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ABSTRACT 

The bulk of the world’s known nickel reserves are contained in laterite ores but 

sulphidic ores remain the main source of the Western world’s nickel production.  

With the continuing increase in nickel consumption and the depletion of 

sulphidic ores, the traditional source of nickel, the extraction of nickel from 

lateritic ores has been the subject of research interest worldwide.  Advances in 

pressure acid leaching (PAL) technology have resulted in significant commercial 

attempts to extract nickel from these ores. 

Leaching the ore with sulphuric acid at elevated temperatures and pressures 

allows almost complete dissolution of the nickel and cobalt, a valuable by-

product of these ores, but yields highly contaminated pregnant leach solutions.  

Separating and purifying the nickel and cobalt from these solutions remains a 

hindrance to full commercial production. 

Several purifying techniques have been commercialised but all suffer from 

continuing technical problems.  Among them, however, the direct solvent 

extraction (DSX) technique offers several advantages.  Direct solvent extraction 

involves the separation of the nickel and cobalt directly from the partially 

neutralised pregnant liquor stream (PLS) by solvent extraction with Cyanex® 272 

as the extractant.  However certain contaminants adversely affect the solvent 

extraction process.  Among them is chromium and little is known about the 

solvent extraction behaviour of this metal. 

The present work investigated the solvent extraction of chromium with Cyanex® 

272.  It was found that the solvent extraction behaviour of chromium(III) and 

chromium(VI), both of which could be found in PAL-generated PLS, are distinctly 

different.  For chromium(III), solvent extraction tests showed that (a) it is 

extracted in the pH range 4-7; (b) the extraction is partly influenced by diffusion; 

(c) the apparent equilibration time is significantly longer than most transition 

metals; (d) increases in temperature from 22 to 40 °C resulted in increases in the 
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extraction; (e) the pH0.5 increases in the order nitrate < chloride < sulphate in the 

presence of these anions; (f) the presence of acetate depresses extraction of 

chromium(III) when the solution is allowed to stand before extraction; (g) in the 

PLS, chromium(III) precipitated at lower pH than that predicted by the solubility 

product principle; and (h) the pH0.5 decreases as the Cyanex® 272 concentration 

increases. 

Chromium(III) is initially extracted by solvation of its inner sphere complex, 

which then undergoes further reaction in the organic phase leading to the 

formation of a much more stable species that is difficult to strip.  A reaction 

scheme together with a description of both the initially extracted and resulting 

stable species is proposed. 

Extraction of chromium(VI), on the other hand, (a) occurs at pH less than 2 by 

solvation of chromic acid; (b) is independent of the aqueous phase composition; 

(c) does not occur in the pH range (3–6) used in the separation of nickel and 

cobalt.  The latter is irrespective of temperature up to 40 °C, the use of industrial 

PLS as the aqueous phase or the presence of an anti-oxidant in the organic phase. 

The stripping of chromium(III) from a loaded organic phase can be achieved 

using 1–4 mol L-1 mineral acids provided the stable organic species have not 

formed making industrial scale stripping of chromium(III) from Cyanex® 272 

difficult.  The exact composition of the aqueous phase during extraction affects 

the stripping efficiency. 
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PREFACE 

Hydrometallurgical liquid-liquid (solvent) extraction is currently a major 

research interest particularly of nickel, cobalt and other metals commonly 

associated with laterite nickel deposits, such as chromium and manganese, in 

view of the increasing need to process these deposits. 

This research project was commenced in 1999 shortly after the commissioning of 

Bulong Nickel Operation (BNO), a nickel laterite processing operation using 

pressure acid leaching (PAL) technology and direct solvent extraction (DSX).  

Cytec (Canada), the manufacturer of Cyanex® 272 approached the WASM Nickel 

Hydrometallurgy Research Group.  They believed that Cyanex® 272 did not 

extract chromium but early plant data at BNO showed that chromium was 

extracting with Cyanex® 272 and could not be stripped. 

A search of literature revealed that only one study on the extraction of 

chromium with Cyanex® 272 had been published.  Although two other studies on 

solvent extraction of metals briefly mentioned chromium, the data reported 

were minimal and seemingly conflicting. 

The present study investigated the solvent extraction of chromium with 

Cyanex® 272 in general and in the DSX processing of PAL-generated leach 

solutions in particular. 

Chapter 1 introduces the topic. It contains a brief description of the occurrence 

and utilisation of nickel, an overview of nickel laterite formation and the 

implications that this has on processing nickel from these deposits.  The various 

options for processing nickel laterites, a statement of the problems associated 

with chromium as well as the project scope, limitations and objectives are 

discussed. 

Chapter 2 reviews the literature on the solvent extraction of chromium with 

Cyanex® 272.  Due to the limited directly relevant literature, the extraction of 
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chromium with other extractants and under a wide range of conditions is also 

reviewed in order to gain some insight into the general extraction behaviour of 

chromium. 

Chapter 3 details the reagents, experimental procedure and analytical 

techniques used in the present work. 

Chapter 4 discusses the results and observations of the present work on the 

solvent extraction of chromium with Cyanex® 272.  A structure is proposed for 

the extracted chromium(III) species and the changes observed in the loaded 

organic phase.  The stripping of chromium(III) is also examined. 

Chapter 5 summarises the main findings of the present work and Chapter 6 

outlines the recommendations for further work. 
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CHAPTER 1.  INTRODUCTION 

Chromium as a resource is obtained primarily from mineral deposits containing 

chromite.  However due to its refractory nature, chromium is also found in a 

variety of other deposits, including economic deposits of other metals.  Recent 

Australian commercialisation of nickel resources from laterite deposits using 

pressure acid leach (PAL) technology has revealed chromium to be of definite 

processing significance and one of the major contaminants that adversely affect 

the performance of a processing facility particularly when using the direct 

solvent extraction (DSX) technique. 

1.1 Occurrence and Utilisation of Nickel 

Nickel is the sixth most abundant terrestrial element but is 24th in terms of 

crustal composition.  Natural geological processes increase the local nickel 

content in suitable locations and commercial deposits may develop.  

Commercial concentrations of nickel occur in sulphide and laterite deposits.  

Traditionally the bulk of the nickel supplied to market has originated in 

sulphide deposits; the nickel being obtained from the original igneous rocks.  

Recently however an increasing quantity of nickel is being supplied from 

lateritic sources, the oxidised weathering product of previous deposits.  A third 

type of deposit, deep-sea nodules, contains similar metal concentrations to 

existing commercial deposits however the in-principle and technical hurdles yet 

to be overcome means that this type of deposit is yet to be utilised as a 

commercial resource. 

Currently, approximately 60% of world demand for nickel is met from sulphide 

deposits.  However this type of deposit represents a small proportion of world 

nickel reserves with laterite deposits accounting for approximately 80% of 

known resources (Roorda & Hermans 1981).  A significant, but variable, portion 
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of the demand for nickel is met by recycled materials (Stobart 2001).  The vast 

majority of nickel, approximately 65% of total world demand, is used in stainless 

steel production (Stobart 2001).  Other uses of nickel include the increasing 

rechargeable battery and superalloy markets (Maurer 2001; Stobart 2001). 

The continuing forecasts of increased nickel demand have led to increased 

interest in the development of lateritic nickel reserves.  This may be attributed to 

the shallow location of these deposits and thus the ease of mining, the potential 

for lower operating costs, recent advances in the available technology and the 

lack of new sulphide deposits.  The rapid increase in financial commitment to 

the development of lateritic nickel deposits in Western Australia, at least 

A$m 1645 (Upton 1999), will focus this discussion. 

1.1.1 Overview of Laterite Formation 

The history of a nickel deposit has a significant impact both on the formation of 

a commercially viable resource and the processing route chosen to utilise the 

resource.  An understanding of the history of a deposit is important in assessing 

possible processing routes to utilising the resource.  This discussion provides an 

overview of laterite formation and the impact that this has on processing 

options.  Much of this discussion is based on the works of Golightly (1973), 

Roorda and Hermans (1981) and Burger (1996b). 

Lateritic reserves show significant changes in structure compared to the parent 

rock as a result of natural weathering.  At shallow crustal depths the ultramafic 

base rock, commonly peridotite or dunite rocks composed mainly of olivine 

(Mg,Fe)2SiO4, will convert in varying amounts to serpentine, Mg3(Si2O5)(OH)4.  

The weathering of the resulting serpentinic rock results in a volume reduction as 

magnesia, silica and other soluble components are removed.  The deposit 

becomes enriched in weathering products such as goethite, and limonite and 

nontronite clays.  The goethite and clays contain enriched amounts of relatively 
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insoluble iron, aluminium, nickel, cobalt and chromium.  The leaching process 

results in a horizontally defined deposit with the main zones being unaltered 

bedrock, saprolite, clays (limonite and nontronite) and caprock (Figure 1-1).  The 

degree of zone development and the transition characteristics are dependent on 

the local conditions. 

The characteristics of the saprolite zone are dependent on the amount of 

serpentine in the bedrock.  Relatively low serpentine levels result in a saprolite 

zone with substantial remnant bedrock.  As the serpentine content increases so 

does the leachability of the bedrock.  Nickel does not occur in distinct minerals 

but substitutes in the serpentine lattice as magnesium is leached.  In locations 

with arid environments or poor drainage silica enrichment may also occur.  

Serpentine may be replaced by nontronite clays or silica boxwork.  The silica 

may have associated garnierite (a brilliant green clay, (Ni,Mg)3Si4O10(OH)2) or 

nontronite.  Without associated clays the silica will be nickel barren.  Magnesite 

(MgCO3) veinlets and accretions may also occur in the saprolite zone. 

The clay zone may be minimal in well-drained locations but will be dominated 

by nontronite clays in locations with arid environments or poor drainage.  

Nontronite clays, Fe(Al,Si)8O20(OH)4, can undergo substantial cation exchange 

and most of the nickel in this zone is associated with them.  This zone will have 

high moisture content due to the hygroscopic nature of nontronite clays and 

may also contain goethite inclusions.  Manganese oxides may persist in this zone 

and if so will contain significant adsorbed cobalt and some nickel. 

The limonite (ferralite) zone, characteristic of humid, well-drained regions, is 

dominated by goethite, FeO.OH.  There is some substitution of nickel for iron in 

the newly formed mineral.  Limonite is an amorphous form of hydrous ferric 

oxides.  Chromite and manganese oxides may also be found.  Laterites formed 

under arid conditions often contain substantial inclusions of the limonitic clay, 

kaolin, Al4(Si4O10)(OH)8, in this zone. 
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Limonite 
FeO.OH 

Saprolite 
Mg3(Si2O5)(OH)4

Unaltered Bedrock
(Mg,Fe)2SiO4 

Ferricrete Caprock
Fe2O3 

Nontronite 
Fe(Al,Si)8O20(OH)4

Figure 1-1.  The horizontal layer structure developed in lateritic deposits, after Roorda and 

Hermans (1981). 
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The caprock or ferricrete zone is usually dominated by hematite, Fe2O3, with 

some chromite present.  In humid climates the breakdown of this surface layer 

may have commenced.  Many arid zone laterite deposits have an alluvial layer 

covering the caprock. 

1.1.2 Metal Distribution in Laterite Deposits 

In humid, well-drained environments the nickel distribution is concentrated in 

the upper section of the saprolite zone with a bulk concentration approaching 

3%.  The nickel content steadily decreases towards the caprock.  Cobalt values 

are generally low throughout the profile.  Iron content is relatively low in the 

saprolite zone reaching a maximum of about 25% with a sharp transition to the 

limonite zone.  Silica and magnesia show inverse behaviour compared to iron, 

increasing in concentration closer to the bedrock. 

Laterites that develop in areas of poor drainage or an arid climate have a 

significantly different metal distribution.  In these areas nickel is often 

concentrated in the nontronite clays along with cobalt and manganese.  

Significant nickel and cobalt concentrations may also be incorporated in the 

limonite zone.  Silica content also peaks in the clay zone.  Iron content increases 

steadily from the base of the profile reaching a maximum at about 35% in the 

caprock.  Magnesia content decreases from about 35% at the base of the saprolite 

zone to a minimum of about 2% near the top of the clay zone.  This value is 

maintained through the remainder of the profile.  If kaolin is present, usually in 

the limonite zone, then the alumina content will follow the same profile.  The 

chromium content is 2-3 times greater in the upper levels of the profile than in 

the saprolite zone. 

A summary of the metal distribution in each layer is shown in Figure 1-2. 
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Figure 1-2.  Typical variation in metal content with location in laterite profile, after Roorda 

and Hermans (1981). 
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Elevated nickel and cobalt values will often be found adsorbed on manganese 

oxides in the nontronite zone and local concentrations of 5% are common in 

these areas.  Up to 50% of limonitic nickel may be present in manganese oxides 

(Golightly 1981).  Moisture content is dependent on the composition of the 

profile, especially the clays in the deposit.  Alumina-rich clays tend to be 

hydrophilic with moisture levels up to 35%.  Iron-rich limonitic clays are more 

hydrophobic.  The proportions and locations of these phases will determine the 

overall nature of the deposit. 

Lateritic deposits are generally found quite close to the surface and do not 

extend to great depths however they may cover a large area.  The pre-mining 

deposits at Moa Bay, Cuba extended over approximately 41 km2 (Chalkley & 

Toirac 1997).  In general the total depth rarely exceeds 100 metres and 20–60 

metres is quite common.  The caprock may exist to around 5 metres from the 

surface of the deposit, discounting any alluvial layer.  The limonite (ferralite) 

layer may range in depth from almost non-existent up to 30 metres.  A similar 

depth range exists for the nontronite zone.  The saprolite zone, although up to 30 

metres deep, usually contains nickel at commercial grades only in the upper 5–

15 metres. 

Typical bulk compositions of various laterite style nickel deposits and their 

dominant source of metal values are shown in Table 1-1.  The operations 

detailed have all produced commercial nickel product. 
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Table 1-1.  Elemental composition (%) of the resource for some producing 

laterite deposits. 

 Cawse1 Moa Bay2  
Murrin 
Murrin2 

Bulong1 
New 

Caledonia2 

Source Limonite Limonite Nontronite Nontronite Saprolite 

Process Hydro-
metallurgy 

Hydro-
metallurgy 

Hydro-
metallurgy 

Hydro-
metallurgy 

Pyro-
metallurgy 

Ni 1.0 1.3 1.2 1.1 2.5 

Co 0.07 0.12 0.08 0.08 0.04 

Fe 18 48 22 21 12 

SiO2 423 9.0 42 43 47 

Mg 1.6 0.55 3.7 4.6 15 

Al 1.7 4.8 2.7 2.8 1.3 

Mn 0.17 0.8 0.4 0.36 0.6 

Cr 0.92 2.0 1.0 0.6 1.4 

H2O1 Up to 10 > 20 About 30 Up to 35  

 

 

 

                                                 
1 (Kyle 1996) 
2 (Motteram, Ryan & Weizenbach 1997) 
3 Contains significant free silica. 
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1.2 Processing Options for Nickel Laterites 

The composition of a given laterite deposit will be dependent on the type of 

parent rock, the climate in which the deposit was formed and the weathering 

history.  This gives rise to an almost infinite number of deposit specific 

relationships between components and consequent processing options and 

constraints.  There are several processing routes available for nickel laterites and 

these can be classified as shown in Figure 1-3 (Roorda & Hermans 1981). 

On the basis of magnesia content and nickel to iron ratio a choice is made 

between a hydro- or pyrometallurgical extraction process.  The degree of 

inherent homogeneity within a deposit will also have an impact on process 

choice with hydrometallurgical routes generally requiring a more homogeneous 

feed (Roorda & Hermans 1981). 

The processing of nickel laterites via pyrometallurgical routes (Roorda & 

Hermans 1981; Reid 1996) is favoured by a low iron to nickel ratio and low 

moisture content.  These requirements limit this processing route to 

predominantly saprolitic type ores.  Nickel content needs to be greater than 

about 2% for profitable operation.  Pyrometallurgical treatment of lateritic ores 

involves drying, reduction and smelting stages.  This produces a ferronickel 

with 20 to 50% nickel content.  Nickel sulphide matte can also be produced but 

the sulphur required must be purchased and introduced at some point in the 

process.  This allows recovery of some cobalt as a by-product. 

Pyrometallurgical treatment, although seen as a relatively robust process for its 

ability to treat heterogeneous silicates, must have a controlled feed in order to 

maintain suitable slag chemistry.  In particular, the iron, magnesia and silica 

content must be regulated to control the slag melting point, viscosity and 

electrical conductivity.  Pyrometallurgical treatment cannot be utilised for 

laterites containing less than 2% nickel and more than 25% iron.  This restriction 
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Figure 1-3.  An idealised laterite profile showing the general processing routes available with 

variation in composition, after Roorda and Hermans (1981). 
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excludes pyrometallurgical processing as an option for a significant portion of 

known laterite reserves. 

In order to treat the reserves of material not amenable to pyrometallurgical 

processing, projects have turned to hydrometallurgical processing options.  

Nickel not found in the saprolitic region of a lateritic deposit will usually be 

associated with limonite or nontronite clays.  Limitations imposed by the 

chemistry of this environment have restricted the number of commercial 

processing routes to two general options: 

• Caron Process, and 

• Sulphuric Pressure Acid Leach. 

Based on the 1995 production data presented by Reid (1996) world nickel 

production from laterite deposits can be broken down as shown in Figure 1-4.  

In addition it is worth noting that less than 3% of the corresponding cobalt 

production (total 3500 t) comes from pyrometallurgical processing. 

Figure 1-4.  Percentage of nickel laterite production by process type, total 344 kt 

(Reid 1996). 

78%
17%

5%

Pyrometallurgy Caron Process Pressure Acid Leach
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1.2.1 Caron Process 

Although developed in the 1920s the Caron process was not commercialised 

until 1944 (Reid 1996).  In this process the ore is dried and milled, then roasted in 

a reducing atmosphere to convert nickel and cobalt to their metallic form.  The 

resulting product is selectively leached with an ammonia-ammonium carbonate 

solution at low temperature and atmospheric pressure.  Removal of ammonia 

causes precipitation of nickel carbonate that can be calcined to produce nickel 

oxide. 

Production of pure nickel requires removal of cobalt which, if integrated with 

the process as described, will occur before nickel carbonate precipitation.  

Separation of nickel and cobalt in order to achieve the production of pure nickel 

can be achieved using solvent extraction.  The use of solvent extraction also 

allows the recovery of cobalt.  A simplified flowsheet of this modified Caron 

process, as operated by Queensland Nickel Industries (QNI) Limited nickel and 

cobalt refinery in Yabulu, Queensland, Australia, is shown in Figure 1-5. 

The solvent extraction process uses a modified LIX 84 reagent in ammoniacal 

solution.  This reagent was later designated LIX 87QN (Bhaskara Sarma & 

Nathsama 1996).  The nickel ammine complex is extracted and cobalt(III) remains 

in the raffinate.  The nickel is stripped with an ammonia solution that has a 

higher ammonia concentration than the extraction solution (Price & Reid 1993).  

Although recoveries in the solvent extraction circuit are good, overall metal 

recovery for the process is only approximately 84% for nickel and 45% for cobalt 

(Reid 1996) depending on the feed material. 
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Figure 1-5.  Simplified QNI Refinery flowsheet after Fittock (1997).  Production 

data: Reid (1996). 
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1.2.2 Pressure Acid Leach 

The first and, for more than 35 years the only, commercial pressure acid leach 

(PAL) operation was constructed at Moa Bay, Cuba, in 1959 (Simons 1988).  The 

PAL process involves leaching the slurried ore with sulphuric acid at elevated 

temperatures and pressures causing almost total dissolution of the feed material.  

The use of PAL achieves much higher nickel and cobalt dissolution with only half 

to one third of the energy requirements of the Caron process (Reid 1996).  

However acid consumption is a major cost component, downstream processing 

is more complex and effluent disposal can pose difficulties. 

Once the nickel and cobalt are in solution a wide variety of processing options 

are available.  These include a range of intermediate precipitation products 

which may be redissolved and various applications of solvent extraction 

technology.  A range of processing routes have been shown to be technically and 

commercially viable and those recently implemented are discussed below. 

1.3 Pressure Acid Leach Operations in Australia 

The recent commissioning of three significant nickel-cobalt operations in 

Western Australia has resulted in increased interest in the commercial 

application of PAL technology to lateritic ores.  The use of PAL at the front of the 

processing circuit is common to all three of the new operations.  Of interest is the 

choice of different processing routes following leaching.  These fall into two 

groups: direct and indirect separation.  Direct separation involves the 

application of solvent extraction to separate nickel and cobalt directly from the 

pregnant liquor stream (PLS).  Indirect separation uses an intermediate 

precipitation and re-leach step to remove impurities before solvent extraction to 

separate nickel and cobalt.  The differences in process selection arise due to 

differences in the ore mineralogy and behaviour, production philosophy, 
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perceived technical risk and financial considerations.  The chosen process routes 

are discussed below. 

1.3.1 The Murrin Murrin Process 

The largest of the new operations with an identified resource of 116 million 

tonnes of ore grading 1.10% nickel and 0.08% cobalt, Murrin Murrin also has the 

most conservative process flowsheet as identified by technical, start-up and 

financial risk analysis (Motteram, Ryan & Weizenbach 1997).  The process route 

is shown in Figure 1-6.  The ore is leached with sulphuric acid, produced on site 

by a sulphur burning acid plant, at 255 °C and 4300 kPa for 90 minutes.  The 

leached slurry is fed to a counter-current decantation (CCD) circuit for washing 

and pH adjustment to 2.4–2.6 with locally available calcrete (calcium carbonate).  

Adjustment to a higher pH (3.5–4.0) in order to remove iron, aluminium and 

chromium was attempted but caused unacceptable loss of nickel and cobalt 

through coprecipitation and/or adsorption (Motteram et al. 1996). 

The solution at pH 2.4–2.6 then undergoes sulphide precipitation at 90 °C and 

105 kPa hydrogen sulphide, also produced on site.  Sulphide precipitation rejects 

a large proportion of the impurities such as aluminium, magnesium and 

manganese found in the liquor.  The relatively mild sulphide precipitation 

conditions, compared to Moa Bay at 121 °C and 1034 kPa (Chalkley & Toirac 

1997) are made possible by using seed recycle and solutions containing high 

levels of magnesium.  A clean water wash is used to remove chlorides from the 

mixed sulphide precipitate, which is then ready for treatment in the 

independent on-site refinery. 

The mixed sulphide precipitate is slurried in water and leached under oxygen 

pressure of 400 kPa (total pressure 1100 kPa) at 165 °C giving near total 

dissolution of the precipitate.  Iron is removed via pH adjustment with 

ammonia.  Copper and most zinc are removed by atmospheric sulphide 

precipitation.  
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Figure 1-6.  Flowsheet of the Murrin Murrin process after Motteram, Ryan and 

Weizenbach (1997). 
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The remaining zinc is removed by solvent extraction with Cyanex® 272.  After 

adjusting the pH, Cyanex® 272 is used in a second extraction circuit to remove 

cobalt.  Cobalt is stripped and further refined before hydrogen reduction and 

briquetting to produce 99.8% cobalt briquettes.  The raffinate from cobalt solvent 

extraction is treated by conventional hydrogen reduction, briquetting and 

sintering to produce 99.95% nickel briquettes.  Design output is approximately 

45 000 tpa nickel and 3 000 tpa cobalt. 

1.3.2 The Cawse Process 

The Cawse Nickel Project is utilising a resource of 52.8 million tonnes of ore 

grading 1.0% nickel and 0.07% cobalt (Hellsten & Lewis 1996).  The process 

flowsheet is shown in Figure 1-7. 

The Cawse resource is the only example of the three Western Australian laterites 

discussed here which is amenable to physical upgrading of the ore feed before 

PAL.  Removal of the coarse silica fraction (+212 µm) increases the nickel and 

cobalt feed grade by 30–50% while retaining 70–80% of the metal value (Hellsten 

& Lewis 1996; Kyle & Furfaro 1997).  After removal of the coarse silica fraction, 

the thickened slurry is fed to the leach autoclave where conditions are 250 °C, 

3800 kPa and a residence time of 75–105 minutes. 

The leach liquor is adjusted to pH 3.5 with limestone slurry.  Air addition is 

used to aid oxidation of iron(II) to iron(III), which is subsequently precipitated.  

The resulting slurry is washed and separated through a CCD circuit before a 

second stage of iron removal by adjustment to pH 6.0.  The second stage solids 

are recycled back to first stage pH adjustment to recover co-precipitated nickel 

and cobalt.  The nickel and cobalt are then removed from the neutralised liquor 

by hydroxide precipitation.  Hydroxide precipitation recovers most of the nickel 

and cobalt as well as many other metals such as copper, zinc and manganese 

which are in solution. 
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Figure 1-7.  Flowsheet of the Cawse process after Kyle and Furfaro (1997). 
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The processing of a mixed hydroxide precipitate is then carried out in a similar 

way to the previously proven operation at QNI Limited.  That is, the mixed 

hydroxide precipitate is selectively re-leached with an ammonia-ammonium 

carbonate solution producing a solution containing nickel, cobalt, copper and 

zinc with some manganese, magnesium and iron. 

Cobalt(II) oxidation to cobalt(III) occurs readily under the conditions present in 

the re-leach liquor.  The change in oxidation state of cobalt prevents its co-

extraction in the nickel solvent extraction circuit. 

Partial ammonia stripping results in re-precipitation of weak amine complexes 

such as those formed by zinc and manganese impurities.  Nickel solvent 

extraction is carried out with LIX® 84I in kerosene.  This process is selective for 

nickel under these conditions.  The organic phase is scrubbed to remove 

ammonia and then stripped using sulphuric acid. 

Nickel is recovered from the strip liquor by electrowinning to produce nickel 

cathode.  Cobalt is precipitated from the raffinate as a sulphide.  It was 

originally planned to incorporate production of cobalt metal.  Initial design 

output was 8500 tpa nickel and 2000 tpa cobalt by means of selective mining of 

high-grade zones.  The life-of-project design output was 7000 tpa nickel and 

450 tpa cobalt (Hellsten & Lewis 1996). 

Recent changes in ownership of this operation has seen the solvent extraction 

circuit and refinery shut down and a mixed hydroxide precipitate as the final 

on-site product.  The mixed hydroxide is refined at an off-site location. 

1.3.3 The Bulong Process 

Bulong Nickel Operations are operating from a proven and probable resource of 

41 million tonnes at 1.14% nickel and 0.09% cobalt (Burger 1996a).  The 

flowsheet (Figure 1-8) is the only example of nickel production from a lateritic 
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Figure 1-8.  Flowsheet of the Bulong process after Kopejtka (2000). 
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source using direct solvent extraction i.e. without intermediate precipitation and 

re-leach steps. 

The thickened ore is leached at 250 °C and 4000 kPa with a residence time in the 

autoclave of 75 minutes.  A seven stage CCD circuit clarifies the pregnant liquor 

prior to partial neutralisation.  Suspended solids are removed and the liquor 

pumped to a storage pond ready for treatment in the separate solvent extraction 

and electrowinning section of the plant. 

The clarified pregnant leach liquor is fed directly to the cobalt solvent extraction 

circuit.  The extractant is Cyanex® 272 in Shellsol® 2046 as the diluent.  Tributyl 

phosphate was used as a third phase inhibitor during testwork (Soldenhoff, 

Hayward & Wilkins 1998) but was not incorporated into the operating plant.  At 

pH 5.5, the cobalt circuit removes cobalt and scavenges impurities such as 

copper, zinc, manganese and any remaining iron and aluminium from the 

liquor.  After stripping, cobalt is precipitated as sulphide.  The cobalt sulphide 

undergoes a pressure oxygen re-leach, the copper is removed by ion exchange 

and the zinc is removed by solvent extraction before electrowinning the 

resulting solution to produce cobalt metal. 

The raffinate from cobalt solvent extraction, containing predominantly nickel, 

magnesium and calcium, is sent to the nickel solvent extraction circuit where 

Versatic® 10 is used to preferentially extract the nickel.  After scrubbing and 

stripping, nickel metal is recovered by electrowinning.  Design output is 

9600 tpa nickel and 1000 tpa cobalt. 

The output of these three new producers at nameplate capacity will constitute 

approximately 9% of Western world nickel output based upon 1998 data 

(Hellsten 1999).  This production essentially replaces that forecast from the start-

up of Inco’s operation at Voisey’s Bay in Canada up to 2004 and possibly longer, 

so it has little impact on forecast supply levels over this period. 
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1.4 Background of the Research Project 

Chromium is an inherent contaminant of nickel laterite ores.  It dissolves during 

PAL but provided appropriate ore blending and process control is maintained it 

can be completely removed by precipitation.  The standard removal process for 

chromium(III) is precipitation as the hydroxide, together with iron(III) and 

aluminium(III).  Chromium(III) is therefore the preferred form of chromium for 

downstream processing.  At the expected ionic strength of a typical leach liquor 

precipitation of chromium(III) occurs at a pH of about 4 (Ritcey, Hayward & 

Salinovich 1996). 

Pressure acid leaching using sulphuric acid and elevated temperatures yields 

near complete dissolution of lateritic ore.  The greatest contribution to chromium 

in the liquor is derived from the dissolution of clays containing chromium(III) 

(Kyle 1996).  Despite its refractory nature, some chromite is also dissolved 

making a direct contribution to chromium(VI) in the leach liquor (Das et al. 1995).  

Chromium(VI) is undesirable as it cannot be removed from the leach liquor by 

precipitation and so enters the solvent extraction circuit. 

Chromium(VI) is also formed by redox reaction with manganese, so to prevent 

further formation of chromium(VI) in the leach liquor the manganese(IV) level 

must be carefully controlled.  The manganese(IV) level in turn is controlled by 

the amount of iron(II) in the leach liquor.  These relationships are demonstrated 

by the reactions shown in Equations 1-1 to 1-3. 

The oxidation of chromium(III) to chromium(VI) by manganese(IV): 

O2H3MnO2Cr 22
3 +++   ++ ++ 4H3MnCrO2H 2

42  (1-1) 

The reduction of manganese(IV) to manganese(II) by iron(II): 
++ ++ 4H2FeMnO 2

2   O2H2FeMn 2
32 ++ ++  (1-2) 

The reduction of chromium(VI) to chromium(III) by iron(II): 
++ ++ 6H3FeCrOH 2

42   O4H3FeCr 2
33 ++ ++  (1-3) 



1.4  Background of the Research Project 

 25

Much of the residual soluble iron is present as iron(II) due to its presence in clays 

or the activity of reducing agents such as sulphides in the leach liquor.  Iron(II) 

can cause downstream processing problems but is easily oxidised to iron(III) in 

solution at atmospheric conditions allowing it to be removed by precipitation as 

the hydroxide. 

If chromium(VI) is not controlled in the leach liquor then a reduction step is 

required as chromium(VI) does not precipitate as the hydroxide.  The reduction 

step is an additional unit process that needs to be incorporated into the process 

route, with the associated capital and operating expenses. 

A chromium(VI) reduction step, incorporated after leaching, may use sodium 

meta-bisulphite (Na2S2O5), sulphur dioxide or iron(II) sulphate.  The reaction for 

sodium meta-bisulphite is shown in Equation 1-4. 

The reduction of chromium(VI) to chromium(III) with sodium meta-bisulphite: 
+++ 6HOS3NaCrO4H 52242   O7H6Na6SO4Cr 2

2
4

3 +++ +−+  (1-4) 

This reagent has several advantages in nickel laterite processing.  These include 

relatively low reagent consumption (Freeman 1989), the reaction being acid 

consuming and the reagent not contributing more iron to the system, which in 

turn would need removal before nickel and cobalt recovery. 

The precipitation of chromium(III) as chromium hydroxide effectively removes 

chromium from the solution provided proper pH control is maintained and 

sufficient equilibration time allowed (Equation 1-5). 
−+ + 3OHCr 3   ↓3Cr(OH)   (1-5) 

In the absence of ideal process control, it is probable that chromium will enter 

the solvent extraction circuit either as chromium(VI), which has been formed in 

the leach and not reduced, or as chromium(III) which has not been fully 

precipitated during neutralisation.  This has been observed in at least one 

operating plant. 
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The control of chromium, together with most metals, starts with the mining 

process.  This needs to be controlled to provide a relatively constant blend of 

material to the ore stockpile.  This provides homogeneity of the feed material 

and consequently better control of leaching variables such as required acid 

addition and oxidation potential.  Ore blending aims to utilise the ore 

composition to control the chemistry during leaching.  In practice, appropriate 

ore blending is difficult to achieve. 

The risks associated with leaving chromium(VI) in solution are varied.  The 

chromium(III)/chromium(VI) couple is able to oxidise iron(II) to iron(III) 

removing iron(II) from the system before it can consume manganese(IV).  This 

may lead to loss of recoverable metal due to the association of high nickel and 

cobalt grades with MnO2 particles. 

The effect of chromium(VI) on the organic phase during solvent extraction is not 

known but chromium(VI) is suspected as a possible oxidant leading to organic 

decomposition.  The degradation of components of the organic phase is a major 

problem in hydrometallurgical solvent extraction but it is not fully understood.  

It is known (Cotton & Wilkinson 1988) that chromium(VI) in acidic conditions is 

a strong oxidising agent and under the right conditions would be able to oxidise 

susceptible components of the organic phase.  This may result in loss of 

selectivity of metal extraction and/or decrease the phase separation clarity 

depending on the oxidation products. 

The degradation of organic components is not the only hazard associated with 

chromium(VI).  The presence of chromium(VI) in an electrolyte solution is known 

to decrease current efficiency and even prevent plating of cobalt during 

electrowinning (Pradhan, Dash & Das 2001).  If the chromium(VI) exits the 

process in the tail stream then it presents a disposal hazard (Bretherick 1986; 

Freeman 1989; Petura, James & Vitale 1999). 
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The presence of metals such as cobalt and manganese, which can exist in 

multiple oxidation states, is a known risk in solvent extraction (Ritcey & 

Ashbrook 1979; Cheng et al. 2000).  The unknown behaviour of chromium, 

another metal that can exist in multiple oxidation states, therefore presents a 

possible risk to a solvent extraction operation. 

1.5 Project Scope and Limitations 

The effect of contaminant chromium on solvent extraction has received little 

attention under anything but ideal conditions during flowsheet development.  

Nor could the behaviour be reasonably obtained from the literature, as will be 

shown in the next Chapter 2.  Specifically the behaviour of chromium under 

conditions which separate cobalt from nickel using solvent extraction will be 

examined. 

Chromium poses the greatest risk to a direct solvent extraction processing route, 

as operated at Bulong Nickel Operation (BNO).  In this circuit design cobalt 

solvent extraction is the first contact for the leached, partially neutralised and 

clarified feed solution. The cobalt solvent extraction circuit is designed to extract 

cobalt and contaminant metals leaving a raffinate containing predominantly 

nickel, magnesium and calcium. 

The reagent of choice for this circuit is Cyanex® 272.  This phosphinic acid has 

shown a superior nickel-cobalt separation factor compared to other acidic 

extractants and is commonly used world-wide for separating these two metals.  

Efficient nickel–cobalt separation occurs at pH near 5.5 in the BNO cobalt circuit. 

The general conditions chosen for this investigation reflect actual operating 

conditions at BNO.  Included in the choice of these conditions is the knowledge 

that Cyanex® 272 is the predominant reagent for nickel–cobalt separation and 

therefore the results may have wider applicability. 
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The organic phase will normally contain Cyanex® 272 in Shellsol® 2046.  The 

aqueous phase normally will be an acidic solution of pH 0-7, or more specifically 

pH 4-6.  Additionally the aqueous phase will contain a range of salt components 

both singularly and in combinations such as those found in industrial process 

liquors, especially liquors as encountered in mineral processing operations.  The 

extraction behaviour of chromium from such solutions will be investigated. 

1.6 Objectives of the Study 

The following objectives have been chosen in order to gain the most generally 

useful understanding of the behaviour of chromium during solvent extraction.  

Each objective is addressed in detail in Chapter 4.   

The present study was aimed to understand the solvent extraction behaviour of 

chromium with Cyanex® 272 in general and in relation to the processing of nickel 

from laterite deposits by pressure acid leach (PAL) direct solvent extraction (DSX) 

in particular.  Specifically it was aimed to: 

a) determine the effect of experimental variables: 

• contact time; 

• stirring speed; and 

• temperature. 

b) determine the effect of aqueous phase variables: 

• anion type (nitrate, chloride, sulphate, acetate); 

• anion concentration; 

• chromium oxidation state; and 

• chromium concentration. 

c) determine the effect of organic phase variables: 

• extractant type (Cyanex® 272, Cyanex® 301, D2EHPA); 

• extractant concentration; and 

• diluent type. 
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d) investigate the stripping of chromium(III). 

e) determine the nature of the extracted species. 
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CHAPTER 2.  REVIEW OF CHROMIUM SOLVENT EXTRACTION 

2.1 Overview of the Aqueous Chemistry of Chromium 

Before considering the solvent extraction behaviour of chromium it is 

worthwhile to provide a brief overview of the relevant aqueous chemistry. 

When present in the aqueous phase chromium commonly exists in both the (III) 

and (VI) oxidation states.  These oxidation states should have a significant effect 

on the extraction behaviour with Cyanex® 272 due to the different metal species 

which may form. 

Chromium(III) exists in a range of forms at varying levels of hydration 

(Deltombe, de Zoubov & Pourbaix 1966; Baes & Mesmer 1976).  In highly acidic 

conditions the hexaaqua form, +3
62O)Cr(H  predominates.  Increases in pH from 4 

to 7 results in successive hydrolysis reactions occur producing a range of species 

of the form [Cr(OH)x(H2O)6-x](3-x)+ where x = 1, or 2.  The log K values, where K is 

the ratio of reaction products to reactants, for x = 1 and 2 may be estimated as 

-4.0 and -9.7 respectively.  The formally neutral species Cr(OH)3 may exist in 

solution as well as precipitating as a poorly defined, hydrated solid.  Under 

alkaline conditions the solid may re-dissolve to produce −
4Cr(OH) .  Although 

multinuclear chromium(III) species have been identified these are slow to form 

and may generally be neglected.  Other species have been reported with their 

respective log K values such as Cr(SO4)+ (3.9) and Cr(Ac)2+ (5.4) (Appendix 3). 

Chromium(VI) has a more defined distribution (Deltombe, de Zoubov & 

Pourbaix 1966; Baes & Mesmer 1976).  Under acidic conditions the predominant 

form is dependant on the concentration of the metal.  At concentrations less than 

0.01 mol L-1 the −
4HCrO  anion is predominant whereas above this concentration 

the −2
72OCr  ion is the preferred form.  Under alkaline conditions −2

4CrO  is the 
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only significant species.  The neutral chromic acid, H2CrO4, is proposed at 

strongly acidic conditions. 

2.2 Solvent Extraction of Chromium Related to Mineral Processing 

Very few studies on the solvent extraction of chromium, particularly 

chromium(III) have been reported and only one study on the solvent extraction 

of chromium(III) with Cyanex® 272 has been published.  Two other studies briefly 

mentioned chromium(III) extraction with Cyanex® 272 however these are limited 

in the range of conditions that they use as the focus was on other metals.  The 

limited amount of data available on chromium(III) extraction with Cyanex® 272 

has inevitably led to some seemingly conflicting reports on the behaviour of the 

system. 

This chapter reviews studies on the solvent extraction behaviour of chromium.  

Although only the sections on extraction with Cyanex® 272 were directly related 

to the present work there was little information that could be included.  The 

reported behaviour of chromium with other extractants is therefore included so 

as to gain some understanding of the general solvent extraction behaviour of 

chromium that may be applicable to the present work. 

2.3 Extraction of Chromium(III) with Acidic Organophosphorus 
Extractants 

2.3.1 Extraction of Chromium(III) with Cyanex® 272 

Cyanex® 272 has developed as the extractant of choice for the separation of cobalt 

and nickel.  The active component, bis(2,4,4-trimethylpentyl) phosphinic acid, is 

shown in Figure 2-1.  The supplied commercial product contains approximately 

85% active component. 
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Figure 2-1.  The structure of bis(2,4,4-trimethylpentyl) phosphinic acid, the 

active component of Cyanex® 272. 

Little work has been reported on the application of Cyanex® 272 to the solvent 

extraction of chromium(III) (Cyanex® 272 Extractant; Ohki et al. 1986; Gandhi, 

Deorkar & Khopkar 1993; Pandey, Cote & Bauer 1996).  The product information 

(Cyanex® 272 Extractant) indicates that chromium(III) is not extracted with 

Cyanex® 272 from acidic sulphate solutions.  Transfer of chromium(III) to the 

organic phase has been reported in only one paper, that of Pandey, Cote and 

Bauer (1996). 

Pandey, Cote and Bauer (1996) studied the extraction of chromium(III) from a 

synthetic tanning effluent.  The aqueous phase contained chromium(III) 

(4.41 g L-1), sulphate (12.0 g L-1), sodium chloride (60.0 g L-1), acetic acid 

(3.90 g L-1) and iron(III) and aluminium(III) at approximately 0.1 g L-1 each.  The 

organic phase consisted of Cyanex® 272 (0.48 mol L-1, 15 vol%) and 

p-nonylphenol (0.43 mol L-1, 10 vol%) in kerosene.  The Cyanex® 272 was partially 

ammoniated to control pH during extraction.  The contact time of the phases 

was 5 minutes at an aqueous to organic (A:O) volume ratio of 1.  Dispersion of 

the two phases, 40 mL total, was effected by a mechanical shaker operated at a 

speed of 250 min-1. 

The extraction curve reported by the authors is shown in Figure 2-1.  This was 

the only published solvent extraction curve for chromium(III) and Cyanex® 272.  
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Figure 2-2.  Extraction of chromium(III) with Cyanex® 272 as reported by Pandey, Cote and 

Bauer (1996). 

Aqueous phase: Cr(III) 8.5×10-2 mol L-1, other components as described in text; 

Organic phase: Cyanex® 272 (0.48 mol L-1), p-nonylphenol (0.43 mol L-1) in kerosene. 
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In contrast two other studies (Ohki et al. 1986; Gandhi, Deorkar & Khopkar 1993) 

reported that chromium(III) does not extract with Cyanex® 272. 

The work of Ohki et al. (1986) examined the extraction of chromium(III) under 

dark and ultra-violet (UV) irradiated conditions.  The aqueous phase contained 

chromium(III) (2×10-4 mol L-1) as chloride, adjusted to pH 2 with hydrochloric 

acid.  The organic phase contained bis(2,4,4-trimethylpentyl) phosphinic acid 

(5×10-2 mol L-1) in toluene.  No extraction was reported either in dark or UV 

irradiated conditions.  As this was a screening study only a single pH value was 

considered.  Under the same conditions no extraction of chromium(III) was 

observed with other extractants including di(2-ethylhexyl) phosphoric acid 

(D2EHPA), 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A®), 

trioctyl phosphine oxide (TOPO) and tributyl phosphate (TBP). 

The study of Gandhi, Deorkar and Khopkar (1993) on behaviour of cobalt with 

Cyanex® 272 included chromium(III) in a sequential separation of three metals.  

The aqueous phase contained 25 µg/10 mL each of iron(III), cobalt(II) and 

chromium(III).  The organic phase contained Cyanex® 272 (5×10-3 mol L-1) in 

chloroform.  Iron(III) was extracted at pH 3.  Cobalt(II) was extracted at pH 8.  

The authors stated that chromium(III) remained in the aqueous phase.  Under 

the same conditions nickel(II) showed the same behaviour as chromium(III).  The 

authors do not indicate whether any precipitation and/or re-dissolution of 

chromium(III) was observed as would be expected as the pH is raised from 3 to 

8.  At pH 8 chromium(III) may exist as the anionic −
4Cr(OH)  unable to be 

extracted by Cyanex® 272. 

These reports were consistent with the investigation of Pandey, Cote and Bauer 

(1996) who showed extraction of chromium(III) in the pH range 3–6.  The reports 

discussed above work outside this pH range. 

The work of Navarro Mendoza et al. (2000) on ion exchange resins provide some 

useful insights into the behaviour of chromium(III) with Cyanex® 272, even 
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though such work would normally be excluded from a review of liquid-liquid 

exchange (solvent extraction) literature.  The paucity of reported work 

pertaining to chromium(III) and Cyanex® 272 requires the inclusion of this resin-

based ion-exchange process to obtain as much information as may be applicable. 

In this work equilibrium was attained in approximately 4 hours although a 24-

hour contact time was used throughout.  The chromium(III) concentration in the 

aqueous phase was 2×10-4 mol L-1.  The resin phase contained Cyanex® 272 

(0.30-0.85 mol per kg of resin).  The resin density was 0.01 kg resin per L. 

The sorption curve of chromium(III) from a nitrate solution onto the 

impregnated resin is shown in Figure 2-3. 

When the Cyanex® 272 concentration was varied the sorption curve shifted to 

lower pH with increased Cyanex® 272 concentration on the resin.  This behaviour 

is the same as the behaviour expected with solvent extraction systems. 

Two different sorption reactions were proposed based on calculated species 

distribution diagrams.  Below pH 3.8 the predominant reaction was: 
−+ +++ 32r

2 2NOOHHLCrL   r2,32 )(NOCr(OH)(HL)  (2-1) 

(where HL is Cyanex® 272 and r represents the resin phase).  Above pH 3.8 the 

predominant reaction was given as: 

OHHLCrL 2r
2 +++   ++ 2HCr(OH)L r2,  (2-2) 

The existance of CrL2+ in the aqueous phase was not examined other than by 

calculation.  In addition the pH values proposed for the sorption reactions are 

inconsistent with the authors’ proposed predominance diagram of the extracant, 

HL.  The same work of these authors (Navarro Mendoza et al. 2000) provides 

some insights into the chemistry of chromium(III) extraction by Cyanex® 272.  

Whether this information transfers to a system containing two liquid phases 

cannot be determined from the available data. 
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Figure 2-3.  The sorption of chromium(III) on resin impregnated with Cyanex® 272 as reported 

by Navarro Mendoza et al. (2000). 

Aqueous phase: Cr(III) 2×10-4 mol L-1, -
3NO  0.1 mol L-1; 

Resin phase: Cyanex® 272 0.53 mol/kg resin, 0.01 kg resin/L. 
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The literature discussed in this section was the only literature which examined 

the extraction of chromium(III) by Cyanex® 272.  The reported data to date fail to 

address several key points with respect to the system in question: 

a) no attempt was made to determine the structure and thus the nature of 

the extracted species when dealing with the solvent extraction of 

chromium(III); 

b) the experimental conditions used do not allow sensible comparison with 

the bulk of other available literature, e.g. there was no work on the use of 

single anion solutions to allow separation of the effects of the aqueous 

matrix; and  

c) no solvent extraction work with solutions containing relatively low 

chromium concentrations within a relevant pH range has been reported, 

which would allow a more theoretical treatment of the data and easier 

comparison with behaviour in other extraction systems. 

The inclusion of resin ion-exchange data provides an indication of behaviour 

with respect to both the structure and low chromium(III) concentration.  The 

long equilibration times and relatively fixed position of the extractant molecules 

limit the applicability of these findings to solvent extraction. 

The separation of cobalt and nickel was cited (Rickelton, Flett & West 1984) as 

the principal application of Cyanex® 272 yet the conditions used in many of the 

above papers do not approach the operating conditions required to effect this 

separation.  Consequently they do not provide data that could be reliably 

applied to the behaviour of chromium(III) in a system designed for nickel-cobalt 

separation. 

Due to a lack of data on the extraction of chromium with Cyanex® 272, studies on 

the solvent extraction of chromium with other extractants are also reviewed to 

gain an insight into its general behaviour in solvent extraction. 
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2.3.2 Extraction of Chromium(III) with Cyanex® 301 and Cyanex® 302 

Cyanex® 301 and Cyanex® 302, the di- and mono-thio analogues of Cyanex® 272 

respectively, generally show stronger extraction of metals than Cyanex® 272.  

This has been used by Mihaylov et al. (1995) in the development of a patented 

process for the separation of nickel and cobalt.  Chromium(III) was not extracted 

from a mixed metal sulphate feed solution between pH 1.5 and 2.5 by an organic 

phase containing Cyanex® 301 (0.44 mol L-1) in Isopar® M. 

Similar results were found by Saily et al. (1996) during examination of 

molybdenum extraction by Cyanex® 301 and Cyanex® 302.  The extraction of 

chromium(III) was reported as less than 5% with either extractant.  The 

extractant concentration was 0.10 mol L-1 in toluene.  The acid concentration 

varied from 1×10-3 to 5 mol L-1 using hydrochloric, nitric and sulphuric acids 

with little difference in the results.  Contact of equal phase volumes was at 25 °C 

for 5 minutes. 

Extraction of chromium(III) by Cyanex® 301 in the pH range –1 to 4.3 was also 

reported as less than 5% in other literature (Singh et al. 1999; Khwaja, Singh & 

Tandon 2000b).  The aqueous phase contained 1×10-4 mol L-1 metal and the 

organic phase contained Cyanex® 301 (0.1 mol L-1) in toluene. 

It is apparent that the thio analogues of Cyanex® 272 do not extract chromium(III) 

under commonly used experimental conditions in the pH range –1 to 4.3. 

2.3.3 Extraction of Chromium(III) with Di(2-Ethylhexyl) Phosphoric Acid 

Di(2-ethylhexyl) phosphoric acid (D2EHPA) is available commercially as a 97% 

pure liquid.  It has been widely used in the extraction of a range of metals 

including nickel, cobalt, zinc and chromium.  The structure of the extractant is 

shown in Figure 2-4. 
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Figure 2-4.  The structure of di(2-ethylhexyl) phosphoric acid (D2EHPA). 

The extraction of chromium(III) with D2EHPA has received the most attention in 

the literature of any chromium(III) extraction system although this is still paltry 

compared to the available data on metals such as nickel and cobalt. 

A range of equilibration times for chromium(III) solvent extraction with D2EHPA 

have been reported dependent upon the pH at which the equilibration time was 

determined.  The chromium hexaaqua ion is known to be kinetically, relatively 

inert to substitution (Cotton & Wilkinson 1988).  However, the hydrolysis 

reaction: 

OHO)Cr(H 2
3
62 ++   ++ + OHOHO)Cr(H 3

2
52  (2-3) 

is much faster than water molecule exchange (Baes & Mesmer 1976) and 

produces a hydroxy species which is more reactive than the hexaaqua ion. 

An equilibration time of two minutes was reported by Kimura (1960) and 

Pandey, Cote and Bauer (1996).  Pandey, Cote and Bauer (1996) used an 

experimental contact time of 5 minutes to ensure attainment of equilibrium.  

This was the shortest reported equilibration time for chromium(III) and D2EHPA.  

The only other specified equilibration time was 15 minutes with 30 minutes used 

as the contact time (Islam & Biswas 1979b).  Contact times between 15 and 35 
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minutes were reported by various workers (Beneitez & Ayllon 1987; Hepworth 

& Beckstead 1989; Rao & Hariharan 1992; Schügerl, Segelken & Gudorf 1996) 

although without specifying the actual equilibration time or conditions used in 

its determination. 

The extraction efficiency of a D2EHPA system was governed by the operating pH.  

The choice of an appropriate operating pH was principally dependent upon the 

concentration of the extractant with contributions also from the anion type and 

concentration. 

The pH required for maximum extraction of chromium(III) with D2EHPA is 4.5–5 

(Islam & Biswas 1979b; Hepworth & Beckstead 1989; Rao & Hariharan 1992; 

Pandey, Cote & Bauer 1996; Schügerl, Segelken & Gudorf 1996) although 

significant extraction occurs at pH values as low as three (Rao & Hariharan 1992; 

Pandey, Cote & Bauer 1996).  The early work of Kimura (1960) showed 

extraction at a relatively low pH although complete extraction was not observed 

and higher pH values were not reported.  Most of these studies used relatively 

complex aqueous solutions to simulate the real solutions found in waste 

treatment, a common stimulus for the investigation of chromium solvent 

extraction. 

The work of Beneitez and Ayllon (1987) made no mention of a maximum 

extraction efficiency but focussed on the nature of the extracted species.  The 

extracted species was reported in the pH range 0.85–1.20 as CrX3(H2O)2Y where 

Y is D2EHPA and X is the de-protonated form of D2EHPA.  The structure suggested 

by these authors was similar to the CrX3 reported by Islam and Biswas (1979b) 

for the pH range 2.5–5.5.  Islam and Biswas (1981b) further support this 

structure by means of phosphorous:chromium ratio analysis.  Molecular weight 

analysis of the complexes suggested to the authors that the structure consisted of 

trimerised CrX3 units at higher loadings although the structure could not be 

determined. 
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Several groups reported similar effects of anions on the chromium(III) 

distribution coefficient.  Increasing concentrations up to 1 mol L-1 of nitrate, 

perchlorate and acetate ion did not effect the distribution coefficient (Islam & 

Biswas 1979b; Rao & Hariharan 1992).  The presence of sulphate and chloride 

ions decreased the extraction efficiency (Islam & Biswas 1979b; Rao & Hariharan 

1992; Schügerl, Segelken & Gudorf 1996).  The work by Schügerl, Segelken and 

Gudorf (1996) suggested the depression of chromium(III) extraction by sulphate 

was due to complex formation but provided no supporting details or data. 

The work of Islam and Biswas (1979a; 1979b) also demonstrated the effect of 

anion type and concentration on the rate of extraction of chromium(III) with 

D2EHPA.  The rate of extraction was decreased by sulphate and nitrate while 

acetate ion did not affect the rate of extraction.  The presence of phosphate anion 

(Islam, Biswas & Biswas 1981) appeared to exert little influence on the 

chromium(III) extraction however it did prevent increased sulphate 

concentration depressing the extraction of chromium(III). 

Only one study attempted to determine the effect of temperature on the 

extraction of chromium with D2EHPA.  Islam and Biswas (1979a) observed an 

increase in the distribution coefficient with increasing temperature in the range 

30–60 °C but provided no explanation for this behaviour. 

The choice of organic diluent has been shown to have a significant effect on the 

behaviour of some solvent extraction systems.  The choice of diluent for the 

extraction of chromium(III) with D2EHPA has received some attention but the 

results are conflicting.  Islam and Biswas (1979b) concluded that aliphatic 

diluents produced higher extraction at a given pH than aromatic diluents 

whereas Rao and Hariharan (1992) concluded that the most efficient extraction 

occurred with benzene as diluent.  The extraction efficiency does not seem to 

follow any identifiable physical property of the diluent, e.g. dielectric constant 

or viscosity.  There were some differences in the experimental conditions 
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between these two studies such as the use of a chloride vs. sulphate/acetate 

matrix, different D2EHPA concentration and different pH of extraction (3.06 vs. 

3.40) but nothing that would account for the vastly differing results. 

The work of Preston (1983) examined the effect of the non-chelating 

2-ethylhexanal oxime (EHO) on the extraction of base metals including 

chromium.  The addition of EHO (0.5 mol L-1) to an organic phase containing 

D2EHPA (0.50 mol L-1) in xylene provided no synergistic advantage as measured 

by pH0.5 value (approximately 3) for the extraction of chromium(III).  A 

significant change in extraction behaviour with pH was noted for the unstable 

chromium(II).  This trend was consistent with the other metals studied, with the 

synergism observed for divalent but not trivalent metals.  This was attributed to 

the requirement for a formally neutral species to be extracted and the divalent 

metals requiring only two D2EHPA units for neutrality leaving coordination 

positions available for the EHO. 

The alternative approach of adding non-aqueous solvents such as N,N-dimethyl 

formamide (DMF) and dimethyl sulphoxide (DMSO) to the aqueous phase was 

studied by Kamitani et al. (1988).  The aqueous phase contained chromium(III) 

(2×10-2 mol L-1) and the organic phase contained D2EHPA (0.5 mol L-1) in hexane.  

The presence of DMF and DMSO resulted in a decrease in the extraction of 

chromium(III) with an increase in non-aqueous solvent concentration.  For 

instance, the extraction was reduced from 80% to less than 30% by the addition 

of 90 vol% DMF or DMSO to the aqueous phase.  The addition of 70 vol% 

acetonitrile (AN) to the aqueous phase also resulted in a decrease in the 

chromium(III) extraction but only marginally. 

The effect of competing cations was only evident in works that contain several 

cations in the aqueous solution.  Cations that extract at a lower pH than 

chromium(III) will extract preferentially and if this results in a significantly 

loaded organic phase then chromium(III) extraction will be depressed.  Iron(III) 
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and zinc(II) were common interfering cations in chromium(III) extraction by 

D2EHPA as evidenced by the work of Schügerl, Segelken and Gudorf (1996).  The 

presence of 1 mg L-1 of either iron(III) or zinc(II) decreased the chromium(III) 

extraction from 80% to 15 and 56% respectively as these cations were 

preferentially extracted. 

The work examining the behaviour of chromium(III) with D2EHPA as the organic 

extractant was more extensive than that for Cyanex® 272.  The metal is generally 

extracted in the pH range 3–5 and shows similar behaviour to commonly 

investigated transition metals such as nickel and cobalt.  The presence of 

sulphate and chloride anions appears to depress the extraction while acetate and 

nitrate have no effect.  Some significant differences exist between the various 

studies.  Many of these appear to be due to different experimental conditions but 

some seem too great to be accounted for in this way. 

Although part of the same family as Cyanex® 272, the direct transfer of D2EHPA 

results may not be possible due to the different pH ranges expected for 

extraction and the effect that this may have on the aqueous form of 

chromium(III).  However the similarity of the extractant and the relatively large 

amount of data probably provides the best indication of the expected behaviour 

of chromium(III) with Cyanex® 272. 

2.3.4 Extraction of Chromium(III) with Mono(2-Ethylhexyl) Phosphoric 
Acid 

The use of mono-(2-ethylhexyl)phosphoric acid (M2EHPA) as an extractant for 

various transition metals has been reported (Yadav, Singh & Tandon 1991; 

Schügerl, Segelken & Gudorf 1996; Rao & Hariharan 1997; Khwaja, Singh & 

Tandon 2000a).  The structure of the extractant, mono(2-ethylhexyl) phosphoric 

acid, is shown in Figure 2-5. 
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Figure 2-5.  The structure of mono-(2-ethylhexyl)phosphoric acid (M2EHPA). 

The aqueous phase acidity significantly affected the extraction efficiency, which 

decreased from near 90% at pH greater than 1 to less than 5% at pH 0.3.  Rao 

and Hariharan (1997) reported slightly different behaviour with maximum 

extraction not being reached until pH 3.4. 

The effect of diluent was discussed by Rao and Hariharan (1997) and Khwaja, 

Singh and Tandon (2000a).  From chloride solutions, toluene as diluent gave the 

least efficient extraction while benzene and nitrobenzene were the most efficient 

of those tested.  They concluded that commercial grade diluents could usually 

be substituted for reagent grade without detriment to the extraction behaviour.  

Extraction increased with increased extractant concentration, e.g. in the work of 

Schügerl, Segelken and Gudorf (1996) extraction increased from 70% at 5 vol% 

M2EHPA to 100% at 20 vol% M2EHPA. 

The extracted species was proposed to be Cr(HR)3 where H2R is M2EHPA (Rao & 

Hariharan 1997; Khwaja, Singh & Tandon 2000a).  This structure was based on 

slope analysis of the various parameters and was suggested to apply irrespective 

of the hydrolysis state of the extracted chromium(III). 

Khwaja, Singh and Tandon (2000a) observed no decrease in loading up to 

10-2 mol L-1 of chromium(III) whereas Schügerl, Segelken and Gudorf (1996) 

observed a 50% reduction in loading with an increase from 1.5 to 3.5 mg L-1 

(approximately 5×10-5 mol L-1) initial chromium(III) concentration in the aqueous 

phase. 
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The presence of perchlorate, nitrate and acetate anions up to 1 mol L-1 did not 

interfere in the extraction.  Increases in the concentration of sulphate or chloride 

anions up to 1 mol L-1 resulted in decreases in the extraction efficiency. 

The extraction behaviour of chromium(III) with M2EHPA appears quite similar to 

the behaviour with D2EHPA although the investigations have generally been 

focussed on different problems.  This has led to a divergence of investigated 

conditions. 

2.3.5 Use of Other Phosphoric Acid Extractants for Extraction of 
Chromium(III) 

The extraction of chromium(III) with di-o-tolyl phosphoric acid has been 

investigated by Islam, Begum and Mustafa (1985).  The contact time required to 

reach equilibrium was found to be about 20 minutes at pH 2.2.  This was similar 

to some of the equilibration times reported above for other extractants in this pH 

range.  The maximum extraction of 91% was observed at pH 2.55 from an 

aqueous solution containing chromium(III) (0.6 g L-1) by an organic phase 

containing 0.4 mol L-1 extractant in benzene with hexanol as modifier.  The 

extraction efficiency increased with increase in pH in the range 1.2–2.6 and with 

increase in extractant concentration in the range 0.06–0.4 mol L-1.  The extracted 

species was suggested to be a 1:1 metal:extractant complex at low loading in the 

pH range 1.55–2.55.  This was postulated to change to a 1:3 complex at high 

loading with each extractant molecule acting as a bi-dentate ligand.  The 

extraction increased with increases in temperature up to 50 °C but further 

increases in temperature resulted in decreases in extraction.  The overall 

behaviour of this extractant appeared quite similar to D2EHPA. 

Mellah and Bauer (1995) reported the extraction of chromium(III) from 

phosphoric acid solutions by p-(1,1,3,3-tetramethylbutyl) phenyl phosphoric 

acid in kerosene.  The distribution coefficient (D) for chromium peaks (9.0) at an 
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aqueous acid concentration of 5 mol L-1 H3PO4.  The extraction efficiency was 

dependent on the metal ion concentration and acid strength of the aqueous 

phase.  Maximum extraction of almost 90% occurred at 0.1 mol L-1 Cr(III) from 

7 mol L-1 H3PO4 with 0.2 mol L-1 extractant.  The effect of extractant 

concentration was insignificant in the range 0.2–0.4 mol L-1 (85 cf. 80% extraction 

respectively) although only 65% extraction occurred at 0.1 mol L-1 extractant.  

The level of extraction does not appear to be reproducible (cf. extraction for 

H3PO4 5 mol L-1, chromium(III) 0.01 mol L-1 and extractant 0.2 mol L-1 in Figures 1 

and 3 of the reported work). 

2.4 Extraction of Chromium(III) with Other Extractants 

2.4.1 Extraction of Chromium(III) with Tributyl Phosphate 

The extraction of chromium(III) with tributyl phosphate from perchloric acid 

solutions was investigated by Aggett and Udy (1970).  The aqueous phase 

usually contained chromium(III) (1×10-4 mol L-1) in perchloric acid.  The 

extraction increased with decreases in acidity in the pH range from -1 to 3 and 

was not dependent on the chromium(III) concentration up to 10-2 mol L-1. 

Attempts to determine the nature of the extracted species by examining the 

visible absorption spectra failed to reveal anything other than the absence of 

hydrolysed species as predicted by the chemistry of the system.  The reported 

spectra for +3]62O)[Cr(H  and +2]524 O))(H[Cr(ClO  were very similar to each 

other and the spectrum for the extracted species did not, according to the 

authors, correspond precisely with either.  The visible spectrum of the loaded 

organic phase showed a marked change on heating which the authors suggested 

may be due to the formation of polymers in the organic phase. 

The extraction of chromium(III) appeared anomalous for trivalent cations based 

on the expected behaviour of similar ions found in the literature, however the 
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behaviour resembled that of divalent cations in moderately concentrated 

perchloric acid solutions.  The authors suggested that +2
524 ]O))(H[Cr(ClO  was 

the predominant species extracted under these conditions. 

2.4.2 Extraction of Chromium(III) with Carboxylic Acids 

The extraction behaviour of a range of metals, including chromium(II) and (III), 

with a number of carboxylic acids was reported by Preston (1985).  The aqueous 

phase consisted of 0.05 mol L-1 33 )Cr(NO  in 1.0 mol L-1 3H)NO(Na, .  An aqueous 

phase containing chromium(II) was prepared by reacting chromium metal with 

sulphuric acid and used under a nitrogen atmosphere.  The organic phase 

contained carboxylic acid (0.50 mol L-1) in xylene.  The carboxylic acid 

extractants are shown in Figure 2-6. 

Figure 2-6.  Carboxylic acid extractants as used by Preston (1985). 

Chromium(II) was only extracted by 3,5-diisopopylsalycylic acid (DIPSA) with a 

pH0.5 of 3.2.  Chromium(III) was extracted by 2-bromodecanoic acid (BDA) and 

DIPSA with pH0.5 values of 2.56 and 2.50 respectively but required up to 

150 hours to reach equilibrium in the these systems.  Chromium(III) was not 

extracted by either Versatic® 10 or naphthenic acid.  This was attributed by the 

Naphthenic Acid

2-Bromodecanoic Acid
(BDA)

Versatic 10 Acid

3,5 - Diisopropylsalicylic
Acid (DIPSA)

COOH

(CH3)2CH

HO

CH(CH3)2

(CH2)nCOOH

R R

R

R

C2H5

C

CH3

C5H11 COOH

Br

C

H

COOHCH3(CH2)7



2.4  Extraction of Chromium(III) with Other Extractants 

 48

author to hydrolysis of the metal in the aqueous phase at pH values below those 

required for extraction and is in contrast to the work of Doyle-Garner and 

Monhemius (1985). 

An investigation into hydrolytic stripping of the extractant Versatic® 10 was 

reported by Doyle-Garner and Monhemius (1985).  An obvious requirement of 

stripping metal from Versatic® 10 is that the metal could be loaded onto the 

organic extractant.  The report indicated that 15.6 g L-1 Cr(III) was loaded onto 

Versatic® 10 (33 vol%) in Escaid® 110 diluent from either a sulphate or chloride 

solution. 

The use of hexanoic acid has been reported for the extraction of chromium(III) 

from chloride-containing solutions (Apostoluk & Bartecki 1985).  These workers 

found that a contact time of 48 hours was required to reach equilibrium in a 

system containing chromium chloride (1.09×10-3 mol L-1) and sodium chloride 

(0.10 mol L-1) in the aqueous phase with hexanoic acid (0.104 mol L-1) in carbon 

tetrachloride as the organic phase. 

These authors observed that increases in chloride ion concentration from 0.10 to 

3.00 mol L-1 increased the chromium(III) extraction.  An increase in the initial 

chromium(III) concentration from 2×10-4 to 1×10-2 mol L-1 resulted in increased 

chromium extraction.  They argued that this dependence on initial chromium(III) 

concentration indicated the formation of polynuclear chromium(III) complexes 

in the organic phase.  An increase in the extractant concentration in the range 

0.1–1.0 mol L-1 shifted the extraction curve to lower pH values.  Based on these 

data they concluded that 32·HR][Cr(OH)R  was the extracted species where HR is 

hexanoic acid. 

The same authors also compared a range of straight and branched carboxylic 

acids as extractants.  They concluded that for straight chain carboxylic acids, 

molecules with a longer chain length were better extractants due to changes in 

the solubility of the acid in the aqueous phase.  Branched chain carboxylic acids 
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were more effective than the corresponding straight chain extractant although 

no explanation was offered for this observation. 

The use of a natural rosin, being primarily carboxylic acids, has been reported 

for the extraction of chromium(III) from aqueous solutions (Jimenez Gomez et al. 

1990).  The aqueous phase contained chromium(III) (1 g L-1) as its nitrate salt.  

The extractant consisted of natural clear rosin (being the non-volatile fraction of 

pine resin) dissolved in toluene.  The rosin contained over 90% acid matter, 

primarily abietic acid (C20H30O2), and was tested in the concentration range 0.1–

0.5 mol L-1.  The extraction curve moved to lower pH with increasing extractant 

concentration as expected for an ideal solvent extraction system.  Complete 

extraction was achieved at a pH of approximately 2.5.  A scheme for separating 

iron(III), chromium(III), manganese(II), cobalt(II) and nickel(II) was demonstrated.  

Although extraction using this reagent appeared generally efficient several of 

the details presented in this literature were conflicting. 

The use of carboxylic acids appears to require long contact times for apparent 

equilibrium to be established possibly due to the lower pH values reported for 

extraction.  This is in contrast to the reported times and extraction pH with 

Cyanex® 272 or D2EHPA. 

2.4.3 Extraction of Chromium(III) with Long Chain Amines 

The report of Coleman et al. (1958) represented several year’s work of the Oak 

Ridge National Laboratory on the extraction properties of organic solutions of 

amines.  A wide variety of primary, secondary and tertiary amines were studied 

at a concentration of 0.1 mol L-1 in an aromatic hydrocarbon diluent.  Uranium 

extraction was the main focus of the study, however 22 other metal species were 

included at various stages.  From an aqueous phase at pH 1 containing 1 mol L-1 

sulphate anion there was less than 10% extraction of chromium(III) regardless of 

the extractant.  This placed chromium(III) in the same group of behaviour as 
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aluminium(III), vanadium(IV) and divalent metals such as cobalt, nickel, copper 

and zinc on the basis of extraction efficiency. 

2.4.4 Extraction of Chromium(III) with Primene JMT™ 

The solvent extraction of chromium(III) from sulphate systems with Primene 

JMT™, a primary amine, was reported by Flett and West (1970).  The aqueous 

phase contained chromium(III) (1×10-2 mol L-1) in sulphate (1.5 mol L-1) from 

sulphuric acid and sodium sulphate.  The organic phase contained Primene 

JMT™ (5-20 vol%) in xylene. 

Results were found to be dependent on the solution history and age.  A stock 

solution was allowed to age at room temperature until there was no change in 

the extent of extraction.  This was a solution age of approximately 500 hours at 

which time approximately 47% extraction occurred.  An increase in the 

extraction temperature from 60 to 80 °C resulted in increases to the rate and 

extent of extraction over the first 300 minutes after which the results were the 

same. 

The extent of extraction increased with decreasing acidity of the aqueous phase.  

The UV-visible spectra of the aqueous and loaded organic phases were not 

similar however no suggestion was made to explain this observation.  It was 

found that chromium(III) and iron(III) could be separated as extraction of iron(III) 

depressed the extraction of chromium(III).  Chromium(III) could also be 

separated from copper(II) as the divalent metal was not extracted. 

Seeley et al. (1981), as part of a purification process for the recovery of 

aluminium, also investigated the extraction of various trace metal impurities.  

The aqueous phase contained chromium(III) in the range 10-4–1 mol L-1 and 

ammonium sulphate (2 mol L-1) at a pH of 1.5.  The organic phase contained 

Primene JMT™ sulphate (0.435 mol L-1) in toluene.  Kinetics of extraction were 
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poor with significant differences in extraction being noted between equilibration 

times of 15 minutes, 1 hour and 20 hours.  The distribution coefficient was less 

than 0.1 indicating both poor extraction as well as poor kinetics. 

2.4.5 Extraction of Chromium(III) with Trioctylamine 

The extractants trioctylamine (TOA) and the commercial product Alamine® 336 

are chemically similar.  Trioctylamine contains only C8 chains whereas the 

commercial extractant Alamine® 336 contains a mixture of C8–C10 chains 

(Alamine® 336 2000).  The choice of extractant by resective authors were retained 

in this review with the understanding that the results are normally comparable. 

Florence and Farrar (1969) investigated the changes in extraction behaviour of 

chromium(III) with the straight chain tertiary amine, Alamine® 336 from 

concentrated halide media.  The organic phase contained Alamine® 336 

(0.3 mol L-1) in cyclohexane.  This diluent gave the best results of the seven 

diluents tested.  Extraction from an aqueous phase containing chromium(III) 

(5×10-3 mol L-1), zero free acid and various concentrations of lithium chloride 

reached a maximum of approximately 90% at 13 mol L-1 LiCl.  The extraction 

decreased rapidly if acid was present in the system.  Extraction was reported to 

increase in the order Cl- < Br- < I- with respect to the halide ion type, although the 

extent of extraction was not given.  When extraction of chromium(III) was 

undertaken from methanolic solutions, equivalent extraction efficiency occurred 

at lower lithium chloride concentrations than from aqueous solutions. 

The work of McDonald and Bajwa (1977) examined the extraction of 

chromium(VI) with Alamine® 336 and this is discussed in Section 2.6.1.  In the 

course of their experiments low total chromium extraction results were found to 

occur due to the presence of chromium(III), which was not extracted under the 

experimental conditions used.  Oxidation of the solutions prior to extraction in 

order to convert chromium(III) to chromium(VI) restored the extraction efficiency 
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clearly indicating that long-chain tertiary amine reagents are poor extractants of 

chromium(III). 

2.4.6 Extraction of Chromium(III) with Triisooctylamine 

Selmer-Olsen (1966) examined the extraction of various metal ions, including 

chromium(III), from hydrochloric acid solutions.  The organic phase contained 

triisooctylamine (TIOA) (20 vol%) in carbon tetrachloride. The aqueous phase 

contained chromium(III) (0.1 mol L-1) and various concentrations of hydrochloric 

acid (1, 2 or 6 mol L-1).  The two phases were mixed for 2 minutes at an A:O ratio 

of 5:1.  Chromium(III) was not extracted from these solutions. 

Consistently, Brooks, Potter and Martin (1970), working to recover metal values 

from superalloy scrap, found that chromium4 was not extracted by TIOA.  The 

aqueous phase contained 35 g L-1 Cr, 19 g L-1 Co and 76 g L-1 Ni at pH 0.  The 

organic phase contained TIOA (0.5 mol L-1) in aromatic naphtha. 

2.4.7 Extraction of Chromium(III) with Trioctyl Methylammonium 
Chloride 

Irving and Al-Jarrah (1975) reported the use of trioctyl methylammonium 

chloride (Aliquat® 336) to extract the anionic ethylene diamine tetraacetic acid 

(EDTA) complex of various metals including chromium(III).  A solution of 

Aliquat® 336 (0.2 mol L-1) in 1,2-dichloroethane extracted up to 67% of the 

chromium(III) at pH 4.86 from an aqueous phase containing chromium(III) 

(4×10-3 mol L-1) and EDTA (4.4×10-3 mol L-1).  The phase ratio was set to unity.  The 

extracted species at pH 8 was found to be −2CrY(OH)  where Y is the 

deprotonated EDTA species. 

                                                 
4  The oxidation state of the chromium was not specified, but on the basis of it being 
recovered by precipitation as the sulphate salt, it was probably present in the (III) state. 
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In their work on the purification of plating solutions, Carstens et al. (1981) 

investigated the behaviour of chromium(III) when removing iron(II) and (III) as a 

thiocyanato complex with Aliquat® 336.  Chromium(III) extraction did not occur 

under any of the investigated conditions.  This was attributed to the slow rate of 

ligand exchange for chromium(III) and an extraction process that lasted only 

15 minutes.  No work with a longer contact time was reported. 

2.4.8 Extraction of Chromium(III) with Other Amine Extractants 

Irving and Al-Jarrah (1971) reported the use of quaternary n-hexylammonium 

chloride in 1,2-dichloroethane to extract chromium(III) from solutions containing 

an excess of EDTA.  The extracted species was the −+ O)CrY(HNR 24  ion pair (R = n-

hexyl; Y is the deprotonated EDTA species) between pH 3.6 and 6.0 (maximum 

extraction at pH 4.7).  The extraction constant, K, was determined as 0.062. 

2.4.9 Extraction of Chromium(III) with Oxime Extractants 

Brooks (1987) reported the use of single stage extractions for the recovery of 

metals from finishing wastes.  From a synthetic solution containing 1 g L-1 each 

of Cr(III), Fe(III), Co(II), Cu, Ni, and Zn, less than 20% of the chromium was 

extracted at pH 1.75.  The organic phase contained LIX® 622 (10 vol%) in naphtha. 

A sequential solvent extraction scheme was investigated with an aqueous 

solution as above with metal concentrations of 0.2 g L-1.  A mixture of LIX® 63 and 

dinonyl naphthalene sulphonic acid (SYNEX DNO-52) extracted 99.8% of the 

chromium at pH 7. 
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Brooks (1993) also examined a binary mixture of LIX® 63 and D2EHPA.  This 

organic combination extracted 76% of the chromium(III) from a solution 

containing 1.3 ppm5 Cr (2864 ppm total metals) in a single contact at pH 5. 

Mahmoud and Barakat (2001) reported the use of the extractant Acorga® M5640, 

which contains an aromatic oxime.  The aqueous phase contained chromium(III) 

(6×10-3 mol L-1).  The organic phase contained Acorga® M5640 (10 vol%) in 

kerosene.  Contact was at 30 °C for 10 minutes using a horizontal shaker.  

Chromium(III) was not extracted in the pH range 0.5–10. 

The use of oxime extractants does not seem to provide efficient extraction of 

chromium(III).  The extraction reported using mixed extractants is probably 

attributable to the non-oxime extractant. 

2.4.10 Extraction of Chromium(III) with Acetylacetone 

Extraction of chromium(III) was achieved at room temperature with 

acetylacetone (AA) by changing the nature of the aqueous phase (Kiba, Imura & 

Honjo 1977).  In an attempt to modify the pH of a solution buffered with acetic 

acid-sodium acetate, the use of chlorinated acetic acid was investigated.  The 

addition of these materials enhanced the extraction of chromium(III) in the order 

mono- < di- < tri-chloro acetic acid.  Compared to extraction from solutions 

containing the acetate ion, extraction from solutions containing tri- and 

mono-chloroacetates and perchlorate all indicated a decrease in pH0.5 (up to 5 

pH units in the case of trichloroacetate).  The extracted species was defined as 

Cr(AA)3.  In the absence of AA, chromium(III) was extracted into organic solvent 

provided chloroacetic acid, especially tri-chloro, was present in the aqueous 

phase.  During this process the authors believe that the inner solvation sphere of 

the metal cation did not appear to be altered.  The organic solvent must have a 

donor oxygen atom. 

                                                 
5  Insufficient data provided to convert to SI units. 
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2.5 Extraction of Chromium(VI) 

Chromium(VI), the other common oxidation state of chromium, is also known to 

exist in PAL generated industrial liquors.  It has significantly different behaviour 

to chromium(III) due to its preference for forming neutral and anionic species in 

aqueous solutions (Cotton & Wilkinson 1988). 

The speciation of chromium(VI) is dependent on the acidity and chromium(VI) 

concentration of the aqueous solution (Deltombe, de Zoubov & Pourbaix 1966).  

At pH less than about 1, chromic acid ( 42CrOH ) is the predominant form.  

Within the pH range 1–7 the predominant form is determined by total 

chromium(VI) concentration.  If the chromium concentration is greater than 

0.02 mol L-1 (≈1 g L-1) then the dichromate ion ( −2
72OCr ) is predominant.  At 

lower chromium(VI) concentrations, i.e. less than 0.02 mol L-1 the bichromate ion 

( −
4HCrO ) is predominant.  At pH greater than about 7, the chromate ion ( −

4CrO ) 

is predominant. 

2.5.1 Extraction of Chromium(VI) with Acidic Organophosphorus 
Extractants 

2.5.2 Extraction of Chromium(VI) with Cyanex® 272 

The work of Ohki et al. (1986) examined chromium(VI) extraction with the use of 

a mercury lamp ultra-violet (UV) radiation source to assist solvent extraction.  

The aqueous phase contained sodium dichromate (2×10-4 mol L-1) and 

hydrochloric acid (1×10-2 mol L-1), pH 2.  The organic phase contained bis(2,4,4-

trimethylpentyl) phosphinic acid (5×10-2 mol L-1) in toluene.  An equal volume of 

each phase was mixed for 30 minutes in both dark and UV irradiated conditions. 

Chromium(VI) showed 6% extraction in the dark and 56% extraction following 

phase contact under UV lamp irradiation.  The author’s interpretation was the 
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photo-reduction of chromium(VI) to an activated state that reacts with the 

extractant prior to formation of an inert hexaaqua chromium(III) species.  The 

extraction in the dark was attributed to reducing impurities in the organic phase 

that have the same effect as the UV irradiation. 

The work of Ohki et al. (1986) is unique in its use of UV irradiation to assist 

solvent extraction and this makes it difficult to compare to other studies.  A 

comparison by the authors of the extraction of chromium(VI) with Cyanex® 272 

and a variety of other extractants is shown in Table 2-1.  As this was a screening 

study no other details were provided. 

Table 2-1.  The extraction of chromium(VI) from an aqueous phase containing 

chromium(VI) (2×10-4mol L-1) in hydrochloric acid at pH 2 in dark and UV 

irradiated conditions.  The organic phase contained the indicated extractant 

in toluene.  The phase ratio was one and the contact time was 30 minutes. 

Extractant ( mol L-1) UV Extraction (%) Dark Extraction (%) 

Bis(2,4,4-trimethylpentyl) 
phosphinic acid (5×10-2) 

56 6 

PC-88A® (5×10-2) 37 0 

D2EHPA (5×10-1) 31 12 

TOPO (2×10-2) 91 26 

TBP (5×10-2) 56 0 

 

Effective extraction of chromium(VI) was reported by Rao and Prasad (1988) and 

Nahar et al. (1995) with Cyanex® 272 in approximately 30 minutes.  The acidity of 

the aqueous phase was more important than the acid type with similar results 

observed with hydrochloric, hydrobromic, sulphuric, perchloric and nitric acids 

(Rao & Prasad 1988).  This is consistent with the suggestion of Nahar et al. (1995) 

that the extracted chromium(VI) species is chromic acid, H2CrO4.  Efficient 

extraction therefore requires pH less than two and preferably the aqueous phase 

contained 1.5–3 mol L-1 acid.  The extracted species was suggested to be a 1:1 

metal:extractant complex by both groups of authors.  Nahar et al. (1995) found 

this to be supported by shifts for the P=O vibration of the IR spectrum.  The 
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addition of the corresponding sodium salt to the aqueous phase was observed to 

decrease the chromium(VI) extraction by Rao and Prasad (1988) although no 

details or data were provided. 

The extraction coefficient increased with increasing temperature between 21 and 

50 °C indicating to the authors an endothermic extraction reaction (Nahar et al. 

1995). 

The extraction of chromium(VI) with Cyanex® 272 occurs at low pH irrespective 

of the components of the aqueous phase.  The extraction mechanism appears to 

be the formation of a 1:1 extractant:chromic acid species. 

2.5.3 Extraction of Chromium(VI) with 2-Ethylhexyl Phosphonic Acid 
Mono-2-ethylhexyl Ester 

John et al. (1999) investigated the extraction of iron(III) and titanium(IV) from 

acidic chloride solutions with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl 

ester (PC-88A®, EHEHPA).  Chromium(VI) was included as a metal found in waste 

chloride liquors of the titanium minerals industry.  The extraction of 

chromium(VI) was found to be moderate, 8–20%, with hydrochloric acid 

concentrations between 0.03 and 1 mol L-1.  Other conditions were chromium(VI) 

(1×10-4 mol L-1), EHEHPA (5×10-2 mol L-1) in xylene, A:O 1, temperature 303±1 K 

and a contact time of 15 minutes. 

2.6 Extraction of Chromium(VI) with Other Extractants 

2.6.1 Extraction of Chromium(VI) with Tributyl Phosphate 

The extraction and recovery of chromium(VI) from industrial effluents has been 

reported by Cuer, Stuckens and Texier (1974).  Tributyl phosphate (TBP) was 

used undiluted to extract chromium(VI) from a solution containing 

chromium(VI) (7.7 g L-1) and sulphuric acid (2 mol L-1).  An organic phase 
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containing 23.6 g L-1 Cr(VI) was produced and after 24 hours only 0.3% of the 

metal had been reduced to chromium(III).  On this basis TBP appeared more 

stable to acidic, oxidising conditions than trioctyl amine (TOA) and di-lauryl 

amine (LA 2).  This difference was probably due to the higher purity of TBP and 

the absence of diluent when this extractant was used.  The other amine 

extractants, TOA and LA 2, showed no loss of amine function indicating that the 

chromium(VI) reduction was due to the presence of the diluent when these 

extractants were used.  At 1 mol L-1 acid concentration and an aqueous 

chromium(VI) concentration of 0.2 g L-1 the distribution coefficient was 6.0 and 

the maximum loading was 30.0 g L-1 Cr(VI).  These values could be increased to 

12.5 and 55.0 respectively by doubling the acidity of the aqueous phase, a useful 

property of TBP as an extractant for chromium as many of the effluents were of 

an acidic nature.  Increasing the initial concentration of chromium depressed the 

concurrent loading of the sulphate ion. 

A process for the recovery of pure metal salts from waste hydroxide sludges has 

been patented (Bolt, Tels & Van Gemert 1984).  Following dissolution of the 

mixed hydroxide sludge and removal of iron, the solution was oxidised at pH 3 

with liquid bleach to convert all chromium to chromium(VI).  The chromate 

anion was then extracted (99.9%) with a mixture of TBP and TOA in 2 stages at pH 

3.5 and A:O of 2.  The loaded organic was stripped with caustic at pH 8, and the 

chromium precipitated as sodium chromate, 42CrONa . 

2.6.2 Extraction of Chromium(VI) with Trioctyl Phosphine Oxide 

Huang, Huang and Chen (1997) studied the extraction of chromium(VI) with 

trioctyl phosphine oxide (TOPO) after calculating the chromium equilibria in 

aqueous solution.  The aqueous phase containing chromium(VI) (3.9×10-3 mol L-1) 

was contacted with a solution of TOPO (0.1 mol L-1) in kerosene.  In the pH range 

2.2–4 both bichromate, −
4HCrO , and dichromate, −2

72OCr , (the predominant 
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species in this pH range) transferred to the organic phase.  The predominant 

species in both the aqueous and organic phase were chromium concentration 

dependent as would be expected from earlier work on aqueous equilibria 

(Deltombe, de Zoubov & Pourbaix 1966).  The extracted species were given as 

·(TOPO)CrOH 42  and 3722 ·(TOPO)OCrH .  The first structure is similar to the 1:1 

metal:extractant ratio proposed by Murty, Rao and Sastri (1981) for the 

extraction of chromium(VI) from solutions of orthophosphoric acid. 

2.6.3 Extraction of Chromium(VI) with Trioctylamine 

The extraction of chromium(VI) with trioctylamine (TOA), or Alamine® 336, has 

been studied by several groups of workers. 

The extraction of chromium(VI) with TOA is relatively well studied particularly 

in relation to its application in waste-water treatment.  Davis et al. (1988) used 

the existing body of work in a comparison of methods for removing chromium 

from wastewater concluding that liquid ion exchange (solvent extraction) had a 

role to play. 

The transfer of chromium(VI) to an organic phase that contained Alamine® 336 

appears to be quite fast with reported extraction times in the range 1–3 minutes 

(Deptula 1968; McDonald & Bajwa 1977; Horn et al. 1994; Duan, Li & Zhuang 

1998). 

Chromium(VI) is extracted by TOA over a range of pH values with maximum 

extraction occurring in the range 0–2 and extraction decreasing as the pH 

exceeds this range (Deptula 1968; Zumer, Modic & Zupan 1974; Horn et al. 1994; 

Duan, Li & Zhuang 1998).  Deptula (1968) found that extraction also decreased 

at higher acid concentration due to competitive extraction of sulphate and 

bisulphate.  The work of Horn et al. (1994) found no evidence for competition by 
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sulphate ion for extraction sites in the organic phase as was earlier reported by 

Cuer, Stuckens and Texier (1974). 

The control of pH is important in controlling the metals extracted by a reagent.  

The combination of proton producing and consuming reactions has been 

proposed by Chilukuri, Yang and Sirkar (1998) to control the pH of the aqueous 

phase.  The aqueous phase contained copper, chromium(VI) and sometimes zinc.  

The organic phase contained TOA and LIX 84 in kerosene.  Simultaneous 

extraction of cationic species (Cu2+, Zn2+) by LIX 84 and anionic species ( −
4HCrO ) 

by TOA resulted in improved pH control and hence extraction efficiency.  The 

system was very sensitive to the metal concentration in the feed solution and the 

ratio of extractants in the organic phase. 

The extraction efficiency of chromium(VI) did not appear to be affected by the 

initial chromium concentration (and hence initial chromium(VI) speciation) 

provided the correct pH was maintained and sufficient extractant was available.  

Compare for example the work of Cuer, Stuckens and Texier (1974) and 

McDonald and Bajwa (1977).  Both these research groups reported near 

complete extraction of chromium(VI), one with 7.6 g L-1 Cr(VI) and the other 

1.2×10-3 g L-1.  The extracted species may change as discussed by Duan, Li and 

Zhuang (1998) who proposed a 1:1 trioctyl amine (TOA):Cr complex for singly 

charged chromium(VI) species and a 2:1 complex for doubly charged 

chromium(VI) species. 

There were several reports of chromium(VI) being reduced to chromium(III).  

Deptula (1968) reported that the loaded organic solutions changed from orange 

to green on exposure to sunlight for several days or UV light for one hour.  No 

change took place when solutions were stored in the dark.  Despite storing 

solutions in the dark, Cuer, Stuckens and Texier (1974) found 12% of the 

chromium(VI) to be reduced to chromium(III) in 144 hours.  This was attributed 

to reaction with impurities in the solvent as no loss of amine functionality was 
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reported.  Reduction of chromium(VI) to chromium(III) can cause problems due 

to the inability of TOA to extract chromium(III) (McDonald & Bajwa 1977) and the 

possible stabilisation of emulsions by organic degradation products (Cuer, 

Stuckens & Texier 1974). 

The extraction efficiency of chromium(VI) was observed to increase with 

increasing trioctylamine (TOA) concentration in the range 0.01–0.1 mol L-1 

(Deptula 1968).  The effect of extractant concentration was not reported by other 

authors. 

A number of organic diluents have been used in the organic phase during 

chromium(VI) extraction.  Deptula (1968) compared the extraction behaviour of 

chromium(VI) when hexane, cyclohexane, nitrobenzene, chloroform, carbon 

tetrachloride, benzene, toluene and xylene were used as diluent.  Hexane and 

cyclohexane were found to be unsuitable due to the formation of a third phase.  

The extraction coefficient of the other diluents was found to lie between that of 

nitrobenzene (highest) and carbon tetrachloride (lowest).  Kerosene (Zumer, 

Modic & Zupan 1974), Exxsol® D-60 (Horn et al. 1994) and octane (Duan, Li & 

Zhuang 1998) have also been successfully used as a diluents. 

The synergistic and antagonistic effects of alkylphosphoric acids (HX) on 

extraction of chromium(VI) with trioctylamine (TOA) have been examined 

(Deptula 1971).  The alkylphosphoric acids interact only with complexes as 

described above to form complexes of the type n7223 (HX)OCrNH)(R  or 

n7223 (HX)OCrNHR  where R3N is TOA and the alkylphosphoric acids were 

hydrogen bonded to the dichromate anion.  The synergistic effect observed with 

alkylphosphoric acids compared to extraction by TOA alone was attributed to the 

formation of these strongly organophilic ion pairs.  The extraction mechanism 

was independent of the mineral acid concentration and the appearance of 

synergistic or antagonistic effects. 
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The extraction of chromium(VI) with TOA is fast and occurs from aqueous 

solutions at pH less than 4, preferably less than 2.  The composition of the 

organic phase with respect to the extractant concentration and diluent appears 

to have little effect on the efficiency of extraction provided sufficient extractant 

is available and phase separation occurs. 

2.6.4 Extraction of Chromium(VI) with Triisooctylamine 

The extraction of various metal ions, including chromium, from hydrochloric 

acid solutions has been studied with triisooctylamine (TIOA) as the extractant 

(Selmer-Olsen 1966).  An organic phase containing TIOA (0.57 mol L-1) in carbon 

tetrachloride was used at an A:O ratio of 5:1 to extract metals from an aqueous 

solution containing chromium(VI) (0.1 mol L-1) and hydrochloric acid.  Complete 

extraction of chromium(VI) from 1 or 2 mol L-1 HCl was observed in 2 minutes. 

Attempting to clarify the mechanism for extraction, Huang, Chen and Kuo 

(1992) examined the species extracted from a solution containing chromium(VI) 

(1.92×10-2 mol L-1) with TIOA (0.025 mol L-1) in o-xylene at various hydrogen and 

chloride ion concentrations.  They concluded that the extracted species were 

4O(TIOAH)HCr  or ·HClO(TIOAH)HCr 4  dependent on the product of the 

hydrogen and chloride ion activities.  It was stated that within the confines of 

this system, dichromate species were not transferred into the organic phase even 

though the dominant chromium species in aqueous solution were the −2
72 OCr  

and −
4HCrO  anions (pH 1 to 5). 

2.6.5 Extraction of Chromium(VI) with Other Amine Extractants 

The extraction of chromium(VI) with di-lauryl amine (LA 2) has been studied 

(Cuer, Stuckens & Texier 1974).  The aqueous phase contained chromium(VI) 

(3.8 g L-1) and sulphuric acid (1 mol L-1).  The organic phase contained LA 2 
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(0.1 mol L-1) in xylene.  A loaded organic phase containing 5.43 g L-1 Cr(VI) was 

produced.  In 170 hours 6% of the extracted chromium(VI) had been reduced to 

chromium(III), which was attributed to oxidation of the diluent as the amine 

functionality was unchanged.  The distribution coefficient was increased by 

decreasing the acidity in the aqueous phase from 1 to 0.01 mol L-1.  The sulphate 

ion was interpreted to be extracted together with the dichromate ion. 

A metal recovery process from plating rinse water has been developed that 

includes chromium recovery (Magdics & Stain 1989).  An aqueous phase 

containing traces of chromic and sulphuric acids (pH 6 to 8) was contacted with 

an organic phase containing trioctyl methyl ammonium hydroxide in kerosene.  

Chromium(VI) was extracted selectively over nickel and cobalt. 

2.6.6 Extraction of Chromium(VI) with Other Extractants 

The use of 2-hexylpyridine (HPy) to selectively extract chromium(VI) has been 

reported (Iqbal & Ejaz 1978).  The extraction of trace (<10-5 mol L-1) and macro 

(0.05 mol L-1) amounts of chromium was examined.  The organic phase 

contained HPy (0.1 mol L-1) in chloroform.  Aromatic hydrocarbons were found 

to depress chromium(VI) extraction and a precipitate formed at the aqueous/ 

organic interface.  Alcohol based organic phases underwent an increase in 

turbidity and volume during extraction experiments. 

Maximum extraction of chromium(VI) occurred in the pH range 0–1 irrespective 

of the acid used.  The extracted species contained a 1:1 metal:extractant ratio as 

found for other amine extractants in this pH range.  The addition of neutral 

chloride and sulphate anions did not affect the extraction.  The presence of 

nitrate, ascorbate, acetate, citrate, oxalate, thiosulphate and thiocyanate ions 

decreased the extraction of chromium(VI). 
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The use of 5-(4-pyridyl)nonane N-oxide (PyNOx) for the extraction of 

chromium(VI) was reported (Gashgari, Al-Yobi & Ejaz 1990).  The extractant was 

dissolved in benzene to give a concentration of 0.1 mol L-1.  The chromium(VI) 

concentration was varied from trace (<10-6 mol L-1) to 1 g L-1.  The predominant 

mode of extraction was through ionic association i.e. complexes of the form 
−+ ⋅ 72xy OHCrHNOP .  Extraction of chromium(VI) was studied from sulphuric, 

hydrochloric and nitric acids.  The use of hydrochloric acid gave lower 

distribution coefficients than sulphuric acid.  The use of nitric acid inhibited the 

reduction of chromium(VI) to chromium(III) as reported with the other mineral 

acids.  Similar effects of masking anions and metal comparisons were made as 

for extraction by HPy. 

The relatively specific extraction of chromium(VI) by a crown ether has been 

reported in the development of an analytical method (Yakshin, Vilkova & 

Makarova 1998).  Extraction efficiency was dependant on the type of acid used 

in the aqueous phase.  The sequence was represented by: 

H3PO4 < H2SO4 < HNO3 < HCl 

In the case of orthophosphoric and nitric acids the addition of the corresponding 

salts decreased the extraction.  The addition of sulphate or chloride salts to 

sulphuric and hydrochloric acid solutions respectively increased the extraction 

efficiency.  The use of chloroform or dichloroethane as organic solvent was 

suggested.  The ability to extract chromium(VI) from sulphate solutions with a 

crown ether was reported as novel. 

It was recommended that the concentration of sulphuric acid not be allowed to 

exceed 3 mol L-1 in order to prevent reduction of chromium(VI) to chromium(III), 

which did not extract.  The extracted complex exhibits a 1:1 ratio of metal:crown 

ether and the analytical method could be used for analysis of material 

containing up to 2.5 g L-1 chromium(VI). 
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2.7 Stripping of Chromium 

When solvent extraction is used in hydrometallurgical processing, where 

purification and/or concentration of specific components is the aim, it is essential 

that the extractant can be easily stripped to allow recycling of the organic phase 

without loss of efficiency. 

Unlike most first-row transition metals such as copper, nickel and cobalt(II), 

stripping of chromium from a loaded organic phase appears to be highly 

dependent not only on the stripping conditions but also on the conditions in 

which the organic phase was loaded.  Factors such as stripping agent, amount of 

chromium loaded on to the organic phase and the organic phase components all 

affect stripping performance whereas for many metals stripping is governed 

only by the concentration of the strip solution (Ritcey & Ashbrook 1984). 

2.8 Stripping of Chromium(III) from Acidic Organophosphorus 
Extractants 

2.8.1 Stripping of Chromium(III) from Cyanex® 272 

Pandey, Cote & Bauer (1996) examined the stripping of chromium(III) from 

Cyanex® 272 following extraction from a synthetic leather tannery effluent.  The 

loaded organic phase contained chromium(III) (7×10-2 mol L-1), Cyanex® 272 

(0.48 mol L-1, 15 vol%) and p-nonylphenol (0.43 mol L-1, 10 vol%) in kerosene.  

Experiments were performed at 22 °C and a phase ratio of 1. 

The stripping of chromium(III) from Cyanex® 272 was incomplete.  In 20 minutes, 

hydrochloric acid (8 mol L-1) stripped 80% of the loaded chromium.  Kinetic 

studies indicated that 77% of loaded chromium(III) was stripped within 2 

minutes with increased contact time having little effect.  With four individual 

five minute contacts, stripping reached 84%.  Hydrochloric acid concentrations 
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of less than 6 mol L-1 did not achieve more than 70% stripping even with 

multiple contacts.  This incomplete stripping was attributed by the authors to 

the extraction of some hydrolysed or polymeric species although further work 

was suggested as no evidence was provided. 

The same study showed that the removal of low levels of chromium(III) from the 

organic phase appears to go to completion under relatively mild conditions.  A 

loaded organic phase containing chromium(III) (8×10-4 mol L-1) was completely 

stripped with hydrochloric acid (3 mol L-1) with a contact time of 5 minutes. 

The stripping of low concentrations of chromium(III) from Cyanex® 272 

impregnated resin has been reported by Navarro Mendoza et al. (2000).  The 

chromium(III) concentration was 2×10-4 mol L-1 and the stripping of 

chromium(III) was dependent on the strength of hydrochloric acid used.  The 

highest acid concentration tested (6 mol L-1) gave the best result of 95% stripping 

efficiency. 

These results clearly show that both the amount of loaded chromium(III) in the 

organic phase and the acidity of the stripping solution have significant effect on 

the stripping efficiency. 

2.8.2 Stripping of chromium(III) from Di(2-Ethylhexyl) Phosphoric Acid 

Islam and Biswas (1979a) reported chromium(III) could not be stripped from an 

organic phase of di(2-ethylhexyl) phosphoric acid (D2EHPA) in benzene although 

no details were given. 

In contrast Pandey, Cote and Bauer (1996) found that some chromium(III) could 

be stripped from an organic phase containing D2EHPA.  The loaded organic phase 

contained chromium(III) (approximately 4 g L-1), D2EHPA (0.45 or 0.75 mol L-1) 

and isodecanol (0.53 mol L-1) in kerosene.  Experiments were performed at 22 °C 

and a phase ratio of 1. 
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They found that stripping of chromium(III) from the organic phase with 

hydrochloric acid was dependent on the acid strength.  A contact time of 30 

minutes yielded maximum recovery of approximately 50% with up to 3 mol L-1 

acid.  This is a poor metal recovery when complete stripping of nickel could be 

achieved with 1 mol L-1 acid solutions as shown for instance in the study by 

Preston and Fleming (1983). 

An increase in the acid concentration to 8 mol L-1 resulted in 80% recovery and a 

further increase in the acid strength to 11 mol L-1 gave 1-2% more recovery.  An 

increase in the contact time from 24 to 72 hours improved the stripping 

efficiency with 8 mol L-1 hydrochloric acid from 85 to 87%.  Improved recovery 

of 90% could be achieved in 20 minutes with 12 mol L-1 acid but it was felt by the 

authors that this may lead to decomposition of the extractant.  The use of nitric 

or sulphuric acid, 6 mol L-1, yielded only 45% recovery of chromium(III) in 

10 minutes and 10 mol L-1 nitric acid resulted in 65% recovery in 20 minutes. 

An increase in the temperature of the stripping experiments to 40 °C with 

hydrochloric acid (8 mol L-1) showed approximately 70% stripping in one five-

minute contact and 85% recovery in five contacts. 

The authors (Pandey, Cote & Bauer 1996) noted that a much lower concentration 

of chromium(III) (2×10-3 mol L-1), could be completely stripped from an organic 

phase containing D2EHPA (0.45 mol L-1) and isodecanol (0.53 mol L-1) in kerosene 

with hydrochloric acid (1.0 mol L-1) at room temperature using a 5 minute 

contact time. 

This is similar to the independent finding of Schügerl, Segelken & Gudorf (1996) 

who reported near-complete stripping of organic phases that have low 

chromium(III) loading.  In their study, the loaded organic phase contained 

chromium(III) (~4×10-5 mol L-1) and D2EHPA (1.5 mol L-1) in kerosene.  Stripping 

reached 98% with sulphuric acid (0.5 mol L-1) and 74% with hydrochloric acid 

(1 mol L-1).  When using sulphuric acid the stripping A:O ratio could be reduced 
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to 1:4 while maintaining the stripping recovery.  These authors noted that 

allowing the loaded organic phase to stand before stripping led to a marked 

decrease in stripping recovery. 

The stripping of chromium(III) from a loaded organic phase containing D2EHPA 

appears difficult.  Low levels of chromium(III) may be completely stripped 

however higher loadings or complete stripping from an organic phase that has 

been allowed to age was not possible.  The use of concentrated acids or higher 

temperatures did not significantly improve the stripping efficiency. 

2.8.3 Stripping of Chromium(III) from Mono-(2-Ethylhexyl) Phosphoric 
Acid 

Schügerl, Segelken & Gudorf (1996) reported a near-complete stripping of 

organic phases containing chromium(III) loaded onto mono-(2-ethylhexyl) 

phosphoric acid (M2EHPA).  The loaded organic phase contained chromium(III) 

(~4×10-5 mol L-1) and M2EHPA (20 vol%) in kerosene.  Stripping reached 98% with 

sulphuric acid (0.5 mol L-1) and 86% with hydrochloric acid (1 mol L-1).  The 

stripping A:O ratio could not be reduced without reducing the stripping 

recovery.  They observed, similar to the behaviour with D2EHPA, that allowing 

the organic phase to stand before stripping reduced the stripping efficiency 

although no explanation was offered. 

2.9 Stripping of Chromium(III) from Other Extractants 

2.9.1 Stripping of Chromium(III) from Tributyl Phosphate 

Ohki et al. (1986) observed that stripping of chromium(III) from TBP reached only 

16% with hydrochloric acid (6 mol L-1) in one hour under UV irradiation but no 
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chromium(III) could be stripped in the absence of UV irradiation.  Neither 

further details nor explanation for these observations was offered. 

2.9.2 Stripping of Chromium(III) from Trioctyl Phosphine Oxide 

The work of Ohki et al. (1986) on extraction of chromium(VI) concluded that 

trioctyl phosphine oxide (TOPO) was the most efficient extractant for 

chromium(VI) (Chapter 2.6.1).  Although extraction experiments were carried 

out using chromium(VI) the authors concluded that chromium(III) was the stable 

oxidation state in the organic phase.  The stripping of chromium from TOPO was 

therefore considered assuming stripping of chromium(III).  Stripping efficiency 

of 94% was achieved with hydrochloric acid (6 mol L-1) and contacting the two 

phases for two hours under UV irradiation.  Reducing the acid concentration, 

the contact time or operating without UV irradiation all decreased the amount of 

stripping. 

2.9.3 Stripping of Chromium(III) from Primene JMT™ 

The stripping of chromium(III) from Primene JMT™ was reported by Flett and 

West (1970).  The loaded organic phase contained chromium(III) in the range 24–

110×10-3 mol L-1 and 10 vol% extractant in xylene.  Hydrochloric acid was a more 

effective stripping agent than sulphuric acid with complete stripping always 

possible using hydrochloric acid.  Although it was always possible to remove all 

the chromium(III) from the organic phase with hydrochloric acid, harsher 

conditions in the form of higher temperatures (up to 60 °C), higher acid 

strengths (up to 6 mol L-1) or longer contact times (up to 180 minutes) were 

required as the chromium(III) concentration increased from 0.02 to 0.1 mol L-1. 
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2.9.4 Stripping of Chromium(III) from Oxime Extractants 

Brooks (1987) reported complete extraction of chromium(III) (2×10-2 mol L-1) by a 

mixture of LIX® 63 and dinonyl naphthalene sulphonic acid (SYNEX DNO-52) but 

attempts to strip this loaded organic phase using two contacts of sulphuric acid 

(1.9 mol L-1) were not successful. 

2.9.5 Stripping of Chromium(III) from Carboxylic Acids 

An investigation into hydrolytic stripping of the extractant Versatic® 10 was 

reported by Doyle-Garner and Monhemius (1985).  The report indicated that 

15.6 g L-1 Cr(III) loaded onto Versatic® 10 (33 vol%) in Escaid® 110 diluent could 

not be hydrolytically stripped from Versatic® 10.  Instead polymerisation 

occurred and a viscous organic phase formed. 

The stripping of chromium(III) from a natural rosin dissolved in toluene has 

been reported (Jimenez Gomez et al. 1990).  Total stripping of chromium(III) 

(2×10-2 mol L-1) was obtained using a stoichiometric amount of sulphuric acid. 

2.10 Stripping of Chromium(VI) 

The recovery of chromium(VI) from the organic phase appears easier than the 

recovery of chromium(III).  Provided chromium(VI) is not reduced during 

extraction, or on standing of the loaded organic phase, it is usually completely 

recovered.  There were however no reports on the stripping of chromium(VI) 

from acidic organophosphorus extractants. 

2.10.1 Stripping of Chromium(VI) from Tributyl Phosphate 

The recovery of chromium(VI) from an organic phase consisting of undiluted 

tributyl phosphate (TBP) was investigated by Cuer, Stuckens and Texier (1974).  
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The organic phase was loaded with chromium(VI) (0.4 mol L-1).  They found that 

chromium could be stripped as sodium chromate from TBP using two moles of 

sodium hydroxide for each mole of chromium(VI).  Chromium(VI) could also be 

stripped as sodium dichromate by reducing the pH of the aqueous phase to 4 

prior to sodium hydroxide addition.  A 1:1 ratio of sodium hydroxide to 

chromium was then sufficient for complete stripping. 

2.10.2 Stripping of Chromium(VI) from Trioctylamine 

Several of the groups of researchers who investigated the extraction of 

chromium(VI) with trioctylamine (TOA) also reported the conditions used to 

remove chromium(VI) from the loaded organic phase.  Deptula (1968) used 

sodium hydroxide (0.5 mol L-1) to strip chromium(VI) with a phase ratio of unity.  

The required contact time was 10 minutes.  Zumer, Modic and Zupan (1974) 

found that a mixture of sodium chloride and sodium hydroxide provided the 

most effective stripping solution.  McDonald and Bajwa (1977) used sodium 

hydroxide (4 mol L-1)to strip chromium(VI) (0.1 mol L-1) from TOA.  This was a 

more effective stripping medium than sulphuric acid, ethylenediamine or 

ethylene diamine tetraacetic acid (EDTA). 

2.10.3 Stripping of Chromium(VI) from Other Amine Extractants 

Cuer, Stuckens and Texier (1974) considered the stripping of chromium(VI) from 

the secondary amine di-lauryl amine (LA 2).  They found that an organic phase 

containing chromium(VI) (2×10-3 mol L-1) and LA 2 (0.1 mol L-1) could be 

completely stripped by using two moles of sodium hydroxide for each mole of 

chromium(VI).  Any sulphate in the organic phase was preferentially stripped.  

Chromium(VI) was recovered primarily as the chromate ion, −2
4CrO . 
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A patent application of Magdics and Stain (1989) for treating plating rinse water 

used trioctyl methylammonium hydroxide in kerosene as the organic phase.  

Accordingly, this organic phase loaded with trace amounts of chromium(VI) 

could be stripped with ammonium hydroxide but no further details were 

provided. 

2.11 Summary of Related Literature 

Little work on the extraction of chromium(III) with Cyanex® 272 has been 

reported with seemingly conflicting results.  These studies used limited 

experimental conditions especially with respect to the pH range reported.  The 

single study that deals primarily with the extraction of chromium(III) with 

Cyanex® 272 found that chromium(III) could be extracted with Cyanex® 272 over a 

certain pH range which is in apparent contrast to other reports dealing primarily 

with other metals or extractants.  However this paper used a complex aqueous 

phase limiting the application of the generated data to other systems.  The 

shortage of studies on this system mean that several key variables have not been 

investigated nor comparative behaviour been determined. 

The shift to lower extraction equilibrium pH when di(2-ethylhexyl) phosphoric 

acid (D2EHPA) was used as the extractant suggested that the data generated in 

this system, although more extensive, cannot be extended to its extraction with 

Cyanex® 272 because the change in the predominant chromium(III) species.  With 

decreased hydrolysis occurring at lower pH, the nature of the metal species 

involved in extraction may change as the pH changes.  The extraction behaviour 

of chromium(III) appeared more typical of first-row transition metals than is 

often predicted.  This suggests that extraction of chromium(III) with Cyanex® 272 

should be possible if the contact conditions can be optimised. 



2.11  Summary of Related Literature 

 73

Although it has been shown that various extractants could be used to extract 

chromium(III), the wide variation in experimental conditions required for each 

extractant clearly indicated that those data cannot be extended to Cyanex® 272. 

The extraction of chromium(VI) with Cyanex® 272 occurred at lower pH and by a 

different mechanism to extraction of chromium(III).  Although again there is 

little work on this system it appeared less conflicting than the collective work on 

chromium(III). 

A greater amount of work has been published on the extraction of chromium(VI) 

as the anionic species, which predominate in aqueous solution, than on any 

other aspect of chromium solvent extraction.  Cyanex® 272 does not extract 

anionic species and so this information could not be transferred to the system 

used in the present work. 

The stripping of chromium from a loaded organic phase has received less 

attention than its extraction.  Chromium(III) was difficult to strip from the 

organic phase, especially at higher metal concentrations or if the loaded organic 

phase was allowed to age before stripping.  Due to the different extraction 

mechanism, stripping of chromium(VI) appeared easier and more effective than 

stripping of chromium(III). 
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CHAPTER 3.  EXPERIMENTAL PROCEDURE 

3.1 Preparation of Aqueous Phase Test Solutions 

The aqueous solutions were prepared from analytical grade (Univar®) salts, 

sourced from Ajax Chemicals unless noted.  Water used in the preparation of 

synthetic solutions was distilled deionised water.  Chromium(III) solutions were 

prepared from chromium nitrate nonahydrate ( O.9H)Cr(NO 233 , Unilab®).  

Chromium(VI) solutions were prepared from sodium dichromate ( 722 OCrNa ).  

The matrix components were added as sodium sulphate ( 42SONa ) and sodium 

chloride (NaCl, BDH, AnalaR®).  The ionic strength was adjusted with sodium 

nitrate ( 3NaNO ) as nitrate is generally non-complexing and does not interfere in 

analysis of chromium by atomic absorption spectroscopy.  The ionic strength (I) 

of the solutions was maintained at 0.7 mol L-1 calculated using the formula 

∑= 2
iizc0.5I  where c is the concentration of the ion and z is its formal charge 

(Vogel 1962). 

To simulate real operating conditions some experiments used solutions obtained 

from Bulong Nickel Operation.  A 20 L sample of cobalt feed solution (PLS) was 

collected and the analysis is shown in Table 3-1.  This solution was spiked with 

the appropriate chromium ion, i.e. chromium(III) as chromium nitrate or 

chromium(VI) as sodium dichromate to provide the desired concentration of 

chromium in the test solution.  Although the sample of plant solution did not 

contain detectable levels of chromium, this metal has been detected in the PLS as 

a function of upstream plant performance (Personal Communication: S. Allen 

1999, W. Rickelton 1999). 
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Table 3-1.  Elemental composition of Bulong Nickel Operation cobalt feed 

solution (PLS). 

 Ni Co Fe Al Cr Ca Mn Mg Zn 

Conc. mg L-1 4650 352 1 0.07 0 463 1031 1520 42 

          

All aqueous test solutions were prepared using standard glass pipettes and 

volumetric flasks.  This included the transfer of aliquots of the test solution to 

the mixing vessel. 

3.2 Preparation of the Organic Phase Test Solutions 

The extractants Cyanex® 272 and Cyanex® 301 were used as supplied by Cytec 

(Australia).  Di(2-ethylhexyl) phosphoric acid (D2EHPA) was sourced from BDH 

Laboratory Supplies (minimum assay 98%) and used as supplied.  The primary 

diluent, Shellsol® 2046, was supplied as a sample by the Shell (Australia) Ltd.  

Shellsol® 2046 is a narrow-cut kerosene containing 20% aromatics and 80% 

alkanes (paraffins) and cycloalkanes (naphthenes).  The boiling range was given 

as 198–240 °C.  Other diluents used were obtained from Ajax Chemicals and 

were hexane (Unilab®), cyclohexane (Univar®) and xylene (Univar®).  All organic 

reagents were used without further purification. 

The supplied batch of Cyanex® 272 contained approximately 92% active 

component, bis(2,4,4-trimethylpentyl) phosphinic acid.  This was assessed by 

acidimetric titration as described in the product information (Cyanex® 272 

Extractant). 

An aliquot of the organic phase to be analysed was washed with sulphuric acid 

and the two phases separated using Whatman® 1PS phase separation paper.  A 

25 mL aliquot was diluted to 200 mL with the appropriate diluent.  The analyte 

sample, 25 mL, was diluted to approximately 50 mL with 75 vol% 2-propanol 

solution and a pH electrode placed in the solution.  The analyte was titrated 

against standard 0.1 mol L-1 NaOH in 75 vol% 2-propanol.  The pH was 
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recorded as a function of added volume of NaOH to determine, potentially, 

three endpoints corresponding to neutralisation of any remaining sulphuric 

acid, neutralisation of the phosphinic acid and the first replaceable hydrogen in 

any phosphonic acid impurity and the third endpoint being the replacement of 

the final phosphonic acid proton. 

The presence of 2,4,4–trimethylpentyl phosphonic acid, an impurity known to be 

present in Cyanex® 272 (Cyanex® 272 Extractant), was only occasionally detected 

suggesting very small quantities of this impurity were present.  This was 

consistent with Sole and Hiskey (1992) who reported <0.1% diacid impurity. 

The purity of the supplied batch of Cyanex® 272 extractant was higher than that 

used by Sole and Hiskey (1992) who suggested that the major impurity in 

Cyanex® 272 was tris-(2,4,4-trimethylpentyl) phosphine oxide, which is not 

accounted for using acidimetric titration.  The extractant was used as received as 

the generated results have greater applicability to commercial operation. 

When necessary p-nonylphenol was used as a phase modifier. 

Ionol®, a trade-name for butylated hydroxy toluene (BHT), was added to the 

organic phase in some experiments.  It is added to the organic phase in many 

operating plants to act as a sacrificial reducing agent (anti-oxidant) in order to 

consume oxidants before they react with other components of the organic phase. 

To remove water-soluble components and saturate the organic phase with the 

aqueous solution, the organic portion was washed prior to contact with aqueous 

test solutions.  A wash solution containing sodium nitrate (0.7 mol L-1) and 

adjusted to pH 2 with nitric acid was contacted with an equal volume of organic 

phase.  The removal of water-soluble components by washing the organic phase 

was shown to have no effect on the extraction behaviour during batch 

experiments and was discontinued. 
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All organic test solutions were prepared by weighing the appropriate mass of 

extractant and making to volume using the organic diluent in standard glass 

volumetric flasks.  The transfer of aliquots of the test solution to the mixing 

vessel was carried out using standard glass pipettes. 

3.3 Contact Method 

The efficient transfer of metal between phases within a reasonable time frame is 

dependent on the two phases being intimately mixed.  Several apparatus were 

tested to achieve this.  Preliminary extraction tests were undertaken to establish 

appropriate experimental parameters.  This was necessary to ensure 

reproducible results were obtained over the course of the experimental program. 

3.3.1 Extraction Experiments 

A magnetic stirrer and 20 mm spin bar were initially used to mix the two phases, 

with some success.  The solutions, 20 mL of each phase, were mixed in a 100 mL 

conical flask.  However some problems with the formation of an unidentified 

phase were observed.  This phase was apparent in the aqueous portion after 

separation and could be collected at the interface by gentle mechanical action.  

The existence of this unidentified material was probably due to the existence of 

local concentration effects during mixing (Hughes 1998).  It could not be 

removed by long separation times or centrifugation of the sample. 

Subsequent experiments were carried out using an impeller driven by an 

overhead motor, IKA Labortechnik RW20.  When the total solution volume was 

less than 60 mL a two-blade, stainless steel paddle stirrer of 34 mm diameter was 

used (IKA part R 1001) at 500 r.p.m.  If greater solution volumes were in use a 3-

blade propeller style mixer made of polypropylene with a diameter of 50 mm 

was used (Cole-Parmer Cat. No. U–06370–00) at 350 r.p.m.  This visibly reduced 

the formation of the unidentified third phase.  The use of a motor driven 
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impeller also allowed greater consistency and accuracy in calibration of the 

stirring speed.  Appropriate sized mixing vessels were used in different 

extraction tests depending on the total volume of the solution: a 100 mL tall form 

beaker for 40 mL solution volume; a standard 100 mL beaker for 50 mL solution 

volume; or a standard  250 mL beaker for 100 mL solution volume. 

All experiments used a contact time of 10 minutes unless otherwise specified.  

After mixing, the solution was transferred to a 250 mL separatory funnel and the 

phases allowed to separate.  The aqueous phase was withdrawn, filtered 

through Whatman® 541 filter paper and analysed for final pH and chromium 

content.  When organic phase analysis was required, the sample was filtered 

through Whatman® 1PS phase separation paper or dried over magnesium 

sulphate. 

3.3.2 Stripping Experiments 

Stripping experiments were carried out differently to extraction experiments in 

order to reduce entrainment of the aqueous strip solution in the organic phase.  

The loaded organic phase was prepared as in the extraction experiments.  Phase 

separation was allowed for 5 minutes.  The loaded organic phase was dried over 

magnesium sulphate and a portion withdrawn for analysis.  Portions of the 

loaded organic phase (2.5 mL) were placed in centrifuge tubes together with the 

strip solution.  The sealed tubes were shaken on a flask shaker for 60 minutes 

then transferred immediately to a centrifuge.  Separation was carried out at 

3000 r.p.m. for 10 minutes.  The organic phase was withdrawn and sent to the 

Chemistry Centre of Western Australia for independent chromium analysis. 



3.4  Temperature, Phase Ratio and pH Control 

 79

3.4 Temperature, Phase Ratio and pH Control 

Experiments were performed at room temperature of 22 ± 2 °C or in a water bath 

fitted with a thermostatic temperature controller.  All analytical measurements 

were made at room temperature. 

All experiments were performed with a phase (A:O) ratio of 1, i.e. equal volume 

of aqueous and organic phase. 

Due to the precipitation of chromium(III) with high aqueous phase pH and to 

more accurately simulate real conditions it was often necessary to add a basic 

solution to the vessel during mixing.  Small or known volumes of ammonia 

were added to maintain or adjust the pH to the desired value.  The maximum 

feed pH when using chromium(III) solutions was approximately 5.2 in synthetic 

solutions.  When using spiked PLS the precipitation pH reduced to 

approximately 4.  The reduction in the pH of precipitation was due to the higher 

activity of chromium(III) and hydroxide in the high ionic strength PLS.  The 

addition of base during extraction enabled a wider range of equilibrium pH 

values to be studied.  No precipitation problems occurred when using 

chromium(VI) solutions as chromium(VI) does not form an insoluble hydroxide. 

A second approach to the control of pH during extraction was the conversion of 

the phosphinic acid to its ammonium salt by reaction with an aqueous ammonia 

solution (Ritcey & Ashbrook 1984).  Although this description was for di(2-

ethylhexyl) phosphoric acid (D2EHPA) the principle is the same for bis(2,4,4-

trimethylpentyl) phosphinic acid.  Conversion of the extractant to its ammonium 

salt gives a metal-salt exchange during extraction which does not release 

protons to the aqueous phase and hence does not drive down the pH with the 

consequent effect on extraction efficiency. 
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3.5 Analytical Determinations 

The determination of pH was carried out with instruments purchased from TPS 

Australia.  A TPS 900 P was used for raffinate pH measurement throughout the 

experimental work.  This instrument was used with either a standard 

combination pH electrode (model PBFC) or an Intermediate Junction Electrode 

(IJ44) supplied by Ionode Pty Ltd.  Dispersion pH was measured with an IJ44 

electrode and TPS MC-80 instrument. 

Chromium determination was performed using atomic absorption spectroscopy 

(AAS) on a SpectrAA-50 purchased from Varian Australia.  Chromium(III) 

standards were prepared by diluting a 1000 mg L-1 stock solution (BDH, 

Spectrosol®).  Standard solutions contained nitric acid (0.5%) to reduce 

adsorption onto the container walls prior to aspiration of the sample (Shendrikar 

& West 1974).  Chromium(VI) standards were prepared by diluting a 2000 mg L-1 

stock solution that had been prepared from primary standard sodium 

dichromate ( 722 OCrNa , Ajax, Analar®).  Where possible, AAS standards contained 

the same matrix as the samples.  An oxidising, fuel-rich flame was used for all 

chromium AAS analysis. 

The analysis of chromium in the organic phase was performed by external 

laboratories.  The organic samples from extraction experiments were analysed 

by Bulong Nickel Operation (BNO) by directly volatilising the organic phase 

using graphite furnace AAS.  The organic samples from stripping experiments 

were analysed by the Chemistry Centre of Western Australia (CCWA) by dry-

ashing and acid re-dissolution of the sample prior to determination using 

inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 

Ultraviolet-visible spectroscopy was carried out using a Varian DMS 70.  The 

samples were placed in 10 mm path length cuvettes and the wavelength scanned 

from 350–800 nm in 10 nm intervals.  The lower limit was set by the UV cut-off 
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of the diluent (Shellsol® 2046) and the upper wavelength was the instrument 

limit.  The reference was the corresponding unloaded solvent. 

The errors associated with all analytical determinations were mainly due to 

volumetric measurements and instrumental variations.  In total these errors 

produce a calculated range of ± 3.5% of the reported extraction efficiency.  The 

errors associated with determining the pH of extraction are estimated to be 

± 0.025 pH units. 
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CHAPTER 4.  RESULTS AND DISCUSSION 

4.1 Effect of Contact Conditions on Extraction of Chromium(III) 

The efficiency of solvent extraction is partly determined by the efficiency of 

contact between the two immiscible phases.  The conditions used to bring these 

two phases into contact will therefore have some effect on the process.  The 

individual nature of solvent extraction processes and differences in experimental 

design require determination of the appropriate contact conditions for each 

system.  Hence as the first step of this investigation, a suitable method of 

contact, stirring speed and contact time were determined for the present system. 

4.1.1 Effect of Stirring Speed 

The effect of the stirring speed is shown in Figure 4-1.  The initial increase in the 

extraction efficiency with an increase in stirring speed from 100 to 300 r.p.m. 

indicated that the extraction process was at least partly influenced by diffusion.  

Partial diffusion control would be expected for solvent extraction as it is a 

heterogenous reaction (Ritcey & Ashbrook 1984).  The stirring speed required 

varies with experimental design resulting in meaningless comparison with other 

data unless conditions were identical. 

These results indicate that, for the method of contact chosen for the present 

study, 300 r.p.m. was the minimum stirring rate required to minimise the effect 

of diffusion.  A higher stirring speed (500 r.p.m.) was used to ensure sufficient 

mixing at lower pH where larger droplets are produced.  A further increase in 

stirring speed would not have any beneficial effect but could adversely effect 

phase separation. 

The rate and method of agitation is an important consideration in the 

development of a commercial operation.  The chosen conditions will impact 
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both the operating costs due to power consumption and the separation time due 

to the droplet size produced.  Energy needs to be input to the system to provide 

mixing however a further increase in stirring speed does not necessarily increase 

the extraction efficiency and may lead to increased formation of cruds and stable 

emulsions which inhibit phase separation. 

4.1.2 Effect of Contact Time 

The results from a range of contact times are shown in Figure 4-2.  The apparent 

equilibrium in this system was reached with contact times between 5 and 10 

minutes.  To ensure that apparent equilibrium was reached, 10 minutes was 

chosen as the contact time for experiments using chromium(III) and Cyanex® 272.  

No data exists in the literature for comparison as no other study of the extraction 

of chromium(III) from a simple solution with Cyanex® 272 has been reported. 

This apparent equilibration time is longer than that for most transition metals.  

Sole and Hiskey (1992) reported that equilibrium was usually obtained in 

2-3 minutes for iron, cobalt, nickel, copper and zinc cations.  Similar times were 

reported by Preston (1982) for cobalt and nickel cations with phosphoric, 

phosphonic or phosphinic acids.  No attempt was made to investigate the actual 

equilibration time. 

Islam and Biswas (1979b) reported 15 minutes as the time required to reach 

equilibrium for extraction of chromium(III) with D2EHPA at pH 3.1.  Pandey, Cote 

and Bauer (1996) reported 2 minutes as sufficient time to reach equilibrium for 

the extraction of chromium(III) (approximately 4 g L-1 in complex solutions) with 

Cyanex® 272 (0.48 mol L-1) as 50% ammonium salt when the equilibrium pH was 

4.0. 

The result of the present study indicated that the extraction of chromium(III) was 

slower than the extraction of heavier first-row transition metals and that the 
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Figure 4-1.  The effect of stirring speed on the extraction efficiency of chromium(III) with 

Cyanex® 272. 

Aqueous phase: Cr(III) 1×10-3 mol L-1; -
3NO  0.7 mol L-1, pH 4.4; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 

Figure 4-2.  The effect of contact time on the extraction efficiency of chromium(III) with 

Cyanex® 272. 

Aqueous phase: Cr(III) 2×10-4 mol L-1; -
3NO  0.7 mol L-1, pH 4.2; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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experimental conditions, especially the pH, used in determining the 

equilibration time have a significant effect on the reported value.  The range of 

hydrolysed chromium(III) species that exist at different pH values are known to 

react at different rates (Islam & Biswas 1979a; Cotton & Wilkinson 1988) so that 

the equilibration times reported in the literature for D2EHPA for instance (Islam 

and Biswas 1979b) appears to be due to the different pH values used by these 

investigators. 

At higher pH the chromium(III) extraction was much faster than would be 

predicted on the basis of the behaviour of the hexaaqua chromium(III) ion and 

suggested the involvement of the hydrolysed species in the reaction mechanism.  

This indicated that the behaviour of chromium(III) may not be accurately 

predicted from the literature by the behaviour of other transition metals or even 

a single chromium species. 

The present results indicated that for extraction of chromium(III) by Cyanex® 272 

a contact time of 10 minutes and a stirring speed of 500 r.p.m. provided 

sufficient time and energy for extraction of chromium(III) to occur.  These 

conditions were therefore used throughout the current work unless otherwise 

indicated. 

4.2 Effect of Temperature on Extraction of Chromium(III) 

The choice of laboratory operating temperature in the range 22–50 °C had a 

negligible effect on the extraction curves (Figure 4-3), the pH0.5 values differing 

by only 0.07 units (4.54 to 4.61).  A slight increase in distribution coefficient (D) 

with an increase in temperature is suggested in Figure 4-4 however the 

magnitude of this change at a given pH value is small.  No comparable data 

exists in the literature.  No further increase in extraction was observed once the 

temperature exceeded 40 °C. 
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Figure 4-3.  The effect of temperature on the extraction of chromium(III) from sulphate 

solution with Cyanex® 272. 

Aqueous phase: Cr(III) 2×10-4 mol L-1, −2
4SO  0.1 mol L-1; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 

 

 

Figure 4-4.  The effect of temperature on the distribution coefficient (D) for extraction of 

chromium(III) from sulphate solution with Cyanex® 272. 

Aqueous phase: Cr(III) 2×10-4 mol L-1, −2
4SO  0.1 mol L-1; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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It was noted that the plot of log D vs. 1/T (Figure 4-4) was non-linear.  Islam and 

Biswas (1979b) noted in their work with D2EHPA that non-linearity occurred in 

the absence of acetate.  The present work extends the non-linear behaviour in the 

absence of acetate to extraction of chromium(III) with Cyanex® 272.  This trend 

appears to be an indication that the extraction reaction is at least partially 

diffusion controlled although kinetic investigation was not part of the aims of 

this work. 

4.3 Effect of Chromium Concentration on Extraction of Chromium(III) 

The effect of initial chromium(III) concentration in the range 10-4–10-2 mol L-1 (5 to 

500 mg L-1) is shown in Figure 4-5.  There was little difference in the behaviour 

of aqueous solutions containing 10-2 mol L-1 and 10-3 mol L-1 chromium(III).  

However solutions containing less chromium(III) (10-4 mol L-1) showed a 

significantly higher extraction at a given pH. 

Two possible causes for this behaviour were considered: chromium(III) was 

extracted in hydrolysed forms and the lower metal to extractant ratio in the 

system.  The extraction of chromium(III) in hydrolysed form appeared more 

likely as it is known that, unlike most transition metal ions, chromium(III) exists 

in various hydrolysed forms (Deltombe, de Zoubov & Pourbaix 1966) as shown 

in Equations 4-1 and 4-2.  The extent of hydrolysis increases with increases in 

pH.  At the same time, the percentage of hydrolysed forms increases with 

decreases in initial chromium(III) concentration. 

OHCr 2
3 ++   ++ +HCr(OH)2   (4-1) 

OHCr(OH) 2
2 ++   ++ +HCr(OH)2   (4-2) 

The lower ratio of metal to available extractant, i.e. thermodynamic equilibrium, 

as an explanation for the change in behaviour at lower initial chromium(III) 

concentration appeared unlikely as the extractant was much in excess of all the 

metal concentrations investigated. 
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Figure 4-5.  The effect of initial chromium(III) concentration in the aqueous phase on the 

distribution coefficient (D) of extraction of chromium(III) with Cyanex® 272. 

Aqueous phase: [Cr(III)] as shown; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 
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The results of the present study on the effect of temperature (Chapter 4.2) are 

consistent with this suggestion that hydrolysed forms are important in the 

extraction behaviour of chromium(III).  There was no previously reported study  

on the effect of initial chromium(III) concentration on the extraction behaviour 

with Cyanex® 272 so no data exists for comparison.  Although no explanation 

was offered, a decrease in extraction with increased initial chromium(III) 

concentration was observed with D2EHPA as the extractant (Islam & Biswas 

1979b). 

4.4 Effect of Anion Type and Concentration on Extraction of 
Chromium(III) 

The effect of various anions and their concentration on the extraction of 

chromium(III) was investigated.  For other metals it is known that the common 

anions found in process solutions affect solvent extraction.  When D2EHPA is the 

extractant the anion affect is in the order nitrate < chloride < carbonate < 

sulphate (Ritcey & Ashbrook 1984).  The increasing effect on solvent extraction 

efficiency indicates that metal-sulphate complexes are more stable than metal-

nitrate complexes. 

These observations are consistent with the behaviour observed for metal ligand 

interaction in coordination chemistry.  The generation of a spectrochemical 

series indicating increasing complex stability has been undertaken by Huheey 

(1983).  A portion of this generated series is: 
−−−−− <<<<<<<< CNNHOHOHNOClSCNS 323

-2  

This spectrochemical series indicates the relative weakness of nitrate and 

chloride complexes as suggested by Ritcey and Ashbrook (1984). 

The solvent extraction of chromium(III) from aqueous solutions containing 

nitrate, chloride and sulphate anions was investigated.  The extraction 
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behaviour from solutions containing a mixture of chloride and sulphate anions 

as commonly found in processing solutions was also considered as it is of 

significant practical importance. 

4.4.1 Extraction of Chromium(III) from Nitrate Solutions 

The extraction curve obtained for the extraction of chromium(III) from a nitrate 

solution with Cyanex® 272 is shown in Figure 4-6.  No comparable curve was 

available in the literature.  However the shape of the curve is typical of 

extraction curves for first-row transition metals with acidic organophosphorus 

extractants.  This is exemplified by the extraction of cobalt(II) with Cyanex® 272 

(Sole & Hiskey 1992).  The comparison of these curves is shown in Figure 4-7. 

The presence of nitrate should have little effect on chromium(III) extraction as 

both the hydroxide and aqua complex are more stable than the nitrate complex 

as indicated by the position of these anions in the spectrochemical series.  With 

D2EHPA as the extractant, Islam and Biswas (1979b) found that increasing the 

concentration of nitrate ions from 0.05 to 2 mol L-1 had no effect on the extraction 

of chromium(III), which they later suggested was due to the limiting reaction 

being the formation of +
2Cr(OH)  (Islam & Biswas 1979a). 

The presence of varying amounts of nitrate ion should therefore not affect the 

extraction of chromium(III) and this was consistent with the observations of the 

present study.  The data on the effect of chloride ion concentration (Chapter 

4.4.2) provides corollary evidence of the effect of the nitrate ion.  The nitrate 

anion was used to maintain a constant ionic strength in the aqueous phase and 

its concentration varied from 0.4 to 0.7 mol L-1.  There was no observable change 

in the extraction behaviour of chromium(III) as the nitrate and chloride ion 

concentrations changed. 
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Figure 4-6.  The extraction of chromium(III) from nitrate solution with Cyanex® 272. 

Aqueous phase: Cr(III) 1×10-2 mol L-1, -
3NO  0.66 mol L-1; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 

 

Figure 4-7.  The extraction of chromium(III) with Cyanex® 272 from nitrate solution compared 

to the extraction of cobalt (Sole & Hiskey 1992). 

Aqueous phase: Cr(III) 1×10-2 mol L-1, -
3NO  0.66 mol L-1. 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 
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4.4.2 Extraction of Chromium(III) from Chloride Solutions 

The extraction curve for the extraction of chromium(III) from a chloride solution 

with Cyanex® 272 is shown in Figure 4-8.  There was no literature curve for 

comparison.  However as with extraction of chromium(III) from nitrate solutions 

the shape of the curve was typical of the extraction of transition metals with 

acidic organophosphorus extractants.  The extraction of chromium(III) from 

chloride solutions was expected to be similar to extraction from nitrate solutions 

based on the relative positions of chloride and nitrate in the spectrochemical 

series as discussed in Chapter 4.4.1. 

The earlier study of Gandhi, Deorkar and Khopkar (1993) concluded that 

chromium(III) is not extracted by Cyanex® 272 from a chloride solution at pH 3 or 

8.  The lack of extraction at pH 3 is consistent with this work.  The lack of 

extraction at pH 8 was probably due to the amphoteric nature of chromium(III) 

and its tendency to form −
4Cr(OH)  in alkaline conditions.  Anionic species are 

generally not extracted by Cyanex® 272.  The inability of Cyanex® 272 to extract 

anionic species was also observed for chromium(VI) as discussed in Chapter 

4.9.1. 

The effect of chloride ion concentration in the range 0–0.25 mol L-1 on the 

extraction of chromium(III) with Cyanex® 272 is shown in Figure 4-9.  The change 

in the chloride ion concentration in this range had little effect on the extraction 

behaviour.  The formation of weak complexes between transition metals and 

chloride anion is predicted from the spectrochemical series discussed in Chapter 

4.4.  The present study is the first attempt to determine the effect of chloride ion 

concentration on the extraction of chromium(III) with Cyanex® 272. 
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Figure 4-8.  The extraction of chromium(III) from chloride solution with Cyanex® 272. 

Aqueous phase: Cr(III) 9.6×10-3 mol L-1, −Cl  0.1 mol L-1; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 

 

Figure 4-9.  The effect of chloride concentration on extraction of chromium(III) with Cyanex® 

272. 

Aqueous phase: Cr(III) 1×10-3 mol L-1, -Cl  variable, pH 4.4; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 
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4.4.3 Extraction of Chromium(III) from Sulphate Solutions 

The extraction curve for extraction of chromium(III) from a sulphate solution 

with Cyanex® 272 is shown in Figure 4-10.  There was no literature curve for 

comparison.  However as with extraction from nitrate solutions the shape of the 

curve was typical for extraction of transition metals with acidic organo-

phosphorus extractants.  It was noted that the pH of extraction was higher from 

sulphate solutions than from nitrate or chloride solutions.  This is discussed in 

Chapter 4.4.5.  The use of sulphate solutions to test solvent extraction systems 

for the separation of cobalt and nickel is important because processing of these 

metals frequently requires purification of these metals from sulphuric acid 

solution. 

The few papers that mention chromium(III) extraction with Cyanex® 272 reported 

that the metal was not extracted from sulphate solutions (Cyanex® 272 Extractant; 

Nahar et al. 1995).  The conditions used in these literature relate to extraction at 

pH less than 2.  There was no literature for the extraction of chromium(III) from 

sulphate solution in the pH range 2.5–6.5.  This is the pH range of interest in 

nickel-cobalt separation, a major use for Cyanex® 272. 

The transfer of chromium(III) to an organic phase containing Cyanex® 272 from 

sulphate solution reported in the present work therefore represents a break from 

the previously reported data.  This is not entirely unexpected as at pH 2 the only 

first-row transition metals to show significant extraction are iron(III), zinc and 

vanadium(IV).  Many metals such as nickel and cobalt are known to be extracted 

at higher pH yet pH 2 is the highest pH in a previously reported study on 

extraction of chromium(III) with Cyanex® 272 from a sulphate solution (Cyanex® 

272 Extractant; Ritcey & Ashbrook 1984; Sole & Hiskey 1992). 
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Figure 4-10.  The extraction of chromium(III) from sulphate solution with Cyanex® 272. 

Aqueous phase: Cr(III) 9.6×10-3 mol L-1, -2
4SO  0.1 mol L-1; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 

 

Figure 4-11.  The extraction of chromium(III) from sulphate solution with Cyanex® 272 

(organic phase analysis). 

Aqueous phase: Cr(III) 9.6×10-3 mol L-1, -2
4SO  0.1 mol L-1; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 
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A further observation made in all cases when chromium(III) was extracted was 

the development of a coloured organic phase and the loss of colour from the 

aqueous phase.  To confirm that the observed colour development in the organic 

phase was due to chromium(III), this phase was directly analysed for chromium.  

The results with an acceptable mass balance are shown in Figure 4-11.  The 

shape of the curve and pH0.5 value were similar (aqueous 4.62, organic 4.64) to 

the curve generated by analysis of the aqueous phase data (Figure 4-10). 

These reported results clearly showed that chromium(III) was extracted from 

sulphate solution with Cyanex® 272.  More importantly, this extraction occurred 

within the pH range of cobalt extraction.  The pH range at which chromium(III) 

was most likely to be extracted by Cyanex® 272 has not been reported by 

previous investigators.  This may be due to the type of solutions, e.g. tanning 

effluents, hydroxide sludges, which were the focus of previous investigations. 

The concentration of sulphate ion in the aqueous phase affects the extraction 

behaviour as shown in Figure 4-12.  Increases in sulphate concentration from 0 

to 0.33 mol L-1 resulted in decreases in the chromium(III) extraction. 

With D2EHPA as the extractant, a decrease in extraction with increasing sulphate 

concentration has been reported previously (Islam & Biswas 1979b).  The 

depression of extraction was attributed to the formation of +)SO(Cr 4  and 

−
24 )SO(Cr  in preference to the formation of the chromium(III)-D2EHPA complex.  

Schügerl, Segelken and Gudorf (1996), also using a chromium(III)/sulphate/ 

D2EHPA system made similar observations although the depression of extraction 

was not attributed to a specific complex. 

There is no published information regarding the relative strength of the 

chromium(III)-sulphate and chromium(III)-Cyanex® 272 complex. The sulphate 

anion was not reported in the spectrochemical series as discussed by Huheey 

(1983).  Ritcey and Ashbrook (1984) suggested that the sulphate anion had the 

greatest effect of the common anions on extraction behaviour with D2EHPA.   



4.4  Effect of Anion Type and Concentration on Extraction of Chromium(III) 

 97

Figure 4-12.  The effect of sulphate concentration on extraction of chromium(III) with 

Cyanex® 272. 

Aqueous phase: Cr(III) 1×10-3 mol L-1, pH 5.2; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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The present work suggested that the sulphate complex is stronger than the 
+
2Cr(OH)  complex and the Cyanex® 272 complex.  The only experimental 

conditions available to compare the strengths, as log K values, of such 

complexes is at infinite dilution which is not directly applicable to the test 

solutions used in the present study.  In addition no work has been completed on 

the formation of complexes with solvent extraction reagents.  Nonetheless the 

available data (Appendix 3) indicates log K for sulphate complex Cr(SO4)- as 3.9 

and for the +
2Cr(OH)  complex as -4.0 suggesting the sulphate complex is 

preferred. 

This is consistent with the literature which suggested that the sulphate complex 

is stronger than the D2EHPA complex on the basis that sulphate anion depressed 

extraction with D2EHPA.  In turn the chromium(III)-D2EHPA complex is expected 

to be stronger than the chromium(III)-Cyanex® 272 complex on the basis of the 

lower pKa of D2EHPA.  The pKa of D2EHPA is 1.72 (Smelov & Lanin 1969) 

compared to 6.37 for Cyanex® 272 (Sole & Hiskey 1992) indicating that D2EHPA 

will generally form stronger complexes than Cyanex® 272. 

4.4.4 Extraction of Chromium(III) from Mixed Sulphate/Chloride 
Solutions 

The extraction of chromium(III) from a mixed sulphate/chloride solution (Figure 

4-13) shows behaviour analogous to that from single anion solutions and was 

most similar to extraction from sulphate solution.  This suggested that the 

sulphate ion has the greatest effect on the extraction behaviour with chloride 

acting primarily as a non-complexed spectator ion.  This is consistent with the 

relative strengths of the chromium(III)–anion interaction as discussed in Chapter 

4.4.2 and 4.4.3. 

The only previously published study that reports the successful extraction of 

chromium(III) with Cyanex® 272 also used a mixed anion solution.  Pandey, Cote 
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Figure 4-13.  Extraction of chromium(III) from solutions containing sulphate and chloride 

anions with Cyanex® 272. 

Aqueous phase: Cr(III) 9.6×10-3 mol L-1, −2
4SO , −Cl each 0.1 mol L-1; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 
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and Bauer (1996) investigated the extraction of chromium(III) with Cyanex® 272 

from synthetic spent tanning solutions which contained both sulphate and 

chloride anions. 

A simplified solution similar to that used in the work of Pandey, Cote and Bauer 

(1996) was used in the present study to demonstrate that the extraction was due 

to the interaction between chromium(III) and Cyanex® 272 as opposed to a side 

reaction due to components of the tanning effluent.  The conditions used in 

thepresent work and by Pandey, Cote and Bauer (1996) are compared in Table 

4-1.  The differences in experimental conditions used would not be expected to 

have any significant effect on the result, unless specific interactions with minor 

components exist.  The similarity of the extraction curves in Figure 4-14 indicate 

that the extraction of chromium(III) with Cyanex® 272 is due to the reaction 

between metal and extractant and is independent of the minor components in 

the synthetic tanning liquor. 

4.4.5 Comparison of Anion Effects on the Extraction of Chromium(III) 
with Cyanex® 272 

The data of chromium(III) extraction from aqueous solutions containing various 

anions with Cyanex® 272 are shown in Figure 4-15.  The data indicated that there 

was no difference in the achievable extraction between the different solutions. 

The difference in the pH0.5 values for nitrate (4.16) and chloride (4.28) containing 

solutions showed some difference to those solutions containing mixed sulphate–

chloride (4.50) and sulphate (4.63) anions.  The extraction from sulphate and 

sulphate–chloride solutions was similar indicating the predominance of 

sulphate type behaviour due to the stronger complexing nature of this anion. 
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Table 4-1.  Comparison of the experimental parameters used in the present 

work and by Pandey, Cote and Bauer (1996). 

Parameter This Work Pandey, Cote and Bauer (1996) 

Cr(III) 0.5 g L-1 4.41 g L-1 

Other metals None Fe(III) 0.09 g L-1 

Al(III) 0.12 g L-1 

Acetic Acid None 1.56 g L-1 
−2

4SO  12.0 g L-1 12.0 g L-1 

NaCl 60.0 g L-1 60.0 g L-1 

Contact Method Magnetic Stirrer Flask Shaker 

pH control Added base Ammoniated extractant 

   

   

   

   

Figure 4-14.  Comparison of the present work and the existing data (Pandey, Cote & Bauer 

1996) for extraction of chromium(III) from sulphate/chloride solutions with Cyanex® 272. 

Aqueous phase: as in Table 4-1 above; 

Organic phase: Cyanex® 272, 0.48 mol L-1, p-nonylphenol 0.43 mol L-1 in kerosene. 
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Figure 4-15.  Comparison of chromium(III) extraction with Cyanex® 272 from aqueous 

solutions containing various anions. 

Aqueous phase: Cr(III) 9.6×10-3 mol L-1, anion 0.1 mol L-1; 

Organic phase: Cyanex® 272, 0.32 mol L-1 in Shellsol® 2046. 
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Sole and Hiskey (1992) suggested that cobalt extraction occurred at higher pH 

values as the sulphate concentration increased.  This was attributed, at least 

partially, to the existence of the sulphate-bisulphate equilibrium: 

OHSO 2
2
4 +−   −− + OHHSO 4   (4-3) 

The present work indicated that the presence of sulphate in the aqueous phase 

and the resulting sulphate-bisulphate equilibrium also caused extraction of 

chromium(III) to occur at higher pH values than in the absence of sulphate. 

The present results add to those reported by Preston (1982) on the difference in 

extraction behaviour from sulphate and non-sulphate solutions.  The previous 

work studied nickel and cobalt extraction with a dialkyl phosphonic acid while 

the present work adds data for the extraction of chromium(III) with a dialkyl 

phosphinic acid.  The data for these three first-row transition metals are 

summarised in Table 4-2.  The larger difference for extraction of chromium(III) 

compared to nickel and cobalt may be attributed to the different extractant.  The 

higher charge on the metal centre in the present work may also effect the 

reported difference as a higher charge on the central metal generally results in a 

stronger complex due to an increase in the electrostatic attraction between the 

ions that make up the complex (Huheey 1983). 

Table 4-2.  The difference in pH0.5 values for cobalt, nickel and chromium(III) 

extraction from nitrate, chloride and sulphate solutions. 

Metal −
3NO – −Cl  −

3NO – −2
4SO  −Cl – −2

4SO  Source 

Co 0.07 0.32 0.25 Preston (1982) 

Ni 0.08 0.33 0.25 Preston (1982) 

Cr 0.12 0.47 0.35 This work 

 

The present work both extends the previously published literature and 

simplifies the data available.  The hydrometallurgical separation of cobalt and 

nickel with Cyanex® 272 occurs in the pH range 3–6.  The addition of the present 

work indicated that chromium(III) was extracted by Cyanex® 272 in this pH range 



4.4  Effect of Anion Type and Concentration on Extraction of Chromium(III) 

 104

from a variety of aqueous solutions.  This requires that the flowsheet design 

process ensures adequate pH control for chromium(III) precipitation as well as 

consideration of the implications that the presence of chromium(III) may have on 

downstream processes such as solvent extraction. 

The use of sulphate solutions for assessing the behaviour of PAL generated 

liquors appears to have some justification when examining the behaviour of 

chromium(III) on the basis of the similar behaviour observed with sulphate and 

sulphate–chloride solutions.  The use of solutions not containing sulphate may 

provide advantages in some processing situations, e.g. a reduction in the 

amount of neutralising media required to obtain a suitable pH for solvent 

extraction following an acidic leach.  It is more likely however that the choice of 

anion system will be determined by other process requirements, e.g. a suitable 

solution for electro-winning of metal. 

The addition of the present work to the existing literature provides data for 

chromium(III) extraction under comparable conditions to that published for 

other first-row transition metals.  This allows some confidence in the 

preparation of comparative extraction curves, which is not reasonable unless the 

experimental conditions were similar due to the effect of the various 

experimental parameters on the extraction behaviour.  A comparison of the 

extraction conditions for some available literature is shown in Table 4-3.  The 

data demonstrate that the conditions were quite similar.  The difference in metal 

concentration and temperature is expected to have little effect, while decreasing 

the sulphate concentration during chromium(III) extraction would move this 

curve to lower pH as discussed in Chapter 4.4.3, i.e. closer to the cobalt curve in 

this example. 

The comparison of chromium(III) extraction with Cyanex® 272 and the existing 

data in the literature is shown in Figure 4-16.  Data as shown in this figure is 

considered a vital starting point for the development of an solvent extraction 
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process yet chromium(III) was never previously included as it was believed that 

it was not extracted from sulphate solutions. 

The effect of changes in extraction conditions is shown in Figure 4-17 where 

extraction of copper by Cyanex® 272 under three sets of experimental conditions 

(Table 4-4) is shown.  The observed shift in the extraction pH is consistent with 

suggestions that increasing the sulphate concentration increases the extraction 

pH (Chapter 4.4.3) and increasing the extractant concentration decreases the 

extraction pH (Chapter 4.5.2). 

To obtain the best comparative data extraction should be undertaken under 

identical conditions.  If the composition of the actual solvent extraction feed 

solution can be approximated then this should be used to generate data which 

more accurately represents the behaviour that would be encountered during 

industrial operation. 
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Table 4-3.  A comparison of the experimental conditions used in extraction of 

first-row transition metals with Cyanex® 272 (Figure 4-16).  The 

aqueous:organic ratio was 1 in all experiments. 

Aqueous 

Phase 
[ +nM ] 

(mol L-1) 

[ −2
4SO ] 

(mol L-1) 

Temperature 

(°C) 

Contact Time 

(minutes) 

(Rickelton, Flett 
& West 1984) 

0.015 0.015 (Fe 0.022) 50 5 

This work: 
Cr(III) 

0.001 0.1 22 10 

     

Organic 

Phase 

[Cyanex® 272] 

(mol L-1) 
Diluent Modifier  

(Rickelton, Flett 
& West 1984) 

0.6 Kermac 470B p-nonylphenol  

This work: 
Cr(III) 

0.5 Shellsol® 2046 none  

     

     

     
 

Figure 4-16.  The extraction of chromium(III) from sulphate solution compared to some other 

first-row transition metals.  The experimental conditions are shown in Table 4-3. 
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Table 4-4.  A comparison of experimental conditions for extraction of copper 

with Cyanex® 272 (Figure 4-17).  The aqueous:organic ratio was 1 in all 

experiments. 

Aqueous 

Phase 
[ +2Cu ] 

(mol L-1) 

[ −2
4SO ] 

(mol L-1) 

Temperature 

(°C) 

Contact Time 

(minutes) 

(Rickelton, Flett 
& West 1984) 

0.015 0.015 50 5 

This work 0.001 0.1 22 10 

Sole and Hiskey 
(1995) 

0.001 0.5 23 15 

     

Organic 

Phase 

[Cyanex® 272] 

(mol L-1) 
Diluent Modifier  

(Rickelton, Flett 
& West 1984) 

0.6 Kermac 470B p-nonylphenol  

This work 0.3 Shellsol® 2046 none  

Sole and Hiskey 
(1995) 

0.1 Xylene none  

     

     
 

 

Figure 4-17.  The extraction of copper from sulphate solution with Cyanex® 272.  The 

experimental conditions are shown in Table 4-4. 
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4.4.6 Effect of Acetate on Extraction of Chromium(III) 

The presence of acetate in the aqueous phase caused a curious and previously 

unreported effect on the extraction of chromium(III) with Cyanex® 272.  In freshly 

prepared aqueous solutions the presence of acetate anions (0.1 mol L-1) had no 

effect on the extraction of chromium(III) with Cyanex® 272.  However if the 

aqueous phase was allowed to stand, producing an aged aqueous phase, prior to 

contact with the organic extractant a marked decrease in extraction was 

observed (Figure 4-18).  This effect of aging appeared to be due to the formation 

of a chromium(III)-acetate complex. 

The decrease in extraction suggested that the chromium(III)-acetate complex was 

stronger than either the hydrolysed chromium(III) species, the chromium(III)-

sulphate species or the chromium(III)-Cyanex® 272 complex.  If the hydrolysed 

chromium(III) was the stronger species then chromium(III) would still be 

available to react with the extractant.  Similarly if the complex with Cyanex® 272 

was stronger it could break up the acetate complex forming an extractable 

species.  As compared to the earlier stated log K value of the Cr(SO4)- species of 

3.9 the Cr(acetate)2+ species is stronger with a log K value of 5.4.  These values 

are consistent with the observations of the present work although it is again 

noted that no values are available for the chromium(III)-Cyanex® 272 complex. 

In solutions containing chromium(III) as the only trivalent metal, acetate is 

known to prevent the precipitation of chromium(III) hydroxide (Svehla 1996) 

indicating that a strong interaction between chromium(III) and the acetate anion 

may be possible in the present system.  Investigations that use industrial 

solutions (e.g. Pandey, Cote & Bauer 1996) rarely meet these conditions as they 

contain a range of metals in solution. 
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Figure 4-18.  The effect of aqueous solution age and composition on the extraction of 

chromium(III) with Cyanex® 272. 

Aqueous phase: Cr(III) 5×10-3 mol L-1, anions as shown 0.1 mol L-1, pH 4.7; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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An earlier report indicated that, on the basis of increased acetate concentration 

not influencing the extraction efficiency, acetate did not effect extraction of 

chromium(III) when D2EHPA was the extractant (Islam & Biswas 1979b).  

However this report did not consider the effect of the age of the aqueous phase 

before contact with the extractant. 

In the present study, examination of the aging effect of acetate on chromium(III) 

extraction with D2EHPA as the extractant is shown in Figure 4-19.  This indicated 

that the solution age also affects extraction of chromium(III) with D2EHPA.  This 

has not been noted previously in the literature and indicated that the 

chromium(III)-acetate complex, once formed, was also stronger than the 

chromium(III)-D2EHPA complex. 

A comparison of chromium(III) extraction from solutions containing acetate 

anions with Cyanex® 272 and D2EHPA is shown in Figure 4-20.  The depression of 

extraction due to the presence of acetate anion occurred faster and was greater 

(within 48 hours) when Cyanex® 272 was used as the extractant. 

The rapid depression of extraction with Cyanex® 272 compared to D2EHPA 

represents a major shift in behaviour with decreasing phosphate character of the 

extractant.  The lower pKa of D2EHPA, due to its greater phosphate character, also 

causes extraction of most metals to occur at lower pH when D2EHPA is the 

extractant, which in the case of chromium(III) may significantly change the 

aqueous species present in solution.  The increased presence of hydrolysed 

species at higher pH (Chapter 1.1) as required for extraction with Cyanex® 272 

probably allows faster formation of the chromium(III)-acetate complex and this 

was reflected in the faster depression of extraction efficiency with Cyanex® 272. 

The variable behaviour with solution age, especially when using Cyanex® 272, 

inhibits the use of an acetate buffer for pH control in laboratory experiments on 

this system.  The slower depression of extraction when using D2EHPA should 
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Figure 4-19.  The effect of aqueous solution age and composition on the extraction of 

chromium(III) with D2EHPA. 

Aqueous phase: Cr(III) 5×10-3 mol L-1, anions as shown 0.1 mol L-1, pH 4.1; 

Organic phase: D2EHPA, 0.3 mol L-1 in Shellsol® 2046. 

 

 

Figure 4-20.  A direct comparison of the effect of solution age on the extraction of 

chromium(III) when using different acidic organophosphorus extractants. 

Aqueous phase: Cr(III) 5×10-3 mol L-1, −2
4

- /SOAc  each 0.1 mol L-1; 

Organic phase: Extractant 0.3 mol L-1 in Shellsol® 2046. 
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allow experiments with an acetate buffer to be reproducible provided 

experimental conditions with respect to solution age were constant. 

The change in behaviour with solution age may also influence the industrial 

application of solvent extraction as solutions are often not processed as soon as 

they are generated.  The time lag in processing may have unforeseen conse-

quences on the extraction behaviour dependent upon solution composition. 

4.4.7 Extraction of Chromium(III) from Industrial PLS 

A sample of cobalt pregnant liquor stream (PLS) from the feed to Bulong Nickel 

Operation’s cobalt solvent extraction circuit (see Figure 1-8) was spiked with 

chromium(III) (1×10-4 mol L-1, 5 mg L-1).  Extraction tests were undertaken with 

Cyanex® 272 in Shellsol® 2046 in the pH range 4–6.5.  The results are shown in 

Figure 4-21.  Chromium(III) is shown only at pH 4.3 as at higher pH values the 

mass balance showed incomplete recovery of the metal. Ritcey, Hayward and 

Salinovich (1996) demonstrated that the level of chromium(III) was reduced from 

22 mgL-1 to < 1 mgL-1 by the adjusting the pH of the PLS solution to 4.3. 

The minor differences in extraction order such as the nickel showing higher 

extraction than calcium and cobalt showing generally higher extraction than 

zinc could be attributed to the relative concentrations of these metals in solution 

(Table 3-1). 

The precipitation of chromium(III) during solvent extraction from PLS, which has 

an ionic strength between 4 and 4.5 mol L-1, calculated from published data 

(Soldenhoff, Hayward & Wilkins 1998) indicated a change in chromium(III) 

behaviour to a more reactive species as the ionic strength of the solution 

increased. 

In the present work the chromium(III) species that precipitated, probably a 

hydroxide, was an insoluble, fluffy white mass with no obvious crystalline 
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structure.  Chromium(III) hydroxide is known to form amorphous precipitates 

which were relatively inert to acid addition after a short period of time (Spiccia 

et al. 1987). 

The precipitate was observed throughout the aqueous phase, although with 

gentle agitation it could be collected at the aqueous/organic interface.  This 

suggested that a significant amount of organic was trapped within the structure 

or adsorbed onto its surface as a purely inorganic precipitate would be expected 

to settle out of solution.  The presence of a precipitate at the A/O interface may 

interfere with phase separation. 

The high ionic strength of the PLS caused precipitation of chromium(III) to occur 

at a lower pH than predicted by solubility product calculations.  This is 

understandable considering that existing theories describing the behaviour of 

ions in solution apply only to dilute solutions and include the approximation of 

species concentration for actual species activity.  As the ionic strength of a 

solution increases the activity of the species moves further from its 

concentration, and its real behaviour moves further from that predicted by ideal 

chemistry rules.  In addition, rules describing the behaviour of aqueous 

solutions are formulated in the absence of organic components, which is 

obviously not the case during solvent extraction.  The changes observed in 

behaviour of chromium(III) at high ionic strength reinforce the need for the 

testing of a proposed circuit with solutions of equivalent composition to those 

expected to be generated during continuous operation. 
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Figure 4-21.  The extraction behaviour of Bulong PLS spiked with chromium(III), 

(1×10-4 mol L-1, 5 mg L-1).  The organic phase contained Cyanex® 272 (0.3 mol L-1) in 

Shellsol® 2046. 
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4.5 Effect of Organic Phase Composition on the Extraction of 
Chromium(III) 

The composition of the organic phase is of primary importance in determining 

the behaviour of a solvent extraction system.  The most important component of 

the organic phase is the extractant.  This is the organic component that actively 

forms an extractable species with the component of the aqueous phase being 

extracted.  The choice of extractant will determine the conditions under which 

extraction of the desired species occurs and the separation that may be achieved 

from other species in solution.  The extraction behaviour of chromium(III) with a 

range of acidic organophosphorus extractants is examined in Chapter 4.5.1.  The 

concentration of the extractant also affects the extraction behaviour.  This is 

considered in Chapter 4.5.2. 

Other components of the organic phase also have a role to play.  The diluent, 

which is normally the largest constituent by volume, often determines the 

physical properties of the organic phase.  The diluent may also affect the 

stability of the organic phase during continuous operation.  The effect of 

diluents with different organic characteristics is discussed in Chapter 4.5.3. 

In some instances a phase modifier may be used.  This component often serves 

to increase the solubility of the extractant in the diluent and may also decrease 

the time required for phase separation.  Phase modifiers were not used, except 

when it was necessary to match the conditions used by previous workers, in 

order to keep the system under investigation as simple as possible.  No 

significant solubility or phase separation problems due to the organic phase 

were noted during extraction experiments. 

The extractant, diluent and any modifier required may all degrade during 

continuous operation.  This may be due to exposure to entrained oxygen during 

mixing, oxidising agents in the aqueous phase, UV irradiation or the action of 
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micro-organisms.  The presence of degradation products commonly produces a 

reduction in the effective separation of metals. 

To minimise the formation of degradation products, a sacrificial reductant (anti-

oxidant) may also be added to the organic phase.  Solvent extraction systems 

involving acidic extraction of metals often use butylated hydroxytoluene (BHT 

or the trade name Ionol®) as the anti-oxidant.  This chemical has the advantage 

that its degradation products are soluble in the aqueous phase, so may be 

washed out of the system.  As no continuous experiments were performed, 

Ionol® was not used during experiments on extraction of chromium(III). 

4.5.1 Effect of Acidic Organophosphorus Extractant on Extraction of 
Chromium(III) 

Extraction with D2EHPA required a longer contact time to reach apparent 

equilibrium.  A contact time of 30 minutes was used for all experiments where 

D2EHPA was the extractant.  A contact time of 30 minutes was also used for 

extraction experiments with Cyanex® 301 to ensure sufficient time for extraction 

was allowed. 

The effect of the chosen extractant within the family of acidic organophosphorus 

extractants is shown in Figure 4-22.  The extraction of chromium(III) with D2EHPA 

occurs, as expected on the basis of its lower pKa value, at lower pH than 

extraction with Cyanex® 272.  The extent of extraction was the same.  Cyanex® 301 

did not extract chromium(III) in the pH range 2–5.  This was consistent with the 

finding of Singh et al. (1999) up to pH 4.3.  However the conditions used in the 

present study were the first to use a sulphate-containing aqueous phase and also 

used a higher extractant concentration than previous work. 

Cyanex® 302 was not considered as it is unstable in industrial solutions limiting 

its commercial use (Personal Communication, G. M. Ritcey March 2001).  It has 
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been reported that less than 5% of chromium(III) was extracted by Cyanex® 302 at 

pH less than 3 (Saily et al. 1996). 

The extraction of chromium(III) with D2EHPA reported in the present work was 

the first under these experimental conditions.  Extraction of chromium(III) with 

D2EHPA has previously been reported from a range of solutions (see e.g. Kimura 

1960; Islam & Biswas 1979b; Pandey, Cote & Bauer 1996).  The range of 

experimental conditions used has led to a range of results being published.  The 

general behaviour of chromium(III) reported under comparable conditions was 

similar to that reported in the present work. 

Despite the effective extraction of latter first-row transition elements by Cyanex® 

301, the lack of extraction of chromium(III) was plausible when considered from a 

hard-soft acid-base viewpoint (Huheey 1983).  Chromium(III) is considered a 

hard acid and as such would prefer contact with a hard base.  The functional 

group of Cyanex® 301 containing sulphur is soft, certainly much softer than the 

oxygen that the aqueous chromium(III) is surrounded by (Huheey 1983).  The 

preference of chromium(III) to form a complex with oxygen-containing rather 

than sulphur-containing ligands is also shown by the hexaaqua chromium(III) 

complex being stronger than the chromium(III) diethyldithiophosphate complex 

(Huheey 1983). 

A previous study on the extraction of first-row transition metals between 

chromium(III) and zinc(II) with Cyanex® 301 indicated that chromium(III) and 

manganese(II) do not show significant extraction whereas heavier metals all 

showed at least 80% extraction (Singh et al. 1999).  This is also consistent with the 

product information for Cyanex® 301, which suggests that this extractant be used 

for the extraction of zinc, (a soft, late-transition metal) from calcium (a hard, 

alkaline-earth metal) (Cyanex® Extractants). 
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Figure 4-22.  The extraction of chromium(III) from sulphate solution with various acidic 

organophosphorus extractants. 

Aqueous phase: Cr(III) 2×10-4 mol L-1, −2
4SO  0.1 mol L-1; 

Organic phase: Extractant as shown, 0.3 mol L-1 in Shellsol® 2046. 
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4.5.2 Effect of Extractant Concentration on the Extraction of 
Chromium(III) 

The effect of Cyanex® 272 concentration on the distribution coefficient of 

chromium(III) in the absence of sulphate is shown in Figure 4-23.  The data 

shown in the figure indicates that increasing the extractant concentration caused 

a decrease in the pH of chromium(III) extraction.  These results were in general 

agreement with Equation 4-4 proposed by Ritcey and Ashbrook (1984): 

 
n

n

D )(H
)HA(

KD
+

=  (4-4) 

This equation indicates that the distribution coefficient, D, is dependent on the 

extractant concentration in the organic phase and the pH of the aqueous phase, 

where KD is an extraction constant.  When plotted as the logarithmic function 

(Figure 4-23), a ten-fold increase in extractant concentration should move the 

pH0.5 value by 1 pH unit.  The shift in pH shown in Figure 4-23 was 1.2 pH units, 

close to the expected value of unity but indicative of other influences on the 

extraction behaviour of chromium(III). 

The change in observed slope of the lines in Figure 4-23, from 2.6 to 1.6, with 

increasing pH indicated the involvement of several species, probably 

hydrolysed chromium(III), in the extraction.  The behaviour averages that of 

Cr(OH)2+, which would produce a slope of 2.  However the active species is 

better represented as +− j)(3
jCr(OH)  where j is 0, 1 or 2, which would produce a 

range of slope values. 

The application of Equation 4-4 requires a number of assumptions which may 

not be satisfied in the present system.  Unlike many metals, chromium(III) 

undergoes significant hydrolysis reactions without forming an insoluble 

precipitate.  This behaviour violates one of the assumptions underlying 

Equation 4-4, that no significant metal hydrolysis occurs(Ritcey & Ashbrook 

1984). 
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Figure 4-23.  The effect of Cyanex® 272 concentration on the distribution coefficient (D) of 

chromium(III) in the absence of sulphate. 

Aqueous phase: Cr(III) 1×10-3 mol L-1; 

Organic phase: Cyanex® 272 (concentration as shown) in Shellsol® 2046. 
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The observed shift in pH0.5 value and the change in the slope of the lines 

indicated non-ideal behaviour, although still in general agreement with the 

predicted behaviour, a higher extractant concentration results in a lower 

extraction pH. 

In the presence of sulphate anions there was noticeable curvature in plots 

showing the effect of extractant concentration on the distribution coefficient of 

chromium(III) (Figure 4-24).  The existence of this curvature indicated a more 

complex system for chromium(III) than has been previously observed for other 

metals.  The curvature was more pronounced at higher extractant concentrations 

and therefore was unlikely to be due to saturation of the organic by the metal.  

The sulphate concentration did not affect the curvature as shown in Figure 4-25 

where the same curvature is observed from solutions containing 0.1 and 

0.3 mol L-1 sulphate anions. 

These data suggest that the presence of sulphate anion was required for the 

curvature to be observed but the curvature was especially notable at higher 

extractant concentration.  The requirement of the sulphate anion for the 

curvature to be observed may be due, as was suggested in Chapter 4.4.3, to the 

formation of chromium(III) sulphate species. 
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Figure 4-24.  The effect of Cyanex® 272 concentration on the distribution coefficient (D) of 

chromium(III) in the presence of sulphate. 

Aqueous phase: Cr(III) 1×10-3 mol L-1, −2
4SO  0.33 mol L-1; 

Organic phase: Cyanex® 272 (concentration as shown) in Shellsol® 2046. 

Figure 4-25.  The effect of sulphate concentration on the distribution coefficient (D) of 

chromium(III) at high constant Cyanex® 272 concentration. 

Aqueous phase: Cr(III) 1×10-3 mol L-1, −2
4SO  concentration as shown; 

Organic phase: Cyanex® 272 0.5 mol L-1 in Shellsol® 2046. 
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4.5.3 Effect of Organic Diluent on Extraction of Chromium(III) 

The choice of an aliphatic or aromatic organic diluent had a minor effect on the 

extraction behaviour.  This is shown in Figure 4-26.  The extent of extraction was 

similar and the pH0.5 values differ by only 0.2 units (hexane 5.36 to Shellsol® 2046 

5.56). 

At constant pH the distribution coefficient for chromium(III) was higher when 

hexane, a pure aliphatic, was used as the diluent.  This is shown in Figure 4-27.  

The behaviour of Shellsol® 2046 which contains 20% aromatics and xylene, a pure 

aromatic diluent was similar.  Preston (1982) found that heptane, an aliphatic 

diluent, gave higher extraction than xylene for cobalt and nickel and the higher 

extraction for aliphatic diluents is now extended to chromium(III) by the present 

work. 

Although the choice of diluent has only a small effect on the chemical behaviour 

of chromium(III) with Cyanex® 272, the physical properties of the extraction 

system may be altered significantly by the choice of diluent as it is the largest 

volume component of the organic phase.  In the present system a slightly better 

phase separation was observed with hexane, an aliphatic diluent.  Continuous 

testing is necessary to assess the stability of the diluent in contact with the 

aqueous phase and the effect of any degradation products on either the physical 

or extraction properties of the system.  There is some agreement that an aliphatic 

diluent is preferable with respect to stability, however the capital and operating 

costs also need to be considered in a commercial operation. 
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Figure 4-26.  The effect of organic diluent on the extraction of chromium(III) from sulphate 

solution with Cyanex® 272. 

Aqueous phase: Cr(III) 1×10-3 mol L-1, −2
4SO  0.33 mol L-1; 

Organic phase: Cyanex® 272 0.32 mol L-1 in diluent as shown. 

 

 

Figure 4-27.  The effect of organic diluent on the distribution coefficient (D) of chromium(III) 

from sulphate solution with Cyanex® 272. 

Aqueous phase: Cr(III) 1×10-3 mol L-1, −2
4SO  0.33 mol L-1; 

Organic phase: Cyanex® 272 0.32 mol L-1 in diluent. 
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4.6 Changes in an Organic Phase Loaded with Chromium(III) 

The organic phase takes on the blue colour of the chromium(III) (1×10-2 mol L-1) 

feed solution when initially loaded.  Observation of the same colour in both the 

aqueous and freshly loaded organic phase indicates that the inner coordination 

sphere of the metal is unchanged.  If the organic phase was allowed to stand for 

approximately 24 hours a green organic solution was observed.  This colour is 

characteristic of octahedrally coordinated chromium(III) (Nannelli, Gillman & 

Block 1971).  The UV-Visible spectra of the initial and aged solutions are shown 

in Figure 4-28.  There was a clear shift in the wavelength of the peak maxima 

from 410-20 to 450 nm and from 580 to 620 nm.  The shoulder near 685 nm is 

also enhanced in the aged spectra.  Aggett and Udy (1970) reported a change in 

the UV-Vis spectrum peaks from 412 nm and 570 nm to 448 nm and 628 nm 

respectively which are close to the observed values in the present work.  These 

authors attributed the observed changes to a change in the structure of the 

extracted chromium(III) species in the organic phase. 

The same colour change was observed when the organic phase was heated on a 

steam bath but the colour development was much faster appearing complete in 

approximately 10 minutes.  The UV-Visible spectra of heated solutions was 

similar those for solutions aged for 24 hours at room temperature indicating the 

same change in the nature of the extracted species.  No study on the extraction 

of chromium(III) has previously reported a change in the colour of an organic 

phase containing an acidic organophosphorus extractant with solution age.  In 

the present work the same colour change was observed with Cyanex® 272 or 

D2EHPA as the extractant although UV-Visible spectra were only recorded for 

Cyanex® 272. 
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Figure 4-28.  UV-Visible spectra of chromium(III) in the aqueous and organic phase under 

various aging conditions. 

Cr(III) 1×10-2 mol L-1, Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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At room temperature a noticeable cloudiness in the loaded organic phase 

developed as the solution aged.  The cloudiness could be removed by passing 

the organic phase through Whatman® 1PS phase separation paper suggesting 

that the cloudiness was due to water in the organic solution.  The appearance of 

water in the organic phase suggested that water was expelled from the extracted 

chromium(III) species as the solution aged. 

These observations clearly indicate that after extraction of chromium(III) with an 

acidic organophosphorus extractant, either Cyanex® 272 or D2EHPA, a slow 

reaction takes place in the organic phase resulting in a different form of the 

extracted species.  The transition to a different species is also suggested by the 

change in stripping behaviour discussed in Chapter 4.10.4 where complete 

stripping of a freshly loaded organic phase is achieved but no stripping could be 

achieved with an aged organic phase. 

Previous work on the extraction of chromium(III) with other extractants has also 

reported a change in the UV-Visible spectrum: Aggett and Udy (1970) with TBP 

as the extractant; and Flett and West (1970) with Primene JMT™ as the 

extractant.  Aggett and Udy (1970) also found that the change in colour of the 

loaded organic phase made chromium(III) inert to stripping.  A change in the 

nature of the extracted species may explain the reported difficulty in stripping 

loaded chromium(III) from a range of extractants.  The age of the organic phase 

used in stripping experiments was rarely specified. 

The change in the spectra of the organic phase indicated a change in the ligand 

structure or type surrounding the metal centre.  Chromium(III) shows almost 

exclusively octahedral coordination in the aqueous phase (Cotton & Wilkinson 

1988) and the same would be expected in organic solutions.  The change in the 

structure of the extracted species could account for the change in UV-Visible 

spectra. 
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4.7 Nature of the Extracted Chromium(III) Species 

Direct determination of the extracted species in the organic phase was not 

possible even though a variety of techniques were utilised.  Attempts to 

crystallise a sample by evaporation of solvent produced only a viscous or semi-

solid mass unsuitable for X-ray crystallography.  A spectrum could not be 

obtained using Fourier transform-Raman spectroscopy due to self-absorption in 

the highly coloured solutions.  Spectra could be obtained using near infra-red 

spectroscopy however the extracted species could not be separated from the 

excess extractant either in the observed spectra nor using silica-gel chroma-

tography.  Nuclear magnetic resonance (NMR) spectroscopy could not be used 

due to the paramagnetic properties of chromium. 

Thus the determination of the extracted chromium(III) species is dependent on 

indirect methods of analysis drawn from the literature. 

It is evident from the preceding discussions on the effect of anion type, 

especially sulphate, that the presence of complexing anions has some effect on 

the complex transferred to the organic phase.  In the absence of sulphate and at 

low chromium(III) concentration the slope of the log D vs. pH curves (Figure 

4-23) was approximately 2 as summarised in Table 4-5. 

Table 4-5.  Slope and pH0.5 data extracted from Figure 4-23, the extraction of 

chromium(III) from nitrate solutions with Cyanex® 272. 

[Cyanex® 272] 0.5 mol L-1 0.3 mol L-1 0.1 mol L-1 0.05 mol L-1 

pH0.5 4.03 4.35 5.02 5.19 

Slope 2.56 2.08 1.86 1.60 

 

The decrease in the observed slope with increase in pH0.5 is consistent with 

increasing involvement of hydrolysed chromium(III) species in the extraction 

reaction.  The predominant form of chromium(III) in the aqueous phase changes 

as the pH of the solution changes with higher concentrations of Cr(OH)2+ and 
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+
2Cr(OH)  cations existing at higher pH, especially at low metal concentration 

(Baes & Mesmer 1976). 

The hydrolysed chromium(III) species appear similar to the form suggested by 

Islam and Biswas (1979b) for the extraction of chromium(III) with D2EHPA as the 

extractant.  This is shown in Equation 4-5: 

22
)(3 A1.5HCr(OH) ++− j

j   +−++ )H(3OHCrA 23 jj  (4-5) 

where j = 0, 1 or 2 and H2A2 is dimerised D2EHPA.  In another paper Islam and 

Biswas (1979a) proposed the involvement of hydrolysed species in the extraction 

mechanism due to the significantly faster kinetics of Cr(OH)2+ compared to Cr3+.  

The same authors also suggested that the mononuclear chromium(III) species 

was involved in the rate-determining step of the reaction despite the probable 

formation of Cr-O-Cr bridged structures in the aqueous phase (Islam & Biswas 

1979a; Cotton & Wilkinson 1988).  The higher pH required for extraction of 

chromium(III) with Cyanex® 272 compared to extraction with D2EHPA increases 

the importance of hydrolysed chromium(III) species. 

An additional consideration in the determination of the extracted species is the 

unchanged nature the metal coordination sphere suggested by the similar 

spectra of the aqueous and freshly loaded organic phase (Figure 4-28).  This 

suggests that the hydrolysed species [Cr(OH)x(H2O)(6-x)](3-x)+ (where x is 0, 1 or 2) 

is transferred to the organic phase without undergoing any change.  This 

requires that the extractant is acting in the outer coordination sphere of the 

metal to form an organophilic ion pair. 

The unchanged nature of the inner coordination sphere also suggests that the 

extraction reaction is much faster than exchange of ligands in the inner 

coordination sphere of chromium(III).  This is consistent with the known inert 

nature of the chromium(III) cation in aqueous solution (Cotton & Wilkinson 

1988). 
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The nature of the extractant as it exists in the organic phase may also affect the 

nature of the extracted species.  Di-alkyl organophosphorus extractants (HA) 

have been shown to exist as the dimer in organic solutions (Ritcey & Ashbrook 

1984; Sole & Hiskey 1995) and this was assumed to be carried through to the 

extracted species at low metal loadings (Ritcey & Ashbrook 1984) as shown in 

Equation 4-6: 

2(HA)M nn ++   ++⋅ HHA)M(A nn   (4-6) 

At high metal loadings the simpler form of the equation (Equation 4-7) is 

generally assumed to dominate. 

HAM nn ++   ++ HMA nn   (4-7) 

There is little agreement about which equation applies.  Preston (1982) extends 

the low loading assumption (Equation 4-6) to metal loadings of 0.1 mol L-1 

whereas Islam and Biswas (1979b) assumed high metal loading (Equation 4-7) at 

a metal loading of 4×10-3 mol L-1 even though the concentration of the extractant 

was nearly the same in both works. 

On the basis of the known strong interaction between Cyanex® 272 molecules 

(Tokhadze et al. 1997; Gonzalez et al. 1998) and the known existence of Cyanex® 

272 dimers in the organic phase (Sole & Hiskey 1992) it seemed reasonable to 

adopt a dimerised extractant model in the present study.  Additionally, the low 

metal to extractant ratio used throughout the present study meant that excess 

extractant was always available for dimer formation. 

The equations describing metal extraction outlined by Sole and Hiskey (1992) 

were used to calculate the dependence of the extracted species on the extractant 

concentration (Equation 4-8 and 4-9): 

2(HA)M mn ++   +
− + H(HA))M(HA )2(2 nnmn  (4-8) 

logD(HA)logpH 20.5 −−= mn   (4-9) 

From Equation 4-9 a plot of pH0.5 against 2(HA)log  should give a straight line of 

slope –m/n.  This plot is shown in Figure 4-29 from which the slope is 
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determined as –1.2.  The calculated matrix of m and n values are shown in Table 

4-6. 

Table 4-6.  Calculated values of m using data from Figure 4-29.  The x and n 

values are equivalent methods of establishing the species Mn+. 

x Species Mn+ n m 

0 [Cr(H2O)6]3+ 3 3,4 

1 [Cr(OH)(H2O)5]2+ 2 2,3 

2 [Cr(OH)2(H2O)4]+ 1 1,2 

A value of n equal to 1 or 2 was most likely in this pH range as discussed in 

Chapter 1.1.  However at the highest reported extractant concentration 

(0.5 mol L-1) the large excess of extractant and the lower pH of extraction enable 

the formation of extractable species with n = 3.  This is demonstrated by the 

intermediate slope value of 2.6 observed at this extractant concentration (Table 

4-5).  When the extractant concentration was 0.3 mol L-1, the most commonly 

used experimental conditions, an n value of 2 was predominant. 

The metal species, Mn+, in Equation 4-8 is the hydrolysed chromium(III) species 

[Cr(OH)x(H2O)(6-x)](3-x)+ (where x is 0, 1 or 2) as discussed earlier.  Substituting the 

metal species formed (Table 4-6) and the matrix of n and m values into Equation 

4-8 results in the species shown in Figure 4-30.  For a given n value the only 

difference in structure with a higher m value, is the inclusion of an intact 

Cyanex® 272 dimer in the extracted species.  An intact dimer would probably be 

lost from the outer coordination sphere once the extracted species was in the 

bulk organic solution. 

The species suggested in Figure 4-30 provide a different interpretation of the 

nature of the extracted chromium(III) species than the formation of CrA3 as the 

extracted complex with D2EHPA suggested by Islam and Biswas (1979b).  In fact, 

the extracted species suggested in the present work is novel, providing an 

alternative view on the development of the extracted chromium(III) species with 

Cyanex® 272 as the extractant. 
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Given the range of experimental slope values obtained for chromium(III) and 

known presence of a range of chromium(III) species it was reasonable to assume 

that a mixture of species formed in the organic phase.  Additionally changes in 

experimental conditions, especially the amount of available extractant, may 

change the complexes formed.  As the total loading of the organic phase 

increases the presence of unreacted dimers decreases, as does the available 

excess extractant needed to form an extractable species with deprotonated 

dimers. 

This may lead to the simpler extracted species proposed by many workers at 

higher loadings. 
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Figure 4-29.  Plot of pH0.5 for extraction of chromium(III) with Cyanex® 272 against extractant 

concentration. 

Aqueous phase: Cr(III) concentration as shown; 

Organic phase: Cyanex® 272 in Shellsol® 2046. 
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Figure 4-30.  Possible structures of the extracted chromium(III) species, by substitution of 

generated data into )2((HA))2M(HA nmn − . 

(I) n = 3, m = 3; (II) n = 3, m = 4; (III) n = 2, m = 2; (IV) n = 2, m = 3; (V) n = 1, m = 1; (VI) 

n = 1, n = 2. 
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4.8 Nature of the Stable Organic Chromium(III) Species 

The present work suggested that the extracted species usually incorporates a 

monomeric, hydrolysed chromium(III) centre, unchanged from the aqueous 

phase, with sufficient extractant to form an ion pair soluble in the organic phase 

(Figure 4-30).  A dimer model for the extractant behaviour has been assumed as 

described in Chapter 4.7.  The evidence presented in Chapter 4.6, that a species 

with different UV–Visible spectra forms when the loaded organic phase is 

allowed to stand or is heated, suggests that a stable chromium(III) species was 

formed in the organic phase that was different to the extracted species. 

The expulsion of water during the formation of the stable organic species 

suggests that the inner coordination sphere of the chromium(III) metal centre is 

being exchanged for components of the organic phase.  The nature of the change 

from the initially extracted to the stable organic species will be postulated from 

the known behaviour of chromium(III). 

The immediate suggestion is the attachment of the extractant molecules from the 

outer coordination sphere of the extracted species directly to the chromium(III) 

centre.  The intact dimers associated with some of the extracted species are 

thought to be lost once the extracted species enters the bulk organic solution so 

are not incorporated in the stable species.  This rearrangement would produce 

the species shown in Figure 4-31. 

A further possibility is the formation of tightly bound CrA3 species with the 

extractant acting as a bi-dentate ligand (Figure 4-32), either directly from the 

extracted species or via the structures shown in Figure 4-31.  The tris-bidentate 
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Figure 4-31.  Possible stable species in the organic phase formed by extractant molecules in 

the outer coordination sphere attaching directly to the chromium(III) centre. 

(I) x = 0; (II) x = 1; (III) x = 2. 

 

 

 

Figure 4-32.  The structure of tris-bidentate CrA3 where A is de-protonated bis(2,4,4-

trimethylpentyl) phosphinic acid (Cyanex® 272). 
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structure CrA3 is the previously suggested form of the extracted chromium(III) 

species with D2EHPA (Islam & Biswas 1979b; Pandey, Cote & Bauer 1996).  There 

is no previously published extracted species for solvent extraction of 

chromium(III) with Cyanex® 272.  However the work of Navarro Mendoza et al. 

(2000) suggested that during ion exchange of chromium(III) the extracted species 

after 24 hours was Cr(OH)(H2O)A2 where A is a bi-dentate Cyanex® 272 

molecule.  Given the long contact time used in this work the defined extracted 

species may be similar to the stable species in the present work.  The likelihood 

of forming stable species containing bi-dentate ligands increases as the total 

extractant loading increases. 

A different option is the formation of a range of polymeric chromium(III) species.  

Chromium(III) is known to form multinuclear species in the aqueous phase 

(Laswick & Plane 1959) and polymeric species of other metals and extractants 

are known to exist in the organic phase (Crabtree & Rice 1974; Sato & Ueda 

1974).  It was therefore plausible that polymeric chromium species form in the 

organic phase.  This has been suggested by some previous workers (Aggett & 

Udy 1970; Pandey, Cote & Bauer 1996) to explain a variety of observations 

although without experimental data. 

Nannelli, Gillman and Block (1971) proposed that a range of chromium(III) 

phosphinate polymers could be formed.  Earlier work (Block et al. 1962) 

suggested that a bridging rather than a bi-dentate structure was favoured while 

linear chains without significant cross-linking were also more likely (Nannelli, 

Gillman & Block 1971).  The range of structures, shown in Figure 4-33, were 

produced under harsher conditions than those used in the present work, 

although production under mild conditions in inert solvents has been observed 

(Block et al. 1962).  The production of such species appears consistent with the 

observations of the present work, in particular the maxima in the visible spectra 

at 450 and 620 nm are similar. The most recent work by this group suggested 

that structure (I) may be predominant (Gillman & Nannelli 1977). 
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Figure 4-33.  The structures proposed for chromium(III) phosphinic acid polymers by 

Nannelli, Gillman and Block (1971).  Similar species to some of these may be inferred in 

the current work. 
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The available evidence does not directly identify the nature of the stable 

chromium(III) species in a loaded organic phase containing Cyanex® 272 for the 

reasons discussed previously.  Thus the proposed changes draw on the 

understanding of the behaviour observed in the present work and the 

previously published literature.  The formation of a mixture of all the suggested 

stable species cannot be ruled out, especially the transition from the species 

formed from attachment of the outer coordination sphere components (Figure 

4-31) to a polymeric structure (Figure 4-33).  Conversely the bi-dentate extractant 

model (Figure 4-32) has been proposed previously and is consistent with the 

generally accepted model of extracted species formation. 

4.9 Extraction of Chromium(VI) 

It is reasonable to suggest that chromium(VI) in the pH range 0–7 would show 

different behaviour to chromium(III).  In particular the neutral or anionic species 

formed by chromium(VI) in this pH range would be expected to produce 

different reactions to the cationic species formed by chromium(III).  This was 

confirmed in this part of the present work. 

4.9.1 Extraction of Chromium(VI) from Sulphate or Chloride Solutions 

The extraction curve of chromium(VI) from sulphate or chloride-containing 

solutions with Cyanex® 272 is shown in Figure 4-34.  There was no difference in 

the extraction behaviour between the sulphate and chloride solutions.  This 

confirmed some of the observations of Rao and Prasad (1988) who found that 

the extraction of chromium(VI) from acid solution was independent of the acid 

type. 
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Figure 4-34.  Extraction of chromium(VI) from sulphate and chloride solutions with Cyanex® 

272. 

Aqueous phase: Cr(VI) 0.01 mol L-1, anion as shown 0.1 mol L-1; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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Unlike chromium(III), significant extraction of chromium(VI) does not occur at 

pH greater than 2 suggesting that the neutral chromic acid, 42CrOH , was 

involved in the transfer.  The acid/base equilibria shown in Equations 4-10 and 

4-11 establish that the neutral species becomes significant at about pH 2 and 

increases in concentration as the pH decreases.  This was consistent with the 

modelling of Huang, Huang and Chen (1997) where chromic acid was proposed 

to exist in the pH range –1 to 2.  The extraction of chromium(VI) with Cyanex® 

272 increases with increasing acidity of the aqueous phase due to the increasing 

proportion of chromic acid present in the system. 

42CrOH   +− + HHCrO4  Ka 1.8×10-1 (4-10) 

−
4HCrO   +− + HCrO4

2  Ka 3.2×10-7 (4-11) 

The extraction of the neutral molecule was consistent with the independence of 

the extraction behaviour on anion type in the aqueous phase.  At pH 2, despite 

the low levels of chromic acid naturally present in the system, significant 

extraction of this species was possible with long contact times as transfer of 

chromic acid to the organic phase caused the aqueous equilibrium of the system 

to produce more of the neutral species as shown in Equation 4-10. 

The extraction of neutral metal species by bis(2,4,4-trimethylpentyl) phosphinic 

acid is not generally accepted.  However Cyanex® 272 contains a significant 

amount of phosphine oxide impurity (Sole & Hiskey 1992) and neutral organo-

phosphorus extractants have been shown to extract chromium(VI) under a range 

of conditions (Cuer, Stuckens & Texier 1974; Murty, Rao & Sastri 1981; Bolt, Tels 

& Van Gemert 1984; Ohki et al. 1986; Huang, Huang & Chen 1997). 

The yellow/orange colour of the aqueous phase was transferred to the organic 

phase during extraction suggesting that, similar to the extraction of 

chromium(III), the inner coordination sphere of the metal was unchanged.  This 

is consistent with workers using neutral organophosphorus extractants who 

suggested a solvation mechanism for the extraction of chromium(VI) (Huang, 
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Huang & Chen 1997) and the strong oxo species of chromium(VI) (Cotton & 

Wilkinson 1988). 

The inability of Cyanex® 272 to extract anionic species and the previously 

observed extraction of chromium(VI) by species similar to an impurity found in 

the commercial extractant, suggest that extraction of chromium(VI) with 

Cyanex® 272 may be due to the presence of the neutral phosphine oxide impurity 

in commercially supplied Cyanex® 272.  Attempts to purify the extractant 

according to the method of Hu, Pan and Fu (1995) were unsuccessful.  Although 

it would be interesting to know the component responsible for extraction, from 

an operational viewpoint it is not normally relevant as it is not practical to use a 

purified extractant, i.e. if the commercially supplied product extracts the metal 

then metal extraction is considered to occur regardless of the molecule involved. 

4.9.2 Effect of Temperature on Chromium(VI) Extraction at High pH 

To determine whether chromium(VI) could be extracted under conditions used 

in the cobalt extraction circuit at Bulong Nickel Operation (BNO), a series of 

experiments were performed at 40 °C to assess the effect of temperature on 

chromium(VI) extraction.  These experiments were limited to a pH range of 3–5.8 

i.e. the designed operating pH of BNO’s cobalt extraction circuit.  The aqueous 

phase contained chromium(VI) (1×10-2 mol L-1) and 0.1 mol L-1 of both sulphate 

and chloride ions.  The organic phase contained Cyanex® 272 (0.32 mol L-1, 

10 vol%) in Shellsol® 2046.  No extraction of chromium(VI) was observed under 

these conditions.  This supports the earlier suggestion that chromium(VI) 

speciation determined by aqueous phase pH is the dominant factor in 

determining the extraction efficiency. 



4.9  Extraction of Chromium(VI) 

 142

4.9.3 Extraction of Chromium(VI) from Industrial PLS 

To further assess whether chromium(VI) could be extracted under conditions 

used in the cobalt extraction circuit at BNO, a sample of cobalt pregnant liquor 

stream (PLS) was spiked with chromium(VI) (5×10-3 mol L-1, 250 mg L-1).  The 

organic phase contained Cyanex® 272 (0.32 mol L-1) and Ionol® (1 g L-1) in 

Shellsol® 2046.  Ionol® is used as an anti-oxidant in the industrial organic phase 

which contacts the PLS.  These experiments were performed at 40 °C in the pH 

range 2.6–6.5.  These conditions provided the most accurate batch replication of 

the cobalt extraction circuit at BNO.  Within the pH range investigated no 

extraction of chromium(VI) was observed.  This clearly demonstrated the 

inability of Cyanex® 272 to extract chromium(VI) during normal operation of the 

BNO cobalt solvent extraction circuit. 

The results of the present study extend the published data for the extraction of 

chromium(VI) with Cyanex® 272 in the range of conditions frequently utilised for 

the commercial application of this extractant.  Previously published studies did 

not investigate extraction of chromium(VI) at pH values greater than 2.  The 

present study newly examined the pH range 2–6.5 and reports no extraction of 

chromium(VI).  The present work was in agreement with previous studies in the 

pH range 0.7–2, where extraction of chromium(VI) was found to occur. 

4.9.4 Effect of UV Irradiation on Chromium(VI) Extraction 

The effect of UV irradiation, as encountered in a windowed laboratory, was 

examined by carrying out a series of experiments in a darkened room.  No 

difference in extraction behaviour between samples of chromium(VI) exposed to 

UV during extraction and extracted under darkened conditions was noted near 

pH 2 in sulphate solution.  This is shown in Figure 4-35.  The offset between the 

two curves is at the upper end of the estimated error range but is approximately 

the correct magnitude for the difference in pH at which they were obtained.  The 
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Figure 4-35.  The effect of contact time on the extraction efficiency of chromium(VI) with 

Cyanex® 272 in the presence and absence of UV radiation. 

Aqueous phase: Cr(VI) 0.01 mol L-1, −2
4SO  0.1 mol L-1; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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absence of a plateau in the extraction efficiency was due to the driving of the 

chromic acid equilibrium by removal of H2CrO4 as discussed previously 

(Equation 4-10).  The effect of UV irradiation is relevant to the operation of many 

solvent extraction circuits as very few are closed systems.  The cobalt extraction 

circuit at BNO has mixer units that are open to atmosphere and exposed to direct 

sunlight. 

4.9.5 Oxidation of the Organic Phase by Chromium(VI) 

On the basis of solution colour, it appeared that an organic phase loaded with 

chromium(VI) and allowed to stand for 24–48 hours reduced chromium(VI) to 

chromium(III).  This suggested that at least one of the organic phase components 

was oxidised.  There was no available method of confirming the chromium 

oxidation state in the organic phase.  The UV-Visible spectra of freshly loaded 

and aged organic phases, initially containing chromium(VI) and chromium(III), 

are shown in Figure 4-36 and Figure 4-37.  Despite the differences between 

spectra of chromium(VI) and chromium(III) in the freshly loaded samples (Figure 

4-36), the spectra of the aged samples (Figure 4-37) were barely distinguishable 

with respect to peak position and shape. 

Oxidation of the organic phase was dependent on chromium(VI) being loaded 

onto the organic phase and being allowed to remain there i.e. no colour change 

was observed in the aqueous phase when extraction did not occur.  The 

conditions required for extraction of chromium(VI) should not occur when 

Cyanex® 272 is being used for nickel–cobalt separation.  The determination of 

oxidation products in the organic phase is an analytical problem which has 

generated research projects on its own account (Hughes 2000). 

A variety of techniques were attempted in order to determine the presence of 

oxidation products in the organic phase in the present work.  Gas 

chromatography was used to separate the organic components.  Mass 
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Figure 4-36.  The UV-Visible spectra of a freshly loaded organic phase containing chromium. 

Cr 1×10-2 mol L-1, Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 

 

 

 

Figure 4-37.  The UV-Visible spectra of an aged (48 h) loaded organic phase containing 

chromium. 

Cr 1×10-2 mol L-1, Cyanex® 272 0.32 mol L-1 in Shellsol® 2046. 
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spectrometry and atomic emission spectroscopy were used to try and identify 

the separated components.  The presence of the major components could be 

identified but quantitative determination was not possible.  Minor components, 

such as extractant impurities or oxidation products, could not be identified.  The 

relatively low concentration of these products was further complicated as they 

have received insufficient attention to be included in analytical spectra libraries 

making their identification extremely difficult.  As a result of the analytical 

difficulties and in the absence of operational problems directly attributable to 

the presence of oxidation products due to chromium(VI), further work was not 

carried out on their presence or identification. 

4.10 The Stripping of Chromium(III) from Cyanex® 272 

The stripping of chromium(III) from Cyanex® 272 has received little attention in 

the published literature despite the necessity for any commercial operation to be 

able to recycle the organic phase without significant loss of extractant activity.  

Pandey, Cote and Bauer (1996) reported incomplete stripping of high 

chromium(III) loadings but complete stripping of low loadings.  Nearly complete 

stripping of low chromium(III) loadings was also reported by Navarro Mendoza 

et al. (2000) from Cyanex® 272 impregnated resin. 

4.10.1 Effect of Stripping Contact Method 

When stripping chromium(III) from Cyanex® 272 was attempted using the same 

contact method as that used for extraction, the phase separation time 

significantly affected the calculated stripping efficiency.  The variation in 

stripping efficiency with separation time was found to be due to entrainment of 

the stripping solution in the organic phase.  Entrainment gave the organic phase 

a milky appearance that cleared only over a period of days to months.  If both 

phases were filtered, i.e. organic removed from the aqueous and discarded and 
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vice versa, the chromium mass balance was unacceptably low due to removal of 

entrained chromium-containing components. 

The method described in the experimental section (Chapter 3.3.2) for stripping 

experiments eliminated the long and incomplete phase separation observed 

when stripping experiments were conducted using the same contact method as 

extraction experiments. 

The effect of the stripping contact time on stripping efficiency is shown in Figure 

4-38.  The stripping efficiency did not increase with increased contact time in the 

range 10–120 minutes.  This suggested that the stripping reaction was quite fast.  

Pandey, Cote and Bauer (1996) also found that the stripping reaction was 

effectively complete within 10 minutes although only 79% of the loaded 

chromium(III) was removed from the organic phase by hydrochloric acid 

(8 mol L-1).  Although they tried longer contact times, significantly more 

chromium(III) could not be removed from the loaded organic phase. 

The stripping of chromium(III) from an organic phase containing D2EHPA has 

conflicting reports.  Pandey, Cote and Bauer (1996) found similar behaviour to 

Cyanex® 272 while Islam and Biswas (1979a) found that the chromium(III) could 

not be stripped from the organic phase.  The difference in behaviour observed 

by these groups may be attributable to the change in the nature of the extracted 

species as discussed in Chapter 4.8 as the age of the solution was not specified in 

either report. 
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Figure 4-38.  The effect of contact time on the stripping of freshly loaded chromium(III) from 

Cyanex® 272. 

Strip solution: Hydrochloric acid, 2 mol L-1; 

Organic phase: Cyanex® 272 in Shellsol® 2046 containing freshly loaded chromium(III) 

(1×10-2 mol L-1). 
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4.10.2 Effect of Aqueous Phase Composition 

The composition of the aqueous feed solution containing chromium(III) 

appeared to have an effect on the stripping efficiency as shown in Figure 4-39.  

The presence of sulphate (0.1 mol L-1) in the feed solution appeared to depress 

the stripping efficiency when hydrochloric acid was used as the stripping agent. 

It was previously noted (Chapter 4.4.3) that the presence of sulphate anions 

decreased the extraction of chromium(III) due to the formation of chromium(III) 

sulphate complexes.  The formation of such complexes may also play a role in 

the decreased stripping efficiency. 

At this time it was not possible to rule out a contribution to this observation due 

to analytical variations.  The initial organic sample may contain extracted 

sulphate that depresses the analytical result.  The stripped organic phase will 

present a different matrix for analysis as any sulphate will probably be removed 

by the stripping operation. 

4.10.3 Effect of Acid Type and Concentration on Stripping Efficiency 

The effect of the acid type, hydrochloric, sulphuric or nitric, on stripping 

efficiency is shown in Table 4-7.  There was little difference in the stripping 

efficiency between the acids used.  The stripping of chromium(III) from Cyanex® 

272 has only previously been reported with hydrochloric acid.  The present work 

suggested that any mineral acid may be used with similar results on a freshly 

loaded organic phase. 

The data in Table 4-7 also shows that the choice of acid concentration in the 

range 1–4 mol L-1 has little impact on the stripping efficiency.  However if 

incorrect contact conditions were used, then the use of 4 mol L-1 acid produced 

greater entrainment during stripping.  So even though the chemical behaviour of  
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Figure 4-39.  The effect of sulphate in the aqueous phase during loading of the organic 

phase on the stripping of chromium(III) from Cyanex® 272. 

Strip solution: Hydrochloric acid; 

Organic phase: Cyanex® 272 0.32 mol L-1 in Shellsol® 2046 containing 1×10-2 mol L-1 

chromium(III), fresh. 
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different acids may be similar, the use of a lower strength acid may have lower 

associated risk as the physical behaviour of the system was more stable. 

4.10.4 Effect on Stripping Efficiency of Loaded Organic Aging 

The change in the loaded organic species as the organic phase ages, described in 

Chapter 4.6, also affects the stripping efficiency.  If an organic phase loaded with 

chromium(III) was permitted to stand until the changes occurred, stripping 

became low and was not reproducible.  The use of hydrochloric or sulphuric 

acid up to 8 mol L-1 did not strip loaded chromium(III) after the organic phase 

had been allowed to age.  The same effect would be expected if the loaded 

organic phase was heated as the same change in UV-Visible spectrum was 

observed.  The study of Aggett and Udy (1970) on the extraction of 

chromium(III) with tributyl phosphate (TBP) as the extractant reported that a 

loaded organic phase heated for 4 hours on a steam bath was inert to stripping. 

The difference in stripping behaviour between fresh and aged Cyanex® 272 

solutions containing chromium(III) has not been reported previously.  This 

observation may explain some of the conflicting reports in the literature as the 

age of the organic phase is not specified.  The same observations with respect to 

changes in the organic phase as it aged were made with either Cyanex® 272 or 

D2EHPA as the extractant.  Thus the application of the present study may also 

apply to stripping of chromium(III) from D2EHPA. 

The suggested changes on the loaded organic phase as it ages (Chapter 4.6) may 

all produce a species that is more difficult to strip than the extracted species.  

This is especially true of a tightly bound (bi-dentate) or polymeric structure.  The 

change in stripping efficiency as the loaded organic phase ages suggests that 

stripping of chromium(III) is only possible while the chromium(III) retains the 

inner coordination sphere of the extracted species.  Once components of the 
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organic phase have entered the inner coordination sphere of the metal stripping 

is no longer possible. 

4.10.5 Use of Alternative Stripping Solutions 

The present work found that chromium(VI) is not extracted by Cyanex® 272 at pH 

values greater than 2 (Chapter 4.9.1).  It was thought therefore that oxidising the 

chromium(III) to chromium(VI) would strip the chromium from the organic 

phase and this was attempted. 

A standard method for oxidising chromium(III) to chromium(VI) is the use of 

ammonium persulphate (Vogel 1962).  The use of a strip solution containing this 

reagent failed to remove any chromium(III) from the organic phase. 

The number of oxidants to choose from for the oxidation of chromium(III) is 

limited by the required oxidising strength.  The search for a suitable oxidant of 

chromium(III) to chromium(VI) was discontinued due to the lack of appropriate 

literature to serve as a starting point and also the risk of oxidative degradation 

of the organic phase. 

The risk of organic oxidation is especially pertinent, as the oxidative power of 

chromium(VI) is the primary industrial concern about the presence of this metal 

in the aqueous phase.  Addition of another strong oxidant that will oxidise 

chromium(III) to chromium(VI) therefore introduces a further risk to the organic 

phase and hence the attempt to oxidatively strip chromium(III) was abandoned. 
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CHAPTER 5.  SUMMARY AND CONCLUSIONS 

A significant portion of the world’s known nickel reserves occur in laterite 

deposits.  The majority of these deposits may only be economically utilised 

using hydrometallurgical processing with the focus currently on pressure acid 

leaching due to the higher achievable metal recoveries.  However the relatively 

recent commercialisation of this technology means that the downstream 

processing has had little opportunity for development.  The outcome of this is 

the high incidence of previously unconsidered interactions between metals 

found in this type of deposit and downstream processes.  This is of particular 

significance in the direct solvent extraction (DSX) approach where nickel and 

cobalt are separated from the leach solution without intermediate precipitation 

and re-leach stages.  The use of DSX poses some downstream risk as, even with 

metals that are inherent in nickel laterite deposits such as chromium, little work 

has been reported. 

The interaction of chromium and Cyanex® 272, the predominant extractant for 

nickel–cobalt separation in acidic solutions, has only been rarely mentioned in 

the literature with seemingly conflicting results.  The solvent extraction of 

chromium(III) with Cyanex® 272 has been reported from a synthetic industrial 

solution but no other studies confirm this result.  Further this study did not 

provide data which could be logically compared with the solvent extraction 

behaviour of other metals. 

The literature on the solvent extraction behaviour of chromium with extractants 

other than Cyanex® 272, especially other acidic organophosphorus extractants, 

was also reviewed in order to gain a general understanding of chromium 

solvent extraction behaviour.  For various reasons however, the information 

obtained could rarely be applied to the system being investigated. 
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The present work investigated the solvent extraction of chromium with Cyanex® 

272.  The oxidation state of the metal was found to have the greatest influence on 

the extraction behaviour.  They behave so differently that, for clarity, 

chromium(III) and chromium(VI) need to be discussed separately.  For the 

extraction of chromium(III) with Cyanex® 272 it has been observed that: 

• the apparent equilibration time was slower (2–5 minutes) than most first-

row transition metals.  The pH at which the equilibration time is 

determined may affect the reported time owing to the change in 

chromium(III) species associated with change in the extraction pH. 

• the rate of stirring affects the extraction so that good control is necessary 

to generate data that would be meaningfully compared.  This parameter 

is only comparable with identical experimental arrangements and so little 

is gained by comparison with other studies. 

• an increase in the extraction temperature from 22 to 50 °C had negligible 

effect on the extraction efficiency. 

• a lower initial concentration of chromium(III) produced slightly better 

extraction at a fixed pH. 

• extraction from simple solutions occurred in the pH range 3-7.  This was 

the first report of chromium(III) extraction from simple solutions with 

Cyanex® 272. 

• complete extraction could be achieved from all dilute solutions (ionic 

strength less than 1 mol L-1). 

• the pH0.5 increased in the order nitrate < chloride < sulphate when these 

anions were present in solution.  Solutions containing a mixture of anions 

including sulphate show similar behaviour to solutions containing only 

sulphate. 
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• the extraction of chromium(III) from concentrated solutions, in this 

instance an industrial PLS, was ineffective due to precipitation of the 

metal at lower pH than that required for extraction. 

• the presence of acetate anion in the aqueous solution inhibits extraction 

of chromium(III), particularly if the aqueous solution was allowed to 

stand prior to extraction. 

• chromium(III) could be completely extracted from the aqueous phase 

with either Cyanex® 272 or D2EHPA as the extractant but no extraction was 

observed when Cyanex® 301 was used as the extractant. 

• the pH0.5 decreases as the concentration of Cyanex® 272 in the organic 

phase increases. 

• the choice of diluent, aliphatic or aromatic, has a small effect on the 

chemical behaviour but has a greater effect on the physical properties of 

the extraction system.  An aliphatic diluent yielded slightly better 

chemical and physical behaviour. 

• The UV-Visible spectrum of a freshly loaded organic phase is the same as 

the aqueous phase. 

• The UV-Visible spectrum of an aged organic phase is significantly 

different to a freshly loaded organic phase. 

Based upon these observations, conclusions on the behaviour of chromium(III) 

during extraction with Cyanex® 272 have been drawn and are summarised as 

follows. 

• The pH at which equilibration times are determined may affect the 

equilibration time due to a change in the hydrolysis of the chromium(III) 

species with pH and the different kinetic behaviour of the different 

species. 
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• Chromium(III) forms sulphate and acetate species and the formation of 

these species reduces the extraction of the metal at a given pH. 

• The extracted species formed during extraction of chromium(III) with 

Cyanex® 272 can be represented by the general formula: 

[Cr(OH)x(H2O)6-x](3-x)+[(HA2)–](3-x)…[(HA)2]y 

where x = 0, 1 or 2 and y = 0 or 1 and (HA)2 is a Cyanex® 272 dimer. 

• The extracted species undergo further reaction in the organic phase 

yielding a much more stable species that could not be easily stripped.  

This is probably due to the expulsion of water from the inner 

coordination sphere of the metal and its replacement by components of 

the organic phase, most likely the extractant. 

The behaviour of chromium(VI) is significantly different to that of chromium(III).  

For the extraction of chromium(VI) with Cyanex® 272 it was found that: 

• the extraction efficiency is independent of the anions (sulphate or 

chloride) in the aqueous phase. 

• the speciation of the metal in the aqueous phase has the greatest 

influence on the extraction efficiency and is governed by the pH of the 

solution.  Extraction occurs in the pH range 0.7 to 2. 

• within the pH range (3–6) used for nickel–cobalt separation 

chromium(VI) is not extracted from the aqueous phase irrespective of the 

temperature up to 40 °C.  This was observed in both pure and industrial 

liquor.  The presence of an anti-oxidant in the organic phase has, 

similarly, no effect. 

• The UV-Visible spectrum of a loaded organic phase changes as the 

organic phase ages. 
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These observations indicate that: 

• chromium(VI) is extracted by solvation of chromic acid, H2CrO4. 

• if a loaded organic phase is allowed to age then the chromium(VI) is 

reduced to chromium(III) and a component of the organic phase is 

oxidised. 

• No significant oxidation of the organic phase was observed within the 

pH range (3–6) used for the separation of nickel and cobalt. 

As chromium(VI) was not extracted within the pH range of nickel–cobalt 

separation only the stripping of chromium(III) from Cyanex® 272 was 

investigated.  The present work observed that: 

• the composition of the aqueous phase used to load the organic for 

stripping experiments and the contact method of the stripping 

experiments significantly affected the stripping efficiency. 

• complete stripping with 1–4 mol L-1 mineral acids was obtained up to 

10 minutes after extraction. 

• the age of the loaded organic phase affects stripping due to the change in 

the nature of the metal bonding.  Once the aged chromium(III) species 

was formed it could not be removed from the organic phase. 

In general the behaviour of chromium(III) in these solutions was found 

consistent with it being a first-row transition metal.  Although a range of 

chromium(III) hydroxy species extract within the pH range useful for nickel–

cobalt separation, the extracted species can be approximated as +2Cr(OH)  under 

the general conditions of the present work. 

The observed behaviour indicates that control of chromium during industrial 

processing could be achieved by controlling the oxidation potential and pH of 
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the solution.  Such control is essential as it has been demonstrated that 

chromium(III) is an extractable metal and that stable chromium(III) species in the 

organic phase cannot be stripped.  The inability to strip chromium that was 

loaded in either oxidation state will lead to poisoning of the organic phase if 

chromium, especially chromium(III), levels are not controlled in the solvent 

extraction feed material.  With proper control of oxidation potential and pH, the 

presence of chromium in an exploitable nickel laterite resource should not 

hinder processing of the deposit.  Chromium(VI) does not extract with Cyanex® 

272 within the pH range used in the separation of nickel–cobalt. 
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CHAPTER 6.  RECOMMENDATIONS 

The results and observations of the present work have contributed significantly 

to understanding of the solvent extraction behaviour of chromium with Cyanex® 

272.  Like any research work, however, these results and observations have led to 

further questions that are outside the scope of the present work and are 

recommended for further study. 

• Determination of the exact nature of the extracted and stable species 

during solvent extraction by direct measurement. 

• Explore the use of acetate for inhibiting chromium(III) extraction in 

industrial operation. 

• Determine the contribution of chromium(III) precipitation to crud 

formation and increased phase separation times in industrial processing 

liquors. 

• Determination of the exact component of the commercially supplied 

extractant that is active during extraction of chromium(VI). 

• Assess the risk of chromium(VI) induced oxidation of the organic phase 

during continuous operation especially if entrained chromium(VI) is 

carried through to the stripping circuit where more acidic conditions 

exist. 

• Explore the oxidation of chromium(III) to chromium(VI) in the organic 

phase as a means of stripping the stable chromium(III) species from the 

organic phase.  This approach needs to be balanced against the risk of 

damage to the organic phase. 
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• Attempt the stripping of chromium(III) from the organic phase using a 

concentrated solution of a better extracted metal e.g. cobalt, which has 

known stripping behaviour. 

• Assess the use of acetic acid as a stripping agent for the stable organic 

species. 
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APPENDIX 1.  DEFINITION OF ABBREVIATIONS USED 

Abbreviation Definition 

  

x  
Overlining a chemical species indicates it is present in the 
organic phase. 

A:O Volume ratio of aqueous to organic phase 

CCD Counter current decantation 

D Distribution coefficient, 
Aqueous

Organic

[Metal]
[Metal]

 

D2EHPA Di(2-ethylhexyl) phosphoric acid 

DMF N,N-dimethyl formamide, H.CO.N(CH3)2 

DMSO Dimethyl sulphoxide, CH3SOCH3 

EDTA Ethylene diamine tetra acetic acid, a common complexing 
agent in aqueous solution. 

Extraction Efficiency 
(%) 

100
[Metal]

[Metal][Metal]

Feed

RaffinateFeed ×
−

 

M  mol L-1 

M2EHPA Mono(2-ethylhexyl) phosphoric acid 

PAL Pressure acid leach 

PC-88A®, EHEHPA 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester 

pH0.5 
The pH value at which equal metal concentration is found in 
the aqueous and organic phase.  If the A:O ratio is 1 then this 
corresponds to 50% extraction. 

PLS Pregnant liquor stream 

ppm Parts per million defined as the approximation of mg L-1 

r.p.m. Revolutions per minute 

TBP Tributyl phosphate 

TIOA Triisooctyl amine 

TOA Trioctyl amine 

TOPO Trioctyl phosphine oxide 

Vol % 
Relative volume of a component when mixing two or more 
liquids e.g. 10 vol % = 10 mL of component in 100 mL total 
volume. 
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APPENDIX 2.  CONVERSIONS 

Chromium Concentration 

mol L-1 mol L-1 g L-1 mg L-1 

3.85×10-5 4×10-5 0.002 2 

1.00×10-4 1×10-4 0.005 5 

1.92×10-4 2×10-4 0.010 10 

9.62×10-4 1×10-3 0.050 50 

4.81×10-3 5×10-3 0.250 250 

9.62×10-3 1×10-2 0.500 500 

0.019 2×10-2 1 1000 

0.038 4×10-2 2 2000 

0.072 7×10-2 4 4000 
 
 
 

Cyanex® 272 Concentration 

 mol L-1 g L-1 vol % 

5×10-3 1.5 0.16 

1×10-2 2.9 0.32 

5×10-2 14.5 1.6 

0.10 29.0 3.2 

0.30 87.0 9.5 

0.32 92.0 10.0 

0.48 138 15.0 

0.50 145 15.8 

0.63 184 20.0 

0.79 230 25.0 

1.0 290 31.5 
 
 
 

D2EHPA Concentration 

 mol L-1 g L-1 vol % 

5×10-2 16.1 1.7 

0.10 32.2 3.3 

0.30 97.00 10 

0.60 193 20 

0.75 242 25 

1.0 322 33 

1.5 484 50 



 
 
Appendix 3: FORMATION CONSTANTS OF SOME CHROMIUM(III) SPECIES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: For copyright reasons Appendix 3 has not been reproduced. 
 
Data can be found at: http://jess.murdoch.edu.au 
 
(Co-ordinator, ADT Project (Retrospective), Curtin University of Technology, 
1.5.03) 
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