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ABSTRACT

This thesis investigates the impact of harmonics as a power quality issue on the
dynamic behaviour of the power systems. The effectiveness of the power system
stabilizers in distorted conditions is also investigated. This thesis consists of three

parts as follows:

The first part focuses on the operation of the power system under distorted
conditions. The conventional model of a synchronous generator in the dg-frame of
reference is modified to include the impact of time and space harmonics. To do this,
the synchronous generator is first modelled in the harmonic domain. This model
helps in calculating the additional parts of the generator fundamental components
due to the harmonics. Then the Park transformation is used for calculating the
modified fundamental components of the synchronous generator in dg axes. The
modified generator rotor angle due to the presence of harmonics is calculated and the
impact of damper windings under the influence of harmonics is investigated. This
model is used to study the small-signal stability of a distorted Single Machine
Infinite Bus (SMIB) system. The eigenvalue analysis method is employed and the
system state space equations are calculated by linearizing the differential equations
around the operating point using an analytical method. The simulation results are
presented for a distorted SMIB system under the influence of different harmonic
levels. The impact of damper windings and also harmonics phase angles are also

investigated.

In the second part of the thesis, the effectiveness of the power system damping
controllers under distorted conditions is studied. This investigation is done based on
a distorted SMIB system installed with a Static Synchronous Series Compensator
(SSSC). In the first step, the system state space equations are derived. A Power
Oscillation Damping (POD) controller with a conventional structure is installed on
the SSSC to improve the system dynamic behaviour. A genetic-fuzzy algorithm is
proposed for tuning the POD parameters. This method along with the observability

matrix is employed to design a POD controller under sinusoidal and distorted
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conditions. The impact of harmonics on the effectiveness of the POD controller

under distorted conditions is investigated.

In the last part, the steady state and dynamic operation of an actual distributed
generation system under sinusoidal and distorted conditions are studied. A decoupled
harmonic power flow program is employed for steady state analysis. The nonlinear
loads are modelled as decoupled harmonic current sources and the nonlinear model
of synchronous generator in harmonic domain is used to calculate the injected
current harmonics. For the system dynamic stability study, the power system toolbox
with the modified model of the synchronous generator is used. The system
eigenvalues are calculated and the effectiveness of the installed Power System
Stabilisers (PSS) is investigated under sinusoidal and distorted conditions.
Simulation results show that in order to guarantee the effectiveness of a PSS in
distorted conditions, it is necessary to consider the harmonics in tuning its

parameters.
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NOMENCLATURE

v, Rotor fluxes matrix

W, Stator fluxes matrix

L Inductances matrix

R Rotor windings resistance matrix

I Rotor windings current vector

i Stator windings current vector

Vv, Rotor windings voltage vector

Vv, Stator windings voltage vector.

K, Damping factor

H Inertia constant

@, Rotor speed

T, Mechanical torque

o Rotor angle

Wiy Field flux

v, Stator flux component along the d-axis
v, Stator flux component along the g-axis
pdveroham - Stator flux component due to interaction between time and space

harmonics along d-axis

duetoh . . .
w "™ Stator flux component due to interaction between time and space

harmonics along g-axis
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CHAPTER ONE
INTRODUCTION

The power quality and system stability are two important issues of modern power

systems.

Stability of the power system has been recognized as an important problem for
secure system operation since the 1920s. It has been classified into different
categories regarding the duration and type of disturbances. The small-signal
(dynamic) behaviour of a power system is one of the important stability categories

and is related to the synchronous generator rotor oscillations.

On the other hand, actual power systems contain different types of nonlinear loads
that generate harmonic pollution. Examples of these nonlinear loads are power
electronic based devices, motor drives, saturated transformers, electrical machines,
Flexible AC Transmission System (FACTS) devices and other appliances with
nonlinear voltage-current characteristics. It causes concerns with respect to the
impact of harmonics and poor power quality on the performance and stability of
power systems and synchronous generators (SG). Distributed Generation (DG) and
isolated systems in particular are at higher risks due to their typical low inertia
features; short-circuit levels, frequency/voltage variations and unbalances. It is
shown in literatures that the harmonic distortion level of DG systems in the presence
of nonlinear loads can be much higher than the standard and recommended levels.
Hence, the operation of the SGs in distorted conditions might be affected by the high

level of voltage harmonic distortions at the connected buses.

Therefore, the impact of power quality on performance of the synchronous
generators and stability of the power system especially in isolated and DG systems is

a new arisen issue and has attracted more attention in the recent years.
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The first part of this thesis investigates the impact of harmonics on the steady-state

and dynamic behaviour of a synchronous generator connected to a large system.

For this purpose, the initial step is modelling the synchronous generator under
distorted conditions. To consider the time and space harmonics, a nonlinear model of
the synchronous generator in the Harmonic Domain (HD) is used. Using this model
the impact of harmonics on the fundamental parameters of the generator is

investigated and used to modify the conventional model in the dg-frame of reference.

This modified model is then employed to study the system small-signal stability
using eigenvalue analysis under distorted conditions. The formulation of the state
equations for small-signal analysis involves the development of linearized equations
about an operating point and elimination of all variables other than the state
variables. The presence of harmonics makes the analytical methods used for
calculation of the state space equations very complex. Therefore, the study is done on
a distorted Single Machine Infinite Bus (SMIB) system. This method can be

extended to study a large multi-machine system.

As the application of power oscillation damping (POD) controllers is a common
approach for improving the system dynamic stability, the impact of harmonics on the
effectiveness of a POD controller is investigated in the second part of the thesis. A
POD controller based on a Static Synchronous Series Compensator (SSSC) is

selected for the investigation.

Flexible AC Transmission Systems (FACTS) are widely used for increasing the
utilization of the power systems and applying an axillary controller on these devices
can improve the dynamic behaviour of the power system. The SSSCs are one of the
most widely used types of series-connected FACTS devices. To investigate the
performance of the POD controller, the state space equations of a distorted SMIB
system installed with an SSSC are calculated. Various optimization methods have
been proposed for tuning the parameters of the POD controller. In this thesis, a
genetic-fuzzy method is proposed and used for tuning the SSSC based POD
controller under sinusoidal and distorted conditions. The effectiveness of the POD
controller designed for sinusoidal conditions is tested under the influence of

harmonics. This part concludes with designing a POD controller which remains
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effective under both sinusoidal and distorted conditions. This method is applicable

for tuning other types of power system stabilizers.

In the last part of the thesis, the steady state and dynamic behaviour of an actual
distributed generation system is investigated. This investigation is done under
sinusoidal and distorted conditions. A Decoupled Harmonic Power Flow (DHPF)
algorithm is used for the steady state studies. The nonlinear loads are modelled as
decoupled harmonic current sources and the nonlinear model of the synchronous
generators in the harmonic domain is employed to calculate the injected current

harmonics by the generators.

As the analytical calculations of the state space equations for a multi-machine system
is very complex under the distorted conditions, a power system toolbox is used for
the system dynamic study. The model of a synchronous generator is modified to
include the impact of time and space harmonics. The system eigenvalues are

calculated and used for the stability studies.

To improve the system dynamic behaviour, Power Systems Stabilizers (PSS) are
connected in the excitation system of the distributed generators. The conventional
phase compensation method is used for tuning these PSSs. The performance of these
PSSs under distorted conditions is studied and their gains are adjusted to remain

effective under the distorted conditions.

In conclusion, this work presents the impact of harmonics on the synchronous
generator steady-state operation, small-signal stability of the system, relocation of
the system eigenvalues and optimum POD controller design for improving the

system dynamic behaviour.

1.1. Research Objectives

The main objectives of this research can be summarised as follows:

- Finding a proper model of synchronous generators for system small-signal stability
studies under distorted conditions.

- Investigating the synchronous generators steady-state operation considering the

impact of time and space harmonics.
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- Investigating the impact of harmonics and damper windings on the dynamic
behaviour of a distorted SMIB system.

- Investigating the impact of harmonics on the performance of a FACTS device
based POD controller installed on a SMIB system.

- Finding a proper method for tuning the POD parameters under the influence of
harmonics.

- Studying the dynamic behaviour of an actual distributed generation system in
sinusoidal and distorted conditions and the effectiveness of the connected power

system stabilizers.

1.2. Thesis Structure

This thesis includes seven chapters. Chapter two presents an introduction on power
quality and power system stability issues. This chapter also introduces some
literatures on nonlinear models of synchronous generators and the usage of FACTS
devices for improving the system dynamic stability. A proper model of a
synchronous generator for small-signal stability studies considering the presence of
time and space harmonics is presented in Chapter three. Chapter four includes the
small-signal study of a distorted SMIB system. The eigenvalue analysis method is
used and the system state space equations are calculated using an analytical method
from the system differential equations. The impact of damper windings is also
investigated. The effectiveness of an SSSC based POD controller under distorted
conditions is investigated in Chapter five. In the first part of this chapter the state
space equations of a distorted SMIB system installed with an SSSC are calculated. In
the second part, a POD is installed on the SSSC to improve the system dynamic
stability and a genetic-fuzzy method is proposed and used for tuning its parameters.
Chapter six presents the impact of harmonics on the operation of an actual distributed
generation system under sinusoidal and distorted conditions. Finally, Chapter seven
summarises the conclusions of the impact of harmonics on the power systems and

their operation.



CHAPTERTWO
LITERATURE REVIEW AND BACKGROUND

2.1. Introduction

This chapter presents an introduction on subject related to this work including the
system stability and power quality issues, usage of FACTS devices, design of

auxiliary POD controllers and nonlinear models of synchronous generators.

Different classifications of power quality and power system stability are introduced
and it is shown that different type of FACTS devices with axillary POD controllers

are proposed for improving the system dynamic behaviour.

Finding a proper model of the synchronous generator including the impact of space
harmonics is essential for this work. The modelling of a synchronous generator, as
one of the most essential parts of the power systems, has attracted the attention of
many researchers. Some nonlinear models of synchronous generators are introduced

in this chapter.

2.2. Power System Stability

For practical analysis and resolution of power system instability, it is essential to
have proper classification of stability problems. Figure 2.1 gives the overall picture

of power system stability problem and identifies its categories and subcategories [1].
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Power System Stability

Rotor Angle Frequency Voltage
Stability Stability Stability
Small-Disturbence Transient Large- ‘Small-
Angle Stability Stability Disturbence Disturbance
I T Voltage Stability Voltage Stability

I |
Short Term I I
| Short Term || Long Term |

| Short Term | | Long Term |

Figure 2.1 Classification of power system stability [1]
The description of the corresponding forms of stability phenomena are as follows:

a- Rotor Angle Stability:

Rotor angle stability refers to the ability of synchronous machines of an
interconnected power system to remain in synchronism after being subjected to a
disturbance. It depends on the ability to maintain equilibrium between
electromagnetic torque and mechanical torque of each synchronous machine in the
system. The change in electromagnetic torque of a synchronous machine following
perturbation can be resolved into two components: synchronizing torque (in phase
with rotor angle deviation) and damping torque (in phase with the speed deviation).
Instability may occur in the form of increasing angular swings of some generators
leading to their loss of synchronism with other generators. System stability depends
on the existence of both components of torque for each of the synchronous machines.

Rotor angle stability can be characterized into two subcategories:

- Small-disturbance or small-signal rotor angle stability is defined as the ability of the
power system to remain stable in the presence of small disturbances. These
disturbances could be minor variations in load or generation on the system which
results in low power frequency oscillations in the system. The disturbances are

considered to be sufficiently small that linearization of system equations is



Chapter 2: Literature Review and Background 7

permissible for analysis purposes [2]. The term dynamic stability is also used in

literature for this class of rotor angle stability.

Three types of oscillations that have been experienced with large interconnected

generators and transmission networks include [3]:

Inter-unit oscillations: These oscillations involve two or more synchronous machines
at a power plant or nearby power plants. The machines swing against each other,

with the frequency of the power oscillation ranging between 1.5Hz to 3Hz.

Local mode oscillations: These oscillations involve one or more synchronous
machines on a power station swinging together against a comparatively large power
system or load centre. The frequency of oscillation is in the range if 0.7Hz to 2Hz.
Inter-area oscillations: These oscillations usually involve combinations of many
machines on one part of a power system swinging against machines on another part
of the power system. Inter-area oscillations are normally in the frequency range of

less than 0.5Hz.

- Large-disturbance rotor angle stability or transient stability is concerned with the
ability of the power system to maintain synchronism when subject to a sever
disturbance, such as a short circuit on a transmission line. The system response
involves large excursion of generator rotor angles and is influenced by the nonlinear

power-angle relationship.

b- Frequency Stability:

Frequency stability refers to the ability of a power system to maintain steady
frequency following a severe system upset resulting in a significant imbalance
between generation and load. Instability may occur in the form of sustained

frequency swings leading to tripping of generating units and/or loads.

c- Voltage Stability:

Voltage stability refers to the ability of a power system to maintain steady voltages at
all buses in the system after being subjected to a disturbance from a given initial
condition. Instability may occur in the form of a progressive fall or rise of voltage of
some buses. It might lead to loss of load in an area or tripping off transmission lines

or other elements by their protective systems.
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This PhD thesis focuses on small-signal stability of the power systems in the
presence of time and space harmonics. Hence, the following section presents more

details on this category.

2.2.1. Small-Signal Stability Analysis of a Power System

The small-signal stability of a nonlinear system can be investigated using
Lyapunov’s first method [4]. In this method which is also known as eigenvalue
analysis, the system stability is given by roots of the characteristic equation of the

system of first approximation, for example eigenvalues of the state matrix A [2].

It should be noticed that matrix A is the Jacobian matrix whose elements a;are

—L evaluated at the equilibrium point about which

Xj

given by the partial derivatives

the small disturbance is being analysed. This matrix is referred to as state matrix. By
calculating eigenvalues of this matrix, A, the stability of the system is determined. A
real eigenvalue corresponds to a non-oscillatory mode. A negative real eigenvalue
represents a decaying mode. A positive real eigenvalue represents aperiodic
instability. Complex eigenvalues occur in conjugate pairs and each pair corresponds

to an oscillatory mode. In summary:

- When all of the system eigenvalues have negative real parts, the system is

asymptotically stable.

- Having at least one eigenvalue with positive real part means the system is

unstable.

- If the eigenvalues have real parts equal to zero, it is not possible to say

anything based on the first approximation.

The eigenvalue analysis method has been widely used to study the small-disturbance
rotor angle stability of power systems. This method does not require the explicit
solution of system differential equations. However, the large-disturbance stability
may be studied by explicit solution of the nonlinear differential equations or the

direct method of Lyapunov (Lyapunov’s second method) [4].
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The traditional approach to damp the system oscillation is through the installation of
PSS devices that provides supplementary control action through the excitation
system of generators. The conventional PSS uses phase compensation to adjust the
timing of its correction signal to oppose the oscillations it detects in the generator
rotor. This conventional PSS [3, 5] is widely used in single machine systems by

power system utilities.

Recently, several approaches based on modern control theory have been applied to
PSS design problem. These include optimal, adaptive, variable structure, intelligent
control [6-8], simulated annealing [9] and sensitivity analysis [10]. These methods

are more effective for damping the critical modes of multi machine systems.

Another approach for improving the system small-signal stability is through adding

an auxiliary POD controller to the installed FACTS devices on the system.

Next section focuses on the utilization of FACTS devices in power systems and

design of the POD controllers for improving their stability.

2.3. FACTS Devices

In recent years, the implementation of FACTS devices has become a common
practice to make full utilization of the existing transmission capacities instead of
adding new lines which are often restricted for economic and environmental reasons

[11].

In addition to enhancing the available transfer capacity (ATC) of the transmission
system, applying FACTS devices may affect the system stability [12, 13]. For
example, the small-signal stability analysis in reference [12] reveals that some

system modes may be significantly affected by Static Var Compensators.

Furthermore, a supplementary control is being added to the FACTS device to damp
out the rotor angle oscillations and have been widely used for improving the dynamic

stability of the power systems [12-23].

As the number of swing modes in a system is usually larger than the number of
available control devices, designing new control structures which can improve the

damping of multiple swing modes is of high concern. There are a number of
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proposed control methods including: fuzzy-logic [18], robust control [19], fuzzy
sliding mode [20] and genetic algorithm [22]. A multivariable control design
methodology for robust damping of power oscillations is proposed in [24]. This

method employs the local as well as the remote stabilizing signals.

Numerous papers have been published to discuss and find ways to answer the
question of which location and feedback signal could result in the power system
stabilizer (PSS) and the FACTS devices having the maximum effect on the system
[14, 25]. Usually selection of the most suitable location and stabilizing signal is

based on controllability and observability indexes [25].

Reference [15] presents a detailed study on the use of a SVC for damping system
oscillations. Having considered several factors including observability and
controllability, it was concluded that the most suitable auxiliary input signal for the
SVC for damping improvement is the locally measured transmission line current
magnitude. Other studies, however, select locally measured active power [16], or

generator angular speed [17] as a stabilizing signal.

In this thesis, a series FACTS device is connected on a distorted SMIB system and a
genetic-fuzzy auxiliary controller is designed to shift the system eigenvalues toward
the permissible region of the s-plane. The POD control signal is selected based on the

controllability method.

2.4. Power Quality

Power quality is an important aspect of power system that affects the system
efficiency, stability, security and reliability. This is a very broad subject and covers
different aspects of power engineering from transmission and distribution level to
customers' problems. Investigating the impact of power quality disturbances on the
power system operation, the equipments and also the methods of power quality
improvement has attracted the attention of many researchers. This subject has
become an important part of power systems and electric machines and a number of

books have been published in this area [26-29].

The causes of power quality problems can be put into two categories [30]:
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- Disturbances arising in power system due to faults and the operation of power
system equipments such as capacitor switching, transformer saturation,

Power electronic based devices.

- Disturbances induced by the operation of customer equipment and nonlinear

loads such as phase controlled power supplies and switching power supplies.

There are different classifications of power quality issues [26, 27, 30]. Based on
IEEE-1159 [30], categories of electromagnetic phenomena are: transients, short-
duration voltage variations, long-duration voltage variations, voltage imbalance,

waveform distortion, voltage fluctuation and power-frequency variations.

Presence of current/voltage harmonics in the power system is one of the most
common power quality disturbances. Nonlinear current and voltage waveforms occur
in power systems due to equipments and loads with nonlinear characteristics such as
transformers, rotating electrical machines, FACTS devices, power electronics
components (such as rectifiers, triacs, thyristors), switch-mode power supplies,
compact florescent lamps, adjustable AC and DC derives, renewable energy sources

and HVDC networks.

According to the frequencies of disturbances, harmonics are divided into different

groups [29]:
- Triple harmonics: are the odd multiples of the third harmonic
- Sub-harmonics: have frequencies below the fundamental frequency.

- Inter-harmonics: their frequencies are not integer multiplies of fundamental

frequency.

- Characteristics and uncharacteristic harmonics: harmonics of order 12k+1
(positive sequence) are called characteristic harmonics and orders 12k-1

(negative sequence) are called uncharacteristic harmonics.

- Positive-, negative- and zero-sequence harmonics: the phasors of harmonics
with negative and positive displacement angles rotate clockwise (positive
sequence) and counter-clockwise (negative sequence), respectively. Phasors
with zero displacement angles are in phase and are called zero-sequence

harmonics.
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- Time and spatial (space) harmonics: time harmonics are the harmonics in the
voltage and current waveforms of electric machines and power systems due
to magnetic core saturation, presence of nonlinear loads, and irregular system
conditions such as faults and imbalance. Spatial harmonics are referred to the
harmonics in the flux linkage of rotating electromagnetic devices such as
induction and synchronous machines. The main cause of spatial harmonics is

the unsymmetrical physical structure of stator and/or rotor magnetic circuits.

The literatures are rich in investigation of the current/voltage time harmonics in the
power system and their influence on the operation of the power system and system
equipments [28, 29]. Some effects of harmonics including interfering with control
devices, telephone interferences, additional line losses and decreased lifetime and

increased losses in utility equipment and customer devices are well investigated.

Reference [29] presents the nonlinear models of transformers, induction machines
and synchronous machines. Also the impact of harmonics on power system operation
including nonlinear modelling of power system, interaction of harmonics with
capacitors, impact of poor power quality on reliability, relaying and security are

investigated in this book.

Installation of distributed generation systems within low voltage and medium voltage
systems have introduced a number of power quality problems such as voltage
variations and fluctuations, harmonics and inter-harmonics distortions and voltage
stabilization [31, 32]. Reference [31] calculates the level of voltage harmonic
distortion in a distributed generation system operating in grid-connected and stand-
alone modes. It is shown that the harmonic distortion in the presence of nonlinear
loads can be much higher than the standard and recommended levels. Reference [32]
investigates the influence of distributed generation on voltage quality of a medium
voltage network and presents the results of a case study showing high level of

voltage harmonics.

The impact of power quality disturbances on the system stability is a fairly new
subject and has attracted academic and utility attentions. The impact of power quality
on dynamic stability of an isolated system is investigated in recent years [33, 34]. In

these papers the impact of harmonics on a synchronous generator damping and
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synchronizing coefficients is studied. However, the impact of frequency conversion

is not considered and the system eigenvalues are not calculated.

In this thesis, the impact of harmonics on the small-signal stability, relocation of the
system eigenvalues and optimum controller design for improving the system
dynamic behaviour are investigated. To study the system stability, an accurate model

of the synchronous generator is essential which is targeted in the next section.

2.5. Non-linear Models of a Synchronous Generator

A synchronous Generator is an essential component of a power system which works
in synchronism with the rest of the electrical network. The accurate modelling of SG
is needed to analyse its behaviour under different operating conditions such as

steady-state, transient, sub-transient, imbalance and under influence of harmonics.

The problem of modelling and analysis of the synchronous generator was primarily
investigated in the 1920s and 1930s [35-38], and many classical models were
proposed and implemented. With the introduction of distributed generation and
renewable energy systems, this subject has drawn more attention and devoted more

research in recent years.

The most widely used model of a synchronous generator is based on the two reaction
theory proposed by Blondel [35] and extended by Doherty et. al [36] and Park [37,
38]. Details of the synchronous generator sinusoidal model in dg-frame of reference
are expressed in [2]. Defining the transient and sub-transient inductances, this model
has been widely used for stability studies of the power system. This conventional
model assumes balance operating conditions at the machine terminals and is efficient
for steady state solution. It can not be used to model the frequency coupling caused

by rotor saliency in the presence of current distortion.

Several nonlinear models of synchronous machine have been developed in frequency
domain [39, 40]. A well-known harmonic model of a synchronous generator based
on the negative, positive and zero-sequence reactance is presented in [39]. This
model is applicable in harmonic power flow analysis. However it does not include

the factor of frequency conversion and is inappropriate for harmonic modelling of a
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synchronous generator when detailed information such as harmonic torque must be

extracted.

Synchronous machine harmonic model based on transient inductances is represented
in [41]. In this paper, three cases are considered when SG is fed by: harmonic
currents, harmonic voltages and combination of current and voltage harmonics. The
proposed harmonic model is based on the dg-frame of reference. It is shown that
when a synchronous machine is subjected to a harmonic voltage disturbance at
frequency n@, harmonic current components are drawn at n@ and the associated

frequency (n* 2)w. Machine harmonic behaviour is also affected by non-sinusoidal

inductance variation with rotor position which is not considered in this paper.

Moreover, this paper does not investigate the effect of harmonics on shaft torques.

Several machine models have been proposed for power system harmonic studies [42,
43]. Some of them are too simple and can not deal with the higher harmonics derived

by synchronous machines themselves [42], or too complicated [43].

A more sophisticated Park-equation based synchronous machine model used in
harmonic power flow study has been proposed in [44]. From the physical
interpretation of this model, it is noticed that only if the power network is
asymmetrical, synchronous generator should be considered as harmonic sources in
power flow study. This model of SG can correctly originate the higher harmonics
that are derived by the machine itself and is incorporated with the extended
“decoupling-compensation” network model used for harmonic power flow studies.
However, this steady-state decoupled harmonic model of synchronous generator does

not include the impact of space harmonics.

The explicit time-varying nature of the stator self inductances and the mutual stator-
rotor inductances, as well as the space harmonics can be represented in a machine
model in the abc-frame of reference. This model can naturally reproduce the
abnormal conditions since it is based on realistic representation of the machine
parameters. The afo-coordinates are used to allow a natural transition between the
abc- and dg-frames [45]. Reference [46] discusses the advantages of a synchronous
generator representation in the abc domain with respect to the models based on the

dq and 50 coordinates.
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Detailed models of the synchronous machine have also been developed for harmonic
analysis [40, 41, 47-49]. Reference [47] has employed the abc-coordinates for the
dynamic analysis of a synchronous generator connected to a static converter for high-

voltage DC.

A frequency domain model including imbalance and saturation effects is introduced
in [49]. This model incorporates the frequency conversion and saturation effects
under various machine load-flow constraints such as unbalanced operation. To
model these effects, a three-phase Norton equivalent circuit of the machine is
developed in the abc-frame of reference. To incorporate this model into harmonic
programs, some reasonable simplifications are made and a dqgO transformation is
used to transfer machine quantities from the abc-coordinates into the rotating dg-

coordinates.

The harmonic domain is a general frame of reference for power system analysis
under steady-state conditions that models the coupling between phases and also
between harmonics [50, 51]. The harmonic domain has been widely used to represent
nonlinear elements of the power system. A synchronous machine in the abc-frame
represents a linear time periodic system, which can be renovated to a linear time
invariant system in the harmonic domain. An appropriate model of a synchronous
generator in the harmonic domain and abc-frame of reference is proposed and used

in [29, 40, 48].

An accurate calculation of the synchronous generator inductances as a function of
time is essential for its nonlinear modelling. Having the profile of the machine
winding inductances versus the rotor position, the machine performance
characteristics can be easily calculated. These include emf and terminal voltages,
currents, flux linkages, developed torques, losses of electric or magnetic origins,

input and output powers, and efficiency [52].

The inductances can be estimated by calculating flux linkages or they can be
determined using the magnetic energy, or co-energy, approach. Escarela-Perez et. al
[53] have presented the comparison between these two methods for inductance
calculation of a 150MVA, 13.8kV synchronous generator. Both definitions lead to

equal inductance values for linear systems, but different results are reported for non-
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linear conditions. The reason is that co-energy can be accurately calculated by using
the actual BH curves of the magnetic materials, while the determination of magnetic

flux is generally based on a linearized BH characteristics.

Different numerical computations of electromagnetic fields in electric machinery
have been introduced in the past decades. These methods include two-dimensional
(2D) and three dimensional (3D) field solution techniques which are based on finite-
difference (FD), finite-element (FE), and boundary-element (BE) formulations, as

well as other numerical methods.

Demerdash et. al have shown the application of energy/current (E/C) perturbation
method for computation of machine winding inductances in a couple of publications
[54-59]. Application of the method to a 2D magnetic field FE algorithm is presented
for different types of electrical machines such as a 1.2 hp induction motor [54], a 733
MVA turbogenerator [57] and several 60 kVA to 75 kVA salient-pole synchronous
generators [58]. The energy/current (E/C) perturbation method is also applied to
large-scale magnitude of the 3D magnetic field FE algorithm [55], magnetic vector

potential (MVP) and magnetic scalar potential (MSP) formulations [56, 59].

Winding function methods have been also used for modelling, simulation and
analysis of electrical machines [60]. One of the advantages of these methods is that it
is possible to predict transient and steady-state performance of any machine with any
type of winding distribution and air-gap length, while taking into account the effect
of all spatial and time harmonics. This means that all faults occurring in the stator
windings, rotor turns and air-gap eccentricity can be included in the model obtained

using this theory.

In this thesis, a synchronous generator model in the harmonic domain and abc-frame

of reference is used for the investigations.

2.6. Conclusions

It was shown in this chapter that the system stability and power quality can affect
different aspects of power system studies. Some standard categories and

classifications were presented for the power quality and stability of the systems.
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The harmonic distortion is one of the power quality issues that affect the operation of
power system and system equipments. The literature is rich in the study of the impact

of harmonics on the operation of power system equipments.

A synchronous generator is one of the essential system components that should be
modelled accurately for system stability studies. Different models of a synchronous
generator in the abc-frame of reference, dg-frame of reference, time or harmonic

domain are proposed in literatures.

The small-signal stability of a power system was introduced as a category of the
system stability. It was shown that the application of FACTS devices with an

additional auxiliary controller can improve the power system dynamic behaviour.

Although there are some studies on the impact of power quality issues such as the
influence of unbalanced voltages on the system stability, this area still needs more

investigation and dedicated more research resources.



CHAPTER THREE

SYNCHRONOUS GENERATOR OPERATION UNDER
NON-SINUSOIDAL CONDITIONS

3.1. Introduction

A Synchronous generator is a complicated electromagnetic device which is very
important in the operation of power systems. Computing the steady-state operating
parameters of a synchronous generator is essential for system studies including

small-signal analysis of power systems.

Distorted operating conditions can affect the synchronous generator steady-state
parameters. Non-sinusoidal conditions can be due to the presence of time and space
harmonics. Time harmonics are the harmonics in the voltage and current waveforms
of electric machines and power systems. These harmonics may be caused by
nonlinear or unbalanced loading conditions due to the introduction of large variable
speed drives, large industrial plant, saturated transformers, renewable energy sources,
switching devices, FACTS controllers and other nonlinear loads. Space harmonics
are the harmonics in the flux linkage of rotating electromagnetic devices such as
induction and synchronous machines. The main cause of space harmonics is the

unsymmetrical physical structure of the stator and rotor magnetic circuits.

This chapter focuses on calculation of the synchronous generator steady state
parameters including the load angle, stator fluxes and voltages in the presence of
harmonics. The approach is based on a nonlinear model of the synchronous generator
in the harmonic domain and the abc-frame of reference. Space harmonics, pole-
saliency and damper windings are included. Using this model, the produced stator
fluxes are calculated and it is shown that there are additional harmonic components
that can generate harmonic magnetic fields. These harmonic fields rotate at different
speeds and directions with respect to the rotor. The interaction between time and

space harmonics also adds additional terms to the fundamental component of the

18
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stator flux. Considering these terms, the modified fundamental stator fluxes are
calculated and the Park transformation is applied to them. Hence, the dg components
of the stator flux are achieved and used for calculating the synchronous generator
steady state operating point in the presence of time and space harmonics. The impact
of damper windings and harmonic phase angles are investigated and a general
formulation to compute the load angle is proposed. Simulation results are provided

for three different operating conditions.

3.2. Synchronous Generator Parameters

The non-sinusoidal distribution of the stator windings, for example the step-like mmf
distribution, may be presented by trigonometric series as a function of rotor angle 6
for mutual inductances between stator and rotor and also between stator windings.
These higher frequency terms present the space harmonic components. The Winding
Function Approach (WFA), accounting for all space harmonics, [60] or finite
element methods [58] can be used for the calculations of machine winding
inductances.

Assuming the rotor speed (@, ) to be equal to the system base frequency (@, ), rotor
angle is written as a function of time:

O=w,t+6, (3-1)
where 6, is the initial rotor angle at time zero and can be determined for a constant
load using the conventional power flow solutions [2].

Considering space harmonics, the synchronous generator inductances are defined as

follows [48]:

(a) Stator Self and Mutual Inductances

L,=L +) L cosh6
h

Stator self inductances: L, =L +Y LY cosh(@—-27/3) ;h=24,.
h

L,=L +)Y LY cosh(0+27/3)
h
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L, =L, =—-M_ =Y LY cosh(@+z/6)
Stat tual "
ator mutua . " B o _
inductances: | Lve =L =M, Zh:Lm cosh(@—-7z/2) ;h=24,. (3-2)
Lca = Lac = _MX - Z L(mh) COSh(e + 57[/6)
h

where L,,,L,, and L, are self inductances of the stator three-phase windings, with

L, and I{}) showing the constant term and the magnitude of the n" space harmonic
component, respectively. L,,,L,.and L., are the mutual inductances between the

stator windings including the constant term of M and harmonic periodic terms with

the magnitudes of /). Ignoring space harmonics, stator self and mutual inductances
will only consist of constant terms and the second harmonic order. Figure 3.1 and
Figure 3.2 show the stator self and mutual inductances with and without harmonic
terms, respectively. Space harmonics are considered up to 10™ order with magnitudes

of 0.3, 0.2, 0.1 and 0.01 of the second harmonic order [61].

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time

(a)

. . . . . . . . .
o 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time

(b)

Figure 3.1. Stator self inductances; (a) sinusoidal conditions (b) in the presence of
space harmonics
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o 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time

(a)

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time

(b)

Figure 3.2. Stator mutual inductances; (a) sinusoidal condition (b) in the presence of
space harmonics

b- Rotor Self and Mutual Inductances

Four windings are considered in the rotor circuit, including the field winding (L, )
and three damper windings; two on the g-axis ( L, L, ) and one on the d-axis (L, ).

The corresponding rotor inductances are as follows [48]:

Rotor self inductances: {LF Ly, L, Ly,

L,=M,,L.,=M
Rotor mutual inductances: { X e ! (3-3)
Ly = LFQ =Ly = LDQ =0

where M, and M, are the mutual inductances along the d and g axes, respectively.
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c- Stator-Rotor Mutual Inductances

Space harmonics influence the stator-rotor mutual inductances as follows [48]:

Mutual inductance between rotor
windings and phase “a” of stator
windings:

Mutual inductance between rotor
windings and phase “b” of stator
windings:

Mutual inductance between rotor
windings and phase ‘“c” of stator

windings:

L, =Y M cosh®
h
L, =Y My cosh®

h

L =Y Mg sinh@

h

L, =Y My sinh6

h

L,= ZM}/” cosh(8 - 27 /3)
h

L, = z M} cosh(8 —27/3)
h

L, =Y M sinh(—27/3)
h

L, =Y M sinh(d—27/3)
h

L,= ZM}’” cosh(6 + 27 /3)
h

L, = z M cosh(8 +27/3)
h

L =Y M sinh(6+27/3)
h

L, =Y M}’ sinh(6+27/3)

h

;h=13,
;h=1.3,
s h=13,..
(3-4)

Under sinusoidal conditions, stator-rotor mutual inductances will only contain the

fundamental components. Figure 3.3 shows the stator-rotor mutual inductance

[IPel)

(between phase “a

of stator windings and the field winding) with and without

harmonics. Space harmonics are considered up to 9™ order with magnitudes of 0.3,

0.2, 0.1 and 0.01 the fundamental component [61].
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(b)
Figure 3.3. Stator-rotor mutual inductances; (a) sinusoidal condition (b) in the presence of

space harmonics

3.3. Non-Linear Model of a Synchronous Generator

Based on the abc-frame of reference in the time domain, the main equations of a

synchronous generator rotor and stator voltages and fluxes are as follows [2]:

Ve =W (1)+ R, (1)

V(1) =y g(t)=Ryig(1)

Wo(t)=—L,(t)ig(t)+L,i(t) (3-5a)
We(t)=—Lgg(t)ig(t)+ Ly (1)i(1)

where:

y, =rotor fluxes matrix
v, = stator fluxes matrix
L, = rotor-self inductances matrix

L, = stator-self inductances matrix
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L, = rotor-stator mutual inductances matrix
L, = stator-rotor mutual inductances matrix
R_=rotor windings resistance matrix

R = stator windings resistance matrix

i, = rotor windings current vector

i, = stator windings current vector

v, = rotor windings voltage vector

v, = stator windings voltage vector.

The generator inductance matrices are:

Laa Lab Lac
Stator inductance matrix: L, =|L,, L, L,
Lca ch Lc'c'
R, 0
Stator windings resistance matrix: g, = | 0 R,
0 0
L, M, 0
Rotor inductance matrix: , _ My L, O
"~ o 0 L,
0o 0 M,
R, 0
Rotor windings resistance matrix: p _ 0 R,
" 0 O
0 O
L

where:

Rotor-stator mutual inductance matrix: L, =(L,)"

Stator windings current vector: i (t) =[i, (¢),i,(t),1, 1"

(3-5b)

(3-5¢)

(3-5d)

(3-5¢)

(3-51)
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Stator windings voltage vector: v, =[v_(t),v,(t),v, o1

Rotor windings current vector: i (t) =[i, (t),i, (2),i; (t),iQ o]

N . _ T _ . (DO) —y —y —
Rotor windings voltage vector: v, =[v,,v,,v;,v,]", v =y v, =y, =v, =0.

Note that currents and voltages of stator and rotor windings contain fundamental and
harmonic components. The impacts of space harmonics and rotor saliency are

included in the inductance matrices.

Equation 3-5(a) can be rewritten in the following form:

Y ()=(=R, L} W,(1)+[~R, Ly, Ly(t) I]u(t)
a b
i (1) =Ly, (1)+( L) Lig(t)ig(t) (3-6)
l//s(t): _Lss(t)is(t)+Lsr(t)ir(t)
Vs(t): l/./s(t)_Rsis(t)

where, u(t) is the input vector:

i(t)
u(t) = |:V(DC):| > [ =

F

S S S ~

Equation 3-6 shows that a synchronous machine can be treated as a linear time
periodic (LTP) system. This model of a synchronous generator is useful for
understanding effects of time and space harmonics on the nature of stator fluxes and
voltages. However, it is difficult to determine the induced stator and rotor harmonic
fluxes and their impacts on electromagnetic torque and the steady-state operation of
the synchronous generator. Calculation of steady-state parameters will be easier and
more convenient if the synchronous generator model is transferred into the harmonic

domain.
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3.3.1. Synchronous Generator Model in the Harmonic Domain

The main advantage of using the harmonic domain for analysis is that a linear time
variant system with time periodic coefficient matrices will be transformed to a linear

time invariant system with constant Toeplitz-type matrices [50, 51].

In the harmonic domain, the time periodic variable, x(¢), is approximated by the

Fourier series in the interval under consideration and can be written as:

x) =G X
Gt)=[e "™, . ,e’™ Le™,. . "] (3-7)

X=[X_,®),....X (), X,0),X,),X,0]

where X, is the Fourier coefficient of variable X [51].

The derivative of x(z) with respect to time (¢) is:

W) =GO X +G) X ; Gt)=G@)[D] (3-8)

where [D] is the operational matrix of differentiation:

- jha,

- ja)o (3'9)
[D]= 0

ja,

L jhay, |
Using the above equations, transforming the linear time periodic system of Equation
3-10 to the harmonic domain will result in a linear time invariant system as
demonstarted by Equation 3-11:

x(t) =a(t) x(t)+ B(t)u(t) (3-10)
X=(A-D)X +BU (3-11)
where, A and B have the Toeplitz form of [M].

_ao a_ ea, b
a, .
. a, a, . (3-12)
M]l=|a, . a a a, -. a,
a4
. a
L a 4 4y |
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Now using equations 3-7 to 3-12, the time periodic coefficient matrices of the
nonlinear model of a synchronous generator (Equation 3-5) can be converted into the

harmonic domain. Further, the Toeplitz form of the mutual stator-rotor matrix [L, ]

is calculated as an example.

Mutual stator-rotor inductance in the time domain:

Ly@® L,@® L@ L,
L,@®)=|L,,@) L,® L@ L) (3-13)
L) L) L) Ly@)

Each element of the above matrix is a summation of cosine waveforms (Equation 3-
4) and can be written in the exponential form. For example, considering harmonics

up to 3 order:

LaF(t)=M;“ cos6+MI(p3) cos 30

(1)

A . 7 . A 7 . A 7 . A
- -j0 0 3 -j3 -3j6 3 376
=M\ ontejo_,__e+ont€+10)_,_MI(p )(Eejwote 0 4 = *ieot o350 )

(]
~e
2
_7-1 -joot +1 _+jowot -3 -j3wpt +3  +j3wpt

=L,e +L;pe +Lype +Lpe

(3-14)

Hence, [LaF] can be written in Toeplitz form:

o LY o L2 0 0 0]
L, o L., 0 L, 0 0

o L, o L, 0 L, O

L,)o=lL2 o L. o L. o0 L. (3-15)
o L 0 L, 0 L, 0
o o L, 0 L, 0 L,
o o0 o0 L 0 L, 0

A similar method is followed to convert the other element of L (¢) to the harmonic
domain and [L,] is derived as:
[Lap] [Lap] [Lagl [Lgg]

[Lgr 12128 =| [Lpr] [Lppl [Lpgl [Lpp ] (3-16)
[Lep] [Lep] [Legl [Legl
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Hence, the linear time periodic model of a synchronous generator (Equation 3-6), is

amended to an alternative form as Equation 3-17, using the harmonic domain:

W, =([A]-[D, DY, +[BIU

1, =[LY, +[L} LI, a7
W =[-L I, +[L,]I,

V. =[D,¥, +¥, —[R,]I,

where,

—[7Cm phn ) +D (+h=1) p(+h) 17 (DOIT
U=[1;",1"",..,1;7°,0,1", .11, V.""]

(+h) __ (+h) (+h) (+h)qT
Is - [Ia ’ Ib ’ IL‘ ]

and [D,] and [D,] are the operational matrices of differentiation (Equation 3-9)

applied to the rotor and stator equations, respectively. Matrices [A], [B], [L;rl] and

[L) L, ]are of the constant Toeplitz-type with the general form of matrix [M]

(Equation 3-12).

Fundamental and harmonic components of the stator current (/!”,1") can be

measured at the SG bus or calculated by harmonic power flow algorithms using a
nonlinear model of the synchronous generator. The applied DC voltage to the field
winding (V) can also be measured or computed from the sinusoidal operation.
Note that the interaction between space and time harmonics will not induce DC
current on the rotor windings. Stator and rotor currents and fluxes are defined by

their Fourier coefficients as Equation 3-7.

As an example, the stator winding flux of phase “a”, induced by the field winding is

obtained as follows:

w 0 L, 0 L. 0 0 0[] 0]
0 Ly, o L. 0 L, 0 0 17

v, |0 Ly 0 Lp 0 L; O 0 (3-18)
0 |=|L o LY o0 L., 0 L)|xI1"

v, | |0 Li 0 Li 0 L; 0 0
0 o o LY o L, o L.| I

vl o o0 o L; 0 Ly 0| 0]
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In the stator voltage expression (Equation 3-17), the terms of [D ¥ and ¥ represent
the speed voltage and transformer voltage respectively. Speed voltage is due to the
flux change in space (equivalent to the terms (y, é) and (y, é) in the conventional
model using the dg-frame of reference) and transformer voltage is due to the flux
change in time (equivalent to (1/./ ,) and (y./q) in the dg-frame of reference). The speed

voltage terms are the dominant components of the stator voltage. Hence, transformer
voltages can be dropped from the stator voltage equations without causing any

significant error.

Considering the steady-state performance of the synchronous generator in the

harmonic domain, Equation 3-17 will be simplified as:

¥ =([D,]1-[A]) "'[BIU
I =L 1Y, +[L, L1, (3-19)
IPS = [_Lss ]Is + [Lsr ]Ir
VS = [DS ]lPS - [RS ]IS
Using the above equation, solutions of the rotor flux and current, as well as stator

flux is carried out directly with the general form of Equation 3-7.

Figure 3.4 shows the flow of variables for simulation of a synchronous generator in

the harmonic domain, using Equation 3-19.

Vi
[A]’ lIJr [L;rl ]’ Ir [Lss ]’ lPs Vv
JG - > — [R ] —»
' ST [B] |——> [Lrs] |——> [Lsr] |——>

Figure 3.4. Flow of SG variables for the simulation in HD

3.4. Steady-State Operation of a Synchronous Generator under

Harmonically Polluted Operating Conditions

The synchronous generator rotor (load) angle is one of the most important
parameters for power system studies and is determined by the active power demand.

Presence of time and space harmonics can cause variations in fundamental
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components of the stator flux and voltage. This will result in an increase or reduction
of the generated power, assuming constant fundamental components of the stator
current. In order to calculate the synchronous generator active power, the harmonic
domain analysis is used. This approach facilitates the understanding of rotor and
stator harmonic fluxes and simplifies the procedure for computing the fundamental
stator fluxes due to fundamental and harmonic components of the stator and rotor

currents.

Based on Equation 3-19, the stator current time harmonic order (A"™) in the
presence of space harmonic order (A7) can produce rotor and stator harmonic
fluxes of order (1™ + p*P9¢) and ( p'™e +24°P%¢), respectively. The sequences of the
produced fluxes depend on the sequence of time harmonic and the order of space
harmonic. These results are similar to [41] which introduces the impact of frequency

conversion on the harmonic components of the synchronous generator .

Therefore, the generated stator flux (y, ) includes fundamental and harmonic

components which may not be balanced at three phases (Figure 3.15). The stator zero
sequence fluxes and harmonic rotating fields (having different speeds with respect to
the rotor) do not produce constant torques and will not be considered in the
calculations of the output active power and load angle. Therefore, the fundamental
stator flux will be modified by considering the additional terms due to the interaction
between time and space harmonics. This will influence the steady state value of the
synchronous generator load angle. Figure 3.5 shows the additional time harmonics

imposed by the presence of space harmonics in stator windings.
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7=

y(h=t) N
L

=1 R
"\ Additional Fundamental

v h#l) h=1) J(=ht2) Y Terms due to Harmonics
L Jh=l)

— Total Harmonic Current

Total Fundamental Current

1( h=h,3h)

4Aclclilional
Il h=1)| Harmonic Terms

Externally-Imposed Time harmonics by NLL

(h=h+2h")

” 1

Figure 3.5. Additional stator-winding time harmonics imposed by the presence of

space harmonics.

3.4.1. Stator Flux Analysis in the abc-Frame of Reference

The orders of time and space harmonics which contribute to producing stator flux
components can be calculated from Equation 3-19. As an example, considering the
harmonics up to order 10, the stator contains odd harmonics and the rotor contains
even harmonics, the following space and time harmonics contribute to the 7™ stator
flux harmonic:

v =L L0 LD 4 LD LY LY L0

L(l)l'(g) +L(1)l'(6) +L(3)l'(4) +L(3)i(10) +L(5)l'(2) +L(7)l'(0) +L(9)l'(2)

sror sroor sroor sroor sroor sroor sroor

(3-20)

The above formulation is written in closed form, which means each term includes
two components of the Fourier coefficients. For example, the first term generates the

following stator fluxes in the time domain:

(2):(9) Time Domain (=2):(49) +7 jor (+2):(-9) —Tjor __ (+7) +7jor =7) —Tjar
Lxs Ly, Lxs Iy e + Lxs Iy e - l//x e + ‘//x e (3_21)

s

Combination of these two components generates a cosine waveform of harmonic
order 7 in each phase which results in a stator rotating field with the speed of 7@,
where @ is the synchronous speed. Expressions similar to Equation 3-21 can be

written for the other terms of Equation 3-20.
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Similar to Equation 3-20, the following expression can be written for the space and
time harmonics contributing to the fundamental stator flux:
1) _ y(10):(9 (8):(9 (8):(7 (6):(7 (6):(5 (4):(5 (4):(3
g‘ ) - L(SA )l£ ) + LSS )lg ) + LSS )lg ) + LSS )lS ) + LSS )lS ) + LSS )lg ) + LSS )lg )
2):(3 2):(1 (0):(1 (1):(2 1):(0 (3):(2 (3):(4 -
+ L(SS )lS ) + L(SS )lS ) + LSS )lS ) + LSF)lF ) + L(sr)l£ ) + LSI”)lf” ) + LSI”)lF ) (3 22)

LU LT L) L) L) 1)
The above equation can be simplified as the following form:
P = LD 4 L 4 L) e oo 3-23)

Under sinusoidal operating conditions, the additional terms due to the interaction of
time and space harmonics (1//;1”6 to-harm'y will be zero and the conventional relation will

be achieved [2].

Note that each term of Equation 3-22 results in a rotating magnetic field in the stator.
Table 3-1 summarizes the impact of stator and rotor time harmonics on the
fundamental stator flux in the presence of self-stator and mutual stator-rotor space
harmonics. According to this table, different harmonic orders result in the forward
rotating, backward rotating and zero sequence fields in the stator. Hence, it can be
concluded that the presence of harmonics in the power system can lead to an
asymmetrical situation. As these results are based on the mathematical relations
between different harmonic orders, they are independent of the load angle or initial
values of stator currents. However, the magnitudes of the generated fluxes depend on

the operating conditions.

In order to verify the mathematical results shown in Table 3-1, a synchronous
generator that includes space harmonics and operates under distorted operating
conditions, was simulated. The generator parameters and the operating conditions are

similar to Case 3 of Section 3-5.

Figure 3.6 shows the forward rotating, backward rotating and zero sequence
components of the fundamental stator field in the time domain. It is observed that the
presence of time and space harmonics can produce unbalanced stator fluxes and

voltages in the generator terminals.
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Table 3-1

Fundamental component of stator flux resulting from time and space harmonics

Produced stator flux

Description

STATOR CURRENT AND SELF-STATOR IN

DUCTANCE HARMONICS

Lg;10)1§+9)e(_j”) +L(S;»10)1§—9)e(+jwr)

field magnitude is zero

L{y:&)lg—g)e(—jax) +L(X;8)I§+9)e(+jat)

backward rotating field

80 17 i) | [(+8) [(7) f+iax)

forward rotating field

L{y;rﬁ)1§*7)e(*jwf) + L(V;6)I£+7)e(+jwf)

field magnitude is zero

56 (9 a0 | (+6) (5) G+ jan

field magnitude is zero

L) 1(75) f=Ie) | [(=4) [(+5) f+jar)

Zero sequence

—4 +3 —jox +4 -3 +jart
L(ss )Ig )6( J )+L(ss )12 )6( jar)

Z€ero sequence

(+2 =3) (—jax) =2) p(+3) (+jax)
Lm )Ig )6 ! +L(xx Ix e( !

backward rotating field

72 [+ =iat) 4 [(+2) f(=1) f+jar)

forward rotating field

L9 11 f=iar) o [(0) f(+1) f+jax)

forward rotating field

ROTOR CURRENT AND STATOR-ROTOR INDUCTANCE HARMONICS

L{\:])Ig—z)e(_jﬂ) + L(‘:])I,(,+2)e(+/“)

backward rotating field

(=1) 7(0) (—jox +1) 7(0) (+jax
Lsr Ir e( J )+L(xr )Ir )e J )

forward rotating field

L{V;«?) 1;+2) e(*jax) + L(Sj-g) I;*Z) e(*ja’)

Zero sequence

L) [() =) | [(=3) [(+4) f+jax)

Z€ero sequence

LL75) 1) (=ia) | p(+5) [(~4) (+axr)

backward rotating field

L(X‘:j) Ii—ﬁ)e(_.jﬂt) + L(‘:5) I£+6)e(+j“x)

forward rotating field

(-7 +6 —jax) +7) y(=6) (+jox
Lsr )II(‘ )e( J +L(vr Ir e J )

forward rotating field

+7 -8 —jox -7 +8 +jar
L{rr )I£ ) el —J )+L{W)I£ ) e tier)

backward rotating field

90 18 o =Ja0) | [(+9) [(=8) (+jax)

Zero sequence

L(S:Q)I;—IO)e(—jwt) +L(S:9)I£+10)e(+jwr)

Zero sequence
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Three-Phase Fundamental Components of Stator Fields
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Figure 3.6. Fundamental components of three-phase stator fields considering time and space
harmonics; (a) three-phase fundamental components, (b) fundamental positive sequence, (c)

fundamental negative sequence, (d) zero sequence
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Three-Phase Zero Sequence of Stator Fields
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Figure 3.6. ...continued

It is shown in Table 3-1 that the interaction of certain time and space harmonics will
produce a stator field with magnitude of zero. Summations of these components are

illustrated in Figure 3.7.

X 10"9 Three-Phase Zero Components of Stator Fields

5 : ‘ : ; e :

A\ 7 AN Phase a
4r \ /«‘ \\ — Phaseb
\ / \| — — Phasec

3t ) \

Figure 3.7. Zero components of the stator field produced by the interaction of space and time

harmonics

Based on Equation 3-19, stator time harmonics induce current harmonics in the rotor.
Therefore, damper windings can be effective in the steady-state operation of
synchronous generators in the presence of harmonics. The impact of damper

windings is investigated in Section 3.5.
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3.4.2. Stator Flux Analysis in the dg-Frame of Reference

To incorporate the presence of time and space harmonics on the generator steady-
state operation, the frame of reference is changed from the abc-coordinates to the dg-

coordinates using Park Transformation. As the modified fundamental stator flux
(including additional terms of y?« "™y ig rotating with the same speed as the

rotor, applying the Park transformation will result in constant flux components on the

d and q axes, as demonstrated by the following equation:

l//;modtﬁed) L I(l) M (1) I(DC) + l//dm to harm

(mod ified ) I (1) due to harm
+y,

Y,

(3-24)

where L, and L, are the conventional generator inductances in direct and quadrate
axes, respectively. m{/!/ is the fundamental magnitude of the mutual inductance

due to harm

between the stator and rotor. ¥ p and l//d“e to harm

are the stator fluxes

resulting from interaction between time and space harmonics and will be zero under
sinusoidal operating conditions. The variables of Equation 3-24 are defined as

follows:

Ly=L,+M +(3/2)L,
L,=L,+M —(3/2)L,

I(h)
l//juetoharm_ Z ( I; )(M;(thl)+M;<h—1))cos(h60_9;(h))_
K=F,D

I(h) (h) ) )
> (%)(M;’”“+M;f*“)sin(h.90 .9””)+k( )(L;f”))cos(h'eo -60"")
K=G,0

gt =y (Ig))(M”‘”’ M )sin( h6, — 6 )+
I(h e (h) ) )
KZGQ(T)(M””“ M )cos(h, — 08 )+ k( )(L(,,j”“ )sin(h' 6, —6\"")
0,=(6,-x/2) (3-25)
where:

L(Wf‘): harmonic order h of the stator self or mutual inductance

M) =harmonic order h of the stator-rotor (winding K) mutual inductance
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6= phase angle of the A" current harmonic in rotor winding K
6= phase angle of the /' current harmonic in stator winding

1= magnitude of the h™ current harmonic in rotor winding K
14"/= magnitude of the »'™ current harmonic in stator winding.

Note that 4 and &' are the rotor and stator harmonic orders, which contribute to the
fundamental forward rotating field in the stator. Coefficient k is a function of 4" and
can be computed by applying Park transformations to the result of Equation 3-19. As
an example, k = -1 for h'= 7. Equation 3-25 shows that, the additional induced stator

fluxes due to harmonics depend on the load angle.

3.4.3. Modification of the Synchronous Generator Steady-State Rotor

Angle Due to the Presence of Time and Space Harmonics

Calculating the initial characteristics of the synchronous generator, such as the load
angle, is essential in studying the steady-state, transient, dynamic and harmonic
behaviour of the power system. Hence, in distorted power systems, it is necessary to
compute the initial conditions and the modified rotor angle of the synchronous

generator as a function of non-sinusoidal terminal quantities.

The fundamental component of the armature terminal voltage (Ef”) which rotates at

synchronous speed is considered as the reference. The relationships between dg
components of the fundamental armature terminal voltages and currents in per unit

form are defined as [2]:

(1) _ _ (mod ified ) __ (1)
€, = a)qu Ra Id

(1) __ (mod ified ) __ (1)
e, =0y, R, I,

(3-26)

Similar to conventional sinusoidal studies, the positions of the d and ¢ axes should be

identified relative to the fundamental stator voltage phasor (synchronous rotating

reference) [2]. Defining the voltage E g as follows:

E,=E"+R, + jo.L)I" + oyl (3-27)
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The corresponding phasor diagram (Figure 3.8) demonstrates that Eq lies along the g-
axis. Thus, the position of the g-axis with respect to E,( D (rotor angle, ) can be

identified by computing E P

d-axis:*

Figure 3.8. Steady-state phasor diagram of the fundamental terminal voltage and current in

the presence of time and space harmonics

It is observed from Equation 3-27 that the angle of Eq depends on the value of

y/f;”e fo harm \hich is a function of the harmonics. Therefore, the rotor angle will vary

with the magnitudes and phase angles of the injected time harmonics. Using Figure

3.8, the internal rotor angle can be written as:

oL, IV cos@)- R, I{ sin(@) - e 10 M cos()

(3-28)
£+ R 1" cos@)+ aLy 1 sin(@)+ oy ™ sin( )

8 = tan’l(

where ¢ is the power factor. Equation 3-28 is a general form for calculating &y

which will be similar to the conventional (sinusoidal) form [2] when harmonics are

eliminated. This equation can be solved using numerical methods.

The following steps outline the proposed iterative algorithm for computing the

synchronous generator load angle in the presence of time and space harmonics:

Step 1: Compute the rotor angle for sinusoidal conditions using Equation 3-28,

assuming Wgue to harm (), The sinusoidal result is used as the initial value (4,,,,,,) for

the non-sinusoidal calculations.
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Step 2: Considering the specified or assumed stator time harmonics and inductance
space harmonics, calculate the induced harmonic currents in the rotor windings using
the harmonic domain model of a synchronous generator (Equation 3-19).

Step 3: Determine the stator and rotor current harmonics contributing to the
fundamental forward rotating field using Equation 3-22 and Table 3-1.

Step 4: Compute the additional terms of the fundamental stator flux due to
harmonics, in the dg-frame using Equation 3-25.

Step 5: Calculate the rotor angle from Equation 3-28, using a numerical method (g,).

Step 6: If the convergence criterion (‘5.

initial

d| <) 1s satisfied, stop. Otherwise, set
Sinitial =90 and go to Step 2.

Figure 3.9 shows a flowchart of the proposed algorithm.

Compute the initial load angle using sinusoidal

dg-Frame
conditions (Eq.3-28, V,f{!ue 10 harm () 4
O i
v initial
Time Harmonics )| HD model of SG A
Space Harmonics —p| (Eq.3-19)

I( dc+all harmonics )
p

abc-Frame
> in
Harmonic Domain

I ( fund+all harmonics )
s

\ 4

Consider the stator & rotor components
contributing in fundamental active power
(Eq.3-22 & Table 3-1)

109e) 4 (67 4.
1417 g
Y

Compute the stator parameters (Eq.3-24)

dueto harm

Yq

dg-Frame

Compute the load angle (Fig.3-6, Eq.3-28)

‘5initial - 50‘ <€

Figure 3.9. The proposed algorithm for computing the synchronous generator load angle in

the presence of time and space harmonics
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3.5. Simulation of a Synchronous Generator under Different Operating

Conditions

To illustrate the impact of time and space harmonics, as well as damper windings on
the steady-state operation of a synchronous generator, simulations were conducted
under three different operating conditions. The results from the simulations under
distorted conditions were compared with the results for operation under sinusoidal

conditions.

A 555 MVA, 24 kV, 0.9p.f, 60 Hz, 3600 RPM turbine generator was used in the
analysis. The system, stator and rotor parameters (in per unit of machine rating) are

given below:
Stator Parameters:
L=1.060 L,=0.0140 M =0.4550 R,=0.003

Rotor Parameters:

Rg=0.0006 Lg =1.551 Lep=1.386
Rp=0.0284 Lp=1.5573 Lgo=1.344
RG :000619 LG = 20692 L]:G= L]:Q= LDG= LDQ=0

R =0.02368 Lo=1.469
Stator Rotor Mutual Parameters:

Mp=Mp= 1386  Mg=Mo=1.344

Case 1- Sinusoidal Operation:

In this case the effects of space harmonics are ignored and the stator current is
assumed to be sinusoidal. The synchronous generator delivers 555 MVA at 0.9 pf
(lag) at rated terminal voltages. The effects of magnetic saturation are neglected.
Four rotor windings are considered which consist of a rotor-field winding and three
damper windings (one along the d-axis and two along the g-axis). Using equations 3-

19, 3-24 and 3-18, the generator parameters and rotor angle are calculated as:

Lg=1.5360, Ly= 1.4940, 1,=0.9058, 1 =0.4239, §,=39.0757°



Chapter 3: Synchronous Generator Operation... 41

As expected, damper windings have no effect on the sinusoidal steady-state
operating quantities. The above values could be computed from the conventional
equations in sinusoidal conditions. Figures 3.10 and 3.11 show the stator fluxes and

voltages in the abc-frame of reference for sinusoidal operating conditions.

1.5

three phase stator fluxes (pu)

wt (rad)

three phase stator voltages (pu)

Figure 3.11. Three-phase stator voltages for sinusoidal operating conditions
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Case 2- Non-Sinusoidal Operation with Space Harmonics:

In this case self-stator inductances are assumed to have additional even harmonic
components (up to the 10™ harmonic) and the mutual stator-rotor inductances contain
odd components (up to the 9™ harmonic). Table 3-2 shows the induced rotor currents
and the corresponding load angles for two levels of space harmonics and the same
loading condition as Case 1. The selected space harmonics for the base level, Bases,
were 0.3, 0.2, 0.1 and 0.01 of the first and second harmonic for stator-rotor and

stator, respectively [48].

The impact of damper windings is also presented in Table 3-2. It is observed that the
induced harmonic currents on the damper windings are considerable and their

impacts on rotor angle should not be ignored.

Table 3-2
Impact of space harmonics on stator parameters, rotor current harmonics and load angle
Space Harmonic Stator Load Angle (8,)
Level Parameters [PoA**]
Without Damper Windings
w, =0.8290
Baseg* y, ="0.6320 39.01°
1, = 0.9054 [-0.17%]
1,=04248
w, =0.9826
2X Bases y, ="06294 38.78°
1, =09037 [-0.75%]
1,=04284
With Damper Windings
y, =0.8834
Bases y, =063 38.93°
1, = 09047 [-0.37%]
1,=04261
w, =1.1986
2X Bases y, ="0.6250 38.47°
1, =09013 [-1.55%]
1,=04333

*) 0.3, 0.2, 0.1 and 0.0] of the second and the first harmonics for self-stator and stator-rotor inductances,
respectively.

*¥) Percentage of deviation from the sinusoidal conditions (39.075) without harmonics.
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Three-phase stator fluxes and voltages are shown in figures 3.12 and 3.13.

Figure 3.14 shows the harmonic spectrum of the stator terminal voltages.

three phase stator fluxes (pu)

wt (rad)

Figure 3.12. Three-phase stator fluxes for distorted operating conditions in the presence of

space harmonics (Table 3-2, row 4)

three phase stator voltages (pu)

Figure 3.13. Three-phase stator voltages for distorted operating conditions in the presence

of space harmonics (Table 3-2, row 4)
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Figure 3.14. Harmonic spectrum of SG terminal voltage (Table 3-2, row 4)

Case 3- Non-Sinusoidal Operation with Time and Space Harmonics:

In this case, the interaction of space and time harmonics and their effects on the rotor
harmonic currents and load angle are investigated. Space harmonics are assumed to
be at 2x Bases, as defined in Case 2. The selected time harmonics for the base level,
Baser, were 0.03pu, 0.02pu, 0.01pu and 0.001pu for the 3 to 9 harmonics,

respectively.

To highlight the impact of current harmonic phase angles two values of phase angle,
0 and 7/2, are considered at each time harmonic level. The results given in Table 3-3
demonstrate that harmonic phase angles have considerable impact on the steady-state

performance of the synchronous generator.

Table 3-3 also shows the impact of time and space harmonics on the synchronous

generator parameters with and without damper windings.

Figures 3.15 and 3.16 show stator fluxes and voltages in the presence of time and
space harmonics, with and without damper windings. In the cases with damper

windings three windings were considered, two along the g-axis (L;,L, ) and one

along the d-axis (L, ).
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Table 3-3
Impact of space and time harmonics on stator parameters, induced rotor current harmonics
and load angle (space harmonics are at 2X Base level of Table 3-2)

Time Harm Stator Parameters Load Angle CY)
[%A "]
Without Damper Windings
w, =0.9082
—-0.6287 ,
Baser" (g™ —¢) Y, 38.78
' I, = 09037 [-0.75%]
1, =04284
w, =09677
y =-0.6379
Baser(g(") =z /2) ! 39.47° [+1.01%]
1, = 0.9087
1,=04175
w, =0.8340
—-0.6289 .
2X Baser(g(") —¢) Y, 38.71
' 1, =0.9034 [-0.80%]
1,=04288
y, =09422
y, =-0.6471
2X Baser (" =z/2) ! 40.10° [+2.62%]
1, =09133
1,=04075
With Damper Windings
y, =1.1948
—-0.6249
Baser™(g(") =) Y, 38.47°
' 1, = 09013 [-1.55%]
1,=04333
w, =1.1933
—-0.6124 ,
Baser(g") = z/2) Y, 38.18
' 1, =089I [-2.29%]
1,=04378
w, =1.1909
—-0.6248 )
2X Baser (g(") ) Y, 3847
' 1,=09013 [-1.55%]
1,=04333
w, =1.1976
—-0.6259 .
2X Baser( gt = z/2) Y, 38.53
' 1, = 09017 [-1.39%]
1,=04324

) 0.03pu, 0.02pu, 0.01pu and 0.001pu for the 3" to 9™ harmonics, respectively.
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(nd) saxnyy Jorels aseyd a1y}

(nd) soxnyy Jotess eseyd saiy

)

(b
Figure 3.15. Three-phase stator fluxes in the presence of time and space harmonics;

(b) with three damper windings (Table 3-3,
row 10)

(a) without damper windings (Table 3-3, row 5),
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three phase stator voltages (pu)

three phase stator voltages (pu)

wt (rad)

(b)

Figure 3.16. Three-phase stator voltages in the presence of time and space harmonics
(a) without damper windings (Table3-3, row5) and (b) with three damper windings
(Table3-3, row10)

Harmonic spectra of the synchronous generator stator voltages with and without
damper windings are shown in Figure 3.17. It is observed that damper windings can
reduce the amount of voltage harmonics and also improve the terminal voltage

balance.
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Comparing Figure 3.14 with Figure 3.17 shows that the interaction between time and
space harmonics introduces unbalanced voltages in stator terminals at the
fundamental and harmonic frequencies. However, damper windings are effective in

regulating the three-phase voltage and decreasing the harmonic components.

1.2
14
3
< 0.8 -
5 | Phase a
% 0.6 - m Phase b
E B Phasec
2 0.4 -
S
0.2 1
0 -
1 3 5 7 9
Harmonic order
(a)
1.2
14
3
5 0.8 -
5 | Phase a
% 0.6 - m Phase b
E B Phasec
> 0.4 1
3
0.2 -
0 4
1 3 5 7 9

Harmonic order

(b)

Figure 3.17. Harmonic spectra of SG terminal voltages; (a) without damper windings (Table

3-3, row 3), (b) with damper windings (Table3-3, row 8)

The rotor current waveforms under sinusoidal and distorted conditions are

demonstrated in Figure 3.18. This figure shows that under sinusoidal steady-state
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operation, there is no current in the damper windings while DC current flows in the
field winding. From the nonlinear model of the generator (Equation 3-19 and Figure
3.4), it is observed that under distorted conditions, even orders of harmonic currents
will be induced in the rotor windings.

Rotor Currents

1.6F B
1.4 -
Field winding current
1.2¢ B
1r i
0.8+ i
0.6+ i
0.4+ B
0.2l Damper windings currents i
0 i
L L L L L L L L
0 2 4 6 8 10 12 14 16 18
Time (sec) X 10°
(@)
Rotor Currents
1.8 T T
1.6 W 1
1.4 -
Field winding current
1.2¢ B
1r i
0.8+ i
0.6+ b
0.4+ B
0.2} Damper windings currents E
P e s ]
_02 L L L L L L L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
Time (sec)
(b)

Figure 3.18. Rotor currents; (a) sinusoidal conditions, (b) in the presence of time and space

harmonics
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Time Domain Simulation of the Electromagnetic Torque:

As mentioned in Section 3.4, the presence of harmonics can impose pulsating torque
on the rotor shaft. In this section the produced electromagnetic torque is calculated
and plotted in the time domain. This approach allows the impact of all harmonic
components to be considered. The electromagnetic power calculation is based on the
instantaneous stator currents and rotational voltages [52].

This simulation is performed using Matlab and Simulink and a nonlinear model of
the synchronous generator (Equation 3-19).

The electromagnetic torque is related to the instantaneous power flows across the air

gap from stator to rotor via the actual rotor speed (@, ) by the following equation:
T,,t)=P,, () o, (3-29)

where for polyphase AC machines, the electromagnetic air gap power is defined as
the product of the instantaneous rotational voltage component in each armature phase
and the instantaneous phase current. Hence, the produced electromagnetic power is

calculated using the following equation [52]:
Py =8,y + ey + 6,0, = Egped gpe (3-30)

Where, ¢,,¢,and é.are the rotational phase voltage terms and i,,i,and i, are the

stator three-phase currents.

The rotational voltage components are defined as:
Eabc = .abc-l (3-31)
Where,

Labc = dLabc /dt

Taking phase “a” as an example, Equation 3-31 becomes:

8, =(dLy, | db)iy + (dLyy, 1 d0iy + (dLg, | d0)i, + (dLyp 1 di)ip +(dLyp | d)ip +

3-32
(dLaG /dt)lG + (dLaQ /d[)lQ ( )

Similar expressions can be written for é,and é,..

The overall block diagram of the simulated model in Simulink is shown in Figure
3.19. Figure 3.20 shows the block diagram for the electromagnetic torque

calculation.
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Figure 3.21 demonstrates the instantaneous electromagnetic torques under sinusoidal
and harmonic operating conditions (Table 3-3, row 6). In Figure 3-21(a), the
produced torque in the sinusoidal system is compared with that produced in the
presence of space harmonics. It is observed that space harmonics can cause
pulsations in the electromagnetic torque.

Figure 3.21(b) shows that the interaction between time and space harmonics can
result in higher electromagnetic torque perturbations.

Produced Torque

L ™\ . N RN N ™ .
0.9¢ T % _ 7 N v
0.8 B
0.7r i
0.6 B
0.5+ i
0.4+ B
0.3+ i
0.2 ; - . b

— Sinusoidal conditions
0.1+ —— with space harmonics | |
O 1 1 1 1 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
Time (sec)
(@)
Produced Torque
1.4 T T
1.2 B
e N VR -
/ ~— N\ - N
1 \ i
/ N —
0.8}/ \ \ |
. \
\\ / k\ /
0.6 - B
0.4+ 1
0.2+ Sinusoidal conditions B
—— with time and space harmonics
0 L L L L L L L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
Time (sec)
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Figure 3.21. Electromagnetic torques in the presence of (a) space (b) time and space

harmonics
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Time Domain Simulation of the Rotor Angle:

The rotor angle can also be calculated in the time domain using the electromagnetic
torque. This allows further validation of the proposed modified rotor angle
calculation method outlined in the previous section.

The variations on rotor angle are related to the electromagnetic torque via the
equation of motion (swing equation).

Applying the electromagnetic torque from Figure 3.21(b) to the synchronous
generator results in rotor angle variations as shown in Figure 3.22.

Rotor Angle
0.694 T

0.692 B

0.69

0.688 |-

0.686 -

0.684

0.682

0.68

0.678

0.676 : ‘ ‘ ‘ ‘
0

1 2 3 4 5 6
Time (sec)
(a)
Rotor Angle
0.725 T
0.72 B
0.715}
0.71 1
0.705 -
0.7+
0.695 -
0.69 -
0.685 -
0.68 L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4
Time (sec)
(b)

Figure 3.22. Rotor angle; (a) sinusoidal conditions, (b) in the presence of time and

space harmonics
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3.6. Conclusions

In this chapter, the operation of a synchronous generator under distorted operating
conditions was investigated. A nonlinear model of synchronous generator in the
harmonic domain was used to compute the modified stator flux in the presence of
time and space harmonics in the abc-frame of reference. The effects of damper
windings, interaction between time and space harmonics, as well as harmonic phase
angles were included and investigated. Park transformation was applied to compute

the fundamental component of the modified stator flux and the load angle.

The presence of harmonics in a power system can modify the steady-state operating
conditions of synchronous generators. This can cause variations in the induced
fundamental component of the stator flux in the synchronous generator, which will
result in an increase or reduction in the generated power and hence affect the rotor

angle (tables 3-2 and 3-3) and dynamic behaviour of the power system.

Harmonics also impose pulsating torques on the shaft and change the constant
component of the electromagnetic torque. They can produce unbalanced three-phase

fluxes in stator windings and inject zero sequence voltage into the system.
The main contributions are:

* Time and space harmonics introduce new terms in the main machine equations
(Equation 3-19) and may change the steady-state operating point in highly non-

sinusoidal environments.

e The fundamental component of the stator flux will contain additional terms due
to the interaction between time and space harmonics (Equation 3-24). The modified

stator flux is a function of the non-sinusoidal operating conditions.

® Time and space harmonics will change the steady-state operating parameters of a
synchronous generator (equations 3-23 to 3-28 and tables 3-2 and 3-3). This may
cause variations in system dynamic behaviour as will be demonstrated in the

following chapters.

¢ The induced harmonic currents on damper windings are considerable (tables 3-2

and 3-3) and their impacts on the rotor angle should not be ignored.
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e Harmonic phase angles have influence on the steady-state performance of a

synchronous generator (Equation 3-25, tables 3-2 and 3-3).

The new operating conditions may trigger some unpredicted problems in the power
systems, such as: moving the system eigenvalues, which can cause system instability

and modifying the system harmonic resonance points.

Results of this chapter including the modified load angle and fundamental stator

fluxes are used for stability studies of distorted power systems in following chapters.



CHAPTER FOUR

SMALL-SIGNAL STABILITY ANALYSIS OF
DISTORTED SMIB SYSTEMS

4.1. Introduction

The previous chapter showed that the presence of harmonics can affect the steady
state operating conditions of a synchronous generator and apply additional terms to
the machine fundamental components. This chapter investigates the influence of
these changes on the small-signal stability of a Single Machine Infinite Bus (SMIB)

system.

The dynamic behaviour of a power system is determined by fundamental and high
frequency oscillations. The high frequency oscillations decay rapidly in the power
system and do not have considerable effect on the system small-signal stability.
Therefore in this thesis, the impact of harmonics on the system dynamic behaviour is
investigated through their impact on the fundamental components of the system
parameters. The previous chapter showed that the additional terms into the
fundamental components of the stator parameters (fluxes, voltages and currents) are
functions of the (non)sinusoidal stator currents, winding structure and the load angle.
It means that even considering the constant harmonic values in the period of the
dynamic fluctuations, the magnitudes of these additional terms will change by the
change of the load angle. This influences the small signal stability of the system and
may relocate the system modes. Consequently, harmonic pollution in power system
tends to initiate and/or amplify stability problems in distorted power systems.
Especially, the increasing application of nonlinear loads and distributed generation
due to renewable energy sources in interconnected and isolated power systems
causes concerns with respect to the impact of harmonics and poor power quality on

the performance and stability of synchronous generators.

56
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In this chapter, the eigenvalues analysis method is used to investigate the influence
of harmonics on small-signal behaviour of a distorted power system. Dynamic
stability of the power system is evaluated based on the Lyapunov’s first method as
described in Chapter 2. The system state space equations are calculated by
linearizing the differential equations around the operating point using an analytical
method. As the system equations will be very complex in the presence of harmonics,
a SMIB system is chosen to simplify the calculations. This system helps
understanding the behaviour and stability of large Multi Machine Multi Bus power
systems. Also, a simple model is considered for the generation bus and the impacts
of the excitation system and turbine-governor are not included. The reason for that is
to further simplifying the calculations. However, a similar method can be followed to
include the dynamics of these components. A complete model of the generation

buses in an actual system is studied in Chapter six.

A general configuration of a distorted power system is shown in Figure 4.1. For
dynamic analysis, the system is simplified as a single synchronous machine
connected to a large system as shown in Figure 4.2. Note that space harmonics are
included at the generator bus and time harmonics are considered at the distorted

infinite bus.

(h)

E (h)
! A Z, 5 LB
t — H
> :]4 Distorted Large i
f— System H
V4 . -

Z3
NLL 1 NLL 2 NLL 3

Figure 4.1. A distorted SMIB power system

4.2. State Space Equations of a Distorted SMIB System

The eigenvalue analysis method is used to conduct the small signal stability studies
of a distorted SMIB system, shown in Figure 4.2. The influences of nonlinear loads

in the system are considered as harmonic voltages at the infinite bus. The voltage
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harmonics at the infinite bus and the corresponding current harmonics through the

transmission line can be calculated using harmonic power flow methods.

In this section, the effects of damper windings on small-signal stability are ignored.

These will be included in the next section.

(E"£8)+E" (E"£0)+E"
| RE ! XE | Distorted
SG | N Infinite Bus
T( T

Including Space
Harmonics

Figure 4.2. A distorted SMIB system equivalent circuit

The system state space equations are arranged in the following general form [2]:

ACr Ay AT

AS  |=[A]lAS +[B]{ AE’" } 4-1)
R d

AV 1 AV 1 *

where matrices [A] and [B] are calculated using the linearized swing equation and

the rotor circuit dynamic equation as follows:

dAw 1 i

Tr:ﬁ(ATm_ATe( )_KD Aa)r)

dia—w Aw 42
dt 0 r (4-2)
dA

$=wo(ﬁem ~Rpq Al )

In the above equations, K is the damping factor (“pu torque” divided by “pu

angular velocity”) and H is the unit inertia constant. The electromagnetic torque at
synchronous speed due to the fundamental and harmonic currents and Voltages,Te(l),
is computed using the following equation [2]:

Te(I) — ‘//gmnd ified ) lgl) _ ‘//gmod ified ) l;]) (4_3)

yredied)and ymedified) are the modified fluxes and contain additional terms due to

the presence of time and space harmonics. These can be computed using Equation 3-

24, which is repeated as follows:
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(1) _ . (modified) _ (1) (1) ;(DC) due to harm
Vi =Va =-Lyiy +Mp I Yy (4-4)

(1) _, (modified) _ 5 (1) due to harm
Vo =Vq =—Lyiy +yy

To computed currents ig) and i L(]D , the system and machine equations are written and

solved. It should be mentioned that the method employed is similar to the
conventional one, however including the harmonics make the calculation more

complex.

System Equations:

The system equation is written in the abc-frame [2]:
=(1 . F(1) | (1
Ef"Y =(Rp+ jx g IV + EGV (4-5)

The above equation is transferred into the dg-frame of reference:

=Ryl - x il +EV])

el =R il 4 x itV + EC (0
g “hgl Eld Bq

where:

(1) _ (1) (1) _ (1)

e =E;" sin(6;) |Eg/=Ep’ sin(d)

@ ’ B (4-7)

ei]]):Et(I)cos(é‘i) E%{I)ZEgl)cos(é‘)

From equations 4-6 and 4-7, the rotor angle (J,) can be calculated as a function of

the system parameters:

1) . (1 .
EJ(B )stn(§)+RE1£1 )—XEZ;])

) (4-8)

d; =arctan(
EY cos(8)+ Ril!) + X il

Machine Equations:

The fundamental stator voltages in the dg-frame of reference have the following

conventional form [2]:

(1) _ (1) (1)
ed __Rald _yjq

(1) _ (1) (1)
e, =—R,i, +y,

(4-9)

And the field winding current can be calculated as:
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(1 ;)
1, = Ve M (4-10)
Lp

Using equations 4-6, 4-7 and 4-9, the fundamental stator currents are obtained:

(1)
M
XTq['//Fd( LF )—Eg)c'()s(5)+;//dd"ew harm]_(y/guetoharm +E1(91)sin(§))RT
(1) _ F
iy = D
y
RT['//Fd( F )—E%l)c'()s(5)+;//5uem harm]+('//;itte to harm +E%1) Sii’l(&))XTd
(D) Lr
4 D
XTq =XE+Lq
(1) 2
(Mg")
Xpg=Xp+L; ——E"—
Ly 4-11)
RT:RE+RLI

D=Xg, Xgq+R7

In order to identify the system eigenvalues, the electromagnetic torque is linearized

around the operating point:

1 1) (1 1 (1 1) (1 1 (1
arf = ayV il vyl Al —ay(D il -yl il (4-12)

The initial values of the stator currents and fluxes can be calculated using equations
3-28, 4-4 and 4-11. Deviations of the stator fluxes and currents should be calculated

as a function of state variables in the general form of:

A =€, AYy, +ey; A0 (4-13)
f =i VoV,

Linearizing Equation 4-11 around the operating point, deviations of the stator

currents are COI’Ilpllth as:

Aig” :mlAl//Fd +m2A5+m3Al//j”e to harm +m4Al//gue to harm
due to harm

q

due to harm (4_14)

Al = Ay g + 1y AS + n3 Ay +ny Ay

'oLp 7 D
R My RiEY sin(8)+ Xy, By’ cos(8) Ry X5

X, M} " X, Ey’ sin(8,)— R, Ey’ cos(6,) X, R,

m, = , my=———

'L.p 7 D

3T, M=
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The deviations of the additional stator flux components (ay %« ™mand Ayg " hem)
are also calculated as a function of state variables.
Considering constant harmonic currents in the field winding during perturbation, and

using Equation 3-25, Ay k™ and Al//d”e 0 harmcan be determined as a function
of A@,, where 6, = (5, —n/2). 6; is equal to 0, for the steady-state operation.

A l//;lue to harm =N A9~

Al//due to harm =M Ae (4_15)
where
P h+l h-1 h
N=(—h)(F—)(M$7 P M) )sin(he, - 64 )-
(h'
(ks )(L(h“))sin(h'eo -6(")
h
_(h)( )(M(h+]) M(h I))cos(hﬂo H(h))+
( ) ,
(kIS )(L(,f”“)cos(h'ﬁo—ﬁif’
From Equation 4-7:
(1) .(1) (1) .
-Xg +EY sin(0)
o; =arctan( P), P= f]) (1) (B])
Rpi,/ +Xp +Eg " cos(d)
A5, = 21 [AAS+B ALY +Caill) ]
Po +1
(4-16)

B _P|5 Ok =gy =i

_ 4P| B= ap C= i

_d5 5 T (1) ’ _d'(l)

5_50 ld_l{m lq_lqo dl” o= 5 151—1510 lq_lqo lq §=§o,id=i{10,iq=iq0

and A6; = AS;.

Substituting A¢; into Equation 4-15:
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N
Ayt = [AAS + BAiy’ +C A" ]
‘ Py +1 ‘ !

M
P’ +1

(4-17)

due to harm __

Ay,

[AAS+BAi)’ + CAil"]

Solving equations 4-4, 4-14 and 4-17, deviations of the stator currents and fluxes can

be computed in the desired form:

(1 1
Al; ) =g 41 AW g + 84248 AV’; )= f1 AW Eg + f12 A8

, (4-18)
Ai;“ =81 AYFq + 8§ 040 AV/;U =fAVra + [;246

where f and g are functions of the initial values of the stator currents (fundamental
and time harmonics), stator fluxes, steady-state load angle, rotor currents (dc and

harmonic components) and space harmonics (Details are given in Appendix B).

Substituting the expressions for the stator currents and fluxes from Equation 4-18

into Equation 4-12, the deviation of electromagnetic torque is calculated as:

AT, = Kl(harm )A5+thurm )Al//Fd

h (1 1 (1 1
KU =0 fan Va0 802 =100 Fa2 =¥ g 82 (4-19)

h (1 1 (1 1
kS = l,(,o)fau ¥ g g =il far —W,(,o)gdl

Linearizing the field circuit dynamic equation around the operating point gives:

Ay gy =wy(Adepg —Rpg Al ) (4-20)

From equations 4-10 and 4-18:

1 1
gdlMI(r) gdzM()

Al =(L+ YAY L, + (FE—E)AS (4-21)
Lp Lp

F
Using equations 4-2, 4-19 and 4-20, the state space equations for the distorted SMIB

system are obtained in the desired form:

A(f)r a a;;mrm) a;?urm) Awr by, 0 Tar

A5 |=la,, 0 o |las |+|o o " (4-22)
. ( harm ) ( harm ) Aefd

4 Y fa 0 ay ass A4 7 0 by

where
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( harm ) ( harm )
__KD (harm)__KI (harm)__KZ
ap = » App = » A3 =
2H 2H 2H
az =0y
-R,,w,8,,M"! Ry, (1+g, M)
(harm) _ Fd P98 a2M (harm) _ Fd %o 841
sz = L » Q33 = L
F F
1
by =——
2H
by, =,

Two points are important to note in the above analysis:

Firstly, the spectra of the injected stator harmonic currents due to the presence of
nonlinear loads are assumed to be constant and can be measured at the synchronous
generator bus or calculated by performing harmonic power flow calculations.

However, the approach is valid for any given stator harmonic configuration.

Secondly, the induced rotor harmonic currents are computed using the proposed
synchronous generator nonlinear model of Chapter three for distorted steady state

operating point and is assumed constant during the perturbation.

Figure 4.3 shows a block diagram representation for evaluating the dynamic
behaviour of the distorted SMIB system shown in Figure 4.2. Constants
g(harm) | g Gharm) - gelharm) - g(harm)and - r{**™) account for dynamic characteristics of
the system and are functions of the synchronous generator parameters, system initial

conditions and the harmonic distortion levels. These constants also include additional

terms due to the interaction between time and space harmonics.

2

Time and Space
Harmonics

-

KLhaﬂn)<

Figure 4.3. Modified Heffron- Phillips model of the distorted SMIB system for dynamic

studies
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Ignoring the presence of harmonics, the block diagram of Figure 4.3 and the
expressions for the constants will be identical to the conventional forms of sinusoidal
analysis [2]. However, when considering harmonics the values of the constants are

modified as follows:

k("™ and k("™ as defined in Equation 4-19,

h (1 1 (1 1
K; am ) — l((]())de + '//go)ng _lgo)fqz _'//go)gdZ

h (1 1 (1 1
K; am ) — l((]())fdl 'H//t(lo)gql _lt(lo)fql _Wgo)gdl

(harm )

b a
thurm) __ (h32 ;. tharm) __132 (4_23)
a33urm b32
i
T3( harm) = harm
“2’3 !
where a{2™) | alh™ and b,, are defined in Equation 4-22.

4.2.1. Impact of Damper Windings on the Dynamic Behaviour of a

Distorted SMIB System

Under sinusoidal conditions, damper windings can improve dynamic behaviour of
the power systems [2]. Chapter three shows that for harmonically polluted
conditions, damper windings affect the steady-state operating parameters of a
synchronous generator, such as the load angle.

To investigate the impact of damper windings on the dynamic behaviour of the

distorted SMIB system, three damper windings, one on the d-axis ( L, ) and two on
the g-axis ( L;,L, ) are included in the generator model. Additional rotor circuit

equations are as follows:

dyp

=D — @Ry 1
dt 0D 1D
d
% =-—yRg I (4-24)
dy,
—L=—ayRy I
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The damper windings’ fluxes are considered as the additional state variables in the

system state equations.

To calculate the system state matrix, a similar approach as outlined in Section 4-2 is
followed with some modifications of the machine equations to include the damper

windings:

Stator fluxes:

'// W(modlﬁed) L l.(]) +M(]) I +M(]) I +W‘ziiueto harm (4 25)
'//21) WS]mOdlﬁed) _ L l(])+M(I)I +M£2])I +Wduetoharm
Rotor fluxes:
l// ——MFl( )+LFIF+LFDID
l// =—MDl( )+LD1D+LFDIF
(4-26)

l//G =—MGl.2 )+LG IG +LGQ1Q

.(1
l//Q :—MQZSI )+LQ IQ +LGQIG

Expressions for the deviations of the additional fundamental stator fluxes due to

harmonics in dq axes (Equation 4-15) are modified as:

Al//jue to harm —NA9~

Al//due to harm -M Ae (4-27)

where
J(h
= > (—hyE- K )(M(h+1)+M(h D)) sin(hgy -6 ) -
K=F,D

h
z (h)( [; )(M(h+1) M(h “)(,()S(/’leo g(h)) (/’l)k( S )([,(h+1))Sln(h90 e(h))
K=G,0

= (h)( )(M””“ MY )cos(h6y - )+
K=F,D

(h
—h (K K )(M”‘*“ M) )sin(hy — 88 )+ (h )k(=S— S WL yeos(h 6y -6 )
K:GQ

Using equations 4-6, 4-7 and 4-9 along with equations 4-25 and 4-26, the deviations

of stator and rotor currents can be calculated as:



Chapter 4: Small-Signal Stability Analysis... 66

Stator Currents:

Ai&“ =myAS + myAy p + m3 Ay, + my Ay + msAy,

Aiﬁ,“ =n A8 + Ay p + 3 Ay +ny Ay + nsAy (+28)
Rotor Currents:

Alp = FAS+ B Ay p + AW p + FAAYG + FsAy g

Alp = DA+ DyAyE + D3Ayp + DyAy G + DsAy 4-29)

Al =GIAS+GrAYE +G3AY p +G4AY G + GsAy

Alg =Q1A6+ Ay + Q3AYp + 04AY G +0sAY
where the expressions for the coefficients m, n, F, D, G and Q are presented in
Appendix B, equations B-11 and B-12.
Next, the stator fluxes (Equation 4-25) are linearized around the operating point
using Equation 4-27 and the expressions for the stator and rotor currents are
substituted from equations 4-28 and 4-29 to get:

At//;” = 85140+ 524V p +534Y p +544Y + 554y

| (4-30)
A(//ﬁ[ ) =t1A§+l‘2Al//F +t3Al//D +t4Al//G +t5Al//Q

where coefficients ‘ 5 to s5° and ‘ 7,to t5’ are defined in Appendix B, Equation B-

13.

Using the above equations, the electromagnetic torque (Equation 4-19) is modified to

include the fluxes of damper windings; as follows:

ATe _ Kl(harm)A5+K£harm)A‘//F +K§harm)Al//D +K‘(‘harm)Al//G +tharm)Al//Q

h (1 1 (1 1
R I e

h (1 1 (1 1
KD 215y b 8 -,

h (1 1 (1 1
I R VA

h (1 1 (1 1
K£ am) = ’;0)S4 + ‘//210)”4 _’ito)t4 - ‘//,(10)’"4

h (1 1 (1 1
Kg am) = ’;0)S5 + ‘//Zio)”s —’;o)ts —‘//((;o)ms

(4-31)

Linearizing the rotor circuit dynamic equations (Equation 4-23) and substituting the
electromagnetic torque deviation (Equation 4-30) into the swing equation, the

following state space equations are obtained for the distorted SMIB system:
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[ A _ Jl4w _ ;
Aé‘r a, a%mrm) a;garm) ag(/:arm) a;garm) aggarm) Aér b” 0
. a, 0 0 0 0 0 0o 0|
A'//F B 0 agémrm) ag.;’a””) aggarm) ag?arm) aggarm) A'//F .\ 0 by ATm (4_32)
A l//D - 0 a;garm) ag;tarm) aggarnz) a‘(l;tarm) a;garm) A l//D 0 0 _Aefd
A '//G 0 aggmrm) ag;tarm) aggarm) ag?arm) aggarm) A I/IG 0 0
§ (harm) (harm) (harm) (harm ) (‘harm)
Av/ I 0 621(17'7’ aéjurm a64mrn aéjurm aéémrn | AWQ L 0 0 |
L7702 L ]
where
(harm) (harm) (harm)
i = KD a(harm) _ K] a(harm) _ K2 a(harm) _ K3
11 2H 12 2H > 413 2H > 414 2H >
(harm) (harm)
a(harm) _ K4 a(harm) _ KS
azl = o
(harm) (harm) (harm)
axp = Rpogh, a3 = Rpogh), a3 " = Rpogls,
(harm) (harm)
azs = Rpagly, a36 " = Rpogls
(harm) (harm) (harm)
agy "= RpwgDy, ay3 " = RpwgDy, ayy " = RpwyDs,
(harm) (harm)
ags = RpwoDy, age = RpwyDs
(harm) (harm) (harm)
as; = RgogGy, as3 = RgwgGy, as4 " = RgogGs,
(harm) (harm)
ass = RgwoGy, asq " = RgwyGs
(harm) (harm) (harm)
agy = RgwoQ), agz3 " = RgwoQa, agy " = RgwpQs,
(harm) (harm)
aes = RgwoQs, age = RgwoQs
b= b
= 7’ = w
1 2H 32 0

4.3. Dynamic Simulation of a Distorted SMIB System

The small-signal stability of a distorted SMIB system, shown in Figure 4.2, is
investigated using eigenvalue analysis. The synchronous generator characteristics
used are the same as those presented in Section 3.5. This generator is connected to
the infinite bus through a transmission line with the total reactance of 0.65pu. Results
for different harmonic levels are compared to results for sinusoidal operation and the

impact of damper windings is investigated.
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Case 1- Sinusoidal Operation:

The system is assumed to be sinusoidal and the synchronous generator is delivering
555 MVA at 0.9p.f. (lag) at rated terminal voltages. The effect of magnetic saturation

is neglected.

The system initial conditions and eigenvalues are calculated for the synchronous

generator model with and without damper windings.

(a) Without Damper Windings

The system initial conditions are the same as those in Section 3.5:
L4=1.5360, L,= 1.4940

6,=39.0757, 1,,=0.9058, 1,=0.4239
Using Equation 4-22, the system eigenvalues and the corresponding damped
frequency and damping ratio are calculated as:

Ayp =—0.1232+6.0218}, ( @, =0.95Hz, { =0.02)
Ay =—0.0901

Examining the participation matrix, the oscillatory mode is found to be associated

primarily with the rotor speed and rotor angle:

0.5003 - 0.0102i 05003 + 0.0102i -0.0006 Aw,
P=| 05003 -0.0102i 05003 + 0.0102i -0.0006 A6
-0.0006 + 0.0205; -0.0006 - 0.0205; 1.0012 - 0.0000i | Ay 4
A A A

Figure 4.4 shows the time response of the synchronous generator speed and
electromagnetic torque variations when the generator subject to a mechanical input

power change of 0.1pu, at t=5sec.
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x10° Linear Simulation Results

rotor speed variations (pu)

0.15

torque variations (pu)

0.05

Time (sec)

Figure 4.4. Time response of rotor speed and electromagnetic torque variations with input

power perturbation under sinusoidal conditions and without damper windings

(b) With Damper Windings

Three damper windings are considered on the rotor, two on the g-axis and one on the

d-axis. The system initial conditions and eigenvalues are calculated as follows:

8,=39.0757, 1,,=0.9058, I ,=0.4239

Using Equation 4-32 with no time and space harmonics, the system eigenvalues are

calculated as:

Ay =-36.54

Ay =-22.67

A34 =—0.2035%6.0841j, (g =0.97Hz, { =0.033)
As =—0.085

Ag =—181

The participation matrix indicates that oscillating modes are associated with the rotor

speed and rotor angle.
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[-0.0024 -0.0014 0.5029-0.0067;  0.5029+0.0067i —0.0006 —0.0014] Aw,
—-0.0024 -0.0014 05029-0.0067i  0.5029+0.0067i —0.0006 -0.0014| A6
pe 0.0123 0 0.0027+0.0191  0.0027-0.0191: ~ 0.9791  0.0032 |4y,
0.9926 0 —0.0054-0.0063; —0.0054+0.0063; 0.0183 0 Ay,
0 0.0471 -0.0003+0.0027i -0.0003-0.0027;  0.003 0.9505 [4¥¢
0 0.9556  —0.0028-0.002/  —0.0028+0.002;  0.0008  0.0491 | 4y,
A Z 8 A As Z

Comparing the results to the case with no damper windings shows the frequency of
the oscillating mode has increased very slightly from 0.95Hz to 0.97Hz and the
damping ratio is improved from (0.02) to (0.033). However, dampers have also
slightly shifted the field circuit mode toward the right hand side of the s-plane (from
-0.09 to -0.085).

The results match in principle with the results of Example 12.5 from [2], which
shows the impact of damper windings on the system dynamic stability for sinusoidal

conditions.

Figure 4.5 shows the synchronous generator speed and electromagnetic torque
variations when the system is subject to an input power change of 0.1pu. Comparing
this figure to Figure 4.4 shows that damper windings have improved the torque

damping coefficient.

x10° Linear Simulation Results

rotor speed variations (pu)

torque variations (pu)

Time (sec)
Figure 4.5. Time response of rotor speed and electromagnetic torque variations with input

power perturbation under sinusoidal conditions and with damper windings
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Case 2- Non-Sinusoidal Operation:

The same configuration and levels of time and space harmonics as outlined in
Section 3-5, Case 3 are considered and the generator is delivering its rated power to
the system. The steady-state parameters including the load angle, stator currents and

stator fluxes are the same as those listed in Table 3-3.

a- Without Damper Windings

Table 4-1 shows the impact of time and space harmonics on the eigenvalues of the
distorted SMIB system (using Equation 4-23) when ignoring the impact of damper
windings.

Table 4-1

Impact of space and time harmonics on the eigenvalues of distorted SMIB system
(without dampers)

Damped Freq. (@, ) and
Time Harmonic Level System Eigenvalues
Damping Ratio (f )
A, =-0.1232£6.0218i @, =0.9584
No harmonics '
Ay =-0.0901 £=0.0204
1: Baser” A, =—-0.1103+6.3021i @, =1.003
(" =0) A = —0.0966 £=0.0175
2: Baser A s =—0.1595+5.4738i @, =0.8711
(6" =xs2) A ==0.0517 & =0.0291
3:2X Baser A =-0.108+6.303i w, =1.003
(6" =0) A =—0.0994 £=0.017
4:2X Baser’ Ay, =-0.2338+4.4171i @, =0.703
(" =zs2) A, =0.0348 £=0.049

) 0.03pu, 0.05pu, 0.02pu and 0.01pu for the 3™ to 9™ harmonics, respectively.

The results demonstrate that when the level of the harmonic distortion is increased,
considerable variations in the system eigenvalues are observed. The influence of
phase angle can not be neglected as it may cause instability on the system by shifting
the eigenvalues to the right hand side of the imaginary axis in the s-plane (row 6 of

Table 4-1).
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At harmonic level 4 (row 6 of Table 4-1), the system becomes unstable through the
non-oscillatory mode. From the participation matrix, it is observed that the unstable
mode is associated with the field circuit.

0.4996 - 0.0264i 0.4996 + 0.0264i 0.0008 | Aw,

P=| 04996 - 0.0264i 04996 + 0.0264i 0.0008| 40
0.0008 + 0.0528; 0.0008 + 0.0528; 09984 |4y

4 Z %
Figure 4.6 shows the system time response to a mechanical input power change of
0.1pu for harmonic level 4. It can be seen that although oscillatory modes have

positive damping, the system will be unstable through the non-oscillating mode.

Linear Simulation Results

rotor speed variations (pu)

torque variations (pu)

Time (sec)

Figure 4.6. Time response of rotor speed and electromagnetic torque variations subject to an
input power perturbation in the presence of time and space harmonics (without damper

windings) for the SMIB of Figure 4.2.

The torque synchronizing coefficients and damping coefficients for steady and
oscillating modes are presented in Table 4-2. It is observed that harmonics can
significantly change these coefficients. At harmonic level 4, the system becomes

unstable through negative steady synchronizing torque. This can be of great concern
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in weak or marginally stable systems (for example isolated or distributed generation

system).
Table 4-2
Impact of space and time harmonics on damping and synchronizing coefficients of the SMIB
system
Steady torque Oscillating torque
Time Harmonic Level Synchronizing and Synchronizing and Status
Damping Coefficients Damping Coefficients
. Ks=0.1803 Ks=0.6725
No harmonics Stable
KD=0 KD=1.7218
1: Baser Ks=0.2132 Ks=0.7235
(o =p) Stable
i KD=0 KD=1.5837
2B * Ks=0.0974 Ks=0.5844
- baser Stable
(oM —n/2) KD=0 KD=2.1058
3:2X Baser Ks=0.1316 Ks=0.6116
(6" =) Stable
i KD=0 KD= 1.9507
4:2X Baser Ks=-0.0292 Ks=0.3593
(h)_ Unstable
(6" =xs2) KD=0 KD=3.2493

#) 0.03pu, 0.05pu, 0.02pu and 0.01pu for the 3 to 9™ harmonics, respectively.

(b) With Damper Windings

Considering three damper windings on the rotor circuit, characteristics are the same

as Section 3.5, the system eigenvalues are calculated from Equation 3-32 and are

shown in Table 4-3 for four harmonic levels.
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Impact of space and time harmonics on the eigenvalues of distorted SMIB system

Table 4-3

(with dampers)

Time Harmonic Level

System Eigenvalues

Damped Freq. (@, ) and
Damping Ratio (§ )

A, =—-36.54
A, =-22.67 @, =0.968
No harmonics Ay4 =—0.203516.0841;
As =—0.085 ¢=0.033
A =—1.81
A, =-35.31
1: Baser" A, =-23.14 w,=1.123
(91_(”) :0) 2«3,4 = _0.0504 + 7.057] 5 —0.0071
A5 =—0.148 =0
As =—1.91
A, =-35.68
A, =-2325 @, =1.102
2: Baser Ayy ==0.11£6.92
(Hlfh):zz'/z) /15 =-0.118 §=0-0164
As =—1.90
A, =-35.27
3:2X Baser A, =-22.80 w,=1.145
(6" =0) Ay, =—0.025+£7.2 £ 00035
A5 =—0.151 =
As =—1.89
A, =-36.06
4:2X Baser A, =-22.83 w, =1.095
(6" =x/2) Ay =—0.1616.88; £ 00251
A5 =—0.103 =
A =—1.85

) 0.03pu, 0.05pu, 0.02pu and 0.01pu for the 3™ to 9™ harmonics, respectively.

Comparison of Table 4-1 and Table 4-3 indicates that damper windings have slightly

improved the relative stability of the mode corresponding to the rotor field winding

(A5). However, their impact on the oscillatory mode depends on both the level and

phase angle of the harmonic spectrum. Under the influence of harmonics, damper
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windings are less effective on improving the relative stability and damping ratio of
the oscillatory modes. The effectiveness is a nonlinear function of the magnitude and
angle of the system time and generator space harmonics. Therefore, the impact of
harmonics on the system stability needs to be studied individually for different

system harmonic levels.

The participation matrix for harmonic level 4 (7™ row of Table 4-3) shows that the

oscillatory modes (43,44 ) are associated with the rotor speed and angle. And the

eigenvalue with the lowest relative stability (As5) corresponds to the rotor field

circuit.

—0.001  0.0013  04993-0.0014;  0.4993+0.0014; —0.0002 0.0013 | Aw,
-0.001 0.0013  04993-0.0014i  0.4993+0.0014; -0.0002 0.0013| 46
0.0145 0 0.0008+0.0054i  0.0008—-0.0054i  0.9828 0.0012 |4y,
0.988 —0.0001 -0.0022-0.0024i -0.0022+0.0024i 0.0165 0 |4y,
0 0.0461  0.0003—0.0021;  0.0003+0.0021i 0.001  0.9524 |4V
—-0.0004 0.9515  0.0025+0.0019  0.0025-0.0019;  0.0002 0.0437 | 4¥,

A4 ) A A4 As A6

Figure 4.7 shows the system time response to a mechanical input power change of

0.1pu for harmonic level 4. Comparing this figure to Figure 4.6 shows the increase of

the relative stability of the field winding.

x 10 Linear Simulation Results

rotor speed variations (pu)

torque variations (pu)

Time (sec)

Figure 4.7. Time response of the rotor speed and electromagnetic torque variations subject to
an input power perturbation in the presence of time and space harmonics
(with damper windings) for the SMIB of Figure 4.2.
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4.4. Conclusions

In this chapter the small-signal stability of a distorted Single Machine Infinite Bus
system under the influences of time and space harmonics was investigated. The
modified model of a synchronous generator considering the impact of time and space
harmonics in the dg-frame and the eigenvalue analysis method were used. An
analytical method was used to calculate the system state space equations from the
differential equations. However, the additional terms due to harmonics made the
calculation more sophisticated. The impacts of current harmonic phase angles and

damper windings were also investigated.

The system simulation was performed for two different levels of time and space
harmonics. It was demonstrated that by increasing the level of harmonic distortion,
considerable variations in the system eigenvalues are observed. The influence of
phase angle cannot be neglected as it may cause instability in the system by shifting

the eigenvalues to the right hand side of the imaginary axis in the s-plane.

Simulation results for sinusoidal and distorted conditions were presented and the

following outcomes were achieved:

® Time and space harmonics change the elements of the system state matrix,

introducing new terms in stator current and fluxes (equations 4-22, 4-32).

¢ Time and space harmonics will change the system eigenvalues and hence affect

the system dynamic behaviour (Figure 4.6 and Table 4-1).

¢ Harmonic phase angles have considerable impact on the steady state and dynamic
behaviour of the system; they can move the locations of eigenvalues and cause

power system instability (Figure 4.6 and Table 4-1).

¢ Damper windings are effective in increasing the damping ratio of the oscillating
modes under sinusoidal conditions. However, they are less effective when

harmonics are present in the system (Figure 4.7 and Table 4-3).



CHAPTER FIVE

OPTIMAL SELECTION OF SSSC BASED DAMPING
CONTROLLER PARAMETERS IN THE PRESENCE OF
HARMONICS

5.1. Introduction

The concept of FACTS as a total network control philosophy was first introduced by
Hingorani [62] from the Electric Power Research Institute (EPRI) in the USA in
1988, although the power electronic controlled devices had been used in the
transmission network for many years before that. The application of FACTS in
electric power system is intended for the control of power flow, improvement of
stability, voltage profile management, power factor correction, and loss

minimisation.

Many FACTS devices connected in shunt, series, and series-shunt configurations
with or without magnetic or superconductive storage element have been proposed
and implemented [21, 63-66]. Supplementary control signals can be applied to some
FACTS devices to damp electromechanical oscillations in power system and increase
the system damping capability. These signals are produced by power oscillation

damping (POD) controllers.

Static synchronous series compensators (SSSC) are solid-state controllable voltage
source inverters that are connected in series with the power transmission lines. With
the injected voltage in quadrature with the line current and the capability of
dynamically changing their reactance characteristics from capacitive to inductive,
SSSCs are very effective for power flow control [67]. In addition, an auxiliary
stabilizing signal can be superimposed on their power flow control functions to

improve power system oscillations damping [23].

In this chapter, the dynamic behaviour of a distorted SMIB system installed with an

SSSC is investigated using eigenvalue analysis. An auxiliary POD controller is

77
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applied to the SSSC to improve the system dynamic behaviour. This PID controller
adds three state variables to the system state equations. An observability matrix is
used to determine the proper feedback signal from the system. The main goal of the
designed POD controller is to improve the damping of the critical modes while
minimizing any deterioration in the damping of the other modes, within the
permissible region of the controller gains. Hence, the design of the POD controller
can be considered as a constrained optimization problem and different optimization
methods such as nonlinear programming, simulated annealing and Tabu search can
be used. Most traditional optimization approaches move from one point in the
decision hyperspace to another point using some deterministic rule. They are fast, but

they suffer from the inability to escape the local optimal solutions.

In this work, optimal POD parameters for improving the power oscillation damping
are determined using a hybrid genetic-fuzzy algorithm. To ensure a dynamically
stable system in a wide spectrum of harmonic distortions, system eigenvalues are
computed for different levels of space and time harmonics and incorporated in the

proposed optimization method.

It should be mentioned that, there are many different types of SSSC main controller
available. They are also called power flow controller, as their main goal is to affect
the transferred power. However, using new methods they can also be effective on the
power system stability. In this work, it is assumed that the main controller affects the
power system steady state operation and has minimal impact on the system
dynamics. For this reason it is not necessary to include a model of the SSSC main

controller in the system dynamic analysis.

Simulation results for sinusoidal and distorted operating conditions are presented and
compared to show the ability of the proposed SSSC based POD controller in

remaining effective in distorted conditions.
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5.2.  Dynamic Behaviour of a Distorted SMIB Systems Installed with
SSSC

Installing an SSSC in a power system with a proper controller can affect the entire
system dynamic behaviour and relocate the system eigenvalues. In this section, the
eigenvalue analysis method is used to investigate the impact of harmonics on the

small signal stability of the distorted SMIB system installed with an SSSC, shown in

Figure 5.1.
(EM 25+ EM (&0 25)+ £
R, X ~
. | s X P Vs Distorted
| Y " SSSC Infinite Bus

Including Space

;(1) 4 ;(h)
Harmonics t t

vsc| —H— ._;n

Figure 5.1. The simulated distorted SMIB system installed with SSSC

The depicted SSSC consists of a boosting transformer with a leakage reactance of
X jssc , @ three-phase GTO based voltage source converter (V. ) and a DC capacitor

(Cpc). The influence of system nonlinear loads is considered as harmonic voltages at
the infinite bus. These voltages can be calculated using harmonic power flow
algorithms. SSSCs can inject voltage harmonics into the power system and increase
the level of harmonic pollution. However, the impact of SSSC in deteriorating the

system power quality is not studied in this thesis.

To derive the state space equations of the distorted SMIB system, the SSSC
differential equations are written and linearized around the operating point. Also the
system equations, equations 4-5 and 4-6, will be modified considering the reactance
of the boosting transformer and the injected voltage by the SSSC. Hence, the system
state space equations contain one additional state variable due to the introduction of

SSSC dynamics and can be calculated as Equation 5-1.
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A, Aw,
AS AS AT, (5-1)
o |=a +B| AE
AY Ay A '
. mnm
AVDC AVDC
The SSSC and system equations are as follows [23]:
SSSC Equations:
V sssc = mkVpcZ8
dVpc _ _mk_ . )
—= =——(i;’cos f+i,’ sin
i Cpe la cosPrig sinf) (5-2)

B=¢+90°

where, k is the ratio between AC and DC voltages and depends on the inverter

structure and ¢ is the current angle. Signal m is the modulation ratio of the Pulse

Width Modulation (PWM) based Voltage Source Converter (VSC), which is the

input control signal of SSSC and determines the magnitude of the inserted voltage.

The main controller determines the steady state value of this signal. Signal g is the

phase of the injected voltage and is kept in quadrature with the line current while

inverter losses are ignored. Therefore, the compensation level of the SSSC can be

controlled dynamically by changing the magnitude of the injected voltage. This

SSSC model, however, may not be valid for transient phenomena and/or

asymmetrical operating conditions [23].

Svstem Equations:

~1 ~(1 . F(1
Et( ):VSSSC +E1(3)+(RE+](XE+XSSSC ))It( !

1 1 (1 (1
eV =EQ) +Vgsea + Ry 18 (X g + X 0 )il

1 1 (1 /!
eg ) :El(f}q)+VSSSCq +RElSI )+(XE + X ssc )lt(i )

The machine equations can be written similar to equations 4-9 and 4-10.

(5-3)

Using the system and machine equations, the fundamental stator currents are

obtained as:
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(1)

due to harm

,-L(il) _ XTq[V/Fd( ) Ep, +yy 2 -mkVpc sin f3] _ (Wgue 0 harm +mk‘2/DC cos )Ry
Xry X7q+Rf Xg, Xgq+Rf
Rrlvra (] (1)) Eg, +y 0 ham kvpesin Bl due to ham
i((}) ~ Lyy q " Vd i (vyq +Epgy + mkV2DC cos B)Xry
Xr, X7+ R} Xr, X7+ RP
XquXE+ \\\c+lt[
1)
Xpi=Xp+ Xty —— (5 '4)
lel
R=R;+R,

An expression similar to Equation 4-12 is used to linearize the electromagnetic
torque around the operating point and the deviations of stator current and fluxes on
the dg axis are modified considering the impact of SSSC. These variables are

calculated in the following general form using equations 4-4 and 5-4:

A = alfAV/Fd +a2fA5+a3 Al//due to harm Al//:liue to harm +a5_fAVDC +06_fAm (5_5)
f = ld’ .q"//d"//q

Coefficients ajy —agy are functions of the initial conditions and the system

parameters. Ay} "™ and Ayd“hem are determined as a function of A6, in

Equation 4-15, where 6, =x/2-5; and 46; = AJ; .

From Equation 5-3:

(0] 1
Epq +Vsssca + RE ’d S(X g+ X e )is) (5-6)

0y
+VSSSCq +REl +(XE +qu)ld

J; = arctan [

Therefore, deviations of the stator flux additional terms, Ay/j”e to harm and

Ay/;’”e to harm “are calculated as a function of the state space variables:

Ay <y A8 +bog AY gy +bsg AVpe +bag Am 5-7)
Ay duetoham _p, A8 +byy AW gy + b3y AV +byy Am
Using the above formulation, the electromechanical torque deviation can be obtained

in the following form:

ATV = KM A8+ K Ay + KOS AV o+ K™ A (5-8)
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where (") gfham) gOm) ana ki) are functions of the initial stator currents,

initial stator fluxes, steady state load angle, rotor currents, DC capacitor voltage,
modulation ratio of the PWM based VSC and harmonics. More details are presented

in Appendix C.

Using Equation 5-2 and substituting the values for currents from Equation 5-4, the

derivatives of DC capacitor voltage and field flux are calculated as,

. _ (harm) ( harm ) (harm ) ( harm )
Ay = Ks 40+ Koy AV ey +K e AV + K e AE gy + K 77 Am

; _ p(harm) (harm) (harm) ( harm) _
AVpe=Kys A0+ Ky, AWy + Ky AV + Ky, Am (5-9)

The coefficients in the above equation are also functions of the initial operating

conditions. These coefficients are expressed in Appendix C, Equation C-8.

From the swing equation and equations 5-8 and 5-9, the elements of the system state

equation are obtained as follows:

Acf)’ ay ay a3 ay || AG by 0 by AT
A6 a 0 0 0 ||AS 0 0 0 " 5.10
A | ww o Aawa T || AE s (-10)

Y 0 a3 ax ay Y 0 by, by Am

; (h) (h) (h) (h)
AVpe 0 ayp ay ay |[AVpe 0 0 by

_ K(harm) _ K(harm) _ K(lmrm)
a“:_KD A 25 a5 o = _2ppC
2H 12 2H B 2H M 2H

az) =y

(h) _ y(harm) (h) _ y(harm) (h) _ y(harm)
ap  =Kys T, ayy =K, ay” =K e

(h) _ (harm) (h) _ (harm) (h) _ (harm)
ag =Kys 0 ag =Ky, agy” =Kpe
(harm)
poo L K"
YR 2H
@y R
by =K g = i bgél):K%mm)

(1
MF

(h) _ y(harm)
b43 _Kdm

Figure 5.2 illustrates the block diagram of the distorted SMIB system installed with

an SSSC where k{"™), k(' K" and K" are defined in Equation 5-7, and

b RO
(harm) _ _ Y32 (harm) _ _ 32 (harm) _ _ 1

K =——= K =——= T =
3 (h) 4 b 3 (h)
azs 32 azs
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(h) (h)

b a
(harm) _ (h) (harm) _ (h) (harm) _ 733 (harm) _ _ *34
Ks =agy, Kg =au3, Ky = . Ky = :
b3, b3
(harm) | g
K, -t
AT,
+
AV [ $ AL ! @, AS
| Lol ) T z 2Hs +K, T
Kg/ramx) /+
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AEy /g\_:_ K -
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Figure 5.2. Heffron-Phillips model of a distorted SMIB system installed with SSSC

5.3. The SSSC Based Power Oscillations Damping Controller

The power oscillations damping controller (POD) is applied to the SSSC in order to
improve system dynamics under the influence of time and space harmonics. The
applied POD has the conventional PID structure [23] and consists of the gain, signal
wash-out and phase compensator blocks as shown in Figure 5.3. The “signal wash-
out” block is a high-pass filter that modifies the SSSC input signal and prevents

steady changes in active power. Therefore, T, should have a large value to allow the

passage of signals associated with active power oscillations with no modifications.

The value of T, is not critical and may be in the range of 1 to 20 seconds.

Ac

T, 1+sT, ( 1+sT, )] 4

—» K 0 (LD XI+sT, )|
1+5sT, (1+sT; ) 1+5T;3)
Gain Signal Washout Phase compensator

Figure 5.3. The SSSC based damping controller (parameters to be selected considering time

and space harmonics)
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The main purpose of the proposed POD is to push the critical modes, lightly damped
or un-damped modes, toward a pre-specified region on the left hand side of the s-
plane with an acceptable damping ratio and relative stability. It was shown in the
previous section that the presence of time and space harmonics in the distorted power
systems can relocate system eigenvalues. Hence, it is important to ensure that the
controller satisfies the system stability criteria under the influence of harmonics,
while keeping the controller parameters within the specified limits. Therefore, tuning
the POD controller is formulated as a constrained optimization problem. In this
section, a hybrid genetic-fuzzy algorithm is proposed for the optimal computation of

the phase compensator block parameters and the gain value.

The observability matrix is used to select the proper input signal to the POD
controller (Ac). The selected signal should have good observability of the system
electromechanical modes under consideration. Local signals, such as tie-line current
magnitude, tie-line active power and bus voltage magnitude, can be utilized as the
controller input signals. It is possible to use remote signals such as the speed
deviation of remote generators, phase angle deviation of remote buses and active
power of the nearby buses. As the SSSC device is usually located in transmission
systems, local input signals are always preferred. The controller output signal (Am),
will be added to the main SSSC controller signal (m) to change the inverter firing

angle.

The following section gives the controller state equations and the system closed-loop

state matrix by adding the auxiliary POD controller.

5.3.1. State Equations of the POD Controller

The POD state variables are shown in the block diagram of Figure 5.4. From this

diagram, the POD state space equations are found as:

A).Cl Tw Axl TW
Ay |=| 0 0 1 My [+ 0 4]
K 1 T, +T:
|- Ks (T +73) Avs s
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Axy
[am]= —KS(T2T4) (DBl —(h+T3 )T, H(Ty+T, )} Ax, +|:TZT4KS:|[AC]

T It T, Ay T
(5-11)
Axz
Ac 1 Ax; i Axy Am
— [+l » K T, =(1+ST1)(1+ST3) (1 + 5Ty 1+ Ty ) —»
Gain and Signal Washout Phase Compensator

Figure 5.4. POD state variables representation

5.3.2. Closed-Loop State Space Equations of Distorted SMIB System

Applying the dynamic controller, Equation 5-11, will add three additional state
variables to the conventional system state equations, Equation 5-10, and the total
number of the state variables will increase from 4 to 7. To obtain the closed-loop
system eigenvalues, the controller input signal needs to be determined as a function
of the system state variables. The active power and magnitude of the current flowing
through the tie-line are two locally available control signals which are commonly
used. In this section, these two control signals are defined and used to calculate the

closed loop system state equations.

Selecting Line Active Power as the POD Input Signal:

The active power through the transmission line is related to the electromagnetic

torque (in pu) by the following relation:
2 2
Pete =T, —R,(I}))" —>  Apgy, =AT, — R, (Al})

For small disturbances, (Al,)* will be small and this value times R, can be ignored
for simplification without causing any considerable error. Hence, [Apde |= [ATE] .

Now using Equation 5-8, 4p,is given by:

_ A h h (h h
Ao = K" A5+ K™ Ay + KU AV K™ Am (5-12)
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Using this input signal, the closed-loop system block diagram is shown in Figure 5.5.

| AV’fd‘ K ;/umz) éé
K;/umn )
1+ T,
AE,, AA_/
+ - (ham ) | g
\‘z{: K4
Y \
. (harm ) ( harm ) ( harm )
POD K K K, K K(rlu;rcm)
pl
1 tl 1 AV, A
Am [ K(/mm ) m - - b
T T s— K/
thamx ) <
SSSC

Figure 5.5 Heffron-Phillips model of closed-loop distorted SMIB system installed with

SSSC considering line active power as the POD input signal

Selecting Line Current Magnitude as the POD Input signal:

The line current magnitude may be expressed in terms of the dg components:

(5-13)

where [,, is the current magnitude under steady-state operation. Substituting

Ai, and Ai, calculated in Appendix C Equation C-3, into Equation 5-13, the input

signal is derived as:

h h h h
Al =15 A8+ 1™ Ay +15E™ AV + 1004 Am

(5-14)
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Figure 5.6 shows the closed-loop system using the current magnitude as the

controller input signal to the POD block.

Am AVpe
—p| (fm) /— ) | g
I(él‘wnn)
(harm)
Iy
AWfd (harm )
[ g
K:ih(mn )
1+sT 3( harm )|
AE,, —
d + - (ham ) |
\z = K, o
A-
v \
am ( harm ) ( harm ) ( harm )
POD K;I ) K Kpm Ky K (e
pDC
A f
Am - K( harm ) Am ; AVDC ?
i s— K pm)
K;hwm ) -
SSSC

Figure 5.6 Heffron-Phillips model of closed-loop distorted SMIB system installed with

SSSC considering line current magnitude as the POD input signal

Closed-Loop System State Equations:

Applying the POD controller to the SSSC, the closed loop system state equations
will be obtained with three additional state variables. According to equations 5-12

and 5-14, the input controller signal can be written in the general form as:
AC:C5A§+C§//AWfd+CDCAVDC+CmA’n (5'153)
where, for a POD controller with the line active power as the input signal

cs =K, ¢,y = K™ epe = KUEM, ¢ = K™ (5-15b)
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and for a POD controller with the line current magnitude as the input signal
cs= Igharm)) ¢y = I,(/,harm), ¢pe = Ig)hcarm)’ . =I£nharm)- (5-15C)

Substituting Ac into Equation 5-11, the controller equations can be written in the

following form:

Am= mgs A§+m,/, Al//fd +mDCAVDC +myq AXI +my AX2 +my3 AX3 (5‘16)

In the system state equations, Equation 5-10, applying the input signal (Am ) through

the POD controller, using Equation 5-16, the closed-loop system is determined as:

_Ad)r i _Aa), 1
V) A8
W AYp
. ! AT, (5-17)
AVpc | =4A7xa) | AVpe |+ Birx) | 4 y
Ax) x| 4
Axy Axy
Aiy Axy
Where,
A=
i I h h I h h I h h
ary “1(21) + b1(3)m5 01(3) +b1(31)mw 01(4) +b1(3)mDC h1(31)mx1 b1(3)mx2 b1(3)mx3
ay 0 0 0 0 0 0
I h h I h h I h h
0 agé) + b3(3)m5 a§3) + bg)my, a§ 4) + b§3)mDC b:(;;)’nxl b3(3)mxz b§3)mx3
[ h h I h h [ h h
0 a+hiPms  d +pm, ) +bmpe biyma tgm bgmys
(c5+cms) (CW *lm m'//) (epc *+mMpc) Cpy —1 CmMy2 CmMy3
TW T’W TW TW TW T’W
0 0 0 0 0 0 1
Kg(cs +cmms) Ks (C‘// tom m‘//) Ks(cstemms)  Kglemmy —1)  Kglepmp) =1 Kg(cymy3) (T +13)
L LT LT LT LT LTy LT
and
by 0
0 0
B: 0 b3y
0 0
0 0
0 0
L 0 0 .
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5.4. Optimal Tuning of SSSC based POD Controller in the Presence of

Harmonics using a Proposed Hybrid Genetic-Fuzzy Algorithm

When designing a control system, the main goal is not merely to stabilize a given
system, but to shape the dynamic response by placing the closed loop eigenvalues in
some pre-specified region in the left hand side of the s-plane. The following two

important time-domain requirements are included in the performance specifications:
- The response must be sufficiently fast and smooth.
- The response must not exhibit excessive overshoot or oscillation.

For optimal determination of the damping controller parameters, a multi-objective
genetic algorithm (GA) in conjunction with Fuzzy approximate reasoning is
proposed and used. To assure the robustness of the POD controller against changes
in power system nonlinear loads, the dominant system harmonic levels should be
considered. The penalties of the real parts and damping ratios of the eigenvalues for
the harmonic levels under consideration are defined and fuzzy approximate
reasoning is used to compute the fitness function in order to simultaneously satisfy

the mode relative stability and damping ratio.

As an example, the following harmonic levels are considered in this section:

Harmonic Level 1: 1'") =0 and Space Harmonics= Base,
Harmonic Level 2: 1'") = Base, (6/") = z/2) and Space Harmonics= Base,

Harmonic Level 3: 1'") =2x Base, (6" =0) and Space Harmonics= Base,

1

Harmonic Level 4: I'") =2x Base, (0{’” =7r/2) and Space Harmonics= Base,

(5-18)

where:

e Base,: Time Harmonics= 0.03pu, 0.025pu, 0.02pu and 0.01pu for 3", 5%, 7%
and 9™ harmonics, respectively.
® Base,: Space Harmonics= 0.3, 0.2, 0.1 and 0.01 of the 2" and 1°' harmonics

for stator and stator-rotor, respectively.
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5.4.1. Genetic Algorithms

Genetic Algorithms (GAs) use the principle of natural evolution and population
genetics to search and arrive at a high quality near global solution. The required
design variables are encoded into a binary string as a set of genes corresponding to
chromosomes in biological systems. Unlike traditional optimization techniques that
require one starting point, GAs use a set of points as the initial condition. Each point
is called a chromosome, while a group of chromosomes are called a population. The
number of chromosomes in a population is usually selected between 30 and 300,
with 250 being used in this work. Each chromosome is a string of binary codes
(genes) and contains substrings. The merit of a chromosome is judged by the fitness
function, which is derived from the objective function and is used in successive
genetic operations. During each iterative procedure (referred to as generation), a new
set of strings with improved performance is generated using three GA operators,

namely reproduction, crossover and mutation.

5.4.2. Structure of the Chromosome

In the proposed method, each chromosome consists of 5 substrings of binary
numbers to match the number of parameters in the SSSC based dynamic controller,

excluding T, which set to 10 seconds. The binary numbers indicate the value of

each parameter and the length of each substring limits the maximum value of the
parameter to avoid prolonged saturation in the SSSC actuators. In this thesis, the
length of each substring is assumed to be 8 bits and the decimal number is
normalized between zero and the maximum acceptable value, which depends on the
controller structure. Longer substrings correspond to smaller step changes and higher
accuracy of results; however, more iterations will be required. Figure 5.7 illustrates

the proposed structure of each chromosome.
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011....111 101....101 110.......110
Substring Substring o Substring
(For gain x ) (ForT,) (ForT,)

Figure 5.7. Chromosome structure for the proposed hybrid genetic-fuzzy algorithm

5.4.3. The Proposed Fuzzy Fitness Function

The object of the control system is to increase the damping of lightly damped or un-
damped modes without deteriorating the other modes under consideration. Placing

the real parts of the closed-loop eigenvalues in a sector of the s-plane specified by

o' < o guarantees the relative stability, which is determined by the value of ¢ . The

eigenvalues should be placed in a wedge-shape zone of the s-plane in order to have
an acceptable damping ratio, as showed in Figure 5-19. The value of {"" determines

this zone. To ensure system stability under the influence of harmonics, the fitness
function should include the eigenvalues under consideration for all harmonic levels
as given in Equation 5-18. In the proposed method, penalties of the real parts and the
damping ratios of eigenvalues for each chromosome are combined based on fuzzy
approximate reasoning and used as the GA's fitness function. A fuzzy expert system
(FES) calculates the fitness value for each chromosome using the membership
functions of the total real part and damping ratio penalties of eigenvalues related to
all harmonic levels under consideration (Equation 5-18). A concern in the
development of fuzzy expert systems is the assignment of appropriate membership
functions that could be performed based on intuition, rank ordering or probabilistic
methods. However, the choice of membership degree in the interval [0,1] does not

matter, as it is the order of magnitude that is important.

The main contribution of this method is an improved fitness function for GAs,
capable of improving the damping ratio while directing the real part of eigenvalues
toward the stable region of the s-plane. This method leads to computing the (near)
global solution with lower probability of converging to a local optimum while
avoiding numerical complications at harmonic frequencies. In the proposed method,

penalties for real parts and damping ratios of eigenvalues for each chromosome are
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combined based on fuzzy approximate reasoning and used as the GA's fitness

function.

Fuzzification of Total Penalties for the Real Parts of Eigenvalues

The summation of the eigenvalues' real part penalties (7p¢ ) is one of the fuzzy input

signals to the fuzzy decision making matrix and is expressed as follows:

L J
TPC =Z(z P ) (5-19)

k=1 i=1
where L denotes the number of harmonic levels (Equation 5-18) and J is the number
of eigenvalues considered at each harmonic level. P7 is the penalty related to the

real part of the i eigenvalue of the k™ harmonic level and is defined as:

' : it < yd
pox) 0 ) if of<o (5-20)
o't —o otherwise

where &9

is the desired value for the real part of the closed-loop eigenvalues and o*
is the actual value of the real part related to the " eigenvalue of the k™ harmonic

level. Figure 5.8 shows the proposed membership functions for (7p¢) where n is the
total number of eigenvalues under consideration in all harmonic levels, and , = 7 x .
Using the proposed membership function, the eigenvalues with real parts smaller
than the desired value are highly related to the low section of the penalty function,
whereas critical or unstable modes are assigned a high value in the high section of

the penalty membership function.

ll’l]po'A
Low Med. Hi.
0 Ixn 2%xn >]P‘7

Figure 5.8. Membership functions for total penalties of the real parts of eigenvalues ( is the

total number of eigenvalues under consideration)
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Fuzzification of Total Penalties for Damping Ratios of Eigenvalues

Another input signal to the fuzzy expert system is the total penalty of the

eigenvalues’ damping ratios, rp¢ . The expression for 7p¢ is given by Equation 5-21
and the corresponding membership functions are shown in Figure 5.9.
L .
TS =Y > péh (5-21)
k=1 i

where P%: is the penalty related to the damping ratio of the /™ eigenvalue of the k™

harmonic level (Equation 5-18) and is defined as:

phl 0 i gtz (5-22)
gmn otherwise

¢min js the desired value for the damping ratio of the closed-loop eigenvalues and ¢

is the actual value of the damping ratio related to the i™ eigenvalue of the k™

harmonic level.

ﬂ]’pgA

Low Med. Hi.

>
0 0.1xn 0.2xn TP¢

Figure 5.9. Membership functions for total penalties of the damping ratios of eigenvalues (n

is the total number of eigenvalues under consideration)

According to Figure 5.9, the highly damped modes belong to the low section of the
penalty membership function while the lightly damped (or un-damped) modes are

given values in Medium or High sections of the penalty membership function.

Fuzzy Inferencing

Combination of the fuzzy input functions ( 7p° and 7p¢ ) shows the suitability of the

solution. For example, a solution that generates eigenvalues with small real parts and

large damping ratios is highly desired and should have large fitness value. This
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solution has high values in the low sections of the membership functions, as shown
in Figure 5.8 and Figure 5.9. With similar interpretation for other combinations of

the inputs, the fuzzy decision matrix is generated as shown in Table 5-1.

Table 5-1
Decision matrix for determining the fitness of the solution (chromosome)

Total penalties of the real parts ( TP° )
AND

Low Med. Hi.

Low high med-high low

Total penalties
of damping Med. | med-high med low
ratios ( TP¢ )

Hi. med low-med low

Defuzzification

The Mamdani-max-prod implication method of Equation 5-23 and the proposed
fitness membership functions of Figure 5.10 are used to determine the fitness value

of each chromosome, as follows:

Fitness = ) Spirpo fizpe | Y Hpo tippe (5-23)
where y is the output of the maximum membership value related to the desired

section.

ﬂFimess A
Low Low-Med. Med. Med-Hi. Hi.

>

0 0.25 05 0.75 1

Figure 5.10. Membership functions for the GAs fitness value

Fuzzy approximate reasoning was used to calculate the chromosome’s fitness value

considering the uncertainty of the fuzzy system inputs as demonstrated in Figure
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5.11. Using the proposed fitness function, damping of all critical modes are improved

without deteriorating the damping of non-critical modes.

. Fuzzy Inferencing
Fuzzy Inputs Fuzzification

A —_— and Def%zzification
J| Eas.s-19) [ TP Fig. (5-8) Hypo
Closed-loop system and (5-20) Fig.(5-10) | Fitness
eigenvalues Table (5-1) |—
(for all harmonic levels) Eq.(5-23)
¢ u
Eqs. (5—21) TP Fig. (5_9) TP;
and (5-22)

Figure 5.11. The proposed fuzzy fitness function

Genetic Operators

Genetic operators are the stochastic transition rules applied to each chromosome
during each generation procedure to generate a new improved population from an old
one. A genetic algorithm usually consists of reproduction, crossover and mutation

operators.

e Reproduction- is a probabilistic process for selecting two parent strings from the
population of strings on the basis of “roulette-wheel” mechanism, using their fitness
values. This ensures that the expected number of times a string is selected is
proportional to its fitness relative to the rest of the population. Therefore, strings with

higher fitness values have a higher probability of contributing offspring.

e Crossover- is the process of selecting a random position in the string and
swapping the characters either left or right of this point with another similarly
partitioned string. This random position is called the crossover point. In this work the
characters to the right of a crossover point are swapped. The probability of parent-

chromosomes crossover was set to be between 0.6 and 1.0.

e Mutation- is the process of random modification of a string position by changing
“0” to “1” or vice versa, with a small probability. It prevents complete loss of genetic
material through reproduction and crossover by ensuring that the probability of
searching any region in the problem space is never zero. In this work the probability

of mutation was set to be between 0.01 and 0.1.
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Convergence Criterion

Regenerations of the genetic algorithm are continued until all generated

chromosomes become similar or the maximum number of 100 iterations is achieved.

Solution Methodology

Optimal selection of SSSC based damping controller parameters in the presence of
harmonics is formulated as a nonlinear optimization problem and is solved using the
proposed genetic-fuzzy algorithm (Figure 5.12) as follows:

Step 1: Input the system parameters, the initial population with n =250 and set
Ny =1-

Step 2 (fitness function using fuzzy approximate reasoning, Figure 5.11):

Step 2A: for each chromosome, calculated the closed-loop system eigenvalues under
consideration for all harmonic levels from Equation 5-18, based on the parameters
specified by chromosome substrings (Figure 5.7).

Step 2B: Compute the summation of the eigenvalues' real part penalties (Equation 5-
19) and the corresponding membership value (Figure 5.8) for each chromosome.
Step 2C: For each chromosome, compute the summation of the eigenvalues' damping
ratio penalties (Equation 5-21) and the corresponding membership value (Figure
5.9).

Step 2D: Compute the fitness function for each chromosome using Table 5-1,
Equation 5-23 and Figure 5.10.

Step 3 (Reproduction Process):

Step 3A: Define total fitness as the summation of all fitness values for all
chromosomes.

Step 3B: Select a proportion of “roulette wheel” for each chromosome which is equal
to the ratio of its fitness number to the total fitness number.

Step 3C: Improve generation by rolling the “roulette wheel” ~,,,,times. Select a
new combination of chromosomes.

Step 4 (Crossover Process):

Step 4A: Select a random number (RND,) for mating two parent chromosomes.
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Step 4B: If RND is between 0.6 and 1.0 then combine the two parents, generate two
offspring and go to Step 4D.

Step 4C: Else, transfer chromosome with no crossover.

Step 4D: Repeat Steps 4A to 4C for all chromosomes.

Step 5 (Mutation Process):

Step 5A: Select a random number ( RND, ) for mutation of one chromosome.

Step 5B: If RND,is between 0.01 and 0.1 then apply the mutation process at a random
position and go to Step 5D.

Step 5C: Else, transfer the chromosome with no mutation.

Step 5D: Repeat Steps SA to 6C for all chromosomes.

Step 6 (Updating Populations): Check all the chromosomes and save the once with

the maximum fitness value. Set y =n, +1 and replace the old population with the

improved population generated by Steps 2 to 5.
Step 7 (Convergence): If all chromosomes are similar or the maximum number of

iterations (y, =nN™>) is achieved, print the solution and stop, else go to Step 2.

Figure 5.12 shows the flowchart of the proposed GA method for optimal selection of

the POD controller in the presence of space and time harmonics.
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Figure 5.12 Proposed iterative genetic algorithm for optimal selection of SSSC based

dynamic controller parameters in the presence of space and time harmonics.
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5.5. System Performance and Simulation Results

To study the impact of an SSSC and its controller on the dynamic behaviour of the
distorted SMIB system, an SSSC is included in the system investigated in Chapter
four, Section 4.3. The system under study is a distorted power system which includes
a synchronous generator, a distorted infinite bus (injecting time harmonics) and an
SSSC unit that provides series compensation voltages at the fundamental frequency
to the transmission line as shown in Figure 5.1. In Section 5.5.1, the open-loop system
dynamic performance is investigated and variations of the eigenvalues compared to
sinusoidal operation, are used to show the impact of harmonics on the dynamic

operation of the system.

To improve the dynamic behaviour of the system in Section 5.5.2, an auxiliary robust
POD controller is designed and applied to the SSSC. The proposed hybrid genetic-
fuzzy algorithm Figure 5.12 is used for optimal selection of the POD parameters in

the presence of time and space harmonics.

The synchronous generator and power system parameters are identical to those used

in Chapter four, Section 4.3 and the SSSC specifications are:

XSSSC = 0.05, CDC =1, VDCO =1, k=1, and m=0.1.

5.5.1. Dynamic Behaviour of Distorted SMIB System Installed with SSSC

In this section, eigenvalues of the SMIB system installed with an SSSC (Figure 5.1)
are calculated using the state matrix of Equation 5-10 under sinusoidal and distorted
operating conditions. In order to explore the impact of SSSC installation, similar
operating conditions as Section 4.3 are considered and the synchronous generator

delivers 555 MVA at 0.9 p.f. (lag) at rated terminal voltages.

Case 1- Sinusoidal Operation:

The system is assumed to be operating under sinusoidal conditions and the effects of
magnetic saturation and damper windings are ignored. Using Equation 5-10, system

the eigenvalues are calculated as follows:
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=-0.0884

Ay, =—0.1101%5.7142i, (@, =0.909Hz, { =0.019)
A
A, =—0.0162

The system response to an active power change of 0.1pu is illustrated in Figure 5.13.

Linear Simulation Results

rotor speed variations (pu)

0.15

o

o
=)
a

torque variations (pu)

Time (sec)

Figure 5.13. Time response of the rotor angle and speed subject to an input power

perturbation for the sinusoidal operation of SMIB system installed with SSSC
The participation matrix is calculated as follows:

0.5004 - 0.0096i  0.5004 + 00096i -0.0008 0 Aw,
0.5004 - 0.0096i  0.5004 + 00096i -0.0008 0 A6
—0.0007+0.0204i —0.0007—0.0204i  1.0744 -0.0730 |4y,

0.00-0.0011i 0.00+0.0011i -0.0728 1.0729 AV,
A A, A, A,

From the participation factors, it is observed that SSSC dynamics has no effect on the
electromechanical modes. However installing the SSSC on the power system can

relocate the electromechanical modes by improving the system parameters.
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Case 2- Non-Sinusoidal Operation:

In this section, four different levels of time and space harmonics are considered
(similar to Section 4.3). Table 5-2 shows the system eigenvalues, the damped
frequencies of the electromechanical modes and their damping ratios.

Table 5-2

Impact of space and time harmonics on eigenvalues of SMIB system installed with SSSC
(Figure 5.1)

Damped Freq. ( C()d ) and

Time Harmonic Level System Eigenvalues
Damping Ratio ( f ) of

Electromechanical modes

A =—0.1101£5.7142i

No harmonics A3 =—0.0884 w,; =0.909Hz, { =0.019
Ay =—0.0162
I: Base,”" A5 =~0.0961%5.9930i
A3 =—0.0962 wy =0.953Hz, { =0.016
(g =0)
i Qg =—0.0162
2: Baser” Ao =—0.137%531i
: W, =0.845Hz, { =0.025
(6" =z/2) A3 =-0.038+0.0L
X Base,” A =-0.088£6.11i
Ay =—0.104 Wy =0.972Hz, { =0.014
(g™ =0)
i Ay =—0.014
2X Baser’ A5 =—0.218+4.20i
: , wy =0.668Hz, { =0.051
(") —7/2) 3,4 =0.005%0.038i

#) 0.03pu, 0.05pu, 0.02pu and 0.01pu for the 3 to 9™ harmonics, respectively.

Participation matrices for the four harmonic levels under consideration are:
Participation matrix for harmonic level 1:

0.5003-0.0082i  0.5003+0.0082i -0.0007  0.000 | Aw,

0.5003-0.0082i  0.5003+0.0082i -0.0007  0.000 | A6
-0.0006 +0.0177i  -0.0006 -0.0177i  1.0698 -0.0686 | Ay

-0.0000-0.0012i  -0.0000+0.0012i -0.0684 1.0685 |AVpc

4 A A A4
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Participation matrix for harmonic level 2:

0.5004-0.0129i  0.5004+0.0129i  -0.0004-0.0007i -0.0004+0.0007i| Aw,
0.5004-0.0129i  0.5004+0.0129i  -0.0004-0.0007i -0.0004+0.0007i | A6
-0.0007 +0.0270i  -0.0007 -0.0270i ~ 0.5007 +1.1799i  0.5007 - 1.1799i | Ay 4
-0.0001-0.0012i -0.0001+0.0012i 0.5001-1.1786i  0.5001+1.1786i |AVpe

4 Zo) Za A4
Participation matrix for harmonic level 3:

0.5003-0.0082i  0.5003+0.0082i -0.0007  0.000 | Aw,

0.5003-0.0082i  0.5003+0.0082i -0.0007  0.000 | A5
-0.0006 +0.0176i  -0.0006 -0.0176i  1.0538 -0.0525 |4y
-0.0000-0.0012i  -0.0000+0.0012i -0.0524  1.0525 |AVpe

A o) A A4
Participation matrix for harmonic level 4:

0.4999-0.0259i  0.4999+0.0259i  0.0001+0.0005i 0.0001-0.0005i | Aw,
0.4999-0.0259i  0.4999+0.0259i  0.0001+0.0005i 0.0001-0.0005i | A5
0.0004+0.0528i  0.0004-0.0528i  0.4996-0.2158i 0.4996 +0.2158i | Ay 14
-0.0002-0.0009i -0.0002+0.0009i 0.5002+0.2149i 0.5002-0.2149i |AVpe

A % A3 A4
The participation matrix for the fourth harmonic level shows that the unstable low
frequency oscillatory modes are the electrical modes related to dynamics of SSSC

and the synchronous generator field winding.

Figure 5.14 shows the system response to the input mechanical power perturbation of
0.1 pu for the last harmonic level. In this figure the system oscillations through
electromechanical modes are demonstrated. The effects of undamped oscillating
modes related to the electrical circuits are more obvious in Figure 5.15. This figure
illustrates how the system becomes unstable through low frequency oscillations

related to the SSSC circuit.
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Linear Simulation Results

Time (sec)

Figure 5.14 Time response of the rotor speed and electromechanical torque subject to an

input power perturbation in the presence of time and space harmonics in SMIB system

installed with SSSC

Linear Simulation Results
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sec)

Time (

Figure 5.15 System instability through low frequency oscillations
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5.5.2. Design of the Robust POD Controller

An auxiliary POD controller is designed and applied to the SSSC installed in the
distorted SMIB system (Figure 5.1). The proposed hybrid genetic-fuzzy algorithm
(Figure 5.12) is used for optimal selection of the POD parameters in the presence of
time and space harmonics. To ensure the robustness of POD controller against
changes in nonlinear loads and system conditions, four different harmonic levels
(Equation 5-18) are considered. No harmonic distortion is considered at the first
harmonic level to assure that the controller is kept effective under sinusoidal
operating conditions. Controller parameters are also calculated assuming sinusoidal
conditions and the controller performance is investigated under the influence of

harmonics.

A. Selection of the POD Input Signal Based on Observability Matrices

To find the proper input signal to the controller, the observability matrices for all
harmonic levels (Equation 5-18) are calculated for a number of candidate signals
(including speed deviation of synchronous generator, phase angle deviation of the
bus, deviation of the tie-line active power and deviation of the line current). With

loading condition of P=0.9pu, the observability matrices are calculated as:
¢ Observability matrix for harmonic level 1:

—0.0003+0.0158i —0.0003-0.0158i 0.0002 0.000 |Aw,
0.9993 0.9993 -07610  -04556 | AS
0.6630+0.0218i  0.6630—-0.0218i  0.0001 0.000 | A4F,
0.8271+0.0221i 1.8271-0.0221i —0.1469 —0.1324| Al

A A A A

e (bservability matrix for harmonic level 2:

—0.0004 +0.0138i —0.0004 —0.0138i 0.0001 0.0001 Ao,
0.9994 0.9994 -0.8013 -0.8013 A48
0.5033+0.0279i  0.5033-0.0279i 0.000 0.000 AP,

e

0.6760+0.0282i  0.6760-0.0282i  —0.1695—0.0169i —0.1695+0.0169i | Al
A A A A
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e (Observability matrix for harmonic level 3:

—0.0002 +0.0162i —0.0002-0.0162i 0.0002 0.000
0.9993 0.9993 -07207  -0.3850 A,
0.6928 +0.0201i 0.6928 —0.0201i 0.0001 0.000
0.8695 +0.0202i 0.8695-0.0202i —-0.1461 —-0.1218 4;’;?
A A A Ay

e (bservability matrix for harmonic level 4:

—0.0006 +0.0112i —0.0006 —0.0112i 0.0001 0.0001 Aw,
0.9995 0.9995 -0.8778 -0.877 A0
0.3275+0.0341i 0.3275-0.0341i 0.000 0.000 AP,
0.5061 +0.0343i 0.5061 —0.0343i —0.1522—-0.025i —0.1522+0.025i | Al
A A A Ay

The participation matrices (Section 5.5.1, Case 2) show that the first two columns of
the observability matrices are related to the electromechanical modes. Hence, the

control signals A8, AP, and Al have good observability of the electromechanical

modes. However, Al is a local signal with proper observability of all system modes

and is selected as the POD input signal.

To evaluate the observability of the selected input signal under different operating
conditions, the rotor mode observability is plotted against the change in line active
power for sinusoidal (Figure 5.16) and non-sinusoidal (Figure 5.17) operating
conditions considering the four levels of harmonic distortion (Equation 5-18). It is
observed that although the presence of harmonics can change the observability
characteristic, the line current has proper observability of the rotor mode at different
operating points and harmonic levels. Note that for the sinusoidal operating
condition, increasing the active power transferred results in higher mode

observability.
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Figure 5.16 Plot of the rotor mode observability against the transferred active power for line

control signal (SMIB system with sinusoidal operating conditions)

Observability
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Figure 5.17 Plot of the rotor mode observability against the transferred active power for line

control signal (distorted SMIB system with four harmonic levels (Eq. 5-18)).

B. Optimal Values of POD Controller Parameters

The proposed genetic-fuzzy algorithm in Figure 5.12 is used to determine optimum
values of POD controller parameters within the desired permissible limits (Kyq.,=4,

Tynax=2) for the following conditions:
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¢ Sinusoidal Operation- ignoring the presence of time and space harmonics

(Sinusoidal POD).

¢ Distorted Operation- considering four levels (Equation 5-18) of time and space

harmonics (Robust POD).

The main goal is to relocate the lightly-damped electromechanical modes into the
desired region of the s-plane, which is specified by suitable limits for the real parts of
the eigenvalues (o“=-1) and damping ratios ({""=0.2). Table 5-3 shows computed
optimal values for the POD controller parameters using the proposed hybrid Genetic-

Fuzzy algorithm. The value of T, is set to 10seconds.
Table 5-3

SSSC based POD controller optimal parameters determined by proposed genetic-fuzzy
algorithm

System Condition K T, T, T T,

Sinusoidal 095 | 030 | 0.19 | 0.32 | 0.74

Distorted 0.34 | 0.64 | 053 | 0.29 | 1.24

C. Simulation Results

The calculated open-loop and closed-loop system eigenvalues for sinusoidal
operating condition are presented in Table 5-4. Table 5-5 shows results for the
synchronous generator rotor angle, the open-loop system eigenvalues and the
comparison between closed-loop system eigenvalues using the “Sinusoidal POD”

and the “Robust POD” for all harmonic levels.

Table 5-4
System open-loop and closed-loop eigenvalues for sinusoidal operating condition and rotor
angle=39.07°

open-Loop Closed-Loop (Sinusoidal POD)
-12.31+51.99;, { =0.23
. -3.06
—0.11£5.71i, {=0.019 175
Eigenvalues and Damping Ratio -0.08 0' 14
-0.016 .
-0.0678

—0.0062
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Table 5-5
Impact of time and space harmonics on the SG rotor angle, eigenvalues of the open-loop

system and closed-loop system with “sinusoid POD” and “robust POD”

. . Closed-Loop Eigenvalues and Damping Ratios
Harmonic| Rotor Angle | Open-Loop Eigenvalues
Level ) and
(Eq.5-18) | [% Deviation] Damping Ratios Sinusoidal POD Robust POD
—3.518+28.88i ({=0.12)
3045 —4214+12.16i ({=0.32)
38.81° —0.098+5.97i ({=0.016) ' —1.537+1.0%
! [-0.68%] 0.09 1755 0.119
D070 0'018 ~0.137 0071
0066 -0.013
—-0.007
—0.755 i13'3233;§:0‘057) —2.359+9.33i ({=0.24)
39.47° —0.137 £5.31i ({=0.025) _1'757 —1.523+1.094i
2 [+1.0‘7] —-0.038+0.01i _0'129 -0.112
e : ~0.054
-0.062 0.020
~0.008 o
-1.199+16.63i ({=0.072) ]
3051 —2.988+10.251 ({=0.28)
—-0.088%6.11i ({=0.014 ' —1.552+1.08i
38.76° i & ) ~1752 !
3 [-0.8%] —-0.104 0,140 -0.119
o -0.014 0'065 —-0.067
e ~0.014
—0.006
—0.446+9.851 ({=0.045)
-3.033 ~1.657+7.81i ({=0.21)
4 40.10° -0.218+4.20i ({=0.051) -1.756 —1.527+1.08i
[+2.6%] 0.005+0.038i -0.127 -0.109
-0.057 —0.031+0.01i
-0.009

Figure 5.18 shows the system dynamic responses to a mechanical input power

change of O.lpu before and after installing the POD controller designed for

sinusoidal and distorted operating conditions for all harmonic levels. Figure 5.19

illustrates the improvement of system electromechanical modes after installation of

the proposed POD. Note that the “Sinusoidal POD” controller is unable to shift

electromechanical modes into the desired region of the s-plane under harmonic

conditions while the proposed ‘“Robust POD” remains effective under all operating

considerations.
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Figure 5.18 Time responses of open-loop and closed-

and the proposed “Robust POD”) to a mechanical input change of 0.1pu for; (a) harmonic

level 1, (b) harmonic level 2, (¢) harmonic level 3, (d) harmonic level 4 (the selected

harmonic levels are listed in Eq.5-18)



Chapter 5: Optimal Selection of SSSC...

110

— — — - Open-loop system
S it Sinusoidal POD
Robust POD

Active power variations (pu)

- - = - Open-loop
P m——— Sinusoidal POD
Robust POD

T
|
|
|
|
|

1
e e e
)|

Active power variations (pu)

Figure 5.18 ...continued

System Electromagnetic Modes

40

6'=-1 |

- L 4 &)J

————___ o |

A ———— 2

- :——_I___Q -
L —

T T T 1
-4.0 -3.5 -3.0 2.5 2.0 45 _ ——— D Npy

e —=—— *

* |

|

- 10

--10
- -20
- -30

A :robust POD

W : open-loop system

@ :sinusoidal POD

Figure 5.19 Locations of eigenvalues in s-plane for open- and closed-loop systems with

“Sinusoidal POD” and “Robust POD” showing the effectiveness of the proposed controller

(the selected desired region in s-plane is bounded by ¢“=-land {""=0.2)
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5.6. Conclusions

In this chapter, the influence of time and space harmonics on small-signal stability of
distorted SMIB systems installed with an SSSC was investigated using eigenvalue
analysis. The modified Heffron-Phillips model for this system was derived in the
presence of harmonics. To increase the damping of electromechanical oscillations
and improve the relative stability, a supplementary control action was applied to the
SSSC through the auxiliary controller. The analysis of mode observability was used
to select the effective feedback signal for the damping controller. The problem of
optimal selection of SSSC based robust damping controller parameters has been
formulated as a nonlinear constrained problem and was solved using a genetic-fuzzy
algorithm in the presence of time and space harmonics. Fuzzy approximate reasoning
was used to calculate the chromosome fitness values. Total penalties of the real parts
and damping ratios of the eigenvalues were defined as the inputs to the fuzzy system.

Outcomes from this chapter were:

¢ Time and space harmonics will change elements of the system state matrix and

hence relocate system eigenvalues (equations 5-10 and 5-17, tables 5-2 and 5-5).

e Harmonic phase angles have considerable impact on the steady state and
dynamic behaviour of the system and can cause power system instability (tables

5-2 and 5-5).

e Using the proposed hybrid genetic-fuzzy algorithm (Figure 5.12) and
considering different levels of time harmonics (Equation 5-18), a robust POD
controller for distorted operating conditions is designed and tested (tables 5-3, 5-

5, figures 5.18 and 5.19).

¢ Tuning the POD controller based on sinusoidal conditions by ignoring time and
space harmonics can cause undesired system dynamic behaviour under the

influence of harmonics (figures 5.18 and 5.19 and Table 5-5: column 4).

¢ The proposed method is applicable for tuning other types of system stabilizers in

order to keep them effective under non-sinusoidal operating conditions.

The outcomes make a significant contribution to the work in this area.



CHAPTER SIX

DYNAMIC BEHAVIOUR OF A MULTI MACHINE MULTI BUS
DISTRIBUTED GENERATION SYSTEM IN THE PRESENCE OF
HARMONICS

6.1. Introduction

In the previous chapters the impact of time and space harmonics on dynamic
behaviour of a SMIB power system was studied in details. It was shown that the
presence of harmonics introduces additional terms in the machine equations; this
makes the stability study of the system very complex. The simplification of the
power system as a SMIB system helps with the understanding and solving the
problem of the small-signal stability by linearizing the equations around the
operating point. However, to show the impact of harmonics on the behaviour of a
more realistic power system, in this chapter an actual Multi Machine Multi Bus
(MMMB) Distributed Generation (DG) system located in Western Australia is

investigated under sinusoidal and distorted operating conditions.

DG systems include generators with low inertia and higher levels of harmonic
distortions. Hence, the dynamic behaviour of these systems is more likely to be
affected by the presence of harmonics. This can be of more concern if the systems
are highly loaded and are marginally stable. The system under study is a 24-bus
system including six distributed generators. The dynamic models of generation buses

include the synchronous generators, exciter systems and turbine-governors.

In distorted conditions, nine nonlinear loads are connected in the system and a
Decoupled Harmonic Power Flow (DHPF) algorithm is used to calculate the steady
state parameters [70]. The nonlinear loads are modelled as decoupled harmonic
current sources and the model of a synchronous generator in the harmonic domain,
presented in chapter three, is used for distributed generators. The power system

toolbox with the modified model of the synchronous generator is used for the

112
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calculation of the system eigenvalues. The results are presented for sinusoidal and
distorted conditions. Also the effectiveness of the PSSs designed for sinusoidal
conditions is investigated under distorted conditions. The results show that the gain
of the PSSs should be increased in distorted conditions in order to obtain sufficient

and acceptable damping ratios.

6.2. Dynamic Stability of a Multi-Machine Multi-Bus System

The general procedure adapted in this chapter to study the small-signal stability of
multi machine systems is similar to that taken for a SMIB system in the previous
sections. However, representation of an extensive transmission network, loads, a
variety of generators, excitation systems and prime mover models and others, makes

the process very complex. The procedure can be summarised in the following steps:
1- Initialize all dynamic models at the initial conditions set by the power flow.

2- Form linearized models of all of the specified system components at the operating

point.

3- Interconnect these models to obtain an overall state space model of the linearized

system, including the power system network.
4- Form the full linearized model by eliminating the network variables.

In the distorted conditions, including the impact of harmonics in the synchronous
generators models makes the analytical calculation of the system state equations even
more complex. However, there are a number of small-signal stability programs
which form the required models of the system components such as the generators and
their controls. In this work, the MATLAB based Power System Toolbox is used. The
generator models are modified to include the impact of harmonics. In this program,
the linearization of the nonlinear equations is performed by numerically calculating
the Jacobian. Starting from the states determined from model initialization, a small
perturbation is applied to each state in turn. The change in the rates of change of all
the states divided by the magnitude of the perturbation gives a column of the state

matrix corresponding to the disturbed state. Following each rate of change of state
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calculation, the perturbed state is returned to its equilibrium value and the

intermediate variable values are reset to there initial values.

The input matrix B, the output matrix C and the feed forward matrix D can be

determined in a similar manner [68].

6.3. Characteristics of the DG System under Investigation

In this section the steady-state operation and dynamic behaviour of a DG system is
investigated. The study is done under sinusoidal and harmonically polluted

conditions.

The modelled system is in the distributed level and is based on an existing system in

Western Australia [69]. Figure 6.1 illustrates the single line diagram of the system.

6.3.1. Steady-State Model of the System

The DG system under study has 24 buses. Bus 9000 and buses below till bus 9109
are 22kV and the rest of buses, except bus 9020, are 33kV. Bus 9020 is the

distributed generation plant and is 415V.

The system is connected to the grid, which is represented by a bus with a large
generator and load connected to it. This bus is assumed as the swing bus for load

flow studies (bus 9000).

This system includes a distributed generation plant that consists of six generators of
400kW each. These generators generate power at 415V and are connected to the

33kV system through a step up transformer.

There are four transformers in the system. The transformer connecting bus 9020 to
bus 9120, steps up the voltage from 415V to 33kV. Tap changing transformers are
connected between buses 9012 and 9011 and also between buses 9015 and 9113 for
voltage regulation. A step down transformer connects bus 9011 to bus 9109 and

reduces voltage from 33kV to 22kV.

The capacitance of the lightly loaded transmission lines are represented by shunt

capacitor banks.
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The system characteristics including all the data for the loads, transmission lines
generators and transformers are presented in Table 6-1, Table 6-2, Table 6-3 and Table

6-4, respectively. Table 6-11 shows the active power produced by the generators.

9000
SWING BUS

v o

9002

9001

9009 9005

1 =l 731

9011

9012

9013

9113

s015

9016 9029

9017 9030

9019 9025

9022 9120 % L N L
= B i 9024 o
-V v 7

A~

9020

56600

Figure 6.1. Single line diagram of the DG system under investigation located in Western

Australia [69] (Spae=100 MVA)
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Capacitors used to model lightly loaded transmission lines

Table 6-1
System loads
Bus Number P-Load (Mw) Q-Load (Mvar)

9000 1913.5 942.6
9004 0.9 0.6
9005 0.3 0.2
9007 0.7 0.4
9009 0.3 0.2
9011 1 0.62
9013 0.2 0.1
9017 0.1 0.05
9019 0.7 0.4
9022 0.35 0.2
9025 0 0
9028 0.2 0.1
9031 0.1 0.05
9033 0.1 0
9120 0.956 0.853

Table 6-2

Bus Number

Capacitance (Mvar)

9002 0.03
9005 0.06
9007 0.03
9009 0.11
9013 0.31
9017 0.03
9022 0.12
9025 0.12
9028 0.19
9031 0.12
9120 0.91
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Table 6-3
Machine characteristics
Bus P-max P-min Q-max Q-min M-Base
Number Mw) (Mw) (Mvar) (Mvar) (MVA)
9000 2400 -9999 1800 -1307 3000
9020 0.4 -9999 0.28 -0.2 0.47
9020 0.4 -9999 0.28 -0.2 0.47
9020 0.4 -9999 0.28 -0.2 0.47
9020 0.4 -9999 0.28 -0.2 0.47
9020 0.4 -9999 0.28 -0.2 0.47
9020 0.4 -9999 0.28 -0.2 0.47
Table 6-4
Transformer characteristics
From Bus To Bus X (pu) Windi?;,gu; Ratio Windi?pglj Ratio
9011 9012 0.66667 1 1
9011 9109 1 1 1
9015 9113 1 0.95 1
9020 9120 3 1 1.08

6.3.2. Dynamic Model of the System

To study the small-signal stability of the system, dynamic models of the generator

plants are required. The infinite bus is represented by a very large synchronous

machine, and the distributed generation plant (bus 9020) has six small gas turbine

synchronous generators. The dynamic characteristics of the system generation are

presented in the following sections.

6.3.2.1.

Dynamic Model of the Swing Bus

The swing bus includes a large synchronous generator, thermal turbine governor and

an excitation system.
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Synchronous Generator of the Swing Bus

The swing synchronous machine has a salient pole structure with three damper
windings, one along d-axis and two along g-axis. The model used for the generators
is in dg coordinates and is based on the real values of the generator inductances and
resistances. However, these parameters, referred as fundamental or basic parameters,
can not be directly determined from measured responses of the machine. Therefore,
the traditional approach is adopted to express the generator data in terms of standard
parameters which are related to the observed behaviour as viewed from the terminals

under suitable test conditions [2]. The standard generator data is given in Table 6-5.

Table 6-5

Data used to model the synchronous machine for the swing bus
Bus Number 9000 Xd (pu) 243
T°d0 7.8 sec. Xq (pu) 1.25
T>d0 0.03 sec. X’d (pu) 0.348
T ”q0 0.6 sec. X d (pu) 0.22
H (Inertia) 3.39 (MW.s/MVA) X ”q (pu) 0.22
D (Speed Damping) 0 XI (pu) 0.18

Following equations are used to extract the fundamental parameters from the

standard generator data [2].

X,=X,-X,

Ry =X, (X, = X))@, T})
Xp=X,(X;-X)I(X,—X)

R, =(X; =X I(X] = X))@, T};)
X, =X, = X)X -X)I(X,-X])
X, =X,-X,

R, =X, (X, - X))@, T,

X=X, (X, -X)IX,-X))
Ry=(X,-X) (X -X)@,T}))
X,=(X, - X)X -X)I(X,-X)

(6-1)



Chapter 6: Dynamic Behaviour of a Multi Machine Multi Bus... 119

Using the above equations, the fundamental parameters of the swing generator are

calculated as follows:
Stator Parameters: L=1.286, L,=0.393, M=0.553 R,=0.0.
Rotor Parameters: Rg=0.0008, Rp =0.0195, R =0.0108, Ry =0.0018,

Lr=2.4316, Lp=2.3025, Ls= 1.6356, Lo=1.1148,
LGQ:1.07, LFD:2-255 LFG: L]:Q: LDG: LDQZO.

Stator Rotor Mutual Parameters: Mp=Mp= 2.25, Mg =Mq=1.07.

Excitation System of the Swing Bus

The excitation system includes terminal voltage transducer, voltage regulator, exciter

and a feedback. Figure 6.2 illustrates the general structure of an excitation system.

Vref
Vit +
—> - Automatic Voltage .
It | Transducer el —  Exciter >
+
speed
> Power System

power > Stabilizer

Figure 6.2. The excitation system [68]

The exciter used for the swing generator is a DC exciter. These types of exciters use
direct current generators with shunt or series field connection to supply the field
current to the synchronous generator. The same model structure is used for both
types of generators but different data are used to represent the type of the field

connection. The DC generators used here have series connected field configuration.

The corresponding block diagram is shown in Figure 6.3 and the exciter data used for

the generator installed on the swing bus is presented in Table 6-6.
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Vref Vrmax
Ec vd v
—» 1/(1+sTr) (1+sTc)/(1+sTb) - Ka/(l+sTa) |———»
Vrmin

Efd
sKf/(1+sTf) |-

(a)

Vr + Efd
1/sTe

\

SE+KE |

(b)

Figure 6.3. Swing generator excitation system; (a) voltage regulator, (b) DC exciter

Table 6-6
Data used to model the voltage regulator and the exciter for the swing bus
Tr 0.035 sec. V rmax 6
Ka 50 Ke 0.4
Ta 18.9 sec. Te 0.2 sec.
Tb 0.01 El 0.1
Te 0.072 SE(E1) 0.4
Kf 0 E2 8
Tf 1 SE(E2) 0.05
Vimin 0

Turbine-Governor of the Swing Bus

A simplified model is used for turbine-governor as shown in Figure 6.4. This is a
general purpose model and can be assumed as a thermal plant. The data used for this

model is given in Table 6-7.
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Pmech
1/(1+sTs) ’—b{ (1+sT3)/(1+sTc) ’—»‘ (1+sT4)/(1+sT5) ’—»

Figure 6.4. Simple turbine-governor model used for the swing bus

Table 6-7
Data used to model the turbine-governor for the swing bus
Bus Number 9000 T4 0
1/R 25pu T5 0.01sec.
Ts 0.35 sec. spdref 1
Tc 0.15 sec. Tmax 0.81pu
T3 0 Tmin Opu

6.3.2.2. Dynamic Model of the Distributed Generation Bus

The distributed generation plant includes six identical generators. Each generator has

its own synchronous machine, exciter and governor.

Svnchronous Generator of the DG Bus

Synchronous machines of the DG bus are salient pole with three damper windings,

one along d-axis and two along g-axis. The data used for distributed generators is

given in Table 6-8.

Table 6-8
Standard parameters used for the distributed generators

Bus Number 9020 Xd (pu) 2.19
T°d0 3.41 sec. Xq (pu) 1.61

T >do 0.03 sec. X’d (pu) 0.2

T 7q0 0.1748 X d (pu) 0.22

H (Inertia) 0.74 (MW.s/MVA) X ”q (pu) 0.22

D (Speed Damping) 0 Xl (pu) 0.0055
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Using Equation 6-1, the fundamental parameters of the distributed generators are
calculated as:

Stator Parameters: L=1.316, L,=0.193, M=0.583 R,=0.0.

Rotor Parameters: Rg=0.0017, Rp =0.0249, R;=0.0224, Ry =0.0047,

Lr=2.2019, Lp=2.1713, Lg= 1.6917, Lo = 1.5677,
L(;Q:1.46, LFD:2-045 LFG: LFQ: LDG: LDQ:O-

Stator Rotor Mutual Parameters: Mp=Mp= 2.04, Mg =Mq=1.46.

Excitation System of the DG Bus

Figure 6.5 shows the exciter used for the distributed synchronous machines with the

parameters of Table 6-9.

Vref Vrmax

. [

vtd - Vr
(1+sTc)/(1+sTb) p Ka/(1+sTa) |————»

_J

Vrmin

Figure 6.5. Excitation system used for the DG generators

Table 6-9
Data used to model the excitation system for the DG generators
Ka 200 Te 0
Ta 0.1 seconds Vimax 10
Tb 0.01 sec. V tmin 0

Turbine-Governor of the DG Bus

For stability studies, the distributed generators prime movers are assumed to be gas
turbines with the block diagram shown in Figure 6.6 and the data presented in Table

6-10.
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6.4.

A

speed > Dturb
Y
1/R
Vrmax
Load + Low value . - N
Reference Gate 1/(1+sT1) > 1/(1+sT2)
Vrmin
KT | 1/(1+sT3)

!

Load Limit

-

Figure 6.6. Model of the gas turbine used for distributed generators

Table 6-10
Data used to model the turbine-governor for the distributed generators [69]
R 0.05 KT 243
T1 0.4 sec. Mmax 1.25
T2 0.1 sec. Vmin 0.348
T3 3 sec. Dturb 0
AT (Ambient 1.0
Temperature Load limit) ’

Operation of the DG System under Sinusoidal Conditions

The first step to study the dynamic behaviour of a system is to find the initial steady-

state operating conditions. Later, to calculate the system eigenvalues, the machine

and system equations will be linearized around this initial operating point.

6.4.1. System Steady-State Operation

To calculate the steady-state parameters of the system in sinusoidal conditions, a load

flow program is applied to the system. The selected load flow program is based on

the Newton-Raphson method and is coded in Matlab software. The system loading is

presented in Section 6.3.1, and listed in Table 6-1.
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The load flow outputs including the generators powers and the system steady-state

bus voltages are summarized in Table 6-11 and Table 6-12, respectively.

Other system parameters including active and reactive powers and also line currents

can be calculated from system characteristics and the bus voltages.
The steady-state rotor angle of the distributed generators is calculated as follows:
Shase=0.47 MVA, P=0.3 MW, Q=0.05 MVar, V=1pu - P=0.638 pu, Q=0.1064 pu

1;=0.647 pu, PF=0.986, y4=0.88pu, y4=-0.64pu using Equation 3-28 - §,=41.19°.

Load flow outputs for DG system underT rilt:::ediitlullsoidal operating conditions: Generators
powers
Generator Number Bus Number G;I;:':lﬁe&‘&i)ve Ge;‘s;t??ﬁizcgve
1 9000 1917.13 944.47
2 9020 0.3 0.05
3 9020 0.3 0.05
4 9020 0.3 0.05
5 9020 0.3 0.05
6 9020 0.3 0.05
7 9020 0.3 0.05
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Table 6-12

Load flow outputs for DG system of Figure 6.1 under rated sinusoidal operating conditions:

System bus voltages

Bus Number Voltage Magnitude (pu) Voltage Angle (deg)
9000 1.03 0
9001 1.0215 -0.3335
9002 1.013 -0.6726
9004 1.0045 -1.0152
9005 1.0038 -1.0385
9007 1.0028 -1.0661
9009 1.0004 -1.2223
9011 0.9893 -2.6782
9012 0.99 -3.1439
9013 0.9893 -3.2654
9015 0.9878 -3.8305
9016 0.9875 -3.8114
9017 0.9873 -3.7919
9019 0.9872 -3.7623
9020 1 -0.3699
9022 0.9849 -4.1169
9024 0.9855 -4.0827
9025 0.9862 -4.0483
9028 0.9871 -3.9327
9030 0.9866 -4.0048
9031 0.9864 -4.0335
9033 0.9863 -4.0451
9109 0.9969 -1.4035
9113 0.9884 -3.3474
9120 0.9889 -3.6835

6.4.2. System Dynamic Behaviour

System dynamic behaviour is studied under the sinusoidal operating conditions using

the power system toolbox. The system eigenvalue are found in order to evaluate the

system small-signal stability. Furthermore, PSSs are included to improve the stability
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of the distributed generators. The phase compensation method is used for tuning the

PSSs and the root locus is plotted to determine their optimum gain values.

There are 74 state variables in the DG system under investigation having no PSSs
connected. It includes 10 variables for each distributed generator and 14 variables are

related to the swing generator. Synchronous generators state variables are

3,0y pp.¥p. ¥ andy, .

Table 6-13 summarizes the eigenvalues of the system, as well as the corresponding

mode frequencies and damping ratios.

The first eigenvalue represents the zero eigenvalue due to the redundant state
variables or in other words, the lack of uniqueness of absolute rotor angle [2].
According to Table 6-13, all system eigenvalues are in the left side of the s-plane and
hence, the system is stable. Calculating the participation factors for the weakly
damped modes shows that these are the interplant modes of rotor angle and speed
variations in distorted generation bus. The normalized participation factors for the

eigenvalues number 52 and 53 are shown in Figure 6.7.

It is observed that the rotor angle and speed of the distributed generator number 5 are
the dominant state variables. The damping ratio of these modes is 0.09 which is less
than the sufficient value of 0.2. Usually, the local plant and interplant modes have
frequencies in the range of 0.7 to 2.0Hz. But in this system, having small distributed
generators with very low inertia (H=0.7), the rotor oscillation frequencies has

increased to 4.8Hz.
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Table 6-13
DG system modes under sinusoidal conditions and without PSS
Eli\}gs;v;;;le Eigenvalue Fre ((;;1;)11 el Damping Ratio
1 -4.81x 10° 0 1
2,3 -0.23 £0.521 0.0835 0.4118
4 -0.7378 0 1
5 -1 0 1
6,7,8,9,10 -1.426 0 1
11 -1.6803 0 1
12,13 -0.59 +2.841 0.4521 0.2049
14,15,16,17,18 -3.0353 0 1
19 -3.3002 0 1
20 -3.8765 0 1
21 -7.8646 0 1
22 -8.3406 0 1
23,24,25,26,27 -9.0269 0 1
28,29,30,
31,32,33 10 0 !
34,35,36,37,38 -10.2891 0 1
39 -10.5438 0 1
40 -11.8432 0 1
1,42,43,44.45 -13.4688 0 1
46 -24.618 0 1
47,48 -3.42 +£24.50i 3.9003 0.1383
49 -28.5162 0 1
| 27243024 48132 0.09
60,61,62,63,64 -31.133 0 1
65 -36.0473 0 1
66 -45.6384 0 1
67 -61.4144 0 1
68,69,70,71,72 -95.833 0 1
73,74 -99.9923 0 1
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Figure 6.7. The participation factors for eigenvalues number 52 and 53

To increase the damping of distributed generators rotor oscillating modes, PSSs are
connected to the exciter system as shown in Figure 6.2. The basic function of a PSS

is to increase damping of the generator rotor oscillations by controlling its excitation

using an auxiliary stabilizing signal.

Figure 6.8 shows structure of the connected PSSs. To increase the damping, the PSS
should produce a signal in phase with the rotor speed deviations. Hence, the rotor

speed deviation is selected as the input signal to the PSS.

Vmax

speed Voltage
—m Ks/(1+sTw) - (1+sT1)/(1+sT2) - (1+sT3)/(1+sT4)

Vmin

Figure 6.8. Structure of the PSS

The phase compensation method is used for tuning the PSSs. This method is widely
used by industry to design the system stabilizers. Using this method and in the ideal
case, the phase characteristic of the PSS is an exact inverse of the exciter and

generator phase characteristics. Hence, the PSS would result in a pure damping

torque.
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Figure 6.9 shows the ideal and actual phase lead of the power system stabilizers
connected on the distributed generators. The selected PSS parameters are:

T, =10sec., T} = 0.08sec., T, = 0.03sec., T3 = 0.1sec., and T = 0.03sec.

80

70+

60

50

40}

phase (degrees)

30+

20

0 L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5 4

frequency (Hz)

Figure 6.9. Ideal and actual PSS phase leads

A root locus with gain of the PSS is calculated and plotted in Figure 6.10. The star
points indicate the eigenvalues with a PSS gain of 5. This figure shows that the PSS

can increase the damping of the oscillating modes to the acceptable level of 0.2.
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Figure 6.10. Root locus with PSS gain under sinusoidal conditions
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Table 6-14 shows the system eigenvalues after installation of the PSSs on distributed

generators with the following parameters:

K=5,T, =10sec., T; = 0.08sec., T, = 0.03sec., T3 = 0.1sec., and T = 0.03sec.

Figure 6.11 demonstrates the eigenvalues damping ratios before and after the
installation of PSSs. It is observed that the PSSs have increased the damping of
poorly damped modes to the acceptable level of 0.2. It is also shown in Table 6-14
that the PSS installation has increased damping of the rotor oscillating modes from

0.09 to the acceptable level of 0.21.

6 : @ No PSSs
51 o A N A With PSSs
N 4 - .
= P
e : A
23/ 5
& :
£ 21 ; A
S
®
0 ¥ ‘ T T ‘
0 0.2 0.4 0.6 0.8 1

Damping Ratio

Figure 6.11. System eigenvalues before and after the installation of PSS under sinusoidal

conditions
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Table 6-14
DG system modes under sinusoidal conditions and with PSS, K=5
Eli\}gs;vl?::e Eigenvalue Fre(ci-;lze)ncy Damping Ratio

1 -4.81 x 10° 0 1
2 -0.1001 0 1
3,4,5,6,7 -0.1004 0 1

8,9 -0.23 £0.521 0.0835 0.4118
10 -0.7378 0 1
11 -1 0 1
12,13,14,15,16 -1.371 0 1
17 -1.6693 0 1

18,19 -0.59 +2.841 0.4521 0.2049
20,21,22,23,24 -2.994 0 1
25 -3.002 0 1
26 -3.8596 0 1
27 -7.8646 0 1
28 -8.3406 0 1
29,30,31,32,33 -9.026 0 1
34,35,369,37,38,3 10 0 |
40,41,42,43,44 -10.2895 0 1
45 -10.5432 0 1
46 -11.8449 0 1
47,48,49,50,51 -13.4765 0 1
52 -21.0556 0 1

53,54 -6.75 £22.30i 3.5493 0.29

55 -28.5163 0 1
56,57,58,59,60 -30.2916 0 1
61 -30.3365 0 1

62236847857?76 -29.02 + 11.65i 1.8545 0.928

72777277‘;;%;617 7.30 + 32.74i 52112 0.2179
82 -35.9812 0 1

83,84 -33.53 £ 27.26i 4.3398 0.7759
85 -73.2905 0 1
86,87,88,89,90 -96.2054 0 1
91,92 -99.9923 0 1
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6.5. Operation of the DG System under Distorted Conditions

Actual DG systems include nonlinear loads that inject time current harmonics into
the system and increase the level of voltage harmonic distortion at the buses. A
synchronous generator operating under distorted conditions will inject current
harmonics and hence deteriorates the power quality of the system. In this section, the
nonlinear model of a synchronous generator considering the space harmonics,
presented in Chapter three, is used to model the distributed generators. As the actual
data of the system nonlinear loads is not provided in reference [69], it is assumed that
some parts of the loads are of nonlinear type. The space harmonics of the generators
are similar to those used in chapters 3, 4 and 5. Table 6-15 shows the power levels

and types of the nonlinear loads.

In order to be able to compare the results with the sinusoidal conditions, the
fundamental components of the loads are assumed to be equal to those used in
Section 6.4. Hence in this section, the active and reactive components of the linear
loads are equal to the values of Table 6-1 minus the power of nonlinear loads, as

listed in Table 6-15.

The magnitudes (in percentage) and angles (in degrees) of the three types of

nonlinear loads used in the DG system are presented in Table 6-16.

Table 6-15
Nonlinear load data for the DG system
Bus Number Nonlinear load type Active power (kW) Rea(clii‘w]'eApRt;wer
9004 six-pulse 2 0.45 0.3
9005 six-pulse 3 0.2 0.1
9007 six-pulse 3 0.35 0.2
9009 six-pulse 2 0.1 0.05
9011 six-pulse 2 0.05 0.03
9017 six-pulse 1 0.1 0.05
9019 six-pulse 2 0.1 0.05
9022 six-pulse 3 0.35 0.2
9031 six-pulse 1 0.1 0.05
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Table 6-16
Harmonic spectra of nonlinear loads (Table 6-15)
six-pulse 1 six-pulse 2 six-pulse 3
Harmonic
order magnitude phase magnitude phase magnitude phase
(%) (deg) (%) (deg) (%) (deg)

1 100 0 100 0 100 0

5 20 0 19.1 0 42 0

7 14.3 0 13.1 0 14.3 0
11 9.1 0 7.2 0 7.9 0
13 7.7 0 5.6 0 32 0
17 5.9 0 33 0 3.7 0
19 5.3 0 2.4 0 2.3 0
23 4.3 0 1.2 0 2.3 0
25 4 0 0.8 0 1.4 0
29 34 0 0.2 0 0 0
31 3.2 0 0.2 0 0 0
35 2.8 0 0.4 0 0 0
37 2.7 0 0.5 0 0 0
41 24 0 0.5 0 0 0
43 2.3 0 0.5 0 0 0
47 2.1 0 0.4 0 0 0
49 2 0 0.4 0 0 0

6.5.1. System Steady-State Operation

A Decupled Harmonic Power Flow (DHPF) algorithm was used to calculate the

system voltage harmonics for the steady-state operating conditions. This algorithm is

based on the Newton-Raphson method and the nonlinear loads are modelled as

decouple harmonic current sources. The harmonic domain model of a synchronous

generator, Equation 3-19, is used for presenting the distributed generators.

Figure 6.12 shows a flowchart of the iterative method used for calculating the system

steady-state voltage harmonics.
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Figure 6.12. Flowchart for the harmonic voltage calculation of DG system for steady state

operation

The harmonic components are considered up to order 11. As the fundamental

components of the system active and reactive loads are the same as the sinusoidal

conditions, the presence of nonlinear loads will not affect the system steady-state

fundamental results. Hence, the fundamental active and reactive powers generated by

the generators are similar to the sinusoidal conditions. However, the system losses

increase from 0.103MW to 0.108MW due to the additional harmonic losses.

Table 6-17 shows the results of running the DHPF for the distorted DG system.

Table 6-18 presents the voltage Total Harmonic Distortion (THDv) of the system

buses.
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Table 6-17
Steady-state bus voltages under distorted conditions
Bus Mag. Angle Mag. Angle Mag. Angle Mag. Angle
Number (pu) (deg) (puw) (deg) (pu) (deg) (pu) (deg)
9000 1.0300 0 0.0002 170.56 0.0001 -8.2283 0.0001 -36.55
9001 1.0215 -0.33 0.0037 | -115.32 | 0.0018 70.3487 0.0022 46.14
9002 1.0130 -0.67 0.0073 | -113.82 | 0.0036 71.4499 0.0044 46.85
9004 1.0044 -1.01 0.0109 | -113.30 | 0.0054 71.8296 0.0066 47.11
9005 1.0038 -1.04 0.0104 | -112.87 | 0.0059 70.5778 0.0071 47.67
9007 1.0028 -1.06 0.0101 | -112.29 | 0.0062 69.1892 0.0074 47.56
9009 1.0004 -1.22 0.0167 | -115.10 | 0.0051 81.1993 0.0065 46.02
9011 0.9892 -2.68 0.0578 | -113.44 | 0.0068 159.1762 0.0040 31.64
9012 0.9899 -3.15 0.0842 | -111.53 | 0.0112 179.9530 0.0023 11.14
9013 0.9891 -3.28 0.0904 | -111.65 | 0.0124 | -177.8594 | 0.0020 2.32
9015 0.9876 -3.85 0.1203 | -109.37 | 0.0178 | -164.8211 | 0.0028 | -112.23
9016 0.9874 -3.83 0.1230 | -109.15 | 0.0187 | -161.1052 | 0.0043 | -120.60
9017 0.9871 -3.81 0.1258 | -108.94 | 0.0197 | -157.7624 | 0.0059 | -124.65
9019 0.9871 -3.78 0.1285 | -108.76 | 0.0209 | -154.4275 | 0.0077 | -126.90
9020 1.0000 -0.39 0.0883 -75.25 0.0327 -80.8704 0.0075 -95.19
9022 0.9846 -4.14 0.1246 | -109.37 | 0.0167 | -176.3550 | 0.0023 24.92
9024 0.9853 -4.10 0.1246 | -109.47 | 0.0170 | -174.2695 | 0.0015 10.55
9025 0.9859 -4.07 0.1246 | -109.56 | 0.0174 | -172.2726 | 0.0010 -23.12
9028 0.9869 -3.95 0.1227 | -109.59 | 0.0179 | -167.6784 | 0.0019 | -101.35
9030 0.9864 -4.02 0.1239 | -109.61 0.0177 | -170.2842 | 0.0011 -71.91
9031 0.9862 -4.05 0.1244 | -109.69 | 0.0177 | -170.9539 | 0.0010 -61.72
9033 0.9861 -4.06 0.1244 | -109.74 | 0.0177 | -171.0364 | 0.0010 -61.85
9109 0.9969 -1.40 0.0226 | -115.95 | 0.0048 93.1712 0.0062 44.87
9113 0.9882 -3.36 0.0952 | -111.54 | 0.0132 | -175.6897 | 0.0016 -9.89
9120 0.9888 -3.70 0.1317 | -108.29 | 0.0224 | -150.7822 | 0.0096 | -127.61
Table 6-18
THDv values of the DG system bus voltages
Bus Number 9000 9001 9002 9004 9005 9007 9009 9011 9012
THDv [%] 0.02 0.45 0.91 1.37 1.38 1.39 1.86 5.89 8.58
Bus Number 9013 9015 9016 9017 9019 9020 9022 9024 9025
THDv [%] 9.22 12.31 12.60 12.91 13.21 9.44 12.77 12.76 12.76
Bus Number 9028 9030 9031 9033 9109 9113 9120
THDv [%] 12.56 12.68 12.74 12.74 2.39 9.72 13.54
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It should be mentioned that including the nonlinear model of the generators
considerably increased the harmonic distortion level of the DG system. For example,
using the sinusoidal model of the generators the highest voltage THD of the system
will be 4.9% at bus 9120 while including the nonlinear model of the generators

considering space harmonics increases the voltage THD to 13.5%.

The employed DHPF algorithm assumes balance three-phase conditions. It is shown
in Chapter three that the nonlinear characteristics of the SG in the presence of
harmonics will inject unbalance currents to the power system. However, the system
is assumed to be balanced and the parameters of phase ‘a’ are considered for the
system study. The injected harmonic components by the distributed generators are

presented in Table 6-19.

Table 6-19
Harmonic currents injected to the system by each of the distributed generators
Harmonic order 1* 3 5t 7% 9t

Current (pu) 0.647 0.300 0.097 0.065 0.0376

These harmonics will affect the operating conditions of the distributed generators
such as their rotor angle. The modified parameters and the new rotor angle of the

generators under non-sinusoidal conditions are calculated using Equation 3-28:
Y4=0.76pu, Yq=-0.66, 5, = 40.42°.

Comparing these results with the sinusoidal conditions shows a decrease of 1.2% in

the steady-state rotor angle of DGs.

6.5.2. System Dynamic Behaviour

In order to investigate the system dynamic stability under the distorted operating
conditions, the modified model of a synchronous generator in the dg-frame of
reference considering the impact of harmonics that has been proposed in Chapter
three (Section 3.4.3) is used for the distributed generators. Table 6-20 shows the
system eigenvalues calculated using the power system toolbox and the modified

equation of the generators.
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Table 6-20
DG system eigenvalues under distorted conditions and without PSS
Eigenvalue Number Eigenvalue Frequency Dampjng
(Hz) Ratio
1 -0.0004 0 1
2,3 -0.23 £ 0.52i 0.08 0.41
4 -0.73 0 1
-1 0 1
6 -2.26 0 1
7,8,9,10,11 -2.29 0 1
12,13 -0.59 +£2.84i 0.45 0.20
14 -3.30 0 1
15,16,17,18,19 -5.25 0 1
20 -7.86 0 1
21 -8.34 0 1
22,23 -9.56 +0.49i 0.07 0.99
24,25,26,27,28,29 -10 0 1
30,31,32,33,34 -10.10 0 1
35,36,37,38,39 -12.46 0 1
40 -13.28 0 1
41,42,43,44,45 -18.99 0 1
46,47 -8.80 +23.831 3.79 0.34
48 -28.51 0 1
49,50,51,52,53 -31.09 0 1
54 -36.00 0 1
55,56,57,58,59,60,61,62,63,64 -2.51 +41.861 6.66 0.05
65 -55.87 0 1
66,67,68,69,70 -94.50 0 1
71,72 -99.99 0 1
73 -148.493 0 1
74 -212.32 0 1

The first eigenvalue is the theoretically zero eigenvalue. It is observed that harmonics
can relocate the modes related to the DG bus including the rotor oscillating modes in
the interplant and local modes that generate the oscillations between the distributed

generators or between the swing bus and the DG bus. The real parts of the distributed
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generators rotor oscillating modes are slightly pushed toward the right hand side of

the s-plane, from -2.7 to -2.5, and their damping ratios is decreased from 0.09 to

0.05.

As the harmonics relocate the system modes, it is important to make sure the system

stabilizers remain effective under distorted conditions.

To evaluate the effectiveness of the designed PSSs in Section 6.4.2 under distorted
conditions, the system eigenvalues are re-calculated in the presence of the PSSs. The
results show that under distorted conditions, these PSSs are not capable of moving

the rotor oscillating modes to the desired level of damping ratio.

Figure 6.13 shows the system root locus with the PSS gain under the distorted
conditions. The star and circle points show the system modes with the PSS gains of 5
and 10, respectively. It is shown that for having sufficient damping ratio of rotor
oscillating modes under distorted conditions, a minimum PSS gain of 10 is required.
Also the interplant eigenvalues follow different paths compared with the sinusoidal

case of Figure 6.10.
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Figure 6.13. Root locus with PSS gains of 5 and 10 under distorted conditions
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Table 6-21 shows the system eigenvalues with the PSSs gain of 10. It is observed
that applying the PSSs with the modified gain of 10 will effectively improve the
damping ratio of the distributed generators rotor oscillating modes to the acceptable
level of 0.22. Furthermore, their real parts are shifted toward the left side of the s-

plane, from -2.5 to -10.4.

Figure 6.14 demonstrates the damping ratios and frequencies of the system modes
without PSSs and with PSSs gains of 5 and 10. This figure shows that considering
the impact of harmonics in tuning the PSSs will keep them effective under distorted
conditions. For proper operation of MMMB systems under distorted conditions, it is
necessary to include the impacts of harmonics in the calculation and design of PSSs,

as presented in this chapter.
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Figure 6.14. System eigenvalues under distorted conditions before and after the installation

of PSS
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Table 6-21
DG system eigenvalues under distorted conditions with PSS, K=10
Eigenvalue Number Eigenvalue Frequency Damping
(Hz) Ratio
1 -0.0004 0 1
2,3,4,5,6,7 -0.1001 0 1
8.9 -0.2388 - 0.52651 0.0838 0.4131
10 -0.7364 0 1
11 -1 0 1
12 -2.2964 0 1
13,14,15,16,17 -2.3275 0 1
18,19 -0.5941 - 2.8422i 0.4523 0.2046
20 -3 0 1
21,22,23,24,25 -5.2168 0 1
26 -7.8645 0 1
27 -8.3406 0 1
28,29 -9.5595 - 0.49361 0.0786 0.9987
30,31,32,33,34,35 -10 0 1
36,37,38,39,40 -10.1073 0 1
41,42,43,44,45 -12.4658 0 1
46 -13.2745 0 1
47,48,49,50,51 -18.216 0 1
52,53 -7.4841 - 19.0428i 3.0307 0.3658
54 -22.7396 0 1
55 -28.5163 0 1
56,57,58,59,60 -30.2524 0 1
61,62,63,64,65,66,67,68,69,70 -25.7496 - 16.2891i 2.5925 0.8451
71 -35.9883 0 1
72,73,74,75,76,77,78,79,80,81 -10.4721 - 46.2993i1 7.3688 0.2206
82,83 -60.2265 - 15.0838i 2.4007 0.97
84,85,86,87,88 -95.4167 0 1
89,90 -99.9923 0 1
91 -162.738 0 1
92 -212.32 0 1




Chapter 6: Dynamic Behaviour of a Multi Machine Multi Bus... 141

6.6. Conclusions

In this chapter the impact of harmonics on the steady state operation and dynamic
behaviour of an actual distributed generation system was investigated. The system
was studied under sinusoidal and distorted operating conditions. A decoupled
harmonic power flow algorithm was used for steady state study and the power
system toolbox with a modified model for generators was used for the calculation of
system eigenvalues. The modified model of a synchronous generator in dg-frame of
reference including the impact of time and space harmonics was used for dynamic
modelling of the distributed generators. The following steps were performed for the

system investigation.

At first, the system steady state parameters including the system bus voltages and
generated powers were computed under sinusoidal conditions using the DHPF
algorithm (Table 6-11 and Table 6-12). The results were used for the DGs rotor angle

calculation.

Second step included finding the system eigenvalues using the power system
toolbox. While at this stage the system was being studied under the sinusoidal
conditions, a conventional model of a synchronous generator in dg-frame of
reference was used to model the DGs. The results, Table 6-13, show that all of the
eigenvalues were in the left side of the s-plane and hence the system was stable.
However, the damping ratios of the DGs rotor oscillation modes were 0.09 which is

less than the desired value of 0.2.

In the third step, power system stabilizers were designed and installed at the
excitation system of the distributed generators to improve the damping of the rotor
oscillation modes. A conventional structure was assumed for the PSSs and the phase
compensation method along with the root locus were utilized for tuning the
parameters of the phase compensator block and gain of the PSS. The results, Table
6-14 and Figure 6.11, show that a gain of 5 will improve the damping ratio of the

rotor oscillating modes to 0.21.

The next steps were related to the system study under the distorted conditions.
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In forth step, to include the impact of harmonics, some parts of the connected loads
were assumed as nonlinear loads that inject current harmonics to the system. These
nonlinear loads were modelled as decoupled harmonic current sources in the DHPF
algorithm. To consider the impact of space harmonics, the model of a synchronous
generator in the harmonic domain, Equation 3-19, was used. The generated harmonic
currents by the distributed generators were applied to the system as harmonic current
sources. It was shows that adding the model of DGs increased the level of voltage
THD from %4.9 to %13.5 at the distributed generation bus. It should be reminded
that there were 6 units of the DGs connected at this bus. In this step the DGs rotor
angle was calculated and a difference of -1.7% was shown in compare with the

sinusoidal conditions.

Step five was related to the calculation of the system eigenvalues under the distorted
conditions. In this stage the model of distributed generators were modified using the
steady state parameters of the time harmonics and rotor angle calculated in the
previous step. The results showed relocations of rotor oscillating modes and
interplant eigenvalues. Damping ratio of the rotor modes was decreased from 0.09 to
0.05 and their real parts were moved from -2.7 to -2.5. It was stated that if the system
was marginally stable, such as highly loaded conditions, the harmonics could cause

small-signal instability. However, in this case the system was relatively stable.

In the last step, the effectiveness of the installed PSSs was tested under distorted
conditions. The root locus, Figure 6.13, show that to have sufficient damping ratio of
the rotor oscillating modes, the PSSs gains should be increased to a minimum value
of 10. Having these results show that in order to guarantee the effectiveness of a PSS
in distorted conditions, it is necessary to consider the harmonics in tuning its

parameters.
Suggested guidelines for tuning the PSS are as follows:
1- Calculate the system voltage and current harmonics.
1A- Use the Nonlinear model of SG considering space harmonics.

1B- Use a harmonic power flow, such as decoupled harmonic power flow.
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2- For the PSS installed generators, calculate the additional terms of stator fluxes

due to the presence of harmonics.

3- Use an optimization method such as GA-Fuzzy method, as proposed in chapter
5, to tune the PSS parameters.
4- If an optimization program is not available, use the phase compensation method

considering the presence of harmonics.



CHAPTER SEVEN
SUMMARY AND CONCLUSIONS

In this thesis, the impact of time and space harmonics on the small-signal stability of
the power systems was studied. The study was done on a distorted SMIB system. To
show the impact on more realistic systems, an actual MMMB distributed generation
system located in Western Australia was also modelled and its dynamic behaviour

under the influence of harmonics was studied.

The method used for stability study was the eigenvalue analysis method. This
method is based on linearizing the system differential equations around the operating
point. Hence, the first step was finding the impact of harmonics on the system
steady-state operating conditions. As synchronous generators are of the most
important parts of the power systems, the operation of a synchronous generator was
investigated in the presence of time and space harmonics in Chapter three. A
synchronous generator was modelled in the harmonic domain and the abc-frame of
reference. This model was used to calculate the harmonic components of the
generator parameters such as stator fluxes and voltages. It was shown that the
interaction between time and space harmonics will include additional terms to the
fundamental components of generator parameters. These additional components are
functions of time and space harmonics and also the rotor angle. They were calculated
and used to modify the conventional model of the generator in the dg-frame of
reference. This is done by applying the Park transformation on the modified
fundamental components including the additional terms. This model was also used to
calculate the steady-state operating point of the synchronous generator. The
simulation results were presented for a sample synchronous generator working under
three different operating conditions including sinusoidal, presence of space
harmonics and presence of time and space harmonics. The characteristics of this
generator were adopted form reference [2]. Hence, it was possible to confirm the

sinusoidal results of the system steady-state and dynamic stability. The impact of
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damper windings and the harmonic phase angles were also includes and the
simulation results showed variations in the steady-state operating conditions of the

synchronous generator in distorted conditions.

In Chapter four, the modified model of the synchronous generator was connected to a
distorted infinite bus to find the impact of harmonics on the small-signal stability. As
the system equations were very complicated in the presence of harmonics, a
simplified model of generator and system was employed. This was in order to make
it possible to solve the equations and show the impact of harmonics on the system
state matrix. The system eigenvalues were calculated and it was shown that
harmonics can move them toward the left side of the s-plane. The relocation of the
eigenvalues depended on the phase angle and magnitude of the harmonics. Even
though it is hard to predict the change in the system modes by harmonics, it is
important to consider them in system study as they can cause instability in the

marginally stable systems.

The next step of this work concentrates on improving the system small-signal
stability in the presence of harmonics. As FACTS devices with auxiliary POD
controllers have been widely used in the power systems, the effectiveness of these
damping controllers in distorted conditions was investigated. In chapter five, an
SSSC device was connected in the distorted SMIB system and the system state space
equations were derived. A hybrid genetic-fuzzy approach was proposed for solving
the nonlinear constrained problem of optimal selection of the POD parameters. The
object of the method is moving the eigenvalues into the desired part of the s-plane
and the constraints include the limits of the POD controller to avoid prolonged
saturation in the SSSC actuators. The chromosomes fitness values were computed
using the fuzzy approximate reasoning with the inputs of real parts and damping
ratios of the electromechanical modes. The results showed that the POD controller
designed for the sinusoidal conditions can not be effective under the influence of
harmonics. However it was shown that considering different levels of time
harmonics as well as sinusoidal conditions simultaneously, could result in design of a
robust POD controller. This POD controller remained effective under the influence
of harmonics. The proposed method is also applicable for tuning the other types of

power system stabilizers.
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The stability studies in chapters 4 and 5 were based on a distorted SMIB system and
the impacts of exciter systems and turbine-governors were not considered. The
reason for that was to simplify the calculation as the presence of harmonics made the
calculations more complex. The SMIB system is the basic model for understanding
and investigating the small-signal stability of the system. However, to expand the
study to a more realistic system, an actual MMMB system was investigated in
Chapter six. The system was a 24-bus distributed generation system in Western
Australia. The steady-state and dynamic behaviour of this system was studied under
sinusoidal and distorted conditions. A decupled harmonic power flow algorithm was
used to calculate the system the steady-state parameters such as bus voltages and
generator powers. The nonlinear loads were modelled as decoupled harmonic current
sources in steady state conditions and the synchronous generators were modelled in
harmonic domain of reference. The power system toolbox with modified model of
the synchronous generators in dg-frame of reference was used for eigenvalue
calculations. It was observed that the harmonics can affect the distributed generators
rotor oscillating modes and the interplant modes. The excitation systems of the
distributed generators include power system stabilizers to increase the damping of
rotor oscillating modes. These PSSs were designed based on the phase compensation.
The simulation results showed that these PSSs are not quite effective under the
influence of harmonics. In distorted conditions it was necessary to apply more gain
to the PSSs in order to have proper damping ratio of the oscillating modes. It was
stated that in order to guarantee the effectiveness of a PSS in distorted conditions, it
is necessary to consider the harmonics in tuning its parameters and properly modify

its gain.

7.1. Thesis Contributions
The main contributions of this thesis are as follows:

- Analysis of distorted power systems and inclusion of auxiliary signals on the
conventional PSS devices to guarantee stable operations in the presence of time and

space harmonics.
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- The conventional power system stabilizer might not work properly under distorted
operating conditions enforced by nonlinear loads and/or nonlinearity of synchronous

generators.

- A proposed modified model for the synchronous generator in the dg-frame of

reference that considers the influences of time and space harmonics.

- The harmonics can change the steady state operating conditions of synchronous

generators.

- The harmonics can relocate the system eigenvalues and cause instability in the

marginally stable systems.

- The POD controllers might not remain effective in distorted conditions, hence the

harmonics should be considered in their design.

- The distortion level of DG systems is considerable and their voltage THD level can
be computed using the nonlinear model of the synchronous generators including

space harmonics.

- The PSSs installed at the DG systems should be tuned considering the presence of

harmonics.

7.2. Future Work

It was shown in this thesis that the presence of harmonics can change the dynamic
behaviour of the power systems and might cause instability in marginally stable
power systems. It is also necessary to consider the harmonics in tuning the power

system stabilizers in order to keep them affective in distorted conditions.

However to continue the impact of power quality issues on the system stability, the

following subjects are still to be investigated:

- The small-signal stability of the unbalanced systems.

- The possible interaction between harmonics and the POD controllers.
- The impact of sub-harmonics on the system dynamic stability.

- The impact of harmonics on transient and voltage stability.
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APPENDIX B
LINIEARIZING THE SYSTEM PARAMETERS

A. No damper windings:

Equation 4-14 shows the deviations of the stator currents in dg-frame as follows:

Ai‘(il) — mlA'//Fd + m2A5+ I’)’%A l//j“e to harm + m4A l/,;iue to harm (B2)
Ai;l) — nlA V/Fd + n2A5+ n3A l//jue to harm + n4A l//due to harm
The stator additional fluxes are also obtained in equation 4-17:
Al//due to harm __ - [AA5+ BAl‘(ll) + CAZ(I)]
Po (B-3)
Al//due to harm _P2 [AA5+ BAl;l) + CAZ(I)]
0

To calculate the stator currents and voltages as functions of state variables, the above

equations have been solved as follows:

Aif}) ==2 A W ra +—A5 YV 3
El (B-4)
AP ——Aq/Fd +—A5+ Al
Where
BNm, + BM ANm, + AM, CNm,+CM
Elzl——mf)z m4, Ezzml, E3=m2+ m32 I’I’l4’ .= m32 m,
2 41 P2 +1 P2 +1
+CM, A +AM B + BM,
F - _Can;2 C n4’ F=n, F,=n,+ Nn32 n4’F4: Nn32 n,
) +1 Py +1 Py +1
Hence,
1 FE,+FE,  _FE+FE,
Ai) =8 AV + 81, A0 S0 T RE-FE, °" FE-FE, B5)
Ai;l) :gqlA Yrat gq2A5 g = F,E, + KE, g, = F,E, + FE,
« FlEl _F4E4 o FlEl _F4E4
And

{A l//due to harm — k1A5 +k2A l//l:d (B-6)

A l//due to harm llA5 —+ le l//pd

Where,
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_ NA+NBm, + NCn, k= NBm, + NCn,

k,

P’ +1 : P’ +1 (B-7)
I = MA+MBm, + MChn, I = MCn, + MBm,
' P’ +1 : P’ +1

Now, using equation 4-18, the deviations of stator fluxes can be calculated as:

(e9) (Hy2
o=k, —L;m, + s +WFL¢
F r
A'//((il) = fd1 AWFd +fd2A5 (M(”)zml (B-8)
5 _ _ F
A'//;l) =fq1Ay/Fd + fq2A5 Jor == byt P
fql =1- an2
qu =1 _anl

B. With damper windings:

Using Equation 4-26,

L -L LepMp—M L
Ip =yp(—5—0—— )ty p( 5L )+ Iy (P P——F=D )
Lep —LpLp Lrp—LpLp Lep —LpLp
fl fZ f3
-L L LopM . — M L
Ip =y ()Y p(——0—— )+ 1 (P —D=E
Lyp —LpLp Lrp—LpLp Lrp—LpLp
d[ dZ d3
L - LeoMo —MgL (B-8)
IG =V 52— )ty g(——2— )+ I (22 2)
81 8> 83
— L, LG LG MG—M LG
o =Yyl —5—C— )+ygl——2—)+1,(—2 ¢
q; q> g3

Substituting the above values in Equation (4-25):

1
A‘/’fi ! =Ayp(Mpfr+Mpdy )+ Ay (M fi+Mpd;)
K K3

A (M fy+Mpds-L, + BN 1 as¢ )
4 IS Y AP (P ) +1
Mo +0

T 2

CN
(1
+4il1( )
(Fy )" +1
-0
T3
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Ayl = Ay (Mg, +Myqy )+ Ayo(Mgg, +Myq, )

Ky Ks
+ i (M g, +Myg,-L, + )+ A46( A )
a GeI T T p g (P ) +1
NEUEIE
Ty Ts
BM
+4it" ¢

(P, )2+1)
Jtol Te
Ts

The following coefficients are defined to simplify the equations:

kh=(R,+Ts+Ry (R, +Rp -T; )+(Xp-T) Xy -T,)

o K,(R,+T; +R; ) o Ky(R,+T5 +R; ) o K (Xg-T,)
! kh » 2 kh 3 kh '
Ki(Xg-T;) X;-T, R, -Ty-R;)
rry = m SIS = T T = 4 o , 1, =Ts(Xp-T; )+ To(R, +T5 + R )
_m(Xp-Ty) _In(Xg-T,) _mns(Xp-Ty)-Ky
SIS R AT, R, 2T R, 4T, R, T R +T, +R
o t1s + Rg o t1s +Rg ot +Rg
o =rr4(XE—T4)—K5 s =rrj(XE—TZ‘,)—] =rr6(XE—T4) s =rr7(XE—T4)—T5
4 R,+Ts+R; '~ ° R,+T;+R; ' ° R, +Ty+R; 7~ R, +T,+R;

Using the above coefficients, the deviations of stator currents are derived:

Ai;“ = AJ( Epsss cosdy - Epssg Sindy +5s; )+ Ay pss; + Ay pss, + Apgss; + Ay o554
— — — —

my my m3 my ms

Ai;“ = AJ( Egrrs cosdy - Egrrg sindy +rr; )+ Ay prry + Ayprr, + Aygrrs + Ay rry
— —— — —

nj n n3 ny ng

And the deviations of the rotor currents are calculated.

Alp = 45(myf3 )+ Ay p(my fz+ fr )+ Ayp(msfs+ f )+ Adyg(my f3 )+ Ayo(msfs)
Fy F2 F3 Fy Fs

Al =45(myd; )+ Ay p(myd; + Dy )+ Ayp(myd; +d; )+ Apg(myds )+ Apg(msd; )
— N " 2 — 2

Dy Dy D3 Dy Ds
Al =A45(n;g; )+ Ayp(nyg; )+ Ayp(nzgs )+ Apg(nggs + 8, )+Awo(nsgs+8;)
Gy Gy G3 Gy Gs

Al g =4d(nyq3 )+ Ay p(nyqs )+ Ay p(nzqs )+ Ayg(nggs +q, )+ Awy(nsqs +q; )
o v o o &
]

(B-9)

(B-10)

(B-11)

(B-12)

In order to linearize the torque equation around the operating point, the deviations of

stator fluxes as functions of the state variables are needed. These equations are

expressed in Equation B13.



Appendix B

160

Ay’ = 45(my( -Ly )+M . F,+M D,

BN
(Py ) +1

n,NC AN
2, t L
(Py) +1 (Py) +1

+

sy

+ Ay (my( Ly )J+MpFy,+MpD, +

BN
(Py)? +1

n,NC
(Py)? +1

52

+ Ay p(ms( Ly )+MpF;+MpD; +

BN
(Py)? +1

n3NC
(Py ) +1

53

+ Ay (my( Ly )+MpF;+MpD, +

BN
(Py)? +1

nyNC
(Py )’ +1

54

+ Ay o(ms( Ly )+MpFs+MpDs +

BN
(Py)? +1

nsNC
(Py)? +1

55

Ayl = A5 (n (————
Ve ( ]((P0)2+I

—Lq)+MGG] +MQQ] +

m,MB AM

(P0)2+I+(P0)2 +1)

i

+ Ay (ny( —Lq)+MGGZ+MQQ2+

M
(P )? +1

my,MB
(P )2 +1

7]

+ Ay p(ns( L)+ MgG; +My0; +

M
(Py ) +1

(P))? +1

m3;MB )

3

+Ayg(ny( “L, )+ MG, +MpQ, +

M
(P )? +1

myMB

(P0)2+I)

14

+dyo(ns( L)+ MgGs; + M 05 +

M
(Py)? +1

msMB
(Py)? +1

5

(B-13)
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LINEARIZING THE SYSTEM PARAMETERS INSTALLED WITH
SSSC

To calculate the state matrix components, a similar method to Chapter four is

followed.

The deviations of current components are computed as:

Af = alfAV/Fd +a2fA5+a3fAl//jue fo harm +a4fAl//f11”e to harm +aszVDC +a6fAm
.f:id’iq"//d"//q

(1 due 10 h
Al; = A, AY +a2idA5+a3idAz//duem o +a4idAt//;1”emh”rm +as;, AVpc +ag, Am
) due 10 h
Al;]) = ay, AWy +a2iqA5+a3ith//duem o +a4iqdl//;i”e to harm +as, AVpc +dag;, Am
(1) (1) . (1) .
Xy My Xy B sin(dy )-RpEp~ cos(dy )-mkVpe cos( B)X g, + mkVpc sin( )Ry
a, =7LFD L Ay, = D ,
X1, -R; - mk sin( B )X 7, - mk cos( B )Ry
a3id ZT’ a4id =T’ a5id = D ’
-kVpe sin( B )X ¢, -kVpe cos( B )Ry
a6id = D
Ry M} Ry EY sin(5, )+ X, Y cos( 5, )-mkV Ry - mkV e sin( f)X
a4, =—rF a. =1 sin( 9y )+ XpyEp " cos( 9y )-mkVpe cos( )Ry - mkVpe sin( f)X gy
lig LFD ’ 2ig D ’
T X4 -mk sin( B )Ry +mk cos( p )X,
3ig = F! A4i, ZT’ asiy = D ’
-kVpe sin( B )Ry +kVpe cos( B )X 14
a6, = D
D =X, Xp+R} (C-1)

Also having the following equations:

due to harm N (1)

Ay =P2+][AA§+BAzd +C 4il") + DAV e + EAm]
0
(C-2)
ytweonam - My g 4 B A +C 4D + DAV, + Edm]
Yy TPl la Iy DC n

The deviations of current and flux component are derived as follows:
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1 E,F. 1 E,F.
4" = o NEs+ A0+ ( BN E Ay
(E;-—"E;) ! (E;-—E4) !
1 F, 4 1 F, 4
mj my
1 W Fs 1 E,F;
+( 7, NEs + I )AVpe +( 7, N Eg + I )Am
(E - E;) ! (E,-—*E,) I
1 F, 4 1 F, 4
m3 my
BNags;, + BMay,, ANas;, + AMay,,
Ey=l-—F"5—, Ey=a;,, E=ay, +—— 5
Py+1 By +1
5 CNay;, +CMay;, : . DNaj;, + DMay;, : . ENas;, + EMay,,
2—’ :a . —’ :a . e —
4 P02 1] 5 Sig 1)02 +] 6 6iq 1)02 +]
CNaz;, +CMay; ANaj; + AMay;
F=]-——————1 F, =ay , F;=ay —
! P} +1 ‘a ‘a P} +1
i BNa3,-q +BMa4iq . DNa3iq +DMa4,-q - ENa3,-q +EMa4iq
:—y :a . +—’ :a . +—
! P+ 2T P+ 67 o P+
and:
(1) 1 1
Alq =(7)(F3 +m1F4 )Aé"'(?)(FZ +m2F4 )Al//Fd
1 1
nj n2
C-3
; ; (C-3)
+(?)(F5 +m3F, )AVpe +(7)(F6 +myF, )Am
1 1
—_ _
n3 nyg

The following coefficients are defined to simplify the equations:

NA + NBm; + NCn, NBm, + NCn,
e PZ+1 27 pl+1
P = ND + NBm; + NCn; P - NE + NBmy + NCn,
; Pl +1 C P} +1
7 = MA + MBm; + MCn;, 7 = MBm, + MCn,
! P} +1 : P} +1
MD + MBm;; + MCn; ME + MBm, + MCn, 4
3T PP+l S PP+l

Using the above coefficients, the deviations of stator fluxes as calculated as:



Appendix C 163

(1) 2 (1) (1) 2
, (M m M (M m
A‘//ZJ ) =(P,-L,m; + FL ! )46 +( Py - Lym, + LF + FL 2 )AY gy
F F F
Hj Hz
(1) 2 (1) )2
M m M m
+(P3-Ldm3+( ) AV e +( Py - Lym, STy
F Ly
H3 Hy

Ayl =(J, Ly, )A5+( T, - Lyny VA,
Sy S»
+(J3-Lyng )AVpe +(J 4 -Lyng )Am
| S _

S3 S4

(C-5)

Using the above formulations, the coefficients of the electromechanical torque

deviation are obtained in the following form:

ATe(l) :Kl(harm)A5+K£harm)Al//Fd+K(harm)AVDC+K;)/rzrtlzrm)Am

pDC
KV = H i S,i 46
1 = lyg 1YW a0 -9 1g040 -Myy
( harm) . .
K; =Hyiyg + 15049 - S3ig0d0 -myy
(harm) _ . S i AS
K,pc " =Hjig +n3y 40 - S3ig040 -m3y (C-6)
(harm) _ . .
Ko = Hyigo + 14y g9 - Sqiqg 40 -myy

Equation 5-9 shows the derivatives of DC capacitor voltage and field flux are as,

. _ p(harm) (harm ) ( harm )
Ay, = K5 A5+ K Ay, + K v,

7 g harm) (harm) (harm) ( harm)
AVpe=Kys A0+ Ky, " AW gy + Ky AVpe+ Ky, 4m (C-7)

h
o+ Ky AE gy + K™ am

The coefficients in the above equation are defined as follows:

() ()
(harm) _ = @oRpgME" 1y (harm) _ - @oRpg (1+Mp"my )
ng == - Kﬁ/, =
L, Ly
R MY R RyyMY
(harm) - WK py VM ms WKy ( harm ) - WKy Mg 1My
Kpc "= L K== K = L
F Mg F

) ki ki
K,’,,g‘""’ = (mycosf+n;sinf), K((jsmm) = (mycosf+n,sinf)

Cpe Cpe
arm k .
Kipd" = ¢ - (mycosfn sinf), (C-8)
D
( harm) — k

K CDC(idO cos B +iyg sin B +my cos fmy +my sinfny )



