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ABSTRACT 

Rock physics is an essential link connecting seismic data to the properties of 

rocks and fluids in the subsurface. One of the most fundamental questions of rock 

physics is how to model the effects of pore fluids on rock velocity and density. 

Contemporary scientific computing allows geophysicists to conduct extremely 

complex virtual (computational) experiments on realistic digital representations of 

complex porous media, and thus directly relate the measurable properties of the 

media to their microstructure and saturation. Computational (digital) rock physics 

can also serve as an effective tool in examining new and existing rock physics 

models. The finite element method (FEM) has been proved effective in simulations 

of the linear elastic properties of porous rock under static conditions. In this thesis, 

FEM is used to study the effect of patchy saturation on elastic velocities of digital 

images of rocks. However, FEM belongs to a group of grid methods, and its accuracy 

is limited by discretization errors. This can cause errors in rock property predictions 

and needs to be thoroughly examined. In this thesis, a test scenario based on rigorous 

theories for grid-based methods such as FEM is developed, which allows 

establishing optimal computational parameters in terms of accuracy of the results and 

time cost of computations. 

Gassmann’s equations are the most widely used relations to predict velocity 

changes resulting from different pore fluid saturations. This problem is also known 

as fluid substitution. Despite the popularity of Gassmann’s equations and their 

incorporation in most software packages for seismic reservoir interpretation, 

important aspects of these equations such as sensitivity to microheterogeneity has not 

been thoroughly examined. In this thesis, the sensitivity of Gassmann’s equations to 

microheterogeneity is estimated for different quartz/clay porous mixtures using 

computational (FEM) simulations. The results of this study suggest that the accuracy 

of Gassmann’s fluid substitution remains adequate for a wide variety of highly 

porous rocks even if the contrast between the elastic properties of mineral 

constituents is large. 
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While Gassmann’s fluid substitution is robust for rocks saturated with 

Newtonian fluids (brine, gas, light oil), it breaks down for viscoelastic fluids such as 

heavy oils. An alternative fluid substitution scheme for rocks saturated with 

viscoelastic fluids based on self-consistent effective medium theory is proposed in 

this thesis. Comparison with laboratory measurements shows that the scheme 

realistically estimates the frequency- and temperature dependent properties of heavy-

oil rocks and can be used for practical applications.  

A useful tool for modelling and estimation of properties of rocks with 

arbitrary or unknown microstructure are rigorous bounds on elastic moduli. The 

common elastic bounding methods such as Hashin-Shtrikman bounds are not 

applicable for heavy-oil rocks because of viscoelastic rheology of heavy oils. In this 

work, it is demonstrated that the viscoelastic bounding method of Milton and 

Berryman for the effective shear modulus of a two phase three-dimensional isotropic 

composite provides rigorous bounds for dispersion and attenuation of elastic waves 

in heavy-oil rocks. In particular, computation of these bounds shows that dispersion 

and attenuation in a rock saturated with a fluid (viscous or viscoelastic) can be much 

stronger than in the free fluid. This phenomenon is caused by wave-induced fluid 

flow relative to the solid. At sonic and ultrasonic frequencies, dispersion and 

attenuation appears to be dominated by the local (pore-scale) flow between pores of 

different shapes and orientations. The Mavko and Jizba expressions for the so-called 

unrelaxed frame bulk and shear moduli are one of the most popular quantitative 

models of squirt dispersion. However, these expressions are limited to liquid-

saturated rocks and high frequency. In this thesis, The Mavko-Jizba relations are 

generalized to gas-saturated rocks. Furthermore, dispersion and attenuation is 

computed using a new squirt flow model, presented in this thesis. All the parameters 

in this model can be independently measured or estimated from measurements. The 

model gives complex frequency- and pressure-dependent effective bulk and shear 

moduli of a rock consistent with laboratory measurements. 

Variation of elastic properties of rocks with pressure is often modelled using 

penny-shaped or spheroidal cracks as idealization of real crack/pore geometry. In this 

doctorate, the validity of this approach is analysed by extracting the ratios of shear to 
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bulk stress sensitivity coefficients, and normal to tangential compliances from 

ultrasonic measurements on a number of dry sandstone samples. The ratios show 

large scatter and, for a large number of dry sandstone samples, are not consistent 

with spheroidal crack theory. This inconsistency results in significantly different 

estimates of crack density from bulk and shear moduli, and in deviation of predicted 

pressure variation of Poisson’s ratio from the measured data. 
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INTRODUCTION 

RESEARCH BACKGROUND 

Maximizing the recovery of existing hydrocarbon reserves and exploration of 

new reserves is one of the biggest challenges facing the petroleum industry today. 

Identification of pore fluids at depth and mapping of hydrocarbon deposits are the 

primary goals of seismic exploration. Seismic reflection methods provide spatially 

continuous data about the mechanical properties of the subsurface rocks. Those data 

implicitly contain information about the presence of hydrocarbons and permeability 

of reservoir rocks. Rock physics is an essential link connecting seismic observables 

such as velocity or reflectivity to the presence of in situ hydrocarbons and to 

reservoir characteristics. The most fundamental question of rock physics is how to 

model the effects of pore fluids on rock velocity and density. This problem is central 

to quantitative interpreting of seismic attributes for hydrocarbon detection, analysing 

4D seismic, and understanding seismic signatures of lithology and porosity.  

The fluids within sedimentary rocks have properties that vary substantially 

with composition, pressure, and temperature. Pore fluids can be multiphase mixtures 

as a result of a multitude of geological settings. Partial fluid saturation arises when 

two or more immiscible fluids occupy the pores. For instance, gas, oil and brine can 

commonly share the available pore space in the upper part of gas capped reservoirs. 

This can have a substantial effect on seismic waves propagating through the rock, 

resulting in attenuation and dispersion of propagating waves. Oil and brine properties 

can be dramatically altered if significant amounts of gas are absorbed. The variable 

compositions and ability to absorb gases produce wide variations in the seismic 

properties of oils. These variations are categorized in terms of API (American 

Petroleum Institute) gravity. Depending on API gravity, hydrocarbons form a 

continuum ranging from ultra-heavy to light oils. Viscosity is a function of API 

gravity and one of the most important properties of hydrocarbons, which determines 

how easily oil flows at reservoir temperature. Highly viscous oil can exhibit 
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viscoelastic behaviour resulting in the ability of the material to have an effective 

shear modulus and propagate a shear wave. Velocities and moduli of the oil become 

strongly temperature- and frequency-dependent.  

Production from oil reservoirs changes pressure and fluid saturation. 

Therefore, it is important to understand how changes in fluid properties contribute to 

those changes in the seismic response, for different stress and production scenarios. 

Optimal production strategies require accurate monitoring of production-induced 

changes of reservoir saturation and pressure over the life of the field. Time-lapse 

seismic technology is increasingly used to map these changes in space and time. To 

this end, rock-physics relationships are required to link seismic parameters 

(velocities and attenuation coefficients) to the properties of reservoir fluids as 

function of frequency and pressure, volume and temperature conditions.  

The overall objective of this thesis is to combine theoretical and 

computational rock physics to model the effect of viscous and viscoelastic fluids on 

effective elastic properties of porous rocks. In particular, research aspects covered in 

the thesis include (1) numerical modelling of the effect of partial saturation on 

serismic velocities and developing a test scenario for grid-based numerical methods, 

(2) investigating the sensitivity of Gassmann’s equations to microheterogeneity, (3) 

developing an alternative fluid substitution scheme for rocks saturated with 

viscoelastic fluids, (4) examining rigorous viscoelastic bounds for heavy-oil rocks, 

(5) theoretical modelling of squirt dispersion of elastic wave velocity, (6) analysing 

the validity of using spheroids as idealization of real crack geometry to model 

pressure dependencies of rock properties. 

I refer to work presented in this thesis in first person plural (we) because each 

chapter is the result of multiple discussions and close collaboration between several 

people involved in this research. The results of the research reported in this 

dissertation have been published as journal and conference papers. Publications 

arising from this thesis can be seen on pages 5-6. 
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THESIS LAYOUT 

The following describes motivation for each chapter of this dissertation and briefly 

outlines the chapters content. 

Chapter 1. The elastic properties of rocks are affected in complex ways by 

saturation and fluid type and primarily depend on the morphology of the pore space 

and solid phase/phases. The progress in computer architecture and parallel 

computing makes it possible to conduct extremely complex and realistic numerical 

simulations of physical phenomena on realistic 3D digital images of core materials. 

Computational (digital) rock physics allows one to directly relate elastic properties of 

porous rocks to their microstructural information and saturation. A finite–element 

method or FEM has been proven to be effective in simulations of the linear elastic 

properties of dry and saturated rocks (Arns et al., 2002; Garboczi, 1998). FEM can 

be used as a tool for examining new and existing theoretical rock physics models. 

However, the accuracy of numerical simulations can be limited by the resolution of 

digital images and computational errors. In Chapter 1, a test scenario based on 

rigorous theories for grid-based methods such as FEM is developed, and FEM is 

used to calculate elastic properties of rocks under partially saturated conditions. The 

established optimal computational parameters enable more efficient use of FEM in 

terms of accuracy of the results and time cost of computations. This allows using of 

FEM as a tool to test the accuracy of theoretical models. 

Chapter 2. For over half a century, Gassmann’s theory (Gassmann, 1951) has 

been used for modelling the effects of pore fluids on seismic data. This problem is 

also known as fluid substitution. Fluid substitution refers to prediction of seismic 

velocities in rocks saturated with one fluid from properties of dry rocks or rocks 

saturated with another fluid. Gassmann fluid substitution is remarkably robust and 

general. When used under the appropriate conditions, it is usually as accurate as the 

measurements of saturation, velocity, and porosity that are input parameters to the 

Gassmann’s equations (e.g. Plona, 1980; Wang, 2000; Artola and Alvarado, 2006). 

However, a number of assumptions underlie Gassmann’s theory: the rock has to be 

statistically isotropic and monomineralic with fully connected pores that the pore 
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fluid is in hydraulic equilibrium. These assumptions may not be appropriate for 

microheterogeneous rocks such as shaley sediments due to a high contrast in elastic 

properties of the host mineral and shale, and due to the ability of clay to inhibit the 

movement of fluids. Although generalization of Gassmann’s equations to 

multimineral rocks has been given by Brown and Korringa (1975), their result has 

not yet found use in practical applications as it contains two new compressibilities 

which are difficult to measure. Investigating sensitivity of Gassmann’s equations to 

microheterogeneity can improve understanding of the operation and application of 

Gassmann’s equations. In Chapter 2, the accuracy of Gassmann fluid substitution is 

tested for different quartz/clay mixtures using computational (FEM) simulations. 

Chapter 3. One important result of Gassmann’s theory and its extension to 

finite frequencies (Biot’s theory) is that the effective (wet) shear modulus is identical 

to the frame (dry) shear modulus. In other words, the existence of a fluid has no 

effect on the effective shear modulus of a rock. This lack of shear dependence on 

saturating fluid is often contradicted when pore fluid is viscoelastic such as heavy 

oil. Viscoelastic rheology of heavy oils makes Gassmann’s theory inapplicable to 

heavy-oil rocks. In Chapter 3, we propose an alternative fluid substitution scheme 

based on self-consistent effective medium theory for rocks saturated with 

viscoelastic fluids. 

Chapter 4. A useful tool for modelling and estimation of properties of rocks 

with arbitrary or unknown microstructure are rigorous bounds on elastic moduli. 

Rigorous bounding methods such as Hashin-Shtrikman (HS) bounds cannot be used 

for testing laboratory measurements and results of modelling if rock is saturated with 

viscoelastic fluid. The HS bounds are no longer rigorous if the rock moduli are 

complex. In Chapter 4, appropriate rigorous bounding methods especially designed 

for viscoelastic composites are examined. In particular, computation of these bounds 

shows that dispersion and attenuation in a rock saturated with a fluid (viscous or 

viscoelastic) can be much stronger than in the free fluid. This phenomenon is caused 

by wave-induced fluid flow relative to the solid. 

Chapter 5. At sonic and ultrasonic frequencies, dispersion and attenuation 

appears to be dominated by the local (pore-scale) flow between pores of different 
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shapes and orientations. The Mavko and Jizba expressions for the so-called 

unrelaxed frame bulk and shear moduli (Mavko and Jizba, 1991) are one of the most 

popular quantitative models of squirt dispersion. However, these expressions are 

limited to liquid-saturated rocks and high frequency. There is a need for a more 

comprehensive frequency-dependent model, which can describe dispersion and 

attenuation of elastic waves due to squirt flow. In Chapter 5, we present a 

generalization of the Mavko-Jizba model to gas-saturated rocks as well as a new 

model of squirt-flow dispersion and attenuation for a wide range of frequencies in 

granular fluid-saturated media. 

Chapter 6. Understanding and modelling of the effect of stress on elastic 

properties of rocks is important for interpreting a variety of seismic data. Variation of 

the elastic properties with pressure is often modelled using penny-shaped or 

spheroidal cracks as idealization of real crack/pore geometry. In Chapter 6, we 

investigate the validity of this approach using real rock laboratory data. 
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CHAPTER 1 – FINITE ELEMENT MODELLING OF 

THE EFFECTIVE ELASTIC PROPERTIES OF 

PARTIALLY SATURATED ROCKS 

1.1 BACKGROUND 

Quantitative interpretation of geophysical data requires the knowledge of 

relationships between physical properties of rocks and their microstructure. With the 

advances in computer technology, it has become feasible to compute macroscopic 

physical properties of porous rock from its microstructural information using 

rigorous numerical simulations of physical experiments in realistic pore space 

geometries. This approach, which has become known as digital (or computational) 

rock physics, has been used to model the effect of pores, fractures and fluids on the 

effective acoustic properties (Arns et al., 2002; Grechka, 2003; Gurevich et al., 2005; 

Roberts and Garboczi, 2000; Saenger et al., 2004;) as well as geometrical, hydraulic 

and electric properties of rocks (Arns et al., 2001, 2004; Auzerais et al., 1996; 

Keehm et. al., 2004; Schwartz et al., 1994; Spanne et al., 1994). The computational 

rock physics technology relies on digitalized microstructural information which can 

be obtained either through X-ray microtomography (Dunsmuir et al., 1991; Flannery 

et al., 1987; Spanne et al., 1994), laser confocal microscopy (Fredrich et al., 1995), 

or stochastic models (Adler et al., 1992; Arns, 2002; Roberts and Garboczi, 2002; 

Yeong and Torquato, 1998). The numerical approach allows one to study properties 

of complex multi-phase materials with physically realistic phase distributions. 

However, computer simulations are not exact and their accuracy is limited by the 

simulation algorithm and by computational parameters such as spatial discretization. 

Therefore, in order to optimize the computational parameters, it is important to test 

the results of such simulations against known rigorous solutions. 

One algorithm that has proved effective in simulations of the linear elastic 

properties of rocks is a numerical model based on a finite element method (FEM) 
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developed by Garboczi (1998) and Arns et al. (2002) for linear elastic problems. 

There is a difficulty in testing such algorithms as values of the elastic properties are 

not known exactly for a porous material of any particular 3-D pore geometry. 

However, one rigorous theory applicable to the elastic properties in such a case is the 

Gassmann’s theory (1951), which is exact for a monomineralic macroscopically 

homogeneous porous medium with fully connected statistically isotropic pore space 

and no chemical/physical interaction between rock and pore fluid. In this chapter, we 

propose a test scenario for static numerical simulations for a medium saturated with a 

fluid mixture. This test scenario is based on application of the Gassmann’s theory. 

When the Gassmann’s theory is applied to a medium saturated with a fluid mixture, 

the effective bulk modulus of the fluid mixture is computed with Wood’s equation 

(Wood, 1955), which is an exact isostress formula for a mixture of Newtonian fluids. 

Wood’s equation implies that fluid pressure is spatially uniform throughout the pore 

space. Since all the assumptions of the Gassmann’s theory could be simulated by 

FEM, a comparison of the numerically predicted parameters with the theory provides 

a natural test of the accuracy of numerical results. Arns et al. (2002) have shown that 

FEM simulations on media saturated with one fluid agree with the Gassmann 

predictions for a variety of porous structures. Here we extend those simulations to 

porous rocks saturated by a mixture of two fluids and test the predictions against 

Gassmann solutions. The goal is to determine computational parameters that ensure 

accurate and robust simulations. 

1.2 NUMERICAL METHOD 

FEM code for linear elastic problems developed by Garboczi (1998) and Arns 

et al. (2002) is specifically designed to be applied to images of materials/rocks that 

have been generated either using microstructure models, or by an experimental 

techniques like X-ray tomography. The code operates directly on digital images by 

treating each voxel as a linear finite element.  

Given bulk and shear moduli of material solid constituents and fluid phases, 

FEM can simulate the macroscopic physical properties, such as the effective elastic 
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moduli, on 3D images of porous rocks at the pore scale. The method uses a 

variational formulation of the static linear elastic equations, and finds the solution by 

minimising the elastic energy using a fast conjugate-gradient relaxation algorithm. A 

macroscopic strain is applied, with the resultant average stress or the average elastic 

energy giving the effective elastic moduli. The images are assumed to have periodic 

constant-strain boundary conditions. Further details of the theory and the code can be 

found elsewhere (Arns, 2002; Garboczi, 1998). 

There are several sources of errors in using this algorithm on a specific rock 

digital image (Arns et al., 2002; Roberts and Garboczi, 2000). The first error is 

related to finite size effects. The digital image must contain enough of the 

microstructure to provide good averaging of the elastic properties. The image should 

also be representative of the rock microstructure in such a way that different 

realizations of the same microstructure do not significantly differ from each other.  

The second source of error is how well the minimum energy state is 

approximated in the solution algorithm. Usually this type of errors is on the order of 

the round-off error of the computer, and so is negligible (Garboczi and Day, 1995).  

The third source of error is associated with the resolution of microstructural 

features of the rock. This error is due to the use of discrete voxels to represent 

continuum objects. In practice, the accuracy of the results can be significantly limited 

by discretization errors. As mentioned above, FEM discretizes digital images that 

each voxel in 3-D is taken to be a 3-linear finite element. Increasing the system 

(digital model) size in terms of the number of voxels per unit length improves the 

resolution. However, the number of voxels depends on computer memory and speed 

(230 bytes for a voxel). Since the numerical simulations are computationally 

expensive, there is always a trade-off between number of voxels and computational 

speed. 

In this work, we use digital images at a scale from (180)3 up to (400)3 voxels 

to investigate the effect of spatial resolution on the accuracy of the FEM predictions 

for partially saturated rocks.  
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1.3 NUMERICAL TEST SCENARIO 

To examine the accuracy of FEM simulations we apply them to a rock 

saturated with a mixture of two fluids. Because FEM predicts static effective 

properties, they can be compared with the exact solution based on the Gassmann’s 

theory. 

Gassmann’s equation (Gassmann, 1951) for an effective bulk modulus of a 

fluid-saturated porous material can be written in the form 

 

2
dryK K M  ,     (1.1) 
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is the Biot-Willis effective stress coefficient (Biot and Willis, 1957; Gurevich, 2004), 

  is porosity, dryK , gK , and fK  are the bulk moduli of the dry frame, the solid grain 

material and the fluid, respectively. 

If the frequency is low enough, then during each half cycle of oscillation the 

fluid in the pore space is able to equilibrate at a common value. If the pore space is 

filled with a mixture of n  fluids with different fluid bulk moduli, where the 

heterogeneities are small compared with a wavelength, the bulk modulus fK  of the 

fluid mixture is given exactly by Wood’s formula (Wood, 1955) 
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where ix  and iK  are the volume fractions and bulk moduli of the individual fluid 

phases, respectively. Wood’s formula is often called the isostress average because it 

gives the ratio of stress to average strain when all phases are assumed to have the 

same stress (pressure). This situation occurs when the phases are mixed at the finest 

scales, and pore pressure increments of each fluid equilibrate with each other to a 

single average value. The collection of phases in such case could be replaced with a 

single “effective fluid”. 

A critical assumption in the effective fluid model represented by the Wood’s 

formula is that differences in wave-induced pore pressure have time to flow and 

equilibrate among the various phases. The characteristic relaxation time or diffusion 

time for heterogeneous pore pressures of scale L  is 2 /L D  , where /fD kK   is 

the diffusivity, k  is the permeability, and   is the viscosity (Mavko et al., 1998). At 

a seismic frequency 1/f  , pore pressure heterogeneities will have time to relax 

and reach a local isostress state over scales smaller than /cL D f . On scale 

larger than cL , spatial fluctuations cannot be accurately described by the effective 

fluid model. 

For a mixture of two fluids, say, gas and water, equation 1.4 reads 
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where wS  is water saturation, wK  is the bulk modulus of water and gasK  is the bulk 

modulus of gas. Substitution of the fluid modulus as given by equation 1.5 into 

Gassmann’s equation 1.1 yields so-called Gassmann-Wood (GW) formula (Johnson, 

2001; White, 1983) or the low-frequency limit 
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Equation 1.6 gives the static elastic modulus GWK  of a rock, where all fluid 

phases in the pore space are immiscible, and there are no hydraulically isolated 

pores. The low-frequency limit holds only if the frequency is so low that the pore 

pressure has time to equilibrate between the fluid phases regardless of the spatial 

distribution of the fluids. This is the situation easily simulated by FEM or other static 

algorithm, and therefore comparison of the simulation results with the predictions of 

equation 1.6 gives a measure of validity of the simulations. 

To check how well the simulations predict this particular limit, we also 

compare them with the high-frequency limit. In the high-frequency limit or when 

there is the greatest separation of fluid phases, the pore pressure in the fluid phases 

does not have enough time to equilibrate within one half wave cycle. Therefore, the 

regions of the porous medium saturated with different fluids will behave as if they 

were hydraulically isolated (Bear, 1988; Dvorkin et al., 1999; Johnson, 2001; Toms 

et al., 2006). However, each patch at scale cL  will have fluid phases equilibrated 

within the patch at scales smaller than cL , whilst neighboring patches at scales > cL  

will not be equilibrated with each other. Consequently, the rock in each patch will 

have a different bulk modulus, whilst the shear modulus will remain unchanged and 

spatially uniform. Thus within each patch the bulk modulus is given by the 

Gassmann equation evaluated with respect to the saturating fluid within that patch. 

The effective elastic bulk modulus of the rock with spatially varying bulk modulus 

but uniform shear modulus is given by Hill’s (1961) average: 
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where GHK  is the effective bulk modulus of the rock, n is the number of fluid phases, 

ix  is the volume fraction of the i th fluid,   is the shear modulus of the rock, and iK  

is the bulk modulus of the rock completely saturated with i th fluid. Specifically, for 

two fluids, water and gas, we have: 
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where saturated moduli sat
wK  and sat

gasK  are given by Gassmann’s equations 1.1 – 1.3 

with the fluid modulus fK  equal to wK  and gasK . The modulus given by equation 

1.7 is known as the Gassmann-Hill (GH) or high-frequency limit (Johnson, 2001).  

A number of authors have shown experimentally that it is possible to see 

either GW, GH or in between the limits behavior, depending upon the saturation 

protocol and the measurement frequency (e.g. Knight et al., 1998; Lebedev et al., 

2009; Mavko and Mukerji, 1998). The difference between GW and GH limits yields 

the magnitude of frequency dispersion of the bulk modulus of a rock saturated with a 

fluid mixture. In the numerical experiments that follow, we compare any deviation of 

the numerical results from the GW limit against this difference. 

1.4 NUMERICAL EXPERIMENTS 

1.4.1  FEM SIMULATION OF EFFECTIVE ELASTIC PROPERTIES FOR BOOLEAN 

RANDOM MODELS 

To test the performance of FEM simulations against the theory, we predict 

linear effective elastic properties of two types of three-dimensional (180x180x180) 

digital models of partially saturated rocks (Figure 1.1). We assume that this size 

provides good averaging of the elastic properties (Arns, 2002). The models have 

different distribution of fluid patches but similar porosity and saturation. The locally 

patchy model (Figure 1.1a) has uniformly distributed fluid patches, whereas the 

macro-patchy model (Figure 1.1b) contains a single spherical inclusion in the middle 

of the porous system. Because FEM is a static code, we expect the numerical 

estimates of the effective elastic properties be identical for both models regardless of 

their geometry.  
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Figure 1.1. Central slices of 3D Boolean models: local patchy model (a) and macro patchy model (b) 

consisting of three phases (quartz - grey, water – white, gas - black). 

 

Figure 1.2. Comparison of numerical estimates of the effective bulk moduli (K) to Gassmann-Wood 

(GW) and Gassmann-Hill (GH) limits for two Boolean models: local patchy (LP) and macro patchy 

(MP). 
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The model morphologies were generated using a simple Boolean overlapping 

spheres method (Arns, 2002; Knackstedt et al., 2003) for various degrees of 

saturation ranging from dry to fully saturated conditions with porosity approximately 

equal to 0.25. The Boolean models are often used to represent irregular spatial 

structures generated by gradual build up of a phase via the overlap of permeable 

particles such as spheres, each with arbitrary location and orientation.  

A three-dimensional digitized model or image is a collection of discrete 

voxels in which each voxel can, in principle, be a different phase of material. We use 

images in a binary form with “1” and “3” assigned to the voxels that fall into the 

fully connected pore space and represent gas and water accordingly, “2” is assigned 

to the voxels standing for the solid phase (quartz). We assign the same elastic 

properties of each constituent to both models. The elastic properties for quartz 

skeleton are taken to be 37gK   GPa, 44   GPa. The properties of pore fluids are 

taken to be 2.22wK   GPa and 0   GPa for water, and 0.05gasK  GPa, 

0  GPa for gas (Mavko et al., 1998). FEM allows the fluids to be modelled as 

solids with zero shear modulus. To ensure full equilibrium of fluid flow, pore fluids 

are treated by FEM as frictionless with zero viscosity. The results of numerical 

simulations performed for the Boolean models are demonstrated in Figure 1.2. The 

Gassmann’s theory described above stipulates that the effective elastic properties of 

rocks represented by such models should be independent of the geometry and size of 

fluid patches. Hence, the predicted effective elastic moduli should be the same for 

both models and agree with the GW theory. However, the numerical estimates show 

significant differences between the models, and both disagree with the GW limit.  

To investigate this discrepancy, we output the central slices illustrating the 

pressure field at the end of the relaxation process for both models (Figure 1.3). 

According to Pascal’s law, when fluid is at rest in the absence of body forces the 

pressure is the same throughout all fluid points. However, we can observe significant 

variation in the pressure field over the pore space.  
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Figure 1.3. Variation of pore fluid pressure in central slices of local patchy model (a) and macro 

patchy model (b). 

 

 

                                     

Figure 1.4. Central slices of digital models with fluid constituents (no solid phase). Gas depicted in 

black, water in white. 
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Figure 1.5. Comparison of numerical estimates of effective bulk moduli (K) to GW limit for two 

models with fluid constituents (no solid phase). Centred model contains a single gas inclusion in 

centre of a liquid cube, and random model has randomly distributed gas inclusions within liquid. 

 

 

Figure 1.6. Pore space image of an idealized poroelastic material with six channels. Blue volume 

represents gas-filled pore space, red volume represents water-filled pore space. Transparent part is 

rock frame. 
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To check if FEM can properly handle pressure relaxation in fluids, we 

perform simulations for models of media containing two free fluid phases (water and 

gas) with different distribution of gas patches as in the models described above. The 

models geometries are shown in Figure 1.4. The first model contains a single 

spherical gas inclusion in the centre of a liquid cube, while the second one has 

several randomly distributed gas bubbles of different size. We test the numerical 

estimates of the effective elastic bulk modulus against Wood’s formula (equation 

1.4).  

Wood’s formula uses a concept of a compressible homogeneous pore fluid to 

treat a fluid mixture, each component of which is assumed to have the same stress. 

Hence, the numerical results should be the same for both models regardless of their 

geometries. A comparison of the predicted moduli for different levels of saturation 

(0.7-1) in Figure 1.5 demonstrates excellent agreement of both models with Wood’s 

formula. This proves the capability of the FEM code to predict the effective elastic 

moduli of a fluid mixture.  

These results suggest that in the presence of solid particles the FEM 

simulations fail to equilibrate fluid pressure throughout the pore space, even if the 

pore space is fully interconnected. One possible explanation for this is an insufficient 

number of finite elements across thin fluid channels (i.e., insufficient density of FEM 

grid in channels), which can lead to a hydraulic separation of pore fluids. It is 

difficult to explore this effect using random packs of spheres (or any other random 

model) as all pores and pore channels have different sizes. Therefore, below we 

investigate this effect using models with idealized regular pore and channel 

geometry. 

1.4.2  EFFECT OF PORE CHANNEL SIZE 

To explore the extent to which small (in voxels) pore connections can be 

resolved properly by the FEM code, we conduct numerical experiments on the 

images of the idealized partially saturated rocks with regular pore geometry. In 

contrast to random Boolean models with variable size of interconnections between 

pores, we generate a simple three dimensional model of poroelastic material 
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(200x200x200), where a cubic inclusion (‘pore’) in the centre of a solid (quartz) cube 

is connected with other ‘pores’ by channels of adjustable cross-section (Figure 1.6).  

To test pressure equilibration between liquid and gas (the ‘worst’ case), we 

assume that the inner pore is filled with gas while the outer pores are water-filled, the 

gas/water interface crosses the channels. Since the fluid-fluid interface separates the 

fluids within the channels, we could control the area of the interface by changing the 

cross-sectional area of the channels. The numerical simulations are carried out for the 

images with 0.25 porosity considering three levels of saturation: dry, 0.75, and fully 

saturated. 

In Figure 1.7, we compare the results of three sets of experiments with 

different cross-sectional area of the channels, ranging from 4 elements (voxels) to 

900. For the model with the widest channels and, consequently, the largest total 

contact area between the fluids, the FEM code yields results which are in excellent 

agreement with the GW limit, demonstrating that the pressure field is fully 

equilibrated. In contrast, the predicted effective moduli for the image with the 

thinnest channels are close to the GH limit. We observe significant pressure variation 

over the pore space with extreme values in the channels. For the model with cross-

sectional area of 100 voxels, the predicted moduli tend to the GW limit, but still 

show relatively big deviation from it. The mismatch between GW theory and 

numerical results for the images with relatively small pore fluid interface area, could 

be due to the fact that, the FEM algorithm treats the fluids in such cases as 

segregated phases violating the “effective fluid” assumption. 
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Figure 1.7. Comparison of results of numerical simulations for images with different width of 

channels: 2 voxels (a, d), 10 voxels (b, e), and 30 voxels (c, f). Plots (a, b, c) show FEM estimates of 

effective bulk moduli (black circles) versus GW (solid line) and GH (dashed line) limits. Panels (d, e, 

f) show central slices of fluid pressure (in Pa) at end of relaxation process. 
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To further investigate this numerical effect we increase the contact area 

between the pore fluids by increasing the total number of pore channels and varying 

the individual channel size. Specifically, we carry out simulations for three different 

models of the same porosity and water saturation, but with variable numbers of 

channels: 2166, 600 and 150 channels with each channel having cross-sectional area 

of 4, 16 and 64 voxels, respectively. An example of the model with 600 channels is 

shown in Figure 1.8. The corresponding FEM simulations are shown in Figure 1.9. 

The models with 600 and 150 channels have exactly the same total area of fluid 

interface. Despite this, the results are in better agreement with the GW for the 150  

 

 

 

 

Figure 1.8. Pore space image of an idealized poroelastic material with six hundred channels. Blue 

volume represents gas-filled pore space, red volume represents water-filled pore space. Transparent 

part is rock frame. 

 

channel model having wider channels. At the same time, the substantially increased 

number of channels and, as a result, the increased area of the fluid interface for the 

model with 4 voxel cross-sectional area considerably improves the numerical 

estimates (see Figure 1.7 a for a comparison). However, the deviation from the GW 

bound is still significant, and the pressure varies significantly over the pore space. 
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The results demonstrate that in the numerically simulated process of pressure 

equilibration, both the total area of the water-gas interface in pore connecting 

channels and channel size play a key role. That is, for a given area of the water-gas 

interface, the size of the individual channels needs to be relatively large (>4 voxels in 

diameter) to ensure adequate pressure relaxation. 

 

 

 

Figure 1.9. Comparison of numerical results for models with different number and width of channels: 

2166 channels (a, d), 600 channels (b, e), 150 channels (c, f) with 4, 16, 64 voxels cross-sectional 

areas respectively. Plots a, b, and c show FEM estimates of effective bulk moduli (K) (black circles) 

versus GW (solid line) and GH (dashed line) limits. Panels (d, e, f) show central slices of fluid 

pressure (in Pa) at end of relaxation process. 
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Figure 1.10. Comparison of numerical results for images with increased spatial resolution (b, f) and 

(d, h) to original models (a, e) and (c, g) respectively. Panels (a, e), (b, f) show results for the 2166 

channel model and panels (c, g), (d, h) for the 600 channel model. Plots (a, b, c, d) show FEM 

estimates of effective bulk moduli (K) (black circles) versus GW (solid line) and GH (dashed line) 

limits. Panels (e, f, g, h) show central slices of fluid pressure (in Pa) at end of relaxation process. 

 

1.4.3  EFFECT OF SPATIAL RESOLUTION 

Our results described above suggest that in order to obtain reliable numerical 

estimates of the effective elastic parameters we need to control the total area of the 

fluid-fluid interface and the channel size (in voxels). When dealing with actual 

images or synthetic models of real materials with complex morphology, it is realistic 

to control the size of pore interconnections only by varying the spatial resolution of 

the digital models. In order to verify the effect of spatial resolution, we extend the 

models with 2166 and 600 channels to the size of 400x400x400 by doubling the 
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number of individual elements. Figure 1.10 shows that the higher-resolution 

numerical estimates calculated for the 2166 channel model provide better agreement 

with the GW theory.  

 

 

Figure 1.11. Comparison of numerically obtained results for the 600 channel model with increased 

spatial resolution (b, d) to original model (a, c). The computations for upscaled model were done 

using the tolerance parameter of 10-5. Plots (a, b) show FEM estimates of effective bulk moduli (K) 

(black circles) versus GW (solid line) and GH (dashed line) limits. Panels (c, d) show central slices of 

fluid pressure (in Pa) at end of relaxation process. 

The output of the fluid pressure slices demonstrates better pressure 

equilibration for this case. However, the increased spatial resolution for the model 

with 600 channels does not provide an expected improvement. Instead, the results 

become worse, which is reflected in significant pressure variation over the pore 

space. We find this unexpected result to be caused by the insufficient magnitude of 

the tolerance parameter (relative error) used in the FEM code for this case. The 

tolerance on the relative changes of all stress and strain components is the stopping 

criterion in the process of energy relaxation. To investigate this effect, the tolerance 
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was changed from 10-4 to 10-5, this drastically increased the number of iterations and 

the time of computations, when the effective elastic properties were calculated for 

the 600 channel model. Figure 1.11 shows a significant improvement in the 

equilibration of the pressure field, this improves estimates of the effective bulk 

moduli, which now comply very well with the GW limit. At the same time, 

computations for 200x200x200 models with a tolerance parameter lower than 10-4 

fail to converge. We found that the optimal tolerance parameter depends on the size 

and geometry of the model, and the smallest admissible tolerance parameter for 

200x200x200 models is 10-4. Thus we conclude that the results shown in Figures 1.7, 

1.9 yield the best pressure equilibration that can be achieved with this algorithm 

without improving the spatial resolution of the models. 

1.5 CHAPTER CONCLUSIONS 

We have used, for the first time, a static finite element approach to predict the 

linear effective elastic properties of three-dimensional materials saturated with a 

mixture of gas and water. We have developed a scenario to test the FEM simulations 

against an analytical solution based on Gassmann’s theory to determine 

computational parameters that ensure accurate and robust simulations. According to 

the theory, the effective elastic properties of rock saturated with a mixture of fluids 

should be independent of distribution and size of gas patches.  

On the contrary, the numerical simulations have shown that the computed 

effective moduli depend significantly upon geometry and the size of fluid patches. 

This discrepancy is a numerical artefact caused by the un-equilibrated pressure field 

in the pore-filling mixture of gas and water due to the poorly resolved tiny pore 

channels. We have also shown that the pressure relaxation process is dependent upon 

the area of an interface between pore fluids as well as the size of pore channels (in 

voxels). That is, for a given area of the water-gas interface, the size of the individual 

pore channels needs to be relatively large (>4 voxels in diameter) to ensure pressure 

equilibration. 
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We have also shown that the increased spatial resolution of digital images 

improves the numerical results. On the other hand, the numerical simulations are 

computationally expensive, and the number of voxels determines memory 

requirements and the CPU time. It is important to note that the tolerance parameter 

should be chosen with care as it can significantly affect the results and speed of 

computations. 

The results of the numerical simulations confirm that the FEM code is 

capable of accurately predicting the effective elastic properties of 3-D digitised 

images of rock microstructure providing the resolution of the images is adequate.  
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CHAPTER 2 – FINITE ELEMENT MODELLING OF 

GASSMANN’S FLUID SUBSTITUTION IN 

HETEROGENEOUS ROCKS 

2.1 BACKGROUND 

One of the most common problems in rock physics is the prediction of 

seismic velocities in rocks saturated with one fluid from the velocities in rocks 

saturated with another fluid. This problem known as fluid substitution is routinely 

performed using Gassmann’s equations 1.1-1.3, which provide a powerful 

framework for evaluating various fluid scenarios. Rigorous application of 

Gassmann’s equations is limited by the assumption that the porous frame is 

microhomogeneous (composed of only one mineral). This assumption seldom 

applies to natural materials like rocks that are usually composites of minerals with 

varied elastic properties. 

Brown and Korringa (1975) generalized Gassmann’s result to account for 

multiple minerals in the rock frame. The parameter M  in their results is equivalent 

to  

 

1

f m

M
K K K

  


 
   
  

     (2.1) 

 

and 

1 dry

m

K

K
         (2.2) 

where     is porosity, dryK  is the bulk modulus of the dry frame, fK  is the bulk 

modulus of the pore fluid, and mK  and K   are material constants. These constants 

are defined as 
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where V  is the total volume of a sample of rock, V  is the volume of pore space 

within the sample, cP  is the confining pressure, d c pP P P   is the differential 

pressure, and pP  is the pore pressure. These special moduli describe the effect on 

sample volume and pore volume of equally incrementing confining pressure and pore 

pressure. 

If the rock frame is microhomogeneous, m gK K K   and equations 2.1-2.2 

reduce to Gassmann’s equations 1.1-1.3. However, if the rock frame is composed of 

two or more constituents (inhomogeneous case), the constants mK  and K  have a 

complicated dependence on the material properties and are difficult to estimate 

(Berryman and Milton, 1991; Berryman, 1992b). For that reason, the equations of 

Brown and Korringa have not yet found use in practical applications. 

Fortunately, the accuracy of Gassmann’s fluid substitution for rocks 

composed of multiple minerals with elastic constants of the same order of magnitude 

has been proven adequate. This has been confirmed by numerical tests (Knackstedt et 

al., 2005; Ciz et al., 2006). However, the use of Gassmann’s equations for shale-rich 

rocks may present some particular problems especially in the case of elastic 

properties of the host mineral and shale being of a large contrast. 

Elastic properties of clay minerals are poorly known, mainly because of the 

difficulty of direct measurements. The values of the bulk modulus of clay being 

reported in the literature vary from 1.5 up to 50 GPa (Katahara, 1996; Prasad et al., 

2002; Vanorio et al., 2003; Bayuk et al., 2007) depending on mineralogy, water 

content, etc. In practice, when applying Gassmann’s equations for multimineral 

rocks, one must choose the appropriate mixing scheme among the various theoretical 

effective-medium theories and empirical relationships (Mavko et al., 1998). The 

most common approach is to use a simple mixing law, such as Voigt-Reuss-Hill 

average (VRH) (Hill, 1952; Mavko et al., 1998). However, such scheme might 

introduce some errors in the presence of large amounts of clay in the rock frame, 
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especially when the elastic moduli of clay are much smaller than those of quartz, 

feldspar, dolomite etc. Furthermore, the textural distribution of clay minerals has a 

significant effect on the elastic properties of composites (Katahara, 2004). For 

instance, pore-filling clay and structural clay impact the fluid effects differently, thus 

the lithology-dependent mineral-mixing scheme might be more adequate in such 

situations. 

Another problem associated with fluid substitution in shaley sediment is that 

the low permeability of clay can result in immobility of water inside it. Hence, the 

assumption of Gassmann’s theory that the fluid can easily flow and relax wave-

induced pore pressure increments during the seismic period may not be appropriate 

(Gurevich and Carcione, 2000). When clay is water-saturated, the surfaces of clay 

crystals can be separated by fluid sheets, which may be bound to the surfaces due to 

the small distance between the clay platelets (Bayuk et al., 2007). Hence, the clay 

mass can be considered as a clay-water composite where water is immobile. Dvorkin 

et al. (2007) introduce an alternative fluid substitution scheme for shaley sediments, 

where a clay-water composite is treated as part of the solid grain material. Therefore, 

the porosity within the shale is excluded from the total porosity so that only the 

effective porosity is used in the scheme. Parameters required by the alternative 

method include the elastic properties of a clay-water composite, which can be 

estimated by rock physics models. However, the choice of the model and the 

parameters of porosity and mineralogy of clay may be somewhat arbitrary. 

The purpose of this chapter is to investigate the microheterogeneity effect on 

the accuracy of Gassmann’s fluid substitution for different isotropic quartz/clay 

mixtures. As follows from the work of Arns et al. (2002) and Knackstedt et al. 

(2005) and as it has been shown in the first chapter, a finite element method or FEM 

can be successfully applied to accurately predict the effective elastic properties of 

complex multiphase materials with physically realistic phase distribution if the 

sources of numerical error are minimised. Since the low frequency limit of 

Gassmann’s equation coincide with static conditions modelled by FEM, we combine 

FEM simulations with the theory to test the accuracy of Gassmann’s fluid 

substitution for microheterogeneous materials. 
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2.2 METHODOLOGY 

Given the bulk and shear moduli of the material solid constituents and a fluid 

phase, FEM can simulate the macroscopic physical properties, such as the effective 

elastic modulus, on 3D images of porous rocks at the pore scale. In this chapter, we 

use digital images with well resolved pore space at the scale of (200x200x200) 

voxels. We assume that this size provides good averaging of the elastic properties 

(Arns, 2002). 

To test the accuracy of Gassmann’s equations, we use a methodology which 

combines a numerical approach with the traditional and generalized Gassmann’s 

equations. The main idea of the methodology is to test sensitivity of Gassmann fluid 

substitution to gK  estimated by common techniques against Gassmann predictions 

with gK  estimated by accurate numerical approach. Figure 2.1 shows the workflow 

used to implement the methodology. First, we use FEM to calculate the effective 

bulk moduli of dry rock dryK , dry  by simply setting the properties of a saturating 

fluid to zero. Then we perform several FEM runs using the properties of different 

saturating fluids. We estimate the bulk modulus of a mineral mixture gK  by 

substituting the numerically estimated effective bulk modulus K  for the rock 

saturated with the first fluid into Gassmann’s equations 1.1-1.3 and solving them for 

gK . Second, using the estimated gK  and equations 1.1-1.3 we predict the effective 

bulk modulus K  for the same rock saturated with the 3rd fluid (oil). We also 

perform fluid substitution with gK  obtained by two different mixing rules, namely 

the VRH average and self-consistent effective medium theory known as CPA 

(Berryman, 1980a; Berryman, 1980b; Berryman, 1992b). 

Using the output of two FEM runs (with different saturating fluids: fluid 1 

and fluid 2) and substituting K  into Brown-Korringa generalized Gassmann’s 

equations 1.1 and 2.1-2.2 we also calculate mK   and  K . Then we predict the  
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Figure 2.1. Workflow for testing the accuracy of Gassmann’s equations. 

Invert Gassmann’s 
equations for Kg and 

estimate it using known 
porosity () and Kdry, 

µdry, K1, µ1, and Kf1, µf1 

Using known porosity 
() and volume 

fractions of each solid 
constituent (fquartz and 

fclay) estimate Kg 
employing mixing 

rules:  

VRH 
(Kg-VRH) 

Select a rock image and FEM input parameters constant for all 4 runs: strain 
values, bulk and shear moduli of rock solid constituents (Kquartz, µquartz, Kclay, 

µclay). Select variable input fluid properties for each FEM run: 

Perform fluid substitution for fluid 3 
using Gassmann’s equations and 

estimated Kg by FEM, VRH, and CPA 

Compare the results of fluid substitution to the 
FEM estimates for fluid 3 

1st  run 
Kf=0, µf=0 

(empty 

2nd  run 
Kf1, µf1 

(fluid 1) 

3rd  run 
Kf2, µf2 

(fluid 2) 

4th  run 
Kf3, µf3 

(fluid 3) 

1st  run 
Kdry, µdry 

(empty pores) 

 ,  fquartz ,  
fclay 

Run FEM to obtain porosity ( ), volume fractions of each solid constituent 
(fquartz and fclay) of the image and the saturated effective elastic moduli:  

2nd  run 
K1, µ1 

(fluid 1) 

 ,  fquartz ,  
fclay 

3rd  run 
K2, µ2 

(fluid 2) 

 ,  fquartz ,  
fclay 

4th  run 
K3, µ3  

(fluid 3) 

 ,  fquartz ,  
fclay 

CPA 
(Kg-CPA) 

Using known porosity () and 
volume fractions of each solid 

constituent (fquartz and fclay), 
estimate Km and K analytically 

(Ciz et al., 2006). This step is 
appropriate for a double shell 

model only. 

(Km-CIZ, K-CIZ) 

Invert Brown-Korringa equations 
for Km and Kandestimate them 

using known porosity () and 
Kdry, µdry, K1, µ1, K2, µ2, Kf1, µf1, 

and Kf2, µf2 

(Kg-FEM) (Km-FEM, K-FEM)

Perform fluid substitution for fluid 3 
using Brown-Korringa equations and 

estimated Km and K by FEM and CIZ 
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Figure 2.2. Double shell model used for analytical analysis (a) and in numerical simulations (b) 

consisting of three phases (quartz-white, clay-grey, fluid-black). 

effective bulk modulus K  for a rock saturated with the 3rd fluid using the estimated 

matrix properties mK  and K  and equations 1.1 and 2.1-2.2. Finally, we estimate the 

error of Gassmann’s predictions against the FEM data.  

 

2.3 DOUBLE SHELL MODEL  

To investigate the microheterogeneity effect on the accuracy of Gassmann’s 

fluid substitution we use a very simple geometrical configuration of a porous 

quartz/clay mixture. Ciz et al. (2006) analytically derived solid effective parameters 

mK  and K  for a double shell spherical model (Figure 2.2a). In our numerical 

experiments, we use a similar double shell model with cubic geometry (Figure 2.2b). 

This allows us to compare numerically derived material properties with the analytical 

ones. We generate different realizations of the model for a wide range of mineral 

moduli ratios with constant porosity (0.25). We perform numerical simulations for 

different contrasts between the elastic properties of the material constituents. 

[a]  [b] 
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Specifically, we keep the bulk and shear moduli of quartz ( 1 37gK   GPa, 1 44g   

GPa) constant and vary the bulk modulus 2gK  of a soft phase (wet clay) from 2.09 to 

20.5 GPa and the shear modulus 2g  from 0.69 to 6.85 GPa. These ranges are 

intended to cover all possible properties of wet clay packs. 

Figure 2.3a shows the results of predictions of the difference between the 

bulk moduli of water-saturated and dry quartz/clay porous mixture with relatively 

low contrast between the elastic properties of the matrix constituents ( 1 2/ 1.8g gK K   

and 1 2/ 6.4g g   ). We can see a good agreement between the Gassmann, Brown-

Korringa and numerical estimates for all mineral ratios, with the maximum error of 

0.05 GPa. However, for a large contrast between the mineral moduli 1 2/ 17.8g gK K   

and 1 2/ 63.8g g    (Figure 2.3b), we can see significant deviations of the 

Gassmann estimates obtained with VRH and CPA mixing rules from the FEM results 

(error >1 GPa). At the same time, the estimates produced by both the traditional 

Gassmann’s equations with numerically derived gK  and by Brown-Korringa 

equations with numerically estimated mK , K  are in an excellent agreement with the 

analytical estimates and the FEM data. 
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Figure 2.3. Difference between the wet ( K ) and dry ( dryK ) bulk moduli of a double shell model as 

a function of clay fraction for (a) low and (b) high contrasts between the constituents of a composite 

solid phase. Black line is FEM estimates. Colour circles show Gassmann predictions (Gass) with gK  

obtained by different mixing schemes: CPA, Voigt-Reuss-Hill (VRH), and FEM. Colour squares 

show Brown-Korringa estimates (BK) with material properties mK  and K  estimated analytically 

(Ciz) and numerically (FEM).  
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2.4 MODELS WITH DIFFERENT CLAY DISTRIBUTIONS  

Clay minerals have a low-to-moderate effect on elastic properties of 

sandstones depending on where the clay is located (Anstey, 1991). The distribution 

of clay depends on the conditions at deposition, on compaction, bioturbation and 

diagenesis. To investigate the effect of different clay distributions on Gassmann’s 

fluid substitution, we generate four idealized model morphologies of porous 

quartz/clay mixtures with different shape and location of clay (Figure 2.4). The 

“dispersed clay” model shown in Figure 2.4a consists of quartz grains covered by 

clay isolating the contacts between the grains. The “structural” or “framework”  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Models of sandstones with different clay distributions: (a) dispersed clay (no contacts 

between quartz grains), (b) framework clay, (c) coating clay (quartz grains in contact), (d) interstitial 

clay. 1 2/ 5g gK K  , 1 2/ 38g g     for all models. Quartz grains are depicted in blue, clay in red. 
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model (Figure 2.4b) contains clay of the same shape as quartz grains. Quartz grains 

are in the full contact in the “coating” clay model (Figure 2.4c), which can represent 

a situation when clay particles are being squeezed out into the pore space by 

compaction. Clay bridges the grain contacts in the “interstitial” clay model, where 

the clay can be also considered as structural (Figure 2.4d).  

We generate our models with approximately the same porosity 0.35  . We 

use the elastic properties of clay determined from well log data from offshore West 

Africa (Halbert, 2006) by inversion of the lower Hashin-Shtrikman bound (Hashin 

and Shtrikman, 1963). The use of the lower Hashin-Shtrikman bounds is appropriate 

to compute the effective elastic properties of clay-sand mixtures when the clay is the 

primary load-bearing material, and this is generally assumed in shales and shaly 

sands (Goldberg and Gurevich, 1997). In the calculations of the clay properties, the 

clay was assumed as being wet and porous and the concept of the effective porosity 

(pore space available to free-flowing fluids) was used (Dvorkin et al., 2007). This 

means that bound water associated with clay porosity was treated as the part of the 

solid clay fraction. Further details of the inversion of the lower Hashin-Shtrikman 

bound and the description of the log data used in the inversion can be found in 

Halbert (2006). 

The properties of wet clay are taken to be: bulk modulus 2 7.35gK   GPa and shear 

modulus 2 1.16g   GPa. We assume that quartz grains have the same properties as 

mentioned above, so the contrasts between the elastic constants of minerals 

composing the rock frame are 1 2/ 5g gK K   for the bulk moduli and 1 2/ 38g g    

for the shear moduli. For all the models, we consider similar mineral ratios when 

clay fraction is approximately equal to 0.12 and 0.35. These very high contrasts are 

used deliberately to assess the maximum deviations from Gassmann predictions. 
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Figure 2.5. Gassmann predictions versus numerical estimates as a function of clay fraction for 

periodic spheres models with different clay distributions. Black symbols are FEM estimates. Magenta, 

green and red symbols show Gassmann predictions (Gass) with gK  obtained by CPA, Voight-Reuss-

Hill and FEM, respectively. Blue symbols show Brown-Korringa estimates with material properties 

mK  and K  estimated by FEM. Black and blue symbols coincide.  
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We apply FEM to the images with different clay distribution to estimate the 

dry and water saturated moduli. Following the workflow shown in Figure 2.1 we 

perform fluid substitution with gK  estimated by CPA, VRH, and FEM. We also 

calculate the dry and saturated P-wave velocity. As can be seen from Figure 2.5, 

different clay distributions have significant effect on the P-wave velocity of the 

conglomerates. The highest velocities 630p dryV V   m/s are observed for the 

“interstitial” clay model and the lowest 150p dryV V   m/s for the “coating” clay 

model with grains in contacts. However, we can see that Gassmann predictions 

produced using different mixing laws as well as Brown-Korringa estimates are in a 

good agreement with the numerical data for all considered microstructures. The 

maximum deviation of the Gassmann predictions of p dryV V  from the FEM 

estimates is about 16 m/s. This suggests that the accuracy of Gassmann’s fluid 

substitution is more than adequate for these idealised morphologies.  

These numerical results may appear to contradict the results of Berryman 

(1992a), who showed that for certain geometrical configurations of heterogeneous 

rocks, the moduli mK  and K  in Brown-Korringa equations may be very different 

from each other, and K  can even be negative. However we note that for rocks with 

g dryK K  and g fK K , we also have m dryK K , m fK K , dryK K  , 

fK K  . Thus, moduli gK , mK  and K   have a relatively minor influence on the 

effective bulk modulus of a saturated rock K  (see equation 2.1), and therefore the 

effect of spatial variation of gK  is also insignificant. 

2.5 CHAPTER CONCLUSIONS 

We have analysed the effect of microheterogeneity on Gassmann’s fluid 

substitution in its traditional and generalized forms for different idealized porous 

quartz/clay structures. We utilize a scheme combining numerical simulations with 

Gassmann’s equations to estimate the material properties of a rock frame. For a 

simple double shell model, the accuracy of Gassmann predictions significantly 
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depends on contrasts between the elastic moduli of minerals composing the rock 

frame. The common mixing laws such as VRH and self-consistent effective-medium 

theory introduce significant errors into the predictions of K  for digital models with 

large contrasts between the properties of solid phases (factor 18 for gK , and 64 for 

g , error>1GPa).  

For more realistic highly porous structures ( 0.35  ) such as periodic 

spheres models with different clay distributions, the accuracy of Gassmann 

predictions of the P-wave velocity remains relatively high (error 16 m/s) despite the 

large contrasts between the moduli of solid phases (factor 5 for gK , and 38 for g ). 

This suggests that simple lithology-independent mixing laws provide robust 

estimates of elastic properties of multiphase minerals. This further suggests that 

Gassmann’s equations are adequate for highly porous granular rocks composed of 

multiple minerals with elastic constants of relatively high contrast.  
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CHAPTER 3 – FLUID SUBSTITUTION IN ROCKS 

SATURATED WITH VISCOELASTIC FLUIDS 

3.1 BACKGROUND 

Continuously growing demand for hydrocarbon energy sources has renewed 

interest in production from bituminous and heavy-oil reservoirs. Heavy oil reserves 

account for more than 6 trillion barrels- in- place worldwide-triple the world’s 

reserves of conventional oil and gas (Batzle et al., 2006). However, the high viscosity 

of heavy oils makes them difficult or impossible to produce using conventional 

technology. A variety of methods, currently used by the industry, aim at lowering the 

viscosity by injecting heat or chemical solvents. Thermal recovery methods have 

been the most efficient in heavy-oil production with recovery rates as high as 80%. 

Injected heat alters the already complex physical properties of the heavy-oil 

reservoirs such as seismic velocity, density, and attenuation. Tracking these changes 

with time-lapse seismic techniques can considerably improve recovery efficiency. 

Appropriate rock physics modelling is important for quantitative interpretation of the 

changes in seismic response due to alterations in reservoir and fluid properties during 

production.  

As mentioned in previous chapters, seismic fluid substitution modelling using 

Gassmann’s equations is routine in the analysis and interpretation of seismic 

velocities and amplitudes (Smith et al., 2003). Given pore, frame, and fluid 

properties of a rock, the Gassmann’s equations can be used to predict the bulk 

modulus of a rock under quasi-static conditions. The corresponding dynamic moduli 

can be obtained from Biot’s theory of poroelasticity (Biot, 1956a; Biot,1956b), an 

extension of Gassmann’s theory to finite frequencies. One important result of the 

Gassmann/Biot’s theory is that the effective shear modulus is identical to the frame 

shear modulus. In other words, the existence of the fluid has no effect on the 

effective shear modulus of the rock. 
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As known from laboratory measurements (Nur et al., 1984; Eastwood, 1993; 

Schmitt, 1999; Batzle et al., 2006; Behura et al., 2007; Han et al., 2007a), heavy oils 

exhibit viscoelastic behaviour such that their moduli are frequency- and temperature-

dependent. Oil that behaves like a Newtonian liquid at low frequencies can act as a 

nearly elastic solid at high frequencies. In between these extreme cases, wave 

propagation in heavy oil is dispersive and exhibits strong attenuation. Indeed, the 

heavier the oil, the more long-chain or high-carbon-number molecules are present, 

resulting in higher viscosity. Although viscosity is influenced by pressure and gas 

content, it is primarily a function of oil gravity and temperature. Depending on 

temperature conditions, heavy oil can have a finite shear modulus even at seismic 

frequencies making Gassmann/Biot’s poroelastic constitutive equations inapplicable 

to heavy-oil rocks. 

When a rock is saturated with heavy oil, its behaviour also becomes 

viscoelastic (Behura et al., 2007). A dramatic decrease of compressional velocities in 

heavy-oil sands with increasing temperature has been observed in laboratory 

experiments (Tosaya et al., 1987). Despite the fact that this decrease was in part 

caused by the abnormally high pressure in the experimental setup, the main factor 

responsible for the velocity decrease is the change in fluid properties with 

temperature. The latest laboratory experiments provide evidence of the complex 

properties of heavy-oil rocks. In particular, Han et al. (2007a, 2007b, 2008) study 

various effects on the compressional- and shear-wave velocities of heavy-oil sands, 

such as rock texture, pore-fluid properties, pressure, and interaction between pore 

fluids and rock-frame properties at different temperatures. Han et al. (2007b) also 

test Gassmann predictions against experimental data for a range of temperatures. 

They indicate that as temperature decreases below 60C, heavy oil becomes 

dispersive and Gassmann estimates no longer match the data. Viscoelastic behaviour 

of the oil violates Gassmann’s theory. Indeed, Gassmann’s theory is based on the 

Pascal’s Law, which states that, in the absence of body forces, fluid pressure exerted 

anywhere in a confined incompressible fluid is transmitted equally in all the 

directions. This means that pressure is the same throughout the pore space. This law 

is not applicable to viscoelastic media. Biot’s theory is not applicable to heavy oils 
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either because it ignores the viscoelastic phenomenon by neglecting the fluid shear 

stress in the microscopic (pore-scale) constitutive equations (Pride et al., 1992; 

Gurevich, 2002).  

Several approaches to modelling effective elastic properties of rocks saturated 

with heavy oil have been proposed (Marion and Nur, 1991; Eastwood, 1993; 

Tsiklauri and Beresnev, 2003; Leurer and Dvorkin, 2006; Ciz and Shapiro, 2007; 

Das and Batzle, 2008; Gurevich et al., 2008). However, until recently, verification of 

these models using controlled laboratory experiments was not possible.  

In this chapter, we propose an alternative modelling scheme based on 

equivalent-medium theory for rocks saturated with viscoelastic fluids. Comparison 

with laboratory data allows us to refine the scheme using the concept of dual porosity 

to obtain reasonable agreement between theory and experiment. Our approach can be 

used for practical applications to produce reliable estimates of effective frequency- 

and temperature-dependent properties of heavy-oil rocks. 

3.2 METHODOLOGY 

3.2.1 EFFECTIVE­MEDIUM MODEL 

Fluid saturation is an important parameter influencing the seismic properties 

of rocks. As mentioned the effect of a Newtonian pore fluid on the elastic moduli of 

a rock can be predicted from the properties of dry rock and fluid compressibility 

using the Gassmann/Biot’s theory. An alternative approach, which addresses the 

problem of estimating elastic moduli from knowledge of rock constituents and 

microstructure, is based on effective-medium theories (e. g., Hashin and Shtrikman, 

1963; Budiansky, 1965; Hill, 1965; Mukerji et al., 1995). These theories allow one to 

compute equivalent elastic properties of a mixture of two or more elastic 

constituents. Unlike the Gassmann/Biot’s theory, effective-medium theories require 

characterization of matrix and pore space geometry. Furthermore, at sufficiently low 

frequencies, these theories (schemes) can be applied to mixtures of viscoelastic 

constituents by considering them as solids with frequency-dependent moduli. This is 
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known as elastic-viscoelastic analogy or the correspondence principle (Hashin, 1970; 

Haddad, 1995). Hence, effective-medium theories can be applied to heavy-oil rocks. 

To gauge the effect of viscoelasticity of the pore-filling material on the 

overall rock properties, we use a scheme based on a self-consistent theory of 

Berryman (1980a,b; 1992b). This scheme is a self-consistent version of the average 

T-matrix approximation of Küster and Töksöz (1974) and is also known as the 

coherent potential approximation (CPA). CPA is a versatile mixing law of the theory 

of composites. It is known to provide reliable estimates of frame moduli of 

heterogeneous materials (Ogushwitz, 1985). CPA uses the concepts of elastic-wave 

scattering theory for the deformation of isotropic inclusions and approximates the 

interaction of the inclusions by replacing the background medium with an as-yet-

unknown effective medium. This means that the effect of many pores of a particular 

shape is given by solving the canonical problem of a single pore surrounded by a 

uniform medium with yet-unknown elastic properties of the porous composite. It has 

been proved rigorously that CPA is a realizable effective medium scheme, i.e. there 

exists a particular geometrical arrangement of the constituents for which this scheme 

is exact (Milton, 1985).  

A key property of CPA is that it is symmetrical with respect to the 

constituents. Each constituent is treated equally in the scheme, meaning that no 

single constituent acts as a host to the others but that a more abundant constituent is 

the load-bearing one. Thus, a solid-fluid mixture is modelled as a solid with fluid 

inclusions of a particular shape when fluid concentration is small, and as a 

suspension of solid particles in the fluid when the solid concentration is small. This 

property is consistent with the concepts of percolation and critical porosity (Nur et 

al., 1995) and allows one to model situations when heavy oil is a pore-filling fluid 

and when it is part of the rock matrix.  

CPA calculates the effective properties of a porous rock using known 

properties of the solid matrix, the pore fluid, and the pore aspect ratio. The implicit 

CPA formulas for bulk K and shear G  moduli of a two-component rock (one solid 

phase, one fluid phase) are: 
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    1 0f s
f sK K P K K P      ,    (3.1) 

    1 0f s
f sG G Q G G Q      ,    (3.2) 

where   is the porosity; fK and fG  are bulk and shear moduli of the pore fill, 

respectively; sK and sG  are bulk and shear moduli of the matrix (grain) material, 

respectively; and P and Q  are invariants of the so-called Wu tensor (Wu, 1966). The 

components of this tensor depend on the aspect ratio of the pores and on the bulk and 

shear moduli of the pore-fill, matrix material, and as-yet-unknown effective moduli 

K  and G  of the composite. We use the expressions of the Wu tensor for spheroidal 

inclusions of arbitrary aspect ratio   to describe the pore/grains geometry of typical 

sandstones. These expressions are cumbersome and can be found in Berryman 

(1980b) or Mavko et al. (1998).  

Equations 3.1 and 3.2 are coupled and can be solved by iteration: 
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Equations 3.3 and 3.4 can be used to estimate the effective elastic moduli of a 

saturated rock. The iteration process requires a first guess of 1K  and 1G , which can 

be calculated using the Voigt-Reuss-Hill average. The scheme can also be used to 

calculate the dry frame properties ( dryK , dryG ) by setting the bulk and shear moduli of 

the saturating fluid to zero (rock with empty pores).  

3.2.2 COMPLEX SHEAR MODULUS OF HEAVY OIL 

To apply CPA to calculate the effective properties of a rock saturated with 

heavy oil, we need to know its complex temperature- and frequency-dependent shear 

modulus. For viscoelastic materials, the shear modulus G  is complex and represents 
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the ability of a material to store energy elastically and to dissipate it as a viscous 

fluid:  

' ''G G iG  ,      (3.5) 

where 'G , in theory of viscoelasticity, is a storage modulus and ''G  is a loss modulus 

(Ferry, 1980). 

The frequency dependency of the complex shear modulus of heavy oil can be 

approximated by Cole-Cole type empirical dispersion equations (Cole-Cole, 1941; 

Gurevich et al., 2008), which relate complex shear modulus with the shear moduli at 

the low- and high-frequency limits, angular frequency, and relaxation time. The 

relaxation time depends on fluid viscosity which is a function of temperature. 

According to Han et al. (2008), the temperature dependency of heavy oils can be 

described by three main stages, depending on the oil liquid point: liquid state, quasi-

solid state, and solid state. This dependency can also be approximated by empirical 

relationships (e. g., Beggs and Robinson, 1975). 

The dependency of properties of linear viscoelastic materials on frequency 

and temperature can be simplified by using so-called temperature-frequency 

superposition principle, which states that the dispersion curves for different 

temperatures are the same if the frequency is normalized by some temperature-

dependent parameter (Williams, et al., 1955). This means, for instance, that the Cole-

Cole dispersion equation can be used for all temperatures using the Beggs and 

Robinson (Beggs and Robinson, 1975) viscosity-temperature relationship. 

To perform fluid substitution for heavy-oil rocks, frequency- and 

temperature-dependent complex modulus must be used in equations 3.3 and 3.4 

instead of fG . 

3.2.3 COMPARISON WITH KNOWN SOLUTIONS FOR DRY AND ­SATURATED ROCKS 

Before applying CPA to heavy-oil rocks we test its applicability to the 

limiting case of Newtonian liquid/solid mixtures. Figure 3.1 shows CPA predictions 

for dry and water-saturated rocks with a quartz matrix for a range of porosities and 
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aspect ratios. The predicted bulk moduli are compared with the empirical model of 

Krief et al. (1990) and the Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman,  

 [a] 

0 0.1 0.2 0.3
0

10

20

30

40

Porosity

K
d

ry
 (

G
P

a)

   
0.01
0.03
 0.1
 0.2
 0.3
 0.4
   1
  Kr
  HS

 

[b] 

0 0.1 0.2 0.3
5

10

15

20

25

30

35

40

Porosity

K
 (

G
P

a)

   
0.01
0.03
 0.1
 0.2
 0.3
 0.4
   1
  Kr
  HS

 

Figure 3.1. Bulk moduli of dry (a) and saturated (b) quartz sandstone versus porosity. CPA estimates 

for different aspect ratios α (solid lines), Hashin-Shtrikman bounds (symbols) and Krief et al. model 

(dashed lines).  
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Figure 3.2. Difference between water-saturated and dry moduli of a rock with quartz matrix as a 

function of porosity and aspect ratio   for crack densities 0.5  : CPA (dashed lines) versus 

Gassmann estimates (solid lines). 

 

1963). The Krief at al. (1990) estimates of dryK correspond more closely to the CPA 

estimates with 0.2  , which are consistent with values of aspect ratios for sand-

related pores reported in literature (e. g., Xu and White, 1995). As expected, all CPA 

estimates lie within HS bounds. 

In Figure 3.2, we compare the difference between CPA estimates of saturated and 

dry moduli ( dryK K ) with Gassmann predictions for quartz/water mixtures for 

realistic crack densities 0.5   (the crack density is related to porosity   and aspect 

ratio   of the spheroidal crack by 3 4   ). This comparison is important 

because any mixture model for rock saturated with a viscoelastic substance must be 

consistent with Gassmann’s equations when the pore-filling substance is a 

Newtonian fluid. At the same time, models based on isolated ellipsoidal pores are not 

exactly Gassmann-consistent because fluid pressure in the pores varies with their 

orientations (Thomsen, 1985; Mavko and Jizba, 1991). As can be seen from Figure 
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3.2, the CPA results are in the best agreement with Gassmann predictions for 

spherical pores and show the maximum deviation from Gassmann estimates for 

relatively flat pores. For aspect ratios 0.2 0.4    and typical porosities of up to 

0.25   we observe satisfactory agreement with Gassmann predictions. The 

discrepancy is less than 1 GPa. We thus conclude that CPA is approximately 

Gassmann-consistent within typical measurement errors. 

3.3 FLUID SUBSTITUTION SCHEME USING CPA 

If the effective pore aspect ratio   is known, the effective elastic properties of a rock 

can be computed by iterating equations 3.3 and 3.4. Here we assume that the rock 

structure can be approximated by ellipsoids with the same effective aspect ratio. Of 

course, pore geometry of real rocks is more complicated and consists of pores of 

different sizes and shapes. However, ellipsoids often are used to capture some 

essential properties of subsurface voids, providing simple parameterization of the 

enormous complexity of the real pore space.  

For a given rock sample, the effective pore aspect ratio   can be estimated 

from dry moduli (note that in Gassmann’s fluid substitution dryK  is the key input 

parameter as well). Given dryK , the effective aspect ratio can be estimated by the 

inverse CPA scheme (equations 3.3 and 3.4) with fluid moduli set to zero. The aspect 

ratio   can also be derived using the inverse CPA scheme if we know the bulk  

modulus K  of the rock saturated with a fluid with known bulk modulus (e.g. water). 

Alternatively, the aspect ratio can be estimated from shear moduli.  

Once   is estimated, we can calculate the effective moduli of a saturated 

rock for any desired pore-filling material using the forward CPA scheme.  

We can summarize the CPA fluid substitution workflow in the following 

steps: 

1. Employ inverse CPA to estimate the effective aspect ratio   using 

known dry or saturated bulk or shear modulus. 
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2. Obtain the frequency- and temperature-dependent complex shear modulus 

of the pore fill fG  from laboratory measurements. If such measurements 

are not available in the range of temperatures and frequencies required, 

they can be interpolated using known empirical relationships (Beggs and 

Robinson, 1975; Cole-Cole, 1941) and the frequency-temperature 

superposition principle (Williams et al., 1955, Ferry, 1980). 

3. Calculate the effective elastic moduli of a rock saturated with viscoelastic 

fluid employing forward CPA scheme (equations 3.3 and 3.4) with 

complex shear modulus of a pore-fill fG . 

3.4 COMPARISON WITH LABORATORY MEASUREMENTS 

3.4.1 UVALDE HEAVY­OIL ROCK 

We apply our CPA fluid substitution scheme to Uvalde heavy-oil rock from 

Texas, U.S.A. The laboratory measurements carried out on this rock have been 

reported in the literature (Batzle et al., 2006; Behura et al., 2007; Das and Batzle, 

2008).  

The Uvalde rock is a carbonate saturated with extremely viscous heavy oil 

with an API density of 5 (1.12 g/cm3). It has porosity of approximately 25%, and 

permeability of 550 mD. A shear rheometer was used to measure the complex shear 

modulus of the rock at temperatures ranging from 30C to 350C and frequencies 

ranging from 0.01 to 80 Hz. Then the oil was extracted and its complex shear 

modulus was measured in the same frequency range and temperatures from 30C to 

250C. 

The measured storage modulus of the Uvalde rock and the extracted oil for 

the whole range of frequencies and temperatures ranging from 30C to 200C are 

shown in Figure 3.3. The missing data points have been interpolated. The modulus of 

the heavy-oil-saturated rock shows a moderate dependency on frequency and is 

strongly influenced by temperature. The storage modulus 'G of the rock increases  
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Figure 3.3. Variation of (a) storage modulus '
fG of Uvalde heavy oil and (b) storage modulus 'G of 

Uvalde heavy-oil rock with frequency and temperature as measured by Behura et al. (2007). 
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with frequency for temperatures less than 150C. At higher temperatures, the 

behaviour of the storage modulus 'G  is weakly dependent on frequency. 

The trends observed for the rock shear properties look similar to those for the 

extracted oil. The Uvalde oil shows noticeable dispersion for temperatures less than 

180C. At low temperatures, the extracted heavy oil supports a shear wave, but with 

increasing temperature, its storage modulus decreases rapidly, similar to what is 

observed for the rock shear modulus. As in the case with the rock, we can see that at 

higher temperatures the storage modulus of the oil '
fG  is nearly independent of 

frequency. In general, '
fG  increases with increasing frequency for all temperatures.  

Therefore, we can conclude that the mechanical response of a heavy-oil rock 

with changing temperature and frequency is strongly influenced by the behaviour of 

the pore-filling oil. 

3.4.2 MODELLING WITH A SINGLE ASPECT RATIO 

Given that the measurements of the shear properties of the Uvalde oil and 

Uvalde rock are available, we use the fluid substitution workflow as described above. 

First we predict the effective elastic properties of the Uvalde rock saturated with the 

Uvalde oil using CPA. Then we compare the predicted storage modulus of the rock 

with laboratory data. We perform our modelling for the full range of frequencies and 

the temperatures ranging from 30C to 200C. We take the physical properties of 

the grain material as those of calcite ( 60sK  GPa, 30sG  GPa, density 

s 2.71  g/cm3). The dry shear modulus dryG  of the Uvalde rock has not been 

measured, so we perform an analysis of the available values of the temperature- and 

frequency-dependent shear properties of the oil and rock to obtain dryG . In our 

analysis, we assume that at high temperatures and low frequencies, the pore fluid 

behaves as a Newtonian fluid and has no effect on the effective shear properties of 

the rock. Indeed, careful analysis of laboratory data (Figure 3.3) shows that for 

temperatures over 120  the shear modulus of the Uvalde rock is a real constant  
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Figure 3.4. Comparison of frequency- and temperature-dependent storage modulus 'G predicted by 

(a) CPA with a single aspect ratio (symbols) and by (b) extended Gassmann (symbols) with laboratory 

measurements conducted on an Uvalde heavy-oil rock sample (lines). T  is temperature. 
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1.45G   GPa. This means that the effective shear modulus G  becomes identical to 

the dry shear modulus dryG .  

Next, we solve equations 3.3 and 3.4 to obtain the aspect ratio   using the 

estimated dryG . Then we use the forward CPA to compute the frequency- and 

temperature-dependent effective shear modulus of the Uvalde rock saturated with the 

Uvalde oil. In Figure 3.4a, we compare the calculated effective shear moduli of the 

rock (symbols) with the laboratory-measured moduli (lines). We can see that CPA is 

unable to capture the trend of the frequency- and temperature-dependency of the rock 

shear properties, especially for low temperatures. The estimated moduli are 

significantly lower than the measured ones. In Figure 3.4b, we compare the 

predictions of the effective storage modulus computed by the viscoelastic extension 

of Gassmann’s theory (EG) (Ciz and Shapiro, 2007) with laboratory data. We can see 

that the EG predictions (symbols) deviate from the laboratory data (lines) even more 

than the CPA estimates (Figure 3.4a). 

3.4.3 COMPLIANT POROSITY 

For additional insight into frequency- and temperature-dependent behaviour of the 

Uvalde rock, we compare storage moduli of the rock and oil as a function of 

temperature for different frequencies (Figure 3.5). We observe a substantial variation 

of the rock storage modulus 'G (symbols) with temperature for different frequencies, 

contrary to the relatively moderate variation of the oil storage modulus '
fG  (lines). 

For instance, 'G  (80 Hz frequency) varies from approximately 2 GPa up to 17 GPa, 

whereas '
fG , varies from almost 0 to 1.2 GPa. This suggests that a simple mixing 

law, such as CPA with a single aspect ratio, cannot account for those observations. 

The effect of porosity and fluids on elastic properties of rocks is often 

modelled using the binary structure of the pore space-relatively stiff pores that 

occupy most of the pore space, and relatively compliant (soft) pores that are present 

at grain contacts and responsible for the pressure dependency of the elastic moduli. 
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Figure 3.5. Laboratory measurements of storage moduli '
fG of Uvalde heavy oil (lines) and 'G of 

Uvalde heavy-oil rock (symbols) for a range of frequencies and temperatures.  

At high frequencies, fluid flow does not have enough time to equilibrate pore-

pressure gradients between the two pore types, effectively isolating compliant pores 

from stiff pores and from each other. If a rock is saturated with viscoelastic fluid, this 

effect may occur even at relatively low frequencies, as considered in this study. 

When heavy oil is in a near-elastic state, it cannot flow out of soft pores, stiffening 

the compliant grain contacts. The presence of compliant pores may lead to additional 

dispersion of both compressional and shear waves in heavy-oil rocks due to the 

dependency of the normal stiffness of these contacts on the storage modulus of the 

pore fill (Mavko and Jizba, 1991). Poor performance of both CPA with a single 

aspect ratio and EG, may be explained by the presence of compliant pores in the rock 

matrix. 

3.4.4 MODELLING WITH TWO ASPECT RATIOS 

To account for the effect of double porosity, we introduce the compliant 

porosity terms to equations 3.3 and 3.4: 
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where s  is stiff porosity that occupies most of the pore space, c  is compliant 

porosity present within the grains and at grain contacts, and s c    . 

Now the problem becomes more complicated because equations 3.6 and 3.7 

must be inverted to estimate three unknown parameters: compliant porosity c , and 

aspect ratios of compliant and stiff pores c .and s  respectively. For the fitting 

 

10
-2

10
0

10
2

0

5

10

15
ToC

Log
10

 frequency (Hz)

G
' (

G
P

a)

 30
 40
 50
 60
 70
100
200

 

Figure 3.6. Comparison of frequency- and temperature-dependent storage modulus 'G  predicted by 

CPA with two aspect ratios (symbols) with laboratory measurements carried out on an Uvalde heavy-

oil rock sample (lines). 
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Figure 3.7. Variation of quality factor Q of Uvalde heavy-oil rock with frequency and temperature (a) 

as measured by Behura et al. (2007) and (b) as predicted by CPA with two aspect ratios. 
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procedure, we use dry shear modulus dryG  and saturated shear modulus G  measured 

at temperature 50C and two frequencies, 0.08 Hz and 15.85 Hz. We assume the 

grains can be described by the aspect ratio g 0.8   and keep it constant. The results 

of the fitting or the inverse CPA are 0.1c  , 1s  , and 0.004c  . 

Next, we use the estimated parameters in the forward CPA scheme to predict the 

frequency- and temperature-dependent shear modulus G  of the Uvalde rock. The 

results are compared with measurements in Figure 3.6. We observe very good 

agreement between the CPA predictions (symbols) and the laboratory data (lines). 

The only deviation larger than the measurement error (approximately ± 2.09 GPa; 

see Behura et al., 2007) is observed at high frequencies for 30C.  

We also compute the shear quality factor Q  (inversely proportional to the 

attenuation coefficient) from the predicted complex effective shear modulus of the 

rock. Figure 3.7b shows Q  predicted by CPA. The general trend of estimated 

attenuation is similar to the measured one (Figure 3.7a). However, the measured Q  

exhibits more significant variation with frequency.  

3.5 DISCUSSION 

The method described in this chapter as well as other methods based on 

effective-medium theories are based on analogy between elasticity and 

viscoelasticity. This analogy is limited to sufficiently low frequencies such that the 

inertial terms in the equations of viscoelasticity are small and can be neglected 

(Hashin, 1970). This limitation is expected to be satisfied at seismic frequencies but 

may no longer be valid at higher frequencies where effects of squirt may become 

important (Leurer and Dvorkin, 2006). 

In this chapter, we have described the CPA fluid substitution workflow 

assuming a single aspect ratio. One can use a single aspect ratio when the range of 

pore shapes does not vary significantly. This might be the case when compliant 

grain-to-grain contacts or intragranular porosity does not significantly contribute to 

overall rock stiffness-for instance, well consolidated rocks with welded grains or at 
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high effective pressure when compliant pores are closed. However in most 

sedimentary rocks, compliant pores (grain-to-grain contacts) with low aspect ratio 

contribute to the total porosity and are responsible for the stress dependency of 

elastic properties. When compliant pores are present in the rock matrix, introducing a 

second pore aspect ratio into the scheme becomes important. 

The present work assumes that the porosity and geometry of the pore space of 

the rock matrix are the same for dry and oil-saturated rock, regardless of the oil 

rheology. We also assume that oil composition does not vary with temperature. 

These conditions may be violated in field and laboratory studies (Behura et al., 2007; 

Han et al., 2007a). Note that we do not examine the pressure and gas effect on 

moduli/velocities, which might be important in the recovery process. 

3.6 CHAPTER CONCLUSIONS  

We have used a self-consistent mixing method known as coherent potential 

approximation (CPA) as an alternative fluid substitution scheme for rocks saturated 

with viscoelastic fluids. First, CPA equations were inverted to obtain the effective 

aspect ratio of a rock from dry modulus. Then forward CPA with a temperature- and 

frequency-dependent shear modulus of viscoelastic pore fill was used to obtain 

saturated moduli.  

We tested CPA estimates of effective bulk moduli of a dry and a Newtonian 

fluid saturated rock against analytical solutions. CPA predictions satisfy the Hashin-

Shtrikman bounds and are approximately consistent with Gassmann’s equations and 

the Krief et al. (1990) model.  

A comparison with laboratory measurements revealed that CPA with a single 

aspect ratio is not adequate in predicting the frequency and temperature dependency 

of the effective shear modulus of the Uvalde heavy-oil rock. 

We modified the scheme to account for the binary structure of the pore space. 

Inverted CPA was used to estimate three unknown parameters: compliant porosity 

and aspect ratios of stiff and compliant pores from the laboratory measured effective 

dry and saturated shear moduli at a single temperature and at two frequencies. In this 
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case, CPA reproduced frequency- and temperature-dependent behaviour of the shear 

modulus and attenuation of Uvalde heavy-oil rock, proven by good agreement with 

laboratory data. This confirms that the proposed scheme provides realistic estimates 

of the properties of heavy-oil rocks and can be used as an approximate fluid 

substitution approach for rocks saturated with viscoelastic fluids.  
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CHAPTER 4 – BOUNDS FOR VISCOELASTIC 

PROPERTIES OF HEAVY‐OIL ROCKS 

4.1 BACKGROUND 

As mentioned in Chapter 3, heavy oils exhibit viscoelastic behaviour which is 

strongly frequency- and temperature- dependent. One result of viscoelastic rheology 

of heavy oils is that shear velocity in rocks in the seismic frequency band would 

significantly differ from that in the sonic logging-frequency range and the ultrasonic 

band. Therefore, the most common poroelastic theories of Gassmann (1951) and Biot 

(1956) cannot be applied to heavy-oil rocks. 

Accurate laboratory data are important for establishing the right model. 

However, laboratory measurements of velocity dispersion are rather difficult and 

require development of special measurement techniques (Han, 2007a; Han, 2007b). 

To date, few laboratory studies have been published in the literature (Nur et al., 

1984; Batzle et al., 2006; Behura et al., 2007; Han et al., 2008). While the 

measurements provide physical understanding of complex properties of heavy oil, 

their accuracy can be affected by different sources of errors such as poor quality of 

P- and especially S-wave signals, inadequate temperature and pore pressure control, 

difficulties in preserving integrity of a heavy oil sample, etc. 

Rigorous bounding methods could provide a benchmark for testing laboratory 

measurements and results of modelling. They can also be used as an indicator as to 

whether the viscoelastic response of a given composite is extreme in the sense of 

being close to the edge of the bound. The best elastic bounds giving the narrowest 

range without specifying anything about the geometries of the constituents are 

Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman, 1963). These bounds are 

constrained by requirement of isotropy, and thus correspond to realistic geometrical 

structures of rocks. It is known that the correspondence principle between elasticity 

and viscoelasticity can be used to describe the linear response of viscoelastic 
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composites at sufficiently low frequencies of oscillation. This means that HS bounds 

can be applied to solid/viscoelastic fluid mixtures. However in this case, the HS 

bounds become complex and are not longer rigorous as the notion of a value lying 

between two bounds is unidentified for complex numbers. HS bounds could provide 

rigorous realizable estimates only for the limiting cases of low temperature (elastic 

solid pore fill) and high temperature (Newtonian fluid pore fill). For the 

viscoelasticity problem, the set of possible effective moduli should fill a region in the 

complex plane and bounds should be represented as closed curves.  

In this chapter, we apply rigorous bounds (Milton and Berryman, 1997) 

specifically designed for two-phase viscoelastic composites to the complex shear 

modulus measured on Uvalde heavy-oil rock sample (Behura et al., 2007). We also 

apply the bounds to the results of CPA modelling of elastic properties described in 

the previous chapter. We restrict our analysis to shear properties only because they 

are more sensitive to temperature changes in reservoirs than bulk properties. 

4.2 RIGOROUS VISCOELASTIC BOUNDS  

Milton and Berryman (1997) extended HS bounds for the effective shear-

modulus to viscoelasticity using variational principles (for derivation details and the 

algorithm see Milton and Berryman, 1997; Gibiansky and Milton, 1993). They 

considered the dynamic response of statistically isotropic three dimensional 

composites with two viscoelastic isotropic phases mixed in fixed proportions in the 

quasi-static regime or at frequencies where the wavelength of a passing wave is 

much larger than the inhomogeneities (inclusions). The bounding regions in a 

complex plane are composed by arcs of circles containing four points related to the 

bulk and shear moduli of the constituents. The resulting bounds form a lens-shaped 

region obtained by taking the intersection of all such arcs.  

Similarly to HS bounds, the viscoelastic bounds are independent of rock 

microstructure. The only input parameters needed to construct the bounding curves 

are the constituent bulk and shear moduli and the volume fractions of the 

constituents. The method is relatively easy to apply in practice due to simplified 
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parameterization used in the derivation. On the other hand, these simplifications 

could make the resulting bounds less tight than if extracted from the more general 

theory. Importantly, the points which correspond to HS bounds on the shear modulus 

always lie inside or on the boundary of the bounding region. In the limiting case, 

when all the constituent moduli are real the viscoelastic bounds reduce precisely to 

HS bounds.  

4.3 APPLICATION OF VISCOELASTIC BOUNDS  

We apply the viscoelastic bounds to the shear properties of Uvalde heavy-oil 

rock. Measurements carried on an Uvalde heavy-oil rock sample and the extracted oil 

were made in the linear viscoelastic regime. As it was pointed out by Behura et al. 

(2007), strain amplitude lying within this linear region was selected for conducting 

all temperature-frequency measurements. It is important to note that the strain limit 

for the linear behaviour varies from one rock or material to another. The same strains 

(6·10-5 - 8·10-5) were used for testing heavy-oil rocks and the extracted oil. Note that 

the used strains are more than one order larger than the strains encountered in 

exploration seismology. This might result in laboratory measured properties different 

from seismic ones at the same frequency range.  

In chapter 3, we use self-consistent effective medium theory CPA (Berryman, 

1980b) as an alternative fluid substitution technique to predict the shear properties of 

Uvalde heavy-oil rock. The results of modelling are compared with measurements in 

Figure 3.6. CPA predictions and laboratory data are in a very good agreement with 

the only deviation larger than the measurement error (approximately ± 2.09 GPa) 

observed at high frequencies for 30C. In order to understand this discrepancy, we 

use the viscoelastic bounds for testing the results of modelling and laboratory data. 

We calculate the bounds for the range of frequencies and temperatures. As 

input parameters we use the properties of calcite (see chapter 3) and frequency- and 

temperature-dependent shear properties of heavy oil. Unfortunately, measurements 

of the bulk modulus of heavy oil fK  are not available. Therefore, we keep fK  

constant 
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Figure 4.1 Viscoelastic bounds (black lines) for the effective shear modulus G  (left panels) and 

inverse quality factor 1 / Q  (right panels) of Uvalde heavy-oil rock: (a) 30T   C and 79f   Hz, 

(b) 70T  C and 40f   Hz. CPA predictions of G  (magenta squares) are compared to 

laboratory data (black squares). Also shown: CPA estimates of G  for a range of aspect ratios (black 

dots), HS lower (blue circles) and upper (red circles) bounds, and measured fG of heavy oil (green 

diamonds). 
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( 3fK   GPa). We believe that this will not significantly affect the results because 

fK  is less sensitive to frequency and temperature changes than fG . Figure 4.1a 

shows the bounding curves calculated for the saturated rock shear modulus G  and 

inverse quality factor 1Q  at the temperature ( 30T  C) and frequency ( 79f  Hz) 

of the largest mismatch between CPA estimates and laboratory data, when the oil 

inside the rock is close to a solid state ( 1.1 +0.4ifG  GPa). Note that the bounds are 

quite narrow for the imaginary part of G  (loss modulus) responsible for the energy 

dissipation. This also applies to the inverse quality factor. This behaviour of bounds 

is physically plausible as the heavy oil in these temperature and frequency conditions 

is nearly a solid. We can see that CPA estimates lie within the bounds, whereas 

measured G  lies outside. This suggests that the mismatch between the predictions 

and laboratory data is caused by measurement errors. 

When temperature increases ( 70T  C) and frequency becomes lower 

( 40f  Hz), the bounding curves become wider (Figure 4.1b). To construct the 

bounds for this case, we use the measured oil shear modulus 0.03 +0.03ifG   GPa. 

We can see that CPA estimates and laboratory data agree very well and are contained 

within the bounds.  

As a test, we also plot CPA estimates for aspect ratios ranging from 0 to 1 

(black dots), which represent different pore geometries. As expected, all CPA 

estimates lie within the bounds.  

4.4 CHAPTER CONCLUSIONS 

We have demonstrated that viscoelastic bounds of Milton and Berryman 

(1997) for the effective shear modulus of a two phase three-dimensional isotropic 

composite can be used as rigorous bounds for heavy-oil rocks. The viscoelastic 

bounds provide an effective tool for testing laboratory measurements and theoretical 

predictions for heavy-oil rocks.  

It is important to note that these bounds are quasi-static and are designed to 

work at frequencies where the wavelength is much larger than the inhomogeneities. 
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Simplified parameterization used in the derivation can result in wider bounds. 

Alternatively, more restrictive bounds developed for a two-dimensional composite 

(Gibiansky et. al, 1999) can also be applied to rocks saturated with viscoelastic 

fluids. 
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CHAPTER 5 – A NEW SQUIRT MODEL FOR 

DISPERSION AND ATTENUATION IN FLUID‐

SATURATED GRANULAR ROCKS  

5.1 BACKGROUND 

A major cause of elastic wave attenuation in fluid saturated rocks is the flow 

of the pore fluid induced by the passing wave. When an elastic wave propagates 

through a fluid-saturated medium, it creates local pressure gradients within the fluid 

phase, resulting in fluid flow and corresponding internal friction until the pore 

pressure is equilibrated. The fluid flow can take place on various length scales.  

Flow between mesoscopic (larger than the pore size but smaller than 

wavelength) patches of rock with different stiffness due to rock heterogeneity (White 

et al., 1975; Pride et al., 2003) or spatial variations in fluid saturation (White, 1975; 

Gist, 1994; Toms et al., 2007) is believed to be significant at seismic frequencies. At 

sonic and ultrasonic frequencies attenuation appears to be dominated by the local 

(pore-scale) flow between pores of different shapes and orientations (Mavko and 

Nur, 1975; Mavko and Nur, 1979; Jones, 1986). Mesoscopic flow can be treated 

using all the machinery of Biot's theory of poroelasticity (Biot, 1956a; Biot, 1956b; 

Biot, 1962; Bourbié et al., 1987) with spatially varying coefficients (Dutta and Ode, 

1979a; Dutta and Ode, 1979b; Lopatnikov and Gurevich, 1988; Lopatnikov et al., 

1990; Auriault and Boutin, 1994; Gurevich and Lopatnikov, 1995; Pride et al., 2004; 

Müller and Gurevich, 2005; Johnson, 2001). 

Modelling local flow, also known as squirt, cannot be done in a similar 

manner, as local flow depends on variety of parameters describing pore shapes and 

orientations. Most theoretical models of squirt-flow attenuation are based on the 

analysis of aspect ratio distributions (Mavko and Nur, 1979; O’Connell and 

Budiansky, 1977; Palmer and Traviolia, 1980); a comprehensive review of these 

earlier studies is by Jones (1986). An alternative approach is based on the recognition 
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that the pore space of many rocks has a binary structure (Walsh, 1965; Mavko and 

Jizba, 1991; Shapiro, 2003): relatively stiff pores, which form the majority of the 

pore space, and relatively compliant (or soft) pores, which are responsible for the 

pressure dependency of the elastic moduli (Murphy et al., 1986; Dvorkin et al., 1995; 

Chapman et al., 2002). In particular, Dvorkin et al. (1995) model a rock as a granular 

aggregate in which the grains themselves are assumed porous. Inter-granular pores 

are stiff, while the intra-granular micro-pores are soft. This model was later 

reformulated and refined by Pride et al. (2004). The advantage of the porous grain 

model, particularly in the formulation of Pride et al. (2004), over all other squirt 

models, is in the fact that the medium can be treated as poroelastic on the sub-pore 

scale, and thus is amenable to treatment using Biot's equations of poroelasticity with 

spatially varying coefficients (Pride and Berryman, 2003). This model is also 

consistent with Mavko and Jizba (1991) predictions for the high-frequency limit of 

elastic moduli, which are known to be in good agreement with laboratory 

measurements (Mavko and Jizba, 1994; Wulff and Burkhardt, 1997; Endres and 

Knight, 1997). However, the concept of porous grains is somewhat abstract, and 

interpretation of parameters of this imaginary micro-porous grain in terms of rock 

properties is difficult. Furthermore, application of Biot's theory to micro-porous 

grains assumes that compliant pores are small compared to the grain size; this may 

not be the case for real rocks. 

An appealing alternative is the approach of Murphy et al. (1986), who 

consider compliant pores as gaps at contacts between adjacent grains, see also Mayr 

and Burkhardt (2006). However, the model of Murphy et al. is not consistent with the 

well established high-frequency predictions of Mavko and Jizba (1991); in fact, its 

high-frequency prediction for the elastic moduli is unrealistically high. This 

inconsistency stems from the fact that the particular formulation of Murphy et al. 

(1986) is developed within the framework of Hertz-Mindlin grain contact theory 

(Digby, 1982; Winkler, 1983) where grains themselves are assumed rigid and the 

compliance of the rock is caused solely by weak grain contacts. In the high-

frequency limit, fluid pressure cannot relax between the inter-granular gap and the 
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surrounding (stiff) pore, making its compliance vanishingly small and rock 

unrealistically stiff. 

In this chapter, we propose a new model of squirt-flow attenuation which 

uses a pressure relaxation approach of Murphy et al. (1986) in conjunction with the 

discontinuity tensor formulation of Sayers and Kachanov (1995). The resulting 

model is consistent with the Gassmann’s (1951) and Mavko-Jizba equations at low 

and high frequencies, respectively, and with the piezosensitivity model of Shapiro 

(2003). It can also naturally be incorporated into Biot's theory of poroelasticity to 

obtain velocity and attenuation prediction in a broad frequency range. 

5.2 ASSUMPTIONS  

The aim of this chapter is to derive expressions for frequency-dependent 

moduli of a rock when it is fully saturated by a single fluid with a bulk modulus fK  

and dynamic viscosity  . Following Walsh (1965), Mavko and Jizba (1991) and 

Shapiro (2003), we assume that the pore space of the rock consists of stiff and 

compliant pores, which form fully interconnected pore space. We also assume that 

the dry rock frame (skeleton) is homogeneous, that is, consists of a single isotropic 

mineral with bulk modulus gK  and shear modulus g . The frame is also assumed 

isotropic on both micro-scale (pore scale) and macro-scale (wavelength scale), and is 

characterised by stiff porosity s , compliant porosity c s  , total porosity 

s c s      , permeability  , and dry bulk and shear moduli dryK  and dry  at a 

given confining pressure  P . At pressure  hP P , dry rock contains stiff pores only, 

and is a linearly elastic solid with a bulk modulus  hK . The frequency dependency 

(dispersion) in our rock can be caused by two principal mechanisms: (1) global flow 

dispersion due to the flow of fluid relative to the solid frame caused by the pressure 

gradients between peaks and troughs of the wave and (2) squirt flow between 

compliant pores and stiff pores. In this chapter, we are principally concerned with 

squirt flow. Therefore, to ensure that Biot’s dispersion is negligible, we will, for the 



CHAPTER 5 – A NEW SQUIRT MODEL FOR DISPERSION AND ATTENUATION IN FLUID‐
SATURATED GRANULAR ROCKS 

  69

time being, assume that the characteristic frequency Biotf  of Biot’s dispersion is 

much higher than both the squirt characteristic frequency cf , and the frequency of 

the propagating wave  f.  Both of these conditions will later be lifted.  

5.3 LOW‐FREQUENCY (RELAXED) MODULI 

In the low-frequency limit, the bulk and shear moduli of our fluid-saturated 

rock are given by Gassmann’s equations (Gassmann, 1951; White, 1983) 

 

1 1

1 1

1 1 1 1
1

f g

low g

f g dry g

K K

K K

K K K K





 
  

  
   

        
   

,   (5.1) 

and  

low dry  .      (5.2) 

Gassmann’s equations 5.1 and 5.2 are valid when cf f . Physically, this means 

that the wave frequency is sufficiently low, so that fluid pressure has enough time to 

equilibrate between stiff and compliant pores during half wave cycle. Thus the 

moduli given by Gassmann’s equations 5.1 and 5.2 can be called relaxed moduli. 

5.4 HIGH‐FREQUENCY (UNRELAXED) MODULI  

When the frequency is higher than the squirt characteristic frequency, cf f , 

the fluid pressure doesn’t have enough time to equilibrate between stiff and 

compliant pores during half wave cycle (so called unrelaxed state). Then, compliant 

pores at the grain contacts are effectively isolated from the stiff pores and hence 

become stiffer with respect to normal (but not tangential) deformation. To quantify 

this effect, Mavko and Jizba (1991) considered so called modified frame: the rock in 

which only compliant pores are filled with the fluid, while stiff pores are empty, and 
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showed that unrelaxed (high frequency) bulk and shear moduli ufK  and uf  of this 

modified frame are given by 

   1 1 1 1
c

uf h f g

P
K P K K K


 

    
 

    (5.3) 

and  

       
1 1 4 1 1

,
15uf dry dry ufP P K P K P 

 
    

 
   (5.4) 

 

where  hK   is the dry bulk modulus of a hypothetical rock without the compliant 

porosity; see also Berryman (2007). Note that for most rocks,  c P  is on the order 

of 310  or smaller (Mavko and Jizba, 1991; Shapiro, 2003). For typical reservoir 

liquids (not gases!), the bulk modulus fK  is on the order 1/10 of the dry rock 

modulus and much smaller than the mineral modulus gK . Therefore, the second term 

in the right hand side of equation 5.3 is at most on the order of 0.01 of the first term 

and hence is negligible for most liquids. This means that the bulk modulus of the 

modified frame is almost independent of the pressure. However, the shear modulus 

(and hence, both compressional and shear velocities) still depends on pressure 

through the pressure dependency of the dry bulk and shear moduli ( )dryK P  and 

( )dry P . 

Equation 5.3 for the unrelaxed bulk modulus of the modified frame was 

derived by Mavko and Jizba (1991) as a first-order expansion in the powers of 

complaint porosity, and implies that  1 1 1
c f g hK K K     . Indeed, as discussed 

above, if the saturating fluid is liquid, this condition is usually satisfied. However, as 

will be seen later in our derivation, this condition is too restrictive for our purposes. 

Here we wish to obtain a more general expression for the unrelaxed frame moduli 

(without any restriction on the fluid compressibility) ufK   and  uf   which represent 

the moduli of the rock whose interconnected stiff pores are drained (or dry) but the 

isolated soft pores can be either dry or filled with a fluid. 
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5.4.1 ELASTIC MODULI IN TERMS OF DISPLACEMENT DISCONTINUITIES 

At a pressure  hP P   the rock is weakened by the presence of compliant 

porosity. We represent the effect of compliant porosity on elastic properties by a 

system of isotropically distributed displacement discontinuities at grain boundaries. 

The effect of such discontinuities on elastic compliance of a rock  ijklS   can be 

quantified using the formulation of Sayers and Kachanov (1995)  

 0 1
.

4ijkl ijkl ik jl il jk jk il jl ik ijklS S                 (5.5) 

Here,  ij   and  ijkl   are second and fourth-rank tensors defined by 

( ) ( ) ( ) ( )1
,r r r r

ij T i j
r

B n n A
V

         (5.6) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1
,r r r r r r r

ijkl N T i j k l
r

B B n n n n A
V

       (5.7) 

where ( )r
NB   and  ( )r

TB   are the normal and shear compliance of the  r th discontinuity 

in volume  V  ,  ( )r
in   is  i th component of the normal to the discontinuity, and  ( )rA   

is the area of the discontinuity.  ( )r
NB   characterizes the displacement jump normal to 

the discontinuity produced by a normal traction, while  ( )r
TB   characterizes the shear 

displacement jump produced by a shear traction. The discontinuities are assumed to 

be rotationally symmetric, that is,  ( )r
TB   is assumed to be independent of the 

direction of the shear traction within the plane of the discontinuity. 

Sayers and Han (2002) showed that in the case of an isotropic distribution of 

discontinuities in an isotropic rock, equation 5.5 gives the following expressions for 

the isotropic bulk and shear compliances of the rock 

1 1
3 5 ,

uf hK K
           (5.8) 
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1 1 4
2 ,

3uf h

    
 

      (5.9) 

where  11 22 33         and  1111 2222 3333         are diagonal elements of the 

respective tensors. These tensor elements may be computed for an isotropic 

distribution of discontinuities by replacing the sums in equations 5.6 and 5.7 with 

integrals over all orientations and taking volume  V   to be a sphere of radius  ,R   

2
33

1
cos ,

3T TS

A
B dS B

V V
          (5.10) 

   4
3333

1
cos

5v
N T N TS

A
B B dS B B

V V
          (5.11) 

where  NB   and  TB   are the normal and shear compliance of each individual plane 

discontinuity,  vS   is the surface of all discontinuities in volume  ,V   A   is the total 

area of  vS  and   is angle between the normal to the surface area dS  and the 3x  

axis. Substituting these expressions into equations 5.8 and 5.9 gives 

1 1
,N

uf h

sB
K K

        (5.12) 

1 1 4 2
,

15 5N T
uf h

sB sB  
 

     (5.13) 

where  /s A V   is volume to surface ratio of all discontinuities. 

5.4.2 EFFECT OF FLUID 

Equations 5.12 and 5.13 are valid for a rock in which compliant porosity is 

either dry of fluid saturated. For dry rocks we have  

1 1
,dry

N
dry h

sB
K K

        (5.14) 

1 1 4 2
,

15 5
dry dry
N T

dry h

sB sB  
 

    (5.15) 
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where  dry
NB   and  dry

TB   are the dry normal and shear compliances of an individual 

discontinuity (compliant pore). In turn, unrelaxed moduli of a rock in which 

compliant pores are fluid-filled can be expressed by equations 5.12 and 5.13, with 

NB  and TB  representing saturated fracture compliances. Because in Newtonian 

fluids the shear stresses are negligible (up to the characteristic frequency of viscous 

shear relaxation, [Mavko and Nur, 1975]), shear compliance TB  is independent of 

the fluid fill, so that TB  dry
TB  dry. Subtracting equation 5.12 from equation 5.14 and 

equation 5.13 from equation 5.15 then gives  

 1 1
,dry

N N
dry uf

s B B
K K

        (5.16) 

 1 1 4
.

15
dry
N N

dry uf

s B B  
 

     (5.17) 

Combining these two equations we obtain equation 5.4, the original Mavko-Jizba 

equation. 

To establish the dependency of  ufK   and  uf   on the fluid modulus, we need 

to know the fluid dependency of normal compliance  NB  , which can be derived in a 

variety of ways. This dependency can be derived in a variety of ways. Perhaps the 

simplest and most general way is to use anisotropic Gassmann's equations 

(Gassmann, 1951; Brown and Korringa, 1975). The simplest, most general way is to 

use anisotropic Gassmann’s equations (Gassmann, 1951; Brown and Korringa, 

1975). In general, Gassmann’s equations are not valid for an isotropic distribution of 

isolated compliant pores because pressure in individual pores differs depending on 

pore orientation. However, because all compliant pores are isolated, NsB   can be 

represented as a sum over all orientations of all soft pores aligned perpendicular to 

every direction: 

4
,N N

ds
sB B d

d
 

      (5.18) 
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where  d   is the solid angle element around direction,  and  /ds d   is the total 

area of all soft pores normal to that direction. In equation 5.18, /N NZ B ds d    is 

normal excess compliance caused by all soft pores aligned normal to any particular 

direction. For a dilute distribution of aligned compliant pores of the same shape, 

Gassmann’s theory is approximately valid because all these pores will have 

approximately the same pressure induced by uniform deformation, even if they are 

isolated. Note that dilute concentration already is required by the use of 

noninteractive approximation of Sayers and Kachanov, equations 5.5–5.7. The 

anisotropic Gassmann’s equation for aligned pores gives (Gurevich, 2003) 

,

11
1 1

1

dry dry
N N

N dry dry
f N N

f
cxcx

f gg

Z Z
Z

K Z Z

K

K KK

 


  
          

    (5.19) 

where  /cx cd d      is the specific volume of compliant pores parallel to the plane 

normal to  x   axis (or any other single direction) and   /dry dry
N NZ ds d B   . 

Substituting these expressions into equation 5.19 gives 

1
1 1

dry
N

N
dry
N

c

f g

ds
B

dZ
ds

B
d

d

d K K




 

    

.     (5.20) 

Noting that  

,
c c

ds
sd

d

d

 
 


      (5.21) 

we obtain 
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,

1
1 1

dry
N

N dry
N

c
f g

ds
B

dZ
sB

K K




 
   
 

     (5.22) 

and thus 

1
1 1

dry
N

N dry
N

c
f g

B
B

sB

K K




 
   
 

.     (5.23) 

Equation 5.23 can also be derived from the first order (dilute) approximation 

for ellipsoidal cracks based on the Eshelby theorem (Küster and Toksöz, 1974; 

Berryman, 1980b; Thomsen, 1995). However, the derivation from anisotropic 

Gassmann's equation (Gurevich, 2003; Berryman, 2007) appears to be slightly more 

general, in that it does not assume any particular shape of the compliant pores in the 

plane of the discontinuity. All compliant pores must have approximately the same 

shape, though, or the pressure induced will be different! Also note that equation 5.23 

differs from a similar expression in the theory of penny-shaped cracks (Hudson, 

1981) by the presence of the small  1/ gK   term. Hudson et al. (2001) discusses this 

minor discrepancy. 

Substituting NB  as given by equation 5.23 into equation 5.12 yields the 

expression for the unrelaxed drained frame bulk modulus 

1 1

1
1 1

dry
N

dry
Nuf h

c
f g

sB

sBK K

K K

 


 
   
 

.    (5.24) 

The dry compliance can be obtained from the dry modulus using equation 5.14  

1 1dry
N

dry h

sB
K K

  ,      (5.25) 
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which gives 

   

1 1 1
1 1( )

1 1 1 1
uf h

chdry
f g

K P K

PKK P K K


 

   
 

,   (5.26) 

where as before, ( )h dry hK K P  is the dry bulk modulus at the highest pressure 

available. Equation 5.26 is the main result of this section. Note that  c   is usually 

very small (less than 1%, see Shapiro (2003)). Therefore, when the fluid is liquid, the 

term    11 1
dry hK K

    can be neglected compared to the term    11 1
c f gK K

     and 

equation 5.26 reduces to equation 5.3, the first of the Mavko-Jizba equations. 

However, unlike equation 5.3, equation 5.26 also is valid when the saturating fluid is 

gas. For a dry rock,   11 1
c f gK K

     vanishes and  ufK   reduces to the dry modulus  

,dryK   as it should. Note that the second of Mavko-Jizba equations, equation 5.4, 

remains unchanged.  

As mentioned earlier, the Mavko-Jizba equations are particularly useful 

because they are based entirely on measurable quantities and have no adjustable 

parameters. The same is true for more general equations 5.26 and 5.4. Indeed, 

compared with equation 5.3, the only new quantity in equation 5.26 is  dryK  , which 

must be known as a function of pressure. However  dryK   is already required by 

equation 5.4. Therefore, the combined equations 5.26 and 5.4 and the original 

Mavko-Jizba equations require knowledge of essentially the same information. 

The unrelaxed frame moduli  ufK   and  uf   are obtained assuming that the 

stiff pores are dry. The saturated moduli then can be computed using Gassmann's 

and/or Biot's equations. Specifically, the saturated (undrained) bulk modulus can be 

obtained by substituting  ufK   for the frame modulus in Gassmann's equation, while 

the saturated shear modulus will still be  uf  : 
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,  (5.27) 

and  

( ) ( )high ufP P  .     (5.28) 

The use of Gassmann’s equations for high frequencies may raise some 

questions. Indeed, Gassmann’s equations assume that fluid pressure is equalised 

within the representative volume (RV) of the pore space. Pressure equilibration can 

be achieved if (1) the pore space is interconnected and (2) the frequency is 

sufficiently low to allow enough time for pressure to equilibrate within wave’s half-

cycle. As previously discussed, higher frequency may prevent equilibration of 

pressure within half wave cycle, effectively making the pores hydraulically isolated. 

However, the condition of interconnected pore space is not a necessary condition for 

the validity of Gassmann’s or Biot’s equations. The key condition is the spatially 

uniform fluid pressure in the pores (within RV). In particular, Gassmann’s equations 

are exact for a material with dilute concentration of randomly distributed isolated 

spherical pores, since the induced pressure is the same in all these pores (for any 

frequency below the characteristic frequency of scattering). Approximately, this is 

also true for all “equant” pores (pores with aspect ratio on the order O(1)) (Thomsen, 

1985). Recently, Grechka (2009) showed numerically that Gassmann’s equations are 

excellent approximations for isolated pores of aspect ratio larger than 0.1. Therefore, 

as suggested by Mavko and Jizba (1991), Gassmann’s and Biot’s equations are 

applicable to the stiff pores of our system, both at seismic and ultrasonic frequencies. 

This is also consistent with the well established observation that the squirt-flow 

dispersion between seismic and ultrasonic frequencies is caused mainly by compliant 

porosity, and is negligible at high effective stress, where compliant porosity is mostly 

closed and only stiff pores remain. Indeed, the characteristic frequency of squirt-flow 

dispersion is usually written as  
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3 ,c

K
f 


      (5.29) 

where   is the mean aspect ratio of the pores, K  is rock’s bulk modulus (Jones, 

1986). For stiff pores (1) O   and thus the squirt frequency is much larger than 1 

MHz even for fluids 1000 times more viscous than water. 

To summarize, the high-frequency moduli of the fully saturated rock are 

given by Gassmann’s equations 5.27 and 5.28 with the modified frame moduli given 

by equations 5.26 and 5.4. It should be also noted that a similar derivation of Mavko-

Jizba equations was recently presented by Berryman (2007). However in Berryman's 

model, the rock did not contain stiff pores and therefore the parameter  hK   was 

equal to the mineral modulus  .gK   

5.4.3 EXAMPLE 

To illustrate the applicability of our model, we use it to predict high-

frequency unrelaxed velocities in a sample of Westerly granite (Coyner, 1984) 

saturated with three different fluids. Computation of unrelaxed bulk and shear 

moduli with equations 5.26 and 5.4 requires the knowledge of dry bulk and shear 

moduli ( )dryK P  and ( )dry P , and of soft porosity ( )c P  as a function of pressure P . 

In our calculations, the moduli ( )dryK P  and ( )dry P  are obtained from measurements 

of dry compressional and shear velocities versus pressure at lab frequency 0.8 to 0.9 

MHz. The soft porosity ( )c P  is obtained using a recipe suggested by Mavko and 

Jizba (1991) as the difference between the measured total porosity ( )P  and the 

linear extrapolation of the pressure/porosity trend at high pressures. The Westerly 

granite sample has porosity of 0.7 to 0.8%, grain density of 2.64 g/cm3, and a mineral 

bulk modulus of 56 GPa. 

To compute the model predictions at each stress, first we calculate the 

unrelaxed frame bulk ufK  and shear uf  moduli using equations 5.26 and 5.4, 

assuming that only the soft pores are saturated (the stiff pores are dry). Then, to  
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Figure 5.1 (a) Compressional and (b) shear-wave velocities in a Westerly granite sample as a function 

of effective stress: laboratory measurements on dry (solid circles) and water-saturated (solid 

diamonds) sample, predictions of the Mavko and Jizba (1991)  model (open symbols), and predictions 

of the present model (lines) for three different fluids, with bulk moduli shown in the legend. 
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obtain the saturated compressional and shear velocities, ufK  and uf  must be 

substituted into Biot’s dispersion equations. However, we note that for such a low-

porosity rock ( 0.8%  ), the Biot and Gassmann predictions will be virtually 

identical. 

Figure 5.1a,b compares Mavko-Jizba predictions (open symbols) and our 

model predictions (lines) of P-wave velocity versus pressure for the Westerly granite 

sample saturated with three different fluids having fK  ranging from 0.005 GPa to 

2.2 GPa. Filled circles and diamonds indicate the dry and saturated laboratory 

measurements, respectively. For the liquid-saturated sample, the predictions of the 

Mavko-Jizba model (open diamonds) and our model (dashed lines) are identical, and 

they predict the measured wet velocities (filled diamonds) within 3% error. However, 

the two predictions differ substantially for the gas-saturated sample. In particular, for 

very low fluid modulus 0.005fK   GPa, our model’s prediction (solid line) is very 

close to the dry measurements (solid circles), whereas the Mavko-Jizba model (open 

circles) predicts much smaller velocities. This is to be expected because for zero-

fluid modulus, the Mavko-Jizba model, equation 5.3, yields zero unrelaxed bulk 

modulus, whereas our model, equation 5.26, yields the dry modulus. We can 

conclude that the new expressions are particularly convenient for computations 

because the same expressions can be used for dry, gas-saturated, and liquid-saturated 

rocks. 

5.5 FREQUENCY‐DEPENDENT (PARTIALLY RELAXED) MODULI  

The aim of this section is to derive expressions for the moduli of the rock at 

intermediate frequencies, which represent some intermediate state between the low 

and high frequency limits.  

5.5.1 MODIFIED FRAME 

Since compliant porosity in rocks is usually much smaller than stiff porosity 

( c s  ), we can consider stiff porosity approximately equal to total porosity 
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( s  ). Therefore, saturated high-frequency moduli are given by the same 

Gassmann’s equations 5.27 and 5.28 as the low frequency moduli (equations 5.1 and 

5.2), except that for high-frequencies the dry moduli dryK   and  dry  are replaced by 

the unrelaxed frame moduli ufK   and  uf . Furthermore, we note that the dry moduli 

dryK   and  dry  can also be considered as the moduli of the modified frame (rock 

with empty stiff pores but fluid filled compliant pores), but in a relaxed state, that is, 

when compliant pores are in full pressure equilibrium with the stiff pores. Since in 

the modified frame stiff pores are empty, the pressure in compliant pores is zero. 

Thus, the relaxed moduli of the modified frame are equal to the rock’s dry, or 

drained, moduli. In other words, the fully saturated (undrained) moduli of the rock in 

the low and high frequency limits are given by the same Gassmann’s equations  

 

1 1

1 1

( , ) 1 1 1 1
1

( , )

s
f g

sat g

s
f g mf g

K K

K P K

K K K P K








 
  

  
   

        
   

,  (5.30) 

and  

( , ) ( , )sat mfP P    ,    (5.31) 

where the modified frame moduli mfK   and  mf  are to be taken at low and high 

frequency limits, respectively. Furthermore, it is logical to assume that moduli at the 

intermediate frequencies between these limits are also given by Gassmann’s 

equations 5.30 and 5.31 with the modified mfK   and  mf  taken at the corresponding 

frequency. Thus the problem of finding the frequency-dependent moduli of the fully 

saturated rock reduces to the problem of finding the frequency dependency of the 

moduli of the modified frame, where compliant pores are fluid filled and stiff pores 

are dry. 
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5.5.2 FLUID RELAXATION IN THE AREA OF GRAIN CONTACT 

It is often the case with heterogeneity-related dispersion mechanisms that the 

low and high frequency limits of elastic moduli are independent of intricacies of 

geometry, but the shape of the frequency dependency of the moduli is defined by the 

particular geometrical configuration. A good example is a porous rock saturated with 

patches of two immiscible fluids (Johnson, 2001), where the low and high-frequency 

moduli are uniquely defined by the properties of the rock matrix, the properties of the 

two fluids, and their volume fractions. In contrast, the frequency dependency of the 

moduli (and attenuation) is controlled both by the size and shape of the patches. 

 

 

 

Figure 5.2. Sketch of the model configuration (Murphy et al., 1986). Soft pore forms a disc-shaped 

gap between two grains, and its edge opens into a toroidal stiff pore. 

 

The squirt-flow dispersion has the same feature. The low frequency moduli 

are given by the exact Gassmann’s equations, which involve only one explicit 

parameter of the pore space: total porosity. The high frequency limit (ignoring Biot's 

dispersion for a moment) as given by equations 5.26 and 5.4 requires, additionally, 

the knowledge of the compliant porosity. However, in order to model the frequency 

dependency of the moduli, we need to assume a particular geometrical configuration. 

Here we assume a particular geometry proposed by Murphy et al. (1986): a 
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compliant pore forms a disk-shaped gap between two adjacent grains, and its edge 

opens into a toroidal stiff pore (Figure 5.2). It is assumed that the gap also has 

asperities, and thus its stiffness is finite even when the gap is empty. However these 

asperities are assumed (somewhat arbitrarily) not to affect the geometry of the gap as 

far as the fluid movement is concerned. The gap has radius  a   and thickness  h .  

The additional effective stiffness  K    of the gap due to the presence of fluid can be 

defined as a ratio of the force  F   (acoustic force) exerted by the fluid onto the gap 

wall, to the uniaxial dynamic loading (displacement)  h   

F
K

h
 



.      (5.32) 

 

The force is essentially the integral of pressure over the surface  gS   of the gap, 

( )
gS

F p r dS   .      (5.33) 

For sinusoidal loading   exph i t   with frequency  2 f  ,  fluid pressure  p   

can be obtained as a solution of the ordinary differential equation (Abramowitz and 

Stegun, 1964) 

2
2

2

1d p dp
k p C

dr r dr
   ,     (5.34) 

where  r   is the radial coordinate,  

2 0

f

i h D
k

K


 ,      (5.35) 

is the wavenumber of the pressure diffusion wave in the gap, 3
012 /D h  is the 

viscous resistance and  C i D h  . 

These equations have been presented by Murphy et al. (1986) in order to 

obtain an undrained saturated modulus. Thus, their boundary condition at the edge of 

the gap is the equation of fluid mass conservation between the gap and the annular 

pore. On the other hand, in the modified frame, only the inter-granular gap is fully 
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filled with the fluid, whereas the stiff (toroidal) pore is drained. Thus, in contrast to 

Murphy et al. (1986), our boundary condition (for equation 5.34) at the edge of the 

gap ( r a ) is that the fluid pressure  p   is zero:  

0
r a

p

 .      (5.36) 

 

Equation 5.34 is an inhomogeneous Bessel equation with a constant right-

hand side. Substitution 

2

C
p q

k
  ;      (5.37) 

gives 

2
2

2

1
0

d q dq
k q

dr r dr
   ,      (5.38) 

which is a homogeneous Bessel equation of zero order. The general solution of this 

equation is 

 1 0q C J kr ,      (5.39) 

which gives 

 1 0 2

C
p C J kr

k
  .     (5.40) 

Substitution of this general solution into the boundary condition 5.36 gives  

 1 2
0

C
C

k J ka
       (5.41) 

so that the pressure in the gap is given by  

 
 

0
2

0

1 .
J krC

p
k J ka

 
  

 
     (5.42) 

Then the force  F   is  
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 
2

020 0
0

1
2 ( ) 2 ( )

2

a aC a
F p r rdr J kr rdr

k J ka
 

 
    

 
    (5.43) 

or 

 
 

12

0 0

2
1 fhKJ ka

F a
kaJ ka h


  

    
 

.    (5.44) 

Substitution of this force into equation 5.32 gives the following expression for the 

fluid-related gap stiffness 

 
 

12

0 0

2
1 fKJ ka

K a
kaJ ka h

  
  

 
.    (5.45) 

5.5.3 EFFECTIVE MODULUS OF PARTIALLY RELAXED FLUID 

In the low frequency limit  0k    and thus  K    vanishes. This corresponds 

to the fact that at the low frequencies the fluid poses no resistance to gap 

deformation. At sufficiently low frequencies, the pressure in the gap will be 

equilibrated, and thus will be zero throughout the gap. Conversely, in the limit of 

high frequency, equation 5.45 gives 

2

0
f

a
K K

h

  .      (5.46) 

This is the gap resistance in the unrelaxed state, when fluid has no time to escape 

from the gap within the half-period of the wave. Comparison of equations 5.45 and 

5.46 shows that, at any given frequency, the gap stiffness is the same as the 

unrelaxed stiffness computed for a modified fluid with a bulk modulus 

 
 

1

0

2
( , ) 1f f

J ka
K P K

kaJ ka
  

  
 

.     (5.47) 
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[a] 

 

[b] 

 

Figure 5.3. Predictions of (a) the bulk modulus (real part) and (b) attenuation for a range of 

frequencies and pressures (shown by different line patterns) for a water-saturated sample of Berea 5-

600 sandstone. Solid lines show asymptotic frequency dependencies of attenuation: 1  at low 

frequencies , 1  at intermediate frequencies , 1/2  at high frequencies. 



CHAPTER 5 – A NEW SQUIRT MODEL FOR DISPERSION AND ATTENUATION IN FLUID‐
SATURATED GRANULAR ROCKS 

  87

Substitution of  fK    for the fluid modulus  fK   in equation 5.26 gives the final 

expression for the partially relaxed modulus mfK  of the modified frame. 

 

1 1 1
1 1( , )

1 1
1 1 ( )( )

( , )

mf h

cdry h
gf

K P K

PK P K
KK P






 

    
 

. (5.48) 

Then, the corresponding partially relaxed shear modulus mf  of the modified frame can be obtained 

by substituting  mfK   for  ufK   in equation 5.4 

1 1 4 1 1

( , ) ( ) 15 ( ) ( , )mf dry dry mfP P K P K P   
 

   
  

.   (5.49) 

Note that the wavenumber  k   of the pressure wave, as given by equation 5.35, is complex and 

frequency dependent 

2
2
0

12

f

i
k

h K


  ,      (5.50) 

and so are the effective fluid modulus  fK    and partially relaxed frame moduli  mfK   and  mf  . 

This implies the presence of velocity dispersion and attenuation.  

5.6 ASYMPTOTES 

Frequency dependency of the partially relaxed modified frame moduli is 

controlled by the quantity  

1/ 2

1 3

f

i
ka

K



 

   
 

,     (5.51) 

which depends on two new parameters: fluid viscosity     and aspect ratio of the 

gaps (or compliant pores) 0 / 2h a  . Its squared value 
2

ka   is proportional to  
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 [a] 

 

[b] 

 

Figure  5.4.  Predictions  of  (a)  the  bulk modulus  (real  part)  and  (b)  attenuation  for  a  range  of 

frequencies  and  pressures  (shown  by  different  line  patterns)  for  a  gas‐saturated  sample  of 

Berea 5‐600 sandstone. Solid lines show asymptotic frequency dependencies of attenuation: 1  at 

low frequencies , 1  at intermediate frequencies , 1/2  at high frequencies. 
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frequency, and can be used as dimensionless frequency. Figure 5.3 shows the 

predictions of the model based on equation 5.48 for the bulk modulus Re mfK  and 

the bulk quality factor 1 Im / Remf mfQ K K   as functions of frequency at different 

pressure levels for the sample of Berea 5-600 sandstone (Han et al., 1986) fully 

saturated with water ( 2.2fK   GPa, 1031f   Kg/m3, 310   Pa·s). Figure 5.4 

shows the same dependencies for the same sample saturated with gas ( 0.0022fK   

GPa, 10.8f   Kg/m3, 511   Pa·s). The workflow for estimation of hK and c  is 

described in Parameter estimation section.  

For the water-saturated rock, the bulk modulus shows a smooth transition 

from the low to high frequency limit. Similar behaviour observed for the gas-

saturated rock however, not surprisingly the dispersion appears to be much smaller in 

this case. Attenuation for the water-saturated rock shows slightly more complex 

behaviour, revealing existence of one additional asymptote at the intermediate 

frequencies ( 6 810 10 Hz), and one additional transition frequency (about 910 Hz). 

To understand the behaviour of attenuation in the water-saturated case, 

consider first the case 
2

1ka  . Then, Taylor expansion of Bessel functions in 

equation 5.27 in powers of ka  gives  

 

 21

8f fK ka K   .     (5.52) 

Substitution of this expression into equation 5.48 gives  

 2

1 1 1

( , ) 1
1 1 8 ( )
( )

mf h f

c

dry h

K P K ka K
P

K P K



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


.   (5.53) 

Here we can distinguish three limiting cases 

1) Low frequencies:  
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2 8 ( )

1 1
( )
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f
dry h

P
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K
K P K




 
 

 

.     (5.54) 

In this case, Taylor expansion of equation 5.53 gives the following asymptote for the 

modified frame modulus 

  22

1 1( , ) ( ) 1 ( )
( )8 ( )mf dry f dry

dry hc

ka
K P K P K K P

K P KP




  
    

   
, (5.55) 

showing that in the low frequency limit, the modified frame modulus tends to the dry 

modulus. Corresponding asymptotic expression for the dimensionless attenuation is  

2 2
21

2

( ) ( )1 31 1 1 1( , )
( ) ( )8 ( ) 8 ( )

dry f dry

dry h dry hc c

K P K K P
Q P ka

K P K K P KP P




  
    

      
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(5.56) 

This asymptote is shown in figures 5.3b and 5.4b. 

2) Intermediate frequencies:  

28 ( )
1

1 1
( )

c

f
dry h

P
ka

K
K P K


 

 
 

 

.    (5.57) 

In this case equation 5.53 yields  

 2

8 ( )
( , ) 1 c h

mf h
f

P K
K P K

Kka


 

  
  

.    (5.58) 

Corresponding asymptotic expression for dimensionless attenuation is 

2
1

2

8 ( ) 8 ( )
( , )

3
c h c h

f

P K P K
Q P

Kka

  


   .    (5.59) 

Note that for this regime to exist we must have 
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8 ( )

1 1
( )

c
f

dry h

P
K

K P K




 
 

 

.     (5.60) 

This means that the fluid modulus must not be too small (‘liquid case’). This explains 

why this regime is not observed in the gas case (see Figure 5.4b). Note that in this 

intermediate regime, attenuation is proportional to 1/ . This asymptote is shown in 

Figure 5.3b. 

3) Finally, consider the case of high frequencies 1ka  . In this case equation 

5.47 gives  

 

2
1f f

i
K K

ka
     

     (5.61) 

and thus 

 

 
2 2 ( )2( , ) ( ) ( ) 1h h c

mf uf c h
f f

K K i PiK P K P P K
ka kaK K

 
       

   
  (5.62) 

so that 

 
1

1/2

2 ( ) ( )
( , )

3 / 2

h c c h

f f

K P P K
Q P

kaK K

 


  
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 
.   (5.63) 

Note that in this high-frequency limit, attenuation is proportional to 1/  . This 

asymptote is shown in Figure 5.3b. 

5.7 SIMPLIFIED MODEL FOR THE LIQUID CASE 

As we have seen in the previous section, for the most important case of liquid 

saturation, the attenuation exhibits three asymptotic regimes. However, only two 

regimes are visible in the velocity dispersion. This may look strange, but can be 

easily understood if we notice that the real parts of the modified frame moduli at 
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intermediate and high frequencies are hK  (high-pressure dry modulus) and ufK  

(unrelaxed modulus), respectively, as given by equations 5.58 and 5.62. As discussed 

earlier, for liquid saturation the difference between these moduli is usually negligible 

(see equation 5.3 and corresponding discussion). Thus, the transition of the real parts 

of the modified frame moduli from the intermediate to high frequency regimes is 

unnoticeable and can be ignored. Moreover, the same can be said about attenuation. 

Indeed, attenuation corresponding to the high-frequency regime is negligibly small 

(this can be understood from the fact that in the intermediate regime the attenuation 

decays as 1/  and rapidly becomes very small). We thus can conclude that the 

transition from intermediate to high frequency regimes is unimportant, and for all 

practical purposes the behaviour described by equation 5.48 is accurately 

approximated by much simpler equation 5.53 describing a single dispersion 

transition. Equation 5.53 can also be rewritten in the form  

2

1 1 1
3( , ) 1

1 1 8 ( )
( )

mf h

c

dry h

iK P K
P

K P K


 

 




,   (5.64) 

with the shear modulus given by equation 5.49. It is interesting that dispersion and 

attenuation behaviour predicted by this model does not explicitly depend on fluid 

compressibility. However, we should keep in mind that the fluid compressibility 

must be sufficiently small (modulus large) to satisfy condition 5.60.  

Equation 5.53 or 5.64 describes a simple transition of modified frame 

modulus from dryK  to hK . The characteristic transition frequency can be obtained 

from the intersection of asymptotes given by equations 5.56 and 5.59. This gives 

1 1/2
2 8 ( ) 1 1

( ) ( )
f

c h
t

dry h dry

P K
ka

K P K K PK




   
      

   
.  (5.65) 

This expression is slightly confusing, as both compliant porosity c  and dry modulus 

dryK  are functions of pressure. Equation 5.65 can be simplified by noting that 

pressure variation of dry modulus is caused by progressive closure of compliant 
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porosity. Indeed, according to Shapiro (2003), the difference between dry and high-

stress compressibilities 1 1
dry hK K   is proportional to the compliant porosity c  

( )1 1
( )

c
c

dry h h

P
K P K K

       (5.66) 

where c  is parameter of stress sensitivity related to the compliance of compliant 

pores (or their effective aspect ratio). This gives  

1/2
2 8

( )
h h

t
dryc f

K K
ka

K PK
 

    
 

    (5.67) 

or  

1/228
( )3

h h
t

dryc

K K
K P




 
  

 
     (5.68) 

For small concentration of randomly oriented penny shaped cracks, parameter c  can 

be related to their aspect ratio   by (see e.g., Mavko et al., 1998) 

(3 4 )

(3 )
g g g

c
g g g

K K

K




 





.    (5.69) 

Using equation 5.69, expression 5.68 for squirt characteristic frequency can be 

written as 

3
t

B 


 ,     (5.70) 

where  

1/2
8 (3 )

( )3(3 4 )
h h h h

dryh h

K K
B

K PK

 


 
    

    (5.71) 

is a combination of the dry moduli of the rock, which has dimensions of elastic 

moduli and is weakly dependent on pressure (in equation 5.71, h   is dry shear 

modulus of the rock without compliant pores). 
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Note that in bi-logarithmic scale asymptotes 5.56 and 5.59 have identical 

slopes. Thus, the attenuation peak given by equation 5.53 is symmetric about the 

transition frequency t , and maximum attenuation occurs exactly at t  (or t ). 

This maximum attenuation value can be obtained by substituting equation 5.67 into 

5.53, and taking imaginary and real parts (note that   22
ka i ka  ). This yields 

1/2

1 ( )
( , )

( )( )
h dry h

t
dryh dry

K K P K
Q P

K PK K P
   

    
.    (5.72) 

Recall that hK  is nothing more than dryK  in the limit of high pressure. If the 

variation of dry bulk modulus with pressure is moderate, then 1/ 2( / ) (1)h dryK K O  

and thus the peak attenuation is equal half the fractional variation of the dry bulk 

modulus with pressure. For example, if the difference between dryK  and hK  is 20%, 

then Q  will be about 10. 

5.8 EXAMPLE 

5.8.1 ESTIMATION OF MODEL PARAMETERS 

Our model given by equations 5.64 and 5.49 predicts modified frame moduli 

and, when combined with Gassmann’s or Biot’s theory, compressional and shear 

wave moduli, velocities and attenuation coefficients of a saturated rock as a function 

of frequency and material properties (of the rock frame and pore fluid). Since the 

model contains a number of parameters, it is always possible to fit it to data 

sufficiently well by varying the unknown parameters. It is therefore critical to 

measure or estimate independently as many parameters as possible, that is, to 

perform a controlled experiment. 

Dry moduli  

In a typical laboratory set-up, compressional and shear ultrasonic velocities 

are measured on dry and fluid saturated rock samples as a function of pressure. Thus, 
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parameters dryK  and dry  as functions of pressure can be obtained from the ultrasonic 

measurements using standard equations   22 34 SPdry VVK   and  2
Sdry V .   

High-pressure modulus 

High-pressure modulus hK  can be taken as dryK  at the highest pressure 

available. Note that this approach assumes that at this pressure all the compliant 

porosity is closed, and corresponds to the fact that dryK  as function of pressure has 

levelled off at this pressure value.  

Compliant porosity. 

Compliant porosity c  cannot be directly measured; however it can be 

estimated from the variation of total porosity with pressure (Schmitt and Li, 1995). 

This variation can be estimated, for instance, by measuring volumetric strain as a 

function of pressure using strain gauges. Once the total porosity variation is known, 

stiff porosity can be  
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Figure 5.5. Schematic plot of dry rock porosity versus pressure. The volume of the soft porosity at any 

pressure is estimated as the difference between the total porosity and the extrapolation of the high-

pressure porosity versus pressure trend. 
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estimated by fitting a linear trend to total porosity in the high pressure range where 

compliant porosity is assumed closed (and thus total porosity equals stiff porosity) 

(Figure 5.5). Compliant porosity can be obtained as a difference between total 

porosity and the linear trend of stiff porosity extrapolated to the lower pressures 

(Walsh, 1965; Mavko and Jizba, 1991; Pervukhina et al., 2010). Note, however, that 

since compliant porosities are usually 0.001 or smaller, high accuracy measurements 

of total porosity variations with pressure are required. If such precise porosity 

measurements are not available, compliant porosity can be estimated from the stress 

dependency of dry elastic moduli obtained from ultrasonic measurements as 

suggested by Pervukhina et al. (2010). Stress dependency of the dry bulk modulus 

can be approximated as follows (Shapiro, 2003) 

 

   01/ 1/ exp( )dry h c h hK P K P P P   ,    (5.73) 

 

where  0c  is compliant porosity at zero pressure and hP  is a characteristic pressure at 

which compliant porosity closes. The parameters 0c hP  and hP  can be obtained by 

fitting of stress dependency of bulk moduli using equation 5.73 and 0c  can be 

estimated as a ratio of these fitting parameters. Then the pressure variation of 

compliant porosity can be written as  

 

   hcc PPP exp0  .    (5.74) 

 

Note that neither of the two compliant porosity estimation approaches utilises 

the velocity or attenuation measurements on saturated samples. Therefore, these 

estimates are independent of dispersion/attenuation data.  

Aspect ratio of the contact gap 

Like compliant porosity, aspect ratio   of the grain contact gap cannot be 

directly measured. It is tempting to estimate the gap aspect ratio from the variation 

of, say, dry moduli with compliant porosity, e.g., using elastic effective medium  



CHAPTER 5 – A NEW SQUIRT MODEL FOR DISPERSION AND ATTENUATION IN FLUID‐
SATURATED GRANULAR ROCKS 

  97

 

 [a] 

0 20 40 60
3400

3600

3800

4000

4200

Pressure (MPa)

V
P
 (

m
/s

)

 

 

Lab:
Sat
Dry
Model:
Gass
Biot
M-J
Squirt

 

[b] 

0 20 40 60
1800

2000

2200

2400

2600

2800

Pressure (MPa)

V
S
 (

m
/s

)

 

 

Lab:
Sat
Dry
Model:
Gass
Biot
M-J
Squirt

 

Figure 5.6. Velocities of (a) compressional and (b) shear-wave in a sample of Berea 5-600 sandstone 

as a function of pressure: ultrasonic laboratory measurements on dry (empty circles) and saturated 

(blue circles) sample, predictions of the Mavko-Jizba (1991) model (magenta line), Gassmann’s (red 

line) and Biot’s (green line) theories, and predictions of the present model (blue line). 
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Figure 5.7. Predictions of (a) Velocity and (b) attenuation of P-wave in a water saturated sample of 

Berea 5-600 sandstone as a function of frequency and pressure. 
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[a] 

 

[b] 

 

Figure 5.8. Predictions of (a) Velocity and (b) attenuation of S-wave in a gas saturated sample of 

Berea 5-600 sandstone as a function of frequency and pressure. 
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theory (Küster and Toksöz, 1974; Berryman, 1980a; Berryman, 1980b). However, 

the aspect ratio that controls fluid pressure relaxation in the flat inter-granular gap 

may not be related to the aspect ratio of penny-shaped cracks that control the 

pressure variation of the effective elastic moduli of the dry rock. In this study we use 

gap aspect ratio   as a free fitting parameter and estimate it as the value that 

provides the best fit for modulus - pressure dependency on saturated samples 

(Figures 5.6, 5.9). 

5.8.2 LABORATORY DATA EXAMPLES 

In this section, we illustrate predictions of our squirt model on a number of 

rocks and compare these predictions with laboratory measurements. Our aim is to 

illustrate the behaviour of the model on a few samples.  

Figure 5.6 shows a comparison between measured (blue circles) and 

predicted by our model (blue lines) compressional and shear velocities as functions 

of pressure for a water-saturated sample of Berea 5-600 sandstone (Han et al., 1986).  

We also plot the measurements carried out on a dry sample (empty circles) as well as 

the predictions by Mavko-Jizba model (magenta lines), and Gassmann’s (red lines) 

and Biot’s equations (green lines). The parameters of the grain material are taken to 

be: density 2653g  Kg/m3 and the grain bulk modulus 39gK  GPa, which is 

estimated by assuming that at the highest pressures the saturated bulk modulus is 

given by Gassmann’s equation. The compliant porosity is obtained from velocity in 

the dry sample using the theory of Shapiro (2003). The estimated compliant porosity 

ranges from 0.0002 to 0.000003 depending on pressure. The aspect ratio of the grain 

contact 0.01   is obtained by the best fit of the predictions to the experimental 

data (see the details of parameter estimation). Figures 5.7 and 5.8 show the 

dispersion and attenuation of compressional and shear velocities, respectively, as 

functions of pressure and frequency. We observe the decrease of both dispersion and 

attenuation with increasing pressure. This is logical, as pressure increase causes 

closure of compliant porosity. 

Figure 5.9 shows a comparison between measured and predicted velocities as 

functions of pressure for a water-saturated carbonate sample S1 (Agersborg et al., 
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2008). The model parameters for the carbonate sample are taken to be: 

2670g  Kg/m3, 82gK  GPa, 0.01  . The estimated compliant porosity ranges 

from 0.0003 to 0.00002 depending on pressure. We see that for both the sandstone 

and carbonate samples our model describes the observed shape of the pressure 

dependency reasonably well. 

5.9 DISCUSSION 

In this chapter, we have generalized Mavko-Jizba expressions for high-

frequency bulk and shear moduli to gas-saturated rocks. We have also developed a 

simple model of elastic wave attenuation and dispersion due to squirt flow between 

stiff and soft pores in a granular rock. The model applicability is shown on a couple 

of illustrative examples. By construction, the model is exactly consistent with 

Gassmann’s theory in the low frequency limit, and with Mavko-Jizba model in the 

high-frequency limit. The expression for the characteristic frequency t , equation 

5.70, is the same as the commonly used expression for squirt frequency (Jones, 

1986), except that in our model the bulk modulus of the rock is replaced by a 

combination of bulk and shear moduli. Furthermore, for liquid-saturated rocks the 

attenuation and dispersion curves are symmetric about t  in log-log scale. 

Attenuation 1/ Q  is proportional to   at low frequencies, and to 1/  at high 

frequencies. The magnitude of attenuation and dispersion is directly related to the 

variation of dry bulk modulus with pressure. All these features are also characteristic 

of the double-porosity model of Pride et al. (2004). The present model is designed to 

describe the same physical processes as the double-porosity model but uses a very 

different theoretical approach and is much simpler. An important advantage of our 

model is that it gives closed form expressions for velocity and attenuation as 

functions of frequency and pressure. 

The model contains one adjustable parameter: aspect ratio of compliant pores. 

All other parameters can be measured or estimated from measurements of ultrasonic 
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velocities and strains versus confining pressure on dry samples. One assumption in 

this workflow is that all compliant pores are closed at the upper limit of the pressure  
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Figure 5.9. Velocities of (a) compressional and (b) shear-wave in a sample of S1 carbonate as a 

function of pressure: ultrasonic laboratory measurements on dry (empty circles) and saturated (blue  

circles) sample, predictions of the Mavko-Jizba (1991) model (magenta line), Gassmann’s (red line) 

and Biot’s (green line) theories, and predictions of the present model (blue line).  
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range of the measurements and hence ultrasonic velocities become independent of 

pressure. Therefore, there is no squirt at these pressures and the saturated and dry 

velocities should approximately satisfy Gassmann’s (or Biot’s) equations. This is the 

case in the example given in Figures 5.7. However, in many other cases the 

compliant pores will not be completely closed at the pressure of 50 or even 100 MPa.  

This can be seen by the fact that in many cases the dry velocities at these pressures 

continue to increase with the pressure increase. This closure of remaining compliant 

porosity gives a significant linear term in the velocity-pressure relationship of 

Eberhart-Phillips et al. (1989), which is based on the analysis of measurements on a 

large set of sandstone samples from different areas of the world (Han et al., 1986). If 

the compliant pores close at higher pressures than the available range of 

experimental data, then the modulus hK  cannot be estimated directly from the 

measurements. Instead, hK  should be estimated by using some effective medium 

theory assuming a typical aspect ratio of stiff pores in a particular rock (see, e.g., Xu 

and White, 1995). 

Experimental validation of our model requires a comparison of its predictions 

against measurements of fluid saturated velocities and attenuation factors versus 

frequency and pressure. The frequency range of ultrasonic measurements is usually 

quite narrow (say, 0.25 – 1 MHz) which makes it difficult to observe the velocity 

dispersion. One way to overcome this difficulty is to look at variations of velocity 

(and attenuation) with fluid viscosity. This can be done by saturating the same 

sample with a number of different fluids (e.g., Best and McCann, 1995; Adam et al, 

2009), or by using a fluid (say, glycerol) whose viscosity can be varied by changing 

temperature (Jones, 1986). Alternatively, frequency dependency can be obtained 

from resonant bar (Born, 1941; Gardner, 1962; Wyllie et al., 1962; McCann and 

Sothcott, 2009) or forced-oscillation measurements (Batzle et al., 2006; Adam et al., 

2009). A comprehensive comparison of model predictions with laboratory data will 

be a subject of a separate study. 
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5.10 CHAPTER CONCLUSIONS  

We present a new and concise derivation of expressions for high-frequency 

bulk and shear moduli of fluid-saturated rocks from pressure dependency of dry 

moduli and compliant porosity. The derivation is based on the Sayers-Kachanov 

plane-discontinuity formalism applied to an isotropic distribution of discontinuities. 

The derived expressions generalize the established Mavko-Jizba relations to gas-

saturated rocks. The new expressions are particularly convenient for computations 

because the same expressions can be used for dry, gas-saturated, and liquid-saturated 

rocks.  

We also develop a new simple model of squirt-flow dispersion and 

attenuation in granular fluid-saturated media for a wide range of frequencies. The 

results are exactly consistent with Gassmann’s theory in the low frequency limit, and 

with Mavko-Jizba unrelaxed moduli in the high-frequency limit. For liquid-saturated 

rocks the attenuation and dispersion curves are symmetric about t  in log-log scale. 

Attenuation 1/ Q  is proportional to   at low frequencies, and to 1/  at high 

frequencies. The magnitude of attenuation and dispersion is directly related to the 

variation of dry bulk modulus with pressure, and is relatively independent of fluid 

properties. The model contains one adjustable parameter: aspect ratio of compliant 

pores (grain contacts). All other parameters can be measured or estimated from 

measurements of ultrasonic velocities and strains versus confining pressure on dry 

samples. 
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CHAPTER 6 – ARE PENNY‐SHAPED CRACKS A GOOD 

MODEL FOR COMPLIANT POROSITY? 

6.1 BACKGROUND 

Understanding and modelling of the effect of pressure and stress on elastic 

properties of rocks is important for such diverse applications as lithology and fluid 

identification in presence of mechanical compaction, pore pressure prediction, and 

analysis of time-lapse response to fluid injection and depletion. Laboratory 

measurements on porous rocks show that increase of pressure from zero to typical 

reservoir pressures causes substantial (up to 50%) increase of bulk and shear moduli, 

but only small (below 1%) reduction in overall porosity. This suggests that pressure 

dependency of elastic properties is caused by preferential closure of very compliant 

pores with small overall volume but large specific surface area. Perhaps the simplest 

shape that captures such properties is a so-called penny-shaped crack: an oblate 

spheroid (ellipsoid of revolution) whose aspect ratio (ratio of smaller to larger semi-

axis) is a small parameter (say, from 410  to 210  ). In granular rocks these compliant 

pores (cracks) most likely occur at grain contacts or as intra-granular micro-fractures. 

Pores are modelled by ellipsoids not because anyone believes pore space 

consists of ellipsoids, but because they (1) appear to capture some essential 

properties of subsurface voids, (2) provide intuitively simple parameterization of 

enormous complexity of the real pore space, and (3) are relatively easily amenable to 

theoretical analysis. For a given porosity, the smaller is the (mean) aspect ratio of the 

pores, the stronger is the effect of these pores on the overall rock stiffness. For this 

reason, aspect ratios or their distributions are often used as lithology indicators. 

However, aspect ratio is also a function of (effective) pressure, as pores of small 

aspect ratio are more compliant and thus close preferentially under pressure – one 

more reason to study compliant pores in more detail. 
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The model of spheroidal pores is intuitively appealing (with obvious 

reservations), but is it quantitatively adequate? As mentioned above, complaint pores 

cause a reduction in bulk and shear moduli. This reduction occurs because each crack 

adds a little extra compliance to the rock – reducing both resistance to compression 

in the direction normal to its surface (normal compliance) and resistance to shear in 

the same plane (shear or tangential compliance). Since we can only measure the 

overall effect of these cracks, we cannot compute the normal or shear compliances 

for an individual crack, but we can compute the ratio of normal to shear compliances 

from measurements. Expressions for both normal and tangential compliances caused 

by an ellipsoidal crack are well known, and their ratio can be easily computed. In this 

chapter, we will assess the adequacy of the penny-shaped crack model by comparing 

the compliance ratio obtained from measurements against the theoretical expression 

for penny-shaped cracks. 

6.2 METHOD 

Our first objective is to obtain the ratio of normal to tangential compliance 

from ultrasonic measurements. For simplicity, we will only consider isotropic rocks. 

Similar analysis for anisotropic rocks is also possible if full elastic tensor 

measurements are available (Verdon et al., 2008). For isotropic materials, Sayers and 

Han (2002) proposed an elegant approach to computing normal to shear compliance 

ratio from measured bulk and shear moduli. They assumed that a rock at the highest 

available confining pressure has no compliant porosity, and that reduction of the 

moduli at lower pressures occurs due to the presence of isotropically distributed 

compliant cracks. As mentioned in chapter 5, the general additive compliance 

equations of Sayers and Kachanov (1995) for the isotropic case are given by 

equations 5.14-5.15.  

If for a given sample, the bulk hK  and shear h  moduli of a rock at the 

highest pressure hP  (no compliant porosity!) and the dry moduli dryK  and dry  at a 

given pressure hP P  are measured, equations 5.14-5.15 can be easily solved for 
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dry
NsB  and dry

TsB  (s  is the total area of the cracks). Sayers and Han (2002) used this 

approach to obtain the ratio of the normal and shear compliances of an individual 

crack /N TB B B  from dry and saturated sandstone ultrasonic velocities measured 

by Han et al. (1986). Their results show that for dry rocks, most values of B  lie 

between 0.25 and 1.5, with a few values between 1.5 and 3. Similar results for dry 

anisotropic rocks were obtained by Verdon et al. (2008). 

According to Sayers and Kachanov (1995) the ratio B for dry penny-shaped 

cracks is  

1 / 2B   ,      (6.1) 

where     is Poisson's ratio. The results of Sayers and Han (2002) appear to be 

inconsistent with the penny-shape prediction. However there is still uncertainty about 

the validity about experimental B  values due to the following factors.  

Some of the samples studied by Han (1986) show the moduli still increasing 

with pressure even when they approach the highest pressure (50 MPa). This suggests 

that either not all compliant pores are closed at the highest pressure, or reduction of 

stiff porosity contributes to the increase of the moduli. 

The propagation of measurement errors causes large relative errors of B  

values in the upper part of the pressure range, where both normal and shear 

compliances are small.  

In an attempt to attain compliance ratios with higher degree of confidence, we 

use the theory of Shapiro (2003), who recently proposed an alternative approach to 

modelling stress sensitivity. Shapiro showed that well known exponential 

dependency of elastic moduli on pressure can be written in the form 

1 1 1
,s

c c
dry h h h

P

K K K K

          (6.2) 

and  

1 1 1
,s

c
dry h h h

P



 

   
        (6.3) 



 
CHAPTER 6 –ARE PENNY‐SHAPED CRACKS A GOOD MODEL FOR COMPLIANT POROSITY? 

  108

where c  and   are bulk and shear stress sensitivity parameters due to compliant 

porosity, s  and s  are corresponding parameters due to (weak) compression of 

stiff porosity, and ( )c P  is compliant porosity given by  

 0 exp / .c c c hP K         (6.4) 

The consistency of Shapiro’s (2003) theory with experiment was recently 

demonstrated by Pervukhina et al. (2010) who compared the values of compliant 

porosity obtained from fitting equations 6.2 and 6.3 to data against direct porosity 

data obtained from measured strain. 

Comparing Shapiro’s equations 6.2 and 6.3 with equations 5.14 and 5.15, we 

can see that they are mutually consistent. In essence, ignoring the stiff porosity effect 

for a moment, we can view Shapiro’s equations as a particular variant of Sayers-

Kachanov (1995) equations with normal and tangential compliances defined as  

 0 exp /dry c
N c c h

h

sB P K
K

         (6.5) 

and  

 0

5 2
exp / ,

2 3
dry c
T c c h

h h

sB P K
K

   


 
   
 

   (6.6) 

so that  

1
5 2

2 3

dry
N
dry

hT

h c

B
B

KB 
 
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

     (6.7) 

or  

 
 

3
5 1

2
1 2

dry
N
dry

hT

h c

B
B

B  
 

 





,     (6.8) 

where  h   is Poisson's ratio of the rock in high-pressure limit, where all compliant 

porosity is closed. Note that  /c s   is some effective thickness of compliant pores. 

Shapiro (2003) showed that linear terms in equations 6.2 and 6.3 are often small 

compared with the exponential terms. Thus the compliance ratio can be obtained by 
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fitting equations 6.2 and 6.3 to measured elastic moduli functions of pressure, 

computing the ratio of stress sensitivity parameters cq   , and then computing 

compliance ratio B using equation 6.8. Note that in the theory of Shapiro (2003), the 

compliance ratio B is independent of pressure. The consistency of this conclusion 

with experimental data was analysed by Pervukhina et al. (2010) and Verdon et al. 

(2008). 
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Figure 6.1. Stress sensitivity ratio q  estimated from ultrasonic velocity measurements on 76 dry 

samples (blue squares), errobars due to systematic errors in shear velocities (black lines and squares), 

scalar cracks (green line), and spheroidal cracks (red line). 

6.3 APPLICATION TO SANDSTONE DATA  

Stress sensitivity coefficients and corresponding values of compliance ratio 

have been computed for ultrasonic measurements on 76 dry sandstone samples as 

reported in Han et al. (1986) and in Grochau and Gurevich (2008). Figure 6.1 shows 

q  ratios computed for all samples as a function of Poisson’s ratio h  in the limit of 

large pressure (blue squares). The line passing through each circle shows confidence 

limits for q ratio and Poisson’s ratio as discussed below. Green dashed line shows the 

dependency of ( )hq   as predicted by Shapiro and Kaselow (2005) for the special 
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case of an isotropic rock with porosity tensor of special symmetry (scalar cracks). 

Solid red line shows the ratio of stress sensitivities as predicted by non-interactive 

approximation for spheroidal cracks. From the first glance at Figure 6.1 we can see 

that compliance ratios predicted by Shapiro and Kaselow are almost identical to that 

for spheroidal cracks. We also see that ultrasonic data on stress sensitivity ratio show 

large scatter and do not show much correlation with Poisson’s ratio. 

As mentioned earlier, the aim of this chapter is to analyse what values of 

stress sensitivity ratio and compliance ratio are realistic. To this end we perform 

extensive error and sensitivity analysis. Influence of the following factors has been 

analysed. 

Effect of the linear (stiff porosity) term in equations 6.2 and 6.3 was analysed 

by comparing quality of the fit to data with and without these terms. To our surprise, 

in all but 5% of samples, inclusion of the linear term reduces the misfit to much 

larger extent than expected due to the increase of the number of degrees of freedom. 

Thus we conclude that the deformation of stiff porosity plays significant role in 

defining stress dependency of elastic properties of rocks. 

We also analysed the sensitivity of the results to systematic errors in velocity 

picking. This was done by assuming that all shear wave velocities were misestimated 

by 50 m/s, and re-computing all the results. These results are shown in Figure 6.1 as 

the end points of the error bars. As expected, the relative error introduced is much 

larger for Poisson ratios than for stress sensitivity ratios.  

We also analysed the effect of random errors, computed using standard error 

propagation analysis and 2  criterion. Random errors create a thin confidence tube-

shaped area around the systematic error bar. For all but a handful of really bad 

samples, the influence of these random errors turns out to be negligibly small 

compared to model errors and systematic errors discussed above.  

The stress sensitivity estimates shown in Figure 6.1 were used to compute 

compliance ratios using equation 6.8. The resulting estimates of B  ratio are shown in  
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Figure 6.2. Compliance ratio B  from ultrasonic velocity measurements on 64 dry samples with 

systematic errors less than 100% (blue squares), theory for scalar cracks (green line), and spheroidal 

cracks (red line). 
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Figure 6.3. Compliance ratio B  estimated from ultrasonic velocity measurements on 49 dry samples 

(blue squares) with systematic errors less than 40% (black lines and squares), scalar cracks (green 

line), and spheroidal cracks (red line). 
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Figure 6.2. Since B  ratios show much larger scatter than q  ratios, in Figure 6.2 we 

only show the results for samples where the relative error in B  caused by systematic  

shear velocity errors is less than 100% per cent (64 out of 76 samples; error bars are 

not shown to avoid clutter). The dashed green line 1B   corresponds to stress-

sensitivity ratio as suggested by Shapiro and Kaselow (2005), and earlier by Sayers 

and Kachanov (1991) (so-called scalar cracks). The solid line corresponds to non-

interaction approximation for spheroidal cracks. We see that the B  ratios are mostly 

scattered between 0 and 2, with no visible correlation with Poisson’s ratios.  

In Figure 6.3 we show the error bars for those samples with systematic 

(relative) errors in B  ratio below 50% (49 samples). We see that errors in B  

(vertical spread of the error bar) are much larger than for q  ratio. This is 

understandable, as errors in Poisson’s ratio propagate into B  when the latter is 

computed using  
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Figure 6.4. Crack density extracted from shear modulus against crack density extracted from bulk 

modulus. 
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Figure 6.5. Pressure variation of Poisson’s ratio for a number of samples computed from measured 

velocities (symbols), predicted by combining Sayers-Kachanov (1995) and Shapiro (2003) theories 

(black line) and by spheroidal crack theory (blue line). 
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equation 6.8. For most samples the vertical spread of the error bar far exceeds the 

difference between B  values for spheroidal cracks, equation 6.1, and for ‘scalar’ 

cracks ( 1B  ). Where 1B  , one or both ends of the error bar appears to cross or 

approach the line 1B  .  

To check this last observation, we select only those samples for which the 

error bar corresponding to systematic shear velocity errors does not enter the band 

0.9 1.1B  . This leaves 19 samples (40% out of those with errors below 50%). 

Importantly, all but one of these selected samples have values 1B  . This allows us 

to make an important conclusion: where B  can be confidently said to be 

significantly different from 1, it is always smaller than 1.  

What is the effect of compliance ratio B  being smaller than predicted by 

spheroidal crack theory? One effect is that if we estimate crack density from bulk or 

shear modulus, the results will be different. These estimates are plotted in Figure 6.4 

against one another for those samples with relative errors below 50%. We see that for 

roughly half of these samples, the crack density predicted from shear compliance is 

significantly higher than that from the bulk modulus. This graphically illustrates that 

the measured data on sandstones is inconsistent with spheroidal crack theory. 

To show the meaning of various B  values, in Figure 6.5 a-c we show stress 

dependency of Poisson’s ratio obtained from measurements (symbols) against that 

predicted by spheroidal crack theory. We see that when compliance ratio is 

significantly different from 1, the prediction of the spheroidal crack theory deviates 

from measured data. 

6.4 CHAPTER CONCLUSIONS  

The ratio of shear to bulk stress sensitivities shows large scatter and, for a 

large number of dry sandstone samples, is not consistent with either the “scalar” 

crack approximation or spheroidal crack theory. 

The ratio of normal to tangential compliance shows large scatter, with most 

values between 0 and 2. Values over 1 have higher relative errors. Data with relative 

systematic errors below 50% show compliance ratios close to or below 1. About half 
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of those are inconsistent with the spheroidal crack theory. This can be attributed to 

the fact that crack geometries of real rocks are very complicated and cannot be 

adequately represented by spheroids. Further research needs to be undertaken to 

better understand the limitations of the spheroidal crack theory. 

 



 
CONCLUDING REMARKS 

  116

 

CONCLUDING REMARKS 

Pore fluids strongly influence elastic properties of rocks. In this thesis, the 

effect of viscous and viscoelastic fluids on elastic properties of porous rocks has been 

investigated using theoretical and numerical approaches. Various research aspects 

covered in this thesis include (1) digital rock physics modelling of the effect of 

partial saturation on seismic velocities and developing a test scenario for grid-based 

numerical methods, (2) investigating the sensitivity of Gassmann’s equations to 

microheterogeneity, (3) developing an alternative fluid substitution scheme for rocks 

saturated with heavy oils, (4) examining rigorous viscoelastic bounds for heavy-oil 

rocks, (5) theoretical modelling of squirt dispersion of elastic wave velocity, (6) 

analysing the validity of using spheroids as idealization of real crack geometry to 

model pressure dependencies of rock properties. Given the diversity of rock physics 

problems considered in this study and independence of various chapters, results from 

each chapter are summarized separately. 

 Chapter 1. Finite element model (FEM) (Arns, 2002) has been used to predict 

the linear effective elastic properties of three dimensional rocks saturated 

with mixture of gas and water for the first time. A test scenario for grid-

based numerical methods has been developed. It has been shown that the 

accuracy of FEM simulations is dependent upon the area of an interface 

between pore fluids and the size of pore channels (or how a digital image is 

resolved). The optimal size of the individual pore channels needs to be 

relatively large (>4 voxels in diameter) to ensure accurate simulations. 

 

 Chapter 2. The effect of microheterogeneity on Gassmann’s fluid substitution 

in its traditional and generalized forms has been investigated for different 

idealized porous quartz/clay structures using numerical approach. It has 

been demonstrated that for highly porous structures such as periodic spheres 

models with different clay distributions, the accuracy of Gassmann 

predictions of P-wave velocity remains sufficient (error 16 m/s) despite the 
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large contrasts between the moduli of solid phases (factor 5 for gK , and 38 

for g ). This suggests that Gassman’s equations are adequate for 

multiphase highly porous rocks with large contrasts between elastic 

properties of minerals composing the rock frame. 

 

 Chapter 3. Traditional rock physics based on Gassmann theory becomes 

inapplicable to rocks saturated with viscoelastic fluids such as heavy oils. 

An alternative fluid substitution scheme for rocks saturated with viscoelastic 

fluids has been proposed in this thesis. The scheme is based on a self-

consistent mixing method known as coherent potential approximation. 

Comparison of the model predictions with low-frequency measurements 

carried out on an Uvalde heavy-oil rock sample shows that our scheme 

reproduces frequency- and temperature-dependent behaviour of the shear 

modulus and attenuation. This confirms that the proposed scheme provides 

realistic estimates of the properties of heavy-oil rocks and can be used as an 

approximate fluid substitution approach for rocks saturated with viscoelastic 

fluids.  

 

 Chapter 4. Commonly used Hashin-Shtrikman elastic bounds are not rigorous 

if one of the rock constituents is viscoelastic. In this doctorate, it has been 

demonstrated that the viscoelastic bounds of Milton and Berryman (1997) 

for the effective shear modulus of a two phase three-dimensional isotropic 

composite can be used as rigorous bounds for dispersion and attenuation of 

S-waves in heavy-oil rocks.  

 

 Chapter 5. (1) Established Mavko-Jizba quantitative high-frequency model of 

squirt dispersion of elastic-wave velocities is limited to liquid-saturated 

rocks. In this thesis, generalization of Mavko-Jizba model to gas-saturated 

rocks has been presented. The new expressions are particularly convenient 

for computations because the same expressions can be used for dry, gas-
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saturated, and liquid-saturated rocks. (2) A new model of squirt-flow 

dispersion and attenuation for a wide range of frequencies in granular fluid-

saturated media has been presented and analysed. The results are exactly 

consistent with Gassmann’s theory in the low frequency limit, and with 

Mavko-Jizba unrelaxed moduli in the high-frequency limit. The magnitude 

of attenuation and dispersion is directly related to the variation of dry bulk 

modulus with pressure, and is relatively independent of fluid properties. The 

model contains one adjustable parameter: aspect ratio of compliant pores 

(grain contacts). All other parameters can be measured or estimated from 

measurements of ultrasonic velocities and strains versus confining pressure 

on dry samples. 

 

 Chapter 6. The validity of penny-shaped or spheroidal approximation to 

model real crack/pore geometry has been investigated using ratios of shear 

to bulk stress sensitivity coefficients and normal to tangential compliances 

extracted from ultrasonic measurements on 76 dry sandstone samples. The 

obtained ratios show large scatter and, for a large number of dry sandstone 

samples, are not consistent with either the “scalar” crack approximation or 

spheroidal crack theory. 
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