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Abstract

In recent years researchers have taken particular interest in activity recognition due to

the need for automated security surveillance. However, activity recognition can be ap-

plied to a plethora of other applications including aged care monitoring, behavioural

biometrics, health care monitoring, sports analysis, human computer interaction and

smart homes. In a smart home context, sensors can allow monitoring of an individuals

health, independence and activities, with the intent to automatically elicit appropriate

responses to predetermined or abnormal activities without the need for human super-

vision, intervention or subjectivity. Such predetermined or abnormal activities could

include falling over or remaining seated for lengthy periods of time with possible au-

tomated responses including emergency care notification, medical assistance or carer

assistance. With an aging worldwide population, development of such smart home tech-

nologies can aid the elderly and disabled individuals to maintain their independence,

further reducing dependencies on health care systems.

Activity recognition is concerned with the identification and classification of activities,

defined as complex events or a series of actions. Automated activity recognition is

inherently difficult due to the variable nature with which humans conduct activities.

For example, individuals can conduct the same activity with different durations, at

different periodic times, in different sequential order, and during other activities (multi-

tasking). Additionally, multi-camera, video-based (spatial) tracking of individuals in a

smart home environment is subject to significant variability particularly in multi-room

residences. To address the issue of spatial noise from video tracking systems and to

detect activities occurring concurrently, this thesis proposes a novel biologically-inspired

cellular chemotactic model. The cellular chemotactic model, which is based on bacterial

chemotaxis, a mobility survival characteristic employed by certain bacteria in diverse



environments, represents activities as chemotactic cells in a two dimensional space. As

activities are matched the cells conduct a biased random walk of a longer duration

towards an attractant source (improving cell “fitness”). In the presence of noise, cells

conduct shorter unbiased random walks (robustness mechanism). The activity type for

a target sequence is determined by finding the activity cell with the smallest Euclidean

distance to the attractant origin. Since multiple cells can move independently of each

other (similar to agent-based models), the approach allows recognition of concurrent and

interwoven activities (multi-tasking).

The recognition of spatial activities with tracking noise and temporal variation is non-

trivial. Discretisation of two-dimensional spatial data to form symbolic representations

for activity recognition can be problematic as discretisation can affect the model param-

eters and accuracy. Two-dimensional approaches are more accurate however typically

suffer from susceptibility to noise. This thesis analyses sequence alignment approaches

and proposes two robust sequence alignment approaches (Longest Common Subsequence

Distance (LCSD) and Global Edit Distance (GED)) for spatial activity recognition, and

a robust and more computationally efficient means for recognition of spatial sequences in

the presence of temporal variation (Threshold Dynamic Time Warping (TDTW)). The

LCSD and GED approaches are demonstrated in this thesis to be robust to innate se-

quence variability and noise from spatial sequences. The TDTW approach is also shown

to be capable of accurately recognising sequences with temporal variation and in the

presence of noise, outperforming popular template and probabilistic approaches.

Online video tracking systems provide a continuous stream of spatial sequences, which

are typically processed using a sliding window approach. Existing activity recognition

techniques segment these streams at likely activity “signatures” for computational ef-

ficiency, and analyse the respective sequence windows for embedded activities. Many

of these approaches determine sequence similarity based on the whole window sequence

and are unable to detect embedded sub-sequences. This thesis proposes an algorithm

based on Smith-Waterman (SW) local alignment from the field of bioinformatics that

can efficiently locate and accurately quantify embedded activities within a windowed

sequence. The SW local alignment technique is also robust to missing sequence infor-

mation and tracking system noise. Another variant of the approach called Online SW

(OSW) allows for efficient calculation of the SW local alignment with continuous spatial

streams. Experiments further demonstrate that the technique successfully recognises

embedded activities with a high degree of discimination.
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Chapter 1

Introduction

Activity recognition is concerned with the identification and classification of complex

events or series of actions. It is a multi-faceted problem domain primarily including

aspects of computer vision and pattern recognition. Activity recognition can be applied

to areas including security surveillance, aged care monitoring, behavioural biometrics,

health care monitoring, sports analysis, human computer interaction and smart homes

(Dilger, 1997; Aggarwal and Cai, 1999; Ehlert, 2003; Aggarwal and Ryoo, 2011). Each

activity recognition application has unique environmental conditions and constraints,

requiring novel solutions or optimisation of existing solutions for that application. For

example, video-based activity recognition in a metropolitan crowd monitoring scenario

typically utilises a macro-view of a scene to determine user activities and behaviour

(Andrade et al., 2006; Fuentes and Velastin, 2006; Robertson and Reid, 2006) . These

approaches need to deal with smaller amounts of information to categorise an individuals

activities, with a high degree of scene and crowd variability especially with outdoors

environments. In contrast, a video-based HCI solution in an office environment focuses

on a micro-view of a user (limbs, extremities and body characteristics), rather than a

scene, to categorise user activities based on body movement (Ben-Arie et al., 2002). The

challenge for researchers in this scenario is accounting for an individuals variability in

motion and characteristics for each activity and between different activities.

In the context of security surveillance, activity recognition systems could detect indi-

viduals acting suspiciously and consequently alert security forces without the need for

constant human monitoring of surveillance cameras. With sports analysis, activity recog-

nition could be used to automatically capture statistics on an individual’s performance.

In a smart home, sensors could allow monitoring of an individual’s health, indepen-

dence and activities, with the intent to automatically elicit appropriate responses to

predetermined or abnormal activities. A study by Hine et al. (2005) shows a direct

correlation between daily living activities conducted by a person and their well-being.

1



CHAPTER 1. INTRODUCTION

Thus, changes in a person’s everyday activities is indicative of a change in well-being or

health. In an aged care scenario activity recognition systems could be used to identify

person’s remaining seated for lengthy periods. Such a system could then provide an

automated response such as a medical or emergency services notification or request for

carer assistance. With an aging worldwide population, development of such smart home

technologies can assist patients, the elderly and disabled individuals to maintain their

independence, further reducing dependencies on already overloaded health care systems.

Activity recognition is complex due to the variable nature with with humans conduct

activities. For example, individuals can conduct the same activity over different dura-

tions, at different periodic times, in different sequential order, and during other activities

(multi-tasking). Under these conditions, humans can readily generalise and classify these

activities as the same type; this equivalent process has been difficult to replicate in arti-

ficial intelligence and pattern recognition approaches. If one makes the assumption that

a sensor system can accurately capture positional, pose, and other information when

an activity occurs, activity recognition approaches still need to generalise or classify

all the activity variants into a singular activity class, which is not trivial (Szalai, 1972;

Tapia, 2003; Sheikh et al., 2005). Realistically sensor systems such as multi-camera

video tracking systems produce data with significant noise, particularly in multi-room

residences. This noise makes correct classification of activities that exhibit temporal or

spatial intra-class variability more difficult.

Activity recognition researchers have developed numerous template matching, proba-

bilistic, stochastic and hybrid models to address the issues of recognising human activ-

ities. These models are typically constrained to niche applications and environments,

and can suffer from problems including low recognition performance with the variable

nature of activities, high computational complexity and/or poor robustness in real world

applications. The reviews by Shah and Jain (1997); Aggarwal and Cai (1999); Tapia

(2003); Turaga et al. (2008) and Aggarwal and Ryoo (2011) provide a thorough coverage

of activity recognition approaches with several different taxonomies provided.

This thesis accepts the premise that activity sensor information is inherently noisy and

variable, and explores alternative pattern recognition paradigms that are tolerant to

spatial sensor and activity variability, yet discriminate. The spatial sensor domain is

a focus of this research due to the ease and non-invasive manner with which sensor

data can be collected in a smart home environment. For each activity, a sequence

2



CHAPTER 1. INTRODUCTION

of (x,y) tuples are produced based on a person’s relative position in the smart home

environment. These sequences are in turn labelled with the activity type in a supervised

manner. This approach of representing activities as spatial sequences is consistent with

activity recognition approaches in other smart home studies (Lühr et al., 2003; Nguyen

et al., 2003; Duong et al., 2005; Zouba et al., 2007).

1.1 Aims and Approach

Video-based activity recognition is challenging due to tracking difficulties with dynamic

environments, the large state space associated with different human activity types and

the variable nature of human activities. The activity recognition problem space in this

thesis is constrained to a smart homes environment, limiting tracking to a consistent

indoor environment, with a small number of individuals. The constrained indoor en-

vironment also limits the number of activities that can be conducted by individuals.

The underlying assumption that sensors can capture humans conducting activities in a

consistent and period manner has been empirically verified in studies by Monk et al.

(1992); Suzuki et al. (2004) and Suzuki et al. (2006). In this thesis, non-invasive camera

sensors are utilised, which are processed via a multi-camera tracking system Nguyen

et al. (2003) to provide relative spatial coordinates of individuals in the smart home

environment.

The above constraints make the activity recognition problem space tractable for analysis

and development of new approaches for automatic recognition. The following outlines

the key aims of this thesis with respective approaches given below:

Aim 1. To identify, validate and apply new paradigms to address shortfalls of existing

spatial activity recognition approaches in a smart homes context.

Aim 2. To develop robust spatial activity approaches that can recognise activities in the

presence of human variation and noise generated by video-based tracking systems

in a smart homes context.

Aim 3. To develop discriminate and efficient spatial activity approaches, that can recog-

nise embedded spatial activities in a continuous stream of spatial data, generated

by a video-based tracking system.

3



CHAPTER 1. INTRODUCTION

In this thesis and to address the first aim, a biological process is identified and modelled

to generate the cellular chemotactic model for spatial activity recognition. This model

incorporates aspects of bacterial chemotaxis, a robust biological process that allows bac-

terial cells to directionally swim in response to chemical or other physical gradients,

thus improving survivability in dynamic environments. The application of the cellu-

lar chemotactic model to the spatial activity domain demonstrates similar robustness

characteristics to its biological process, allowing recognition of spatial sequences in the

presence of noise and concurrent recognition of multiple simple interwoven activities (a

multi-cellular chemotactic trait).

Bioinformatics is a useful source of inspiration for dealing with the variable nature of hu-

man activities and addressing the second aim. The sequence alignment techniques used

with biological sequences addresses similar issues to those found with human activities.

These sequence alignment issues (and their corresponding activity related issues) include

sequence compression (relating to shorter duration activities), sequence expansion (relat-

ing to longer duration activities), sequence insertions and deletions (relating to activity

variability and tracking noise) and sub-sequence matching (relating to activity inter-

weaving) (Sankoff and Kruskal, 1999a). In this thesis, sequence alignment is adapted to

the two dimensional space and evaluated with existing activity recognition approaches.

The result of this analysis is the fusion of characteristics of sequence alignment method-

ologies with “time warping” philosophies. The longest common subsequence distance

(LCSD) and global edit distance (GED) are in turn formulated for dealing specifically

with noise tolerance and minor temporal activity variation. A threshold DTW (TDTW)

approach is also specifically developed for recogition of activities exhibiting temporal

variation, whilst having an improved tolerance to tracking system noise.

The issue of recognising embedded spatial activities and addressing the third aim is

approached through the use of another bioinformatics inspired approach. The Smith-

Waterman (SW) local alignment technique is typically used in bioinformatics to search

for genes and fragments (subsequences) in unknown sequences. Application of the SW

technique to spatial activity recognition provides a unique ability to identify and quantify

sub-sequences (corresponding to activities) in spatial data streams. A two dimensional

SW approach was consequently developed for the spatial domain, based on the original

SW local alignment algorithm, and evaluated against existing sequence alignment and

activity recognition approaches. Improved computational efficiency was achieved with

the SW algorithm, through investigation of sub-optimal characteristics in dynamic pro-
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gramming with SW. This resulted in the formulation of the online SW (OSW) approach

to spatial activity recognition.

1.2 Significance and Novelty

This thesis makes four main contributions to the field of pattern recognition:

1. The development of a novel biological paradigm (chemotaxis) for robust and con-

current pattern recognition in an activity recognition context.

2. Adoption of bioinformatics sequence alignment characteristics to improve recogni-

tion of spatial activities in the presence of noise.

3. Fusion of time-warping and bioinformatics sequence alignment characteristics to

improve robustness and allow recognition of the same activities with temporal

variation.

4. The novel use and optimisation of Smith-Waterman local alignment for recognition

of embedded spatial activities in a spatial data stream.

The thesis contributions and their significance are as follows.

1.2.1 A biological paradigm for spatial activity recognition

Activities captured by multi-camera tracking systems and represented as spatial se-

quences in a smart home environment are traditionally noisy, exhibiting significant vari-

ation due to tracking artifacts (shadows, reflections, lighting variation, occlusions). As

a smart home and its various rooms are small and the tracking noise can be large (even

with smoothing), these variations can affect activity discrimination.

Modelling this spatial activity recognition problem using a biological paradigm is novel.

Biological systems have proven to be a useful basis for solving many real world problems

as a consequence of their innate robustness, adaptiveness, diversity and error tolerance
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(Paton, 1994). The proposed chemotactic approach for spatial activity recognition is

significant as it can address the robustness issue with noisy spatial activity sequences.

Bacteria that exist in competitive and nutrient poor environments, are believed to have

evolved the chemotactic capability to sense and respond to dynamic environments, in-

creasing their survivability and thus evolutionary fitness. Through the use of a chemotac-

tic paradigm, a cellular chemotactic model has been developed that is capable of dealing

with significant noise from video tracking systems. The tolerance to tracking noise is

achieved in the cellular chemotactic model through the process of biasing random walks

(over longer durations) of activity cells towards an “attractant” where subsequences cor-

respond, whilst conducting unbiased (shorter duration) random walks for subsequences

that don’t match. At the conclusion of a test sequence comparision, the cell that clost

to an “attractant” is determined to the be activity class. As the cellular chemotactic

model is not restricted by Markovian constraints, unlike HMM-based techniques, the

chemotactic approach also exhibits inherent resilience to spatial variations in activity

sequences of similar duration.

One of the most difficult aspects of activity recognition is the ability to recognise interwo-

ven or multi-tasked activities. This is difficult to model from a computational perspective

as humans can interweave activities at any time and between most activities, making a

priori information on interwoven activities in a supervised or semi-supervised approach

of low value. The cellular chemotactic model is capable of addressing this multi-tasking

recognition issue as to its cells mimic the behaviour of agent-based models, with multiple

activity cells responding to a spatial activity sequence. This characteristic allows the

cellular chemotactic model to cater for interweaving of simple activities.

1.2.2 Improving robustness of spatial activity recognition using bioin-

formatics principles

Spatial sequence variation as a result of tracking noise can affect activity discrimina-

tion and recognition classification performance. Tracking noise typically manifests as

a localised variability, compression or expansion of sequences. In biological sequences,

localised substitution, compression and expansion of sequence elements are naturally

occurring phenomena in nature. As a result bioinformatics techniques have been opti-

mised to identify known gene and protein sequences exhibiting variation. The proposed
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LCSD and GED approaches addressed in this thesis are based on bioinformatics se-

quence alignment techniques that are capable of quantifying sequence variability. The

LCSD approach uses real spatial data to locate optimal sequence alignments and assigns

a distance score between a template sequence and a test sequence. This is achieved by

minimising the dissimilarity between sequence elements over the length of the sequences.

The GED approach differs in that it finds the optimal alignment and distance between

a pair of sequences by minimising the number of mismatches, insertions and deletions

with differing penalties over the sequence length. The LCSD and GED approaches are

explored in the context of spatial activity recognition through evaluation with spatial

sequences containing artificially introduced noise, and contrasted to existing template-

based and probabilistic spatial activity recognition approaches. This contribution is

significant as the application of bioinformatics inspired methodologies to the spatial

activity recognition domain is shown to provide robust activity recognition.

1.2.3 Recognition of activity sequences in the presence of noise and

temporal variation

In order for an automatic activity recognition system to accurately recognise human

activities, the system must be able to cater for temporal variations in the same activity.

Humans characteristically conduct the same activity over differing durations. For exam-

ple, the activity of having breakfast in a smart home can occur over two distinct time

periods depending on whether the individual is in a rush to carry out another activity or

not. Current activity recognition approaches are capable of recognising activities with

temporal variation, yet are highly susceptible to noise from tracking systems.

Recognition of spatial activities exhibiting temporal variation in the presence of noise,

is addressed in particular by the threshold DTW (TDTW) approach. TDTW is sig-

nificant as it tolerant to inherent noise resulting from video-based human tracking, yet

is capable of matching the same activities with temporal variations. Noise tolerance of

this approach is achieved through the introduction of a novel sequence alignment dis-

tant matching constraint in the TDWD calculation for spatial elements. The constraint

prevents minor warping with small changes in position, reducing the algorithms suscepti-

bility to tracking noise. The improved discrimination ability of TDTW in the presence of

noise is verified against existing sequence alignment and activity recognition approaches
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across multiple data sets, demonstrating the superior performance of the approach. To

improve the runtime performance of TDTW a band dynamic programming (DP) con-

straint is also introduced and validated in the context of spatial activity recognition of

segmented activities. The band DP constraint does reduce algorithm runtime with only

minor decreases in recognition performance with smaller band sizes.

1.2.4 A bioinformatics approach for detecting embedded spatial se-

quences

An automatic activity recognition system must be able to recognise human activities in

continuous streams of data. In traditional activity recognition approaches, data streams

are processed using a sliding window approach where the window size corresponds to an

activity duration or “signature”. The extracted and segmented sequence is then analysed

to determine sequence similarity or applied to a model for recognition. Sliding windows

of different sizes need to be provisioned for recognising different activities if they have

different lengths as most activity recognition approaches are unable to detect activities

embedded in a larger sequence.

The Smith-Waterman (SW) local alignment algorithm Smith and Waterman (1981) is a

bioinformatics dynamic programming approach that compares two biological sequences,

finds the optimal sub-sequence in relation to a penalty function, and provides a simi-

larity metric of two sub-sequences. In this research, the SW algorithm is adapted to

a two dimensional space, a linear gap penalty based on Euclidean distance is used be-

tween points rather than a constant, and a matching constraint is applied for the spatial

activity domain. The use of a bioinformatics inspired approach in the spatial activity

recognition domain is novel. The two dimensional SW approach allows one to efficiently

locate and quantify similarity of embedded spatial activity sequences in a spatial data

stream, as well as detect optimal sub-sequences with only partial activities. This ability

to identify matching sub-sequences results from the algorithm penalising and terminat-

ing poorly aligned or mis-matched sequences. The ability to recognise spatial activity

sequences from online video tracking systems is significant as traditional approaches

focus on applying full window sequences to models or template recognition. Alterna-

tively, existing activity recognition algorithms are heavily reliant on accurate stream

segmentation for recognition of spatial activity sequences. The two-dimensional SW ap-
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proach provided in this thesis does not suffer from these limitations, and furthermore

has been optimised (see online SW (OSW)) for continuous processing of spatial streams

from video tracking systems. Experimental validation with existing sequence alignment

and activity recognition approaches confirms the high recognition performance of the

developed approach.

1.3 Structure of the Thesis

This thesis is organised as follows:

Chapter 2 describes human activities and their characteristics in a smart home context,

followed by a review of the related work in the fields of human activity recognition,

sequence alignment, and biologically-inspired computational models. Existing methods

of activity recognition are briefly explored with detailed analysis provided for similar

approaches or approaches used in validation. A brief review of biologically inspired

models is provided to allow discussion in other relevant chapters and future work. A

brief synopsis of the smart home laboratory environment, the tracking system utilised,

and the experimental data sets is also included.

Chapter 3 outlines the biological process of chemotaxis, and how the process is abstracted

to form a cellular chemotactic activity recognition model. The cellular chemotactic model

is then outlined, followed by the experimental methodology for evaluation, empirical

parameter optimisation and experimental validation against a discrete HMM in regards

to noise tolerance and recognising interwoven activities.

Chapter 4 describes LSCD and GED sequence alignment approaches that are explored in

the context of robust spatial activity recognition in the presence of tracking system noise.

The experimental methodology for evaluation and empirical parameter optimisation of

LCSD and GED approaches are given. These approaches are also validated against other

sequence alignment and probabilistic approaches.

Chapter 5 describes a TDTW approach which combines bioinformatics principles with

time-warping methodologies to improve noise tolerance with spatial sequences exhibiting

temporal variation. The experimental methodology for evaluation, empirical parameter
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optimisation of TDTW is provided and the approach is validated against other sequence

alignment, probabilistic and time warping algorithms.

Chapter 6 outlines a novel Smith-Waterman (SW) local alignment approach to recog-

nition of embedded spatial sequences in an online video recognition system. A more

efficient online variant of the two dimensional Smith-Waterman algorithm, termed On-

line SW (OSW), is also described and evaluated. Factors affecting optimal SW and

OSW parameter estimation are covered, in addition to experimental validation against

DTW and the HMM. Further experiments are conducted to analyse the discriminatory

performance of the two dimensional SW approach in comparison to DTW and the HMM

for accurately segmented spatial sequences.

Chapter 7 provides a summary of the research in this thesis and potential avenues for

future research in spatial activity recognition and smart homes.
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Chapter 2

Background and Related Work

The investigation of activity recognition that is undertaken in this thesis is concerned

with recognising spatial activity patterns in the context of smart homes. Much of its

inspiration is drawn from biological paradigms and bioinformatics techniques to formu-

late novel pattern recognition approaches that are described in Chapters 3 - 6. This

chapter reviews the related literature for the approaches developed in this thesis, and

familiarises the reader to the activity data sets collected and used in evaluations.

The chapter is organised as follows: Section 2.1 discusses human activities and aspects

of their innate variability, followed by a review of Smart Homes in the context of activity

recognition in 2.2. In Section 2.3 a review of related work in the field of human activity

recognition is provided, which also includes a brief outline on approaches evaluated in

this thesis. The section focuses on spatial activity recognition approaches, which are

otherwise called trajectory-based activity recognition or movement recognition in the

literature. A review of bioinformatics and sequence alignment approaches, which are

inspiration for some of the research in this thesis, are provided in 2.4. In Section 2.5 a

discussion is provided on biologically inspired models and paradigms, which motivated

formulation of a chemotactic-inspired model. An outline is then given in Section 2.6

of the smart home laboratory environment, the tracking system utilised, and the ex-

perimental data sets that were collected and evaluated. The chapter concludes with a

summary in Section 2.7.

2.1 Human Activities and Characteristics

A human activity is defined as a series of actions taken in pursuit of a objective, whereby

a objective may be to seek nourishment or sleep. Human activities are influenced by a

11



CHAPTER 2. BACKGROUND AND RELATED WORK

myriad of factors and can be carried out in an infinite number of ways. The fundamental

assumption underlying human activity recognition is that humans conduct activities in a

consistent manner, albeit with some variability. This assumption is required in order to

generalise or categorise known activities into labeled classes, to then allow classification

of observed activities in relation to known classes. Much of the activity recognition

literature makes the assumption that human activities are consistent without validating

the assumption through empirical studies, or understanding the factors that may affect

the variability of activities. Understanding the causes of activity variability allows one

to estimate the expected level and type of variability of normal activities, which can

assist with optimisation of activity recognition approaches.

In the context of activities of daily living (ADL) which are the everyday activities that

one would carry out, Hine et al. (2005) formulates a conceptual framework of factors

that affect well-being and in part ADLs. Well-being in this instance being a combination

of human mental, social and and physical states that determine an individual’s quality

of life. In the framework, the authors predicate that contextual and personal factors,

combined with an individual’s hobbies or interests affect ADLs and hence well-being.

Contextual factors include ones home environment, social network, locale and social

support, whilst personal factors include physical and psychological attributes. Changes

in any of the contextual factors, personal factors or hobbies / interests, can affect ADLs

including the manner and duration over which they are conducted. The intrinsic vari-

ability of these factors for individuals with normal well-being is yet to be empirically

determined. Quantifying these influences on human activities is important to estimate

the likely variability to be expected for normal activities for activity modelling.

Studies of individuals in technology enabled smart homes or facilities has enabled empir-

ical analysis of human activity patterns. In the study by Suzuki et al. (2001, 2004, 2006),

ADL patterns of non-elderly and elderly people are captured over days to months to de-

termine the correlation of recorded sensor patterns to patient recorded ADL’s and thus

wellbeing. Studies were conducted using combinations of non-invasive sensors including

infrared, door, window, photoelectric, thermal, gas usage and wattage. These empirical

studies demonstrate that sensor patterns do strongly correlate to patient recorded ADL’s

and well-being in real world scenarios. Importantly, the results also show that different

individuals exhibit different ADL routines and activity durations; however, ADL rou-

tines and activity duration are consistent for an individual at a normal level of well-being.

In Suzuki et al. (2004), the authors were also able to infer a subject’s well-being from
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changes to their normal ADL routine, which is important for health care monitoring.

The landmark study of daily activities by Szalai (1972) at a multi-national and popula-

tion perspective showed that human activities are affected by location, cultural habits,

time and the order of activities. Location determines the range of tasks that can be

conducted and can be seen as a constraint on the search space of activities. Location

also influences the activity actions. For example, working at home will have a differ-

ent set of actions to working in the office. Cultural habits can influence the timing,

duration, and type of activities. Using the example of working, some cultures have a

work day that commences at 8am and finishes at 6pm, whilst others start at 9am and

finish at 5pm. Cultural habits may also mandate that certain activities be conducted

at particular times of the day, for instance the activities of having morning and after-

noon tea. Time has numerous effects on the conduct of activities. In Szalai (1972),

periodic variations relating to the day, day in the week (weekday versus weekend), week,

month, and season determine which activities are conducted, and activity duration. For

example, during weekdays the activity of breakfast is typically shorter than breakfast

on a weekend, and in summer the activity of exercise may be for one to go for a run

outdoors, but in winter the activity of exercise maybe to go to the gym. Time also has

an impact on multi-tasking of activities, where activities are conducted concurrently or

interwoven to obtain overall efficiencies in time or resources. Multi-tasking of activities

is also prevalent in situations where an individual has a large number of objectives and

a short duration with which to finish them. Lastly, relationships between activities may

determine or restrict the order that activities may be conducted. For example, the ac-

tivity of working must follow the activity of driving to work, and be followed by drive

homing from work.

By combining the framework of Hine et al. (2005) with the findings of Suzuki et al. (2001,

2004, 2006); Szalai (1972), key influences of human activity variation can be ascertained.

These influences are as follows:

• Contextual Factors

– Home environment*

– Locale or location*

– Social Network

– Social Support
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– Cultural habits*

– Time and periodicity*

– Order of activities*

• Personal Factors

– Physical attributes

– Psychological attributes

• Hobbies and interests

The contextual factors highlighted with a * are those that can be captured non-invasively

with sensors or can be provided through a priori information on locations, times or cul-

tures. The personal factors and information on an individual’s hobbies and interests

require more invasive means. The degree of influence each of these factors have on hu-

man activity variation has not been quantified. Without understanding these influences

and their affect on human activities, it is very difficult to design activity recognition ap-

proaches that could accurately recognise human activities through the innate variability.

The localisation of human activities to a smart home environment does reduce the com-

plexity of this task and non-invasive sensor approaches can be used to recognise human

activity patterns as shown by Suzuki et al. (2001, 2004, 2006). Unfortunately, the ro-

bustness of activity recognition approaches will always be limited due to the complexity

of factors affecting human activities.

2.2 Smart Homes

A smart home is a residence that is fitted with sensor and/or assistive technologies

to provide automated monitoring and/or assistance to its occupants. An aging global

population, with increasing health care requirements is the key driver for research in

this field. It is envisaged that smart homes will automatically monitor elderly and pa-

tient lifestyle, allowing individuals to maintain a higher quality of life in an independent

capacity and to provide notification to health care support services when required. Sen-

sors used in smart homes can be either non-invasive (video, audio, contact, temperature,

switch, and infrared) or invasive (pedometers, accelerometers, GPS, RFID, mobile de-

vices, implantable devices and microcapsule devices). Non-invasive sensor approaches
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are more popular with inhabitants as they are less intrusive on lifestyle and individuals

do not have to remember to place the sensor on their body prior to going about their

daily business (video and audio sensors are still seen by some to be invasive in regards

to privacy). Invasive sensors were originally large, limited in battery life and intrusive

as seen in Lee and Mase (2002); however, with the advent of smaller wearable tech-

nologies such as smart watches becoming more ubiquitous in society, there has been an

increased interest in this field of pervasive computing. The following elaborates on the

Welfare Techno-House (WTH) smart home as covered in Suzuki et al. (2001), CareMe-

dia (Hauptmann et al., 2004), the intelligent Dormitory (iDORM) (Hagras et al., 2002;

Rivera-Illingworth et al., 2005) and the CASAS smart home described in Fang et al.

(2012). The reader is directed to Chan et al. (2009) for a thorough review of smart

home literature and relevant assistive technologies.

The WTH Mizusawa smart home (Suzuki et al., 2001) is a one bedroom apartment fitted

with infrared, door, window, and appliance sensors that record a binary value at the time

of an event. The sensors are placed on all taps, doors, windows, and appliances, with

infrared sensors installed in each room to detect the presence of a singular individual and

interactions. WTH Mizusawa is constrained to only being able to monitor a singular

inhabitant due to the granularity of its sensor data and its inability to differentiate

between inhabitants. The binary nature of the sensor data also limits the ability of the

smart home to be used for discrimination of more complex activities, but is ideal for

recognising simple activities such as sleeping or having a meal.

The CareMedia project (Hauptmann et al., 2004) is employed in a nursing home us-

ing non-invasive video sensors (1 per room) to monitor inhabitant movements. The

inhabitants are tracked through multiple rooms in the nursing home using video-based

background segmentation (due to the stable lighting environment and fixed cameras)

with region growing and noise removal to minimise tracking artifacts. Individuals are

correlated to regions according to their colour histograms, with RANSAC used to deter-

mine motion patterns of body parts when individuals are static. Unlike the WTH smart

home, CareMedia allows simultaneous tracking of multiple inhabitants, but lacks the

fidelity to determine human interactions resulting from inclusion of appliance sensors.

iDorm is a one-bedroom dormitory style smart home fitted with various sensors in-

cluding temperature, system monitors, light and pressure, as well as effectors including

door actuators and equipment switches (Hagras et al., 2002; Rivera-Illingworth et al.,
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2005). Unlike the other smart homes and systems described here, the iDorm provides

the inhabitant with a user interface with which they can inquire about the state of the

environment and modify the system state in response to activities (to assist with au-

tomated learning). The iDorm is only able to accurately monitor a single inhabitants

activities due to the granularity of the sensors employed, similar to the WTH smart

home.

The CASAS smart home (Fang et al., 2012) is a three bedroom apartment fitted with

a 1-metre grid of motion sensors to monitor inhabitant movements within the home,

correlating these to known activities. Post collection of data, sensor events are annotated

for ADLs which are used to train the generative models for ADLs. The processed

sensor information is represented by the sensor ID, time of day, day of week, previous

activity and activity length. The CASAS smart home is capable of recognising more

complex activities due to the number of movement sensors employed, but isn’t capable

of recognition with multiple interacting inhabitants, or discrimination of activities with

similar movement patterns yet different localised interactions. The CASAS smart home

also lacks the fidelity of the WTH smart home which captures information from doors,

windows, taps and appliances to reinforce the spatial information in determining the

activity type.

The Institute for Multi-Sensor Processing and Content Analysis (IMPCA)1 smart home

environment is outlined in Section 2.6 and is used in this study. This environment in-

cludes non-invasive multi-camera video sensors to allow accurate tracking of multiple

simultaneous inhabitants over several rooms, with contact sensors for doors and cup-

boards, pressure sensors on entries to doors, and appliance sensors to denote whether an

appliance has changed state. The richness of the spatial and sensor data allows capturing

of sufficient information to maximise activity disambiguation.

2.3 Human Activity Recognition Approaches

Activity recognition is the task of identifying an activity, defined earlier as an action

or series of actions taken in pursuit of an objective. This view of activity recognition

differs from others where authors classify the detection of walking, running or similar

1http://impca.curtin.edu.au

16



CHAPTER 2. BACKGROUND AND RELATED WORK

primitive actions as activity recognition. The confusion in activity and action definitions

is also noted in reviews by (Aggarwal and Cai, 1999; Aggarwal and Park, 2004; Moeslund

et al., 2006; Turaga et al., 2008; Aggarwal and Ryoo, 2011). In a smart home setting,

objectives could include but not be limited to having breakfast, reading a newspaper,

watching television, cooking, having a shower or going to sleep. The series of actions

or events that one would need to recognise in order to determine whether an objective

has been accomplished may involve walking to a table, opening a cupboard, sitting on

a chair or even lying on a bed. The focus of this thesis is on the spatial component of

activities as they can be obtained non-invasively from video tracking systems and for

the majority of activities spatial signatures are unique (Chen et al., 2005).

Video surveillance and automatic recognition of human activities is becoming increas-

ingly important in modern society. Such recognition systems can be applied to problem

domains such as security surveillance, aged care monitoring, behavioural biometrics,

health care monitoring, sports analysis, human computer interaction (HCI) and smart

homes (Dilger, 1997; Aggarwal and Cai, 1999; Ehlert, 2003; Aggarwal and Ryoo, 2011).

Due to the diverse nature of the field of activity recognition, many attempts have been

made to classify the existing approaches in to logical taxonomies. One popular approach

is the top-down or bottom-up taxonomy. Top-down approaches recognise complex, se-

mantically rich activities and principally have involved plan recognition techniques and

hierarchical designs. The top-down taxonomy is analogous to the complex activity recog-

nition and hierarchical taxonomies of Aggarwal and Ryoo (2011) and Turaga et al. (2008)

respectively. Some examples of top-down approaches used in the modelling of high

level behaviours include Dynamic Bayesian Networks (DBNs) (Intille and Bobick, 1998;

Hamid et al., 2003), abstract HMM (AHMM) (Nguyen et al., 2002), multi-level HMM

(Wojek et al., 2006), coupled HMM (CHMM) (Oliver et al., 2000), switching hidden

semi-Markov model (S-HSMM) (Duong et al., 2005) and stochastic grammars (Bobick

and Ivanov, 1998; Ivanov and Bobick, 2000a; Pynadath and Wellman, 2000). Activity

recognition of multi-tasked activities, such as those that occur concurrently or are inter-

woven, are primarily modelled as top-down approaches with bottom-up techniques used

for low-level activity recognition (Ivanov and Bobick, 2000b; Kim et al., 2010). Bottom-

up approaches are flat in design and use low-level data such as spatial trajectories to

develop simple models of activities. The bottom-up approaches are synonymous to the

single-layered approaches in Aggarwal and Ryoo (2011), and the non-parametric actions

of Turaga et al. (2008). Bottom-up approaches include template matching techniques

(Bobick and Ivanov, 2001; Vlachos et al., 2002b; Vaswani et al., 2003; Chen et al., 2004;
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Chen and Ng, 2004; Chen et al., 2005) and probabilistic models such as the HMM (Ra-

biner, 1989), and extensions to the HMM (Tan and Silva, 2003). Template matching

techniques are typically more sensitive to noise in observations and variation in patterns

of the same activity. Bottom-up probabilistic approaches such as Yamato et al. (1992)

are able to better deal with uncertainty, yet do not scale well with large training sets and

long activity sequences. The following sections expand on common template matching

techniques such as DTW and Edit Distance variants, as well as the HMM as applied to

activity recognition.

2.3.1 Template Matching Techniques

Template matching approaches use feature extraction techniques to derive sequence tem-

plates or exemplars for comparison to input sequences. Each activity class can have one

or more templates, with classification decisions calculated by measuring the similarity

of each template and an input sequence, and finding the activity class with the highest

similarity. For robust activity recognition, template matching approaches must capture

the variability in the templates for generalised approaches or employ a similarity match-

ing technique that compensates for the observed variability or warping. Early attempts

of quantifying the similarity of spatial templates used Euclidean distance metrics; how-

ever, these approaches were highly sensitive to temporal axis distortion as shown in

Fig. 2.1)(Ratanamahatana and Keogh, 2004b; Chen et al., 2005). DTW (Vlachos et al.,

Figure 2.1: Euclidean distance with temporal warping.

2002c) and the Edit distance approaches of Chen and Ng (2004) and Chen et al. (2005)

can compensate for the variability and warping between sequences for improved spa-

tial template recognition. The authors from Chen et al. (2004) have also applied their
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Edit Distance-based techniques to movement pattern strings, extracted from spatial se-

quences, to further improve the recognition performance of the approach.

2.3.1.1 Dynamic Time Warping (DTW)

DTW was formulated in Sakoe and Chiba (1978) to address temporal distortion via a

process of non-linear time normalisation (see Fig. 2.2). Due to this time normalisation

Figure 2.2: DTW with temporal warping.

property DTW has been applied in areas such as speech recognition (Sakoe and Chiba,

1978; Rabiner et al., 1978; Das, 1982), trajectory recognition (Vlachos et al., 2002c),

bioinformatics (Aach and Church, 2001) and word image recognition (Rath and Man-

matha, 2003). DTW has had varying success and is well known to be sensitive to noise

and outliers, as a result of all sequence elements requiring mapping to a corresponding

element(s) of an opposing sequence. There have been many DTW-based approaches that

address warping problem domains or improve the robustness and/or runtime complexity

of the approach. Some of these include derivative DTW (Keogh and Pazzani, 2001),

time-warped longest common subsequence (T-WLCS) (Guo and Siegelmann, 2004), and

iterative deepening DTW (Chu et al., 2002).

The DTW algorithm provides elastic matching of two time series sequences a and b by

minimising the cumulative distance between the sequences. In spatial activity recog-

nition Euclidean distance d(ai, bj) is commonly used as the local distance measure of

individual trajectories ai and bj . DTW produces a warping path w; a mapping between

two sequences a and b, where w = w1, w2, ..., wk for max(|a|, |b|) ≤ k ≤ |a| + |b| − 1

(w ≡ (i, j)). A warping path w is constrained to ensure monotonicity and continuity.
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For instance, a boundary constraint limits the warping path w such that the DTW cal-

culation commences and finishes in diagonally opposite corners of the DP matrix, that

is commences at w1 = (0, 0) and finishes at wk = (|a| − 1, |b| − 1). The monotonicity

constraint ensures the points in the warping path are monotonically spaced in time, that

is for wk+1 = (i, j) then wk = (̂i, ĵ), where i − î ≥ 0 and j − ĵ ≥ 0. The continuity

constraint restricts the allowable steps in the warping path to adjacent cells in the DP

matrix. It is stated formally as, given wk+1 = (i, j) then wk = (̂i, ĵ), where i− î ≤ 1 and

j − ĵ ≤ 1.

To efficiently calculate the DTW distance of two time series sequences a and b a DP

approach is utilised. A DP matrix C of size |a| × |b| is initialised according to (2.1).

To calculate the DTW distance one applies (2.2) for values of i = 2, . . . , |a| and j =

2, . . . , |b|. The resulting DTW distance is obtained from the DP matrix at C(|a|, |b|).

C(1, 1) = d(a1, b1)

C(i, 1) = C(i− 1, 1) + d(ai, b1) i = 1, 2, . . . , |a| − 1

C(1, j) = C(1, j − 1) + d(a1, bj) j = 1, 2, . . . , |b| − 1

(2.1)

C(i, j) = min


C(i− 1, j − 1)

C(i− 1, j)

C(i, j − 1)

 + d(ai, bj) (2.2)

A warping path or alignment can be recovered from C using a traceback procedure,

originating at C(a− 1,b− 1) and terminating at C(1, 1), or by using a pointers matrix

and retaining pointers to the local minima selected at each i and j during the DP

calculation. The DTW algorithm provided in 2.2 has no local continuity constraints, thus

not restricting the slope of the warping, unlike the approach of Sakoe and Chiba (1978).

Typically, choosing an optimal local constraint is application and domain specific.

Calculation of DTW between two sequences is computationally expensive, O(|a||b|).
Runtime can be significantly reduced using DP banding techniques to minimise calcula-

tion of the DP matrix. Common banding techniques include use of the Sakoe-Chiba band

(Sakoe and Chiba, 1978), Itakura parallelogram (Itakura, 1975), band DP constraint Das

(1982) and Ratanamahatana-Keogh (R-K) band (Ratanamahatana and Keogh, 2004b).

Use of both the Sakoe-Chiba and Itakura constraints are domain specific, whilst the

band DP and R-K constraints are able to be used for most time series data. It was

widely believed that wider bands result in improved recognition performance; however,

20



CHAPTER 2. BACKGROUND AND RELATED WORK

Ratanamahatana and Keogh (2004b) showed wider bands do not always result in optimal

recognition rates and that the width and shape of the band also influence recognition

performance.

2.3.1.2 Edit Distance on Real Sequence (EDR)

Edit Distance on Real Sequence (EDR) (Chen et al., 2005) addresses the issue of local

time shifting with spatial sequences similar to DTW, and improves robustness to noise

in comparison to techniques such as Euclidean distance, DTW and LCSS. It is based

on the Edit Distance approach from the string domain and bioinformatics, but is non-

metric unlike Edit Distance. EDR calculates the distance between two strings via finding

the minimum number of insertions, deletions and substitutions required to make two

sequences identical. The EDR is calculated for two time series sequences a and b using

a DP matrix C of size (|a| + 1) × (|b| + 1)in conjunction with a matching threshold θ,

Euclidean distance function d(ai, bj), and iterating over i and j as shown in (2.3)-(2.6).

The resulting EDR can be found at position (|a|+ 1, |b|+ 1) within C.

C(0, 0) = 0 (2.3)

C(i, 0) = i, 1 ≤ i ≤ |a| (2.4)

C(0, j) = j, 1 ≤ j ≤ |b| (2.5)

C(i, j) = min {C(i− 1, j − 1) + distEDR(ai, bj),

C(i− 1, j) + 1,

C(i, j − 1) + 1} (2.6)

where, distEDR(ai, bj) =

{
0 d(ai, bj) < θ

1 d(ai, bj) ≥ θ

A warping path or alignment can be recovered from C using a traceback procedure or

by using a pointers matrix as per DTW.

Localised time shifting is achieved with EDR as the approach introduces gaps in se-

quences that correspond to changes in matched trajectories. The affine gap penalty and

matching threshold θ also minimise the inclusion of noise in the distance calculation by
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quantising the actual distance between spatial elements as linear increasing values for

gaps and zero for matches. The affine gap penalty also allows EDR to outperform LCSS,

which provides no penalty for gaps or gap length. In Chen et al. (2004), EDR is applied

to movement pattern strings (MPS’s) resulting in the Edit Distance on MPS (EDM) ap-

proach that has reduced dimensionality. To further reduce computational cost of EDM,

MPS’s are transformed into frequency vectors and a modified frequency distance is ap-

plied (as frequency distance between two frequency vectors is an approximation of the

Edit Distance (Kahveci and Singh, 2001)).

2.3.1.3 Edit Distance with Real Penalty (ERP)

Edit Distance with Real Penalty (ERP) (Chen and Ng, 2004) is a metric distance function

based on EDR and Edit distance. ERP avoids the use of θ-based thresholding in the

distance calculation (unlike EDR), and does not replicate previous elements in gaps

(unlike DTW) in order to satisfy the triangle inequality of metrics. This allows ERP to

be used with indexing structures for efficient retrieval tasks. ERP calculates the distance

between two strings similar to EDR except an Euclidean distance penalty is applied for

non-gap elements and a constant value is given for gap distances.

For two time series sequences a and b, ERP is derived using a DP matrix C of size

(|a|+ 1)× (|b|+ 1) whilst iterating over i and j as shown in (2.7)-(2.10). The resulting

EDR metric can be found at position (|a|+ 1, |b|+ 1) within C.

C(0, 0) = 0 (2.7)

C(i, 0) = ai + ai−1, 1 ≤ i ≤ |a| (2.8)

C(0, j) = bj + bj−1, 1 ≤ j ≤ |b| (2.9)

C(i, j) = min {C(i− 1, j − 1) + distERP (ai, bj),

C(i− 1, j) + distERP (ai, gap),

C(i, j − 1) + distERP (gap, bj)} (2.10)

where, distERP (ai, bj) =


|ai − bj | ai, bj not a gap

|ai| bj is a gap

|bj | ai is a gap
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Warping paths or alignments can be derived as per other DP-based approaches such as

DTW and ERP. Experimental validation by Chen and Ng (2004) using spatial data from

different problem domains demonstrates that ERP has strong discriminatory character-

istics, performing marginally better in classification than both DTW and ERP with

simulated and captured data sets. As ERP quantifies all variability in its matching

criteria, it is more sensitive to noise than EDR.

2.3.2 Hidden Markov Models

The Hidden Markov Model (HMM) is a stochastic state transition model (assumes

Markovian dynamics), capable of dealing with time sequential data (Rabiner, 1989).

It was first applied in the activity recognition domain by Yamato et al. (1992), where

mesh features were extracted from time sequential images of tennis strokes and used

in training and evaluation of a discrete model. Since then the HMM has been utilised

extensively in activity recognition research, particularly through the multi-layer and hi-

erarchical forms (Oliver et al., 2000; Bui et al., 2001; Duong et al., 2005; Truyen et al.,

2005; Wojek et al., 2006). Adoption of the HMM has been motivated in this thesis by the

models ability to deal with noisy observations and its’ high discriminatory properties.

A discrete HMM is characterised by a number of hidden states N , distinct observation

symbols per state M , state transition probability matrix A (A = {aij}), observation

symbol probability distribution matrix B (B = {bj(k)}) and the initial state distribution

vector π. A derived HMM λ is typically represented by the tri-tuple of parameters

{π,A,B}, which represent the following:

π = Pr(q1 = Sj), 1 ≤ i ≤ N

aij = Pr(qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N

bj(k) = Pr(vk at t|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M

where qt is the state at time t, S is the individual states such that S = {S1, S2, . . . , SN}
and V denotes the individual symbols V = {v1, v2, . . . , vM}. The HMM model parame-

ters π,A,B are derived using the Baum-Welch (Forward-Backward) algorithm; however,

scaling Rabiner (1989) is required in both the model estimation and inferencing, due to

the lengthy observation sequences. The probability of an observation sequence O given
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the derived model λ (Pr(O|λ)) is calculated in later experiments using the forward

algorithm with scaling.

The discrete HMM can produce good discriminative models; however, the following

needs to be considered when applying the approach to a spatial recognition domain

(due to the inherent noise and long length of sequences). The issue of choosing an

appropriate number of hidden states N for each model is important, as the value of N

affects both the runtime of the Baum-Welch algorithm and the discriminatory capability

of the model. If N is too small, the training and inferencing runtime are smaller but the

models ability to discriminate effectively also decreases. In contrast if N is large, training

and inferencing complexity is increased along with discrimination capability; however,

the model may overfit the data if N is too large. Also, if the spatial sequence length

is long (> 1000) the HMM may also fail to adequately represent dissimilarity for an

activity and across the training data (particularly with small environments), resulting in

decreases in disambiguation and classification accuracy. Importantly, HMMs do require

large data sets for training of models and for good discrimination. If only limited spatial

sequences are available for training, the model will not be able to generalise appropriately

and will suffer from lower recognition accuracy when evaluated with observed sequences.

In addition to the amount of training data required, the discrete HMM also encounters

issues when calculating the Pr(O|λ), where O is the observed spatial sequence, if an

observed sequence contains a symbol not present in the training sequences (can arise

with noise). In this case, (bj(k) = 0) the derived probability of the overall sequence,

calculated using a scaled forward procedure will tend to zero. This can be minimised

by initialising the symbol probability matrix B to small positive values; however, the

low probability of the observed symbol will still dramatically reduce the overall sequence

probability.

2.4 Bioinformatics: Sequence Alignment

The field of bioinformatics is concerned with the collection, classification, storage, and

analysis of biochemical, biological and genetic information. Much of the research in

this field focuses on finding genes, modelling evolution, protein structure prediction and

DNA, RNA or protein sequence alignment (Waterman, 1995). Biological scientists have

been using bioinformatics, in particular sequence similarity or alignment approaches, to
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classify unknown DNA2, RNA3 and protein sequences4 obtained through laboratory re-

search. Furthermore the approaches have allowed them to develop phylogenies describing

the evolutionary history of an organism or gene5.

In practical pattern-matching applications, including searching genomes for similar DNA

sequences and activity recognition, exact matching is not always pertinent. Generally,

it is more important to find approximate matches to a given pattern thus allowing for

innate pattern variability (Crochemore and Rytter, 2002). Sequence similarity has both

quantitative and qualitative aspects. Quantitatively, similarity measures produce values

which describe the degree of similarity of two sequences. Alignments, which are mutual

arrangements of two sequences (Refer to Fig. 2.3), give a qualitative answer as they

show where two sequences are similar and where they differ. Optimal alignments, which

exhibit maximum correspondence of two sequences with the least differences, can be

used to determine similarity quantitatively as well as qualitatively. Thus, it is possible

to use optimal sequence alignments to measure the degree of similarity and to also find

regions of dissimilarity (Waterman, 1995).

2 3 3 3 4 1 - - 4 2 2 1 1

| | | | | | |

2 2 2 - 4 1 3 3 4 2 2 2 1

Figure 2.3: An example alignment of two short sequences. The symbol - refers to an
indel and represents an insertion or deletion in either sequence. Two gaps are present
in the alignment; one of size 1 and the second of size 2.

Sequence similarity in bioinformatics is quantified using either similarity or distance

approaches. Similarity approaches use a function that associates a numeric value with a

pair of sequences such that higher values indicate greater similarity. Examples of such

similarity approaches include the Needleman-Wunsch global alignment (Needleman and

Wunsch, 1970) and Smith-Waterman(SW) local alignment (Smith and Waterman, 1981).

Distance approaches are similar; however, they treat sequences as points in a metric

space. Informally, distance approaches include a function that associates a numeric

value with a pair of sequences, with high values indicating high degrees of dissimilarity.

2Deoxyribonucleic Acid (DNA) sequences consist of four building blocks: adenine (A), thymine (T),
guanine (G) and cytosine (C)

3Ribonucleic Acid (RNA) sequences consist of four building blocks: adenine (A), uracil (U), guanine
(G) and cytosine (C)

4Protein sequences consist of amino acids or peptides
5A gene is a segment or sequence of DNA that codes a cellular product
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Unlike similarity approaches, distance approaches satisfy the mathematical axioms of a

metric (Waterman, 1995).

The sequence alignment problem can be formally stated as follows: given two query

sequences a and b with symbols ai and bj for i = 1, ..., |a| and j = 1, 2, ..., |b|, find the

best matching alignment in relation to the specified optimisation criteria, maximisation

of similarity or minimisation of distance. To derive optimal alignments, each symbol

ai is compared sequentially with the symbols bj of the other sequence. During this

stage the local similarity or distance is calculated between the opposing symbols and

using techniques such as dynamic programming (DP), optimal subalignments resulting

in an optimal alignment can be determined. With the maximising similarity criteria a

positive score is associated with matching symbols, while negative scores are given to

non-matching symbols and insertions/deletions (referred to as indels). Indels, denoted

by the symbol (-) in an alignment diagram, are used to represent insertions or deletions

in either sequence and are incorporated into alignments to fill gaps caused by differences

in either of the sequences. For non-matching symbols, the choice whether to include an

indel in the alignment or not is dependent on which of the options is more optimal, that

is has a higher total similarity or smaller overall distance.

An alignment assumes that two sequences a and b satisfy the following constraints

(Eidhammer et al., 2004):

1. All symbols in the sequences a and b must also be in the alignment. For example,

if a = [123] and b = [124] the resulting alignment must be of the form:

- 1 - 2 - 3 -

| |

- 1 - 2 - 4 -

where - represents zero or more indels.

2. All symbols in the alignment must appear in the same order as defined in the

sequences a and b, except that zero or more indels or gaps may be present between

the symbols, as in the above example.

3. Symbols of one sequence can be aligned with an indel in the other sequence. For

example, if a = [123] and b = [13], the 2 in a can be aligned with an indel as

shown below:
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1 2 3

| |

1 - 3

4. Indels of different sequences cannot be aligned together.

An example pairwise alignment of one dimensional sequences a = [12223421144]and

b = [111341121114] is shown in Fig. 2.4. The given alignment contains seven matching

symbols, three symbol mismatches and three indels.

1 2 2 2 3 4 - - 2 1 1 4 4

| | | | | | |

1 1 1 - 3 4 1 1 2 1 1 1 4

Figure 2.4: An example sequence alignment containing gaps of size one and two.

Sequence alignment was pioneered in bioinformatics with a DP approach in Needleman

and Wunsch (1970). This technique aligned two protein sequences across their entirety,

maximising the similarity score of the matching individual protein constituents (amino

acids). A DP basis is used as it is possible for optimal alignments to be calculated

from incrementally derived subalignments as each subalignment is itself optimal. Lo-

cal alignment approaches such as SW Smith and Waterman (1981) differ from global

techniques as they find and quantify related regions of similarity within sequences. The

local alignments are typically found via an optimsation search process, originating at

the beginning of the sequences until the ends. An illustrative example of global and

local alignment using sequences a and b can be found in Fig. 2.5. Recently, sequence

(a) Global Alignment (b) Local Alignment

Figure 2.5: Schematic global and local alignments between two sequences.

alignment techniques have also been applied in pattern recognition approaches such as

speech recognition, string matching and matching moving object trajectories from video

surveillance data (Vlachos et al., 2002b,a; Chen et al., 2004; Chen and Ng, 2004; Chen

et al., 2005).
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Sequence alignment approaches are applied in bioinformatics to derive the relationship

of unknown biological sequences in regards to known, empirically well understood and

genetically mapped genes, sequences or proteins. To discriminate biologically mean-

ingful alignments from ones due to chance, a substitution matrix is sometimes applied

to the substitution score calculation of an alignment. A substitution matrix describes

the rate or probability that an element in a sequence will transition to another and is

derived from iterative pairwise sequence alignment calculations. In problem domains

such as biology and speech recognition, not all symbols will have equal probability of

transitioning to others. Two popular bioinformatics substitution matrices are the Point

Accepted Mutation (PAM) and Blocks Substitution (BLOSUM) matrices (Apostolico

and Giancarlo, 1998; Barton, 1998). The PAM matrix is used for protein elements (re-

ferred to as amino acids) and describes a fixed probability that a particular symbol or

amino acid will change to another symbol (inclusion of reversion) according to an evo-

lutionary protein model. They key issue associated with the PAM matrix is that its

weights are calculated based on closely related sequences. As a result PAM weights are

inferred on all sequences, including those of distantly related sequences, which may result

in poor similarity values and alignments for related sequences. The BLOSUM matrix

addresses some of the issues of the PAM matrix in relation to aligning distant sequences.

A BLOSUM matrix is derived by applying blocks to multiple sequence alignments of evo-

lutionary divergent proteins. Each block represents a cluster of sequences with a defined

percentage similarity, the most common being the BLOSUM 62 matrix. In Prlic et al.

(2000), the authors demonstrated that sequence alignment accuracy is highly dependent

on the substitution matrix employed, particularly with distantly related sequences. It

is possible to learn a substitution matrix for each activity from its resulting alignments;

however, it is likely that such an approach will still be subject to Markovian constraints

and its limitations as per the HMM.

Pairwise sequence alignment techniques such as the ones discussed in this chapter can

employ different gap penalty functions to penalise gap lengths (resulting from insertions

or deletions). The most popular is the affine gap penalty function, defined as g(x) for

gap length x, which can allow a gap open penalty φ and a gap extension penalty ψ to

be applied according to (2.11) (Sankoff and Kruskal, 1999b).

g(x) = φ+ ψ(x) (2.11)

If φ = 0 the affine gap penalty model approximates the linear gap model used with Edit
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Distance-based approaches and local alignment techniques.

2.4.1 Longest Common Subsequence (LCSS)

Like its name suggests LCSS finds the longest common subsequence from two sequences,

where subsequences need not be adjacent. The LCSS is calculated using a DP matrix

C (depicted in (2.12)) of size (|a| + 1)×(|b| + 1), through the application of (2.13) for

i = 1, . . . , |a| and j = 1, . . . , |b|.
C(0, 0) . . . C(0, |b|)

...
. . .

...

C(|a|, 0) . . . C(|a|, |b|)

 (2.12)

C(i, j) =


0 i = 0 or j = 0

C(i− 1, j − 1) + 1 i, j ≥ 1 and ai = bj

max {C(i, j − 1), C(i− 1, j)} i, j ≥ 1 and ai 6= bj

(2.13)

LCSS length is used as a similarity score for the alignment and is obtained from C(|a|, |b|).
To determine the resulting alignment from LCSS one can utilise a second matrix of size

(|a| × |b|) to retain pointers to which of the three choices (C(i − 1, j − 1), C(i − 1, j)

or C(i, j − 1)) were chosen at each suboptimal solution. Inadvertently, a traceback

procedure may also be used to reconstruct the optimal path from C(|a|, |b|) to C(1, 1)

by determining which of the previous terms C(i − 1, j − 1), C(i − 1, j) or C(i, j − 1)

resulted in C(i, j). LCSS achieves robust recognition in the presence of noise by ignoring

regions of dissimilarity and maximising element matching between sequences. A similar

LCSS based approach has been proposed by Vlachos et al. (2002a), in which the authors

incorporated a constant δ to restrict how far points can match in time and a matching

threshold ε that specified how close trajectories must be in order to match. The resulting

similarity value from the LCSS variant was then normalised using the minimum of the

sequence lengths.

LCSS achieves its robust recognition in the presence of noise by ignoring regions of dis-

similarity and maximising element matching between sequences. In activity recognition,
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one wishes to accurately recognise activities through the intrinsic noise incorporated

during video tracking. By ignoring all dissimilarity, LCSS is subject to misclassification

with similar sequences from different classes. Normalisation of the LCSS algorithm in

Vlachos et al. (2002a) does provide a coarse approximation of dissimilarity; however a

more accurate means of dissimilarity quantification is needed.

2.4.2 Edit Distance

Edit Distance (or otherwise known as Levenshtein distance) is a popular global align-

ment metric used in bioinformatics for sequence alignment and distance measurement.

It has also seen significant use over the years in diverse pattern recognition applica-

tions due to its strong discriminatory properties. Edit Distance functions via finding

the minimum number of edit operations comprising insertions, deletions and substitu-

tions, to transform one sequence into another. A penalty of one is associated with each

edit operation; however, more complex penalty schemas involving substitution matrices

and gap penalty models have been applied in bioinformatics and pattern recognition

applications. As a metric, Edit Distance satisfies the metric axioms below and can be

more efficiently applied to retrieval tasks than non-metric distance measures (Sankoff

and Kruskal, 1999c):

Non-negative property d(a,b) ≥ 0, for all a and b.

Zero property d(a,b) = 0, if and only if a = b.

Symmetry d(a,b) = d(b,a), for all a and b.

Triangle inequality d(a,b) + d(b, c) ≥ d(a, c), for all a, b and c.

The Edit Distance can be calculated for two symbolic sequences a and b using a DP

matrix C of size (|a|+ 1)× (|b|+ 1) and iterating over i and j as shown in (2.14)-(2.17).

The resulting Edit Distance can be found at position (|a|+ 1, |b|+ 1) in C.

C(0, 0) = 0 (2.14)

C(i, 0) = i, 1 ≤ i ≤ |a| (2.15)

C(0, j) = j, 1 ≤ j ≤ |b| (2.16)
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C(i, j) = min {C(i− 1, j − 1) + distED(ai, bj),

C(i− 1, j) + 1,

C(i, j − 1) + 1} (2.17)

where, distED(ai, bj) =

{
0 ai = bj

1 ai 6= bj

Sequence alignments can be recovered from C using procedures outlined previously.

Edit distance and its variants EDR (Chen et al., 2005) and ERP (Chen and Ng, 2004)

allow intrinsic warping of sequences due to the inclusion of gaps in the derivation of the

optimal alignment. A key limitation of the Edit Distance approach in some domains

is its linear gap penalty function, which provides linear weighting according to the gap

length. This prevents one from applying more significant penalties with large gaps to

prevent cases of extraneous warping.

2.4.3 Smith-Waterman Local Alignment

Smith-Waterman (SW) local alignment was originally developed in (Smith and Water-

man, 1981) to locate biological sequence patterns within known sequence databases. SW

is similar to the Needleman-Wunsch global alignment approach (Needleman and Wunsch,

1970), except that SW includes an extra zero. Inclusion of the zero allows termination

of subsequence alignments that perform poorly, as non-matching subsequences produce

negative similarity, which reduces the similarity between the subsequences. When the

similarity becomes negative, the zero of the SW relation terminates any further decrease

in similarity and allows new optimal subsequences, referred to as local alignments, to be

found. SW functions by maximising the similarity score S between two segments of the

sequences a = ai · · · ak and b = bj · · · bl given a match cost α, mismatch penalty δ and

an indel penalty γ, where 1 ≤ i ≤ k ≤ n and 1 ≤ j ≤ l ≤ m. This is formally shown in

(2.18).

Sopt(a, b) = max
1 ≤ i ≤ k ≤ n
1 ≤ j ≤ l ≤ m

{Sδ,γ{ai · · · ak, bj · · · bl}} (2.18)

where S{ai · · · ak, bj · · · bl} = αu + δv + γw and u, v, w are the numbers of matches,

mismatches and gaps respectively.
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Gap scores resulting from indels are typically a function of the gap length l, denoted by

g(l). A linear gap model is employed in SW local alignment, where g(l) = −lγ, assigning

equal weight for gaps. In this linear gap model it is assumed that the probability of a

gap occurring in a sequence is the same anywhere along the sequence.

To calculate the SW similarity of two sequences a and b (2.20)-(2.22) is applied to the

DP matrix C of size (|a|+ 1)× (|b|+ 1) (2.19) for i = 0, 1, . . . , |a| and j = 0, 1, . . . , |b|.
The resulting SW similarity value is found by finding the maximum value in C.

C(0, 0) . . . C(0, |b|)
...

. . .
...

C(|a|, 0) . . . C(|a|, |b|)

 (2.19)

At each C(i, j) where i, j 6= 0, four choices (match or mismatch, gap in a, gap in b or

start a new subsequence) are evaluated with the choice corresponding to the maximum

similarity value being selected for each C(i, j). The match or mismatch score at each

C(i, j) is derived using s(ai, bj), while the gap scores for the sequences are derived using

the linear gap model. If a negative similarity score results from C(i−1, j−1)+s(ai, bj),

C(i−1, j)+γ and C(i, j−1)+γ, due to poor subsequence correspondence, then the fourth

option of starting a new subsequence, represented by zero, is selected as the maximum.

C(i, 0) = 0, 0 ≤ i ≤ |a| (2.20)

C(0, j) = 0, 0 ≤ j ≤ |b| (2.21)

C(i, j) = max{C(i− 1, j − 1) + s(ai, bj),

C(i− 1, j)− γ,

C(i, j − l)− γ, 0} (2.22)

where, s(ai, bj) =

{
α ai = bj

δ ai 6= bj

Resulting SW alignments are dependent on the values of the gap penalty γ and match

cost α. If γ is larger in relation to the average mismatch penalty δ, mismatches are

favoured over gaps, producing shorter, more compact alignments. The opposite occurs

when γ is smaller than the average mismatch penalty δ. If α � γ or the mismatch

penalty δ, SW ignores mismatches and gaps and therefore behaves similar to LCSS. The
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resulting complexity of the SW algorithm is O(|a||b|), as completion of the DP matrix

requires |a| × |b| steps.

2.5 Biologically-Inspired Computational Models

Biological systems are said to often resemble a fractal-the closer you look, the more

detail that emerges Bhalla (2003). Biology been used as inspiration for many compu-

tational models including the artificial neural network (ANN) (Haykin, 1999), swarm

intelligence approaches such as ant colony optimisation (ACO) (Dorigo et al., 1999),

evolutionary computing (Passino, 2002) and artificial immune systems (AIS) (de Castro

and Timmis, 2002) to name a few. An ANN is modelled of the cerebral cortex of the

brain and comprises a series of input, hidden and output layers with interconnected

nodes (processing elements or neurons) that contain an activation function. The ANN

receives input from the input layer, processes it in the hidden layers and then sends the

result to the output layer similar to neural processing in the brain. The ACO approach

models ant behaviour in response to food sources to solve combinatorial optimisation

problems. Effectively each ant of a colony builds a solution to a given problem (i.e. how

to get to a food source in the biological case) laying down a pheromone trail in doing so.

Those ants that find a more optimal solution will return back to the colony with food

more often than those that don’t, resulting in increased strength of the pheromone trail,

attracting further ants to the optimal case. Evolutionary computing is based on a model

evolution that continually and incrementally redesigns the structure and parameters of

organisms to maximise fitness and survival in a given environment. It is typically applied

through genetic algorithms for solving global optimisation problems. Finally, AIS’s are

defined by de Castro and Timmis (2002) as ”adaptive systems, inspired by theoretical

immunology and observed immune functions, principles and models, which are applied

to problem solving.” AIS approaches typically apply immune algorithms (primarily neg-

ative selection) with affinity measures to determine ”non-self” cases and are popular in

fault and anomaly detection problems.

Biology serves as a useful basis for solving many real world problems due to the robust-

ness, adaptiveness, diversity, error tolerant mechanisms and decentralised natures of its

systems (Paton, 1994). (de Castro and Timmis, 2002) defines three different categories

of approaches that have been used in biology and computing:
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Biologically motivated computing Biological models are used as a sources of inspi-

ration for the development of computational models, of which the ANN is a good

example.

Computationally motivated biology Computing provides models and inspiration

for biology. A simple example of this is the application of cellular automaton

in Artificial Life.

Computing with biological mechanisms Information processing capabilities of bi-

ological systems (such as DNA) are used to replace or supplement computing

systems. DNA-based computing is a prime example.

The approach taken in this thesis is the one of biologically motivated computing, where

a robust biological process is modelled to address the issue of sequence variability and

tracking system noise in activity recognition.

2.6 Activity Data Sets

Spatial activity sequences utilised in this research are captured in the IMPCA smart

home environment located at Curtin University. The smart home consists of a series

of rooms with several cameras per room with overlapping FOVs and contains common

household items and appliances to allow capturing of everyday activities. Pressure,

contact and switch sensors are also installed in the floor, furniture, cupboards and appli-

ances, which are not utilised in this research. The layout of the smart home is provided

in Fig 2.6 with an image of Room 1 provided in Fig. 2.7.

2.6.1 Camera Tracking System

Spatial activity sequences are captured for this research using the distributed, multi-

camera, tracking system of Nguyen et al. (2002). Initial investigations focussed on the

object tracking system of Peursum et al. (2003), which used multiple Kalman (and later

particle) filters and cameras to estimate an objects position, but the system suffered from

significant blob segmentation and sensitivity issues when applied to activity recognition
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Figure 2.6: Layout of the Smart Home environment.

Figure 2.7: Room 1 of the Mock Smart House Environment.

contexts. To assist with explanation of the experimental methodology and results in

later chapters, the system of Nguyen et al. (2002) is described here, with particular
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relevance to the process involved with generating the activity sequences.

The system of Nguyen et al. (2002) utilises two modules for tracking of individuals:

a camera processing module (CPM), which is directly connected to the camera and

conducts blob segmentation, matching and aggregation, and a central module (CM)

which manages the objects being tracked and assigns objects to CPM’s for tracking.

Each camera and corresponding CPM connects to the CM via the IP network backbone

as shown in Fig. 2.8. Only one camera is used to track an object at any one time (rather

than multiple cameras) for computational efficiency. The decision of which camera to

choose is based on which has the best view of the subject, under the assumption that

the larger the bounding box, and the closer the subject is to the camera, the better the

view. Positional variability can be encountered with this approach if the CM assigns a

new camera to track an object, even when properly calibrated.

Figure 2.8: Configuration of the distributed camera tracking system (from Nguyen et al.
(2002))

Each CPM in Fig. 2.8 identifies blobs (bounding boxes) corresponding to people in

the smart home environment by dynamically modelling the background through aver-

aging a series of previous images and applying an exponential decay function to update

the background over time. This background subtraction approach is suitable for con-

trolled environments such as a smart house as the background seldom changes; however,
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with more dynamic environments approaches such as Gaussian Mixture Models (GMMs)

would be more appropriate. Following the background modelling and initialisation, the

foreground is then subtracted and the resulting bounding box of the foreground blob

is calculated using the chain-code algorithm. Each bounding box or blob is assigned a

position (x, y), size (w, h) and average colour (r, g, b) derived from its characteristics.

Recursive blob merging is applied for blobs within a pre-specified distance due to intrin-

sic tracking noise and where object and background colours may be similar. Remaining

small blobs are assumed to be noise and are removed. The output of this process is

shown in Fig. 2.9. Blobs derived from a single camera view are matched to Kalman

Figure 2.9: An example of 2 segmented blobs post-background subtraction and blob
merging

filters by calculating the probabilistic distance of a blob vector and Kalman filter state

vector, with vectors comprising blob position, size and average rgb colour. The sys-

tem then finds the set of blob and Kalman filter state pairs that minimise the distance,

within specified thresholds. Any remaining unmatched blobs are treated as lost objects;

objects that were previously being tracked but haven’t been observed in previous frames

(possibly due to occlusion), and attempts to match these based on only average colour

and blob size using the last estimate of the Kalman filter. Any remaining blobs are then

passed to the CM for further testing against other CPMs. The overall process is outlined

in Fig. 2.10.
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Figure 2.10: CPM and CM processing with the distributed camera tracking system (from
Nguyen et al. (2002))

The output of the system is a set of relative x, y coordinates every time t and an object

identifier, with the origin 0, 0 set to the NW corner of the smart house environment.

For each activity captured using this system, the object identifier corresponding to the

individual conducting the activity is identified and used to filter the respective x, y

coordinates. Each filtered sequence of x, y coordinates corresponding to the activity are

then ground truthed against the video to identify tracking accuracy. Three datasets

are captured using this system for experiments in Chapters 3 - 6 and are summarised

in Table 2.1. Further details on the composition of the datasets used throughout this

thesis are provided in the following sections.

2.6.2 Dataset A (10 activities)

The purpose of dataset A is to represent a diverse group of spatial activities that are

captured a mock smart home environment. Activities range from 60 - 90 seconds in
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Table 2.1: Characteristics of datasets A,B and C used in this thesis.

Dataset No. of No. of Activity Description
Different Sequences
Activities per Activity

A 10 20 Diverse Activities (Rooms 1 and 2)
B 3 20 Spatially similar activities (Room 1 only)
C 12 20 Diverse Activities (Room 1 only)

length, with subjects entering the smart home from the N or S doors of Room 1, or

the N door of Room 2 and carrying out the specified activities in a consistent manner.

Video is captured at 10 fps and processed by the video tracking system of Nguyen et al.

(2002). The dataset comprises 10 single-person activities with the actions of each activity

outlined in Table 2.2. Figure 2.11 outlines the spatial paths taken for the 10 activities.
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Table 2.2: Dataset A activities and actions.

Activity Name Activity Description

Get Home-Watch TV (GHWTV) Enter through Room1 North door and sit on TV chair

Have a Snack-Watch TV Enter through Room1 North door, sit down at dining table to
(SWTV) eat snack and then move to sit on TV chair

At Home-Watch TV (AHWTV) Enter through Room1 South door and sit down on TV chair

Read Newspaper (RN) Enter down corridor, enter Room2, sit down on bed chair, read
for a while, then leave

Have Breakfast-Toast (HB-T) Enter though Room1 South door, go to fridge for OJ, put OJ
on dining table, toast bread, eat at dining table

Have Breakfast-Eggs (HB-E) Enter through Room1 South door, go to fridge for OJ, put OJ
on dining table, cook eggs, eat at dining table

Clean Up (CU) Enter through Room1 North door, and pickup items in kitchen,
place some items in NW cupboard, then place remaining items
in NE cupboard, leave through Room1 North door

Have Breakfast-Porridge Enter through Room1 South door, get porridge from NW cupboard,
(HB-P) heat up at stove in kitchen, eat at dining table

Have Breakfast-Cereal Enter through Room1 South door, get milk from fridge, a bowl
(HB-C) from NW cupboard, cereal from NE cupboard, then sit at dining

table to eat

Afternoon Tea (AT) Enter through Room1 North door, get hot water from kettle and
add to tea, add milk from fridge, get snacks from NE cupboard,
then sit at dining table
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HB−E
HB−T
RN
AHWTV
SWTV
GHWTV

(a) GHWTV, SWTV, AHWTV, RN, HB-T, HB-E

AT
HB−C
HB−P
CU

(b) CU, HB-P, HB-C, AT

Figure 2.11: Spatial paths of dataset A activities.
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2.6.3 Dataset B (3 Activities)

The purpose of dataset B is to represent spatially similar activities captured in a mock

smart home environment. Activities are approximately 90 seconds in length, with sub-

jects entering from the S door of Room 1 and carrying out the specified activities in

a consistent manner. Video is captured at 10 fps and processed by the video tracking

system of Nguyen et al. (2002). The dataset comprises 3 single-person variants of having

breakfast and contains a significant number of outliers. Figure 2.12 shows the spatial

paths taken for the activities.

(a) HB1 (b) HB2 (c) HB3

Figure 2.12: Spatial paths for dataset B activities.

2.6.4 Dataset C (12 activities)

The purpose of dataset C is to represent a diverse group of spatial activities captured in

the same room within a mock smart home environment (reducing multi-camera tracking

noise). Activities are approximately 60-90 seconds in length with subjects entering the

smart home from the N or S door of Room 1. The dataset comprises 12 single-person

activities which are similar to those carried out in datasets A and B. Video is captured

at 10 fps and also processed by the tracking system of Nguyen et al. (2002).
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2.6.5 Discretisation of Spatial Sequences

The tracking system used in this thesis outputs relative x, y coordinates of objects within

the environment; however, approaches such as the discrete HMM and LCSS require one

dimensional symbolised sequences. To obtain these sequences, the smart house environ-

ment is discretised into one square metre grids with each activity sequence, composed

of x, y trajectories, being mapped to a sequence of unique integers u, where u ∈ U

and U = 1, 2, 3, . . . , 156. This process can be seen in Fig. 2.13). As dataset B and
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(a) Discretised smart house environment

[(0.5, 7.2)(1.5, 7.2)(2.3, 7.1)(2.8, 6.9)(3.5, 6.5)(3.6, 5.5)

(3.5, 4.5)(3.1, 3.8)(2.6, 3.6)(2.3, 2.6)(2.2, 1.4)(2.5, 0.5)] =⇒
(b) Two dimensional sequence

[85,86,87,75,76,64,52,40,39,27,15,3]
(c) One dimensional sequence

Figure 2.13: Mapping of smart house trajectories to symbolic forms.

C are localised to Room 1, the x, y trajectories are mapped into integers u, where

U = 1, 2, 3, . . . , 72 in accordance with Fig 2.14.
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Figure 2.14: Discretisation Grid for Room 1 of the Mock Smart House Environment.

2.7 Summary

This chapter has presented a review of related work and background for research in

this thesis. The chapter begins describing human activities and their characteristics,

outlining the complexity associated with trying to robustly recognise human activities.

A brief outline of smart homes is then provided to give context to the problem of spatial

activity recognition in a smart home context. Following this, related work in human

activity recognition is provided, focusing on template recognition approaches such as

DTW, EDR and ERP, and the HMM, which is used in comparative trials. Next, an

overview of bioinformatics sequence alignment approaches is given to provide a basis

for which to discuss the novel approaches developed in this thesis. Existing biological

paradigms that have been applied to computing and their rationale are then outlined

in the following section. Finally, the smart home setup and data sets utilised in the

subsequent chapters are detailed.

The following chapters will explore the application of a biological paradigm and bioinformatics-

inspired sequence alignment approaches to the problem of spatial activity recognition in

the presence of noise and activity variability.
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Chapter 3

A Chemotactic Paradigm for
Recognising Simple and
Interwoven Spatial Activities

Dealing with noise incorporated during video tracking is challenging in spatial activity

recognition. Factors such as shadows, reflections, lighting variation, and occlusions in

such an environment have been shown to affect the accuracy of spatial coordinates

generated by these systems (Nguyen et al., 2003; Peursum et al., 2003). The issue

of accurate tracking is further exacerbated when multiple people are required to be

tracked in the same smart home environment, with tracking systems typically using an

individual’s characteristics, such as calculated height, width, texture, colour of clothing,

skin luminescence and/or velocity, to correlate positions with people.

Using the representation outlined in Aggarwal and Park (2004), activities are interpreted

in this chapter at a macro level, where the focus is on determining movement patterns

of individuals. As video data is captured in a smart home across multiple rooms, the

tracking noise is typically large (even with smoothing) in relation to relative position of

an individual and the size of the smart home. The magnitude of noise in this scenario is

more significant in regards to activity discrimination, than if present in surveillance situ-

ations in large outdoor areas. It is important that spatial activity recognition approaches

in smart homes can tolerate this variation without impacting discrimination.

In addition to the complexity of noise, human activities are routinely interwoven for effi-

ciency, making recognition of activities more difficult. The switching between activities

is difficult to model from a computational perspective, requiring state representation and

a mechanism to switch between models. Recently, Kim et al. (2010) has provided a skip-

chain conditional random field (CRF) and HMM approach that is capable of recognising

simple concurrent and interwoven activities. A differential signature-based approach
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is also provided that is used to data mine sensor data for concurrent and interwoven

activities.

Biological systems have proven to be a useful basis for solving many real world problems

as a consequence of their innate parallelism, robustness, adaptiveness, diversity and error

tolerance (Paton, 1994). To develop a robust approach for dealing with tracking sys-

tem noise and recognition of interwoven activities, the biological paradigm of bacterial

chemotaxis is explored and a model formulated based on the robust and multi-cellular

characteristics of the process. Bacterial chemotaxis is an appropriate paradigm for mod-

elling as it allows bacteria to tolerate dynamic environments, improving survivability.

This robustness characteristic is the key motivation for this work.

The cellular chemotactic model is derived in this chapter and evaluated in a smart home

context. The template-based model is shown to exhibit high classification accuracy

(99%), outperforming the discrete Hidden Markov Model (HMM) with a ten class activ-

ity set. High accuracy (> 89%) is also maintained across small training sets and through

incorporation of varying degrees of artificial noise in test sequences. Importantly, unlike

other bottom-up spatial activity recognition models, the chemotactic model is demon-

strated to be capable of recognising simple interwoven activities.

The following chapter is organised as follows. An overview of bacterial chemotaxis is cov-

ered in 3.1 as the inspiration for the activity recognition model. Section 3.2 describes the

cellular chemotactic model and how it is applied to the activity recognition problem. The

experimental methodology for investigating the robustness, recognition performance and

ability to recognise interwoven activities is covered in section 3.3. Section 3.4 describes

results from the investigation of the cellular chemotactic model and its application to

activity recognition. The model is evaluated against a discrete HMM approach to de-

termine classification accuracy with varying magnitudes of noise and interweaving of

activities. Lastly, a summary is presented in section 3.5.

3.1 Bacterial Chemotaxis

Chemotaxis is a process that increases survival of motile bacteria such as Escherichia

coli and Salmonella typhimurium by allowing the organisms to directionally swim in
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response to chemical or other physical gradients (Adler, 1975). A chemotactic bacterium

moves towards nutrients and increasing nutrient gradients, but is repelled from harmful

environments and increasing gradients of harmful substances (Bourret and Stocks, 2002).

Passino (2002) describes this respective behaviour as similar to a saltatory search.

In a uniform and static environment, chemotactic bacteria carry out a random walk by

modifying flagella1 motion, where the motion consists of alternating tumbles (changing

direction) or running (going forward in a straight line)(MacNab and Koshland, 1972;

Adler, 1975). The duration of tumbles and runs are exponentially distributed, with the

mean duration of runs being approximately ten times longer than that of tumbles, al-

lowing cells to “walk” (Berg, 1990). In the presence of an increasing favourable gradient,

bacteria decrease the tumbling frequency and increase the run length allowing organisms

to move toward an attractant source and thus feed Segall et al. (1986).

Motile bacteria interact with their environment through a process involving cell surface

receptors that monitor environmental conditions. Binding of molecules to these cell re-

ceptors produces a signal that allows cells to respond to an input stimulus (Adler, 1975).

Research on Escherichia coli has shown that bacteria can sense spatial gradients through

temporal changes in attractant or repellent concentration at their receptors (MacNab

and Koshland, 1972; Segall et al., 1986). This eludes to the possibility of an intracellular

short term memory, that allows cells to remember previous spatial concentrations for

comparison to current levels (Segall et al., 1986). The extracellular to intracellular map-

ping process, termed signal transduction, integrates extracellular signals (for example

the binding of a molecule to a receptor) translating them into a series of intracellular

structural or chemical changes. Through a series of enzyme catalysed reactions, cellular

production levels or function are in turn modified (Bourret and Stocks, 2002). In the

case of Escherichia coli and bacterial chemotaxis, the resulting change affects the “mo-

tor” of the flagella, increasing the duration of clockwise flagella rotation, resulting in a

longer run movement towards a favourable environment (Berg, 1990; Passino, 2002).

It is well established that chemotaxis confers an evolutionary advantage to bacterial

species that possess the characteristic, allowing them to survive and respond to changes

in dynamic environments (MacNab and Koshland, 1972). From a systems perspective,

bacterial chemotaxis is a robust process, showing temporal sensitivity to changes in

nutrient concentrations even at different concentration levels. This sensitivity allows

1Flagella are whip-like appendages that provide locomotion similar to a propeller
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motile bacteria to find and remain in nutrient rich environments improving survivability

and fitness (Barkai and Leibler, 1997; Alon et al., 1999). Even in areas with high

concentrations of nutrients, motile bacteria will only remain in that vicinity for a duration

before returning to a random walk and saltatory search Passino (2002). This behaviour

allows chemotactic bacteria to continually search for areas with higher levels of nutrients

(preventing fixation at local maxima), improving an organism’s robustness to changing

environments and thus survivability. This process also has parallels with the technique

of simulated annealing (Kirkpatrick et al., 1983) used in global approximation problems.

3.2 Cellular Chemotactic Model

An environmental and cellular abstraction of chemotaxis is used to derive the cellular

chemotactic model, for addressing robustness issues with spatial activity recognition.

The model formulation and parameters are outlined as follows. Activities are represented

as cells in the model, and cells exist and move in an environment E, which is a two

dimensional discretised space as per Fig. 2.13. A cell c has a type or activity label t,

with a group of j cells (comprising the representative class set) having a representation

of cTj . Concentrations of molecules (symbols) in the spatial environment are maintained

using a histogram Eh with n bins, where n is the number of different symbols that need

to be recognised and n = |Eh|. Each activity type is represented by a group of cells,

where the cells model the movement of individual bacteria in response to environmental

dynamics. Cells are composed of receptor types {Ri}ni=1 that match symbols from the

environment. Symbols are denoted by u, where u ∈ U and U is the set of all possible

spatial symbols, for example U = {1, 2, 3, . . . , 156}. Each receptor type has a specified

number of receptors denoted by |Ri| . The total number of receptors of a cell is given

by p according to (3.1):

p =
∑
i

|Ri| (3.1)

Cells have an x, y tuple parameter that determines the activity cell position within

the environment E and are represented as c(x, y, {Ri}), where i = 1, 2, . . . , n. These

values are initially set to 1.0 and 0.0, respectively and represent the starting position

of the cells in the environment. In the model, the attractant source s or the place

where molecules are conceptually released is set to the origin of the environment, that is

s = (0.0, 0.0). This is graphically depicted in Fig. 3.1. Cellular running times for cells
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Figure 3.1: Cellular Chemotactic Environment E outlining the origin for cells c, the
attractant origin s and the high concentration region governed by θhigh

with and without environmental gradients are represented by exponential distributions

with means of µLR and µR, where µLR > µR. The exponential mean of the distribution

for a long running movement is denoted by µLR, with µR being the exponential mean

for the normal running motion. The amount of movement of a cell in response to a

matching symbol is determined by the velocity v of the cell, according to (3.2). Velocity

is normalised against the number of receptors p and µLR, to account for variation in

inter and intraclass sequence length. The normalisation is important as it only allows

cells with the closest match to the observed pattern to move nearest to the origin, thus

reducing misclassification.

v =
1

p× µLR
. (3.2)

In normal biological settings the release of molecules into a fluid environment results

in formation of a gradient that dissipates over time. This gradient is traversed by

bacterial cells in order to locate an attractant source, thus increasing the fitness and
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survivability of the organism. In the chemotactic model, iterative completion of a test

sequence and the mapping of this to a symbol (molecule), results in the addition of

u ∈ U into the environment Eh at time t. The increase in environmental u, modelled as

an increase in the environment histogram bin frequency of Eh, is detected by activity

cells c with free receptors Ri of the same receptor type. Typically, chemotactic bacteria

would then make a series of random moves with a bias toward the attractant source,

re-evaluating environmental concentrations at each move. In this model, the area of

highest concentration of molecules or the attractant origin is known, therefore, cells

can easily determine the direction of travel and move toward the attractant if and only

if receptor types match, free receptors are available and the cell is not in a region of

high concentration. The process of symbol matching and non-matching of a cell c in an

environment E with environmental gradient Eh is depicted in Figures 3.2,3.3 and 3.4.

Figure 3.2: Graphical representation of the symbol matching process at t = 0 (initiali-
sation)

Chemotactic cells in the model detect increasing environmental concentrations via “mem-

ory” associated with the irreversible binding of molecules to receptors. In the model the
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Figure 3.3: Graphical representation of the symbol matching process at t = 1 (match)

Figure 3.4: Graphical representation of the symbol matching process at t = 3 (non-
match)
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cellular memory is represented with a histogram approach with selected histogram bins

representing the receptor types. Each histogram bin or receptor type has a correspond-

ing fixed maximum bin frequency. The maximum bin frequency describes the number

of receptors |Ri| of a given receptor type Ri that a cell possesses. When a molecule

u is released into the environment, the environmental concentration of that chemical

increases. Cells that have a matching receptor type for the molecule then check if any

of the particular receptors are free. If so, the molecule binds and the cells behaviour is

modified by changing direction toward the attractant origin and increasing the length of

the running movement governed by µR to µLR as shown in 3.3. If a cell does not have a

receptor for that particular molecule or the cell does have a corresponding receptor type

but no free receptors, then a random walk is performed over a distance obtained from

the exponential distribution with mean µR. When cells move close to the attractant

source and the euclidean distance d between the cell and origin is less than or equal to

the high concentration threshold θhigh, the cells perform random walks irrespective of in-

creasing environmental concentrations. If the cells move outside the high concentration

area where d > θhigh, then the cells return to a normal random walk behaviour. These

behaviours are shown more clearly through an example in Figures 3.5 and 3.6. Motile

bacteria use this corresponding change in behaviour at high environmental concentra-

tions to prevent being restricted to local regions of high attractant concentrations (Barkai

and Leibler, 1997; Alon et al., 1999). In the model, this behavioural characteristic is

used as a tolerance mechanism for sequence expansion.

Figure 3.7 illustrates the behaviour of similar and dissimilar activity cells in response to

an observed spatial sequence (or environment E). From Fig. 3.7 it is clear that activity

cells with similar patterns to the test sequence exhibit more straight line movement

toward the attractant source compared to dissimilar activity cells. Therefore, cells c with

higher degrees of similarity to test sequences will end up closer to the attractant source

s. From a qualitative perspective, areas of sequence similarity may also be heuristically

identified through visualisation of stretches of straight line movement, that is before,

after or between regions of random walking.

After all symbols, which are mapped from the trajectories of an activity sequence, are

iteratively transformed into cells cβ, comprising β classes with m cells per class, the cell

φ in Z is found, where Z is the set of all activity cells, and φ has the minimum Euclidean
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Figure 3.5: Example of a short random walk behaviour when cells c are close to an
attractant (d ≤ θhigh)

Figure 3.6: Example of a return to normal behaviour when cells c move away from an
attractant (d > θhigh)
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Figure 3.7: Chemotactic Cell Movements of true and false class cells. Movement is in
the direction of the origin.

distance to the attractant source δ of E according to (3.3).

φ = argmin
g∈Z

d(g, δ) . (3.3)

The minimum distance cell φ is then used in the classification decision.

3.3 Methodology

For the evaluation, a ten single-person activity dataset (dataset A) was utilised compris-

ing the following activities: get home-watch TV, have a snack-watch TV, at home-watch

TV, read newspaper, have breakfast-toast, have breakfast-eggs, clean up, have breakfast-

porridge, have breakfast-cereal and afternoon tea, with twenty sequences captured per

activity (further information on the dataset and its corresponding actions can be found
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in 2.6). To generate symbolic sequence representations, the smart house space was dis-

cretised into one metre grids and activity sequences, composed of x, y trajectories, were

then mapped to a sequence of unique integers u, where u ∈ U and U = 1, 2, 3, . . . , 156

as per Section 2.6.

Following mapping of the activity sequences, sequences were randomly separated into

training and testing sets for each of the β = 10 activity classes. Each test sequence was

then allocated a separate environment E, with environmental histogram Eh of size |U |,
with bins initialised to zero. For each environment, the training sequences i (i ≤ m) of

each activity class j (j ≤ β) were then transformed into cells cji and initialised according

to algorithm 1: Cell velocity was then derived for each cell cji using (3.2). To quantify

Algorithm 1: Creation and initialisation of cells cji from training sequences

for i← 1 to m do
for j ← 1 to β do

/* Initialise cell location to (1,0) */ ;

cji ← (1, 0, {}) ;
/* Convert discretised training sequence i of activity class j to a receptor vector
R of size |R| = |U | */ ;
for k ← 1 to |U | do

/* a. Initialise vector at index k */ ;
Rk ← 0 ;
/* b. For each symbol k in sequence i, j increment the number of receptors
at Rk */ ;
Rk = Rk + 1,∀k ∈ seq(i, j) ;

/* Assign receptor vector R to initialised cell i, j */ ;

cji (1, 0,R) ;

the recognition performance of the approach with the testing sets, cross-validation was

performed, allowing generation of random training and testing sets to provide a more

realistic interpretation of discriminatory performance.

To benchmark the effectiveness of the chemotactic approach in relation to other models

the chemotatic model was evaluated against a discrete HMM with consequent HMMs

built for each activity class (using the same training sequences). HMM models were

trained using Baum-Welch parameter estimation, with the number of iterations of the

algorithm controlled by the convergence of the ratio of the average of the log-likelihoods
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between the current and previous iterations (< 0.001)). The ability of the chemotactic

model to function adequately with few training sequences or templates was also evalu-

ated, with results compared to the HMM. The intention of this was to determine the

viability of using limited training templates in order to accurately recognise spatial activ-

ities. Models such as the HMM typically require larger training sets in order to produce

good discriminative models.

Following from this, the robustness of the model was measured through introduction of

varying magnitudes of Gaussian noise across the testing sequences, prior to the symbol

mapping process. Introduction of artificial noise into the sequences allows one to make an

empirical comparison of robustness in relation to the HMM. As chemotaxis is inherently

robust to changing environmental conditions, it is believed the model would show similar

robust characteristics to noise.

The final evaluation of the model was in a simple interwoven activity context, where

two activities were used to contrast the ability of this novel approach to deal with ac-

tivity interweaving. Recognition of interwoven activities has been seldom addressed in

activity recognition research up to this point due to the difficulty of modelling activ-

ities subject to interruption. Recognition of interwoven activities is necessary in any

real life activity recognition system as humans typically interweave activities to achieve

temporal efficiencies. This experiment empirically demonstrates how the chemotactic

model can transition to a random short walking state during interruptions in activities

and then resumes with biased longer runs towards an attractant origin, when activities

recommence.

3.4 Experimental Results

3.4.1 Parameter Selection

The chemotactic model has three parameters that affect recognition performance that

require empirical optimisation: µR, µLR (govern the exponential distributions controlling

normal running and long running cell movements) and θhigh (controls which running

motion is taken in areas of high concentration). Given the considerations outlined in
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Section 3.2, an empirical evaluation was performed with ten training sequences per class

to determine the set of optimal model parameters (optimal in relation to recognition

performance).

In determination of optimal values of µR and µLR, the effect of θhigh was minimised by

setting θhigh = 0. Different values of µR and µLR, where µR ≤ µLR, were then specified

for the models. Accuracy statistics were in turn obtained through cross-validation anal-

ysis. It was found that the ratio of optimal values of µR to µLR were consistent across

different values of the exponential means, with µR typically one third of µLR. In Berg

(1990), the bacterial ratio was found to be approximately a tenth. The consistent ratio

can be explained in part by the cell velocity in (3.2) taking into account µLR; there-

fore, any increase in µLR inversely affects cell velocity, slowing the movement of the cell

and approximating a smaller random biased walk. When values of µR approach µLR a

decrease in accuracy is noted, which can be attributed to a lack of disparity between

the matching and non-matching states of the cell. Using the acquired optimal ratio, the

following parameters were included in further experimentation: µR = 0.5 and µLR = 1.5.

With the optimal movement parameters, values of θhigh between 0.01 and 0.10 were

evaluated to ascertain an optimal range. The optimal range was found to exist between

θhigh values of 0.03 − 0.05; however, the difference in accuracy between the values was

found to be less than 1%. This small difference in accuracy with different values of

θhigh is likely due to the approach obtaining near 100% correct classification with the

given dataset. In an activity recognition context, the θhigh threshold is used to change

movement behaviour, keeping cells that are already close to the origin (equating to a

high probability of a match) in the vicinity, irrespective of further elements in the testing

sequence. Therefore, spatial sequences exhibiting expansion due to an activity occurring

over a longer duration can benefit from the inclusion of the θhigh parameter and still be

recognised as the same activity with a shorter duration.

The discrete HMM was included in the study to provide a benchmark comparison for

the chemotactic approach in relation to an existing activity recognition technique. The

discriminatory and runtime performance of the HMM is correlated to the number of

hidden states used in the generated model. To address this issue, the HMM was em-

pirically evaluated with hidden states = 5, 7, 12, 15 against the data set. The optimal

classification accuracy was obtained where M = 5 as seen in Table. 3.1.

57



CHAPTER 3. A CHEMOTACTIC PARADIGM FOR RECOGNISING SIMPLE AND
INTERWOVEN SPATIAL ACTIVITIES

M Accuracy(%) Stdev

5 88.93 3.28

7 86.87 4.08

12 88.50 4.18

15 87.10 3.82

Table 3.1: Classification accuracy of discrete HMM models with M = 5, 7, 12 and 15
hidden states.

3.4.2 Recognition Performance

Using the following derived optimal parameters, µR = 0.5, µLR = 1.5, θhigh = 0.03

and M = 5, chemotactic and HMM models were generated from ten training sequences

according to the methodology described in Section 3.3. Ten test sequences per activity

type were then evaluated in regards to recognition accuracy with the results shown in

Table. 3.2. As evident from Table 3.2 the chemotactic model showed a significant ≈ 11%

Technique Accuracy (%) Stdev

Chemotactic Model 99.89 0.36

HMM 88.93 3.28

Table 3.2: Classification accuracy for the Chemotactic and HMM models.

improvement in classification accuracy over the HMM with the ten activity dataset. The

observed higher recognition performance of our model is the result of the chemotactic

process better accounting for tracking noise through its random walk motions in the

absence of sequence correspondence. Additionally, even though sequential consistency

is not enforced in the chemotactic model, the model still exhibits high discriminative

properties with sequences of similar length.

3.4.3 The Effect of Training Size on Recognition Performance

To analyse the effect of increasing numbers of training sequences with respect to clas-

sification performance, chemotactic and HMM models were trained with one to ten

sequences of each activity from the ten activity dataset. Figure 3.8. demonstrates the

effect of increasing training sequence numbers in relation to accuracy.
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(a) HMM

(b) Chemotactic

Figure 3.8: Number of training sequences versus accuracy for the HMM and chemotactic
models. The bars represent one standard deviation from the mean.

It is apparent from Fig. 3.8 that the chemotactic model is able to recognise activities with

significantly higher accuracy and less variation than the HMM, especially with smaller

numbers of training sequences. The chemotactic models good performance is attributed

to the noise abating characteristics of the chemotactic paradigm and the generalisation

capability of the underlying histogram approach. The high recognition performance with

59



CHAPTER 3. A CHEMOTACTIC PARADIGM FOR RECOGNISING SIMPLE AND
INTERWOVEN SPATIAL ACTIVITIES

small training set sizes further demonstrates that the proposed chemotactic approach

does have high discriminatory properties. Furthermore, this characteristic is particularly

useful for recognising activities with limited sequence data.

The lower classification accuracy obtained by the HMM with smaller numbers of train-

ing sequences was expected as the discrete HMM is unable to accurately derive the

probabilities of the state transitions with smaller training sets, thus resulting in a poor

recognition performance.

3.4.4 Noise Tolerance

To verify the robustness claims of the chemotactic model in relation to the HMM, Gaus-

sian noise was artificially incorporated with varying degrees of magnitude into the two

dimensional sequence data, prior to the symbolic mapping process. Chemotactic and

HMM models were then generated with ten training sequences of the original sequence

data and analysed for classification accuracy using the ten “noisy” testing sequences per

activity. The experimental results with noise magnitudes of between 0 to 2.5 metres

are graphically represented in Fig. 3.9. Analysis of the results show that the chemotac-

tic model is more resilient to noise than the HMM, as indicated by the lesser decrease

in accuracy (10% versus 17%) with increased magnitudes of noise. Furthermore, the

chemotactic model still maintained 90% classification accuracy with the largest degree

of noise. This contrasts the HMM which only obtained 71%. Both models did however

produce similar amounts of variation in the experiments as seen by the respective stan-

dard deviations. The observed robustness of the chemotactic model can be explained by

the approach biasing longer duration random walks of activity cells (in the direction of

an attractant source) when patterns match, whilst conducting shorter unbiased random

walks with sequence expansion and dissimilarity. The higher accuracy of the chemotactic

model with artificially introduced noise acknowledges the robustness of the approach.

3.4.5 Recognising Simple Interwoven Activities

To validate the ability of the chemotactic model to recognise simple interwoven activities

an alternate data set was constructed that consisted of two classes of activities as shown
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(a) HMM

(b) Chemotactic

Figure 3.9: Noise magnitude versus classification accuracy for the HMM and chemotactic
models. The bars represent one standard deviation from the mean.

in Fig. 3.10.

The first activity is have a snack-watch TV, with the second activity cooking-eating

starting at the dining table, involving some cooking and then returning to the dining

table for eating. Chemotactic cells were trained with both classes of activities and
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Figure 3.10: Snack-Watch TV and Cooking-Eating spatial paths.

evaluated with an interwoven sequence that involved entering from the north door of

room 1, having a snack, cooking, returning to the dining table to eat and then proceeding

to watch tv. The interwoven sequence thus incorporates the beginning section of activity

1, transfers to activity 2 and then returns to complete activity 1. The overall length of

the interwoven sequence is the sum of the lengths of activity 1 and 2. Figure 3.11. shows

the resulting cellular movements of both classes in response to the interwoven sequence.

Evaluation of Fig. 3.11a, showed a long random walk at approximately x = 0.85,

indicating interruption of activity 1. At the same time (x ≈ 1.0), the other activity cell

in Fig. 3.11b was observed to change from a random walk to straight line movement

toward the attractant origin (0,0) indicating similarity to the test sequence. The cell

in Fig. 3.11b then reverted back to a random walk at x = 0.05, with the opposite

cell in Fig. 3.11a returning to straight line movement toward the attractant origin. As

demonstrated in Figures 3.11a and 3.11b, the final positions of both the SWTV and

Cooking cells were close to the attractant origin showing that both activities had been

recognised.

To verify that the HMM is unable to recognise such activities, separate HMMs were

trained with the same two classes of activities and then used the above interwoven

sequence for testing. The resulting log likelihoods of the models with the observed

interwoven sequence were found to be negative infinity. This occurs as the models do
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Figure 3.11: Interwoven cell movements (a) Snack-Watch TV Cell (SWTV) (b) Cooking
Cell.

not observe particular states, found in the other class during training. Therefore, when

calculating the sequence probability with a scaled forward procedure (Rabiner, 1989),

some of the derived symbol probabilities for observed symbols are zero or very small,

resulting in an overall low probability for the sequence.

The chemotactic approach has therefore been demonstrated to recognise simple interwo-

ven activities. The exhibited tolerance to interweaving is the result of the chemotactic

cells performing smaller random walks in the absence of sequence similarity. Therefore,

if an activity is in progress and a corresponding cell is moving in the direction of the

attractant source (due to patterns matching), interruption of that activity will result

in the cell performing a random walk. The random walk allows cells to remain in the

vicinity of where the activity was disrupted, until the activity is resumed. If an activity

is disrupted for a long period of time, it is possible that cells may wander away from the

area of disruption, decreasing overall recognition performance.

63



CHAPTER 3. A CHEMOTACTIC PARADIGM FOR RECOGNISING SIMPLE AND
INTERWOVEN SPATIAL ACTIVITIES

3.5 Summary

This chapter has presented a novel chemotactic model for spatial activity recognition.

The chemotactic paradigm that forms the basis of this model provides robustness, en-

abling tolerance to video tracking noise. This robustness is achieved by biasing longer

duration random walks of activity cells in the direction of an attractant source, during

sub-sequence matching and conducting shorter unbiased random walks with sequence

dissimilarity. A discussion was provided on optimisation of the chemotactic model pa-

rameters in relation to empirical evidence. Using optimal parameters, the classification

accuracy of the developed model with a ten activity dataset was determined, in which

case the chemotactic model demonstrated higher classification accuracy (99%) than the

discrete HMM (89%). Evaluation of the classification performance over different training

set sizes showed that the chemotactic model also exhibited high discriminative proper-

ties, even when trained with few sequences. Through introduction of differing magni-

tudes of artificial noise into testing sequences, the robustness of the chemotactic model

was demonstrated in relation to the HMM. These results suggest that the chemotactic

paradigm is well suited to computational problems with intrinsic noise, such as the spa-

tial activity recognition problem. Lastly in this chapter, the ability of the chemotactic

model to recognise simple interwoven activities was verified.
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Chapter 4

Improving robustness of spatial
activity recognition using
principles from bioinformatics

In Chapter 3, a novel cellular chemotactic model is described that is robust to noise

associated with spatial activity sequences in a smart home environment and is also

capable of recognising simple interwoven activities. This chapter further explores the

challenge of recognising spatial activity sequences containing noise from video-based

tracking systems using concepts from the field of bioinformatics for inspiration.

Multi-camera and other video-based tracking systems, such as the ones described in

Section 2.6 introduce noise and artifacts into spatial sequences as a result of difficulties

with tracking individuals in smart home environments. Tracking noise is seen as a lo-

calised variance, or as sequence compression or expansion in spatial cases. In biological

sequences, localised substitution, compression and expansion of sequence elements are

naturally occurring phenomena resulting from evolution. Consequently, bioinformatics

techniques have been optimised to identify biological sequences exhibiting evolutionary

variation. The proposed approaches addressed in this chapter are based on bioinfor-

matics sequence alignment techniques (see Section 2.4) that are capable of quantifying

sequence variability.

Recently, sequence alignment techniques have also been applied in other pattern recog-

nition approaches such as matching moving object trajectories from video data (Vlachos

et al., 2002b,a; Chen et al., 2004; Chen and Ng, 2004; Chen et al., 2005). The ap-

proaches are capable of robust recognition of spatial activities, yet are sensitive to noise

from tracking systems, have decreased discrimination abilities due to symbolic space

transformations, are susceptible to time variance in activities, and/or are sensitive to

activity segmentation limitations.
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The following chapter is organised as follows. Nomenclature used throughout this chap-

ter and the remainder of this thesis is provided in Section 4.1. In Section 4.2 and

Section 4.3 the bioinformatics-inspired Longest Common Subsequence Distance (LCSD)

and Global Edit Distance (GED) techniques are derived to address noise and temporal

variance issues. These algorithms are then evaluated in Section 4.4 in relation to recog-

nition performance and training set sizes. An evaluation is also conducted against LCSS

variants, DTW and a discrete HMM. Lastly, a summary is presented in section 4.5.

4.1 Nomenclature

The following notation is used throughout this and other chapters. A symbol ai or

bj represents a trajectory tuple (x, y), where x and y denote the position within a

two dimensional tracking space. The sequences a and b with lengths |a| and |b| are

composed of symbols organised in time sequential order, where i and j (1 ≤ i ≤
|a| and 1 ≤ j ≤ |b|) determine the position within that corresponding sequence.

Thus, a sequence of symbols a = [a1, a2, . . . , |a|] can also be represented as a se-

quence of tuples a = [(x1, y1), (x2, y2), . . . , (x|a|, y|a|]) and in combination as in a =

[(ax1 , a
y
1), (ax2 , a

y
2), . . . , (ax|a|, a

y
|a|)]. To simplify the notation the symbolic representation

will be predominately used throughout this chapter.

4.2 Longest Common Subsequence Distance (LCSD)

The proposed Longest Common Subsequence Distance (LCSD) algorithm is a distance

variant of the LCSS similarity approach (2.4.1). Like its name suggests LCSS finds

the longest common subsequence from two sequences, where subsequences need not be

adjacent, and the similarity score is given by the LCSS length. LCSS achieves robust

recognition in the presence of noise by ignoring all regions of dissimilarity and maximis-

ing element matching between sequences. In sequence alignment applications, LCSS and

variants are used to identify similarity between biological sequences that are distantly

related from an evolutionary perspective and have large amounts of variation (indels). In

activity recognition, it is important to accurately recognise disparate sequences through

the intrinsic noise incorporated during video tracking. To achieve high levels of discrim-
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ination between similar sequences, there is a requirement to account for dissimilarity.

This is important as different sequences can have similar matching regions, but vastly

different regions of dissimilarity. For example, if one measures the LCSS between a

sequence a = [1234] and two observed sequences b = [1254] and c = [12744], both b

and c will have the same LCSS score of three, indicating that both are equally simi-

lar to a. However, by visual inspection, one would say that b is more similar to a. To

determine whether b or c is more similar to a requires quantification of the sequence dis-

similarity. In this chapter the noise abating aspects of LCSS are incorporated and a new

distance-based alignment technique is proposed. A similar LCSS-based approach has

been proposed by Vlachos et al. (2002a), in which the authors incorporated a constant

δ to restrict how far points can match in time and a matching threshold ε that specified

how close trajectories must be in order to match. The resulting similarity value from

the LCSS variant was then normalised using the minimum of the sequence lengths. The

main disadvantage of the LCSS approach of Vlachos et al. (2002a) is that it completely

ignores all areas of dissimilarity, which in turn may be important for discriminating be-

tween similar activities. Normalisation of this approach does incorporate an aspect of

dissimilarity; however a more accurate means of dissimilarity quantification is required.

The LSCD approach contrasts LCSS as it is distance-based and furthermore does not

require an extra normalisation step. The distance-based approach is preferred over a

similarity one to quantify the dissimilarity between regions of subsequence similarity.

This is necessary as we assume trajectory patterns of the same activity to be similar and

thus do not wish to match sequences which significantly divert from the norm.

LCSD employs a dynamic programming matrix C of size |a|+ 1×|b|+ 1, in conjunction

with a matching threshold θ. The matching threshold θ controls the degree of similarity

required for individual symbols to match, but inclusion of a matching threshold in LCSD

violates the triangular inequality metric characteristic, as per the EDR approach of Chen

et al. (2005). The use of θ in LCSD manifests as a spatial envelope of size θ surrounding

the template sequence. If θ is large the envelope surrounding a template sequence is large

and thus LCSD over generalises mismatching sequences with similar spatial profiles. If

θ is small then the resulting spatial envelope is small resulting in sequences of the same

activity class being not matched.

Selection of appropriate values of θ for sequence alignment based approaches are de-

pendent on the spatial and temporal variability of exemplar sequences. As discussed

in Section 2.1, the ADL routines and activity duration associated with individuals are
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consistent for normal levels of well-being. Thus it is expected that activities captured

from the same individual are normally distributed in relation to spatial and temporal

variability. This was validated in early work through analysis of the spatial sequence

distributions from Section 2.6.

A global threshold θ is favoured in LCSD and other sequence alignment approaches, and

over local thresholds for each activity class, due to the ease which a global threshold

can be empirically derived through sampling and consequently evaluating training data

sets, to obtain a balanced precision and recall. In comparison to global thresholds, local

thresholds are computationally expensive to calculate for nearest neighbour classification

as the solution requires solving the following multi-factorial optimisation problem: for

n activities and for each local threshold θk, where k = 1, 2, . . . , n, find values of θk such

that the precision and recall statistics 5.2) for all n are maximised.

The LCSD formulation uses an Euclidean distance function d(ai, bj) (4.1) for quantifying

symbol distances and a stepwise distance function distLCSD(ai, bj) for DP initialisation.

d(ai, bj) =
√

(axi − bxj )2 + (ayi − b
y
j ) (4.1)

To derive the LCSD one initialises C using (4.2) and calculates the remainder of the

matrix using (4.3), for values of i = 1, . . . , |a| and j = 1, . . . , |b|.

C(i, j) =


distLCSD(ai, bj) i = j = 0

C(i, j − 1) + distLCSD(ai, bj) i = 0, j > 0

C(i− 1, j) + distLCSD(ai, bj) i > 0, j = 0

(4.2)

where, distLCSD(ai, bj) =

{
0 d(ai, bj) < θ

d(ai, bj) d(ai, bj) ≥ θ

C(i, j) =

{
C(i− 1, j − 1) i, j > 0 and d(ai, bj) < θ

min {C(i, j − 1), C(i− 1, j)}+ d(ai, bj) i, j > 0 and d(ai, bj) ≥ θ
(4.3)

At each C(i, j), one first determines whether the corresponding elements ai and bj match

by calculating the Euclidean distance between the points and if the distance is less than

the threshold θ. If so, then a match occurs and the current optimal distance value

C(i, j), is set to a match C(i− 1, j − 1). If the Euclidean distance is equal to or exceeds
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θ, ai 6= bj and the non-matching elements are penalised through the addition of the

Euclidean distance between the points to the minimum of C(i − 1, j) and C(i, j − 1).

By including the Euclidean distance of non-matching elements we are able to accurately

quantify the regions of dissimilarity between subsequences. The pseudocode for the

LCSD algorithm is provided in Algorithm 2 for further clarity.

Algorithm 2: Longest Common Subsequence Distance (LCSD)

Data: θ, a, b
/* Initialise DP matrix C */ ;
for g ← 0 to |a| do

for h← 0 to |b| do
C(g, h)←− 0 ;

/* Initialise first row and column of DP matrix C */ ;
for i← 1 to |a| do

C(i, j)←− C(i− 1, j) + distLCSD(ai, bj) ;

for j ← 1 to |b| do
C(i, j)←− C(i, j − 1) + distLCSD(ai, bj) ;

/* Perform LCSD calculation on remainder of rows and columns in DP matrix */ ;
for i← 1 to |a| do

for j ← 1 to |b| do
/* Sequence elements match */ ;
if distLCSD(ai, bj) < θ then

C(i, j)←− C(i− 1, j − 1) ;
/* Not a match so find the next closest alignment */ ;
else if C(i− 1, j) < C(i, j − 1) then

C(i, j)←− C(i− 1, j) + distLCSD(ai, bj) ;
else

C(i, j)←− C(i, j − 1) + distLCSD(ai, bj) ;

To calculate the LCSD of one-dimensional spatial sequences, the matching criteria are

replaced by the boolean expression, ai = bj , for a match previously determined by

d(ai, bj) < θ and ai 6= bj for non-matching cases previously represented by d(ai, bj) ≥ θ.
The non-matching penalty, d(ai, bj) is also replaced by a positive constant, which is set

to one. The significance of the constant being one is that the resulting LCSD is in fact

the number of symbols that are different between the two sequences.
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4.3 Global Edit Distance (GED)

The Global Edit Distance (GED) approach that is outlined here is derived from the Edit

Distance sequence alignment approach in bioinformatics. As such, GED in a symbolic

context denotes the number of substitution or indel operations that are required to con-

vert one sequence into another. This is achieved through minimising the alignment score

consisting of the number of mismatches and indels and their corresponding penalties,

over the sequence lengths |a| and |b| (Waterman, 1995). The GED algorithm proposed

in this chapter differs from both LCSS and LCSD approaches as it allows indels or gaps

in the sequences in conjunction with mismatches, and is distinguished from ERP (Chen

et al., 2004) due to the inclusion of a matching threshold in the distance calculation.

Whether a match, mismatch or indel (corresponds to a deviation in a spatial path) occurs

in the alignment is in turn dependent on the weights associated with each operation. As

this application is dealing with two dimensional spatial sequences, a stepwise function

distGED is used, which incorporates a matching threshold θ with an Euclidean distance

function d(ai, bj), as per (4.3), to differentiate between matches and non-matches. If

d(ai, bj) < θ, then zero is assigned to distGED, otherwise distGED = d(ai, bj), which is

referred to as the mismatch penalty.

With the proposed GED algorithm a linear gap model is employed with gap penalty γ

associated with each indel. Initial testing on spatial sequences demonstrated that the

linear gap model on average produced better discrimination across the datasets than with

other more complex gap models. This finding is consistent with gap model investigations

in bioinformatics sequence alignment approaches (Gotoh, 1982).

The GED can be calculated using a dynamic programming matrix C of size (|a|+ 1)×
(|b| + 1) and iterating over i and j as shown in (4.4)-(4.7). The global distance score

can be found at position (|a|+ 1, |b|+ 1) within C.

C(0, 0 = 0 (4.4)

C(i, 0) = γi, 1 ≤ i ≤ |a| (4.5)

C(0, j) = γj, 1 ≤ j ≤ |b| (4.6)
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C(i, j) = min {C(i− 1, j − 1) + distGED(ai, bj),

C(i− 1, j) + γ,

C(i, j − 1) + γ} (4.7)

where, distGED(ai, bj) =

{
0 d(ai, bj) < θ

d(ai, bj) d(ai, bj) ≥ θ

From (4.4)-(4.7), if θ is large in relation to γ, the final alignment will favour matches

over gaps. By favouring mismatches over gaps, GED typically results in shorter over-

all alignments as gaps add to the alignment length. If θ is small in relation to γ, the

final alignment favour gaps over matches, resulting in larger alignment lengths.The pseu-

docode for the GED algorithm is provided in Algorithm 3 for further clarity.

The GED algorithm can be adapted for symbolic spaces by replacing d(ai, bj) and θ in the

matching conditions of the stepwise function distGED(ai, bj) with ai = bj (for matches)

and ai 6= bj (for non-matches). A positive constant ω is also required to replace the

Euclidean distance as a mismatch penalty. Consideration must be made to the value of

ω in relation to γ, as per θ. If ω < γ then one can expect more gaps to be introduced

into the alignment in relation to mismatches, whilst if ω > γ then the opposite occurs

and GED will produce more mismatches than gaps. The nature of the recognition task

dictates the values of ω and γ. For example, if the task is to recognise spatial patterns

with several significant gaps, then one would specify a small γ in relation to ω. Like

LCSD, calculation of optimal GED parameters (in relation to recognition performance)

are dataset dependent.

4.4 Evaluation of LCSD and GED

To evaluate the LCSD and GED approaches in relation to noise and recognition per-

formance, spatial activity sequences from 10 activities (Dataset A) and 3 spatially sim-

ilar activities (Dataset B) are utilised from Section 2.6. Each activity is captured at

10fps with the resulting sequence consisting of x, y coordinates, representing the activity

path.Fig. 4.1 illustrates the innate temporal variation between the activities in dataset

A. Similar variability was also evident in dataset B (not shown). Further investigation of

the dataset sequences confirm that the innate variation is due to tracking system noise
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Algorithm 3: Global Edit Distance (GED)

Data: θ, γ, a, b
/* Initialise DP matrix C */ ;
for g ← 0 to |a| do

for h← 0 to |b| do
C(g, h)←− 0 ;

/* Initialise first row and column of DP matrix C according to linear gap penalty */ ;
for i← 1 to |a| do

C(i, 0)←− γ × i ;

for j ← 1 to |b| do
C(0, j)←− γ × j ;

/* Perform GED calculation on remainder of rows and columns in DP matrix*/ ;
for i← 1 to |a| do

for j ← 1 to |b| do
if distGED(ai, bj) < θ then

/* Match between sequence elements */ ;
aligned = C(i− 1, j − 1) ;

else
/* Mismatch between sequence elements */ ;
aligned = C(i− 1, j − 1) + distGED(ai, bj) ;

/* Insertion / Deletion (indel) in sequence - using linear gap penalty */ ;
indela = C(i− 1, j) + γ ;
/* Insertion / Deletion (indel) in sequence - using linear gap penalty */ ;
indelb = C(i, j − 1) + γ ;
/* Find the minimum between match, mismatch and indels and set for C(i, j)
*/ ;
C(i, j) = min(aligned, indela, indelb) ;

and intra-activity temporal variation.
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Figure 4.1: Activities exhibiting temporal variation (x axis represents the sequence length).
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To provide a benchmark for the proposed LCSD and GED algorithms, the results are

compared to the LCSS method of Vlachos et al. (2002a). In this approach the authors

specify a distance threshold δ and a temporal matching threshold ε for matching spatial

sequences. Here δ = 1.0m, which is similar to θ, and ε is set to a large value to negate its’

effect on the classification accuracy. This approach enables one to focus the empirical

comparison on distance discrimination. To validate activity class recognition in the

presence of temporal variation, the results are compared to DTW. A discrete HMM

with fixed number of symbols M = 156, and an empirically determined number of

hidden states N is also evaluated to ascertain performance against a generalised model.

HMM’s are trained and evaluated using discretised versions of the activity sequences as

outlined in Section 2.6.5. For each data set, models with N = 5 to N = 15 hidden states

were evaluated with N = 5 having the optimal recognition performance.

4.4.1 Parameter Selection

An empirical approach is adopted here to determine the optimal γ for GED. θ is not

evaluated in this context as its values should be specified according to the recognition

task. For instance, if the recognition task requires observed patterns to be strictly

matched to those used in the training set, one would set θ to a small value. On the other

hand if the matching constraint is relaxed and θ is set to a larger value, then one can

expect to match more patterns and possibly obtain a higher degree of misclassification.

The value of θ = 1.0 was found to be a good compromise of precision and recall (5.2)

for randomly generated training sets, obtained from datasets in Section 2.6. The fact

that a similar value of θ was able to provide high precision and recall across the multiple

datasets, results from activities having similar or overlapping spatial activity paths,

similar durations, and/or consistent noise and errors from the tracking system. The value

of θ = 1.0 also coincides to the size of the discretised states used by HMM evaluations

and is used throughout this thesis for the sequence alignment based approaches.

As specified in Section 4.3 γ is a linear gap penalty associated with insertion or deletion of

one more trajectories or symbols in either sequence. Using a fixed θ, the issue of selecting

an appropriate value of γ for the proposed GED algorithm is addressed. Selecting an

optimal value for γ with a linear gap function is difficult in real world settings as its

value can determine the degree of sequence deviation allowed (possibly correlating to

74



CHAPTER 4. IMPROVING ROBUSTNESS OF SPATIAL ACTIVITY RECOGNITION
USING PRINCIPLES FROM BIOINFORMATICS

activity interweaving). Ideally γ, which is the penalty associated with insertions and

deletions, should be the same as the penalty applied to sequence mismatches for a

balanced outcome. In these experiments values of γ from 0.5 to 10.0 were evaluated in

a cross-validation study to empirically derive an effective γ. For brevity we only show

the resulting classification accuracies for the dataset B in Fig. 4.2; however the dataset

A produced similar trends. For the given datasets, γ = 1.0 provided the maximum

classification accuracies and thus was used in further experimentation.

Figure 4.2: GED γ Parameter Optimisation.

4.4.2 Recognition Performance of LCSD and GED

In this section the recognition performance of the proposed LCSD and GED alignment

approaches are evaluated using the parameters from Section 4.4.1, with datasets A and

B, and cross-validation. Results are shown in Figures 4.3(a) and 4.3(b). Evaluation

of the LCSD, GED algorithms demonstrated that the proposed algorithms are capable

of accurate discrimination, outperforming the discrete HMM in both data sets. The

HMM results from data set B were considerably lower than either the LCSD and GED

further demonstrating the robust matching properties of these techniques. The poor
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(a) Dataset A

(b) Dataset B

Figure 4.3: Recognition performance for LCSD, GED compared to LCSS, DTW and the
HMM.

performance of the HMM in this instance may be attributed to the significant noise ap-

parent in dataset B and/or the high degree of spatial overlap in the sequences preventing

generation of a good discriminative model.
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The DP-based approaches of LCSS, DTW, LCSD and GED did perform better than the

discrete HMM, with DTW achieving higher accuracy with dataset A than either of the

LCSD or GED approaches. Given low intraclass variations in spatial sequences, DTW is

more accurate than the proposed approaches, as seen in Fig. 4.3(a). However, if spatial

sequences do contain significant amounts of noise, DTW does not perform as well as

the other DP-based algorithms such as LCSD and GED. This can be clearly seen by the

lower accuracy achieved with DTW using dataset B in Fig 4.3(b). The observed decrease

in DTW accuracy with spatial sequences containing significant amounts of noise is likely

due to the algorithm minimising the distance across the whole alignment, thus taking

into account the noise in the resulting distance score. The LCSS approach also exhibited

similar spatial discriminatory performance to the proposed LCSD and GED algorithms

as shown in Figures 4.3(a) and 4.3(b). LCSS is capable of robust recognition due to the

underlying LCSS algorithm not taking into account any sequence dissimilarity. The fact

that all sequence dissimilarity is ignored in LCSS is seen as a weakness of the approach,

especially when quantifying spatially and temporarily similar, yet different activities.

It is interesting to note that all the DP-based approaches evaluated in this experiment

significantly outperform the discrete HMM. To exclude the possibility that the use of

discretised sequences with the HMM is responsible for the lower observed accuracy,

the same discretised activity sequences were applied to the one-dimensional versions of

the LCSS, LCDS, GED and DTW algorithms. On average a less than 4% variance in

accuracy was observed across the different approaches (results not shown), indicating

that discretisation was not the cause. To ensure a sufficient number of states N were

used for HMM learning and to ensure the models were not too generalised, the HMMs

derived from N = 5 to N = 15 states were reevaluated and the accuracy reassessed.

To ensure the results were significant, cross-validation was verified during the learning

and inferencing phases. On average a 5% variation in accuracy was observed across the

models, demonstrating that over-generalisation was not likely the cause of the HMM’s

observed lower accuracy with data set A. Over-generalisation is still a possibility with

data set B, which exhibited a large degree of overlap between the three activity classes.

One would expect that a larger number of states should capture the variation; however,

even at N = 15 the accuracy was commensurate of the N = 5. An alternate hypothesis

is that the HMM was performing as expected and that the DP-based approaches were

just more sensitive at quantifying the distance (LCSD, GED, DTW) or similarity (LCSS)

between activity classes. This increased sensitivity is implied when we look at the high

resulting accuracy of the LCSD, GED, DTW and LCSS approaches across both data
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sets in contrast to the HMM.

LCSD, GED, DTW and LCSS approaches are DP techniques that attempt to minimise

the overall distance (or maximise the overall similarity) in an iterative fashion, based

on optimal alignments of subsequences. This alignment occurs between a test sequence

and a template sequence in relation to a scoring function that quantifies matches, mis-

matches, insertions, and/or deletions. Thus the final alignment and distance (or similar-

ity) measure are highly dependent on the scoring function and its parameters. In these

experiments we randomly select a set of template sequences, in this case 10, and use

these to represent the activity and compare them to the remaining test sequences using

a nearest neighbour approach. The scoring parameters such as θ and γ are empirically

derived in accordance with user defined matching constraints to provide an effective level

of segregation as explained in Section 4.4.1.

With DP-based approaches, each template sequence could be thought of as representing

a separate warping alignment path within a multi-dimensional space, where the full set

represents all the possibilities with which a test sequence could align (in whole or part).

In contrast to the DP-based approaches, the HMM generalises its’ template sequences

into a singular alignment path where the symbol density is dependent on the degree

of alignment space overlap (the more the variability, the less the overlap and the lower

the density and vice versa). As DP-based approaches provide non-overlapping warping

alignment paths for each template, they favour improved alignment and scoring with

test sequences that are outliers in regards to the average sequence of a template set

(assuming the template set has some variability). With the HMM, outlier sequences try

to align to low density areas of the generalised alignment path, resulting in poor align-

ment probabilities and thus poor classification accuracy. This concept is demonstrated

through Fig. 4.4, where the DP-based approaches form non-overlapping warping paths

for 3 template sequences 4.4(a) [2 similar, 1 outlier], while the HMM forms a single gen-

eralised alignment model 4.4(b). If we apply a test sequence that is an outlier (similar

to the sequence in black in Fig 4.4(a)) to both the DP-based and HMM approaches, we

can see that the DP-based model would align well to the black template in Fig 4.4(a)

achieving a strong alignment and corresponding similarity (or distance) score. In con-

trast the generalised HMM approach would align to the lower density alignment path

(light grey) in Fig 4.4(b) resulting in a weaker alignment and similarity (or distance)

score (as the outlier sequence has been observed less than the two similar sequences).

This lower density alignment path in the HMM would correlate to smaller state transi-
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tion probabilities across A and output probabilities B and is thus shown in a lighter grey

colour. If we have activities with a degree of variability in their template sequences for a

given activity set, we would thus expect sequence alignment approaches to outperform

the discrete HMM. .

(a) Non-overlapping paths

(b) Single generalised alignment path

Figure 4.4: Conceptual representation of how DP-based techniques form non-overlapping
warping alignment paths in contrast to the HMM which creates a single generalised
alignment path.
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4.4.3 Training Set Size versus Recognition Performance

The training set size and its relationship to recognition performance is important as

ideally one would like to obtain a high classification accuracy with the minimal number

of templates representing an activity type. In these experiments the recognition perfor-

mance is calculated for LCSD and GED algorithms, using the parameters obtained from

Section 4.4.1 with the results compared to a discrete HMM. The recognition performance

of the approaches with differing numbers of template sequences can be found in Figures

4.5(a) and 4.5(b).

Through analysis of the recognition performance of the different approaches in Fig-

ures 4.5(a) and 4.5(b), LCSD and GED algorithms consistently achieve higher accuracy

across the different training set sizes in comparison to the HMM. They also obtain a

classification accuracy in excess of 89%, even with only one template in the training

set. This contrasts the discrete HMM, which obtained a classification accuracy of only

88.9% with 10 training sequences. Overall, the HMM was observed to have significantly

lower classification performance over both data sets using small training set sizes. This

finding is consistent with the observation by Rabiner (1989) that discrete HMMs re-

quire large numbers of training sequences to produce good discriminatory models. The

observed high accuracy of the proposed LCSD and GED algorithms with small num-

bers of templates demonstrates that sequence alignment based approaches do have high

discriminatory properties when applied to a spatial recognition context. Furthermore,

this discrimination characteristic is highly useful for recognising activities with limited

exemplars.

4.4.4 Effect of Noise on Recognition Performance

In these following experiments the robustness of the LCSD and GED approaches are

evaluated with dataset B and results contrasted to a discrete HMM (with M = 156,

N = 5and models built with 10 sequences). Dataset B was selected due to the spatial

similarity between the different activities (see 2.6), making the dataset more susceptible

to misclassification with noise introduced from video tracking systems. To carry out the

experimentation Gaussian noise is artificially incorporated with magnitudes up to 2.5

metres into each of the test sequences. Results of the evaluation are shown in Fig. 4.6.
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(a) Dataset A

(b) Dataset B

Figure 4.5: Training set size versus accuracy (%) for datasets A and B.

Analysis of the results demonstrate that the proposed LCSD and GED algorithms are

more resilient to noise than the HMM, as indicated by the lesser decrease in accuracy

with the increased magnitudes of noise: < 2% decrease for the DP based approaches

versus 12% for the HMM. Importantly, the 2D LCSD, GED and SW algorithms were able
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Figure 4.6: Noise magnitude versus accuracy for dataset B.

to maintain a classification accuracy of > 96.0% with the largest evaluated magnitude

of noise, while the discrete HMM achieved only 49%. The maintenance of high accuracy

across the different magnitudes of artificially introduced noise demonstrates that the

LCSD, GED and SW algorithms are robust to noise and more so than the discrete HMM.

This allows the algorithms to be applied successfully to similar pattern recognition tasks

that have intrinsic noise issues.

4.5 Summary

In this chapter the LCSD and GED algorithms are proposed for accurate and robust

use in recognising spatial activity sequences obtained from a smart home video tracking

system. These algorithms are inspired by similar bioinformatics sequence alignment ap-

proaches that provide approximate matching with biological sequences exhibiting indels

(expansion or compression) and substitutions due to natural and evolutionary pressures.

The recognition performance of the LCSD and GED algorithms are assessed with spa-

tial activity data and the results contrasted with existing approaches including LCSS,
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DTW and the discrete HMM. Results show that the LCSD and GED techniques are

more discriminatory than both DTW and the HMM for quantifying spatial sequences

containing large amounts of spatial variability and noise.
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Chapter 5

Recognising activity sequences
in the presence of noise and
temporal variation

In Chapter 4, LCSD and GED approaches were developed and shown to be robust

to noise associated with spatial activity sequences in a smart home environment. This

chapter further explores the challenge of recognising spatial activity sequences containing

noise from video-based tracking systems in addition to recognising human activities

with temporal variation. Techniques from DTW and the field of bioinformatics are

used as inspiration for the investigation. The approach by Guo and Siegelmann (2004)

attempts to address the noise and temporal variation issue in a music recognition context

through the introduction of the Time-Warped Longest Common Subsequence (T-WLCS)

approach; however, this symbolic approach is still sensitive to minor fluctuations in

sequences due to the symbolic representation and simple scoring model that is employed.

Context is an important factor in the temporal aspect of human activities. The duration

over which an activity is conducted can be affected by external contextual factors such

as:

• The time of day, week, month or season. For example, activities conducted during

the week are on average conducted faster, than the same activities conducted

during weekends.

• Complexity of the activity. Complex activities can be achieved using different

sequential orders of actions to achieve an end state, resulting in different average

times. This can be illustrated when individuals try to assemble a piece of furniture

without reading the instructions.

• Frequency with which the activity is conducted. Activities conducted frequently
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are more homogeneous in how they are conducted and the durations over which

they occur.

• Location. For example, making breakfast at work is typically shorter in duration

than making breakfast at home.

The study of daily activities by Szalai (1972) further analyses and identifies the factors

affecting human activities at a multi-national and population perspective. In an activity

recognition application within a smart home environment, automatic activity recognition

systems must be able to generalise human activity types with temporal variation. In this

chapter, a bioinformatics-inspired template matching approaches, which are analogous

to “time warping” in pattern recognition, are developed and evaluated for spatial activity

recognition. Bioinformatics sequence alignment techniques are typically used to analyse

DNA, RNA or protein sequences obtained through laboratory research. In this context

exact matching is not always pertinent and it is more important to find approximate

matches to a given pattern. The ability to recognise approximate matches is important

as biological sequences are subject to change with natural or evolutionary pressures

Crochemore and Rytter (2002).

The following chapter is organised as follows. Section 5.1 discusses an improvement

on DTW which takes into account sequence alignment characteristics, referred to as

Threshold Dynamic Time Warping (TDTW). This approach is capable of temporal ac-

tivity recognition and is robust to noise introduced by camera tracking systems. A band

DP approach is then outlined in Section 5.1.1 which improves the runtime of the TDTW

approach. The experimental methodology and results to validate the effectiveness of the

TDTW technique are provided in 5.2 respectively. Lastly, a summary is presented in

section 5.3.

5.1 Threshold Dynamic Time Warping (TDTW)

This section describes a DTW-based approach that specifically deals with with temporal

variation, yet is robust to intrinsic sequence noise. The original DTW algorithm is

capable of accurate spatial sequence discrimination; however, the technique is sensitive

to noise as it requires all elements of the sequences to be mapped to a corresponding
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element(s) of the other sequence.

To address the robustness problem of DTW with spatial sequences and to allow to

matching of activities exhibiting temporal variation, a new approach called Threshold

DTW (TDTW) is explored. Similar to the LCSD and GED bioinformatics-inspired

approaches, TDTW incorporates a threshold θ that specifies the maximum allowable

Euclidean deviation for trajectory elements to match. One can conceptualise the θ

parameter as a user specified window or buffer around a two dimensional template, as

seen in Fig. 5.1 Choosing an appropriate value of θ for spatial sequence quantification

Figure 5.1: Windowing effect of θ on a two dimensional x, y coordinate space.

is application specific. However, if θ is too large, TDTW over generalises and matches

dissimilar sequences and if θ is too small, then matching becomes more specific. In the

special case when θ = 0, TDTW reverts to DTW.

To reduce warping between the sequences in TDTW, thresholding of the local distance

between trajectories is applied to the diagonal matching condition C(i− 1, j − 1) of the

DTW relation in (2.2). This forces more diagonal matches in the TDTW DP matrix,

thus preventing minor warping with small changes in spatial position. The resulting

formulation for TDTW using (4.1) is specified in (5.1) for i = 2, . . . , |a| and j = 2, . . . , |b|,
with C initialised according to (2.1) for i = j = 1, 1 < i ≤ |a|, j = 1 and i = 1, 1 < j ≤
|b|.

C(i, j) =


C(i− 1, j − 1) d(ai, bj) < θ

min


C(i− 1, j − 1)

C(i− 1, j)

C(i, j − 1)

 + d(ai, bj) d(ai, bj) ≥ θ
(5.1)
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The procedure to recover an optimal alignment for TDTW is similar to that of DTW.

The following spatial sequences a and b are used to illustrate this procedure:a =

[(1.0, 1.0)(1.5, 1.5)(2.0, 2.0)] and b = [(1.0, 1.0)(1.5, 1.5)(2.2, 2.2)(3.0, 3.0)]. The com-

pleted DP matrix is generated using θ = 1.0m and is shown in Table. 5.1. Table.

5.2 illustrates a completed DP matrix generated using the traditional DTW approach,

which is provided for comparison. One of the possibly many optimal warping paths

Table 5.1: TDTW C matrix using example sequences a and b with θ = 1.0m.

(1.0,1.0) (1.5,1.5) (2.0,2.0)

(1.0,1.0) 0.000 0.000 1.414
(1.5,1.5) 0.000 0.000 0.000
(2.2,2.2) 1.697 0.990 0.000
(3.0,3.0) 4.525 3.111 1.414

Table 5.2: DTW C matrix using example sequences a and b.

(1.0,1.0) (1.5,1.5) (2.0,2.0)

(1.0,1.0) 0.000 0.707 2.121
(1.5,1.5) 0.707 0.000 0.707
(2.2,2.2) 2.404 0.990 0.283
(3.0,3.0) 5.233 3.111 1.697

for TDTW and DTW are represented in Tables. 5.1 and Tables 5.2 with underlined

characters. Optimal warping paths can be derived by applying a traceback procedure

to the DP matrices. An exemplar path is given in Fig. 5.2.

Figure 5.2: An optimal warping path for a and b.
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5.1.1 Band DP constraint

To address the high computational complexity of DTW, global constraints have been

applied to prevent excessive warping and to reduce superfluous DP calculations. Two of

the more popular global constraints include the parallelogram and banding methods. The

parallelogram DP constraint is applied to allow additional warping in the centre region

of the sequences and away from the sequence termini Itakura (1975). As warping at the

sequence termini is tightly constrained, the technique assumes that sequence beginning

and end points can be accurately determined. The Sakoe-Chiba band was introduced

in Sakoe and Chiba (1978) to provide additional warping at sequence termini for speech

recognition. Band DP, a similar windowing approach was later proposed in Das (1982).

Both approaches utilise a window length parameter to constrain DP calculations to a

window with its centre running from the beginning of the DP matrix, corresponding to

the beginning of the sequences, to the endpoint of the matrix for band DP or near the

endpoint, such that the window encompasses the endpoint, for the Sakoe-Chiba band

Sakoe and Chiba (1978).

The classical DTW approach (2.2) provides no restriction on the slope of the warping as

it has no local continuity constraints, unlike the approach of Sakoe and Chiba (1978) and

others. Selection of an optimal local constraint is application and domain specific and in

the case of spatial activity recognition, investigations have confirmed that no restriction

on the slope of the warping is optimal in relation to recognition performance. Unfor-

tunately, the computational complexity of DP-based approaches make them difficult to

apply in real life situations. Thus to prevent pathological warping of sequences and to

reduce the computational complexity of DTW and TDTW, a band DP constraint is

applied as specified in Das (1982). A band DP constraint restricts the possible warping

paths in C by limiting the DP calculations to those within a window of size m running

from (1, 1) to (|a|, |b|) of the DP matrix C (Fig. 5.3). As a result, only a portion of the

DP matrix is calculated, reducing the runtime complexity of DTW and TDTW from

O(|a||b|) to O(m|a|).

Historically, the window size is set to 10% of the comparative sequence; however, Ratanama-

hatana and Keogh (2004b) has shown that different window sizes can produce higher

accuracy depending on the data set.
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Figure 5.3: Application of a Band DP constraint with window size m.

5.2 Evaluation of Threshold Dynamic Time Warping (TDTW)

TDTW experimentation uses dataset B spatial sequences as the activities are spatially

similar and therefore noise from tracking systems has a greater effect on classification ac-

curacy. In the first experiment, the high discrimination ability and increased robustness

claim of the proposed TDTW algorithm is validated by demonstrating how intraclass

distances vary with artificially introduced noise for DTW and TDTW. More robust ap-

proaches exhibit a smaller variation in intraclass distance with noise compared to more

susceptible algorithms. The intraclass distances of the same activities are then compared

to the intraclass distances of different activities to provide evidence of the strong dis-

criminatory capability of the proposed approach. Highly discriminate approaches have

a marked separation between intraclass distances of correct and incorrect classes. The

findings are confirmed with the given data set using threshold nearest neighbour (NN)

classification and precision and recall statistics. Precision, defined in (5.2), measures the

ability of a technique to correctly classify, whilst recall (5.3) measures the completeness

of a technique’s classification, that is the proportion of the true class test cases that were

identified.
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Precision =
True Positives

True Positives + False Positives
(5.2)

Recall =
True Positives

Expected True Positives
(5.3)

To benchmark the resulting recognition performance of the proposed TDTW algorithm

the results are also compared to the discrete HMM (Rabiner, 1989; Yamato et al., 1992),

with scaling (Rabiner, 1989) applied to both the model estimation and inferencing due to

the length of the data set sequences. HMM models were trained using M = 156 symbols,

N = 5 hidden states and 10 training sequences per activity, with A and B initialised as

stochastic matrices of size N×N and M×N , respectively. The number of hidden states

N = 5 is selected from models derived from 5 to 15 hidden states, which were subject

to cross-validation analysis with testing sequences. Baum-Welch parameter estimation

is applied until convergence of the ratio of the average of the log-likelihoods between

the current and previous iterations is achieved (less than 0.001). Cross-validation is

again applied over 30 iterations to HMM model training and evaluation, where a new

HMM is trained with a new randomised A and B with different training sequences, and

the model performance evaluated with the remaining test sequences. To demonstrate

that the discrete HMM is indeed sensitive to the amount of training data and that 10

training sequences produces the best performance in the following experiments, HMMs

are trained with 1 to 10 random training sequences and evaluated (Fig 5.4). It is clear

from Fig 5.4 that 10 training sequences produces a high recognition performance and a

small error margin, and thus is suitable to be used in in later experiments for comparison

with the DP-based techniques.

The cross-validation methodology is applied across the DP-based approaches whereby

randomly generated training sets are compared against randomly selected testing sets.

Following the accuracy and robustness experiments, classification accuracy is evaluated

in relation to different band DP window sizes, in order to determine if band DP con-

straints are appropriate for DP-based problems in the spatial activity domain and sec-

ondly to determine an optimal window size for the given data set. To coincide with

the discretisation of the two dimensional space for the discrete HMM approach, TDTW

approaches used θ = 1.0m, which also corresponds to the empirically derived optimal

global threshold (as shown in 4.4.1).
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Figure 5.4: Recognition performance vs number of training sequences for the discrete
HMM (M = 156, N = 5)

5.2.1 Effect of Noise on Recognition Performance

In order to evaluate the effect of noise on the recognition performance of the approaches,

three separate experiments were conducted. In the first experiment, the intraclass dis-

tances of the three classes of activities are measured to determine how the average

intraclass distance varies with noise. To carry out the experiment, we produced 30

randomly generated training sets of 10 sequences and compared each of these to the

remaining 10 sequences of the same class. The results were then averaged across the 30

sets. The same methodology was applied for the sequences containing noise; however,

Gaussian noise with a range of ±3.0m was introduced to the testing sequences prior to

distance quantification. The resulting difference in average distance between sequences

containing noise and those without can be seen in Fig. 5.5.

The results from Fig. 5.5 show that TDTW is more resilient to noise than DTW, as the

average intraclass distance increased by only half as much as DTW, in response to the

artificially introduced noise. This is significant as one would typically apply a threshold

for classification based on the intraclass distance. If an approach is highly sensitive to

noise, the corresponding sequence distance will increase significantly with higher degrees

of noise, thus reducing the recall statistics.
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Figure 5.5: Average difference in DTW and TDTW intraclass distances (same activity)
as a result of noise.

The second experiment examines the discriminatory ability of DTW and TDTW through

measurement of the class distances between the three classes or types of activities. As

mentioned previously, techniques that have a high discrimination ability exhibit good

interclass separation between correct and all incorrect classes, thus decreasing the prob-

ability of misclassification. To evaluate the discrimination ability ten random training

sequences were selected from each of the classes and the intraclass distances measured

as per the first experiment. The training sequences of one class are then compared with

the testing sequences (those sequences not used in training) of the other classes and

the results averaged for each class over the 30 randomly generated sets. For instance,

for class 1 in Figures 5.6(a)-5.6(d), the true class is the intraclass distance for class 1

sequences.

The two consecutive false class bars are the average intraclass distances for classes 2

and 3, which are calculated by comparing the testing sequences of class 2 and 3 with

the training sequences from class 1. The true class for class 2 is the intraclass distance

for class 2 sequences and the adjacent false class bars represent the average intraclass

distances for classes 1 and 3 respectively, which are calculated by comparing the testing

sequences of class 1 and 3 with the training sequences from class 2. The same experi-

mental methodology was applied for the sequences containing noise; however, Gaussian

noise with a range of ±3.0m was introduced to the testing sequences prior to distance
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(a) DTW Class Distances

(b) TDTW Class Distances
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(c) DTW Class Distances with a noise magnitude of ±3.0m

(d) TDTW Class Distances with a noise magnitude of ±3.0m

Figure 5.6: DTW and TDTW Class distances.
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quantification.

The results in Figures 5.6(a)-5.6(d), show a significant difference in average class dis-

tance between true and false classes with the given data set. This demonstrates that

both the DTW and TDTW approaches are able to provide high discrimination, even

with sequences containing noise. Of significance is the fact that DTW had a smaller

difference in class distance between true and false classes for both sequences containing

noise and those without. The smaller difference in distance between correctly and incor-

rectly recognised classes indicates that DTW is more susceptible to misclassification than

TDTW. If one compares the class distances of TDTW and DTW with respect to noise,

both approaches respond similarly for the true classes. However, TDTW maintains the

separation between true and false classes with the added noise, while DTW exhibits

poorer separation, which will result in more misclassification and a lower recognition

performance.

The third experiment validates the claim that TDTW is capable of accurate and robust

spatial sequence recognition, using a threshold-based nearest neighbour (NN) evaluation

methodology with ten training sequences or templates. To benchmark the DTW and

TDTW results, discrete HMM models are generated for each activity class. Class thresh-

olds are derived from the average intraclass distance plus two standard deviations for

DTW and TDTW. HMM’s are evaluated using two standard deviations due to the use

of log likelihoods as a measure of sequence similarity. Recognition performance is ascer-

tained using precision and recall statistics, according to (5.2) and (5.3). The results for

the cross-validation study are shown in Table 5.3. The results show that the DP-based

Table 5.3: Precision and recall rates for threshold-based NN classification using DTW,
TDTW and the discrete HMM.

Noise DTW TDTW HMM
(m) Prec (%) Recall (%) Prec (%) Recall (%) Prec (%) Recall (%)

0.0 96.3 94.7 98.3 97.3 59.7 56.9
3.0 96.1 88.3 98.3 91.3 56.0 56.1

approaches of DTW and TDTW produce significantly higher classification rates than

the discrete HMM, even in the presence of noise. This justification has been explained

previously in Section 4.4.2. It is also evident that TDTW exhibits increased classifica-
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tion performance over DTW, especially in relation to precision. The higher classification

performance of TDTW over DTW is attributed to the increased discrimination (larger

interclass distances between true and false classes) resulting from inclusion of the match-

ing region, provided by the threshold parameter θ. The inclusion of the matching region

is shown to reduce the cumulative distance of similar sequences, whilst not affecting the

distance to dissimilar ones; thereby, increasing the interclass distance between true and

false activity classes and reducing the chance of misclassification.

In all three experiments, the DTW and TDTW approaches were capable of recognising

activities that exhibited innate temporal variation resulting from video tracking artifacts

as seen in Fig. 4.1. In TDTW, the incorporation of a real distance penalty and a θ-

based stepwise function between sequence elements illustrated richer discrimination and

robustness in relation to DTW. The high discrimination ability of both approaches show

they are well suited for accurate recognition in a spatial activity recognition context.

The results outlining the effect of increasing θ on precision and recall rates for TDTW

are not included as it is well understood that increasing θ for the matching function will

result in over-generalisation and increased misclassification as discussed in Section 6.1.

5.2.2 Effect of the Band-DP window size on Recognition Performance

As demonstrated in Ratanamahatana and Keogh (2004b) and Ratanamahatana and

Keogh (2004a) introduction of a band DP constraint can improve classification accuracy

and drastically reduce the computational complexity of DTW, particularly with small

band sizes m. In the spatial recognition domain, applying such a constraint may improve

the already high classification performance of TDTW, and in turn reduce the runtime

complexity of the technique. In this experiment, values of m from 5% to 100% of the

length of the comparative sequence are used for the cross-validation study. The runtime

of each of the samples are also contrasted to the maximum runtime, corresponding to

m = 100%. Results are shown in Figures 5.7 and 5.8.

Our findings in Fig. 5.7 demonstrate that high classification accuracies can be obtained

with band DP constraints and small band widths, where m = 5%. Furthermore, as seen

in Fig. 5.8, the use of small values of m dramatically reduce the runtime of DTW and

TDTW by as much as 80-90%. The observed reduction in runtime with smaller values
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(a) DTW

(b) TDTW

Figure 5.7: Band DP width m versus precision and recall.

of m is expected given the complexity analysis in section 5.1. Closer analysis of Fig. 5.7

also shows that the optimal window size, in relation to precision and recall, is observed

at m = 100%. The fact that precision and recall were maximised using the largest

window size for both DTW and TDTW suggests that in the spatial activity domain

band DP constraints decrease classification performance. In order to find out why large

values of m produced the highest classification values we also analysed the captured

data. Analysis revealed significant variation in the sequence length of sequences of the

same class and likely arose due to the tracking system failing to consistently track the

individual as they moved about their activity. As a result of the variation, sequences
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Figure 5.8: Band DP width m versus relative runtime.

required significant warping to temporally align, hence the large m observed. If the

spatial sequences had been consistent throughout, then a lower optimal value of m should

have been observed. In an ideal situation, with a tracking system capable of consistently

tracking an individual, one can apply a band DP constraint in conjunction with a small

window size to minimise runtime, whilst maximising recognition performance. With

inconsistent sequences and band DP it is unlikely that small band widths will produce

optimal classification; however, it is still possible to use the technique for efficient pruning

of candidates prior to full quantification. For instance, one can apply the more efficient

band DP technique with a small window size to select those sequences which show a high

correspondence to a known pattern(s). Using this set of sequences, one can then apply

the unconstrained DTW or TDTW technique for more accurate quantification, prior to

classification.

5.3 Summary

In this chapter the TDTW algorithm is described and evaluated for accurate and ro-

bust use in recognising spatial activity sequences obtained from a smart home video

tracking system. This approach is inspired by DTW and sequence alignment techniques

for their approximate matching and time warping characteristics. TDTW is capable of
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recognising activities with innate temporal variation and in the presence of noise gener-

ated by tracking systems. TDTW achieves its robustness through the introduction of a

threshold parameter that denotes the maximum allowable Euclidean distance with which

trajectories can match. By applying the thresholding concept to the diagonal matching

condition of the DTW formulation, minor warping is suppressed, reducing sensitivity of

the algorithm to noise. Evaluation of TDTW with a dataset of three spatially similar

activities demonstrates that TDTW achieves higher classification than both DTW and

the discrete HMM, even in the presence of Gaussian noise. Furthermore, runtime per-

formance of the approach is shown to be dramatically improved, while retaining high

classification performance, through the use of band DP constraints with small window

sizes.
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Chapter 6

Recognising Embedded
Activities within Spatial
Sequences

In Chapters 4 and 5 the problem of recognising activities with intrinsic noise and tempo-

ral variation was addressed using techniques inspired by sequence alignment and DTW

approaches. In this chapter the problem of recognising embedded activities is explored

within continuous spatial sequences obtained from an online video tracking system. In

the context of spatial activity recognition, online data streams can contain activities and

non-activity subsequences, corresponding to movement between activities and deviations

from known activity paths. In order to isolate individual spatial activity sequences for

qualification or quantification with activity models or templates one can either use a

sliding window, with width w on the buffered stream, or segment the data stream us-

ing “signature” based approaches. Fig. 6.1(a) - 6.1(c) describes the process of online

recognition using a sliding window approach. Sliding window approaches compare the

fixed length window sequence to pre-stored templates or models to quantify similarity

prior to classification, as shown in Fig. 6.1(d). Segmentation techniques recognise and

extract embedded activities through location of activity boundaries, prior to similarity

quantification and classification. Segmentation of continuous data is not a new prob-

lem and has been addressed previously in domains such as speech and gait recognition.

Unfortunately, in the spatial activity domain segmentation is more difficult as activity

boundaries are not so obvious.

Few methods have been proposed to specifically deal with online activity segmentation.

In the methods of (Bobick and Ivanov, 1998) and (Ivanov and Bobick, 2000a) a slid-

ing window is applied to an observed sequence to allow for inferencing with low level

HMMs. The observed sequence is then labelled accordingly. Like other sliding win-
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(a) Sliding Window at t = 1

(b) Sliding Window at t = 2

(c) Sliding Window at t = 3

(d) Classification Process

Figure 6.1: Online Spatial Activity Recognition using a Sliding Window.
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dow approaches, the performance of this technique is sensitive to the specified window

size. Another segmentation approach is given by (Peursum et al., 2004), where observed

sequences are segmented and classified using HMMs trained with manually labelled ac-

tivity sequences. During classification, the probability of a sequence having a particular

label is determined and through calculation of the probability at each time instance, the

boundaries of the activities can also be found.

To apply any of the above activity segmentation methodologies in isolation, for segmen-

tation of a continuous data stream, is problematic. This is because the segmentation

components of the approaches are intertwined with the recognition capabilities. There-

fore, one must still adopt a sliding window approach to identify embedded activities,

particularly if one wishes to use unrelated sequence matching techniques for similarity

quantification. Given this constraint, two issues relating to sliding windows need to be

addressed. The first of these is the window size w. If one assumes that activities are

conducted over a similar duration, and in ideal tracking conditions (such as in controlled

indoor environments) then it is appropriate to use a window size corresponding to the

length of the longest activity. Realistically, the window size must be set to some value

larger than the longest activity length, taking into account a feasible increase in possible

activity duration. With an appropriately sized sliding window (set to the length of the

longest activity or average length ±2.5 standard deviations), the second issue relates to

locating an activity within that window sequence as shown in Fig. 6.1(d). Quantifying

window sequences poses a problem for classification as the corresponding sequences can

contain additional subsequence elements, which are not part of an embedded activity.

These superfluous elements can in turn reduce the probability of an activity occurring in

relation to a learnt model or increase the aligned distance between a class template. Even

if temporal variation is consistent amongst activities, discrepancies in captured sequence

length still occur due to tracking systems failing to consistently track objects. Some

possible reasons for the failure result from occlusions, lighting variation, deficiencies in

background subtraction techniques and geometric modelling limitations.

Techniques like the HMM (Rabiner, 1989) take the whole window sequence into account

when calculating the probability of an observed sequence belonging to a given model.

As a result, the superfluous elements decrease the resulting sequence probability, partic-

ularly if they have estimated symbol probabilities close to zero. Dynamic time warping

(DTW) (Sakoe and Chiba, 1978) and similar global sequence alignment approaches such

as edit distance with real penalty (ERP) (Chen and Ng, 2004) and edit distance on
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real sequence (EDR) (Chen et al., 2005) are also susceptible to superfluous sequence

elements. This occurs as the techniques attempt to minimise the distance across the

entirety of both the known and observed sequences, taking into account the additional

distance from the superfluous elements. Sequence similarity algorithms based on LCSS

(Vlachos et al., 2002b,a) address this global limitation by ignoring superfluous elements

in the observed sequences. Unfortunately, the techniques also allow significant deviations

in a pattern, which can lead to incorrect classification as shown in 4.2.

In order to recognise known spatial activity patterns and to address the above mentioned

deficiencies, the Smith-Waterman (SW) local alignment approach is used as inspiration

to develop a two dimensional spatial activity recognition approach that is highly discrim-

inative and can be applied to accurately and inaccurately segmented activity sequences.

The derived SW algorithm is provided in Section 6.1, with nomenclature given in 4.1. A

more efficient SW formulation for online recognition, called Online SW (OSW), is also

outlined in Section 6.2. The developed SW approach is evaluated in regards to recog-

nition performance with sliding windows containing activities, accurately segmented ac-

tivity sequences and activity sequences containing Gaussian noise. The OSW approach

is also evaluated with manually segmented activity sequences as well as embedded se-

quences from an online tracking system. To benchmark the classification performance

of OSW, the approach is compared to DTW and a discrete HMM. Both SW and OSW

evaluations can be found in Section 6.3. Lastly, a summary is provided in Section 6.4.

6.1 The Smith-Waterman (SW) Approach

Similarity-based sequence alignment techniques like Needleman-Wunsch global align-

ment typically have distance counterparts as the negative penalties assigned to non-

matching sequence elements can be replaced by a positive penalty in the distance form.

SW is distinct in that has no distance counterpart(Waterman, 1995). This is because

the algorithm uses negative similarity in conjunction with the extra zero to terminate

poorly matching subsequence alignments, which can’t be mimicked in a distance based

approach.

In order to apply local alignment to two dimensional spatial sequences several modi-

fications are required of the original SW algorithm. An Euclidean matching function
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d(ai, bj) and corresponding matching threshold θ are firstly introduced as per LCSD,

GED and TDTW. If the Euclidean distance between the symbols ai and bj is less than

the matching threshold θ then a match results and a positive score is attributed, that is

s(ai, bj) = α. If the Euclidean distance is equal to or larger than the matching thresh-

old θ, a real penalty is assigned indicating non-matching symbols. The real penalty

−d(ai, bj) is also based on the Euclidean distance (4.1). This approach penalises those

symbols that are spatially further apart more than those symbols that are spatially

closer together, which is appropriate for this context. The real penalty −d(ai, bj) is

then applied to the stepwise function s(ai, bj). The use of a real penalty function rather

than a constant has been shown in initial research (results not shown) to improve the

discrimination capability of the SW algorithm.

Like LCSD, GED and TDTW, choosing an appropriate matching threshold θ requires

consideration of the level of specificity of the matching. If the specified θ of an x, y

coordinate space is too large, the technique over generalises and matches dissimilar

sequences as depicted in Fig. 6.2(a). This condition may be required when trying to

identify new types of activities and determining the level of spatial similarity they have

in regards to known activities. If θ is small, then matching becomes highly specific

(Fig. 6.2(b)), preventing recognition of similar sequences and thus reducing the recall

statistics. Decreasing values of θ can be advantageous when misclassification rates are

high to improve discrimination.

As described in Section 2.4.3, gap scores are typically a function of the gap length l,

denoted by g(l). A linear gap model, where g(l) = −lγ, has equal weighting for gaps

(caused by noise or activity variation). In this linear gap model it is assumed that the

probability of a gap occurring in a sequence is the same anywhere along the spatial

sequence. A linear gap model was found in preliminary investigations to be the most

consistent in regards to recognition performance across the spatial activity datasets.

In this approach, alignments are dependent on the values of the gap penalty γ, match

cost α and the matching threshold θ. If γ is larger in relation to the average mismatch

penalty, which is dependent on θ, mismatches are favoured over gaps, producing shorter,

more compact alignments. The opposite occurs when γ is smaller than the average

mismatch penalty. In relation to the match cost α, one doesn’t want α � γ or the

mismatch penalty otherwise SW ignores mismatches and gaps and therefore behaves

similar to LCSS.
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(a) θ too large, Activity B is recognised as A

(b) θ too small, Alternate Activity A sequence not recognised

Figure 6.2: The affect of θ on spatial activity recognition.

To calculate the similarity of two spatial sequences a and b using the proposed SW based

approach one simply applies (6.1)-(6.3) to the DP matrix C for i = 0, 1, . . . , |a| and

j = 0, 1, . . . , |b| and finds the maximum value in C. At each C(i, j) where i, j 6= 0, four

choices (match or mismatch, gap in a, gap in b or start a new subsequence) are evaluated

similar to SW with the choice corresponding to the maximum similarity value being

selected for each C(i, j). The match or mismatch score at each C(i, j) is derived using

s(ai, bj) as previously described, while the gap scores for the sequences are derived using

the linear gap model. If a negative similarity score results from C(i−1, j−1)+s(ai, bj),

C(i−1, j)+γ and C(i, j−1)+γ, due to poor subsequence correspondence, then the fourth
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option of starting a new subsequence, represented by zero, is selected as the maximum.

C(i, 0) = 0, 0 ≤ i ≤ |a| (6.1)

C(0, j) = 0, 0 ≤ j ≤ |b| (6.2)

C(i, j) = max{C(i− 1, j − 1) + s(ai, bj),

C(i− 1, j)− γ,

C(i, j − l)− γ, 0} (6.3)

where, s(ai, bj) =

{
α d(ai, bj) < θ

−d(ai, bj) d(ai, bj) ≥ θ

To show how the SW algorithm works and the procedure to recover an optimal alignment,

the following example spatial sequences are used as seen in Fig. 6.3. The completed

a = [(1.0, 1.0), (2.0, 2.0), (3.0, 3.0)]
b = [(0.0, 0.0), (1.0, 1.0), (2.0, 2.0), (4.0, 4.0), (5.0, 5.0), (6.0, 6.0), (1.0, 1.0), (2.0, 2.0), (3.0, 3.0)]

Figure 6.3: Example sequences a and b

C matrix generated with θ = 1.0m,α = 1.0 and γ = 1.0 is shown in Table. 6.1. One

Table 6.1: SW C matrix using example sequences a nd b.

(1.0,1.0) (2.0,2.0) (3.0,3.0)

0.00 0.00 0.00 0.00
(0.0,0.0) 0.00 0.00 0.00 0.00
(1.0,1.0) 0.00 1.00 0.00 0.00
(2.0,2.0) 0.00 0.00 2.00 1.00
(4.0,4.0) 0.00 0.00 1.00 0.59
(5.0,5.0) 0.00 0.00 0.00 0.00
(6.0,6.0) 0.00 0.00 0.00 0.00
(1.0,1.0) 0.00 1.00 0.00 0.00
(2.0,2.0) 0.00 0.00 2.00 1.00
(3.0,3.0) 0.00 0.00 1.00 3.00

of the possibly many optimal local alignment paths obtained from the DP matrix C is

shown in Table 6.1 with underlined characters. The consequent optimal local alignment
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is shown in Fig. 6.4. From Table 6.1 a second local alignment can also be formed between

the subsequences [(1,1)(2,2)(3,3)] and [(1,1)(2,2)(4,4)]. However, the mismatch between

trajectories (3,3) and (4,4) (given θ = 1m) reduces the similarity to only 0.59, which is

sub-optimal in comparison to the local alignment in Fig. 6.4.

(1,1) (2,2) (3,3)

| | |

(0,0) (1,1) (2,2) (4,4) (5,5) (6,6) (1,1) (2,2) (3,3)

Figure 6.4: An optimal SW alignment using sequences a and b.

6.2 Online Smith-Waterman (OSW)

In an online recognition context where you have a stream of data and you apply a sliding

window over that stream, a naive approach for determining SW similarity is to calculate

the full DP matrix for each sliding window, resulting in an O((w + 1) × (|Ci| + 1))

complexity for each window, where |Ci| is the length of the class template sequence

i. With these applications, window size w is typically set to the length of the longest

training sequence. A more computationally efficient method is proposed here for online

recognition applications, referred to as the online Smith-Waterman (OSW) approach.

In this formulation, the online system uses n DP matrices of size (w + 1) × (|Ci| + 1),

where n is the number of class templates. Each of the i = 1, 2, . . . , n DP matrices

are initialised by calculating the SW score using (6.1)-(6.3) with the initial buffered

window sequence of size w positioned at time t0 to tw−1. The initial window sequence

comparison is then made against the corresponding class template Ci, according to

Fig. 6.5. The n SW scores generated by the DP initialisation process are stored in

memory for comparison to subsequent SW scores of sliding windows, where t > 0, and

for comparison to predetermined classification thresholds θi for class templates Ci. The

row corresponding to the maximum SW score in the DP matrix is also retained for each

DP matrix to ensure the current maximum remains in the matrix as the window slides

during incremental updating. The rationale for this is explained later.

Following initialisation of the n DP matrices and to process further window sequences,

the concept of incrementally calculating DP matrix rows from prior subalignments is

explored. This concept is based on the fact that optimal DP alignments are derived
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Figure 6.5: Initialisation of the DP matrices using OSW.
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incrementally from subalignments that are also optimal. In order to illustrate the incre-

mental derivation of optimal alignments, the following sequences a = [(1, 1), (2, 2)] and

b = [(1, 1), (2, 2), (3, 3)] are used, with θ = 1,α = 1 and γ = 1. The first row of the result-

ing DP matrix is initialised using (6.1), as shown in Table 6.2(a). The second row of the

DP matrix (Table 6.2(b)), which corresponds to the optimal alignment between a and

b1 = [(1, 1)], is then calculated using (6.3), with the first column of the row initialised

to zero according to (6.2). The third row of the DP matrix, seen in Table 6.2(c)), is

calculated by comparing a with b2 = (2, 2) according to (6.3). This extends the optimal

alignment to between a and b1:2 = [(1, 1), (2, 2)], as the optimal alignment between a

and b1:2 = [(1, 1), (2, 2)] comprises the optimal alignment between a and b1 = [(1, 1)],

obtained through calculation of the second row of values. To calculate the final row in

the DP matrix (Table 6.2(d)) a similar methodology is applied.

Table 6.2: Incremental Derivation of DP Matrices

(a) Step 1

(1,1) (2,2)

0 0 0

(b) Step 2

(1,1) (2,2)

0 0 0
(1,1) 0 1 0

(c) Step 3

(1,1) (2,2)

0 0 0
(1,1) 0 1 0
(2,2) 0 0 2

(d) Step 4

(1,1) (2,2)

0 0 0
(1,1) 0 1 0
(2,2) 0 0 2
(3,3) 0 0 1

With incremental derivation one can add new rows to the end of each Ci DP matrix and

along the window sequence axis (the vertical axis in the example), and calculate only the

values of the row according to the new online element, the class template Ci and (6.3).

This requires O(|Ci|+1) time for each window, in comparison to the O((w+1)×(|Ci|+1))

time of the naive approach. To prevent the DP matrices from growing in size as new

rows are added and to allow a traceback procedure to be carried out on the DP matrix

(to find segmentation beginning and end points with a sufficiently large window size w),

the first rows of the DP matrices are removed prior to new rows being added. This also
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means that the current max value RowMax is decremented for each DP matrix. In the

event that RowMax designates rows that have been deleted from the DP matrix, a search

of the matrix is conducted to find the new maximum score and RowMax is consequently

updated. It is assumed that exemplar sequences will always be within (in most part)

the window w, as the window size is derived from the maximum of the class sequence

lengths, hence the requirement to find a new optimal subsequence when the RowMax is

no longer in the DP matrix.

Initialisation and the functionality of OSW is outlined in algorithms 4 and 5 for further

clarity. In these algorithms, OSW is applied to a window sequence w and a class template

sequence c, using a DP matrix DP .

Algorithm 4: Online Smith-Waterman (OSW) Initialisation

Input : DP , SW parameters θ, α and γ
Output: calculated DP matrix, SWscore, RowMax
/* DP is a matrix of size (w + 1)× (c+ 1) and initialised as per (6.1) and (6.2) ;
t = 0 ;
SWscore = 0 ;
RowMax = 0 ;
/* Step 1 - Calculate the full DP matrix at t = 0, determine the optimal subsequence
score and row containing that score */ ;
/* Calculate SW values for w and c sequences as per (6.3) */ ;
for i← 1 to |w| do

for j ← 1 to |c| do
/* Find the subsequence option that scores highest */ ;
DP (i, j) = max{DP (i−1, j−1) + s(wi, cj), DP (i−1, j)−γ,DP (i, j−1)−γ, 0}
;
/* Check if alignment score for DP (i, j) is higher than the previous recorded
max as we go */ ;
if DP (i, j) ≥ SWscore then

/* Update score and row which contains highest score */ ;
SWscore = DP (i, j) ;
RowMax = i ;

With OSW, optimal subsequences corresponding to an embedded activity within a slid-

ing window (assuming w is large enough), can exist anywhere within the DP matrix, as

the beginning and ends of the DP matrices are constantly changing. Therefore, to ad-
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Algorithm 5: Online Smith-Waterman (OSW)

Input: calculated DP matrix, SWscore, RowMax
/*Step 2 - Slide the window of width |w| over the steam to t+ 1 */ ;
while not at end of stream do

/* slide window by one */ ;
t← t+ 1 ;
w← w((t− |w|) : t) ;
/*Step 3 - Delete row 0 of DP to make room for next subsequence calculation at
t+ 1 */ ;
DP = DP (1 : (|w|+ 1)) ;
/*Step 4 - Decrement RowMax and check if its still in DP . If not, search for new
SWscore and RowMax */ ;
RowMax = RowMax− 1 ;
/* If row containing maximum SW value is no longer in DP */ ;
if RowMax ≤ 0 then

SWscore = 0 ;
/* Search for new SWscore and RowMax in DP */ ;
for i← 1 to |w| do

for j ← 1 to |c| do
if DP (i, j) ≥ SWscore then

/* Update score and row which contains highest score */ ;
SWscore = DP (i, j) ;
RowMax = i ;

/*Step 5 - Calculate SW for new row at t+ 1 corresponding to DP (|w|+ 1) ;
/* Go to the last row of w */ ;
i = |w|+ 1 ;
/* Calculate SW for the row */ ;
for j ← 1 to |c| do

/* Find the subsequence option that scores highest */ ;
DP (i, j) = max{DP (i−1, j−1) + s(wi, cj), DP (i−1, j)−γ,DP (i, j−1)−γ, 0}
;
/* Check if alignment score for DP (i, j) is higher than the previous recorded
max as we go */ ;
if DP (i, j) ≥ SWscore then

/* Update score and row which contains highest score */ ;
SWscore = DP (i, j) ;
RowMax = i ;
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dress this issue the current maximum similarity value and its row (RowMax ) are stored

for each of the i matrices. The row position corresponds to the end of the optimal local

alignment and is used as the origin for a traceback procedure, while the maximum sim-

ilarity values are used in thresholding and classification. For clarity we show the online

DP matrix update procedure with 1D sequences in Figures 6.6(a) and 6.6(b), with a gap

penalty, mismatch penalty and match cost of one. In Fig. 6.6(a) the windowed sequence

[9876] at t0 to t3 is compared to the class templates C1 and C2 using (6.1)-(6.3), thereby

initialising the DP matrices. As the sliding window is moved to the next window at t1 to

t4 (Fig. 6.6(b)), the first underlined rows of the DP matrices in Fig. 6.6(a), are deleted

and a new row is added to the end of the matrices. For each of the new rows at j = 4,

we apply (6.3) using the previous rows values at j = 3, the class template Ci and the

new element in the new sliding window, that is five in the given example, in order to

derive the new SW local alignment. The row-by-row update procedure is repeated for

further sliding window sequences. If an observed spatial sequence does not fit within the

specified window size w, possibly due to an activity taking longer than expected (e.g.

watching TV), the DP matrices retain the similarity scores of the previous matches and

thus a similarity score can still be determined. Unfortunately, full segmentation can no

longer occur as the beginning point of the observed sequence would have been deleted

to allow calculation of the new buffer elements.

In specific applications, OSW can be modified to decrease space requirements and im-

prove segmentation performance. For example, if segmentation and recovery of an op-

timal alignment is not necessary the space requirements of the OSW DP matrices can

be significantly reduced by utilising only the last row of the matrices. This is possible

as new elements only require the last row for the current SW calculation. Additionally,

the RowMax variables are no longer required.

Some spatial activities like watching TV have inconsistent sequence lengths, thus making

the selection of a suitable window size w difficult. If w is sufficiently large to deal with

the highly variable sequence lengths, the efficiency of the OSW algorithm deteriorates

rapidly. To maintain computational efficiency the window size is set to the length of the

longest template sequence and only a single row of previously calculated SW values are

proposed with which to perform the current SW calculation. Additionally, a traceback

threshold ϑ is required for triggering the traceback procedure. To carry out the traceback

another data stream buffer Bufpast containing κ previous window elements is necessary

to store past elements. As new buffer elements are retrieved, a new row of the DP
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(a) DP Initialisation with Window Sequence t0 to t3

(b) Online Updating with Window Sequence t1 to t4

Figure 6.6: OSW recognition with a window size of w=4.
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vectors are calculated using the previous row and designated template Ci. The maximum

value in that row SWmax is then determined and the value compared to the traceback

threshold ϑ. If SWmax < ϑ, the next element in the buffer is added to Bufpast, the

previous DP vector is deleted and the process continues again with a new buffer element.

However, if SWmax ≥ ϑ, indicating that a activity has been identified, a traceback and

SW recalculation procedure is initiated to locate the beginning and end points of the

activity.

6.3 Experimental Results

For the evaluation of the SW and OSW approaches, a 12 activity dataset (dataset C

(2.6) is utilised. The dataset comprises activities such as making toast, having break-

fast, washing the dishes and watching television with 20 sequences captured per activity.

Discretisation of the sequences are carried out for the discrete HMM evaluation whereby

x, y trajectories are mapped to a sequence of unique integers u, where u ∈ U and

U = 1, 2, 3, . . . , 72. In the following experiments dataset C is divided into training and

testing sets. Training set sequences are used to empirically determine optimal algorithm

parameters and for use as class templates in testing. To quantify the recognition per-

formance of the algorithms with the testing sets, a cross-validation methodology with

threshold-based nearest neighbour (NN) classification is adopted. In this approach each

experiment utilises 30 randomly generated training sets for evaluation, from which the

mean of the 30 test results is used for analysis. Thresholds are derived and incorporated

for each activity to determine whether an activity occurs. A recognition threshold is

necessary as it is unrealistic to learn all activities that may occur in a given environment

and secondly to assume that one of these activities are always occurring.

For the DTW benchmark comparison the symmetric algorithm defined in (Sakoe and

Chiba, 1978) is used with no local or global constraints. Optimal SW and HMM algo-

rithm parameters are empirically derived from the accurately segmented training data as

shown in Section 6.3.1. Using the optimally derived parameters the proposed algorithms

are evaluated in relation to accuracy and robustness, and results contrasted to the DTW

and HMM spatial activity recognition approaches.
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6.3.1 Parameter Selection

With accurately segmented activity sequences the optimal SW sequence alignment pa-

rameters are determined empirically to maximise accuracy, with the exception of θ which

is set according to the required recognition task as per LCSD (4.2), GED (4.3) and

TDTW (5.1). Throughout the experimentation, θ = 1.0m to coincide with the size of

the symbolic states used in HMM discretisation and the empirically derived optimal

global threshold (as shown in 4.4.1).

Using a fixed θ the issue of selecting an appropriate value of γ is addressed for the pro-

posed SW algorithm similar to GED in 4.3. As specified in Section 6.1 γ is the linear gap

penalty associated with insertion or deletion of one more trajectories in either sequence.

To minimise the effect of the match cost α during the γ evaluation α is set to a constant

and values of γ, where γ = 1, 2, · · · , 10, are used with cross-validation and NN classifi-

cation in order to find an optimal value. The results with the given data set are shown

in Fig. 6.7(a). From Fig. 6.7(a), a value of γ = 2.0 provided the maximum classifica-

tion accuracy with larger values producing only marginally worse performance. Using

γ = 2.0, an optimum value was determined for the match score α, where α = 1, 2, · · · , 10.

Results are shown in Fig. 6.7(b) with α = 5.0 producing maximum classification accu-

racy. Therefore, the following experiments used SW parameters of θ = 1.0m, γ = 2.0

and α = 5.0. It it interesting to note that recognition performance does not appear to

be sensitive to the values of the different parameters (excluding θ), as evidence by the

small changes in recognition performance with changing parameter values. The uniform

recognition behaviour with different parameters has also been noted with other datasets

in 2.6, indicating that it may be possible to choose a set of SW parameters without

having to empirically determine the optimal parameter set, and expect a near optimal

recognition performance.

To contrast the SW and OSW approaches, discrete HMMs with M = 72 and an empir-

ically determined number of hidden states N were evaluated with dataset C. To ensure

adequate training of the HMMs the number of iterations of the Baum-Welch estimation

algorithm were limited by a threshold (< 0.001) applied to the ratio of the average of the

log-likelihoods between the current and previous iterations. In order to find the optimum

N in relation to accuracy, HMMs were generated with N = 5, 6, · · · , 15 hidden states

and evaluated with the training data in conjunction with NN classification. Results are
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(a) γ evaluation.

(b) α evaluation.

Figure 6.7: Empirical SW Parameter Optimisation.
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shown in Fig. 6.8).

Figure 6.8: HMM number of hidden states N versus classification accuracy.

The highest overall accuracy was achieved when N = 6 as shown in Fig. 6.8. Therefore

the number of hidden states N was set to N = 6 in for experimental validation.

6.3.2 OSW, DTW and HMM with Online and Inaccurate Activity

Segmentation

The SW approach is able to locate and quantify optimal subsequences embedded within

another sequence, referred to as local sequence alignment in bioinformatics. It is able

to do this as the zero value terminates poor subsequence alignments, corresponding to

negative similarity scores, and optimally finds and quantifies the maximum correspond-

ing spatial subsequence(s) between two sequences. This local alignment characteristic

allows SW to be applied to spatial sequences, without the need for accurate activity

sequence segmentation. In the following experiment, threshold-based NN classification

is conducted with inaccurately segmented sequences of varying sizes in contrast to DTW

and the HMM. The purpose of this experiment is to demonstrate the effectiveness of the

efficient OSW approach in real world online applications.
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The experiment comprises 12 activities, which are equally separated into training and

testing sets, with thresholds empirically derived by measuring the average intraclass dis-

tance between training sequences and/or templates ± two standard deviations. With the

intraclass thresholds and the derived optimum parameters in section 6.3.1, a threshold-

based NN classification experiment is carried out with the online data stream comprising

the known activities and using different window sizes. Initially, the window size w is set

to the length of the longest activity in the training set. w is then increased by by 5% and

10% of the length of the longest sequence to observe the affect of larger windows sizes

on the three approaches. A true positive (TP) occurs when values of the correct activity

exceed their specified threshold within the ground truthed online sequence, with no other

class template from other activities exceeding corresponding thresholds. A false positive

(FP) occurs if any incorrect activity exceeds their threshold within the ground-truthed

online sequence. The precision (5.2) and recall (5.3) statistics of the online evaluation

are shown in Table 6.3.

Table 6.3: Threshold-based NN classification with Online Recognition.

w=100% w=105% w=110%

Precision Recall Precision Recall Precision Recall

HMM 70.00% 5.83% 0.00% 0.00% 0.00% 0.00%
DTW 58.62% 42.5% 59.38% 31.67% 58.33% 23.33%
SW 83.05% 81.67% 83.90% 82.50% 82.75% 83.33%

With the window size equal to the length of the longest sequence in the class template set

(w=100%), OSW is still able to achieve high precision and recall with the given synthetic

online sequence in contrast to the HMM and DTW. Furthermore, these high values were

consistent with the larger evaluated windows sizes of w = 105% and w = 110% as seen

in Table 6.3. The observed high precision and recall of the OSW algorithm across the

different window sizes can be explained by the SW technique optimally locating em-

bedded patterns (local alignments) within the online window sequence and terminating

poorly matching local alignments arising from significant gaps or mismatches. These

poorly matching subsequences generate regions of local negative similarity which are

terminated by the zero condition in the relation specified in (6.3).

The results in Table 6.3 demonstrate that DTW is sensitive to extraneous elements from
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window sequences and furthermore is sensitive to the specified window size. This can

be seen by the reduction in recall with the increase in online window size. As DTW is

global and accounts for the additional, non-activity elements of the window sequence the

calculated distance typically increases with increasing window size preventing recognition

with derived thresholds. Overall DTW does manage to maintain its precision across the

evaluated window sizes and does achieve precision and recall values higher than the

HMM.

The discrete HMM also was not able to recognise the observed window sequences across

the different window sizes. The HMM’s high sensitivity to the window size, resulting in a

low precision and recall, is due to the log likelihood of Pr(O|λ), where O is the observed

window sequence and λ is the derived model for an activity, encountering symbols with

zero probability, thus resulting in a log likelihood of negative infinity. These zero symbol

probabilities occur due to the failure to observe such symbols in the training sequences

during HMM parameter estimation. The second and less significant reason for HMM’s

poor performance is due to the forward inferencing algorithm encountering significant

numbers of symbols with low probability in the online window sequence (due to the

global matching nature of HMM inferencing). As a result the derived log likelihoods are

reduced such that they do not exceed the specified thresholds and the activities are not

recognised.

6.3.3 SW, DTW and HMM with Accurate Activity Segmentation

OSW is capable of online activity recognition with inaccurate activity segmentation;

however, the discrimination ability of the SW approach with accurately segmented ac-

tivities is also of importance for applications that can accurately quantify activity start

and end points. To evaluate this aspect accurately segmented training sequences from

the 12 activity classes of dataset C (2.6) are used and intraclass distances derived. With

the applied thresholds for each activity, threshold-based NN classification is used with

the accurately segmented test sequences and the results contrasts to DTW and the

discrete HMM. The results are shown in Table 6.4.

These results show that the SW approach is capable of producing high precision (98%)

and recall (97%) in classification of accurately segmented spatial activity sequences with
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Table 6.4: Threshold-based NN classification with Accurate Activity Segmentation.

Precision (%) Recall (%)

HMM 83.9 75.6
DTW 97.3 96.9
SW 98.1 97.6

the given data set. Furthermore, the recognition performance of SW is comparable to

the global DTW approach. This finding demonstrates that it is possible to apply the

local SW alignment technique successfully in a global matching role with innate activity

temporal variation. In contrast, both the SW and DTW alignment approaches signifi-

cantly outperformed the HMM, further providing evidence of the strong discriminatory

capability of the proposed SW alignment approaches.

Figure 6.9: Confusion matrix for SW. The legend represents the percentage of activity
sequences classified.

Elaborating further on the SW results, the SW confusion matrix, presented in Fig.
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6.9, demonstrates near perfect classification with only minor errors occurring between

activities four and five, which represent two variations of having breakfast. The mis-

classification seen here is understandable as the variants of having breakfast share 90%

spatial similarity (see Fig. 6.10) and the remainder of the sequences have only a small

spatial disparity.

Figure 6.10: Spatial patterns for confused activities 4 and 5.

To draw further insight on which of the three approaches HMM, DTW or SW are more

appropriate for the task of online recognition and activity segmentation, one needs to

contrast the results from Table 6.4 with the computational complexities of the tech-

niques. If one looks at the discrete HMM described in Section 2.3.2 and applied here,

the learning of each discrete HMM model λ is achieved through iterative application of

the Baum-Welch algorithm, with the number of iterations I determined through conver-

gence of the ratio of the average of the log-likelihoods between the current and previous

iterations to a specified threshold. As described in (Rabiner, 1989), the complexity of

the Baum-Welch algorithm is O(TN2), where N is the number of hidden states and T

is the sequence length. To derive the final complexity of learning λ from a set of se-

quences one simply multiplies the complexity of performing the Baum-Welch algorithm
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by the number of iterations required to converge, resulting in O(ITN2). With λ one can

estimate the Pr(w|λ) of a window sequence w using just the forward algorithm, which

exhibits a complexity of O(TN2), where N � T . When HMMs are applied to online

sequence segmentation, window sequences are segmented on their periphery only when

the resulting Pr(w|λ) exceeds a threshold.

As DTW and SW are template rather than generative approaches they do not require

supervised learning like the HMM. However, they are both DP-based and require initial-

isation of DP matrices, which requires O(wCi) time and space for a window sequence

w and class sequence Ci. In online streaming applications, the two approaches differ in

that DTW still requires O(wCi) time to calculate its full DP matrix at each window,

while OSW requires only O(Ci) due to the need to only calculate the last row as shown

in algorithm 5.

Similar to the HMM, DTW will segment an activity stream at the window periphery

when the resulting DTW distance is less than a specified threshold. OSW is different

as it requires a traceback procedure to identify the beginning of a matched subsequence

when a similarity threshold is reached, requiring an additional O(w) calculations. It

is important to note that DTW and the HMM are limited to only segmenting on the

window boundaries and can’t segment on activity subsequences within the window like

OSW. Considering this, computational complexities and the resulting precision and recall

shown in Table 6.4, OSW is the preferred of the three approaches for accurate activity

segmentation, particularly if those activities are incomplete or abbreviated compared to

the exemplar set.

6.3.4 Robustness of SW, DTW and the HMM with Accurately Seg-

mented Activities

Robustness to noise is an important characteristic of any spatial activity recognition

approach as video tracking systems typically produce spatial sequences intertwined with

noise and gaps. To evaluate the robustness of the modified SW algorithm Gaussian noise

is introduced with varying magnitudes into each of the accurately segmented testing

sequences during threshold-based NN classification. Benchmarking of the robustness is

conducted in relation to the the global DTW technique and the HMM. Experimental
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results with noise magnitudes of between 0 to 3 metres are shown in Fig. 6.11.

(a) HMM

(b) DTW

The results from the given data set demonstrate that the modified SW algorithm is
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(c) SW

Figure 6.11: Noise magnitude versus classification accuracy.

more resilient to noise than the HMM, as indicated by the smaller decrease in recall

with the increased magnitudes of noise: 3% decrease for SW versus 14% for the HMM.

Importantly, SW was able to maintain a precision and recall of > 93.0% with the largest

evaluated magnitude of noise, while the discrete HMM achieved only 60%. The observed

maintenance of high accuracy across the different magnitudes of artificially introduced

noise also reinforces the belief that the proposed SW approach is more robust to noise

than the discrete HMM.

DTW was also seen to perform similar in relation to noise as the SW approach. This

was not expected as DTW is known to be sensitive to noise (Chen et al., 2005) and thus

should have exhibited a decrease in recall. It is implicit that introduction of artificially

introduced noise increases the average DTW distance to the class templates. As NN

classification is used with thresholding, an increase in distance will prevent sequences

from being recognised as they are more likely to exceed the specified thresholds. Taking

this in to account, it is likely that the derived thresholds, taken from the average intra-

class distances of the training sets ±2 standard deviations, were sufficiently large such

that the increased distances did not exceed the thresholds and thus did not affect the
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recall statistics.

6.4 Summary

An automatic activity recognition system must capable of recognising human activities

in continuous streams of data in real world situations. This chapter explores this prob-

lem space and provides a SW local alignment based approach, and a variant (OSW) that

is optimised for activity recognition and processing of spatial data streams. The use of a

bioinformatics inspired approach in the spatial activity recognition domain is novel. The

unique local alignment property of the SW algorithms allow efficient similarity quantifi-

cation of embedded and partial spatial activities within sliding windows, preventing the

need for accurate sequence segmentation. This local alignment (subsequence matching)

ability is achieved by the approach penalising and terminating poorly aligned or mis-

matched sequences, which correspond to embedded or partial activities. The ability to

recognise spatial activity sequences from online video tracking systems is significant as

traditional techniques focus on applying full window sequences to models or template

recognition approaches, and are heavily reliant on accurate stream segmentation for

recognition.

The ability of the SW and OSW approaches to recognise embedded activities is demon-

strated through the evaluation of a 12 class dataset with online classification. The innate

discrimination ability of the SW approach is also evaluated and shown to outperform

DTW and HMM techniques with accurately segmented activity sequences. Evaluation

of spatial sequences containing various magnitudes of Gaussian noise also confirmed that

the SW approach is robust to noise from video tracking systems.
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Conclusion

The use of an automatic activity recognition system in domains such as surveillance,

monitoring, and smart homes, allows the identification of human activities and the

provision of an automatic response. In a smart home, this is important in order to

provide assistance to patients, the elderly and disabled individuals allowing them to

maintain independence and reducing support costs.

Activity recognition is a complex problem due to the variable nature with which humans

conduct activities. The same activity can have different spatial, temporal, and sequential

orders. Furthermore, they can be interweaved amongst other activities at any point. The

task of recognition of activities amongst all of this human variation is compounded by the

fact that multi-camera video tracking systems generate significant noise, particularly in

smart home, multi-room residences, as a result of computer vision challenges. This thesis

specifically addresses the problem of recognising human activities with intrinsic spatial

and temporal variation in the presence of noise (generated by video tracking systems).

This recognition task is achieved through an investigation of biological paradigms and

bioinformatics inspired approaches.

Biological and bioinformatics sequence alignment approaches have many useful qualities

for pattern recognition including robustness to noise and tolerance to variation (inser-

tions, deletions and substitutions). Several novel approaches are provided in this thesis

that exhibit high levels of spatial activity discrimination, yet are tolerant to high levels of

noise and innate temporal variation amongst accurately and inaccurately segmented se-

quences. Another approach is provided that is capable of recognising simple interwoven

activities, which is important for recognising real world human activities.

The cellular chemotactic model is provided in Chapter 3 to address the robustness is-

sue with noisy spatial activity sequences. Bacteria are believed to have evolved the
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chemotactic capability to sense and respond to dynamic environments, increasing their

survivability and thus evolutionary fitness. Through the use of a chemotactic paradigm,

the cellular chemotactic model is shown to be robust to noise from video tracking systems

with empirically estimated parameters. Furthermore, the biologically inspired model ex-

hibits inherent resilience to spatial variations in activity sequences of similar duration,

due to the absence of Markovian constraints for matching. The approach was compared

to a discrete HMM, producing superior discrimination results, even with small numbers

of templates.

One of the most difficult aspects of activity recognition is the ability to recognise in-

terwoven or multi-tasked activities. This is due to humans interweaving activities at

any time between one or more activities. The cellular chemotactic model addresses

this multi-tasking recognition issue as to its cells mimic the behaviour of agent-based

models. In this instance multiple “activity” cells move towards an “attractant” when

subsequences correspond (partial activities), and conduct unbiased random walks in the

presence of non-matching subsequences (areas of interweaving or noise).

In Chapters 4 and 5 sequence alignment techniques from bioinformatics are used as a

source of inspiration to continue the investigation of robust spatial activity recognition

approaches. Sequence alignment techniques are regularly used with biological sequences

for quantitative and qualitative similarity comparisons. Biological sequences exhibit

similar issues to those found with human activities: compression (relating to shorter

duration activities), expansion (relating to longer duration activities), insertions and

deletions (relating to activity variability and tracking noise) and partial sequences (re-

lating to activity interweaving). Therefore, sequence alignment approaches are capable

of dealing with the challenges of spatial activity recognition. In Chapter 4 fusion of

sequence alignment with these bioinformatics “time warping” characteristics results in

the formulation of the LCSD and GED approaches for dealing specifically with noise

tolerance. An empirical approach is taken to estimate suitable parameters for accurate

spatial recognition. These parameters and the respective approaches are then validated

against other sequence alignment, time warping and probabilistic approaches. The re-

sults demonstrate that LCSD and GED are more robust to noise than DTW with ac-

curately segmented activities and have improved discrimination with spatially similar

activities.

Using sequence alignment characteristics, a threshold DTW (TDTW) approach is specif-
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ically developed for recognition of activities exhibiting temporal variation, whilst having

an improved tolerance to tracking system noise. TDTWs robustness is achieved via the

introduction of a novel sequence alignment distant matching constraint in the TDTW

calculation for spatial elements. The constraint prevents minor warping with small

changes in position, reducing the algorithms susceptibility to tracking noise. The innate

temporal and spatial variation of 10 human activities captured from a multi-camera video

tracking system is also verified empirically by analysis of the sequence composition and

length variability. The TDTW approach is validated using this dataset against time

warping and probabilistic algorithms to demonstrate its superior discrimination with

spatial activity sequences. The runtime performance of TDTW is further improved via

application of a band DP constraint, which results in only minor decreases in recognition

performance with smaller band sizes.

Chapter 6 continues with another bioinformatics inspired approach, but focuses on ac-

tivity recognition from continuous data streams. In traditional activity recognition ap-

proaches, data streams are processed using a sliding window approach. Extracted and

segmented sequences are then analysed using a pattern recognition technique such as

DTW or a HMM. Sliding windows of different sizes need to be provisioned as most

activity recognition approaches are unable to detect activities embedded in a larger

sequence. The SW local alignment algorithm is adapted in Chapter 6 to a two dimen-

sional spatial activity recognition context. The SW approach allows one to efficiently

locate and quantify similarity of embedded spatial activity sequences in a spatial data

stream, as well as detect optimal subsequences with only partial activities. The ability

to recognise spatial activity sequences from online video tracking systems is significant

as traditional approaches focus on applying full window sequences to models or template

recognition. The SW approach formulated in this thesis has been further optimised in

regards to efficiency for continuous spatial data streams via the OSW approach. Exper-

imental validation with existing sequence alignment and activity recognition approaches

confirms the high recognition performance of the developed SW and OSW approaches

with both accurate and inaccurately segmented activities.
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7.1 Future Directions

This thesis has shown that biological paradigms and bioinformatics can be used as

inspiration for addressing pattern recognition problems, in particular spatial activity

recognition (constrained to a smart home environment). The biologically inspired cellu-

lar chemotactic model presented in Chapter 3 is tolerant to tracking system noise and

spatial sequence variability like its biological process. Due to its multi-agent character-

istics, the model can identify simple interwoven activities. However, this approach has

limitations that affect its ability to be used for real world activity recognition. These

limitations and areas of possible future research are given below:

• The model is susceptible to activities exhibiting significant intra-activity temporal

variation. One such real world example of this type of activity is watching TV

which can have significant differences in duration depending on what a person is

watching on the TV and when they are watching it (weekday versus weekend,

morning versus evening). One such mechanism of improving the models suscep-

tibility to this type of temporal variation is by modelling the compression and

expansion of the relevant spatial sequences as a function of the environments “at-

tractant” gradient and the velocity of the activity cell. In the event of sequence

expansion (resulting from an increased duration of an activity) an activity cell will

reduce its biased random walk (and hence velocity) towards an attractant source

(along a larger gradient) such that further expansion results in smaller cell move-

ments. This process mimics bacterial chemotaxis, whereby bacterial cells reduce

their motility in higher concentrations of an attractant and eventually return to

non-attractant patterns of behaviour to prevent localisation. The current model

only employs a very simplistic abstraction of this concept.

• The cellular chemotactic model is currently reliant on a sliding window approach

or accurate activity segmentation for recognition of spatial activities within online

data streams. This occurs as the model remains in vicinity of an “attractant”

source post-matching, requiring the environment to be reset for further recognition

tasks. Simple interwoven activities can be recognised within this limitation, if

spatially activities overlap. To allow online recognition without sliding windows or

activity segmentation, the chemotactic model could be expanded to a live agent-

based approach in a multi-dimensional environment with multiple “attractants”.
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For this to occur, a mechanism would need to be established to allow the cells

to return to a uniformly distributed, homogenous and unbiased random walking

state in the environment. To clarify this concept further, activity cells would move

towards “attractant” sources when they have matching elements of sequences and

after a match is found and signalled, would return to a steady state, prior to

commencement of further matching. In this context, the cells would be “live”

allowing automatic recognition with minimal intervention. The approach would

still require supervised classification of activity sequences to form the respective

activity cells.

• Complex activity recognition, whereby a set of simple activities form more com-

plex activities, cannot be represented in this model. An example of a complex

activity is get-ready-for-work, which can consist of simple activities: have-shower,

brush-teeth, get-dressed, and have-breakfast. Complex activity recognition can be

explored in further research through the use of evolution Engelbrecht (2005), mod-

ularity (Alon, 2003; Rives and Galitski, 2003), colony formation (Passino, 2002)

or multicellularity (Bonner, 1998) paradigms. These concepts can be readily ap-

plied to the cellular chemotactic model to aggregate activity cells that belong to

a complex activity to form “modules”, “colonies” or ”multicellular organisms”.

The process of evolution can then be applied to select those aggregates that best

represent the complex activity.

• One of the key limitations of the cellular chemotactic model is is lack of specificity,

resulting from the receptor and activity sequence abstraction. In biological sys-

tems, receptors are complex three dimensional structures that exhibit dependencies

between other receptors, and can be influenced by cellular and environmental fac-

tors. In retrospect, an approximate receptor binding (lock-and-key) model would

be better suited for the spatial activity domain. Using this concept, subsequences

with high degrees of similarity would exhibit better receptor matching resulting in

increased motility. On the other hand, subsequences with poor matching would

exhibit weaker receptor matching and thus decreased motility. Like most biolog-

ical systems, receptors are subject to evolutionary pressures. This concept could

be applied to the chemotactic model to optimise receptor binding over time via

selectively modifying receptors and receptor compositions, and then selecting only

those cells with improved recognition. Mutation rates for sequences could be em-

pirically ascertained by analysing the variability amongst spatial sequences of the

same activity. This mutation and optimisation concept is valuable for recognition
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of human activities due to their dynamic nature. Evolutionary mechanisms from

biology can be explored in further research to allow exchange of subsequence in-

formation. Genetic transfer and cross-over of biological information is common in

nature and is seen to provide diversity and resilience in dynamic environments.

Applying such a mechanism to activity sequences can be used to generate new

activities or more optimal templates of activities. These activities exhibiting cross-

over mutations could in turn be subject to fitness functions and thus be selected

to provide resilience to changes in human activities.

In Chapters 4 - 6 of this thesis, sequence alignment and time warping approaches were

explored in the spatial activity recognition context. The LCSD, GED, TDTW and SW

approaches were all demonstrated to provide good activity discrimination and robust-

ness to noise in a smart home environment. The following outlines limitations of the

approaches and recommendations for future research:

• Parameter estimation. A limitation of all of these approaches is that the param-

eters are derived via empirical experiments with training or template sequences

across a range of parameter values. In the case of the SW approach, its parameters

are less sensitive in regards to discrimination performance; however, optimisation

could still be useful. To provide a less empirical approach to determining optimal

parameter values, analysis of the template or training data is required to quantify

the variability between sequences (resulting from gaps due to insertions, deletions

or substitutions). This information could be derived via a multiple sequence align-

ment approach as outlined in Waterman et al. (1991) or McClure et al. (1994), or

through probabilistic means such as used in Wei (2004). An analytical approach

will provide insight as to the variability of the spatial data to assist with param-

eter estimation. The intent is to use this analytical data on the spatial sequence

variability to determine a relationship between parameter values and variability,

and then derive a heuristic to estimate optimal parameters.

• Alternate gap and mismatch models. A linear gap model was found in GED and

SW approaches to achieve the most consistent recognition performance across the

respective datasets. This requires further investigation in consultation with the

analytical parameter estimation approach, as emplar-based analytics could provide

insight on the gap variability and sequence mismatches in a group of activities. A

probabilistic gap and mismatch model will likely capture this variability more
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effectively resulting in a gap and mismatch model that better approximates the

variability of an activity, and further discriminates spatially distinct exemplars.

• Hybrid recognition approaches. The sequence alignment approaches that were

investigated performed well with accurately segmented activity sequences in the

presence of tracking system noise. The LCSS and SW similarity-based approaches

performed extremely well in the presence of significant noise and minor activity

variability as they limited the quantification of noise in their similarity calculation.

The LCSD, GED and TDTW distance-based approaches also performed well dis-

criminating accurately segmented activities, but performed better with discrimina-

tion of spatially similar activities. A hybrid approach consisting of both similarity

and distance-based techniques could thus be explored to provide the noise abating

characteristics of LCSS and SW, whilst achieving high discrimination with spatial

and temporally similar activities as per LCSD, GED and TDTW.

It is acknowledged that recognition of spatial activities from video-based tracking sys-

tems is challenging. The SW and OSW approaches presented in Chapter 6 provides a

solid mechanism for dealing with inaccurately segmented activity sequences in the pres-

ence of noise and minor activity variation. The OSW approach provided in this thesis

outlines a more efficient formulation that specifically deals with the problem of online

recognition. As OSW can identify approximate start and end points of sequences via

traceback procedures and optimal similarity values, OSW could be applied for segmen-

tation of online data streams.

Finally, the incorporation of environmental sensor data, collected from other sensors in

a smart home such as touch, contact or thermal sensors, could assist with dynamically

improving the performance of these spatial activity approaches via adjusting parameters

in relation to sensor feedback in a control systems approach.
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