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Abstract

Optimal control problems arise in many applications, sucimaconomics,
finance, process engineering, and robotics. Some optiméiat@roblems involve
a control which takes values from a discrete set. These @gmublare known as
discrete-valued optimal control problems. Most practitiscrete-valued optimal
control problems have multiple local minima and thus reggilobal optimization
methods to generate practically useful solutions. Due ¢ohigh complexity of
these problems, metaheuristic based global optimiza¢icmiques are usually re-
quired.

One of the more recent global optimization tools in the arediscrete op-
timization is known as the discrete filled function methocheTbasic idea of the
discrete filled function method is as follows. We choose atiainpoint and then
perform a local search to find an initial local minimizer. Theve construct an
auxiliary function, called a discrete filled function, atthocal minimizer. By min-
imizing the filled function, either an improved local minmer is found or one of
the vertices of the constraint set is reached. Otherwigsepénameters of the filled
function are adjusted. This process is repeated until ntetdetcal minimizer of the
corresponding filled function is found. The final local mimazer is then taken as an
approximation of the global minimizer.

While the main aim of this thesis is to present a new computatimethod
for solving discrete-valued optimal control problems, itiéal focus is on solving
purely discrete optimization problems. We identify seVdiscrete filled functions

techniques in the literature and perform a critical reviaaluding comprehensive



numerical tests. Once the best filled function method istitled, we propose and
test several variations of the method with numerical exaspl

We then consider the task of determining near globally ogitisolutions
of discrete-valued optimal control problems. The main clify in solving the
discrete-valued optimal control problems is that the cadnmstraint set is discrete
and hence not convex. Conventional computational optirmadrol techniques are
designed for problems in which the control takes values iormected set, such as
an interval, and thus they cannot solve the problem direEtlythermore, variable
switching times are known to cause problems in the impleati&mt of any numeri-
cal algorithm due to the variable location of discontirestin the dynamics. There-
fore, such problem cannot be solved using conventional ctatipnal approaches.
We propose a time scaling transformation to overcome tfificalty, where a new
discrete variable representing the switching sequenceaamalv variable control-
ling the switching times are introduced. The transformmatesults in an equivalent
mixed discrete optimization problem. The transformed fealis then decomposed
into a bi-level optimization problem, which is solved usengombination of an ef-
ficient discrete filled function method identified earliedancomputational optimal
control technique based on the concept of control paramatem.

To demonstrate the applicability of the proposed methodseee two com-
plex applied engineering problems involving a hybrid posgstem and a sensor
scheduling task, respectively. Computational resultgatd that this method is ro-
bust, reliable, and efficient. It can successfully idenéifpear-global solution for
these complex applied optimization problems, despite #raahstrated presence
of multiple local optima. In addition, we also compare thsules obtained with
other methods in the literature. Numerical results conflrat the proposed method

yields significant improvements over those obtained byratiethods.
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Chapter 1

Introduction

1.1 Background

Optimal control describes the task of determining feasdatrol policies for a
given dynamical system to achieve a certain optimalityedoin. Specifically, an
objective functional is to be minimized subject to a dynaah&ystem governing
the behavior of the state variables and subject to consirdilsually, the dynamical
system constitutes a set of ordinary or partial differentagipns.

Optimal control problems can be found in many applicatiangh as eco-
nomics, finance, engineering, and robotics. The first ordeessary conditions of
for an optimal control are described by the Euler-Lagrargpeagons. However, the
Euler-Lagrange equations do not apply in the presence afidson the control.
Instead, the first order necessary conditions of optiméditysuch problems can be
determined by the minimum principle [110]. Application bEtminimum principle
developed by Pontryagin and his collaborators can solveynualized problems
and has found wide application in the theory of economic$ [Bl@cessary condi-
tions of optimality are essentially stated in the forms oiva-point boundary value
problem. When this cannot be solved analytically, as isnoftee case, one must
resort to numerical methods. One of the common techniquesofeing two-point
boundary value problems is the multiple shooting methodis Tinethod divides
the time horizon into several subintervals, solves anahitlue problem over each

of these intervals, and imposes additional matching canditto form a complete



solution of the problem [18, 103, 109].

Another well-known principle, known as dynamic programgyaminciple [6],
is introduced by Bellman to solve optimal control problemscontrast to the min-
imum principle, the technique often yields the optimal cohin a feedback form.
While many optimal control problems have been solved bytdghnique, the ap-
plication of the dynamic programming principal requires folution of Hamilton-
Jacobi-Bellman (HJB) partial differential equation, whnithen yields the optimal
value function from which the optimal control may be detared. For most prac-
tically significant problems, though, it is difficult to seivhe Hamilton-Jacobi-
Bellman equation directly. Many applications based compfgimal control prob-
lems cannot be solved analytically by any of the means dészliabove. Even the
numerical solution of the HIB is usually difficult to detemaj especially in the case
of high dimensional problems.

Since the introduction of computers in 1950s, many comjmutat procedures
have been developed to solve complex optimal control problleumerically. Over
the years, numerical solution techniques have solved allveraye of practical opti-
mal control problems successfully. Following the publicatbof [145], new interest
has emerged in the area of optimal control computation. Reocends in the area

are:

The recognition that many practical problems involve ingpué or hybrid
systems [22, 126, 157];

e The need to solve practical problems where the control taékses from a
discrete set [46, 56, 111, 134];

e The practical need to determine a globally rather than justlly optimal

solution [11];
e The ability to test sufficient conditions for optimality nenically [92, 93, 94].

In this thesis, we focus on optimal control problems invadycontrols which

take values from discrete sets. Such problems are knowsa®ti-valued optimal



control problems. Solving the discrete-valued optimaltoarproblems has been a
challenging task since the control restraint set is disaatl hence not convex. Fur-
thermore, many practical discrete-valued optimal corngroblems have more than
one locally optimal solution, thus leading to the challen§éetermining the best
solution amongst these multiple local optima. The besttewiwbtained is known
as the global solution. In the next section, we review séwaraputational methods
for solving generic optimal control problems. Then, we tyieiscuss the special
nature of discrete-valued optimal control problems folkboMwith a discussion of

global optimization methods.

1.2 Computational Methods for Solving Optimal Con-
trol Problems

Over the years, many computational methods have been gexeto solve a broad
class of complex optimal control problems. All methods imeoa partition of the
time horizon and many require a discretized approximatfahe control in some
form. Some methods also discretize the state of the prolbheitreerefore the differ-
ential equations describing the system dynamics. Most odstliltimately arrive
at an approximating mathematical programming problem kyhiie turn, can be
solved by a variety of optimization techniques. In this ssttwe look at several of

the more popular numerical solution techniques for opticoalrol problems.

1.2.1 Direct Collocation (DIRCOL)

A special transcription method, DIRCOL converts a consgdioptimal control
problem into a finite dimensional nonlinear constrainedmiaiation problem by
an appropriate discretization of both control and statéatées. The transformed
problem, the dimension of which depends on the discretinagrid, can be solved
by standard quadratic programming (SQP) methods [28, 119]. 1A detail de-
scription of the method is given in [148, 149]. Although incaeadily solve small

scale problems, the discretization of both control ancestatiables for large scale



problems requires excessive computational time and storag

1.2.2 Dynamic Programming and Iterative Dynamic Program-
ming (IDP)

Bellman’s principle of optimality has made a significant tdution in a wide
range of applications in optimal control. Some extensiomd aariation of the
principle are discussed in [47, 72, 73, 74, 75, 86]. The IDinejue is loosely
based on Bellman’s principle of optimality. The method uaegid structure for
discretizing both the state variables and the controls.eésible points in the state
trajectory and admissible control values are defined orsgahstructed in the state
and control space, respectively. The grids are refinedtiveta until a satisfactory
control policy is obtained. The technique was initially dped in [74] and then
refined in [72, 78] to improve the computational efficiencizeTearly version of the
method used piecewise constant controls and this was betiemded to piecewise
linear continuous control policies [75]. Constraints areorporated into the objec-
tive function using a penalty function method. It has fouridespread application
in the area of chemical engineering [76, 78, 79, 82, 117,.136ever, the method
can be difficult to use due to the presence of many user defimean@ters driving

the algorithm.

1.2.3 Luus-Jaakola (LJ) Optimization Procedure

The LJ optimization procedure [85] is a direct search opation technique based
on randomly chosen points and an adaptive reduction of drelsspace. An initial

control estimator is taken at each of a predetermined nuwib&ages along with

an initial region size for the control used at each stage.abrhateration, a set of
control values is generated randomly and is used to evadmedegmented objective
function. The best of these over a predetermined numbee@tions is then taken
as the solution of that stage. The search region is conttdmtea chosen region
contraction factor. This process is repeated until a sgecifiumber of passes is

reached or the convergence criterion is satisfied. The lithggattion procedure has



been successfully applied to solve a broad class of praptichlems, such as those
in [77, 80, 81, 83, 84]. A major problem with the method is thege number of
function evaluations required. The method also requiresfeghtuning making it

more suitable for expert users.

1.2.4 Control Parameterization

In control parameterization, the time horizon of an optigw@itrol problem is par-
titioned into several subintervals such that each continllme approximated by a
piecewise polynomial function consistent with the coregging partition. Often,
the control function is expressed as a linear combinatioa pblynomial spline
where the coefficients of the function determine the contrbhese coefficients
are known as the control parameters. The more intervals insagartition, the
more accurate are the solution it yields. As a results, amapicontrol problem
becomes a finite dimensional optimal parameter selectiobl@m, which is essen-
tially a mathematical programming problem. Thus, the sotubf the resulting
problem can be readily obtained by existing optimizatioftveare packages, such
as NPSOL [33], NLPQL [119], FFSQP [164], based on the sedglempiadratic
programming method. A convergence analysis of this appreaa be found in
[130, 131, 132, 133, 140]. In addition, [121] discusses thyarapriate choice of
both the control parameterization and the numerical smiigscheme for the under-
lying dynamical system. Calculation of the gradients witspect to the control
parameters needs to be preformed in a roundabout mannesaallyuequires the
solution of a set of costate differential equations [140pm® applications of the
control parametrization technique can be found in [9, 35426 48, 49, 130, 131,
132, 133, 136, 137, 138, 139, 140, 141, 142, 143, 144, 152].

1.2.5 Recursive Integration Optimal Trajectory Solver (RIOTS)

RIOTS is one of the toolbox designed for Matlab [123] for $odvoptimal con-
trol problems. The basic idea behind RIOTS is to approxinsatérols by finite-

dimensional B-splines, which is an example of the controhpeeterization ap-



proach. The integration of the system dynamics is carrigdising fixed step-size
Runge-Kutta integration. A detailed description of the lempentation of RIOTS
in the application examples can be found in [100, 122, 128weéler, RIOTS has
some limitations on type of problems it can solve effecijéR3]. For instance, it
has difficulty in solving problems involve inequality stat@nstraints which require
a high level of discretization; the computation of gradseior path constraints are
not handled as efficiently as expected; and the selectioheotontrol subspaces
affects both the accuracy of numerical integration and gpg@imate solutions to

the original problem.

1.2.6 Sequential Gradient Restoration Algorithms

While this approach is also based on control parameteoizatie underlying math-
ematical programming problem is not solved in the usual reanimstead, its so-
lution involves a sequences of two phase cycles: a gradleaggpand a restoration
phase. The first phase minimizes the augmented objectiatiduinwhile the latter
reduces the resulting constraint violation. A detaileccdption and analysis of the
method can be found in [96, 97, 98, 99].

1.2.7 Leap-Frog Algorithm

Initially developed in [108], the leap-frog algorithm isagkto solve a special types
of two point boundary value problems. The algorithm is fartdeveloped in [53,
54] to handle general nonlinear systems with unbounded andded controls. A
piecewise optimal trajectory is obtained in each subirtewhere the junctions of
these sub-trajectories are updated through a scheme obmidpaps. A thorough
description of the algorithm is outlined in [53, 54] to sobvelass of optimal control

problems with bounded controls in the plane.

1.2.8 Switching Time Computation (STC) Method

The STC is a computational procedure developed in [52] terdehe suitable

places of switchings for single-input nonlinear systemsoAcatenation of constant-



input arcs is applied to solve the dynamics from a givenahint to the target.
The gradients with respect to the switching times variabkescomputed without
the use of costate equations. The method is incorporatedimeaoptimal bang-
bang (TOBC) control algorithm in [51, 71]. Although the ST@timod can be fast
compared with other optimal control software, there is atbohclass of problems
which can be solved by this method. For instances, many tfgmstraints cannot

be handled directly without using penalty methods.

1.2.9 MISER3.3

MISERS3.3 [48] is an optimal control software package basethe control param-
eterization technique as described above. It can handéadypes of constraints
in solving optimal control problems, including all time opgality constraints on the
state. The package is designed to deal with a general cadaren of optimal
control problems, thus making it widely applicable. MISE&tbeen successfully
applied to solve many practical optimal control problems, [21, 48, 59, 61, 62,
60, 63, 64, 66, 67, 68, 111, 140, 142, 143, 146].

1.3 Discrete-Valued Optimal Control Problems

In discrete-valued optimal control problems, the conteotastricted to a set of
discrete values. Examples include the design of operatimggaures of a chemical
plant (start up, shut down, and changeovers) [56], manageofebatteries in a
submarine [111], optimal driving strategies for a train][46e submarine transit
path problem [11], and switched amplifier design [134]. Twvecsuch problems, it
is necessary to find the optimal sequence of discrete corahaés and the optimal
switching times between changing control actions. Soldisgrete-valued optimal
control problems involves several additional challengégctv as not encountered

with continuous valued optimal control problems. Thesdude:

e The feasible region of the underlying mathemtical prograngnproblem is

discrete and hence not convex.



e The gradients of the objective and constraint function$ wéspect to the
switching times are not differentiable [140], thus makindifficult to imple-
ment efficient gradient based optimization methods to ¢aielexact values

for the switching times.

e Numerical integration of the dynamics become difficult wkariable switch-
ing times are involved, as the knot points in the integraBoheme require

updating whenever the switching times change [70].

e The number of possible switching sequences is extremedg lisar many ex-
amples. In fact, finding an optimal switching sequence is ralinatorial

optimization problem which is well known to be difficult tolge [64].

A variety of approaches to solve discrete-valued optimatrad problems in
the literature is reviewed in [129]. This include the cohparameterization enhanc-
ing technique (CPET) [64], stochastic methods [13, 114),1&8ndard methods
using excessive refinement [79], and exact semi analytiedhoas [55]. Among
these methods, CPET appears to be the only effective nusthegahnique which is
widely applicable to this class of optimal control problefh29]. CPET transforms
a discrete-valued optimal control problem into an equivatgtimal parameter se-
lection problem. Under this transformation, the switchpaints are mapped onto
a set of fixed knots in the new time scale, and the transformeblgm is an or-
dinary optimal control problem with known and fixed switcpimstants. Hence,
such problems can be readily solved by many existing optauoatrol techniques
such as control parameterization. The effectiveness ofldRIgEetermining exact
switching instants of a control policy has been proven in @9 61, 62, 63, 143]
for various nontrivial problems.

Although CPET overcomes the first three difficulties mergiabove, it does
not handle the last issue effectively as it introduces matifycgal switchings in or-
der to capture more possible orderings of the sequence ofetiiscontrol values
when solving the transformed problem. Furthermore, the TTC&gproach is gener-

ally not able to determine a global or near global optimalsking sequence. With



the addition of a large number of artificial switches, theutsg optimization prob-
lem has many more local minima and many of these have rel\atigh objective
values. Note that many practical discrete-valued optiratrol problems exhibit
similar behavior, thus making it harder to determine thégl@ptimal solution of

such problems.

1.4 Global Optimization

Most practical discrete and mixed discrete optimizatiarbpgms are nonlinear and
known to have more than one locally optimal solution. Thiggasts the need for
global optimization techniques which seek the best satimongst multiple local
optima. Global optimization problems may be unconstraioedonstrained, and
different algorithms have been developed, depending ortheheonstraints are
present as well as on the nature of these constraints.

The challenge in global optimization is to avoid being treghn the basins
surrounding local minimizers. Several global methods en proposed for solv-
ing discrete optimization problems. These techniques eanldssified into two
main categories: exact methods and metaheuristic metfidesoranch and bound
method [41, 65, 87], the cutting plane method [23, 29, 163jgrangian relax-
ation [27, 32], the nonlinear Lagrangian relaxation metfid¥, 159], the discrete
Lagrangian methods [155, 156], dynamic programming [90¢ eelaxation tech-
niques [15, 40, 113] are popular exact methods. These exgitioals can ensure
that a global solution is found when solving small size digeptimization prob-
lems. However, such methods require excessive compugtiome when solving
large scale problems. Furthermore, only well-structuneblems with good ana-
lytical properties can be solved efficiently using thesecerzethods.

Since nonlinear discrete optimization problems are gdiyexde-hard, there
are no exact algorithms with polynomial-time complexity $olving them. Hence,
a metaheuristic computational approach is required, éspefor high-dimensional

problems. The term metaheuristic is derived from two Greefds, wherdneuristic



(heuriskein)meango find while the suffixmetarefers tobeyond, in an upper level
[8]. A heuristic is a technique to find a good feasible solutihere the global opti-
mality is not crucial. Often, a heuristic method is problepecific and designed to
obtain conceptual simplicity [8, 10, 43]. A metaheurissihigher level heuristic
algorithm for solving a general class of optimization peshk. It is a master strat-
egy which combines different methods for exploring seapzcs efficiently in de-
termining a near-optima solution. Thus, metaheuristitsbroduce higher quality
results than classical heuristics though they generatjyire longer computational
times. In addition, metaheuristics are capable of solvingreety of complex appli-
cation problems and they avoid getting trapped in basinsceéeted with local ex-
treme points. The metaheuristic methods include greedschg3, 17, 20, 24], sim-
ulated annealing [101, 115], genetic algorithms [12, 144) ltabu search [34, 95],
and filled function techniques. Though these methods caguatantee a global
solution, satisfactory results can often be found for highethsional nonlinear dis-

crete optimization problems in a reasonable amount of coatipnal time.

1.5 Discrete Filled Function Method

The discrete filled function method is one of the more regeddéveloped global
optimization tools for discrete optimization problems. @@ra local minimum has
been determined by an ordinary descent method, the disfifetk function ap-
proach introduces an auxiliary function to avoid entrapniethe basin associated
with this minimum. The local minimizer of the original fumah becomes a lo-
cal maximizer of the auxiliary function. By minimizing thendliary function, the
search moves away from the current local minimizer in theeholpescaping the
basin associated with this minimizer. Note that the auxilfanction is defined in
terms of one or more parameters and needs to possess ceopénties, details of
which are discussed in Chapter 2.
The first filled function was introduced by Ge in the late 1988 in the

context of solving continuous global optimization probkerin [31], Ge and Huang
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extended the continuous filled function concept to solvelinear discrete opti-
mization problems, where a continuous global optimizapioyblem is formulated
to approximate the discrete global optimization probleefpke solving it by the
continuous filled function method. When a global minimizéthe continuous ap-
proximation is found, the nearest integer point is used fw@pmate the global
solution of the discrete problem. However, the approxingationtinuous optimiza-
tion problem always generates more local minimizers thamtiginal discrete one,
thus making it more difficult to determine a global solutidfumerical results re-
ported in [105] have shown that the true global minimizerif§alilt to determine

using this approach. A detailed analysis of the continudigsifiunction approach
can also be found in [105].

Zhu [165] is believed to be the first researcher to introduteui@ discrete
equivalent of the continuous filled function method in 1a89Qs. Such an approach
is now known as a discrete filled function method or discré&iba descent method.
A discrete filled function method is able to overcome the clifties encountered in
using a continuous approximation, as discussed above. ¥wyibe filled function
proposed by Zhu contains an exponential term, which coresgtyumakes it diffi-
cult to determine a point in a lower basin [105, 106]. Sinantlseveral types of
discrete filled functions with improved theoretical prapes have been proposed in
[38, 106, 107,127, 128, 160, 161, 162] to enhance computteificiency.

The discrete filled function approach can be described &l An initial
point is chosen and a local search is applied to find an irdisdrete local min-
imizer. Then, an auxiliary function, called a filled funatias constructed at this
local minimizer. By minimizing the filled function, eithemamproved discrete
local minimizer is found or the boundary of the feasible oegis reached. The
discrete local minimizer of the filled function usually bewes a new starting point
for minimizing the original objective with the hope of findjran improved point
compared to the first local minimizer. A new filled functiondsnstructed at this
improved point. The process is repeated until no improvedllminimizer of the

earlier filled function can be found. The final discrete laoahimizer is then taken
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as an approximation of the global minimizer.

If a local minimizer of the filled function cannot be found exftrepeated
searches terminate on the boundary of the box constrairesibfe region, the
parameters defining the filled functions are adjusted andsdaech is repeated.
This adjustment of the parameters continues until the patens reach their pre-
determined bounds; the best solution obtained so far is tidlegn as the global
minimizer. Note that some filled functions have one param@gch as those in
[38, 127, 161]), while the rest are equipped with two paramsetThe latter filled
functions often have one parameter which is partially ddpathon the other and
this requires additional steps when tuning the parameatevsder to satisfy the re-
quired convergence criteria. Note that each filled funatiscussed here has unique
characteristics. The complexity of each filled functionlsoadependent on its as-
sociated algorithm, as discussed in detail in the followdhgpter.

Filled function methods have been a popular global optitrordool in recent
years. However, there has been limited attention on iryasstig this method in the
context of mixed discrete optimization problems in pattcuhe class of discrete

valued optimal control problems.

1.6 Objectives

The main purpose of this research is to construct and testeighlgorithm which
incorporates a discrete filled function method into a coragpomal optimal control
algorithm capable of solving a general class of discretaedhoptimal control prob-
lems. To start with, we introduce a modified time scaling$farmation that results
in a transformed problem which has far fewer variables thahresulting from the
standard CPET approach. The resulting problem has fewal moimimizers and a
global solution can thus be obtained with less computaltieffiart. It is essentially
a mixed discrete optimization problem and the next stagaiopooposed method
involve its decomposition into a purely discrete optimi@atproblem and an ordi-

nary optimal parameter selection problem. We then applyfantere discrete filled
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function algorithm which is able to bypass locally optimalugions and thus yield
a solution closer to the global one. A standard optimal a@package, MISER3.3,
is used to solve the subproblems which appear at everyigeratthe discrete opti-
mization. We apply our proposed algorithm to two discredsgd optimal control
problems in engineering: the hybrid power system problethssemsor scheduling
problem. The first problem involves a hybrid system whichuregp an operating
schedule to minimize the total operating cost of a PV(phaltaic)-diesel-battery
hybrid power system. The second problem involves the ojpperachedule of a
set of sensors over a given time frame to reduce the ovegaldkestimation error.
We attempt to determine the global optimal solution for begiplication problems
which are well known to have multiple local minima. We suminaiour research

objectives as follows:

e To review existing discrete filled function methods and careptheir com-
putational efficiency when solving discrete optimizatisaolgems and mixed

discrete optimization problems.

e To develop new discrete filled function algorithms to solisctete optimiza-

tion problems efficiently.

e To introduce a transformation where a discrete-valuedmgdtcontrol prob-

lem is transformed into an equivalent mixed discrete oation problem.

e To propose a decomposition of this problem into a discrepeufevel and a

continuous lower level problem.

e To apply an effective discrete filled function method to tipper level prob-

lem.

e To determine a near global solution of minimizing the opgeratost of a

hybrid power system.

e To determine a near global solution of minimizing the errstiraation of a

general sensor scheduling problem.
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e To embed the discrete filled function algorithm into MISER3he optimal
control software, in such a way that a near globally optinodition is ob-

tained when solving discrete-valued optimal control peofs.

1.7 Significance of the Study

A new algorithm based on the discrete filled function methadi@n a conventional
computational optimal control algorithm is proposed tovedlliscrete-valued op-
timal control problems. Numerical results demonstrate the method is able to
bypass locally optimal solutions and thus yield a solutitoser to the global one
in solving two complex application problems. In additiong weview a range of
discrete filled function methods and suggest some effegtiations to improve

their efficiency.

1.8 Thesis Overview

This thesis is divided into six chapters that are organizefbdows. Chapter 2 re-
views several discrete filled functions and their assodiatgorithms as proposed
in the literature. Some basic discrete optimization cotecapd a generic discrete
filled function algorithm are presented. Then, severaMiadiial discrete filled func-
tion formulations, their properties, and particulars @itlassociated algorithms are
also discussed. The performances of selected filled fumetigorithms when ap-
plied to several test problems are compared. The most piregniled function
method is identified, and a various of modification of thisinoetare proposed and
tested in Chapter 3. Next, a new metaheuristic which inaaes the discrete filled
function algorithm into a standard optimal control softevés proposed for solving
two applied discrete-valued optimal control problems.

Chapter 4 proposes a new algorithm for determining an operathedule
that minimizes the total operating cost of a PV-dieseldygithybrid power system.
The hybrid power system consisting of a diesel generatdnasnain component,

with a PV array providing additional energy and a batterykbfor storage. An
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earlier model developed in [116] is considered and we detratesl that this model
has many local minimizers. The outcomes obtained from tbhpgaed algorithm
are compared with the results in the literature. Numeriesiliits for different num-
bers of allowed switches are also presented in this chapter.

Chapter 5 discusses a general class of optimal sensor setgedroblems.
The scheduling of an operation of sensors over a given tim@dr where only
one sensor may be active at any one time, is required to nEmithie signal esti-
mation error. The sensor problem is first formulated as arelisevalued optimal
control problem. Then, the problem is transformed into amvedent mixed dis-
crete optimization problem to determine its global solutidhe proposed global
optimization algorithm is applied to solve this problem. é\aluate the effective-
ness of the proposed algorithm, the results are comparédhase obtained in the
literature at the end of this chapter.

Finally, Chapter 6 summarizes the findings of the study. tatrons of the
study are discussed and possible directions for futureareBevork are also sug-

gested.

15



Chapter 2

A Review of Discrete Filled Function
Methods

This chapter begins with some basic definitions and conaegad in the discrete
optimization area, followed with a generic algorithm ofaite filled function. The
3-hump back camel function [19] is used to illustrate howftied function algo-

rithm works. Nine variations of the discrete filled functiorethod in literature are
identified and a review on theoretical properties of eachhotets discussed. The
most promising filled functions are tested on several tesblpms. The perfor-
mances of these selected filled function algorithms are emetpat the end of this

chapter.

2.1 Introduction

Many real life applications, such as production planninggriice, scheduling, and
operations involve integer valued decision variables. Vg&rdyuish between dis-
crete optimization problems, where all decision varialales integer valued, and
mixed discrete optimization problems, where only some efdhcision variables
have integer values. The latter type are often decomposegurely discrete and
continuous subproblems, respectively, and hybrid algors for their solutions are
developed on this basis. The discrete parts of these hylgaditoms are similar in

nature to the purely discrete algorithms, which we addmesisis chapter. Consider
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the following nonlinear discrete optimization problem:
min f(x), S.t.xe X, (2.1)

whereX = {x € Z"|X;min < Xi < X;max}, Z" is the set of integer points in
R"™, andx; min, Ximax, ¢ = 1,...,n, are given bounds. Let; andx, be any two

distinct points in the box constrained s€tand make the following assumptions:

Assumption 2.1 There exists a constafit satisfying

1< max || x;— %2 [|[< K < o0,
x1,X26X
X17#X2

where|| - || is the Euclidean norm.
Assumption 2.2 There exists a constast, 0 < £ < oo, such that
[f(x1) = f(x2)| S L || x1 — %2 || -

Most discrete filled function methods are designed to sotwedmnstrained prob-
lems. Unconstrained and more generally constrained prableay be converted
into an equivalent box constrained form. For example, asrdihe following un-

constrained discrete optimization problem,
min f(x), sS.t.xe€Z", (2.2)

If fis coercive, i.e.f(x) — +oo0 as|| x ||— +oo, then there exists a box which
contains all discrete minimizers ¢f Hence, the formulation in (2.2) can be trans-
formed into an equivalent formulation in (2.1) and can thasblved by any dis-
crete filled function method. Many discrete filled functidgaithms in the litera-
ture, such as [107, 106, 162, 38], are also directly appictblinearly constrained
problems as long as the resulting feasible region is conmepathwise connected.
As for generally constrained problems, the nonlinear gairds are usually
handled with a penalty method. Consider the following gahaonlinear con-

strained discrete optimization problem,

min go(x), S.t.x €A, (2.3)
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whereA = {x € Z" : ¢;(x) <0, i = 1,...,m} andZ" is a set of integer points
in R™. In [105], the constrained problem (2.3) is converted imaguivalent box

constrained problem by adding a penalty term to the objedtiactionf, i.e.

F(x) = go(x) + g Z max{0, g;(x)} (2.4)
or .
F(x) = go(x) + ag Z[max{o, g:(x)}?, (2.5)

where oy is a sufficiently large parameter. Note that it is difficultdetermine
an exact penalty parameter when solving these NP-hardgmsbénd thus only
approximate solutions can be determined. Note also thatiticeete filled function
method in [161] takes a different approach and incorpoi@iastraints directly into

the formulation of the filled function.

2.2 Discrete Optimization: Concepts and Approach
2.2.1 Preliminary Concepts

We recall some relevant definitions and concepts used initiveedle optimization

area.

Definition 2.1 A sequencdx®}** between two distinct points* and x** in X
is a discrete path inX if x© = x*, x*k+1) = x** x) ¢ X for all 4, x® # x0)
fori # j, and|| x(+1) — x® ||= 1 for all 5. If such a discrete path exists, theh
andx** are pathwise connected iX. If every two distinct points it are pathwise

connected inX, thenX is a pathwise connected set.

Definition 2.2 For any x € X, the neighbourhood of is defined byN(x) =
{we X|w=x+te:i=172,...,n}. Here g denotes the-th standard unit
basis vector oRR", with thei-th component equal to one and all other components

equal to zero.

Definition 2.3 The set of all feasible directions at € X is defined byD(x) =
{deZ":x+de Nx)} C E={te,...,te,}.
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Definition 2.4 d € D(x) is a descent direction of atx if f(x +d) < f(x).

Definition 2.5 d* € D(x) is a discrete steepest descent directiorf et x if it is a

descent direction and(x + d*) < f(x + d) for anyd € D(x).

Definition 2.6 x* € X is a local minimizer ofX if f(x*) < f(x) for all x €

N(x*). If f(x*) < f(x) forall x € N(x*), thenx* is a strict local minimizer off.

Definition 2.7 x* is a global minimizer off if f(x*) < f(x) forall x € X. If

f(x*) < f(x) forall x € X \ x*, thenx* is a strict global minimizer of.

Definition 2.8 x is a vertex ofX if, for eachd € D(x),x+d € X andx—d ¢ X.

Let X denote the set of vertices &f.

Definition 2.9 B* C X is a discrete basin of corresponding tax* if it satisfies

the following conditions:
e Itis pathwise connected;
e |t containsx*;

e For eachx € B*, any connected path consisting of descent steps and gfartin

at x converges te*.

Definition 2.10 Letx* andx** be two distinct local minimizers of. If f(x™) <
f(x*), then the discrete basiB** of f associated withx** is said to be lower than

the discrete basii* of f associated withk*

Definition 2.11 Letx* be a local minimizer of- f. The discrete basin of f at x*

is called a discrete hill off at x*.

Definition 2.12 Let S, = {x € X : f(x) < f(x*)}andSy = {x € X : f(x) >
fx)}
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2.2.2 Generic Discrete Filled Function Approach

The fundamental concept of a discrete filled function mettex be explained as
follows. An initial point is chosen and a local search is @ggplto find an initial
discrete local minimizer. Then, an auxiliary function,ledla filled function, is
constructed at this local minimizer, where the local mirzeniof the original func-
tion becomes a local maximizer of the filled function. By miizing the filled
function, either an improved discrete local minimizer isrid or the boundary of
the feasible region is reached. The discrete local mininozehe filled function
usually becomes a new starting point for minimizing the ioagobjective with the
hope of finding an improved point compared to the first locatimizer. A new
filled function is constructed at this improved point. Thegess is repeated until
no improved local minimizer of the earlier filled functionrche found. The final
discrete local minimizer is then taken as an approximatfdheglobal minimizer.

If a local minimizer of the filled function cannot be found exftrepeated
searches terminate on the boundary of the box constraimstbfe region, the pa-
rameters defining the filled functions are adjusted and theckas repeated. This
adjustment of the parameters continues until the parametach their predeter-
mined bounds; the best solution obtained so far is takeneagltibal minimizer.
Note that some filled functions have one parameter (sucloas th [38, 127, 161]),
while the rest are equipped with two parameters. The lattedffunctions often
have one parameter which is partially dependent on the atitethis requires addi-
tional steps when tuning the parameters in order to satigfydquired convergence
criteria. Note that each filled function discussed here hague characteristics. The
complexity of each filled function is also dependent on isoagated algorithm, as
discussed in detail in the following sections.

We present the generic framework of a discrete filled fumcsilgorithm. The
main algorithm requires repeated searches for a local nimnThus, we state the
local search as a separate algorithm (Algorithm 2.1 bel@Ww global algorithmin-
volves repeated construction of an auxiliary function i@ flope of escaping basins

associated with local minimizers.
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Algorithm 2.1 Discrete Steepest Descent Method
1. Choose an initial poink € X.

2. If x is a local minimizer off, then stop. Otherwise, find the discrete steepest
descent directionl* € D(x) of f.

3. Setx :=x 4 d*. Go to Step 2.

Remark 2.1 Note that some methods in the literature, namely those if,[185],
merely require a discrete descent direction at Step 2, rathen a discrete steepest

descent direction.

Algorithm 2.2 Discrete Filled Function Method

1. Initialization.
Set the bounds of each parameter in the formulation of theretis filled
function.
Initialize the parameters.
Choose suitable reduction or increment strategies for geofameter.

Choose an initial starting point, € X.

2. Local search of the original function.
Starting fromx,, minimizef (x) using Algorithm 2.1 to obtain a local mini-

mizerx* of f.

3. Neighbourhood search.
(a) Identify the neighbourhood af* as N (x*) = {wy, wao, ..., w,}, whereg
is the total number of points iV (x*), ¢ < 2n. Setl = 1.

(b) Define the current poink,. := wy.

4. Local search of the discrete filled function.
Let G- denote the discrete filled function associated with
MinimizeGy- using Algorithm 2.1 starting from...

Letx be the obtained local minimizer 6f,-.
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5. Checking the status df
If f(%x) < f(x*), setx, := x and go to Step 2. Otherwise, go to Step 6.

6. Checking other search directions.
At this point, the algorithms in [106, 107, 162] will adjus$te parameters of
the filled function and return to Step 4sdfe X\ X.
Otherwise, along with most of the remaining algorithmsytbet/ := ¢ + 1.
If ¢ < ¢, all of the algorithms then return directly to Step 3(b).
Otherwise, the parameters of the filled function are adisted/ is reset to
1 before returning to Step 3(b).
If all the parameters of the filled function exceed their présed bounds

anywhere in this step, the current valuexdfis taken as the global minimizer.

Remark 2.2 Some methods in the literature, such as [127, 128, 162],ampl
N(x*) in Step 3 with\/ = {wy, wo,...,w,}, wherew;, i = 1,...,¢, are ran-

domly chosen fronX. ¢ also needs to be chosen by the user in this case.

Remark 2.3 Some algorithms [38, 106, 107, 128, 160] do not require a locia-
imizer of G~ in Step 4. Instead, in the attempt to redugg., if any pointx;, is

found such thaf (x;) < f(x*), they sek, := x; and go back to Step 2.

Remark 2.4 Minimization of bothf andG,- is carried out overX, exceptin [161],
wheref is minimized ovel while G- is minimized oveX . Note that this variation

is only relevant for nonlinearly constrained problems,ughb.

Remark 2.5 Note that the methods in [38, 106, 107, 162] defiheia upper and

lower bounds on the variables as well as a set of linear inétyueonstraints.

Remark 2.6 A slightly different approach is proposed in [106] for Steg#f and
G4+ share at least one common descent direction, the authorgseha steepest
descent direction which results in the maximum reductionffg- G-. If such a
direction does not exist, the method reverts to find a stee@ssent direction for

Gy only.
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For a clearer picture on how the filled function algorithm ksrwe consider

an illustrative example in the next subsection.

2.2.3 lllustrative Example

1
min f(x) = 227 — 1.05z7] + éx? — 2179 + T3, (2.6)

Yi
1000’

Problem (2.6) is a 3-hump back camel function in [19] whick ha007001 x

s.t. ;=

—2000 < y; < 2000, —1500 < yo < 1500, y1,» integers

107 feasible points. This box constrained problem has a knowhajlminimum
solution atx} o, = [0,0]" with f(x50s) = 0. The discrete filled function method
in [106] is used to solve this problem. The algorithm beginghwa pointx, =
[1.500, 1.500] " with f(x,) = 1.0828125. By using the discrete steepest descent
method, an initial local minimizer ot} = [1.748,0.874] " is found with f (x}) =
0.2986396. Next, a discrete filled functiorty,:, is constructed at. Starting with
a pointinN(x7), x, = [1.749,0.874] T, Algorithm 2.1 is used to minimizé/.: and
a local minimizerx = [0.302,0.535]7, with f(%) = 0.2984554, is found. Since
f(x) < f(x7), the original functionf is minimized once more, starting & = x,
and the second local minimizet; = [0,0]", with f(x}) = 0, is obtained. Next,
a new discrete filled functioV,; is constructed at; = [0,0]". A neighbourhood
point ofx3 = [0,0] ", namelyx. = [1,0]", is chosen, andy; is minimized starting
atx.. The local minimizer ofG; is a vertexx = [2.000, 1.500] ", but f(%) >
f(x3). Other searches for a minimum 6f,; in a lower basin are then carried
out, starting from0, 1]7, [-1,0]", and[0, —1] ", respectively. Since none of these
yield an improved point, the parameter@f; is adjusted. The revised,; is then
minimized once more starting from each of these neighbadhmints in turn.
When no local minimizer OGX; in a lower basin is found and the termination
criteria is metx; = [0,0] " is taken to be the global solution.

In the next section, we discuss and analyze various disfitiete function

methods from the literature.
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Figure 2.1: The 3-Hump Back Camel Function.

2.3 Discrete Filled Function Methods
2.3.1 Discrete Filled Function in Zhu [165]

Zhu is believed to be the first researcher to adapt the camimdilled function
approach directly for solving discrete optimization pehk. Letx* denote the
current discrete local minimizer. A filled function depentlen parameteré andp

is defined as

_ 1 | x—x*|?
Gopx(x) = i) exp < — ) (2.7)

Assuming thap and# are chosen so that
0<f+ f(x")<h

and B
0+ f

i Ey o)

wheref is an upper bound of over X andh < min{|f(x;) — f(x2)| : f(x1) #

<1,

f(x2), x; € X, j = 1,2}, thefilled function (2.7) has the following properties:

m Gy (X5 +d) < Gopre(x), foralld € D(x).

2

= Givenf(x) > f(x*), f(x2) > f(x*), and]|| xz — x* [|°<][| %1 — x" |

Gopx(x1) < G px(x2) (i.€. if f increases(zy , x~ decreases).
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s Foranyx € X,

o Gopxr(x) <0 = [f(x) < f(x);

o Gopxr(x) >0 = f(x) = f(x).
» Letx; € X besuchthaf(x;) > f(x*).

o If there existsd € D(x;) such thatGy , x«(x; +d) < 0; or

o If [{d € D(x1) : x; +d € X}| = n and there existd € D(x;)
such thatéy , x+«(x1 + d) < G x+(x1); OF

e lIf {deD:x3+d e X}|>n;

then there exists sonee D(x;) such thatzy , x«(x14+d) < G px+(x1) <
Gg,p,x* (X*)

= Any discrete local minimizer of the discrete filled functié , v~ must be

in the setS;, or X.

Zhu suggests that the algorithm should stop when all seafon@ minimum
of Gy, x+ Starting inN (x*) terminate at vertices without finding an improved point
of f. Note that the algorithm in [165] does not require updatihthe parameters
0 andp. Thus, the finak™* is assumed to be the global minimum. Two numerical
examples are demonstrated to test the efficiency of thigl fillaction. However,
the disadvantage of his method is that it is almost imposdiblfind a negative
filled function value that would indicate that a point in a Ewbasin exists. This
is because the discrete filled function contains an expalgetm, making it ill
conditioned and also leading to poor efficiency as noted @6]1 In addition, it
is difficult to determine suitable values bfand f, thus making it difficult to find

suitable values for parametetsindp.

2.3.2 Discrete Filled Function in Ng, Zhang, Li & Tian [107]

A new discrete filled function with improved theoretical pesties was proposed in

[107] several years later. Recall that denotes a discrete basin pthat contains
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the current discrete local minimizer. According to [107], a functiortr,, , x- iS

defined to be a discrete filled function pfat x* if it satisfies the following:
m X" is a strict local maximizer ofr, , «-;

» G, ,x has no discrete local minimizers B or in any discrete basin of

f higher thanB*;

n If f has a discrete basiB** atx** which is lower thanB*, then there is
a discrete poink € B** that minimizesG, , - on a connected discrete

path{x* ..., x,...,x*}in X.
The discrete filled function proposed in [107] is
G (x) = f(x")—min[f (x"), f(x)]—p | x—x" ||* +p{max[0, f(x)—f(x")]}?,

(2.8)

wherep andy. are parameters which satisfy certain properties as detadw.

s Recall that the meaning & and £ from Assumptions 2.1 and 2.2. Sup-
pose thak € Sy.

o If p>0and0 < pu < £, thenG, ,«(X) <0 =G pxe(XF).

o If p > 0and0 < p < 55, then for eachd € D(x) such that
FE+d) > fx7) and|| R+ d—x" |>]| X—x" ||, Gppoe (X +4) <
Gupx(X) < 0= G, ,x(x%).

m If p>0and0 < p < %, thenx* is a strict local maximizer ofy,, , «-. If

x* is a global minimizer off, thenG,, , x-(x*) < 0, for all x € X\x*.

m Letx;, xo, x* be three distinct points iX. If || xo — x* ||>| x; —x* ||,

| %o —x1 | < 2K,

thenl <
| xo —x* [| = [| x1 —x* ||

» Letx;, x; € X be two points such that<|| x; — x* ||<|| xo —x* || and

f(x*) < f(x1) < f(x2). If p>0and0 < p < 587, then

o Gppxr(X2) <Gy (x1) < 0= G pe (X7);
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e G, ,x(x*) has no local minimizers id* or in any discrete basin of
f higher thanB*.

» For everyx,x* € X, there existsl € F such thaf| x +d — x* ||>

% —x.

m Letx* € X andx € X be the local minimizers of andG/, , x-, respec-

tively. If p > 0and0 < pu < then

o f(x+d) < f(x*)foralld € D(x) whenf(x) > f(x*).

e xisin abasinB** (associated with a local minimugi*) of f which

is lower than basiB* (associated witk*) .

Both . andp are initialized as 1. This filled function ensures that a loca
minimizer of G, , x- is either a better point in a lower basin or a vertexXof It
is not necessary to find the minimizer@f, , «- if @ pointx;, with f(x;) < f(x*)
is found in Step 4 of Algorithm 2.2. Since, is an improved point, the algorithm
setsx, := x; and returns to Step 2 to minimize the original functipn If the
minimizer of G, , x- is not a vertex, is reduced vigu := /10 andG,, , x- is
minimized once more starting at the same When no improved point is found
after the minimization process f@¥, , .- ends up at a vertex, thehis increased
by 1 andG, , x- is minimized once more starting with the updated If £ > ¢,
p is reduced. The algorithm terminates when the lower boung, @f,, is met.
Several test problems were investigated in [107] and thegsed discrete filled
function method was shown to be efficient in solving problam®lving up to
200 variables. Note that; was set to 1 for the computations in [107] and further
reduction ofp was not necessary since all test problems yielded the géaihation
whenp = 1. According to one of the characteristics of this filled fuant x, the
local minimizer ofG, ,«-, lies on a discrete pathx*,...,%,...,x*} in X that
connects the current basiB at x* to a lower basinB**. However, the properties

of this filled function do not guarantee thatis a true minimizer of the original
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function. A revised discrete filled function is proposed 19§] to overcome this
difficulty.

2.3.3 Discrete Filled Function in Ng, Li & Zhang [106]

Based on the work in [107], a new discrete filled funct{@n, .- atx* is defined as

follows:
Gupx(x) = Au(f(x) = f(xX7) —p [ x —x" ||, (2.9)
N 7
Au(y)zyw[(l—ff)(i_cl;) +C},

wherew > 0 is a sufficiently small number arid< ¢ < 1 is a constant. The func-
tion G, , «-(x) is a discrete filled function when certain conditions of thegmeters

1 andp are satisfied as detailed in the following conditions:
» x* is a strict local maximizer of7,, , x-.
» G, has nolocal minimizer in the sét,\ X.

s x** € X\ X is alocal minimizer off if and only if x** is a local minimizer

of G, px+- INn short,x™ € Sy.

m If p > 0and0 < p < min{l, £}, thenx* is a strict local maximizer
of G, px. If x* is a global minimizer off, thenG, ,«-(x) < 0 for all
x € X\ x*.

s Letd € D(x) be afeasible direction at € Sy such thaf] x +d —x* ||>
| x—x*|. If p>0and0 < p < min{1, 35;}, thenG,, ,x (X + d) <
Glpx(X) <0 =G pe(X7).

» Letx™ be a strict local minimizer of with f(x*) < f(x*). If p > 0is
sufficiently small and) < p < 1, thenx** is a strict local minimizer of

GMvva* )

= Let x be a strict local minimizer of7,, , .- andd € D(x) be a feasible
direction at< such that| x+d —x* ||>|| x—x* ||. If p > 0 s sufficiently

small and) < p < min{1 }, thenx is a local minimizer off.

_Pr
) 2K2L
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» Assume that every local minimizer gfis strict. Suppose that > 0 is

sufficiently small and) < g < min{1 }. Then,x™ € X \ X is

Srer:
a local minimizer off with f(x**) < f(x*) if and only if x** is a local

minimizer of G, -

This is an improved version of the discrete filled functiofjif7], to ensure
% coincides withx**. In other words, every local minimizer of the discrete filled
function G, , <~ is also a local minimizer for the original functioh Both ; and
p are initialized as 0.1. The paramejeis reduced ifx is not an improved point
and by settingu := 1/10 and returning to Step 3(a). # is not an improved
point and a vertex oX, set/ := ¢ + 1 and return to Step 3(b), unlegs> ¢ in
which casep is adjusted. Similar to [107], the algorithm for minimizitdg, , x-
exits prematurely when an improved poigf with f(x;) < f(x*) is found in
Step 4 of Algorithm 2.2. The algorithm sets := x; and returns to Step 2 to
minimize the original functiory in this case. Note that a direction which yields the
greatest improvement gf + G, , x- is chosen when minimizing, , -, assuming
that a direction for improving® andG,, , x- Simultaneously does exist. If such a
direction does not exist, the algorithm chooses the stéel@ssent direction such
thatG, , - (x.+d*) < G, ,x+(x.). The algorithm terminates when = 0.1. Note
thatp is fixed at 0.1, since all test problems in [106] readily yialdlobal solution
whenp = 0.1. The filled function in (2.9) is shown to increase computasio
efficiency when compared with that in [107]. Several testofgms with up to

1.38 x 109 feasible points were solved using this method.

2.3.4 Discrete Filled Function in Yang & Liang [160]

A two parameter exponential filled function,

e () = ;ﬁ”’f(ma}({ F(x) — F(x") +b, 0}), (2.10)

at || x —

where

_ Jexp(—a/y), ify#0,
Tly) = {o, if y = 0.
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is introduced in [160]. Let5,, represent the set of discrete local minimizersf of

a < 0,and

x* x**eSy

Fx)<f(x*)
Gapx is a discrete filled function of if G, - (x) has the following properties:

0<b< max <f(x*)—f(x**)).

m X" is a strict discrete local maximizer 6f,  x-.
» G, x+ has no discrete local minimizers Hy.

» If x* is not a discrete global minimizer of, thenG,;, x~ does have a

discrete minimizek € S;.

» Foranyx, x* € X, there existsl € D(x) such that| x +d — x* ||<
[x—x.

m Letx;, xo, x* be three distinct points iX. If || xo — x* ||>| x; —x* ||,

| %1 —x" || 1
then-—M <1 — —.
|| xo — x* || 2K2

m Foranyx;, x, € X, if

o [[x2 = x* [[>]] % — x|,
e f(x1) > f(x'), and

o f(x2) = f(x")+b>0,

thenGa7b7x* (Xg) < Ga,b,x* (Xl) .

The parameters andb are initialized as 0.01 and 1, respectively. When all
the search directions frosa* have been utilized but no improved pointis found
(i.e. £ > q), the user either sets:= b/10 anda := a/10 or a := a/10 only as
long ase > 10~ 7. The algorithm terminates wheén< 10~°. Note that it is not
necessary to find the minimizer 6f,, - for this algorithm. As long as a point
x; With f(x;) < f(x*) is found when minimizing=,; «+, the algorithm reverts
to minimizing the original functiory. As in [107], a local minimizer of this filled

function is not guaranteed to be a true local minimizer ofdhginal functiony.
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2.3.5 Discrete Filled Function in Shang & Zhang [127]

A third exponential filled function is suggested in [127]. tbe' be the current
local minimizer and choose any, such thatf (xo) > f(x*). According to [127],
G x,x+ IS called a discrete filled function gf atx* if G, x, x- has the following

properties:

n G x,x+ has no local minimizer irby\{xo} andx, is not necessarily a

local minimizer ofG , x, x;

» If x* is not a global minimizer of, there exists a local minimizer € S,

of G x,x+ SUCh thatf (x) < f(x*).

A discrete filled function, with parameter, is defined as follows:
Gaxon (%) = ([ x =0 [|) = &(w (1 —exp(~[min{ f(x) - f(x"),0}]*))), (2.11)

wherew > 0 and the prefixed point, satisfiesf(xy) > f(x*). In addition, the

functions((t) and¢(t) have the following characteristics:
» ((t) and&(t) are strictly increasing for anye [0, +oo);
= ((0) =0and{(0) = 0;
m {(t) = C > 0asx — +oo, WwhereC' > maxyecx ((|| x — %o [|)-
In addition, the following conditions hold far x, x-:

m Foranyx € X, if x # x,, there existsl € D(x) such that

| x+d—x¢ <] x—x%0 |-

n G x,x+ Nas no local minimizer ivy \ {x,} for anyw > 0.

HO) exp([f (%) — F(x)]?)
exp([f(x*) = f(x7)]?) =1

wherex* is a global minimizer off, thenG, x, x» has a local minimizer

= SupposeS; # 0. If w satisfiesw >

in SL.
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§1(C) exp(e?)
exp(e?) —1 °
Then, given anxk* of f such thatf (x*) > f(x*)+ ¢, wherex* is a global

m Suppose thatis a small positive constant angdsatisfieso >

minimizer of f, G «, x- has at least one local minimizer i..

Instead of performing a neighbourhood search in Step 3 abritlyn 2.2, the
implementation in [127] uses any initial point on the bounydaf X to minimize
Gwxox+- IN[127], the parametew is fixed t0400.5(10y/n + 1), wheren is the
dimension of a problem. For each subsequent initial posvdrfrom the boundary
of X, i := i+ 1 and the algorithm terminates wheér- 10". Every local minimizer
of G x,x+ IS assumed to be an improved point (Step 5 of Algorithm 2.2yis b
passed). Though this filled function has only one fixed patamthe local search
of G x, x+ Can become computationally intensive due to the large nuofheitial
points that may need to be tested before the terminatioarieris met. A nonlin-
ear box constrained problem with up td&r'1 x 10° feasible points was solved in
[127]. Similar to the methods in [107, 160], a local mininripé the filled function
Gwx,x+ 1S NOt necessarily a local minimizer of the original funatip. Further-
more, a prefixed point, is required at the beginning of the algorithm, resulting in
the minimization process typically convergingstg rather than an improved point
of the original function. A refined formulation of this fillddnction is suggested in
[128].

2.3.6 Discrete Filled Function in Shang & Zhang [128]

Let
In(1 + gmax(f(x) — f(x*) +6,0))
I+ || x —x* ||

G g (X) = (2.12)

be a discrete filled function of with ¢ > 0,

0<d< min_ |f(x1)— f(x2)]
o

It has the following properties:

= X" is a strict local maximizer of7s , «-.
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n If f(x) > f(x*) andx # x*, thenx is not a local minimizer ot ; x-.

» If x* is not a global minimizer of (x), there exists a local minimizer of

G57q7x* in SL.

s If x1,x, € X are two distinct points which satisfy the following condi-

tions:

e f(x1) > f(x*)andf(xs) > f(x*), and

o || x; —x"|>[ x2 —x* ||> 0,
thenGs , «+ (x1) < Gg g (X2).

n If x1,x, € X are two distinct points which satisfy the following condi-

tions:

o f(x2) = f(x*) > f(x1), and

o || x; —x"|>[ x2 —x* ||> 0,
then,Gs ; x+(x1) < Gs g3 (X2).

This filled function overcomes the prefixed point issue in7[[L@® ensure a
better point of the original function is attained and suggas additional parameter.
The initial settings fo andq are 1 and 100, respectively. A random initial point
in X is used to minimize&s; , «~ instead of a neighbourhood point as suggested in
Step 3 of Algorithm 2.2. If no local minimizer af'; , «- is found along the search
from this random point, another initial point ik is drawn and := i + 1. When
i > 2n, the algorithm setg := 10q as long ag; < 10°. Otherwise, the algorithm
setso := §/10 andq := ¢ in Step 6 of Algorithm 2.2. Then, is reset to 1 and
Gsqx+ 1S minimized again from the same starting point with the newameter
values. Similar to [160], it is not necessary to find a minienipf G5, x-. The
algorithm terminates wheh < 107> and/ = 2n, wheren refers to the dimension
of the problem. Two test problems, with up1d 739 x 10°? feasible points were

solved in [128]. Since a local minimizer of this filled funmti is not necessarily a
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local minimizer of the original functiorf, further computation is needed to find the

local minimizer off in a lower basin for each local minimizer 6f; , - (x) found.

2.3.7 Discrete Filled Function in Yang & Zhang [162]

Supposex(t) is a continuously differentiable function satisfying tleidwing con-

ditions:
m o(t) =9 whent > €; p(t) = = whent < —e.
m H(t) >0, —e<t<e
m p(0) =0,

Suppose also that a functiopit) satisfies;(0) = 0 and#(t) > 0, fort > 0. The
filled function in [162] is given by

Gewae (%) = 0l x = %0 [)o(f (x) = f(x) +v), (2.13)

wherex, is an arbitrary point inX, ¢ is a positive constant, and botrandv are
problem-dependent parameters. The properties for thisedesfilled function are

as follows:

» The functionG. , x- has no discrete local minimizer exceptsatin the

regionS; = {x € X : f(x) > f(x*) + € — v}, wheree > v.

n If v =0, Ge,x+(x) has no discrete local minimizer exceptsatin S, =
{x€X: f(x) = f(x) +e}.

n If v =¢, G, x+(x) has no discrete local minimizer exceptatin S,.

m Givenr = 0 orv = ¢, If € is sufficiently small andk* is not a discrete
global minimizer off, thenG., , x-(x) does have a discrete local minimizer

xin Sr.

s If x* is a global minimizer off, thenx, is the unique discrete global

minimizer of G, x«(x) with v > 0.
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The functions)(t) andp(t) in (2.13) must be chosen carefully to ensure com-
putational reliability and efficiency. As a guide, polyn@ifunctions are suggested
in [162] for bothn(t) andy(t). Based on the characteristics of this filled function,
e andv are initialized as 1.0 and 0, respectively, so that therstex local min-
imizer of G, , x~ in a lower basin. The disadvantage of this filled functionhiatt
it depends heavily on the initial pois in computingG. , . Thus,x, has to be
chosen carefully and plays a crucial role in finding a localimizer of G, , x- such
that f(x*) < f(x}) + ¢, wherex* is the global minimum of the original function. If
a local minimizer of the filled function in a lower basin cahbe determined, then
Xo IS taken as its local minimizer, with suitable values @ndv, or x, is assumed
to be the global solution of the original function, which igtrikely to happen in
practice. The algorithm terminates wher 0.0001. Several test problems with up
to 200 variables have been solved using this filled functi@thod as reported in
[162].

2.3.8 Discrete Filled Function in Gu & Wu [38]

Gu and Wu propose the discrete filled function

1 * *
Goe (%) = Ty g P = 100) + B0 = fx). - 214)
where
0, y < —o,
3 2
1, y >0,
and
y+ o, y < —o,
3 2
Fly) =l @9 g <y <o,

, y > 0.

1
Definefy = minyes, (f(x*) — f(x)). If the function parametes satisfies
0< 0 S 507

then the following results hold.
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m Forallx € X, f(x) > f(x*) is equivalent td7, x« (x) > 1.

» x* is not a global minimizer of if and only if S;, # () and 3, > 0.
m x € Sp is equivalent ta7, «+(x) < 0.

= X" is a strict discrete local maximizer 6f, .

m If x* is not a global minimizer off, then there exists a discrete local

minimizer of G, x-, denoted byk.
= X is eitherinS; or X.

n Givenx,xy € Sy, Gpx(x1) > G, x+(X2) is equivalent td| x; — x* ||<

%2 —x* .

The parametey is initialized as 1. It is updated in Step 6 of Algorithm 2.2 by
settingo := /10 when all available search directionsxdthave been used (i.é.>
q) but no improved point off is found. The algorithm terminates when= 1075.
The one-parameter filled function suggested here guamattiaethe minimizer of
G,x+ Is also a minimizer off. Based on this approach, a refined algorithm which

is capable of dealing directly with nonlinear constraistpioposed in [161].

2.3.9 Discrete Filled Function in Yang, Wu & Bai [161]

An extended study of the filled function method in [38] is give [161] to deal with

the nonlinear constrained problem (2.3). A one-parameserete filled function is

defined as
1 . -
Gr,x*(x) = || x — x* H2 +1 + 1|0 Hr(f(x) - f(X )) + ZHr(gi(X) - T) )
=1
(2.15)
where
07 ) S -,
Ho(y)= =2 B9 1, —r <y <0,
) + 17 Yy > O,
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and

0, y < 0.5,
['(y) = ¢ —16y> + 36y% — 24y + 5, 0.5 <y <1,
1, y>1,

Let 5 = min{fy, 41}, where

fo = min (f(x") — f(x))

€Sy,

and

= min max ¢;(x).
ﬂl zeX\A ie{l,..., m}g( )

If the parameter satisfies
0<r< B,

G, x~ Is said to be a discrete filled function=at and the following properties hold.
m X" is a strict discrete local maximizer 6f, .~ on X.

» If x* is not a global minimizer of, then there exists# € S, such thatk

is a discrete local minimizer @, -.

Any discrete local minimizer of, «- is either inSy, or in X.

n Givenxy,x, € X\SL, Grx+(x1) > G, x(x2) ifand only if || x; — x* || <

%2 —x* .

x € X\S ifand only if G, x+ (x) > 1.

x € S ifand only if G, x+(x) = 0.

Unlike the other filled functions discussed earlier, thikdilfunction is ca-
pable of solving constrained nonlinear problems direcBetsA and X are the
feasible regions of andG, «~, respectively. Note that the algorithm as stated in
[161] is incomplete without justifying how to handle the rf@asibility issue ofk,
if xo € X\A happens to be used at the beginning of the algorithm. Basedreon
respondence with the main author in [161], we suggest artiaddi preliminary

step before Step 1 in Algorithm 2.2 to checkxif € A before minimizingf. If
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this condition is satisfied, then continue with Step 1 in Aitgon 2.2. Otherwise,
setx* := x, and jump directly to Step 3 in Algorithm 2.2. The nature of tiled
function is such that a minimum point of it must lie in Thus, ax, € A can be
readily obtained.

Since the local minimizer of the discrete filled function hade tested for
feasibility with respect to the original function, it is ngtiaranteed to be a local
minimizer of f. Thus, further computation is needed for this single-patanfilled
function approach for each minimizer of the filled functi@uhd. The parameter
is set as 1 at the beginning of the algorithm, reduced by /10 when?¢ > ¢ in

Step 6 of Algorithm 2.2, and the algorithm terminates when 10~°.

2.4 Solutions of Test Problems

In this section, we select several promising discrete fifletttion methods from
those described in the previous section, based on theiretieal properties and
algorithms. These functions are tested on several benghpnablems: Colville’s

function [44], Goldstein and Price’s function [37], Bealaingular function [102],

Powell’s singular function [102], and Rosenbrock’s funat{120]. Note that our
aim is to simply compare the efficiency of different discrigted function methods
without necessarily solving high dimensional problems.td\déhough, that these
methods have been demonstrated to solve problems invalyartg 200 variables

[106, 107]. These algorithms are as follows:
e Algorithm A extracted from [107];
e Algorithm B extracted from [106];
e Algorithm C extracted from [160];
e Algorithm D extracted from [161].

The performance of each of the filled function methods usesbiwing the test

problem is summarized in the following subsections. No& e sefp, = 0.001
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in Algorithms A and B, to be more confident of obtaining a glokalution when
solving these test problems, rather than= 1 and 0.1 as suggested in [107] and
[106], respectively. Note further that we construct a lagktable to store each ob-
jective function value computed so far to avoid repeatedutation of the objective
function for the same point. This modification was introddige view of the pro-
posed application of discrete filled function methods toedigiscrete optimization
problems in later chapters, where each function evaluasi@omputationally ex-
pensive. The final optimal solution found for each algoritismecorded byk;
with its corresponding objective valyéx;,.). The total number of original func-
tion evaluations, the total number of discrete filled fuoctevaluations, and the
ratio of the average number of original function evaluagitmreach the global so-
lution to the total number of feasible points are represkitdable 2.1-2.5 by,

Eq, andRg, respectively.

2.4.1 Problem 1: Colville’s Function

min f(x) = lOO(xg — xf)Q + (1 — x1)2 + 90(x4 — x§)2 + (1 — x3)2

101 (2 = 1)+ (24 = 1)°] +19.8(22 = 1) (24 — 1),
st. —10<x; <10, uz;integer ¢=1,2,3,4.

This box constrained problem ha94481 x 10° feasible points. The global mini-
mum solution isx}, = [1,1, 1, 1] with f(x3,,,) = 0. Six starting points were
considered for the algorithms, namély1,0,0]", [1,1,1,1]", [-10, 10, —10, 10]",
[-10,-5,0,5]", [-10,0,0,—10]", and[0,0,0,0]". All discrete filled function al-
gorithms succeeded in finding the global minimum from alftgtg points. A sum-
mary of the computational results is displayed in Table Ridmerical results show
that Algorithm B has the smallest total number of originaidtion evaluations, and
the averageiy is 0.008635805.
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Table 2.1: Numerical Results of Problem 1.

Algorithm X0 Xina J(Xfa) Er  Ea Rg
A [1,1,0,0]T [1,1,1,1]7 0 2095 7058 0.010772261
[1,1,1,1]7 [1,1,1,1]T 0 2086 7037 0.010725984
[-10,10,—-10,10] " [1,1,1,1]7 0 3940 10603 0.020259048
[-10,-5,0,5]T  [1,1,1,1]7 0 2192 7056 0.011271024
[~ 10 0,0,—10]" [1,1,1,1]T 0 2226 7059 0.011445848
[0,0,0,0] " [1,1,1,1]T 0 2102 7060 0.010808254
B [1,1,0,0]" [1,1,1,1]7 0 1426 5097 0.007332336
[1,1,1,1]7 [1,1,1,1]T 0 1422 5076 0.007311768
[-10,10,-10,10] T [1,1,1,1]7 0 2674 5979 0.013749415
[-10,-5,0,5]T  [1,1,1,1]T 0 1567 5134 0.008057342
[~ 10 0,0,—10]" [1,1,1,1]7 0 1557 5098 0.008005923
[0,0,0,0] T [1,1,1,1]T 0 1431 5099 0.007358045
C [1,1,0,0]" [1,1,1,1]7 0 3041 35243 0.015636489
[1,1,1,1]7 [1,1,1,1]7 0 2867 34570 0.014741800
[-10,10,—10,10] " [1,1,1,1]7 0 4608 39849 0.023693831
[-10,-5,0,5]7  [1,1,1,1]T O 3842 37147 0.019755143
[~ 10 0,0,—10]" [1,1,1,1]T 0 3174 35253 0.016320360
[0,0,0,0] " [1,1,1,1]7 0 3051 35254 0.015687908
D [1,1,0,0]7 [1,1,1,1]7 0 1615 15973 0.008304153
[1,1,1,1]7 [1,1,1,1]7 0 1435 15312 0.007378613
[-10,10,-10,10] T [1,1,1,1]T 0 4145 21660 0.021313136
[-10,-5,0,5]7  [1,1,1,1]T 0O 2569 17483 0.013209517
[-10,0,0,—10]" [1,1,1,1]7 0 1748 15992 0.008988025
[0,0,0,0] " [1,1,1,1]T 0 1625 15993 0.008355572
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2.4.2 Problem 2: Goldstein and Price’s Function

min f(x) = g(x)h(x)

Yi

7 100

— 2000 < y; <2000, w;integer i=1,2,

Y

where
g(x) =1+ (931 + 29 + 1)2(19 — 14z, + Bxf — 14z9 + 62129 + ng),
and
h(x) = 30 + (221 — 3x2)*(18 — 322y + 1227 + 48x5 — 363122 + 2723).

This box constrained problem hass008001 x 107 feasible points. The global
minimum solution is<,py = [0, —1] " with f(x}0p) = 3. Six starting points were
considered in the computational tests, these bging2]", [0,—1]T, [-2,-2]T,
[—0.5,—1]T, [1,—1.5]T, and[1, —1]". A summary of the computational results is
given in Table 2.2. All algorithms succeeded in finding thebgll minimum from
all starting points, where Algorithm B is shown to be the mef§icient method.
This method succeeded in identifying the global minimunugoh with an average
of 22249 function evaluations. The averagg is 0.0013899.

2.4.3 Problem 3: Beale’s Function

min f(x) = [1.5—x1(1—x2)]2+[2-25—931(1—933)}2

+ (2625 — 2 (1 af) | g

Yi

stz =2
Y= 1000

— 10000 < g; < 10000, y;integer @=1,2.
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Table 2.2: Numerical Results of Problem 2.

Algorithm  xq Xina  J(Xfna) Ef Eq REg
A [2, -2 [0,—1]7 3 51234 217255 0.003200525
[0,-1]" [0,—1]T 3 47189 217255 0.002947838
-2, [0,—1]" 3 53675 217255 0.003353011
[-0.5,—-1]T [0,—1]T 3 47189 217255 0.002947838
1,-1.5]" [0,—1]T 3 50723 217255 0.003168603
[1,-1 [0,—1]T 3 47189 217255 0.002947838
B [2,—2]T [0,—-1]T 3 25041 151356 0.001564280
[0,—1]" [0,—1]7 3 18995 151356 0.001186594
-2, [0,—1]7 3 24472 151356 0.001528736
[-0.5,—1]T [0,—1]T 3 20475 151356 0.001279048
1,-1.5]" [0,—1]T 3 22533 151356 0.001407609
[1,-1]" [0,—1]7 3 21978 151356 0.001372938
C [2,—2] T [0,—1]T 3 50028 1170105 0.003125187
[0,-1]" [0,—-1]T 3 45983 1170105 0.002872501
-2, [0,—-1]T 3 52469 1170105 0.003277673
[-0.5,—-1]T [0,—1]T 3 45983 1170105 0.002872501
[1,-1.5]T [0,—1]7 3 49517 1170105 0.003093266
[1,-1 [0,—-1]T 3 45983 1170105 0.002872501
D [2,—2]T [0,—1]T 3 48030 623910 0.003000375
[0,-1]" [0,—-1]T 3 43985 623910 0.002747688
-2, [0,—1]7 3 50475 623910 0.003153111
[-0.5,—-1]T [0,—1]T 3 43985 623910 0.002747688
1,-1.5]" [0,—1]T 3 47519 623910 0.002968453
[1,-1)" [0,—1]7 3 43985 623910 0.002747688
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This box constrained problem ha§0040001 x 108 feasible points. The global min-
imum solution isxg . = [3, 0.5] " with f(x3,,,) = 0. Six starting points were con-
sidered in the tests:10, —10]7, [9.997, —6.867]T, [0, —1]", [1,1]T, [-2,2]T, and
[0,0]". A summary of the computational results is shown in Table @8y Algo-
rithms A and B consistently succeeded in identifying thébglaninimum with the
average number of function evaluations being 119722.2 886737.3, respectively.
Note that Algorithm B is more efficient than Algorithm A, wieethe averag&y is
0.000299275, compared to 0.000895104. As for Algorithma€ R, both yielded
local minimizers close to the global solutigs:015, 0.504] T, [2.989, 0.497] T,
[3.004,0.501] ", and[2.996,0.499] . A possible reason for this failure to converge
tot he global solution may be that our implementation callseighbourhood points

in Step 3 in a different order to that in other implementagion

2.4.4 Problem 4: Powell’'s Singular Function

min f(x) = (xl%—10x2)24—5(x3——1@)2%—(x2—-213)4

+ 10(1’1 — .1'4)4,

Yi
1000

st. z;, = — 10000 < g; < 10000, y;integer ¢ =1,2,3,4.

This box constrained problem ha$0032 x 107 feasible points. The global min-
imum is atxjgp = [0,0,0,0]" with f(xj,) = 0. Six starting points were
used in the tests{10, 10, 10,10]", [-10,—10, 10, —10]", [10,—10,—10,10]T,
[1,-1,-1,1]",[-10,1,0,5]", and[0, 0,0,0] ". All methods succeeded in identify-
ing the global minimum. Table 2.4 summaries the computatiogsults. Numeri-
cal experiments suggest that Algorithm B has the smallésk momber of original

function evaluations, and the averag is 7.01735 x 10,
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Table 2.3: Numerical Results of Problem 3.

Algorithm X0 Xfinal f(Xfinan) Ey Eq REg
A [10,—-10]T [3,0.5] 7 0 408190 1781788 0.001020373
[9.997,-6.867]"  [3,0.5]T 0 410442 1781788 0.001026002
[0,-1]" [3,0.5]T 0 415309 1781788 0.001038169
[1,1]7 [3,0.5]T 0 216860 1140046 0.000542096
[-2,2]7 [3,0.5] 7 0 219484 1140046 0.000548655
[0,0]" [3,0.5] T 0 478179 2049532 0.001195328
B  [10,—10]7 [3,0.5] 7 0 119997 1310251 0.000299963
[9.997,-6.867] 7 [3,0.5]" 0 121489 1310251 0.000303692
[0,—-1]" [3,0.5] T 0 129333 1310251 0.000323300
1,17 [3,0.5] T 0 107219 723603 0.000268021
[-2,2]" [3,0.5] 0 105842 723603 0.000264579
[0,0]" [3,0.5]T 0 134453 776637 0.000336099
C  [10,-10]" [3.015,0.504] T 0.0000376 100002 128430 0.000249980
[9.997, —6.867] T [3.015,0.504] T 0.0000376 100002 123335 0.000249980
[0,-1]" [3.015,0.504] " 0.0000376 100001 111165 0.000249978
(1,17 [2.989,0.497]7 0.0000211 100001 199532 0.000249978
[2,2] " [2.989,0.497]7 0.0000211 100001 202671 0.000249978
[0,0]" [2.989,0.497]T 0.0000211 100002 206268 0.000249980
D [10,-10]7 [3.004,0.501] T 0.00000255 386183 2610857 0.000965361
[9.997, —6.867] " [3.004,0.501] " 0.00000255 388440 2610857 0.000971003
[0,-1]" [3.004,0.501] T 0.00000255 393307 2610857 0.000983169
(1,17 [2.996,0.499] T 0.00000257 257134 2110006 0.000642771
[-2,2]7 [2.996,0.499] T 0.00000257 276458 2110006 0.000691076
(0,07 [3.004,0.501] T 0.00000255 494215 2711826 0.001235414
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Table 2.4: Numerical Results of Problem 4.

Algorithm Xo Xt f(Xfna) Ey Eq Rg
A [10,10,10,10] [0,0,0,0]T O 1874 7248 1.17102x 10~
[-10,-10,—10,—10]" [0,0,0,0]T O 1928 7247 1.20476 x 10~
[10,-10,-10,10]"  [0,0,0,0]T O 1825 7248 1.14040 x 10~
1,-1,-1,1]7 [0,0,0,0]T O 1742 7248 1.08853 x 104
[-10,1,0,5]" [0,0,0,0]T O 1807 7247 1.12915x 10~
[0,0,0,0] " [0,0,0,0]7 0 1732 7243 1.08228 x 10~ 14
B [10,10,10,10] " [0,0,0,0]T 0 1160 5350 7.24855 x 101
[~10,-10,—10,—10] " [0,0,0,0]T O 1179 5349 7.36728 x 10~1°
[10,-10,-10,10]T  [0,0,0,0]T O 1131 5350 7.06734 x 10~1°
n,-1,-1,1]" [0,0,0,0]T 0 1067 5350 6.66742 x 10~1°
[-10,1,0,5]" [0,0,0,0]T O 1140 5349 7.12358 x 10~
[0,0,0,0] T [0,0,0,0]T 0 1061 5345 6.62992 x 10~1°
C [10,10,10,10] T [0,0,0,0]T O 2777 360611.73528 x 1014
[-10,-10,—10,—-10]" [0,0,0,0]T O 2536 34605 1.58468 x 10~
[10,-10,-10,10]T  [0,0,0,0]T O 2759 36061 1.72403 x 10~
1,-1,-1,1]7 [0,0,0,0]T 0 2612 360611.63217 x 104
[~10,1,0,5] " [0,0,0,0]T 0 2420 346051.51220 x 10~
[0,0,0,0] " [0,0,0,0]7 0 2342 34594 1.46346 x 10~14
D  [10,10,10,10]" [0,0,0,0]T 0 2043 177771.27662 x 10~
[-10,-10,—10,-10]" [0,0,0,0]T O 1744 164781.08978 x 10~
[10,-10,-10,10]T  [0,0,0,0]T O 2048 17777 1.27974 x 104
1,-1,-1,1]7 [0,0,0,0]T O 1874 177771.17102x 10~
[-10,1,0,5]" [0,0,0,0]T 0 1620 164781.01230 x 10~
[0,0,0,0] " [0,0,0,0]T O 1542 16458 9.63557 x 10~%°
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2.45 Problem 5: Rosenbrock’s Function

—_

n—

min f(x) =

™

Il
A

[100(mi+1 — xf)Q + (1 — xl)z} ,

7

IA

5 x;integer i=1,2,...,n.

This box constrained problem has)8347 x 10%¢ feasible points fom = 25.
The global minimum is akpy = [1,...,1]7 with f(x}) = 0. Six starting
points were considered in the simulatiof®:...,0]", [3,...,3]", [-5,...,—5]T,
2,-2,...,2,-2.2]",[3,-3,...,3,-3,3]", and[5, =5, ...,5,—5,5]". All algo-
rithms succeeded in identifying the global minimum for mafsthe starting points
used. A summary of the computational results is displayethlrie 2.5. Clearly,
Algorithm B has the least total number of original functiorakiations and the av-
erageRy is 1.87477 x 1072,

2.4.6 Comparison with Literature Results

Table 2.6 shows the average values of a number of originatifum evaluations
for an algorithm to terminate and compares this with the ltegtom the litera-
ture. Since these test problems were not solved in [161],ongpare our numerical
results with those in [107], [106], and [160] only. Recal&thn our implementa-
tions of these algorithms, we construct a look-up tabledoestach objective func-
tion value computed so far to avoid repeated calculatiomefabjective function.
Consequently, our implementations show a significantlyelomumber of function
evaluations when compared to the results found in the tileza We note that in
our implementation of the various algorithms, searchesflocal minimum of the
filled function may be initialized with different startingomts than those used in
the implementations published previously. This is bec&itber the order in which
the neighbourhood af* is to be tested is not specified or the starting points are not
confined to the neighbourhodd(x*) and are chosen randomly within the feasible

region. This difference may well influence the actual perfance of an algorithm.

46



Table 2.5: Numerical Results of Problem 5.

Algorithm

f (Xﬁnal)

Ey

Eq REg

A

0

O O O o o

211831
418536
217435
214231
510907
512802

682050 1.95512 x 10~2!
898526 3.86292 x 102!
682050 2.00684 x 102!
682050 1.97727 x 10~2!
10060184.71547 x 102!
10060184.73296 x 102!

O O O o o o

171072
312888
176624
173472
191402
193297

444101 1.57893 x 10~2!
644091 2.88783 x 102!
444101 1.63017 x 10~2*
444101 1.60108 x 10~2
563646 1.76656 x 102!
563646 1.78405 x 102!

24
24

532603
627360
538156
534952
678295
680190

30315474.91571 x 10~2¢
28242735.79277 x 102!
30315474.96696 x 102!
30315474.93739 x 102!
29206826.26039 x 102!
29206826.27788 x 102!

24

24
24

182636
289538
188189
184985
339380
341275

14933761.68566 x 102!
14010002.67232 x 102!
14933761.73691 x 10~2!
14933761.70734 x 10~2!
14934603.13234 x 102
14934603.14983 x 102!

*Remarks: The final solution is a local solution.
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Table 2.6: A Comparison of Function Evaluations.

Problem Algorithm Our implementations Results in [107] &esin [106] Results in [160]

1 A 2440.17 4263.11
B 1679.5 3767.78
C 3430.5 85705
D 2189.5
2 A 49533.17 111125.86
B 22249 68196.29
C 48327.17 2125511
D 46329.83
3 A 366914.3 939209.57
B 119368.8 444887.71
C 100001.5* 4861560
D 365956.2*
4 A 1818 7337207.5
B 1123 6731232
C 2574.333 155868850
D 1811.8333
5 A 347623.7 320610.44
B 203125.8 305712.11
C 598637.7 6282030
D 254333.8

*Remarks: The final solution is a local solution.
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2.5 Concluding Remarks

Discrete filled function methods have shown promising itssul finding globally
optimal solutions in several benchmark problems as dematestin the previous
section, thus confirming the applicability, reliabilityyéefficiency of this relatively
recent global optimization technique. As can be seen frobheT2a.6, Algorithm B
is the most efficient method, yielding the lowest number ottion evaluations for
solving all test problems. Our intention is to adapt the teghe to complex mixed
discrete optimization problems where individual objeetiMunction evaluations are
computationally expensive. Methods requiring the leastiner of function evalua-
tions are important in solving such problems. In the nexptéiawe propose some
variations to Algorithm B to enhance the computational efficy, before adapting

it to solve discrete-valued optimal control problems inseduent chapters.
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Chapter 3

Variations of Discrete Filled Function

Methods

This chapter summarizes some of our own ideas of how an egidiscrete filled
function algorithm may be modified to improve its performanchis is done with
a view of finding the most suitable algorithm for our proposechnique of solv-
ing discrete-valued optimal control problems in the comehgpters. We adopt
Algorithm B extracted from [106] in the previous chapter grdpose five major
variations to this algorithm. Each algorithm is tested onwville’s function and
Rosenbrock’s function as defined in Subsections 2.4.1 ah8,2espectively. The
performances of the proposed variations of the basic dlgorare summarized at
the end of this chapter.

Before discussing the details of the proposed variatioesesall the follow-

ing basic box constrained discrete optimization problem:
min f(x), S.t.xe€ X,
whereX = {x € Z"|X;min < X; < Ximax}, Z" iS the set of integer points R",

andx; min, Ximax; ¢ = 1,...,n, are given bounds. Also, we recall the discrete

steepest descent method from Subsection 2.2.2 as follows.
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Algorithm 3.1 Discrete Steepest Descent Method
1. Choose an initial poink € X.

2. If x is a local minimizer off, then stop. Otherwise, find the discrete steepest

descent directionl* € D(x) of f.

3. Setx :=x + d*. Goto Step 2.

3.1 The Standard Algorithm

The following is the original filled function algorithm exicted from [106].

Algorithm 3.2 Standard Algorithm

1. Initializexy € X, po, po, pr, > 0,0 < p < 1,and0 < g < 1.
Letp := pp andp := pp.

Choose an initial poink, € X.

2. Starting fromx,, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx* of f.

3. (a) List the neighbouring points of as N(x*) = {wy, ws,...,w,}. Set
{:=1.

(b) Set the current switching point, := wy.

4. (a) If there exists a directiod € D(x.) such thatf(x. + d) < f(x*), then
setx, := x. + d and go to Step 2. Otherwise, go to (b) below.
(b) LetD; = {d € D(x.) : f(xc+d) < f(x.) and G, ,x(x. +d) <
Gpupx(Xe)}-
If Dy # 0, setd* := arg mingep ) {f(Xe +d) + G pxe (X +d) -
Then, sek. := x. + d* and go to (a) above. Otherwise, go to (c) below.

(c)LetDy ={d € D(x.) : G, px(xc+d) <G px(Xc)}
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If D, # (), setd* := arg Mingep(e) { Gpupx (Xe +d) }-

Then, sek. := x. + d* and go to (a) above. Otherwise, go to Step 5.

5. Letx = x, be the local minimizer of7,, , .- obtained from Step 4.
(@) Ifx € X, setl := (+1. If ¢ > ¢, go to Step 6. Otherwise, go to Step 3(b).
(b) If x ¢ X, reducey by settingu := /i and go to Step 4(b).

6. Reduce by settingp := pp. If p < pr, terminate the algorithm. The current
x* is taken as a global minimizer of the problem. Otherwise/set 1 and

go to Step 3(b).

Table 3.1 describes the numerical results from implemgnailgorithm 3.2
for minimizing Rosenbrock’s function with = 5. The global minimum i, =
[1,1,1,1,1] " with f(x30pa) = 0. Recall from Section 2.4 that the total number of
original function evaluations, the total number of diserétled function evalua-
tions, and the ratio of the average number of original fuorcgvaluations to reach
the global solution to the total number of feasible points @enoted in the table
by E¢, Eq, and R, respectively. Note that we sg = 0.001 in the numerical
computation to be more confident of obtaining a global sofutvhen minimizing
both test problems. Eleven starting points are consideredliving the problem.
These aré—5, —5, —5, —5, 5] ", [—4, —4, —4, —4, —4]T, [-3, -3, -3, -3, 3|,
[-2,-2,-2,-2,-2]",[-1,-1,-1,-1,-1]T,[0,0,0,0,0] ", [1,1,1,1,1]",
2,2,2,2,2]7,[3,3,3,3,3]", [4,4,4,4,4]", and[5,5,5,5,5] . The algorithm was
able to determine the global solution from all starting p&in

Recall that Colville’s function has a minimum globg,,, = [1,1,1,1]7
with f(xgopa) = 0. Six starting points are considered in Algorithm 3.2, ngmel
[1,1,0,0]", [1,1,1,1]T, [-10,10,—10,10]", [-10,-5,0,5]T, [-10,0,0,—10]",
and|0,0,0,0]". The algorithm succeeded in finding the global minimum frdim a

starting points, as displayed in Table 2.1.
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Table 3.1: Results of Algorithm 3.2 - Rosenbrock’s Function
X0 Ef EG RE
[~5,—5,—5,—5, 5] " 1436 4475 0.45952
[—4,—4,—4,—4,—4]T 1435 4475 0.45920
[-3,-3,-3,-3,-3]T 1395 4475 0.44640
[-2,-2,-2, -2, —2]
[-1,-1,-1,—1,—1]

) ) ) T
, —

3 3

,—2,-2,-2,-2]T 1354 4475 0.43328
,—1,—1,-1,-1]7 1314 4475 0.42048
[0,0,0,0,0] " 1274 4475 0.40768
[1,1,1,1,1]7 1252 4415 0.40064
2,2,2,2,2]" 1271 4415 0.40672
[3,3,3,3,3] T 1646 5720 0.52672
[4,4,4,4,4]7 1666 5720 0.53312
[5,5,5,5,5] T 1664 5720 0.53248

3.2 The First Variation

We replace the seV(x*) in Step 3 of the previous algorithm with a set which is
just outside of the immediate neighbourhoodxdf Then, an additional step is
introduced after Step 3 to test whether an improved poirgteximongst the points
in this alternative set. If so, the first improved point idéetl is used as the starting
point to minimizef. The motivation behind this algorithm is to seek an improved
point more efficiently than Algorithm 3.2 by bypassing th@sents which are in
the immediate neighbourhood =f. In particular, we replac&/(x*) with a set of
points which are two units away frort. Note that, from our numerical experience,
it is not a good idea to initiate the minimization of the filledhction too far from

x*, though, as we are more likely to miss a point in a lower basar tox*.

Algorithm 3.3 Variation 1

1. Initializexy € X, po, po, pr, > 0,0 < p < 1,and0 < g < 1.
Letp := pg andy := py.

Choose an initial poink, € X.

2. Starting fromx,, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx* of f.
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3. DefineN(x*) ={w € X|w=x"42¢:i=1,2,...,n} = {wy, wy,..., W},

q < 2n.

4. (a) Set := 1.
(b) If f(w,) < f(x*), setx, := w, and go to Step 2. Otherwise, go to (c)
below.
(c) Setl := ¢+ 1. If £ < ¢, go to (b) above. Otherwise, sét= 1 and go to
(d) below.

(d) Set the current switching poigt := wy.

5. (a) If there exists a directiod € D(x,) such thatf(x. + d) < f(x*), then
setx, := x. + d and go to Step 2. Otherwise, go to (b) below.
(b) LetD; = {d € D(x.) : f(xc+d) < f(x.) and G, ,x(x. +d) <
Grupx(Xe) }-
If Dy # 0, setd” := arg mingeppe ) {f(Xc +d) + G pxe (X +d)
Then, sek. := x. + d* and go to (a) above. Otherwise, go to (c) below.
(©) LetD; = {d € D(xc) : Gppx(xc+d) < Gupx(xc)}-
If Dy # 0, setd” := arg mingepx, ) { Gupxs (X +d) }

Then, sek,. := x. + d* and go to (a) above. Otherwise, go to Step 6.

6. Letx = x. be the local minimizer of7,, , x- obtained from Step 5.
(@) Ifx € X, setl .= (+1.If ¢ > ¢, go to Step 7. Otherwise, go to Step 4(d).
(b) If x ¢ X, reducey by settingu := /i and go to Step 5(b).

7. Reduce by settingp := pp. If p < pr, terminate the algorithm. The current
x* is taken as a global minimizer of the problem. Otherwise/set 1 and

go to Step 4(d).

The minimization of Rosenbrock’s function via Algorithm33eads to the

results in Table 3.2. We found that a higher total number otfion evaluations
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Table 3.2: Results of Algorithm 3.3 - Rosenbrock’s Function
X0 Ef EG RE
[~5,—5,—5,—5, 5] " 1636 4252 0.52352
[—4,—4,—4,—4,—4]T 1635 4252 0.52320
[-3,-3,-3,-3,-3]T 1595 4252 0.51040
[-2,-2,-2, -2, —2]
[-1,-1,-1,—1,—1]

) ) ) T
, —

3 3

,—2,-2,-2,—2]T 1554 4252 0.49728
,—1,-1,-1,-1]T 1514 4252 0.48448
[0,0,0,0,0] " 1475 4252 0.47200
[1,1,1,1,1]7 1427 4181 0.45664
2,2,2,2,2]" 1450 4181 0.46400
3,3,3,3,3] " 1828 5254 0.58496
[4,4,4,4,4]7 1855 5254 0.59360
[5,5,5,5,5] T 1850 5254 0.59200

is needed before a global solution is attained, comparduktapplication of Algo-
rithm 3.2. In hindsight, this is most likely due to not seanchfor the minimum
of the filled function as thoroughly as in Algorithm 3.2, sénthe starting points do
not cover the neighbourhood &f as effectively. Although Algorithm 3.3 requires
fewer discrete filled function evaluations than Algorithi 8.e. E is lower), this
do not enhance the algorithm'’s overall efficiency.

On the other hand, we notice that Algorithm 3.3 outperforhes standard
algorithm when minimizing Colville’s function from all stiing points. A summary
of the computational results for this problem is shown inl@&h3. The average of
total number of original function evaluations is 1547.7 jiethis 7.8% lower than
that for the standard algorithm. Clearly, depending on s@pe’ of the objective
function, Algorithm 3.3 can result in improved efficiency ypassing points in the
immediate neighbourhood &f.

We also considered a further variation of Algorithm 3.3 witle hope of
searching for an improved point more efficiently in the regié(x*). Instead of
using the first improved point found iV (x*) to continue the minimization of,
we test all points inV(x*) and choose the most improved point, assuming it actu-
ally exists. Interestingly, for each starting point usddk variation of the algorithm

yielded the same results for bofly and E; values in minimizing Rosenbrock’s
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Table 3.3: Results of Algorithm 3.3 - Colville’s Function.

X0 Ef EG RE
[1,1,0,0] " 1346 4972 0.006920985
1,1,1,1]7 1329 4942 0.006833572

[~10,10,—10,10] " 2279 7254 0.011718368
[~10,—5,0,5] " 1492 5018 0.007671701
[-10,0,0,—10]" 1475 4972 0.007584288
[0,0,0,0] " 1365 4983 0.007018680

function, as shown in Table 3.2. It seems that none of thetpainV (x*) is ever
an improved point in the case of Rosenbrock’s function, amvariation therefore
yields no improvement over Algorithm 3.3. For Colville’sriction, we found this
variation shows a similar results to those from Algorithid isself, with an average
Ey = 1548.7 compared td¥; = 1547.7 obtained in Algorithm 3.3. There appears

to be no reason for pursuing this variation of Algorithm 3.3.

3.3 The Second Variation

Once again, we replace the 9é{x*) in Step 3 of the Algorithm 3.2, this time with

a set of random points frolX. Then, an additional step is added to test whether
any one of these random points happens to be an improved pdietmotivation

for this algorithm is to search for improved points more éffitly by choosing
points which give a broader coverage ®f similar to the methods proposed in
[127, 128, 162].

Algorithm 3.4 Variation 2

1. Initializexy € X, po, po, pr, > 0,0 < p < 1,and0 < g < 1.
Letp := pg andu := py.

Choose an initial poink, € X.

2. Starting fromx,, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx* of f.
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3. LetM = {wy,wy,...,w,}, Wwherew,, ¢ = 1,...,q are randomly chosen

from X andq = 2n.

4. (a) Set := 1.
(b) If f(w,) < f(x*), setx, := w, and go to Step 2. Otherwise, go to (c)
below. (c) Set := ¢+ 1. If ¢ < ¢, go to (b) above. Otherwise, set= 1 and
go to (d) below.

(d) Set the current switching poigt := wy.

5. (a) If there exists a directiod € D(x,) such thatf(x. + d) < f(x*), then
setx, := x. + d and go to Step 2. Otherwise, go to (b) below.
(b) LetD; = {d € D(x.) : f(xc+d) < f(x.) and G, ,x(x. +d) <
Gupx(Xe)}-
If Dy # 0, setd” := arg mingepx, ) {f (% +d) + G px (X +d) -
Then, sek. := x. + d* and go to (a) above. Otherwise, go to (c) below.
(c)LetDy ={d € D(x.) : G, px(xc+d) <G px(Xc)}
If Dy # 0, setd” := arg mingepx, ) { Gppx- (X + d) }-
Then, sek,. := x. + d* and go to (a) above. Otherwise, go to Step 6.

6. Letx = x. be the local minimizer of/,, , «- obtained from Step 5.
(@) Ifx € X,setl .= (+1.If ¢ > ¢, go to Step 7. Otherwise, go to Step 4(d).
(b) If x ¢ X, reducey by settingu := /i and go to Step 5(b).

7. Reduce by settingp := pp. If p < p, terminate the algorithm. The current
x* is taken as a global minimizer of the problem. Otherwise/set 1 and

go to Step 4(d).

Table 3.4 shows the numerical results of minimizing Roseckis function
using Algorithm 3.4 and also Algorithm 3.2 discussed earldote that this algo-

rithm requires far fewer of evaluations of bofhand G/, , x when compared with
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Table 3.4: Results of Algorithm 3.4 - Rosenbrock’s Function
X0 Ef EG RE NT

[-5, -5, =5, —5, =5] " 937 2115 0.29984 1
(4, —4,—4,—4,-4]" 1219 2662 0.39008 1
[-3,-3,-3,-3,-3]" 1445 3279 0.46240 1
[-2,-2,-2,-2,-2]T 923 2060 0.29536 1
[-1,-1,-1,-1,-1]" 1032 2409 0.33024 2
[0,0,0,0,0] " 936 2447 0.29952 2
[1,1,1,1,1] T 820 1961 0.26240 1
2,2,2,2,2]T 871 2165 0.27872 1
(3,3,3,3,3] " 1233 2904 0.39456 3
[4,4,4,4,4]7 1356 3112 0.43392 3
[5,5,5,5,5] 980 2269 0.31360 1

Algorithm 3.3 discussed earlier. Specifically, when it warklgorithm 3.4 suc-
ceeds in finding the global solution of the problem with arrage Rz = 0.341876,
compared withRz = 0.456931 obtained by Algorithm 3.2. In other words, Algo-
rithm 3.4 is able to minimize Rosenbrock’s function much enefficiently than
Algorithm 3.2, with a reduction of 25% in the total number afginal function
evaluations. However, for several starting points used lgoAthm 3.4, namely
[-1,-1,-1,-1,-1]T, [0,0,0,0,0]", [3,3,3,3,3]", and[4,4,4,4,4]", we were
unable initially to determine the global solution for sonmeices of the random set
M. In these cases, we repeated the application of the algogdveral times until
the global optimum was obtained (note that the random\sethanges with each
new application). Note that the; values in Table 3.4 show the number of func-
tion evaluations recorded for the successful applicatich® algorithm only. The
number of required attempts before reaching the globatisolis denoted byV,

in Table 3.4.

Similarly, Algorithm 3.4 succeeds in determining the glidzution of Colville’s
function much more efficiently with an average; = 1143.2, compared with
E; = 1679.5 obtained by Algorithm 3.2, which is a reduction of 31.9% ireav
age total number of original function evaluations (see @&bl4). Again, the gain

in efficiency for Algorithm 3.4 is offset by reduced reliabi] where we have to
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Table 3.5: Results of Algorithm 3.4 - Colville’s Function.

X0 Ef EG RE NT
[1,1,0,0]" 1092 2812 0.005614944 13
[1,1,1,1]7 1030 2387 0.005296147 1

[~10,10,—10,10] " 1106 2659 0.005686931 7
[~10,-5,0,5] " 1542 3759 0.007928795 15
[-10,0,0,—10] " 1135 3101 0.005836046 2
[0,0,0,0] " 954 3010 0.004905364 12

repeat the algorithm several times for each starting pafdre a global solution is

attained, as shown in Table 3.5.

3.4 The Third Variation

We propose a similar algorithm to Algorithm 3.4 where thetl@groved random
point is identified from sed/ in Step 4 to increase the computational efficiency. If
such a point exists, the algorithm reverts to finding a bétigal minimizer of f in

X.

Algorithm 3.5 Variation 3

1. Initializexy € X, po, po, pr, > 0,0 < p < 1,and0 < g < 1.
Letp := pg andy := py.

Choose an initial poink, € X.

2. Starting fromx,, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx* of f.

3. LetM = {wy,wy,...,w,}, Wwherew,, ¢ = 1,...,q are randomly chosen

from X andq = 2n.

4. (a) Lety € M be suchthaff(y) < f(wy), £ =1,...,q.
If f(y) < f(x*), setx, := y and go to Step 2. Otherwise, get= 1 and go
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to (b) below.

(b) Set the current switching poigt := wy.

. (a) If there exists a directiod € D(x.) such thatf(x. + d) < f(x*), then
setx, := x. + d and go to Step 2. Otherwise, go to (b) below.

(b) LetD; = {d € D(x.) : f(xc+d) < f(x.) and G, ,x(x. +d) <

Gupx(Xe)}-

If Dy # 0, setd” := arg mingepx, ) {f(%c +d) + G px (X +d) -

Then, sek. := x. + d* and go to (a) above. Otherwise, go to (c) below.

(c)LetDy ={d € D(x.) : G, px(xc+d) <G px(Xc)}

If Dy # 0, setd” := arg mingepx, ) { Gppx- (X + d) }-

Then, sek. := x. + d* and go to (a) above. Otherwise, go to Step 6.

. Letx = x. be the local minimizer of/,, , .- obtained from Step 5.
(@) Ifx € X,setl .= (+1.If ¢ > ¢, go to Step 7. Otherwise, go to Step 4(b).
(b) If x ¢ X, reducey by settingu := /i and go to Step 5(b).

. Reduce by settingp := pp. If p < pr, terminate the algorithm. The current
x* is taken as a global minimizer of the problem. Otherwise/set 1 and

go to Step 4(b).

The results of minimizing Rosenbrock’s function using Aiglam 3.5 are

summarized in Table 3.6. Some starting points, sudh-as—4, —4, —4, —4]7,
[-3,-3,-3,-3,-3]", [0,0,0,0,0]", [3,3,3,3,3]", and [4,4,4,4,4]" show im-

provement over the function evaluations, compared withoAtgm 3.4. However,

Algorithm 3.5 has only slightly lower average valuesiof and E; as shown in
Table 3.12. This indicates that the new Step 4 in Algorith& fails to provide

any improved point to increase the computational efficiefidyough some points

converge to the global solution in fewer function evaluasiothis is due to dif-

ferent set of random points being generated in the impleedeakyorithm. Sim-

ilar to Algorithm 3.4, this algorithm succeeds in determmithe global solution
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Table 3.6: Results of Algorithm 3.5 - Rosenbrock’s Function
X0 Ef EG RE NT

[-5, -5, =5, —5, =5] " 1024 2144 0.32768 8
(4, —4,—4,—4,-4]" 1006 2060 0.32192 1
[-3,-3,-3,-3,-3]" 1343 3140 0.42976 1
[-2,-2,-2,-2,-2]T 1050 2285 0.33600 1
[-1,-1,-1,-1,-1]" 1034 2409 0.33088 1
[0,0,0,0,0] " 923 2309 0.29536 1
[1,1,1,1,1] T 1313 3180 0.42016 1
2,2,2,2,2]T 993 2175 0.31776 1
(3,3,3,3,3] " 888 2047 0.28416 1
[4,4,4,4,4]7 964 2284 0.30848 2
[5,5,5,5,5] 1079 2649 0.34528 1

Table 3.7: Results of Algorithm 3.5 - Colville’s Function.

X0 E; Eq Ry Nr
[1,1,0,0]" 1038 2607 0.005337282 6
[1,1,1,1]7 1054 2643 0.005419553 1

[-10,10,-10,10] " 977 2174 0.005023627 7
[-10,-5,0,5]" 1168 2607 0.006005728 2
[—10,0,0,—10] " 1168 2607 0.006005728 9
[0,0,0,0] T 1185 3175 0.006093140 5

much more efficiently than the standard algorithm, thougds iéss reliable. Note
that the algorithm needs to be implemented more than oncstésting points
[-5,—5,—5,—5,—5]" and [4,4,4,4,4]" as the initial attempts fail to reach the
global solution.

Table 3.7 summarizes the results of minimizing Colvilleiadtion using Al-
gorithm 3.5. The outcomes show that Algorithm 3.5 also odigpms its prede-
cessor where a lowdr; and E; as are obtained. Besides, Algorithm 3.5 requires
less attempts in attaining the global solution (8&éevalues in Table 3.7) for most
starting points, except-10,0,0, —10]". Note that Algorithm 3.5 shows 34.6%

improvement over the standard algorithm, although it is fesable.
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3.5 The Fourth Variation

Although the idea of using the random points in Algorithm 324 shown promising
results as suggested in Table 3.4, its lack of reliabilitggloot make it attractive
for general problems. We propose another variation to aveecthis issue, by
combining Algorithms 3.3 and 3.4 discussed earlier. Birstiset of random points
is tested to see if an improved point exists among them in $tdpnone of these
is an improved point, we then set up a set of pointd/gk*) as outlined in Step 5
below. If no improved point is found iV (x*), we perform a local search of the

filled function in Step 7.

Algorithm 3.6 Variation 4

1. Initializexy € X, po, po, pr, > 0,0 < p < 1,and0 < g < 1.
Letp := pg andy := py.

Choose an initial poink, € X.

2. Starting fromx,, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx* of f.

3. LetM = {wy,ws,...,w,}, wherew,;, j = 1,...,p are randomly chosen

from X andp = 2n.

4. (a) Setj := 1.
(b) If f(w;) < f(x*), setx, := w; and go to Step 2. Otherwise, go to (c)
below.

(c) Setj :=j + 1. If 7 < p, go to (b) above. Otherwise, go to Step 5.

5. DefineN(x*) = {w € X|w=x"42¢:i=1,2,...,n} = {wy, wy,..., W},

q < 2n.

6. (a) Set/ .= 1.
(b) If f(w,) < f(x*), setx, := w, and go to Step 2. Otherwise, go to (c)
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below.
(c) Set? := ¢+ 1. If £ < ¢, go to (b) above. Otherwise, set= 1 and
go to (d) below.

(d) Set the current switching poigt := wy.

. (a) If there exists a directiod € D(x.) such thatf(x. + d) < f(x*), then
setx, := x. + d and go to Step 2. Otherwise, go to (b) below.

(b) LetD; = {d € D(x.) : f(xc+d) < f(xc) and G, px(xc +d) <

Gupx(Xe)}-

If Dy # 0, setd” := arg mingep ) {f(xc + d) + Gupx (xc + d) }.

Then, sek. := x. + d* and go to (a) above. Otherwise, go to (c) below.

(c)LetD, ={d € D(x.) : G px(xc+d) <G, ,x(x:)}

If Dy # 0, setd™ := arg mingepx, { G ps (Xe + d) }-

Then, sek. := x. + d* and go to (a) above. Otherwise, go to Step 8.

. Letx = x. be the local minimizer of7,, , «- obtained from Step 7.
(@) Ifx € X, setl := (+1. If ¢ > ¢, go to Step 9. Otherwise, go to Step 6(d).
(b) If x ¢ X, reducey by settingu := i and go to Step 7(b).

. Reduce by settingp := pp. If p < pr, terminate the algorithm. The current
x* is taken as a global minimizer of the problem. Otherwise/set 1 and

go to Step 6(d).

Unfortunately, Algorithm 3.6 results in a relatively hightal number of orig-

inal function evaluations compared with Algorithm 3.2, aspthyed in Table 3.8.

This may be due to the reason that more original functionuatadns are needed to

determine the global solution when the starting points argnér fromx*. Interest-

ingly, the E'; values obtained here are close to those obtained by AlgoBtl, ex-

cept more function evaluations are recorded to evaluateatedtom points in Step 4.

In fact, both algorithms show the sani®; values for each starting point used in
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Table 3.8: Results of Algorithm 3.6 - Rosenbrock’s Function
X0 Ef EG RE
57 1646 4252 0.52672
47 1645 4252 0.52640
37 1605 4252 0.51360
]
]

3 3 3 3

3 3

, —

[-5,—5,—5,-5
[—4,—4,—4, —4,
[-3,-3,-3,-3
[—2,-2,-2,-2
[—1,-1,—-1

,—2,—-2,—2,—2]T 1564 4252 0.50048
,—1,-1,-1,-1]" 1524 4252 0.48768
[0,0,0,0,0] " 1485 4252 0.47520
[1,1,1,1,1]T 1437 4181 0.45984
2,2,2,2,2]T 1460 4181 0.46720
3,3,3,3,3] " 1838 5254 0.58816
[4,4,4,4,4]7 1865 5254 0.59680
[5,5,5,5,5] 1860 5254 0.59520

solving Rosenbrock’s function. None of the random pointseap to result in an
improved point, thus giving similar results to those frong@dithm 3.3.

On the contrary when applied to Colville’s function, Tabl® 8hows that Al-
gorithm 3.6 yields a lower total number of original functievaluations compared
with the standard algorithm. Still, since virtually nonetb&é random points pro-
posed in Step 3 ever yields an improved point, Algorithm 3fére no effective
improvement over Algorithm 3.3.

In addition, we also tested a further variation of AlgoritBr6, where instead
of looking for an improved point inV(x*), the proposed variation performs the
local search of the filled function directly if no improvectiom point is identified
in Step 4. Then, one of the points M(x*) is used to initialize the minimization of
the filled function. Though some starting points yield a lowamber of function
evaluations with this variation of Algorithm 3.6, its ové@erformance is similar to
that of Algorithm 3.6 with the average total number of orgifunction evaluations
E; = 1625.45 being relatively high compared with Algorithm 3.2. For Cdi/s
function, the variation of Algorithm 3.6 shows a slightly pnoved performance
with the average’; = 1548 compared with an average; = 1555.7 obtained for
Algorithm 3.6.
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Table 3.9: Results of Algorithm 3.6 - Colville’s Function.

X0 Ef EG RE
[1,1,0,0] " 1354 4972 0.006962120
1,1,1,1]7 1337 4942 0.006874708

[~10,10,—10,10] " 2287 7254 0.011759503
[~10,—5,0,5] " 1500 5018 0.007712836
[-10,0,0,—10]" 1483 4972 0.007625424

[0,0,0,0] " 1373 4983 0.007059816

3.6 The Fifth Variation

Finally, we combine the random point concept with the stashdégorithm outlined
in the first section. An additional step to test if an improvaddom point exists is

introduced before Step 3 in the standard algorithm.

Algorithm 3.7 Variation 5

1. Initializexy € X, po, po, pr > 0,0 < p < 1,and0 < i < 1.
Letp := pg andy := py.

Choose an initial poink, € X.

2. Starting fromx,, minimizef(x) using Algorithm 3.1 to obtain a local mini-

mizerx* of f.

3. LetM = {wy,wo,...,W,}, Wherew,, j = 1,...,p are randomly chosen

from X andp = 2n.

4. (a) Setj := 1.
(b) If f(w;) < f(x*), setx, := w; and go to Step 2. Otherwise, go to (c)
below.

(c) Setj :=j + 1. If 7 < p, go to (b) above. Otherwise, go to Step 5.

5. (a) List the neighbouring points of as N(x*) = {w;,ws,...,w,}. Set
¢:=1.
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(b) Set the current switching point, := wy.

6. (a) If there exists a directiod € D(x.) such thatf(x. +d) < f(x*), then
setx, := x. + d and go to Step 2. Otherwise, go to (b) below.
(b) LetD; = {d € D(x.) : f(xc+d) < f(x.) and G, ,x(x. +d) <
Gupx(Xe)}-
If Dy # 0, setd* := arg mingep ) {f(Xe +d) + G pxe (X +d) -
Then, sek,. := x. + d* and go to (a) above. Otherwise, go to (c) below.
(c)LetDy ={d € D(x.) : G, px(xc+d) <G px(Xc)}
If Dy # 0, setd™ := arg mingepx, { G p- (Xe +d) }-

Then, sek. := x. + d* and go to (a) above. Otherwise, go to Step 7.

7. Letx = x. be the local minimizer of7,, , «- obtained from Step 6.
(@) Ifx € X, setl := (+1. If ¢ > ¢, go to Step 8. Otherwise, go to Step 5(b).
(b) If x ¢ X, reducey by settingu := /i and go to Step 6(b).

8. Reduce by settingp := pp. If p < pr, terminate the algorithm. The current
x* is taken as a global minimizer of the problem. Otherwise/set 1 and

go to Step 5(b).

The outcomes from Tables 3.10 and 3.12 show that Algoritiims3a better
method compared to Algorithm 3.6 with a lower average totahher of original
function evaluations in minimizing Rosenbrock’s functiéithough Algorithm 3.6
performs the local search of the filled function more effidierhis algorithm needs
more function evaluations to reach the global solution.

Interestingly, Algorithm 3.7 seems to be the least efficraethod among all
algorithms tested for Colville’s function, based on theuttssin Table 3.11. This

may be due to the presence of many more local minima.
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Table 3.10: Results of Algorithm 3.7 - Rosenbrock’s Funttio

X0 E; Eg Rp

[-5, -5, =5, —5, =5] " 1446 4475 0.46272
(4, —4,—4,—4,-4]" 1445 4475 0.46240
[-3, 3, —-3,-3,-3]|T 1405 4475 0.44960
[-2, -2, -2, -2, 2]
[-1,-1,-1,-1,—1]

) 7 )

) )

,—2]T 1364 4475  0.43648
,—1]T 1324 4475  0.42368
T 1284 4475  0.41088

) 7 )

) 7 )

[0,0,0,0,0]

[1,1,1,1,1] T 1262 4415 0.40384
[2,2,2,2,2] T 1281 4415 0.40992
(3,3,3,3,3] " 1657 5720 0.53024
[4,4,4,4,4]7 1676 5720 0.53632
[5,5,5,5,5] 1674 5720 0.53568

Table 3.11: Results of Algorithm 3.7 - Colville’s Function.

X0 Ef EG RE
[1,1,0,0]7 1434 5097 0.007373471
[1,1,1,1]7 1430 5076 0.007352903

[~10,10,—10,10] " 2682 5979 0.013790550
[~10,—5,0,5] " 1575 5134 0.008098477
[-10,0,0,—10]" 1565 5098 0.008047059

[0,0,0,0] " 1439 5099 0.007399180

67



Table 3.12: Comparison of Algorithms - Rosenbrock’s Funttih = 5.
Types Ef avg EG avg RE avg
Algorithm 3.2 1427.909  4803.636  0.456931
Algorithm 3.3 1619.909  4512.364  0.518371
Algorithm 3.4 1068.364  2489.364  0.341876
Algorithm 3.5 1056.091  2425.636  0.337949
Algorithm 3.6 1629.909  4512.364  0.521571
Algorithm 3.7 1438 4803.636  0.460160

3.7 Concluding Remarks

From Tables 3.1-3.10, all discrete filled function algantheventually succeeded
in finding the global minima of Rosenbrock’s function and Gi#’s function from
all starting points, although some required repeatedsstArsummary of all com-
putational results obtained from these algorithms for pthblems are shown in
Tables 3.12 and 3.14, respectively. Besides, we also taliteariations algorithms
on a 25-dimensional Rossenbrock’s function and summattedutcomes in Ta-
ble 3.13. The average total number of original function eatbns, the average
total number of discrete filled function evaluations, anel drerage ratio of the av-
erage number of original function evaluations to reach tloba solution to the
total number of feasible points are denotedy,.4, E¢ oy, aNARE 404, r€Spec-
tively. For both problems, Algorithm 3.5 appears to be thesnedficient algorithm
with the leastRz .4, although as noted, it is less reliable at actually being abl
to find the global solution. Interestingly, Algorithms 33 proposed here suc-
ceeded in minimizing Colville’s function much more efficignthan the standard
algorithm, but this was not the case for Rosenbrock’s famctiln view of these
results, we choose to adopt Algorithm 3.2 directly for ourkvon discrete-valued

optimal control problems in the later chapters.
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Table 3.13: Comparison of Algorithms - Rosenbrock’s Fucgtin = 25.

Types Ef.avg Ec avg RE avg
Algorithm 3.2 203125.8333 517281 1.87477 x 10722
Algorithm 3.3 271225 574238.1667 2.50330 x 1022
Algorithm 3.4 115697.1667 227910.8333 1.06784 x 10722
Algorithm 3.5 116686.3333 224788.8333 1.07697 x 1022
Algorithm 3.6 271290.6667 574238.1667 2.50390 x 1022
Algorithm 3.7 205656.6667 537205.1667 1.89813 x 10~22

Table 3.14: Comparison of Algorithms - Colville’s Function

Types Ef avg EG avg RE avg
Algorithm 3.2 1679.5 5247.2 0.008635805
Algorithm 3.3 1547.7 5356.8 0.007957932
Algorithm 3.4 1143.2 2954.7 0.005878038
Algorithm 3.5 1098.3 2635.5 0.005647510
Algorithm 3.6 1555.7 5356.8 0.007999068
Algorithm 3.7 1687.5 5247.2 0.008676940
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Chapter 4

Case Study: Hybrid Power System

This chapter proposes a hew metaheuristic approach to iaptiime operation of a
hybrid power system. We first review the hybrid power systendehand problem
formulation reported in [116]. We then propose a new tramsé&tion, which con-

verts the original problem into an equivalent mixed disemgtimization problem.
Next, we outline a discrete filled function method and, basethis, develop a new
metaheuristic algorithm to solve the problem at hand. Nicakresults from the

implementation of this algorithm are presented by the entdle@thapter.

4.1 Hybrid Power System

A hybrid power system is a stand-alone electrical poweresgshcorporating con-

ventional (i.e. hydrocarbon powered) generators, renlasvatergy sources, and
energy storage devices. Such systems are vital for eleatrdn in remote areas,
where grid-connected infrastructure is not available ared is expensive. Renew-
able energy sources, such as photovoltaic (PV) arrays, tuiihes, biomass, hy-
dropower, and geothermal, are used to supplement the epexdyced by the gen-
erators, thereby reducing fuel demand and maintenancs. ddetvever, their con-

tribution towards total energy output varies considerdbhpughout the day. For

this reason, battery banks, and, in some cases, other stdeaices such as hy-
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drogen fuel cells, flywheels, and pumped water storage ae tasstore the excess
energy generated from both conventional and renewablemese[91].

Apart from the start-up costs, the dominant running costs loybrid power
system are associated with diesel generators and battekg.b@he operating cost
of a diesel generator is dependent on fuel consumption, ter@ance costs, and
loading. Frequent starts of the diesel generator from aodtranning the generator
for long hours at a low load increase engine wear and redwefiiciency. On the
other hand, incomplete charging and prolonged operatianbattery bank at a low
charge state are two of the major factors limiting the bgtenk life span. In fact,
studies have shown that diesel generators and battery bemkkely to have signifi-
cantly shortened lifetimes when operated under non-ideaditions [91, 116, 150].
Hence, an efficient generator operating schedule is redjtorensure a continuous
electricity supply at the load, while at the same time kegpmperating costs to a
minimum.

This chapter proposes a new algorithm for determining amadipgy schedule
that minimizes the total operating cost of a PV-dieseldygithybrid power system.
We adopt the model developed in [116], which is based on aithylmwer system
consisting of a diesel generator as the main component,a\iti array providing
additional energy and a battery bank for storage. The woffkt16] concentrated
on developing a mathematical model for hybrid power syst@eration and the
application of a specialized optimal control technique ptiraize the operation of
the model. Further investigation has revealed that thigropation problem has

many local minimizers.

4.2 Problem Formulation

4.2.1 A Discrete-Valued Control Problem

In this section, we briefly review the dynamic model of a hgilgower system dis-

cussed in [116]. Figure 4.1 illustrates the configuratiothefhybrid power system
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Figure 4.1: Schematic Diagram of a Hybrid Power System.
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Figure 4.2: A Typical Load Demand Profile [116].

under consideration. It consists of an alternating curi®&€) diesel generator, a bi-
directional inverter, a PV array, and a battery bank for gnstorage. The inverter
is used to convert the direct current (DC) voltage of the PNyaand the battery
bank into AC, and vice versa. It also acts as the battery ehafde diesel genera-
tor is connected directly to the load to avoid conversioséssand thus increase the
efficiency of the power system. The assumed load demande(eék Figure 4.2)
is based on data provided by the Centre for Renewable Ene@ysfainable Tech-
nologies Australia (CRESTA) [116]. The total daily load dmmd is approximately
340 kWh.
A battery bank of 100 kWh capacity is assumed here. A'@) denote the

capacity of the battery bank anés(¢) be the net power available at the battery
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bank. The rate of charge of the battery bank is governed by
C(t) = R(t) + D(t), (4.1)

where the recharge rate is represented by

K1 Ps(t) .
—_— f Pg(t) >0,
R(t) =4 K +C(t)’ it Pp(t) 2 (4.2)
0, if PB(t) < 0,
while the discharge rate is given by
D(t) _ KQPB(t), |f PB(t) < 0, (43)
0, if PB(t) > 0.

Note thatPg(t) > 0 indicates that the battery bank is undergoing chargingewhil
Pg(t) < 0 implies that the battery bank is being discharged. The petensi<;
and K, assume the use of lead acid batteries, set up as 250 and dpéctigely.
The parameters assume that the charging efficiency neardti#try charge is just
over 70% of the corresponding charging efficiency at a negtgbuattery state and
70% of power stored in the battery can be converted for loagngspectively.

We model the hybrid power system over the time horibn,|, wheret is

the given terminal time. At eache [0, ¢/, there are three possible scenarios:

e The diesel generator is producing sufficient energy to nmeetdad demand
and any excess power from the generator or PV array is di¢athe battery

bank.

e The power from the generator is insufficient to meet the loachahd, so
energy produced from the PV array is also used to supply thé. IcAny

excess is directed to the battery bank.

e The combined power output from the diesel generator and Ry & insuf-
ficient to meet the load demand, so energy from the batterl isaequired

to make up the shortfall.
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Then, on the basis of the above operating principles, tieeofathange of the charge

state is governed by the following dynamic equation:

(K1 K3[Pr(t) + Po(t) — Pu(t)]

if Po(t) > Pp(t),

K, +C(t) ’
o) = | FB PO = 0L it )+ apa(t) 2 1)
Ko | Pr(t) — M : if Po(t) + K3Pr(t) < PL(t),
’ (4.4)
with
C(0) = Co, (4.5)

where(, is the given initial charge statéz(¢) is the power generated by the PV
array at timet, P;(t) is the power produced by the diesel generator at tini& (¢)
is the load demand at timeand K, K5, K3 are given model parameters. Bath
and Py, are given functions derived from actual data supplied by SRk On the
other hand,P; is the control function which is chosen by the system operato
practice.

Since the charge state must operate within a certain rangédawe the fol-

lowing constraints:

Crain < C(t) < Conaxs VE € [0,1], (4.6)

and

C(ty) = CYy, 4.7)

where(' is the desired final charge statg,;, andC\,.x are given constants.
Since it is difficult to continuously modify the power proautby the gener-

ator, we assume that the generator can only operate atrcéxizd fractions of its

74



capacity. Suppose that there dresuch levels. Then, we require
P(;(t)ES:{Sl,...,SM}, YVt € [O,tf],

where, for each = 1,..., M, s, denotes the power produced by the generator
in modei. According to [116], the operating cost of the diesel getogrand the

battery over the time horizod, ¢ /| are given, respectively, by
b 100Pg(t
[ o250 )
0 PG,max

/ tf(C(t) — Ky)*dt,

and

where K, is a constantPq .« is the maximum power produced by the generator,
and
g1(x) = 2((0.22 + 0.5)%* — 0.5%")e %1 4+ 0.15(1 — e %17)

is a function derived from the data in [2]. The functignis illustrated in Figure 4.3
and it reflects the fuel efficiency at different generatedlI®vels. In practice, the
problem is to choose the power produced by the generatorasdhtbse costs are

minimized. This leads to the following optimal control pteim.

Problem (A). Choose a discrete-valued contf®} : [0,¢¢] — S such that the cost

by 100 Pg(
a/ Pg(t)gl< 2 a(t )dt+ﬁ/ )2dt
0 G,max

is minimized subject to the dynamics (4.4)-(4.5) and thest@amts (4.6)-(4.7),

function

wherea and/ are non-negative weights.
Problem (A) is a discrete-valued optimal control problenwinich the control is

restricted to take values in a discrete set. To determinephienal discrete-valued

control, we need to determine the order in which the diffepmwer levels are im-
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Figure 4.3: Profile of Functiop, (x).

plemented (the switching sequence) and the times at whielpdiwer levels are
changed (the switching times). However, conventional aatatponal optimal con-
trol techniques are designed for problems in which the obtakes values in a con-
nected set, such as an interval, and hence they cannot salokef (A) directly.
Moreover, variable switching times are known to cause @mwislin the implemen-
tations of any numerical algorithm [64, 70] for integratithg system dynamics. In
the next subsection, we propose a new transformation teones these difficulties.
This transformation introduces a new discrete variablepoasent the switching se-
guence and a new continuous variable to represent the smgtimes. Using this

transformation, we derive a new problem which is equivatleroblem (A).

4.2.2 A Modified Time Scaling Transformation

Suppose that we allow the control to switdhtimes over the time horizon. Define
anew time variable € [0, N + 1] with the partitionPy = {0,1,2,..., N, N+ 1}.
Foreach =1,...,N +1, let

'Uie{l,...,M}
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be a discrete variable representing the mode of the gemehatting thei-th subin-

terval. Let
V= ['Ulv s 7’UN+1]T
andV be the set of all such vectors. For eack 1,..., N + 1, we define a new
control functionUg (7, v) by
Ua(T,V) = sy, T € [i—1,9).

Hence,Uq (T, v) representd’;(t) in the new time scale andg ... represents the
maximum generator capacity. Next,r), the time scaling control, is defined as a
piecewise constant function with possible discontinsitiel, 2, . . ., N and satisfy-
ing

0 <u(r) <ty, T€[0,N+1]. (4.8)
LetU denote the class of all valid time scaling controls satigfy@.8). The original
time horizon|0, ¢;] is transformed into the new time horiz@n N + 1] through the

differential equation
t(1) = u(7) (4.9)

with
t(0) = 0, (4.10)

and with the additional constraint

HN +1) = t,. (4.11)
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Therefore, the original dynamics (4.4)-(4.5) are transied into

(K1 K[ Pr(i(7)) + Ua(r, v) = PL(i(7))]

Kl + C(T) u<T)’
if Ua(1,v) > Pp(t(1)),
. Kl [KgPR(t(T)) + UG(T, V) - PL(t(T))]u(T),

C(r) = K+ C(7)
if Ug(1,v) 4+ K3Pr(t(1)) > Pr(t(1)) > Ug(T, V),

Ko | Puti(r)) - PV ZBelm) ),

if Ua(T,v) + K3Pr(t(1)) < PL(t(T)),

(4.12)
and
C(0) = . (4.13)
Similarly, constraints (4.6) and (4.7) are transformed int
C(min S C(T) S Cmaxa VT S [07 N + ]-]7 (414)
and
C(N+1)=Cy. (4.15)

After the transformation, the terms measuring the fuel eost the operating cost

of the battery are

and N+1
/0 (C(7) = K)Pu(r)dr.

respectively. On the basis of the above discussion, we eviotowing problem,

which is equivalent to Problem (A).
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Figure 4.4: Profile of Functiop(x).

Problem (B). Choosev € V andu € U such that the cost function

100Ug(T,v)
UG,maX

go(v,u) =« /0N+1 Uq(T, V)g1< )u(r)dr+ﬁ /ON+1(C(T)—K4)2u(T)dT

is minimized subject to the dynamics (4.9)-(4.13) and thest@ints (4.14)-(4.15),

wherea and are non-negative weights.

4.2.3 Penalizing Frequent Switching

Frequent switching is undesirable in practice becausgnifstantly increases me-
chanical wear. However, there is no mechanism in ProblemdR)iscourage a
control schedule that frequently switches between gemrerabdes. Hence, we

would also like to minimize the term

/ " ga(u(r))ar

where
g2(z) = ((z +0.01)%* — 0.01%%)e ",

The functiongs, is illustrated in Figure 4.4. This term severely penalizesop-

erating schedule that runs any generator mode for less thanirdutes. Our new
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problem is stated below.

Problem (C). Choosev € V andu € U such that the cost function

wiv = [ fatiotr v (P )y

UG,max

+w@m—mmm+wmm@w (4.16)

is minimized subject to dynamics (4.9)-(4.13) and the aansts (4.14)-(4.15),

wherea, 3, and~y are non-negative weights.

Note that Problem (C) is a mixed discrete dynamic optimaraproblem. Note
further that the term penalizing frequent switching is alsed in [116], where an
alternative time scale transformation was employed. Tiiti@e the application of
a global optimization technique, we decompose it into atel optimization prob-
lem in the next subsection, where the upper level problendisaete optimization

problem and the lower level problem is a conventional opitecoatrol problem.

4.2.4 Decomposition of Problem (C)

In our numerical experiments, we have observed that maltgadally optimal solu-
tions are found when different initial switching times ai®ed to solve the model
developed in [116] using the transformation and solutichiméque suggested there.
Note that many practical discrete-valued optimal controbfems exhibit similar
behavior. Thus, with the transformation leading to Prob{€) we intend to apply
the discrete filled function method in an attempt to deteaaiiglobal optimal solu-
tion. For this purpose, we restructure Problem (C) by deasimg it into a bi-level

optimization problem as follows.
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Problem (C,). Givenv € V, choose a: € U such that the cost function

wiutv) = [ {atitr. v (2T o

UG,max

+ B(C(1) — K4)*u(T) + ng(u(T))}dT (4.17)

is minimized subject to the dynamics (4.9)-(4.13) and thestaints (4.14)-(4.15),

wherea, 3, and~y are non-negative weights.

Problem(C,) is essentially a lower level problem or subproblem. It isEyra
standard optimal control problem where the optimal valugyoh (4.17) can be
determined using an optimal control software based on theega of control pa-
rameterization, such as MISER3.3. The second problem imécemposition is

defined as follows.

Problem (C.). Choosev € V such that the cost function
J(v) (4.18)

is minimized, where

J(v) = min go(v,u)

Problem(C,) represents the upper level of Problem (C). Clearly, Probl€n)
is a purely discrete optimization problem. To compute thieev@f the objective
function atv € V, we solve the subproblerft;) corresponding tov € V' using
MISER3.3. Next, we propose a combined algorithm where ralflC,) will be
solved using the discrete filled function method in Sectidn Be. Algorithm 3.2,
to determine a global solution and subprobl@r) is solved with MISER3.3. For
our numerical computations, we have been able to incorpdhe discrete filled
function method into the MISER3.3 software. The detailshef humerical results

are discussed in the next section. Note that wepget 0.001 for our numerical
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computation to confirm a near global solution is attainediftbe algorithm.

To increase the efficiency, we construct a look-up table doestach value
of the objective function/ computed so far. Thus, we avoid repeated application
of the subproblem solution algorithm at the same point. Thigtal to the com-
putational efficiency because computifigv) involves solving a complex optimal
control problem, which takes considerable computatiana t Note that for some
sequences, the subproblem solution algorithm may repattRfoblem(C, ) is in-
feasible. This may be due to the subproblem solver (MISER308 converging
properly (the subproblem is somewhat ill-conditioned)tanay actually indicate
that the subproblem is infeasible at the current sequende an effort to distin-
guish between these two possibilities, we re-initialize dfptimization of the sub-
problem several times. When five such attempts fail to yidiebaible solution, it
is assumed that no feasible solution of the subproblemsefasthis switching se-
guencev. An artificially high cost is assigned to such a sequence lamdlgorithm

is allowed to continue.

4.3 Numerical Results

In this section, our algorithm is applied to solve Problem Y@th 4, 7, and 9
switches. A comparison between our method and the methddLB] |s discussed
at the end of this section. The results were computed usingdified version
of MISER3.3 so that the filled function method is able to call the standard
MISERS3.3 algorithm. The experiments were conducted on ad@irs-based PC,
with a CPU speed of 2.4GHz and 2GB RAM.

4.3.1 Results for 4 Switches

By SettingN =4, ki = 250, ko = 1.4, ks = 0.9, ky = 80, Co =80 kWh, Chain =
20 KWh, Ciax = 100 kWh, o = 1, 8= 0.01, v = 10, t; = 24, ¢ = 0.5, o =
0.1, po=0.1, w =1, p, =0.001, p=0.1, i1 = 0.1, we solved the corresponding

82



Problem (C). There are 3125 potential switching sequenaed switches with
Ug € {0,8,12,16,20}.

We tested the problem with 10 random initial sequences, hafes, 4, 5, 4]7,
4,5,3,5,2]7, [5,1,5,1,5]7, [4,3,1,5,2]7, [3,4,4,3,5]T, [2,4,5,4,4,]7,
2,4,5,4,1]7,[5,4,3,2,3]%, [2,3,2,4,5]T, and[4,5,3,4,5]7. We found 13 local
minimizers during the application of the algorithm on thése starting points.
For each starting sequence, the algorithm successfulhtiftel the assumed dis-
crete global minimizer[2,3,4,5,4]7, for which the cost function value i =

58.7216005, and the time scaling control is

(7.50650, 0 < T < 1,
1.42257, 1 < 7 < 2,
u=1<5.05190, 2 < 7 < 3,
8.70635, 3 < T < 4,
| 1.31267, 4 < 7 < 5.

Table 4.1 illustrates the computational results of 10 expents which use

the same initial time scaling control set at

(1,0<7<1,
6, 1 <7<2,
8, 2< 1< 3,
6, 3 <71 <4,
3,4 <71 <5,

\ 7’

The number of original function evaluations and filled fuontevaluations are de-
noted byE; and E, respectively. Note that’; does not include function evalua-
tions that were obtained from the look-up table.

The algorithm terminates whan= 1 x 10~*' andp = 1 x 1073, at which
point no further improvement can be made. Theref@€3, 4, 5, 4] is assumed to
be the globally optimal sequence for Problem (C) with= 4. At most, 571 switch-
ing sequences are computed during the ten applicationedlgorithm, which is

18.3% of the total possible sequences. Further experimétitisa range of refined
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Table 4.1: Numerical Results for Problem (C) with 4 Switches

Vo v* J EJ EG
[4,5,3,5,2]7 [5,5,2,5,4]7 6.35559358 x 10*
[3,5,2,5,4]T 6.35559357 x 10*
[5,2,4,5,4]" 5.88517382 x 10!
3,2,4,5,4]" 5.87626319 x 10!
[2,3,4,5,4]T 5.87216005 x 10* 350 1443
[5,1,5,1,5]7 [5,2,4,3,5]7 6.03626516 x 10
3,2,4,3,5]7 6.02617585 x 10*
[2,3,4,3,5]" 6.01837944 x 10!
[2,4,3,2,5]" 6.01491200 x 10!
[2,4,5,3,4]T 5.88517553 x 10*
[2,4,5,4,2]T 5.88517431 x 10!
[2,3,4,5,4]" 5.87216005 x 10! 571 2636
[4,3,1,5,2]7 (3,2,4,5,4]7 5.87626319 x 10!
[2,3,4,5,4]T 5.87216005 x 10* 336 1318
(3,4,4,3,5]" [2,3,4,3,5]” 6.01837944 x 10!
[2,4,3,2,5]7 6.01491200 x 10*
[2,4,5,3,4]T 5.88517553 x 10*
[2,4,5,4,2]T 5.88517431 x 10!
[2,3,4,5,4]T 5.87216005 x 10 420 1830
[2,4,5,4,4]" [2,4,5,4,2]T 5.88517431 x 10!
[2,3,4,5,4]T 5.87216005 x 10* 362 1543
[2,4,5,4,1]T [2,4,5,4,2]T 5.88517431 x 10*
[2,3,4,5,4]T 5.87216005 x 10* 362 1543
[5,4,3,2,3]T [2,4,5,4,2]T 5.88517431 x 10*
[2,3,4,5,4]" 5.87216005 x 10! 363 1614
[2,3,2,4,5]T [2,4,3,5,5]” 6.01491301 x 10!
[2,4,5,4,2]" 5.88517431 x 10!
[2,3,4,5,4]T 5.87216005 x 10* 406 1750
[4,5,3,4,5]T [4,5,2,4,5]T 6.03626306 x 10
[2,3,4,5,4]T 5.87216005 x 10* 386 1568
[2,3,4,5,4]T [2,3,4,5,4]T 5.87216005 x 10* 319 1220
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Figure 4.5: Optimal Generator Power Profile for 4 Switches.
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Figure 4.6: Optimal Battery Charge Profile for 4 Switches.

parameter values of the discrete filled function were cdroigt and the results also
confirmed[2, 3, 4, 5, 4]T as the best solution.

From Table 4.1, most of the local minimizers start with 8 kW &he genera-
tor needs to run at an average of 12 kW to achieve an optimgllwased on the load
demand and PV data. Figure 4.5 depicts the best operataiggyrfor the diesel
generator: starts at a lower load, which is 8 kW for 7.5 haagease thisto 12 kW
for another 1.5 hours until it reaches maximum power at 20 b&fbre reducing it
to 16 kW. Note that the generator is maintained at a minimud2dfW for almost
two thirds of the day (16.5 hours) to achieve its best peréoroe. Figure 4.6 shows
that the charge level of the battery bank remains almosttanh#or the first eight

hours, before fluctuating between 75 kWh and 85 kWh for theafethe day.
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Figure 4.7: Optimal Generator Power Profile for 7 Switches.
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Figure 4.8: Optimal Battery Charge Profile for 7 Switches.

4.3.2 Results for 7 Switches

We apply the same algorithm to find the global switching seqaef Problem (C)
for N = 7 switches. By using:(7) = 3, 7 € [0, 8], for 5 experiments, Table 4.2
indicates thaf4, 3,2, 3,4, 5,5, 4] is likely to be the global minimizer as it resulted
from using 5 different initial sequences. Thirty local nmmzers were found with
the proposed algorithm. Inde€e@, 2, 3, 4, 5,4]7 is actually the optimal switching
sequence for 7 switches when we take into account that thealpi is zero over
one interval of its defining partition. The optimal solutien58.5886863, an im-
provement of 0.23% compared with tié = 4 case. The algorithm terminates
wheny =1 x 1075 andp = 1 x 1072,
The plots of the generator output and battery charge leeeshown in Fig-
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Table 4.2: Numerical Results for Problem (C) with 7 Switches

Vo

V*

J

E; Eg

[3,4,4,3,5,2,3,4]7

2,3,4,5,2,3,4,5]7

[3,4,5,2,3,4,5,2]"

[4,5,3,5,2,1,2,3]7

[2,1,4,1,5,5,1,3]T

2,3,4,3,5,2,3,4
2,3,4,3,5,2,5,4
2,3,5,3,4,3,5,4
3,4,2,3,4,5,5,4
4,3,2,3,4,5,5,4

2,3,4,5,2,3,4,5
,4,4,5,2,5,4,5

2,4,4,2,4,5,4,5]7

3,4,3,2,4,5,4,5

5,2,2,4,5,4,5
2,3,5,2,4,5,4,5
4,2,2,3,4,5,4,5
5,2,2,3,4,5,5,4
4,3,2,3,4,5,5,4

5,5,2,3,4,5,4
5,4,2,3,4,3,5,4
3,4,2,3,4,5,5,4
4,3,2,3,4,5,5,4

(3, J*
[ J*
[ I*
[ J*
[4,5,2,5,1,1,2,3]7
5,5,2,5,2,2,3,3]7
5,3,2,5,4,1,3,2]7
3,4,2,5,4,5,4,3]7
[4,4,2,3,4,5,4,3]7
5,3,2,3,4,5,4,2]7
[4,3,2,3,4,5,5,4]7
3,2,4,1,5,5,2,2]7
3,2,4,3,1,5,4,5]7
2,3,4,3,1,5,4,5]7
2,3,4,2,3,5,4,5]7
2,3,4,2,5,5,4,5]7
2,3,4,2,5,4,2,5]7
3,2,5,1,4,5,5,3]7
3,2,4,3,4,4,5,4]7
[4,3,2,3,4,5,5,4]7

[ I*
[ J*
[ J*
[ I*
[ "
[ I*
2 I*
[2,4,5,4,2,5,4,5]"
2, ]
[ "
(3, I*
[ I*
[ "
[ |”
[ J*

6.00318935 x 10!
5.87216219 x 10!
5.87215981 x 10!
5.85886904 x 10!
5.85886863 x 10!

6.01837798 x 10*
5.88519036 x 10!
5.88518410 x 10!
5.88517428 x 10*
5.87628543 x 10*
5.87626332 x 10!
5.87216048 x 10!
5.87215986 x 10*
5.87215886 x 10*
5.85886863 x 10!

5.87216035 x 10!
5.87216030 x 10!
5.85886904 x 10*
5.85886863 x 10!

6.53276638 x 10*
6.38284739 x 10!
6.29162001 x 10!
5.92223690 x 10*
5.87216018 x 10!
5.87215951 x 10!
5.85886863 x 10!

6.01135927 x 10!
5.87626426 x 10*
5.87216039 x 10!
5.87216007 x 10!
5.87215952 x 10*
5.87215895 x 10*
5.87123116 x 10!
5.85888513 x 10!
5.85886863 x 10*

1733 3825

2550 5717

1659 3605

3115 5923

6233 11887

87



ures 4.7 and 4.8, respectively. Figure 4.7 shows that thergeor should run at
12 kW for the first 42 minutes before following the profile oktkolution in Fig-
ures 4.5. No significant differences are observed for thieetyabank profiles be-
tween the tests with 4 switches and 7 switches. The computdtresults indi-
cate that the filled function algorithm is robust and effiti@rsolving a large scale
problem of up to 390,625 potential sequences, with less 1&g of the potential

switching sequences computed during the search for thegbptimum.

4.3.3 Results for 9 Switches

Table 4.3 depicts the numerical results of solving Probl€with N = 9 switches,
which leads to 9,765,625 possible sequences. Five expeismeere carried out
usingu(t) = 2.4, 7 € [0, 10], as the initial guess. Only 0.11% of all potential
switching sequences are computed and the algorithm idendf local minimiz-
ers. However, the algorithm fails to identify a unique glotranimizer of Prob-
lem (C) in this case, and objective function values in theeainom 58.2438575 to
58.55886706 are generated. The best solution from Tabls 882438575, which
is an improvement over the solutions with 4 and 7 switche<€).B$% and 0.59%,
respectively. Clearly, as expected, better solutions bt&wed when the number of
switches is increased. However, the algorithm appearsl@maleconsistently yield
a global solution. This is probably because it cannot guaeaa globally optimal
solution of the subproblems.

The characteristics of the generator and battery charg flervthe best so-
lution found are plotted in Figures 4.9 and 4.10, respelgtiia contrast with Fig-
ures 4.5 and 4.7, where the generator is left running nomfsto24 hours, Figure
4.9 shows that it is favorable to turn off the generator fomdi@utes early in the
morning to avoid excess energy waste, before re-startiagg 16 kW near 8 am,
and increase the generator to maximum capacity at 2 pm. Tggested operating
strategy here i$3,2, 1,4, 5,4]7 (once again, the optimal was zero over several

subintervals of its defining partition).
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Table 4.3: Numerical Results for Problem (C) with 9 Switches
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Figure 4.9: Optimal Generator Power Profile for 9 Switches.
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Figure 4.10: Optimal Battery Charge Profile for 9 Switches.
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Table 4.4: Results for Solving the Model in [116].
Test Minimum cost function value

8.87975339 x 10!
6.01837893 x 10!
6.51091281 x 10*
6.06252775 x 10*
6.01837944 x 10!
6.03626756 x 10*
6.03188550 x 10*
6.33365059 x 10!
6.01837982 x 10!
8.87946446 x 10*
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The findings from Table 4.1-Table 4.3 reflect the findings &lthat diesel
generators are inefficient when they operate at a low loambrfgaround 40% -
50%) of their rated capacity. The findings also indicate tiadt of the operating
time of the generator is spent on generating power duriregtérnoon and at night
when the power source from the PV is not available. In addjtim significant
difference is observed for the battery bank profiles among, 4nd 9 switches,
where the charge level varies between 75 kWh and 85 kWh. Apdiadirof the
battery charge level is also observed when the generatarned off for a short
period as demonstrated in Figure 4.10.

Table 4.4 shows the numerical results obtained by solviegtri@insformed
problem in [116] starting from ten random initial guesselse Tindings in Table 4.4,
when compared with our algorithm for 4 to 9 switches, show tha algorithm
yields a better result compared with the approach in [116F Best solution iden-
tified by our algorithm is 58.7216005 for 4 switches, compdaséth the best local
minimum value of 60.1837893 identified from Table 4.4. Clgahe method in
[116] gets stuck in local minima and cannot determine a diplo@timal solution.
Note that we are using exactly the same objective functidhesne used in [116],

including the term penalizing short durations in a paracwaperating mode.
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4.4 Alternative Hybrid Power System Simulation and

Optimization Tools

HOMER [57] is a popular tool for preliminary design of hybpdwer systems. It
uses simple strategies with strong emphasis on econonmar$ao obtain an opti-
mal design of a hybrid system by selecting the most apprgsistem components.
On the other hand, HYBRIDZ2 [89] concentrates more on thertieelhcharacteris-
tics of hybrid power systems and is able to optimize the dpeyatrategies as well
[57]. Barley et. al. [5] suggest to use HOMER in running a guearch to find
the lowest life-cost of a hybrid power system from a range adsible operating
strategies, whereas HYBRID2 is used to verify HOMER modetsriore accurate
results. A third tool, implemented in the Matlab environm@®], was developed
in [124]. This includes considerable details on various @oflows, interaction of
components, and applying the genetic algorithms to opérthie choice of system
components as well as broad aspects of the operating seést&gveral actual sys-
tems were simulated and optimized to demonstrate the aiiiy of their tool
[124]. However, no further development or application & thol has appeared in
the literature since [125].

A common feature of the above algorithms [57, 89, 124, 128jas$ simula-
tion is performed over relatively large time steps, tydicak least 1 hour. This is
done in order to simulate the system over at least severaltdaapture a variety of
daily power demands and renewable power availability efiSmaller time steps
would lead to excessively complex models under these cistamees. However, as
can be seen from a typical load demand profile (see Figurethedk is significant
variation in the model inputs over a 1 hour period, and onelevexpect a similar
level of variation for the optimal operating schedules witthis period.

While only a crude cost function was proposed in [116], theraping cost
for the model was shown to vary significantly with respecthie $witching times
for the diesel generator and other time dependent parasn@die2]. Such sensi-

tivities would not have been captured in the above models§97124, 125] with
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large time steps. In contrast to these models, [116] sirasilathybrid power sys-
tem as a continuous time model that can capture the aboveanedtvariabilities.
Fuel efficiency cost is represented by a nonlinear functiofil6], while a lin-
ear relationship is used in both HOMER and HYBRID2. NexthidOMER and
HYBRID2 use the kinetic battery model to describe the chamys discharge rate,
while [116] suggests a more basic formulation to repredestd rates.

Calculating the total cost of operating the hybrid powertaysin HOMER
and HYBRID2 is more comprehensive compared to [116], whalg several sur-
rogate terms were suggested. HOMER calculates the totptestnt cost (NPC) by
incorporating the initial capital cost of the system comgats, replacement costs,
maintenance costs, fuel costs, and costs of purchasingrgmme the grid. Like-
wise, HYBRID2 calculates the fixed and marginal costs of frstesn components
as well as the economic parameters, such as interest artibimfiates.

The profiles of the load demand and renewable resource il Hrétbased
on data collected at quarterly intervals for 24 hours. Arifipblation function is
constructed to generate a continuous profile. For HOMER arBRiD2, the load

demand and renewable energy profiles are based on hourljodagato a year.

4.5 Suggestions for a More Realistic Model

While our hybrid power system model is a specific example of/lrid power
system, the structure of the model is relatively simple aavtl ke adapted to other
system configurations.

The first limitation we discuss here is the modeling of thedygtdynamics,
in terms of recharge and discharge rates as representedubyiats (4.1), (4.2)
& (4.3), are not realistic in measuring the real cost of thédrg. We intend to
adopt the more realistic kinetic battery model of [88] to swe& the recharge and
discharge behavior. According to the kinetic battery manteicept, a battery is
modeled by a two-tank system: an available energy tank armiacbenergy tank

(see Figure 4.11). The available energy tank provides inmeenergy for charg-
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Figure 4.11: Kinetic Battery Model Concept.

ing or discharging, while the rest is chemically bound in thieer. The rate of
conversion between two tanks depends on the differenceeighti between these

tanks. The mathematical formulations that describe thetlkdarbattery model are

dq (1 q2
B S T (= 4.1
dt k<c 1—c> (4.19)
and
dqa A q2
i P10 (4.20

whereq; = available chargey, = bound charge}’ is a fixed conductance,is the
width of the available energy tank, ards the current.

We intend to model the cost of battery usage more realistitgl relating
the daily use to the total lifetime. There are two commortilifie models for lead
acid batteries: the post-processing models and the pesfozendegradation models
[7]. According to [7], the post-processing models are pifetime models used for
assessing the impact of a particular operating scheme oexihected lifetime of
the battery. Thus, these post-processing models can betausedlyze measured
data from real systems. The performance degradation madetbine either a
charge transfer model or a voltage model with a typicalilfiet model in such a
way that the performance of the battery degrades as time lygedepending on
the utilization pattern of the battery. For the purpose & gfaper, we discuss how
to integrate the post-processing model into our optimatrobproblem only. We
apply the Ah-throughput counting method to evaluate thegiiiie consumption of

the battery as the data of the total throughput is availabtesample to apply to
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approximate the cost of the battery.
Ah-throughput assumes that there is a fixed amount of ené@tycan be
cycled through a battery before it requires replacemené édtimated throughput

is derived from [7],
throughput = Average{EmmDiCF,i}ff, (4.21)

whereFE,,,, is the nominal battery capacityy; refers to the specific depth of dis-
charge being considered;; is the number of cycles to failure to the specific depth
of dischargej represents each depth of discharge measurement, and X tth¥ is
range over which the measurements of depth of dischargaleea.t Note that the
relationship between the depth of discharge and the nunflogctes to the failure
curve is provided by the manufacturer. Based on [7], thd tbtaughput over a
variety of discharge depth is approximately constant fostead acid batteries.

To adopt the Ah-throughput into the control optimal forntida, note that

2(t) = /0 ' @dt (4.22)

captures the total throughput of the battery bank over & tiaile horizon. The cost

of operating the battery bank over this time is then modeled b

Cpp = @CB, (4.23)
Trp
whereTrp is the total throughput over a battery bank lifetime arjglis the cost of
a battery bank.

The second limitation of the existing model is that foreirasof load demand
and renewable power profiles is not carried out. It would beresting to include
the predictions of the future load demand and the forecéstdar resource or other
renewable resources as part of the control strategy of achgbwer system. Some

of the forecasting issues related to the solar/wind regsuaice size of the PV/wind
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systems, daily temperature fluctuations, radiation faecavind speed, humidity,
ambient temperatures, observations of cloud cover and ctmyement, barometric
pressure, and irradiation [151]. As for remote area elecation, size of the pop-

ulation, changes of consumer behavior, special commuwuénpts, seasonal/short-
term variation of environmental condition are among thedescwhich can bring

significant changes to short-term and long-term load demasdbserved in [151].
Different load profiles, such as daily, weekly, or seasorahand profiles on indi-

vidual usage patterns should be considered when consiguectbbust hybrid power
system.

Thirdly, the existing model only focuses on the operatimgtsegy of a discrete
value diesel generator. Further study on a wide range ofrgtars, such as variable
speed generators or continuous type generators shouldrsédeoced, where the
output is not limited to discrete values only.

Fourthly, the power from renewable energy, i.e. PV arrays K&V), is con-
sidered small compared to the diesel generator (20 kW), evtiex latter is the
backbone of the energy supply. A system that is based ptyr@rirenewable re-
sources, with the diesel generator as a backup supply,&gbewdonsidered for long
term usage due to increasing fuel costs and continuallypdreganewable supplies.

The existing formulation also neglects the initial setugpt@d each component
of the hybrid power system. It is vital to incorporate thdialicapital cost of the
system’s components into the total cost of the hybrid powstesn to increase the
efficiency of the system. This introduces discrete varsbieo the problem which
complicate the optimization process considerably. Séadgarithms in this regard

have been proposed in the literature [125, 146].

4.6 Concluding Remarks

An optimal control problem for optimizing the operation ofigborid power system
is considered in this chapter. The problem is first formwuatea discrete-valued op-

timal control problem where the switching sequence as vediha switching times
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for the discrete-valued control are to be determined. Tioblpm is converted into
a mixed discrete dynamic optimization problem by applyimgadified time scaling
transformation. It is then decomposed into a bi-level peablto facilitate the ap-
plication of a discrete filled function method. A new metatistic approach which
incorporates a discrete filled function algorithm into ansli@d optimal control soft-
ware is proposed. The computational results have demoedtitzat the method is
capable of determining a significantly improved solutiompared with the earlier

approach in [116].
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Chapter 5

Case Study: Sensor Scheduling
System

We consider a general optimal sensor scheduling probleimsrchapter, and pro-
pose a transformation to convert it into an equivalent midisdrete optimization
problem, as discussed in Section 5.3. Then, we adopt oumopeapglobal op-
timization algorithm, which incorporates a discrete filleshction method and a
gradient-based method, to avoid local minima and speed ejgdmputation. To
evaluate the effectiveness of our algorithm, we solve a miwgaesxample from the
literature and compare the results with those obtained frenmethods in [63] and
[26] in Section 5.4.

5.1 Sensor Scheduling Problem

Sensors are used in various applications, including mylisarveillance, ground
mapping, tracking and recognition of targets, instrumigma air traffic control,

imaging, and robotics [45]. Information collected by sesss used to design ac-
tivities that evolve over time in the underlying system [1Bpr example, in a de-
fense system, surveillance sensors are used to detedifydand localize targets,

assess levels of threat, and deduce enemy intent [104].ne spplications, such
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as robotics, operating several sensors simultaneous$gsanterference in the sys-
tem and thus affects the measurement accuracy [16]. Coastgut is impossible
to operate all of the sensors at once. Instead, we need tdidehte operation of
sensors over a given time frame so that the signal estimatronis minimized. We
assume in this study that only one sensor may be active atrairae. The work
presented here was motivated by [4] and [63]. In [4], theroptischeduling policy
is obtained by solving a quasi-variational inequality. Hwer, the complexity of
the model in [4] makes it difficult to compute an optimal sa@at On the other
hand, [63] considers open-loop policies with switches frmme sensor to another.
This reference proposes a time scaling transformatiorgimdiims to capture a large
variety of possible switching sequences. The sensor sthgdauroblem, which is
formulated as a discrete-valued optimal control problesrfirst transformed into
an optimal parameter selection problem, and then solvetusn existing opti-
mal control software. The optimal control for the originabpblem is determined
through a reverse transformation. However, this approaithduces a large num-
ber of artificial switches, many of which are not utilized hetoptimal solution.
As a consequence, the resulting optimization problem has/roeal minima. A
study similar to that considered in [63] is performed in [26here a combination
of a branch and cut technique and a gradient-based methpgliséto solve the
continuous-time sensor scheduling problem.

We consider a general optimal sensor scheduling problenchvigsimilar to
the one discussed in [63] and [26], and propose a transfamet convert it into
an equivalent mixed discrete optimization problem. An &thn similar to that in

the previous chapter is then used to determine a near gyadyatilnal solution.
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5.2 Problem Formulation

Consider the following system of linear stochastic différal equations on a given
probability spac€(), F, P):

dx(t) = A(t)x(t)dt + B(t)dK(t),  te€[0,T),

with initial condition
x(0) = xo.

Here, {x(t), t € [0,T]} is aR"-valued state process representing a signal of in-
terest. It is assumed to be square integrable. The initi& st,, is aR"-valued
Gaussian random vector ¢, 7, P) with meanx, and covariance matrik;,. Fur-
thermore,A : [0,7] — R™™ andB : [0, 7] — R™*? are continuous functions. The
process K (t), t € [0,7T]} is a standard®?-valued Brownian motion of¥2, 7, P)
with mean zero and given covariance matghx R?*?, where(@ is symmetric and
positive semi-definite.

Suppose that there ad sensors for detecting the state process. Only one
of these sensors may be operated at any one timgen&or schedulis a function
¢ :[0,T] — {1,..., M} that returns the active sensor at timeln other words,
¢(t) = i means sensaris active at time. Let & be the set of all measurable sensor
schedules and Igtbe the observation process associated with the scheduliny p

¢. For anygp € ¢, we have the following output equation:

dy(t) = Z X(o(=iy (1) { Cs()x(t)dt + Di(t)dW;(t)}, telo,T],

and
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where, for eacl C [0, 77,

1, tedT,
xz(t) = {

0, otherwise

and{W;(t), t € [0,T]} is a standar®R™-valued Brownian motion with mean zero
and covariance matri® € R™*™, where R is symmetric and positive definite,
C; 10, T] - R™™andD; : [0,7] — R™ ™ are continuous functions.

Each sensor makes an observation of the state processdbatasninated by
noise. The history of such observation processes is debgtéd(s),0 < s < t¢}.
The data collected from th& sensors are used to estimate the statetimet. The
best estimate ok(¢) is known asx(t). Sincey is corrupted by noise, the history
observed is uncertain. Let the history of such a process hetelé by the smallest
o-algebra,7;” = o{y(s),0 < s < t}. Hence, the optimal mean-square estimate of
the state giverF; is x(¢), and the associated error covarianc#{). Then, for a
given¢ € @, the optimalx(¢) is given by the following theorem. The proof of this

theorem may be found in [1].

Theorem 5.1 For each sensor schedulee ®, the optimal mean-square estimate

of the statex(¢) is the unique solution of the following stochastic differ@requa-

tion:
dx(t) = [A(t) —P(t)zx{t:¢(t):i}(t)0f (t)R;l(t)C,-(t)} x(t)dt
# [POY v (OCT 07 0] v, 1€ 0.7), 6
and
%(0) = %o, (5.2)
where
RyY(t) = [D(t)R(t) D] (1)] ", (5.3)
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and the error covariance matri¥ : [0,7] — R™™ is the unique solution of the

matrix Riccati differential equation

P(t) = A(t)P(t)+ P(t)A"(t) + B(t)QB (t)

M
— P(t) > Xquow=i ()CT ()R (£)Ci(t) P(t) (5.4)
i=1
with initial condition
P(0) = R,. (5.5)

Clearly, the solution of (5.4)-(5.5) depends on the sensbedule that is chosen.
Let P(-|¢) be the solution corresponding to € ®. We formulate the following

sensor scheduling problem.

Problem (P). Choosey € ® to minimize

go(¢) = atrace P(T|¢)} +/0 trace{ P(t|¢) }dt, (5.6)

subject to (5.4) and (5.5), whereis a non-negative constant.

The objective function (5.6) is designed to minimize thaneation error during
the operation of the system. Note that Problem (P) is a dsaaued optimal
control problem. The main challenge in solving Problem éRhat the contrab is
constrained to take values in the discrete{det .., M }. Each sensor schedule is
completely determined by specifying the valueq1n. .., M} that it assumes and
the times when it switches from one value{ih ..., M} to another. Clearly, only
a finite number of switches are able to be implemented in w&acind hence is

a piecewise constant function with a finite number of swischea other words, to
solve Problem (P), we need to determine both the optimathwig sequence and
the optimal switching times. Thus, we transform Problenirii) an equivalent and

solvable form in the next section.
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5.3 Problem Transformation

Recall that only one sensor is active at each time and thgtafihite number of
switches are allowed. Suppose that we allow a sensor s&hetukwitch N times
during the time horizon. Le¥ = {v = [vy,...,on41]" ¢ v € {1,...,M}} be
the set of all possible switching sequence vectorsolet [0y, ...,0nx.1]", Where
0; >0,i=1,...,N + 1, denote the duration for which the corresponding sensor

v; in the sequence is active. Clearly,

N+1

Z o; = T.
i=1

Let > denote the set of all sueh. Note that under the assumption of a finite number
of switches NV, any¢ € ® is completely determined by an eleménto) € V x ¥,

where

i—1 i
o(t) = v, tE[ZUj, Zaj], 1=1,...,N+1.
j=1 j=1

We introduce a new time variabtec [0, N + 1] and consider the fixed partition
{0,1,..., N+1}. The original time horizof0, 7'] is transformed into the new time

horizon[0, N + 1] as follows:
t(1) = o, 7€ i—1,4), i=1,...,N+1, (5.7)

with the boundary conditions
t(0) = 0 (5.8)

and
t(N+1)=T. (5.9)
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The original dynamics (5.4)-(5.5) are transformed into

reli—1,4),i=1,...,N+1, (5.10)
and
P(0) = F,. (5.11)

Hence, the transformed problem is stated formally below.R(e|v, o) be the so-
lution of (5.10)-(5.11) corresponding te, o) € V' x .

Problem (R). Choosev € V ando € X to minimize
N+1

go(v, o) = atracg{ P(N + 1|v, o)} + Z /Z trace P(7|v,o)}o; dr, (5.12)
i=1 Vi1

subject to (5.7)-(5.9) and the dynamics (5.10)-(5.11), wheis a non-negative

constant.

Problem (R), an equivalent problem to Problem (P), is a mtkedrete optimiza-
tion problem with the discrete variablerepresenting the switching sequence and
the continuous variable representing the time length of each mode. We propose
to solve Problem (R) by first decomposing it into two levelt&lthat for a fixed

v € V, Problem (R) reduces to the following problem.

Problem (R,). Givenv € V, find ac € ¥ to minimize

N+1
gola|v) = atracd P(N + 1jo, v)} + 3 / trace P(r|o, v)}os dr,  (5.13)
i=1 Vi1

subject to (5.7)-(5.9) and dynamics (5.10)-(5.11), whelie a non-negative con-
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stant.

Problem(R;) is a standard optimal parameter selection problem in a ¢ealdorm
suitable for the application of a standard algorithm basethe control parameteri-
zation concept. For each giventhe optimal value of, in (5.13) can be determined
using an optimal control software, such as MISER3.3, siheswitching sequence
is fixed. Note that in MISER3.3, the optimal parameter seeqgbroblem is solved
using a sequential quadratic programming algorithm. Therse problem in the

proposed decomposition is defined as follows.

Problem (R,). Choosev € V' to minimize the objective function

J(v), (5.14)

where

J(v) =min  go(o|v).

Note that ProbleniR;) is a purely discrete optimization problem, but computing
the value ofJ(v) requires solving the corresponding ProbléRy ). Hence, Prob-
lem (R,) is a subproblem of ProbleiiR;). To obtain a near globally optimal solu-
tion for Problem (R), we propose a combined algorithm wheobRm(R;) will be
solved using the discrete filled function method in Sectidn(Be. Algorithm 3.2)
and, at each iteration, Probleffi, ) is solved using MISER3.3. For our numerical
computations, we have been able to incorporate the disfifetefunction method
within the MISER3.3 software. Note that we sgt = 0.001 for our numerical

computation to confirm a near global solution is attainediftbe algorithm.

Remark 5.1 Note that the early time scale transformation proposefb8j intro-
duces a large number of artificial switching instants, tghig N x A, most of
which are not used in the final optimal solution. As a resik, transformed prob-

lem yields many local minima, many of which have high objectialues. Our
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method, similar to that in [25], avoids this difficulty besuonly NV switches are

needed.

5.4 lllustrative Example

Consider a sensor scheduling problem with six sensors armh ssvitches as dis-
cussedin[26]. LeN =7, M =6, n=2 m=1,p=2,T=8, a=0, c=
0.5, o = 0.1, po = 0.1, w =1, pr = 0.001, p = 0.1, i = 0.1 and consider the

following dynamics:

where

o= [11138en 0 no-5 . mo-[) 9.

Cy(t) = :1 +0.50(:os(2t) 1—1—0.50008(215): . Doft) = (1) (1) . Ru(t) = (1) (1) ’
Oyt = '1+0.50sin(2t) 1+0‘5OCOS(%):, Doty =[5 9], ms=1§ 9.
Cu(t) = _1+0.5osin(2t) 1+0.50cos(2t): . Dy(t) = (1) (1) . Ru(t) = (1) (1] ’
Cs() = |1+ 05c0s(20) 1+05sim2p)> Do =0 9. m@=1[§ 9,

at =[5 TR =3 1), mo-=[5 9.

For the ease of computation, we have been able to embed #xe fiilhc-
tion algorithm into the MISER3.3 program. The algorithm ésnbinated when

p=1x10""andp = 1 x 1073, at which stage the best local minimizer found
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cannot be improved. The computation is performed using tbdified version
of MISER3.3 on a Windows-based PC, with a CPU speed of 2.4Gtdz245B
RAM. We solve Problem(R), which has a total number of 1,679,616 potential
switching sequences, using = [6,5,2,6,5,2,6,1]T as the initial sequence and
oo=1[1,1,1,1,1,1,1,1]" as the initial guess far. Note thatF is initialized as a
2 x 2 identity matrix. Relevant results obtained are summaria€khble 5.1. The
entries in thev* column indicate the optimal solutions for the local seasct&om
Table 5.1,0* = [0.23501973,0,0,7.7649803,0,0,0,0]" for the assumed global
minimum indicates that sensors 2, 3, 4, and 5 are not usecifirthl optimal so-
lution during the tenth iteration. Hence, only two out of sensors are turned on.
The assumed global optimal switching sequence is to turnreosas 1, followed
by sensor 6, with the objective functidn.33176. The number of original function
evaluations and filled function evaluations are 5293 and/88dspectively. This
represents 0.32% of the total number of potential sequehms that the objective
function evaluations do not include those that were obthirem the look-up table.
We tested the problem with five different initial sequenddsese are
[1,2,3,4,5,6,1,2]7,1[6,5,4,3,2,1,6,5]",[1,6,3,2,4,5,3,1]T,[1,6,1,6,1,6,1,6] ",
and[6,6,1,2,5,4,2,1]", using the samé, ando, as in the first computation. As
many as fifty local minima are found during the searches froenviarious initial
sequences. Starting at each initial sequence, the algostitcessfully identified
the same assumed discrete global minimum sequence of Rr¢Bleobserved in
the first experiment, that is, sensor 1 is followed by sensavith the cost func-
tion valueJ = 14.33176. Again, computational results show that only upt82%
of the total number of potential sequences are evaluate@. optimal operating
schedule for the control and states are depicted in FigdrelB.addition, several
different choices of, are tested in our experimentation with various initial st
ing sequences. The optimal operating schemefpoe= 0, F, = 61, By, = 10l
are illustrated by Figures 5.2, 5.3, and 5.4, respectivelpm these graphs, only
the first and sixth sensors are ever used, while the otheafeunot utilized in any

optimal solution.
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Table 5.1: Numerical Results fdt, = I.

*

A%

o.*

J

[1,6,1,1,6,1,6,6]"
[6,1,6,6,1,6,1,1]7
[1,6,1,6,6,1,1,6]"
[1,6,2,6,6,2,2,6]"
[1,6,6,6,6,3,3,5]"
[1,6,6,6,6,6,5,5]"
[1,6,6,6,1,5,6,2]"
[1,1,6,6,6,6,5,1]T
[1,1,6,6,5,6,6,2]"
[1,1,6,6,6,5,2,1]"

[0.24035917, 0, 0,0,0, 0, 7.7525870, 0.0070538593] T 14.649680367412879

[0.17566501, 0.18470974, 0, 7.6396253,0,0,0,0] T 14.504334985710470

023511799, 0,0, 7.7648820, 0, 0,0, 0] T
023501894, 0,0, 7.7649811,0,0,0,0]
023502083, 0, 0, 7.7649792, 0,0,0,0] T
023502039, 0, 0, 7.7649796, 0, 0,0, 0] T
023501994, 0,0, 7.7649801, 0, 0,0, 0] T
023501894, 0,0, 7.7649811,0,0,0,0]
0.23501979, 0,0, 7.7649802, 0, 0,0, 0] T
023501973, 0,0, 7.7649803, 0, 0,0,0]

14.331763146735220
14.331763102479558
14.331763102474610
14.331763102473506
14.331763102471598
14.331763102445281
14.331763102440952
14.331763102437696

Mode of sensors

Mode of sensors

05 r

Diagonal elements of the covariance matrix

Time

Time

Figure 5.1: Optimal Sensor Operating Scheme ih-= 1.

0.5 f

Time

Diagonal elements of the covariance matrix

Time

Figure 5.2: Optimal Sensor Operating Scheme vidth= 0.
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Mode of sensors

Diagonal elements of the covariance matrix

Time Time

Figure 5.3: Optimal Sensor Operating Scheme i#ih= 6.

Mode of sensors

Diagonal elements of the covariance matrix

Time Time

Figure 5.4: Optimal Sensor Operating Scheme #h= 10l.

Table 5.2: A Comparison of Numerical Results with Other Melh

Methods Objective values
Method in [26] withPy = 0 19.6553
Method in [63] with Py = 101 19.2353622
Proposed method witk, = 10l 16.5697177
Proposed method witk, = 6l 15.8781106
Proposed method withk, = | 14.3317631
Proposed method with, = 0 12.9949699
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We also compare the solutions obtained here with thoserduatdrom the
other methods proposed in [63] and [26]. These results anensuized in Table 5.2.
Note that the error estimation found with the proposed algoar is significantly
lower than 19.6553, the optimal solution reported in [2@)jei was obtained using
a combination of a branch and bound technique with a gradies¢d method. To
the best of our knowledgé), = 0 is used in [26]. Note that any non-zero choices of
P, lead to even higher objective values when used in conjumetith the solution
in [26].

5.5 Concluding Remarks

A sensor scheduling problem is considered in this chapteis formulated as a

discrete-valued optimal control problem and then tramséat into a mixed dis-

crete optimization problem. Then, it is decomposed into-l@el problem. A new

metaheuristic approach, similar to that in Chapter 4, wincbrporates the discrete
filled function algorithm into a standard optimal controftsa@re, is proposed for
finding a global solution of this problem. Numerical ressh®w that the method is
efficient, reliable, and robust in solving a complex diseredlued optimal control

problem. The proposed method successfully identified Bogmitly improved solu-

tions compared with other methods available in the litemtdlote that, unlike the
hybrid power system problem in Chapter 4, this applicatimbfem does not lead
to any infeasible subproblems, so there is no need to assigjoially high cost

values to a sequence resulting in an infeasible subproblem.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This study has demonstrated and established the effeetigenf a computational
procedure for determining near global solutions for sonass#s of discrete and
mixed discrete optimization problems. Most of the pradtaiacrete and mixed
discrete optimization problems are nonlinear and knownaeehmore than one
locally optimal solution. This suggests the need for glaigimization techniques
which seek the best solution amongst multiple local optinha.this thesis, our
attention is focused on developing a metaheuristic teclaiq determine the global
optimal solution of discrete-valued optimal control prefols. Our metaheuristic
approach is based on the combination of a discrete filledtimmenethod and a
computational optimal control algorithm.

Various discrete filled function methods are reviewed is thesis. The fun-
damental idea behind the filled function concept is to inticean auxiliary function
to move from a current local minimizer to an improved poihtt exists. Interest-
ingly, each filled function has its own termination and pagten updating criteria.
We have been able to give a generic algorithm in this thesishwadlows us to cap-
ture their commonalities and also to contrast their difiees. Based on the theoret-

ical properties of the various methods and our own comprtatimplementations,
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we found that the discrete filled function method in [106]reedo perform best for
bound constrained problems.

Further, we propose several variations of the method in][i®&y and en-
hance its computational efficiency. Two of these algorithmasnely Algorithms 3.4
and 3.5, appear to be significantly more efficient than thedstad method in terms
of the number of objective function evaluations. Howevethtmethods frequently
fail to identify the global solution due to the choice of adam set of points used
to initialize the search of a local minimum of the filled fuioet. In other words, the
gain in efficiency for these two algorithms is offset by reeldiceliability. After an-
alyzing the numerical results, we choose to adopt the stdradigorithm from [106]
in combination with a computational optimal algorithm tdvsoa general class of
discrete-valued optimal control problems.

To determine an optimal discrete-valued control, we needetermine the
order of the switching sequence and the times at which thegehes take place.
However, conventional computational optimal control ay@ahes are designed for
solving problems in which the control takes values in a carsat, and thus these
approaches cannot solve a discrete-valued optimal coptatilem directly. To
overcome these difficulties, we propose a new transformati@onvert a discrete-
valued optimal control problem into an equivalent mixeatt@$e optimization prob-
lem. This transformation introduces a new discrete vagitdrepresent the switch-
ing sequences and a new continuous variable to represesitehing times. To
facilitate with the application of our proposed global optzation algorithm, we
decompose the mixed problem into a bi-level problem. Theeupgvel problem
in this decomposition is a purely discrete optimizationigbeon, where the discrete
global switching sequence is determined using a discré¢el filnction approach.
The subproblem is simply a standard optimal control probidmere the objective
function value is determined using MISER3.3, an optimakicasoftware based on
the concept of control parameterization. To increase timepcational efficiency,
we construct a look-up table to store each value of the abgdéunction of the

subproblem computed so far, thus avoiding the need to reglgasolve the sub-

112



problem at the same point. This is essential to the comui@tefficiency because
the numerical solution of the subproblem requires conalglercomputational time.
We apply the proposed global algorithm to solve a hybrid paystem con-
trol problem and a sensor scheduling problem. Both of thesdaérly complex
practical application problems which have been demorestrtt possess many lo-
cally optimal solutions. For the numerical implementatia® have incorporated
the discrete filled function technique directly into the MI$3.3 software. Numer-
ical results suggest that the method is efficient, reliaduhel robust in solving both
complex discrete-valued optimal control problems. In faélsé proposed method
successfully identified significantly improved solutiorempared with those ob-

tained from other methods available in the literature.

6.2 Limitations of the Study

Note that the discrete filled function algorithm we adoptexnhf [106] is designed
for a box constrained (or linear inequality constrained)pem where the feasi-
ble search region is pathwise connected and has easilyfidblg vertices. These
properties are not necessarily met in the application ofalgerithm to solve the
hybrid power system problem because the feasibility of atgsinot known until
an attempt has been made to solve the corresponding sueproBlthough we do
not remove such a point from the search region directly, wegasartificially high
cost to it. It may well be the case that the effective feasibigon of subproblem
becomes non-convex and non-connected. However, it isuliffic ascertain this
behavior beforehand and our application of the algorithrthéosubproblem must
hence be viewed as a metaheuristic approach. On the othérwarare essentially
employing a penalty method to deal with complex constraittieh would be dif-
ficult to incorporate directly at the upper level. This simmlea seems to work well
in practice and warrants some further investigation in therg.

In addition, a sequential quadratic programming methodripleyed within

MISER3.3 to solve the subproblems of both discrete-valymnhozation problems.
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This is a local search method and thus cannot guarantee dbalgiptimality for
the solution of the subproblem. In other words, although iweta solve the upper
level problem globally, the lower level problem may onlyIdie locally optimal
solution. Therefore, we again consider our approach to betaheauristic global
optimization method with no implied guarantee of finding tdwerall global opti-
mum. Nevertheless, numerical results demonstrate that goality solutions can

be determined effectively compared with other methodserliterature.

6.3 Future Work

Discrete filled function methods form an active area of redeapen to further
investigation and improvements in solving mixed discrgbémization problems
globally. It would be interesting to test different proceet for minimizing the
filled function, starting at points other than the immediaggghbourhood of the
current local minimizer, as often suggested in the liteeatu

Secondly, it would of benefit to implement a global optimiaatmethod to
solve the subproblem resulting from the original discnakied optimal control
problem globally [69]. Continuous filled function methode available, but these
are mainly aimed at solving unconstrained problems. Caimgtrat the subproblem
level would hence require the use of penalty methods.

Thirdly, refinements of the hybrid power system model so thedflects an
actual operating environment more realistically are negflin the future. These
include a more realistic battery model, forecasting tooldad demand and renew-
able power profiles, considering a wide range of generatoth(variable speed
generators or continuous type) and allowing a broader ofassntrols (eg. smooth
rather then piecewise constant).

Fourthly, a comparison between the discrete filled funatn@thod and other
metaheuristic approaches, such as greedy search, sicthalatealing, and genetic
algorithm, would be an interesting future research dicgcin combinatorial opti-

mization. This is likely to involve extensive computatibsgudies, though, since
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each class of algorithm allows significant variations amdirtg of algorithm param-
eters.

In addition, it is certainly possible and may well be worthlelto modify
MISER3.3 so that the embedded discrete filled function @igor can be read-
ily invoked by non-expert users when solving any discretead optimal control
problem. Besides, other variations of discrete filled fiorctnethods, such as those
proposed in Sections 3.2-3.6, could also be implementeppfication problems
to see if improved results can be attained. Lastly, the agptin of the proposed
method to other practical discrete-valued optimal corgroblems would be inter-

esting, particularly the well studied submarine transthgaoblem [11].

115



Appendix A

FORTRAN Codes for the Algorithms

In Chapter 3

A.1 Algorithm 3.2

MODULE const ant s

SAVE

I NTEGER, PARAMETER: : n=5, mr2+n, t ot al poi nt s=161051

DOUBLEPRECI SI ON, PARAMETER: : ¢=0. 5d0, t ao=1. 0dO, r hol =0. 001, nuhat =0. 1d0, r hohat =0. 1d0
I NTECGER: : xI (n), xu(n),e(n,m, countf, countff, countxstar, poi ntsCal cul at ed
DOUBLEPRECI SI ON: : mu, r ho, t abl e(t ot al poi nts, n+1)

END MODULE const ants

PROGRAM st andar d

USE constants

I MPLI CI' T NONE

EXTERNAL: : mi nf, m np

I NTECGER: : x(n), x0(n), xstar(n), newx(n), nei ghbour(n),i,j,k,flag
DOUBLEPRECI SI ON: : f, f xbest

! Set the initial of the paraneters
nmu=0. 1d0
rho=0. 1d0

I Initialize the | ookup table counter.
poi ntsCal culated = 0

! Define the upper and | ower bounds for x(n)
x|l =-5
xu=5
I Set the initial count for f, G local mnimzer obtained
count f =0
count ff=0
count xst ar=0

I Set the search direction
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DOi=1,n

DO j=1,m
IF (i.EQj) THEN
e(i,j)=1
ELSEIF (j.EQi+n) THEN
e(i,j)=-1
ELSE
e(i,j)=0
ENDI F
ENDDO
ENDDO

! Set the initial value of x(n)
1000 | F (countxstar.EQ 0) THEN

x0(:)=5
ELSE

x0(:)= newx(:)
ENDI F

PRI NT+, "initial point,x0=",x0

! Call the local search of the original function
CALL m nf (x0, xstar, fxbest)

! Display the minimal solution & value of the original function
PRI NT*, " x*=", xstar
PRI NT+, "f (x*) =", f xbest

I Call the local search of the filled function
CALL m np(xstar, newx, fl ag)

! Display the output
PRI NT+, "t he nunber of function eval uations=", countf
PRI NTx, "t he nunber of filled function eval uations=",countff
PRI NT*, " mu=", mu, "rho", rho

IF (flag. EQ 1) THEN
PRI NT+, "Point in a lower basin is found as f(x)<f(x*)
PRI NT*, "new starting point,x=", newx, ", f(x)=",f(new)
count xst ar =count xst ar +1

GOTO 1000
ELSE

PRI NT, "x*=" xstar,"is the gl obal solution."
ENDI F
END

! Define the LOA CAL FUNCTI ON feasible
LOG CAL FUNCTI ON f easi bl e(point)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT( I N) : : poi nt (n)

I NTEGER: : i
f easi bl e=. TRUE.
DOi=1,n
I'F (point(i).Grl.xu(i).OR point(i).LT.xI(i)) THEN
f easi bl e=. FALSE.
RETURN
ENDI F
ENDDO

END FUNCTI ON f easi bl e

I bjective function
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Fil

Def

DOUBLEPRECI SI ON FUNCTI ON f ( x)
USE constants

I MPLI CI' T NONE

I NTEGER, | NTENT(I N) : : x(n)

I NTEGER: @i, j

LOd CAL: : indicator

DO i =1, poi nt sCal cul at ed
indicator = . TRUE
DO j=1,n
IF (table(i,j) .NE x(j)) THEN
i ndi cator = . FALSE.
EXIT
ENDI F
ENDDO

I F (indicator) THEN
f = table(i,n+l)
RETURN
ENDI F
ENDDO

f=0.0d0
DOi=1,n-1

f =f +(100. 0d0* (x(i +1) - x(i)**2) % 2+( 1. 0d0-x(i))**2)
ENDDO

t abl e( poi nt sCal cul at ed+1, 1: n)
t abl e( poi nt sCal cul at ed+1, n+1)

x(:)
f

poi ntsCal cul ated = pointsCal cul ated + 1
count f =count f +1

END FUNCTI ON f

ed function

DOUBLEPRECI SI ON FUNCTI ON p(x, xstar, fx, fxstar)
USE constants

I MPLI CI' T NONE

INTECER: :i,s

I NTEGER, | NTENT(I N): : x(n), xstar(n)
DOUBLEPRECI SI ON, | NTENT(IN): : fx, f xstar
DOUBLEPRECI SION: : f,y, Vv, a

y=f x-f xstar

s=0

DOi=1,n
s=s+(x(i)-xstar(i))**2

ENDDO

v=mu*( (1. 0d0-c)*((1.0d0-cxnmu)/(mu-c*mu))+*=*(-y/tao)+c)

aszy*v
p=axy-rhoxs
countff=countff+1

END FUNCTI ON p

ne the LOA CAL FUNCTION to check if a vertex exists
LOG CAL FUNCTI ON vert ex(x)

USE constants

I MPLI CI' T NONE

I NTEGER, | NTENT(I N) : : x(n)

INTECGER: :i,tally
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tally=0

DO i=1,n
I'F (x(i).EQxI(i).OR x(i).EQxu(i)) THEN
tally=tally+1
ENDI F
ENDDO

IF (tally. EQn) THEN
vert ex=. TRUE.
ELSE
vert ex=. FALSE.
ENDI F

END FUNCTI ON vert ex

I Local search of the original function,f
SUBROUTI NE ni nf (x0, xst ar, f xbest)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x0O( n)
I NTECER, | NTENT( QUT) : : xstar (n)
DOUBLEPRECI SI ON, | NTENT( OUT) : : f xbest
I NTECER: : x(n), xbest (n), nei ghbour(n),i,j
DOUBLEPRECI SI ON: : f, fx, tenp
LOG CAL: : feasi bl e

x(:)=x0(:)
DO

fx=f (x)
xbest (:)=x(:)
f xbest =f x

DO j =1, 2%n
nei ghbour (:)=x(:)+e(:,j)

I F (feasibl e(nei ghbour)) THEN
t enp=f ( nei ghbour)
IF (tenp.LT.fxbest) THEN
xbest (: ) =nei ghbour (:)
f xbest =t enp
ENDI F
ENDI F
ENDDO

I F (fxbest.EQ fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDI F

ENDDO

END SUBROUTI NE mi nf

I Local search of the filled function.
SUBROUTI NE mi np( xstar, newx, fl ag)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N):: xstar(n)
I NTECGER, | NTENT(QUT) : : newx(n),flag
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I NTECER: : x(n), Xl (n,m,]j
DOUBLEPRECI SI ON: : fxstar, f
LOG CAL: : feasi bl e
EXTERNAL: : mi npl
DO j=1, m

Xi(:,j) = xstar(:) + e(:,j)
ENDDO

fxstar = f(xstar)

DO
IF (rho .LT. rhol) THEN
flag = 2
RETURN
ENDI F
DO j=1,m
x(:) = XI(:,j)

I F (feasible(x)) THEN
CALL m npl(xstar, fxstar,x, fl ag)
IF (flag . EQ 1) THEN
newx(:) = x(:)
RETURN
ENDI F
ENDI F
ENDDO

rho = rho+rhohat
ENDDO

END SUBROUTI NE mi np

SUBROUTI NE mi npl(xstar, fxstar, x, fl ag)

USE constants

I MPLI CI' T NONE

I NTEGER, | NTENT(I N):: xstar(n)

DOUBLEPRECI SI ON, | NTENT(IN):: fxstar

I NTEGER, | NTENT( I NOUT) : : x(n)

I NTEGER, | NTENT(OUT):: fl ag

| NTECGER: : xbest (n), nei ghbour (n), betterxbest(n),j,flagl

DOUBLEPRECI SI ON:: f,fx,fcurrent, fn,p, pcurrent, pbest, tenp, total,total best
LOG CAL: : feasi bl e, vert ex

flag = 0
DO
xbest (:) = x(:)
fcurrent = f(x)
pcurrent = p(x,xstar,fcurrent, fxstar)

pbest = pcurrent
flagl = 0

DO j =1, 2*n
nei ghbour (:) = x(:) + e(:,j)

| F (feasibl e(neighbour)) THEN
fn = f(nei ghbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN
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ELSE
tenmp = p(nei ghbour, xstar, fn, fxstar)
IF (tenp .LT. pbest) THEN
xbest (:) = nei ghbour(:)
pbest = tenp
ENDI F

IF (tenp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flagl .eq. 0) THEN
betterxbest(:) = nei ghbour(:)
total best = tenp + fn
flagl = 1
ELSE
total = tenmp + fn
IF (total .LT. total best) THEN
total best = total
bet t er xbest (:) = nei ghbour(:)
ENDI F
ENDI F
ENDI F
ENDI F
ENDI F

ENDDO

| F (pbest .EQ pcurrent) THEN
IF (vertex(x)) THEN
RETURN
ELSE
mu = nuxnuhat
CYCLE
ENDI F
ELSE
IF (flagl .EQ 1) THEN
x(:) = betterxbest(:)
ELSE
x(1)
ENDI F
ENDI F

xbest (:)

ENDDO

END SUBROUTI NE mi npl

A.2 Algorithm 3.3

MODULE const ants

SAVE

| NTEGER, PARAMETER: : n=5, mr2+n, t ot al poi nt s=161051

DOUBLEPRECI SI ON, PARAMETER: : ¢=0. 5d0, t ao=1. 0dO, r hol =0. 001, nuhat =0. 1d0, r hohat =0. 1d0
I NTECER: : xI (n), xu(n), e(n,m, countf, countff, countxstar, poi ntsCal cul at ed
DOUBLEPRECI SI ON: : mu, r ho, t abl e(t ot al poi nts, n+1)

END MODULE const ants

PROGRAM vari ati onl

USE constants

I MPLI CI' T NONE

EXTERNAL: : mi nf, m np

I NTECGER: : x(n), x0(n), xstar(n), newx(n), nei ghbour(n),i,j,k,flag
DOUBLEPRECI SI ON: : f, f xbest

! Set the initial of the paraneters
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mu=0. 1d0
rho=0. 1d0

I Initialize the | ookup table counter.

poi ntsCal culated = 0

! Define the upper and | ower bounds for x(n)

I Set

I Set

I Set
1000

I Call

x|l =-5
xu=5

the initial count for f, G local mnimzer obtained
count f =0

countff=0

count xst ar=0

the search direction

DOi=1,n
DO j=1, m
IF (i.EQj) THEN
e(i,j)=1
ELSEIF (j.EQ i +n) THEN
e(i,j)=-1
ELSE
e(i,j)=0
ENDI F
ENDDO
ENDDO

the initial value of x(n)
I F (count xstar.EQ 0) THEN

x0(:)=5
ELSE

x0(:)= newx(:)
ENDI F

PRI NT+, "initial point,x0=",x0

the local search of the original function
CALL m nf (x0, xstar, fxbest)

! Display the minimal solution & value of the original function

I Call

PRI NT*, " x*=", xst ar
PRI NT+, "f (x*) =", f xbest

the local search of the filled function
CALL m np(xstar, newx, fl ag)

I Display the output

PRI NT+, "t he nunber of function eval uations=", countf
PRI NT*, "t he nunber of filled function eval uations=",countff
PRI NT+, "mu=", mu, "rho", rho

IF (flag. EQ 1) THEN
PRI NT+, "Point in a lower basin is found as f(x)<f(x*)
PRI NT*, "new starting point,x=", newx, ", f(x)=",f(new)
count xst ar =count xst ar +1
GOTO 1000

ELSE
PRI NT, "x*=" xstar,"is the gl obal solution."

ENDI F

END

! Define the LOG CAL FUNCTI ON feasible

LOG CAL FUNCTI ON f easi bl e(point)
USE constants
I MPLI CI' T NONE
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I NTEGER, | NTENT( I N) : : poi nt (n)
I NTECGER: : i

f easi bl e=. TRUE.

DOi=1,n
I'F (point(i).Grl.xu(i).OR point(i).LT.xl(i)) THEN
f easi bl e=. FALSE.
RETURN
ENDI F
ENDDO

END FUNCTI ON f easi bl e

I njective function
DOUBLEPRECI SI ON FUNCTI ON f ( x)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x(n)
I NTECGER: @i, j
LOGE CAL: : indicator

DO i =1, poi nt sCal cul at ed
indicator = . TRUE.
DO j=1,n
IF (table(i,j) .NE x(j)) THEN
i ndi cator = . FALSE.
EXIT
ENDI F
ENDDO

I F (indicator) THEN
f = table(i,n+l)
RETURN
ENDI F
ENDDO

f=0.0d0
DOi=1,n-1

f =f +(100. 0d0* (x(i +1) - x(i)**2) % 2+( 1. 0d0-x(i))**2)
ENDDO

t abl e( poi nt sCal cul at ed+1, 1: n)
t abl e( poi nt sCal cul at ed+1, n+1)

x(:)
f

poi ntsCal cul ated = pointsCal cul ated + 1
count f =count f +1

END FUNCTI ON f

! Filled function
DOUBLEPRECI SI ON FUNCTI ON p(x, xstar, fx, fxstar)
USE constants
I MPLI CI' T NONE
INTECER: : i, s
I NTEGER, | NTENT(I N): : x(n), xstar(n)
DOUBLEPRECI SI ON, | NTENT(IN) : : fx, f xstar
DOUBLEPRECI SION: : f,y, Vv, a

y=fx-fxstar
s=0
DOi=1,n

s=s+(x(i)-xstar(i))**2
ENDDO
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v=mu*( (1. 0d0-c)*((21.0d0-cxnu)/ (mu-c*mu))+*=*(-y/tao)+c)

a=y*v
p=axy-rhoxs
countff=countff+1

END FUNCTI ON p

I Define the LOG CAL FUNCTION to check if a vertex exists
LOG CAL FUNCTI ON vert ex(x)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x(n)
INTECGER: :i,tally

tally=0

DO i=1,n
I'F (x(i).EQxI(i).OR x(i).EQxu(i)) THEN
tally=tally+1
ENDI F
ENDDO

IF (tally. EQn) THEN
vert ex=. TRUE.
ELSE
vert ex=. FALSE.
ENDI F

END FUNCTI ON vert ex

I Local search of the original function,f
SUBROUTI NE mi nf (x0, xst ar, f xbest)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x0O(n)
I NTECGER, | NTENT( QUT) : : xstar (n)
DOUBLEPRECI SI ON, | NTENT( OUT) : : f xbest
I NTECER: : x(n), xbest (n), nei ghbour(n),i,j
DOUBLEPRECI SI ON: : f, fx, tenp
LOG CAL: : feasi bl e

x(:)=x0(:)
DO

fx=f (x)
xbest (:)=x(:)
f xbest =f x

DO j=1, 2*n
nei ghbour (:)=x(:)+e(:,j)

I F (feasibl e(neighbour)) THEN
t enp=f ( nei ghbour)
IF (tenp.LT.fxbest) THEN
xbest (: ) =nei ghbour (:)
f xbest =t enp
ENDI F
ENDI F
ENDDO

I F (fxbest.EQ fx) THEN
xstar(:)=x(:)
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RETURN
ELSE
x(:)=xbest(:)
ENDI F

ENDDO

END SUBRQUTI NE mi nf

I Local search of the filled function.
SUBROUTI NE mi np( xstar, newx, fl ag)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N):: xstar(n)
I NTEGER, | NTENT(QUT) : : newx(n),flag
I NTECER: : x(n), Xl (n,m,]j
DOUBLEPRECI SI ON: : fxstar, f, fx
LOG CAL: : feasi bl e
EXTERNAL: : mi npl

fxstar = f(xstar)

DOj=1,m
XI(:,j) = xstar(:) + 2xe(:,j)
x(:) = Xi(:,j)
I F (feasible(x)) THEN
fx=f (x)
IF (fx .LT. fxstar) THEN
flag = 1
newx(:) = x(:)
RETURN
ENDI F
ENDI F
ENDDO
DO
IF (rho .LT. rhol) THEN
flag = 2
RETURN
ENDI F
DOj=1,m

x(:) = Xi(:,])
I F (feasible(x)) THEN
CALL m npl(xstar, fxstar, x,flag)
IF (flag .EQ 1) THEN
newx(:) = x(:)
RETURN
ENDI F
ENDI F
ENDDO

rho = rho+rhohat
ENDDO
END SUBROUTI NE mi np
SUBROUTI NE mi npl(xstar, fxstar, x, fl ag)
USE constants
I MPLI CI T NONE
I NTEGER, | NTENT(I N):: xstar(n)

DOUBLEPRECI SI ON, | NTENT(IN):: fxstar
I NTEGER, | NTENT( I NOUT) : : x(n)
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I NTEGER, | NTENT(QUT):: fl ag

| NTECER: : xbest (n), nei ghbour (n), betterxbest(n),j,flagl

DOUBLEPRECI SION:: f,fx,fcurrent, fn,p, pcurrent, pbest, tenp, total,total best
LOG CAL: : f easi bl e, vert ex

flag = 0
DO
xbest (:)
fcurrent f(x)

pcurrent p(x, xstar, fcurrent, fxstar)
pbest = pcurrent

x(:)

flagl = 0

DO j =1, 2*n
nei ghbour (:) = x(:) + e(:,j)

| F (feasibl e(neighbour)) THEN
fn = f(nei ghbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE

tenmp = p(nei ghbour, xstar, fn, fxstar)
IF (tenp .LT. pbest) THEN

xbest (:) = nei ghbour(:)

pbest = tenp
ENDI F

IF (tenp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flagl .eq. 0) THEN
betterxbest(:) = nei ghbour(:)
total best = tenp + fn
flagl = 1
ELSE
total = temp + fn
IF (total .LT. total best) THEN
total best = tota
bet t er xbest (:) = nei ghbour(:)
ENDI F
ENDI F
ENDI F
ENDI F
ENDI F

ENDDO

| F (pbest .EQ pcurrent) THEN
IF (vertex(x)) THEN
RETURN
ELSE
mu = muxnuhat
CYCLE
ENDI F
ELSE
IF (flagl .EQ 1) THEN
x(:) = betterxbest(:)
ELSE
x(1)
ENDI F
ENDI F

xbest (:)

ENDDO
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END SUBROUTI NE mi npl

A.3 Algorithm 3.4

MODULE const ants

SAVE

I NTEGER, PARAMETER: : n=5, mr2+n, t ot al poi nt s=161051

DOUBLEPRECI SI ON, PARAMETER: : ¢=0. 5d0, t ao=1. 0dO, r hol =0. 001, nuhat =0. 1d0, r hohat =0. 1d0
I NTECGER: : xI (n), xu(n),e(n,m, countf, countff, countxstar, poi ntsCal cul at ed
DOUBLEPRECI SI ON: : mu, r ho, t abl e(t ot al poi nts, n+1)

END MODULE constants

PROGRAM vari ation2

USE constants

I MPLI CI' T NONE

EXTERNAL: : mi nf, m np

I NTECGER: : x(n), x0(n), xstar(n), newx(n), nei ghbour(n),i,j,k,flag
DOUBLEPRECI SI ON: : f, f xbest

! Set the initial of the paraneters
mu=0. 1d0
rho=0. 1d0

I Initialize the | ookup table counter.
poi ntsCal culated = 0

! Define the upper and | ower bounds for x(n)
x|l =-5
xu=5

I Set the initial count for f, G local mnimzer obtained
count f =0
countff=0
count xst ar=0

I Set the search direction

DOi=1,n
DO j=1,m
IF (i.EQj) THEN
e(i,j)=1
ELSEIF (j.EQ i +n) THEN
e(i,j)=-1
ELSE
e(i,j)=0
ENDI F
ENDDO
ENDDO

! Set the initial value of x(n)
1000 | F (countxstar.EQ 0) THEN

x0(:)=5
ELSE

x0(:)= newx(:)
ENDI F

PRI NT+, "initial point,x0=",x0

I Call the local search of the original function
CALL m nf (x0, xstar, fxbest)

! Display the minimal solution & value of the original function
PRI NT*, " x*=" xstar
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!

!

Cal |

PRI NT+, "f (x*) =", f xbest

the local search of the filled function
CALL m np(xstar, newx, fl ag)

Di spl ay the out put

Def i

PRI NT+, "t he nunber of function eval uations=", countf
PRI NTx, "t he nunber of filled function eval uations=",countff
PRI NT*, " mu=", mu, "rho", r ho

IF (flag. EQ 1) THEN
PRI NT+, "Point in a lower basin is found as f(x)<f(xx*)"
PRI NT*, "new starting point,x=", newx, ", f(x)=",f(new)
count xst ar =count xst ar +1
GOro 1000

ELSE
PRI NT, "x*=" xstar,"is the gl obal solution."

ENDI F

END

ne the LOd CAL FUNCTI ON feasible
LOG CAL FUNCTI ON f easi bl e(point)
USE constants

I MPLI CI' T NONE

I NTEGER, | NTENT( I N) : : poi nt (n)

I NTEGER: : i

f easi bl e=. TRUE.

DOi=1,n
I'F (point(i).Grl.xu(i).OR point(i).LT.xI(i)) THEN
f easi bl e=. FALSE.
RETURN
ENDI F
ENDDO

END FUNCTI ON f easi bl e

bj ective function

DOUBLEPRECI SI ON FUNCTI ON f ( x)
USE constants

I MPLI CI' T NONE

I NTECGER, | NTENT(I N): : x(n)

I NTECGER: @i, j

LOd CAL: : indicator

DO i =1, poi nt sCal cul at ed
i ndicator = . TRUE.
DO j=1,n
IF (table(i,j) .NE x(j)) THEN
i ndi cator = . FALSE.
EXIT
ENDI F
ENDDO

I F (indicator) THEN
f = table(i,n+l)
RETURN
ENDI F
ENDDO

f=0. 0d0

DOi=1,n-1
f=f+(100. 0dO* (x(i +1)-x(i)**2)**2+(1.0d0-x(i))**2)
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ENDDO

t abl e( poi nt sCal cul at ed+1, 1: n)
t abl e( poi nt sCal cul at ed+1, n+1)

Inn

x
—~
-

poi nt sCal cul ated = pointsCalculated + 1
count f =count f +1

END FUNCTI ON f

! Filled function
DOUBLEPRECI SI ON FUNCTI ON p(x, xstar, fx, fxstar)
USE constants
I MPLI CI T NONE
INTECER: :i,s
I NTECGER, | NTENT(I N): : x(n), xstar(n)
DOUBLEPRECI SI ON, | NTENT(IN) : : fx, f xstar
DOUBLEPRECI SION: : f,y, Vv, a

y=f x-f xstar

s=0

DOi=1,n
s=s+(x(i)-xstar(i))**2

ENDDO

v=mu*( (1. 0d0-c)*((1.0d0-cxnmu)/ (mu-c*mu))+*=*(-y/tao)+c)

asy*v
p=axy-rhoxs
countff=countff+1

END FUNCTI ON p

! Define the LOG CAL FUNCTION to check if a vertex exists
LOG CAL FUNCTI ON vert ex(x)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x(n)
INTECER: :i,tally

tally=0

DOi=1,n
I'F (x(i).EQxI(i).OR x(i).EQxu(i)) THEN
tally=tally+1
ENDI F
ENDDO

IF (tally. EQn) THEN
vertex=. TRUE.
ELSE
vert ex=. FALSE.
ENDI F

END FUNCTI ON vert ex

! Local search of the original function,f
SUBROUTI NE nmi nf (x0, xst ar, f xbest)
USE const ants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x0(n)
I NTECGER, | NTENT( QUT) : : xstar (n)
DOUBLEPRECI S| ON, | NTENT( QUT) : : f xbest
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I NTECGER: : x(n), xbest (n), nei ghbour(n),i,j
DOUBLEPRECI SI ON: : f, fx, tenp
LOG CAL: : feasi bl e

x(:)=x0(:)
DO

fx=f (x)
xbest (:)=x(:)
f xbest =f x

DO j =1, 2*n
nei ghbour (:)=x(:)+e(:,j)

I F (feasibl e(nei ghbour)) THEN
t enp=f ( nei ghbour)
IF (tenp.LT.fxbest) THEN
xbest (: ) =nei ghbour (:)
f xbest =t enp
ENDI F
ENDI F
ENDDO

I F (fxbest.EQ fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDI F

ENDDO

END SUBROUTI NE mi nf

I Local search of the filled function.
SUBROUTI NE mi np(xstar, newx, fl ag)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N):: xstar(n)
I NTECGER, | NTENT(QUT) : : newx(n),flag
INTECER: : x(n), Xl (n,m,i,j,FLOOR timeArray(3), xbest (n)
DOUBLEPRECI SI ON: : fxstar, f, fx, RAND, f xbest
LOd CAL:: feasible
EXTERNAL: : m npl

1.0d5
f(xstar)

f xbest
fxstar

! Generate a set of random points from FORTRAN.
CALL itime(timeArray)

DOj=1,m
DO i=1,n
Xl (i,])=FLOOR(xI (i)+(RAND(timeArray(3)+j+i))*(xu(i)-xI(i)+1))
x(:) = X(:,j)
ENDDO
PRI NT+, “random poi nt, x=", XI(:,j),"f(x)=",f(x)
ENDDO

fxstar = f(xstar)
DO
IF (rho .LT. rhol) THEN

flag = 2
RETURN
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ENDI F

DO j=1,m
x(:) = Xi(:,])
fx=f (x)
IF (fx .LT. fxstar) THEN
flag = 1
newx(:) = x(:)
RETURN
ENDI F
ENDDO

DO j=1,m
x(:) = X(:,j)
CALL m npl(xstar, fxstar,x, fl ag)
IF (flag . EQ 1) THEN
newx(:) = x(:)
RETURN
ENDI F
ENDDO

rho = rho*rhohat
ENDDO

END SUBRCQUTI NE mi np

SUBROUTI NE mi np1(xstar, fxstar, x, fl ag)

USE constants

I MPLI CI' T NONE

I NTEGER, | NTENT(I N):: xstar(n)

DOUBLEPRECI SI ON, | NTENT(IN):: fxstar

I NTEGER, | NTENT( I NOUT) : : x(n)

I NTEGER, | NTENT(QUT):: fl ag

I NTECGER: : xbest (n), nei ghbour (n), betterxbest(n),j,flagl

DOUBLEPRECI SION:: f,fx,fcurrent, fn,p, pcurrent, pbest, tenp, total, total best
LOG CAL: : f easi bl e, vert ex

flag = 0
DO
xbest (:)
fcurrent f(x)

pcurrent p(x, xstar, fcurrent, fxstar)
pbest = pcurrent

x(:)

flagl = 0

DO j =1, 2*n
nei ghbour (:) = x(:) + e(:,j)

| F (feasibl e(neighbour)) THEN
fn = f(nei ghbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE

tenmp = p(nei ghbour, xstar, fn, fxstar)
IF (tenp .LT. pbest) THEN

xbest (:) = nei ghbour(:)

pbest = tenp
ENDI F

IF (tenp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
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IF (flagl .eq. 0) THEN
betterxbest(:) = nei ghbour(:)
total best = tenp + fn
flagl = 1

ELSE
total =temp + fn
IF (total .LT. total best) THEN

total best = total
betterxbest(:) = neighbour(:)
ENDI F
ENDI F
ENDI F
ENDI F
ENDI F

ENDDO

I F (pbest .EQ pcurrent) THEN
IF (vertex(x)) THEN
RETURN
ELSE
mu = nuxnuhat
CYCLE
ENDI F
ELSE
IF (flagl .EQ 1) THEN
X(:) = betterxbest(:)
ELSE
x(:) = xbest(:)
ENDI F
ENDI F

ENDDO

END SUBROUTI NE mi npl

A.4 Algorithm 3.5

MODULE const ants

SAVE

| NTEGER, PARAMETER: : n=5, me2+n, t ot al poi nt s=161051

DOUBLEPRECI SI ON, PARAMETER: : ¢=0. 5d0, t ao=1. 0dO, r hol =0. 001, nuhat =0. 1d0, r hohat =0. 1d0
I NTEGER: : xI (n), xu(n), e(n,m, countf, countff, countxstar, poi ntsCal cul at ed
DOUBLEPRECI SI ON: : mu, r ho, t abl e(t ot al poi nts, n+1)

END MODULE const ants

PROGRAM vari ation3

USE constants

I MPLI CI' T NONE

EXTERNAL: : mi nf, m np

I NTECER: : x(n), x0(n), xstar(n), newx(n), nei ghbour(n),i,j,k,flag
DOUBLEPRECI SI ON: : f, f xbest

! Set the initial of the paraneters
mu=0. 1d0
rho=0. 1d0

I Initialize the | ookup table counter.
poi ntsCal culated = 0

! Define the upper and | ower bounds for x(n)
x|l =-5
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!

!

!

Set

Set

Set

1000

!

Cal

xu=5

the initial count for f, G local mnimzer obtained
count f=0

countff=0

count xst ar =0

the search direction

DOi=1,n
DOj=1,m
IF (i.EQj) THEN
e(i,j)=1
ELSEIF (j.EQi+n) THEN
e(i,j)=-1
ELSE
e(i,j)=0
ENDI F
ENDDO
ENDDO

the initial value of x(n)
I F (countxstar.EQ 0) THEN

x0(:)=5
ELSE

x0(:)= newx(:)
ENDI F

PRI NT+, "initial point,x0=",x0

the local search of the original function
CALL m nf (x0, xstar, fxbest)

Di splay the mniml solution & value of the original function

Cal

PRI NT*, " x*=", xst ar
PRI NT+, "f (x*) =", f xbest

the local search of the filled function
CALL m np(xstar, newx, fl ag)

Di spl ay the out put

Def i

PRI NT+, "t he nunber of function eval uations=", countf
PRI NT+, "t he nunber of filled function eval uati ons=", countff
PRI NT+, " nmu=", nu, “rho", rho

IF (flag. EQ 1) THEN
PRI NT+, "Point in a lower basin is found as f(x)<f(xx*)"
PRI NT*, "new starting point,x=", newx, ", f(x)=",f(new)
count xst ar =count xst ar +1
GOTO 1000

ELSE
PRI NT+, "x*=", xstar,"is the gl obal solution."

ENDI F

END

ne the LOG CAL FUNCTI ON feasi bl e
LOG CAL FUNCTI ON f easi bl e( poi nt)
USE constants

I MPLI CI' T NONE

I NTEGER, | NTENT(I N) : : poi nt (n)

| NTEGER: :

f easi bl e=. TRUE
DOi=1,n

I'F (point(i).Grl.xu(i).OR point(i).LT.xl(i)) THEN
f easi bl e=. FALSE.
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RETURN
ENDI F
ENDDO

END FUNCTI ON f easi bl e

I ojective function
DOUBLEPRECI SI ON FUNCTI ON f ( x)
USE constants
I MPLI CI' T NONE
I NTECGER, | NTENT(I N): : x(n)
I NTECGER: : i, ]
LOG CAL: : indicator

DO i =1, poi nt sCal cul at ed
indicator = . TRUE
DO j=1,n
IF (table(i,j) .NE x(j)) THEN
i ndi cator = . FALSE.
EXIT
ENDI F
ENDDO

I F (indicator) THEN
f = table(i,n+l)
RETURN
ENDI F
ENDDO

f=0. 0d0
DO i=1,n-1

f=f +(100. 0d0* (x(i +1) - x(i ) **2) *+2+( 1. 0d0-x(i)) **2)
ENDDO

t abl e( poi nt sCal cul at ed+1, 1: n)
t abl e( poi nt sCal cul at ed+1, n+1)

x(:)
f

poi nt sCal cul ated = pointsCal cul ated + 1
count f =count f +1

END FUNCTI ON f

I Filled function
DOUBLEPRECI SI ON FUNCTI ON p(x, xstar, fx, fxstar)
USE constants
I MPLI CI T NONE
I NTEGER @i, s
I NTEGER, | NTENT(I N): : x(n), xstar(n)
DOUBLEPRECI SI ON, | NTENT(I N): : fx, f xstar
DOUBLEPRECI SION: : f,y, v, a

y=f x-f xstar
s=0
DOi=1,n
s=s+(x(i)-xstar(i))**2
ENDDO
v=mu*((1.0d0-c)*((1.0d0-cxnu)/ (mu-c*mu))+*=*(-y/tao)+c)
asy*v
p=axy-rhoxs

count ff=countff+1

END FUNCTI ON p
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I Define the LOG CAL FUNCTION to check if a vertex exists
LOG CAL FUNCTI ON vert ex(x)
USE constants
I MPLI CI' T NONE
I NTECGER, | NTENT(I N): : x(n)
INTECGER: :i,tally

tally=0

DO i=1,n
IF (x(i).EQxI(i).OR x(i).EQxu(i)) THEN
tally=tally+1
ENDI F
ENDDO

IF (tally. EQn) THEN
vert ex=. TRUE.
ELSE
vert ex=. FALSE.
ENDI F

END FUNCTI ON vert ex

I Local search of the original function,f
SUBROUTI NE mi nf (x0, xst ar, f xbest)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x0(n)
I NTECGER, | NTENT( QUT) : : xstar (n)
DOUBLEPRECI S| ON, | NTENT( QUT) : : f xbest
I NTECER: : x(n), xbest (n), nei ghbour(n),i,j
DOUBLEPRECI SI ON: : f, fx, tenp
LOG CAL: : feasi bl e

x(:)=x0(:)
DO

f x=f (x)
xbest (:)=x(:)
f xbest =f x

DO j =1, 2*n
nei ghbour (:)=x(:)+e(:,j)

| F (feasibl e(nei ghbour)) THEN
t enp=f ( nei ghbour)
IF (tenp.LT.fxbest) THEN
xbest (:) =nei ghbour (:)
f xbest =t enp
ENDI F
ENDI F
ENDDO

I F (fxbest.EQ fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest (:)

ENDI F

ENDDO

END SUBRQUTI NE mi nf
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I Local search of the filled function.
SUBROUTI NE mi np( xstar, newx, fl ag)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N):: xstar(n)
I NTECGER, | NTENT(QUT) : : newx(n),flag
INTECER: : x(n), Xl (n,m,i,j,FLOOR tinmeArray(3), xbest (n)
DOUBLEPRECI SI ON: : fxstar, f, fx, RAND, f xbest
LOd CAL:: feasible
EXTERNAL: : m npl

1.0d5
f(xstar)

f xbest
fxstar

! Generate a set of random points from FORTRAN.
CALL itime(timeArray)
DOj=1,m
DOi=1,n
Xl (i,j)=FLOOR(xI (i)+(RAND(timeArray(3)+j+i))*(xu(i)-xI(i)+1))
x(:) = Xi(:,])
I F (feasible(x)) THEN
fx=f (x)
IF (fx .LT. fxbest) THEN
xbest (:)=x(:)

f xbest =f x
ENDI F
ENDI F
ENDDO
PRI NT+, “random poi nt, x=", XI(:,j),"f(x)=",f(x)

ENDDO

I F (fxbest .LT. fxstar) THEN
flag = 1
newx(:) = xbest(:)
RETURN

ENDI F

DO

IF (rho .LT. rhol) THEN
flag = 2
RETURN

ENDI F

DO j=1,m
x(:) = X(:,j)
CALL m npl(xstar, fxstar,x, fl ag)
IF (flag . EQ 1) THEN
newx(:) = x(:)
RETURN
ENDI F
ENDDO

rho = rho*rhohat
ENDDO
END SUBROUTI NE mi np
SUBROUTI NE mi np1(xstar, fxstar, x, fl ag)
USE constants

I MPLI CI' T NONE
I NTECGER, | NTENT(I N):: xstar(n)
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DOUBLEPRECI SI ON, | NTENT(IN):: fxstar

I NTEGER, | NTENT( I NOUT) : : x(n)

I NTEGER, | NTENT(QUT):: fl ag

| NTECER: : xbest (n), nei ghbour (n), betterxbest(n),j,flagl

DOUBLEPRECI SION:: f,fx,fcurrent, fn,p, pcurrent, pbest, tenp, total, total best
LOG CAL: : f easi bl e, vert ex

flag = 0
DO
xbest (:)
fcurrent f(x)

pcurrent p(x, xstar, fcurrent, fxstar)
pbest = pcurrent

x(:)

flagl = 0

DO j =1, 2*n
nei ghbour (:) = x(:) + e(:,j)

| F (feasible(neighbour)) THEN
fn = f(nei ghbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE

tenmp = p(nei ghbour, xstar, fn, fxstar)
IF (tenp .LT. pbest) THEN

xbest (:) = nei ghbour(:)

pbest = tenp
ENDI F

IF (tenp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flagl .eq. 0) THEN
betterxbest(:) = nei ghbour(:)
total best = tenp + fn
flagl = 1
ELSE
total = temp + fn
IF (total .LT. total best) THEN
total best = tota
bet t er xbest (:) = nei ghbour(:)
ENDI F
ENDI F
ENDI F
ENDI F
ENDI F

ENDDO

| F (pbest .EQ pcurrent) THEN
IF (vertex(x)) THEN
RETURN
ELSE
mu = muxnuhat
CYCLE
ENDI F
ELSE
IF (flagl .EQ 1) THEN
x(:) = betterxbest(:)
ELSE
x(:) = xbest(:)
ENDI F
ENDI F
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ENDDO

END SUBRQUTI NE mi npl

A.5 Algorithm 3.6

MODULE const ants

SAVE

| NTEGER, PARAMETER: : n=5, mr2+n, t ot al poi nt s=161051

DOUBLEPRECI SI ON, PARAMETER: : ¢=0. 5d0, t ao=1. 0dO, r hol =0. 001, nuhat =0. 1d0, r hohat =0. 1d0
I NTECGER: : xI (n), xu(n), e(n,m, countf, countff, countxstar, poi ntsCal cul at ed
DOUBLEPRECI SI ON: : mu, r ho, t abl e(t ot al poi nts, n+1)

END MODULE const ants

PROGRAM vari ati on4d

USE constants

I MPLI CI' T NONE

EXTERNAL: : mi nf, m np

I NTECER: : x(n), x0(n), xstar(n), newx(n), nei ghbour(n),i,j,k,flag
DOUBLEPRECI SI ON: : f, f xbest

I Set the initial of the paraneters
nmu=0. 1d0
rho=0. 1d0

I Initialize the | ookup table counter.
poi ntsCal culated = 0

! Define the upper and | ower bounds for x(n)
x| =-5
Xu=5

I Set the initial count for f, G |local mnimzer obtained
count f=0
countff=0
count xst ar =0

! Set the search direction

DOi=1,n
DOj=1,m
IF (i.EQj) THEN
e(i,j)=1
ELSEI F (j.EQ i +n) THEN
e(i,j)=-1
ELSE
e(i,j)=0
ENDI F
ENDDO
ENDDO

I Set the initial value of x(n)
1000 IF (countxstar.EQ 0) THEN

x0(:)=5
ELSE

x0(:)= newx(:)
ENDI F

PRI NT+, "initial point,x0=",x0

I Call the local search of the original function
CALL mi nf (x0, xstar, fxbest)

! Display the minimal solution & value of the original function
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PRI NT*, " x*=", xst ar
PRI NT+, "f (x*) =", f xbest

I Call the local search of the filled function
CALL m np(xstar, newx, fl ag)

I Display the output
PRI NT+, "t he nunber of function eval uations=", countf
PRI NT+, "t he nunber of filled function eval uati ons=", countff
PRI NT*, " nmu=", nu, “rho", rho

IF (flag. EQ 1) THEN
PRI NT+, "Point in a lower basin is found as f(x)<f(xx*)"
PRI NT*, "new starting point,x=", newx, ", f(x)=",f(new)
count xst ar =count xst ar +1

GOTO 1000
ELSE

PRI NT*, "x*=" xstar,"is the gl obal solution."
ENDI F
END

| Define the LOG CAL FUNCTI ON feasible
LOG CAL FUNCTI ON f easi bl e( point)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT( I N) : : poi nt (n)
| NTEGER: : i

f easi bl e=. TRUE.

DOi=1,n
I'F (point(i).Grl.xu(i).OR point(i).LT.xl(i)) THEN
f easi bl e=. FALSE.
RETURN
ENDI F
ENDDO

END FUNCTI ON f easi bl e

I njective function
DOUBLEPRECI SI ON FUNCTI ON f ( x)
USE constants
I MPLI CI' T NONE
I NTECGER, | NTENT(I N): : x(n)
I NTECGER: : i, ]
LOG CAL: : indicator

DO i =1, poi nt sCal cul at ed
indicator = . TRUE.
DO j=1,n
IF (table(i,j) .NE x(j)) THEN
i ndi cator = . FALSE.
EXIT
ENDI F
ENDDO

I F (indicator) THEN
f = table(i,n+l)
RETURN
ENDI F
ENDDO

f=0.0d0
DOi=1,n-1
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f=f +(100. 0d0* (x(i +1) - x(i ) **2) **2+( 1. 0d0-x(i )) **2)
ENDDO

t abl e( poi nt sCal cul at ed+1, 1: n)
t abl e( poi nt sCal cul at ed+1, n+1)

x(:)
f

poi nt sCal cul ated = pointsCal cul ated + 1
count f =count f +1

END FUNCTI ON f

I Filled function
DOUBLEPRECI SI ON FUNCTI ON p(x, xstar, fx, fxstar)
USE constants
I MPLI CI T NONE
I NTEGER @i, s
I NTEGER, | NTENT(I N): : x(n), xstar(n)
DOUBLEPRECI SI ON, | NTENT(I N): : fx, f xstar
DOUBLEPRECI SION: : f,y, v, a

y=fx-fxstar

s=0

DOi=1,n
s=s+(x(i)-xstar(i))**2

ENDDO

v=mu*((1.0d0-c)*((21.0d0-c*nu)/ (mu-c*mu))+*=*(-y/tao)+c)

asy*v
p=axy-rhoxs
count ff=countff+1

END FUNCTI ON p

I Define the LOG CAL FUNCTION to check if a vertex exists
LOG CAL FUNCTI ON vert ex(x)
USE constants
I MPLI CI' T NONE
I NTECGER, | NTENT(I N): : x(n)
INTECER: :i,tally

tally=0

DO i=1,n
IF (x(i).EQxI(i).OR x(i).EQ xu(i)) THEN
tally=tally+1
ENDI F
ENDDO

IF (tally. EQn) THEN
vertex=. TRUE.
ELSE
vert ex=. FALSE.
ENDI F

END FUNCTI ON vert ex

I Local search of the original function,f
SUBROUTI NE mi nf (x0, xst ar, f xbest)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT( I N) : : xO( n)
I NTECGER, | NTENT( QUT) : : xstar (n)
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DOUBLEPRECI S| ON, | NTENT( QUT) : : f xbest

I NTECER: : x(n), xbest (n), nei ghbour(n),i,j
DOUBLEPRECI SI ON: : f, fx, tenp

LOG CAL: : feasi bl e

x(:)=x0(:)
DO

f x=f (x)
xbest (:)=x(:)
f xbest =f x

DO j=1, 2*n
nei ghbour (:)=x(:)+e(:,j)

| F (feasibl e(nei ghbour)) THEN
t enp=f (nei ghbour)
IF (tenp.LT.fxbest) THEN
xbest (:) =nei ghbour (:)
f xbest =t enp
ENDI F
ENDI F
ENDDO

I F (fxbest.EQ fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDI F

ENDDO

END SUBRQUTI NE mi nf

Local search of the filled function.
SUBROUTI NE mi np( xstar, newx, fl ag)
USE constants
I MPLI CI T NONE
I NTECGER, | NTENT(I N):: xstar(n)
I NTEGER, | NTENT(QUT) : : newx(n),flag
I NTEGCER: : x(n),i,j,FLOOR tinmeArray(3),r(n,m,xr(n), Xl(n,m
DOUBLEPRECI SI ON: : fxstar, f, fx, RAND
LOG CAL: : feasible
EXTERNAL: : m npl

Generate a set of random points from FORTRAN.
CALL itime(timeArray)
DOj=1,m
DOi=1,n
r(i,j)=FLOOR(xI (i)+(RAND(tinmeArray(3)+j+i))*(xu(i)-xI(i)+1))
ENDDO
ENDDO

fxstar = f(xstar)

DO j=1,m
IF (feasible(r(:,j))) THEN
xr(:)=r(:,j)
fx=f(xr(:))
PRI NT+, "f easi bl e random poi nt=", xr(:),"and f=",fx
IF (fx .LT. fxstar) THEN
flag = 1
newx(:) = xr(:)
RETURN

141



ENDI F

ENDI F
ENDDO
DO
I'F (rho .LT. rhol) THEN
flag = 2
RETURN
ENDI F
DO j=1, m
Xi(:,j) = xstar(:) + 2xe(:,j)
x(:) = Xi(:,])
I F (feasible(x)) THEN
fx=f (x)
IF (fx .LT. fxstar) THEN
flag = 1
newx(:) = x(:)
RETURN
ENDI F
ENDI F
ENDDO
DO j=1,m

x(:) = xstar(:) + 2xe(:,])
I F (feasible(x)) THEN
CALL m npl(xstar, fxstar,x, fl ag)
IF (flag . EQ 1) THEN
newx(:) = x(:)
RETURN
ENDI F
ENDI F
ENDDO

rho = rho+rhohat
ENDDO

END SUBROUTI NE mi np

SUBROUTI NE mi npl(xstar, fxstar, x, fl ag)

USE constants

I MPLI CI' T NONE

I NTEGER, | NTENT(I N):: xstar(n)

DOUBLEPRECI SI ON, | NTENT(IN):: fxstar

I NTEGER, | NTENT( I NOUT) : : x(n)

I NTEGER, | NTENT(OQUT) :: fl ag

| NTECGER: : xbest (n), nei ghbour (n), betterxbest(n),j,flagl

DOUBLEPRECI SI ON:: f,fx,fcurrent, fn,p, pcurrent, pbest, tenp, total,total best
LOG CAL: : feasi bl e, vert ex

flag = 0
DO

xbest (:)
fcurrent f(x)

pcurrent p(x, xstar, fcurrent, fxstar)
pbest = pcurrent

x(:)

flagl = 0

DO j =1, 2*n
nei ghbour (:) = x(:) + e(:,j)

| F (feasibl e(neighbour)) THEN
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fn = f(nei ghbour)
IF (fn .LT. fxstar) THEN

flag = 1
X(:) = neighbour(:)
RETURN

ELSE

tenp = p(nei ghbour, xstar, fn, fxstar)
IF (tenp .LT. pbest) THEN

xbest (:) = nei ghbour(:)

pbest = tenp
ENDI F

IF (tenp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flagl .eq. 0) THEN
betterxbest(:) = nei ghbour(:)
total best = tenp + fn
flagl = 1
ELSE
total = tenmp + fn
IF (total .LT. total best) THEN
total best = total
betterxbest (:) = neighbour(:)
ENDI F
ENDI F
ENDI F
ENDI F
ENDI F

ENDDO

| F (pbest .EQ pcurrent) THEN
IF (vertex(x)) THEN
RETURN
ELSE
mu = nuxnuhat
CYCLE
ENDI F
ELSE
IF (flagl .EQ 1) THEN
x(:) = betterxbest(:)
ELSE
x(1)
ENDI F
ENDI F

xbest (:)

ENDDO

END SUBROUTI NE mi npl

A.6 Algorithm 3.7

MODULE const ants

SAVE

I NTEGER, PARAMETER: : n=5, mr2+n, t ot al poi nt s=161051

DOUBLEPRECI SI ON, PARAMETER: : ¢=0. 5d0, t ao=1. 0dO, r hol =0. 001, nuhat =0. 1d0, r hohat =0. 1d0
I NTECGER: : xI (n), xu(n), e(n,m, countf, countff, countxstar, poi ntsCal cul at ed
DOUBLEPRECI SI ON: : mu, r ho, t abl e(t ot al poi nts, n+1)

END MODULE constants

PROGRAM vari ati on5
USE constants

I MPLI CI' T NONE
EXTERNAL: : mi nf, m np
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I NTECGER: : x(n), x0(n), xstar(n), newx(n), nei ghbour(n),i,j,k,flag
DOUBLEPRECI SI ON: : f, f xbest

Set the initial of the paraneters
mu=0. 1d0
rho=0. 1d0

Initialize the | ookup table counter.
poi ntsCal culated = 0

Define the upper and | ower bounds for x(n)
x|l =-5
xu=5

Set the initial count for f, G local mnimzer obtained
count f =0
countff=0
count xst ar=0

Set the search direction

DOi=1,n
DO j=1, m
IF (i.EQj) THEN
e(i,j)=1
ELSEIF (j.EQ i +n) THEN
e(i,j)=-1
ELSE
e(i,j)=0
ENDI F
ENDDO
ENDDO

Set the initial value of x(n)

1000 I F (countxstar.EQ 0) THEN

!

!

x0(:)=5
ELSE

X0(:)= newx(:)
ENDI F

PRI NT+, "initial point,x0=",x0

Call the local search of the original function
CALL m nf (x0, xstar, fxbest)

Di splay the mniml solution & value of the original function
PRI NT*, " xx =", xstar
PRI NT+, "f (x*) =", f xbest

Call the local search of the filled function
CALL m np(xstar, newx, fl ag)

Di spl ay the out put
PRI NT+, "t he nunber of function eval uations=", countf
PRI NTx, "t he nunber of filled function eval uations=",countff
PRI NT*, " mu=", mu, "rho", r ho

IF (flag. EQ 1) THEN
PRI NT+, "Point in a lower basin is found as f(x)<f(x*)
PRI NT*, "new starting point,x=", newx, ", f(x)=",f(new)
count xst ar =count xst ar +1

GOTO 1000
ELSE

PRI NT, "x*=" xstar,"is the gl obal solution."
ENDI F
END
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I Define the LOA CAL FUNCTI ON feasible
LOG CAL FUNCTI ON f easi bl e(point)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT( I N) : : poi nt (n)
I NTEGER: : i

f easi bl e=. TRUE.

DOi=1,n
I'F (point(i).Grl.xu(i).OR point(i).LT.xI(i)) THEN
f easi bl e=. FALSE.
RETURN
ENDI F
ENDDO

END FUNCTI ON f easi bl e

I bjective function
DOUBLEPRECI SI ON FUNCTI ON f ( x)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x(n)
I NTEGER: @i, j
LOd CAL: : indicator

DO i =1, poi nt sCal cul at ed
indicator = . TRUE.
DO j=1,n
IF (table(i,j) .NE x(j)) THEN
i ndi cator = . FALSE.
EXIT
ENDI F
ENDDO

I F (indicator) THEN
f = table(i,n+l)
RETURN
ENDI F
ENDDO

f=0. 0d0
DO i=1,n-1

f=f +(100. 0d0* (x(i +1) - x(i ) **2) **2+( 1. 0d0- x(i ) ) **2)
ENDDO

t abl e( poi nt sCal cul at ed+1, 1: n)
t abl e( poi nt sCal cul at ed+1, n+1)

x(:)
f

poi nt sCal cul ated = pointsCal culated + 1
count f =count f +1

END FUNCTI ON f

! Filled function
DOUBLEPRECI SI ON FUNCTI ON p(x, xstar, fx, fxstar)
USE constants
I MPLI CI T NONE
INTECER: : i, s
I NTEGER, | NTENT(I N): : x(n), xstar(n)
DOUBLEPRECI SI ON, | NTENT(IN): : fx, f xstar
DOUBLEPRECI SION: : f,y, Vv, a

y=f x-f xstar
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s=0

DOi=1,n
s=s+(x(i)-xstar(i))**2

ENDDO

v=mu*((1.0d0-c)*((21.0d0-cxnmu)/ (mu-c*mu))+*=*(-y/tao)+c)

aszy*v
p=axy-rhoxs
countff=countff+1

END FUNCTI ON p

I Define the LOG CAL FUNCTION to check if a vertex exists
LOG CAL FUNCTI ON vert ex( x)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x(n)
INTECER: :i,tally

tally=0

DO i=1,n
I'F (x(i).EQxI(i).OR x(i).EQxu(i)) THEN
tally=tally+1
ENDI F
ENDDO

IF (tally. EQn) THEN
vert ex=. TRUE.
ELSE
vert ex=. FALSE.
ENDI F

END FUNCTI ON vert ex

I Local search of the original function,f
SUBROUTI NE mi nf (x0, xst ar, f xbest)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N) : : x0(n)
I NTECGER, | NTENT( QUT) : : xstar (n)
DOUBLEPRECI SI ON, | NTENT( QUT) : : f xbest
I NTECER: : x(n), xbest (n), nei ghbour(n),i,j
DOUBLEPRECI SI ON: : f, fx, tenp
LOG CAL: : feasi bl e

x(:)=x0(:)
DO

fx=f (x)
xbest (:)=x(:)
f xbest =f x

DO j =1, 2*n
nei ghbour (:)=x(:)+e(:,j)

I F (feasibl e(nei ghbour)) THEN
t enp=f ( nei ghbour)
IF (tenp.LT.fxbest) THEN
xbest (:) =nei ghbour (:)
f xbest =t enp
ENDI F
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ENDI F
ENDDO

I F (fxbest.EQ fx) THEN
xstar(:)=x(:)
RETURN

ELSE
x(:)=xbest(:)

ENDI F

ENDDO

END SUBROUTI NE mi nf

I Local search of the filled function.
SUBROUTI NE mi np( xstar, newx, fl ag)
USE constants
I MPLI CI' T NONE
I NTEGER, | NTENT(I N):: xstar(n)
I NTECGER, | NTENT(QUT) : : newx(n),flag
I NTECER: : x(n),i,j,FLOOR tineArray(3),r(n, m
DOUBLEPRECI SI ON: : fxstar, f, fx, RAND
LOG CAL:: feasible
EXTERNAL: : mi npl

| Generate a set of random points from FORTRAN.
CALL itinme(timeArray)
DO j=1,m
DOi=1,n
r(i,j)=FLOOR(xI (i)+(RAND(timeArray(3)+j+i))*(xu(i)-xI(i)+1))
ENDDO
ENDDO

fxstar = f(xstar)

DOj=1,m
IF (feasible(r(:,j))) THEN
fx=f(r(:,j))
PRI NT+, "f easi bl e random point=",r(:,j),"and f=",fx
IF (fx .LT. fxstar) THEN
flag = 1
newx(:) =r(:,j)
RETURN
ENDI F
ENDI F
ENDDO

DO

IF (rho .LT. rhol) THEN
flag = 2
RETURN

ENDI F

DOj=1,m
x(:) = xstar(:) + e(:,])
I F (feasible(x)) THEN
CALL m npl(xstar, fxstar, x, fl ag)
IF (flag .EQ 1) THEN
newx(:) = x(:)
RETURN
ENDI F
ENDI F
ENDDO

rho = rho+rhohat
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ENDDO

END SUBROUTI NE mi np

SUBROUTI NE mi npl(xstar, fxstar, x, fl ag)

USE constants

I MPLI CI T NONE

I NTEGER, | NTENT(I N):: xstar(n)

DOUBLEPRECI SI ON, | NTENT(I N):: fxstar

I NTEGER, | NTENT( I NOUT) : : x(n)

I NTEGER, | NTENT(OUT) :: fl ag

| NTECER: : xbest (n), nei ghbour (n), betterxbest(n),j,flagl

DOUBLEPRECI SI ON:: f,fx,fcurrent, fn,p, pcurrent, pbest, tenp, total,total best
LOG CAL: : f easi bl e, vert ex

flag = 0
DO
xbest (:)
fcurrent f(x)

pcurrent p(x, xstar, fcurrent, fxstar)
pbest = pcurrent

x(:)

flagl = 0

DO j =1, 2*n
nei ghbour (:) = x(:) + e(:,j)

I F (feasible(neighbour)) THEN
fn = f(nei ghbour)
IF (fn .LT. fxstar) THEN

flag = 1
x(:) = neighbour(:)
RETURN

ELSE

tenmp = p(nei ghbour, xstar, fn, fxstar)
IF (tenp .LT. pbest) THEN

xbest (:) = nei ghbour(:)

pbest = tenp
ENDI F

IF (tenp .LT. pcurrent .AND. fn .LT. fcurrent) THEN
IF (flagl .eq. 0) THEN
betterxbest(:) = nei ghbour(:)
total best = tenp + fn
flagl = 1
ELSE
total = tenmp + fn
IF (total .LT. total best) THEN
total best = tota
bet t er xbest (:) = nei ghbour(:)
ENDI F
ENDI F
ENDI F
ENDI F
ENDI F

ENDDO

| F (pbest .EQ pcurrent) THEN
IF (vertex(x)) THEN
RETURN
ELSE
mu = nuxnuhat
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CYCLE
ENDI F
ELSE
IF (flagl .EQ 1) THEN
x(:) = betterxbest(:)
ELSE
x(1)
ENDI F
ENDI F

xbest (:)

ENDDO

END SUBROUTI NE mi npl
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