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Abstract  

 

Graphitic carbon nitride (g-C3N4), possessing an excellent chemical stability and tunable 

electronic structure, is a potential photocatalytic material. Different strategies have been 

made to synthesize g-C3N4-based photocatalysts with enhanced photocatalytic activities.  

The aim of this research is focused on photocatalysis of organic pollution in aqueous 

solution for water treatment. Metal oxides, polyometalate, and silver silicate modified 

g-C3N4 photocatalysts have been synthesized using hydrothermal and hydrolysis and 

ion-exchange method. The photocatalysts were characterized by field emission scanning 

electron microscopy (FESEM), X-ray diffraction (XRD), N2 sorption isotherms, 

thermogravimetric analysis (TGA), and UV-vis diffusion reflectance spectroscopy (UV-vis 

DRS). And the catalytic activities of the photocatalysts were evaluated in decomposition of 

pollutants, organic dye and phenol, in water. It is demonstrated that modified 

photocatalysts present better activity than pristine g-C3N4.  
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Chapter 1: Introduction 
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1.1 Motivation 

In the modern era, it has been a significant challenge for providing hygiene water for 

individuals using fresh water for drinking. More than 1000 industrial-origin organic 

compounds have been detected in different sources of water [1]. A variety of hazardous 

organic compounds such as pharmaceuticals, surfactants, flame retardants, fragrances, 

plasticizers and other trace chemicals, which are usually related to human diseases, have 

been detected in discharged wastewater [2]. Every year, over 2-billion people lack of 

suitable sanitation facilities in the world, and over 1.2-million die of diseases related to 

contaminated water in developing countries [3, 4]. Human health therefore has been 

seriously threatened by the organic pollutants in wastewater. 

Natural organic matter (NOM), including microbial secretions and animal waste, and 

Synthetic organic compounds (SOCs), existence in industrial, agricultural, domestic 

discharged wastewater, are two mainly sources of organic compounds in wastewater. 

Compared to NOM, SOCs have been evaluated as the major pollutants in water, over 50% of 

water pollutants were due to sewage water discharged into rivers and leached into lakes. 

The major paths of SOCs are involved in pharmaceuticals, surfactants, pigments, flame 

retardants, steroids, pesticides, food additives and other organic compounds [5-7]. Most of 

SOCs are toxic that could lead to serious diseases such as cancer, deformity and genic 

mutation, but some are not or low hazardous, however, they are still harmful [8]. With the 

more wastewater discharged and organic matter transformation, the higher concentration 

of toxic SOCs would, more potentially, cause serious human diseases. Over 400 hazardous 

SOCs have been detected in wastewater, pollutants like toluene, benzene, acetone, phenol 

and chlorophenols, etc., would pose a great threat to the environment even in a small 

concentration.  

The hazard of water organic pollutants is critical, as most of organic compounds are toxic 

and hardly self-degradation in nature. A number of studies have been reported that 

techniques like membrane separation, coagulation, electrochemical process and adsorption 

could remove SOCs from wastewater effectively [9]. However, issues like economics, 

secondary pollution and efficiency are limitations of these techniques. Recently, the 

applications of advanced oxidation processes (AOPs), which involve in a set of chemical 
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treatment processes by oxidation, such as photocatalysis, supercritical water oxidation and 

chemical oxidation process, are gaining an attention in wastewater pollutant degradation 

[10-13]. AOPs have been considered as a low-cost, eco-friendly technique for water 

remediation.  

 

1.1.1 Photocatalysis of organic pollutant degradation 

The photocatalytic process, the combination of heterogeneous catalysis with solar 

technologies, has been employed as a low-cost, eco-friendly technique of detoxification of 

wastewater. Various semiconductor photocatalysts have been applied to water purification 

and a wide variety of undesirable organics have been successfully degraded [14]. In the last 

decades, TiO2 is the most widely researched semiconductor photocatalyst, because of its 

exceptional thermodynamic stability and nontoxicity. However, TiO2 requires the ultraviolet 

light or high intensity radiation to drive the photocatalytic process, which limits its practical 

application. In addition, Photocatalyst separation is one of the challenging issues in water 

applications. Thus, new photocatalysts, which have high efficiency, easy separation and can 

be used under low irradiation, are urgently required. 

 

1.1.2 Chemical oxidation of organic pollutant degradation 

Chemical oxidation is a remediation technique, which can effectively reduce the 

concentrations of targeted organic pollutants in water to safe levels. This remediation 

technique can be used to remediate various SOCs through employing strong chemical 

oxidizers to oxidize the compounds and change the contaminants into harmless compounds 

[15]. 

Permanganate, Fenton’s reagent, persulfate and ozone are most commonly used in this 

process for water remediation. These oxidants are effective and efficient, but still pose 

many problems. Several catalysts used with these strong oxidants in water treatment may 

cause secondary pollution [16]. As a consequent, it shows a great potential for modified 

catalysts for chemical oxidation. 
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1.1.3 Development of graphitic carbon nitride photocatalysts 

Most recently, graphitic carbon nitride (g-C3N4) has caught lots of attention, since it is the 

most stable allotrope of carbon nitride. G-C3N4 has similar π-conjugated planar layers like 

that of graphite, which makes it possess highly stability with thermal and chemical attacks, 

and an appealing electronic structure [17]. These make it be directly used in sustainable 

chemistry as a semiconductor catalyst.  

G-C3N4 has some unique features, such as electronic and optical structure, high 

photochemical stability, considered as a favourable photocatalyst [18, 19]. G-C3N4 had been 

confirmed to have great performance in photo-degrading organics under visible light 

irradiation [20], though its efficiency was far from satisfactory.  

Worthy mentioning, many compounds and metals could be intercalated into/or fine-tuning 

the structure and reactivity of g-C3N4. Such procedures, such as protonation, boron, fluorine, 

and sulphur doping, have been used to improve the performance of g-C3N4. Most efforts 

had been made to develop the potential application of g-C3N4 as an organic semiconductor 

in materials and catalysis, and enhance the use by modification in sustainable chemistry 

[21].   

 

1.2 Aim and objective of thesis 

This research aims at the development of graphitic carbon nitride photocatalysts for 

degradation of organic pollutants in water via photocatalysis and chemical oxidation 

process. 

 The following objectives are defined to meet the research goals 

i. To investigate the catalytic capacity of graphitic carbon nitride to degrade 

organic pollutants in aqueous phase. 

ii. To synthesize modified g-C3N4 photocatalysts for photo-degradation of organic 

pollutants with UV-Vis light in aqueous phase at room temperature. 

iii. To synthesize and develop novel g-C3N4 photocatalysts by doping silicates, and 

evaluate the photocatalytic capacity in aqueous phase. 
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iv. To investigate the modified catalysts activities for degradation of organic 

compounds via chemical oxidation process. 

 

1.3 Thesis structure 

Chapter 1: This chapter briefly introduced the overall organic pollutants in wastewater that 

are threatening human and animal health, and presented an overview of two main 

techniques, photocatalysis and chemical oxidation, for the treatment of wastewater. 

Chapter 2: The chapter provided a comprehensive overview of various pollutant removal 

techniques for the wastewater treatment, particularly on advanced oxidation processes 

(AOPs), photocatalysis, and the semiconductor materials as photocatalysts. This chapter also 

briefly presented the sources and health effects of main types of synthesized organic 

compounds in wastewater. 

Chapter 3: This chapter reported the synthesis, characterization, photocatalytic and 

chemical oxidation properties of modification of g-C3N4 with metal oxides (Fe2O3-g-C3N4, 

Fe3O4-g-C3N4 and MnO2-g-C3N4). Synthesis method, characterization, photocatalytic 

decomposition of methylene blue under UV-vis light irradiation and chemical oxidation of 

phenol were presented. 

Chapter 4: This chapter described the synthesis of polyoxometalate/g-C3N4 and its enhanced 

photodecomposition of organics. The optimum synthesis conditions were discussed. 

Characterization and photocatalytic decomposition of methylene blue and phenol under 

UV-vis light irradiation were presented. 

Chapter 5: This chapter investigated the synthesis of Ag6Si2O7/g-C3N4. Photocatalytic 

activities of the photocatalysts in methylene blue degradation were examined under UV-vis 

light irradiation. Synthesis method and characterization are also presented. 

Chapter 6: This chapter summarized the overall thesis and discussed the performance of all 

the materials in photodegradation of organic pollutants, and the suggestions for future 

work. 
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Chapter 2: Literature Review 
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2.1 Introduction  

Fresh water shortage has been the greatest challenge in the 21st century; millions of people 

are consuming water from unprotected sources which contain harmful and toxic organic 

chemicals. Organic compounds are the majority pollutants in wastewater, while most of 

them are toxic and seriously threatening the environment and public health. Wastewater is 

coming from industrial, domestic, agricultural activities, public service and leakage. Among 

them, industrial and domestic activities, discharging sewage with Synthetic organic 

compounds (SOCs), are contributing approximately 80% of wastewater. The SOCs such as 

polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), 

di-(2-ethyhexyl)-phthalate (DEHP), benzene, phenol and dyes in water discharged by 

pharmaceutical and chemical industries are not expected, and many methods have been 

made to control these toxic organic compounds in discharge sewage. Strategies, such as 

limiting the toxic compounds used, recycling the waste, ameliorating productive processes, 

and controlling waste treatment processes, have been exploited to reduce the organic 

pollutants in wastewater. 

Basically, the conventionally biological treatment is the most dependable process to 

decompose the pollutants. However, this treatment process is relatively slow and cannot be 

employed for some contaminants such as phenol which is not biodegradable. And 

limitations often appear in terms of high cost and secondary pollution problems in other 

traditional methods like solvent extraction, and activated carbon adsorption. New 

techniques such as photodegradation are eco-friendly and cost-efficient. For instance, 

photodegradation by semiconductor photocatalysis is able to degrade a wide range of 

organic compounds at normal temperature and pressure without generating any harmful 

by-product. TiO2 is one of the most commonly used photocatalysts because of its great 

photocatalytic capability and nontoxicity. However, TiO2 is only able to be activated by UV 

light irradiation (λ<400 nm), accounting for 4% of sunlight, which is harmful and high energy, 

and greatly limits practical application. Meanwhile, chemical oxidation is a very effective 

technique that is used for wastewater remediation to degrade a variety of organic 

pollutants to carbon dioxide, water and nontoxic inorganics. Nevertheless, toxic metal 

leaching and harmful by-products are two limitations that cannot be ignored. Therefore, 

improving the performance of the existing techniques for SOCs treatment processes, 
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overcoming the limitations of photocatalysis and chemical oxidation, developing novel 

catalysts and finally increasing their significant efficiency for organics removal are significant 

ways to convert the wastewater into a usable resource. 

 

2.2 Health effects and sources of synthetic organic compounds 

Most of organic compounds are toxic in aqueous phase, and can cause many human 

diseases like cancer and genic mutation. However, most of them are not intentionally 

produced; they are emancipated by a series of industrial processes and products 

decomposition, such as pharmaceutical industry, food processing, metal processing, 

petroleum industry, paper mills, and plastic industries. The major toxic SOCs are polycyclic 

aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), di-(2-ethyhexyl)-phthalate 

(DEHP), benzene, phenols, and dyes, and the detail of them are described as follows: 

Polycyclic aromatic hydrocarbons (PAHs) are presented in fossil fuels, which means PAHs are 

emitted into atmosphere during the carbon-contain fuels combustion and waste 

incineration. Oil spills are another major cause of PAHs released.  In addition, PAHs dyes 

are widely produced, used, and discharged into water every year. PAHs can enter the food 

chain through aqueous organisms, and even low concentration of PAHs can poison fish. And 

children exposure to PAHs would affect their IQ development and lead to childhood asthma. 

Polychlorinated biphenyls (PCBs) are synthetic organic compounds, and are used 

commercially. PCBS are widely used as dielectric and coolant fluids in major industry areas, 

such as in electrical appliances, cutting fluids for machinery operations, and cooling agents 

in heat transfer systems [1]. 

PCBs are stable compounds with a long life (more than 8 years) in natural environment and 

have environmental toxicity; PCBs have been defined as a persistent organic pollutant [2]. 

According to recent research, PCBs can be adsorbed in the hydrosphere and accumulate in 

the organic fraction of soils [3]. The toxicity of PCBs is affecting the water, soil, and food. 

People and animals can be exposed to PCBs through consuming contaminated air, food, and 

skin contact with polluted water. Once exposed, some chemicals inside the organism would 

be changed by PCBs. 
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Di-(2-ethyhexyl)-phthalate (DEHP) is widely used as a plasticizer in cosmetics, children’s toy, 

shampoos, building materials, automobiles, and polyvinyl chloride (PVC) products [4]. DEHP 

is being a widespread organic pollutant with significant human exposure [5], and the acute 

toxicity of DEHP is seriously threatening animal and human health, such as disruption of the 

endocrine system [6, 7]. DEHP can be present in food and water, and it can also leach into a 

liquid that contacts with the plastic, especially the wastewater produced from PVC industry. 

Benzene is one of the most elementary petrochemicals, and is widely used as an industrial 

feedstock and as a solvent. Benzene is used for printing and lithography, paint, rubber, 

adhesives and coatings, detergents, extraction and rectification. Human exposure to 

benzene is a global health problem. Benzene increases the risk of cancer and targets human 

organs. Water and soil contamination are important pathways of concern for transmission 

of benzene, while the major sources of benzene in water are discharged from factories, and 

leaching from gas storage tanks and landfills. 

Phenols, sometimes called phenolics are produced in a large scale in worldwide now. 

Phenolic compounds are significant raw materials and intermediates for industrial purposes, 

such as laboratory processes, chemical industry, chemical engineering processes, wood 

processing and plastics processing [8-10]. Due to their toxicity and wide use, phenolic 

compounds are universal pollutants that are discharged to natural water system and 

wastewater from the industrial processes. Moreover, phenols are also released from vehicle 

emission, cigarette smoking and bushfire [11]. The exposure from phenols may induce 

corrosive effect to the eyes, skin and respiratory tract [12]. Repeated or prolonged contact 

to phenols may cause harmful effects on the central nervous system. 

Dyes are colored substances which have an affinity towards the substrate being applied. 

Most of commercial dyes are ionic and aromatic organic compounds [13-15]. Many 

industrial processes, including textile, paper, printing, food, cosmetic and plastic industries, 

are using dyes to color their products [14, 16, 17]. The dyes are generally used in an 

aqueous solution, which means wastewater is the major route where the dyes are released 

into the environment. The huge amount of contaminated water was generated by the 

substantial dyeing processes. Dyes in the water are not safe, and pleasant. Some dyes even 
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would cause some harmful effects such as increased heart rate, vomiting, shock, cyanosis, 

jaundice and tissue necrosis in humans [13]. 

In summary, most of major synthetic organic compounds are classes of aromatic organic 

compounds and have similar structural, chemical properties and toxicities. These organic 

compounds are universal and can be difficult to be degraded by natural processes. Among 

these SOCs, phenol is produced naturally, synthesized artificially, and applied widely, and 

dyes are commercially used and widely present in wastewater, so phenol and dyes are ideal 

model compounds for wastewater treatment study. 

 

2.3 Wet air oxidation (WAO) 

Wet air oxidation (WAO) is a commonly used technology that is applied in wastewater 

treatment. The WAO technology has been used commercially since 1950s, and currently 

there are over 200 plants using this process for treating wastewater around the world. WAO 

is a hydrothermal treatment that involves wastewater treatment at high temperature and 

pressure using air or pure oxygen as an oxidant [18, 19]. During the process, toxic organic 

compounds which have high molecular chain split to lower molecular compounds such as 

formic acid, carboxylic acid, acetic acid, and subsequently decomposed into water and 

carbon dioxide. Based on mechanistic reactions, the reaction mechanisms in parallel are 

shown in the following equations [20]. 

1) Direct oxidation of organic compounds to carbon dioxide 

 

R –  H + 𝑂2
𝑘1
→ 𝐶𝑂2  

 

2) Oxidation of organic compounds with intermediate compounds  

R –  H + 𝑂2
𝑘2
→ 𝐶𝐻3𝐶𝑂𝑂𝐻

𝑘3
→ 𝐶𝑂2 

The kinetic equation obtained from two reaction schemes above is given below[19].  

(R –  H + 𝐶𝐻3𝐶𝑂𝑂𝐻)

(R –  H + 𝐶𝐻3𝐶𝑂𝑂𝐻)0
=

𝑘2
𝑘1+𝑘2−𝑘3

e−𝑘3t +
𝑘1−𝑘3

𝑘1+𝑘2−𝑘3
𝑒−(𝑘1+𝑘2)𝑡 
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The sequence of the oxidation of organic compounds and the formation of radical reaction 

could be divided into 3 stages: initiation, propagation and termination. These stages are 

shown in the following equations [21]. 

Initiation                          R –  H + 𝑂2 → 𝑅
∙ + H𝑂2

∙  

Propagation                       𝑅∙ + 𝑂2 → R𝑂2
∙  

                                 R − H +  R𝑂2
∙ → ROOH + 𝑅∙ 

Termination                       R𝑂2
∙ + R𝑂2

∙  → ROOR + 𝑅∙ 

In this process, organic compounds in wastewater will be oxidized by oxygen. The 

operations are commonly at high temperature (120 – 320 ℃) and pressure (0.2 – 20 MPa). 

In order to achieve the optimum results, WAO is preferred at chemical oxygen demand 

ranges from 20,000 to 200,000 mg/L, and can easily reach 95-99% conversion of toxic 

organics [22]. However, this technique is generally not able to decompose wastewater 

completely into water and carbon dioxide. Therefore, WAO usually requires additional 

biological treatment processes to meet the requirements for waste disposal into the 

environment.  

A WAO plant comprises a high-pressure feeding pump, an air compressor, a heat exchanger, 

a co-current bubble column reactor and a vertical column separator [18]. The basic process 

flow sheet of WAO plant can be seen in Figure 2.1. The waste is fed by a high-pressure pump 

through a heat exchanger to the reactor constantly. While the air compressor is giving air or 

oxygen, and the waste is combined with oxidation in the mixing point. After heating through 

a heat exchanger, the fluid reaches the reactor and the exothermic reaction takes place. 

After the reaction, the effluent flows through to the separator and is separated into gas and 

liquid, then disposed into the environment after a post-treatment by an addition biological 

facility.  
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Figure 2.1 Basic treatment system of WAO plant 

 

In general, WAO is successful to decompose various kinds of organic compounds in 

wastewater. Table 2.1 shows the results of a variety of organic compounds which were 

degraded using WAO processes [20, 23-28]. 

Table 2.1 Wet air oxidation of various organic compounds. 

compounds Treatment temperature (℃) Treatment pressure (MPa) 

Acetic Acid 265-300 2-20 

Acetonitrile 255-320 1 

Acetone 160-260 6.8-13.6 

Alkylbenzen sulfonate 200-240 1.5 

Ammonium thiocyanate 225-250 2-15 

Black liquor 187-257 0.21 
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Butyric Acid 237-257 6.8-13.6 

Cyanide 225-250 2-15 

Diethanolamine 140-240 0.39-1.38 

Fuel-oil 200-350 20 

Formic Acid 300 1 

Glucose 177-265 10.9 

Morpholine 150-240 0.39-1.38 

Nitriteacetic Acid 200-225 5-15.2 

Oxalic Acid 207-288 2-20 

phenol 150-180 0.3-1.15 

Propionic Acid 180-315 7-13 

Sec-butanol 160-200 6.8-13.6 

Tetrachloro ethylene 225 13.8 

Tert-butyl alcohol 220 3 

 

The significant drawbacks of wet air oxidation are the high costs of the process of 

compressed air and waste pumping continually. In addition, noble metal catalysts, used for 

the process is relatively expensive. The most economical condition of WAO is the 

concentration of an oxidant in 1-20% by weight with water; because the materials would 

reach with oxidants to generate sufficient heat to keep the operation temperature and 

pressure to the desired conditions in the reactor and without external power source [28]. 
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2.4 Catalytic Wet Air Oxidation (CWAO) 

Due to the disadvantages of WAO, especially hardly to completely remove organic 

pollutants, Catalytic Wet Air Oxidation (CWAO) technology has been developed to reach the 

zero discharge. In fact, the zero discharge is possible to achieve because a catalyst can 

convert the intermediate products like acetate acid and ammonia, which are hard to 

convert without using a catalyst, into carbon dioxide and water. There are several 

advantages of CWAO, such as low power requirements, reduced gas release and low 

operation conditions [29]. With the continually developed, the typical operating conditions 

of CWAO are at a temperature 80-180 ℃ and a pressure of 1-5 MPa [30]. 

A CWAO plant consists of a column reactor, a booster pump, an air compressor, a heat 

exchanger and a liquid-gas separator. The basic flow sheet can be seen in Figure 2.2. Air 

compressor is giving air as an oxidant the mixing with the wastewater and passes 

through a catalyst at operating temperature and pressure. After reaction, the effluent 

was cooled through the heat exchanger to the liquid-gas separator. A separator is used 

to separate the effluent into gas and liquid. The treated gas and water would be released 

to the environment [31]. 

 

Figure 2.2 A basic flow of Catalytic Wet Air Oxidation. 
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In CWAO, the catalytic agents are made up of three main classifications: noble metal, metal 

oxide and metal salts [32]. Metal salts, which are known as homogeneous catalysts, are 

relatively more efficient compared to heterogeneous catalysts. However, homogeneous 

catalysts in system are another pollution problem in the water and needs a more process for 

separation of the catalysts. In addition, most of dissolved metal catalysts are detrimental to 

the environment so that it is not easy to achieve the separation economically or technically 

[33]. By contrast, heterogeneous catalysts are easily recoverable and reusable, and high 

energy efficiency [34, 35]. Nevertheless, heterogeneous catalytic oxidations have some 

limitations related to chemical and physical stabilities of catalysts such as leaching, catalyst 

deactivation and catalyst damage. 

In the oxidation process, several characteristics of a catalyst for liquid-phase oxidation must 

meet to be used in industry [36]; 

1) Exhibiting high oxidation rate or activity. 

2) No poisoning and stability in extended use at raising temperature. 

3) Mechanical stability and resistance to attrition. 

4) Unique in most cases. 

5) Chemical and physical stabilities in different conditions. 

There are 5 steps in heterogeneous catalysis involved in reactions [37]; 

1) Diffusion of the reactants on the catalyst surface. 

2) Adsorption of reactants to the catalyst surface. 

3) The reaction on the catalyst surface. 

4) Desorption of products from the catalyst surface. 

5) Diffusion of products from the catalyst surface. 

In the most catalytic reactions, reaction kinetics is based on the molecular transport 

(adsorption and diffusion) rather than reaction itself. Therefore, the development and 

modification of catalysts are needed. The catalyst directly activates pollutant molecules, 

advances their disintegration into radicals. The catalytic cycle of pollutant oxidation is 

related to the reduction-oxidation reaction as shown below [38]. 

𝑅𝑂𝑂𝐻 +𝑀𝑒(𝑛−1)+ → 𝑅𝑂∙ +𝑀𝑒𝑛+ + 𝑂𝐻− 
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𝑅𝑂𝑂𝐻 +𝑀𝑒𝑛+ → 𝑅𝑂2
∙ +𝑀𝑒(𝑛−1)+ + 𝐻+ 

The metal catalysts that are applied in CWAO technique are generally a noble metal 

including Pd, Pt, Ir,Rh and Ru [32], which have been valid in the treatment of  various 

pollutants such as phenol, acetic acid, ammonia, carboxylic acid, Kraft effluents, olive oil mill 

wastewater etc.[38-45]. The CWAO of organic pollutants using noble catalysts are 

summarized in Table 2.2. 

 

Table 2.2 Summary of CWAO of organic pollutants using different noble metals. 

Noble Metal Support Pollutant T (℃) P (MPa) 

Ru TiO2 Succinic Acid 55-250 0-1.0 

Ru ZrO2, C, AC Kraft effluent 140 2.0 

Ru CeO2 Maleic Acid 160 2.0 

Ru, Ir, Pd, Ag CeO2, ZrO2-CeO2 Acetic Acid 200 2.0 

Pt C Carboxylic Acid 150 0.2 

Pt γ-Al2O3 phenol 155-200 5.05 

Pt γ-Al2O3 Acetic Acid 180 2.0 

Pt-Ag MnO2-CeO2 Phenol 120 0.5 

Pt, Pb, Ru, Rh CeO2 Ammonia 180 2.0 

Pt, Ru, Rh TiO2, CeO2, C Phenol / Acrylic 

Acid 

170 2.0 

Pd C Ammonia 280 2.0 

Ir C Butiric Acid 200 0.69 

Ir CeO2, TiO2, C Ammonia 180 1.5 
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Among the noble metal catalysts employed for the CWAO, the ability of oxidation in the 

process is relying on the pollutants. For instance, the catalytic activity order of oxidation of 

acetic acid is Ru > Ir > Pd[46]. With p-chlorophenol, catalytic activity increases in the order 

Ru < Pd <Pt [47]. While in the oxidation of polyethylene glycol, the removal capability of 

noble metals follows Ru = Rh = Pt > Ir >Pd [48]. 

A pure form or the mixed metal oxides is another type of catalysts employed in CWAO. 

Metal oxide catalysts are mainly including one or several of Cu, Mn, Co, Cr, Ti, Ni, Bi, Zn, Al 

and other metals. Copper oxide is widely used for the liquid effluent oxidation. The catalyst 

with copper and alumina support is successfully oxidizing phenol [49, 50]. Formic acid has 

been successfully oxidized using another commercial catalyst, Cu/ZnO [51]. The other 

commercial catalysts are relatively effective to decomposition phenol and substituted 

phenolic compounds. In the phenol oxidation, catalytic activity of metal oxides was shown 

with the following order [52]:  

CuO > CoO > Cr2O3 > NiO > MnO2 > Fe2O3 >YO2 > Cd2O3 >ZnO > TiO2> Bi2O3  

Several tests on the CWAO of organic pollutants over different metal oxide catalysts [53-75] 

are shown in Table 2.3. 

Table 2.3 Metal oxide catalysts based on CWAO. 

Metal oxide Support Pollutant T (℃) P (MPa) 

Cu, Ni, Co, Fe, 

Mn 

γ-Al2O3 phenol 150 5.05 

Cu MCM-41 phenol 150 2.0 

CeO2 γ-Al2O3 phenol 180 0.5-2.0 

CeO2 - phenol 95-180 0.5-1.0 

Fe AC phenol 100-127 0.8 

Cu, Cr - phenol 127-150 0.32 

Cu, Cr, Ba, Al - phenol 127 0.8 



21 

Cu γ-Al2O3 phenol 140 0.9 

Cu, Zn, Co - phenol 130-180 0.73 

Cu, Zn γ-Al2O3 phenol 105-150 0.15-0.8 

Mn, CeO2 - phenol 110 0.5 

Mn, Co - phenol 170 1.3 

Cu AC phenol 160 2.6 

Mn, Co - p-chlorophenol 170 1.3 

Cu, Zn γ-Al2O3 p-chlorophenol 105 0.15-0.5 

Cu, Zn - Formic acid 200 4 

Fe - Acetic acid 252 6.7 

Cu, Mn, La ZnO, γ-Al2O3 Acetic acid 250 1.0 

MnO, CeO - Ammonia 263 1.0 

MnO2, CeO2 - Alcohol distillery 180 0.5 

 

Activated carbon is another type of catalyst used in CWAO. The high surface area of 

activated carbon makes them have a very good performance in the oxidation process.  In 

addition, the condition of using activated carbon as a catalyst in CWAO processes should be 

set at a mild condition (temperature less than 150 ℃ and pressure at 10 atm)[76]. Among 

the most catalysts, activated carbon is a less expensive alternative to degrade phenolic 

compounds. 
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2.5 Advance Oxidation Process (AOP) 

Advance oxidation processes (AOPs) are a set of chemical treatment procedures designing 

to decompose organics in water by highly reactive species, such as hydroxyl radicals and 

sulphate radicals [35, 77, 78]. Hydroxyl radicals has an extremely high standard oxidation 

potential, so once hydroxyl radicals are generated and pollutants would be rapidly, 

efficiently and unselectively converted into small inorganic molecules. The mechanism can 

be seen below. 

𝐶𝑎𝐻𝐵𝑋 +𝑚𝑂𝐻 → 𝑎𝐶𝑂2 +
𝑏

2
𝐻2𝑂 + 𝑋

𝑛− 

Recently, several oxidants, mostly a sulphate based oxidants, are proposed as an alternative 

to hydroxyl radical for applications in AOPs [79, 80]. And other optional ways for 

combination of the wastewater treatment are as follows. 

 

2.5.1 Chemical Oxidation 

Chemical oxidation is a technique that uses reagents to transform, degrade, or oxidize 

organic compounds in wastewater into harmless components. This technique has been used 

for decades for remediation of groundwater and in the wastewater industry for the 

treatment of organic pollutants. The chemical compounds used in wastewater treatment 

are served as the oxidants, and the ability of the oxidation of the oxidants against pollutants 

in the wastewater is influenced by redox potential of each oxidant. The standard redox 

potential of some oxidants is shown in Table 2.4 [81].  

Table 2.4 Redox potential of oxidants. 

Oxidants Redox potential 

E◦ (eV) 

Fluorine 3.03 

Hydroxyl radical 2.70 
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Sulphate radical 2.60 

Atomic oxygen 2.42 

Ozone 2.07 

Persulphate 2.01 

Hydrogen peroxide 1.78 

Permanganate 1.68 

Chlorine dioxide 1.57 

Hypochlorous acid 1.47 

Chlorine 1.36 

 

The oxidants including chlorine, permanganate, peroxide, persulphate and ozone have been 

widely used in wastewater treatment. Chlorine is usually employed in drinking water 

treatment because it can destroy the pathogenic organisms in water. Nevertheless, chorine 

can only be used for mild oxidation process by selective chemicals, and the use of chorine in 

high concentrations of contaminants would advance the formation of detrimental 

intermediate compounds [82]. 

Potassium permanganate is another significant oxidant used in wastewater treatment for 

color, taste and odor problems. In the water, potassium permanganate would generate 

several types of active radicals, which react and turn contaminants into harmless 

components [83]. The different types of active radicals are generated based on the reaction 

condition such as pH.  

𝑀𝑛𝑂4
−
𝐻+

↔ 𝐻𝑀𝑛𝑂4
𝐻+
↔ 𝐻2𝑀𝑛𝑂4

−𝐻2𝑂
↔   𝑀𝑛𝑂3

+ 

Some studies showed the oxidation of alkyl benzene at pH higher than 2.5, 𝑀𝑛𝑂4
− will 

dominated the oxidation process, while HMnO4 will be the major active radical at a pH 
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lower than 0.3[84, 85]. The drawback of using permanganate as an oxidant is the 

precipitation in the end products which needs additional separation processes. 

Potassium peroxydisulphate, known as persulphate, is generally used in the processing of 

underground water [86]. Potassium peroxydisulphate can generate highly active sulphate 

radicals and has a great oxidation capacity in a large range of pH [87]. 

𝑆2𝑂8
−
𝑡ℎ𝑒𝑟𝑚𝑎𝑙
→     2𝑆𝑂4

2− 

Persulphate ion can be generated to sulphate radicals with the existence of divalent metal 

ion such as Fe2+ ions, the equation can be seen as below [86]. 

𝑆2𝑂8
− + 𝐹𝑒2+ → 𝑆𝑂4

∙− + 𝐹𝑒3+ + 𝑆𝑂4
2− 

The process of ozone in the water treatment is transporting ozone to the bottom of the 

wastewater, and the formation of ozone transfer to oxygen, while the solubility of ozone is 

12 times more than oxygen [88]. The biggest advantage in using ozone as an oxidant is that 

ozone does not leave any residual chemical which requires additional removal process. The 

processes of ozonation can occur directly with ozone molecules or indirectly through the 

formation of hydroxyl radicals, and then only leaving behind oxygen [89]. 

3𝑂3 + 𝑂𝐻
− + 𝐻+ → 2𝑂𝐻∙ + 4𝑂2 

Ozone can react with a variety of important environmental pollutants; however, it also 

reacts with many other substances such as minerals which are not the targeted substances. 

 

2.5.2 Fenton processes 

Fenton’s reagent treatment is a classically reactive system involving the addition of 

hydrogen peroxide and iron ion in the wastewater [90]. Many studies reported that 

Fenton’s reagent is effective in degrading toxic organic pollutants such as alcohol, phenols, 

chlorophenol, benzene, trichloroethylene, and tetrachloroethylene. 

 In Fenton processes, the Fe2+ is oxidized by hydrogen peroxide to Fe3+, while, the reduction 

of ferric iron (III) to ferrous iron (II) happens at pH 2.7-2.8 [91]. Hydroxyl radicals generated 
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by the Fenton’s reagent is simple and effective, which does not need any special reactants 

or apparatus. And studies have reported that the iron in this oxidative system is non-toxic, 

and hydrogen peroxide is eco-friendly and easy to handle. 

The following is the complete reactions of Fenton chemistry [92]: 

𝐹𝑒2+ + 𝐻2𝑂2 → 𝐹𝑒
3+ + 𝑂𝐻− + 𝑂𝐻∙ 

𝐹𝑒3+ + 𝐻2𝑂2 → 𝐻
+ + 𝐹𝑒2+ + 𝑂𝑂𝐻∙ 

𝑂𝐻∙ + 𝐻2𝑂2 → 𝐻
+ + 𝐹𝑒3+ + 𝐻𝑂𝑂∙ 

𝑂𝐻∙ +  𝐹𝑒2+ → 𝐹𝑒3+ + 𝑂𝐻− 

𝐹𝑒3+ + 𝐻𝑂𝑂∙ → 𝐹𝑒2+ + 𝐻𝑂𝑂+ 

𝐹𝑒2+ + 𝐻𝑂𝑂∙ + 𝐻+ → 𝐹𝑒3+𝐻2𝑂2 

𝐻𝑂𝑂∙ + 𝐻𝑂𝑂∙ → 𝐻2𝑂2 + 𝑂2 

The free radicals generated will be engaged in secondary reactions, and these reactions 

occur simultaneously. 

Fenton oxidation reaction is effective; however, this process has some limitations, such as 

the ratios of Fe2+/H2O2, which affect the rate of hydroxyl radicals reacting with the 

pollutants. Thus, lots of research has been done to develop the Fenton catalysts. In order to 

enlarge the specific surface area, carbon nanotubes (CNTs) have been used as supports in 

synthesis of catalysts [93-95]. The performance of Fe2O3 / CNTs is enhanced in phenol 

degradation. Activated carbon (AC), which has outstanding mechanical strength and porous 

structures, is also used to support Fe in organic pollutant decomposition [96-98]. And new 

types of carbon material such as graphene, graphene oxide have been proven that they will 

improve organic degradation as catalyst supports [99, 100]. 

Meantime, iron based catalysts, such as zero-valent iron (ZVI or Fe0) and Fe3O4 have recently 

developed in Fenton-like system. ZVI in wastewater can facilitate the decomposition of toxic 

contaminants [101-104]. The reactions can be seen as follow: 

𝐹𝑒0 → 𝐹𝑒2+ + 2𝑒− 
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 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑛𝑡 + 𝑛𝑒− → 𝑋 + 𝐻2𝑂 

To conclude, Fenton’s reagent is a simple, effective and environment-friendly water 

treatment system. The efficiency of reaction systems can be improved by adding adequate 

oxidants. Thus, Fenton processes are reasonable for the remediation of wastewater.  

 

2.5.3 UV/Oxidant system 

Free radicals such as hydroxyl or sulphate radicals would be also generated by UV light 

irradiation. Photochemical oxidation is often used for the wastewater treatment that has 

low chemical oxygen demand (COD). The three stages of the process include initiation, 

propagation and termination [105], which can be seen below. 

Initiation stage 

𝐻2𝑂2 + ℎ𝑣 → 2𝑂𝐻
∙ 

Propagation stage 

𝐻2𝑂2 + 𝑂𝐻
∙ → 𝐻𝑂2

∙ + 𝐻2𝑂 

𝐻2𝑂2 + 𝐻𝑂2
∙ → 𝑂𝐻∙ + 𝐻2𝑂 + 𝑂2 

𝐻𝑂2
− + 𝐻𝑂2

∙ →  𝑂𝐻∙ + 𝑂𝐻− + 𝑂2 

Termination stage 

𝑂𝐻∙ +  𝐻𝑂2
∙ → 𝐻2𝑂 + 𝑂2 

𝑂𝐻∙ + 𝑂𝐻∙ → 𝐻2𝑂2 

This process uses H2O2 as an oxidant to achieve the optimal generation of hydroxyl radicals. 

Several studies reported that various organic pollutants such as phenol, chlorophenol, nitro 

benzene, and hydroxyl phenyl acetic acid have been successfully oxidized [106-108].  

Another combination is ozone with the UV irradiation. UV/O3 system has been widely used 

in the remediation of wastewater especially for the industrial effluent. In general, ozone is 
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injected into wastewater until saturated, then wastewater solution irradiated by UV-light 

[109].  

The formation of hydroxyl radicals by wavelength λ < 300 nm 

𝑂3 + 𝐻2𝑂
ℎ𝑣
→ 𝐻2𝑂2 + 𝑂2 

𝐻2𝑂2
ℎ𝑣
→ 2𝑂𝐻∙ 

The formation of hydroxyl radicals by wavelength λ > 300 nm 

𝑂3 + 𝐻2𝑂
ℎ𝑣
→ 𝑂𝐻∙ + 𝐻𝑂2

∙ + 𝑂2 

 

2.5.4 Photo-Fenton system 

Photo-Fenton system is a combination of Fenton reaction and UV/oxidant system. This 

system will produce a large amount of active hydroxyl radicals by photo reduction of 

Fe(OH)2+[110]. Under the irradiation of UV light, Fe(OH)2+ ions absorb radiation to transfer 

back into iron ions, thus increasing the oxidation rate [111]. 

𝐹𝑒(𝑂𝐻)2+ + ℎ𝑣 → 𝐹𝑒2+ +∙ 𝑂𝐻 

𝑅(𝐶𝑂2) − 𝐹𝑒
3+ + ℎ𝑣 → 𝑅(∙ 𝐶𝑂2) + 𝐹𝑒

2+ →∙ 𝑅 + 𝐶𝑂2 

In addition, heterogeneous iron species catalysts were developed, such as oxides on various 

supports like silica, activated carbon. The modification of these materials enlarges the range 

of reaction pH of the photo-Fenton process.  

However, several drawbacks were existed for the running of this process, such as high iron 

concentration remained [112], complex before treatment process, and catalysts recycling 

[113]. Thereby, the high running cost, healthy effects on operators, and high operating 

pressures and temperature are the limitations of wide application of phot-Fenton system in 

wastewater treatment industry. 
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2.5.5 Photocatalysis  

Photocatalysis is a significant AOP technique for decomposition of organic compounds with 

a high total organic carbon (TOC) removal at mild operating conditions of temperature and 

pressure. This technique is relied on the additive catalyst into the wastewater with 

illumination of UV radiation, which can degrade organic pollutants to carbon dioxide and 

water by an effective and eco-friendly way. In addition, this technique can be operated at 

neutral pH and does not form by-product of complex sediment. An efficient photocatalyst is 

defined as a concordantly combination of chemical and photoelectronic properties, as a 

result of activations of a semiconductor material.  Various types of semiconductor 

materials, such as TiO2, ZnO, ZnS, have been developed for photocatalytic oxidation of 

organic contaminants in the remediation of wastewater [114-116]. The commonly used 

semiconductors as photocatalysts are listed below in Table 2.5. 

Table 2.5 Band gap energy and absorption wavelength of semiconductor photocatalysts. 

Semiconductor  Band Gap energy (eV) Wavelength sensitivity (nm) 

TiO2 (anatase) 3.2 388 

TiO2 (rutile) 3.0 413 

ZnO 3.2 388 

ZnS 3.6 344 

Fe2O3 2.3 539 

SrTiO3 3.2 388 

WO3 2.8 443 

 

Photocatalytic process is achieved with the absorption of photos by a semiconductor 

material migrating the electrons from valence band (VB) to conduction band (CB), thereby 

generating the electron (e-)/hole (h+) pairs. The hole (h+) will react with water and hydroxyl 
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anions to produce hydroxyl radicals (OH·) [117]. The mechanism of the redox reaction can 

be seen in the following equations [118, 119]. 

 

 

Figure 2.3 Mechanism of photocatalysis process 

 

𝑇𝑖𝑂2
ℎ𝑣
→ 𝑒− + 𝑇𝑖𝑂2(ℎ

+) 

𝑇𝑖𝑂2(ℎ
+) + 𝐻2𝑂𝑎𝑑 → 𝑇𝑖𝑂2 + 𝐻𝑂𝑎𝑑

∙ + 𝐻+ 

𝑇𝑖𝑂2(ℎ
+) + 𝐻𝑂𝑎𝑑 → 𝑇𝑖𝑂2 + 𝐻𝑂𝑎𝑑

∙  

𝑇𝑖𝑂2(ℎ
+) + 𝑅𝑋𝑎𝑑 → 𝑇𝑖𝑂2 + 𝑅𝑋𝑎𝑑

∙+  

Or 

𝑅𝑋𝑎𝑑 + 𝐻2𝑂 + 𝑂2 →
ℎ𝑣

𝑇𝑖𝑂2
→ 𝐻2𝑂 + 𝐶𝑂2 +𝑀𝑖𝑛𝑒𝑟𝑎𝑙. 𝐴𝑐𝑖𝑑. 

Generally, the rate of photocatalytic decomposition is affected by illumination intensity, 

photocatalyst, operating pH, oxygen concentration, and the concentration of organic 

compounds. Among them, the operating pH value is the most significant factor for 

photocatalytic reaction, because many properties such as the semiconductor’s surface state 

and the flat-band potential are highly pH dependent. The rate of photocatalytic 
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decomposition has been modelled by the Langmuir-Hinshelwood (L-H). The 

Langmuir-Hinshelwood (L-H) kinetics, which is the most commonly used kinetic expression 

to explain the kinetics of the heterogeneous catalytic processes, can be expressed as follow 

equation [120]. 

−
𝑑𝐶

𝑑𝑡
= 𝐾1𝐾2𝐶 = 𝑘𝐶 

Among the semiconductors used in photocatalysis, TiO2 and ZnO have been investigated a 

lot to be ideal photocatalysts, because of their relatively low price, and excellent 

photocatalytic performance with maximum quantum yields [116, 121]. In the case of 

hydrogen peroxide, the generation rate of hydroxyl radicals (OH·) could be enhanced by the 

addition of H2O2. Because of the similar properties of ZnO and TiO2, the applications of TiO2 

are possible to be employed on ZnO photocatalysts. Studies reported that the improvement 

of decomposition of ampicillin and amoxicillin antibiotics in aqueous solution with TiO2 

photocatalyst under H2O2/UV [122]. The combination of PDS or PMS with photocatalysts 

could also improve the contaminants degradation under the UV irradiation. Some 

researchers also reported that the addition of S2O8
2- highly increased the decomposition 

rate of organic compounds [123-125]. 

Nevertheless, semiconductors such as ZnO, TiO2, ZnS that commonly used as photocatalysts 

exist some disadvantages: large band gap, requiring UV light to achieve electron excitation; 

instability in aqueous phase; and rapid recombination of photo-generated electron-hole 

pairs. Thus, photo-stable and effective photocatalysts under visible light are highly required 

[126, 127]. Heterogeneous photocatalytic oxidation with visible light photocatalysts has 

attracted a lot of researchers’ attention. The photo-generated electrons from the pollutants 

are transferred to the semiconductors by the absorption of visible light. The mechanism is 

following the steps as bellow [124]. 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 + ℎ𝑣 → 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡∗ → 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡+ + 𝑒− 

𝑇𝑖𝑂2 + 𝑒
− → 𝑇𝑖𝑂2

∙− 

𝑇𝑖𝑂2
∙− + 𝑂2 → 𝑇𝑖𝑂2 + 𝑂2

∙− 

𝑂2
∙− + 2𝐻2𝑂 + 𝑒

− → 2𝐻2𝑂2 
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𝐻2𝑂2 + 𝑒
− → 𝑂𝐻∙ + 𝑂𝐻− 

A foreign element (Cr, Fe, Mn, Co, etc.) doped into TiO2 and ZnO as photocatalysts have 

been investigated for a long time, and most of doped photocatalysts can achieve the 

photocomposition of organics in aqueous phase with visible light irradiation. Studies 

showed that metal ion dopants into the TiO2 can affect the performance of photocatalyst 

through the dynamics of electrons-holes recombination and interfacial charge transfer [128]. 

The nanosized TiO2 particles with the dopants within 1-2 nm of surface have been indicated 

that the large surface areas make the enhancement of the photocatalytic activity under 

visible light irradiation [129]. Recent studies [130, 131] reported few heterogeneous Co2+ 

based photocatalysts supported on TiO2 also can degrade organic pollutants under both UV 

light and visible light. In addition, inorganic materials such as silica, activated carbon, carbon 

nanotubes etc. have been employed in extensive investigations of visible light 

photocatalysts [132-134]. Recently, graphitic carbon nitride (g-C3N4), as a marvellous visible 

light photocatalyst, has attracted a lot of attention. 

 

2.6 Graphitic Carbon Nitride (g-C3N4) 

Graphitic carbon nitride (g-C3N4), a polymeric semiconductor, has recently attracted 

attention. G-C3N4 possesses many advantages such as excellent chemical stability, tunable 

electronic structure, and medium band gap (2.7eV)[135]. These distinct properties make 

g-C3N4 meet the requirement as a visible light photocatalyst. Moreover, g-C3N4 is easily 

prepared by polymerization of inexpensive feedstocks like cyanamide, urea, melamine and 

etc. [136-139]. 

However, pure g-C3N4 suffers from several drawbacks: high electron-hole recombination 

rates, a small specific surface area and low visible light utilization efficiency. Thus, the 

exploration of facile approaches to synthesize modified g-C3N4-based photocatalysts is 

required to enhance the physicochemical properties and photocatalytic activities. Recently, 

some strategies have been applied to improve the visible light photocatalytic activity of 

g-C3N4, such as formation of surface coupling hybridization [140], construction of 

mesoporous structures [141], and doping with metal or non-metal species [142]. Among 
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these, formation of heterostructures produces the great enhancement of the photocatalytic 

performance of g-C3N4, due to the separation of the electron-hole pairs, and the 

recombination could be restrained by charge carriers transferring across the interface of the 

heterostructure. In a coupling process, g-C3N4 could combine with visible light excited 

photocatalysts with a narrow band gap, as well as combine with UV excited semiconductor 

materials with large band gap, which can extend the application of the g-C3N4-based 

photocatalysts [138, 143]. In addition, the crystal structure of heterostructure can 

significantly strengthen the quantum efficiency of the photocatalysts.  

Recently, g-C3N4-based photocatalysts have been employed for photocatalytic 

decomposition of organic pollutants. For instance, Xu et al. [144] reported that multi-walled 

carbon nanotubes (CNT) modified C3N4 composite (CNT/white C3N4) greatly enhance 

photocatalytic performance in methylene blue (MB) dye removal. The CNT/C3N4 composite 

is also stable enough to have great photocatalytic activity after repeated MB removal 

experiments. In addition, Zhao et al. [145] reported a WO3/g-C3N4 composite showed a 

great improvement in photocatalytic degradation of methylene orange under visible light 

irradiation. In the WO3/g-C3N4 composite, photo-generated electrons and holes can be 

separated effectively and the recombination rate would be restrained. Furthermore, the 

composite of g-C3N4 and other semiconductor photocatalysts have been reported showing 

the high photocatalytic performance of decomposition of organic pollutants in wastewater. 

The composite such as TiO2/g-C3N4, CeO2/g-C3N4, and g-C3N4/TaON, exhibits the 

enhancement in both performance and stability, which are attributed to the effective 

separation and transfer of photogenerated charges from the well-matched overlapping 

band-structures and closely contacted interfaces.  

 

2.7 Conclusions 

As described above, a huge amount of organic compounds are discharged in wastewater 

from industrial processes and human activities. These synthetic organic compounds such as 

polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), 

di-(2-ethyhexyl)-phthalate (DEHP), benzene, phenols, and dyes, are toxic in aqueous phase, 

and can cause many human diseases like cancer and genic mutation. A variety of techniques 
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have been employed to remove these pollutants in wastewater. Wet air oxidation (WAO) 

and catalytic wet air oxidation (CWAO) are commonly used technologies that are applied in 

wastewater treatment, however, the commercialization of WAO and CWAO is still a 

challenge. Advanced oxidation processes (AOPs), which are based on the formation of 

hydroxyl radical or sulphate radical as an oxidant agent to degrade organic pollutant, are the 

promising technologies that are effective and can be operated at ambient conditions. 

Chemical oxidation is a technique using reagents to transform organic compounds in 

wastewater into harmless components, although many other substances such as minerals 

which are not the targeted substances may be reacted. Chemical oxidation processes 

constitute the use of reagents to generate hydroxyl radicals, which oxidize organic 

compounds in wastewater into harmless components. Nevertheless, the use of individual 

oxidant to oxidize more complex materials is not efficient because of the low reaction rate. 

Fenton chemistry is an important technique to degrade organic compounds by using ferrous 

ions (Fe2+) in aqueous acidic medium, however, the limitations such as requiring acidic 

condition, a large amount of chemical reagents, and the large production of ferric hydroxide 

sludge, are required to be settled. Photocatalysis has demonstrated removal of toxic organic 

pollutants by using semiconductor materials as photocatalysts under the radiation. Due to 

the continual research, the appropriate radiation wavelength of the modified 

semiconductor materials has been enlarged from UV light to visible light radiation. In 

addition, graphitic carbon nitride (g-C3N4), an easily-prepared polymeric semiconductor, 

possesses excellent properties as a photocatalyst. And extensive research indicated the 

better photocatalytic activity of the modified g-C3N4-based photocatalysts in 

photodegradation of organic pollutant. Thus, photocatalysis processes using modified 

g-C3N4-based photocatalysts are most suitable to degrade organic compounds in aqueous 

solutions due to low running costs, less energy consumption and high decomposition of 

organics. 
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3 

Chapter 3: Modification of g-C3N4 with metal 

oxides for degradation of methylene blue and 

phenol 

Abstract 

A series of metal-oxide doped graphitic carbon nitride (Fe2O3-g-C3N4, Fe3O4-g-C3N4 and 

MnO2-g-C3N4) photocatalysts were synthesized using a hydrothermal method. The catalytic 

performances of these materials were evaluated in liquid-phase heterogeneous activation 

of peroxymonosulfate (PMS) decomposition of phenol and photocatalytic degradation of 

methylene blue (MB) under UV-vis light irradiation. Their physicochemical properties were 

characterized by X-ray diffraction (XRD), UV-vis diffusion reflectance spectroscopy, Fourier 

transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The 

experimental results showed that MnO2-g-C3N4 exhibited higher activity than Fe2O3-g-C3N4 

and Fe3O4-g-C3N4 in photodecomposition of organic compounds in liquid phase. Based on 

the analysis, we speculated that the physical and optical properties of g-C3N4 have been 

changed upon metal deposition, the enhanced photocatalytic activity of MnO2-g-C3N4 can 

be attributed to the large heterojunction interface and intrinsically layered structure.  
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3.1 Introduction 

In recent years, graphitic carbon nitride (g-C3N4) has received more and more attention due 

to its unique properties. It was found that g-C3N4 has excellent properties such as high 

thermal and chemical stabilities, and versatile optical, electronic and catalytic properties 

[1-5]. Graphitic carbon nitride is considered to be a promising candidate for photocatalysis, 

which makes it valuable material in various potential applications. 

The structure of g-C3N4 is similar to graphite but not the same. The hexatomic ring consisted 

of carbon atoms and nitrogen atoms one by one. Every carbon atom has covalent bonds 

with three nitrogen atoms, thus forming a large planer network structure. As a kind of 

typical carbon nitride, g-C3N4 has been widely used in catalysis. A large amount of 

researches have been carried out in photodegradation of water pollutants [6, 7], catalysis of 

organic reactions and carrier for metal catalysts [8, 9].  

For water purification, an optical material is needed that has a band gap to absorb visible 

light, strong oxidative ability and high stability in a complex water solution system [7, 10]. 

Graphite carbon nitride (g-C3N4) has the photocatalytic performance for hydrogen or oxygen 

production from water splitting under visible light irradiation [6]. Very recently, the 

g-C3N4-metal compounds were found to degrade organic dyes. The functional organic-metal 

hybrid material exhibited modified electronic properties [4, 9]. Many attempts such as 

doping with metal have been made to enhance the photocatalytic efficiency of g-C3N4. A 

significant improvement in photocatalytic of g-C3N4 was modified by doping the metal Ti 

[11]. 

Various efforts have been concentrated on the synthesis of g-C3N4 during the past few years. 

Graphite carbon nitride was mainly produced by heating the carbon-containing and 

nitrogen-containing precursors [12-15]. The most common compounds used in synthesis 

include cyanamide, cyanuric chloride, ethylenediamine with carbon tetrachloride and 

melamine [16-20]. In addition, the material with regular structure can be synthesized by the 

use of templates [21-24].  

In this study, In order to enhance the photocatalytic activities of the g-C3N4 photocatalysts, 

we reported a simple hydrothermal process for synthesis of g-C3N4 by pyrolysis approach 
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and modified by doping Fe3O4, Fe2O3 and MnO2. Morphology and structure of the resultant 

products were characterized by XRD. The photocatalytic activities of the g-C3N4 

photocatalysts will be evaluated in decomposition of methylene blue in water with UV-vis 

radiations [8, 25, 26]. 

 

3.2 Experimental section 

3.2.1 Material and chemicals 

Melamine (99%), manganese (II) sulphate monohydrate (MnSO4•H2O), ammonium 

persulfate ((NH4)2S2O8), iron (III) chloride hexahydrate (FeCl3•6H2O), iron (II) chloride 

tetrahydrate (FeCl2•4H2O) and Oxone® (2KHSO5•3KHSO4•K2SO4, PMS) were obtained from 

Sigma-Aldrich. Ammonia water (25%) and methanol were purchased from Chem-Supply. 

Phenol was purchased from Ajax Finechem. All the chemicals were used as received without 

further purification. 

3.2.2 Catalyst preparation 

3.2.2.1 Synthesis of graphitic carbon nitrides 

Graphitic carbon nitrides (g-C3N4) were synthesized in a semi-close system [27]. Typically, 10 

g melamine were dissolved in 20 mL methanol with continual stirring until mixture became 

pasty, and then dried in an oven at 50 ℃ overnight. The dried mixture was heated at 550 ℃ 

in a muffle furnace for 2 hours with a ramp rate of 5 ℃/min. The yellow solid products were 

grinded into powders for further synthesis. 

3.2.2.2 Synthesis of metal oxide-doped graphitic carbon nitrides. 

The modified g-C3N4 samples were synthesized by a hydrothermal method. In a typical 

synthesis of Fe2O3-g-C3N4, 0.36 g FeCl2•4H2O was dissolved in 50 mL deionized water, and 

then 2 g of g-C3N4 powder were added into the solution. The suspension was transferred 

into a 100 mL Teflon-lined stainless steel autoclave. The autoclave was put into an oven and 

heated at 180 ℃ for 18 hours, then cooled down to room temperature. For Fe3O4-g-C3N4, 
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0.25g FeCl2•4H2O, 0.70g FeCl3•6H2O and 2mL ammonia water (25%) were added into 50mL 

deionized water in an autoclave, and nitrogen gas flow for 10min, then sealed and heated at 

180 ℃ for 18 hours, and then cooled down to room temperature naturally. For MnO2-g-C3N4, 

0.58g MnSO4•H2O and 0.78g (NH4)2S2O8 were put into an autoclave with 50 mL deionized 

water, and heated at 140 ℃ for 12 hours, cooled down to room temperature. The resultant 

precipitate was filtrated, and washed with ethanol and deionized water, then dried in an 

oven at 60 ℃ for 24 hours. The final products were collected as Mn2-g-C3N4. 

3.2.3 Characterization of materials 

The crystalline structures and phases of the samples were evaluated by X-ray diffraction 

(XRD) on a Bruker D8 Advance X-ray instrument using Cu Kα radiation with λ at 1.5418 Å. 

Fourier transform infrared spectra (FTIR) were obtained on a Perkin-Elmer Model FTIR-100 

with a MIR detector. UV-vis diffuse reflectance spectra (DRS) of prepared catalysts were 

recorded on a UV-vis spectrophotometer (JASCO V670), with BaSO4 as reference standard. 

Thermogravimetric-differential thermal analysis (TG-DTA) was operated on a Perkin- Elmer 

Diamond thermal analyser under air flow at a heating rate of 10 ℃/min. 

3.2.4 Measurements of catalytic activity 

3.2.4.1 The photocatalytic activities test 

The photocatalytic activities of the prepared catalysts were carried out by the photocatalytic 

degradation of dye, methylene blue (MB), in an aqueous solution under visible light 

irradiation. A 575 W metal halide lamp (Philips) was used as a light source.  In detail, 100 

mg catalysts were added into 200 mL of 10 mg/L MB solution in a double-jacket cylindrical 

reactor. The light source was set about 30 cm from the liquid surface of the suspension. The 

suspension was firstly continual stirring in the dark for 30 min to ensure the dye on the 

catalyst has reached an adsorption-desorption equilibrium. Then the reaction was started 

by exposing to visible-light irradiation under continual stirring. During the process, at given 

time intervals, approximate 5 mL of suspension was collected and centrifuged, and then 

analysed by a JASCO UV-vis spectrophotometer at 664 nm. 
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3.2.4.2 Phenol degradation test 

Phenol degradation test was evaluated in a 500 mL conical flask with 20 mg/L phenol 

solution, 0.1 g/L catalyst and 2 g/L oxone® (PMS, widely used as an oxidizing agent) at 25 ℃ 

with a constant stirring. At given time intervals, 1 mL water sample was withdrawn and 

filtered (0.45μm) into a vial, and then 0.5 mL of methanol was added into the vial to quench 

the reaction. The water sample was analysed by a Varian HPLC with a C-18 column.   

 

3.3 Results and discussion 

3.3.1 Materials characterization 

The XRD patterns of g-C3N4 and X- g-C3N4 (X= Fe3O4, Fe2O3 , MnO2) samples are shown in 

Figure 3.1. Two peaks can be found in the pattern of g-C3N4, the small-angle peak (100) at 

13.11° is corresponding to a distance of 0.67 nm [6, 28]. The strongest peak (002) at 

2θ=27.42° is a characteristic interlayer stacking peak for graphitic C3N4 material. For 

Fe3O4-g-C3N4 and Fe2O3-g-C3N4, the peak (002) moves to 27.99° and 28.02°, respectively. 

Meanwhile, the peak (002) of MnO2-g-C3N4 is staying at 27.42°. 
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Figure 3.1 XRD patterns of g-C3N4 and X-g-C3N4 
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Figure 3.2 shows the diffuse reflectance spectra of g-C3N4, Fe3O4-g-C3N4, Fe2O3-g-C3N4 and 

MnO2-g-C3N4. The adsorption edge of g-C3N4 was at 470 nm, which is corresponding to the 

band gap at 2.63 eV [8]. Meanwhile, the adsorption edge of modified g-C3N4 exhibited 

strong light absorption and red shift of adsorption edge [29, 30]. Red shift of adsorption 

indicated that ease of photoinduced electrons and holes producing. 
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Figure 3.2 UV-vis diffuses reflectance spectra of g-C3N4 and X-g-C3N4. 

 

The thermal stability of g-C3N4 and X-g-C3N4 were analysed by 

thermogravimetric-differential thermal analysis shown in Figure 3.3. A weight loss at the 

temperature 20-200 ℃ was observed, contributed to the removal of water. Fe3O4-g-C3N4 

and Fe2O3-g-C3N4 becomes unstable when the heating temperature is over 300 ℃, due to 

desorption and the decomposition of the functional groups in g-C3N4 [31]. The quick 

weight loss of g-C3N4 after 500 ℃ can be ascribed to the combustion of the carbon 

skeleton and the liberation of oxygen-containing groups. The elemental loading on 

Fe2O3-g-C3N4, Fe3O4-g-C3N4 and MnO2-g-C3N4 were determined based on their TGA 

profiles to be 22.5%, 12.8% and 11.6%, respectively. 
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Figure 3.3 TG thermogram curves of g-C3N4 and X-g-C3N4. 

 

Figure 3.4 shows Fourier transform infrared spectroscopy (FT-IR) spectra of g-C3N4 and the 

modified g-C3N4 samples. For g-C3N4 samples, peaks at 1030 and 1160 cm-1 are attributed to 

C-O stretching and C-OH stretching, respectively, which indicated the presence of hydroxyl 

(C-OH), carbonyl (C=O) and carboxylic (COOH). The broad peak at 3100-3300 cm-1 [29], is 

indexed to the N-H stretching or the H2O adsorption [7, 8]. The characteristic peaks of 

g-C3N4, is corresponding to the typical stretching modes of CN heterocycles between 1240 

and 1650 cm-1. 
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Figure 3.4 FTIR spectra for the g-C3N4, Fe3O4-g-C3N4, Fe2O3-g-C3N4 and MnO2-g-C3N4. 
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3.3.2 Catalytic performance  

The photocatalytic activities of various g-C3N4 were evaluated in degradation of methylene 

blue (MB) solution under visible light irradiation in Figure 3.5. Under the UV-vis light, the 

pure g-C3N4 can degrade 79% of MB in 180min. In comparison, MnO2-g-C3N4 had a better 

photocatalytic activity performance that 86% of MB was degraded in 3 hours. Meanwhile, 

Fe3O4-g-C3N4 has a similar rate with pure g-C3N4 in MB decomposition. By contrast, 

Fe2O3-g-C3N4 had a worst performance, only 56% MB was decomposed in 180 min. 

Generally, modification of g-C3N4 with MnO2 can enhance the photocatalytic activity by 

degrading MB under irradiation. The g-C3N4 doped MnO2 sample could decompose 86% MB 

in 3 hours due to the strong adsorption of modified structure toward aromatic structure of 

MB. 
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Figure 3.5 Photodegradation of methylene blue solution under UV-vis light. 

 

Figure 3.6 shows the efficiencies of g-C3N4 samples in catalytic oxidation of phenol solutions 

by activation of oxone. Generally, the pure g-C3N4 can hardly generate phenol degradation 

and only approximate 6% phenol was decomposed in 180 min. Meanwhile, the phenol could 

be oxidized at 36.5% by adding MnO2-g-C3N4, and about 15% phenol can be degraded by 

adding Fe3O4-g-C3N4 and Fe2O3-g-C3N4 as solid catalysts. 
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Figure 3.6 Phenol degradation under various g-C3N4 samples. 

3.4 Conclusions 

Metal oxides modified g-C3N4 photocatalysts were synthesized by using a hydrothermal 

method in this study. MnO2-g-C3N4 possessed a better photocatalytic performance in 

degradation of MB under UV-vis light irradiations and the catalytic oxidation of phenol 

solution. Introduction of the manganese ions into g-C3N4 would improve the structure the 

catalytic performance of g-C3N4. 
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4 

Chapter 4: Polyometalate modified graphitic 

carbon nitride materials for photocatalysis 

Abstract 

Polyometalate nanoparticles (POMs) and their functionalized graphitic carbon nitride 

(g-C3N4) were synthesized using a facile hydrothermal method. The photocatalysts were 

characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction 

(XRD), N2 sorption isotherms, thermogravimetric analysis (TGA), and UV-vis diffusion 

reflectance spectroscopy. The photocatalytic properties were investigated in 

photodecomposition of methylene blue and phenol under UV-visible light irradiations. It 

was found that the surface area and pore volume have been improved after POMs 

deposition and that the photocatalysts have enhanced photocatalytic activities. For g-C3N4, 

80% of methylene blue was removed at 180 min, while it only needs 60 min to achieve by 

using PMo12@g-C3N4-6%, and it can achieve 100% conversion in 180 min. In addition, phenol 

removal has been enhanced to 52% and 38% by using PMo12@g-C3N4-6% and 

PW12@g-C3N4-6% as photocatalysts.  
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4.1 Introduction 

As an undesirable consequence of high-speed urbanization and industrialization, organic 

pollutants such as phenolics, dyes and pharmaceuticals, discharged from industries and 

households have become a serious issue to the environment. Due to the strong toxicity of 

the various organic compounds, effective remediation technologies for removal of the 

organic pollutants from wastewater are highly demanded.  

Generally, advanced oxidation processes (AOPs) are widely employed for complete 

decomposition of organics into carbon dioxide and water [1, 2]. Among various AOPs, 

heterogeneous photocatalysis has been considered as a promising remediation technique 

due to its low-cost, environmental friendliness and sustainability [3]. In heterogeneous 

photocatalytic reaction, this process is achieved with the absorption of photos by a 

semiconductor material [4]. The electron (e-)/hole (h+) pairs will be generated in the 

conduction band (CB) and valence band (VB), and migrate the electrons to the surface of 

semiconductor where redox reactions occur [5-9]. 

Graphitic carbon nitride (g-C3N4) has drawn plenty of interest in the research interest due to 

its structure and remarkable chemical and physical properties, such as excellent electronic 

conductivity and great mechanical strength [10]. G-C3N4 has great potential in solar energy 

conversion and storage, photocatalysis and electrocatalysis, photovoltaic devices and 

bioimaging application [10-13]. Polyoxometalates (POMs) are one of the widely used 

photoelectrocatalysts in homogeneous and heterogeneous processes [14]. POMs are a vast 

class of well-defined, early transition metal-oxygen clusters with an enormous diversity of 

structural characteristics and multiple functions, which have been significantly improving 

the development of materials with catalytic and photochemical properties [15]. For example, 

some reports have described a significant improvement in the electrochemical properties of 

POM/MCN hybrids [16], which offers potentially high activity and selectivity in water 

oxidation catalysis at the heterogeneous surface of a functional electrode. 

Herein, we employed a facile hydrothermal method to synthesize POMs@g-C3N4 hybrids. 

Their physicochemical properties, such as crystalline structure, morphology and thermal 

stability were investigated. Furthermore, the photocatalytic degradation of methylene blue 

and phenol were tested. 
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4.2 Experimental section  

4.2.1 Material and chemicals 

Melamine (99.0%), phosphomolybdic acid hydrate (PMo12O40•xH2O, >99.0%) and 

phosphotungstic acid hydrate (PW12O40•xH2O, >99.0%) were obtained for Sigma-Aldrich. 

Methanol was purchased from Chem-Supply. Phenol (99.0%) was purchased from Ajax 

Finechem. All the chemicals were used as received without further purification. 

4.2.2 Synthesis of polyoxometalate @g-C3N4 (POMs@g-C3N4) 

The synthesis of POMs@g-C3N4 hybrids was accomplished by a modified hydrothermal 

method. In a typical synthesis, 0.408 g of PMo12O40•xH2O was dissolved in 40 mL deionized 

water, and then 2 g of g-C3N4 powder, which were synthesized by melamine in a semi-close 

system[17], were added into the aqueous solution. The suspension was transferred into a 

100 mL Teflon-lined stainless steel autoclave, and then put in an oven pre-set at 180 ℃ for 

12 h. After cooling down to room temperature, the precipitate was collected from the 

autoclave and washed 3 times with a large amount of deionized water to remove any 

impurities. The washed product was dried in an oven at 60 ℃ overnight and labelled as 

PMo12@g-C3N4 -2%. The different molecular ratio of PMo12@g-C3N4 were synthesised in the 

same way, and final precipitates were labelled as PMo12@g-C3N4-4%, PMo12@g-C3N4-6%, 

PMo12@g-C3N4-8%, and PMo12@g-C3N4-10%. 

The PW12@g-C3N4 hybrids were synthesised in the same modified hydrothermal method, 

above using PW12O40•xH2O in the molar ratios of 2%, 4%, 6%, 8% and 10%. 

4.2.3 Characterization 

The crystalline structures and phases of the material was evaluated with X-ray diffraction 

(XRD) patterns obtained on a Bruker D8 diffractometer (Bruker-AXS, Karlsruhe, Germany) 

using filtered Cu Kα radiation with λ at 1.5418 Å. Scanning electron microscopy (SEM, Zeiss 

Neon 40EsB FIBSEM) was performed to obtain the structure and morphology of the 

materials. The Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution 

of the samples were conducted by N2 adsorption/desorption using a Micrometrics Tristar 

3000 with the BET and Barrett-Joyner-Halenda (BJH) methods, respectively.  UV-vis diffuse 
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reflectance spectra (DRS) of prepared catalysts were recorded on a UV-vis 

spectrophotometer (JASCO V670) with an Ø  60 mm integrating sphere and BaSO4 as a 

reference standard. Thermal stability and phase transformation of POMs@g-C3N4 were 

studied by thermogravimetric-differential thermal analysis (TG-DTA) on a Perkin-Elmer 

Diamond thermal analyzer under air flow at a heating rate of 10 ℃/min. 

4.2.4 Photocatalytic activity and adsorption tests 

4.2.4.1 Photocatalytic degradation of methylene blue 

Photocatalytic oxidation using POMs@g-C3N4 was carried out by the photocatalytic 

degradation of a dye, methylene blue (MB), under ultraviolet and visible light irradiations. 

The irradiation source was supplied by a MSR 575/2 metal halide lamp (575 W, Philips). The 

average intensities of the lamp were measured to be 60 and 84 μW/cm2 at 315-400 and 

400-1050nm, respectively. In detail, 200 mL MB solution at 10 ppm with 100 mg catalyst 

were continuously stirred in a 1000 mL double-jacket cylindrical Pyrex vessel reactor. The 

light source was set about 30 cm from the liquid surface of the suspension. The reaction was 

started by exposing the UV-vis irradiation after 30 min stirred in dark for achieving the 

adsorption-desorption equilibrium. The reaction temperature was controlled by recycling 

the cooling water at 30 ℃ in a water bath. During the process, at given time intervals, 

approximate 5 mL of suspension were collected and centrifuged, and then analyzed by a 

JASCO UV-vis spectrophotometer at 664 nm. The degradation efficiency (%) can be 

calculated as: 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(%) =
𝐶0 − 𝐶

𝐶𝑜
× 100% 

Where C0 is the initial concentration of methylene blue, and C is the concentration 

considering methylene blue degradation on photocatalyst.  

4.2.4.2 Photocatalytic degradation of phenol 

The photocatalytic degradation of phenol tests were carried out in the similar system with 

20 ppm phenol solution. During the process, 1 mL solution was withdraw by a syringe and 
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filtered by a 0.25 μm Millipore film into a HPLC vial. Then the concentration of phenol was 

examined on a 380-LC HPLC with a UV detector set at λ = 270 nm. 

4.2.4.3 Adsorption test 

The adsorption test was run in the same system as photocatalytic reaction without any 

irradiation. 

 

4.3 Results and discussion 

4.3.1 Characterization  
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Figure 4.1 SEM images of pure g-C3N4 (A, A-1), PMo12@g-C3N4 (B, B-1) and PW12@g-C3N4(C, 

C-1). 

 

Morphology and structure of the synthesized materials were investigated by SEM images. 

Figure 4.1 (A) shows clear, crisp edges and rodlike structures of g-C3N4. A high magnification 

of g-C3N4 can be seen in Figure 4.1 (A-1), which shows the nanorods at a size of 5-6 μm in 

length. As seen, the PMo12 and PW12 [18] were observed in Figure 4.1(B, B-1, C and C-1), in 

the hydrothermal condition of mild temperature (180℃) and 12 hours, the morphology of 

g-C3N4 was modified, and parts of laminated structure of g-C3N4 were transformed to a 

smaller rodlike structures. 
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Figure 4.2 XRD patterns of g-C3N4 and POMs@g-C3N4 samples. 

 

The crystalline structures of prepared g-C3N4 and POMs@g-C3N4 materials were analyzed by 

XRD, as shown in Figure 4.2. Same characteristic peaks at 14.1° and 27.4° were observed on 

g-C3N4, PMo12@g-C3N4 and PW12@g-C3N4. The intensities of the peaks on PMo12@g-C3N4 

and PW12@g-C3N4 were much stronger than those of pure g-C3N4. In the patterns of 

PMo12@g-C3N4 and PW12@g-C3N4, besides the peaks of g-C3N4, peaks at 11.8°, 32.6° and 

35.1°, corresponding to characteristic peaks of crystal planes (012), (420) and (511) of POMs, 

respectively [19]. Another weak peak at 26.4° was possibly due to the (202) face of PO3 [20].  
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Figure 4.3 N2 sorption isotherms of three photocatalysts. 

 

Table 4.1 Textural properties of g-C3N4 and POMs@g-C3N4 samples.  

Catalyst Surface area (SBET, m2/g) Pore volume (cm3/g) Average pore size (nm) 

g-C3N4 10.1 0.065 24.1 

PW12@g-C3N4 33.0 0.136 16.6 

PMo12@g-C3N4  36.2 0.152 16.8 

 

Figure 4.3 demonstrates N2 adsorption/desorption isotherms and Table 4.1 shows the 

surface area, pore volume and pore size of three photocatalysts. In general, all the three 

samples had an IV isotherm with a type of H3 hysteresis loop, suggesting a mesoporous 

structure [18]. As seen, PMo12@g-C3N4-6% possessed a higher surface area (36.2 m2/g), 

which is more than 3 times of that of g-C3N4, and the pore volume (0.152 cm3/g) is also 

higher. The hysteresis loops at a relative pressure (P/P0) range of 0.4-0.95 indicated the 

mesoporous structure of the g-C3N4 and POMs@g-C3N4 samples. 
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Figure 4.4 TGA curves of photocatalysts. 

Figure 4.4 displays TGA profiles of g-C3N4 and modified g-C3N4 photocatalysts in air 

atmosphere with a heating rate of 10 ℃/min. As seen, the mild weight loss occurs from 110 

to 200 ℃, only adsorbed water or ethanol was removed, and then three endothermic peaks 

were observed at 305, 378 and 482 ℃, respectively. The PMo12 and PW12 become unstable 

when temperature is at 300 - 375 ℃ [21]. The second endothermic peak at 378 ℃ was 

attributed to the decomposition and combustion of organics and amorphous carbon [19]. 

After 482 ℃, the carbon nitride was combusted and oxidized into CO2 and NO2 at 720 ℃. 
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Figure 4.5 Diffuse reflectance spectroscopy of g-C3N4 and POMs@g-C3N4 samples. 



74 

The UV-vis absorption spectra for g-C3N4, PMo12@g-C3N4-6% and PW12@g-C3N4 -6% are 

shown in Figure 4.5. The PMo12 and PW12 display absorption across the visible light region 

ascribed to the d-d transition. The g-C3N4 exhibits absorption in the visible light absorption 

edge at 470 nm, which is corresponding to the band gap at 2.63 eV. Meanwhile, 

PMo12@g-C3N4-6% and PW12@g-C3N4 -6% are corresponding to the band gap at 2.75 eV 

[21-23]. 

4.3.2 Photocatalytic activity tests 
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Figure 4.6 Photocatalytic of methylene blue of various PMo12@g-C3N4 (A) and PW12@g-C3N4 

(B) and pure g-C3N4 (C) photocatalysts under UV-vis light irradiation. 

 

In Figure 4.6, the effects of various ratios of POMs@g-C3N4 in methylene blue degradation 

under UV-vis light irradiation was showed. It can be seen from Figure (A), all methylene blue 

can be degraded at 180 min under UV-vis light irradiation by using PMo12@g-C3N4 

photocatalysts, while various PW12@g-C3N4 at different ratios (B) had similar photocatalytic 

activities that 90 % of methylene blue was removed in 180 min. Pure g-C3N4 (C) was used as 

a reference sample, and 80% of methylene blue was decomposition in 3 hours under 

irradiation. PMo12@g-C3N4-6% produced a higher activity that 80% of methylene blue was 

removed in 60 min, and it can remove all of methylene blue at 180 min. 
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Figure 4.7 Activities of phenol decomposition with photocatalysts. 

 

Figure 4.7 shows that PMo12@g-C3N4 -6%, and PW12@g-C3N4 -6% had a higher activity than 

pure g-C3N4. Generally, the pure g-C3N4 was hardly to make decomposition of phenol, only 

performing 10% in 180 min, while 6% phenol was being adsorbed by the photocatalyst 

(Shown below in Figure 4.8). Meanwhile, phenol could be removed at about 52% and 38% 

by using PMo12@g-C3N4 -6%, and PW12@g-C3N4 -6% as photocatalysts under 3 hours UV-vis 

irradiation. 
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Figure 4.8 Adsorption of MB (A) and phenol (B) on photocatalysts in 3 hours. 

 

Figure 4.8 shows the adsorption of methylene blue and phenol on the pure g-C3N4 and 

POMs@g-C3N4 photocatalysts. The results demonstrated that the samples, g-C3N4, 

PMo12@g-C3N4 -6%, and PW12@g-C3N4 -6%, presented a minor adsorption of methylene 

blue at 13%, 19% and 15%; and the adsorption of phenol at 6%, 9% and 8%, respectively at 

180 min. Thus, the major decreases of methylene blue and phenol concentrations in the 

catalytic tests were contributed to the photodecomposition of g-C3N4 and modified 

POMs@g-C3N4 photocatalysts. 

4.4 Conclusion 

PMo12 and PW12 modified g-C3N4 photocatalysts were synthesized via a one-step 

hydrothermal method with varying POMs loading levels. PMo12@g-C3N4-6% possessed a 

higher surface area and pore volume, and showed a better photocatalytic performance in 

degradation of MB and phenol under UV–vis light irradiations. The modified structure and 

the matched band structures between POMs and g-C3N4 contribute to the enhanced 

photocatalysis. This study suggested promising material hybrids for photodegradation of 

aqueous organic pollutants for water remediation. 
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5 

Chapter 5: Silver Silicate modified graphitic 

carbon nitride catalysts for photodegradation of 

methylene blue under UV-vis light irradiations 

Abstract 

Silver silicate modified graphitic carbon nitride catalysts (g-C3N4/Ag6Si2O7 composites) were 

synthesized using a facile hydrolysis and ion-exchange method. The catalysts were tested 

for removal of methylene blue via photocatalytic decomposition and adsorption. The 

photocatalytic properties were investigated in liquid-phase degradation of methylene blue 

under UV-vis light. The characterization of the photocatalysts was conducted by field 

emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and UV-vis 

diffusion reflectance spectroscopy. Compared with g-C3N4, the g-C3N4/Ag6Si2O7 composites 

showed an enhanced photocatalytic activity in decomposition of methylene blue under 

UV-vis light irradiations. 
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5.1 Introduction 

In the 21st century, wastewater treatment for its recycling is a significant issue in our lives, 

because the hazardous components in wastewater have posed great threats to the public 

health and the shortage of fresh water occurs worldwide[1, 2]. Industrial processes have 

generated a large amount of organic compounds and discharged into the environment [3, 4]. 

These organic pollutants, such as phenol and dyes, are toxic and recalcitrant to natural 

degradation. Therefore, it is urgent to develop effective techniques for removal of the 

organic contaminants from water. 

Advanced oxidation processes (AOPs) have been widely investigated and employed as a 

viable strategy to degrade organic compounds in wastewater into simple compounds, 

carbon dioxide and water. Most AOPs are based on the generation of reactive species, such 

as superoxide radicals (O2
-·) and hydroxyl radicals (·OH) that have a high standard oxidation 

potential for non-selective reaction [5, 6]. Currently, photocatalytic abatement of organic 

pollutants has drawn plenty of interest from both academic and industrial societies. The 

photocatalytic reaction is achieved by the excitation of electrons from the valence band (VB) 

to the conduction band (CB) of semiconductor materials upon irradiation, and the excited 

electron (e-)/hole (h+) pairs can be used in a redox reaction. Thus, photocatalysis is 

considered as a promising technique for eliminating organic compounds in wastewater via a 

redox mechanism [7-9]. 

Graphitic carbon nitride (g-C3N4) has been considered as one of the most eminent 

candidates due to its low toxicity, high stability and appealing electronic structure [10-12]. 

Nevertheless, the photocatalytic activity is limited by its low surface area and quantum 

efficiency [13]. Many potential modifications of g-C3N4 have been carried out in activity 

improving.  

Silicates have been widely employed as industrial catalysts [14]. A silicate-based 

photocatalyst [15] has been reported recently owing to desirable photocatalytic activity. 

Ag6Si2O7 has an internal polar electric field by controlling the array of the polar SiO4 

tetrahedra, which coordinate Ag+ ions leading to AgOx. Ag6Si2O7 exhibits a very high 

potential in photocatalytic application due to its response in whole visible-light region (λ < 

740 nm). 
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In this study, g-C3N4/Ag6Si2O7 composites would be synthesized. These composites were 

tested in photocatalytic degradation of methylene blue under UV-vis light. Furthermore, 

their physicochemical properties, such as crystalline structure and morphology were 

observed. 

 

5.2 Experimental section  

5.2.1 Material and chemicals 

Melamine (99.0%), sodium metasilicate nonahydrate (Na2SiO3•9H2O, >99.0%), and silver 

nitrate (AgNO3, >99.0%) were obtained for Sigma-Aldrich. Methanol was purchased from 

Chem-Supply. All the chemicals were used without further purification. 

5.2.2 Synthesis of g-C3N4/Ag6Si2O7 composites 

Synthesis of Ag6Si2O7:  In detail, 0.852g Na2SiO3•9H2O was dissolved in 210 ml deionized 

water under continual stirring. Then the mixture was added gently into 90 ml 0.1M AgNO3 

solution to generate reddish brown precipitates. After 30 min stirring, the precipitates were 

harvested from the solution by vacuum filtration and washed with deionized water for 3 

times before drying at 55 ℃ overnight. 

Synthesis of g-C3N4/Ag6Si2O7: 0.284g Na2SiO3•9H2O was dissolved with the 70ml deionized 

water under continual stirring, then 3.672 g of prepared g-C3N4 were added into the 

solution under ultrasonic treatment for 60 min. The mixture was added gently into 30ml 

0.1M AgNO3 solution to generate orange precipitates. After 30 min stirring, the precipitates 

were harvested from the solution by vacuum filtration and washed with deionized water for 

3 times before drying at 55 ℃ overnight. Several g-C3N4/Ag6Si2O7 at different ratios were 

synthesised in the same way, and final precipitates were labelled as g-C3N4/Ag6Si2O7-20%, 

g-C3N4/Ag6Si2O7-30%, g-C3N4/Ag6Si2O7-40%, and g-C3N4/Ag6Si2O7-50%. 

5.2.3 Characterization 

X-ray diffraction (XRD) patterns were obtained on a Bruker D8 diffractometer (Bruker-AXS, 

Karlsruhe, Germany) using filtered Cu Kα radiation with λ at 1.5418 Å. The structure and 
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morphology of the materials were performed on a scanning electron microscopy (SEM, Zeiss 

Neon 40EsB FIBSEM). Fourier transform infrared spectra (FT-IR) were acquired from a 

Perkin-Elmer Model FTIR-100 with a MIR detector. UV-vis diffuse reflectance spectra (DRS) 

of prepared catalysts were recorded on a JASCO V670 UV-vis spectrophotometer with an Ø  

60 mm integrating sphere, in which BaSO4 was used as a reference standard.  

5.2.4 Photocatalytic oxidation of methylene blue 

The aqueous photocatalytic oxidation of methylene blue was carried out in a 1000 mL 

double-jacket cylindrical Pyrex vessel reactor. A water bath connected with a pump was 

used to control the reaction temperature at 30℃ by recycling the cooling water. The light 

source was set about 30 cm from the liquid surface of the suspension. The irradiation source 

was supplied by a MSR 575/2 metal halide lamp (575 W, Philips). The UV intensity at 315 

-400 was measured to 60 μW/cm2 and the visible light intensity at 400 - 1050 nm was 84 

μW/cm2. In detail, 0.1g of photocatalyst was added into 200 mL of 10 ppm methylene blue 

solution and stirred 30 min to achieve the adsorption-desorption equilibrium. The light was 

immediately switched on, and then reaction was started by exposing the UV-vis irradiation. 

During the process, 3 mL of solution was collected and centrifuged at each time interval, 

and then analysed by a JASCO UV-vis spectrophotometer at 664 nm. The degradation 

efficiency (%) can be calculated as: 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(%) =
𝐶0 − 𝐶

𝐶𝑜
× 100% 

Where C0 is the initial concentration of methylene blue, and C is the concentration 

considering methylene blue degradation on a photocatalyst.  

The adsorption test was run in the same system as photocatalytic reaction without any 

irradiation. 
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5.3 Results and discussion 

5.3.1 Characterization  

  

  

Figure 5.1 SEM images of Ag6Si2O7 (A) and g-C3N4/Ag6Si2O7 composites (B, C, and D). 

 

Figure 5.1 shows SEM images of the synthesized materials. Figure 5.1 (A) shows that the 

Ag6Si2O7 nanoparticles had sphere-like morphology and the particle size is approximately 50 

nm. And it also can be seen that the nanoparticles were aggregated, due to the 

inter-molecular dipolar interaction. Figure 5.1 (B, C and D) shows the morphology of 

g-C3N4/Ag6Si2O7 composites that Ag6Si2O7 nanoparticles were adhered on the surface of 

g-C3N4. 
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Figure 5.2 FT-IR spectra of g-C3N4, Ag6Si2O7 and g-C3N4/Ag6Si2O7-50% composites. 

 

In Figure 5.2, FT-IR spectra are used to evaluate the functional groups of prepared 

photocatalyst samples. As seen, the strong IR bands at 1381 cm-1 and 1699 cm-1 were 

attributed to C-C and C=O vibrations, respectively, and the band at 797 cm-1 was due to 

aromatic C-H bending vibrations. For the Ag6Si2O7, which were attributed to Si-Si, Si=O, and 

Si-H vibrations. All can be found in these three samples. The peaks around 1246 – 1650 cm-1 

was corresponding to the typical skeletal vibrations of CN heterocycles, which cannot found 

in the pattern of Ag6Si2O7 photocatalyst. The band at 1019 cm-1 indicated the presence of 
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C-O stretching vibrations and a peak at 3449 cm-1 was a characteristic signal of –OH 

vibrations, which only showed in the pattern of pure g-C3N4. 
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Figure 5.3 XRD patterns of g-C3N4, Ag6Si2O7, and g-C3N4/Ag6Si2O7-50% composites. 

 

Figure 5.3 shows XRD patterns of prepared g-C3N4, Ag6Si2O7, and g-C3N4/Ag6Si2O7 

composites. It can be seen that Ag6Si2O7 dopant has some effects on the XRD pattern of 

g-C3N4. Strong g-C3N4 and Ag6Si2O7 peaks can be found in g-C3N4/Ag6Si2O7 composites at 

27.4° and 34.8°, respectively. Some weak peaks of g-C3N4/Ag6Si2O7 composites at 10° to 20° 

were detected in the XRD analysis, corresponding to characteristics peaks of crystal planes 

of g-C3N4 (110) and (108), respectively. 
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Figure 5.4 Spectra of diffuse reflectance spectroscopy of photocatalysts. 

 

Figure 5.4 shows UV-vis diffuse reflectance spectra of g-C3N4, Ag6Si2O7, and 

g-C3N4/Ag6Si2O7-50% composites. It can be seen that g-C3N4, and g-C3N4/Ag6Si2O7 showed 

much similar profiles and Ag6Si2O7 presented differently. For g-C3N4 and 

g-C3N4/Ag6Si2O7-50%, a strong broad band centred at around 400 nm. The g-C3N4 exhibits 

absorption onsets at 460 nm, is corresponding to the band gap at 2.63 eV, and the band gap 

of g-C3N4/Ag6Si2O7-50% composites is 2.58 eV. 
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5.3.2 Photocatalytic activity tests 
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Figure 5.5 Activities of methylene blue decomposition with various ratios of g-C3N4/Ag6Si2O7 

composites (A), g-C3N4 and Ag6Si2O7 (B) under UV-vis light irradiation. 

 

Figure 5.5 (A) shows that various ratios of g-C3N4/Ag6Si2O7 composites can make a complete 

decomposition of methylene blue in 180 min. Among them, the g-C3N4/Ag6Si2O7 -50% could 

achieve 100% degradation under 120 min irradiation. It also can be seen from Figure 5.5 (B) 

that the pure Ag6Si2O7 has the greatest photocatalytic activity for methylene blue removal, 
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which would degrade 100% methylene blue within 30 min. For pure g-C3N4, only 20% of 

methylene blue was degraded at 30 min, and achieved 80% degradation at 180 min under 

UV-vis light irradiation. However, the adsorption of methylene blue on Ag6Si2O7 is also much 

higher than g-C3N4 and g-C3N4/Ag6Si2O7 composites (see below). 
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Figure 5.6 Adsorption of MB on photocatalysts in 3 hours. 

 

Figure 5.6 shows the adsorption of methylene blue on the g-C3N4, Ag6Si2O7 and 

g-C3N4/Ag6Si2O7 composites. It was shown that the photocatalysts presented adsorption of 

methylene blue from 12% to 38% at 180 min, and the adsorption of Ag6Si2O7 was much 

greater than other photocatalysts. Especially at the first 30 min, the adsorption of 

methylene blue on the Ag6Si2O7 was up to 46%. Moreover, the reduction of the methylene 

blue in the photocatalytic tests was mainly contributed to the photodegradation of 

photocatalysts. 

 

5.4 Conclusion 

The g-C3N4/Ag6Si2O7 composites were successfully synthesized using a facile hydrolysis and 

ion-exchange method with different Ag6Si2O7 loading ratio in this study. The photocatalytic 

properties were examined. The g-C3N4/Ag6Si2O7-50% performed a high photocatalytic 
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activity in decomposition of methylene blue under UV-vis light irradiations. The modified 

structure between Ag6Si2O7 and g-C3N4 contribute to the enhanced photocatalysis. 
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6 

Chapter 6: Conclusions and future work 
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6.1 Concluding comments 

The major objective of this research is to synthesize novel graphitic carbon nitride based 

photocatalysts to degrade organic compounds in aqueous phase via UV-light irradiation. 

Graphitic carbon nitride (g-C3N4) was synthesized by a facile thermal treatment of melamine. 

Various types of modified graphitic carbon nitride photocatalysts were synthesized with 

hydrothermal method or hydrolysis and ion-exchange method, and used for decomposition 

of methylene blue solution with UV-vis light irradiation. Metal-oxide doped graphitic carbon 

nitride (Fe2O3-g-C3N4, Fe3O4-g-C3N4 and MnO2-g-C3N4) photocatalysts were synthesized by a 

hydrothermal method. Polyometalate nanoparticles (POMs) were also synthesized by a 

hydrothermal method and used to modify g-C3N4. G-C3N4/Ag6Si2O7 composites were 

synthesized using a facile hydrolysis and ion-exchange method. All these catalyst materials 

were tested for methylene blue photocomposition under UV-vis light irradiation. Some of 

these catalysts were also investigated for activating peroxymonosulfate (PMS) for the 

degradation of phenol. 

 

6.2 Effect of metal-oxide doped graphitic carbon nitride 

A series of metal-oxide doped graphitic carbon nitride have been successfully prepared by a 

facile hydrothermal method. The physical and optical properties of g-C3N4 have changed 

upon metal deposition, and the large heterojunction interface and intrinsically layered 

structure of MnO2-g-C3N4 could enhance methylene blue decomposition process. 

 

6.3 One step synthesis of polymetalate modified g-C3N4 

Polymetalate modified g-C3N4 photocatalysts have been successfully synthesized via a 

one-step hydrothermal method. The structures and photocatalytic properties of g-C3N4 have 

been improved. PMo12@g-C3N4 photocatalysts exhibited a better efficiency in degradation 

of methylene blue and phenol under UV-vis light irradiation. 
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6.4 Photocatalytic activities of silicate modified g-C3N4 

Silicate modified graphitic carbon nitride catalysts (g-C3N4/Ag6Si2O7 composites) were 

synthesized using a facile hydrolysis and ion-exchange method. The g-C3N4/Ag6Si2O7 

composites showed an excellent photocatalytic activity in decomposition of methylene blue 

under UV-vis light irradiations and relatively low adsorption of methylene blue. 

 

6.5 Scope for future work 

This research focused on the modification of graphitic carbon nitride photocatalyst for 

degradation of methylene blue or phenol in aqueous phase under UV-vis light irradiation. 

The results demonstrated that methylene blue can be decomposed into by-products via 

various catalysts under illumination. However, the catalysts need to be examined for other 

organic pollutants. And it also needs to conduct the tests of the catalysts with other 

oxidants, such as hydrogen peroxide and potassium permanganate. 

In this study, the focus was to explore the photocatalytic activity of catalysts for methylene 

blue oxidation reaction. However, further study on the stability of the catalysts and the 

mechanism of photocatalysis needs to be done to investigate by-products and 

intermediates, which may cause the secondary pollution in water treatment processes. 

Our investigation showed that photocatalysis of methylene blue conducted in a batch 

process has been achieved. However, in order to employ this technology to industrial scale, 

detailed testing route on a continuous process needs to be done to investigate various 

parameters such as flow rate of feeding, time of residence, and kinetic constants. 

 

 

 

 

 


