from two Greek words, whereheuristic
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(heuriskein)meansto findwhile the suffixmetarefers tobeyond, in an upper level

[8]. A heuristic is a technique to find a good feasible solution where the global opti-

mality is not crucial. Often, a heuristic method is problem-specific and designed to

obtain conceptual simplicity [8, 10, 43]. A metaheuristic is a higher level heuristic

algorithm for solving a general class of optimization problems. It is a master strat-

egy which combines different methods for exploring search space efficiently in de-

termining a near-optima solution. Thus, metaheuristics often produce higher quality

results than classical heuristics though they generally require longer computational

times. In addition, metaheuristics are capable of solving avariety of complex appli-

cation problems and they avoid getting trapped in basins associated with local ex-

treme points. The metaheuristic methods include greedy-search [3, 17, 20, 24], sim-

ulated annealing [101, 115], genetic algorithms [12, 147, 154], tabu search [34, 95],

and filled function techniques. Though these methods cannotguarantee a global

solution, satisfactory results can often be found for high dimensional nonlinear dis-

crete optimization problems in a reasonable amount of computational time.

1.5 Discrete Filled Function Method

The discrete filled function method is one of the more recently developed global

optimization tools for discrete optimization problems. Once a local minimum has

been determined by an ordinary descent method, the discretefilled function ap-

proach introduces an auxiliary function to avoid entrapment in the basin associated

with this minimum. The local minimizer of the original function becomes a lo-

cal maximizer of the auxiliary function. By minimizing the auxiliary function, the

search moves away from the current local minimizer in the hope of escaping the

basin associated with this minimizer. Note that the auxiliary function is defined in

terms of one or more parameters and needs to possess certain properties, details of

which are discussed in Chapter 2.

The first filled function was introduced by Ge in the late 1980s[30] in the

context of solving continuous global optimization problems. In [31], Ge and Huang
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extended the continuous filled function concept to solve nonlinear discrete opti-

mization problems, where a continuous global optimizationproblem is formulated

to approximate the discrete global optimization problem, before solving it by the

continuous filled function method. When a global minimizer of the continuous ap-

proximation is found, the nearest integer point is used to approximate the global

solution of the discrete problem. However, the approximating continuous optimiza-

tion problem always generates more local minimizers than the original discrete one,

thus making it more difficult to determine a global solution.Numerical results re-

ported in [105] have shown that the true global minimizer is difficult to determine

using this approach. A detailed analysis of the continuous filled function approach

can also be found in [105].

Zhu [165] is believed to be the first researcher to introduce atrue discrete

equivalent of the continuous filled function method in late 1990s. Such an approach

is now known as a discrete filled function method or discrete global descent method.

A discrete filled function method is able to overcome the difficulties encountered in

using a continuous approximation, as discussed above. However, the filled function

proposed by Zhu contains an exponential term, which consequently makes it diffi-

cult to determine a point in a lower basin [105, 106]. Since then, several types of

discrete filled functions with improved theoretical properties have been proposed in

[38, 106, 107, 127, 128, 160, 161, 162] to enhance computational efficiency.

The discrete filled function approach can be described as follows. An initial

point is chosen and a local search is applied to find an initialdiscrete local min-

imizer. Then, an auxiliary function, called a filled function, is constructed at this

local minimizer. By minimizing the filled function, either an improved discrete

local minimizer is found or the boundary of the feasible region is reached. The

discrete local minimizer of the filled function usually becomes a new starting point

for minimizing the original objective with the hope of finding an improved point

compared to the first local minimizer. A new filled function isconstructed at this

improved point. The process is repeated until no improved local minimizer of the

earlier filled function can be found. The final discrete localminimizer is then taken
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as an approximation of the global minimizer.

If a local minimizer of the filled function cannot be found after repeated

searches terminate on the boundary of the box constrained feasible region, the

parameters defining the filled functions are adjusted and thesearch is repeated.

This adjustment of the parameters continues until the parameters reach their pre-

determined bounds; the best solution obtained so far is thentaken as the global

minimizer. Note that some filled functions have one parameter (such as those in

[38, 127, 161]), while the rest are equipped with two parameters. The latter filled

functions often have one parameter which is partially dependent on the other and

this requires additional steps when tuning the parameters in order to satisfy the re-

quired convergence criteria. Note that each filled functiondiscussed here has unique

characteristics. The complexity of each filled function is also dependent on its as-

sociated algorithm, as discussed in detail in the followingchapter.

Filled function methods have been a popular global optimization tool in recent

years. However, there has been limited attention on investigating this method in the

context of mixed discrete optimization problems in particular the class of discrete

valued optimal control problems.

1.6 Objectives

The main purpose of this research is to construct and test a global algorithm which

incorporates a discrete filled function method into a computational optimal control

algorithm capable of solving a general class of discrete-valued optimal control prob-

lems. To start with, we introduce a modified time scaling transformation that results

in a transformed problem which has far fewer variables than that resulting from the

standard CPET approach. The resulting problem has fewer local minimizers and a

global solution can thus be obtained with less computational effort. It is essentially

a mixed discrete optimization problem and the next stage of our proposed method

involve its decomposition into a purely discrete optimization problem and an ordi-

nary optimal parameter selection problem. We then apply an effective discrete filled
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function algorithm which is able to bypass locally optimal solutions and thus yield

a solution closer to the global one. A standard optimal control package, MISER3.3,

is used to solve the subproblems which appear at every iteration of the discrete opti-

mization. We apply our proposed algorithm to two discrete-valued optimal control

problems in engineering: the hybrid power system problem and sensor scheduling

problem. The first problem involves a hybrid system which requires an operating

schedule to minimize the total operating cost of a PV(photovoltaic)-diesel-battery

hybrid power system. The second problem involves the operation schedule of a

set of sensors over a given time frame to reduce the overall signal estimation error.

We attempt to determine the global optimal solution for bothapplication problems

which are well known to have multiple local minima. We summarize our research

objectives as follows:

• To review existing discrete filled function methods and compare their com-

putational efficiency when solving discrete optimization problems and mixed

discrete optimization problems.

• To develop new discrete filled function algorithms to solve discrete optimiza-

tion problems efficiently.

• To introduce a transformation where a discrete-valued optimal control prob-

lem is transformed into an equivalent mixed discrete optimization problem.

• To propose a decomposition of this problem into a discrete upper level and a

continuous lower level problem.

• To apply an effective discrete filled function method to the upper level prob-

lem.

• To determine a near global solution of minimizing the operation cost of a

hybrid power system.

• To determine a near global solution of minimizing the error estimation of a

general sensor scheduling problem.

13



• To embed the discrete filled function algorithm into MISER3.3, the optimal

control software, in such a way that a near globally optimal solution is ob-

tained when solving discrete-valued optimal control problems.

1.7 Significance of the Study

A new algorithm based on the discrete filled function method and on a conventional

computational optimal control algorithm is proposed to solve discrete-valued op-

timal control problems. Numerical results demonstrate that the method is able to

bypass locally optimal solutions and thus yield a solution closer to the global one

in solving two complex application problems. In addition, we review a range of

discrete filled function methods and suggest some effectivevariations to improve

their efficiency.

1.8 Thesis Overview

This thesis is divided into six chapters that are organized as follows. Chapter 2 re-

views several discrete filled functions and their associated algorithms as proposed

in the literature. Some basic discrete optimization concepts and a generic discrete

filled function algorithm are presented. Then, several individual discrete filled func-

tion formulations, their properties, and particulars of their associated algorithms are

also discussed. The performances of selected filled function algorithms when ap-

plied to several test problems are compared. The most promising filled function

method is identified, and a various of modification of this method are proposed and

tested in Chapter 3. Next, a new metaheuristic which incorporates the discrete filled

function algorithm into a standard optimal control software is proposed for solving

two applied discrete-valued optimal control problems.

Chapter 4 proposes a new algorithm for determining an operating schedule

that minimizes the total operating cost of a PV-diesel-battery hybrid power system.

The hybrid power system consisting of a diesel generator as the main component,

with a PV array providing additional energy and a battery bank for storage. An
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earlier model developed in [116] is considered and we demonstrated that this model

has many local minimizers. The outcomes obtained from the proposed algorithm

are compared with the results in the literature. Numerical results for different num-

bers of allowed switches are also presented in this chapter.

Chapter 5 discusses a general class of optimal sensor scheduling problems.

The scheduling of an operation of sensors over a given time frame, where only

one sensor may be active at any one time, is required to minimize the signal esti-

mation error. The sensor problem is first formulated as a discrete-valued optimal

control problem. Then, the problem is transformed into an equivalent mixed dis-

crete optimization problem to determine its global solution. The proposed global

optimization algorithm is applied to solve this problem. Toevaluate the effective-

ness of the proposed algorithm, the results are compared with those obtained in the

literature at the end of this chapter.

Finally, Chapter 6 summarizes the findings of the study. Limitations of the

study are discussed and possible directions for future research work are also sug-

gested.
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Chapter 2

A Review of Discrete Filled Function
Methods

This chapter begins with some basic definitions and conceptsused in the discrete

optimization area, followed with a generic algorithm of discrete filled function. The

3-hump back camel function [19] is used to illustrate how thefilled function algo-

rithm works. Nine variations of the discrete filled functionmethod in literature are

identified and a review on theoretical properties of each method is discussed. The

most promising filled functions are tested on several test problems. The perfor-

mances of these selected filled function algorithms are compared at the end of this

chapter.

2.1 Introduction

Many real life applications, such as production planning, finance, scheduling, and

operations involve integer valued decision variables. We distinguish between dis-

crete optimization problems, where all decision variablesare integer valued, and

mixed discrete optimization problems, where only some of the decision variables

have integer values. The latter type are often decomposed into purely discrete and

continuous subproblems, respectively, and hybrid algorithms for their solutions are

developed on this basis. The discrete parts of these hybrid algorithms are similar in

nature to the purely discrete algorithms, which we address in this chapter. Consider
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the following nonlinear discrete optimization problem:

min f(x), s.t.x ∈ X, (2.1)

whereX = {x ∈ Z
n|xi,min ≤ xi ≤ xi,max}, Z

n is the set of integer points in

R
n, andxi,min, xi,max, i = 1, . . . , n, are given bounds. Letx1 andx2 be any two

distinct points in the box constrained setX and make the following assumptions:

Assumption 2.1 There exists a constantK satisfying

1 ≤ max
x1,x2∈X
x1 6=x2

‖ x1 − x2 ‖≤ K < ∞,

where‖ · ‖ is the Euclidean norm.

Assumption 2.2 There exists a constantL, 0 < L < ∞, such that

|f(x1) − f(x2)| ≤ L ‖ x1 − x2 ‖ .

Most discrete filled function methods are designed to solve box constrained prob-

lems. Unconstrained and more generally constrained problems may be converted

into an equivalent box constrained form. For example, consider the following un-

constrained discrete optimization problem,

min f(x), s.t.x ∈ Z
n, (2.2)

If f is coercive, i.e.,f(x) → +∞ as‖ x ‖→ +∞, then there exists a box which

contains all discrete minimizers off . Hence, the formulation in (2.2) can be trans-

formed into an equivalent formulation in (2.1) and can thus be solved by any dis-

crete filled function method. Many discrete filled function algorithms in the litera-

ture, such as [107, 106, 162, 38], are also directly applicable to linearly constrained

problems as long as the resulting feasible region is convex and pathwise connected.

As for generally constrained problems, the nonlinear constraints are usually

handled with a penalty method. Consider the following general nonlinear con-

strained discrete optimization problem,

min g0(x), s.t.x ∈ Λ, (2.3)
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whereΛ = {x ∈ Z
n : gi(x) ≤ 0, i = 1, . . . , m} andZ

n is a set of integer points

in R
n. In [105], the constrained problem (2.3) is converted into an equivalent box

constrained problem by adding a penalty term to the objective functionf , i.e.

f(x) = g0(x) + α0

m
∑

i=1

max{0, gi(x)} (2.4)

or

f(x) = g0(x) + α0

m
∑

i=1

[max{0, gi(x)}]2, (2.5)

whereα0 is a sufficiently large parameter. Note that it is difficult todetermine

an exact penalty parameter when solving these NP-hard problems and thus only

approximate solutions can be determined. Note also that thediscrete filled function

method in [161] takes a different approach and incorporatesconstraints directly into

the formulation of the filled function.

2.2 Discrete Optimization: Concepts and Approach

2.2.1 Preliminary Concepts

We recall some relevant definitions and concepts used in the discrete optimization

area.

Definition 2.1 A sequence{x(i)}k+1
i=0 between two distinct pointsx∗ andx∗∗ in X

is a discrete path inX if x(0) = x∗, x(k+1) = x∗∗, x(i) ∈ X for all i, x(i) 6= x(j)

for i 6= j, and‖ x(i+1) − x(i) ‖= 1 for all i. If such a discrete path exists, thenx∗

andx∗∗ are pathwise connected inX. If every two distinct points inX are pathwise

connected inX, thenX is a pathwise connected set.

Definition 2.2 For any x ∈ X, the neighbourhood ofx is defined byN(x) =

{w ∈ X| w = x ± ei : i = 1, 2, . . . , n}. Here,ei denotes thei-th standard unit

basis vector ofRn, with thei-th component equal to one and all other components

equal to zero.

Definition 2.3 The set of all feasible directions atx ∈ X is defined byD(x) =

{d ∈ Z
n : x + d ∈ N(x)} ⊂ E = {±e1, . . . ,±en}.
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Definition 2.4 d ∈ D(x) is a descent direction off at x if f(x + d) < f(x).

Definition 2.5 d∗ ∈ D(x) is a discrete steepest descent direction off at x if it is a

descent direction andf(x + d∗) ≤ f(x + d) for anyd ∈ D(x).

Definition 2.6 x∗ ∈ X is a local minimizer ofX if f(x∗) ≤ f(x) for all x ∈
N(x∗). If f(x∗) < f(x) for all x ∈ N(x∗), thenx∗ is a strict local minimizer off .

Definition 2.7 x∗ is a global minimizer off if f(x∗) ≤ f(x) for all x ∈ X. If

f(x∗) < f(x) for all x ∈ X \ x∗, thenx∗ is a strict global minimizer off .

Definition 2.8 x is a vertex ofX if, for eachd ∈ D(x), x+d ∈ X andx−d /∈ X.

Let X̃ denote the set of vertices ofX.

Definition 2.9 B∗ ⊂ X is a discrete basin off corresponding tox∗ if it satisfies

the following conditions:

• It is pathwise connected;

• It containsx∗;

• For eachx ∈ B∗, any connected path consisting of descent steps and starting

at x converges tox∗.

Definition 2.10 Let x∗ andx∗∗ be two distinct local minimizers off . If f(x∗∗) <

f(x∗), then the discrete basinB∗∗ of f associated withx∗∗ is said to be lower than

the discrete basinB∗ of f associated withx∗

Definition 2.11 Letx∗ be a local minimizer of−f . The discrete basin of−f at x∗

is called a discrete hill off at x∗.

Definition 2.12 Let SL = {x ∈ X : f(x) < f(x∗)} andSU = {x ∈ X : f(x) ≥
f(x∗)}.
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2.2.2 Generic Discrete Filled Function Approach

The fundamental concept of a discrete filled function methodcan be explained as

follows. An initial point is chosen and a local search is applied to find an initial

discrete local minimizer. Then, an auxiliary function, called a filled function, is

constructed at this local minimizer, where the local minimizer of the original func-

tion becomes a local maximizer of the filled function. By minimizing the filled

function, either an improved discrete local minimizer is found or the boundary of

the feasible region is reached. The discrete local minimizer of the filled function

usually becomes a new starting point for minimizing the original objective with the

hope of finding an improved point compared to the first local minimizer. A new

filled function is constructed at this improved point. The process is repeated until

no improved local minimizer of the earlier filled function can be found. The final

discrete local minimizer is then taken as an approximation of the global minimizer.

If a local minimizer of the filled function cannot be found after repeated

searches terminate on the boundary of the box constrained feasible region, the pa-

rameters defining the filled functions are adjusted and the search is repeated. This

adjustment of the parameters continues until the parameters reach their predeter-

mined bounds; the best solution obtained so far is taken as the global minimizer.

Note that some filled functions have one parameter (such as those in [38, 127, 161]),

while the rest are equipped with two parameters. The latter filled functions often

have one parameter which is partially dependent on the otherand this requires addi-

tional steps when tuning the parameters in order to satisfy the required convergence

criteria. Note that each filled function discussed here has unique characteristics. The

complexity of each filled function is also dependent on its associated algorithm, as

discussed in detail in the following sections.

We present the generic framework of a discrete filled function algorithm. The

main algorithm requires repeated searches for a local minimum. Thus, we state the

local search as a separate algorithm (Algorithm 2.1 below).The global algorithm in-

volves repeated construction of an auxiliary function in the hope of escaping basins

associated with local minimizers.
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Algorithm 2.1 Discrete Steepest Descent Method

1. Choose an initial pointx ∈ X.

2. If x is a local minimizer off , then stop. Otherwise, find the discrete steepest

descent directiond∗ ∈ D(x) of f .

3. Setx := x + d∗. Go to Step 2.

Remark 2.1 Note that some methods in the literature, namely those in [127, 165],

merely require a discrete descent direction at Step 2, rather than a discrete steepest

descent direction.

Algorithm 2.2 Discrete Filled Function Method

1. Initialization.

Set the bounds of each parameter in the formulation of the discrete filled

function.

Initialize the parameters.

Choose suitable reduction or increment strategies for eachparameter.

Choose an initial starting pointx0 ∈ X.

2. Local search of the original function.

Starting fromx0, minimizef(x) using Algorithm 2.1 to obtain a local mini-

mizerx∗ of f .

3. Neighbourhood search.

(a) Identify the neighbourhood ofx∗ asN(x∗) = {w1,w2, . . . ,wq}, whereq

is the total number of points inN(x∗), q ≤ 2n. Setℓ = 1.

(b) Define the current point,xc := wℓ.

4. Local search of the discrete filled function.

LetGx∗ denote the discrete filled function associated withx∗.

MinimizeGx∗ using Algorithm 2.1 starting fromxc.

Let x́ be the obtained local minimizer ofGx∗.
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5. Checking the status ofx́.

If f(x́) < f(x∗), setx0 := x́ and go to Step 2. Otherwise, go to Step 6.

6. Checking other search directions.

At this point, the algorithms in [106, 107, 162] will adjust the parameters of

the filled function and return to Step 4 ifx́ ∈ X\X̃.

Otherwise, along with most of the remaining algorithms, they setℓ := ℓ + 1.

If ℓ ≤ q, all of the algorithms then return directly to Step 3(b).

Otherwise, the parameters of the filled function are adjusted andℓ is reset to

1 before returning to Step 3(b).

If all the parameters of the filled function exceed their prescribed bounds

anywhere in this step, the current value ofx∗ is taken as the global minimizer.

Remark 2.2 Some methods in the literature, such as [127, 128, 162], replace

N(x∗) in Step 3 withM = {w1,w2, . . . ,wq}, wherewi, i = 1, . . . , q, are ran-

domly chosen fromX. q also needs to be chosen by the user in this case.

Remark 2.3 Some algorithms [38, 106, 107, 128, 160] do not require a local min-

imizer ofGx∗ in Step 4. Instead, in the attempt to reduceGx∗, if any pointxk is

found such thatf(xk) < f(x∗), they setx0 := xk and go back to Step 2.

Remark 2.4 Minimization of bothf andGx∗ is carried out overX, except in [161],

wheref is minimized overΛ whileGx∗ is minimized overX. Note that this variation

is only relevant for nonlinearly constrained problems, though.

Remark 2.5 Note that the methods in [38, 106, 107, 162] defineX via upper and

lower bounds on the variables as well as a set of linear inequality constraints.

Remark 2.6 A slightly different approach is proposed in [106] for Step 4. If f and

Gx∗ share at least one common descent direction, the authors choose a steepest

descent direction which results in the maximum reduction for f + Gx∗. If such a

direction does not exist, the method reverts to find a steepest descent direction for

Gx∗ only.
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For a clearer picture on how the filled function algorithm works, we consider

an illustrative example in the next subsection.

2.2.3 Illustrative Example

min f(x) = 2x2
1 − 1.05x4

1 +
1

6
x6

1 − x1x2 + x2
2, (2.6)

s.t. xi =
yi

1000
, −2000 ≤ y1 ≤ 2000, −1500 ≤ y2 ≤ 1500, y1, y2 integers.

Problem (2.6) is a 3-hump back camel function in [19] which has1.2007001×
107 feasible points. This box constrained problem has a known global minimum

solution atx∗
global = [0, 0]⊤ with f(x∗

global) = 0. The discrete filled function method

in [106] is used to solve this problem. The algorithm begins with a pointx0 =

[1.500, 1.500]⊤ with f(x0) = 1.0828125. By using the discrete steepest descent

method, an initial local minimizer ofx∗
1 = [1.748, 0.874]⊤ is found withf(x∗

1) =

0.2986396. Next, a discrete filled function,Gx∗

1
, is constructed atx∗

1. Starting with

a point inN(x∗
1), xc = [1.749, 0.874]⊤, Algorithm 2.1 is used to minimizeGx∗

1
and

a local minimizer,́x = [0.302, 0.535]⊤, with f(x́) = 0.2984554, is found. Since

f(x́) < f(x∗
1), the original functionf is minimized once more, starting atx0 = x́,

and the second local minimizerx∗
2 = [0, 0]⊤, with f(x∗

2) = 0, is obtained. Next,

a new discrete filled functionGx∗

2
is constructed atx∗

2 = [0, 0]⊤. A neighbourhood

point ofx∗
2 = [0, 0]⊤, namelyxc = [1, 0]⊤, is chosen, andGx∗

2
is minimized starting

at xc. The local minimizer ofGx∗

2
is a vertex,x́ = [2.000, 1.500]⊤, but f(x́) >

f(x∗
2). Other searches for a minimum ofGx∗

2
in a lower basin are then carried

out, starting from[0, 1]⊤, [−1, 0]⊤, and[0,−1]⊤, respectively. Since none of these

yield an improved point, the parameter ofGx∗

2
is adjusted. The revisedGx∗

2
is then

minimized once more starting from each of these neighbourhood points in turn.

When no local minimizer ofGx∗

2
in a lower basin is found and the termination

criteria is met,x∗
2 = [0, 0]⊤ is taken to be the global solution.

In the next section, we discuss and analyze various discretefilled function

methods from the literature.
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Figure 2.1: The 3-Hump Back Camel Function.

2.3 Discrete Filled Function Methods

2.3.1 Discrete Filled Function in Zhu [165]

Zhu is believed to be the first researcher to adapt the continuous filled function

approach directly for solving discrete optimization problems. Letx∗ denote the

current discrete local minimizer. A filled function dependent on parametersθ andp

is defined as

Gθ,p,x∗(x) =
1

θ + f(x)
exp

(‖ x − x∗ ‖2

−p2

)

. (2.7)

Assuming thatp andθ are chosen so that

0 < θ + f(x∗) < h

and

p2 ln
( θ + f̄

θ + f(x∗)

)

< 1,

wheref̄ is an upper bound off overX andh ≤ min{|f(x1) − f(x2)| : f(x1) 6=
f(x2), xj ∈ X, j = 1, 2}, the filled function (2.7) has the following properties:

� Gθ,p,x∗(x∗ + d) < Gθ,p,x∗(x∗), for all d ∈ D(x∗).

� Givenf(x1) ≥ f(x∗), f(x2) ≥ f(x∗), and‖ x2 − x∗ ‖2<‖ x1 − x∗ ‖2,

Gθ,p,x∗(x1) < Gθ,p,x∗(x2) (i.e. if f increases,Gθ,p,x∗ decreases).
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� For anyx ∈ X,

• Gθ,p,x∗(x) < 0 ⇐⇒ f(x) < f(x∗);

• Gθ,p,x∗(x) > 0 ⇐⇒ f(x) ≥ f(x∗).

� Let x1 ∈ X be such thatf(x1) ≥ f(x∗).

• If there existsd ∈ D(x1) such thatGθ,p,x∗(x1 + d) < 0; or

• If |{d ∈ D(x1) : x1 + d ∈ X}| = n and there existsd ∈ D(x1)

such thatGθ,p,x∗(x1 + d) < Gθ,p,x∗(x1); or

• If |{d ∈ D : x1 + d ∈ X}| > n;

then there exists somed ∈ D(x1) such thatGθ,p,x∗(x1+d) < Gθ,p,x∗(x1) <

Gθ,p,x∗(x∗).

� Any discrete local minimizer of the discrete filled functionGθ,p,x∗ must be

in the setSL or X̃.

Zhu suggests that the algorithm should stop when all searches for a minimum

of Gθ,p,x∗ starting inN(x∗) terminate at vertices without finding an improved point

of f . Note that the algorithm in [165] does not require updating of the parameters

θ andp. Thus, the finalx∗ is assumed to be the global minimum. Two numerical

examples are demonstrated to test the efficiency of this filled function. However,

the disadvantage of his method is that it is almost impossible to find a negative

filled function value that would indicate that a point in a lower basin exists. This

is because the discrete filled function contains an exponential term, making it ill

conditioned and also leading to poor efficiency as noted in [106]. In addition, it

is difficult to determine suitable values ofh and f̄ , thus making it difficult to find

suitable values for parametersθ andp.

2.3.2 Discrete Filled Function in Ng, Zhang, Li & Tian [107]

A new discrete filled function with improved theoretical properties was proposed in

[107] several years later. Recall thatB∗ denotes a discrete basin off that contains
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the current discrete local minimizerx∗. According to [107], a functionGµ,ρ,x∗ is

defined to be a discrete filled function off atx∗ if it satisfies the following:

� x∗ is a strict local maximizer ofGµ,ρ,x∗;

� Gµ,ρ,x∗ has no discrete local minimizers inB∗ or in any discrete basin of

f higher thanB∗;

� If f has a discrete basinB∗∗ at x∗∗ which is lower thanB∗, then there is

a discrete point́x ∈ B∗∗ that minimizesGµ,ρ,x∗ on a connected discrete

path{x∗, . . . , x́, . . . ,x∗∗} in X.

The discrete filled function proposed in [107] is

Gµ,ρ,x∗(x) = f(x∗)−min[f(x∗), f(x)]−ρ ‖ x−x∗ ‖2 +µ{max[0, f(x)−f(x∗)]}2,

(2.8)

whereρ andµ are parameters which satisfy certain properties as detailed below.

� Recall that the meaning ofK andL from Assumptions 2.1 and 2.2. Sup-

pose that̄x ∈ SU .

• If ρ > 0 and0 ≤ µ < ρ
L2 , thenGµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗).

• If ρ > 0 and0 ≤ µ ≤ ρ
2K2L2 , then for each̄d ∈ D(x̄) such that

f(x̄+ d̄) ≥ f(x∗) and‖ x̄+ d̄−x∗ ‖>‖ x̄−x∗ ‖, Gµ,ρ,x∗(x̄+ d̄) <

Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗).

� If ρ > 0 and0 ≤ µ < ρ
L2 , thenx∗ is a strict local maximizer ofGµ,ρ,x∗. If

x∗ is a global minimizer off , thenGµ,ρ,x∗(x∗) < 0, for all x ∈ X\x∗.

� Let x1, x2, x∗ be three distinct points inX. If ‖ x2 − x∗ ‖>‖ x1 − x∗ ‖,

then1 ≤ ‖ x2 − x1 ‖
‖ x2 − x∗ ‖ − ‖ x1 − x∗ ‖ < 2K2.

� Let x1, x2 ∈ X be two points such that0 <‖ x1 − x∗ ‖<‖ x2 − x∗ ‖ and

f(x∗) ≤ f(x1) ≤ f(x2). If ρ > 0 and0 ≤ µ ≤ ρ
2K2L2 , then

• Gµ,ρ,x∗(x2) < Gµ,ρ,x∗(x1) < 0 = Gµ,ρ,x∗(x∗);
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• Gµ,ρ,x∗(x∗) has no local minimizers inB∗ or in any discrete basin of

f higher thanB∗.

� For everyx́,x∗ ∈ X, there existsd ∈ E such that‖ x́ + d− x∗ ‖>
‖ x́ − x∗ ‖.

� Let x∗ ∈ X andx́ ∈ X be the local minimizers off andGµ,ρ,x∗, respec-

tively. If ρ > 0 and0 ≤ µ ≤ ρ
2K2L2 , then

• f(x́ + d́) < f(x∗) for all d́ ∈ D(x́) whenf(x́) ≥ f(x∗).

• x́ is in a basinB∗∗ (associated with a local minimumx∗∗) of f which

is lower than basinB∗ (associated withx∗) .

Both µ andρ are initialized as 1. This filled function ensures that a local

minimizer ofGµ,ρ,x∗ is either a better point in a lower basin or a vertex ofX. It

is not necessary to find the minimizer ofGµ,ρ,x∗ if a pointxk with f(xk) < f(x∗)

is found in Step 4 of Algorithm 2.2. Sincexk is an improved point, the algorithm

setsx0 := xk and returns to Step 2 to minimize the original functionf . If the

minimizer of Gµ,ρ,x∗ is not a vertex,µ is reduced viaµ := µ/10 andGµ,ρ,x∗ is

minimized once more starting at the samexc. When no improved point is found

after the minimization process forGµ,ρ,x∗ ends up at a vertex, thenℓ is increased

by 1 andGµ,ρ,x∗ is minimized once more starting with the updatedxc. If ℓ > q,

ρ is reduced. The algorithm terminates when the lower bound ofρ, ρL, is met.

Several test problems were investigated in [107] and the proposed discrete filled

function method was shown to be efficient in solving problemsinvolving up to

200 variables. Note thatρL was set to 1 for the computations in [107] and further

reduction ofρ was not necessary since all test problems yielded the globalsolution

whenρ = 1. According to one of the characteristics of this filled function, x́, the

local minimizer ofGµ,ρ,x∗, lies on a discrete path{x∗, . . . , x́, . . . ,x∗∗} in X that

connects the current basinB∗ at x∗ to a lower basinB∗∗. However, the properties

of this filled function do not guarantee thatx́ is a true minimizer of the original
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function. A revised discrete filled function is proposed in [106] to overcome this

difficulty.

2.3.3 Discrete Filled Function in Ng, Li & Zhang [106]

Based on the work in [107], a new discrete filled functionGµ,ρ,x∗ atx∗ is defined as

follows:

Gµ,ρ,x∗(x) = Aµ(f(x) − f(x∗)) − ρ ‖ x − x∗ ‖, (2.9)

Aµ(y) = y·µ
[

(1 − c)

(

1 − cµ

µ − cµ

)−y/ω

+ c

]

,

whereω > 0 is a sufficiently small number and0 < c ≤ 1 is a constant. The func-

tionGµ,ρ,x∗(x) is a discrete filled function when certain conditions of the parameters

µ andρ are satisfied as detailed in the following conditions:

� x∗ is a strict local maximizer ofGµ,ρ,x∗.

� Gµ,ρ,x∗ has no local minimizer in the setSU\X̃.

� x∗∗ ∈ X\X̃ is a local minimizer off if and only ifx∗∗ is a local minimizer

of Gµ,ρ,x∗. In short,x∗∗ ∈ SL.

� If ρ > 0 and0 < µ < min{1, ρ
L
}, thenx∗ is a strict local maximizer

of Gµ,ρ,x∗. If x∗ is a global minimizer off , thenGµ,ρ,x∗(x) < 0 for all

x ∈ X \ x∗.

� Let d̄ ∈ D(x̄) be a feasible direction at̄x ∈ SU such that‖ x̄+ d̄−x∗ ‖>
‖ x̄ − x∗ ‖. If ρ > 0 and0 < µ < min{1, ρ

2K2L
}, thenGµ,ρ,x∗(x̄ + d̄) <

Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗).

� Let x∗∗ be a strict local minimizer off with f(x∗∗) < f(x∗). If ρ > 0 is

sufficiently small and0 < µ < 1, thenx∗∗ is a strict local minimizer of

Gµ,ρ,x∗.

� Let x́ be a strict local minimizer ofGµ,ρ,x∗ and d̄ ∈ D(x́) be a feasible

direction at́x such that‖ x́+ d̄−x∗ ‖>‖ x́−x∗ ‖. If ρ > 0 is sufficiently

small and0 < µ < min{1, ρ
2K2L

}, thenx́ is a local minimizer off .
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� Assume that every local minimizer off is strict. Suppose thatρ > 0 is

sufficiently small and0 < µ < min{1, ρ
2K2L

}. Then,x∗∗ ∈ X \ X̃ is

a local minimizer off with f(x∗∗) < f(x∗) if and only if x∗∗ is a local

minimizer ofGµ,ρ,x∗.

This is an improved version of the discrete filled function in[107], to ensure

x́ coincides withx∗∗. In other words, every local minimizer of the discrete filled

functionGµ,ρ,x∗ is also a local minimizer for the original functionf . Both µ and

ρ are initialized as 0.1. The parameterµ is reduced ifx́ is not an improved point

and by settingµ := µ/10 and returning to Step 3(a). If́x is not an improved

point and a vertex ofX, setℓ := ℓ + 1 and return to Step 3(b), unlessℓ > q in

which caseρ is adjusted. Similar to [107], the algorithm for minimizingGµ,ρ,x∗

exits prematurely when an improved pointxk with f(xk) < f(x∗) is found in

Step 4 of Algorithm 2.2. The algorithm setsx0 := xk and returns to Step 2 to

minimize the original functionf in this case. Note that a direction which yields the

greatest improvement off + Gµ,ρ,x∗ is chosen when minimizingGµ,ρ,x∗, assuming

that a direction for improvingf andGµ,ρ,x∗ simultaneously does exist. If such a

direction does not exist, the algorithm chooses the steepest descent direction such

thatGµ,ρ,x∗(xc+d∗) < Gµ,ρ,x∗(xc). The algorithm terminates whenρL = 0.1. Note

thatρ is fixed at 0.1, since all test problems in [106] readily yielda global solution

when ρ = 0.1. The filled function in (2.9) is shown to increase computational

efficiency when compared with that in [107]. Several test problems with up to

1.38 × 10104 feasible points were solved using this method.

2.3.4 Discrete Filled Function in Yang & Liang [160]

A two parameter exponential filled function,

Ga,b,x∗(x) =
1

a+ ‖ x − x∗ ‖Υ

(

max{f(x) − f(x∗) + b, 0}
)

, (2.10)

where

Υ(y) =

{

exp(−a/y), if y 6= 0,

0, if y = 0.
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is introduced in [160]. LetSM represent the set of discrete local minimizers off ,

a < 0, and

0 < b < max
x∗,x∗∗∈SM

f(x∗∗)<f(x∗)

(

f(x∗) − f(x∗∗)

)

.

Ga,b,x∗ is a discrete filled function off if Ga,b,x∗(x) has the following properties:

� x∗ is a strict discrete local maximizer ofGa,b,x∗.

� Ga,b,x∗ has no discrete local minimizers inSU .

� If x∗ is not a discrete global minimizer off , thenGa,b,x∗ does have a

discrete minimizeŕx ∈ SL.

� For anyx,x∗ ∈ X, there existsd ∈ D(x) such that‖ x + d− x∗ ‖<
‖ x − x∗ ‖.

� Let x1, x2, x∗ be three distinct points inX. If ‖ x2 − x∗ ‖>‖ x1 − x∗ ‖,

then
‖ x1 − x∗ ‖
‖ x2 − x∗ ‖ < 1 − 1

2K2
.

� For anyx1, x2 ∈ X, if

• ‖ x2 − x∗ ‖>‖ x1 − x∗ ‖,

• f(x1) ≥ f(x∗), and

• f(x2) − f(x∗) + b > 0,

thenGa,b,x∗(x2) < Ga,b,x∗(x1).

The parametersa andb are initialized as 0.01 and 1, respectively. When all

the search directions fromx∗ have been utilized but no improved point off is found

(i.e. ℓ > q), the user either setsb := b/10 anda := a/10 or a := a/10 only as

long asa > 10−7. The algorithm terminates whenb ≤ 10−5. Note that it is not

necessary to find the minimizer ofGa,b,x∗ for this algorithm. As long as a point

xk with f(xk) < f(x∗) is found when minimizingGa,b,x∗, the algorithm reverts

to minimizing the original functionf . As in [107], a local minimizer of this filled

function is not guaranteed to be a true local minimizer of theoriginal functionf .
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2.3.5 Discrete Filled Function in Shang & Zhang [127]

A third exponential filled function is suggested in [127]. Let x∗ be the current

local minimizer and choose anyx0 such thatf(x0) ≥ f(x∗). According to [127],

G̟,x0,x∗ is called a discrete filled function off at x∗ if G̟,x0,x∗ has the following

properties:

� G̟,x0,x∗ has no local minimizer inSU\{x0} andx0 is not necessarily a

local minimizer ofG̟,x0,x∗;

� If x∗ is not a global minimizer off , there exists a local minimizeŕx ∈ SL

of G̟,x0,x∗ such thatf(x́) < f(x∗).

A discrete filled function, with parameter̟, is defined as follows:

G̟,x0,x∗(x) = ζ(‖ x−x0 ‖)−ξ(̟(1−exp(−[min{f(x)−f(x∗), 0}]2))), (2.11)

where̟ > 0 and the prefixed pointx0 satisfiesf(x0) ≥ f(x∗). In addition, the

functionsζ(t) andξ(t) have the following characteristics:

� ζ(t) andξ(t) are strictly increasing for anyt ∈ [0, +∞);

� ζ(0) = 0 andξ(0) = 0;

� ξ(t) → C > 0 asx → +∞, whereC ≥ maxx∈X ζ(‖ x − x0 ‖).

In addition, the following conditions hold forG̟,x0,x∗:

� For anyx ∈ X, if x 6= x0, there existsd ∈ D(x) such that

‖ x + d− x0 ‖<‖ x − x0 ‖.

� G̟,x0,x∗ has no local minimizer inSU\{x0} for any̟ > 0.

� SupposeSL 6= ∅. If ̟ satisfies̟ >
ξ−1(C) exp([f(x̄∗) − f(x∗)]2)

exp([f(x̄∗) − f(x∗)]2) − 1
,

wherex̄∗ is a global minimizer off , thenG̟,x0,x∗ has a local minimizer

in SL.
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� Suppose thatε is a small positive constant and̟satisfies̟ >
ξ−1(C) exp(ε2)

exp(ε2) − 1
.

Then, given anyx∗ of f such thatf(x∗) ≥ f(x̄∗)+ε, wherex̄∗ is a global

minimizer off , G̟,x0,x∗ has at least one local minimizer inSL.

Instead of performing a neighbourhood search in Step 3 of Algorithm 2.2, the

implementation in [127] uses any initial point on the boundary of X to minimize

G̟,x0,x∗. In [127], the parameter̟ is fixed to400.5(10
√

n + 1), wheren is the

dimension of a problem. For each subsequent initial point drawn from the boundary

of X, i := i + 1 and the algorithm terminates wheni = 10n. Every local minimizer

of G̟,x0,x∗ is assumed to be an improved point (Step 5 of Algorithm 2.2 is by-

passed). Though this filled function has only one fixed parameter, the local search

of G̟,x0,x∗ can become computationally intensive due to the large number of initial

points that may need to be tested before the termination criteria is met. A nonlin-

ear box constrained problem with up to1.71 × 105 feasible points was solved in

[127]. Similar to the methods in [107, 160], a local minimizer of the filled function

G̟,x0,x∗ is not necessarily a local minimizer of the original function f . Further-

more, a prefixed pointx0 is required at the beginning of the algorithm, resulting in

the minimization process typically converging tox0 rather than an improved point

of the original function. A refined formulation of this filledfunction is suggested in

[128].

2.3.6 Discrete Filled Function in Shang & Zhang [128]

Let

Gδ,q,x∗(x) =
ln(1 + q max(f(x) − f(x∗) + δ, 0))

1+ ‖ x − x∗ ‖ (2.12)

be a discrete filled function off with q > 0,

0 < δ < min
x1,x2∈X
x1 6=x2

|f(x1) − f(x2)|.

It has the following properties:

� x∗ is a strict local maximizer ofGδ,q,x∗.
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� If f(x) ≥ f(x∗) andx 6= x∗, thenx is not a local minimizer ofGδ,q,x∗.

� If x∗ is not a global minimizer off(x), there exists a local minimizeŕx of

Gδ,q,x∗ in SL.

� If x1,x2 ∈ X are two distinct points which satisfy the following condi-

tions:

• f(x1) ≥ f(x∗) andf(x2) ≥ f(x∗), and

• ‖ x1 − x∗ ‖>‖ x2 − x∗ ‖> 0,

thenGδ,q,x∗(x1) < Gδ,q,x∗(x2).

� If x1,x2 ∈ X are two distinct points which satisfy the following condi-

tions:

• f(x2) ≥ f(x∗) > f(x1), and

• ‖ x1 − x∗ ‖>‖ x2 − x∗ ‖> 0,

then,Gδ,q,x∗(x1) < Gδ,q,x∗(x2).

This filled function overcomes the prefixed point issue in [127] to ensure a

better point of the original function is attained and suggests an additional parameter.

The initial settings forδ andq are 1 and 100, respectively. A random initial point

in X is used to minimizeGδ,q,x∗ instead of a neighbourhood point as suggested in

Step 3 of Algorithm 2.2. If no local minimizer ofGδ,q,x∗ is found along the search

from this random point, another initial point inX is drawn andi := i + 1. When

i > 2n, the algorithm setsq := 10q as long asq < 105. Otherwise, the algorithm

setsδ := δ/10 andq := q0 in Step 6 of Algorithm 2.2. Then,i is reset to 1 and

Gδ,q,x∗ is minimized again from the same starting point with the new parameter

values. Similar to [160], it is not necessary to find a minimizer of Gδ,q,x∗. The

algorithm terminates whenδ < 10−5 andℓ = 2n, wheren refers to the dimension

of the problem. Two test problems, with up to1.1739 × 1052 feasible points were

solved in [128]. Since a local minimizer of this filled function is not necessarily a
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local minimizer of the original functionf , further computation is needed to find the

local minimizer off in a lower basin for each local minimizer ofGδ,q,x∗(x) found.

2.3.7 Discrete Filled Function in Yang & Zhang [162]

Supposeϕ(t) is a continuously differentiable function satisfying the following con-

ditions:

� ϕ(t) = ϑ whent ≥ ǫ; ϕ(t) = −ϑ whent ≤ −ǫ.

� ϕ́(t) ≥ 0, − ǫ ≤ t ≤ ǫ.

� ϕ(0) = 0.

Suppose also that a functionη(t) satisfiesη(0) = 0 and ή(t) > 0, for t ≥ 0. The

filled function in [162] is given by

Gǫ,ν,x∗(x) = η(‖ x − x0 ‖)ϕ(f(x) − f(x∗) + ν), (2.13)

wherex0 is an arbitrary point inX, ϑ is a positive constant, and bothǫ andν are

problem-dependent parameters. The properties for this discrete filled function are

as follows:

� The functionGǫ,ν,x∗ has no discrete local minimizer except atx0 in the

regionS1 = {x ∈ X : f(x) ≥ f(x∗) + ǫ − ν}, whereǫ ≥ ν.

� If ν = 0, Gǫ,ν,x∗(x) has no discrete local minimizer except atx0 in S2 =

{x ∈ X : f(x) ≥ f(x∗) + ǫ}.

� If ν = ǫ, Gǫ,ν,x∗(x) has no discrete local minimizer except atx0 in SU .

� Givenν = 0 or ν = ǫ, if ǫ is sufficiently small andx∗ is not a discrete

global minimizer off , thenGǫ,ν,x∗(x) does have a discrete local minimizer

x́ in SL.

� If x∗ is a global minimizer off , thenx0 is the unique discrete global

minimizer ofGǫ,ν,x∗(x) with ν > 0.
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The functionsη(t) andϕ(t) in (2.13) must be chosen carefully to ensure com-

putational reliability and efficiency. As a guide, polynomial functions are suggested

in [162] for bothη(t) andϕ(t). Based on the characteristics of this filled function,

ǫ andν are initialized as 1.0 and 0, respectively, so that there exists a local min-

imizer of Gǫ,ν,x∗ in a lower basin. The disadvantage of this filled function is that

it depends heavily on the initial pointx0 in computingGǫ,ν,x∗. Thus,x0 has to be

chosen carefully and plays a crucial role in finding a local minimizer ofGǫ,ν,x∗ such

thatf(x̄∗) ≤ f(x∗
1)+ ǫ, wherex̄∗ is the global minimum of the original function. If

a local minimizer of the filled function in a lower basin cannot be determined, then

x0 is taken as its local minimizer, with suitable values ofǫ andν, or x0 is assumed

to be the global solution of the original function, which is not likely to happen in

practice. The algorithm terminates whenǫ < 0.0001. Several test problems with up

to 200 variables have been solved using this filled function method as reported in

[162].

2.3.8 Discrete Filled Function in Gu & Wu [38]

Gu and Wu propose the discrete filled function

G̺,x∗(x) =
1

‖ x − x∗ ‖2 +1
E̺

(

f(x) − f(x∗)
)

+ F̺

(

f(x) − f(x∗)
)

, (2.14)

where

E̺(y) =











0, y ≤ −̺,

−2y3

̺3 − 3y2

̺2 + 1, −̺ < y ≤ 0,

1, y > 0,

and

F̺(y) =











y + ̺, y ≤ −̺,
(̺−2)y3

̺3 + (̺−3)y2

̺2 + 1, −̺ < y ≤ 0,

1, y > 0.

Defineβ0 = minx∈SL
(f(x∗) − f(x)). If the function parameter̺ satisfies

0 < ̺ ≤ β0,

then the following results hold.
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� For allx ∈ X, f(x) ≥ f(x∗) is equivalent toG̺,x∗(x) > 1.

� x∗ is not a global minimizer off if and only if SL 6= ∅ andβ0 > 0.

� x ∈ SL is equivalent toG̺,x∗(x) ≤ 0.

� x∗ is a strict discrete local maximizer ofG̺,x∗.

� If x∗ is not a global minimizer off , then there exists a discrete local

minimizer ofG̺,x∗, denoted býx.

� x́ is either inSL or X̃.

� Givenx1,x2 ∈ SU , G̺,x∗(x1) > G̺,x∗(x2) is equivalent to‖ x1 − x∗ ‖<
‖ x2 − x∗ ‖.

The parameter̺ is initialized as 1. It is updated in Step 6 of Algorithm 2.2 by

setting̺ := ̺/10 when all available search directions atx∗ have been used (i.e.ℓ >

q) but no improved point off is found. The algorithm terminates when̺ = 10−5.

The one-parameter filled function suggested here guarantees that the minimizer of

G̺,x∗ is also a minimizer off . Based on this approach, a refined algorithm which

is capable of dealing directly with nonlinear constraints is proposed in [161].

2.3.9 Discrete Filled Function in Yang, Wu & Bai [161]

An extended study of the filled function method in [38] is given in [161] to deal with

the nonlinear constrained problem (2.3). A one-parameter discrete filled function is

defined as

Gr,x∗(x) =

(

1

‖ x − x∗ ‖2 +1
+ 1

)

Γ

(

Hr(f(x) − f(x∗)) +
m

∑

i=1

Hr(gi(x) − r)

)

,

(2.15)

where

Hr(y) =











0, y ≤ −r,
(r−2)y3

r3 + (2r−3)y2

r2 + y + 1, −r < y ≤ 0,

y + 1, y > 0,
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and

Γ(y) =











0, y ≤ 0.5,

−16y3 + 36y2 − 24y + 5, 0.5 < y ≤ 1,

1, y > 1,

Let β̌ = min{β0, β1}, where

β0 = min
x∈SL

(

f(x∗) − f(x)
)

and

β1 = min
x∈X\Λ

max
i∈{1,...,m}

gi(x).

If the parameterr satisfies

0 < r ≤ β̌,

Gr,x∗ is said to be a discrete filled function atx∗ and the following properties hold.

� x∗ is a strict discrete local maximizer ofGr,x∗ onX.

� If x∗ is not a global minimizer off , then there exists áx ∈ SL such that́x

is a discrete local minimizer ofGr,x∗.

� Any discrete local minimizer ofGr,x∗ is either inSL or in X̃.

� Givenx1,x2 ∈ X\SL, Gr,x∗(x1) > Gr,x∗(x2) if and only if ‖ x1 −x∗ ‖<
‖ x2 − x∗ ‖.

� x ∈ X\SL if and only if Gr,x∗(x) > 1.

� x ∈ SL if and only if Gr,x∗(x) = 0.

Unlike the other filled functions discussed earlier, this filled function is ca-

pable of solving constrained nonlinear problems directly.SetsΛ andX are the

feasible regions off andGr,x∗, respectively. Note that the algorithm as stated in

[161] is incomplete without justifying how to handle the non-feasibility issue ofx0

if x0 ∈ X\Λ happens to be used at the beginning of the algorithm. Based oncor-

respondence with the main author in [161], we suggest an additional preliminary

step before Step 1 in Algorithm 2.2 to check ifx0 ∈ Λ before minimizingf . If
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this condition is satisfied, then continue with Step 1 in Algorithm 2.2. Otherwise,

setx∗ := x0 and jump directly to Step 3 in Algorithm 2.2. The nature of thefilled

function is such that a minimum point of it must lie inΛ. Thus, ax0 ∈ Λ can be

readily obtained.

Since the local minimizer of the discrete filled function hasto be tested for

feasibility with respect to the original function, it is notguaranteed to be a local

minimizer off . Thus, further computation is needed for this single-parameter filled

function approach for each minimizer of the filled function found. The parameterr

is set as 1 at the beginning of the algorithm, reduced byr := r/10 whenℓ > q in

Step 6 of Algorithm 2.2, and the algorithm terminates whenr = 10−5.

2.4 Solutions of Test Problems

In this section, we select several promising discrete filledfunction methods from

those described in the previous section, based on their theoretical properties and

algorithms. These functions are tested on several benchmark problems: Colville’s

function [44], Goldstein and Price’s function [37], Beale’s singular function [102],

Powell’s singular function [102], and Rosenbrock’s function [120]. Note that our

aim is to simply compare the efficiency of different discretefilled function methods

without necessarily solving high dimensional problems. Note, though, that these

methods have been demonstrated to solve problems involvingup to 200 variables

[106, 107]. These algorithms are as follows:

• Algorithm A extracted from [107];

• Algorithm B extracted from [106];

• Algorithm C extracted from [160];

• Algorithm D extracted from [161].

The performance of each of the filled function methods used insolving the test

problem is summarized in the following subsections. Note that we setρL = 0.001
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in Algorithms A and B, to be more confident of obtaining a global solution when

solving these test problems, rather thanρL = 1 and 0.1 as suggested in [107] and

[106], respectively. Note further that we construct a look-up table to store each ob-

jective function value computed so far to avoid repeated calculation of the objective

function for the same point. This modification was introduced in view of the pro-

posed application of discrete filled function methods to mixed discrete optimization

problems in later chapters, where each function evaluationis computationally ex-

pensive. The final optimal solution found for each algorithmis recorded byx∗
final

with its corresponding objective valuef(x∗
final). The total number of original func-

tion evaluations, the total number of discrete filled function evaluations, and the

ratio of the average number of original function evaluations to reach the global so-

lution to the total number of feasible points are represented in Table 2.1-2.5 byEf ,

EG, andRE, respectively.

2.4.1 Problem 1: Colville’s Function

min f(x) = 100
(

x2 − x2
1

)2
+

(

1 − x1

)2
+ 90

(

x4 − x2
3

)2
+

(

1 − x3

)2

+ 10.1
[

(

x2 − 1
)2

+
(

x4 − 1
)2

]

+ 19.8
(

x2 − 1
)(

x4 − 1
)

,

s.t. − 10 ≤ xi ≤ 10, xi integer, i = 1, 2, 3, 4.

This box constrained problem has1.94481 × 105 feasible points. The global mini-

mum solution isx∗
global = [1, 1, 1, 1]⊤ with f(x∗

global) = 0. Six starting points were

considered for the algorithms, namely[1, 1, 0, 0]⊤, [1, 1, 1, 1]⊤, [−10, 10,−10, 10]⊤,

[−10,−5, 0, 5]⊤, [−10, 0, 0,−10]⊤, and[0, 0, 0, 0]⊤. All discrete filled function al-

gorithms succeeded in finding the global minimum from all starting points. A sum-

mary of the computational results is displayed in Table 2.1.Numerical results show

that Algorithm B has the smallest total number of original function evaluations, and

the averageRE is 0.008635805.
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Table 2.1: Numerical Results of Problem 1.
Algorithm x0 x

∗

final f(x∗

final) Ef EG RE

A [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 2095 7058 0.010772261

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 2086 7037 0.010725984

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 3940 10603 0.020259048

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 2192 7056 0.011271024

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 2226 7059 0.011445848

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 2102 7060 0.010808254

B [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1426 5097 0.007332336

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 1422 5076 0.007311768

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 2674 5979 0.013749415

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 1567 5134 0.008057342

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 1557 5098 0.008005923

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1431 5099 0.007358045

C [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 3041 35243 0.015636489

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 2867 34570 0.014741800

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 4608 39849 0.023693831

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 3842 37147 0.019755143

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 3174 35253 0.016320360

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 3051 35254 0.015687908

D [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1615 15973 0.008304153

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 1435 15312 0.007378613

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 4145 21660 0.021313136

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 2569 17483 0.013209517

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 1748 15992 0.008988025

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1625 15993 0.008355572
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2.4.2 Problem 2: Goldstein and Price’s Function

min f(x) = g(x)h(x)

s.t. xi =
yi

1000
− 2000 ≤ yi ≤ 2000, yi integer, i = 1, 2,

where

g(x) = 1 +
(

x1 + x2 + 1)2
(

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)

,

and

h(x) = 30 +
(

2x1 − 3x2)
2
(

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)

.

This box constrained problem has1.6008001 × 107 feasible points. The global

minimum solution isx∗
global = [0,−1]⊤ with f(x∗

global) = 3. Six starting points were

considered in the computational tests, these being[2,−2]⊤, [0,−1]⊤, [−2,−2]⊤,

[−0.5,−1]⊤, [1,−1.5]⊤, and[1,−1]⊤. A summary of the computational results is

given in Table 2.2. All algorithms succeeded in finding the global minimum from

all starting points, where Algorithm B is shown to be the mostefficient method.

This method succeeded in identifying the global minimum solution with an average

of 22249 function evaluations. The averageRE is 0.0013899.

2.4.3 Problem 3: Beale’s Function

min f(x) =
[

1.5 − x1

(

1 − x2

)

]2

+
[

2.25 − x1

(

1 − x2
2

)

]2

+
[

2.625 − x1

(

1 − x3
2

)

]2

,

s.t. xi =
yi

1000
− 10000 ≤ yi ≤ 10000, yi integer, i = 1, 2.
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Table 2.2: Numerical Results of Problem 2.
Algorithm x0 x

∗

final f(x∗

final) Ef EG RE

A [2,−2]⊤ [0,−1]⊤ 3 51234 217255 0.003200525

[0,−1]⊤ [0,−1]⊤ 3 47189 217255 0.002947838

[−2,−2]⊤ [0,−1]⊤ 3 53675 217255 0.003353011

[−0.5,−1]⊤ [0,−1]⊤ 3 47189 217255 0.002947838

[1,−1.5]⊤ [0,−1]⊤ 3 50723 217255 0.003168603

[1,−1]⊤ [0,−1]⊤ 3 47189 217255 0.002947838

B [2,−2]⊤ [0,−1]⊤ 3 25041 151356 0.001564280

[0,−1]⊤ [0,−1]⊤ 3 18995 151356 0.001186594

[−2,−2]⊤ [0,−1]⊤ 3 24472 151356 0.001528736

[−0.5,−1]⊤ [0,−1]⊤ 3 20475 151356 0.001279048

[1,−1.5]⊤ [0,−1]⊤ 3 22533 151356 0.001407609

[1,−1]⊤ [0,−1]⊤ 3 21978 151356 0.001372938

C [2,−2]⊤ [0,−1]⊤ 3 50028 1170105 0.003125187

[0,−1]⊤ [0,−1]⊤ 3 45983 1170105 0.002872501

[−2,−2]⊤ [0,−1]⊤ 3 52469 1170105 0.003277673

[−0.5,−1]⊤ [0,−1]⊤ 3 45983 1170105 0.002872501

[1,−1.5]⊤ [0,−1]⊤ 3 49517 1170105 0.003093266

[1,−1]⊤ [0,−1]⊤ 3 45983 1170105 0.002872501

D [2,−2]⊤ [0,−1]⊤ 3 48030 623910 0.003000375

[0,−1]⊤ [0,−1]⊤ 3 43985 623910 0.002747688

[−2,−2]⊤ [0,−1]⊤ 3 50475 623910 0.003153111

[−0.5,−1]⊤ [0,−1]⊤ 3 43985 623910 0.002747688

[1,−1.5]⊤ [0,−1]⊤ 3 47519 623910 0.002968453

[1,−1]⊤ [0,−1]⊤ 3 43985 623910 0.002747688
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This box constrained problem has4.00040001×108 feasible points. The global min-

imum solution isx∗
global = [3, 0.5]⊤ with f(x∗

global) = 0. Six starting points were con-

sidered in the tests:[10,−10]⊤, [9.997,−6.867]⊤, [0,−1]⊤, [1, 1]⊤, [−2, 2]⊤, and

[0, 0]⊤. A summary of the computational results is shown in Table 2.3. Only Algo-

rithms A and B consistently succeeded in identifying the global minimum with the

average number of function evaluations being 119722.2 and 358077.3, respectively.

Note that Algorithm B is more efficient than Algorithm A, where the averageRE is

0.000299275, compared to 0.000895104. As for Algorithms C and D, both yielded

local minimizers close to the global solution:[3.015, 0.504]⊤, [2.989, 0.497]⊤,

[3.004, 0.501]⊤, and[2.996, 0.499]⊤. A possible reason for this failure to converge

tot he global solution may be that our implementation calls on neighbourhood points

in Step 3 in a different order to that in other implementations.

2.4.4 Problem 4: Powell’s Singular Function

min f(x) =
(

x1 + 10x2

)2
+ 5(x3 − x4)

2 + (x2 − 2x3)
4

+ 10(x1 − x4)
4,

s.t. xi =
yi

1000
− 10000 ≤ yi ≤ 10000, yi integer, i = 1, 2, 3, 4.

This box constrained problem has1.60032 × 1017 feasible points. The global min-

imum is atx∗
global = [0, 0, 0, 0]⊤ with f(x∗

global) = 0. Six starting points were

used in the tests:[10, 10, 10, 10]⊤, [−10,−10,−10,−10]⊤, [10,−10,−10, 10]⊤,

[1,−1,−1, 1]⊤, [−10, 1, 0, 5]⊤, and[0, 0, 0, 0]⊤. All methods succeeded in identify-

ing the global minimum. Table 2.4 summaries the computational results. Numeri-

cal experiments suggest that Algorithm B has the smallest total number of original

function evaluations, and the averageRE is 7.01735 × 10−15.
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Table 2.3: Numerical Results of Problem 3.
Algorithm x0 x

∗

final f(x∗

final) Ef EG RE

A [10,−10]⊤ [3, 0.5]⊤ 0 408190 1781788 0.001020373

[9.997,−6.867]⊤ [3, 0.5]⊤ 0 410442 1781788 0.001026002

[0,−1]⊤ [3, 0.5]⊤ 0 415309 1781788 0.001038169

[1, 1]⊤ [3, 0.5]⊤ 0 216860 1140046 0.000542096

[−2, 2]⊤ [3, 0.5]⊤ 0 219484 1140046 0.000548655

[0, 0]⊤ [3, 0.5]⊤ 0 478179 2049532 0.001195328

B [10,−10]⊤ [3, 0.5]⊤ 0 119997 1310251 0.000299963

[9.997,−6.867]⊤ [3, 0.5]⊤ 0 121489 1310251 0.000303692

[0,−1]⊤ [3, 0.5]⊤ 0 129333 1310251 0.000323300

[1, 1]⊤ [3, 0.5]⊤ 0 107219 723603 0.000268021

[−2, 2]⊤ [3, 0.5]⊤ 0 105842 723603 0.000264579

[0, 0]⊤ [3, 0.5]⊤ 0 134453 776637 0.000336099

C [10,−10]⊤ [3.015, 0.504]⊤ 0.0000376 100002 128430 0.000249980

[9.997,−6.867]⊤ [3.015, 0.504]⊤ 0.0000376 100002 123335 0.000249980

[0,−1]⊤ [3.015, 0.504]⊤ 0.0000376 100001 111165 0.000249978

[1, 1]⊤ [2.989, 0.497]⊤ 0.0000211 100001 199532 0.000249978

[−2, 2]⊤ [2.989, 0.497]⊤ 0.0000211 100001 202671 0.000249978

[0, 0]⊤ [2.989, 0.497]⊤ 0.0000211 100002 206268 0.000249980

D [10,−10]⊤ [3.004, 0.501]⊤ 0.00000255 386183 2610857 0.000965361

[9.997,−6.867]⊤ [3.004, 0.501]⊤ 0.00000255 388440 2610857 0.000971003

[0,−1]⊤ [3.004, 0.501]⊤ 0.00000255 393307 2610857 0.000983169

[1, 1]⊤ [2.996, 0.499]⊤ 0.00000257 257134 2110006 0.000642771

[−2, 2]⊤ [2.996, 0.499]⊤ 0.00000257 276458 2110006 0.000691076

[0, 0]⊤ [3.004, 0.501]⊤ 0.00000255 494215 2711826 0.001235414
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Table 2.4: Numerical Results of Problem 4.
Algorithm x0 x

∗

final f(x∗

final) Ef EG RE

A [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 1874 7248 1.17102× 10−14

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 1928 7247 1.20476× 10−14

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 1825 7248 1.14040× 10−14

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 1742 7248 1.08853× 10−14

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 1807 7247 1.12915× 10−14

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 1732 7243 1.08228× 10−14

B [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 1160 5350 7.24855× 10−15

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 1179 5349 7.36728× 10−15

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 1131 5350 7.06734× 10−15

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 1067 5350 6.66742× 10−15

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 1140 5349 7.12358× 10−15

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 1061 5345 6.62992× 10−15

C [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 2777 36061 1.73528× 10−14

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 2536 34605 1.58468× 10−14

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 2759 36061 1.72403× 10−14

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 2612 36061 1.63217× 10−14

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 2420 34605 1.51220× 10−14

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 2342 34594 1.46346× 10−14

D [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 2043 17777 1.27662× 10−14

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 1744 16478 1.08978× 10−14

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 2048 17777 1.27974× 10−14

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 1874 17777 1.17102× 10−14

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 1620 16478 1.01230× 10−14

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 1542 16458 9.63557× 10−15
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2.4.5 Problem 5: Rosenbrock’s Function

min f(x) =
n−1
∑

i=1

[

100
(

xi+1 − x2
i

)2
+

(

1 − xi

)2
]

,

s.t. − 5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.

This box constrained problem has1.08347 × 1026 feasible points forn = 25.

The global minimum is atx∗
global = [1, . . . , 1]⊤ with f(x∗

global) = 0. Six starting

points were considered in the simulations:[0, . . . , 0]⊤, [3, . . . , 3]⊤, [−5, . . . ,−5]⊤,

[2,−2, . . . , 2,−2, 2]⊤, [3,−3, . . . , 3,−3, 3]⊤, and[5,−5, . . . , 5,−5, 5]⊤. All algo-

rithms succeeded in identifying the global minimum for mostof the starting points

used. A summary of the computational results is displayed inTable 2.5. Clearly,

Algorithm B has the least total number of original function evaluations and the av-

erageRE is 1.87477 × 10−21.

2.4.6 Comparison with Literature Results

Table 2.6 shows the average values of a number of original function evaluations

for an algorithm to terminate and compares this with the results from the litera-

ture. Since these test problems were not solved in [161], we compare our numerical

results with those in [107], [106], and [160] only. Recall that in our implementa-

tions of these algorithms, we construct a look-up table to store each objective func-

tion value computed so far to avoid repeated calculation of the objective function.

Consequently, our implementations show a significantly lower number of function

evaluations when compared to the results found in the literature. We note that in

our implementation of the various algorithms, searches fora local minimum of the

filled function may be initialized with different starting points than those used in

the implementations published previously. This is becauseeither the order in which

the neighbourhood ofx∗ is to be tested is not specified or the starting points are not

confined to the neighbourhoodN(x∗) and are chosen randomly within the feasible

region. This difference may well influence the actual performance of an algorithm.
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Table 2.5: Numerical Results of Problem 5.
Algorithm x0 x

∗

final f(x∗

final) Ef EG RE

A [0, . . . , 0]⊤ [1, . . . , 1]⊤ 0 211831 682050 1.95512× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 418536 898526 3.86292× 10−21

[−5, . . . ,−5]⊤ [1, . . . , 1]⊤ 0 217435 682050 2.00684× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [1, . . . , 1]⊤ 0 214231 682050 1.97727× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 510907 10060184.71547× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 512802 10060184.73296× 10−21

B [0, . . . , 0]⊤ [1, . . . , 1]⊤ 0 171072 444101 1.57893× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 312888 644091 2.88783× 10−21

[−5, . . . ,−5]⊤ [1, . . . , 1]⊤ 0 176624 444101 1.63017× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [1, . . . , 1]⊤ 0 173472 444101 1.60108× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 191402 563646 1.76656× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 193297 563646 1.78405× 10−21

C [0, . . . , 0]⊤ [0, . . . , 0]⊤* 24 532603 30315474.91571× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 627360 28242735.79277× 10−21

[−5, . . . ,−5]⊤ [0, . . . , 0]⊤* 24 538156 30315474.96696× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [0, . . . , 0]⊤* 24 534952 30315474.93739× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 678295 29206826.26039× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 680190 29206826.27788× 10−21

D [0, . . . , 0]⊤ [0, . . . , 0]⊤* 24 182636 14933761.68566× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 289538 14010002.67232× 10−21

[−5, . . . ,−5]⊤ [0, . . . , 0]⊤* 24 188189 14933761.73691× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [0, . . . , 0]⊤* 24 184985 14933761.70734× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 339380 14934603.13234× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 341275 14934603.14983× 10−21

*Remarks: The final solution is a local solution.
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Table 2.6: A Comparison of Function Evaluations.
Problem Algorithm Our implementations Results in [107] Results in [106] Results in [160]

1 A 2440.17 4263.11

B 1679.5 3767.78

C 3430.5 85705

D 2189.5

2 A 49533.17 111125.86

B 22249 68196.29

C 48327.17 2125511

D 46329.83

3 A 366914.3 939209.57

B 119368.8 444887.71

C 100001.5* 4861560

D 365956.2*

4 A 1818 7337207.5

B 1123 6731232

C 2574.333 155868850

D 1811.8333

5 A 347623.7 320610.44

B 203125.8 305712.11

C 598637.7 6282030

D 254333.8

*Remarks: The final solution is a local solution.
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2.5 Concluding Remarks

Discrete filled function methods have shown promising results in finding globally

optimal solutions in several benchmark problems as demonstrated in the previous

section, thus confirming the applicability, reliability, and efficiency of this relatively

recent global optimization technique. As can be seen from Table 2.6, Algorithm B

is the most efficient method, yielding the lowest number of function evaluations for

solving all test problems. Our intention is to adapt the technique to complex mixed

discrete optimization problems where individual objective function evaluations are

computationally expensive. Methods requiring the least number of function evalua-

tions are important in solving such problems. In the next chapter, we propose some

variations to Algorithm B to enhance the computational efficiency, before adapting

it to solve discrete-valued optimal control problems in subsequent chapters.
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Chapter 3

Variations of Discrete Filled Function

Methods

This chapter summarizes some of our own ideas of how an existing discrete filled

function algorithm may be modified to improve its performance. This is done with

a view of finding the most suitable algorithm for our proposedtechnique of solv-

ing discrete-valued optimal control problems in the comingchapters. We adopt

Algorithm B extracted from [106] in the previous chapter andpropose five major

variations to this algorithm. Each algorithm is tested on Colville’s function and

Rosenbrock’s function as defined in Subsections 2.4.1 and 2.4.5, respectively. The

performances of the proposed variations of the basic algorithm are summarized at

the end of this chapter.

Before discussing the details of the proposed variations, we recall the follow-

ing basic box constrained discrete optimization problem:

min f(x), s.t.x ∈ X,

whereX = {x ∈ Z
n|xi,min ≤ xi ≤ xi,max}, Z

n is the set of integer points inRn,

andxi,min, xi,max, i = 1, . . . , n, are given bounds. Also, we recall the discrete

steepest descent method from Subsection 2.2.2 as follows.

50



Algorithm 3.1 Discrete Steepest Descent Method

1. Choose an initial pointx ∈ X.

2. If x is a local minimizer off , then stop. Otherwise, find the discrete steepest

descent directiond∗ ∈ D(x) of f .

3. Setx := x + d∗. Go to Step 2.

3.1 The Standard Algorithm

The following is the original filled function algorithm extracted from [106].

Algorithm 3.2 Standard Algorithm

1. Initializex0 ∈ X, ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and0 < µ̂ < 1.

Letρ := ρ0 andµ := µ0.

Choose an initial pointx0 ∈ X.

2. Starting fromx0, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx∗ of f .

3. (a) List the neighbouring points ofx∗ as N(x∗) = {w1,w2, . . . ,wq}. Set

ℓ := 1.

(b) Set the current switching point,xc := wℓ.

4. (a) If there exists a directiond ∈ D(xc) such thatf(xc + d) < f(x∗), then

setx0 := xc + d and go to Step 2. Otherwise, go to (b) below.

(b) Let D1 = {d ∈ D(xc) : f(xc + d) < f(xc) and Gµ,ρ,x(xc + d) <

Gµ,ρ,x(xc)}.

If D1 6= ∅, setd∗ := arg mind∈D(xc){f(xc + d) + Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to (c) below.

(c) LetD2 = {d ∈ D(xc) : Gµ,ρ,x(xc + d) < Gµ,ρ,x(xc)}.
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If D2 6= ∅, setd∗ := arg mind∈D(xc){Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to Step 5.

5. Letx́ = xc be the local minimizer ofGµ,ρ,x∗ obtained from Step 4.

(a) If x́ ∈ X̃, setℓ := ℓ+1. If ℓ > q, go to Step 6. Otherwise, go to Step 3(b).

(b) If x́ /∈ X̃, reduceµ by settingµ := µ̂µ and go to Step 4(b).

6. Reduceρ by settingρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current

x∗ is taken as a global minimizer of the problem. Otherwise, setℓ := 1 and

go to Step 3(b).

Table 3.1 describes the numerical results from implementing Algorithm 3.2

for minimizing Rosenbrock’s function withn = 5. The global minimum isx∗
global =

[1, 1, 1, 1, 1]⊤ with f(x∗
global) = 0. Recall from Section 2.4 that the total number of

original function evaluations, the total number of discrete filled function evalua-

tions, and the ratio of the average number of original function evaluations to reach

the global solution to the total number of feasible points are denoted in the table

by Ef , EG, andRE, respectively. Note that we setρL = 0.001 in the numerical

computation to be more confident of obtaining a global solution when minimizing

both test problems. Eleven starting points are considered in solving the problem.

These are[−5,−5,−5,−5,−5]⊤, [−4,−4,−4,−4,−4]⊤, [−3,−3,−3,−3,−3]⊤,

[−2,−2,−2,−2,−2]⊤, [−1,−1,−1,−1,−1]⊤, [0, 0, 0, 0, 0]⊤, [1, 1, 1, 1, 1]⊤,

[2, 2, 2, 2, 2]⊤, [3, 3, 3, 3, 3]⊤, [4, 4, 4, 4, 4]⊤, and[5, 5, 5, 5, 5]⊤. The algorithm was

able to determine the global solution from all starting points.

Recall that Colville’s function has a minimum globalx∗
global = [1, 1, 1, 1]⊤

with f(x∗
global) = 0. Six starting points are considered in Algorithm 3.2, namely

[1, 1, 0, 0]⊤, [1, 1, 1, 1]⊤, [−10, 10,−10, 10]⊤, [−10,−5, 0, 5]⊤, [−10, 0, 0,−10]⊤,

and[0, 0, 0, 0]⊤. The algorithm succeeded in finding the global minimum from all

starting points, as displayed in Table 2.1.

52



Table 3.1: Results of Algorithm 3.2 - Rosenbrock’s Function.
x0 Ef EG RE

[−5,−5,−5,−5,−5]⊤ 1436 4475 0.45952

[−4,−4,−4,−4,−4]⊤ 1435 4475 0.45920

[−3,−3,−3,−3,−3]⊤ 1395 4475 0.44640

[−2,−2,−2,−2,−2]⊤ 1354 4475 0.43328

[−1,−1,−1,−1,−1]⊤ 1314 4475 0.42048

[0, 0, 0, 0, 0]⊤ 1274 4475 0.40768

[1, 1, 1, 1, 1]⊤ 1252 4415 0.40064

[2, 2, 2, 2, 2]⊤ 1271 4415 0.40672

[3, 3, 3, 3, 3]⊤ 1646 5720 0.52672

[4, 4, 4, 4, 4]⊤ 1666 5720 0.53312

[5, 5, 5, 5, 5]⊤ 1664 5720 0.53248

3.2 The First Variation

We replace the setN(x∗) in Step 3 of the previous algorithm with a set which is

just outside of the immediate neighbourhood ofx∗. Then, an additional step is

introduced after Step 3 to test whether an improved point exists amongst the points

in this alternative set. If so, the first improved point identified is used as the starting

point to minimizef . The motivation behind this algorithm is to seek an improved

point more efficiently than Algorithm 3.2 by bypassing thosepoints which are in

the immediate neighbourhood ofx∗. In particular, we replaceN(x∗) with a set of

points which are two units away fromx∗. Note that, from our numerical experience,

it is not a good idea to initiate the minimization of the filledfunction too far from

x∗, though, as we are more likely to miss a point in a lower basin near tox∗.

Algorithm 3.3 Variation 1

1. Initializex0 ∈ X, ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and0 < µ̂ < 1.

Letρ := ρ0 andµ := µ0.

Choose an initial pointx0 ∈ X.

2. Starting fromx0, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx∗ of f .
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3. DefineN̄(x∗) = {w ∈ X|w = x∗±2ei : i = 1, 2, . . . , n} = {w1,w2, . . . ,wq},

q ≤ 2n.

4. (a) Setℓ := 1.

(b) If f(wℓ) < f(x∗), setx0 := wℓ and go to Step 2. Otherwise, go to (c)

below.

(c) Setℓ := ℓ + 1. If ℓ ≤ q, go to (b) above. Otherwise, setℓ := 1 and go to

(d) below.

(d) Set the current switching pointxc := wℓ.

5. (a) If there exists a directiond ∈ D(xc) such thatf(xc + d) < f(x∗), then

setx0 := xc + d and go to Step 2. Otherwise, go to (b) below.

(b) Let D1 = {d ∈ D(xc) : f(xc + d) < f(xc) and Gµ,ρ,x(xc + d) <

Gµ,ρ,x(xc)}.

If D1 6= ∅, setd∗ := arg mind∈D(xc){f(xc + d) + Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to (c) below.

(c) LetD2 = {d ∈ D(xc) : Gµ,ρ,x(xc + d) < Gµ,ρ,x(xc)}.

If D2 6= ∅, setd∗ := arg mind∈D(xc){Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to Step 6.

6. Letx́ = xc be the local minimizer ofGµ,ρ,x∗ obtained from Step 5.

(a) If x́ ∈ X̃, setℓ := ℓ+1. If ℓ > q, go to Step 7. Otherwise, go to Step 4(d).

(b) If x́ /∈ X̃, reduceµ by settingµ := µ̂µ and go to Step 5(b).

7. Reduceρ by settingρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current

x∗ is taken as a global minimizer of the problem. Otherwise, setℓ := 1 and

go to Step 4(d).

The minimization of Rosenbrock’s function via Algorithm 3.3 leads to the

results in Table 3.2. We found that a higher total number of function evaluations
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Table 3.2: Results of Algorithm 3.3 - Rosenbrock’s Function.
x0 Ef EG RE

[−5,−5,−5,−5,−5]⊤ 1636 4252 0.52352

[−4,−4,−4,−4,−4]⊤ 1635 4252 0.52320

[−3,−3,−3,−3,−3]⊤ 1595 4252 0.51040

[−2,−2,−2,−2,−2]⊤ 1554 4252 0.49728

[−1,−1,−1,−1,−1]⊤ 1514 4252 0.48448

[0, 0, 0, 0, 0]⊤ 1475 4252 0.47200

[1, 1, 1, 1, 1]⊤ 1427 4181 0.45664

[2, 2, 2, 2, 2]⊤ 1450 4181 0.46400

[3, 3, 3, 3, 3]⊤ 1828 5254 0.58496

[4, 4, 4, 4, 4]⊤ 1855 5254 0.59360

[5, 5, 5, 5, 5]⊤ 1850 5254 0.59200

is needed before a global solution is attained, compared to the application of Algo-

rithm 3.2. In hindsight, this is most likely due to not searching for the minimum

of the filled function as thoroughly as in Algorithm 3.2, since the starting points do

not cover the neighbourhood ofx∗ as effectively. Although Algorithm 3.3 requires

fewer discrete filled function evaluations than Algorithm 3.2 (i.e.EG is lower), this

do not enhance the algorithm’s overall efficiency.

On the other hand, we notice that Algorithm 3.3 outperforms the standard

algorithm when minimizing Colville’s function from all starting points. A summary

of the computational results for this problem is shown in Table 3.3. The average of

total number of original function evaluations is 1547.7, which is 7.8% lower than

that for the standard algorithm. Clearly, depending on the ‘shape’ of the objective

function, Algorithm 3.3 can result in improved efficiency bybypassing points in the

immediate neighbourhood ofx∗.

We also considered a further variation of Algorithm 3.3 withthe hope of

searching for an improved point more efficiently in the region N̄(x∗). Instead of

using the first improved point found in̄N(x∗) to continue the minimization off ,

we test all points inN̄(x∗) and choose the most improved point, assuming it actu-

ally exists. Interestingly, for each starting point used, this variation of the algorithm

yielded the same results for bothEf andEG values in minimizing Rosenbrock’s
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Table 3.3: Results of Algorithm 3.3 - Colville’s Function.
x0 Ef EG RE

[1, 1, 0, 0]⊤ 1346 4972 0.006920985

[1, 1, 1, 1]⊤ 1329 4942 0.006833572

[−10, 10,−10, 10]⊤ 2279 7254 0.011718368

[−10,−5, 0, 5]⊤ 1492 5018 0.007671701

[−10, 0, 0,−10]⊤ 1475 4972 0.007584288

[0, 0, 0, 0]⊤ 1365 4983 0.007018680

function, as shown in Table 3.2. It seems that none of the points in N̄(x∗) is ever

an improved point in the case of Rosenbrock’s function, and this variation therefore

yields no improvement over Algorithm 3.3. For Colville’s function, we found this

variation shows a similar results to those from Algorithm 3.3 itself, with an average

Ef = 1548.7 compared toEf = 1547.7 obtained in Algorithm 3.3. There appears

to be no reason for pursuing this variation of Algorithm 3.3.

3.3 The Second Variation

Once again, we replace the setN(x∗) in Step 3 of the Algorithm 3.2, this time with

a set of random points fromX. Then, an additional step is added to test whether

any one of these random points happens to be an improved point. The motivation

for this algorithm is to search for improved points more efficiently by choosing

points which give a broader coverage ofX, similar to the methods proposed in

[127, 128, 162].

Algorithm 3.4 Variation 2

1. Initializex0 ∈ X, ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and0 < µ̂ < 1.

Letρ := ρ0 andµ := µ0.

Choose an initial pointx0 ∈ X.

2. Starting fromx0, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx∗ of f .
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3. LetM = {w1,w2, . . . ,wq}, wherewℓ, ℓ = 1, . . . , q are randomly chosen

fromX andq = 2n.

4. (a) Setℓ := 1.

(b) If f(wℓ) < f(x∗), setx0 := wℓ and go to Step 2. Otherwise, go to (c)

below. (c) Setℓ := ℓ + 1. If ℓ ≤ q, go to (b) above. Otherwise, setℓ := 1 and

go to (d) below.

(d) Set the current switching pointxc := wℓ.

5. (a) If there exists a directiond ∈ D(xc) such thatf(xc + d) < f(x∗), then

setx0 := xc + d and go to Step 2. Otherwise, go to (b) below.

(b) Let D1 = {d ∈ D(xc) : f(xc + d) < f(xc) and Gµ,ρ,x(xc + d) <

Gµ,ρ,x(xc)}.

If D1 6= ∅, setd∗ := arg mind∈D(xc){f(xc + d) + Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to (c) below.

(c) LetD2 = {d ∈ D(xc) : Gµ,ρ,x(xc + d) < Gµ,ρ,x(xc)}.

If D2 6= ∅, setd∗ := arg mind∈D(xc){Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to Step 6.

6. Letx́ = xc be the local minimizer ofGµ,ρ,x∗ obtained from Step 5.

(a) If x́ ∈ X̃, setℓ := ℓ+1. If ℓ > q, go to Step 7. Otherwise, go to Step 4(d).

(b) If x́ /∈ X̃, reduceµ by settingµ := µ̂µ and go to Step 5(b).

7. Reduceρ by settingρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current

x∗ is taken as a global minimizer of the problem. Otherwise, setℓ := 1 and

go to Step 4(d).

Table 3.4 shows the numerical results of minimizing Rosenbrock’s function

using Algorithm 3.4 and also Algorithm 3.2 discussed earlier. Note that this algo-

rithm requires far fewer of evaluations of bothf andGµ,ρ,x when compared with
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Table 3.4: Results of Algorithm 3.4 - Rosenbrock’s Function.
x0 Ef EG RE NT

[−5,−5,−5,−5,−5]⊤ 937 2115 0.29984 1

[−4,−4,−4,−4,−4]⊤ 1219 2662 0.39008 1

[−3,−3,−3,−3,−3]⊤ 1445 3279 0.46240 1

[−2,−2,−2,−2,−2]⊤ 923 2060 0.29536 1

[−1,−1,−1,−1,−1]⊤ 1032 2409 0.33024 2

[0, 0, 0, 0, 0]⊤ 936 2447 0.29952 2

[1, 1, 1, 1, 1]⊤ 820 1961 0.26240 1

[2, 2, 2, 2, 2]⊤ 871 2165 0.27872 1

[3, 3, 3, 3, 3]⊤ 1233 2904 0.39456 3

[4, 4, 4, 4, 4]⊤ 1356 3112 0.43392 3

[5, 5, 5, 5, 5]⊤ 980 2269 0.31360 1

Algorithm 3.3 discussed earlier. Specifically, when it works, Algorithm 3.4 suc-

ceeds in finding the global solution of the problem with an averageRE = 0.341876,

compared withRE = 0.456931 obtained by Algorithm 3.2. In other words, Algo-

rithm 3.4 is able to minimize Rosenbrock’s function much more efficiently than

Algorithm 3.2, with a reduction of 25% in the total number of original function

evaluations. However, for several starting points used in Algorithm 3.4, namely

[−1,−1,−1,−1,−1]⊤, [0, 0, 0, 0, 0]⊤, [3, 3, 3, 3, 3]⊤, and [4, 4, 4, 4, 4]⊤, we were

unable initially to determine the global solution for some choices of the random set

M . In these cases, we repeated the application of the algorithm several times until

the global optimum was obtained (note that the random setM changes with each

new application). Note that theEf values in Table 3.4 show the number of func-

tion evaluations recorded for the successful application of the algorithm only. The

number of required attempts before reaching the global solution is denoted byNT

in Table 3.4.

Similarly, Algorithm 3.4 succeeds in determining the global solution of Colville’s

function much more efficiently with an averageEf = 1143.2, compared with

Ef = 1679.5 obtained by Algorithm 3.2, which is a reduction of 31.9% in aver-

age total number of original function evaluations (see Table 3.14). Again, the gain

in efficiency for Algorithm 3.4 is offset by reduced reliability, where we have to

58



Table 3.5: Results of Algorithm 3.4 - Colville’s Function.
x0 Ef EG RE NT

[1, 1, 0, 0]⊤ 1092 2812 0.005614944 13

[1, 1, 1, 1]⊤ 1030 2387 0.005296147 1

[−10, 10,−10, 10]⊤ 1106 2659 0.005686931 7

[−10,−5, 0, 5]⊤ 1542 3759 0.007928795 15

[−10, 0, 0,−10]⊤ 1135 3101 0.005836046 2

[0, 0, 0, 0]⊤ 954 3010 0.004905364 12

repeat the algorithm several times for each starting point before a global solution is

attained, as shown in Table 3.5.

3.4 The Third Variation

We propose a similar algorithm to Algorithm 3.4 where the best improved random

point is identified from setM in Step 4 to increase the computational efficiency. If

such a point exists, the algorithm reverts to finding a betterlocal minimizer off in

X.

Algorithm 3.5 Variation 3

1. Initializex0 ∈ X, ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and0 < µ̂ < 1.

Letρ := ρ0 andµ := µ0.

Choose an initial pointx0 ∈ X.

2. Starting fromx0, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx∗ of f .

3. LetM = {w1,w2, . . . ,wq}, wherewℓ, ℓ = 1, . . . , q are randomly chosen

fromX andq = 2n.

4. (a) Lety ∈ M be such thatf(y) ≤ f(wℓ), ℓ = 1, . . . , q.

If f(y) < f(x∗), setx0 := y and go to Step 2. Otherwise, setℓ := 1 and go
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to (b) below.

(b) Set the current switching pointxc := wℓ.

5. (a) If there exists a directiond ∈ D(xc) such thatf(xc + d) < f(x∗), then

setx0 := xc + d and go to Step 2. Otherwise, go to (b) below.

(b) Let D1 = {d ∈ D(xc) : f(xc + d) < f(xc) and Gµ,ρ,x(xc + d) <

Gµ,ρ,x(xc)}.

If D1 6= ∅, setd∗ := arg mind∈D(xc){f(xc + d) + Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to (c) below.

(c) LetD2 = {d ∈ D(xc) : Gµ,ρ,x(xc + d) < Gµ,ρ,x(xc)}.

If D2 6= ∅, setd∗ := arg mind∈D(xc){Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to Step 6.

6. Letx́ = xc be the local minimizer ofGµ,ρ,x∗ obtained from Step 5.

(a) If x́ ∈ X̃, setℓ := ℓ+1. If ℓ > q, go to Step 7. Otherwise, go to Step 4(b).

(b) If x́ /∈ X̃, reduceµ by settingµ := µ̂µ and go to Step 5(b).

7. Reduceρ by settingρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current

x∗ is taken as a global minimizer of the problem. Otherwise, setℓ := 1 and

go to Step 4(b).

The results of minimizing Rosenbrock’s function using Algorithm 3.5 are

summarized in Table 3.6. Some starting points, such as[−4,−4,−4,−4,−4]⊤,

[−3,−3,−3,−3,−3]⊤, [0, 0, 0, 0, 0]⊤, [3, 3, 3, 3, 3]⊤, and [4, 4, 4, 4, 4]⊤ show im-

provement over the function evaluations, compared with Algorithm 3.4. However,

Algorithm 3.5 has only slightly lower average values ofEf andEG as shown in

Table 3.12. This indicates that the new Step 4 in Algorithm 3.5 fails to provide

any improved point to increase the computational efficiency. Though some points

converge to the global solution in fewer function evaluations, this is due to dif-

ferent set of random points being generated in the implemented algorithm. Sim-

ilar to Algorithm 3.4, this algorithm succeeds in determining the global solution
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Table 3.6: Results of Algorithm 3.5 - Rosenbrock’s Function.
x0 Ef EG RE NT

[−5,−5,−5,−5,−5]⊤ 1024 2144 0.32768 8

[−4,−4,−4,−4,−4]⊤ 1006 2060 0.32192 1

[−3,−3,−3,−3,−3]⊤ 1343 3140 0.42976 1

[−2,−2,−2,−2,−2]⊤ 1050 2285 0.33600 1

[−1,−1,−1,−1,−1]⊤ 1034 2409 0.33088 1

[0, 0, 0, 0, 0]⊤ 923 2309 0.29536 1

[1, 1, 1, 1, 1]⊤ 1313 3180 0.42016 1

[2, 2, 2, 2, 2]⊤ 993 2175 0.31776 1

[3, 3, 3, 3, 3]⊤ 888 2047 0.28416 1

[4, 4, 4, 4, 4]⊤ 964 2284 0.30848 2

[5, 5, 5, 5, 5]⊤ 1079 2649 0.34528 1

Table 3.7: Results of Algorithm 3.5 - Colville’s Function.
x0 Ef EG RE NT

[1, 1, 0, 0]⊤ 1038 2607 0.005337282 6

[1, 1, 1, 1]⊤ 1054 2643 0.005419553 1

[−10, 10,−10, 10]⊤ 977 2174 0.005023627 7

[−10,−5, 0, 5]⊤ 1168 2607 0.006005728 2

[−10, 0, 0,−10]⊤ 1168 2607 0.006005728 9

[0, 0, 0, 0]⊤ 1185 3175 0.006093140 5

much more efficiently than the standard algorithm, though itis less reliable. Note

that the algorithm needs to be implemented more than once forstarting points

[−5,−5,−5,−5,−5]⊤ and [4, 4, 4, 4, 4]⊤ as the initial attempts fail to reach the

global solution.

Table 3.7 summarizes the results of minimizing Colville’s function using Al-

gorithm 3.5. The outcomes show that Algorithm 3.5 also outperforms its prede-

cessor where a lowerEf andEG as are obtained. Besides, Algorithm 3.5 requires

less attempts in attaining the global solution (seeNT values in Table 3.7) for most

starting points, except[−10, 0, 0,−10]⊤. Note that Algorithm 3.5 shows 34.6%

improvement over the standard algorithm, although it is less reliable.
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3.5 The Fourth Variation

Although the idea of using the random points in Algorithm 3.4has shown promising

results as suggested in Table 3.4, its lack of reliability does not make it attractive

for general problems. We propose another variation to overcome this issue, by

combining Algorithms 3.3 and 3.4 discussed earlier. Firstly, a set of random points

is tested to see if an improved point exists among them in Step3. If none of these

is an improved point, we then set up a set of points ofN̄(x∗) as outlined in Step 5

below. If no improved point is found in̄N(x∗), we perform a local search of the

filled function in Step 7.

Algorithm 3.6 Variation 4

1. Initializex0 ∈ X, ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and0 < µ̂ < 1.

Letρ := ρ0 andµ := µ0.

Choose an initial pointx0 ∈ X.

2. Starting fromx0, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx∗ of f .

3. LetM = {w1,w2, . . . ,wp}, wherewj, j = 1, . . . , p are randomly chosen

fromX andp = 2n.

4. (a) Setj := 1.

(b) If f(wj) < f(x∗), setx0 := wj and go to Step 2. Otherwise, go to (c)

below.

(c) Setj := j + 1. If j ≤ p, go to (b) above. Otherwise, go to Step 5.

5. DefineN̄(x∗) = {w ∈ X|w = x∗±2ei : i = 1, 2, . . . , n} = {w1,w2, . . . ,wq},
q ≤ 2n.

6. (a) Setℓ := 1.

(b) If f(wℓ) < f(x∗), setx0 := wℓ and go to Step 2. Otherwise, go to (c)
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below.

(c) Setℓ := ℓ + 1. If ℓ ≤ q, go to (b) above. Otherwise, setℓ := 1 and

go to (d) below.

(d) Set the current switching pointxc := wℓ.

7. (a) If there exists a directiond ∈ D(xc) such thatf(xc + d) < f(x∗), then

setx0 := xc + d and go to Step 2. Otherwise, go to (b) below.

(b) Let D1 = {d ∈ D(xc) : f(xc + d) < f(xc) and Gµ,ρ,x(xc + d) <

Gµ,ρ,x(xc)}.

If D1 6= ∅, setd∗ := arg mind∈D(xc){f(xc + d) + Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to (c) below.

(c) LetD2 = {d ∈ D(xc) : Gµ,ρ,x(xc + d) < Gµ,ρ,x(xc)}.

If D2 6= ∅, setd∗ := arg mind∈D(xc){Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to Step 8.

8. Letx́ = xc be the local minimizer ofGµ,ρ,x∗ obtained from Step 7.

(a) If x́ ∈ X̃, setℓ := ℓ+1. If ℓ > q, go to Step 9. Otherwise, go to Step 6(d).

(b) If x́ /∈ X̃, reduceµ by settingµ := µ̂µ and go to Step 7(b).

9. Reduceρ by settingρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current

x∗ is taken as a global minimizer of the problem. Otherwise, setℓ := 1 and

go to Step 6(d).

Unfortunately, Algorithm 3.6 results in a relatively high total number of orig-

inal function evaluations compared with Algorithm 3.2, as displayed in Table 3.8.

This may be due to the reason that more original function evaluations are needed to

determine the global solution when the starting points are farther fromx∗. Interest-

ingly, theEf values obtained here are close to those obtained by Algorithm 3.3, ex-

cept more function evaluations are recorded to evaluate tenrandom points in Step 4.

In fact, both algorithms show the sameEG values for each starting point used in
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Table 3.8: Results of Algorithm 3.6 - Rosenbrock’s Function.
x0 Ef EG RE

[−5,−5,−5,−5,−5]⊤ 1646 4252 0.52672

[−4,−4,−4,−4,−4]⊤ 1645 4252 0.52640

[−3,−3,−3,−3,−3]⊤ 1605 4252 0.51360

[−2,−2,−2,−2,−2]⊤ 1564 4252 0.50048

[−1,−1,−1,−1,−1]⊤ 1524 4252 0.48768

[0, 0, 0, 0, 0]⊤ 1485 4252 0.47520

[1, 1, 1, 1, 1]⊤ 1437 4181 0.45984

[2, 2, 2, 2, 2]⊤ 1460 4181 0.46720

[3, 3, 3, 3, 3]⊤ 1838 5254 0.58816

[4, 4, 4, 4, 4]⊤ 1865 5254 0.59680

[5, 5, 5, 5, 5]⊤ 1860 5254 0.59520

solving Rosenbrock’s function. None of the random points appear to result in an

improved point, thus giving similar results to those from Algorithm 3.3.

On the contrary when applied to Colville’s function, Table 3.9 shows that Al-

gorithm 3.6 yields a lower total number of original functionevaluations compared

with the standard algorithm. Still, since virtually none ofthe random points pro-

posed in Step 3 ever yields an improved point, Algorithm 3.6 offers no effective

improvement over Algorithm 3.3.

In addition, we also tested a further variation of Algorithm3.6, where instead

of looking for an improved point inN̄(x∗), the proposed variation performs the

local search of the filled function directly if no improved random point is identified

in Step 4. Then, one of the points in̄N(x∗) is used to initialize the minimization of

the filled function. Though some starting points yield a lower number of function

evaluations with this variation of Algorithm 3.6, its overall performance is similar to

that of Algorithm 3.6 with the average total number of original function evaluations

Ef = 1625.45 being relatively high compared with Algorithm 3.2. For Colville’s

function, the variation of Algorithm 3.6 shows a slightly improved performance

with the averageEf = 1548 compared with an averageEf = 1555.7 obtained for

Algorithm 3.6.
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Table 3.9: Results of Algorithm 3.6 - Colville’s Function.
x0 Ef EG RE

[1, 1, 0, 0]⊤ 1354 4972 0.006962120

[1, 1, 1, 1]⊤ 1337 4942 0.006874708

[−10, 10,−10, 10]⊤ 2287 7254 0.011759503

[−10,−5, 0, 5]⊤ 1500 5018 0.007712836

[−10, 0, 0,−10]⊤ 1483 4972 0.007625424

[0, 0, 0, 0]⊤ 1373 4983 0.007059816

3.6 The Fifth Variation

Finally, we combine the random point concept with the standard algorithm outlined

in the first section. An additional step to test if an improvedrandom point exists is

introduced before Step 3 in the standard algorithm.

Algorithm 3.7 Variation 5

1. Initializex0 ∈ X, ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and0 < µ̂ < 1.

Letρ := ρ0 andµ := µ0.

Choose an initial pointx0 ∈ X.

2. Starting fromx0, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx∗ of f .

3. LetM = {w1,w2, . . . ,wp}, wherewj, j = 1, . . . , p are randomly chosen

fromX andp = 2n.

4. (a) Setj := 1.

(b) If f(wj) < f(x∗), setx0 := wj and go to Step 2. Otherwise, go to (c)

below.

(c) Setj := j + 1. If j ≤ p, go to (b) above. Otherwise, go to Step 5.

5. (a) List the neighbouring points ofx∗ as N(x∗) = {w1,w2, . . . ,wq}. Set

ℓ := 1.
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(b) Set the current switching point,xc := wℓ.

6. (a) If there exists a directiond ∈ D(xc) such thatf(xc + d) < f(x∗), then

setx0 := xc + d and go to Step 2. Otherwise, go to (b) below.

(b) Let D1 = {d ∈ D(xc) : f(xc + d) < f(xc) and Gµ,ρ,x(xc + d) <

Gµ,ρ,x(xc)}.

If D1 6= ∅, setd∗ := arg mind∈D(xc){f(xc + d) + Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to (c) below.

(c) LetD2 = {d ∈ D(xc) : Gµ,ρ,x(xc + d) < Gµ,ρ,x(xc)}.

If D2 6= ∅, setd∗ := arg mind∈D(xc){Gµ,ρ,x∗(xc + d)}.

Then, setxc := xc + d∗ and go to (a) above. Otherwise, go to Step 7.

7. Letx́ = xc be the local minimizer ofGµ,ρ,x∗ obtained from Step 6.

(a) If x́ ∈ X̃, setℓ := ℓ+1. If ℓ > q, go to Step 8. Otherwise, go to Step 5(b).

(b) If x́ /∈ X̃, reduceµ by settingµ := µ̂µ and go to Step 6(b).

8. Reduceρ by settingρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current

x∗ is taken as a global minimizer of the problem. Otherwise, setℓ := 1 and

go to Step 5(b).

The outcomes from Tables 3.10 and 3.12 show that Algorithm 3.7 is a better

method compared to Algorithm 3.6 with a lower average total number of original

function evaluations in minimizing Rosenbrock’s function. Although Algorithm 3.6

performs the local search of the filled function more efficiently, this algorithm needs

more function evaluations to reach the global solution.

Interestingly, Algorithm 3.7 seems to be the least efficientmethod among all

algorithms tested for Colville’s function, based on the results in Table 3.11. This

may be due to the presence of many more local minima.
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Table 3.10: Results of Algorithm 3.7 - Rosenbrock’s Function.
x0 Ef EG RE

[−5,−5,−5,−5,−5]⊤ 1446 4475 0.46272

[−4,−4,−4,−4,−4]⊤ 1445 4475 0.46240

[−3,−3,−3,−3,−3]⊤ 1405 4475 0.44960

[−2,−2,−2,−2,−2]⊤ 1364 4475 0.43648

[−1,−1,−1,−1,−1]⊤ 1324 4475 0.42368

[0, 0, 0, 0, 0]⊤ 1284 4475 0.41088

[1, 1, 1, 1, 1]⊤ 1262 4415 0.40384

[2, 2, 2, 2, 2]⊤ 1281 4415 0.40992

[3, 3, 3, 3, 3]⊤ 1657 5720 0.53024

[4, 4, 4, 4, 4]⊤ 1676 5720 0.53632

[5, 5, 5, 5, 5]⊤ 1674 5720 0.53568

Table 3.11: Results of Algorithm 3.7 - Colville’s Function.
x0 Ef EG RE

[1, 1, 0, 0]⊤ 1434 5097 0.007373471

[1, 1, 1, 1]⊤ 1430 5076 0.007352903

[−10, 10,−10, 10]⊤ 2682 5979 0.013790550

[−10,−5, 0, 5]⊤ 1575 5134 0.008098477

[−10, 0, 0,−10]⊤ 1565 5098 0.008047059

[0, 0, 0, 0]⊤ 1439 5099 0.007399180
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Table 3.12: Comparison of Algorithms - Rosenbrock’s Function,n = 5.
Types Ef,avg EG,avg RE,avg

Algorithm 3.2 1427.909 4803.636 0.456931

Algorithm 3.3 1619.909 4512.364 0.518371

Algorithm 3.4 1068.364 2489.364 0.341876

Algorithm 3.5 1056.091 2425.636 0.337949

Algorithm 3.6 1629.909 4512.364 0.521571

Algorithm 3.7 1438 4803.636 0.460160

3.7 Concluding Remarks

From Tables 3.1-3.10, all discrete filled function algorithms eventually succeeded

in finding the global minima of Rosenbrock’s function and Colville’s function from

all starting points, although some required repeated starts. A summary of all com-

putational results obtained from these algorithms for bothproblems are shown in

Tables 3.12 and 3.14, respectively. Besides, we also testedall variations algorithms

on a 25-dimensional Rossenbrock’s function and summarizedthe outcomes in Ta-

ble 3.13. The average total number of original function evaluations, the average

total number of discrete filled function evaluations, and the average ratio of the av-

erage number of original function evaluations to reach the global solution to the

total number of feasible points are denoted byEf,avg, EG,avg, andRE,avg, respec-

tively. For both problems, Algorithm 3.5 appears to be the most efficient algorithm

with the leastRE,avg, although as noted, it is less reliable at actually being able

to find the global solution. Interestingly, Algorithms 3.3-3.6 proposed here suc-

ceeded in minimizing Colville’s function much more efficiently than the standard

algorithm, but this was not the case for Rosenbrock’s function. In view of these

results, we choose to adopt Algorithm 3.2 directly for our work on discrete-valued

optimal control problems in the later chapters.
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Table 3.13: Comparison of Algorithms - Rosenbrock’s Function,n = 25.
Types Ef,avg EG,avg RE,avg

Algorithm 3.2 203125.8333 517281 1.87477× 10−22

Algorithm 3.3 271225 574238.1667 2.50330× 10−22

Algorithm 3.4 115697.1667 227910.8333 1.06784× 10−22

Algorithm 3.5 116686.3333 224788.8333 1.07697× 10−22

Algorithm 3.6 271290.6667 574238.1667 2.50390× 10−22

Algorithm 3.7 205656.6667 537205.1667 1.89813× 10−22

Table 3.14: Comparison of Algorithms - Colville’s Function.
Types Ef,avg EG,avg RE,avg

Algorithm 3.2 1679.5 5247.2 0.008635805

Algorithm 3.3 1547.7 5356.8 0.007957932

Algorithm 3.4 1143.2 2954.7 0.005878038

Algorithm 3.5 1098.3 2635.5 0.005647510

Algorithm 3.6 1555.7 5356.8 0.007999068

Algorithm 3.7 1687.5 5247.2 0.008676940

69



Chapter 4

Case Study: Hybrid Power System

This chapter proposes a new metaheuristic approach to optimize the operation of a

hybrid power system. We first review the hybrid power system model and problem

formulation reported in [116]. We then propose a new transformation, which con-

verts the original problem into an equivalent mixed discrete optimization problem.

Next, we outline a discrete filled function method and, basedon this, develop a new

metaheuristic algorithm to solve the problem at hand. Numerical results from the

implementation of this algorithm are presented by the end ofthe chapter.

4.1 Hybrid Power System

A hybrid power system is a stand-alone electrical power system incorporating con-

ventional (i.e. hydrocarbon powered) generators, renewable energy sources, and

energy storage devices. Such systems are vital for electrification in remote areas,

where grid-connected infrastructure is not available and fuel is expensive. Renew-

able energy sources, such as photovoltaic (PV) arrays, windturbines, biomass, hy-

dropower, and geothermal, are used to supplement the energyproduced by the gen-

erators, thereby reducing fuel demand and maintenance costs. However, their con-

tribution towards total energy output varies considerablythroughout the day. For

this reason, battery banks, and, in some cases, other storage devices such as hy-
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drogen fuel cells, flywheels, and pumped water storage are used to store the excess

energy generated from both conventional and renewable resources [91].

Apart from the start-up costs, the dominant running costs ofa hybrid power

system are associated with diesel generators and battery banks. The operating cost

of a diesel generator is dependent on fuel consumption, maintenance costs, and

loading. Frequent starts of the diesel generator from cold and running the generator

for long hours at a low load increase engine wear and reduce fuel efficiency. On the

other hand, incomplete charging and prolonged operation ofa battery bank at a low

charge state are two of the major factors limiting the battery bank life span. In fact,

studies have shown that diesel generators and battery banksare likely to have signifi-

cantly shortened lifetimes when operated under non-ideal conditions [91, 116, 150].

Hence, an efficient generator operating schedule is required to ensure a continuous

electricity supply at the load, while at the same time keeping operating costs to a

minimum.

This chapter proposes a new algorithm for determining an operating schedule

that minimizes the total operating cost of a PV-diesel-battery hybrid power system.

We adopt the model developed in [116], which is based on a hybrid power system

consisting of a diesel generator as the main component, witha PV array providing

additional energy and a battery bank for storage. The work in[116] concentrated

on developing a mathematical model for hybrid power system operation and the

application of a specialized optimal control technique to optimize the operation of

the model. Further investigation has revealed that this optimization problem has

many local minimizers.

4.2 Problem Formulation

4.2.1 A Discrete-Valued Control Problem

In this section, we briefly review the dynamic model of a hybrid power system dis-

cussed in [116]. Figure 4.1 illustrates the configuration ofthe hybrid power system
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Figure 4.1: Schematic Diagram of a Hybrid Power System.
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Figure 4.2: A Typical Load Demand Profile [116].

under consideration. It consists of an alternating current(AC) diesel generator, a bi-

directional inverter, a PV array, and a battery bank for energy storage. The inverter

is used to convert the direct current (DC) voltage of the PV array and the battery

bank into AC, and vice versa. It also acts as the battery charger. The diesel genera-

tor is connected directly to the load to avoid conversion losses and thus increase the

efficiency of the power system. The assumed load demand profile (see Figure 4.2)

is based on data provided by the Centre for Renewable Energy &Sustainable Tech-

nologies Australia (CRESTA) [116]. The total daily load demand is approximately

340 kWh.

A battery bank of 100 kWh capacity is assumed here. LetC(t) denote the

capacity of the battery bank andPB(t) be the net power available at the battery
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bank. The rate of charge of the battery bank is governed by

Ċ(t) = R(t) + D(t), (4.1)

where the recharge rate is represented by

R(t) =







K1PB(t)

K1 + C(t)
, if PB(t) ≥ 0,

0, if PB(t) < 0,
(4.2)

while the discharge rate is given by

D(t) =

{

K2PB(t), if PB(t) < 0,

0, if PB(t) ≥ 0.
(4.3)

Note thatPB(t) > 0 indicates that the battery bank is undergoing charging while

PB(t) < 0 implies that the battery bank is being discharged. The parametersK1

andK2 assume the use of lead acid batteries, set up as 250 and 1.4, respectively.

The parameters assume that the charging efficiency near fullbattery charge is just

over 70% of the corresponding charging efficiency at a near empty battery state and

70% of power stored in the battery can be converted for load use, respectively.

We model the hybrid power system over the time horizon[0, tf ], wheretf is

the given terminal time. At eacht ∈ [0, tf ], there are three possible scenarios:

• The diesel generator is producing sufficient energy to meet the load demand

and any excess power from the generator or PV array is directed to the battery

bank.

• The power from the generator is insufficient to meet the load demand, so

energy produced from the PV array is also used to supply the load. Any

excess is directed to the battery bank.

• The combined power output from the diesel generator and PV array is insuf-

ficient to meet the load demand, so energy from the battery bank is required

to make up the shortfall.
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Then, on the basis of the above operating principles, the rate of change of the charge

state is governed by the following dynamic equation:

Ċ(t) =



















































K1K3[PR(t) + PG(t) − PL(t)]

K1 + C(t)
, if PG(t) ≥ PL(t),

K1[K3PR(t) + PG(t) − PL(t)]

K1 + C(t)
, if PG(t) + K3PR(t) ≥ PL(t),

K2

[

PR(t) − PL(t) − PG(t)

K3

]

, if PG(t) + K3PR(t) < PL(t),

(4.4)

with

C(0) = C0, (4.5)

whereC0 is the given initial charge state,PR(t) is the power generated by the PV

array at timet, PG(t) is the power produced by the diesel generator at timet, PL(t)

is the load demand at timet, andK1, K2, K3 are given model parameters. BothPR

andPL are given functions derived from actual data supplied by CRESTA. On the

other hand,PG is the control function which is chosen by the system operator in

practice.

Since the charge state must operate within a certain range, we have the fol-

lowing constraints:

Cmin ≤ C(t) ≤ Cmax, ∀t ∈ [0, tf ], (4.6)

and

C(tf ) = Cf , (4.7)

whereCf is the desired final charge state,Cmin andCmax are given constants.

Since it is difficult to continuously modify the power produced by the gener-

ator, we assume that the generator can only operate at certain fixed fractions of its
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capacity. Suppose that there areM such levels. Then, we require

PG(t) ∈ S = {s1, . . . , sM}, ∀t ∈ [0, tf ],

where, for eachi = 1, . . . , M , si denotes the power produced by the generator

in modei. According to [116], the operating cost of the diesel generator and the

battery over the time horizon[0, tf ] are given, respectively, by

∫ tf

0

PG(t)g1

(

100PG(t)

PG,max

)

dt

and
∫ tf

0

(C(t) − K4)
2dt,

whereK4 is a constant,PG,max is the maximum power produced by the generator,

and

g1(x) = 2((0.2x + 0.5)0.4 − 0.50.4)e−0.1x + 0.15(1 − e−0.1x)

is a function derived from the data in [2]. The functiong1 is illustrated in Figure 4.3

and it reflects the fuel efficiency at different generated load levels. In practice, the

problem is to choose the power produced by the generator so that these costs are

minimized. This leads to the following optimal control problem.

Problem (A). Choose a discrete-valued controlPG : [0, tf ] → S such that the cost

function

α

∫ tf

0

PG(t)g1

(

100PG(t)

PG,max

)

dt + β

∫ tf

0

(C(t) − K4)
2dt

is minimized subject to the dynamics (4.4)-(4.5) and the constraints (4.6)-(4.7),

whereα andβ are non-negative weights.

Problem (A) is a discrete-valued optimal control problem inwhich the control is

restricted to take values in a discrete set. To determine theoptimal discrete-valued

control, we need to determine the order in which the different power levels are im-
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Figure 4.3: Profile of Functiong1(x).

plemented (the switching sequence) and the times at which the power levels are

changed (the switching times). However, conventional computational optimal con-

trol techniques are designed for problems in which the control takes values in a con-

nected set, such as an interval, and hence they cannot solve Problem (A) directly.

Moreover, variable switching times are known to cause problems in the implemen-

tations of any numerical algorithm [64, 70] for integratingthe system dynamics. In

the next subsection, we propose a new transformation to overcome these difficulties.

This transformation introduces a new discrete variable to represent the switching se-

quence and a new continuous variable to represent the switching times. Using this

transformation, we derive a new problem which is equivalentto Problem (A).

4.2.2 A Modified Time Scaling Transformation

Suppose that we allow the control to switchN times over the time horizon. Define

a new time variableτ ∈ [0, N + 1] with the partitionPN = {0, 1, 2, . . . , N, N + 1}.

For eachi = 1, . . . , N + 1, let

vi ∈ {1, . . . , M}
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be a discrete variable representing the mode of the generator during thei-th subin-

terval. Let

v = [v1, . . . , vN+1]
T

andV be the set of all such vectors. For eachi = 1, . . . , N + 1, we define a new

control functionUG(τ,v) by

UG(τ,v) = svi
, τ ∈ [i − 1, i).

Hence,UG(τ,v) representsPG(t) in the new time scale andUG,max represents the

maximum generator capacity. Next,u(τ), the time scaling control, is defined as a

piecewise constant function with possible discontinuities at1, 2, . . . , N and satisfy-

ing

0 ≤ u(τ) ≤ tf , τ ∈ [0, N + 1]. (4.8)

LetU denote the class of all valid time scaling controls satisfying (4.8). The original

time horizon[0, tf ] is transformed into the new time horizon[0, N + 1] through the

differential equation

ṫ(τ) = u(τ) (4.9)

with

t(0) = 0, (4.10)

and with the additional constraint

t(N + 1) = tf . (4.11)
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Therefore, the original dynamics (4.4)-(4.5) are transformed into

˙̄C(τ) =















































































K1K3[PR(t(τ)) + UG(τ,v) − PL(t(τ))]

K1 + C̄(τ)
u(τ),

if UG(τ,v) ≥ PL(t(τ)),

K1[K3PR(t(τ)) + UG(τ,v) − PL(t(τ))]

K1 + C̄(τ)
u(τ),

if UG(τ,v) + K3PR(t(τ)) ≥ PL(t(τ)) > UG(τ,v),

K2

[

PR(t(τ)) − PL(t(τ)) − UG(τ,v)

K3

]

u(τ),

if UG(τ,v) + K3PR(t(τ)) < PL(t(τ)),
(4.12)

and

C̄(0) = C0. (4.13)

Similarly, constraints (4.6) and (4.7) are transformed into

Cmin ≤ C̄(τ) ≤ Cmax, ∀τ ∈ [0, N + 1], (4.14)

and

C̄(N + 1) = Cf . (4.15)

After the transformation, the terms measuring the fuel costand the operating cost

of the battery are

∫ N+1

0

UG(τ,v)g1

(

100UG(τ,v)

UG,max

)

u(τ)dτ

and
∫ N+1

0

(C̄(τ) − K4)
2u(τ)dτ,

respectively. On the basis of the above discussion, we have the following problem,

which is equivalent to Problem (A).

78



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

g2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

Figure 4.4: Profile of Functiong2(x).

Problem (B). Choosev ∈ V andu ∈ U such that the cost function

g0(v, u) = α

∫ N+1

0

UG(τ,v)g1

(

100UG(τ,v)

UG,max

)

u(τ)dτ+β

∫ N+1

0

(C̄(τ)−K4)
2u(τ)dτ

is minimized subject to the dynamics (4.9)-(4.13) and the constraints (4.14)-(4.15),

whereα andβ are non-negative weights.

4.2.3 Penalizing Frequent Switching

Frequent switching is undesirable in practice because it significantly increases me-

chanical wear. However, there is no mechanism in Problem (B)to discourage a

control schedule that frequently switches between generator modes. Hence, we

would also like to minimize the term

∫ N+1

0

g2(u(τ))dτ,

where

g2(x) = ((x + 0.01)0.25 − 0.010.25)e−5x.

The functiong2 is illustrated in Figure 4.4. This term severely penalizes an op-

erating schedule that runs any generator mode for less than 15 minutes. Our new
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problem is stated below.

Problem (C). Choosev ∈ V andu ∈ U such that the cost function

g0(v, u) =

∫ N+1

0

{

αUG(τ,v)g1

(

100UG(τ,v)

UG,max

)

u(τ)

+ β(C̄(τ) − K4)
2u(τ) + γg2(u(τ))

}

dτ (4.16)

is minimized subject to dynamics (4.9)-(4.13) and the constraints (4.14)-(4.15),

whereα, β, andγ are non-negative weights.

Note that Problem (C) is a mixed discrete dynamic optimization problem. Note

further that the term penalizing frequent switching is alsoused in [116], where an

alternative time scale transformation was employed. To facilitate the application of

a global optimization technique, we decompose it into a bi-level optimization prob-

lem in the next subsection, where the upper level problem is adiscrete optimization

problem and the lower level problem is a conventional optimal control problem.

4.2.4 Decomposition of Problem (C)

In our numerical experiments, we have observed that multiple locally optimal solu-

tions are found when different initial switching times are used to solve the model

developed in [116] using the transformation and solution technique suggested there.

Note that many practical discrete-valued optimal control problems exhibit similar

behavior. Thus, with the transformation leading to Problem(C), we intend to apply

the discrete filled function method in an attempt to determine a global optimal solu-

tion. For this purpose, we restructure Problem (C) by decomposing it into a bi-level

optimization problem as follows.
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Problem (C1). Givenv ∈ V , choose au ∈ U such that the cost function

g0(u|v) =

∫ N+1

0

{

αUG(τ,v)g1

(

100UG(τ,v)

UG,max

)

u(τ)

+ β(C̄(τ) − K4)
2u(τ) + γg2(u(τ))

}

dτ (4.17)

is minimized subject to the dynamics (4.9)-(4.13) and the constraints (4.14)-(4.15),

whereα, β, andγ are non-negative weights.

Problem(C1) is essentially a lower level problem or subproblem. It is simply a

standard optimal control problem where the optimal value ofg0 in (4.17) can be

determined using an optimal control software based on the concept of control pa-

rameterization, such as MISER3.3. The second problem in thedecomposition is

defined as follows.

Problem (C2). Choosev ∈ V such that the cost function

J(v) (4.18)

is minimized, where

J(v) = min
u∈U

g0(v, u).

Problem(C2) represents the upper level of Problem (C). Clearly, Problem(C2)

is a purely discrete optimization problem. To compute the value of the objective

function atv ∈ V , we solve the subproblem(C1) corresponding tov ∈ V using

MISER3.3. Next, we propose a combined algorithm where Problem (C2) will be

solved using the discrete filled function method in Section 3.1, i.e. Algorithm 3.2,

to determine a global solution and subproblem(C1) is solved with MISER3.3. For

our numerical computations, we have been able to incorporate the discrete filled

function method into the MISER3.3 software. The details of the numerical results

are discussed in the next section. Note that we setρL = 0.001 for our numerical
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computation to confirm a near global solution is attained from the algorithm.

To increase the efficiency, we construct a look-up table to store each value

of the objective functionJ computed so far. Thus, we avoid repeated application

of the subproblem solution algorithm at the same point. Thisis vital to the com-

putational efficiency because computingJ(v) involves solving a complex optimal

control problem, which takes considerable computational time. Note that for some

sequences, the subproblem solution algorithm may report that Problem(C1) is in-

feasible. This may be due to the subproblem solver (MISER3.3) not converging

properly (the subproblem is somewhat ill-conditioned) or it may actually indicate

that the subproblem is infeasible at the current sequencev. In an effort to distin-

guish between these two possibilities, we re-initialize the optimization of the sub-

problem several times. When five such attempts fail to yield afeasible solution, it

is assumed that no feasible solution of the subproblem exists for this switching se-

quencev. An artificially high cost is assigned to such a sequence and the algorithm

is allowed to continue.

4.3 Numerical Results

In this section, our algorithm is applied to solve Problem (C) with 4, 7, and 9

switches. A comparison between our method and the method in [116] is discussed

at the end of this section. The results were computed using a modified version

of MISER3.3 so that the filled function method is able to call on the standard

MISER3.3 algorithm. The experiments were conducted on a Windows-based PC,

with a CPU speed of 2.4GHz and 2GB RAM.

4.3.1 Results for 4 Switches

By settingN = 4, k1 = 250, k2 = 1.4, k3 = 0.9, k4 = 80, C0 = 80kWh, Cmin =

20 kWh, Cmax = 100 kWh, α = 1, β = 0.01, γ = 10, tf = 24, c = 0.5, µ0 =

0.1, ρ0 = 0.1, ω = 1, ρL = 0.001, ρ̂ = 0.1, µ̂ = 0.1, we solved the corresponding
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Problem (C). There are 3125 potential switching sequences for 4 switches with

UG ∈ {0, 8, 12, 16, 20}.

We tested the problem with 10 random initial sequences, namely, [2, 3, 4, 5, 4]T ,

[4, 5, 3, 5, 2]T , [5, 1, 5, 1, 5]T , [4, 3, 1, 5, 2]T , [3, 4, 4, 3, 5]T , [2, 4, 5, 4, 4, ]T ,

[2, 4, 5, 4, 1]T ,[5, 4, 3, 2, 3]T , [2, 3, 2, 4, 5]T , and [4, 5, 3, 4, 5]T . We found 13 local

minimizers during the application of the algorithm on theseten starting points.

For each starting sequence, the algorithm successfully identified the assumed dis-

crete global minimizer,[2, 3, 4, 5, 4]T , for which the cost function value isJ =

58.7216005, and the time scaling control is

u =































7.50650, 0 ≤ τ < 1,

1.42257, 1 ≤ τ < 2,

5.05190, 2 ≤ τ < 3,

8.70635, 3 ≤ τ < 4,

1.31267, 4 ≤ τ < 5.

Table 4.1 illustrates the computational results of 10 experiments which use

the same initial time scaling control set at

u =































1, 0 ≤ τ < 1,

6, 1 ≤ τ < 2,

8, 2 ≤ τ < 3,

6, 3 ≤ τ < 4,

3, 4 ≤ τ < 5.

The number of original function evaluations and filled function evaluations are de-

noted byEJ andEG, respectively. Note thatEJ does not include function evalua-

tions that were obtained from the look-up table.

The algorithm terminates whenµ = 1 × 10−41 andρ = 1 × 10−3, at which

point no further improvement can be made. Therefore,[2, 3, 4, 5, 4]T is assumed to

be the globally optimal sequence for Problem (C) withN = 4. At most, 571 switch-

ing sequences are computed during the ten applications of the algorithm, which is

18.3% of the total possible sequences. Further experimentswith a range of refined
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Table 4.1: Numerical Results for Problem (C) with 4 Switches.
v0 v

∗ J EJ EG

[4, 5, 3, 5, 2]T [5, 5, 2, 5, 4]T 6.35559358× 101

[3, 5, 2, 5, 4]T 6.35559357× 101

[5, 2, 4, 5, 4]T 5.88517382× 101

[3, 2, 4, 5, 4]T 5.87626319× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 350 1443

[5, 1, 5, 1, 5]T [5, 2, 4, 3, 5]T 6.03626516× 101

[3, 2, 4, 3, 5]T 6.02617585× 101

[2, 3, 4, 3, 5]T 6.01837944× 101

[2, 4, 3, 2, 5]T 6.01491200× 101

[2, 4, 5, 3, 4]T 5.88517553× 101

[2, 4, 5, 4, 2]T 5.88517431× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 571 2636

[4, 3, 1, 5, 2]T [3, 2, 4, 5, 4]T 5.87626319× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 336 1318

[3, 4, 4, 3, 5]T [2, 3, 4, 3, 5]T 6.01837944× 101

[2, 4, 3, 2, 5]T 6.01491200× 101

[2, 4, 5, 3, 4]T 5.88517553× 101

[2, 4, 5, 4, 2]T 5.88517431× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 420 1830

[2, 4, 5, 4, 4]T [2, 4, 5, 4, 2]T 5.88517431× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 362 1543

[2, 4, 5, 4, 1]T [2, 4, 5, 4, 2]T 5.88517431× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 362 1543

[5, 4, 3, 2, 3]T [2, 4, 5, 4, 2]T 5.88517431× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 363 1614

[2, 3, 2, 4, 5]T [2, 4, 3, 5, 5]T 6.01491301× 101

[2, 4, 5, 4, 2]T 5.88517431× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 406 1750

[4, 5, 3, 4, 5]T [4, 5, 2, 4, 5]T 6.03626306× 101

[2, 3, 4, 5, 4]T 5.87216005× 101 386 1568

[2, 3, 4, 5, 4]T [2, 3, 4, 5, 4]T 5.87216005× 101 319 1220

84



 0

 4

 8

 12

 16

 20

 24

 0  4  8  12  16  20  24

G
en

er
at

o
r 

P
o
w

er
 (

k
W

)
Time (hours)

Figure 4.5: Optimal Generator Power Profile for 4 Switches.
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Figure 4.6: Optimal Battery Charge Profile for 4 Switches.

parameter values of the discrete filled function were carried out and the results also

confirmed[2, 3, 4, 5, 4]T as the best solution.

From Table 4.1, most of the local minimizers start with 8 kW, and the genera-

tor needs to run at an average of 12 kW to achieve an optimal cost, based on the load

demand and PV data. Figure 4.5 depicts the best operating strategy for the diesel

generator: starts at a lower load, which is 8 kW for 7.5 hours,increase this to 12 kW

for another 1.5 hours until it reaches maximum power at 20 kW,before reducing it

to 16 kW. Note that the generator is maintained at a minimum of12 kW for almost

two thirds of the day (16.5 hours) to achieve its best performance. Figure 4.6 shows

that the charge level of the battery bank remains almost constant for the first eight

hours, before fluctuating between 75 kWh and 85 kWh for the rest of the day.
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Figure 4.7: Optimal Generator Power Profile for 7 Switches.
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Figure 4.8: Optimal Battery Charge Profile for 7 Switches.

4.3.2 Results for 7 Switches

We apply the same algorithm to find the global switching sequence of Problem (C)

for N = 7 switches. By usingu(τ) = 3, τ ∈ [0, 8], for 5 experiments, Table 4.2

indicates that[4, 3, 2, 3, 4, 5, 5, 4]T is likely to be the global minimizer as it resulted

from using 5 different initial sequences. Thirty local minimizers were found with

the proposed algorithm. Indeed,[3, 2, 3, 4, 5, 4]T is actually the optimal switching

sequence for 7 switches when we take into account that the optimal u is zero over

one interval of its defining partition. The optimal solutionis 58.5886863, an im-

provement of 0.23% compared with theN = 4 case. The algorithm terminates

whenµ = 1 × 10−5 andρ = 1 × 10−2.

The plots of the generator output and battery charge level are shown in Fig-
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Table 4.2: Numerical Results for Problem (C) with 7 Switches.
v0 v

∗ J EJ EG

[3, 4, 4, 3, 5, 2, 3, 4]T [2, 3, 4, 3, 5, 2, 3, 4]T 6.00318935× 101

[2, 3, 4, 3, 5, 2, 5, 4]T 5.87216219× 101

[2, 3, 5, 3, 4, 3, 5, 4]T 5.87215981× 101

[3, 4, 2, 3, 4, 5, 5, 4]T 5.85886904× 101

[4, 3, 2, 3, 4, 5, 5, 4]T 5.85886863× 101 1733 3825

[2, 3, 4, 5, 2, 3, 4, 5]T [2, 3, 4, 5, 2, 3, 4, 5]T 6.01837798× 101

[2, 4, 4, 5, 2, 5, 4, 5]T 5.88519036× 101

[2, 4, 5, 4, 2, 5, 4, 5]T 5.88518410× 101

[2, 4, 4, 2, 4, 5, 4, 5]T 5.88517428× 101

[3, 4, 3, 2, 4, 5, 4, 5]T 5.87628543× 101

[3, 5, 2, 2, 4, 5, 4, 5]T 5.87626332× 101

[2, 3, 5, 2, 4, 5, 4, 5]T 5.87216048× 101

[4, 2, 2, 3, 4, 5, 4, 5]T 5.87215986× 101

[5, 2, 2, 3, 4, 5, 5, 4]T 5.87215886× 101

[4, 3, 2, 3, 4, 5, 5, 4]T 5.85886863× 101 2550 5717

[3, 4, 5, 2, 3, 4, 5, 2]T [3, 5, 5, 2, 3, 4, 5, 4]T 5.87216035× 101

[5, 4, 2, 3, 4, 3, 5, 4]T 5.87216030× 101

[3, 4, 2, 3, 4, 5, 5, 4]T 5.85886904× 101

[4, 3, 2, 3, 4, 5, 5, 4]T 5.85886863× 101 1659 3605

[4, 5, 3, 5, 2, 1, 2, 3]T [4, 5, 2, 5, 1, 1, 2, 3]T 6.53276638× 101

[5, 5, 2, 5, 2, 2, 3, 3]T 6.38284739× 101

[5, 3, 2, 5, 4, 1, 3, 2]T 6.29162001× 101

[3, 4, 2, 5, 4, 5, 4, 3]T 5.92223690× 101

[4, 4, 2, 3, 4, 5, 4, 3]T 5.87216018× 101

[5, 3, 2, 3, 4, 5, 4, 2]T 5.87215951× 101

[4, 3, 2, 3, 4, 5, 5, 4]T 5.85886863× 101 3115 5923

[2, 1, 4, 1, 5, 5, 1, 3]T [3, 2, 4, 1, 5, 5, 2, 2]T 6.01135927× 101

[3, 2, 4, 3, 1, 5, 4, 5]T 5.87626426× 101

[2, 3, 4, 3, 1, 5, 4, 5]T 5.87216039× 101

[2, 3, 4, 2, 3, 5, 4, 5]T 5.87216007× 101

[2, 3, 4, 2, 5, 5, 4, 5]T 5.87215952× 101

[2, 3, 4, 2, 5, 4, 2, 5]T 5.87215895× 101

[3, 2, 5, 1, 4, 5, 5, 3]T 5.87123116× 101

[3, 2, 4, 3, 4, 4, 5, 4]T 5.85888513× 101

[4, 3, 2, 3, 4, 5, 5, 4]T 5.85886863× 101 6233 11887
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ures 4.7 and 4.8, respectively. Figure 4.7 shows that the generator should run at

12 kW for the first 42 minutes before following the profile of the solution in Fig-

ures 4.5. No significant differences are observed for the battery bank profiles be-

tween the tests with 4 switches and 7 switches. The computational results indi-

cate that the filled function algorithm is robust and efficient in solving a large scale

problem of up to 390,625 potential sequences, with less than1.6% of the potential

switching sequences computed during the search for the global optimum.

4.3.3 Results for 9 Switches

Table 4.3 depicts the numerical results of solving Problem (C) withN = 9 switches,

which leads to 9,765,625 possible sequences. Five experiments were carried out

usingu(τ) = 2.4, τ ∈ [0, 10], as the initial guess. Only 0.11% of all potential

switching sequences are computed and the algorithm identifies 40 local minimiz-

ers. However, the algorithm fails to identify a unique global minimizer of Prob-

lem (C) in this case, and objective function values in the range from 58.2438575 to

58.55886706 are generated. The best solution from Table 4.3is 58.2438575, which

is an improvement over the solutions with 4 and 7 switches, by0.81% and 0.59%,

respectively. Clearly, as expected, better solutions are obtained when the number of

switches is increased. However, the algorithm appears unable to consistently yield

a global solution. This is probably because it cannot guarantee a globally optimal

solution of the subproblems.

The characteristics of the generator and battery charge level for the best so-

lution found are plotted in Figures 4.9 and 4.10, respectively. In contrast with Fig-

ures 4.5 and 4.7, where the generator is left running non-stop for 24 hours, Figure

4.9 shows that it is favorable to turn off the generator for 48minutes early in the

morning to avoid excess energy waste, before re-starting itat 16 kW near 8 am,

and increase the generator to maximum capacity at 2 pm. The suggested operating

strategy here is[3, 2, 1, 4, 5, 4]T (once again, the optimalu was zero over several

subintervals of its defining partition).
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Table 4.3: Numerical Results for Problem (C) with 9 Switches.
v0 v

∗ J EJ EG

[5, 1, 5, 1, 5, 1, 5, 1, 5, 1]T [5, 1, 4, 1, 5, 1, 5, 1, 5, 1]T 7.41514672× 101

[5, 2, 4, 2, 5, 1, 4, 1, 5, 1]T 6.03626730× 101

[5, 4, 4, 2, 5, 1, 4, 1, 5, 2]T 6.01994522× 101

[4, 4, 4, 2, 5, 1, 4, 3, 5, 3]T 5.92987984× 101

[4, 5, 4, 2, 4, 2, 4, 3, 5, 4]T 5.88517493× 101

[5, 4, 5, 2, 4, 2, 4, 3, 5, 4]T 5.88517395× 101

[4, 5, 3, 2, 4, 3, 4, 3, 5, 4]T 5.87626361× 101

[5, 4, 3, 2, 4, 3, 4, 3, 5, 4]T 5.87626283× 101

[2, 5, 3, 2, 4, 3, 4, 5, 5, 4]T 5.87284007× 101

[3, 4, 3, 2, 4, 3, 4, 5, 5, 4]T 5.85886872× 101

[4, 4, 3, 2, 3, 4, 5, 4, 5, 4]T 5.85886768× 101

[4, 3, 4, 2, 3, 4, 5, 4, 5, 4]T 5.85886703× 101

[5, 3, 5, 2, 1, 4, 5, 5, 4, 3]T 5.82438612× 101 9398 16548

[3, 4, 3, 4, 3, 4, 3, 4, 3, 4]T [2, 4, 5, 4, 3, 4, 3, 3, 2, 4]T 5.88517547× 101

[2, 4, 5, 4, 3, 4, 3, 3, 4, 3]T 5.88517367× 101

[2, 3, 5, 4, 5, 4, 1, 3, 4, 1]T 5.87216011× 101

[2, 5, 3, 4, 5, 4, 2, 3, 3, 1]T 5.87216006× 101

[5, 2, 3, 4, 5, 4, 4, 2, 2, 3]T 5.87215994× 101

[5, 2, 3, 4, 5, 4, 4, 2, 2, 5]T 5.87215930× 101

[5, 2, 3, 4, 5, 4, 4, 2, 4, 4]T 5.87215911× 101

[2, 3, 1, 4, 5, 4, 4, 1, 4, 4]T 5.82784943× 101 9380 16177

[5, 4, 3, 2, 5, 4, 3, 2, 5, 2]T [5, 3, 3, 2, 3, 4, 3, 2, 5, 4]T 5.87215987× 101

[5, 5, 2, 2, 3, 4, 3, 2, 5, 4]T 5.87215868× 101

[3, 4, 4, 2, 3, 4, 5, 2, 5, 4]T 5.85886835× 101

[4, 3, 5, 2, 3, 4, 5, 2, 5, 4]T 5.85886720× 101

[4, 3, 4, 2, 3, 4, 5, 4, 5, 4]T 5.85886703× 101 6674 11592

[2, 3, 4, 5, 2, 3, 4, 5, 2, 3]T [2, 3, 4, 5, 3, 4, 4, 5, 2, 3]T 5.91803219× 101

[2, 3, 4, 5, 3, 5, 5, 4, 2, 3]T 5.87225217× 101

[2, 3, 4, 4, 3, 5, 5, 4, 2, 2]T 5.87216606× 101

[3, 5, 4, 2, 3, 4, 5, 4, 3, 5]T 5.85886787× 101

[4, 4, 3, 2, 3, 4, 5, 4, 3, 5]T 5.85886734× 101

[4, 4, 3, 2, 3, 4, 5, 4, 3, 2]T 5.85886723× 101

[5, 5, 3, 2, 1, 4, 5, 4, 3, 2]T 5.82438626× 101

[5, 4, 3, 2, 1, 4, 5, 4, 2, 3]T 5.82438575× 101 11047 18844

[2, 3, 4, 5, 1, 2, 3, 4, 5, 2]T [2, 3, 4, 3, 2, 3, 2, 4, 5, 3]T 5.91801836× 101

[3, 2, 4, 4, 3, 2, 1, 4, 5, 4]T 5.87626301× 101

[2, 3, 4, 4, 3, 2, 1, 4, 5, 4]T 5.87216014× 101

[2, 3, 4, 4, 3, 4, 1, 4, 5, 4]T 5.87216012× 101

[2, 3, 4, 4, 2, 3, 1, 4, 5, 4]T 5.87215963× 101

[3, 2, 3, 4, 2, 3, 1, 5, 5, 4]T 5.85886706× 101 5784 9685
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Figure 4.9: Optimal Generator Power Profile for 9 Switches.
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Figure 4.10: Optimal Battery Charge Profile for 9 Switches.
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Table 4.4: Results for Solving the Model in [116].
Test Minimum cost function value

1 8.87975339× 101

2 6.01837893× 101

3 6.51091281× 101

4 6.06252775× 101

5 6.01837944× 101

6 6.03626756× 101

7 6.03188550× 101

8 6.33365059× 101

9 6.01837982× 101

10 8.87946446× 101

The findings from Table 4.1-Table 4.3 reflect the findings of [150] that diesel

generators are inefficient when they operate at a low load factor (around 40% -

50%) of their rated capacity. The findings also indicate thathalf of the operating

time of the generator is spent on generating power during late afternoon and at night

when the power source from the PV is not available. In addition, no significant

difference is observed for the battery bank profiles among 4,7, and 9 switches,

where the charge level varies between 75 kWh and 85 kWh. A sharp fall of the

battery charge level is also observed when the generator is turned off for a short

period as demonstrated in Figure 4.10.

Table 4.4 shows the numerical results obtained by solving the transformed

problem in [116] starting from ten random initial guesses. The findings in Table 4.4,

when compared with our algorithm for 4 to 9 switches, show that our algorithm

yields a better result compared with the approach in [116]. The best solution iden-

tified by our algorithm is 58.7216005 for 4 switches, compared with the best local

minimum value of 60.1837893 identified from Table 4.4. Clearly, the method in

[116] gets stuck in local minima and cannot determine a globally optimal solution.

Note that we are using exactly the same objective function asthe one used in [116],

including the term penalizing short durations in a particular operating mode.
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4.4 Alternative Hybrid Power System Simulation and

Optimization Tools

HOMER [57] is a popular tool for preliminary design of hybridpower systems. It

uses simple strategies with strong emphasis on economic factors to obtain an opti-

mal design of a hybrid system by selecting the most appropriate system components.

On the other hand, HYBRID2 [89] concentrates more on the technical characteris-

tics of hybrid power systems and is able to optimize the operating strategies as well

[57]. Barley et. al. [5] suggest to use HOMER in running a quick search to find

the lowest life-cost of a hybrid power system from a range of possible operating

strategies, whereas HYBRID2 is used to verify HOMER models for more accurate

results. A third tool, implemented in the Matlab environment [39], was developed

in [124]. This includes considerable details on various power flows, interaction of

components, and applying the genetic algorithms to optimize the choice of system

components as well as broad aspects of the operating strategies. Several actual sys-

tems were simulated and optimized to demonstrate the applicability of their tool

[124]. However, no further development or application of the tool has appeared in

the literature since [125].

A common feature of the above algorithms [57, 89, 124, 125] isthat simula-

tion is performed over relatively large time steps, typically at least 1 hour. This is

done in order to simulate the system over at least several days to capture a variety of

daily power demands and renewable power availability profiles. Smaller time steps

would lead to excessively complex models under these circumstances. However, as

can be seen from a typical load demand profile (see Figure 4.2), there is significant

variation in the model inputs over a 1 hour period, and one would expect a similar

level of variation for the optimal operating schedules within this period.

While only a crude cost function was proposed in [116], the operating cost

for the model was shown to vary significantly with respect to the switching times

for the diesel generator and other time dependent parameters [112]. Such sensi-

tivities would not have been captured in the above models [57, 89, 124, 125] with
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large time steps. In contrast to these models, [116] simulates a hybrid power sys-

tem as a continuous time model that can capture the above mentioned variabilities.

Fuel efficiency cost is represented by a nonlinear function in [116], while a lin-

ear relationship is used in both HOMER and HYBRID2. Next, both HOMER and

HYBRID2 use the kinetic battery model to describe the chargeand discharge rate,

while [116] suggests a more basic formulation to represent these rates.

Calculating the total cost of operating the hybrid power system in HOMER

and HYBRID2 is more comprehensive compared to [116], where only several sur-

rogate terms were suggested. HOMER calculates the total netpresent cost (NPC) by

incorporating the initial capital cost of the system components, replacement costs,

maintenance costs, fuel costs, and costs of purchasing power from the grid. Like-

wise, HYBRID2 calculates the fixed and marginal costs of the system components

as well as the economic parameters, such as interest and inflation rates.

The profiles of the load demand and renewable resource in [116] are based

on data collected at quarterly intervals for 24 hours. An interpolation function is

constructed to generate a continuous profile. For HOMER and HYBRID2, the load

demand and renewable energy profiles are based on hourly datafor up to a year.

4.5 Suggestions for a More Realistic Model

While our hybrid power system model is a specific example of a hybrid power

system, the structure of the model is relatively simple and can be adapted to other

system configurations.

The first limitation we discuss here is the modeling of the battery dynamics,

in terms of recharge and discharge rates as represented by equations (4.1), (4.2)

& (4.3), are not realistic in measuring the real cost of the battery. We intend to

adopt the more realistic kinetic battery model of [88] to measure the recharge and

discharge behavior. According to the kinetic battery modelconcept, a battery is

modeled by a two-tank system: an available energy tank and a bound energy tank

(see Figure 4.11). The available energy tank provides immediate energy for charg-
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Figure 4.11: Kinetic Battery Model Concept.

ing or discharging, while the rest is chemically bound in thelatter. The rate of

conversion between two tanks depends on the difference in ‘height’ between these

tanks. The mathematical formulations that describe the kinetic battery model are

dq1

dt
= −I − k′

(q1

c
− q2

1 − c

)

(4.19)

and
dq2

dt
= k′

(q1

c
− q2

1 − c

)

, (4.20)

whereq1 = available charge,q2 = bound charge,k′ is a fixed conductance,c is the

width of the available energy tank, andI is the current.

We intend to model the cost of battery usage more realistically by relating

the daily use to the total lifetime. There are two common lifetime models for lead

acid batteries: the post-processing models and the performance degradation models

[7]. According to [7], the post-processing models are pure lifetime models used for

assessing the impact of a particular operating scheme on theexpected lifetime of

the battery. Thus, these post-processing models can be usedto analyze measured

data from real systems. The performance degradation modelscombine either a

charge transfer model or a voltage model with a typical lifetime model in such a

way that the performance of the battery degrades as time goesby, depending on

the utilization pattern of the battery. For the purpose of this paper, we discuss how

to integrate the post-processing model into our optimal control problem only. We

apply the Ah-throughput counting method to evaluate the lifetime consumption of

the battery as the data of the total throughput is available and simple to apply to
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approximate the cost of the battery.

Ah-throughput assumes that there is a fixed amount of energy that can be

cycled through a battery before it requires replacement. The estimated throughput

is derived from [7],

throughput = Average{EnomDiCF,i}X
Y , (4.21)

whereEnom is the nominal battery capacity,Di refers to the specific depth of dis-

charge being considered,CF,i is the number of cycles to failure to the specific depth

of discharge,i represents each depth of discharge measurement, and X to Y isthe

range over which the measurements of depth of discharge are taken. Note that the

relationship between the depth of discharge and the number of cycles to the failure

curve is provided by the manufacturer. Based on [7], the total throughput over a

variety of discharge depth is approximately constant for most lead acid batteries.

To adopt the Ah-throughput into the control optimal formulation, note that

x(t) =

∫ T

0

|Ċ(t)|
2

dt (4.22)

captures the total throughput of the battery bank over a daily time horizon. The cost

of operating the battery bank over this time is then modeled by

CBB =
x(t)

TTP

CB, (4.23)

whereTTP is the total throughput over a battery bank lifetime andCB is the cost of

a battery bank.

The second limitation of the existing model is that forecasting of load demand

and renewable power profiles is not carried out. It would be interesting to include

the predictions of the future load demand and the forecasts of solar resource or other

renewable resources as part of the control strategy of a hybrid power system. Some

of the forecasting issues related to the solar/wind resources are size of the PV/wind
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systems, daily temperature fluctuations, radiation forecasts, wind speed, humidity,

ambient temperatures, observations of cloud cover and cloud movement, barometric

pressure, and irradiation [151]. As for remote area electrification, size of the pop-

ulation, changes of consumer behavior, special community events, seasonal/short-

term variation of environmental condition are among the factors which can bring

significant changes to short-term and long-term load demand, as observed in [151].

Different load profiles, such as daily, weekly, or seasonal demand profiles on indi-

vidual usage patterns should be considered when constructing a robust hybrid power

system.

Thirdly, the existing model only focuses on the operating strategy of a discrete

value diesel generator. Further study on a wide range of generators, such as variable

speed generators or continuous type generators should be considered, where the

output is not limited to discrete values only.

Fourthly, the power from renewable energy, i.e. PV arrays (2.5 kW), is con-

sidered small compared to the diesel generator (20 kW), where the latter is the

backbone of the energy supply. A system that is based primarily on renewable re-

sources, with the diesel generator as a backup supply, should be considered for long

term usage due to increasing fuel costs and continually cheaper renewable supplies.

The existing formulation also neglects the initial setup cost of each component

of the hybrid power system. It is vital to incorporate the initial capital cost of the

system’s components into the total cost of the hybrid power system to increase the

efficiency of the system. This introduces discrete variables into the problem which

complicate the optimization process considerably. Several algorithms in this regard

have been proposed in the literature [125, 146].

4.6 Concluding Remarks

An optimal control problem for optimizing the operation of ahybrid power system

is considered in this chapter. The problem is first formulated as a discrete-valued op-

timal control problem where the switching sequence as well as the switching times
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for the discrete-valued control are to be determined. This problem is converted into

a mixed discrete dynamic optimization problem by applying amodified time scaling

transformation. It is then decomposed into a bi-level problem to facilitate the ap-

plication of a discrete filled function method. A new metaheuristic approach which

incorporates a discrete filled function algorithm into a standard optimal control soft-

ware is proposed. The computational results have demonstrated that the method is

capable of determining a significantly improved solution compared with the earlier

approach in [116].
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Chapter 5

Case Study: Sensor Scheduling

System

We consider a general optimal sensor scheduling problem in this chapter, and pro-

pose a transformation to convert it into an equivalent mixeddiscrete optimization

problem, as discussed in Section 5.3. Then, we adopt our proposed global op-

timization algorithm, which incorporates a discrete filledfunction method and a

gradient-based method, to avoid local minima and speed up the computation. To

evaluate the effectiveness of our algorithm, we solve a numerical example from the

literature and compare the results with those obtained fromthe methods in [63] and

[26] in Section 5.4.

5.1 Sensor Scheduling Problem

Sensors are used in various applications, including military surveillance, ground

mapping, tracking and recognition of targets, instrumentation, air traffic control,

imaging, and robotics [45]. Information collected by sensors is used to design ac-

tivities that evolve over time in the underlying system [14]. For example, in a de-

fense system, surveillance sensors are used to detect, identify, and localize targets,

assess levels of threat, and deduce enemy intent [104]. In some applications, such
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as robotics, operating several sensors simultaneously causes interference in the sys-

tem and thus affects the measurement accuracy [16]. Consequently, it is impossible

to operate all of the sensors at once. Instead, we need to schedule the operation of

sensors over a given time frame so that the signal estimationerror is minimized. We

assume in this study that only one sensor may be active at any one time. The work

presented here was motivated by [4] and [63]. In [4], the optimal scheduling policy

is obtained by solving a quasi-variational inequality. However, the complexity of

the model in [4] makes it difficult to compute an optimal solution. On the other

hand, [63] considers open-loop policies with switches fromone sensor to another.

This reference proposes a time scaling transformation, which aims to capture a large

variety of possible switching sequences. The sensor scheduling problem, which is

formulated as a discrete-valued optimal control problem, is first transformed into

an optimal parameter selection problem, and then solved using an existing opti-

mal control software. The optimal control for the original problem is determined

through a reverse transformation. However, this approach introduces a large num-

ber of artificial switches, many of which are not utilized in the optimal solution.

As a consequence, the resulting optimization problem has many local minima. A

study similar to that considered in [63] is performed in [26], where a combination

of a branch and cut technique and a gradient-based method is applied to solve the

continuous-time sensor scheduling problem.

We consider a general optimal sensor scheduling problem, which is similar to

the one discussed in [63] and [26], and propose a transformation to convert it into

an equivalent mixed discrete optimization problem. An algorithm similar to that in

the previous chapter is then used to determine a near globally optimal solution.
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5.2 Problem Formulation

Consider the following system of linear stochastic differential equations on a given

probability space(Ω,F ,P):

dx(t) = A(t)x(t)dt + B(t)dK(t), t ∈ [0, T ],

with initial condition

x(0) = x0.

Here,{x(t), t ∈ [0, T ]} is a R
n-valued state process representing a signal of in-

terest. It is assumed to be square integrable. The initial state,x0, is aR
n-valued

Gaussian random vector on(Ω,F ,P) with meanx̄0 and covariance matrixP0. Fur-

thermore,A : [0, T ] → R
n×n andB : [0, T ] → R

n×p are continuous functions. The

process{K(t), t ∈ [0, T ]} is a standardRp-valued Brownian motion on(Ω,F ,P)

with mean zero and given covariance matrixQ ∈ R
p×p, whereQ is symmetric and

positive semi-definite.

Suppose that there areM sensors for detecting the state process. Only one

of these sensors may be operated at any one time. Asensor scheduleis a function

φ : [0, T ] → {1, . . . , M} that returns the active sensor at timet. In other words,

φ(t) = i means sensori is active at timet. LetΦ be the set of all measurable sensor

schedules and lety be the observation process associated with the scheduling policy

φ. For anyφ ∈ Φ, we have the following output equation:

dy(t) =

M
∑

i=1

χ{t:φ(t)=i}(t)
{

Ci(t)x(t)dt + Di(t)dWi(t)
}

, t ∈ [0, T ],

and

y(0) = 0,
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where, for eachI ⊂ [0, T ],

χI(t) =

{

1, t ∈ I,

0, otherwise,

and{Wi(t), t ∈ [0, T ]} is a standardRm-valued Brownian motion with mean zero

and covariance matrixR ∈ R
m×m, whereR is symmetric and positive definite,

Ci : [0, T ] → R
m×n andDi : [0, T ] → R

m×m are continuous functions.

Each sensor makes an observation of the state process that iscontaminated by

noise. The history of such observation processes is denotedby {y(s), 0 ≤ s ≤ t}.

The data collected from theM sensors are used to estimate the statex at timet. The

best estimate ofx(t) is known aŝx(t). Sincey is corrupted by noise, the history

observed is uncertain. Let the history of such a process be denoted by the smallest

σ-algebra,Fy
t = σ{y(s), 0 ≤ s ≤ t}. Hence, the optimal mean-square estimate of

the state givenFy
t is x̂(t), and the associated error covariance isP (t). Then, for a

givenφ ∈ Φ, the optimal̂x(t) is given by the following theorem. The proof of this

theorem may be found in [1].

Theorem 5.1 For each sensor scheduleφ ∈ Φ, the optimal mean-square estimate

of the statêx(t) is the unique solution of the following stochastic differential equa-

tion:

dx̂(t) =

[

A(t) − P (t)

M
∑

i=1

χ{t:φ(t)=i}(t)C
⊤
i (t)R̄−1

i (t)Ci(t)

]

x̂(t)dt

+

[

P (t)
M

∑

i=1

χ{t:φ(t)=i}(t)C
⊤
i (t)R̄−1

i (t)

]

dy(t), t ∈ [0, T ], (5.1)

and

x̂(0) = x̄0, (5.2)

where

R̄−1
i (t) =

[

Di(t)Ri(t)D
⊤
i (t)

]−1
, (5.3)
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and the error covariance matrixP : [0, T ] → R
n×n is the unique solution of the

matrix Riccati differential equation

Ṗ (t) = A(t)P (t) + P (t)A⊤(t) + B(t)QB⊤(t)

− P (t)

M
∑

i=1

χ{t:φ(t)=i}(t)C
⊤
i (t)R̄−1

i (t)Ci(t)P (t) (5.4)

with initial condition

P (0) = P0. (5.5)

Clearly, the solution of (5.4)-(5.5) depends on the sensor schedule that is chosen.

Let P (·|φ) be the solution corresponding toφ ∈ Φ. We formulate the following

sensor scheduling problem.

Problem (P). Chooseφ ∈ Φ to minimize

g0(φ) = αtrace{P (T |φ)}+

∫ T

0

trace{P (t|φ)}dt, (5.6)

subject to (5.4) and (5.5), whereα is a non-negative constant.

The objective function (5.6) is designed to minimize the estimation error during

the operation of the system. Note that Problem (P) is a discrete-valued optimal

control problem. The main challenge in solving Problem (P) is that the controlφ is

constrained to take values in the discrete set{1, . . . , M}. Each sensor schedule is

completely determined by specifying the values in{1, . . . , M} that it assumes and

the times when it switches from one value in{1, . . . , M} to another. Clearly, only

a finite number of switches are able to be implemented in practice, and henceφ is

a piecewise constant function with a finite number of switches. In other words, to

solve Problem (P), we need to determine both the optimal switching sequence and

the optimal switching times. Thus, we transform Problem (P)into an equivalent and

solvable form in the next section.
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5.3 Problem Transformation

Recall that only one sensor is active at each time and that only a finite number of

switches are allowed. Suppose that we allow a sensor scheduleφ to switchN times

during the time horizon. LetV = {v = [v1, . . . , vN+1]
⊤ : vi ∈ {1, . . . , M}} be

the set of all possible switching sequence vectors. Letσ = [σ1, . . . , σN+1]
⊤, where

σi ≥ 0, i = 1, . . . , N + 1, denote the duration for which the corresponding sensor

vi in the sequence is active. Clearly,

N+1
∑

i=1

σi = T.

Let Σ denote the set of all suchσ. Note that under the assumption of a finite number

of switches,N , anyφ ∈ Φ is completely determined by an element(v, σ) ∈ V ×Σ,

where

φ(t) = vi, t ∈
[

i−1
∑

j=1

σj,
i

∑

j=1

σj

]

, i = 1, . . . , N + 1.

We introduce a new time variableτ ∈ [0, N + 1] and consider the fixed partition

{0, 1, . . . , N +1}. The original time horizon[0, T ] is transformed into the new time

horizon[0, N + 1] as follows:

ṫ(τ) = σi, τ ∈ [i − 1, i), i = 1, . . . , N + 1, (5.7)

with the boundary conditions

t(0) = 0 (5.8)

and

t(N + 1) = T. (5.9)
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The original dynamics (5.4)-(5.5) are transformed into

˙̃P (τ) = σi

[

A(τ)P̃ (τ) + P̃ (τ)A⊤(τ) + B(τ)QB⊤(τ)

− P̃ (τ)C⊤
vi

(τ)R̄−1
vi

(τ)Cvi
(τ)P̃ (τ)

]

,

τ ∈ [i − 1, i), i = 1, . . . , N + 1, (5.10)

and

P̃ (0) = P0. (5.11)

Hence, the transformed problem is stated formally below. Let P̃ (·|v, σ) be the so-

lution of (5.10)-(5.11) corresponding to(v, σ) ∈ V × Σ.

Problem (R). Choosev ∈ V andσ ∈ Σ to minimize

g0(v, σ) = αtrace{P̃ (N + 1|v, σ)} +
N+1
∑

i=1

∫ i

i−1

trace{P̃ (τ |v, σ)}σi dτ, (5.12)

subject to (5.7)-(5.9) and the dynamics (5.10)-(5.11), where α is a non-negative

constant.

Problem (R), an equivalent problem to Problem (P), is a mixeddiscrete optimiza-

tion problem with the discrete variablev representing the switching sequence and

the continuous variableσ representing the time length of each mode. We propose

to solve Problem (R) by first decomposing it into two levels. Note that for a fixed

v ∈ V , Problem (R) reduces to the following problem.

Problem (R1). Givenv ∈ V , find aσ ∈ Σ to minimize

g0(σ|v) = αtrace{P̃ (N + 1|σ,v)} +
N+1
∑

i=1

∫ i

i−1

trace{P̃ (τ |σ,v)}σi dτ, (5.13)

subject to (5.7)-(5.9) and dynamics (5.10)-(5.11), whereα is a non-negative con-
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stant.

Problem(R1) is a standard optimal parameter selection problem in a canonical form

suitable for the application of a standard algorithm based on the control parameteri-

zation concept. For each givenv, the optimal value ofg0 in (5.13) can be determined

using an optimal control software, such as MISER3.3, since the switching sequence

is fixed. Note that in MISER3.3, the optimal parameter selection problem is solved

using a sequential quadratic programming algorithm. The second problem in the

proposed decomposition is defined as follows.

Problem (R2). Choosev ∈ V to minimize the objective function

J(v), (5.14)

where

J(v) = min
σ∈Σ

g0(σ|v).

Note that Problem(R2) is a purely discrete optimization problem, but computing

the value ofJ(v) requires solving the corresponding Problem(R1). Hence, Prob-

lem (R1) is a subproblem of Problem(R2). To obtain a near globally optimal solu-

tion for Problem (R), we propose a combined algorithm where Problem(R2) will be

solved using the discrete filled function method in Section 3.1 (i.e. Algorithm 3.2)

and, at each iteration, Problem(R1) is solved using MISER3.3. For our numerical

computations, we have been able to incorporate the discretefilled function method

within the MISER3.3 software. Note that we setρL = 0.001 for our numerical

computation to confirm a near global solution is attained from the algorithm.

Remark 5.1 Note that the early time scale transformation proposed in[63] intro-

duces a large number of artificial switching instants, typically N × M , most of

which are not used in the final optimal solution. As a result, the transformed prob-

lem yields many local minima, many of which have high objective values. Our
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method, similar to that in [25], avoids this difficulty because onlyN switches are

needed.

5.4 Illustrative Example

Consider a sensor scheduling problem with six sensors and seven switches as dis-

cussed in [26]. LetN = 7, M = 6, n = 2, m = 1, p = 2, T = 8, α = 0, c =

0.5, µ0 = 0.1, ρ0 = 0.1, ω = 1, ρL = 0.001, ρ̂ = 0.1, µ̂ = 0.1 and consider the

following dynamics:

[

ẋ1(t)
ẋ1(t)

]

=
[

0.5 1.0
1.0 0.5

]

[

x1(t)
x2(t)

]

+
[

2.0
2.0

]

K(t),

[

x1(0)
x2(0)

]

=
[

0
0

]

,

where

P0 =
[

1 0
0 1

]

, Q =
[

1 0
0 1

]

,

C1(t) =

[

1 + 1.2 sin(2t) 0
1 + 1.2 sin(2t) 0

]

, D1(t) =
[

1 0
0 1

]

, R1(t) =
[

1 0
0 1

]

,

C2(t) =
[

1 + 0.5 cos(2t) 1 + 0.5 cos(2t)
0 0

]

, D2(t) =
[

1 0
0 1

]

, R2(t) =
[

1 0
0 1

]

,

C3(t) =

[

1 + 0.5 sin(2t) 0
0 1 + 0.5 cos(2t)

]

, D3(t) =
[

1 0
0 1

]

, R3(t) =
[

1 0
0 1

]

,

C4(t) =

[

0 1 + 0.5 cos(2t)
1 + 0.5 sin(2t) 0

]

, D4(t) =
[

1 0
0 1

]

, R4(t) =
[

1 0
0 1

]

,

C5(t) =
[

0 0
1 + 0.5 cos(2t) 1 + 0.5 sin(2t)

]

, D5(t) =
[

1 0
0 1

]

, R5(t) =
[

1 0
0 1

]

,

C6(t) =

[

0 1 + 1.8 sin(2t)
0 1 + 1.8 cos(2t)

]

, D6(t) =
[

1 0
0 1

]

, R6(t) =
[

1 0
0 1

]

.

For the ease of computation, we have been able to embed the filled func-

tion algorithm into the MISER3.3 program. The algorithm is terminated when

µ = 1 × 10−41 andρ = 1 × 10−3, at which stage the best local minimizer found
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cannot be improved. The computation is performed using the modified version

of MISER3.3 on a Windows-based PC, with a CPU speed of 2.4GHz and 2GB

RAM. We solve Problem(R), which has a total number of 1,679,616 potential

switching sequences, usingv0 = [6, 5, 2, 6, 5, 2, 6, 1]⊤ as the initial sequence and

σ0 = [1, 1, 1, 1, 1, 1, 1, 1]⊤ as the initial guess forσ. Note thatP0 is initialized as a

2 × 2 identity matrix. Relevant results obtained are summarizedin Table 5.1. The

entries in thev∗ column indicate the optimal solutions for the local searches. From

Table 5.1,σ∗ = [0.23501973, 0, 0, 7.7649803, 0, 0, 0, 0]⊤ for the assumed global

minimum indicates that sensors 2, 3, 4, and 5 are not used in the final optimal so-

lution during the tenth iteration. Hence, only two out of sixsensors are turned on.

The assumed global optimal switching sequence is to turn on sensor 1, followed

by sensor 6, with the objective function14.33176. The number of original function

evaluations and filled function evaluations are 5293 and 8517, respectively. This

represents 0.32% of the total number of potential sequences. Note that the objective

function evaluations do not include those that were obtained from the look-up table.

We tested the problem with five different initial sequences.These are

[1, 2, 3, 4, 5, 6, 1, 2]⊤, [6, 5, 4, 3, 2, 1, 6, 5]⊤, [1, 6, 3, 2, 4, 5, 3, 1]⊤, [1, 6, 1, 6, 1, 6, 1, 6]⊤,

and[6, 6, 1, 2, 5, 4, 2, 1]⊤, using the sameP0 andσ0 as in the first computation. As

many as fifty local minima are found during the searches from the various initial

sequences. Starting at each initial sequence, the algorithm successfully identified

the same assumed discrete global minimum sequence of Problem (R) observed in

the first experiment, that is, sensor 1 is followed by sensor 6, with the cost func-

tion valueJ = 14.33176. Again, computational results show that only up to0.32%

of the total number of potential sequences are evaluated. The optimal operating

schedule for the control and states are depicted in Figure 5.1. In addition, several

different choices ofP0 are tested in our experimentation with various initial switch-

ing sequences. The optimal operating scheme forP0 = 0, P0 = 6I, P0 = 10I

are illustrated by Figures 5.2, 5.3, and 5.4, respectively.From these graphs, only

the first and sixth sensors are ever used, while the other fourare not utilized in any

optimal solution.
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Table 5.1: Numerical Results forP0 = I.
v
∗

σ
∗ J

[1, 6, 1, 1, 6, 1, 6, 6]⊤ [0.24035917, 0, 0, 0, 0, 0, 7.7525870, 0.0070538593]⊤ 14.649680367412879

[6, 1, 6, 6, 1, 6, 1, 1]⊤ [0.17566501, 0.18470974, 0, 7.6396253, 0, 0, 0, 0]⊤ 14.504334985710470

[1, 6, 1, 6, 6, 1, 1, 6]⊤ [0.23511799, 0, 0, 7.7648820, 0, 0, 0, 0]⊤ 14.331763146735220

[1, 6, 2, 6, 6, 2, 2, 6]⊤ [0.23501894, 0, 0, 7.7649811, 0, 0, 0, 0]⊤ 14.331763102479558

[1, 6, 6, 6, 6, 3, 3, 5]⊤ [0.23502083, 0, 0, 7.7649792, 0, 0, 0, 0]⊤ 14.331763102474610

[1, 6, 6, 6, 6, 6, 5, 5]⊤ [0.23502039, 0, 0, 7.7649796, 0, 0, 0, 0]⊤ 14.331763102473506

[1, 6, 6, 6, 1, 5, 6, 2]⊤ [0.23501994, 0, 0, 7.7649801, 0, 0, 0, 0]⊤ 14.331763102471598

[1, 1, 6, 6, 6, 6, 5, 1]⊤ [0.23501894, 0, 0, 7.7649811, 0, 0, 0, 0]⊤ 14.331763102445281

[1, 1, 6, 6, 5, 6, 6, 2]⊤ [0.23501979, 0, 0, 7.7649802, 0, 0, 0, 0]⊤ 14.331763102440952

[1, 1, 6, 6, 6, 5, 2, 1]⊤ [0.23501973, 0, 0, 7.7649803, 0, 0, 0, 0]⊤ 14.331763102437696
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Figure 5.1: Optimal Sensor Operating Scheme withP0 = I.
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Figure 5.2: Optimal Sensor Operating Scheme withP0 = 0.
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Figure 5.3: Optimal Sensor Operating Scheme withP0 = 6I.
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Figure 5.4: Optimal Sensor Operating Scheme withP0 = 10I.

Table 5.2: A Comparison of Numerical Results with Other Methods.
Methods Objective values

Method in [26] withP0 = 0 19.6553

Method in [63] withP0 = 10I 19.2353622

Proposed method withP0 = 10I 16.5697177

Proposed method withP0 = 6I 15.8781106

Proposed method withP0 = I 14.3317631

Proposed method withP0 = 0 12.9949699
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We also compare the solutions obtained here with those obtained from the

other methods proposed in [63] and [26]. These results are summarized in Table 5.2.

Note that the error estimation found with the proposed algorithm is significantly

lower than 19.6553, the optimal solution reported in [26], which was obtained using

a combination of a branch and bound technique with a gradient-based method. To

the best of our knowledge,P0 = 0 is used in [26]. Note that any non-zero choices of

P0 lead to even higher objective values when used in conjunction with the solution

in [26].

5.5 Concluding Remarks

A sensor scheduling problem is considered in this chapter. It is formulated as a

discrete-valued optimal control problem and then transformed into a mixed dis-

crete optimization problem. Then, it is decomposed into a bi-level problem. A new

metaheuristic approach, similar to that in Chapter 4, whichincorporates the discrete

filled function algorithm into a standard optimal control software, is proposed for

finding a global solution of this problem. Numerical resultsshow that the method is

efficient, reliable, and robust in solving a complex discrete-valued optimal control

problem. The proposed method successfully identified significantly improved solu-

tions compared with other methods available in the literature. Note that, unlike the

hybrid power system problem in Chapter 4, this application problem does not lead

to any infeasible subproblems, so there is no need to assign artificially high cost

values to a sequence resulting in an infeasible subproblem.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This study has demonstrated and established the effectiveness of a computational

procedure for determining near global solutions for some classes of discrete and

mixed discrete optimization problems. Most of the practical discrete and mixed

discrete optimization problems are nonlinear and known to have more than one

locally optimal solution. This suggests the need for globaloptimization techniques

which seek the best solution amongst multiple local optima.In this thesis, our

attention is focused on developing a metaheuristic technique to determine the global

optimal solution of discrete-valued optimal control problems. Our metaheuristic

approach is based on the combination of a discrete filled function method and a

computational optimal control algorithm.

Various discrete filled function methods are reviewed in this thesis. The fun-

damental idea behind the filled function concept is to introduce an auxiliary function

to move from a current local minimizer to an improved point, if it exists. Interest-

ingly, each filled function has its own termination and parameter updating criteria.

We have been able to give a generic algorithm in this thesis which allows us to cap-

ture their commonalities and also to contrast their differences. Based on the theoret-

ical properties of the various methods and our own computational implementations,
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we found that the discrete filled function method in [106] seems to perform best for

bound constrained problems.

Further, we propose several variations of the method in [106] to try and en-

hance its computational efficiency. Two of these algorithms, namely Algorithms 3.4

and 3.5, appear to be significantly more efficient than the standard method in terms

of the number of objective function evaluations. However, both methods frequently

fail to identify the global solution due to the choice of a random set of points used

to initialize the search of a local minimum of the filled function. In other words, the

gain in efficiency for these two algorithms is offset by reduced reliability. After an-

alyzing the numerical results, we choose to adopt the standard algorithm from [106]

in combination with a computational optimal algorithm to solve a general class of

discrete-valued optimal control problems.

To determine an optimal discrete-valued control, we need todetermine the

order of the switching sequence and the times at which these switches take place.

However, conventional computational optimal control approaches are designed for

solving problems in which the control takes values in a convex set, and thus these

approaches cannot solve a discrete-valued optimal controlproblem directly. To

overcome these difficulties, we propose a new transformation to convert a discrete-

valued optimal control problem into an equivalent mixed discrete optimization prob-

lem. This transformation introduces a new discrete variable to represent the switch-

ing sequences and a new continuous variable to represent theswitching times. To

facilitate with the application of our proposed global optimization algorithm, we

decompose the mixed problem into a bi-level problem. The upper level problem

in this decomposition is a purely discrete optimization problem, where the discrete

global switching sequence is determined using a discrete filled function approach.

The subproblem is simply a standard optimal control problemwhere the objective

function value is determined using MISER3.3, an optimal control software based on

the concept of control parameterization. To increase the computational efficiency,

we construct a look-up table to store each value of the objective function of the

subproblem computed so far, thus avoiding the need to repeatedly solve the sub-
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problem at the same point. This is essential to the computational efficiency because

the numerical solution of the subproblem requires considerable computational time.

We apply the proposed global algorithm to solve a hybrid power system con-

trol problem and a sensor scheduling problem. Both of these are fairly complex

practical application problems which have been demonstrated to possess many lo-

cally optimal solutions. For the numerical implementation, we have incorporated

the discrete filled function technique directly into the MISER3.3 software. Numer-

ical results suggest that the method is efficient, reliable,and robust in solving both

complex discrete-valued optimal control problems. In fact, the proposed method

successfully identified significantly improved solutions compared with those ob-

tained from other methods available in the literature.

6.2 Limitations of the Study

Note that the discrete filled function algorithm we adopted from [106] is designed

for a box constrained (or linear inequality constrained) problem where the feasi-

ble search region is pathwise connected and has easily identifiable vertices. These

properties are not necessarily met in the application of thealgorithm to solve the

hybrid power system problem because the feasibility of a point is not known until

an attempt has been made to solve the corresponding subproblem. Although we do

not remove such a point from the search region directly, we assign artificially high

cost to it. It may well be the case that the effective feasibleregion of subproblem

becomes non-convex and non-connected. However, it is difficult to ascertain this

behavior beforehand and our application of the algorithm tothe subproblem must

hence be viewed as a metaheuristic approach. On the other hand, we are essentially

employing a penalty method to deal with complex constraintswhich would be dif-

ficult to incorporate directly at the upper level. This simple idea seems to work well

in practice and warrants some further investigation in the future.

In addition, a sequential quadratic programming method is employed within

MISER3.3 to solve the subproblems of both discrete-valued optimization problems.
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This is a local search method and thus cannot guarantee the global optimality for

the solution of the subproblem. In other words, although we aim to solve the upper

level problem globally, the lower level problem may only yield a locally optimal

solution. Therefore, we again consider our approach to be a metaheuristic global

optimization method with no implied guarantee of finding theoverall global opti-

mum. Nevertheless, numerical results demonstrate that good quality solutions can

be determined effectively compared with other methods in the literature.

6.3 Future Work

Discrete filled function methods form an active area of research open to further

investigation and improvements in solving mixed discrete optimization problems

globally. It would be interesting to test different procedures for minimizing the

filled function, starting at points other than the immediateneighbourhood of the

current local minimizer, as often suggested in the literature.

Secondly, it would of benefit to implement a global optimization method to

solve the subproblem resulting from the original discrete-valued optimal control

problem globally [69]. Continuous filled function methods are available, but these

are mainly aimed at solving unconstrained problems. Constraints at the subproblem

level would hence require the use of penalty methods.

Thirdly, refinements of the hybrid power system model so thatit reflects an

actual operating environment more realistically are required in the future. These

include a more realistic battery model, forecasting tool for load demand and renew-

able power profiles, considering a wide range of generators (both variable speed

generators or continuous type) and allowing a broader classof controls (eg. smooth

rather then piecewise constant).

Fourthly, a comparison between the discrete filled functionmethod and other

metaheuristic approaches, such as greedy search, simulated annealing, and genetic

algorithm, would be an interesting future research direction in combinatorial opti-

mization. This is likely to involve extensive computational studies, though, since
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each class of algorithm allows significant variations and tuning of algorithm param-

eters.

In addition, it is certainly possible and may well be worthwhile to modify

MISER3.3 so that the embedded discrete filled function algorithm can be read-

ily invoked by non-expert users when solving any discrete valued optimal control

problem. Besides, other variations of discrete filled function methods, such as those

proposed in Sections 3.2-3.6, could also be implemented in application problems

to see if improved results can be attained. Lastly, the application of the proposed

method to other practical discrete-valued optimal controlproblems would be inter-

esting, particularly the well studied submarine transit path problem [11].
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Appendix A

FORTRAN Codes for the Algorithms

in Chapter 3

A.1 Algorithm 3.2

MODULE constants
SAVE
INTEGER,PARAMETER::n=5,m=2*n,totalpoints=161051
DOUBLEPRECISION,PARAMETER::c=0.5d0,tao=1.0d0,rhol=0.001,muhat=0.1d0,rhohat=0.1d0
INTEGER::xl(n),xu(n),e(n,m),countf,countff,countxstar,pointsCalculated
DOUBLEPRECISION::mu,rho,table(totalpoints,n+1)
END MODULE constants

PROGRAM standard
USE constants
IMPLICIT NONE
EXTERNAL::minf,minp
INTEGER::x(n),x0(n),xstar(n),newx(n),neighbour(n),i,j,k,flag
DOUBLEPRECISION::f,fxbest

! Set the initial of the parameters
mu=0.1d0
rho=0.1d0

! Initialize the lookup table counter.
pointsCalculated = 0

! Define the upper and lower bounds for x(n)
xl=-5
xu=5

! Set the initial count for f, G, local minimizer obtained.
countf=0
countff=0
countxstar=0

! Set the search direction
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DO i=1,n
DO j=1,m

IF (i.EQ.j) THEN
e(i,j)=1

ELSEIF (j.EQ.i+n) THEN
e(i,j)=-1

ELSE
e(i,j)=0

ENDIF
ENDDO

ENDDO

! Set the initial value of x(n)
1000 IF (countxstar.EQ.0) THEN

x0(:)= 5
ELSE

x0(:)= newx(:)
ENDIF
PRINT*,"initial point,x0=",x0

! Call the local search of the original function
CALL minf(x0,xstar,fxbest)

! Display the minimal solution & value of the original function
PRINT*,"x*=",xstar
PRINT*,"f(x*)=",fxbest

! Call the local search of the filled function
CALL minp(xstar,newx,flag)

! Display the output
PRINT*,"the number of function evaluations=",countf
PRINT*,"the number of filled function evaluations=",countff
PRINT*,"mu=",mu,"rho",rho

IF (flag.EQ.1) THEN
PRINT*,"Point in a lower basin is found as f(x)<f(x*)"
PRINT*,"new starting point,x=",newx,",f(x)=",f(newx)
countxstar=countxstar+1
GOTO 1000

ELSE
PRINT*,"x*=",xstar,"is the global solution."

ENDIF

END

! Define the LOGICAL FUNCTION feasible
LOGICAL FUNCTION feasible(point)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::point(n)
INTEGER::i

feasible=.TRUE.

DO i=1,n
IF (point(i).GT.xu(i).OR.point(i).LT.xl(i)) THEN

feasible=.FALSE.
RETURN

ENDIF
ENDDO

END FUNCTION feasible

! Objective function
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DOUBLEPRECISION FUNCTION f(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,j
LOGICAL:: indicator

DO i=1,pointsCalculated
indicator = .TRUE.
DO j=1,n

IF (table(i,j) .NE. x(j)) THEN
indicator = .FALSE.
EXIT

ENDIF
ENDDO

IF (indicator) THEN
f = table(i,n+1)
RETURN

ENDIF
ENDDO

f=0.0d0
DO i=1,n-1

f=f+(100.0d0*(x(i+1)-x(i)**2)**2+(1.0d0-x(i))**2)
ENDDO

table(pointsCalculated+1,1:n) = x(:)
table(pointsCalculated+1,n+1) = f

pointsCalculated = pointsCalculated + 1
countf=countf+1

END FUNCTION f

! Filled function
DOUBLEPRECISION FUNCTION p(x,xstar,fx,fxstar)
USE constants
IMPLICIT NONE
INTEGER::i,s
INTEGER,INTENT(IN)::x(n),xstar(n)
DOUBLEPRECISION,INTENT(IN)::fx,fxstar
DOUBLEPRECISION::f,y,v,a

y=fx-fxstar

s=0
DO i=1,n

s=s+(x(i)-xstar(i))**2
ENDDO

v=mu*((1.0d0-c)*((1.0d0-c*mu)/(mu-c*mu))**(-y/tao)+c)

a=y*v
p=a*y-rho*s
countff=countff+1

END FUNCTION p

! Define the LOGICAL FUNCTION to check if a vertex exists
LOGICAL FUNCTION vertex(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,tally
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tally=0

DO i=1,n
IF (x(i).EQ.xl(i).OR.x(i).EQ.xu(i)) THEN

tally=tally+1
ENDIF

ENDDO

IF (tally.EQ.n) THEN
vertex=.TRUE.

ELSE
vertex=.FALSE.

ENDIF

END FUNCTION vertex

! Local search of the original function,f
SUBROUTINE minf(x0,xstar,fxbest)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x0(n)
INTEGER,INTENT(OUT)::xstar(n)
DOUBLEPRECISION,INTENT(OUT)::fxbest
INTEGER::x(n),xbest(n),neighbour(n),i,j
DOUBLEPRECISION::f,fx,temp
LOGICAL::feasible

x(:)=x0(:)

DO

fx=f(x)
xbest(:)=x(:)
fxbest=fx

DO j=1,2*n
neighbour(:)=x(:)+e(:,j)

IF (feasible(neighbour)) THEN
temp=f(neighbour)
IF (temp.LT.fxbest) THEN

xbest(:)=neighbour(:)
fxbest=temp

ENDIF
ENDIF

ENDDO

IF (fxbest.EQ.fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDIF

ENDDO

END SUBROUTINE minf

! Local search of the filled function.
SUBROUTINE minp(xstar,newx,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
INTEGER,INTENT(OUT):: newx(n),flag
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INTEGER:: x(n),XI(n,m),j
DOUBLEPRECISION:: fxstar,f
LOGICAL::feasible
EXTERNAL::minp1

DO j=1,m
XI(:,j) = xstar(:) + e(:,j)

ENDDO

fxstar = f(xstar)

DO

IF (rho .LT. rhol) THEN
flag = 2
RETURN

ENDIF

DO j=1,m
x(:) = XI(:,j)
IF (feasible(x)) THEN

CALL minp1(xstar,fxstar,x,flag)
IF (flag .EQ. 1) THEN

newx(:) = x(:)
RETURN

ENDIF
ENDIF

ENDDO

rho = rho*rhohat

ENDDO

END SUBROUTINE minp

SUBROUTINE minp1(xstar,fxstar,x,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
DOUBLEPRECISION,INTENT(IN):: fxstar
INTEGER,INTENT(INOUT):: x(n)
INTEGER,INTENT(OUT):: flag
INTEGER::xbest(n),neighbour(n),betterxbest(n),j,flag1
DOUBLEPRECISION:: f,fx,fcurrent,fn,p,pcurrent,pbest,temp,total,totalbest
LOGICAL::feasible,vertex

flag = 0

DO

xbest(:) = x(:)
fcurrent = f(x)
pcurrent = p(x,xstar,fcurrent,fxstar)
pbest = pcurrent

flag1 = 0

DO j=1,2*n
neighbour(:) = x(:) + e(:,j)

IF (feasible(neighbour)) THEN
fn = f(neighbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN
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ELSE
temp = p(neighbour,xstar,fn,fxstar)
IF (temp .LT. pbest) THEN

xbest(:) = neighbour(:)
pbest = temp

ENDIF

IF (temp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flag1 .eq. 0) THEN

betterxbest(:) = neighbour(:)
totalbest = temp + fn
flag1 = 1

ELSE
total = temp + fn
IF (total .LT. totalbest) THEN

totalbest = total
betterxbest(:) = neighbour(:)

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF

ENDDO

IF (pbest .EQ. pcurrent) THEN
IF (vertex(x)) THEN

RETURN
ELSE

mu = mu*muhat
CYCLE

ENDIF
ELSE

IF (flag1 .EQ. 1) THEN
x(:) = betterxbest(:)

ELSE
x(:) = xbest(:)

ENDIF
ENDIF

ENDDO

END SUBROUTINE minp1

A.2 Algorithm 3.3

MODULE constants
SAVE
INTEGER,PARAMETER::n=5,m=2*n,totalpoints=161051
DOUBLEPRECISION,PARAMETER::c=0.5d0,tao=1.0d0,rhol=0.001,muhat=0.1d0,rhohat=0.1d0
INTEGER::xl(n),xu(n),e(n,m),countf,countff,countxstar,pointsCalculated
DOUBLEPRECISION::mu,rho,table(totalpoints,n+1)
END MODULE constants

PROGRAM variation1
USE constants
IMPLICIT NONE
EXTERNAL::minf,minp
INTEGER::x(n),x0(n),xstar(n),newx(n),neighbour(n),i,j,k,flag
DOUBLEPRECISION::f,fxbest

! Set the initial of the parameters
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mu=0.1d0
rho=0.1d0

! Initialize the lookup table counter.
pointsCalculated = 0

! Define the upper and lower bounds for x(n)
xl=-5
xu=5

! Set the initial count for f, G, local minimizer obtained.
countf=0
countff=0
countxstar=0

! Set the search direction
DO i=1,n

DO j=1,m
IF (i.EQ.j) THEN

e(i,j)=1
ELSEIF (j.EQ.i+n) THEN

e(i,j)=-1
ELSE

e(i,j)=0
ENDIF

ENDDO
ENDDO

! Set the initial value of x(n)
1000 IF (countxstar.EQ.0) THEN

x0(:)= 5
ELSE

x0(:)= newx(:)
ENDIF
PRINT*,"initial point,x0=",x0

! Call the local search of the original function
CALL minf(x0,xstar,fxbest)

! Display the minimal solution & value of the original function
PRINT*,"x*=",xstar
PRINT*,"f(x*)=",fxbest

! Call the local search of the filled function
CALL minp(xstar,newx,flag)

! Display the output
PRINT*,"the number of function evaluations=",countf
PRINT*,"the number of filled function evaluations=",countff
PRINT*,"mu=",mu,"rho",rho

IF (flag.EQ.1) THEN
PRINT*,"Point in a lower basin is found as f(x)<f(x*)"
PRINT*,"new starting point,x=",newx,",f(x)=",f(newx)
countxstar=countxstar+1
GOTO 1000

ELSE
PRINT*,"x*=",xstar,"is the global solution."

ENDIF

END

! Define the LOGICAL FUNCTION feasible
LOGICAL FUNCTION feasible(point)
USE constants
IMPLICIT NONE
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INTEGER,INTENT(IN)::point(n)
INTEGER::i

feasible=.TRUE.

DO i=1,n
IF (point(i).GT.xu(i).OR.point(i).LT.xl(i)) THEN

feasible=.FALSE.
RETURN

ENDIF
ENDDO

END FUNCTION feasible

! Objective function
DOUBLEPRECISION FUNCTION f(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,j
LOGICAL:: indicator

DO i=1,pointsCalculated
indicator = .TRUE.
DO j=1,n

IF (table(i,j) .NE. x(j)) THEN
indicator = .FALSE.
EXIT

ENDIF
ENDDO

IF (indicator) THEN
f = table(i,n+1)
RETURN

ENDIF
ENDDO

f=0.0d0
DO i=1,n-1

f=f+(100.0d0*(x(i+1)-x(i)**2)**2+(1.0d0-x(i))**2)
ENDDO

table(pointsCalculated+1,1:n) = x(:)
table(pointsCalculated+1,n+1) = f

pointsCalculated = pointsCalculated + 1
countf=countf+1

END FUNCTION f

! Filled function
DOUBLEPRECISION FUNCTION p(x,xstar,fx,fxstar)
USE constants
IMPLICIT NONE
INTEGER::i,s
INTEGER,INTENT(IN)::x(n),xstar(n)
DOUBLEPRECISION,INTENT(IN)::fx,fxstar
DOUBLEPRECISION::f,y,v,a

y=fx-fxstar

s=0
DO i=1,n

s=s+(x(i)-xstar(i))**2
ENDDO
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v=mu*((1.0d0-c)*((1.0d0-c*mu)/(mu-c*mu))**(-y/tao)+c)

a=y*v
p=a*y-rho*s
countff=countff+1

END FUNCTION p

! Define the LOGICAL FUNCTION to check if a vertex exists
LOGICAL FUNCTION vertex(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,tally

tally=0

DO i=1,n
IF (x(i).EQ.xl(i).OR.x(i).EQ.xu(i)) THEN

tally=tally+1
ENDIF

ENDDO

IF (tally.EQ.n) THEN
vertex=.TRUE.

ELSE
vertex=.FALSE.

ENDIF

END FUNCTION vertex

! Local search of the original function,f
SUBROUTINE minf(x0,xstar,fxbest)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x0(n)
INTEGER,INTENT(OUT)::xstar(n)
DOUBLEPRECISION,INTENT(OUT)::fxbest
INTEGER::x(n),xbest(n),neighbour(n),i,j
DOUBLEPRECISION::f,fx,temp
LOGICAL::feasible

x(:)=x0(:)

DO

fx=f(x)
xbest(:)=x(:)
fxbest=fx

DO j=1,2*n
neighbour(:)=x(:)+e(:,j)

IF (feasible(neighbour)) THEN
temp=f(neighbour)
IF (temp.LT.fxbest) THEN

xbest(:)=neighbour(:)
fxbest=temp

ENDIF
ENDIF

ENDDO

IF (fxbest.EQ.fx) THEN
xstar(:)=x(:)
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RETURN
ELSE

x(:)=xbest(:)
ENDIF

ENDDO

END SUBROUTINE minf

! Local search of the filled function.
SUBROUTINE minp(xstar,newx,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
INTEGER,INTENT(OUT):: newx(n),flag
INTEGER:: x(n),XI(n,m),j
DOUBLEPRECISION:: fxstar,f,fx
LOGICAL::feasible
EXTERNAL::minp1

fxstar = f(xstar)

DO j=1,m
XI(:,j) = xstar(:) + 2*e(:,j)
x(:) = XI(:,j)
IF (feasible(x)) THEN

fx=f(x)
IF (fx .LT. fxstar) THEN

flag = 1
newx(:) = x(:)
RETURN

ENDIF
ENDIF

ENDDO

DO

IF (rho .LT. rhol) THEN
flag = 2
RETURN

ENDIF

DO j=1,m
x(:) = XI(:,j)
IF (feasible(x)) THEN

CALL minp1(xstar,fxstar,x,flag)
IF (flag .EQ. 1) THEN

newx(:) = x(:)
RETURN

ENDIF
ENDIF

ENDDO

rho = rho*rhohat

ENDDO

END SUBROUTINE minp

SUBROUTINE minp1(xstar,fxstar,x,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
DOUBLEPRECISION,INTENT(IN):: fxstar
INTEGER,INTENT(INOUT):: x(n)
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INTEGER,INTENT(OUT):: flag
INTEGER::xbest(n),neighbour(n),betterxbest(n),j,flag1
DOUBLEPRECISION:: f,fx,fcurrent,fn,p,pcurrent,pbest,temp,total,totalbest
LOGICAL::feasible,vertex

flag = 0

DO

xbest(:) = x(:)
fcurrent = f(x)
pcurrent = p(x,xstar,fcurrent,fxstar)
pbest = pcurrent

flag1 = 0

DO j=1,2*n
neighbour(:) = x(:) + e(:,j)

IF (feasible(neighbour)) THEN
fn = f(neighbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE
temp = p(neighbour,xstar,fn,fxstar)
IF (temp .LT. pbest) THEN

xbest(:) = neighbour(:)
pbest = temp

ENDIF

IF (temp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flag1 .eq. 0) THEN

betterxbest(:) = neighbour(:)
totalbest = temp + fn
flag1 = 1

ELSE
total = temp + fn
IF (total .LT. totalbest) THEN

totalbest = total
betterxbest(:) = neighbour(:)

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF

ENDDO

IF (pbest .EQ. pcurrent) THEN
IF (vertex(x)) THEN

RETURN
ELSE

mu = mu*muhat
CYCLE

ENDIF
ELSE

IF (flag1 .EQ. 1) THEN
x(:) = betterxbest(:)

ELSE
x(:) = xbest(:)

ENDIF
ENDIF

ENDDO
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END SUBROUTINE minp1

A.3 Algorithm 3.4

MODULE constants
SAVE
INTEGER,PARAMETER::n=5,m=2*n,totalpoints=161051
DOUBLEPRECISION,PARAMETER::c=0.5d0,tao=1.0d0,rhol=0.001,muhat=0.1d0,rhohat=0.1d0
INTEGER::xl(n),xu(n),e(n,m),countf,countff,countxstar,pointsCalculated
DOUBLEPRECISION::mu,rho,table(totalpoints,n+1)
END MODULE constants

PROGRAM variation2
USE constants
IMPLICIT NONE
EXTERNAL::minf,minp
INTEGER::x(n),x0(n),xstar(n),newx(n),neighbour(n),i,j,k,flag
DOUBLEPRECISION::f,fxbest

! Set the initial of the parameters
mu=0.1d0
rho=0.1d0

! Initialize the lookup table counter.
pointsCalculated = 0

! Define the upper and lower bounds for x(n)
xl=-5
xu=5

! Set the initial count for f, G, local minimizer obtained.
countf=0
countff=0
countxstar=0

! Set the search direction
DO i=1,n

DO j=1,m
IF (i.EQ.j) THEN

e(i,j)=1
ELSEIF (j.EQ.i+n) THEN

e(i,j)=-1
ELSE

e(i,j)=0
ENDIF

ENDDO
ENDDO

! Set the initial value of x(n)
1000 IF (countxstar.EQ.0) THEN

x0(:)= 5
ELSE

x0(:)= newx(:)
ENDIF
PRINT*,"initial point,x0=",x0

! Call the local search of the original function
CALL minf(x0,xstar,fxbest)

! Display the minimal solution & value of the original function
PRINT*,"x*=",xstar
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PRINT*,"f(x*)=",fxbest

! Call the local search of the filled function
CALL minp(xstar,newx,flag)

! Display the output
PRINT*,"the number of function evaluations=",countf
PRINT*,"the number of filled function evaluations=",countff
PRINT*,"mu=",mu,"rho",rho

IF (flag.EQ.1) THEN
PRINT*,"Point in a lower basin is found as f(x)<f(x*)"
PRINT*,"new starting point,x=",newx,",f(x)=",f(newx)
countxstar=countxstar+1
GOTO 1000

ELSE
PRINT*,"x*=",xstar,"is the global solution."

ENDIF

END

! Define the LOGICAL FUNCTION feasible
LOGICAL FUNCTION feasible(point)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::point(n)
INTEGER::i

feasible=.TRUE.

DO i=1,n
IF (point(i).GT.xu(i).OR.point(i).LT.xl(i)) THEN

feasible=.FALSE.
RETURN

ENDIF
ENDDO

END FUNCTION feasible

! Objective function
DOUBLEPRECISION FUNCTION f(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,j
LOGICAL:: indicator

DO i=1,pointsCalculated
indicator = .TRUE.
DO j=1,n

IF (table(i,j) .NE. x(j)) THEN
indicator = .FALSE.
EXIT

ENDIF
ENDDO

IF (indicator) THEN
f = table(i,n+1)
RETURN

ENDIF
ENDDO

f=0.0d0
DO i=1,n-1

f=f+(100.0d0*(x(i+1)-x(i)**2)**2+(1.0d0-x(i))**2)
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ENDDO

table(pointsCalculated+1,1:n) = x(:)
table(pointsCalculated+1,n+1) = f

pointsCalculated = pointsCalculated + 1
countf=countf+1

END FUNCTION f

! Filled function
DOUBLEPRECISION FUNCTION p(x,xstar,fx,fxstar)
USE constants
IMPLICIT NONE
INTEGER::i,s
INTEGER,INTENT(IN)::x(n),xstar(n)
DOUBLEPRECISION,INTENT(IN)::fx,fxstar
DOUBLEPRECISION::f,y,v,a

y=fx-fxstar

s=0
DO i=1,n

s=s+(x(i)-xstar(i))**2
ENDDO

v=mu*((1.0d0-c)*((1.0d0-c*mu)/(mu-c*mu))**(-y/tao)+c)

a=y*v
p=a*y-rho*s
countff=countff+1

END FUNCTION p

! Define the LOGICAL FUNCTION to check if a vertex exists
LOGICAL FUNCTION vertex(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,tally

tally=0

DO i=1,n
IF (x(i).EQ.xl(i).OR.x(i).EQ.xu(i)) THEN

tally=tally+1
ENDIF

ENDDO

IF (tally.EQ.n) THEN
vertex=.TRUE.

ELSE
vertex=.FALSE.

ENDIF

END FUNCTION vertex

! Local search of the original function,f
SUBROUTINE minf(x0,xstar,fxbest)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x0(n)
INTEGER,INTENT(OUT)::xstar(n)
DOUBLEPRECISION,INTENT(OUT)::fxbest
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INTEGER::x(n),xbest(n),neighbour(n),i,j
DOUBLEPRECISION::f,fx,temp
LOGICAL::feasible

x(:)=x0(:)

DO

fx=f(x)
xbest(:)=x(:)
fxbest=fx

DO j=1,2*n
neighbour(:)=x(:)+e(:,j)

IF (feasible(neighbour)) THEN
temp=f(neighbour)
IF (temp.LT.fxbest) THEN

xbest(:)=neighbour(:)
fxbest=temp

ENDIF
ENDIF

ENDDO

IF (fxbest.EQ.fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDIF

ENDDO

END SUBROUTINE minf

! Local search of the filled function.
SUBROUTINE minp(xstar,newx,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
INTEGER,INTENT(OUT):: newx(n),flag
INTEGER:: x(n),XI(n,m),i,j,FLOOR,timeArray(3),xbest(n)
DOUBLEPRECISION:: fxstar,f,fx,RAND,fxbest
LOGICAL:: feasible
EXTERNAL::minp1

fxbest = 1.0d5
fxstar = f(xstar)

! Generate a set of random points from FORTRAN.
CALL itime(timeArray)
DO j=1,m

DO i=1,n
XI(i,j)=FLOOR(xl(i)+(RAND(timeArray(3)+j+i))*(xu(i)-xl(i)+1))
x(:) = XI(:,j)

ENDDO
PRINT*,"random point,x=", XI(:,j),"f(x)=",f(x)

ENDDO

fxstar = f(xstar)

DO

IF (rho .LT. rhol) THEN
flag = 2
RETURN
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ENDIF

DO j=1,m
x(:) = XI(:,j)
fx=f(x)
IF (fx .LT. fxstar) THEN

flag = 1
newx(:) = x(:)
RETURN

ENDIF
ENDDO

DO j=1,m
x(:) = XI(:,j)
CALL minp1(xstar,fxstar,x,flag)
IF (flag .EQ. 1) THEN

newx(:) = x(:)
RETURN

ENDIF
ENDDO

rho = rho*rhohat

ENDDO

END SUBROUTINE minp

SUBROUTINE minp1(xstar,fxstar,x,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
DOUBLEPRECISION,INTENT(IN):: fxstar
INTEGER,INTENT(INOUT):: x(n)
INTEGER,INTENT(OUT):: flag
INTEGER::xbest(n),neighbour(n),betterxbest(n),j,flag1
DOUBLEPRECISION:: f,fx,fcurrent,fn,p,pcurrent,pbest,temp,total,totalbest
LOGICAL::feasible,vertex

flag = 0

DO

xbest(:) = x(:)
fcurrent = f(x)
pcurrent = p(x,xstar,fcurrent,fxstar)
pbest = pcurrent

flag1 = 0

DO j=1,2*n
neighbour(:) = x(:) + e(:,j)

IF (feasible(neighbour)) THEN
fn = f(neighbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE
temp = p(neighbour,xstar,fn,fxstar)
IF (temp .LT. pbest) THEN

xbest(:) = neighbour(:)
pbest = temp

ENDIF

IF (temp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
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IF (flag1 .eq. 0) THEN
betterxbest(:) = neighbour(:)
totalbest = temp + fn
flag1 = 1

ELSE
total = temp + fn
IF (total .LT. totalbest) THEN

totalbest = total
betterxbest(:) = neighbour(:)

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF

ENDDO

IF (pbest .EQ. pcurrent) THEN
IF (vertex(x)) THEN

RETURN
ELSE

mu = mu*muhat
CYCLE

ENDIF
ELSE

IF (flag1 .EQ. 1) THEN
x(:) = betterxbest(:)

ELSE
x(:) = xbest(:)

ENDIF
ENDIF

ENDDO

END SUBROUTINE minp1

A.4 Algorithm 3.5

MODULE constants
SAVE
INTEGER,PARAMETER::n=5,m=2*n,totalpoints=161051
DOUBLEPRECISION,PARAMETER::c=0.5d0,tao=1.0d0,rhol=0.001,muhat=0.1d0,rhohat=0.1d0
INTEGER::xl(n),xu(n),e(n,m),countf,countff,countxstar,pointsCalculated
DOUBLEPRECISION::mu,rho,table(totalpoints,n+1)
END MODULE constants

PROGRAM variation3
USE constants
IMPLICIT NONE
EXTERNAL::minf,minp
INTEGER::x(n),x0(n),xstar(n),newx(n),neighbour(n),i,j,k,flag
DOUBLEPRECISION::f,fxbest

! Set the initial of the parameters
mu=0.1d0
rho=0.1d0

! Initialize the lookup table counter.
pointsCalculated = 0

! Define the upper and lower bounds for x(n)
xl=-5
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xu=5

! Set the initial count for f, G, local minimizer obtained.
countf=0
countff=0
countxstar=0

! Set the search direction
DO i=1,n

DO j=1,m
IF (i.EQ.j) THEN

e(i,j)=1
ELSEIF (j.EQ.i+n) THEN

e(i,j)=-1
ELSE

e(i,j)=0
ENDIF

ENDDO
ENDDO

! Set the initial value of x(n)
1000 IF (countxstar.EQ.0) THEN

x0(:)= 5
ELSE

x0(:)= newx(:)
ENDIF
PRINT*,"initial point,x0=",x0

! Call the local search of the original function
CALL minf(x0,xstar,fxbest)

! Display the minimal solution & value of the original function
PRINT*,"x*=",xstar
PRINT*,"f(x*)=",fxbest

! Call the local search of the filled function
CALL minp(xstar,newx,flag)

! Display the output
PRINT*,"the number of function evaluations=",countf
PRINT*,"the number of filled function evaluations=",countff
PRINT*,"mu=",mu,"rho",rho

IF (flag.EQ.1) THEN
PRINT*,"Point in a lower basin is found as f(x)<f(x*)"
PRINT*,"new starting point,x=",newx,",f(x)=",f(newx)
countxstar=countxstar+1
GOTO 1000

ELSE
PRINT*,"x*=",xstar,"is the global solution."

ENDIF

END

! Define the LOGICAL FUNCTION feasible
LOGICAL FUNCTION feasible(point)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::point(n)
INTEGER::i

feasible=.TRUE.

DO i=1,n
IF (point(i).GT.xu(i).OR.point(i).LT.xl(i)) THEN

feasible=.FALSE.
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RETURN
ENDIF

ENDDO

END FUNCTION feasible

! Objective function
DOUBLEPRECISION FUNCTION f(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,j
LOGICAL:: indicator

DO i=1,pointsCalculated
indicator = .TRUE.
DO j=1,n

IF (table(i,j) .NE. x(j)) THEN
indicator = .FALSE.
EXIT

ENDIF
ENDDO

IF (indicator) THEN
f = table(i,n+1)
RETURN

ENDIF
ENDDO

f=0.0d0
DO i=1,n-1

f=f+(100.0d0*(x(i+1)-x(i)**2)**2+(1.0d0-x(i))**2)
ENDDO

table(pointsCalculated+1,1:n) = x(:)
table(pointsCalculated+1,n+1) = f

pointsCalculated = pointsCalculated + 1
countf=countf+1

END FUNCTION f

! Filled function
DOUBLEPRECISION FUNCTION p(x,xstar,fx,fxstar)
USE constants
IMPLICIT NONE
INTEGER::i,s
INTEGER,INTENT(IN)::x(n),xstar(n)
DOUBLEPRECISION,INTENT(IN)::fx,fxstar
DOUBLEPRECISION::f,y,v,a

y=fx-fxstar

s=0
DO i=1,n

s=s+(x(i)-xstar(i))**2
ENDDO

v=mu*((1.0d0-c)*((1.0d0-c*mu)/(mu-c*mu))**(-y/tao)+c)

a=y*v
p=a*y-rho*s
countff=countff+1

END FUNCTION p
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! Define the LOGICAL FUNCTION to check if a vertex exists
LOGICAL FUNCTION vertex(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,tally

tally=0

DO i=1,n
IF (x(i).EQ.xl(i).OR.x(i).EQ.xu(i)) THEN

tally=tally+1
ENDIF

ENDDO

IF (tally.EQ.n) THEN
vertex=.TRUE.

ELSE
vertex=.FALSE.

ENDIF

END FUNCTION vertex

! Local search of the original function,f
SUBROUTINE minf(x0,xstar,fxbest)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x0(n)
INTEGER,INTENT(OUT)::xstar(n)
DOUBLEPRECISION,INTENT(OUT)::fxbest
INTEGER::x(n),xbest(n),neighbour(n),i,j
DOUBLEPRECISION::f,fx,temp
LOGICAL::feasible

x(:)=x0(:)

DO

fx=f(x)
xbest(:)=x(:)
fxbest=fx

DO j=1,2*n
neighbour(:)=x(:)+e(:,j)

IF (feasible(neighbour)) THEN
temp=f(neighbour)
IF (temp.LT.fxbest) THEN

xbest(:)=neighbour(:)
fxbest=temp

ENDIF
ENDIF

ENDDO

IF (fxbest.EQ.fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDIF

ENDDO

END SUBROUTINE minf
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! Local search of the filled function.
SUBROUTINE minp(xstar,newx,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
INTEGER,INTENT(OUT):: newx(n),flag
INTEGER:: x(n),XI(n,m),i,j,FLOOR,timeArray(3),xbest(n)
DOUBLEPRECISION:: fxstar,f,fx,RAND,fxbest
LOGICAL:: feasible
EXTERNAL::minp1

fxbest = 1.0d5
fxstar = f(xstar)

! Generate a set of random points from FORTRAN.
CALL itime(timeArray)
DO j=1,m

DO i=1,n
XI(i,j)=FLOOR(xl(i)+(RAND(timeArray(3)+j+i))*(xu(i)-xl(i)+1))
x(:) = XI(:,j)
IF (feasible(x)) THEN

fx=f(x)
IF (fx .LT. fxbest) THEN

xbest(:)=x(:)
fxbest=fx

ENDIF
ENDIF

ENDDO
PRINT*,"random point,x=", XI(:,j),"f(x)=",f(x)

ENDDO

IF (fxbest .LT. fxstar) THEN
flag = 1
newx(:) = xbest(:)
RETURN

ENDIF

DO

IF (rho .LT. rhol) THEN
flag = 2
RETURN

ENDIF

DO j=1,m
x(:) = XI(:,j)
CALL minp1(xstar,fxstar,x,flag)
IF (flag .EQ. 1) THEN

newx(:) = x(:)
RETURN

ENDIF
ENDDO

rho = rho*rhohat

ENDDO

END SUBROUTINE minp

SUBROUTINE minp1(xstar,fxstar,x,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
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DOUBLEPRECISION,INTENT(IN):: fxstar
INTEGER,INTENT(INOUT):: x(n)
INTEGER,INTENT(OUT):: flag
INTEGER::xbest(n),neighbour(n),betterxbest(n),j,flag1
DOUBLEPRECISION:: f,fx,fcurrent,fn,p,pcurrent,pbest,temp,total,totalbest
LOGICAL::feasible,vertex

flag = 0

DO

xbest(:) = x(:)
fcurrent = f(x)
pcurrent = p(x,xstar,fcurrent,fxstar)
pbest = pcurrent

flag1 = 0

DO j=1,2*n
neighbour(:) = x(:) + e(:,j)

IF (feasible(neighbour)) THEN
fn = f(neighbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE
temp = p(neighbour,xstar,fn,fxstar)
IF (temp .LT. pbest) THEN

xbest(:) = neighbour(:)
pbest = temp

ENDIF

IF (temp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flag1 .eq. 0) THEN

betterxbest(:) = neighbour(:)
totalbest = temp + fn
flag1 = 1

ELSE
total = temp + fn
IF (total .LT. totalbest) THEN

totalbest = total
betterxbest(:) = neighbour(:)

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF

ENDDO

IF (pbest .EQ. pcurrent) THEN
IF (vertex(x)) THEN

RETURN
ELSE

mu = mu*muhat
CYCLE

ENDIF
ELSE

IF (flag1 .EQ. 1) THEN
x(:) = betterxbest(:)

ELSE
x(:) = xbest(:)

ENDIF
ENDIF
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ENDDO

END SUBROUTINE minp1

A.5 Algorithm 3.6

MODULE constants
SAVE
INTEGER,PARAMETER::n=5,m=2*n,totalpoints=161051
DOUBLEPRECISION,PARAMETER::c=0.5d0,tao=1.0d0,rhol=0.001,muhat=0.1d0,rhohat=0.1d0
INTEGER::xl(n),xu(n),e(n,m),countf,countff,countxstar,pointsCalculated
DOUBLEPRECISION::mu,rho,table(totalpoints,n+1)
END MODULE constants

PROGRAM variation4
USE constants
IMPLICIT NONE
EXTERNAL::minf,minp
INTEGER::x(n),x0(n),xstar(n),newx(n),neighbour(n),i,j,k,flag
DOUBLEPRECISION::f,fxbest

! Set the initial of the parameters
mu=0.1d0
rho=0.1d0

! Initialize the lookup table counter.
pointsCalculated = 0

! Define the upper and lower bounds for x(n)
xl=-5
xu=5

! Set the initial count for f, G, local minimizer obtained.
countf=0
countff=0
countxstar=0

! Set the search direction
DO i=1,n

DO j=1,m
IF (i.EQ.j) THEN

e(i,j)=1
ELSEIF (j.EQ.i+n) THEN

e(i,j)=-1
ELSE

e(i,j)=0
ENDIF

ENDDO
ENDDO

! Set the initial value of x(n)
1000 IF (countxstar.EQ.0) THEN

x0(:)= 5
ELSE

x0(:)= newx(:)
ENDIF
PRINT*,"initial point,x0=",x0

! Call the local search of the original function
CALL minf(x0,xstar,fxbest)

! Display the minimal solution & value of the original function
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PRINT*,"x*=",xstar
PRINT*,"f(x*)=",fxbest

! Call the local search of the filled function
CALL minp(xstar,newx,flag)

! Display the output
PRINT*,"the number of function evaluations=",countf
PRINT*,"the number of filled function evaluations=",countff
PRINT*,"mu=",mu,"rho",rho

IF (flag.EQ.1) THEN
PRINT*,"Point in a lower basin is found as f(x)<f(x*)"
PRINT*,"new starting point,x=",newx,",f(x)=",f(newx)
countxstar=countxstar+1
GOTO 1000

ELSE
PRINT*,"x*=",xstar,"is the global solution."

ENDIF

END

! Define the LOGICAL FUNCTION feasible
LOGICAL FUNCTION feasible(point)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::point(n)
INTEGER::i

feasible=.TRUE.

DO i=1,n
IF (point(i).GT.xu(i).OR.point(i).LT.xl(i)) THEN

feasible=.FALSE.
RETURN

ENDIF
ENDDO

END FUNCTION feasible

! Objective function
DOUBLEPRECISION FUNCTION f(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,j
LOGICAL:: indicator

DO i=1,pointsCalculated
indicator = .TRUE.
DO j=1,n

IF (table(i,j) .NE. x(j)) THEN
indicator = .FALSE.
EXIT

ENDIF
ENDDO

IF (indicator) THEN
f = table(i,n+1)
RETURN

ENDIF
ENDDO

f=0.0d0
DO i=1,n-1
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f=f+(100.0d0*(x(i+1)-x(i)**2)**2+(1.0d0-x(i))**2)
ENDDO

table(pointsCalculated+1,1:n) = x(:)
table(pointsCalculated+1,n+1) = f

pointsCalculated = pointsCalculated + 1
countf=countf+1

END FUNCTION f

! Filled function
DOUBLEPRECISION FUNCTION p(x,xstar,fx,fxstar)
USE constants
IMPLICIT NONE
INTEGER::i,s
INTEGER,INTENT(IN)::x(n),xstar(n)
DOUBLEPRECISION,INTENT(IN)::fx,fxstar
DOUBLEPRECISION::f,y,v,a

y=fx-fxstar

s=0
DO i=1,n

s=s+(x(i)-xstar(i))**2
ENDDO

v=mu*((1.0d0-c)*((1.0d0-c*mu)/(mu-c*mu))**(-y/tao)+c)

a=y*v
p=a*y-rho*s
countff=countff+1

END FUNCTION p

! Define the LOGICAL FUNCTION to check if a vertex exists
LOGICAL FUNCTION vertex(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,tally

tally=0

DO i=1,n
IF (x(i).EQ.xl(i).OR.x(i).EQ.xu(i)) THEN

tally=tally+1
ENDIF

ENDDO

IF (tally.EQ.n) THEN
vertex=.TRUE.

ELSE
vertex=.FALSE.

ENDIF

END FUNCTION vertex

! Local search of the original function,f
SUBROUTINE minf(x0,xstar,fxbest)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x0(n)
INTEGER,INTENT(OUT)::xstar(n)
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DOUBLEPRECISION,INTENT(OUT)::fxbest
INTEGER::x(n),xbest(n),neighbour(n),i,j
DOUBLEPRECISION::f,fx,temp
LOGICAL::feasible

x(:)=x0(:)

DO

fx=f(x)
xbest(:)=x(:)
fxbest=fx

DO j=1,2*n
neighbour(:)=x(:)+e(:,j)

IF (feasible(neighbour)) THEN
temp=f(neighbour)
IF (temp.LT.fxbest) THEN

xbest(:)=neighbour(:)
fxbest=temp

ENDIF
ENDIF

ENDDO

IF (fxbest.EQ.fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDIF

ENDDO

END SUBROUTINE minf

! Local search of the filled function.
SUBROUTINE minp(xstar,newx,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
INTEGER,INTENT(OUT):: newx(n),flag
INTEGER:: x(n),i,j,FLOOR,timeArray(3),r(n,m),xr(n),XI(n,m)
DOUBLEPRECISION:: fxstar,f,fx,RAND
LOGICAL:: feasible
EXTERNAL::minp1

! Generate a set of random points from FORTRAN.
CALL itime(timeArray)
DO j=1,m

DO i=1,n
r(i,j)=FLOOR(xl(i)+(RAND(timeArray(3)+j+i))*(xu(i)-xl(i)+1))

ENDDO
ENDDO

fxstar = f(xstar)

DO j=1,m
IF (feasible(r(:,j))) THEN

xr(:)=r(:,j)
fx=f(xr(:))
PRINT*,"feasible random point=",xr(:),"and f=",fx
IF (fx .LT. fxstar) THEN

flag = 1
newx(:) = xr(:)
RETURN
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ENDIF
ENDIF

ENDDO

DO
IF (rho .LT. rhol) THEN

flag = 2
RETURN

ENDIF

DO j=1,m
XI(:,j) = xstar(:) + 2*e(:,j)

x(:) = XI(:,j)
IF (feasible(x)) THEN

fx=f(x)
IF (fx .LT. fxstar) THEN

flag = 1
newx(:) = x(:)
RETURN

ENDIF
ENDIF

ENDDO

DO j=1,m
x(:) = xstar(:) + 2*e(:,j)
IF (feasible(x)) THEN

CALL minp1(xstar,fxstar,x,flag)
IF (flag .EQ. 1) THEN

newx(:) = x(:)
RETURN

ENDIF
ENDIF

ENDDO

rho = rho*rhohat

ENDDO

END SUBROUTINE minp

SUBROUTINE minp1(xstar,fxstar,x,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
DOUBLEPRECISION,INTENT(IN):: fxstar
INTEGER,INTENT(INOUT):: x(n)
INTEGER,INTENT(OUT):: flag
INTEGER::xbest(n),neighbour(n),betterxbest(n),j,flag1
DOUBLEPRECISION:: f,fx,fcurrent,fn,p,pcurrent,pbest,temp,total,totalbest
LOGICAL::feasible,vertex

flag = 0

DO

xbest(:) = x(:)
fcurrent = f(x)
pcurrent = p(x,xstar,fcurrent,fxstar)
pbest = pcurrent

flag1 = 0

DO j=1,2*n
neighbour(:) = x(:) + e(:,j)

IF (feasible(neighbour)) THEN
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fn = f(neighbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE
temp = p(neighbour,xstar,fn,fxstar)
IF (temp .LT. pbest) THEN

xbest(:) = neighbour(:)
pbest = temp

ENDIF

IF (temp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flag1 .eq. 0) THEN

betterxbest(:) = neighbour(:)
totalbest = temp + fn
flag1 = 1

ELSE
total = temp + fn
IF (total .LT. totalbest) THEN

totalbest = total
betterxbest(:) = neighbour(:)

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF

ENDDO

IF (pbest .EQ. pcurrent) THEN
IF (vertex(x)) THEN

RETURN
ELSE

mu = mu*muhat
CYCLE

ENDIF
ELSE

IF (flag1 .EQ. 1) THEN
x(:) = betterxbest(:)

ELSE
x(:) = xbest(:)

ENDIF
ENDIF

ENDDO

END SUBROUTINE minp1

A.6 Algorithm 3.7

MODULE constants
SAVE
INTEGER,PARAMETER::n=5,m=2*n,totalpoints=161051
DOUBLEPRECISION,PARAMETER::c=0.5d0,tao=1.0d0,rhol=0.001,muhat=0.1d0,rhohat=0.1d0
INTEGER::xl(n),xu(n),e(n,m),countf,countff,countxstar,pointsCalculated
DOUBLEPRECISION::mu,rho,table(totalpoints,n+1)
END MODULE constants

PROGRAM variation5
USE constants
IMPLICIT NONE
EXTERNAL::minf,minp
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INTEGER::x(n),x0(n),xstar(n),newx(n),neighbour(n),i,j,k,flag
DOUBLEPRECISION::f,fxbest

! Set the initial of the parameters
mu=0.1d0
rho=0.1d0

! Initialize the lookup table counter.
pointsCalculated = 0

! Define the upper and lower bounds for x(n)
xl=-5
xu=5

! Set the initial count for f, G, local minimizer obtained.
countf=0
countff=0
countxstar=0

! Set the search direction
DO i=1,n

DO j=1,m
IF (i.EQ.j) THEN

e(i,j)=1
ELSEIF (j.EQ.i+n) THEN

e(i,j)=-1
ELSE

e(i,j)=0
ENDIF

ENDDO
ENDDO

! Set the initial value of x(n)
1000 IF (countxstar.EQ.0) THEN

x0(:)= 5
ELSE

x0(:)= newx(:)
ENDIF
PRINT*,"initial point,x0=",x0

! Call the local search of the original function
CALL minf(x0,xstar,fxbest)

! Display the minimal solution & value of the original function
PRINT*,"x*=",xstar
PRINT*,"f(x*)=",fxbest

! Call the local search of the filled function
CALL minp(xstar,newx,flag)

! Display the output
PRINT*,"the number of function evaluations=",countf
PRINT*,"the number of filled function evaluations=",countff
PRINT*,"mu=",mu,"rho",rho

IF (flag.EQ.1) THEN
PRINT*,"Point in a lower basin is found as f(x)<f(x*)"
PRINT*,"new starting point,x=",newx,",f(x)=",f(newx)
countxstar=countxstar+1
GOTO 1000

ELSE
PRINT*,"x*=",xstar,"is the global solution."

ENDIF

END
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! Define the LOGICAL FUNCTION feasible
LOGICAL FUNCTION feasible(point)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::point(n)
INTEGER::i

feasible=.TRUE.

DO i=1,n
IF (point(i).GT.xu(i).OR.point(i).LT.xl(i)) THEN

feasible=.FALSE.
RETURN

ENDIF
ENDDO

END FUNCTION feasible

! Objective function
DOUBLEPRECISION FUNCTION f(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,j
LOGICAL:: indicator

DO i=1,pointsCalculated
indicator = .TRUE.
DO j=1,n

IF (table(i,j) .NE. x(j)) THEN
indicator = .FALSE.
EXIT

ENDIF
ENDDO

IF (indicator) THEN
f = table(i,n+1)
RETURN

ENDIF
ENDDO

f=0.0d0
DO i=1,n-1

f=f+(100.0d0*(x(i+1)-x(i)**2)**2+(1.0d0-x(i))**2)
ENDDO

table(pointsCalculated+1,1:n) = x(:)
table(pointsCalculated+1,n+1) = f

pointsCalculated = pointsCalculated + 1
countf=countf+1

END FUNCTION f

! Filled function
DOUBLEPRECISION FUNCTION p(x,xstar,fx,fxstar)
USE constants
IMPLICIT NONE
INTEGER::i,s
INTEGER,INTENT(IN)::x(n),xstar(n)
DOUBLEPRECISION,INTENT(IN)::fx,fxstar
DOUBLEPRECISION::f,y,v,a

y=fx-fxstar
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s=0
DO i=1,n

s=s+(x(i)-xstar(i))**2
ENDDO

v=mu*((1.0d0-c)*((1.0d0-c*mu)/(mu-c*mu))**(-y/tao)+c)

a=y*v
p=a*y-rho*s
countff=countff+1

END FUNCTION p

! Define the LOGICAL FUNCTION to check if a vertex exists
LOGICAL FUNCTION vertex(x)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x(n)
INTEGER::i,tally

tally=0

DO i=1,n
IF (x(i).EQ.xl(i).OR.x(i).EQ.xu(i)) THEN

tally=tally+1
ENDIF

ENDDO

IF (tally.EQ.n) THEN
vertex=.TRUE.

ELSE
vertex=.FALSE.

ENDIF

END FUNCTION vertex

! Local search of the original function,f
SUBROUTINE minf(x0,xstar,fxbest)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN)::x0(n)
INTEGER,INTENT(OUT)::xstar(n)
DOUBLEPRECISION,INTENT(OUT)::fxbest
INTEGER::x(n),xbest(n),neighbour(n),i,j
DOUBLEPRECISION::f,fx,temp
LOGICAL::feasible

x(:)=x0(:)

DO

fx=f(x)
xbest(:)=x(:)
fxbest=fx

DO j=1,2*n
neighbour(:)=x(:)+e(:,j)

IF (feasible(neighbour)) THEN
temp=f(neighbour)
IF (temp.LT.fxbest) THEN

xbest(:)=neighbour(:)
fxbest=temp

ENDIF
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ENDIF
ENDDO

IF (fxbest.EQ.fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDIF

ENDDO

END SUBROUTINE minf

! Local search of the filled function.
SUBROUTINE minp(xstar,newx,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
INTEGER,INTENT(OUT):: newx(n),flag
INTEGER:: x(n),i,j,FLOOR,timeArray(3),r(n,m)
DOUBLEPRECISION:: fxstar,f,fx,RAND
LOGICAL:: feasible
EXTERNAL::minp1

! Generate a set of random points from FORTRAN.
CALL itime(timeArray)
DO j=1,m

DO i=1,n
r(i,j)=FLOOR(xl(i)+(RAND(timeArray(3)+j+i))*(xu(i)-xl(i)+1))

ENDDO
ENDDO

fxstar = f(xstar)

DO j=1,m
IF (feasible(r(:,j))) THEN

fx=f(r(:,j))
PRINT*,"feasible random point=",r(:,j),"and f=",fx
IF (fx .LT. fxstar) THEN

flag = 1
newx(:) = r(:,j)
RETURN

ENDIF
ENDIF

ENDDO

DO

IF (rho .LT. rhol) THEN
flag = 2
RETURN

ENDIF

DO j=1,m
x(:) = xstar(:) + e(:,j)
IF (feasible(x)) THEN

CALL minp1(xstar,fxstar,x,flag)
IF (flag .EQ. 1) THEN

newx(:) = x(:)
RETURN

ENDIF
ENDIF

ENDDO

rho = rho*rhohat
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ENDDO

END SUBROUTINE minp

SUBROUTINE minp1(xstar,fxstar,x,flag)
USE constants
IMPLICIT NONE
INTEGER,INTENT(IN):: xstar(n)
DOUBLEPRECISION,INTENT(IN):: fxstar
INTEGER,INTENT(INOUT):: x(n)
INTEGER,INTENT(OUT):: flag
INTEGER::xbest(n),neighbour(n),betterxbest(n),j,flag1
DOUBLEPRECISION:: f,fx,fcurrent,fn,p,pcurrent,pbest,temp,total,totalbest
LOGICAL::feasible,vertex

flag = 0

DO

xbest(:) = x(:)
fcurrent = f(x)
pcurrent = p(x,xstar,fcurrent,fxstar)
pbest = pcurrent

flag1 = 0

DO j=1,2*n
neighbour(:) = x(:) + e(:,j)

IF (feasible(neighbour)) THEN
fn = f(neighbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE
temp = p(neighbour,xstar,fn,fxstar)
IF (temp .LT. pbest) THEN

xbest(:) = neighbour(:)
pbest = temp

ENDIF

IF (temp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flag1 .eq. 0) THEN

betterxbest(:) = neighbour(:)
totalbest = temp + fn
flag1 = 1

ELSE
total = temp + fn
IF (total .LT. totalbest) THEN

totalbest = total
betterxbest(:) = neighbour(:)

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF

ENDDO

IF (pbest .EQ. pcurrent) THEN
IF (vertex(x)) THEN

RETURN
ELSE

mu = mu*muhat
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CYCLE
ENDIF

ELSE
IF (flag1 .EQ. 1) THEN

x(:) = betterxbest(:)
ELSE

x(:) = xbest(:)
ENDIF

ENDIF

ENDDO

END SUBROUTINE minp1
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