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Abstract

This thesis offers an alternative approach to mining business process event log, which
has been mostly conducted via process models. The approach was motivated by the
increasing availability of XML-based event logs and XML mining methods. An inte-
grated method, called PCFSM, which allows for direct applications of a wide range of
relational data mining techniques, e.g. decision tree learning, association rule mining,
to XML-based event data, was proposed. The advantages of this method are that the
structural complexities of XML documents are reduced and the patterns found are more
informative than with traditional methods.

An exploratory analysis method was also introduced to analyse process logs in an
unbiased way where there is a lack of domain knowledge to guide the analysis process.
The main point of this method is to apply unsupervised learning algorithms to the
table representation of the tree-structured process log, then similar process instances
can be grouped together for further analysis. Relational data mining techniques, such
as frequent itemset mining and decision tree learning, can be utilised to discover the
common or distinguishing characteristics of each cluster of instances.

To predict the outcomes of process instances according to various business goals,
an associative classifier, called DSMC, which is an extension of PCFSM, was proposed.
Experiments showed that this method is comparable to other traditional subtree mining
methods in terms of accuracy rates. Although DSMC’s coverage rates are often lower
than traditional approaches for the same minimum support, it is able to operate at a
much lower support threshold.

The proposed methods were evaluated on synthetic, real-world process logs and
other types of tree-structured or XML data. The experimental results showed that our
approach is able to provide valuable insights into event data. Furthermore, the two
suggested methods are able to predict whether running process instances complete
satisfying a predefined outcome, or to recommend possible actions to achieve that
outcome.

Overall, this work extends the available pool of process analysis techniques, al-
lowing efficient knowledge discovery from XML-based process logs in a more direct,
unbiased manner, and provides an effective associative classifier for event data.
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Chapter 1

Introduction

According to Davenport (1993), a business process is a structured, measured set of
activities whose purpose is to produce a specified output for a particular customer or
market. There are many other definitions of business processes, but in general, they are
“relationships between inputs and outputs, where inputs are transformed into outputs
using a series of activities, which add value to the inputs” (Aguilar-Savén, 2004).

When business processes become more complex, automatic and systematic pro-
cess management is required. Business Process Management (BPM) has gradually
emerged as a solution to this need. BPM is defined as (van der Aalst, 2013):

methods, techniques, and tools to support the design, enactment, manage-
ment, and analysis of operational business processes.

Before computer systems were invented, business processes were written in text
and executed manually. Nowadays, most business processes are supported by means
of Business Process Management Systems (BPMS). Systems such as email clients, in-
ventory software and account systems are able to assist in the execution of a business
process. However, such systems are not built with a strong focus on business pro-
cesses or a workflow engine. On the other hand, systems that have an explicit notion
of process and are “aware” of business processes are called Process-Aware Informa-

tion Systems (PAIS). Some examples of these are Enterprise Resource Planning (ERP)

systems, Customer Relationship Management (CRM) systems, Websphere, etc.
In PAIS, all process execution data such as events, timestamps, resources and ac-

tivities are archived in event logs or process logs1. This type of data can be analysed
for process optimisation or improvement. For example, a university database contains
information about students, activities (e.g. register, withdraw) and associated times,
which can be considered as the resources, activities, and events of an event log, re-
spectively. These data, together with the drop-out information, can be used to build a
prediction model, and students who have a high probability of dropping out are flagged

1the terms event log and process log are used interchangeably
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Figure 1.1: A BPM life cycle.

up to the university managers. The insights derived based on the analysis of the uni-
versity process log clearly play an important role in the curriculum design and other
decision making processes.

However, event logs are often very large in terms of the number of records and
they are usually represented in a format that is not user-friendly. Hence, sophisti-
cated, robust methods and tools are needed to extract hidden knowledge from event
data to optimise or improve business processes. Many data mining techniques have
been designed specifically for mining event logs; nevertheless, most of them focus on
the discovery of process models or the use of available models as a starting point for
further analysis. In this thesis, a direct mining approach for XML-based process logs
is investigated.

This chapter starts with a description of Business Process Management (BPM).
Then, an overview of the process mining field is given in Section 2.2. Subsequently,
the motivation of this thesis is described in Section 1.3. The main research questions
and aims are discussed in Section 1.4. The contributions and impacts of our study to
the data and process mining field are reported in Section 1.5. Lastly, the outline of this
thesis is listed in Section 1.6.

1.1 Business Process Management

The BPM field is best viewed from the perspective of its life cycle. Fig. 1.1 shows a
BPM life cycle consolidated from (Dumas et al., 2013; van der Aalst, 2011a; Weske,
2007). The seven phases of the life cycle are described as follows.
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• In the process identification phase, all business processes in an organisation are
identified and delimited.

• In the process design phase, the process analyst and domain experts cooperate
to create as-is process models (see Section 2.1.2) that reflect the shared under-
standing of different stakeholders in an organisation. Note that process models
are often described by graphical notations due to their intuitive structure. In ad-
dition, process models can be represented in formal languages, which enables
automation.

• In the process analysis phase, business processes are analysed qualitatively and
quantitatively. In qualitative methods, process analysts would interview various
stakeholders to identify which part of the process has issues or needs improve-
ments. A number of analysis methods could be performed such as value-added
analysis, root cause analysis or impact assessment (Dumas et al., 2013). In quan-
titative methods, the process analyst would perform a process performance anal-
ysis, flow analysis, apply queue theory or conduct simulation (Dumas et al.,
2013).

• In the process redesign phase, to-be process models are mainly created from the
modification of as-is process models, which is a direct result of the analysis in
the previous phase.

• In the process implementation and configuration phase, organisational changes
are made and the to-be process models are automated by computer programs.
If the software is already up and running, only process parameters are to be
configured.

• In the process enactment phase, business processes are executed and event data
are logged.

• In the process monitoring and controlling phase, the main task is to analyse on-
line (monitoring) or offline (controlling) event data. In both cases, notifications
are reported to decision makers when bottlenecks or deviations are detected. If
the problems are not severe, e.g. an activity requires more resources at peak
periods, only process reconfigurations are needed. The process performances
are evaluated against predefined objectives, and served as inputs to the process
analysis phase.

Unlike other phases, process controlling and monitoring have only attracted sig-
nificant attention in recent years, due to the advancement of processing and storage
technologies. The rapidly-increasing speed of computing hardware enables more ap-
plications of data mining (see Section 2.3 for more details) to process monitoring. In
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addition, large-capacity storage systems are becoming cheaper, leading to more event
data being archived for analysis. The seminal works of Cook and Wolf (1995, 1999)
and van der Aalst et al. (2004) have laid the foundations for the process mining field,
which is considered to encompass process monitoring, controlling and other evidence-
based process analysis techniques.

1.2 Process Mining

Event logs are generated by information systems and are the starting point of process
mining (van der Aalst, 2011a). With an event log at hand, a variety of data analysis
methods can be used to gain insights into how a business process is executed and to
identify areas that can be improved. It is often assumed that an event log contains
instances of a single business process. Each instance in an event log is called a process

instance. Each process instance, also known as a case, is comprised of a set of events.
A trace is a case whose events are ordered sequentially according to the time when
they occur.

Fig. 1.2 shows an architecture of process mining, adjusted from (van der Aalst,
2011a). In PAISs, event logs are comprised of current data (data about processes that
are running) and past data (data about processes that are already complete). As-is
process models are descriptive, whereas to-be process models are normative, which
means that the execution of business processes is constrained by these models. There
are four categories of tasks in process mining, i.e. cartography, navigation, auditing,
and root cause analysis.

In the cartography category, the three main tasks are process discovery, process
diagnosis, and process enhancement. The first task involves the identification of a
(as-is) process model that is “representative” for of the behaviour seen in the event
log (van der Aalst, 2011a). The second task deals with searching for logical inconsis-
tencies in process models, or analysing process performance indicators such as time,
cost, or quality (using techniques like simulation, integer programming, etc.). The
third task enhances the discovered process models by adding different perspectives to
them e.g., organisational, social network perspective, using a variety of data attributes
in event logs.

In the auditing category, the main tasks are to compare, check, and promote. The
first task is to compare to-be process models with as-is process models to identify the
deviation of reality from what was planned. The second task is about checking the
compliance of an event log to its corresponding to-be process model. Based on the
results of the first task, it is possible to promote parts of the as-is model to a new to-be
model (van der Aalst, 2011a).

In the navigation category, some key tasks are to explore, predict, and recommend.
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Figure 1.2: A process mining architecture.

In exploration tasks, business processes are visualised at run-time such that event data
are displayed in accordance with the process models. In prediction tasks (van der
Aalst, 2011a; Rogge-Solti and Weske, 2013; Pika et al., 2013; van der Aalst et al.,
2011), the purpose is to measure how likely an event is to occur out of the possible
outcomes in a running process instance. Possible outcomes of a process instance can be
remaining processing time (flow time), cost of a process execution, whether a process
instance is successful or failed, whether a business goal is achieved or not, whether
a performance threshold is reached or not, which resource is assigned to an activity,
or whether an undesirable outcome happens or not. A recommendation task (van der
Aalst, 2011a; Conforti et al., 2013; Nakatumba et al., 2012; Maggi et al., 2014) is
to suggest what to do next in order to obtain a desirable outcome (e.g. minimising
cost, resource usage, or remaining processing time) given a partial trace of a running
process. A recommendation might be the next activity to be executed, or selecting a
resource for the current task.

In root cause analysis (or fault diagnosis), contribution factors to an undesirable
outcome of a business process, such as overtime fault, are identified (Suriadi et al.,
2013).
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1.3 Motivation

From the process mining architecture described in Fig. 1.2, it can be seen that most
process mining tasks, e.g. model enhancement, comparison of as-is and to-be models,
require the availability of process models. In the literature, process model discovery
has been the focus of a majority of studies in process mining. Generally, process mod-
els are an effective means of describing processes; therefore, their presence is seen in
all phases of BPM. However, the availability of a correct and up-to-date process model
in a constantly changing business environment is not always certain. Furthermore,
process models are sometimes hard to obtain, especially in complex processes.

With the advent of Mining Extensible Markup Language (MXML) and Extensi-

ble Event Stream (XES) standards, the two XML-based2 representations of event data,
an interesting question arises; “whether can XML data mining techniques be used to
directly discover interesting knowledge patterns from MXML/XES data without the
requirement of a process model?”. This question will be addressed in the remain-
der of this section. An overview of process mining methods that are not based on
process models is provided in Section 1.3.1. XML-based event logs are described in
Section 1.3.2. Finally, some tentative answers to the above question are presented in
Section 1.3.3.

1.3.1 Process Mining without Process Models

Event data have been used not only in the process mining field but also in other areas,
such as debugging, fault management, intrusion detection and prevention (Makanju
et al., 2012); network logs are used for network monitoring and network administra-
tion (Vaarandi, 2004), and equipment logs are used for predictive maintenance (for the
purpose of reducing equipment downtime) (Sipos et al., 2014). It is worth noting that
in such types of event data, the logs are often analysed without using process models.

As mentioned earlier, most process log analysis methods consider process models
as a-priori (conformance checking and model enhancement) or a-posteriori knowledge
(process discovery) (for more details, see Section 2.2). Recently, a few studies on the
direct mining of process logs have been conducted, mostly related to the prediction,
recommendation, root cause analysis, outlier detection, and association rule mining
tasks. These tasks are presented in turn as follows.

In traditional process mining, the prediction task is about using statistical analy-
sis over simulation/replay of process instances on the process models. Recently, there
have been a few attempts at applying traditional data mining techniques directly to
process logs, such as in the work of Maggi et al. (2014). In this study, the class la-

2http://www.w3.org/XML/
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bels are outcomes or performance indicators of a business process. Feature vectors
are selected from the training data, mainly from cases or events’ attributes. For ex-
ample, a case attribute such as patient age might be a good feature in predicting the
outcome of a treatment (e.g. duration of the treatment). In another example of an in-
surance company, an event attribute of the process make a claim, e.g. amount of money

requested, might be a useful feature in predicting fraudulent claims. An abnormal se-
quence of events could signal a fraud, such as skipping an important verification step
and approving claims that normally ought to be rejected.

In recommendation tasks, it is also possible to apply data mining techniques di-
rectly to event data such as the works in (Conforti et al., 2013) and (Maggi et al.,
2014). A common approach is to first build a prediction model, e.g. decision tree, or
regression model. Note that training instances are labelled by a performance indicator
or a specific goal. Then, the partial traces (a subset of a trace that includes current
and previous activities) are appended with each possible activity or resource, resulting
in a set of extended traces. The third step involves matching the extended traces with
the condition parts of classification rules. The probability of reaching a specific goal
from each extended trace is determined by the rules that are triggered and their rule
strengths, which can be measured by different methods, e.g. confidence, lift. Essen-
tially, the recommendation task only differs from the prediction task in the selection
of class labels and the application of the prediction model. It is worth noting that pro-
cess models could play a supplementary role in the process, i.e. identifying the next
possible activities or resources from the current event.

In root cause analysis, classification methods are used to identify attributes that
cause an undesirable outcome of a business process. The process and event’s attributes
can be used directly, or may have to be aggregated/derived from other attributes (Suri-
adi et al., 2013). For example, the cycle time of a process could be used as a feature
when building a prediction model; however, in many cases, this data is not given in the
process’s attributes, but is derived from the timestamps of the first and last events of
the process.

Outlier detection in event logs has just begun to receive attention in recent years.
Its objective is to identify process instances whose behaviours deviate from those of
most others individuals in the process logs. A process instance conforming to the
specification of a process model can still be an outlier (Ghionna et al., 2008); hence,
process models are not necessarily a requirement for the outlier detection task. Instead,
clustering techniques are used to split a process log into groups of similar process
instances and outlying instances belong to groups that have a significant distance to all
other groups are individuals that have large similarity distance to all other groups.

Despite its numerous applications in a wide variety of fields, association rule dis-
covery has been used in only a handful of works in process mining such as (Rebuge
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and Ferreira, 2012; Yang and Hwang, 2006; Swinnen et al., 2012). Association rule
discovery can be utilised in the event data of an automated pay-by-phone system. For
example, a company might be interested in finding out the reasons that have led to
clients abandoning calls. Although simulation is often performed to get an overall
feel of how the system is running, associative rule discovery may provide insights into
specific aspects, e.g. discovering associations between events/customer characteris-
tics and abandoned calls. Using various filters on the data/rules and then extracting
associative rules can provide focused answers quickly.

In summary, although most process mining tasks have been based on process mod-
els, the number of methods that apply data mining methods directly to process logs
has been on the rise. An advantage of this approach is that the focus has shifted from
the control-flow aspect of a business process to the whole data, thereby alleviating the
dependency on process models.

1.3.2 The Advent of XML-based Event Logs

In PAISs, there has been no specification of how event data are logged. This hinders
the communications between information systems and process mining tools. Impor-
tant data attributes needed for process mining might be missing, or the data might
have to go through many pre-processing steps to be used effectively. There should be
standardisation regarding which information should be recorded, and how the data are
organized in an event log.

Extensible Markup Language (XML)-based languages are the best candidates for
the representation of event logs due to their simplicity, portability, self-description and
extensibility. In addition, it is easy to convert data from any source into XML (Suciu,
2000) documents, which are then made available to XML data mining applications.
MXML (van Dongen and van der Aalst, 2005), a variant of XML, was proposed as a
representation language for event logs in 2005 and quickly gained acceptance from
the process mining community (Verbeek et al., 2011). MXML uses standardised tag
names to represent core elements of an event log. For example, process instance, event,
transition, and timestamp are labelled as <ProcessInstance>, <AuditTrailEntry>,
<EventType>, and <Timestamp> in event logs, respectively.

Despite its effectiveness, the meta model of MXML is restrictive and non-
extensible. An XML-based language, known as XES (Verbeek et al., 2011), was
created as an enhancement over MXML. In XES, some standardised tags of MXML

are renamed; e.g. <AuditTrailEntry> was changed to <event>, or replaced, e.g.
<EventType> has been replaced by attributes key=“lifecycle:transition”. In addition,
the semantics of attributes are defined in extensions, which are comprised of related
attributes, along with their data types and meanings. For example, the time extensions
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defines the attribute timestamp with its associated data type string and definition
“the date and time, at which the event occurred”. It is also possible to introduce
user-defined extensions. Furthermore, XES allows us to assign an identity to each
event through event classifiers.

A motivating example of an XML-based event log was created, based on a real-life
event log in the hospital domain (van Dongen, 2011; Bose and Aalst, 2012). The log
file, which is in XES format, is presented in Listing 1.1. The extensions definition
and other details are omitted to simplify the example. Listing 1.1 shows part of an
artificial event log representing a treatment process in a hospital. The data inside each
element <trace> represents a single process instance. The attribute <concept:name>
describes an activity of the patient, the attribute <org:group> represents the location
where the activity occurs, and the attribute <AgeGroup> represents the age of the
patient.

Listing 1.1: A part of an artificial event log in XES format representing a treatment
process in a hospital
<trace> <string key="AgeGroup" value="21-65"/>

<event> <string key="concept:name" value="Consultation"/>

<string key="org:group" value ="RadioTherapy"/> </event>

<event> <string key="concept:name" value="Administration"/>

<string key="org:group" value ="RadioTherapy"/> </event>

<event> <string key="concept:name" value="BloodTest"/>

<string key="org:group" value ="GeneralLab"/> </event>

</trace>

<trace> <string key="AgeGroup" value=">65"/>

<event> <string key="concept:name" value="Consultation"/>

<string key="org:group" value ="ObstetricsClinic"/> </event>

<event> <string key="concept:name" value="Administration"/>

<string key="org:group" value ="ObstetricsClinic"/> </event>

<event> <string key="concept:name" value="CytologicEvaluation"/>

<string key="org:group" value ="Pathology"/> </event>

</trace>

<trace> <string key="AgeGroup" value="21-65"/>

<event> <string key="concept:name" value="Consultation"/>

<string key="org:group" value ="RadioTherapy"/> </event>

<event> <string key="concept:name" value="Administration"/>

<string key="org:group" value ="RadioTherapy"/> </event>

<event> <string key="concept:name" value="CytologicEvaluation"/>

<string key="org:group" value ="Pathology"/> </event>

</trace>

<trace> <string key="AgeGroup" value="<21"/>

<event> <string key="concept:name" value="Consultation"/>

<string key="org:group" value ="ObstetricsClinic"/> </event>

<event> <string key="concept:name" value="PhoneConsultation"/>

9
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<string key="org:group" value ="ObstetricsClinic"/> </event>

<event> <string key="concept:name" value="Administration"/>

<string key="org:group" value ="ObstetricsClinic"/> </event>

</trace>

<trace> <string key="AgeGroup" value="21-65"/>

<event> <string key="concept:name" value="CTAbdomen"/>

<string key="org:group" value ="Radiology"/> </event>

<event> <string key="concept:name" value="MRIAbdomen"/>

<string key="org:group" value ="Radiology"/> </event>

<event> <string key="concept:name" value="Microscopic Examination"/>

<string key="org:group" value ="Microbiology"/> </event>

</trace>

<trace> <string key="AgeGroup" value=">65"/>

<event> <string key="concept:name" value="CTAbdomen"/>

<string key="org:group" value ="Radiology"/> </event>

<event> <string key="concept:name" value="MRIAbdomen"/>

<string key="org:group" value ="Radiology"/> </event>

<event> <string key="concept:name" value="FlamePhotometer"/>

<string key="org:group" value ="GeneralLab"/> </event>

</trace>

The fact that MXML and XES became the standards of event logging opens up
opportunity for XML data mining methods (Feng et al., 2003; Nayak et al., 2002;
Tagarelli, 2012) to be applied to this data. Two main approaches on XML data min-
ing are mining structures alone and mining both structures and content (Nayak et al.,
2002) (see Fig. 1.3). This thesis focuses on the former approach–the work in (Piernik
et al., 2015) shows that structural mining on XML data is scalable in big and com-
plex datasets while the other is not. In the structural mining approach, XML data can
be represented in many forms such as graphs, trees, path sets, tag vectors and time
series. In those, tag vectors are suitable for light weight documents, while trees and
paths are appropriate for documents that are homogeneous (sharing the same tag vo-
cabulary) (Piernik et al., 2015). Since event logs that comply to the MXML or XES

standard have repetitive substructures which include nodes ’event’ and their attributes,
tree representation is an plausible choice. Furthermore, among different types of tree
that can be used to represent event logs, this work focuses on rooted labelled ordered
trees (Zaki, 2002; Hadzic, 2012) because the type of event and the order of when events
occur are important in process log analysis. Data mining methods performed on a set
of trees (forest) (Chi et al., 2005b, 2004a), correspond to the inter-structure mining

according to the taxonomy shown in Fig. 1.3 (Nayak, 2008).
The study in (Feng et al., 2003) emphasised the importance of tree-structured pat-

terns in that they are “more natural, informative and understandable”. Moreover, sub-
tree patterns can be distinguished by their context positions. For example, Fig. 1.4(a)
and Fig. 1.4(b) shows two subtree patterns representing movies that have the same di-
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XML mining

XML structure mining XML content mining

Intra-structure Inter-structure Content Structure
mining mining analysis classification

Figure 1.3: An XML mining taxonomy (Nayak, 2008).

rector and actor; however, the context of each pattern is different because one belongs
to the category of ‘Thriller’ and the other belongs to ‘Comedy’.

Movie

Director Actor

Kat Tom

(a) (b)

Thriller

Movie

Director Actor

Kat Tom

Comedy

Figure 1.4: A subtree pattern in different contexts.

To utilise tree-structured mining methods, the event log described in Listing 1.1
needs to be converted into a rooted, labelled, ordered tree database, called THOS, which
is shown in Fig. 1.5. Each node in a tree represents an element/attribute in the XES

document. Note that the keys of the attributes are removed to make the figure less
cluttered. Additionally, the relationship between nodes representing org:group and
nodes representing concept:name is changed from sibling to parent-child for simplicity
reasons. The next section provides an overview of how XML mining methods are
applied to tree-structured data and examples are given on THOS.

1.3.3 Examples of XML Mining Methods and Their Applications

Frequent pattern mining (Han et al., 2007a; Chi et al., 2004a; Zaki, 2002; Hadzic et al.,
2011b) is to identify frequent structures in a database. Applying a frequent pattern
mining algorithm to MXML/XES event logs would return groups of activities and/or
attributes that frequently occur together. The frequency of the occurrence is called
support. For example, applying the TreeMiner algorithm (Zaki, 2005b) to the tree
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ObstetricsClinicx

Consultation

ObstetricsClinicx
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trace

MicroscopicExamination

Microbiology

MRIAbdomen

Radiology

CTAbdomen

Radiology

trace
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GeneralLab

MRIAbdomen

Radiology

CTAbdomen
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Figure 1.5: Tree database THOS represents the event log shown in Fig. 1.1.
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database THOS with a minimum support of two would return many frequent subtrees
(defined in Section 2.4.3). Two of them are presented in Fig. 1.6. The frequent subtree
in Fig. 1.6(a) illustrates that there are at least two patients aged between 21 and 65
following a sequence of activities at some stages in their treatment process: Consulta-

tion, then Administration, both at the RadioTherapy department. The frequent subtree
in Fig. 1.6(b) illustrates the same sequence of activities, but the locations at which the
activities took place are different.

trace-

Consultation

RadioTherapy

Administration

RadioTherapy ObstetricsLab

(a) (b)

AgeGroup:21-65

ObstetricsLab

Consultation Administration

trace-

Figure 1.6: Two frequent subtrees found from THOS.

Association Rule Mining

Association rule mining (Agrawal et al., 1993), a well-researched area in data mining,
identifies rules in the form of X ⇒ Y , where X and Y are disjoint sets of items. An
association rule expresses the probability of a transaction containing X also containing
Y .

Association rule mining has been used to identify business rules from reposito-
ries of business process designs, and was then used as a prior knowledge for further
analysing, verifying, and modifying process designs (Polpinij et al., 2010). In another
study, the χ2 test was performed on an insurance company’s database to identify the
correlation between two suspected characteristics of process instances (Caron et al.,
2013).

Using association rule mining on XML-based event logs would uncover interesting
relationships between activities, resources, and other properties. For tree-structured
databases, the antecedent and consequent of a rule are subtrees. From the databases
shown in Fig. 1.5, many tree-based association rules can be discovered, two of which
are shown in Fig. 1.7 as an example. The association rule in Fig. 1.7(a) illustrates
that for any patient treatment process instance, if there is a Consultation activity at the
department of RadioTherapy, an Administration activity in the same department would
also be likely to happen. The application of association rule mining to XML documents
has been studied in (Mazuran et al., 2009a; Moradi and Keyvanpour, 2015; Feng and
Dillon, 2005).
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Consultation

RadioTherapy

Administration

RadioTherapy

trace 

CTAbdomen

Radiology

MRIAbdomen

Radiology

trace trace trace 

(a ) (b)

Figure 1.7: Two association rules found from THOS.

Classification

The classification task is to construct a prediction model based on training instances,
whose class labels are known, and using this model to predict the class label of test
instances. In the context of process mining, each process instance in the training data
should be labelled according to a business goal. A prediction model is then learned
from the training data so that it is possible to predict outcomes of ongoing process
instances.

As an example, the process instances shown in Fig. 1.5 are used as training data.
The first four process instances are labelled with class high risk and the last two in-
stances are labelled with class low risk. Fig. 1.8(a) shows an example of a prediction
model which includes one rule. The subtree on the left (rule antecedent) represents
the condition of the rule and the value on the right (rule consequent) represents the
predicting class. If a test process instance satisfies the condition, i.e. the subtree in the
antecedent occurs in the test instance (see Section 2.4.2 for the definition of tree oc-
currence), then it is classified as the predicting class in the rule consequent, along with
a confidence value. The test instance in Fig. 1.8(b) satisfies the condition in Fig. 1.8a.
Hence, it is classified as “low risk” with a confidence value of x%.

XML classification based on structure alone was investigated in (De Knijf, 2007;
Costa et al., 2013b; Garboni et al., 2006; Zaki and Aggarwal, 2006; Costa et al., 2011).

Clustering

The clustering task (Jain et al., 1999) is to identify groups of instances that share some
commonalities. When applying XML-based or tree-structured clustering methods (Al-
gergawy et al., 2011; Dalamagas et al., 2005; Aggarwal et al., 2007; Costa et al., 2013a;
Nayak, 2008) to MXML/XES event logs, it is possible to identify multiple variants of a
process model, or to separate process instances that belong to different process models,
but were mixed into one event log. For example, applying a tree-based clustering algo-
rithm to the database shown in Fig. 1.5 would return two clusters of process instances;
the first cluster includes the first four process instances which are mainly involved with
consultations and administration activities, and the second cluster contains the last two
process instances which are mainly involved with examination activities.
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traceh

CTAbdomen

Radiology

MRIAbdoment

Radiology

classh =h“lowhrisk”

CTAbdomen
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MRIAbdoment CytologicEvaluation

Pathology

classh?

(a )

(b)

traceh

Radiology

x%

Figure 1.8: (a) A rule-based prediction model learned from the tree database in
Fig. 1.5. (b) A test process instance.

1.4 Research Questions and Objectives

Current process mining techniques focus on process discovery, which is to identify a
control-flow of a business process by applying machine learning or data mining meth-
ods on event logs. Without process models, common process mining tasks such as
conformance checking and process enhancement (van der Aalst, 2011a) would be im-
possible. However, it is hard to discover process model from event logs due to noise
in data or unstructured processes (also called spaghetti-like processes) (van der Aalst,
2011a). Additionally, even though event logs are archived in XML-based languages,
but are then extracted and converted to a suitable format decided upon by a specific
process mining algorithm. This adds unnecessary complexities to process mining. To
the best of our knowledge, there are no methods that directly mine process logs in XML

format. This gap helps us identify our research question, which can be summarised as
“In what way can XML data mining techniques be applied to event logs to discover
hidden knowledge without using process models?”

To answer the above research question, the following tasks should be done.

• Analyse the strengths and weaknesses of XML data mining methods for process
mining tasks.

• Devise an integrated approach for analysing an XML-based process log without
using process models.

This thesis proposes the use of frequent subtree mining techniques (Zaki, 2002)
and position-constrained frequent subtree mining method (Hadzic, 2012) on solving
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process mining tasks. It is known that there is no “one-size-fit-all” technique, thus the
thesis is expected to provide the improvements to the existing techniques.

1.5 Research Contributions and Significance

Research Contributions

This thesis introduced an integrated method, called PCFSM, which is based on the
position-constrained frequent subtree mining method to directly mine XML-based
event logs. Although this method requires the conversion of the tree database to a
flat data representation, the resulted format enables a wide variety of traditional data
mining techniques to be (indirectly) applied upon. Moreover, it was shown that no data
loss after the conversion process. In addition to the PCFSM method, an exploratory
process log analysis method, which is capable of analysing a complex process log in
an unbiased way, was proposed. A set of synthetic and real-world datasets were used
to evaluate the proposed methods. In another experiment on an event log, the time
performance of the position-constrained frequent subtree mining was compared to that
of other state-of-the-art frequent subtree mining methods such as CMTreeMiner (Chi
et al., 2005a) and DryadeParent (Termier et al., 2008).

Another contribution of the thesis is the proposal of an associative classification
method, called DSMC, which is based on the positioned-constrained frequent/closed
subtree mining. This classification method is extensively evaluated on different types
of datasets and compared with an associative classification method which is based
on traditional frequent/closed subtree mining. Furthermore, two methods to improve
DSMC’s classification accuracy were also suggested.

The capability of the PCFSM and DSMC methods were further exhibited through
their applications to the prediction and recommendation task. With the availability
of DSMC, it is possible to predict whether a running process instance would result
in a successful execution according to a predefined business goal. Furthermore, the
extension of the PCFSM method helps process owners to identify the activities that
might increase the chance of obtaining a desired outcome.

Research Significance

Traditional process mining methods often require a process model, but in many cases,
the process models are not available or are hard to obtain. This thesis offers a direct
mining method on XML-based process logs, without the need for a process model. In
addition, in this method, the semi-structured event logs are treated as a whole, which is
in contrast to the traditional methods in which only relevant data attributes are extracted
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and processed. This method is therefore easier to use and offers an alternative solution
to traditional process mining methods.

By converting the XML-based event logs into a flat representation, classical data
mining methods such as association rule mining, classification and clustering can be
applied to event logs. The process analysts would benefit from using this method
because classical methods are often simpler and more flexible than the proprietary
methods. Note that the conversion of semi-structured data into flat format does not
result in any loss of information as shown in (Hadzic, 2012; Hadzic et al., 2015).
Furthermore, the flat data can be easily converted back to XML format (Hadzic, 2012).

The proposed process log analysis method is based on a structure-preserving tree
mining approach, which makes it possible to locate frequently-occurring activities or
attributes in process instances, whereas the discovered patterns using traditional fre-
quent subtree methods are less informative. In addition, the patterns generated by our
method can also be a set of disconnected subtrees which might be useful in some appli-
cations. Furthermore, by constraining nodes with their position, the integrated method
is able to run at a much lower minimum support even in large and complex datasets,
while the number of patterns does not increase as fast as other methods’.

1.6 Thesis Outline

This thesis is divided into six chapters as follows:

• Chapter 1 introduces the context of the thesis. An overview of the BPM and pro-
cess mining field is then provided. An analysis of some process mining tasks and
an introduction of XML-based process logs are given as the motivation for the
study. After that, the chapter presents several research questions and objectives,
and concludes with research contributions and significance.

• Chapter 2 provides a comprehensive background for this thesis. Important con-
cepts of business process management and process mining are described. Data
mining methods, formulas and concepts that are used throughout the thesis are
presented next. Lastly, tree-structured data and XML mining methods are dis-
cussed.

• Chapter 3 starts with a motivating example that emphasises the need for a di-
rect mining approach to process logs. Next, two tree-structured data mining
approaches are presented. The structure-preserving tree mining approach is se-
lected and described. After that, a position-constrained tree-structured process
log analysis method, PCFSM, is proposed. In addition, an exploratory process
log analysis method is recommended for process analysts who are not familiar
with the data in an unbiased manner.
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• Chapter 4 presents an evaluation of the PCFSM and the exploratory process log
analysis methods. The proposed methods are tested on a number of synthetic
and real-word datasets.

• Chapter 5 describes an associative classifier which is based on the position-
constrained tree mining method. This classifier, called DSMC, is built as an
extension of the PCFSM method. Heterogeneous and homogeneous datasets are
used to evaluate the classification accuracy and coverage rates of the method.
The DSMC was extended to predict outcomes of running process instances.
Next, the PCFSM was extended to recommend suitable actions for users to pre-
vent unwanted outcomes. Eventually, several techniques are suggested for the
enhancement of the DSMC classifier.

• Chapter 6 concludes and outlines some possible extensions of the thesis.

18



Chapter 2

Literature Review

This chapter is dedicated to providing a solid background that subsequent chapters
are built upon. In Section 2.1, an overview of the business process management is
provided. Section 2.2 illustrates main concepts of process mining, which is the main
theme of this thesis. To provide the readers common tools that can be used for pro-
cess log analysis, Section 2.3 presents related data mining concepts. Section 2.4 dis-
cusses XML data mining methods that can be used for process log analysis. After that,
structural XML classification is presented in Section 2.5. Section 2.6 recapitulates this
chapter and lists the research gaps that needs to be addressed.

2.1 Business Process Management

This section provides the background of the business process management field.
Firstly, the development of the notion business process over time is described.
Secondly, the notion of process model is introduced. Each phase in the BPM life cycle
is then discussed in subsequent sections.

2.1.1 History of BPM

In prehistoric times, things that served basic needs of human, e.g. fire, can be made
individually, with little or no cooperation. The process of making products was often
simple and can be performed in a few steps.

In medieval times, more sophisticated products were invented and their produc-
tion process required trained people with specialised skills, e.g. shoes are made by
shoemakers.

The industrial age introduced the concept of labour division, in which workers
have to repeatedly perform one specific type of activity, which is one part of the whole
production process. Due to the high complexity of the process, a managerial role was
needed to coordinate activities and resources.
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When making a product required a large number of people, different functional
units such as purchasing, production, marketing, etc., were created and each of them is
specialised in one aspect of the production process. These units had to work together,
aiming at a single goal of making the product. However, at a certain level of complex-
ity, it became extremely hard to manage a process that spans multiple departments and
external entities without a rigorous management framework.

BPM is a body of methods, techniques, and tools that support the design enact-
ment, management, and analysis of operational business processes (Ordys et al., 2007).
Business managers are attracted to BPM because of its demonstrated ability to deliver
improvements in organisational performance, regulatory compliance and service qual-
ity (Dumas et al., 2013). Other disciplines that are related to BPM includes Total
Quality Management, Operations Management, Lean, and Six Sigma. These disci-
plines focus on different of aspects of business process management and are not as
encompassing as BPM.

In recent decades, information technologies began to take root in organisations
and became the main driver of process innovations. An ERP system comprises of a
set of integrated software modules that share a central database and each module is
responsible for a functional unit of an organisation. Workflow Management (WFM)

are built upon business process models (see next section) and its main function is to
dispatch tasks to process participants (human actors who perform the activities of a
business process). Over time, ERP systems and WFM systems were integrated each
other and a larger system became known as BPMS.

2.1.2 Process Model

Business processes are often complex and involved with many process participants and
interdependent activities. Hence, to help human and machine to comprehend business
processes, a concise and formal description of them is needed. The process model of a
business process is the description of that process. Process models can be represented
in text, however, formal diagrams are preferred because they are concise and leave
less room for misunderstandings. Process models are seen in all phases of a BPM life
cycle.

Two essential elements of a process model diagram are activity and control nodes.
An activity node describes a work that is performed by a resource (a process partic-
ipant or a computer program). A control node illustrates the flow of execution be-
tween activities. There are many types of control-flow nodes such as parallel split,
sequence, synchronisation, multi-choice, multi-merge, etc. (van der Aalst et al., 2003).
In Fig. 2.1, a process model of a business process “serving food” is represented in
Petri net notation. In this notation, an activity node corresponds to a transition which
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is represented by a square. The transitions in the figure are “receive order”, “make
entrée”, “make main course”, “make dessert”, “server entrée”, “serve main course”,
“serve dessert”. The transitions are connected through places, which are circles in the
diagram and responsible for routing the activity flow. The three places after “receive
order” acts like a parallel split that allows “make entrée”, “make main course”, and
“make dessert” to occur independently.

receive
order

make
entree

make
main course

make
dessert

serve
entree

serve
main course

serve
dessert

start

end

Figure 2.1: An example of process model in Petri net notation.

There are two main types of process models, i.e. as-is and to-be process mod-
els. As-is process models are observed or extracted from the current executions of a
business process. They are descriptive, which means that they reflect how business
processes are carried out in reality. In contrast, to-be process models are agreed among
different stakeholders in one or many organisations and then used as a basis for the
design, implementation and enactment of BPMS. To-be process models are normative,
which means that they act like an instruction manual for resources to follow upon.

Process models can be viewed not only from a control-flow perspective but also a
data-flow perspective. In this perspective, information artefacts (Nigam and Caswell,
2003) are shown as an output or input of activity nodes, together with control nodes.
For example, activity Buy a ticket requires information artefact such as credit card

number.
A business process can be viewed from a number of perspectives. In an organi-

sational perspective, process models are represented in social-network-like diagrams,
depicting the handover of works among process participants. In a time perspective,
timestamps and durations are annotated to activity nodes in process models. Each
perspective offers a specific type of view on a business process model.

Many notations have been design for modelling business processes, e.g. Petri
nets (Peterson, 1981), Business Process Model and Notation (BPMN) (Weske, 2007),
Yet Another Workflow Language (YAWL) (ter Hofstede et al., 2010), and Event-Driven

Process Chains (EPC) (Scheer, 1994).
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2.1.3 Business Process Identification

The process identification phase includes two mains activities, i.e. identifying main
business processes and their boundaries in an organisation, and deciding the priority of
each process, which is based on a number of criteria, such as profitability or customer
satisfaction.

2.1.4 Process Design

In process design, process analysts have to work with domain experts to construct
as-is process models. Process analysts know much about modelling but do not know
how a business process works. On the contrary, domain experts know a lot of about
operational activities but do not have the modelling expertise.

Since designing a process model is not straightforward, a team including a mix
of domain experts and process analysts are required in the modelling task. Process
analysts are involved because most domain experts think in terms of a concrete case
but not in an abstract way of how a business process is operated. In addition, domain
experts are not familiar with process modelling notations, process analysts are needed
to interpret models to natural language description.

Process models are built from data that can be extracted using the following meth-
ods:

• Evidence-based: Examine operational documentations, observe people when
they are at work, or apply process model discovery algorithms to event logs;

• Interview-based: Interview domain experts about the process. This method of-
fers a rich and detailed picture of the process. However, the interview-based
method is labour-intensive because multiple iterations are often needed;

• Workshop-based: Organise a process modelling workshop that includes process
analyst and domain experts. This brainstorming session allows varying ideas to
be formed and challenged at the same time. A good facilitator is required in
workshop-based techniques.

Process modelling techniques often comprises of the following steps:

• Look for the boundary of a process by identifying the start and end events;

• Identify main activities;

• Identify main process participants and their handover;

• Determine the control-flow of a process;
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• Capture information artefacts and exception handlers. Annotations are also
added in this step.

2.1.5 Process Analysis - Qualitative Methods

Process analysis aims at identifying which part of a business process has a problem or
needs improvements. Qualitative process analysis methods include a few basic prin-
ciples and techniques, such as value-added analysis, root cause analysis, and impact
assessment.

In value-added analysis, unnecessary activities that do not offer values to customers
or business are identified and eliminated. In root cause analysis, the process analyst
identifies the root cause(s) of a problem or an undesirable event happened during the
execution of a business process. The outputs of this method, for example, are (i) cause-
effect diagrams, which can be found by identifying the causal or contributing factors,
(ii) why-why diagrams, which can be found by recursively asking questions until the
root cause is identified. In the impact assessment method, issues are documented and
prioritised so that the most severe ones would be solved first. Pareto analysis (Karup-
pusami and Gandhinathan, 2006) and PICK charts (Dumas et al., 2013) are then used
to identify a small set of factors that cause the most problems.

2.1.6 Process Analysis - Quantitative Methods

In quantitative methods, process performances are measured by a set of criteria, some
of which are shown below:

• Cycle time (throughput time, flow time, lead time) of a case is the time measured
from the beginning to the end of that case.

• Processing time (service time) of a case is the actual time that resources spend
on handling that case.

• Waiting time (idle time) of an activity/case is the time when no resources are
available for that activity/case.

• Synchronisation time of an activity is the time that a resource waits for the com-
pletion of another activity or an external trigger.

• Costs, e.g. production cost, delivery cost, labour cost.

• Customer satisfaction level.

Balanced scorecard (Kaplan and Norton, 2005) is a quantitative method that measures
performances of an entire organisation instead of a single business process. The main

23



Business Process Management

performance indicators used in this method are categorised into four dimensions (Du-
mas et al., 2013), e.g. finance measure, internal business measure, innovation and
learning measure, customer measure.

References models are sets of standardised performance measures for common
types business process. For example, in the Supply Chain Operations Reference Model

(SCOR), the measure Purchase Order Cycle Time is defined as the average amount of

time between the moment an intention to purchase is declared and the moment the

corresponding purchase order is received by the relevant vendor (Dumas et al., 2013).

Flow Analysis

In flow analysis, the overall performance of a process is estimated based on the per-
formance of its individual activities and the chance of them being executed, which is
in turn based on the control-flow aspect of the process model. For example, given the
occurring probabilities of activities in a process model, the average cycle time of a
process can be calculated from the average cycle time of each activity.

Other tasks in flow analysis include calculating cycle time efficiency, arrival rate,
and work-in-progress. The cycle time efficiency of a process is equal to the fraction of
processing time over cycle time. The arrival rate of a process is the average number
of new instances that are created per time unit. The work-in-progress is the average
number of instances that are active at a given point in time.

Queue Analysis

Flow analysis does mention about resource contention which often occurs in systems
where resources are limited. Queuing theory (Gross and Harris, 1998) can be used to
estimate the expected waiting time of a case.

Simulation

Many organisations have used simulation to analyse their business processes (van der
Aalst, 2011a). The idea of simulation is to repeatedly generate hypothetical instances
of a business process using computer models. The generated instances, which are in
large number, are then used to build statistics on average flow time, waiting time, costs,
etc.

2.1.7 Process Redesign

The process analysis phase explores weak points of a business process, which are then
resolved in the process redesign phase.
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There are many techniques that can be used in the design process, such as fish-bone
diagramming, Pareto analysis, Delphi method (Linstone and Turoff, 1975), flowchart-
ing, etc.

A business process can be redesigned by three approaches (Dumas et al., 2013):
(i) the existing processes are redesigned from scratch, (ii) the existing processes are
extended or modified, and (iii) processes are redesigned based on reference models,
which are standard solutions made by consulting companies. Of the three, the process
extension and modification approach is the most popular.

Process redesign can start with an examination of the process from different per-
spectives such as the customer perspective, the organisational structure perspective,
and the technology perspective. For example, from the customer perspective, receiv-
ing documents through mail service may cause long waiting time, attaching documents
to electronic emails should be used instead.

In the Product-based Design approach (Reijers, 2003), product specifications are
decomposed into a set of interrelated parts. A product data model is then built based on
the identification of the logical dependencies among these parts. Finally, the process
model is then derived from the product data model and design goals.

In redesigning of a business process, the four process performance dimensions, i.e.
time, cost, quality, and flexibility, have to be continuously evaluated (Dumas et al.,
2013). Although the aim is to maximise all of the four dimensions, trade-offs are often
made. For example, the automation of business activities would reduce the flow time
of a process, however, the equipment and training cost would probably increase.

As mentioned in Section 2.1.4, the product of the process redesign phase are to-be
process models, which become inputs to the next phase, i.e. business process imple-
mentation/configurations.

2.1.8 Business Process Implementation/Configurations

Business processes are implemented based on a set of policies and procedures that
the employees of the organisation need to comply with (Weske, 2007). In case an
automation for business processes is needed, a BPMS is built based on the to-be process
models developed in the previous phase and the organisation environment. Integrations
with legacy systems are also configured in this phase.

The transformation of abstract process models into executable programs is de-
scribed in five steps (Dumas et al., 2013), which are as follows.

• Identify the automation boundaries. Because not all parts of a business process
can be automated, it is necessary to define the boundary of each task where the
automation is still applicable. In addition, manual and user tasks are also needed
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to be specified. In manual tasks, no software is involved, and in user tasks, there
is an coordination between the system and users.

• Review manual tasks. The manual tasks are examined if they can be automated
partly in BPMS.

• Complete the process model. In this step, any gap between the business-oriented
models and the executable process models is checked.

• Bring process model to an adequate granularity level. The decision to join or
split tasks is based on the workload of resources or the complexities of the task.

• Specify execution properties. In this step, how each element in the process model
is implemented is specified. For instance, the executable script of an activity in
a process model needs to be specified in this step.

After the system is configured, the implementation of the business process is eval-
uated. The system is then deployed to its target environment. Interactions between the
process participants and the information systems are changed accordingly to the re-
designed processes. Therefore, a change management and employee training program
are needed.

The main benefit of automating a business process is that the workload of pro-
cess participants is significantly reduced. This is because information is transferred
instantly, automatic work dispatching software reduces delays in job handover, and the
amount of information exchanges is reduced due to the data sharing architecture. In
addition, a BPMS increases the transparency of the system and allows business rules
to be automatically enforced.

2.1.9 Process Enactment

The process enactment starts once the information system is deployed and properly
configured. In this phase, process instances are executed to fulfil the business goals of
a company. Process execution data, which includes events, resources, activities, etc.,
are archived in event logs for further analysis.

2.2 Process Mining

The process mining phase comes after the process enactment phase. It focuses on the
analysis of event logs, and from its results prompt adjustments to the process can be
made. In addition, the output of process mining is useful for the redesigning phase in
the next iteration.
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Many related fields falls under the umbrella of process mining such as Business

Process Intelligence (BPI), Business Activity Monitoring (BAM), Complex Event Pro-

cessing (CEP), Process Intelligence (PI), Process Analysis (PA), and Business Intelli-

gence (BI). PI and BPI essentially bear the same meaning with Process Mining. How-
ever, these terms are loosely defined and used arbitrarily by different vendors. The field
BAM and CEP refer to the monitoring of a stream of events; any policy violations, or
performance bottleneck are reported to the process participant or the process owner (a
manager responsible for a business process). The term PA describes analysis activities
whose goal is to improve business processes. While process mining revolves around
the notion of process, BI refers to the general application of data mining to business
data.

Process mining techniques have been applied to many domains such as in health-
care (Mans et al., 2009), manufacture (Rozinat et al., 2009a), public services (Bozkaya
et al., 2009; Rozinat et al., 2009b), financial services (Jans et al., 2011; Sonnenberg
and vom Brocke, 2014), and telecom industry (Goedertier et al., 2011).

There are three main categories of process mining tools: 1) commercial software
(e.g. ARIS Process Performance Manager 1, DISCO 2, Interstage Process Discovery 3,
Celonis Process Mining 4), 2) academic tools (e.g. Genet/Petrify (Carmona et al.,
2009), Rbminer/Dbminer (Solé and Carmona, 2010)), and 3) open source tools (e.g.
PROM (van Dongen et al., 2005)).

One of the first process mining tools was Business Process Cockpit (BPC) (Sayal
et al., 2002). This program supports real-time monitoring, analysis, management, and
optimisation of business processes. The PISA (Muehlen and Rosemann, 2000) soft-
ware calculates performance metrics from workflow logs. Process miner (Schimm,
2003) implements a π-calculus algorithm over a block-structured model and claims to
be able to mine the fittest model. Stochastic graph algorithm is used in InWolve (Herbst
and Karagiannis, 2004). PROM (van Dongen et al., 2005) is one of the prominent soft-
ware frameworks for process mining. This plug-in-based framework allows for the
add-on of user-developed process mining algorithms. Several examples of PROM

plug-ins are: (i) Emit (van der Aalst and van Dongen, 2002), a process discovery
method that realises the α-algorithm (Van der Aalst et al., 2004), (ii) LittleThumb (Wei-
jters and van der Aalst, 2003), another process discovery method that uses heuristic
mining algorithm, and (iii) Mison (Van Der Aalst et al., 2005), a social network miner
that explores the hand-over of work among process participants.

There have been several other process mining framework, which are as follows.

1http://www.softwareag.com
2http://fluxicon.com/disco/
3http://www.fujitsu.com/
4http://www.celonis.de/
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• In (Grigori et al., 2004), the authors present a complete architecture for the or-
ganizing, storing and loading process data. It also features functionalities such
as prediction, monitoring, control and optimisation of process executions. The
proposed architecture lays the ground for the development of process mining ap-
plications. Many examples of applying data mining methods to process data was
given, however, no particular algorithm, nor method was proposed.

• In (Bozkaya et al., 2009) the author proposed a six-phase process diagnostics
methodology which includes log preparation, log inspection, control flow anal-

ysis, performance analysis, transfer results, and role analysis. Specifically, role

analysis can be performed at any time after log preparation. The focus of this
study was also to provide a general procedure for process log analysis, without
giving specific details of any algorithm or method.

• In (Rebuge and Ferreira, 2012), the authors extend the work of (Bozkaya et al.,
2009) by adding a Sequence Clustering Analysis phase after the log inspection

phase and the method is used for the health care domain. The clustering method
uses first-order Markov chains to represent each cluster. The Expectation-

Maximisation (Han and Kamber, 2006) is used to discover clusters. The cluster
with highest number of instance contains the regular behaviour of the process.
The minimum spanning tree algorithm is then used to suggest related clusters
containing the infrequent behaviours of the process. The proposed methodology
focuses on clustering and outlier detection of process instances based on the
control-flow of the process instances without taking into account other data
attributes. Furthermore, it is not clear if the Markov-based method is scalable in
processes having many activities/events.

• In (De Weerdt et al., 2013), the authors argue that real-life process analysis
should be done from multiple perspectives, i.e. control-flow, team flow, and doc-
ument flow. It suggests a process mining framework consisting of five phases:
preparation, exploration, perspectivisation, analysis and results. This frame-
work treats activities, document types, and actors separately; this might limit
some patterns that can only be discovered if the data is treated as a whole. Do-
main knowledge is usually required to aggregate and interpret patterns gleaned
from multiple perspectives.

The process mining framework suggested in (van der Aalst, 2011a) is one of the
most accepted methodologies for process analysis. This framework was briefly intro-
duced in Chapter 1 and more details are described in the remainder of this section.
Event log and related concepts are presented in Section 2.2.1, 2.2.2, 2.2.3 and 2.2.4.
Process model discovery is discussed in Section 2.2.5.

28



Process Mining

2.2.1 Event Logs

Although event logs are available in most information systems, they often reside in
different databases, with different data structures. For example, it is not uncommon
that each department in a company uses a different database system, e.g. an accounting
department uses a proprietary accounting software, while the sales department uses a
customer relationship management program. In a global company, the data are even
from different sub-companies.

The data are stored in a variety of format such as databases, files, document man-
agement systems, etc. In many cases, the data are unstructured such as images, emails,
or PDF documents, which is difficult to extract relevant information for process mining
algorithms.

Apart from the two mentioned issues, there can be semantic issues or format issues.
For example, in one data source, the field name is movie, however, and in another data
source, the corresponding field is named as film.

Date/time is a common format mismatch issue. For instance, date/time data can be
represented as “Day/Month/Year” or “Month/Day/Year”.

Another common issue is the scale of information systems. In many cases, there are
thousands of tables that store event data. To reduce the complexity of the data extrac-
tion process, process mining goals have to be identified in the first place. Generally,
the data extraction process is usually involved in three tasks: extraction, transform,
and load. The extraction task aggregates data from different data sources. The trans-
form task solves the structure mismatches between the data sources and the event log,
e.g. removing unnecessary columns in the data sources, or aggregating values from
multiple rows. The load task is to populate the transformed data into event logs.

2.2.2 Event Log Structure

During the execution of a business process in a BPMS, whenever a task/activity starts
or completes, an event is generated and logged into the system. Besides event, other
data are also recorded. However, process mining typically focuses on activities name,
resources—persons who carry out the task/activity, timestamps when the events occur,
the costs of carrying out the event.

Since many processes can be running at the same time in an organisation, the events
are mixed together in different data sources. It is required that an event log only con-
tains events belonged to a single process.

A general structure of an event log contains multiple process instances, events,
and their attributes (van der Aalst, 2011a) such as activity and timestamp. A process
instance starts at the time a business process starts and ends at the time that process
ends. Process instance is also known as case , which contains a set of events. The
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Table 2.1: An event log for a conference reviewing process.

Case Event Timestamp Activity Resource Lifecycle Cost
173 39518 2019-02-11 Invite Reviewers Mary start 15
173 39519 2019-02-13 Invite Reviewers Mary complete 15
173 39520 2019-02-14 Get Review Pete start 2
173 39521 2019-02-18 Get Review Pete complete 2
174 41922 2019-02-21 Invite Reviewers Bob start 19
174 41923 2019-02-22 Invite Reviewers Bob complete 19
174 41924 2019-02-25 Invite More Reviewers Bob start 11
174 41925 2019-02-28 Invite More Reviewers Bob end 11

events are ordered chronologically based on their timestamps (the time when the events
occur). The activity attribute is a mandatory attribute of each event, which represents
the name of the task performed in a process. An ordering of activities of a case based
on their corresponding timestamps is called a trace.

Finally, each event can have additional attributes such as cost, resource, transaction,
etc. The timestamp attribute is the time when an event occurs. The cost attribute is
the cost associating with the task performed. The resource attribute is the human or
software that performs the task. The transaction attribute describes the status of the
task, e.g. start, assign, abort, etc. Note that events that share the same activity have the
same set of attributes.

Table 3.4 gives an example of an event log for a conference reviewing process.
There are two cases with ID 173 and 174. Each case is composed of four events with
different event IDs and timestamps. For case ID 173, there are two activities “Invite
Reviewer” and “Get Review”. The “Invite Reviewers” activity was done by “Mary”
with the cost of 15. Note that each activity has two transaction values, i.e. start and
complete, which represent the starting event and the completing event of the activity.

2.2.3 Notation

Let E be the set of all events. Each event may have one or more attributes. Every event
has an attribute ID. For each event e ∈ E, An(e) is the value of the attribute n of event
e. For instance, Aactivity(e) is the activity name of event e

Let C be the set of all cases. For each case c ∈ C, An(c) is the value of attribute n

for case c. Trace is a mandatory attribute of case, with Atrace(c) ∈ E∗ .
In a trace, each event is unique, i.e. in a case c, for any i 6= j and i,j < |Atrace(c)|:

(Atrace(c))i 6= (Atrace(c)) j. Note that |Atrace(c)| is the number of events in the trace of
case c and (Atrace(c))i is the ith event in trace Atrace(c). The set of events in case c is
denoted by Ec. The order of events in a trace depends on the timestamp of the events,
i.e. for any 1≤ i < j ≤ |Atrace(c)| : Atime(Atrace(c)i) < Atime(Atrace(c) j)
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In an event log, each event is unique, i.e. for any c1,c2 ∈ C: Ec1 ∩Ec2 =∅.

2.2.4 XES

As mentioned in Chapter 1, XES is the successor of MXML—an XML-based language
that is used to represent event log. XES is more flexible than MXML in that it does not
restrict a fixed set of attributes for each event.

LogLog

Log

trace

event

Attribute

key

URI

name

prefix

classifier

extension

value

float

boolean

date

string

integer

<contains>
<contains>

<contains>

<contains>

<contains>

<contains>

<event-global>

<trace-global> <defines>

<defines>

<defines>

<declares>

Figure 2.2: XES meta model (Verbeek et al., 2011).

The meta model of XES is displayed in Fig. 2.2 and an example of an event log
in XES is shown in Listing 2.1. It is seen in the model that an event log contains one
or many traces, which in turn contains one or more events. Each of these elements
could contain one or more attributes, which can be nested. Each attribute has two
mandatory components, i.e. key and value. Five main data types of attribute values are
String, Float, Int, Date, Boolean. These correspond to XML types xs:string, xs:long,
xs:double, xs:dateTime, and xs:boolean. A log may have one or more classifiers, each
of which declares attributes that identify an event. For instance, an event can be identi-
fied by its activity and life cycle transition (start, end, etc.). The extension mechanism
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in XES provides definitions for the key of attributes. An extension contains names,
prefix and URI. Prefix is an abbreviation of the extension name. An URI contains the
location where the extension was declared. There are five extensions defined in XES,
which are shown as follows:

• The concept extension contains the name attribute which is used to define the
name of traces and events;

• The life cycle extension contains the transition attributes such as schedule, start,
complete, etc., that are used to describe the status of an event;

• The organisational extension contains attributes that describe a resource such as
resource, role, and group;

• The time extension contains the time attribute for events;

• The semantic extension contains the modelReference attribute. Ontolo-
gies, which describe the concepts used in the event log, are declared in the
modelReference attribute.

Listing 2.1: A fragment of a XES document

<?xml version="1.0" encoding="UTF-8" ?>

<extension name="Concept" prefix="concept"

uri="http:.../concept.xesext"/>

<extension name="Organizational" prefix="org"

uri="http:.../org.xesext"/>

<extension name="Time" prefix="time" uri="http:.../time.xesext"/>

<global scope="trace">

<string key="concept:name" value="name"/>

</global>

<global scope="event">

<date key="concept:name" value="name"/>

</global>

<classifier name="Actitivty" keys=concept:name"/>

<classifier name="Resource" keys=org:resousrce"/>

<trace>

<string key="concept:name" value="3571"/>

<string key="description" value="Simulated process instance"/>

<event>

<string key="org:resource" value="Anne"/>

<date key="time:timestamp" value="2054-05-02T01:00:00.000+02:00"/>

<string key="concept:name" value="invite reviewers"/>

<string key="lifecycle:transition" value="start"/>

</event>

<event>
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<string key="org:resource" value="Anne"/>

<date key="time:timestamp" value="2054-05-04T01:00:00.000+02:00"/>

<string key="concept:name" value="invite reviewers"/>

<string key="lifecycle:transition" value="complete"/>

</event>

<event>

<string key="result" value="reject"/>

<string key="org:resource" value="Mary"/>

<date key="time:timestamp" value="2054-05-05T01:00:00.000+02:00"/>

<string key="lifecycle:transition" value="complete"/>

<string key="concept:name" value="get review 1"/>

</event>

<event>

<string key="result" value="reject"/>

<string key="org:resource" value="Sara"/>

<date key="time:timestamp" value="2054-05-06T01:00:00.000+02:00"/>

<string key="lifecycle:transition" value="complete"/>

<string key="concept:name" value="get review 2"/>

</event>

</trace>

The quality of the event log is an important factor contributing to the success of a
process mining project. There are many challenges in obtaining a good quality event
log. There can be uncorrelated events in the event log because aggregating event data
from different data sources is an error-prone process. However, by using a probabilistic
method, the study in (Ferreira and Gillblad, 2009) is able to identify events that belong
to different business processes. Other challenges and their corresponding solutions in
obtaining quality event data are described in (van der Aalst, 2011a). Among those dis-
cussed, one common challenge is to deal with information systems that have thousands
of tables. It is hard to identify which tables to extract. One typical solution is to use
domain knowledge to locate the required data and/or identifying specific goals in early
phases of the process mining project.

2.2.5 Process Model Discovery

Process models are used in most phases in a BPM life cycle, therefore learning how
process models are built is an important topic. The five-step process modelling tech-
niques (see Section 2.1.4) is one of the most popular methods of making process mod-
els. However, since the advent of event logs, there is a shift of focus from modelling
to discovering processes.

The process models discovered from process logs offer valuable information on
how a business process works in reality. Most process model discovery algorithms fo-
cus on the control-flow perspective of a business process. From this point forward, the
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phrase process discovery implies the control-flow perspective of the process discovery.
Process models can be discovered from event logs using techniques inherited from

the data mining and machine learning fields. A recent survey on different process
mining algorithms was published in (Tiwari et al., 2008).

The process discovery problem was first considered a grammar inference prob-
lem (Gold, 1967). However, regular expression is the least expressive language and
less helpful for business process management.

Algorithmic approaches extract ordering relations among activities to form Petri
net models. The earliest and most well-known algorithm is α-algorithm (Van der Aalst
et al., 2004) which simply identifies the relations between each pair of activities in the
event log. Based on the relations found, the algorithm identifies the resulting model in
Petri net representation. α+ algorithm (de Medeiros et al., 2003) is an improvement
over α-algorithm in handling short loops. In multi-phase miner (van Dongen and
van der Aalst, 2004), instance graphs, a simpler form of process model, are created for
each instance and then aggregated into a process model. This method can cope with
noisy event logs.

Directed acyclic graphs are used to represent a process model in (Agrawal et al.,
1998). The presented method identifies a dependency graph from the log and only
detects sequential models and non-duplicate tasks. Frequent closed partial orders are
searched in sequential data to discover parts of the process model (Pei et al., 2006).
Depth-first search is used to find all frequent partial orders in the form of transitive
reduction representation. Frequent partial orders are also searched in (Pei et al., 2006)
but it is limited to the finding of series-parallel orders.

Probabilistic models (neural network based) and algorithmic approaches, e.g. Ktail

algorithm (Cook and Wolf, 1998a), are used to detect sequential process model. The
authors proposed a hybrid approach which uses n-order Markov model and yields bet-
ter results. This technique is later improved in (Cook and Wolf, 1998b) to deal with
concurrency. Finite State Machine (Hopcroft and Ullman, 1979) is used in (Datta,
1998), but solely based on a probabilistic method. Probabilistic methods are also used
to decompose events into independent subsequences (Mannila and Rusakov, 2001).

The studies in (Herbst and Karagiannis, 2004; Herbst, 2000; Herbst and Kara-
giannis, 1998) are among the first to examine both the sequential/concurrency and the
duplicate tasks issue. It uses a stochastic graph as an intermediate representation to
construct a process model based on the ADONIS language. Hidden Markov Model is
used to predict the stochastic graph which is then merged or split (similar to (Cook and
Wolf, 1998a)).

Another class of approaches use negative event samples to discover models (Goed-
ertier et al., 2009; Lamma et al., 2007). Prior knowledge is used as a valuable guide for
process discovery algorithm (Ferreira and Ferreira, 2006). The AGNE method (Bloc-
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keel, 1998) allows user-specified first-order representation of prior knowledge, which
is then used to generate negative events. This added information helps solve the in-
completeness issue in process mining. Positive and negative samples are fed into a
classification algorithm, called TILDE, in order to extract a set of preconditions among
the activities, which can be later converted to Petri net models. DecMiner (Lamma
et al., 2007) is a similar method that uses real negative events and induces a SCIFF

model (Alberti et al., 2008), which is later converted to DecSerFlow declarative graph-
ical language.

Parallel activities in process models are hard to detect in event logs. Finite state
machine methods perform well on outliers but have problems in recognizing parallel
actions. On the contrary, the α-algorithm cannot deal with outliers but is better at
detecting concurrency. Two Markov-chain-based algorithms, RNet (neural-network-
based) and Ktail (Cook and Wolf, 1998a), do not support concurrency. This problem
was solved in the later work (Cook and Wolf, 1998b).

Besides the main approaches mentioned above, many other approaches were also
proposed. In a transition system approach (van der Aalst et al., 2010), a low-level
model similar to finite state machines is created and then converted to higher level
model (Petri net, BPMN, YAWL, etc.) using a theory of regions (Cortadella et al.,
1998).

To detect usage scenarios in a process model, event logs are clustered using dis-
criminating rules (Greco et al., 2006) (each discriminating rule is considered a feature
in the clustering model). Dependency graph creating techniques (Agrawal et al., 1998)
are also used in this method.

The three Apriori-based algorithms (Agrawal and Srikant, 1994), TP-Graph, TP-

Itemset and TP-sequence, are developed to detect frequent temporal patterns in event
logs (Hwang et al., 2004).

A robust decision-tree-based classifier is used to identify the relation types between
each pair of activities in event logs (Măruşter et al., 2006).

The Schimm method (Schimm, 2003) represents process models in a block-
structured form and uses term rewriting rules for model transformation.

A fuzzy mining method was suggested in (Günther and van Der Aalst, 2007), where
different techniques such as edge filtering and node aggregation can be used to simplify
the learned process model.

Evolutionary approaches are robust but computationally expensive (de Medeiros
et al., 2007). The work of (Hwang et al., 2004) presented a method that is similar to
genetic algorithms. In this method, different combinations of activities and constructs
in a tree representation are evaluated and a branch that has a bad mismerge score will
not be further explored.
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2.2.6 Main Approaches to Process Log Analysis

This section discusses two main approaches to event log analysis: one is based on
process models and the other is not.

To have an estimate of the proportion of papers that focuses on process model dis-
covery, the Google Scholar5 search engine was used to search for papers containing
the phrase “process mining”. The first 100 papers having the most citations was anal-
ysed. The results were divided into 10 categories and their frequencies are displayed
in Table 2.2. It can be seen that 69 out of 100 papers are based on process models,
whereas only one method uses direct data mining technique. This clearly shows that
lion’s share of process mining research has been devoted to analysis techniques that
are based on process models.

Table 2.2: Categorisation of the process mining literature.

ID Category Frequency
1 Survey and review 11
2 Book 2
3 Process model based analysis 69
4 Semantic-based analysis 3
5 Simulation/Visualisation 2
6 Pre-processing techniques 2
7 Declarative models 2
8 Data mining techniques 1
9 Miscellaneous 2
10 Tool 6

Data mining techniques have been used widely in the system log analysis. An
example of a typical system log file is shown in Listing 2.2. It can be seen that the
activities in the log are automatically generated by computer programs. This is in
contrast to process logs where activities are performed by either human or machine;
both are guided by process models. As a result, two different research communities
exist: one is associated with mining process logs and the other is related to mining
system logs. Some notable works on mining system logs are presented in (Makanju
et al., 2012; Vaarandi, 2004; Xu et al., 2009; Sipos et al., 2014).

Listing 2.2: An example of a system log file (reproduced from (Makanju et al., 2012))

2005-06-03-15.42.50.823719 R02-M1-N0-C:J12-U11

RAS KERNEL INFO instruction cache parity error corrected

2005-06-03-15.42.50.982731 R02-M1-N0-C:J12-U11

RAS KERNEL INFO instruction cache parity error corrected

2005-06-06-22.41.37.357738 R20-M0-NA-C:J15-U11

RAS KERNEL INFO generating core.3740

5http://scholar.google.com.au

36



Process Mining

2005-06-06-22.41.37.392258 R20-M0-NA-C:J17-U11

RAS KERNEL INFO generating core.3612

2005-06-11-19.20.25.104537 R30-M0-N9-C:J16-U01

RAS KERNEL FATAL data TLB error interrupt

2005-06-11-19.20.25.393590 R30-M0-N9-C:J16-U01

RAS KERNEL FATAL data TLB error interrupt

2005-07-01-17.52.23.557949 R22-M0-NA-C:J05-U01

RAS KERNEL INFO 458720 double-hummer alignment exceptions

2005-07-01-17.52.23.584839 R22-M0-NA-C:J03-U01

RAS KERNEL INFO 458720 double-hummer alignment exceptions

The number of studies that focus on mining event data without process model is
rather limited. The authors in (Maggi et al., 2014) proposed a method that uses a deci-
sion tree learning algorithm to predict process instances that are high risk. The method
recommends activities and/or attributes to be executed and/or selected, respectively, in
order to maximise the probability of fulfilling a business constraint. Note that these
constraints can be written in linear temporal logic rules.

The work in (Nakatumba et al., 2012) studied the relationship between workload
and service time by using linear regression analysis.

Suriadi et al. (2013) introduced a method that is able to identify root causes of
risk incidents, such as process instances that are overtime. Event logs are enriched and
converted into a suitable format for a decision tree learning algorithm. The features
used by the algorithm are decided by the users. Note that process models are not
consulted in any way.

The study in (Vasilyev et al., 2013) used Inductive Logic Programming (Lavrac and
Dzeroski, 1993) to identify causes of process delays. The data are converted into first
order logic representation. Then, hypotheses are learned using a decision tree learning
algorithm. It can be seen that no process models were used in the process.

Aside from the two main approaches, there are methods that use process model
in a limited way. In (Pika et al., 2013), a set of Process Risk Indicators (RPI) (e.g.
waiting time) for predicting case delays were proposed. Process instances whose RPIs

are higher a predefined-threshold are predicted as “delay”. Based on the analysis of
historical event data, the method identifies a threshold for each RPI. Of all RPIs, a few
of them, such as waiting time and sub-process duration, are estimated based on process
models. In (Rozinat and van der Aalst, 2006), the authors suggest that attributes of
the activities executed right before a decision point in a process model can be used
as feature variables, and alternative routes after the decision points can used as class
labels in a supervised learning algorithm.

Generalised stochastic Petri nets (an enhanced form of Petri net) were used to
predict remaining process execution times in (Rogge-Solti and Weske, 2013).

Rozinat and van der Aalst (2006) introduced a method that is able to predict next
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activities from a current activity, which is based on a known process model.
A risk-aware process mining approach was suggested in (Conforti et al., 2013).

Whenever a decision point is reached during a process execution, a decision tree learn-
ing algorithm is used to predict different types of risks, e.g. overtime and cost overrun.
Note that a process model might be consulted to identify decision points.

Summary

A plethora of frameworks, tools and algorithms have been developed for process min-
ing. Most studies on mining process logs focus on process discovery or utilise process
models for further analysis such as conformance checking, simulation and model en-
hancement. The reason for this unbalance is probably due to the fact that process
models are intuitive for users.

There are few methods that do not use process models but they often explore event
data from a single perspective, i.e. selecting only one or several attributes, such as time
or cost, for the data analysis. In general, there is a lack of process mining methods
that can be applied directly to event data, especially XML-based process log. In the
following sections, data mining methods and concepts are introduced.

2.3 Related Data Mining Concepts

This section introduces basic data mining concepts and notations, which are used in
subsequent sections. Essentially, data mining, or knowledge discovery from data, “is
a process of discovering interesting patterns and knowledge from large amounts of
data” (Han and Kamber, 2006). Data mining tasks can be generally divided into two
main categories: descriptive and predictive mining. The descriptive mining tasks iden-
tify characteristics/properties of a data set, such as frequent pattern mining, association
rule mining and clustering analysis. The predictive mining tasks construct induction
models from the training data to predict future/testing data, such as classification, re-
gression analysis and outlier analysis.

Section 2.3.1 describes data types that are related to the process mining of data.
Section 2.3.2 introduces the frequent pattern mining field, which concerns about find-
ing substructures that occurs many times in a database. Sections 2.3.3, 2.3.4, 2.3.5, and
2.3.6 subsequently describe specific types of frequent patterns. Closed and maximal
patterns are two condensed forms of frequent patterns, which are explained in Sec-
tion 2.3.7. Section 2.3.8 presents general approaches for identifying frequent patterns
in a database. Association rule mining, an unsupervised and descriptive data min-
ing task, which is able to discover interesting relationships in event logs, is presented
in Section 2.3.9. Classification, a supervised and predictive data mining task, which
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is able to predict the outcomes of future data, is presented in Section 2.3.10. Sec-
tion 2.3.11 discusses a number of measures that are used to evaluate a classification
algorithm. Section 2.3.12 introduces several methods that are used to obtain reliable
results from classification. Associative classification is a promising approach of unsu-
pervised learning methods, which is explained in Section 2.3.13. Lastly, Section 2.3.14
is dedicated to interestingness measures, which are used to assess whether a pattern is
interesting or not.

2.3.1 Types of Data

In this thesis, different data types are used, i.e. semi-structured, flat, itemset and tree-
structured data. Therefore, the following subsections provide an overview to common
data types.

Structured and Relational Data

Structured data are data that strictly follow a predefined schema (Sint et al., 2009)
such as spreadsheet, relational data, etc. A relational database comprises of a set of
tables, each of which is referred to as a relation and assigned a unique name. The
columns of a table represent attributes/fields and the rows of a table represent instances.
A tuple (instance) is a set of values, each of which corresponds to a column of the
table. Relational data is also called flat data, or flat representation. Relational data is
a common data type used in many BPMS and software systems nowadays. Moreover,
the analysis/mining of relational data is well-studied in the data mining field. van der
Aalst (2011a) introduced a method to transform relational data a format that is suitable
for process mining algorithm.

Semi-structured Data

There have been no precise definitions for semi-structured data and they are often
considered as data with no rigid structure, or data that are neither raw nor strictly
typed (Abiteboul, 1997). For example, a BibTex (Beebe, 1993) file contains data with
structures resembling relational data, however, there are other properties that a well-
structured database does not have such as missing mandatory fields, or cross refer-
ences. For this reason, BibTex files are considered as semi-structured data.

The Web is the area where there are many examples of semi-structured data such as
XML, HTML (Raggett et al., 1999), SGML (Goldfarb and Rubinsky, 1990), etc. This
can be explained by the fact that the Internet has numerous types of data, and a flexible
language, such as semi-structured data, is required for data integration and exchange.
Mining semi-structured data from the Web is an active field of research (Madria
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et al., 1999; Miyahara et al., 2001; Hovy et al., 2013). Semi-structured data has
been spreading to many domains such as biology (Deepak et al., 2014), scientific
management (Cooper et al., 2001), chemistry (Dehaspe et al., 1998), etc. General
algorithms for mining semi-structured data were studied in (Arimura et al., 2001; Asai
et al., 2002).

Many semi-structured data such as XML, proteins, and DNA can be expressed as
tree structures or graphs (Shahbazi and Miller, 2014; Yan and Han, 2002; Huan et al.,
2003; Chi et al., 2004b). Tree-structured and graph-structured data are fundamental
data structures. In a tree-structured database, each instance is a tree which comprises
of a root, a set of nodes and arcs connecting them. Trees are acyclic, meaning that no
path (a set of connected arcs) starting from one nodes and returning to that same node
is allowed. In a graph-structured database, each instance is a graph which contains
a set of nodes and arcs connecting them. Graphs can be cyclic, meaning that paths
running through the same node twice or more are allowed.

Unstructured Data

Unstructured data is the most common type of data (Blumberg and Atre, 2003). Exam-
ples of unstructured data are text documents, audio, video, email, notes, etc. According
to (Sint et al., 2009; Hadzic et al., 2011b), unstructured data have no defined schema
or the form of structure is not useful for a desired task. There have been efforts in min-
ing process models from textual data, but the result is still limited in mining process
description documents (Friedrich et al., 2011).

Other Types of Data

Itemset data include a set of transactions, each of which contains a set of items. Itemset
data mining was inspired from market basket data analysis. Market basket data refer to
a transactional database which comprises of items purchased by customers (Agrawal
and Srikant, 1994). This database includes a number of transactions, each of which
contains a set of different items. From market basket data, associations among items
purchased can be discovered. This information can be used to decide which items
should be put on sale, or placed near each other on shelves. The frequent itemset
mining on market basket data is introduced in Section 2.3.3.

As categorised by (Han and Kamber, 2006), three main types of sequence data are
time series data (e.g. stock exchange data), symbolic sequences (e.g. customer shop-
ping sequences, web click streams), and biological sequences (e.g. DNA and protein
sequences). Sequential data mining is described in Section 2.3.4.
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2.3.2 Frequent Pattern Mining

Frequent patterns are defined as “itemsets, subsequences, or substructures that appear
in a data set with frequency no less than a user-specified threshold” (Han et al., 2007b).
For instance, if beers and diapers are often found together in a transactional database
of a supermarket, they are frequent itemsets. A subsequence, such as navigating to a
homepage, then a product page, and then a specific product (usually found together
in a website access history database), is an example of (frequent) sequential pattern.
A substructure is a general term that describes many types of structural units, e.g.
subgraphs, subtrees, sublattices. Substructures that often appear together in a database
are called (frequent) structural patterns.

Frequent pattern mining plays an important part in the data mining field (Aggarwal
and Han, 2014). It helps identify associations, correlations, and other relationships in
data, as well as in data indexing, classification, clustering, etc. (Han et al., 2007b). In
the following subsections, different types of structural pattern are discussed.

Formal Definitions

One important concept in frequent pattern mining is support, which is the ratio of
transactions in which a substructure appears to the total number of transactions. Note
that the word ‘appear’ can be defined in a number of ways; for example, a subtree can
appear in a tree either in an ‘induced’ or ‘embedded’ manner (described later in this
chapter).

Definition 2.1 (Support). Let X be a substructure in a database that has n transactions,

and m is the number of transactions where X appears, the support of X, π(X), is

defined as follows

π(X) =
m
n

.

Definition 2.2 (Absolute Support). Let X be a substructure in a database that has n
transactions, and m is the number of transactions that X appears, the absolute support

of X, πA(X), is defined as follows

πA(X) = m.

In frequent pattern mining, a substructure (X) is considered frequent if its support
is higher than a user-specified threshold (minimum support threshold) π .

Definition 2.3 (Frequent pattern). The set of frequent patterns (F ) with a minimum

support of π in a database is defined as:

F =
⋃
{X |π(X)≥ π}.
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An Example

A hypothetical transactional database is shown in Table 3.5. In the database, transac-
tion IDs are displayed on each row and substructures are shown on each column. In
each transaction, substructures A, B, C, D, E, and F can be present or absent. Note that
these substructures can be subtree, subgraph, sublattices, etc. The presence of a sub-
structure in a transaction is marked with a value of 1, otherwise a value of 0 is shown.

Table 2.3: A transactional database.

ID A B C D E F
T1 1 1 0 1 0 0
T2 1 0 1 1 1 0
T3 1 1 1 0 0 1
T4 0 0 1 0 1 0

Table 2.4: Frequent substructures of the database shown in Table 3.5.

πA Frequent substructures
1 A, B, C, D, E, F, AB, AC, AD, AE, AF, BC, BD, BF, CD, CE,

CF, DE ABC, ABD, ABF, ACD, ACF, ADE, ABCF, ACDE
2 A, B, C, D, E, F, AB, AC, AD
3 A,C
4 /0

From Table 3.5, the absolute support of substructure A, B, C, D, E, and F are 3,

2, 3, 2, 2, and 1, respectively. The support of substructure A is equal to πA(A) =
3
4
=

75%. Table 2.4 displays the frequent substructures discovered of different number of
minimum supports from the above database.

2.3.3 Frequent Itemset Mining

Frequent itemset mining was illustrated in the market basket analysis (Agrawal and
Srikant, 1994), where groups of items that shoppers often buy together are identified
in order to boost sale.

In frequent itemset mining, the goal is to find sets of items that appear at least
a user-specified number of times in a transactional database. The frequent itemset
mining problem is a specific form of frequent pattern mining defined in section 2.3.2,
with each set of items in the frequent itemset mining corresponds to a substructure in
the frequent pattern mining.
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Formal Definitions

Given a transactional database with I = {i1, i2,...,im} being the set of literals, called
items. The database includes a set of n transactions, denoted by T={T1, T2,...,Tn},
where each transaction Ti has a unique identifier, called its tid. Ti is a set of items such
that Ti ⊆ I .

A set of items (itemset) X occurs in transaction Ti, or Ti contains X, if X ⊆ Ti.
An itemset with k items is called a k-itemset. Y is a super-itemset of X if X is a

proper subset of Y, that is, if X ⊂ Y

Let t(X) ⊆ T be the set consisting of all transactions that contain itemset X. The
support of itemset X, πA(X), is the number of transactions in which X occurs as a
subset. Therefore, πA(X) = |t(X)|. Let the minimum support threshold be π , the
frequent itemset mining problem is to find all itemsets (X) such that πA(X)≥ π .

2.3.4 Frequent Subsequence Mining

A sequence is an ordered list of events (Han and Kamber, 2006). In this section, cus-
tomer shopping sequence mining is discussed as an example of the general sequence
mining. In shopping sequence data, each row is a chronically-ordered list of transac-
tions belonged to a customer. Note that each transaction consists of a set of different
items. Knowing sets of items are often purchased together by customers using fre-
quent itemset mining is beneficial to a sales department. The department may want
to identify sets of items that are often purchased in a particular order. For example,
many customers are found buying certain products in a specific order such as ‘folate
supplements, iron supplements, iodine supplements’, then ‘milk bottle, diaper’, and
then ‘pram, toy’. Knowing these types of purchasing patterns is very useful for tar-
get marketing. This problem is known as frequent subsequence mining, or sequential
mining (Pei et al., 2001; Agrawal and Srikant, 1995).

In general, given a sequence database with each transaction containing an ordered
list of itemsets, the sequential mining problem is to find the subsequences of itemsets
that appear at least a user-specified number of times. The frequent subsequence mining
problem is a specific form of frequent pattern mining defined in Section 2.3.2, with
each subsequence in the sequential mining corresponds to a substructure in the frequent
pattern mining.

Formal Definitions

Given a transactional database with n sequences and I = {i1, i2,...,im} being a set of
literals, called items. A sequence is an ordered list of itemsets, which is denoted by
〈s1s2...sl〉, where s j is an itemset and s j ⊆I for 1≤ j ≤ l.
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A sequence with length l is called an l-sequence. A sequence α=〈a1a2...an〉 is
called a subsequence of sequence β=〈b1b2...bm〉, denoted by α v β , if there exist
integers 1≤ j1 ≤ j2 ≤ ...≤ jn ≤ m such that a1 ⊆ b j1,a2 ⊆ b j2, ...,an ⊆ b jn. If α is a
subsequence of β , then β is the supersequence of α .

The database includes a set of n transactions, denoted by T={T1, T2,...,Tn}, where
each transaction Ti has a unique identifier, called its tidi. Ti contains sequence X, if X

is the subsequence of Ti, i.e. X v Ti.
Let t(X)⊆ T be the set consisting of all transactions that contain sequence X. The

support of sequence X, πA(X), is the number of transactions in which X occurs as a
subsequence. Therefore, πA(X) = |t(X)|. Let the minimum support threshold be π , the
sequential mining problem is to find all subsequences (X) such that πA(X)≥ π .

2.3.5 Frequent Subtree Mining

Frequent subtree mining problems will be discussed in detail in Section 2.4.3.

2.3.6 Frequent Subgraph Mining

The frequent subgraph mining field (Yan and Han, 2002; Kuramochi and Karypis,
2001; Jiang et al., 2013) has been studied extensively in the past. Although graph
mining techniques can be applied to tree-structured data, it is not suitable for process
logs due to its higher complexities compared to tree mining techniques.

2.3.7 Closed and Maximal Patterns

The pattern-based mining field often has to deal with a large number of frequent pat-
terns (Han et al., 2002), which is hard to manage and understand. Although it is always
possible to raise the support threshold to reduce the number of patterns, in reality, the
threshold is often set low. This is because interesting, surprising patterns are expected
to occur less frequently in many applications. However, setting a low minimum thresh-
old affects the time performance of the algorithm and the number of patterns found.
The lower the minimum support is, or the more complex the transactional database is
(i.e. large number of instances, many frequent/recurring patterns, etc.), the more com-
putational power or memory is required for a pattern-based mining algorithm. In the
worst case scenario, the algorithm may not be able to terminate or no patterns can be
found. Pattern compression is one possible solution to this problem.

The work in (Pasquier et al., 1999) suggested using closed or maximal itemsets
to compress frequent itemsets. Broadly speaking, closed and maximal patterns are
described as follows.
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• Closed patterns: a closed pattern is a pattern that none of its super-patterns, e.g.
super-itemset, super-sequence, have the same support. A closed frequent pattern
is a pattern that is both closed and frequent.

• Maximal patterns: a maximal pattern is a pattern that none of its super-patterns,
e.g. super-itemset, super-sequence, are frequent. A frequent maximal pattern is
a pattern that is both maximal and frequent.

From a set of closed patterns discovered from the dataset, one can always identify the
remaining frequent patterns and their supports. Therefore, the set of all closed patterns
of a dataset is a lossless compression of the frequent patterns of that dataset. On the
other hand, from maximal patterns, it is possible to identify the remaining frequent
patterns but not their supports.

2.3.8 Frequent Pattern Mining Approaches

There are two main approaches in frequent pattern mining: Apriori (Agrawal and
Srikant, 1994) and pattern growth (Han et al., 2000). These approaches are used in
a wide range of frequent substructure mining. In order to explain the basic ideas of
these approaches, frequent itemset mining is selected as an example.

Apriori algorithm (Agrawal and Srikant, 1994) is a level-wise method, where (k-
1)-itemsets are used to explore k-itemset. Initially, all frequent 1-itemsets in the trans-
actional database are explored. On each level (k), the algorithm performs the following
two steps.

1. Generate candidates based on the frequent (k-1)-itemsets. In this step, the algo-
rithm joins (k-1)-itemsets and prune those having at least one infrequent subset
using the Apriori property ‘All non-empty subsets of a frequent itemset must
also be frequent’ (Han and Kamber, 2006). This property belongs to a special
category of properties called anti-monotonicity, which is understood as “if a set
cannot pass a test, all of its supersets will fail the same test as well”.

2. Calculate the support for each candidate and eliminate those having supports
lower than the minimum threshold.

The pattern growth approach (Han et al., 2000) adopts the divide-and-conquer

strategy. Firstly, the database is compressed into a frequent pattern tree, or FP-tree,
which keeps association information among items. Secondly, based on the FP-tree,
the database is divided into conditional databases, each associated with one frequent
item. Based on the conditional databases, frequent patterns are generated. A study
on pattern growth performance shows that it is an order of magnitude faster than the
Apriori algorithm (Han and Kamber, 2006).
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Instead of representing data in a horizontal format, or TID-itemset format, where
TID is a transaction ID, and itemset is a set of items for that transaction, the ECLAT

algorithm (Zaki, 2000) represents data in a vertical format, or item-TID set format,
where TID set is the set of transaction IDs containing the item. In this method, frequent
k-itemsets are found from the intersection of (k-1)-itemsets, and Apriori property is
used to prune infrequent patterns. The advantage of using vertical data format is that
there is no need to find the support of k-itemsets because it can be derived from the
supports of (k-1)-itemsets.

2.3.9 Association Rule Mining

In Section 1.3.3, an association rule is defined as X ⇒ Y , where X and Y are disjoint
sets of items. However, the definition of X and Y can be extended to any type of
substructures, e.g. subsequences, subtrees, subgraphs.

An association rule describes the association between two sets of substructures. It
indicates the likelihood of the occurrence of a set of substructures (presented in the
rule consequent (Y)) in a transaction, when a set of substructures (presented in the rule
antecedent (X)) appear in that transaction.

Definition 2.4 (Rule support). Given a transactional database of size n, the support of

a rule X ⇒ Y is defined as follows

π(X ⇒ Y ) = P(X ∪Y ) =
πA(X ∪Y )

n
.

Note that P(X ∪Y ) is the ratio of transactions in the database that contain both
itemsets X and Y .

Definition 2.5 (Rule confidence). A confidence of a rule X ⇒ Y is defined as follows

c(X ⇒ Y ) = P(Y |X) =
πA(X ∪Y )

πA(X)
.

The association rule mining process comprises of two steps that are shown below:

1. Find all frequent itemsets having support larger than a user-specified threshold.

2. Generate association rules from the frequent itemsets. Prune rules that have
confidence less than a user-specified threshold.

An often used example of association rule mining is the rule {diapers} ⇒ {beers}
found in a retail database. It shows that people who buy diapers are likely to buy beers
at the same time (note that the opposite is not true). This hidden knowledge helps
managers define their marketing strategies, for example, lowering the price of diapers
and increasing the prices of beers to attract more customers and covering the losses for
the diapers. It is also used for re-shelving purposes to boost sales.
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2.3.10 Classification

The objective of classification is to extract models that describe important data classes.
Such models, called classifiers, are used to predict categorical class labels (Han and
Kamber, 2006). For example, historical weather data can be used to build a classifier
that is able to estimate the chance of a storm coming in the next few days.

The first step in classification is the learning step, where a classifier, also known
as prediction model, is built from training data. The training data is a set of instances
associated with class labels, which are of nominal (or categorical) data type, and other
attributes, which are called feature variables. The individual training instances’ at-
tributes are called predictor variables and the instances’ class label attribute is called
response variable. The prediction model can be in different representation such as
decision trees, mathematical formula, or classification rules.

The second step in classification is prediction. If training data are used to evalu-
ate the predictive accuracy of the classifier, the results would likely be optimistic (the
classifier may learn some particular characteristics of the training data that do not ap-
pear in the general dataset) (Han and Kamber, 2006). Hence, test data should be used
to estimate classifier’s accuracy. The test data are made up of test instances and their
associated class labels. The accuracy of a classifier is the percentage of test instances
that are correctly classified.

Decision Tree Induction

In decision tree induction, a decision tree is learned from training data. A decision tree
includes non-leaf nodes representing attributes, arcs, each of which connects two nodes
and specifies a test on an attribute, and leaf nodes, which are class labels. An example
of a decision tree classifier is shown in Fig. 2.3, which predicts three species of iris,
e.g. Setosa, Versicolor, and Virginica. The feature variables include petal length and
petal width. The two numbers that are shown next to the class label in each leaf node
represent the number of items correctly classified and the total number of instances
that satisfy the attribute tests along the path from root to that leaf node.

Given a test instance, for which the class label is unknown, attribute values are
evaluated against conditions kept non-leaf nodes of the decision tree. This results in a
path running from the root node to a leaf node which holds a class prediction for the
instance.

Decision tree is one of the most common types of classifier. The strength of
decision tree is that its algorithm does not require any domain knowledge, nor pa-
rameter settings. In addition, decision trees are intuitive for human and also sup-
port multidimensional data. Finally, decision tree induction is fast and its accuracy
is comparatively-high in most cases.
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Versicolor
49/54

Virginica
45/46

Petal3Width

>=1.8<1.8

Setosa
50/50

Petal3Length

>=3.0<3.0

Figure 2.3: An example of a decision tree that predicts species of an iris.

The decision trees are built using a top-down and greedy (no backtracking) ap-
proach. On each level of a tree, an attribute selection measure such as information
gain, gain ratio, GINI index, are used to identify an attribute that splits the training
data into partitions that are as pure as possible. The purity of a group of instances is
judged by the number of different class labels and the number of instances associated
with each class label. Purity is maximised when all instances in a group are associated
with a single class label. Each partition of data is then recursively examined to identify
the remaining nodes of the decision tree.

The decision tree algorithm Iterative Dichotomiser (ID3), which uses informa-
tion gain as an attribute selection measure, was proposed in (Quinlan, 1986). Later,
C4.5 (Quinlan, 1993) was introduced as an upgrade of ID3, which uses gain ratio as
an attribute selection measure. The C4.5 algorithm is often used as a benchmark for
other classification algorithms due to its speed and accuracy. A decision tree algorithm,
Classification and Regression Tree (CART) (Wu et al., 2008), was developed concur-
rently with C4.5. This algorithm uses GINI index as an attribute selection measure and
produces binary decision trees.

Rule-based Classification

A rule-based classifier uses a set of IF-THEN rules for classification, e.g. IF condition

THEN conclusion. The “IF” part of a rule is the rule antecedent or precondition; the
“THEN” part is the rule consequent. The rule antecedent contains one or more attribute
tests that are logically ANDed. The rule consequent contains a class prediction.

If all attribute tests of a rule hold true for a given test instance, then it is said that the
rule antecedent is satisfied by the instance, or the rule covers the instance, or the rule
is triggered by the instance. In that case, the rule fires by returning the class prediction
for the instance. In cases there are more than one rule satisfied, a conflict resolution
strategy is needed.

In size ordering strategy, the triggering rule has the most attribute tests is fired. In
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rule ordering strategy, the rules are sorted based on the most prevalent class, accuracy
(see Definition 2.7), coverage (see Definition 2.6), etc. The first rule in the list that is
triggered would fire its class prediction. If no rule is satisfied for a given instance, a
default rule can be used to fire a default class, which is often the majority class in the
training data, or the majority class of the instances that are not covered by any rule.

Let Y be the number of instances covered by a rule R; X be the number of instances
correctly classified by R; and |D| be the size of the database.

Definition 2.6 (Coverage). The coverage of rule R is defined as follows

CR(R) =
Y
|D|

.

Definition 2.7 (Accuracy). The accuracy of rule R is defined as follows

AR(R) =
X
Y

.

Classification rules can be derived from a decision tree, with each rule corresponds
to a path from a root node to a leaf node. The decision tree shown in Fig. 2.3 corre-
sponds to a set of rules shown below.

If Petal Length < 3.0 then iris_species = Setosa

If Petal Length ≥ 3.0 and Petal Width < 1.8

then iris_species = Versicolor

If Petal Length ≥ 3.0 and Petal Width ≥ 1.8

then iris_species = Virginica

One of the most widely used methods to learn classification rules is the sequential
covering algorithm (Cohen, 1995; Han and Kamber, 2006). In this algorithm, rules are
learned for one class at a time. Each rule for a given class should cover all (or many) of
the training instances of that class and none (or few) of the instances of other classes.
When a rule is learned, the training instances covered by the rule are removed. The
process continues on the remaining instances until the terminating condition is met,
e.g. the quality of a rule is below a user-specified threshold.

In the sequential covering algorithm, only the best rules, according to a rule quality
measure, are selected in the rule learning process. Rule quality measures include ac-
curacy, coverage, entropy (Quinlan, 1986), FOIL gain (Quinlan, 1990). Entropy and
FOIL gain are used in the sequential covering algorithm CN2 (Clark and Niblett, 1989)
and RIPPER (Cohen, 1995), respectively.

2.3.11 Classification Evaluation

Examples of classification evaluation measures are accuracy, specificity, sensitivity,
precision, F-measure, etc. Apart from being an evaluation measure, the word “accu-
racy” is used to denote a classifier’s predictive capability in general.
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In the classification problem, if a test instance is the class of interest, it is called a
positive instance. Otherwise, it is called a negative instance. A true positive (TP) in-
stance is a positive instance that is predicted as positive. A true negative (TN) instance
is a negative instance that is predicted as negative. A false positive (FP) instance is
a negative instance that is predicted as positive. A false negative (FN) instance is a
positive instance that is predicted as negative. The relations among TP, TN, FP, and
FN are summarised in a two-dimensional confusion matrix (the number of dimensions
depends on the number of class), which is shown in Table 2.5. P and N are the number
of instances that are positive and negative, respectively. P’ and N’ are the number of
instances that are predicted as positive and negative, respectively. The relations among
TP, TN, FP, and FN are summarised in a two-dimensional confusion matrix (the num-
ber of dimensions depends on the number of class), which is shown in Table 2.5.

Table 2.5: A confusion matrix.

Predicted class

Actual class

Positive Negative Total
Yes TP FN P
No FP TN N

Total P’ N’ P+N

The accuracy of a classifier on a given test data is the percentage of test instances
that are correctly classified.

Definition 2.8 (Accuracy). The definition of accuracy is defined as:

accuracy =
T P+T N

P+N
.

The misclassification (error) rate of a classier on a given test data is the percentage
of test instances that are incorrectly classified.

Definition 2.9 (Error rate). The misclassification (error) rate is defined as:

error rate =
FP+FN

P+N
.

The sensitivity measure, which is referred to as the True Positive Rate (TPR), or
recall, is the proportion of actual positive instances that are correctly classified as such.
The sensitivity measure is used when people are interested in the accuracy of a clas-
sifier on the class of interest. For example, the performance of a cancer classification
algorithm is based on the number of correct predictions on patients with a cancer, rather
than the number of correct predictions on patients without a cancer.

Definition 2.10 (Sensitivity). The sensitivity measure is computed as:

sensitivity =
T P
P

.
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The specificity measure is referred to as the False Positive Rate (FPR), is the pro-
portion of actual negative instances that are correctly classified as such.

Definition 2.11 (Specificity). The specificity measure is computed as:

speci f icity =
T N
N

.

The exactness of a classifier, the precision measure, is the proportion of predicted
positive instances that are actually positive instances.

Definition 2.12 (Precision). The precision measure is calculated as:

precision =
T P

T P+FP
.

The completeness of a classifier, the recall measure, is the proportion of positive
instances that are predicted as positive.

Definition 2.13 (Recall). The recall measure is similar to the TPR (sensitivity) and

calculated as:

recall =
T P

T P+FN
.

Definition 2.14 (F-measure). Since high precision and recall values are often achieved

at the cost of the other, a harmonic measure that combines the two measures was

defined as:

F =
2× precision× recall

precision+ recall
.

2.3.12 Obtaining Reliable Accuracy Estimates

Depending on which data are used to train the classifier and which data are used to
evaluate the classifier, the accuracy results can be varied. For this reason, to obtain
a reliable estimate on the accuracy of the classifier, the following methods have been
proposed.

Cross-validation

A common cross-validation method is k-fold cross-validation where the data are parti-
tioned into k mutually exclusive subsets (folds) of equal size. The training and testing
are done k times. In each iteration, a single partition is selected as the test set and
the remaining partitions are used as training set. The accuracy estimate is the number
of correct predictions from k iterations, divided by the total number of instances. A
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common evaluation method is cross-validation when k=2, which is also called as hold-
out method, where typically two-thirds of the original data are randomly selected for
training purpose and the remaining data are used for testing purpose (Han and Kamber,
2006).

Bootstrap

In bootstrap methods, the training set are created by sampling the original data. One
of the common sampling methods is the .632 bootstrap (Efron and Tibshirani, 1997).
In each iteration, a data set with n instances is sampled (with replacement) n times and
instances that are not sampled at all form the test set, whereas the remaining instances
form the training set. After k iterations, the overall accuracy of the M is estimated as:

AR(M) =
1
k

k

∑
i=1

0.632×AR(Mi)test set +0.368×AR(Mi)train set (2.1)

Note that AR(Mi)test set is the accuracy of the model when applied to test set i and
AR(Mi)train set is the accuracy of the model when applied to the original data set.

Statistical Test

Although cross-validation provides a good estimate of the performance of a classifier,
it might be that the results obtained are only due to chance. Statistical test can be used
to ensure that one classifier’s performance is statistically better than that of the other
classifier. Some examples of statistical test used to evaluate a classification method
include Student’s t-test, two sample t-test (Han and Kamber, 2006).

ROC Curve

ROC analysis came from the signal detection theory (Egan, 1975). In ROC analysis, all
test data are sorted based on their probability of being classified as a positive instance.
In each iteration, a test instance is examined which follows the order of decreasing
probability. A probability threshold is set equal to the probability of the examined test
instance. Any instance whose probability is higher than the threshold is classified as
positive; otherwise, it is classified as negative. A TPR and a FPR are calculated for the
classifier. These numbers are then plotted on a graph where the vertical axis represents
TPR values and the horizontal axis represents FPR values. The ROC curve connects
pairs of TPR and FPR values for each test instance. The area under the ROC curve
indicates the accuracy of the classifier.
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2.3.13 Associative Classification

Associative classification (Thabtah, 2007; Liu et al., 1998; Yin and Han, 2003; Li et al.,
2001) is an approach that uses frequent patterns to build prediction models. As men-
tioned in Section 2.3.9, frequent pattern mining is the first step in generating asso-
ciation rules. These rules illustrate the causal relationship among substructures in a
transactional database. In classification, the need is to identify particular character-
istics of training data that signal the occurrences of a certain class. Therefore, only
association rules whose rule consequents are class labels are used for classification
purpose. Classification approaches that are based on frequent patterns are called asso-
ciative classification.

The three main steps of associative classification are as follows.

1. Frequent pattern mining: Discover frequent substructures in the training data set
with a user-defined minimum support threshold.

2. Association rule generation and filtering: From frequent substructures, identify
rules that have rule consequents as class labels. Rules having quality measure,
such as confidence, lower than a user-specified threshold are filtered out. Note
that, given an association rule R: A⇒ C, the confidence value of R is the per-
centage of instances covered by A that have class label C. This measure is akin
to rule accuracy (see Definition 2.7).

3. Evaluation: the set of rules learned from the previous steps form a rule-based
model, which is then evaluated on a test data (see Section 2.3.10).

2.3.14 Interestingness

In association rule mining and associative classification, the number of discovered
rules may be very large. However, only a portion of these rules are of interest to
the user. Interestingness (Geng and Hamilton, 2006) is a broad concept that includes
at least one of the following aspects.

• Conciseness: A pattern is concise if its structure contains a relatively few ele-
ments and a set of patterns is concise if it contains relatively few patterns;

• Coverage: A pattern has high coverage if it is present in a large subset of a data
set;

• Reliability: A pattern is reliable if the relationship described by the pattern oc-
curs in a high percentage of applicable cases;

• Peculiarity: A pattern is peculiar if it is far away from other discovered patterns
according to some distance measure;
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• Diversity: A pattern is diverse if its elements differ significantly from each other
and a set of patterns is diverse if the patterns in the set differ significantly from
each other;

• Novelty: A pattern is novel to a person if he or she did not know if before and is
not able to infer it from other known patterns;

• Surprisingness: A pattern is surprising if it contradicts a persons’ existing knowl-
edge or expectations;

• Utility: A pattern is of utility if its use by a person contributes to reaching a goal;

• Actionability: A pattern is actionable if it enables decision making about future
actions in this domain.

Interestingness can be categorised into three main types, namely objective, sub-
jective, and semantic interestingness. The objective interestingness is measured based
on the probability and statistics applied to the data set. Objective interestingness rep-
resents the following aspects of interestingness: conciseness, generality, reliability,
peculiarity and diversity.

In many cases, using objective interestingness only results in patterns that repre-
sent common sense. Thus, it is uninteresting. Subjective interestingness takes into ac-
count both the statistics and probability of the data and user requirements. Subjective
interestingness represents the novelty and surprisingness aspects of interestingness.
Semantic interestingness focuses on the explanations and semantics of the patterns
discovered. Semantic interestingness represents the utility and actionability aspects of
interestingness.

Two of the most popular objective interestingness measures used in association rule
mining are support and confidence measure. These two measures are used to remove
many weak or uninteresting rules from the rule sets. However, in many cases, rules
that have high confidence value are still uninteresting (Han and Kamber, 2006). Thus,
other objective interestingness measures such as lift or χ2 might be used to further
remove weak rules.

Definition 2.15 (Lift). A lift measure of a rule X ⇒ Y is defined as follows

li f t(X ,Y ) =
P(X ,Y )

P(X)×P(Y )
=

c(X ⇒ Y )
π(Y )

.

If the lift value is less than 1, then X is negatively correlated with Y , which means
that the occurrence of one is likely to lead to the absence of the other. If the lift value is
greater than 1, then X and Y are positively correlated, which means that the occurrence
of one is likely to lead to the occurrence of the other. Otherwise, if the lift value is
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1, then X and Y are independent, which means that the occurrence of one does not
tell anything about the occurrence of the other. χ2 is another way of identifying the
relationship between two binary variables. Firstly, a contingency table is created from
the data set with n instances, which is shown in Table 2.6. Each cell indicates the
observed number of instances of the two variables.

Table 2.6: A contingency table for binary variables X and Y .

Y Y Total
X oXY oXY oX
X oXY oXY oX

Total oY oY n

Secondly, the expected (the two variables are independent) number of instances of
the two variables are calculated based on the following formula.

ei j =
oi×o j

N
. (2.2)

Thirdly, the χ2 is defined as.

χ
2 = Σ

(oi j− ei j)
2

ei j
. (2.3)

Consultation of the χ2 distribution for 1-degree of freedom shows the probability of
accepting the null hypothesis, which is X and Y are independent. A low probability
value (compared to a statistical significance, e.g. 0.05) indicates there is a correlation
between the two variables.

Apart from the objective interestingness measures discussed above, Table 2.7 lists
some other popular measures (Geng and Hamilton, 2006).

2.4 XML Data Mining Methods

Since MXML and XES were endorsed as the two standards for logging event data, to
the best of our knowledge there has been a lack of methods that are able to mine such
documents. In this section, the key concepts and methods in XML mining are intro-
duced. Section 2.4.1 shows that an XML document can be easily represented as a tree.
Next, in Section 2.4.2, the formalism of tree-structured data is described. Frequent
subtree mining is then discussed in Section 2.4.3. Finally, Section 2.5 introduces the
XML classification problem.
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Table 2.7: Objective interestingness measures.

Measure Formula

Conviction
P(X)×P(Y )

P(XY )

Cosine
P(XY )√

P(X)×P(Y )

GINI

max( P(X) × (P(Y |X)2 + P(Y |X)2) + P(X) ×
(P(Y |X)2 +P(Y |X)2)−P(Y )2−P(Y )2,
P(Y )× (P(X |Y )2 + P(X |Y )2) + P(Y )× (P(X |Y )2 +
P(X |Y )2)−P(X)2−P(X)2)

Jaccard
P(X ,Y )

P(X)+P(Y )−P(X ,Y )

Laplace max(
N×P(X ,Y )+1

N×P(X)+2
,
N×P(X ,Y )+1

N×P(Y )+2
)

Leverage P(Y |X)−P(X)×P(Y )

Pearson
P(X ,Y )−P(X)×P(Y )

P(X)×P(Y )× (1−P(X))× (1− p(Y ))

Yule’s Q
P(X ,Y )×P(X ,Y −P(X ,Y )×P(X ,Y )
P(X ,Y )×P(X ,Y +P(X ,Y )×P(X ,Y )

Lift
P(X |Y )
P(X)

or
P(X ,Y )

P(X)×P(Y )

2.4.1 The Relation between XML and Tree-structured Data

As mentioned in Chapter 1, an XML document can be mined from its content, structure
or both content and structure. Event logs are highly-structured while having low textual
contents. Elements in an event log such as activities, timestamps, and events have well-
defined meanings and their positions in a document can be located using data schemas.
To exploit these properties of process logs, this thesis focuses on the problem of mining
structural patterns of the data.

It is possible to convert an XML-based process log to a tree database, as seen in List-
ing 1.1 and Fig. 1.5, due to the strong resemblance between XML and tree-structured
data. In XML, the elements (tags) are organised in a hierarchical way, i.e. each ele-
ment may have one or more child elements, an element value, and one parent element,
except for the root element (〈xml〉), which has no parent. An element may have one or
more attributes, each of which has a value. Elements, element data, attributes, attribute
values and the relations among them correspond to nodes and edges in a tree-structured
data.

In more detail, the root element of an XML document, i.e. 〈xml〉 corresponds
to the root node of a rooted tree (A rooted tree is a tree whose one of its nodes is
distinguished from others, which is called the root). Children of an XML element are
positioned in a certain order, which corresponds to an ordered tree. If a node has k
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children, the child at the left-most position is at position 0, and children to its right
have incrementing position order, up to k-1. Since each item of an XML document has
a name or value, the whole document corresponds to a rooted labelled ordered tree.
A framework for mapping XML data into tree structures and makes them ready for
association rule algorithm was given in (Feng et al., 2003).

It was shown that an XML document can be straightforwardly represented by a
rooted labelled ordered tree. From this point forward, our discussion is focused on
rooted labelled ordered tree data mining.

2.4.2 Formalism of Tree-structured Data

In this thesis, tree-structured databases that consists of a set of rooted ordered labelled
trees are investigated. The notation of tree-structured data will be developed based on
the concepts of graph-based data (Chi et al., 2004a).

A labelled graph is denoted as G=(V,E,ξ ,L), where V is a set of vertices, E =
{(v1,v2)|v1,v2 ∈V AND v1 6= v2} is a set of edges, ξ is an alphabet of vertex and edge
labels, and L : V ∪E→ ξ is a labelling function that assign labels to vertices and edges.

A directed graph is a graph whose edges are ordered pairs of vertices. A undirected
graph is a graph whose edges are unordered pair of vertices.

A path is a list of vertices of a graph such that each pair of neighbouring vertices
in the list is an edge of the graph (Chi et al., 2004a). The length of a path is defined
by the number of edges in the path. A cycle is a path of which the first and the last
vertices are the same.

An acyclic graph is a graph that has no cycle. An undirected graph is connected if
there is at least one path between any pair of vertices, whereas an undirected graph is
disconnected if there exists a pair of vertices such that no path is found between them.

A free tree is a graph that is undirected, connected and acyclic. A rooted unordered
tree is a undirected, connected, acyclic graph with one distinguished vertex called the
root. There is a unique path from the root to every other vertex. If vertex x is on the
path from the root to vertex y, then x is an ancestor of y (and y is a descendant of x),
denoted as x ≤p y, where p is the length of the path from x to y. In case (x,y) ∈ E, x

is the parent of y (and y is a child of x), which is denoted as x ≤1 y. If vertex y and z

are both children of vertex x, then y and z are siblings. In case two vertices share the
same ancestor, they are called cousins. A rooted ordered tree is a rooted tree that has a
predefined total ordering (�) among each set of siblings. When a rooted ordered tree
is presented graphically, the order between siblings is implied by the left-to-right order.
The expression x� y is used to describe node x and node y are siblings, with node x is
to the left of node y. If node x and node y are immediate siblings, meaning that node
x locates to the left of node y, and there are no other nodes in between the two nodes,
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such relations between x and y is denoted as x�i y. If a vertex has k children, then its
leftmost child is the first child, its next child is the second child, etc., and its last child
is the kth child.

The fan-out (degree) of a vertex in a tree is the number of children whose parent
is that vertex. The average (max) fan-out of a tree is the average (max) fan-out of all
vertices in that tree. The level/depth of a vertex is the length of the path from root to
that vertex. The height of a tree is the number of vertices in the longest path starting
from the root. The size of a tree, denoted as |T|, is the number of vertices the tree has.
A forest is a set of one or more disjoint trees.

Definition 2.16 (Isomorphic subtree). Given a tree S = (VS,ES,LS) and tree T =

(VT ,ET ,LT ), S is an isomorphic subtree of T , denoted as S� T , if and only if there ex-

ists an injective function f : VS→VT , such that (x,y) ∈ ES if and only if ( f (x), f (y)) ∈
ET .

Note that isomorphic subtree relation is also called tree inclusion relation. If f is a
bijective function, then S and T are called isomorphic.

Definition 2.17 (Induced subtree). Given a tree S = (VS,ES,LS) and tree T =

(VT ,ET ,LT ), tree S is an induced subtree of T , denoted as S �i T , if and only if there

exists an injective function f : VS→VT , such that:

• (x,y) ∈ ES if and only if ( f (x), f (y)) ∈ ET (S is an isomorphic subtree of T );

• x� y, x,y ∈ VS (x and y are siblings and x is on the left of y) if and only if

f (x)� f (y);

• LS(x) = LT ( f (x)),∀x ∈VS.

In other words, f preserves the parent-child relationships, the siblings order, as well

as vertex labels.

In Fig. 2.4, each vertex in tree S1 is mapped into a vertex in tree T . In addition, the
parent-child relationships and vertex labels are preserved by the mapping. Therefore,
S1 is an induced subtree of T .

Definition 2.18 (Embedded subtree). Given a tree S = (VS,ES,LS) and tree T =

(VT ,ET ,LT ), tree S is an embedded subtree of T , denoted as S �e T , if and only if

there exists an injective function f : VS→VT , such that:

• (x,y) ∈ ES,x≤1 y if and only if f (x)≤p f (y), p ∈ N, p > 0;

• x� y, x,y ∈ VS (x and y are siblings and x is on the left of y) if and only if

∃m,∃n ∈VT : m≤p f (x),n≤q f (y),m� n, p ∈ N,q ∈ N, p > 0,q > 0;
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Figure 2.4: S1 is an induced subtree of T .

• LS(x) = LT ( f (x)),∀x ∈VS.

In other words, f preserves the ancestor-descendant relationships (a parent of a node

in an embedded subtree is an ancestor of that node in the original tree), as well as

vertex labels.

Embedded subtrees are a generalisation of induced subtrees. In Fig. 2.5, each ver-
tex in tree S1 is mapped into a vertex in tree T . In addition, the ancestor-descendant
relationships and vertex labels are preserved by the mapping. Thus, S2 is an embedded
subtree of T .

a

ec

b) tree S2

a

b

dc

e

a) tree T

Figure 2.5: S2 is an embedded subtree of T .

Tree S is said to occur in tree T , or T contains S, if S is an induced or embedded
subtree in T , i.e. S�e T or S�i T . S can occur multiple times in T and each occurrence
is identified by a sequence f (x0) f (x1) · · · f (x|S|), where xi ∈Vs.

Let p(S,T ) be an occurrence of S in tree T : p(S,T ) = { f (v)|∀v∈VS}. The number
of occurrences of S in T is denoted as nT (S), where nT (S) = |{p( f ,S,T )| f : VS→VT ,

such that S≺e T}|.
Let dT (S) represent the occurrence indicator of S in T , with dT (S) = 1 if nT (S)> 0

and dT (S) = 0 if nT (S) = 0. In other words, dT (S) = 1 if and only if S≺i T or S≺e T .
Let DB be a database (forest) of trees. The support of subtree S in DB is defined

as πA(S) = |dT (S)|,∀T ∈ DB. That is, the support of subtree S in DB is the number of
trees in DB that contain at least one occurrence of S.
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The weighted support of S in DB is defined as the total number of occurrences
of S over DB, i.e. πW (S) = ∑T∈DB nT (S). The weighted support can also defined as

πW (S) =
∑T∈DB nT (S)

∑T∈DB
.

A subtree is frequent if its support is more than or equal to a user-defined minimum
support threshold.

Representation of Trees

Tree is a fundamental data structure which can be represented in a number of ways.
In the computer memory, a tree can be stored as a set of vertices which are linked by
pointers. Adjacency matrix is a common way of representing a tree (and graph). In the
adjacency matrix, each row and column indicates a vertex. A cell in a table has a value
of 1 if there is an edge between the two vertices represented by the corresponding row
and column of the cell; the cell has a value of 0, otherwise.

There are many other ways of representing trees, such as adjacency list, breadth-
first, depth-first canonical form(Chi et al., 2005b). In (Zaki, 2002), the author claimed
that using string to encode trees is a space-efficient method. A pre-order string encod-
ing of a tree T is denoted as φ(T ).

Initially, φ(T ) = /0. A depth-first pre-order traversal is performed on the tree, start-
ing from the root. Whenever a vertex is reached, its label is added to φ(T ). In case
a backtrack is performed, a symbol −1 is added to φ(T ). For example, the pre-order
string encoding of tree S1 in Fig. 2.4 is b c−1 d −1. That is, the method starts from the
root of S1 and add b to the string. It then traverses to the next vertex, c, which is then
appended to the encoding. Since there is no children of c, the algorithm backtracks to
a and add −1 to the string. Next, vertex d is traversed, and d is added to the encoding.
Finally, the method backtracks to the root, adding −1 to φ(T ).

A vertex can be referred to by its order in the pre-order traversal of the tree. The
root is visited first, thus it has a position of X0; the first child of the root (its left-most
child) is visited next, thus its position is X1. In this fashion, all other vertices are visited
and labelled; the position of last vertex that is visited is Xn−1, where n is the number of
vertices. Fig. 2.6 shows an example of a tree where its vertices are labelled according
to their position in the pre-order traversal.

In Fig. 2.5, the subtree S2 occurs in tree T at position X0, X2, and X4. These
locations can be written as 024.

2.4.3 Frequent Subtree Mining

Frequent subtree mining is a problem of finding all subtrees of a tree database that
occur at least a number of times that is greater than the minimum support threshold. It
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Figure 2.6: Position of vertices in a tree.

is a specific form of frequent pattern mining defined in Section 2.3.2, with each subtree
in frequent subtree mining corresponds to a substructure in frequent pattern mining.

Frequent subtree mining has applications in different domains, e.g. Web log anal-
ysis (Zaki, 2005b; Zaki and Aggarwal, 2006; van der Aalst and van Dongen, 2002;
Zaki, 2005a, 2002; Chi et al., 2005b; Tan et al., 2006; Hadzic, 2012), Internet rout-
ing (Chi et al., 2003), chemical compound analysis (Chi et al., 2003; Rückert and
Kramer, 2004; Chi et al., 2004b; Deshpande et al., 2005; Dehaspe et al., 1998), bioin-
formatics (Borgelt and Berthold, 2002; Zhang and Wang, 2008; Deepak et al., 2014),
structure discovery (Wang and Liu, 1998).

Definition 2.19 (Frequent subtree mining (Zaki, 2002)). Given a tree database, a min-

imum support threshold π , and a isomorphic subtree relation �, the set of frequent

subtrees in the database (F ) is defined as:

F (π,�) =
⋃
{S|π(S)≥ π}.

Given S1 is a subtree of S2 and a tree database, there is an anti-mononicity relation
between the supports of S1 and S2, which is given as follows.

S1 � S2⇒ π(S1)≥ π(S2). (2.4)

2.4.4 Frequent Subtree Mining Algorithms

A categorisation of common frequent subtree mining algorithms is given in Table 2.8.
The categorisation is based on: (i) types of input trees, e.g. ordered, unordered, free,
hybrid, (ii) types of tree inclusion relations, e.g. induced, embedded, and (iii) types of
condensed representation, e.g. maximal, closed. Note that all free trees are unordered
trees. Frequent hybrid subtree mining includes algorithms that are able to mine a com-
bination of different input trees. For example, POTMiner (Jiménez et al., 2010) mines
ordered, unordered, and partially-ordered subtrees. TRIPS (Tatikonda et al., 2006)
and TIDES (Tatikonda et al., 2006) are able to mine ordered, unordered, labelled or
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unlabelled, edge-labelled subtrees. CMTreeMiner (Chi et al., 2005a) can mine both or-
dered, unordered maximal and closed induced subtrees. DryadeParent (Termier et al.,
2008) mines a special type of tree that is called attribute trees (In attribute trees, all
siblings must have different labels). The algorithm Phylominer (Zhang and Wang,
2008) can mine both free and rooted trees. An idea of mining patterns in carbohydrate
sugar chains using α-closed subtrees was proposed in (Hashimoto et al., 2008). The
user-specified parameter α is used to reduce the number of closed subtrees found in
the dataset. Recently, BOSTER (Chowdhury and Nayak, 2013, 2014) was proposed to
mine frequent induced, unordered subtrees.

Table 2.8: Common frequent subtree mining algorithms.

Maximal Closed Induced Embedded
Unordered tree mining

TreeFinder (Termier et al., 2002) * *
uFreqT (Nijssen and Kok, 2003) *
CousinPair (Shasha et al., 2004) *
RootedTreeMiner (Chi et al., 2005b) *
SLEUTH (Zaki, 2005a) *
Unot (Asai et al., 2003) *
Uni3 (Hadzic et al., 2007) *
PathJoin (Xiao et al., 2003) * *
BOSTER (Chowdhury and Nayak, 2014) *

Ordered tree mining
FREQT (Asai et al., 2002) *
TreeMiner (Zaki, 2005b) *
Chopper (Wang et al., 2004) *
Xspanner (Wang et al., 2004) *
AMIOT (Hido and Kawano, 2005) *
MB3-Miner (Tan et al., 2005) *
IMB3-Miner (Tan et al., 2006) * *

Free tree mining
FreeTreeMiner (Chi et al., 2003) *
FreeTreeMiner (Rückert and Kramer, 2004) *
HybridTreeMiner (Chi et al., 2004b) *
GASTON (Nijssen and Kok, 2004) *
Phylominer (Zhang and Wang, 2008) * *

Hybrid tree mining
CMTreeMiner (Chi et al., 2005a) * * *
POTMiner (Jiménez et al., 2010) * *
TRIPS (Tatikonda et al., 2006) * *
TIDES (Tatikonda et al., 2006) * *
HybridTreeMiner *

The common approach in frequent subtree mining is firstly generating candidates
and secondly counting the support of each candidate. There are several methods for
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the candidate generation process such as right most path extension (used by Freqt,
Unot, uFreqt, GASTON, TIDES), equivalence-class-based extension (used by TreeM-

iner, SLEUTH, Phylominer, POTMiner, MB3Miner, IMB3Miner), extension and join
(used by HybridTreeMiner), right and left tree join (used by AMIOT), Apriori itemset
generation (TreeFinder), enumeration tree (used by CMTreeMiner, RootedTreeMiner),
self-join (used by FreeTReeMiner) and cousin distance (use by CousinPair). Methods
that are based on pattern growth approach are PathJoin, Chopper and XSpanner. The
first method uses compacted structures called FP-Trees to compress input data, while
the last two encodes trees in sequence format.

The main approaches for support counting includes scope list, which is used in
TreeMiner, SLEUTH, POTMiner, and occurrence list, which is used in Freqt, AMIOT,
HybridTreeMiner, MB3Miner, IMB3Miner, Unot, RootedTreeMiner. Other methods
are bipartite graphs (uFreqT), clustering techniques (TreeFinder), hash table (TRIPS,
TIDES).

2.5 Structural XML Classification

As mentioned in Chapter 1, classification algorithms are used in many process mining
problems such as root cause analysis, time prediction, activity recommendation, etc.
In this thesis, the focus is on inter-structure mining, where the structural properties
of XML documents are examined instead of their textual/semantic content. Notable
inter-structure XML mining studies are described in (Zaki and Aggarwal, 2006; Costa
et al., 2013b; Bringmann and Zimmermann, 2005; De Knijf, 2007; Garboni et al.,
2006; Chehreghani et al., 2009; Geamsakul et al., 2005; Cheng et al., 2008; Kim et al.,
2010). Examples of studies that use the latter approaches include (Wang et al., 2012;
Costa et al., 2011; Denoyer and Gallinari, 2004). As mentioned in Section 2.4.1, the
scope of this thesis is limited to mining only structural properties of XML documents.

Many tree-structured classification algorithms were inspired by the associative
classification framework for flat data (also called Classification Based on Association

or CBA) first introduced in (Liu et al., 1998). In this framework, rules are generated
from the training data (Agrawal and Srikant, 1994) and only rules having rule
consequents as class labels are selected as part of the rule set; rules having less
predictive power or being not statistically significant are removed.

Later, the method CMAR (Li et al., 2001) improved CBA by using an extended
version of FP-Growth (Han et al., 2000) for mining rules. Multiple rules are used for
predicting class instead of one as in CBA. Moreover, χ2 value is used to prune rules
that are not statistically significant.

A hybrid method, CPAR (Yin and Han, 2003), was proposed based on the support
confidence framework and FOIL (First Order Inductive Logic Programming) (Quinlan
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and Cameron-Jones, 1993), which is a greedy approach that learns rules to distinguish
positive examples from negative ones. The decay factor and multiple laterals gen-
eration were proposed to reduce the missing of important rules. In CPAR, Laplace

accuracy is used as a rule strength measure and only top-k rules are used for predic-
tion. Other methods extending the associative classification framework can be found
in (Veloso et al., 2006; Dong et al., 1999; Wang et al., 2000; Thabtah et al., 2004). A
complete survey of the associative classification framework can be found in (Thabtah,
2007).

One of the first structural classifiers that is based on the associative framework is
XRules (Zaki and Aggarwal, 2006). In this method, frequent embedded subtrees are
mined using XMiner (an extension of TreeMiner (Zaki, 2005b)) that can simultane-
ously mine all frequent subtrees related to each class. The associations among the
subtrees and their classes form the rule set. After that, the rule strength of each rule
for each class is calculated based on different measures such as confidence, likelihood
or weighted confidence. Finally, each test instances is matched against rules in the
rule set and the combined rule strengths of the triggered rules are compared between
classes. Class that has higher combined rule strength than others’ is selected as a label
for the test instance.

A tree-structured associative classifier, called X-Class (Costa et al., 2013b), uses
four different types of substructure, e.g. distinct nodes, distinct edges, root-to-node
paths and root-to-leaf paths as patterns. It is claimed that these substructures are better
than subtree in terms of discriminative power and interpretability. Among the four, the
substructure root-to-leaf path is the most effective and gives compact rule sets.

In Tree2 (Bringmann and Zimmermann, 2005), statistical measures such as χ2 and
Information Gain are used to select the most discriminative subtree patterns for the
decision tree algorithm. The convex property of these measures is used in the branch-
and-bound search for subtree patterns. Despite not having the best accuracy results, the
number of generated patterns is small and easy to understand. Decision tree Graph-
Based Induction (Geamsakul et al., 2005) is a similar method which uses graph patterns
instead of trees.

In (De Knijf, 2007), the FAT-CAT method is based on attribute trees (Arimura and
Uno, 2005), where in emerging subtrees are identified by combining a local and a
global frequent pattern mining. The subtrees are then used as binary features for the
decision tree algorithm. Note that a subtree is emerging if it frequently occurs in one
class and rarely with other classes.

Both Tree2 and FAT-CAT methods are based on decision tree learning. The former
method builds decision tree step-by-step and the splitting attributes, i.e. discriminative
subtrees, are discovered on the fly. The latter method emphasizes on the discovering
of highly frequent and discriminative attribute subtree and use them as binary features
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while leave the choice of a decision tree algorithm for the user.
Another tree-structured classification approach is to directly mine discriminative

subtrees that are used as the conditions of classification rules. This idea was first
implemented the DDPMine (Cheng et al., 2008) algorithm for itemset data. In this
work, the FP-Growth algorithm (Han et al., 2000) was utilized to generate frequent
itemsets and to perform the rule ranking at the same time. Statistical measures that
describe the discriminative power of a pattern such as Information Gain are used to
select the best rules. The upper bound of the discriminative measures is used to skip
the conditional FP-Tree, thereby reduces the pattern search space.

NDPMine (Kim et al., 2010) is a pattern-based classification method that was in-
spired from DDPMine but uses the number of patterns as features for SVM algorithm.
This method utilizes a shrinking memory algorithm for better performance. It was
used in conjunction with CMTreeMiner for the classification of authorship data that is
represented in tree-structured format.

The tree-structured classification problem can also be solved by transforming trees
into sets of attributes. Selecting a right attribute plays an important role for the ef-
ficacy of these methods. In (Candillier et al., 2006), trees are transformed into sets
of attribute-values, which are then mined by various existing methods of classification
and clustering. The selected attributes represent different types of structural properties,
such as parent-child, next-sibling, and path-from-root relations.

In (Garboni et al., 2006), XML documents are represented in a form of node se-
quences where each node is attached with its corresponding level in the original tree.
Sequential pattern mining algorithms are used to extract sets of frequent sequences
which are representative of different classes and then matched against the test data.

Another class of methods that can be used for XML document classification is
based on kernel methods. Some of the studies using kernels for tree-structured data
are presented in (Vishwanathan and Smola, 2004; Kashima and Koyanagi, 2002; Aiolli
et al., 2009). Although kernel methods are powerful machine learning tools that can be
used in a variety of tasks, such as classification, clustering, creating a kernel function
that is best suited to a specific application is still a difficult problem (Costa et al.,
2013b).

There are many XML-based/tree-structured classification methods which can be
used on process logs. However, to the best of our knowledge, none of them take into
accounts the exact order of each event and/or its attributes in the process of constructing
a prediction model. The position information of subtree patterns were known to be
important in process mining, as will be described in the motivating example in Chapter
3. Therefore, it is of interest to build a classifier for event logs which considers the
position of subtree.
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2.6 Summary and Research Gaps

This chapter reviewed the necessary background of the XML-based event log mining
problem. Section 2.1 gave an overview of the application context—the BPM field. Af-
ter that, the process mining problem was discussed in Section 2.2. The structure of an
event log—the starting point of every process mining task—was also presented. Data
mining techniques that are commonly used in process mining such as frequent pattern
(subsequence) mining, association rule mining, and classification were introduced in
Section 2.3. Classification evaluation methods was introduced for use in experiments.
Associative classifier, one of the major method in classification, was presented next.
Data mining plays a major part of process mining. However, it has not been fully
utilised in process mining because most data mining techniques are used for the pur-
pose of discovering process models from event data. This raises the need for more
studies on process mining methods that are independent of process models.

Since the XES standard was adopted by the IEEE Task Force on Process Min-
ing (ICTFPM, 2010), there has been a need to develop methods that can directly mine
XML-based process logs. XML mining methods has been extensively studied in many
areas, such as biology and Web usage mining. Such methods can certainly be applied
to XES-based event logs, however due to the complexities of event logs (commonly
having a large number of event nodes), more efficient mining methods are always in
need. There are two approaches in mining XML documents: (i) examine the con-
nections between XML entities (e.g. tag), and (ii) examine the connections and the
semantics/content of the entities. This thesis focuses on former approach. Background
on representing XML data in tree-structured format and tree data structure formalism
were presented in Section 2.4.

Tree-structured data mining is another established research area. One of the most
important parts of tree mining is frequent subtree mining, which was described in
Section 2.4.3. Section 2.5 reported different classification methods on tree-structured
data. It is expected that those methods could work on XML-based process logs; how-
ever, none of them are able to show the exact order of a tree pattern, which is in many
cases important in the context of process mining (Bui et al., 2012b, 2015). In addi-
tion, the study in (Hadzic et al., 2015) shows that methods that are based on frequent
subtree mining could have performance issues when mining process logs at lower sup-
port thresholds. The above-mentioned motivated us to develop a method that can mine
semi-structured process logs using position-constrained subtree mining, which will be
described in Chapter 3. This method can be easily adjusted to utilise traditional fre-
quent subtree mining techniques for process mining purpose. Moreover, this chapter
introduced an exploratory process log analysis technique that is based on the proposed
method. Chapter 4 focused on the evaluation of the proposed process mining method
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and its derived exploratory analysis method on the practical process mining tasks such
as prediction an outcome of a running process instance and recommending actions that
could lead to a desired business goal. Chapter 5 introduced an adaptation of associa-
tive classification to our method and evaluated its application not only in event logs but
also datasets from other domains.
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Chapter 3

PCFSM: A New Method for Mining
Process Logs

Semi-structured data such as XML documents are known for their ability to repre-
sent the contextual information among different data items in a domain-specific way.
Recently, XML-based languages have been increasingly used to represent event logs,
especially after the proposal of MXML and XES. Other attempts at using XML to store
event logs were presented in (Kim, 2006; Gonçalves et al., 2002). As mentioned
earlier, XML documents can be represented as rooted ordered labelled trees, due to
their hierarchical nature. This encourages the utilisation of tree-structured data mining
methods on XML-based process logs.

Other than our preliminary work proposed in (Bui et al., 2012b,a, 2015), to the best
of our knowledge, no tree-structured data mining techniques have been specifically ex-
plored for the purpose of mining MXML/XES event logs. Frequent subtree mining has
been the basis for discovering interesting associations among tree-structured data ob-
jects in XML data (Feng et al., 2003; Mazuran et al., 2009b; Moradi and Keyvanpour,
2015), but their utilisation in the process mining field is still to be explored. For exam-
ple, a (synthetic) process log dataset was used in the work of Hadzic et al. (2011a), but
the main purpose of this work is to compare the time performance and quality of clus-
tering solution between algorithms. The study in (Greco et al., 2005) demonstrated the
use frequent pattern mining to discover workflow and weak patterns in event data; how-
ever, this method is not designed specifically for XML-based process logs. The same
holds for other data mining methods that take structural aspects into account such as
XML clustering (Kutty et al., 2011; Hadzic et al., 2011a) and classification (Kim et al.,
2010).

The process mining field would be benefited by the application of tree-structured
data mining techniques, as they not only preserve the order of events, but also their
context and structural organisation within the process. In the case of web logs, it has
already been shown in (Hadzic et al., 2011b; Zaki, 2005b) that subtree patterns are
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more informative than itemsets or sequential patterns as they capture the structural
properties as well as the navigational behaviour over the web site structure. Hence, in
the case of process logs, a similar reasoning would apply, and subtree patterns would
capture the execution patterns over the entire structure of the business process at hand.

Section 3.1 presents a motivating example for using tree mining techniques to mine
process logs. In addition, from the example, the need for a more expressive represen-
tation of the process log is highlighted. The structure-preserving tree mining approach
is described and formalised in Section 3.2. The time performance of this method is
presented in Section 3.3. After that, a process log analysis method, which is based on
the position-constrained frequent subtree mining method, is proposed in Section 3.4.
Finally, a discussion on the proposed method is given in Section 3.5.

3.1 Mining Process Logs Using Tree-based Techniques

This section is organised into two parts. Firstly, a motivating example for using tree-
based techniques to mine process logs instead of traditional methods is presented.
Secondly, the time performance of the position-constrained frequent subtree mining
method is compared to traditional approaches.

3.1.1 A Motivating Example

In this section, the example of the hospital process log described in Chapter 1 is re-
visited. The tree-structured database representing the process log is shown in Fig. 3.1.

As mentioned earlier, most current process mining methods focus on the control-
flow perspective of a process and often ignore the data attributes that come together
with the events. Although the data presented in Fig. 3.1 are rich in content, pro-
cess mining algorithms such as α-algorithm (Van der Aalst et al., 2004), Heuristic
Miners (Weijters and van der Aalst, 2003), Fuzzy Miner (Günther and van Der Aalst,
2007) only understand them as sets of sequences of events, and from that discover the
generative process model. An example of a process model discovered by a heuristic
algorithm is shown in Fig. 3.2. It is noticeable that the process model does not include
any information about the attribute values of each event such as the departments where
the activities were administered.

In order to incorporate the contextual information of each event into the mining
process, the set of traces are considered as a set of trees rather than as a set of se-
quences as is commonly done. Using the frequent closed subtree mining (Chi et al.,
2005a) on the tree database gives us a number of subtree patterns, each of which oc-
curs at different traces. An example of closed subtrees at support = 2 is given Fig. 3.3.
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Figure 3.1: THOS—the hospital database (reproduced from Chapter 1 for convenience).
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The subtree pattern in Fig. 3.3(a) occurs in process instance 1 and 3 of Fig. 3.1. It is
seen that the pattern preserves the order of events (according to pre-order traversal of
the subtree) and thus represents the frequent path of executions. The path Consultation

⇒ Administration does not contain the event PhoneConsultation, BloodTest and Cy-

tologicEvaluation because the minimum support value is set to 2; if that parameter is
lowered, longer paths of executions can be detected. The benefit of using subtree min-
ing is confirmed here where activities and their contextual information are preserved in
the pattern, and the path of execution information is enriched with their administering
departments, e.g. RadioTherapy, ObstetricsClinic.

Consultation
         4

PhoneConsultation
             1

Administration
            4

BloodTest
       1

CytologicEvaluation
                2

Figure 3.2: Patterns learned from Heuristic Miner.

Consultation

trace

Administration

RadioTherapy RadioTherapy

AgeGroup:21-65

ObstetricsClinic

(a) (b)

Consultation

trace

AdministrationAgeGroup:21-65

ObstetricsClinic

Figure 3.3: Two frequent closed subtrees of THOS with support=2.

3.1.2 Postion-constrained Subtrees

The order of events within a frequent path of execution is consistent among the
matched instances in the database. However, the positional information of those
individual events is not indicated in Fig. 3.3. The pattern in Fig. 3.3(b) tells us that
the Consultation and Administration event occur frequently in at least two process
instances. However, their specific orders of occurrence are unidentified, e.g. does the
event occur at the beginning of the trace or at the end of that trace? Furthermore,
it is not known whether these two events occur next to each other. If the position
of the frequent events could be identified—for example, it can be learned from the
database that Consultation frequently happens as the first event and Administration as
the second event in the many processes—important observations can be drawn, for
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instance, a hospital manager might be able conclude that current process executions
comply to the hospital’s recommended clinical pathways.

Traditional frequent pattern mining algorithms often face the problem of combina-
torial explosion as ”the number of frequent subtrees grows exponentially with the tree
size” as stated in (Chi et al., 2004c). This phenomenon may also happen when mining
with lower minimum support thresholds since many smaller size frequent subtrees can
be found. In this situation, even when a machine is able to handle the complexity, the
number of frequent subtrees are prohibitively large to be managed by users.

To alleviate the complexity associated with mining complex structures and to en-
able the direct application of a wider range of data analysis/mining techniques to tree-
structured data, a position-constrained frequent subtree mining method was recently
proposed in (Hadzic, 2012). The main idea of the method is that tree data can be con-
verted to a flat representation using a Database Structure Model (DSM). This represen-
tation can be converted to itemset format and a frequent itemset mining algorithms is
used to obtain frequent itemsets representing subtrees. The experimental results from
the study of (Hadzic et al., 2015) conclude that this method has “better efficiency for
lower support thresholds and for higher structural complexity settings, and better scal-
ability for larger datasets”. One reason for that is by attaching positional information
to each node, the complexity caused by nodes’ label repetitions in each tree instance is
eliminated. Even when repetitions in both nodes’ labels and positions occur across tree
instances, it is possible to remove the repetitions when the data is in the itemset format
and the removed nodes can be reconstructed (using DSM) in the post-processing stage.

Another interesting implication of the DSM method is that positional information
of nodes can be useful in process analysis as events are distinguished based on their
exact occurrence within a trace of events. These characteristics and the ability to utilise
a variety of data mining methods for different application aims, motivate us to use
this approach as the basis of a method proposed in Section 3.4. It is unknown how
this approach scales up against other traditional tree/sequence mining methods when
applying to event data. Therefore, a time performance study is deemed necessary to
show the feasibility of the approach in mining event logs.

3.2 The Structure-preserving Tree Mining Approach

In this section, PCFSM, an event data analysis approach that is based on the structure-
preserving conversion of XML/tree data into a tabular/itemset format, initially intro-
duced in (Hadzic, 2012), is proposed. From this representation, a variety of traditional
data mining techniques can be directly applied to the data. The methods selected de-
pend on specific business aims. As such, the process logs are analysed without the
pre-requisite of a process model. This is in contrast to the majority of process analysis
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techniques proposed in the literature, which focus on process model discovery, or use
process models for further analysis. In general, the proposed approach contributes to
the process mining field an integrated method for mining XML-based event logs.

The structure-preserving frequent subtree mining approach, described in Fig. 3.4,
has three main steps: DSM extraction, conversion of the tree database to flat repre-
sentation (tabular or itemset format), and application of data mining techniques. The
detail of each step is discussed in Section 3.2.1, 3.2.2, and 3.2.3. The main concepts
used in the approach are summarised in Section 3.2.4. Finally, DSM with a minimum
support is described in Section 3.2.5.

Tree database

DSM extraction

DSM

Conversion to flat

Flat data format

Data mining methods

Figure 3.4: The structure-preserving tree mining approach.

3.2.1 DSM extraction

In this section, the DSM structure and the DSM extraction algorithm are described.
A synthetic tree database TEX of rooted ordered labelled trees, shown in Fig. 3.5, is
created for explanatory purpose.

The DSM Structure

DSM is a structure that captures the structural properties of all instances in a tree
database, so that each node in a tree instance is structurally and uniquely matched
to a node in the DSM.

To define DSM, some related concepts should be first introduced, such as sibling

order, top-left subtree, and candidate DSM.
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Figure 3.5: Tree-structured database TEX .

Definition 3.1 (Sibling order). Let x,y be two nodes of a tree, and y be the parent of

node x. A sibling order of x, denoted by α(x), is the left-to-right order of x among

other children of y. If x is a root node then α(x) = 1.

Definition 3.2 (Top-left subtree). Given two trees: S = (VS,VS0,ES) and T =

(VT ,VT 0,ET ), where

• VS and VT are sets of vertices of S and T , respectively;

• VS0 and VT 0 are root nodes of S and T , respectively;

• ES and ET are set of edges of S and T , respectively.

S is a top-left subtree of T , denoted by S �tl T , if and only if there exists an injective

function ζ : VS→VT , which is called the top-left mapping function, such that

• (x,y) ∈ ES if and only if (ζ (x),ζ (y)) ∈ ET ;

• x ∈VS, α(x) = k if and only if α(ζ (x) = k);

• ζ (VS0)= VT 0.

An example of top-left subtree is shown in Fig. 3.6 where S is a top-left subtree
of T and T is a top-left super-tree of S. The characteristics of tree S and tree T are
described as follows.

• VS0 = S1, VT 0 = T1;
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• VS = {S1,S2,S3,S4}, VT = {T1,T2,T3,T4};

• ES = {(S1,S2),(S1,S3),(S3,S4)};

• ET = {(T1,T2),(T2,T3),(T1,T4),(T4,T5),(T4,T6),(T1,T7)};

• ζ (S1) = T1, ζ (S2) = T2, ζ (S3) = T4, ζ (S4) = T5;

• α(S1) = 1, α(S2) = 1, α(S3) = 2, α(S4) = 1;

• α(T1) = 1, α(T2) = 1, α(T4) = 2, α(T5) = 1.

Based on the description of trees S and T , it can be concluded that S is a top-left subtree
of T .

S1

S2 S3

S4

T1

T2 T4

T3 T5 T6

T7

Tree T Tree S

ζ

ζ

ζ

Figure 3.6: An example of top-left subtree relation.

The fundamental properties of the top-left subtree relation are given as follows.

Property 3.3 (Transitivity). The top-left subtree relation is transitive: If S �tl T and

T �tl W then S�tl W.

Proof. The transitivity property can be proved by showing that from S�tl T and T �tl

W . Thus, S�tl W .
Let S = (VS,VS0,ES), T = (VT ,VT 0,ET ), and W = (VW ,VW0,EW ).
Since S�tl T , there exists an injective top-left mapping function ζ1: VS→VT such

that

• (x,y) ∈ ES if and only if (ζ1(x),ζ1(y)) ∈ ET ; (1)

• x ∈VS, α(x) = k if and only if α(ζ1(x) = k); (2)

• ζ1(VS0)= VT 0. (3)

Since T �tl W , there exists an injective top-left mapping function ζ2: VT → VW

such that

• (x,y) ∈ ET if and only if (ζ2(x),ζ2(y)) ∈ EW ; (4)
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• x ∈VT , α(x) = k if and only if α(ζ2(x) = k); (5)

• ζ2(VT 0)= VW0. (6)

Let ζ = ζ2 ◦ζ1 be the composite top-left mapping function.
Let u = ζ1(x) and v = ζ1(y), (1) becomes (x,y) ∈ ES if and only if (u,v) ∈ ET

⇒ (x,y) ∈ ES if and only if (ζ2(u),ζ2(v)) ∈ EW (based on (4))
⇒ (x,y) ∈ ES if and only if (ζ2(ζ1(x)),ζ2(ζ1(y))) ∈ EW .
⇒ (x,y) ∈ ES if and only if (ζ (x),ζ (y)) ∈ EW (7)
In the same manner, the following predicates can be proved.

• x ∈VS, α(x) = k if and only if α(ζ (x) = k) (8)

• ζ (VS0)= VW0 (9)

From (7), (8), and (9), it can be concluded that S�tl W �

Property 3.4 (Reflexitivity). The top-left subtree relation is reflexive:∀S : S�tl S.

Proof. The reflexibility property can be proved by showing that ∀S : S�tl S.
Let S = (VS,VS0,ES). There exists a top-left mapping function ζ : VS→VS, such that

• ζ (x) = x;

• (x,y) ∈ ES if and only if (ζ (x),ζ (y)) ∈ ES; (1)

• x ∈VS, α(x) = k if and only if α(ζ (x) = k); (2)

• ζ (VS0)= VS0. (3)

From (1), (2), and (3), it can be concluded that S�tl S �

The top-left mirror concept defined below will be used for the assignment of posi-
tions to tree nodes.

Definition 3.5 (Top-left mirror). Given S�tl T and S = (VS,VS0,ES), a top-left mirror

of S on T , denoted by µT (S), are a set of nodes and edges which are the mappings of

all nodes and edges of S on T using the top-left mapping function ζ : VS → VT . We

have µT (S) = (V,V0,E), where

• V = {ζ (x)|∀x ∈VS};

• V0 = ζ (VS0);

• E = {(ζ (u),ζ (v))|∀(u,v) ∈ ES}.

Given that S is a top-left subtree of T as shown in Fig. 3.6, the top-left mirror of S

on T is µT (S) = {V,V0,E} where
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• V = {ζ (S1),ζ (S2),ζ (S3),ζ (S4)}= {T1,T2,T4,T5};

• V0 = ζ (VS0) = ζ (S1) = T1;

• E = {(ζ (S1),ζ (S2)),(ζ (S1),ζ (S3)),(ζ (S3),ζ (S4))}= {(T1,T2),(T1,T4),(T4,T5)}.

Property 3.6 (Top-left mirror). Let µT (S) = {V,V0,E} be a top-left mirror of S =

(VS,VS0,ES) on T , µT (S) is a connected tree.

Proof. Since all nodes in VS are connected by edges in ES, all nodes in V are connected
by edges in E �

In Fig. 3.6, the top-left mirror of S on T is the subtree of T whose nodes are shaded.
The definition of candidate DSM and its properties are presented as follows.

Definition 3.7 (Candidate DSM). Let TDB be a tree database. A set of candidate DSM

trees of TDB, denoted by ∆, is defined as:

∆ = {d|∀t ∈ T DB : t �tl d}.

Property 3.8 (Candidate DSM). Let TDB be a tree database, and ∆ be a set of candi-

date DSM trees of TDB. If D is a top-left super-tree of a candidate DSM of TDB then

D is also a candidate DSM of TDB. This property is formally described as follows.

d ∈ ∆ and d �tl D⇒ D ∈ ∆.

From a candidate DSM, the DSM can be extracted by removing nodes that are
not mapped by any node from the tree instances using the top-left mapping function.
Another method to obtain the DSM from a candidate DSM is to take the union of the
top-left mirror of all database instances on the candidate DSM. The DSM is defined as
follows.

Definition 3.9 (DSM). Let TDB be a tree database, and ∆ be a set of candidate DSM

trees of TDB. Tree δ = (Vδ ,Vδ0,Eδ ) is the DSM of TDB if and only if

• δ ∈ ∆ (δ is a candidate DSM of TDB);

• ∀x ∈Vδ ,∃t = (Vt ,Vt0,Et) ∈ T DB,∃u ∈Vt : ζt(u) = x. Note that ζt is the top-left

mapping function of t on δ .

The DSM of the example database TEX is shown in Fig. 3.7 and the top-left mirrors
of the tree instances on the DSM of TEX are shown in shaded regions in Fig. 3.8.
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Figure 3.7: The DSM of TEX .

The DSM structure is intended to be used as a map in which tree nodes can be
located precisely. For this purpose, each node is identified by its position in the pre-
order traversal of the DSM. Each edge is named by the order of backtracking from
the corresponding child node to its parent node during the traversal. Note that the
backtracking data are not always shown in many DSM diagrams for the sake of brevity.
In Fig. 3.9, each node and edge of the DSM of TEX are named by their position and
backtracking order, respectively.

Property 3.10 (DSM). Let TDB be a tree database having only one instance d and δ

is the DSM of TDB. Then, δ = d.

Proof. The reflexivity property of the top-left subtree relation leads to d �tl d (1).
From T DB = {d} and (1), it can be concluded that d ∈ ∆ (based on the definition of
candidate DSM) (2). Since the top-left mirror of d is itself, it can be inferred that
∀x ∈Vd,∃d ∈ T DB : x ∈Vµd(d) (3). From (2) and (3), δ = d. �

Property 3.11 (DSM). Let TDB be a tree database, and δ = (Vδ ,Vδ0,Eδ ) be the DSM

of TDB. Then, ∀(x,y) ∈ Eδ ,∃t = (Vt ,Vt0,Et) ∈ T DB,∃(u,v) ∈ Et : (ζt(u),ζt(v)) =

(x,y). In other words, for every edge in the DSM, there exists a top-left mapping from

the edge of one or more trees. Note that ζt : Vt → Vδ is the top-left mapping function

of t on δ .

Proof. It is safe to assume that there is node y which is the parent of x. By the definition
of DSM, ∀x ∈Vδ ,∃t = (Vt ,Vt0,Et) ∈ T DB,∃u ∈Vt : ζt(u) = x.

Let node v be the parent of node u. The top-left mapping function ζt maps v to
node k ∈ Vδ . Since (u,v) ∈ Et , we have (x,k) ∈ Eδ . If k 6= y, then k must be a child
of x (because y is already the parent of x and x cannot have two parents). In Fig. 3.10,
it is assumed that k is a child of x. If v is the root of tree t, then t cannot be a top-left
subtree of δ because α(v) = 0 while α(k) > 0. For any node that is a parent of v, its
top-left mapping to δ is a child of ζt(v). From this, it can be seen that the mapping of
the root node of tree t is a leaf node of δ , which cannot be the case because it violates
the definition of top-left subtree. Therefore k = y. In other words, for all (x,y) ∈ Eδ

there exists (u,v) ∈ Et , such that (ζt(u),ζt(v)) = (x,y). �
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Figure 3.8: The top-left mirror of tree instances on the DSM of TEX .

From the definition of DSM, it can be seen that all DSM are isomorphic (Zaki,
2005a). This property indicates that all trees that are DSM of a tree database are iso-
morphic.

Property 3.12 (DSM). Let TDB be a tree database. If both δ1 and δ2 are the DSM of

TDB then δ1 and δ2 are isomorphic.

Proof. Let δ1 = (V1,V10,E1) and δ2 = (V2,V20,E2). By Property 3.11, ∀(x,y) ∈ E1,
∃t = (Vt ,Vt0,Et) ∈ T DB,∃(u,v) ∈ Et : (ζt1(u),ζt1(v)) = (x,y). Note that ζt1 : Vt →V1

is the top-left mapping function of t on δ1. In short, ∃t ∈ T DB: (x,y) ∈ E1 if and only
if (ζ−1

t1 (x),ζ−1
t1 (y)) ∈ Et . (1)

By the definition of DSM, t is a top-left subtree of δ2. Given ζt2 as a top-left
mapping function from t to δ2, (u,v) ∈ Et if and only if (ζt2(u),ζt2(u)) ∈ E2. (2)

Based on (1) and (2), we have (x,y)∈E1 if and only if (ζt2(ζ
−1
t1 (x)),ζt2(ζ

−1
t1 (y)))∈

E2. By the definition of isomorphic subtree, δ1 � δ2.
The same method can be applied to prove that δ2 � δ1. By definition of isomorphic

in (Zaki, 2005a), δ1 and δ2 are isomorphic. �
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Figure 3.10: An illustration for the proof of 3.11.

DSM Extraction Algorithm

The pseudo-code of the algorithms to extract the DSM (δ ) from a tree database T DB

are shown in Algorithm 1 and 2. Suppose that each there are N event nodes in each
trace, and there are M attributes in each event. The complexity of Algorithm 1 and 2 is
O
(
T DB∗M ∗N

)
.

Another method to extract the DSM (δ ) from T DB that is already in pre-order
string encoding is presented in Algorithm 3. The description of the pseudo-code is
given below (Hadzic et al., 2015).

The DSM is a tree where the set of nodes Vδ is such that the pre-order po-
sition of each vi ∈Vδ is reflected through its unique identifier i; moreover,
vi has a set M(vi) of mappings where each m ∈M(vi) is a pair (LTj(vi), t)
that identifies a node (denoted as Tj.vi) with label LTj(vi) that belongs to a
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Algorithm 1 Discover Database Structure Model by joining trees.
Input: a tree database T DB
Output: the DSM tree (δ )

1: jt = /0 . jt is a tree
2: for i = 1 to |T DB| do
3: jt = tople f tmerge( jt,vi) . vi is ith tree in T DB
4: PreorderTraversal( jt) . jt’s nodes are labelled by their traversal orders return

jt

Algorithm 2 topleftmerge(v1, v2).
Input: trees v1, v2
Output: a merged tree from v1, v2

1: s1 = |v1.children|
2: s2 = |v2.children|
3: if s1 = 0 and s2 = 0 then return new tree node
4: else if s1 = 0 then return v2
5: else if s2 = 0 then return v1
6: else
7: t = new tree node
8: minsize = min(s1,s2)
9: for i = 1 to minsize do

10: t.addchild(tople f tmerge(v1.child(i),v2.child(i))
11: if s1 < s2 then
12: for i = minsize to s2 do
13: t.addchild(v2.child(i))
14: if s2 < s1 then
15: for i = minsize to s1 do
16: t.addchild(v1.child(i))

return t

tree Tj ∈ T DB, with j = t. Let the set of child nodes of a node vi be de-
noted as children(vi), and similarly the child nodes of the corresponding
node in Tj as Tj.children(vi). Note that for each node in DSM, the size
of its mapping set indicates the number of times that a tree instance has
matched that node in DSM.

Applying the DSM extraction algorithm to the pre-order string encoding of the
tree database TEX (shown in Table 3.1), the pre-order string encoding of δTEX can be
obtained: ‘X0 X1 X2 X3 b0 b1 X4 b2 b3 X5 X6 b4 X7 b5 b6 X8 X9 b7 b8 X10 X11 b9 X12

b10 b11’. Note that bi, Xi, i={0,1, ...,n− 2} (n is the size of the DSM), denotes the
backtrack symbol ‘−1’ and the pre-order positions of the nodes in DSM, respectively.
Based on this string encoding, the DSM shown in Fig. 3.7 or Fig. 3.9 can be easily
obtained.

82



The Structure-preserving Tree Mining Approach

Algorithm 3 Database Structure Model (DSM) extraction (reproduced from (Hadzic
et al., 2015)).
Input: a tree database T DB
Output: the DSM tree (δ )

1: Vδ := /0,Mδ := /0 . Node set and node mapping set of DSM
2: Eδ := /0 . Edge set of DSM
3: Q := /0, C := /0
4: i := 1,Q.append(vi) . Node queue initially containing the root node
5: while Q 6= /0 do
6: vi = Q.remove(),Vδ := ∪vi
7: M(vi) :=

⋃
Tj∈T DB(LTj(vi), j)

8: Mδ := Mδ ∪M(vi)
9: Eδ := Eδ ∪{C.parent(vi),vi}

10: if (∃Tj ∈ T DB s.t. Tj.children(vi) 6= /0) then
11: Tj = argminTh {Th ∈ T DB| |Th.children(vi)| ≥ |T ′.children(vi)|,Th 6= T ′

12: children(vi) := 0
13: for c = 1 to |Tj.children(vi)| do
14: children(vi) := children(vi)∪{vic}
15: C :=C∪ (i,children(vi))
16: i := i+1,Q.append(vi)
17: else
18: while (!C.parent(vi).hasNextChild())) do
19: vi :=C.parent(vi)

20: Q.append(C.parent(vi).nextChild())
21: i := i+1

return δ = (Vδ ,Eδ ,Mδ )

3.2.2 Conversion to Flat Data Format

In this section, two alternatives of flat data format are used to represent a tree, i.e.
the tabular and the itemset format. These representations can be converted to one
another easily without loss of any information. In the following subsections, firstly
a conversion from trees to itemset format is introduced, secondly a conversion from
itemset format to tabular format is given, and finally an algorithm to directly generate
flat representation from tree instances is described.

Converting Trees to Itemset Format

For each tree in the database, its top-left mirror on the DSM (µδ (t)) is identified. The
labels of the top-left mirror are then matched and merged with the position information
of the DSM. It is known that µδ (t) is a connected subtree and is part of the DSM. Since
all nodes of t should be identified by their location in the DSM, the top-left mirror of t

on the DSM are labelled according to the labels of their corresponding nodes in t. The
resulting top-left mirror structure is called Position-constrained Top-left Mirror (PCT).
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Table 3.1: pre-order string encoding of TEX .

TEX pre-order string encoding
t0 a d -1 e
t1 a d -1 e b -1 c -1 -1 k -1
t2 a g -1 h -1 b -1 a b -1 c -1 -1
t3 b a c b -1 -1 e -1 -1 d -1 k -1 h -1
t4 a d -1 e b -1 c -1 -1 h b -1 -1 c -1

Definition 3.13 (Position-constrained Top-left Mirror (PCT)). Let t = (Vt ,Vt0,Et ,Lt)

be a tree instance of T DB, δ = (Vδ ,Vδ0,Eδ ,Lδ ) be the DSM of T DB, and ζ be the

top-left mapping function that maps Vt to Vδ . A position-constrained top-left mirror

(PCT) of t on δ , denoted as PCTδ (t) (or PCT (t)), is a tree (VPCT ,VPCT 0,EPCT ,LPCT )

for which the following conditions hold.

1. VPCT = {v|v = ζ (x) and x ∈Vt}

2. EPCT = {(u,v)|u = ζ (x),v = ζ (y) and (x,y) ∈ Et}

3. ∀u ∈VPCT : α(u) = k if and only if ∃x : u = ζ (x) and α(x) = k

4. VPCT 0 = ζ (VT 0).

5. ∀u ∈VPCT ,∃x ∈Vt : u = ζ (x) and LPCT (u) = Lt(x).

Fig. 3.11 shows the PCTs of all tree instances of TEX on the DSM. Note that the
PCTs are shaded subtrees.

Tree instances in the form of PCT are next converted to an itemset representation.
From each PCT , a set of position-constrained nodes are extracted, each of which com-
prises of a label and a position. This set of position-constrained nodes is called FPCT .
For example, the Flat Position-constrained Top-left Mirror (FPCT) of tree t1 on the
DSM is ‘aX0, dX1, eX5, bX6, cX7, kX8’.

Definition 3.14 (FPCT). Let t be a tree in T DB, δ be the DSM of T DB, and PCTδ (t) =

(VPCT ,VPCT 0,EPCT ,LPCT ). A FPCT of tree t on the DSM of T DB, denoted as FPCTδ (t)

(or FPCT (t)), is defined as:

FPCT (t) = {p|p = LPCT (x) + x,∀x ∈ VPCT}. Note that + is the concatenation

operator.

Conversion to Tabular Format

To utilise traditional data mining methods, e.g. decision trees, clustering, the FPCTs
of the tree database should be converted to tabular format. Let F(C,R) be the table
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Figure 3.11: The position-constrained top-left mirrors (shaded areas) of trees on the
DSM.

of C columns and R rows, where C = {ci}, i = 0→ |φ(δDB)− 1|, and R = {r j}, j =

0→ |DB|. The column names of table F are: F(ci,r0) = φ(δDB)i, where i = 0→
|φ(δDB)−1|. For example, the column names of the tabular form of the tree database
TEX is ‘X0 X1 X2 X3 b0 b1 X4 b2 b3 X5 X6 b4 X7 b5 b6 X8 X9 b7 b8 X10 X11 b9 X12

b10 b11’. From each position-constrained node of a FPCT , e.g. aX0, the node value
(a) is extracted and put under the corresponding columns (X0). The tabular format of
t1 is shown at the second row of Table 3.2. Note that the backtrack symbol ‘-1’ is
represented by a value of ‘1’, which is put under the corresponding backtrack column.
At columns where there are no corresponding position-constrained nodes or backtrack
values, a value of ‘0’ is assigned. The tabular format (F(C,R)) of the tree database is
called Flat Data Representation (FDT).
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An Algorithm to Convert Tree Database to Tabular Format

Previous subsections describe the formal method of converting tree representation to
tabular format. The pseudo-code of the algorithm to perform the conversion is shown
in Algorithm 4, where each column name is one element in the pre-order string encod-
ing of the DSM, and the backtrack symbols (-1) are replaced by bi. The main idea of
the algorithm is to synchronously traverse the pre-order string encoding of the DSM

and the tree instance. The two variables inputNodeLevel and DSMNodeLevel are used
to keep track of the current position of the traversals.

Algorithm 4 The conversion of tree-structured data to FDT format (Hadzic, 2012).
Input: T DB, the DSM tree (δ )
Output: F

1: F(ci,r0) = φ(δ )k . set up the attribute name row in F
2: inputNodeLevel := 0 . current level of φ(ti)k
3: DSMNodeLevel := 0 . current level of φ(δ )k
4: for i = 0 to n−1 do do . populate F
5: for each φ(ti)k ∈ φ(ti) do
6: for p = 0 to (|φ(δ )|−1) do
7: if φ(ti)k =−1 then
8: inputNodeLevel−−
9: else

10: inputNodeLevel ++

11: if φ(δ )p = bi then
12: DSMNodeLevel−−
13: else
14: DSMNodeLevel ++

15: if inputNodeLevel = DSMNodeLevel then
16: if φ(ti)k =−1 then
17: F(cp,ri+1) := 1
18: else
19: F(cp,ri+1) := φ(ti)k

20: else . level mismatch, traverse φ(δ ) until match
21: while inputNodelLevel 6= DSMNodeLevel do
22: F(cp,r(i+1)) := 0
23: p++
24: if φ(δ )p = bi then
25: DSMNodeLevel−−
26: else
27: DSMNodeLevel ++

28: if φ(ti)k =−1 then
29: F(cp,r(i+1)) := 1
30: else
31: F(cp,ri+1) := φ(ti)k

return F
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3.2.3 Data Mining Methods

From the tabular format (FDT) of a tree database, a wide range of data mining meth-
ods such as itemset mining, association rule mining, classification, clustering, outlier
detection can be utilised. In this chapter, itemset mining is given as an example.

Itemset Mining

As discussed in Section 3.2.2, the PCTs of tree instances correspond to transactions
in market basket data (see Section 2.3.3) where each position-constrained node corre-
sponds to an item in the transaction. One can obtain the itemset format from the tabular
representation of a tree database by attaching node values with their corresponding po-
sition (the column name) and removing all non-existing nodes (nodes having value of
‘0’) and backtrack values. For example, the itemset format corresponding to the tabular
representation shown in Table 3.2 is presented in Table 3.3.

Table 3.3: The itemset format of TEX .

TEX Itemsets
t0 aX0, dX1, eX5
t1 aX0, dX1, eX5, bX6, cX7, kX8
t2 aX0, gX1, hX5, bX8, aX10, bX11, cX12
t3 bX0, aX1, cX2, bX3, eX4, dX5, kX8, hX10
t4 aX0, dX1, eX5, bX6, cX7, hX8, bX9, cX10

If a frequent itemset mining algorithm with a minimum support of 3 is applied to
the database shown in Table 3.3, one of the frequent itemsets obtained is aX0, eX5,
which occurs in t0, t1, and t4. The obtained frequent itemsets can be converted back
into tree representation as described in the following subsection.

Conversion to Tree

Since FPCT is a set of position-constrained nodes, a frequent itemset mining algorithm
applied to a set of FPCTs would result in itemsets which are also a set of position-
constrained nodes, called pFPCTs. For example, the frequent itemset aX0, eX5 is
called a pFPCT . It is possible to convert (or reconstruct) a pFPCT to a tree using DSM

as a reference model.

Definition 3.15 (Reconstructed pFPCT). Let T DB be a tree database and

δ = (Vδ ,Vδ0,Eδ ) be its DSM. Let pFPCT = {p|p is a position-constrained node} be a

set of position-constrained nodes, such that (1) ∀pi, p j ∈ pFPCT, i 6= j : β (pi) 6= β (p j),

and (2) β (p) ∈ [0..(|Vδ | − 1)] where β (p) is a function that return the position of

a position-constrained node e.g., β (aX0) = 0. Let + is the concatenation operator.
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The reconstructed tree of pFPCT based on δ is a connected tree that is denoted by

ψ(pFPCT ) = (Vψ ,Vψ0,Eψ ,Lψ) and is defined as follows.

1. Vψ = {v|v ∈Vδ ,v = X +β (p),∀p ∈ pFPCT};

2. Eψ = {(x,y)|∀x,∀y ∈Vψ ,@z ∈Vδ : x≤c y,c > 0,x≤d z and d < c};

3. Vψ0 = v ∈Vψ such that ∀u ∈Vψ : u 6= v,v≤m u,m > 0;

4. Lψ(v) = k if and only if k+ v ∈ pFPCT .

Note that if condition 3 does not hold: @v ∈ Vψ such that ∀u ∈ Vψ : u 6= v,v ≤m

u,m > 0, ψ(pFPCT ) is a disconnected tree— there is at least one subtree that has no

path to other nodes of the tree.

As an example, suppose that pFPCT = {aX0,bX6,cX7}, the reconstructed tree
from pFPCT on the DSM of TEX is shown Fig. 3.12. In another example, if pFPCT =

{bX2,cX5,aX6,dX7,eX10}, its reconstructed tree is disconnected, as shown in Fig. 3.13.
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Figure 3.12: The reconstruction of pFPCT = {aX0,bX6,cX7}.

The reconstructed FPCT of a tree is the PCT of that tree. Fig. 3.14 shows an
example where this property holds.

Property 3.16 (Reconstructed pFPCT). ψ(FPCT (t)) = PCT (t)

If a pFPCT is a subset of the FPCT of tree t, i.e. the itemset representation of tree
t, its reconstructed tree is a subtree of t.

Property 3.17. Let T DB be a tree database, then

t ∈ T DB and pFPCT ∈ FPCT (t) if and only if ψ(pFPCT )�e t.

Proof. From Property 3.16: ψ(FPCT (t)) = PCT (t) and pFPCT ∈ FPCT (t), we have
ψ(pFPCT ) �e PCT (t). It is known that PCT (t) is the position-constrained top-left
mirror of t on the DSM of T DB, thus ψ(pFPCT )�e t. �
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Property 3.18. Given T DB is a tree database, and a pFPCT being frequent in the

database of FPCT (t) with t ∈ T DB (i.e. the itemset representation of T DB) , the

reconstructed tree of pFPCT (ψ(pFPCT )) based on the DSM of T DB is also frequent.

After the characteristics of pFPCT are defined, the algorithm that converts a
pFPCT to tree representation can be described. The pseudo-code of the algorithm is
given in Listing 5.

3.2.4 Illustration of the Main Concepts

The method and concepts defined in previous sections are summarised and illustrated
within an example, where the structure-preserving tree mining approach is used to
discover frequent embedded subtrees from the tree database TEX . Fig. 3.16 shows the
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five main steps of the process.
Firstly, a DSM, denoted by δ , is extracted from the database. Secondly, the top-

left mirror of each tree instance on the DSM (PCT ) is identified. Thirdly, the FPCT

representation of each tree instance is extracted from the PCT . FPCT was previously
called as the itemset format of tree instances. Finally, a frequent itemset mining algo-
rithm is applied to the set of FPCTs. The resulting patterns are called pFPCTs. In the
figure, only two pFPCTs are given as an example. In the final step, tree-like patterns
are reconstructed from the pFPCTs. The reconstructed tree of a pFPCT is denoted as
ψ(pFPCT ).

3.2.5 DSM with Minimum Support

The number of nodes of a DSM can be very large because it has to be large enough
to match with all structural varieties of all instances in database. To reduce the struc-
tural complexity, nodes that are (top-left) mapped by less than a certain number (i.e.
minimum support) of tree instances in the database are removed from the DSM.
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Algorithm 5 Reconstructing subtrees from a pFPCT .
Input: pFPCT = p, the DSM tree (δ )
Output: ψ(pFPCT ) in pre-order string encoding

1: for each m ∈ p do
2: Extract position Xi from m and add to positionSet
3: for each pos ∈ positionSet do
4: if pos = δ .root and δ .root.visited = f alse then . δ .root is the root of δ

and δ .root is not visited
5: δ .root.visited = true
6: ADD node value at position pos to ψ(pFPCT )
7: for each child node c ∈ δ do
8: Algorithm3(c, p)
9: for each pos ∈ positionSet do

10: if pos = δ .root then
11: for each a is the ancestor of δ do
12: if a.root.visited = true then
13: ADD ‘-1’ to ψ(pFPCT )

Definition 3.19 (DSM with a minimum support). The DSM with a minimum support

of m of a tree database T DB is denoted as δ m
T DB, or δ m. δ m is a tree (Vδ m,Vδ m0,Eδ m),

such that

• ∀t ∈ T DB, t �tl δ m;

• ∀x ∈ Vδ m,∃t = (Vt ,Vt0,Et) ∈ T DB,∃m.u ∈ Vt : ζt(u) = x. Note that ζt is the

top-left mapping function of t on δ m.

In practice, relative minimum support is more commonly used than (absolute) min-
imum support. A DSM with a relative minimum support of n is defined as δ

(n)
T DB =

δ
n|̇T DB|
T DB . For instance, the DSM of the database TEX with a relative minimum support

of 40%, denoted as δ
(0.4)
TEX

, or δ (0.4), is equivalent to the DSM with a minimum support
of 2, denoted as δ 2

TEX
. δ (0.4) is shown in Fig. 3.17(a). The position-constrained top-left

subtrees of ti with i ∈ [0..4] on δ (0.4) are shown from Fig. 3.17(b) to Fig. 3.17(f). Note
that several tree nodes can no longer be mapped to the reduced DSM, such as nodes b

and c of t2, nodes b, c, and e of t3, and nodes b of t4.
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Figure 3.16: Illustration of the main concepts in the structure-preserving tree mining
approach.
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Figure 3.17: The DSM of TEX with a support threshold of 40% is shown in (a), and the
mapping of tree instances of TEX to the DSM are shown in (b), (c), (d), (e), and (f).

3.3 Time Performance of DSM-based Frequent Sub-
tree Mining and Traditional Methods

In this section, the whole hospital process log was examined and the closed subtree
mining task was selected for the benchmarking purpose. The structural properties of
the hospital dataset (van Dongen, 2011) are described as follows: |transactions|= 1143;
average encoding length (average number of nodes in pre-order encoding) = 2134.5;
maximum tree size (maximum number of nodes in a tree) = 14533; average tree height
= 2; average tree fan-out = 8.27 (average number of children); average tree size =
1067.7; maximum tree height = 2; maximum tree fan-out = 1834. The reason that
the average tree height and maximum tree height are both equal to 2 is because this
process log have multiple traces, each of which contains multiple events, and each of
which contains multiple attributes. The number of tree nodes is large because there is
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a large number of event nodes.
Closed subtree mining is considered as one of the state-of-the-art techniques in

the FSM field, and the CMTreeMiner and DryadeParent (Termier et al., 2008) algo-
rithms were selected. Note that the DryadeParent algorithm assumes attribute trees.
An attribute tree is a tree where all sibling nodes of any certain node must be differ-
ent. Because the tree representation of the hospital dataset is not a valid attribute tree
database, each event node in each tree was renamed so that each of them is assigned a
different identifier. The resulting attribute tree database with all identical sibling nodes
relabelled is called SbRl. The structural properties of the SbRl dataset are similar to
that of the hospital dataset except that the number of labels is larger due to the node
relabelling.

The position-constrained frequent subtree mining method was used in conjunction
with a frequent closed itemset mining algorithm LCM (Uno et al., 2004). This inte-
grated method is called DSM-LCM. The CMTreeMiner and DSM-LCM were tested on
SbRl data to observe the effect of the sibling relabelling on the time performance. A
closed sequential pattern mining method, Clospan (Yan et al., 2003), was also selected
as another subject for the comparison since sequence mining had been used before to
assist in process model discovery (van der Aalst, 2011a).

The time performance of different approaches is shown in Fig. 3.18. Note that each
algorithm runs on the original and the SbRl data. In the original hospital dataset, the
results of CMTreeMiner are not seen on the chart since it could not complete the task
for any given minimum support. This is probably due to the high complexity of the
dataset. Clospan gives a slightly better result since it can still produce results down to
the support value of 70%. The DSM-LCM method performs better than others as the
time to finish the task is almost similar across the support ranges—down to 40% with
a relatively large increase at 30%.
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In the SbRl data, CMTreeMiner performs much better than it does on the original
dataset. This can be explained by the high number of node repetitions, e.g. event in
the original data. When these nodes are relabelled, the CMTreeMiner’s performance is
comparable to that of DryadeParent. The best performance for this dataset is achieved
by the DSM-LCM method. There is not much time difference between the DSM-LCM

methods when applied to the two datasets, except at the support threshold of 30%.
The number of frequent patterns found by different methods is shown in Fig. 3.19.

It can be seen that the lower the support, the more patterns can be detected, and the
number of frequent patterns found by the DSM-based method is comparable to that
of DryadeParent. The DSM-LCM method gives only one pattern at higher support
value due to the position constraints. When the minimum support drops to 60%, the
DSM-based method discovers similar number of patterns as other approaches. At even
lower support thresholds, the method increasingly discovers more patterns, thus overall
finding more frequent associations from this data.

In parallel to this work, the DSM-based frequent subtree mining method is evalu-
ated on a variety of synthetic and real world datasets (Hadzic et al., 2015). The results
demonstrate that the DSM-based method provides superior performance over state-of-
the-art frequent subtree mining methods, such as DryadeParent and CMTreeMiner, in
a number of area, e.g. it can handle lowering minimum support threshold in complex
datasets (database with many deep and/or wide trees), and the position-constrained
subtree patterns are more informative than traditional subtree patterns.

3.4 The Proposed Methods

As discussed in Section 3.1, the tree-structured process log is often characterised by
the repetition of nodes within a trace. In addition, the number of events in an event
log can be quite large. Such two factors could lead to performance problems for tra-
ditional frequent subtree mining approaches. As claimed in a number of works (Bui
et al., 2012a,b; Hadzic et al., 2015), the structure-preserving tree mining approach does
not only increase the number of techniques that are directly applicable to event data,
but also reduces the complexity of the analysis for which common XML mining tech-
niques based on frequent subtree extraction have shown to be infeasible. The time
performance evaluation presented in Section 3.3 confirms this claim.

Another useful property of the position-constrained frequent subtree mining ap-
proach is that the exact position of nodes/attributes in the patterns is indicated. This
property could be useful in process mining as events/actions are distinguished based
on their exact occurrences within a trace of events.

Due to the above reasons, the structure-preserving tree mining approach is selected
as the basis for our proposed process log analysis method, which is described in Sec-
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tion 3.4.1. In addition, in Section 3.4.2, an exploratory process log analysis method is
proposed. This method can be used when there is a lack of domain knowledge to guide
the analysis.

3.4.1 The Position-constrained Tree-structured Mining Approach
for Process Log Analysis (PCFSM)

The PCFSM method is divided into five main phases, which are presented in Fig. 3.20.
The first phase starts with the acquisition of general knowledge from the domain and
identifying goals of the process log analysis (domain understanding). The next step
(data understanding) is to identify how relevant domain knowledge is represented in the
dataset. In the data preparation phase, the process log originally in XML/MXML/XES

format is converted into the tree-structured representation. In the next phase, the DSM

is extracted from the database, and based on this structure the event log is transformed
to a flat representation, which enables the direct application of well-established data
mining techniques. Depending on the user’s goals, the data mining phase may employ
certain data mining methods such as association rule learning, decision tree learning,
clustering, etc. As an example, process instances can be labelled according to different
business requirements and then are used to train a classifier for the prediction pur-
pose. In the interpretation phase, the results obtained from previous phases should be
analysed and interpreted in a way that is understandable and actionable by the domain
experts. The details of each phase are described as follows.
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Figure 3.20: The PCFSM method.

Domain/Data Understanding

This phase is essential in any knowledge discovery in databases (KDD) process. Al-
most all KDD process models start with the task of getting to know the domain and
identifying user goals (Kurgan and Musilek, 2006). For instance, for the hospital pro-
cess log described in (Bose and Aalst, 2012), the analyst should know that diagnosis
affects treatment procedures, so that treatment process instances relating to different di-
agnoses are considered separately during the analysis. Furthermore, the analyst has to
know how the diagnosis or the treatment is represented in the data in order to retrieve
them correctly and/or combine related data together for further processing. Without
any basic knowledge of the domain/data or a domain-expert to provide feedback and
guidance during different stages, it is difficult to satisfy the goals of the analysis.

Data Preparation

Depending on the nature/quality of the data or specific purpose of the process min-
ing task, different pre-processing techniques could be used, e.g. data cleansing (noise,
missing value, inconsistency handling), identifiers/repetitions removal, discretisation,
feature selection. If the MXML/XES format of data is not available at the beginning
of this phase, the extract transform and load (ETL) methods can be used (van der
Aalst, 2011a). Furthermore, since in the proposed approach the aim is to capture the
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Table 3.4: Mapping node labels to integers.

Text ID
trace 0
AgeGroup:21-65 1
Consultation 2
Administration 3
BloodTest 4
RadioTherapy 5
GeneralLab 6
AgeGroup:>65 7
CytologicEvaluation 8
ObstetricsClinic 9
Pathology 10
AgeGroup:<21 11
PhoneConsultation 12
CTAbdomen 13
MRIAbdomen 14
MicroscopicExamination 15
Radiology 16
Microbiology 17
FlamePhotometers 18

exact position of an attribute/event in the patterns extracted from process instances,
the attributes should be sorted in the same order across trace or event nodes. The
MXML/XES data is then modelled as a set of rooted ordered labelled trees and repre-
sented in a pre-order string encoding. Note that, XML elements, attributes and their
values are not separated into separate nodes. Therefore, a node label is a representative
of both the element and the element value, while adhering to the hierarchical properties
of the document.

DSM Extraction and Conversion to Flat Representation

This step was described in detail in Section 3.2.1 and 3.2.2. To improve the speed of
our approach, all text values in nodes are mapped into integers. For the tree database
THOS, the mapping table is displayed in Table 3.4. The resulting database with text
values replaced by integer values is presented in Fig. 3.21.

The DSM of the tree database THOS is shown in Fig. 3.22. The FDT and its itemset
(FPCT) representation are shown in Table 3.5 and Table 3.6, respectively.

Application of Data Mining Methods

The FDT and the itemset representation (FPCT) enable the direct application of data
mining methods originally developed for vectorial data to tree structured process data.
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Figure 3.21: THOS with integer values.

In particular, the FDT can be used for clustering/classification, and the itemset repre-
sentation can be used for frequent pattern mining/associative classification. The dis-
covered position-constrained subtree patterns in itemset format are then reconstructed
to tree structured format using the DSM as a reference model.

Applying a frequent itemset mining algorithm to the database in Table 3.6
would result in many frequent itemsets. At a minimum support of 2, an example
of a frequent itemset found is {0X0, 1X1, 2X2, 5X3, 3X4, 5X5}, which can be
translated to {‘trace’X0, ‘AgeGroup=21-65’X1, ‘Consultation’X2, ‘RadioTherapy’X3,
‘Administration’X4, ‘RadioTherapy’X5}. This frequent itemset is then reconstructed
to a tree format, which is shown in Fig. 3.23.

Comparing the position-constrained subtree pattern (Fig. 3.23) with its correspond-
ing traditional subtree (Fig. 3.3(a)), one can see that using the PCFSM method, the po-
sitional information of each node in the subtree pattern is indicated. In process mining,
this translates to an exact occurrence of an event (or any other aspect of the process)
within a trace. This characteristic of distinguishing subtrees based upon their exact
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Figure 3.22: The DSM of THOS.

Table 3.5: The FDT of THOS.

X0 X1 b0 X2 X3 b1 b2 X4 X5 b3 b4 X6 X7 b5 b6 X8 X9 b7 b8
0 1 1 2 5 1 1 3 5 1 1 4 6 1 1 0 0 0 0
0 7 1 2 9 1 1 3 9 1 1 8 10 1 1 0 0 0 0
0 1 1 2 5 1 1 3 5 1 1 8 10 1 1 0 0 0 0
0 11 1 2 9 1 1 12 9 1 1 3 9 1 1 0 0 0 0
0 1 1 13 16 1 1 14 16 1 1 15 17 1 1 0 0 0 0
0 7 1 13 16 1 1 14 16 1 1 18 6 1 1 13 16 0 0

occurrences would cause the PCFSM method not to detect the subtree displayed in
Fig. 3.3(b) at the support threshold of 2. This is because the right hand side of the
subtree (i.e. node Administration and ObstetricsClinic), occurs at different positions
within process instance 2 and 4 of Fig. 3.1.

The PCFSM method would not consider groups of events as similar if additional/d-
ifferent events occur within the group. For example, in process instance 4 of Fig. 3.1,
the activity PhoneConsultation occurs in between the activity Consultation and Ad-

ministration. This is important as the process analyst can be certain that the position-
constrained subtree pattern reflects exact similarity of groups of events across traces,
where no additional or different events occur in between.

Interpretation

In this phase, the patterns are evaluated for their specific use in a given application.
For example, in outlier/exception detection, the low-occurring frequent subtree pat-

Table 3.6: The itemset format of THOS.

THOS Itemsets
tid0 0X0, 1X1, 2X2, 5X3, 3X4, 5X5, 4X6, 6X7
tid1 0X0, 7X1, 2X2, 9X3, 3X4, 9X5, 8X6, 10X7
tid2 0X0, 1X1, 2X2, 5X3, 3X4, 5X5, 8X6, 10X7
tid3 0X0, 11X1, 2X2, 9X3, 12X4, 9X5, 3X6, 9X7
tid4 0X0, 1X1, 13X2, 16X3, 14X4, 16X5, 15X6, 17X7
tid5 0X0, 7X1, 13X2, 16X3, 14X4, 16X5, 18X6, 6X7, 13X8, 16X9
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Figure 3.23: A reconstructed position-constrained pattern of THOS.

terns might indicate characteristics of outlying or exceptional cases. The difference
between these and the more frequently occurring patterns reflecting the norm will be
investigated. Once the outlying instances are detected, they will be labelled as outlying
and others as norm. A classification model can then be used to predict the outlying be-
haviour when a set of preconditions during a business process execution path become
true.

In the context of classification, the process log can be labelled with respect to a
need to learn more about a particular business process aspect (e.g. duration, perfor-
mance bottleneck, and known cases of fraud). Classification based on PCFSM will be
demonstrated in the next chapter.

3.4.2 Exploratory Process Log Analysis Method

Based on the PCFSM method, an Exploratory Process Log Analysis Exploratory Pro-

cess Log Analysis (EPLA) method is proposed. This method is recommended when
the process analysts do not have a clear goal in mind, or they want to explore the data
in the most generic way. The main steps of EPLA are presented in Fig. 3.24. In the
first step, the process log is clustered to groups of process instances which have similar
execution paths. A frequent subtree mining method is then used to discover the de-
scriptive characteristics (common subtrees among instances) of each cluster (step 2a).
To detect discriminating characteristics of the clusters, similar process instances are
grouped together and assigned a virtual cluster label. Next, a classification algorithm
is used to discover the distinguishing characteristics of each group (step 2b).

The suggested method has an exploratory nature, where unanticipated groups of
processes and differences among process executions might be detected. Hence, the
method is suitable when the domain knowledge is unavailable to guide the discovery
process.

A useful property of this method is that it does not restrict the clustering algorithm
to be used. In fact, the users can choose either PCFSM-based methods, or any other
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Figure 3.24: The EPLA method.

XML mining methods, such as XProj (Aggarwal et al., 2007), XRules (Zaki and Ag-
garwal, 2006), and Dalamagas’s method (Dalamagas et al., 2005), for the exploratory
analysis. Please note that in (Hadzic et al., 2011a), a DSM-based clustering approach
was evaluated against traditional XML clustering methods in synthetic process logs.
The structural complexity and large size of process data resulted in poor time perfor-
mance for the competing XML clustering methods, while the DSM-based clustering
method arrived at high quality clusters in a significantly shorter time.

3.5 Discussion

The proposed method is adapted from a standardized knowledge discovery process
suggested by (Fayyad et al., 1996). Compared to his nine-step process, our approach
has some differences. The two models are quite similar except that the last step (knowl-
edge dissemination) of his model is considered out of this scope in this work and our
approach has an additional step before the data mining step called DSM extraction.
Our second phase (data preparation) is a combination of step two (data selection),
three (data cleaning) and four (data reduction or transformation) in Fayyad’s model.
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The third phase in our approach (data mining) is roughly similar to step five (choos-
ing data mining task), six (choosing data mining algorithm) and seven (executing the
algorithm) in his model.

It is worth noting that our approach is iterative where at each phase there is a loop
back to previous phases. This is a common characteristic of all KDD process since its
nature is exploratory where mistakes or uninteresting discoveries frequently happen.
Since our tree-structured process log analysis approach is based on a specific variation
of tree mining, one can adapt the approach to use other tree mining techniques in the
data mining phase without the need of the DSM extraction phase. For example, one
can directly apply the FSM algorithm CMTreeMiner (Chi et al., 2004c) to the pre-
processed XML process log to reveal frequent associations among group of activities
and their attributes (this method does not take into account the exact position of each
subtree pattern as illustrated in Section 3.1.1). One can also apply the associative sub-
tree classifier XRules (Zaki and Aggarwal, 2006) to build prediction model for future
process instances. Tree-based clustering techniques like XRep (Costa et al., 2004) can
be used in this phase to detect group of similar process instances.

The advantage of our approach is that the tree-structured data is transformed into
a presentation that is suitable for the application of traditional data mining methods
without the loss of temporal, positional and contextual information which could be
useful for process log analysis tasks. In case where traditional subtrees are needed,
the position information can be removed from the flat data format during the subtree
reconstruction process. Moreover, the PCFSM method could reduce the structural
complexity often faced by traditional approaches when searching for frequent patterns
in process logs, thanks to the structure-preserving conversion method.

While a number of techniques are made applicable within the proposed approach,
the choice and sequence of their use is dependent on the goals of analysis. For exam-
ple, if there is an aspect of process logs for which causal factors are to be determined,
classification methods can be used on process instances labelled according to that as-
pect. If the event data are large or heterogeneous, clustering methods are often used to
obtain more manageable data segments and obtain more focused results in subsequent
analysis.

Our proposed method differs from the process mining frameworks discussed in
Section 2.2 in a number of ways. First, unlike the studies of (Grigori et al., 2004)
and (Bozkaya et al., 2009), which provides a general architecture for mining event logs,
our work focused on the development of a process mining method that is effective,
extensible and scalable. The framework proposed by (De Weerdt et al., 2013) analyses
specific attributes of the data instead of treating data as a whole as in our method.
In (Rebuge and Ferreira, 2012), the suggested framework is based on the control-flow
analysis of event data, whereas our technique does not require process model at all.
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Discussion

Overall, this work extends the available pool of process analysis techniques and
allows efficient knowledge discovery from process logs in a more direct and unbiased
manner.
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Chapter 4

Evaluation of PCFSM on Process Logs

In this chapter, extensive experimental evaluation on publicly available real-world and
synthetic datasets highlights the benefits of the PCFSM method with respect to classi-
fication capabilities and exploratory analysis. Different data mining techniques such as
clustering, decision tree learning, frequent pattern mining and associative classification
are used in the experiments.

The experimental settings and data descriptions are discussed in Section 4.1. Next,
the evaluations of the exploratory analysis method and the PCFSM method on the
hospital dataset are presented in Section 4.2. In Section 4.3, classification methods
based on PCFSM are evaluated on labelled datasets where the purpose is to identify
the properties of process instances that characterise a particular business goal. Finally,
Section 4.4 discusses the lessons learned from the experimentation.

4.1 Experimental Settings

From the experiments, three benefits of the PCFSM method are demonstrated includ-
ing (i) distinguishing knowledge patterns based on the exact occurrence of the activi-
ties within a process, (ii) enabling the direct application of a wide range of data mining
techniques on tree-structured process logs, and (3) the analysis does not require a pro-
cess model. Please note that the proposed method was not compared to traditional
process mining algorithms because the results of the analysis are incompatible.

All experiments in this thesis were conducted on a Linux machine, Intel Xeon
E5345 at 2.33 GHz, 8 GB RAM and 4MB Cache Open SUSE 10.2 64bit. The datasets
used for the experiments are described in the following sections.

4.1.1 Hospital Dataset

The hospital dataset is a real-world data set containing patient treatment processes
from the Gynaecology department of a hospital (van Dongen, 2011; Bose and Aalst,
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2012). The data is in XES format. At the top level, each patient treatment process is
represented by a tag trace. Then, each trace contains a set of attributes, such as diag-

nosis, diagnosis code, treatment, treatment code, start time, and multiple event tags,
each of which consists of a set of nine attributes, such as org:group (the department in
which the activity occurred), concept:name (the name of the activity), time:timestamp.
Attributes such as specialism code, treatment code combination ID, are removed from
the log because they are either unique for each trace or contained elsewhere in the
trace. Event attributes such as lifecycle:transition and number of executions are also
removed as their values are the same across all instances.

The dataset describes a large variety of processes characterising different treat-
ments/diagnosis, which themselves are overlapping. These properties of the dataset
were described in (Bose and Aalst, 2012), with a clear indication that one needs to
focus on only one aspect/segment of the data, such as a single diagnosis or treatment
code. Hence, in this experiment, the set of processes where the describing attribute is a
single diagnosis code are focused. A subset of data that contains traces of patients who
are diagnosed with the code M13—the most frequent diagnosis code in the dataset—is
selected for analysis. If a trace has multiple treatment codes, they are concatenated into
a single treatment code, while preserving the order of the concatenation across records
with the same treatment code combination. Binning techniques (Han and Kamber,
2006) are used for attributes such as ”Age” and ”TraceDuration”. The values of the
”Age” attribute is discretised to three bins, i.e. ”Young” (age <= 20), ”Working”
(age <= 65 and > 20) and ”Retired” (age > 65). The values of the ”TraceDuration”
attribute is discretised to 14 bins with values ranging from 0 to 1500 days.

4.1.2 Teleclaim Dataset

The synthetic teleclaim process log describes the handling of claims in an insurance
company (van der Aalst, 2011b). The log contains 46138 events related to 3512 cases
(claims). One typical process is that the customers file the claims, the centre checks

information, registers to the system, the claim is then quickly-checked by a claim han-
dler, after that it is fully examined; the officer advises the claimant and starts payment;
finally the claim is closed. The purpose of this experiment is to build a classification
model to identify four possible outcomes of a claim such as processed, rejected, insuf-

ficient information, and not liable. Each trace is labelled from one of the four values
as described above.

4.1.3 Telephone Repair Dataset

This dataset describes an artificial log of telephone repair process (van der Aalst,
2011c). One example of process instance starts by a customer registering a telephone
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Table 4.1: Structural characteristics of data sets.

Dataset |Tr| Avg|L| Avg|D| Avg|F| Avg|T| Max |D| Max|F| Max|T|
Hospital 252 934.5 2 7.4 467.7 2 352 2796
Insurance Claim 3512 114.1 2 4.0 57.5 2 73 338
Telephone Repair 1104 106.0 2 4.5 53.5 2 27 112

for repair; the telephone is analysed; then transferred to either simple repair team or
complex repair team; at the same time the customer is informed of the condition of
their device; once the telephone is repaired it is tested; if not fixed it is then sent back

for repair; the case is archived after the telephone is fixed.

4.1.4 Summary on Datasets

The structural properties of the datasets used in this chapter are presented in Table 4.1.
Note that |Tr|= number of transactions, Avg(|L|) = average length of pre-order string
encoding, Max(|T|) = maximum size of trees, Avg(|D|) = average height of trees,
Avg(|F|) = average fan-out of trees, Avg(|T|) = average size of trees, Max(|D|) = max-
imum height of trees, Max(|F|) = maximum fan-out of trees.

4.2 Evaluation of the EPLA method

4.2.1 Discovering Process Execution Groups

The hospital dataset is clustered into different process execution groups using the
PCFSM-based clustering technique similar to the one proposed in (Hadzic et al.,
2011a). The tree-structured data is converted to FDT representation and the CLUTO

clustering tool-kit (Karypis, 2003) is then used to form clusters. Note that evaluations
of the clustering method based on position-constrained subtrees against state-of-the-art
XML clustering methods on data of varied complexity, including a complex synthetic
event log, were already provided in (Hadzic et al., 2011a). The number of clusters
(clustering parameter k) is trialled with different values and Euclidean, Jaccard and
correlation distance measures are used. Table 4.2 shows the average internal similarity
and external similarity (abbreviated as ISim and ESim, respectively) values of all
clustering solutions with the latter shown in parentheses. A clustering solution that
has a relatively small number of clusters while still having the large gap between the
average of ISim and ESim is selected for further analysis. When k=4 and Euclidean

distance measure is used, the algorithm gives us six clusters with a relatively large gap
of average ISim and ESim (0.551). The size and the ISim and ESim of each cluster
are presented in Table 4.3. It can be seen that the top two clusters outperform the
remaining clusters in terms of the difference between the ISim and ESim. Each cluster
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Table 4.2: Average internal and external similarity for different clustering options.

k Correlation Euclidean Jaccard
3 0.517(0.153) 0.388(0.001) 0.306(0.000)
4 0.574(0.197) 0.552(0.001) 0.287(0.001)
5 0.586(0.209) 0.467(0.012) 0.452(0.001)
6 0.594(0.213) 0.573(0.010) 0.410(0.002)
7 0.610(0.223) 0.607(0.028) 0.471(0.006)
9 0.653(0.250) 0.637(0.040) 0.500(0.002)

Table 4.3: A clustering result at k = 4.

Cluster Size ISim ESim
0 13 0.999 0.003
1 28 0.880 0.002
2 58 0.552 0.001
3 5 0.488 0.000
4 37 0.200 0.001
5 74 0.193 0.000

contains process instances that share similar characteristics and a frequent pattern
mining algorithm can be used to discover the characteristics that are prevalent among
the instances.

Since the main objective of EPLA method is help process analysts or domain ex-
perts explore the process log in a meaningful way, and no ground-truth checking is
required. From the instances of the top three clusters, it was observed that cluster 1 (13
instances) includes patients that are in the “retired” age group, cluster 2 (28 instances)
includes patients that are in the ”working” age group, having treatment duration nor-
mally lasting from one to one and a half year, and cluster 3 (58 instances) consists of
patients that are also in the ”working” age group, but having treatment duration either
very short (less than half a year) or very long (more than two years). This observation
could help process analysts to narrow down the scope of data that they want to analyse.

4.2.2 Discovering Descriptive Characteristics of Groups

Two methods were used to discover common characteristics of a group of instances:
(i) applying a frequent closed subtree mining algorithm CMTreeMiner to the tree-
structured data, (ii) applying a frequent closed itemset mining algorithm LCM (Uno
et al., 2004) to the tabular format (FDT representation) of the two clusters (abbreviated
as DSM-LCM). The minimum support threshold was set at 90% for both approaches.
Since the aim was to discover the subtree patterns that reflect the characteristics of the
majority of process execution instances within a group, a rather large support threshold
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was used. For other application aims, one would set lower support thresholds, which
typically result in more specific (but larger) patterns characterising smaller subsets of
process executions.

The subtrees of Fig. 4.1 and Fig. 4.2 indicate some distinguishing character-
istics of clusters 0 and 1, respectively. For example, cluster 0 is characterised
by 2 events, each having a producer code of SGNA and the second event has
attribute Name=Administratief (Administration). On the other hand, cluster 1 is
characterised by 3 events, the first one having attributes Name=Vervolgconsult

(FollowupConsultation) and ActivityCode=411100. Further, cluster 0 is characterised
by AgeGroup=retired, and cluster 1 by AgeGroup=working. However, from these
subtrees one cannot ascertain whether any other events occurred between detected
common events among the instances and/or whether the additional events differed. On
the other hand, the frequent subtrees detected by DSM-LCM confirm that no additional
events occurred between the common events of cluster 0, and that they were the first
executed events within the traces (as inferred from node positions, see Fig. 4.3 and
Fig. 4.4). In fact, the position-constrained subtrees also indicate how many events
in total occurred in 90% of instances of the cluster, i.e. 3 events for cluster 0 (at
locations X4, X12 and X20) and 4 events for cluster 1 (at locations X4, X12, X20 and X28).
Furthermore, the attribute Name=Administratief in the second event of the traditional
subtree of cluster 0 in Fig. 4.1 did not occur in position-constrained subtree of cluster 0
in Fig. 4.3, which also indicates that this attribute was not frequent in the second event
but was frequent when its occurrences in the second and third event were counted
together. This has been confirmed by observing the instances of cluster 0 and have
found that the attribute Name=Administratief occurs 7 times in the second event and 6
times in the third event. Another difference is that the attributes Name=Vervolgconsult

and ActivityCode=411100 did not occur in the position-constrained subtree of cluster
1. This can be explained by the fact that the association of Name=Vervolgconsult

and ActivityCode=411100 occurs 18 times in the first event and 7 times in the second
event, which are less than the required minimum support of 25 (= 90% * 28).

The observed differences indicate the benefit of the PCFSM method in two cases:
(i) to find the exact location of each repeated or outlying value, and (ii) to know the ex-
act occurrence of an event and its attributes within the trace as a whole. However, it is
not claimed that traditional subtree mining would not be useful, but that each approach
have its own useful characteristics. For example, the traditional frequent subtrees re-
flect the occurrences of events and their characteristics no matter in which part of the
process instance they occurred, while the position-constrained frequent subtrees pro-
vide further detail of their exact locations within a trace. Both approaches could be
used in a complementary way to obtain a more comprehensive analysis.
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Figure 4.1: A frequent subtree in cluster 0.
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Figure 4.2: A frequent subtree in cluster 1.

4.2.3 Discovering Discriminating Characteristics of Groups

Classification methods can be used to identify key differences among group of process
instances. The first three clusters are selected for the classification task since they
have relatively high ISim and low ESim value. For each cluster, 70% of randomly
selected instances are reserved for the training set and the remainder for the test set.
Because the number of instances for each class is different, the oversampling method
is used to balance the examples of each class. Random instances of cluster 0 and 1
are duplicated to reach the total number instances of cluster 2. In what follows, the
decision tree learning and the associative classification methods are evaluated on these
clusters.

Decision Tree Learning

The C4.5 decision tree learning algorithm in the RapidMiner software (Mierswa et al.,
2006) was used with default parameter settings (criterion: gain ratio, confidence: 0.5).
Note that this setting is also used for all decision tree learning tasks in this chapter. The
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Figure 4.3: A position-constrained frequent subtree in cluster 0.
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Figure 4.4: A position-constrained frequent subtree in cluster 1.

resulting decision tree is displayed in Fig. 4.5, which has an accuracy of 93.3%. The
decision tree learning, model application, and performance evaluation were accom-
plished in under 1 second. An interesting rule found from the decision tree is that if
X2= AgeGroup=retired, X39=NO, then the instance is classified as belonging to cluster
0. Since the PCFSM method represents tree-structured data in a position-constrained
format, it is always possible to identify the location of each data attribute according to
the DSM. In the hospital dataset, each event has seven attributes (it was nine attributes
before the data preparation phase). Hence, if the node event of the first event of a trace
is located at X4, then the node event of the fourth event (if it exists) is located at X36

according to the DSM.
It is known that all attributes of an event must be present if that event exists. Hence,

a value of NO in any position implies all NO values for all columns next to it. With
this in mind, the above rule can be interpreted as “all patients who are in the retiring
age group and there are no more than 4 events in their process should be put into the
same group, which is cluster 0 in this case”.
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Figure 4.5: A decision tree learned from three clusters of process instances.

Associative Classification

In associative classification, the FDT data is first converted to itemset representation
and frequent itemset mining algorithm is then used to find associations among the
items. For classification purposes, only association rules that have the consequents
as class labels are kept. For each rule, a rule strength (Zaki and Aggarwal, 2006)
expressing the predicting power of that rule is computed. Note that in this experiment,
the confidence measure was used to calculate the rule strength of each rule. Rules
that do not satisfy the minimum threshold are removed. Finally, each instance in the
dataset is evaluated against the set of rules and the class whose aggregated rule strength
is the highest is selected as predicted value. More details of associative classification
on XML-based data are provided in Chapter 5.

Table 4.4 shows the accuracy and coverage rates of each class. The best results
were achieved at the lowest support threshold (2%) and the highest confidence value
(90%). It is notable that the accuracy and coverage rates for cluster 0 are 100% for
all settings. This can be explained by the high homogeneity of cluster 0 and its large
similarity distance to other clusters (ISim = 0.999 and ESim = 0.003). Similarly, one
can observe the gradual decrease in classification performance for clusters that have
lower ISim and higher ESim values (cluster 1 and 2).
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Table 4.4: Prediction accuracy and coverage rates for each class.

cluster 0 cluster 1 cluster 2
support=2% accuracy 100.0 89.5 58.8
confidence=50% coverage 100.0 100.0 100.0
support=2% accuracy 100.0 100.0 92.3
confidence=90% coverage 100.0 89.5 76.5
support=10% accuracy 100.0 89.5 35.3
confidence=50% coverage 100.0 100.0 100.0
support=10% accuracy 100.0 100.0 100.0
confidence=90% coverage 100.0 78.9 17.6

4.3 Classification based on PCFSM on Labelled
Dataset

In this section, the decision tree learning algorithm is applied to a subset of hospital
dataset, which is described in (Bose and Aalst, 2012), and two synthetic datasets.

A Subset of the Hospital Dataset

In the first setting, process instances having diagnosis code M13 and treatment code
803 are selected for our experiment (combinations with other treatment code, e.g.
803 101 are not considered). This filtered dataset has 23 process instances comprising
two groups: the first group has 15 instances containing non-urgent cases, and the sec-
ond group contains the remaining 8 urgent cases. The resulting decision tree is shown
in Fig. 4.6. The classification accuracy (using ten-fold cross-validation) is 100% with
all instances being covered. It can be seen that any case diagnosed with maligniteit

cervix is identified as urgent.
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non-urgentnon-urgent

urgent

(3/3)

(1/1) (1/1)
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maligniteitmcervix

Figure 4.6: Urgency prediction of a process instance on diagnosis code M13 and treat-
ment code 803.

In the second setting, the dataset contains only process instances having diagno-
sis code M11. There are 25 urgent and 137 non-urgent cases in this filtered dataset.
When the decision tree learning algorithm is performed on this data and with ten-fold
cross-validation, the classification accuracy achieved is at 92.59%. It can be seen from
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Fig. 4.7 that at the position of X1152 which corresponds to the 139th event, if there is
no further event, the case is classified as non-urgent. If there are more events after this
event, then the first event attribute (at location X52) is checked. If this event is admin-
istered in Section 2 (e.g. where ObstetricClinic and NursingWard department reside),
the case is classified as urgent; if it belongs to Section 4 (e.g. where Pathology and
MedicalMicrobiology reside), then it is classified as non-urgent. It can be seen that
the exact points of difference between urgent and non-urgent cases are indicated. This
kind of analysis is performed from a different perspective to the process discovery and
trace alignment method (Bose and Aalst, 2012), and can be seen as complementary to
both approaches.

X1152

non-urgent

urgent non-urgent

(113/116)

(20/20)

NO

X52

(22/26)

event

Section 2 Section 4

Figure 4.7: Urgency prediction of a process instance on diagnosis code M11.

Teleclaim Dataset

In the teleclaim dataset (van der Aalst, 2011b), the potential of the PCFSM method in
classifying four possible outcomes of a claim such as processed, rejected, insufficient

information or not liable is explored. Each trace is first labelled with one of the four
values as described above. Note that the dataset is balanced using the oversampling
method. The decision tree learning using ten-fold cross-validation returns an accuracy
of 100% covering all cases. The decision tree in Fig. 4.8 shows that if activity end

happens at the seventh event (at position X35), the claim is classified as not liable; oth-
erwise the claim would be insufficient information. Furthermore, at position X53, it
is known that if the eleventh event is available, the claim is categorised as processed,
otherwise it is rejected. This indicates another useful property of the FDT representa-
tion, as specific points of difference between events of traces of different class can be
directly detected.

Telephone Repair Dataset

In the telephone repair dataset (van der Aalst, 2011c), the objectives are to predict (i)
the time needed to repair each telephone (class values are 0, 1 and 2 hours) and (ii) the
complexity of the repair—which can be simple, complex or both. Note that the number
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Figure 4.8: A decision tree for outcomes of an insurance claim in the teleclaim dataset.

of attributes of the events of this dataset is the same but some of them differ in order.
Hence, the attributes were sorted in the same order to ensure that columns in the FDT

format contain values of the same attribute.
Prediction of duration: The resulting decision tree model (took 6s to build and

evaluate) has the size of 69 with 58 leaf nodes and an accuracy rate of 82.7%, which
was evaluated by ten-fold cross-validation. Due to its large size, the decision tree is
not shown here. Inspecting the rules of the decision tree shows that the duration of
a process is classified as 0 (hour) if X90 = X67 = X41 =NO. Note that X90 contains
the fourth attribute (number of repair) of the eighth event, X67 contains the the fifth
attribute (defect fixed) of the thirteenth event and X41 contains the fifth attribute (defect

fixed) of the eighth event. X27, which corresponds to the first attribute, i.e resource)
of the sixth event, names the officer responsible for the repair at that stage. From
the decision model, it was observed that officer SolverC3 performed poorly as most
of his/her tasks are completed in one hour while others finish in less than one hour.
Although only a synthetic dataset was used, this kind of analysis is also useful for
detecting performance bottlenecks and investigating resource optimisation.

Prediction of complex process: a trace is labelled simple (or complex) if it con-
tains any simple (or complex) repair, as part of the descriptive attributes of activities
within an event. If both simple and complex repairs exist then the trace is labelled both.
Part of the resulting decision tree for the three-class classification evaluated using ten-
fold cross-validation is displayed in Fig. 4.9 and the classification accuracy achieved
is at 92.94%.

4.4 Lessons Learned and General Remarks

The proposed approach, PCFSM, integrated existing algorithms/methods for the pur-
pose of bringing about the first approach that allows the direct application of data min-
ing techniques to tree-structured process logs, without the need of a process model.
Although the persistence method of process log was standardised by MXML/XES and
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Figure 4.9: A decision tree for complexity prediction of the telephone repair dataset.

many XML mining techniques have been around for a long time, to our best knowledge,
there has been no application of XML mining algorithms to event data.

The traditional tree-structured mining methods, such as CMTreeMiner and Dryade-

Parent, which represent the state-of-the-art in the FSM field, typically have perfor-
mance issues on process logs due to their large size and high complexity. On the other
hand, the proposed method, which is based on the position-constrained frequent sub-
tree mining, is able to partially overcome those obstacles by flattening out the tree
structures, thereby simplifying the subtree mining task to that of itemset mining.

The experimental results confirm the three benefits of the PCFSM method, which
were stated in Section 4.1. Firstly, the frequent subtree patterns discovered by the
method showed the exact order and position of each event in the frequent path of
executions. From this information, a process analyst can immediately pinpoint the
events that occur frequently, instead of having to search for them if traditional methods
are to be used. Secondly, the PCFSM method allowed for the applications of CLUTO

(a clustering algorithm), C4.5 (a decision tree learning algorithm) and LCM (a frequent
itemset mining algorithm) to tree-structured process logs. Thirdly, no process models
were involved in the process.
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The advantage that by using PCFSM, the exact position of each event/node in the
trace was preserved, comes with the potential cost in the data preparation process.
An assumption of the method is that event attributes are organised uniformly across
different process instances, as is often the case for XML documents conforming to a
well-defined schema. However, since the MXML and XES standards do not ask for a
strict ordering of event attributes, the conversion of tree-structured event logs whose
attributes are not ordered, to a flat data format would lead to corresponding attributes
being put into different columns of the table. This might severely affect the perfor-
mance of data mining algorithms, which are used in the next steps. This problem can
be avoided by standardising the structural organisation of the event attributes during
pre-processing steps.

It was observed that the number of patterns discovered by the PCFSM method is
often large, which leads to the difficulty in identifying interesting patterns. Moreover,
trial and error had to be used to determine the best support threshold. However, these
drawbacks are inherent to any method that is based on frequent pattern mining. Several
techniques have been proposed in the data mining field to alleviate these problems such
as pattern filtering based on interestingness measures.

It is also worth noting that due to the nature of our approach in exact matching
of subtrees by node positions, some traditional frequent subtrees might be missed,
depending on the selected support threshold. However, those subtrees can still be
discovered by lowering the support threshold to a certain level, and then performing
additional post-processing steps: (i) node positions of discovered patterns are removed
and (ii) subtrees that are structurally-equivalent with all nodes sharing the same re-
spective label are merged, and their supports are summed up. In any case, the PCFSM

method presents a good alternative to traditional methods in complex data for which
the frequent pattern mining task is infeasible.

An unsupervised, exploratory process log analysis method (EPLA) based on
PCFSM was proposed. This method separates process instances into different
groups having similar characteristics. The experimental results indicated that similar
properties such as process execution time, cost, and execution order are shared among
instances of each group.

The clustering task enabled FSM techniques, such as CMTreeMiner, and DSM-

LCM to be applied to each group of instances, in order to explore their descriptive
characteristics. Furthermore, it is possible to investigate the distinguishing charac-
teristics of each group by applying decision tree learning or associative classification
algorithm to instances labelled respective to the groups being analysed. In practice, it
is typical to have a conclusion like “this group of process instances is different from
other groups in that most patients are retired and the majority of the treatment pro-
cesses last at least ten months”. In general, the EPLA method allows us to analyse the

119



Lessons Learned and General Remarks

process log in an unbiased way when there is a lack of domain knowledge to guide the
analysis process.

The evaluation of the PCFSM method on supervised setting showed that this ap-
proach has the potential in uncovering interesting and actionable knowledge from the
process log. For example, based on the analysis of a labelled event log of a hospital, the
proposed method might suggest a business rule that says “any treatment process that
has more than 139 events in less than one day is considered an urgent case and should
be notified to relevant doctors”. In the synthetic telephone repair dataset, by labelling
each process instance with its duration, a decision tree learning algorithm might be
able to uncover workers whose performances are poor. Our approach adds to the avail-
able pool of performance analysis methods, such as the dotted chart method (Song and
van der Aalst, 2007).

120



Chapter 5

A Position-constrained Associative
Classification Approach

This chapter presents an extension of the PCFSM method for the classification prob-
lem. The structure of this chapter is outlined as follows. Section 5.1 proposes an
associative classifier, called DSMC, which is based on the positioned-constrained fre-
quent/closed subtree mining. The experimental settings and data characteristics are
described in Section 5.2. In Section 5.3, DSMC is applied to heterogeneous real-world
and synthetic tree-structured datasets whose structures are varied among instances.
The evaluation continues in Section 5.4 with homogeneous data, where a real-world
process log and a real estate XML-based dataset are examined. Section 5.5 and ?? de-
scribe the use of DSMC to predict outcomes of running process instances or to recom-
mend actions that have higher chance of leading to a desired outcome. Enhancements
for the DSMC classifier are discussed in Section 5.7. Finally, Section 5.8 concludes
this chapter.

5.1 Associative Classification on Process Logs

By representing tree-structured data in a flat representation (as part of the PCFSM

method), traditional algorithms such as CART or C4.5 can be utilised for the classifi-
cation task on tree databases. This data re-representation also enables the associative
classification framework (Liu et al., 1998) to be adapted for the tree-structured data
classification. To do this, the flat representation is first transformed to itemset for-
mat, which is then fed to a frequent itemset mining algorithm. From the resulting
frequent itemsets, one could form association rules with consequents as class labels.
The antecedents can be remapped back into subtrees, so classification rules are now
in the form of subtrees. It has been shown that classification rules are comprehensible
to users and in general rule-based models tend to give better accuracy and are more
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scalable than traditional methods, e.g. C4.5 (Han and Kamber, 2006).
In this section, two approaches for event data classification are discussed. First, an

associative classification method which is based on traditional frequent subtree min-
ing (Zaki and Aggarwal, 2006) is introduced. Second, an associative classifier which
is based on position-constrained frequent subtree mining (Hadzic, 2012) is proposed.
This classification method is developed as an extension to the PCFSM method.

5.1.1 Frequent Subtree-based Classification

In frequent subtree-based classification, the purpose is to discover from the training
data rules (R) that have the form of st⇒C where st is a subtree and C is the class label.
The set of all rules is used to classify unseen instances.

Rules that have low discriminating power should be removed from the rule set in
order to improve the classification accuracy, running performance, and comprehensi-
bility of the classification model. This can be achieved by pruning rules that do not
pass a user-specified minimum rule support (defined in Section 2.3.9) threshold and/or
rule interestingness (e.g. confidence) threshold.

In addition to rule support, class support is another measure used to prune low
discriminating power rules when the classes of the dataset are unbalanced. The class
support was used in the work of Zaki and Aggarwal (2006).

Definition 5.1 (Class Support). Let πA(st,C) be the number of instances that contains

subtree st which is labelled as C. A class support of a rule st ⇒ C is defined as the

ratio between πA(st,C) and the number of instances of class C.

s(st⇒C) =
πA(st,C)

|C|
.

Definition 5.2 (Confidence). Let πA(st) be absolute support of subtree st in a database.

The confidence of a rule (st⇒C) is defined as a ratio between πA(st,C) and πA(st).

c(st⇒C) = P(C|st) = πA(st,C)

πA(st)
.

Definition 5.3 (Weighted Confidence). Let π(st,C) be the support of subtree st in class

C and π(st,C) be the support of st in other classes). The weighted confidence of a rule

(st⇒C) is defined as follows

wc(st⇒C) =
π(st,C)

π(st,C)+π(st,C)
.
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Definition 5.4 (Likelihood). The likelihood of a rule (st⇒C) is defined as follows

l(st⇒C) =
π(st,C)

π(st,C)
.

Rule strength is a measure that represents the discriminating power of a classifica-
tion rule. The rule strength of rule st⇒C is defined as follows.

Definition 5.5 (Rule strength). ρy(st⇒C) = y(st⇒C),

where y is any type of interestingness measure (see 2.3.14) that quantifies the rela-

tion between subtree st and class C: y= {c,wc, l..}.

For example, the confidence-based rule strength is defined as ρ(st⇒C) = c(st⇒
C). The weighted-confidence- and likelihood-based rule strength are defined as ρ(st⇒
C) =wc(st⇒C) and ρ(st⇒C) = l(st⇒C), respectively.

To predict unseen data, each instance is matched against each rule in the rule set. If
the antecedent of a rule occurs in the test instance, it can be said that the rule is triggered
by that instance. Let t be an unseen instance, {R1 . . .Rm} be the rules that are triggered
by t, p be the number of class values, and Ri : sti⇒ Ck, i ∈ {1 . . .m},k ∈ {1 . . . p} be
one of the rules, the combined rule strength on instance t for class Cx,x ∈ {1 . . . p} is
defined as

Definition 5.6 (Combined rule strength). ρy,Cx(t) =
∑

m
i=1 ρy(Ri)

m
=

∑
m
i=1 ρy(sti⇒Cx)

m
.

A test instance t is classified as class Cx if ρy,Cx(t) > ρy,Cy(t),∀y 6= x, with x,y ∈
{1 . . . p}.

To evaluate the predictive capability of the rule set on a test data, classification
results are compared against actual labels of the test data. Evaluation criteria include
accuracy and coverage rates, and the overall accuracy and coverage rates.

Let nCi be the number of instances that belong to Ci and are covered by the rule
set. Let mCi be the number of instances that belong to Ci and are correctly classified.
For illustration, Fig. 5.1 shows a database with two class labels C1 and C2. This figure
expresses three aspects of a classification evaluation: (i) the number of instances for
each class, (ii) the number of instances that are covered by a rule set, and (iii) the
number of instances that are correctly classified.

Definition 5.7 (Class coverage). The coverage rate of class Ci is calculated as follows

CR(Ci) =
nCi

|Ci|
.

Definition 5.8 (Class accuracy). The accuracy rate of class Ci is calculated as follows

AR(Ci) =
mCi

nCi

.
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C1 instances
C2 instances

C1 instances covered by rules (nC0)

C2 instances covered by rules (nC1)
C1 instances correctly classified (mC0)

C2 instances correctly classified (mC1)

Figure 5.1: An illustration for classification evaluation.

Definition 5.9 (Overall coverage). The overall coverage of a rule set is defined as

follows

CR =
∑

p
i=1 nCi

∑
p
i=1 |Ci|

.

Definition 5.10 (Overall accuracy). The overall accuracy of a rule set is defined as

follows

AR =
∑

p
i=1 mCi

∑
p
i=1 nCi

.

5.1.2 DSMC—the Proposed Classification Method

In this section, DSMC, an associative classifier which is based on position-constrained
frequent subtree mining (Bui et al., 2013, 2014) is proposed. This classifier expands
phase IV of the PCFSM method. Essentially, DSMC is a six-step procedure which is
described as follows.

1. Convert to itemset format: if the tree-structured database is in the FDT format,
the data items of each row are attached to their corresponding columns and the
class label is added to the itemset representation of each tree;

2. Discover frequent itemsets for each class: in many cases the classes in the train-
ing dataset are unbalanced in terms of the number of instances, which might lead
to rules related to the minor class being under-represented in the rule set. For this
reason, the dataset is separated into partitions, each of which associates to a class
label. Next, a frequent subtree mining algorithm is applied to each partition;

3. Form class-associative rules: each itemset discovered in the previous step rep-
resents an association rule with antecedent being the frequent itemsets and the
rule consequent being the class label. The set of all discovered class-associative
rules forms the classification model;

4. Identify the rule strength for each rule in the rule set;
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5. Find rules that are triggered by each test instance: to determine which rule can
be triggered by an instance, the position-constrained frequent subtree in the an-
tecedent part of each rule is matched against the flat representation of the test
instance. The conversion of tree structure to tabular format references the DSM

of the training data instead of the testing data to ensure that the positions of tree
nodes are labelled consistently;

6. Calculate the combined rule strength per class for each instance: the predicted
class value is the one that has highest combined rule strength.

5.1.3 Illustration of the Proposed Classification Method

In this section, a concrete example is given to illustrate the two classification ap-
proaches discussed in previous sections.

Let Tcl be a tree-structured database shown in Fig. 5.2. Tcl includes four tree in-
stances t1, t2, t3, t4 with respective class labels C1, C1, C2, C2.

a
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f g
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c i
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h f
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n

c
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l

t1(C1) t2(C1)

t3(C2) t4(C2)

Figure 5.2: Tree database Tcl .

In both traditional and position-constrained frequent-subtree-mining-based classi-
fication methods, it is assumed that the class support threshold is 50% and the confi-
dence threshold is also 50%.

Associative Classifier based on Frequent Subtree Mining

A subset of all frequent subtrees of Tcl that satisfy the class support threshold is shown
in Fig. 5.3. Note that subtrees st1, st3 and st4 are also induced subtrees, as all nodes are
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a

f

a

b

e

o

k

c

st1

b
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c(st1⇒C1) = 66%

st2

st3 st4

c(st2⇒C1) = 100%

c(st3⇒C2) = 100% c(st4⇒C2) = 50%

s(st1⇒C1) = 100% s(st2⇒C1) = 100%

s(st3⇒C2) = 100% s(st4⇒C2) = 100%

Figure 5.3: Four frequent embedded subtrees of Tcl and their corresponding supports.

separated by a single edge in the original trees where they occur (i.e. st1 is supported
by t1, t2 and t3; st3 by t3 and t4; st4 by all trees). This is not the case for subtree st2
because in t1 and t2 where it occurs there are two edges separating nodes b and e, (i.e.
there is an embedded relationship between b and e).

Class-associative rules are obtained from the frequent subtrees. Supposedly, only
four rules are selected for the rule set. These rules and their corresponding confidence-
based rule strength are listed as follows.

• R1 : st1⇒C1

ρc(R1) = c(R1) =
2
3
= 66%

• R2 : st2⇒C1

ρc(R2) = c(R2) =
2
2
= 100%

• R3 : st3⇒C2

ρc(R3) = c(R3) =
2
2
= 100%

• R4 : st4⇒C2

ρc(R4) = c(R4) =
2
4
= 50%

Let Teval (shown in Fig. 5.4) be a test database used for classification evaluation.
The transactions in Teval are evaluated using the confidence-based rule strength. The
detail of the evaluation is presented as follows.

• ρc,C1(ta) =
ρc(st1⇒C1)+ρc(st2⇒C1)

2
=

66%+100%
2

= 83%.

ρc,C2(ta) =
ρc(st3⇒C2)+ρc(st4⇒C2)

2
=

100%+50%
2

= 75%.

Since ρc,C2(ta)< ρc,C1(ta), ta is classified as C1.
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Figure 5.4: Teval—a synthetic tree database used for classification evaluation.

• ρc,C1(tb) = 0%

ρc,C2(tb) =
ρc(st3⇒C2)+ρc(st4⇒C2)

2
=

100%+50%
2

= 75%

Since ρc,C2(tb)> ρc,C1(tb), tb is classified as C2.

• ρc,C1(tc) = ρc,C2(tc) = 0 since there are no subtrees in the frequent embedded
subtree set st1,st2,st3,st4 occur in tc.

• ρc,C1(td) = 0%

ρc,C2(td) =
ρc(st3⇒C2)+ρc(st4⇒C2)

2
=

100%+50%
2

= 75%

Since ρc,C2(td)> ρc,C1(td), td is classified as C2.

• ρc,C1(te) = ρc(st1⇒C1) = 66%

ρc,C2(te) =
ρc(st3⇒C2)+ρc(st4⇒C2)

2
=

100%+50%
2

= 75%

Since ρc,C2(te)> ρc,C1(te), te is classified as C2.

The evaluation results of the test data shown in Fig. 5.4 are presented as follows.

• CR(C1) =
2
3
= 66%, AR(C1) =

1
2
= 50%

• CR(C2) =
2
2
= 100%, AR(C2) =

2
2
= 100%

• CR =
4
5
= 80%, AR =

3
4
= 75%
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Associative Classifier based on Position-constrained Frequent/Closed Subtree
Mining

The DSM of the tree database Tcl is presented in Fig. 5.5. For illustration, the DSM

used for the classification task is extracted from the database at the minimum support
of 50%. This DSM is shown in Fig. 5.6. Note that two nodes at locations X7 and
X10 of the original DSM are safely removed due to their low frequency of occurrence
(according to the support threshold).

X0

X1 X5 X8 X11

X6 X9 X12X7 X10X2 X3

X4

Figure 5.5: The DSM tree of Tcl .

X0

X1 X5
X7 X9

X6 X8
X10X2 X3

X4

Figure 5.6: The DSM tree at minimum support = 50% of Tcl .

In the next step, the tree-structured database is converted to a tabular format. The
FDT representation of Tcl is shown in Table 5.1. Its corresponding itemset represen-
tation is shown in Table 5.2. Note that the data instances are split into two partitions
according to their class labels.

Then, a frequent itemset mining algorithm is applied to each partition of Table 5.2.
The minimum support for the frequent itemsets should be similar to the class support of
frequent subtree, which is 50%. Two frequent itemsets that meets the minimum support
requirements for partition C1 are {bX1, cX2} and {bX1, cX2, eX4}. Two frequent itemset
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Table 5.1: The flat data representation of Tcl .

ti X0 X1 X2 b0 X3 X4 b1 b2 b3 X5 X6 b4 b5 X7 X8 b6 b7 X9 X10 b8 b9
t1 a b c 1 d e 1 1 1 f 0 0 1 g 0 0 1 0 0 0 0
t2 a b c 1 i e 1 1 1 h 0 0 1 f k 1 1 0 0 0 0
t3 m b 0 0 0 0 0 0 1 a n 1 1 o k 1 1 b c 1 1
t4 n c 0 0 0 0 0 0 1 b n 1 1 o k 1 1 b c 1 1

Table 5.2: The itemset format of Tcl .

Tcl Itemsets Partition
t1 aX0, bX1, cX2, dX3, eX4, fX5, gX7 C1t2 aX0, bX1, cX2, iX3, eX4, hX5, fX7, kX8
t3 mX0, bX1, aX5, nX6, oX7, kX8, bX9, cX10 C2t4 nX0, cX1, bX5, nX6, oX7, kX8, bX9, cX10

that meets the minimum support requirements for partition C2 are {bX9, cX10} and
{nX6, oX7, kX8, bX9, cX10}. Fig. 5.7 shows the reconstructed trees of the four frequent
itemsets and their corresponding supports. Note that the frequent itemset {nX6, oX7,
kX8, bX9, cX10} corresponds to a disconnected subtree.

bX1

cX2

bX1

eX4cX2

sta

s(sta⇒C1) = 100%

stb

stc std

s(stb⇒C1) = 100%

s(stc⇒C2) = 100% s(std ⇒C2) = 50%

ρc,C1(sta) = 100% ρc,C1(stb) = 100%

ρc,C2(stc) = 100% ρc,C2(std) = 100%

bX9

cX10 bX9

cX10

oX7

kX8nX6

n/a

n/a

Figure 5.7: Four position-constrained embedded subtrees of Tcl and their correspond-
ing supports and confidences.

The class-associative rules are obtained by assigning the frequent itemsets as an-
tecedents and their corresponding class labels as rule consequents. The rules and their
confidence-based rule strengths are listed as follows.

• r1: sta⇒C1

ρc(r1) = c(r1) = 100%
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Table 5.3: The FDT representation of Teval .

ti X0 X1 X2 b0 X3 X4 b1 b2 b3 X5 X6 b4 b5 X7 X8 b6 b7 X9 X10 b8 b9
ta a b c 1 h e 1 1 1 o k 1 1 f 0 0 1 0 0 0 0
tb a b c 1 0 0 0 0 1 o k 1 1 0 0 0 0 0 0 0 0
tc a o c 1 0 0 0 0 1 b d 1 1 0 0 0 0 0 0 0 0
td o b c 1 k e 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
te m h 0 0 0 0 0 0 1 a n 1 1 o k 1 1 b c 1 1

• r2: stb⇒C1

ρc(r2) = c(r2) = 100%

• r3: stc⇒C2

ρc(r3) = c(r3) = 100%

• r4: std ⇒C2

ρc(r4) = c(r4) = 100%

The next step is to represent the test data in itemset format using the DSM of the
training data. The converted data in tabular and itemset format are shown in Table 5.3
and Table 5.4, respectively.

Table 5.4: The itemset format of Teval .

Tcl Itemsets
ta aX0, bX1, cX2, hX3, eX4, oX5, kX6, fX7
tb aX0, bX1, cX2, oX5, kX6
tc aX0, oX1, cX2, bX5, dX6
td oX0, bX1, cX2, kX3, eX4, kX8, bX9, cX10
te mX0, hX1, aX5, nX6, oX7, kX8, bX9, cX10

The transactions of Teval are evaluated using the confidence-based rule strength.
The details of the evaluation are presented as follows.

• ρc,C1(ta) =
ρc(sta⇒C1)+ρc(stb⇒C1)

2
=

100%+100%
2

= 100%.

ρc,C2(ta) = 0%.

Since ρc,C2(ta)< ρc,C1(ta), ta is classified as C1.

• ρc,C1(tb) = ρc(sta⇒C1) = 100%

ρc,C2(tb) = 0%

Since ρc,C2(tb)< ρc,C1(tb), tb is classified as C1.

• ρc,C1(tc) = ρc,C2(tc) = 0 since sta,stb,stc and std do not occur in tc.

• ρc,C1(td) =
ρc(sta⇒C1)+ρc(stb⇒C1)

2
=

100%+100%
2

= 100%

ρc,C2(td) = 0%

Since ρc,C2(td)< ρc,C1(td), td is classified as C1.
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• ρc,C1(te) = 0%

ρc,C2(te) =
ρc(stc⇒C2)+ρc(std ⇒C2)

2
=

100%+100%
2

= 100%

Since ρc,C2(te)> ρc,C1(te), te is classified as C2.

The evaluation results when applying DSMC to the synthetic test data are presented
as follows.

• CR(C1) =
2
3
= 66%, AR(C1) =

2
2
= 100%

• CR(C2) =
2
2
= 100%, AR(C2) =

1
2
= 50%

• CR =
4
5
= 80%, AR =

3
4
= 75%

5.2 Experimental Settings

The main objective of the evaluation is to compare the associative classifier which is
based on position-constrained frequent subtree mining (DSMC) with the state-of-the-
art associative classifier which is based traditional frequent subtree mining (XRules).

The methods are evaluated using different minimum support values. The lowest
support threshold to be selected should not be too small that it takes unreasonable time
(more than a day) for the program to terminate or the memory to be exhausted. On
the other hand, the highest support threshold to be selected should not be too high
that the rule set becomes empty. Note that class support (see Definition 5.1) is used
instead of rule support (see Definition 2.4) because most datasets are class-imbalanced
and setting a low minimum support would result in the minority class being under-
represented in the rule set.

Similar to the XRules evaluation presented in (Zaki and Aggarwal, 2006), the de-
fault rule strength thresholds, i.e. (w)c = 50% or l = 1 are used in our experiment. For
the sake of studying the effect of increasing the (weighted) confidence or likelihood
threshold on the overall accuracy and coverage rate, the thresholds (w)c = 90% or l =
10 are also used.

The frequent pattern types including frequent and closed are abbreviated as Frq

and Clo, respectively. The subtree types including embedded and induced subtrees are
abbreviated as Emb and Ind, respectively. The DSMC approach allows for another sub-
tree option which is embedded-plus-disconnected subtree (abbreviated as Eds). Each
run of the experiment is represented by a concatenation of different parameters, e.g.
DSMC.Frq.Emb.c corresponds to DSMC using frequent embedded subtree setting and
a confidence-based rule strength.
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In cases XRules has trouble accomplishing the task due to node repetitions, i.e.
nodes that share similar labels, all sibling nodes are assigned unique labels. The modi-
fied dataset is named by concatenating the original name with SR. To search for closed
subtrees, the DSMC approach uses closed itemset mining, whereas the XRules imple-
mentation is adjusted so that CMTreeMiner is used instead of its default Xminer algo-
rithm (Zaki and Aggarwal, 2006). The DSMC method uses the FPGrowth algorithm
to generate (closed) frequent itemsets from the flat representation, whereas CMTreeM-

iner directly mines ordered closed induced subtrees. There are certain options that are
not compatible with XRules or DSMC, for example, Eds cannot be used with XRules

and the SR data should not be evaluated using the DSMC method because each node
in the flat representation is already unique (the nodes are attached with positional in-
formation).

Data Characteristics

The real-world datasets used in this chapter are the hospital, CSLOG, and CRM

datasets. The original hospital dataset was described in Section 4.1. To evaluate
our proposed classification method and XRules, only a subset of the hospital dataset
where processes with a single treatment code, i.e. ‘101’ and single diagnosis codes,
i.e. ‘M13’ and ‘M16’ are examined. These diagnosis codes describing two different
types of cancer are selected as class labels. The classification rules obtained for
each diagnosis code could uncover subtle differences in the treatment process of two
rather similar types of cancer. Hence, the method is potentially useful for resource
optimisation, e.g. assigning relevant resources for each diagnosis code.

The CSLOG dataset contains Web access trees of an academic institute during three
weeks (Zaki and Aggarwal, 2006). The weekly subsets are as CSLOG1, CSLOG2 and
CSLOG3 for each week. It contains user sessions labelled as edu or other depending
on from where the web site was accessed from. For the purpose of classification, one
CSLOG dataset is used as the training data and one other as the testing data; CSx-y

denotes that CSLOGx is the training set and CSLOGy is the test set. Note that edu is
the minority class in all three CSLOG datasets and the root nodes of all instances are
removed as suggested in (Zaki and Aggarwal, 2006).

The CRM dataset is real-life data containing property management records from a
real estate company1. The data are originally stored in an XML format, which contain
multiple cases, and each of which represents a maintenance record. Each case includes
a set of elements such as ‘Property’ (property that needs maintenance), ‘Contractor’

(who actually does the maintenance) and ‘Defect Data’ (containing the description of
all defects requested for maintenance). Each instance is labelled according to the in-

1Due to confidentiality, the source of this dataset cannot be disclosed
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formation derived from the tag ‘TicketDuration’. One class has duration of less than a
month and the other has duration of more than a month. In practice, by investigating
the classification rules, one can possibly uncover different hidden causes of delay, e.g.
certain contractors or types of defects. This dataset contains many repetitive nodes
called ‘defect’, which might compromise the performance of the frequent subtree min-
ing task.

For synthetic datasets, called sdb(s), a pseudo-random tree generator was devel-
oped using the following steps.

1. A number of random trees are generated and designated as subtree patterns.

2. A set of coordinates which represent the positions of nodes in a tree (e.g. t) are
generated. The coordinates are used to locate the nodes where subtree patterns
(e.g. p) can be attached to. Each coordinate includes a set of integers repre-
senting the sibling order of the nodes that run from the root node of t to p. For
example, a node (n) whose coordinate in t is [3,2] has α(n) = 2, α(m) = 3 where
m is the parent of n, and m is the child of the root node of t.

3. A set of trees (sdb1) is labelled as C1. Each tree in sdb1 are randomly generated
such that it contains nodes whose coordinates are a subset of the coordinates
obtained in the previous step.

4. For each tree in sdb1, a random number of subtree patterns created in the first
step are attached to random nodes whose coordinates are specified in the second
step.

5. For each tree in sdb1, random subtrees are attached to nodes whose coordinates
are not specified in the second step.

6. A set of trees (sdb2) are labelled as C2 and are created in the same manner as
sdb1, except that a different set of coordinates is used.

The main characteristics of the tree generator described above are that node labels,
trees’ height and fan-out, edges and subtree patterns are created randomly, but the sub-
tree patterns are positioned among a set of random locations. Three synthetic datasets,
i.e. ST 1, ST 2, and ST 3, were created for experiments. The first one has 1.000 in-
stances and each of the other two has 10.000 instances. Each of the first two datasets
has the maximum of 100 distinct labels, whereas the remaining dataset has 300 distinct
labels. The structural characteristics of the datasets used in this chapter are shown in
Table 5.5. Note that Maj. Per. represents the percentage of the majority class in the
whole dataset.
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Table 5.5: Structural characteristics of the datasets used in Chapter 5.

Dataset |Tr| Avg|L| Avg|D| Avg|F| Avg|T| Max |D| Max|F| Max|T| Maj.Per.
CS1-2 8074 625 3.4 1.9 8.0 123 130 313 75.7
CS2-3 7409 341 3.5 1.9 8.1 171 137 171 77.2
CS3-1 7628 383 3.4 1.9 8.0 120 130 192 76.4
Hospital Training 160 232 2.0 7.2 116.6 2 126 988 58.1
Hospital Test 79 210 2.0 7.2 105.4 2 62 476 62.8
CRM Training 900 95 4.4 7.1 47.8 5 32 320 66.4
CRM Test 281 91 4.3 7.2 45.9 5 34 338 66.6
ST1 Training 800 110 5.2 2.4 55.5 6 6 125 50.0
ST1 Test 200 110 5.2 2.4 55.6 6 6 116 50.0
ST2 Training 8000 123 5.9 2.4 62.2 6 6 132 50.0
ST2 Test 2000 123 5.9 2.4 62.4 6 6 128 50.0
ST3 Training 8000 117 4.3 2.4 60.5 6 6 206 50.0
ST3 Test 2000 117 4.2 2.4 59.0 6 6 192 50.0

The selected datasets provide different challenges to the two classification ap-
proaches. Note that the CSLOG and synthetic datasets are structurally heterogeneous,
while the hospital and CRM datasets are structurally homogeneous. In the case of the
hospital dataset, the node repetitions occur at all levels except at the lowest level, lead-
ing to performance bottle-neck for both DSMC and XRules in their frequent subtree
mining process, even at a minimum support value of 10%. The results and discussions
of the CSLOG and synthetic dataset are presented in Section 5.3. The experiments on
hospital and CRM datasets are presented in Section 5.4.

5.3 Experimental Results on Structurally Heteroge-
neous Data

Section 5.3.1 presents the general results of the application of the DSMC method on
CS1-2. The results on CS2-3 and CS3-1 are not shown here due to similar trends (they
can be found in Appendix A). The number of rules generated by the two methods and
the rules triggered by two specific test instances are analysed in Section 5.3.2. The
performances of DSMC and XRules on majority and minority class are examined in
Section 5.3.3. Finally, Section 5.3.4 discusses the experimental results on synthetic
datasets.

5.3.1 General Comparison

The evaluation results are organised into several subsections based on classification ap-
proaches, frequent pattern types, subtree types, rule strength types and support thresh-
olds. The last subsection reports a statistics performed on the data.
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Figure 5.8: Accuracy rates of dataset CS1-2 where (w)c=50% or l=1.

DSMC vs XRules

The accuracy and coverage rates of the two methods are examined for different combi-
nations of frequent pattern type, subtree type, rule strength measure/threshold and min-
imum support value. Fig. 5.8 and 5.9 show the accuracy rates when the rule strength is
(w)c=50% or l=1, and (w)c=90% or l=10, respectively.

Only similar configurations of the two methods are compared , e.g.
DSMC.Frq.Emb.c is compared with XRules.Frq.Emb.c. It is seen from Fig. 5.8
that the accuracy rates of DSMC and XRules are much different in most settings. The
DSMC’s accuracy rates are higher than those of XRules when confidence is used for
rule strength and the support threshold is higher than 2% (note that the results of the
weighted confidence option of XRules are not shown because they are equal to those
of confidence option).

For (w)c=90% or l=10 (see Fig. 5.9), DSMC and XRules have similar accuracy
rates when the confidence option is used. If weight confidence option is used, the
DSMC method has lower accuracy rates. When the likelihood option is used, the
XRules method is better than its counterpart in case s = 2% or 5%. XRules performs
no better than DSMC in the remaining cases.

In terms of coverage rate, XRules gives better results than DSMC for all configura-
tions at (w)c=50% or l=1 and (w)c=90% or l=10 (see Fig. 5.10 and 5.11, respectively).
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Figure 5.9: Accuracy rates of dataset CS1-2 where (w)c=90% or l=10.

Frequent Pattern Types

The frequent subtree and closed subtree options are evaluated using various configura-
tions. However, the minimum support values are fixed at s =0.2% or s =2% and the
rule strength thresholds are fixed at (w)c=50% or l=1. The results in Fig. 5.12 show
that the accuracy rates of the closed subtree option are slightly higher than those of the
frequent subtree option for both minimum support values. In terms of coverage rate,
the frequent subtree option yields slightly better results than the closed subtree option
when s=0.2% (see Fig. 5.13).

Subtree Types

Due to the large number of possible configurations, the frequent subtree and confidence
options are selected as representatives of the frequent pattern type and rule strength
type, respectively. For example, the results of DSMC.Frq.Emb.c represent for the re-
sults of DSMC.Emb. For XRules.Ind, the closed subtree option is selected instead
of frequent subtree option. The accuracy and coverage rates are shown in Fig. 5.14
and 5.15, respectively. As shown in Fig. 5.14 and 5.15, the accuracy and coverage
rates are not affected by the subtree types, except that there is a slight difference (less
than 1%) among the values for XRules when s≤2%.
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Figure 5.10: Coverage rates of dataset CS1-2 where (w)c=50% or l=1.

Rule Strength Types

The confidence, weighted confidence, and likelihood options are evaluated based on
the averaged accuracy and coverage rates of different combinations of methods, fre-
quent pattern types and subtree types over all selected support and rule strength thresh-
olds. Fig. 5.16 and 5.17 show that the accuracy and coverage rates of the confidence
option are the highest and those of weighted confidence option come in second. Note
that for XRules, the weighted confidence option has the same performance as the con-
fidence option.

As shown in Fig. 5.8 and 5.9, when s<2%, increasing the rule strength thresholds
improves the accuracy rates. On the other hand, the coverage rates drop when the rule
strength threshold rises (see Fig. 5.10 and 5.11).

In another experiment, the performance of DSMC is compared with different types
of rule strengths (see Section 2.3.14 for more detail) on the CS1-2 and hospital datasets.
The closed, induced subtree option with a minimum support of 0.5% is used for the
CS1-2 dataset and the closed, embedded subtree option with a minimum support of
10% is used for the hospital dataset.

The results of the experiment are displayed in Table 5.6. In the CS1-2 dataset, it
is seen that the best combination of accuracy and coverage rates achieved are approxi-
mately above 83% and 54% (those printed in bold font), respectively. These results are
obtained when confidence = 50%, weighted confidence = 50%, cosine = 0.05, convic-
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Figure 5.11: Coverage rates of dataset CS1-2 where (w)c=90% or l=10.

tion = 1, and Laplace = 0.5. In the hospital dataset, the above rule strength measures
also produce the best results in terms of combinations of accuracy and coverage rates
(AR ≥ 70% and CR = 100%).

In summary, from the experiments it was shown that different types of interest-
ingness measures can be used for the DSMC method, and the best combinations of
accuracy and coverage rates are achieved by the confidence, weighted confidence, con-
viction and Laplace options. Note that the differences in terms of best combinations of
accuracy and coverage rates between the evaluated interestingness measures are neg-
ligible, except for the Yule’s Q, GINI and lift measures where there is a drop of either
accuracy or coverage rate. In practice, the confidence measure seems to be a preferred
option due to its simplicity and straightforward interpretation.

Supports

It can be seen from Fig. 5.11 that the higher the support threshold is set, the lower
the coverage rate is obtained. This can be explained by the fact that increasing the
minimum support value leads to fewer frequent subtree patterns and thus reduced rules’
coverage. Fig. 5.14 shows that increasing the support value does not affect the accuracy
rates for both DSMC and XRules when s <2%. The results in Fig. 5.15 show that the
support values are inversely proportional with the coverage rates for both methods.
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Table 5.6: The accuracy and coverage rates of DSMC when different rule strength
types are applied to the CS1-2 and Hospital datasets. Note that Th=Threshold.

CS1-2 Hospital
Measure TH AR CR AR CR

Confidence
0.5 83.87 54.23 70.89 100.00
0.9 91.53 33.33 72.31 82.28

Weighted Confidence
0.5 83.09 54.60 70.89 100.00
0.9 85.03 12.98 68.66 84.84

Cosine

0.005 82.22 54.60 69.62 100.00
0.01 82.22 54.60 69.62 100.00
0.05 83.15 54.56 69.62 100.00
0.1 82.57 43.74 69.62 100.00

Yule’s Q
0.2 82.83 54.31 37.97 100.00
0.5 81.83 47.09 37.97 100.00
0.8 85.03 12.98 37.97 100.00

GINI

0.5 63.39 54.60 - -
0.9 63.39 54.60 - -

0.001 39.92 37.56 37.97 100.00
0.005 23.22 22.78 37.97 100.00

Lift
2 67.46 14.77 53.85 49.37
5 - 0.00 - 0.00

10 - 0.00 - 0.00

Conviction
1 83.09 54.60 70.89 100.00
5 90.65 12.85 74.84 83.54

10 91.04 4.82 73.33 75.95

Laplace
0.5 83.87 54.23 70.89 100.00
0.7 88.65 46.01 73.42 100.00
0.9 91.66 30.41 75.44 72.15

Leverage
0.00 82.22 54.60 70.89 100.00
0.01 78.98 21.38 70.89 100.00
0.05 - 0.00 70.89 100.00

Jaccard

0.00 82.22 54.60 70.89 100.00
0.01 81.92 45.69 70.89 100.00
0.1 92.39 14.71 70.89 100.00
0.5 - 0.00 62.03 100.00

Pearson
0.00 82.22 54.60 37.97 100.00
0.1 78.85 25.15 37.97 100.00
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Figure 5.12: Comparison of accuracy rates based on frequent pattern types in the
CS1-2 dataset.

Evaluation based on Cross-Validation

The experiment setting for this evaluation is s= 1%, c= 50%, and the closed, induced
subtree option is used. The dataset is divided into ten partitions, each of which is
denoted as fi, with i ∈ [0..9]. The experiments run ten times and in each run, one
partition is used as test data, and the remaining partitions are combined for training
data.

Table 5.7 shows the evaluation results. A paired student’s t-test statistics is then
applied to these results with a significance level of 0.05. The p-value of the two-tailed
test with a degree of freedom of 9 is 0.87, which is greater than the critical value.
This means that the null hypothesis cannot be rejected, which means that there is no
statistical difference between the two methods.

Table 5.7: The accuracy rates on ten-fold cross-validation of the CS1-2 dataset.

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 Mean
DSMC 85.8 81.8 84.0 82.9 88.4 83.6 83.3 87.6 85.3 88.0 85.07
XRules 83.5 84.4 86.4 83.6 89.4 82.9 82.2 88.1 85.0 86.1 85.16

5.3.2 Analysis of the Rule Set

Table 5.8 shows the number of rules of each variation of the two approaches on three
pairs of training and test set. It is noticeable that the number of rules for the closed
subtree option is much less than that of the frequent subtree option when s=0.2%,
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Figure 5.13: Comparison of coverage rates based on frequent pattern types in the
CS1-2 dataset.

though the difference does not affect much on the accuracy and coverage rate. And as
expected, the number of rules of the embedded subtree option is always higher than
that of induced ones.

The fact that Eds variations produce the highest number of rules can be understood
by their inclusion of both embedded subtree and disconnected subtree patterns.

There is almost no difference in the number of rules found at support thresholds
s=5% and s=10%.

It is seen that XRules enumerates significantly more rules at lower support thresh-
olds since its frequent/closed subtrees are not constrained by position like those of
DSMC (note that the XRules’s implementation limits the number of frequent subtrees
to be less than 50,000). This explains the high coverage rate of XRules, as can be seen
from the results of CS1-2 in Fig. 5.10 and 5.11.

Generally speaking, the two methods have comparable accuracy rates, while there
is a larger degradation in coverage rate when the position constraint is imposed as part
of the DSMC approach.

Analysing the rules triggered in a single test case where DSMC and XRules give
contradictory predictions helps explain some of the results in Section 5.3.1. Given
CS1-2 as the training and test data, the minimum support and confidence are both set
at 50%, and closed embedded subtrees are selected as rule antecedents, each of the
following cases shows each method in its favoured result.
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Figure 5.14: Comparison of accuracy rates based on subtree types in the CS1-2 dataset.

Table 5.8: Number of rules.

Dataset CS1-2 CS2-3 CS3-1
s (%) 0.2 0.5 1 2 5 10 0.2 0.5 1 2 5 10 0.2 0.5 1 2 5 10
DSMC.Frq.Emb 8298 316 75 26 4 2 11907 356 83 27 4 2 13775 357 100 26 4 2
DSMC.Clo.Emb 853 230 69 25 4 2 752 230 72 26 4 2 835 250 87 25 3 2
DSMC.Frq.Ind 1973 290 75 26 4 2 1409 316 83 27 4 2 7303 331 100 26 4 2
DSMC.Clo.Ind 830 229 69 25 4 2 728 228 72 26 4 2 804 249 87 25 3 2
DSMC.Frq.Eds 9830 349 79 26 4 2 12407 401 89 28 4 2 20848 411 112 27 4 2
DSMC.Clo.Eds 955 248 73 25 4 2 841 251 76 27 4 2 972 278 94 26 3 2
XRules.Frq.Emb 50000 1764 367 223 19 7 50000 3285 371 102 21 3 50000 2671 401 114 20 3
XRules.Clo.Ind 7434 1193 296 98 16 3 7699 1063 289 97 18 3 6093 1319 322 109 17 3

DSMC+:

Table 5.9 shows the rules triggered by DSMC and XRules for a test instance (tx) ‘0

1 16 254 1957 -1 -1 -1 -1’ with class label C1. Note that X99 is the last column of
the tabular format of the training data, which represents the instances’ class labels. In
particular, X99 = 0, X99 = 1 corresponds to class C1, C2, respectively. In the DSMC

method, ρC1(tx)> ρC2(tx), thus tx is classified as C1. For XRules, tx is classified as C2.
In this example, DSMC correctly classifies instance tx whereas XRules does not.

If the positional information is removed from the antecedents of the DSMC rules,
three corresponding pairs of rules are obtained: the first, second, and third rule of
DSMC corresponds to the first, second, and third rule of XRules, respectively. The
first rule of each method predicts C2. The second and third rules of DSMC predict C1,
whereas their counterparts in XRules predict C2. It can be inferred that due to the last
two rules of DSMC, the combined rule strength of the DSMC method on class C1 is
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Figure 5.15: Comparison of coverage rates based on subtree types in the CS1-2
dataset.

Table 5.9: DSMC+.

Rule support confidence ρc,C1(tx) ρc,C2(tx)

D
SM

C X1=1⇒ X99=1 (C2) 236 0.52
0.54 0.52X1=1, X2=16⇒ X99 = 0 (C1) 12 0.5

X2=16⇒ X99=0 (C1) 16 0.57

X
R

ul
es 1⇒C2 253 0.53

0 0.541, 16⇒C2 30 0.57
16⇒C2 36 0.51

higher than that of class C2, which leads the correct prediction of tx. It is noticeable
that the last two rules of DSMC have lower supports than their counterparts of XRules

(12, 16 in comparison with 30, 36, respectively). The behaviour shown above can be
observed in a majority of test instances where DSMC gives accurate prediction while
XRules produces incorrect result. Although the position-constrained-based rules have
lower support than traditional subtree-based rules, they have better prediction power.

XRules+:

Table 5.10 shows the rules triggered by DSMC and XRules for the test instance ‘0
1 8 -1 -1 6 81 -1 -1’. In the DSMC approach, only one rule is triggered X1=1 ⇒
X99=1 (predicting class C2). In the XRules approach, four rules are generated 6 ⇒
C1, 81 ⇒ C1, 6, 81 ⇒ C1, 1 ⇒ C2. XRules accurately classifies the instance while
DSMC does not. It should be noted that the additional rules found by XRules do not
occur sufficiently enough at the same position to be found by DSMC and average out
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Figure 5.16: Comparison of accuracy rates based on rule strength measures in the
CS1-2 dataset.

Table 5.10: XRules+.

Rule support confidence ρc,C1(ty) ρc,C2(ty)

D
SM

C

X1=1⇒ X99=1 (C2) 236 0.52 0 0.52

X
R

ul
es

1⇒C2 253 0.53

0.63 0.53
6⇒C1 208 0.66
81⇒C1 43 0.61
6, 81⇒C1 17 0.61

the prediction towards C1. However, if the support threshold is lowered to a certain
value, these extra rules can be found by the DSMC, but in different position-constrained
variants of the same rule.

Examining the set of rules triggered by several test cases, it is seen that the num-
ber of triggered rules of DSMC is often smaller than that of XRules. This could be
attributed to the position constraint being applied to the frequent subtree mining pro-
cess. In cases where there is a great difference between the numbers of triggered rules
among the two methods, XRules often gives a more precise prediction.

Several test cases are examined where XRules rules that do not have their counter-
parts in DSMC (DSMC’s rules that when mapped to tree format are similar to that of
XRules) are removed from the rule set. Fig. 5.18 shows that the number of correct pre-
dictions (on instances that are covered by both methods) of DSMC is higher on average
than that of XRules.

The reason for the better predictive capability of DSMC in this case might be that
the position-constrained patterns better reflect the class of the instance. The results
encourage us to combine DSMC and XRules to achieve a better accuracy rates without
a reduction of coverage rates. The following strategies are proposed for combining
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Figure 5.17: Comparison of coverage rates based on rule strength measures in the
CS1-2 dataset.

the rule sets of the two methods and evaluated them on the CS1-2 dataset using closed
induced subtree with a minimum support of 0.5% and a minimum confidence of 50%.

1. The final rule set includes both DSMC and XRules’s rules. For each test instance,
the DSMC’s rules are examined first, if none of the rules are triggered, then
XRules’s rules are examined. The accuracy rate achieved for this rule set is
83.26%.

2. The final rule set includes both DSMC and XRules’s rules. For each test instance,
both rule sets are examined and the rule set that has more triggered rules is
selected. The achieved accuracy rate is 83.47%.

3. The final rule set includes rules from either DSMC or XRules: if two rules’ an-
tecedents share the same subtree, the rule that has a higher confidence is selected.
The achieved accuracy rate is 83.48%.

Since the accuracy rates of DSMC and XRules for the original settings are 83.85%
and 83.75%, respectively, the proposed strategies for combining the two methods
showed no improvements. This is probably due to the similar performance of DSMC

and XRules in those instances that both methods cover. However, there is a slight im-
provement in terms of coverage rates. The results for DSMC and XRules alone are
54.16% and 73.34%, respectively, but increase to 73.46% for the three strategies de-
scribed above.

The experiments performed in this section show that with the same support thresh-
old, traditional approaches outperform DSMC in terms of coverage rates due to ad-
ditional subtree patterns that are frequent when they are not constrained by positions.
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However, it was demonstrated in (Hadzic et al., 2015) that for many datasets, more sub-
tree patterns might be enumerated by the position constrained approach overall. This is
because subtree patterns could be extracted at a much lower support threshold in com-
parison to traditional approaches. At lower support thresholds, position-constrained
variants of traditional subtrees would also become frequent, thus more rules could be
discovered.

In the experiment of the first strategy in combining position-constrained and tradi-
tional rules, the minimum support of DSMC is changed to 0.1% (previously 0.5%)
while other settings are the same. The accuracy and coverage rates achieved are
83.66% and 76.08%, respectively. Though the accuracy rate of the new setting does
not clearly improve over each method alone, its coverage rate is 2.74% and 21.92%
higher than XRules and DSMC, respectively. This result shows the potential of using a
lower minimum support for DSMC in combination with a higher minimum support for
the traditional approach. More studies are needed in finding a more effective strategy
to combine the two approaches and to reduce the computational cost related to the rule
matching/selection.
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Figure 5.18: The number of instances which one method predicts correctly whereas
the other wrong (based on similar rules).

5.3.3 Comparison on Imbalanced Classes

Table 5.11 shows the accuracy and coverage rate of different techniques when applied
to the three pairs of training and test sets with the setting of frequent embedded subtree
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Table 5.11: Accuracy and coverage rates for individual classes in the CSLOG dataset.

Method
AR(%) for s (%)

0.2 0.5 1 2 5 10
A

cc
ur

ac
y

R
at

e C
S1

-2 DSMC 88.06 |70.06 88.09 |71.65 88.42 |71.14 90.51 |59.30 92.05 |62.44 100.00 |0
XRules 91.15 |61.01 90.99 |62.56 90.70 |65.36 89.90 |67.31 91.27 |62.20 88.64 |56.36
XRulesS 90.30 |65.20 90.80 |65.83 91.02 |65.11 92.20 |52.11 92.05 |62.44 100.00 |0

C
S2

-3 DSMC 88.86 |69.77 89.26 |68.71 90.76 |64.90 91.87 |56.05 93.06 |62.33 100.00 |0
XRules 91.82 |62.79 91.14 |67.17 90.72 |67.22 90.17 |68.70 92.84 |59.60 89.81 |55.58
XRulesS 90.77 |66.42 91.17 |65.03 92.82 |58.78 93.22 |51.27 93.06 |62.33 100.00 |0

C
S3

-1 DSMC 90.09 |67.59 89.91 |70.89 86.57 |73.06 88.52 |64.35 82.25 |70.74 82.37 |70.65
XRules 91.22 |63.85 90.86 |66.23 90.22 |68.79 89.66 |69.71 93.79 |56.86 90.99 |52.53
XRulesS 90.29 |68.59 90.36 |70.72 91.55 |64.54 93.93 |52.31 92.84 |41.80 93.05 |40.65

C
ov

er
ag

e
R

at
e

C
S1

-2 DSMC 60.91 |75.64 52.22 |61.06 43.78 |52.16 39.43 |33.79 19.12 |13.10 17.60 |4.92
XRules 80.99 |85.89 71.60 |80.44 62.20 |74.27 52.25 |61.65 41.45 |44.22 23.84 |23.77

C
S2

-3 DSMC 60.99 |73.97 52.54 |58.84 45.87 |48.16 39.47 |34.93 19.28 |12.40 17.94 |4.67
XRules 81.37 |87.43 70.12 |80.65 60.10 |73.97 52.50 |64.68 41.92 |41.99 23.91 |22.91

C
S3

-1 DSMC 61.60 |71.87 51.75 |60.75 46.29 |47.86 39.05 |30.89 21.94 |15.85 21.91 |15.80
XRules 80.10 |83.89 71.60 |77.88 61.21 |72.17 52.24 |60.24 40.84 |36.39 23.43 |20.18

and c=50%. The performance of the majority and minority class are shown on the left
and the right of each cell, respectively. It can be seen that XRules has better accuracy
rates in 11/18 cases for the majority class and DSMC has better accuracy rates in 12/18
cases for the minority class.

Since DSMC has lower coverage rate than XRules, it is important to measure accu-
racy of XRules relative to only those instances that DSMC covered. The rows labelled
as XRulesS correspond to the results when XRules is evaluated on only those instances
that are covered by the DSMC method. Note that XRulesS typically covered all in-
stances that DSMC covers except for a few instances at s=0.2%.

It is seen that XRulesS has better accuracy rates in all cases for the majority class,
while DSMC has better accuracy rates in 17/18 cases for the minority class.

Table 5.12 adds more details to this comparison by showing the instances that
DSMC approach predicted correctly but XRulesS misclassified (called DSMC+ XRu-

lesS- and instances that DSMC approach misclassified but XRulesS classified correctly
(called DSMC- XRulesS+). The results of the majority and minority class are shown
on the left and right, respectively of each cell in the table.

It is observed that the number of misclassifications of DSMC is lower than that of
XRulesS in 17/18 cases for the minority class and the result of XRulesS is better than
that of DSMC in all cases for the majority class. The results confirm that DSMC has
an advantage in accuracy rate for the minority class and it is the other way around for
the majority class in the CSLOG dataset.
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Table 5.12: Instances correctly(+)/incorrectly(-) classified by DSMC and XRulesS.

Number of instances for s (%)
0.2 0.5 1 2 5 10

C
S1

-2 DSMC+ XRulesS- 16 |72 07 |62 12 |63 21 |53 0 |0 0 |0
DSMC- XRulesS+ 93 |10 88 |02 77 |10 59 |12 0 |0 0 |0

C
S2

-3 DSMC+ XRulesS- 20 |67 10 |57 06 |61 16 |42 0 |0 0 |0
DSMC- XRulesS+ 86 |23 85 |18 61 |08 47 |12 0 |0 0 |0

C
S3

-1 DSMC+ XRulesS- 47 |47 16 |22 00 |80 00 |73 0 |90 0 |93

DSMC- XRulesS+ 49 |62 30 |20 141 |0 129 |0 142 |0 143 |0

5.3.4 Synthetic Datasets

In this section, the accuracy and coverage rates of DSMC and XRules on three synthetic
datasets at minimum supports of 1% and 2% are examined. Both methods use closed,
induced subtrees as antecedents of classification rules and a confidence threshold of
50%. Other settings of frequent pattern, subtree, and rule strength type result in similar
results and are not presented here.

Fig. 5.19 and 5.20 show that the accuracy rates produced by DSMC is significantly
higher than that of XRules in all datasets; especially in ST3, the accuracy rates of DSMC

are twice of that of XRules for both minimum support values. When the minimum
support is set at 1%, there are no differences between the coverage rates of the two
methods. If the threshold is 2%, the coverage rates of DSMC are 15% and 36% lower
than that of XRules in ST2 and ST3, respectively. The reason could be that there are
fewer position-constrained subtrees found at higher support thresholds.
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Figure 5.19: Accuracy and coverage rates of synthetic datasets with s= 1%.
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Figure 5.20: Accuracy and coverage rates of synthetic datasets with s= 2%.

5.4 Experimental Results on Structurally Homoge-
neous Data

As earlier mentioned, since the hospital and CRM datasets are structurally homoge-
neous, a challenge they pose for frequent subtree mining task lies in the large number
of repetitions of sibling nodes/substructures which could lead to exponential running
time and memory usage. Thus closed subtree option is preferred to frequent subtree
option in this dataset. Also due to the homogeneity of the data, there is no difference in
the resulting closed induced and closed embedded subtrees and no disconnected sub-
trees were found. Hence, all variations of DSMC.Clo.Emb and DSMC.Clo.Eds are not
shown as they are the same as DSMC.Clo.Ind.

It is observed that XRules.Clo.Ind is not able to complete at any support threshold.
The data is then modified so that all repetitions in sibling nodes are eliminated. In case
the dataset is modified, the performances of the two methods are evaluated based on
the maximum accuracy or coverage rates of each method.

The results of XRules using the weighted confidence option are not shown since
they are identical to those using confidence option. The number of rules found by the
two approaches for the two dataset is presented in Table 5.13. It shows that the number
of rules of XRules is higher than that of DSMC but the difference is subtle. This can
be explained by the fact that by uniquely relabelling the sibling nodes, the number of
subtree patterns found has reduced to a level that is comparable to that of DSMC.

Note that the statistical test and the ten-fold cross-validation were not performed
on the (original) hospital and CRM datasets because XRules crashed early at the high
support threshold (e.g. 60% for the hospital dataset), thus only few patterns were
found.
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Table 5.13: Number of rules of the hospital and CRM dataset.

Dataset Hospital CRM
s (%) 5 10 50 1 5 10 50
DSMC.Clo.Ind 47945 35540 143 7443 1045 408 16
XRules.SR.Clo.Ind - 36805 216 10103 1410 561 19

5.4.1 Hospital Dataset

Table 5.14 and 5.15 display the accuracy and coverage rates of the subset of the hospital
dataset. Note that highest values per setting are shown in bold. In this dataset, the
support threshold below 5% is not examined as the number of instances is quite small
in the training data (160 instances). It is seen that the accuracy rates of DSMC are
higher than XRules when s=5%, while for other values the opposite is the case. The
confidence option gives better accuracy rates than the other two options at (w)c=50%
or l=1.

For both approaches, increasing the rule strength thresholds leads to mixed results
in accuracy rate. Mixed results are also found when increasing minimum support val-
ues. At the highest minimum support (s=50%), (weighted) confidence ((w)c=90%) or
likelihood threshold (l=10), the rule sets reduce into empty sets. It is noticeable that at
s=5% and the option is XRules.SR.Clo.Ind, the program fails to terminate after one day
running. At (w)c=50% or l=1, the resulting coverage rates for both DSMC and XRules

are 100% .
From the coverage rate results of Table 5.15, it is shown that increasing the rule

strength thresholds results in a decrease in coverage rate. Overall, the DSMC method
gives better maximum coverage rates and XRules gives better accuracy rates where it
obtained three of the best accuracy values compared to two of DSMC.

Table 5.14: Accuracy rates of the hospital dataset.

s (%) 5 10 50
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Clo.Ind.c 72.15 56.52 70.89 64.62 68.35 0
DSMC.Clo.Ind.l 67.09 68.12 69.62 69.84 70.89 0
DSMC.Clo.Ind.wc 70.89 57.75 70.89 65.67 70.89 0
XRules.SR.Clo.Ind.c - - 72.15 78.57 74.68 0
XRules.SR.Clo.Ind.l - - 68.35 68.75 70.89 0

5.4.2 CRM Dataset

Table 5.16 and 5.17 show the accuracy and coverage rates, respectively, when applying
DSMC and XRules to the CRM dataset. Note that highest values per setting are shown
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Table 5.15: Coverage rates of the hospital dataset.

s (%) 5 10 50
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Clo.Ind.c 100.00 87.34 100.00 82.28 100.00 0
DSMC.Clo.Ind.l 100.00 87.34 100.00 79.75 100.00 0
DSMC.Clo.Ind.wc 100.00 89.87 100.00 84.81 100.00 0
XRules.SR.Clo.Ind.c - - 100.00 70.89 100.00 0
XRules.SR.Clo.Ind.l - - 100.00 81.01 100.00 0

in bold. The results at s=50%, (w)c=90% or l=10 are not shown as the accuracy and
coverage rates are zeros.

It is seen that XRules gives better accuracy rates than DSMC except at s=10%,
(w)c=90% or l=10, and s=50%, (w)c=50% or l=1. In the DSMC approach, the likeli-
hood option often gives better accuracy rates than the other two options but it is not the
case for XRules. In term of coverage rate, similar to the hospital dataset, both methods
give the same results at default rule strength thresholds and the maximum coverage
rates goes to the DSMC approach for remaining cases. The analysis of individual class
results (not shown here) shows that XRules has better accuracy on all but at s=10% or
s=50% for the minority class.

Table 5.16: Accuracy rates of the CRM dataset.

s (%) 1 5 10 50
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1)
DSMC.Clo.Ind.c 81.49 80.33 75.44 87.75 74.02 90.59 69.04
DSMC.Clo.Ind.l 81.14 85.07 78.29 87.79 75.80 92.54 72.60
DSMC.Clo.Ind.wc 78.65 80.09 77.58 87.36 75.44 91.67 72.60
XRules.SR.Clo.Ind.c 82.21 90.09 78.65 89.16 73.67 91.12 66.19
XRules.SR.Clo.Ind.l 77.94 84.00 79.36 88.44 76.87 92.03 72.40

Table 5.17: Coverage rates of the CRM dataset.

s (%) 1 5 10 50
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1)
DSMC.Clo.Ind.c 100.00 86.83 100.00 72.60 100.00 60.50 100.00
DSMC.Clo.Ind.l 100.00 78.65 100.00 61.21 100.00 47.69 100.00
DSMC.Clo.Ind.wc 100.00 80.43 100.00 64.77 100.00 51.25 100.00
XRules.SR.Clo.Ind.c 100.00 79.00 100.00 72.24 100.00 60.14 100.00
XRules.SR.Clo.Ind.l 100.00 80.07 100.00 61.57 100.00 49.11 99.29
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5.5 Predicting Outcomes of Running Process Instances

In this section, the DSMC method is evaluated on the capability of predicting whether
a process instance would complete successfully according to a predefined criteria. The
experimental set up is that testing process instances only run through half way to their
completion. The DSMC method is extended as a sequence of steps described in Ta-
ble 5.18.

In this section, the experiments are performed on the hospital, the Dutch Finan-
cial Institute dataset (van Dongen, 2012), and the Repair Telephone dataset (used in
Chapter 4) which will be presented in Section 5.5.1, 5.5.2, and 5.5.3, respectively.

5.5.1 Hospital Dataset

The hospital dataset was already mentioned in Section 3.3, 4.1.1, and 5.2. However,
the dataset used here has two differences: (i) the whole dataset is used and (ii) the as-
signment of class labels to instances is based on their compliance to a predefined linear
temporal logic rule. Specifically, the selected rule is φ = G(“CEA – tumor marker us-
ing meia”→ F(“squamous cell carcinoma using eia”)) which is extracted from (Maggi
et al., 2014). The parameter settings for the experiment are set as followed.

• Ten-fold cross validation is employed.

• Confidence thresholds are set at 50%, 60%, 70%, 80%, and 90%.

• Support thresholds are set at 1% and 5%.

• Root node is not removed.

• Closed and full tree are selected.

• 50 features are selected from the flat data (step 8 in Section 5.5).

The experimental results for support thresholds of 1% and 5% are displayed in Ta-
ble. 5.19 and 5.20, respectively. The same experiment was done in (Maggi et al., 2014).
Note that in their study, ten-fold cross validation evaluation was not employed. There-
fore their results might not be comparable with ours. Furthermore, in (Maggi et al.,
2014) the training data are selected based on their similarity with the test instances,
thus there might be biases occurring in the mining process.

The experimental results in the work of (Maggi et al., 2014) are displayed in Ta-
ble 5.21. It can be seen that our method gives better F1 and accuracy rates when
confidence thresholds are set at 70% or higher for both support thresholds.

152



Predicting Outcomes of Running Process Instances

Table 5.18: A sequence of steps to predict an outcome of a running process instance.

Step Description
1 Setting parameters: e.g. minimum supports, minimum confidences, subtree

types, root node removal.
2 Preprocessing: attributes are sorted in the same order, ID attributes are re-

moved, etc.
3 Assigning class labels to process instances based on desired business out-

come, e.g. complete successfully/failed.
4 Converting the tree database into pre-order string encoding format.
5 Divided the dataset into ten different parts. The remaining steps are repeated

ten times, each with one part used as test data and remaining parts as training
data.

6 DSM extraction.
7 Converting training data to flat data format, e.g. CSV.
8 Extracting important feature: all values in the table are converted to nominal,

InfoGain is used for the attribute rankings. The top k-features are selected for
further processing whereas others are discarded.

9 Converting to itemset format and separate process instances to files based on
class labels.

10 Removing event nodes to improve performance. However, this should not be
done if induced subtrees are to be discovered.

11 Frequent itemset mining on each file—parameter can be normal, closed, or
maximal patterns.

12 Merging all files containing the frequent itemset and from this file, recon-
structing to either embedded, induced, or full tree.

13 Converting test data to flat data format using the DSM tree extracted from the
training data.

14 Removing a half number of event nodes and their attributes in converted test
instances to simulate running instances.

15 Converting training, test data and rules into itemset format.
16 Identifying rules’ strength.
17 Identifying the total rule strength of matched rules for each test instance.
18 Classifying test instances based on the found total rule strengths.
19 Calculating performance rates such as TPR, FPR, PPV, F1, accuracy and cov-

erage rate.
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Table 5.19: Predicting whether running process instances comply to a linear temporal
logic rule with a minimum support threshold of 1%–Hospital dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 87.4 3.8 21.0 1.8 98.0 84.7 80.6 88.5 80.0
c = 60% 87.7 5.3 19.5 1.5 98.3 78.6 81.8 89.3 81.6
c = 70% 86.8 11.3 13.5 2.4 97.3 54.4 86.5 91.6 86.1
c = 80% 75.8 14.4 8.2 2.9 96.3 36.3 90.2 93.2 89.1
c = 90% 71.8 14.9 5.4 2.8 96.2 26.6 93.0 94.6 91.3

Table 5.20: Predicting whether running process instances comply to a linear temporal
logic rule with a minimum support threshold of 5%–Hospital dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 86.7 3.6 21.2 2.5 97.2 85.5 80.4 88.0 79.2
c = 60% 87.8 4.1 20.7 1.4 98.4 83.5 80.9 88.8 80.6
c = 70% 86.9 11.7 13.1 2.3 97.4 52.8 86.9 91.9 86.5
c = 80% 67.8 13.7 4.2 2.5 96.4 23.5 94.2 95.3 92.7
c = 90% 66.1 12.8 3.0 1.6 97.6 19.0 95.7 96.6 94.6

Table 5.21: Predicting whether running process instances comply to a linear temporal
logic rule in (Maggi et al., 2014).

T P T N FP FN T PR FPR PPV F1 ACC
110 19 7 35 94.0 35.1 85.2 89.4 84.7

The comparison of the two methods was also performed on predicting whether
completed process instances comply to the selected linear temporal logic rule. The ex-
perimental settings remain the same. The DSMC’s results are shown in Table 5.22
and 5.23. The corresponding results in (Maggi et al., 2014) are displayed in Ta-
ble 5.24. Similar to the case when process instances run half way through completion,
DSMC gives better performance–in terms of F1 and accuracy rates–when the confi-
dence thresholds were increased to at least 70%.

Table 5.22: Predicting whether completed process instances comply to a linear tempo-
ral logic rule with a minimum support threshold of 1%–Hospital dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 87.7 4.8 20.0 1.5 98.3 80.6 81.4 89.1 81.1
c = 60% 87.9 6.3 18.5 1.3 98.5 74.6 82.6 89.9 82.6
c = 70% 86.8 12.2 12.6 2.4 97.3 50.8 87.3 92.0 86.8
c = 80% 81.0 15.7 8.3 3.0 96.4 34.6 90.7 93.5 89.5
c = 90% 77.9 16.6 6.0 3.1 96.2 26.5 92.8 94.5 91.2
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Table 5.23: Predicting whether completed process instances comply to a linear tempo-
ral logic rule with a minimum support threshold of 5%–Hospital dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 86.7 4.4 20.4 2.5 97.2 82.3 81.0 88.4 79.9
c = 60% 87.7 5.2 19.6 1.5 98.3 79.0 81.7 89.2 81.5
c = 70% 87.1 13.0 11.8 2.1 97.6 47.6 88.1 92.6 87.8
c = 80% 70.2 14.8 3.8 2.4 96.7 20.4 94.9 95.8 93.5
c = 90% 68.9 14.3 2.8 1.6 97.7 16.4 96.1 96.9 95.1

Table 5.24: Predicting whether completed process instances comply to a linear tempo-
ral logic rule in (Maggi et al., 2014).

T P T N FP FN T PR FPR PPV F1 ACC
315 50 25 103 92.6 32.6 86.3 89.3 84.7

5.5.2 Dutch Financial Institute Dataset

In this section, the DFI (van Dongen, 2012; Bautista et al., 2013) dataset is used
to evaluate DSMC’s capability to predict outcomes of running process instances.
The DFI data was originally in the XES format. Attributes such as registration
date and events’ timestamps are removed in the preprocessing step. Events having
name as A PART LY SUBMIT T ED, O SELECT ED, O CREAT ED, O ACCEPT ED,
A REGIST ERED, or A ACT IVAT ED are removed because they are redundant
according to (Bautista et al., 2013). Additionally, the trace attribute AMOUNT REQ

is discretised into 10 bins. Finally, a process instance is assigned the class
label APPROV ED if its trace contains A APPROV ED; otherwise the class label
CANCELLEDORREJECT ED is assigned. The XES data is then converted to a rooted
labelled ordered tree database which is represented in the pre-order string encoding.
The structural properties of the converted data is described as follows: |transactions|=
13087; average encoding length (average number of nodes in pre-order encoding) =
141.8; maximum tree size = 661; average tree height = 2; average tree fan-out = 3.7;
average tree size = 71.4; maximum tree height = 2; maximum tree fan-out = 167;
average encoding length = 1321.

The parameter settings for the associative classification are set similarly to exper-
iments done in Section 5.5.1 with the exception of support thresholds being set at 5%
and 10%.

Table 5.25 and 5.26 show the results of the experiments when support thresholds
were set at 5% and 10%, respectively. The F1 and accuracy rates are promising, how-
ever when the confidence threshold reaches 90%, all performance indicators become
less, exception for the FPR rate. It is noted that the coverage rate for the classification
also drastically decreases.
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Table 5.27 and 5.28 show the results of the experiments when support thresholds
were set at 5% and 10%, respectively, and all test process instances complete. It can
be seen in both settings that the number of true positives decreases, however, the num-
ber of true negative increases in greater number. As a result, the accuracy rate and
F1 values obtained for completed process instances are higher than those of running
process instances. This is probably because it is harder predict correctly with lesser
information.

Table 5.25: Predicting whether running process instances lead to a loan approval with
a minimum support threshold of 5%–DFI dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 1071.8 32.8 191.7 11.7 98.9 85.4 84.8 91.3 84.4
c = 60% 1070.6 36.9 187.6 12.9 98.8 83.6 85.1 91.4 84.7
c = 70% 1068.6 46.0 178.5 14.9 98.6 79.5 85.7 91.7 85.2
c = 80% 1072.6 33.4 191.1 10.9 99.0 85.1 84.9 91.4 84.6
c = 90% 62.2 5.4 19.6 1.7 97.3 78.4 76.0 85.3 76.3

Table 5.26: Predicting whether running process instances lead to a loan approval with
a minimum support threshold of 10%–DFI dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 1066.6 41.7 182.8 16.9 98.4 81.4 85.4 91.4 84.7
c = 60% 1069.1 39.6 184.9 14.4 98.7 82.4 85.3 91.5 84.8
c = 70% 1066.8 49.9 174.6 16.7 98.5 77.8 85.9 91.8 85.4
c = 80% 1075.0 25.0 199.5 8.5 99.2 88.9 84.3 91.1 84.1
c = 90% 48.2 0.3 12.7 0.2 99.6 97.7 79.1 88.2 79.2

Table 5.27: Predicting whether completed process instances get to a loan approval with
a minimum support threshold of 5%–DFI dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 1030.5 155.4 69.1 53.0 95.1 30.8 93.7 94.4 90.7
c = 60% 1029.5 155.6 68.9 54.0 95.0 30.7 93.7 94.3 90.6
c = 70% 1025.6 154.7 69.8 57.9 94.7 31.1 93.6 94.1 90.2
c = 80% 1040.4 139.6 84.9 43.1 96.0 37.8 92.5 94.2 90.2
c = 90% 144.9 40.1 20.4 6.2 95.9 33.7 87.7 91.6 87.5
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Table 5.28: Predicting whether completed process instances get to a loan approval with
a minimum support threshold of 10%–DFI dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 1008.7 172.0 52.5 74.8 93.1 23.5 95.1 94.1 90.3
c = 60% 1021.9 167.3 57.2 61.6 94.3 25.5 94.7 94.5 90.9
c = 70% 1014.2 172.0 52.5 69.3 93.6 23.4 95.1 94.3 90.7
c = 80% 1052.8 112.3 112.2 30.7 97.2 50.0 90.4 93.7 89.1
c = 90% 114.3 2.0 12.8 0.6 99.5 86.5 89.9 94.5 89.7

5.5.3 Telephone Repair Dataset

In this section, the Telephone Repair dataset described in Section 4.3 is used to predict
running process instances leading to a simple or complex case. The parameter settings
for the associative classification are set similarly to experiments done in Section 5.5.1.
However, the use of the feature selection step (step 8 in Section 5.5) in this dataset is
not necessary.

The experimental results for predicting running process instances are presented in
Table 5.29 and 5.30. It can be seen that the F1 and accuracy rates are over 95% for most
settings. Moreover, increasing the confidence thresholds improve the performance of
the classifier. The experimental results for predicting running process instances are
presented in Table 5.31 and 5.32. It is seen that the F1 and accuracy rates are over 96%
for all settings.

Table 5.29: Predicting running process instances would be labelled as simple or com-
plex with a minimum support threshold of 1%–Telephone Repair dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 62.8 38.3 6.1 2.8 95.7 13.7 91.1 93.3 91.9
c = 60% 62.6 42.1 2.3 2.9 95.6 5.2 96.5 96.0 95.3
c = 70% 61.9 43.4 1.0 3.1 95.2 2.3 98.4 96.8 96.2
c = 80% 60.1 43.6 0.3 3.2 94.9 0.7 99.5 97.1 96.7
c = 90% 60.0 42.2 0.2 2.1 96.6 0.5 99.7 98.1 97.8

Table 5.30: Predicting running process instances would be labelled as simple or com-
plex with a minimum support threshold of 5%–Telephone Repair dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 62.9 34.4 10.0 2.7 95.9 22.5 86.3 90.8 88.5
c = 60% 62.6 42.0 2.4 2.9 95.6 5.4 96.3 95.9 95.2
c = 70% 61.9 43.5 0.9 3.1 95.2 2.0 98.6 96.9 96.3
c = 80% 60.0 43.6 0.0 3.2 94.9 0.0 100.0 97.4 97.0
c = 90% 60.0 42.2 0.0 2.0 96.8 0.0 100.0 98.4 98.1
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Table 5.31: Predicting completed process instances would be labelled as simple or
complex with a minimum support threshold of 1%–Telephone Repair dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 62.6 44.3 0.1 3.0 95.4 0.2 99.8 97.6 97.2
c = 60% 62.6 44.4 0.0 3.0 95.4 0.0 100.0 97.6 97.3
c = 70% 62.9 44.4 0.0 2.7 95.9 0.0 100.0 97.9 97.5
c = 80% 63.3 44.4 0.0 2.3 96.5 0.0 100.0 98.2 97.9
c = 90% 64.4 44.4 0.0 1.2 98.2 0.0 100.0 99.1 98.9

Table 5.32: Predicting completed process instances would be labelled as simple or
complex with a minimum support threshold of 5%–Telephone Repair dataset.

c(%) T P T N FP FN T PR FPR PPV F1 ACC
c = 50% 61.7 44.4 0.0 3.9 94.1 0.0 100.0 97.0 96.5
c = 60% 61.7 44.4 0.0 3.9 94.1 0.0 100.0 97.0 96.5
c = 70% 61.7 44.4 0.0 3.9 94.1 0.0 100.0 97.0 96.5
c = 80% 61.7 44.4 0.0 3.9 94.1 0.0 100.0 97.0 96.5
c = 90% 61.8 44.4 0.0 3.7 94.4 0.0 100.0 97.1 96.6

5.5.4 Summary

The experimental results in Section 5.5.1, 5.5.2, and 5.5.3 show that the DSMC method
is able to predict outcomes of running process instances. Therefore this method can be
used to alert process owners when there is a high chance of unwanted outcomes.

The DSMC method is equipped with many parameters, e.g. subtree types, sup-
port thresholds, confidence thresholds, type of rule strength, etc. In our experiments,
although only a few parameter settings were trialled, the results show high F1 and
accuracy rates. Note that in case the DSMC method demands exceptionally large com-
puting power or storage space, more features should be removed from the data (step
8).

5.6 Recommendation Model for Running Process In-
stances

In this section, the PCFSM method is extended so that it is able to recommend sub-
sequent actions for a running process instance in order to achieve a desired outcome.
The sequence of steps performed in this experiment are described in Table 5.33.

The resulted classification model obtained after all steps in Table 5.33 are done
could tell us which characteristics of future events are associated with a desired out-
come.
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Table 5.33: A sequence of steps to generate a recommendation model for a running
process instance.

Step Description
1 Setting parameters: e.g. minimum supports, minimum confidences, subtree

types, root node removal.
2 Preprocessing: attributes are sorted in the same order, ID attributes are re-

moved, etc.
3 Assigning class labels to process instances based on a desired business out-

come, e.g. successfully completed.
4 Converting the tree database into pre-order string encoding format.
5 DSM extraction.
6 Converting training data to flat data format, e.g. CSV.
7 Converting test data to flat data format using the DSM tree extracted from the

training data.
8 Selecting a test instance from the converted test data. In this experiment, the

second half of the test instance’s events are removed to simulate a running
process instance.

9 Selecting instances in the training data that are similar (according to a pre-
define threshold) to the test instance using a distance similarity measure, e.g.
Hamming distance. Suppose that the test instance has n events, then only the
first n events of the training instances are used for the similarity tests.

10 Forming a new training dataset based on the selected instances, however, the
first n events for each instance are removed.

11 Applying a classification algorithm, e.g. the C4.5 decision tree on the new
training data.
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Figure 5.21: A (partial) recommendation model for a testing instance–Hospital dataset.

5.6.1 Recommendation Model for the Hospital Dataset

In this section, the hospital dataset described in Section 5.5.1 is examined. The param-
eter settings are described as follows.

• Support thresholds are set at 5%.

• Root node is removed.

• Distance threshold is set at 40%.

The selected test instance at the end of step 8 is “0 1 443 -1 -1 5 444 -1 -1 9 311
-1 -1 13 14 -1 -1 17 31 -1 14 -1 445 -1 120 -1 29 -1 446 -1 -1 17 31 -1 14 -1 121 -1
120 -1 29 -1 122 -1 -1 17 31 -1 14 -1 24 -1 120 -1 29 -1 25 -1 -1 17 42 -1 43 -1 44
-1 45 -1 46 -1 47 -1 -1”. At the end of step 9, 200 instances were formed for the new
training dataset. Applying the C4.5 decision tree algorithm to this dataset resulted in a
recommendation model shown in Fig. 5.21. Note that only part of the model is shown
because the classification rules obtained from the remaining leaves are insignificant
(the ratio of correct predictions are small in those leaves).

To interpret the obtained recommendation model, the distance between event nodes
should be identified. In the hospital dataset, this distance is 7. Therefore the running
test process instance is currently at the 5th event. In Fig. 5.21, X168, X1083, X1566 and
X2883 corresponds to the 22th, 152th, 221th, and 410th event of the process, respec-
tively. From the above decision tree, it can be concluded that for the current running
process to satisfy the linear temporal logic rule described in 5.5.1 with a confidence of
94% (107/111), this process should not have more than 21 events in total.
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Figure 5.22: A (partial) recommendation model for a testing instance–DFI dataset.

5.6.2 Recommendation Model for the DFI Dataset

In this section, the DFI dataset described in Section 5.5.2 is examined. The parameter
settings are described as follows.

• Support thresholds are set at 10%.

• Root node is removed.

• Distance threshold is set at 30%.

The selected test instance at the end of step 8 is “123 0 22 -1 3 4 -1 5 -1 6 -1 -1 3
41 -1 9 -1 6 -1 -1 3 41 -1 10 -1 62 -1 -1 3 41 -1 5 -1 62 -1 -1 3 41 -1 10 -1 76 -1 -1 3
41 -1 5 -1 76 -1 -1 3 41 -1 10 -1 52 -1 -1”. At the end of step 9, 179 instances were
formed for the new training dataset. Applying the C4.5 decision tree algorithm to this
dataset resulted in a recommendation model shown in Fig. 5.22.

In the DFI dataset, the distance between event nodes is 5. As a result, X75, X98,
X131 and X139 belong to the 15th, 20th, 26th, and 28th event of the process, respec-
tively. It can be interpreted from the obtained recommendation model that for the
current process instance to get a loan approval with a confidence of 92.6% (25/27),
the 26th event should be WNabellen incomplete dossiers (Seeking additional infor-
mation during assessment phase (Bautista et al., 2013)) and the 28th event should be
W Valideren aanvraag (Assessing the application).
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Figure 5.23: A (partial) recommendation model for a testing instance–Telephone Re-
pair dataset.

5.6.3 Recommendation Model for the Telephone Repair Dataset

In this section, the Telephone Repair dataset described in Section 4.3 is examined. The
parameter settings are described as follows.

• Support thresholds are set at 1%.

• Root node is removed.

• Distance threshold is set at 30%.

The selected test instance at the end of step 8 is “0 894 -1 3 -1 23 -1 5 6 -1 7 -1 8
-1 -1 5 43 -1 10 -1 11 -1 -1 5 43 -1 10 -1 8 -1 46 -1 13 -1 -1 5 27 -1 15 -1 11 -1 -1 5
27 -1 15 -1 8 -1 -1 5 9 -1 16 -1 11 -1 -1 5 9 -1 16 -1 8 -1 29 -1 30”. At the end of step
9, 250 instances were formed for the new training dataset. Applying the C4.5 decision
tree algorithm to this dataset resulted in a recommendation model shown in Fig. 5.23.

In the Telephone Repair dataset, the distance between event nodes varies because
the number of attributes of each event can be different. From the flat data format of the
training data, it can be found that X46, X66, and X90 belong to the 9th, 13th, and 18 event
of the process, respectively. It can be interpreted from the obtained recommendation
model that for the current process instance to be classified as a complex repair with a
confidence of 100% (56/56), either the 9th event’s attribute should be “numberRepairs
= 0” or the 13th event’s attribute should be ”numberRepairs = 1”.

5.6.4 Summary

The PCFSM method was extended to build recommendation models for the Hospital,
DFI and Telephone Repair datasets. The resulting recommendation models were easy
to interpret and would serve as a reliable decision-making tool for process owners.
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5.7 Enhancing DSMC

In this section, two methods of improving the DSMC method are introduced. First,
a stable-rule-set method is used to reduce the number of rules. Second, a boosting
method is applied to DSMC in order to improve coverage rates.

Stable-rule-set method Approaches that are based on the frequent pattern frame-
work are often troubled by the sheer number of patterns discovered. A stable-rule-set
method was developed for the purpose of obtaining a more compact rule set while
maintaining accuracy and coverage rates.

The stable-rule-set method a four-step procedure which is described as follows.

1. The DSM is extracted from the training data.

2. The training data are randomly split into m partitions with equal number of in-
stances.

3. Class-associative rules for each partition are formed using the method described
in Section 5.1.2. The minimum support is adjusted using the following formula:

rs= rs∗ m−1
m

.

4. The intersection of m class-associative rule sets forms the new rule set.

The accuracy and coverage results of the two methods on the CS1-2 dataset are
presented in Fig. 5.24 and 5.25, respectively. As can be seen from the figures, there
are negligible differences among the results and the greatest difference is less than 1%,
where the setting is s= 2%, c= 50%.

The classification accuracy of the two approaches on the hospital dataset is shown
in Fig. 5.26. Except from the result where the stable set method has higher accuracy at
s= 5%, c= 90%, the two methods’ results are almost similar at other settings.

The results on coverage rates are not shown since they are identical between the
two methods.

The accuracy and coverage rates of the two methods on the CRM dataset are shown
in Fig. 5.27 and 5.28, respectively. The accuracy rates of the two methods are almost
identical as the highest gap in accuracy rate is less than 1%, which occurs at s= 10%,
c= 50%. The same characteristics can be found for the coverage rates, except that the
stable-rule-set method is 13.27% less than the normal method at s= 30%, c= 90%.

Fig. 5.29, 5.30, and 5.31 show the number of rules extracted by the normal method
and the stable-rule-set method. It can be seen that the number of rules obtained by the
stable-rule-set method is consistently lower than that of the normal method.

Boosting
Ensemble methods such as bagging, boosting, and random forest tend to be effec-

tive in improving the classification accuracy (Han and Kamber, 2006). In this section,
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Figure 5.24: Accuracy rates of DSMC using the stable-rule-set and normal method on
the CS1-2 dataset.

ADABoosting (Freund and Schapire, 1997), which is a specific type of boosting meth-
ods, is applied to the DSMC method on the CS1-2 dataset.

The accuracy and coverage rates obtained are displayed in Fig. 5.32 and 5.33. It is
observed that the accuracy rates do not improve by using boosting method. However,
the coverage rates improve 6% on average when using ADABoosting.

5.8 Conclusion

In this chapter, DSMC, an associative classifier that is based on the position-constrained
subtree mining is proposed. This method is an extension of the PCFSM method de-
scribed in Chapter 3. Hence, it is also applicable to process logs. The DSMC method
was evaluated and compared with XRules, a state-of-the-art tree-structured classifier,
on several synthetic and real-world datasets.

The main characteristic of the synthetic datasets is that subtree patterns only occur
(randomly) at pre-defined random locations in a random DSM tree. The experimental
results of DSMC and XRules on these datasets showed that the former method performs
better in terms of accuracy rate. Both methods also have similar coverage rates; how-
ever the coverage rates of DSMC decrease more quickly than those of XRules when
minimum supports increase.

The CSLOG dataset represents for heterogeneous data. The experimental results
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Figure 5.25: Coverage rates of DSMC using the stable-rule-set and normal method on
the CS1-2 dataset.

showed that the coverage rates of DSMC are less than those of XRules, which could
be attributed to the limited number of patterns found when positional constraint being
applied to frequent subtree mining. In terms of accuracy rate, the two methods are ap-
proximately the same when s≤2% and the configurations are Frq.Emb.c or Clo.Ind.c;
for other configurations, the trends are not clear. In another evaluation setting, the stu-
dent’s t-test was used in conjunction with the ten-fold cross-validation method. The
results showed that there are no statistical differences between the accuracy rates of
the two approaches.

The hospital and the CRM datasets represent for homogeneous data. To enable
XRules to work at lower support thresholds, all sibling nodes are renamed with distinct
labels. The results on the modified datasets showed that DSMC has equal coverage
rates to XRules at the default rule strength thresholds and higher maximum coverage
rates for remained cases. In the hospital dataset, DSMC achieves better accuracy rates
at s <10% but XRules has higher accuracy rates for the remaining cases. In the CRM

dataset, the accuracy rates of XRules are higher than those of DSMC when s≤10%. In
general, no clear trends in terms of accuracy rate have been found.

It is noticeable that XRules often produces larger rule sets, which possibly explains
for its high coverage rates. Please note that due to the capability of DSMC to run at
low support thresholds, the overall coverage rates of DSMC are comparable to those of
XRules. For a fair comparison of accuracy rates, only subsets of test data where both
classifiers cover are selected. It is remarkable that the resulting accuracy rates of the
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Figure 5.26: Accuracy rates of DSMC using the stable-rule-set and normal method on
the hospital dataset.

two methods are comparable. In addition, for each test instance in these subsets of data,
the number of XRules’s rules that are triggered is greater or equal to that of DSMC’s
rules. This indicates the more focused nature of the position-constrained patterns. In
a particular case, when XRules’s rules that have no counterparts in DSMC (rules that
share the same subtrees) are removed, the accuracy rates of XRules are less than those
of DSMC. This observation encourages for more studies to be conducted on finding
effective strategies to combine the two approaches.

The evaluation of the two methods on majority and minority classes showed mixed
results. It is worth noting that in both the hospital and CRM datasets, XRules with
closed, induced subtree option failed to terminate after one day of running at any
support threshold. For this reason, sibling nodes were renamed with distinct labels;
however, by doing so the same strategy as DSMC is actually partially followed.

The evaluation was also performed using different options, such as frequent, closed,
induced, embedded and embedded-plus-disconnected subtrees. Additionally, different
rule strength measures, such as confidence, weighted confidence and likelihood were
used as parameters for the comparisons. The closed, induced subtree options were
preferred over frequent, embedded, or embedded-plus-disconnected subtree options
because less patterns were generated (thus requires less space and decreases running
time) while accuracy rates were not affected. The confidence measure was among the
several rule strengths that consistently gave high accuracy and coverage rates. In ad-
dition, this measure is simple and can be easily explained to users. It was observed
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Figure 5.27: Accuracy rates of DSMC using the stable-rule-set and normal method on
CRM dataset.

that using lower support thresholds often leads to better coverage rates, without affect-
ing much on accuracy rates. On the other hand, using higher support thresholds may
improve the accuracy rate but at the cost of a rapid decrease in the coverage rate.

Overall, the experimental results on homogeneous datasets showed that DSMC is
a suitable classification method for tree-structured event data. DSMC works best when
there is a need for identifying the exact location of subtree patterns. The method can
also be used in complex datasets where other tree-structured classifiers struggle at high
support thresholds. However, no claim is being made that this method can replace the
classification methods that are based on traditional frequent subtree mining. In fact,
they can be combined to produce a better classifier.

The DSMC method was extended for the purpose of predicting outcomes of run-
ning process instances. This functionality can be used as an alert system to notify
process owners or managers when a running case has a high chance of being led to a
failure or unwanted outcomes. Furthermore, this method was modified to be able to
recommend suitable actions for a running process instance in order to achieve a desired
outcome.
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Figure 5.28: Coverage rates of DSMC using the stable-rule-set and normal method on
CRM dataset.
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Figure 5.29: The number of rules of the stable-rule-set and normal methods on the
CS1-2 dataset.
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Figure 5.30: The number of rules of the stable-rule-set and normal methods on the
hospital dataset.
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Figure 5.31: The number of rules of the stable-rule-set and normal methods on the
CRM dataset.
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Figure 5.32: The effect of ADABoosting on the accuracy rates of DSMC on CS1-2.
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Figure 5.33: The effect of ADABoosting on the coverage rates of DSMC on CS1-2.
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Chapter 6

Conclusion and Future Work

In this chapter, our main findings and outline future work are summarised. First, a
recapitulation of the thesis is provided in Section 6.1. The contributions of this thesis
are highlighted in Section 6.2; lessons learned from the results and implications of the
study are also presented. Section 6.3 discusses the shortcomings of our work. Finally,
in Section 6.4, several research directions that can be built upon our work are listed.

6.1 Recapitulation

Chapter 1 provided a background to business process management generally and pro-
cess mining specifically. It is shown that the majority of studies in the process mining
field is focused or based on process models, e.g. process discovery, process model
enhancements, and conformance checking. Data mining algorithms were commonly
used but often fulfilled a supplementary role. The question is asked as to whether a
process log can be analysed without any knowledge of a process model. With the
birth of XML-based standards for process logs and their increasing adoption, there has
been a need to conduct a study on the use of XML/tree mining techniques to directly
mine (or analyse) event data. To provide a clue as to how this can be done, several
examples were given. The remainder of the chapter discussed the research questions,
contributions and significance of the thesis.

Chapter 2 provided a comprehensive literature review and important notations used
in the thesis. Firstly, the business process management field was introduced as a gen-
eral context for our study. Secondly, the process mining field was described in detail
with a focus on event logs and their data structures. Process model discovery algo-
rithms, which were the main theme of research in the field, were also introduced to the
readers. Methods that mine event logs without process models were further discussed.
Thirdly, many data mining methods such as frequent pattern mining, classification, as-
sociative classification, as well as interestingness measures were presented. Fourthly,

171



Contributions

the relationship between XML and tree-structured data were described and finally tree
mining methods that are applicable to XML-based process logs are introduced.

Chapter 3 started with a motivating example in which the need for a tree-structured
data mining applicable to process logs was highlighted. Next, some advantages of the
position-constrained frequent subtree mining over traditional methods were discussed
and a time performance study was conducted to evaluate these methods. The details of
the structure-preserving tree mining approach and formal proofs were then presented.
After that, an integrated method, called PCFSM, was proposed for the direct mining of
process logs. This method was then extended with an exploratory analysis approach.

Chapter 4 reported the evaluation of the proposed methods. First, experimen-
tal settings and data descriptions were provided. Next, the exploratory analysis and
the PCFSM method were evaluated. Then, a classification task, which is based on
PCFSM, was tested on labelled process logs, highlighting the usefulness of the sug-
gested method. The chapter ended with some lessons learned and general remarks.

Chapter 5 discussed an associative classification method for process logs. First, a
literature review for XML classification was presented. Then, an associative classifier,
named DSMC, was proposed based on the position-constrained frequent subtree min-
ing. The method was evaluated in heterogeneous (CSLOG dataset) and homogeneous
data (hospital and CRM dataset). The DSMC method was extended to predict out-
comes of running process instances. In addition, it was modified to become an activity
recommender for a running process to achieve a desired outcome. Lastly, several meth-
ods were proposed to improve DSMC’s classification accuracy and coverage rates, or
to reduce the number of rules.

6.2 Contributions

The work in thesis has answered the research question proposed in Chapter 1 “In what
way can XML data mining techniques be applied to XML-based event logs to discover
hidden knowledge without using process models?”. An integrated method to analyse
process log, called PCFSM, was proposed. A major component of this method is the
structure-preserving flat data format for tree-structured data. The main idea is that by
representing tree-structured process logs in a flat data format, a wide range of classical
data mining methods such as classification, clustering, and outlier detection can be
utilised.

The proposed approach is robust in terms of working under lower minimum sup-
ports as compared to other FSM or sequence mining methods. Being able to handle a
lower minimum support threshold means that overall more patterns can be discovered,
including the rare patterns which are potentially indicative of outlying/non-conforming
process instances.
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The PCFSM method was applied to real-world and synthetic process logs. The
experimental results have shown the capability of the method in identifying the general
characteristics of a group of process instances. In addition, by representing XML-based
event logs in a flat data format, many classical data mining techniques can now be
utilised for analysis purposes. As a case in point, a decision tree algorithm was used
to predict an outcome of a process instance; e.g. to identify whether a claim would be
rejected or accepted, or to identify performance bottlenecks, or e.g. to pick out process
participants that are often associated with process delays.

Another contribution of the thesis is the EPLA method, which is particularly useful
in the absence of domain knowledge to guide the analysis. It can also be used when
the process analysts do not have a clear goal in mind, or they want to explore the data
in the most generic way. To explore this process log in an unbiased manner, cluster-
ing techniques are used to detect groups of similar process executions, then FSM and
classification techniques are used to identify the descriptive and distinguishing charac-
teristics of the process instances, respectively. The suggested method is different from
traditional clustering, in the sense that through the structure-preserved conversion of
tree data, the structural characteristics of the process logs are taken into account. Fur-
thermore, the position-constraint inherited through the approach will avoid grouping
process instances that share similar events yet are completely different in regards to
when and in which sequence each event took place.

A general purpose classification method for process logs, named DSMC, was pro-
posed in this work. This method was built upon the associative classification frame-
work and the position-constrained frequent/closed subtree mining approach. The clas-
sification accuracy of the proposed method is comparable to methods that are based
on traditional frequent subtree mining. However, a particular characteristic of our pro-
posed method which makes it suitable for process mining is that the subtrees and their
nodes are labelled with absolute positions based on the Document Structure Model.
Having each node in a tree instance being embedded with a position, it is possible
to identify the context or location of frequent/outlying events and/or attributes. The
DSMC classification model generally has fewer rules than other traditional methods
for a given support, especially in datasets with more variations in structure. A smaller
rule set would improve the time performance of an associative classifier and it would
also be easier to interpret the rules; however, this may lead to less coverage. However,
if the minimum support is reduced to a certain value in the DSMC method, different
variants of the same rule in the traditional approach can be identified.

Since the schemas of XES/MXML are relatively simple and the number of events
are often small, many repetitions—in terms of node label and structure—can be found
in event data. For this reason, when applied to XML-based event logs, a traditional
frequent subtree mining method often results in a large number of patterns, which

173



Limitations

often lead to memory and storage problems. To alleviate the problem of having a large
number of patterns when mining process logs, closed and/or induced subtree patterns
are preferable to frequent/embedded subtree patterns. The experimental results showed
that by using closed/induced subtree patterns, the number of rules was greatly reduced
without affecting the classification accuracy or coverage rate.

Another strength of the proposed classification method is that different types of
interestingness measure such as confidence, lift, and correlation can be used to filter out
rules that have low discriminating power. The confidence measure is recommended for
process analysts and domain experts due to its consistently high accuracy and coverage
rates, and the definition of ‘confidence measure’ might be easier to understand for non-
experts.

This thesis also explored the capability of the suggested methods in predicting
whether a business process would lead to a successful completion. By extending
the DSMC method, the method is now able to predict if a running process instance
(have not completed) would eventually achieve a predefined outcome. Furthermore,
the PCFSM method was extended to help process owners identify characteristics of
future events of a running process instance that are associated with a successful com-
pletion (according to a desired outcome).

Overall, this work extends the available pool of process analysis techniques, al-
lowing effective knowledge discovery from XML-based process logs in a more direct,
unbiased manner and also provides an effective associative classifier for process log
analysis. The process mining landscape is now broadened by the introduction of fre-
quent subtree based techniques.

6.3 Limitations

For a given minimum support, the DSMC’s classification accuracy is comparable to
that of other state-of-the-art methods on semi-structured event data; however, it does
not cover as many instances as such. In practice, this is not a limitation as typically
much lower support thresholds can be used to enumerate those additional patterns and
potentially more subtree variants could be found (Hadzic et al., 2015). In cases where
positional constraint on subtrees is not desired, traditional methods could be used.
However, if there are complexity issues for the traditional approaches where low sup-
port thresholds cannot be handled, DSMC could be used with a small post-processing
step to remove the position constraint and merge structure and label into one tradi-
tional subtree (Hadzic et al., 2015). On the other hand, in some cases covering more
instances may not be desired, as the rules without position constraint could be consid-
ered too general (e.g. an association between two events without knowing where they
have occurred within the process execution path may be unreliable for practical use).
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Our proposed methods were evaluated mainly on one real-world and several syn-
thetic process logs. We tried to obtain more real-world event logs, but due to the high
confidentiality of this type of data, only one public dataset was used, i.e. the hospital
dataset. Although the experiments confirm the validity of our methods, there is a need
to further evaluate them on a wider range of datasets and process analysis applications.

6.4 Future Work

This section outlines several avenues for future exploration that were identified during
the thesis work, but were outside of its scope.

6.4.1 Efficient User Interaction

In this thesis, the PCFSM method was used to identify the common characteristics
of process instances or associations between event attributes. These tasks often result
in a huge number of patterns; however, users are usually interested in specific prop-
erties of data/patterns. There should be a mechanism for more user interactions and
control in the mining process so that unwanted results and running time are reduced.
There have been many studies in pushing constraints into the sequential and associa-
tion rule mining process and some notable works are (Ng et al., 1998), (Mooney and
Roddick, 2013). Many constraints suggested in the above works are also applicable
to our method, such as item, length, duration, and gap constraint. For example, a gap
constraint for mining frequent characteristics of process logs could be that the time dif-
ference between two subsequent events must not be more than 1 day. Suppose that the
event’s time-stamps of this process log are located at positions X(i+1)∗8+3, i ∈ N in the
DSM, e.g. X3, X11, X18, the gap constraint can be formulated as X(i+1)∗8+3−Xi∗8+3≤ 1.
Basic constraints such as item constraint (patterns must contain a particular item) can
be enforced in the pre-processing step; other types of constraint, such as gap constraint,
have to be embedded in the mining algorithms.

Visualisation would help to convey the data and enable users to discover patterns
effectively. It is important that the visualisation algorithm, developed for PCFSM,
should be scalable to process large logs with millions of instances or those containing
process instances with thousands of events. These situations are not uncommon in our
current “Big Data” world. The tree-structured patterns should be able to link back to
process instances where they occur. Data attributes that are not important or irrelevant,
such as the IDs, could clutter the diagrams. Therefore, users may want to disable the
appearance of these types of attribute.

It would be an important add-on to the proposed method if the DSM of a process
log could be displayed in the form of an interactive map (van der Aalst, 2009). In this
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map, users could zoom in and out on any specific part to gain more specific or general
information, respectively. In our case, the zooming level could be associated with the
current selected support thresholds. The DSM of a XML-based process, with nodes
being annotated by their position, provides a general view of all process instances
in the event log. When a user zooms in, the minimum support decreases and nodes
with lower frequency are displayed. Using this technique, a user could observe the
most important characteristics of an event log. This idea could be extended to display-
ing tree-structured patterns as well. In particular, when a specific part of a pattern is
zoomed in (thereby decreasing the minimum support threshold), related patterns that
are supersets of the nodes in view could also be displayed.

6.4.2 Combination of DSMC Rules and Traditional Frequent Sub-
tree based Rules

From the experiments conducted in Chapter 5, it was seen that the accuracy rates of
DSMC are similar to those of XRules, which is a traditional frequent subtree based
associative classifier, despite its more compact rule set.

The work in (Hadzic et al., 2015) showed that position-constrained frequent subtree
mining can operate at a much lower support threshold than traditional approaches.
Additionally, more positioned-constrained variants of traditional frequent subtrees can
be found at lower minimum supports. Hence, when it becomes infeasible for traditional
methods to extract rules at lower support thresholds, DSMC can be used to add new
rules to the rule set and more significant improvements in both accuracy and coverage
rates are expected. In a preliminary experiment, the rule set of XRules was combined
with the rule set of DSMC at a lower support, and the result was a better classifier that
achieved better coverage rates than both methods. This initial result encourages the
development of effective strategies to incorporate the two approaches.

6.4.3 Outlier Detection

Outlying process instances are those that deviate significantly from others. These in-
stances could represent abnormal behaviours that require special attention, or frauds
that should be prevented. The studies in (Bezerra et al., 2009) and (Depaire et al.,
2013) first identify process models from event logs and process instances that do not
conform to the models; these are classified as outliers. In (Folino et al., 2011), the au-
thors introduce S-patterns and use such patterns for the clustering of event data based
on the co-clustering method; instances that do not associate with any pattern cluster
or belong to a cluster whose size is much smaller than other clusters’ are considered
outlying instances.
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A possible avenue for future work is to utilise the PCFSM method for the clustering
of tree-structured process logs. When the process instances are structurally varied,
more clusters of smaller size are expected to appear, which could make it harder to
distinguish outlying instances. One possible solution is to insert dummy nodes in the
DSM and most common activities could be aligned to specific locations. By doing this,
it would be easier to separate the outlying instances from the rest.
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Table A.1: Accuracy rates for the CS1-2 dataset

s(%) 0.2 0.5 1 2 5 10
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Frq.Emb.s 83.24 90.38 83.87 91.57 83.93 91.86 84.22 92.42 87.07 92.39 92.39 92.39
DSMC.Clo.Emb.s 83.33 90.46 83.85 91.56 83.94 91.90 84.21 92.42 87.07 92.39 92.39 92.39
DSMC.Frq.Emb.l 80.40 87.59 82.10 87.79 81.92 86.23 81.81 0.00 78.59 0.00 78.98 0.00
DSMC.Clo.Emb.l 80.94 87.95 82.08 87.78 81.93 86.49 81.80 0.00 78.59 0.00 78.98 0.00
DSMC.Frq.Emb.wc 80.40 86.03 82.10 85.03 81.92 82.23 81.81 67.37 78.59 0.00 78.98 0.00
DSMC.Clo.Emb.wc 81.00 86.48 82.08 85.29 81.93 82.39 81.80 67.37 78.59 0.00 78.98 0.00
DSMC.Frq.Ind.s 83.24 90.38 83.87 91.57 83.93 91.86 84.22 92.42 87.07 92.39 92.39 92.39
DSMC.Clo.Ind.s 83.33 90.46 83.85 91.56 83.94 91.90 84.21 92.42 87.07 92.39 92.39 92.39
DSMC.Frq.Ind.l 80.50 87.61 82.10 87.79 81.92 86.23 81.81 0.00 78.59 0.00 78.98 0.00
DSMC.Clo.Ind.l 80.98 87.96 82.08 87.78 81.93 86.49 81.80 0.00 78.59 0.00 78.98 0.00
DSMC.Frq.Ind.wc 80.50 86.04 82.10 85.03 81.92 82.23 81.81 67.37 78.59 0.00 78.98 0.00
DSMC.Clo.Ind.wc 81.02 86.49 82.08 85.29 81.93 82.39 81.80 67.37 78.59 0.00 78.98 0.00
DSMC.Frq.Ftr.s 83.24 90.38 83.87 91.57 83.93 91.86 84.22 92.42 87.07 92.39 92.39 92.39
DSMC.Clo.Ftr.s 83.35 90.48 83.85 91.56 83.94 91.90 84.21 92.42 87.07 92.39 92.39 92.39
DSMC.Frq.Ftr.l 80.40 87.60 82.10 87.88 81.92 86.23 81.81 0.00 78.59 0.00 78.98 0.00
DSMC.Clo.Ftr.l 80.96 87.88 82.08 87.87 81.93 86.49 81.80 0.00 78.59 0.00 78.98 0.00
DSMC.Frq.Ftr.wc 80.40 86.00 82.10 85.03 81.92 82.23 81.81 67.37 78.59 0.00 78.98 0.00
DSMC.Clo.Ftr.wc 81.02 86.29 82.08 85.02 81.93 82.39 81.80 67.37 78.59 0.00 78.98 0.00
XRules.Frq.Emb.s 83.97 89.16 83.92 90.76 84.10 91.22 84.07 91.62 84.32 92.21 81.30 92.60
XRules.Frq.Emb.l 80.56 84.96 81.90 84.79 81.96 83.92 82.18 80.68 82.04 86.38 77.51 0.00
XRules.Clo.Ind.s 83.89 89.25 83.75 90.88 83.95 91.22 84.07 91.62 84.32 92.21 81.30 92.60
XRules.Clo.Ind.l 80.52 85.34 81.74 84.71 81.87 83.58 82.18 80.68 82.04 86.38 77.51 0.00
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Table A.2: Accuracy rates for the CS2-3 dataset

s(%) 0.2 0.5 1 2 5 10
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Frq.Emb.s 83.67 90.77 83.98 91.97 84.44 92.12 84.19 92.92 87.97 92.57 92.57 92.57
DSMC.Clo.Emb.s 83.82 90.97 83.99 92.01 84.45 92.16 84.19 92.92 87.97 92.57 92.57 92.57
DSMC.Frq.Emb.l 80.79 87.27 82.51 90.14 82.94 87.99 82.38 90.36 79.57 0.00 79.62 0.00
DSMC.Clo.Emb.l 81.18 87.78 82.56 90.22 82.95 87.96 82.38 90.24 79.57 0.00 79.62 0.00
DSMC.Frq.Emb.wc 80.83 87.14 82.51 89.60 82.94 87.99 82.38 90.36 79.57 0.00 79.62 0.00
DSMC.Clo.Emb.wc 81.16 87.58 82.56 89.67 82.95 87.96 82.38 90.24 79.57 0.00 79.62 0.00
DSMC.Frq.Ind.s 83.67 90.77 83.98 91.97 84.44 92.12 84.19 92.92 87.97 92.57 92.57 92.57
DSMC.Clo.Ind.s 83.82 90.97 83.99 92.01 84.45 92.16 84.19 92.92 87.97 92.57 92.57 92.57
DSMC.Frq.Ind.l 80.87 87.27 82.51 90.14 82.94 87.99 82.38 90.36 79.57 0.00 79.62 0.00
DSMC.Clo.Ind.l 81.18 87.78 82.56 90.22 82.95 87.96 82.38 90.24 79.57 0.00 79.62 0.00
DSMC.Frq.Ind.wc 80.89 87.14 82.51 89.60 82.94 87.99 82.38 90.36 79.57 0.00 79.62 0.00
DSMC.Clo.Ind.wc 81.16 87.58 82.56 89.67 82.95 87.96 82.38 90.24 79.57 0.00 79.62 0.00
DSMC.Frq.Ftr.s 83.67 90.77 83.98 91.97 84.44 92.12 84.19 92.92 87.97 92.57 92.57 92.57
DSMC.Clo.Ftr.s 83.82 90.91 83.99 92.01 84.45 92.16 84.19 92.92 87.97 92.57 92.57 92.57
DSMC.Frq.Ftr.l 80.79 87.27 82.51 90.10 82.94 89.14 82.38 90.36 79.57 0.00 79.62 0.00
DSMC.Clo.Ftr.l 81.18 87.73 82.56 90.16 82.95 89.12 82.38 90.24 79.57 0.00 79.62 0.00
DSMC.Frq.Ftr.wc 80.83 87.14 82.51 89.57 82.94 89.14 82.38 90.36 79.57 0.00 79.62 0.00
DSMC.Clo.Ftr.wc 81.16 87.58 82.56 89.62 82.95 89.12 82.38 90.24 79.57 0.00 79.62 0.00
XRules.Frq.Emb.s 84.59 89.63 84.87 91.11 84.26 91.49 84.26 92.64 85.00 93.55 82.00 92.83
XRules.Frq.Emb.l 79.92 82.98 82.14 87.05 82.58 88.26 82.60 89.51 82.78 84.40 78.35 0.00
XRules.Clo.Ind.s 84.64 89.94 84.79 91.12 84.26 91.49 84.26 92.64 85.00 93.55 82.00 92.83
XRules.Clo.Ind.l 81.17 84.77 82.08 87.31 82.58 88.11 82.60 89.51 82.78 84.40 78.35 0.00
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Table A.3: Accuracy rates for the CS3-1 dataset

s(%) 0.2 0.5 1 2 5 10
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Frq.Emb.s 83.96 90.86 84.71 92.04 83.20 92.16 83.63 92.68 80.08 92.38 80.17 92.38
DSMC.Clo.Emb.s 84.15 90.92 84.77 92.04 83.21 92.15 83.68 92.68 80.17 92.38 80.17 92.38
DSMC.Frq.Emb.l 80.75 87.47 82.33 88.50 82.90 88.60 83.61 92.46 80.08 0.00 80.17 0.00
DSMC.Clo.Emb.l 81.50 87.44 82.39 88.53 82.91 88.58 83.66 92.46 80.17 0.00 80.17 0.00
DSMC.Frq.Emb.wc 81.06 86.86 82.77 87.71 82.90 89.10 83.61 92.46 80.08 0.00 80.17 0.00
DSMC.Clo.Emb.wc 81.50 86.87 82.39 87.79 82.91 89.08 83.66 92.46 80.17 0.00 80.17 0.00
DSMC.Frq.Ind.s 84.00 90.86 84.71 92.04 83.20 92.16 83.63 92.68 80.08 92.38 80.17 92.38
DSMC.Clo.Ind.s 84.15 90.95 84.77 92.04 83.21 92.15 83.68 92.68 80.17 92.38 80.17 92.38
DSMC.Frq.Ind.l 80.95 87.47 82.33 88.50 82.90 88.60 83.61 92.46 80.08 0.00 80.17 0.00
DSMC.Clo.Ind.l 81.56 87.59 82.39 88.53 82.91 88.58 83.66 92.46 80.17 0.00 80.17 0.00
DSMC.Frq.Ind.wc 81.06 86.86 82.77 87.71 82.90 89.10 83.61 92.46 80.08 0.00 80.17 0.00
DSMC.Clo.Ind.wc 81.56 87.01 82.39 87.79 82.91 89.08 83.66 92.46 80.17 0.00 80.17 0.00
DSMC.Frq.Ftr.s 83.96 90.86 84.71 92.04 83.20 92.16 83.63 92.68 80.08 92.38 80.17 92.38
DSMC.Clo.Ftr.s 84.17 90.86 84.77 92.04 83.21 92.15 83.68 92.68 80.17 92.38 80.17 92.38
DSMC.Frq.Ftr.l 80.75 87.52 82.33 88.54 82.90 88.60 83.61 92.46 80.08 0.00 80.17 0.00
DSMC.Clo.Ftr.l 81.52 87.49 82.39 88.57 82.91 88.58 83.66 92.46 80.17 0.00 80.17 0.00
DSMC.Frq.Ftr.wc 81.06 86.91 82.77 87.73 82.90 89.10 83.61 92.46 80.08 0.00 80.17 0.00
DSMC.Clo.Ftr.wc 81.52 86.92 82.39 87.83 82.91 89.08 83.66 92.46 80.17 0.00 80.17 0.00
XRules.Frq.Emb.s 84.33 89.86 84.49 91.12 84.33 91.82 84.27 92.96 85.58 92.88 82.66 92.51
XRules.Frq.Emb.l 79.39 82.51 81.42 86.21 82.57 82.67 82.61 80.84 83.61 85.66 79.38 0.00
XRules.Clo.Ind.s 84.39 90.23 84.53 91.10 84.43 91.88 84.27 92.96 85.58 92.88 82.66 92.51
XRules.Clo.Ind.l 79.74 84.02 81.43 86.00 82.54 82.63 82.61 80.84 83.61 85.66 79.38 0.00
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Table A.4: Coverage rates for the CS1-2 dataset

s(%) 0.2 0.5 1 2 5 10
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Frq.Emb.s 64.26 42.07 54.23 33.15 45.69 26.68 38.14 22.27 17.75 14.71 14.71 14.71
DSMC.Clo.Emb.s 63.71 41.72 54.16 33.12 45.65 26.67 38.12 22.27 17.75 14.71 14.71 14.71
DSMC.Frq.Emb.l 64.92 20.45 54.60 10.95 45.69 4.51 38.14 0.00 21.50 0.00 21.38 0.00
DSMC.Clo.Emb.l 64.22 20.04 54.53 10.93 45.65 4.49 38.12 0.00 21.50 0.00 21.38 0.00
DSMC.Frq.Emb.wc 64.92 23.09 54.60 12.98 45.69 6.91 38.14 1.28 21.50 0.00 21.38 0.00
DSMC.Clo.Emb.wc 64.22 22.57 54.53 12.85 45.65 6.90 38.12 1.28 21.50 0.00 21.38 0.00
DSMC.Frq.Ind.s 64.26 42.07 54.23 33.15 45.69 26.68 38.14 22.27 17.75 14.71 14.71 14.71
DSMC.Clo.Ind.s 63.71 41.72 54.16 33.12 45.65 26.67 38.12 22.27 17.75 14.71 14.71 14.71
DSMC.Frq.Ind.l 64.92 20.37 54.60 10.95 45.69 4.51 38.14 0.00 21.50 0.00 21.38 0.00
DSMC.Clo.Ind.l 64.22 19.96 54.53 10.93 45.65 4.49 38.12 0.00 21.50 0.00 21.38 0.00
DSMC.Frq.Ind.wc 64.92 23.01 54.60 12.98 45.69 6.91 38.14 1.28 21.50 0.00 21.38 0.00
DSMC.Clo.Ind.wc 64.22 22.49 54.53 12.85 45.65 6.90 38.12 1.28 21.50 0.00 21.38 0.00
DSMC.Frq.Ftr.s 64.26 42.08 54.23 33.15 45.69 26.68 38.14 22.27 17.75 14.71 14.71 14.71
DSMC.Clo.Ftr.s 63.79 41.81 54.16 33.12 45.65 26.67 38.12 22.27 17.75 14.71 14.71 14.71
DSMC.Frq.Ftr.l 64.92 20.68 54.60 11.03 45.69 4.51 38.14 0.00 21.50 0.00 21.38 0.00
DSMC.Clo.Ftr.l 64.30 20.27 54.53 11.01 45.65 4.49 38.12 0.00 21.50 0.00 21.38 0.00
DSMC.Frq.Ftr.wc 64.92 23.24 54.60 12.98 45.69 6.91 38.14 1.28 21.50 0.00 21.38 0.00
DSMC.Clo.Ftr.wc 64.30 22.84 54.53 12.97 45.65 6.90 38.12 1.28 21.50 0.00 21.38 0.00
XRules.Frq.Emb.s 82.10 58.77 73.61 49.51 64.95 39.96 54.39 32.23 42.08 24.96 23.82 15.32
XRules.Frq.Emb.l 82.26 31.14 73.73 21.20 64.95 9.57 54.39 6.36 42.08 3.17 23.82 0.00
XRules.Clo.Ind.s 81.28 57.90 73.34 48.67 64.17 39.21 54.38 32.23 42.08 24.96 23.82 15.32
XRules.Clo.Ind.l 81.40 32.58 73.46 20.04 64.17 9.21 54.38 6.36 42.08 3.17 23.82 0.00
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Table A.5: Coverage rates for the CS2-3 dataset

s(%) 0.2 0.5 1 2 5 10
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Frq.Emb.s 64.05 36.08 54.02 28.74 46.41 24.61 38.40 19.99 17.66 14.81 14.81 14.81
DSMC.Clo.Emb.s 63.42 35.41 53.89 28.70 46.37 24.58 38.38 19.99 17.66 14.81 14.81 14.81
DSMC.Frq.Emb.l 64.62 21.72 54.26 12.77 46.41 5.35 38.40 1.09 21.37 0.00 21.36 0.00
DSMC.Clo.Emb.l 63.95 21.34 54.12 12.73 46.37 5.34 38.38 1.07 21.37 0.00 21.36 0.00
DSMC.Frq.Emb.wc 64.62 22.73 54.26 14.25 46.41 5.35 38.40 1.09 21.37 0.00 21.36 0.00
DSMC.Clo.Emb.wc 63.95 22.38 54.12 14.21 46.37 5.34 38.38 1.07 21.37 0.00 21.36 0.00
DSMC.Frq.Ind.s 64.05 36.08 54.02 28.74 46.41 24.61 38.40 19.99 17.66 14.81 14.81 14.81
DSMC.Clo.Ind.s 63.42 35.41 53.89 28.70 46.37 24.58 38.38 19.99 17.66 14.81 14.81 14.81
DSMC.Frq.Ind.l 64.62 21.72 54.26 12.77 46.41 5.35 38.40 1.09 21.37 0.00 21.36 0.00
DSMC.Clo.Ind.l 63.95 21.34 54.12 12.73 46.37 5.34 38.38 1.07 21.37 0.00 21.36 0.00
DSMC.Frq.Ind.wc 64.62 22.73 54.26 14.25 46.41 5.35 38.40 1.09 21.37 0.00 21.36 0.00
DSMC.Clo.Ind.wc 63.95 22.38 54.12 14.21 46.37 5.34 38.38 1.07 21.37 0.00 21.36 0.00
DSMC.Frq.Ftr.s 64.05 36.08 54.02 28.74 46.41 24.61 38.40 19.99 17.66 14.81 14.81 14.81
DSMC.Clo.Ftr.s 63.42 35.75 53.89 28.70 46.37 24.58 38.38 19.99 17.66 14.81 14.81 14.81
DSMC.Frq.Ftr.l 64.62 21.83 54.26 12.85 46.41 6.28 38.40 1.09 21.37 0.00 21.36 0.00
DSMC.Clo.Ftr.l 63.95 21.47 54.12 12.79 46.37 6.27 38.38 1.07 21.37 0.00 21.36 0.00
DSMC.Frq.Ftr.wc 64.62 22.84 54.26 14.33 46.41 6.28 38.40 1.09 21.37 0.00 21.36 0.00
DSMC.Clo.Ftr.wc 63.95 22.48 54.12 14.28 46.37 6.27 38.38 1.07 21.37 0.00 21.36 0.00
XRules.Frq.Emb.s 82.80 55.37 72.60 42.45 63.37 32.49 55.37 22.61 41.94 19.32 23.68 15.35
XRules.Frq.Emb.l 83.06 38.44 73.03 23.99 63.66 15.74 55.37 10.12 41.94 3.70 23.68 0.00
XRules.Clo.Ind.s 82.17 54.75 72.56 42.36 63.37 32.49 55.37 22.61 41.94 19.32 23.68 15.35
XRules.Clo.Ind.l 82.34 35.80 72.95 23.54 63.66 15.33 55.37 10.12 41.94 3.70 23.68 0.00
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Table A.6: Coverage rates for the CS3-1 dataset

s(%) 0.2 0.5 1 2 5 10
(w)c(%)/l 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10) 50(1) 90(10)
DSMC.Frq.Emb.s 64.09 35.92 53.94 29.09 46.67 24.80 37.07 19.63 20.46 14.79 20.42 14.79
DSMC.Clo.Emb.s 63.23 35.31 53.74 29.08 46.56 24.77 37.03 19.63 20.42 14.79 20.42 14.79
DSMC.Frq.Emb.l 64.68 22.13 55.29 12.50 47.08 5.76 37.09 3.12 20.46 0.00 20.42 0.00
DSMC.Clo.Emb.l 63.74 21.79 55.07 12.42 46.97 5.75 37.06 3.12 20.42 0.00 20.42 0.00
DSMC.Frq.Emb.wc 64.68 23.10 55.29 13.40 47.08 6.48 37.09 3.12 20.46 0.00 20.42 0.00
DSMC.Clo.Emb.wc 63.74 22.73 55.07 13.29 46.97 6.47 37.06 3.12 20.42 0.00 20.42 0.00
DSMC.Frq.Ind.s 64.09 35.92 53.94 29.09 46.67 24.80 37.07 19.63 20.46 14.79 20.42 14.79
DSMC.Clo.Ind.s 63.23 35.30 53.74 29.08 46.56 24.77 37.03 19.63 20.42 14.79 20.42 14.79
DSMC.Frq.Ind.l 64.68 22.13 55.29 12.50 47.08 5.76 37.09 3.12 20.46 0.00 20.42 0.00
DSMC.Clo.Ind.l 63.74 21.75 55.07 12.42 46.97 5.75 37.06 3.12 20.42 0.00 20.42 0.00
DSMC.Frq.Ind.wc 64.68 23.10 55.29 13.40 47.08 6.48 37.09 3.12 20.46 0.00 20.42 0.00
DSMC.Clo.Ind.wc 63.74 22.69 55.07 13.29 46.97 6.47 37.06 3.12 20.42 0.00 20.42 0.00
DSMC.Frq.Ftr.s 64.09 35.92 53.94 29.09 46.67 24.80 37.07 19.63 20.46 14.79 20.42 14.79
DSMC.Clo.Ftr.s 63.36 35.50 53.74 29.08 46.56 24.77 37.03 19.63 20.42 14.79 20.42 14.79
DSMC.Frq.Ftr.l 64.68 22.23 55.29 12.53 47.08 5.76 37.09 3.12 20.46 0.00 20.42 0.00
DSMC.Clo.Ftr.l 63.87 21.89 55.07 12.46 46.97 5.75 37.06 3.12 20.42 0.00 20.42 0.00
DSMC.Frq.Ftr.wc 64.68 23.19 55.29 13.43 47.08 6.48 37.09 3.12 20.46 0.00 20.42 0.00
DSMC.Clo.Ftr.wc 63.87 22.83 55.07 13.33 46.97 6.47 37.06 3.12 20.42 0.00 20.42 0.00
XRules.Frq.Emb.s 81.03 48.12 73.12 37.95 63.87 30.28 54.19 21.28 39.76 19.14 22.64 15.37
XRules.Frq.Emb.l 81.25 28.47 73.12 21.38 63.87 11.79 54.19 7.11 39.76 3.11 22.64 0.00
XRules.Clo.Ind.s 80.62 47.78 73.25 37.85 63.86 30.03 54.19 21.28 39.76 19.14 22.64 15.37
XRules.Clo.Ind.l 80.80 29.37 73.25 20.88 63.86 11.77 54.19 7.11 39.76 3.11 22.64 0.00
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DSM with a mininum support, 88

absolute support, 41
activity, 1
activity attribute, 30
as-is process model, 3
association rule mining, 46
associative classification, 53
AuditTrailEntry, 8

bootstrap, 52
BPM, 6
BPM life cycle, 2

C4.5, 48
candidate DSM, 76
case, 4, 29
Chi-square, 55
class accuracy, 121
class coverage, 121
class support, 119
closed patterns, 44
CLUTO, 104
CMTreeMiner, 61
combined rule strength, 120
confidence, 120
confusion matrix, 50
Conviction, 55
Cosine, 55
CRM, 130
cross-validation, 51

decision tree, 47
DryadeParent, 61

DSM tree, 77
DSMC, 122

embedded subtree, 58
event, 1, 4
event log, 1
external similarity, 104

forest, 58
frequent itemset mining, 42
frequent pattern, 41
frequent pattern mining, 40
frequent subsequence mining, 43
frequent subtree mining, 44, 61

GINI, 55

hospital dataset, 102

induced subtree, 58
inter-structure mining, 10
internal similarity, 104
intertestingness, 53
isomorphic subtree, 58
itemset, 42

Jaccard, 55

Laplace, 55
Leverage, 55
lift, 54
likelihood, 120

maximal patterns, 44
MXML, 6, 31
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overall accuracy, 121
overall coverage, 121

PAIS, 1
PCFSM, 72
Pearson, 55
Petri net, 37
pre-order string encoding, 60
prediction, 6
process analysis, 3
process design, 3
process enactment, 3
process identification, 2
process implementation and configura-

tion, 3
process instance, 4, 29
process log, 1
process mining, 4
process monitoring and controlling, 3
process redesign, 3

recommendation, 7
resource, 1
root cause analysis, 5
rooted ordered labelled, 57
rooted ordered tree, 57
rule accuracy, 49
rule confidence, 46
rule coverage, 49
rule strength, 120
rule support, 46

sibling order, 72
student’s t-test, 52
support, 41

teleclaim dataset, 103
telephone dataset, 103
timestamp, 1, 29
to-be process model, 3
top-left mirror, 76

top-left subtree, 72
trace, 4, 30

weighted confidence, 120
weighted support, 59

XES, 6, 31
XRules, 93

Yule’s Q, 55
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