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ABSTRACT 

Wayfinding is one significant difficulty that a vision impaired person 

encounters, especially in unfamiliar environments. Although Global Positioning 

System (GPS) based navigation is possible in outdoors, the accuracy of GPS drops 

significantly in indoor environments due to screening of GPS signals. GPS may in 

some cases be sufficient for outdoor navigation but still lacks sub meter accuracy. 

Most of the existing indoor localization and path finding techniques depend on some 

infrastructure deployed in the environment, limiting access to these systems to a 

selected number of sites and requiring support of building managers and owners. 

This research focused on infrastructure free indoor pedestrian navigation and is a part 

of a project that develops a navigation aid for vision impaired. 

The majority of existing gait analysis, pedestrian navigation and localization 

techniques use multiple sensors attached to the body and heavy wearable computing 

devices, which are not favoured by vision impaired. Based on the preliminary 

observations, this research focused on using a single thigh mounted IMU for step 

counting, gait analysis, gait modelling and travelled distance estimation. 

Accurate step counting, angle estimation, gait modelling, step length 

estimation, gait phase detection and activity recognition play vital roles in improving 

the accuracy of pedestrian navigation systems. A pedometer algorithm based on zero 

crossing detection of single thigh mounted gyroscope signal was developed and 

implemented on an Apple iPhone 4S, which reported over 97.8% step detection 

accuracies even at slow walking speeds on level ground and over 94% accuracies on 

stairs well outperformed the existing accelerometer based hardware and software 

pedometers that demonstrate extreme poor accuracies at slow walking speeds. 

The Gyro Integration based Orientation Filter (GIOF) was developed to 

estimate single axis orientation by integrating the gyro signal and compensating the 

integration error using acceleration data. The GIOF reported mean correlations 

greater than 99.5% and RMSE less than 2.5º against a Vicon Motion Capture 

System, compared to 3º RMSE reported in some Kalman Filter based techniques. 
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The computational demand of GIOF is about 50% of that of Complementary Filter 

(CF) on an 8-bit microcontroller. 

Gait modelling was performed based on the gyro data of a thigh mounted 

IMU and the thigh angle estimated with GIOF. Regeneration accuracies above 99.9% 

and correlation below 0.5º was achieved in this work with harmonics models with 5 

and 9 significant harmonics for thigh angle and gyro signal respectively. Harmonic 

models for 6 commonly observed gait patterns are presented and they were used to 

classify strides of a lengthy walk. Correlations above 99% and RMSE less than 2º 

were observed with the best matching models to the particular stride. 

A model to estimate the step length based on the maximum flexion and 

extension angles is presented in this thesis, which reported a step length estimation 

accuracy of 54 mm RMSE and 7% on a per step basis. A method to estimate peak 

flexion and extension using gyro peak is also presented and another model to 

estimate step length based on the gyro peaks and time between peak and zero-

crossing of gyro signal is also presented. The accuracy reported was 56mm RMSE. 

A gait phase identification technique using the gyro signal and its first time 

derivative of a single thigh mounted IMU is also presented. Six key points of the 

stride cycle that are required to identify five sub phases of the stride cycle (four sub 

phases of the Stance phase and the whole Swing phase), can be detected with the 

presented method. An indoor activity detection algorithm using the thing angle is 

also presented in this thesis. The algorithm can detect sitting, standing and walking 

with a mean accuracy of 83%. The feasibility of using a thigh mounted barometric 

pressure sensor to identify walking on travellator ramps and stairs, going in an 

escalator and on an elevator is also presented. 

It can be concluded that gyroscopic data of a single thigh mounted IMU and 

the thigh angle derived from the gyro data can be used for human gait analysis, gait 

modelling and for navigation purposes achieving higher accuracies compared to 

accelerometer based techniques. The techniques presented in the thesis can also be 

used for rehabilitation applications such as foot drag, pre and post operation 

movement analysis of the lower limb etc. The accuracies achievable with these 

techniques are higher than the accuracies achieved in the techniques presented in 

literature that used acceleration as a main input.  
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

285 million people of the world are estimated to be vision impaired: 39 

million blind and 246 million with low vision [1]. According to the estimations of 

Vision Australia, 357,000 Australians are either blind or have low vision [2]. Moving 

through an unfamiliar environment is often difficult for people with limited or no 

vision. The situation is worse in indoors where landmarks have limited “uniqueness” 

(e.g. all halls appear similar). Although Global Positioning System (GPS) based 

navigation is possible outdoors for general navigation, the accuracy of GPS is not 

sufficient as a standalone system for vision impaired navigation [3] and the accuracy 

is not sufficient for indoor navigation and way finding even for non-vision impaired 

people because of its poor reception of satellite signals in indoors [4]. 

 

 

It is estimated that, about 90% of the vision impaired population of the world are 

known to have low income [1]. It can be seen in Figure 1.1 that majority of vision 

impaired population is from low income regions of world such as Africa and South 

East Asia, where funding is limited to support them [5]. Therefore, they are unable to 

afford high cost support devices for their day-to-day life activities. Given the low 

socio economic demographic of this group, any device developed for supporting 

them should be targeted to be low cost. The navigation system for vision impaired 

 

Figure 1.1 – Global distribution of vision impairment [5] 
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people discussed in the next sub section examines these requirements. The research 

discussed in this thesis is a part of this project. 

1.2 The Way-finding System for Vision Impaired 

Most of traditional way-finding systems use heavy and bulky wearable 

computers that are inconvenient to be used by vision impaired people [6, 7, 8]. To 

the best of the author’s knowledge, current research does not indicate to a practically 

usable indoor way-finding system for the vision impaired. 

The work of this thesis is a part of the project described in this sub section 

that has aimed to develop a way-finding system for vision impaired that will guide 

them through an unfamiliar environment [8]. Key requirements of this project are 

low cost, portability and convenience of use, so that the vision impaired community 

can afford the system and get benefits from it. Figure 1.2 shows the overall system 

which consists of a centralised map generation system, two embedded devices: one 

for image and audio processing and the other for human gait analysis, and a 

smartphone for Human Computer Interface. The functional block diagram of the 

system is shown in Figure 1.3. 
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The chest mounted device with stereoscopic camera and microphones is used 

to detect obstacles, pathways and landmarks using image processing techniques 

 

Figure 1.2 – Proposed structure of the Way-finding system for vision impaired [8] 
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Figure 1.3 – Functional block diagram of the Way-finding system for vision impaired 



Problem Statement 

4 

 

while sound processing is used to identify sound generating landmarks of the 

environment the subject is navigating, such as elevators and public areas where many 

people are gathering, and to identify threats/risks such as vehicles [9]. The 

stereoscopic cameras are used to classify and estimate the distance to obstacles, alert 

the subject and update the centralised map. 

The map system is self-building [10] and the map and other information 

related to navigation are collaboratively crowdsourced by all registered users. Any 

change in the system identified by the image processing unit will be passed to the 

centralized system so that the centralised map can be updated based on the trust of 

the particular sender and the number of repetitions of a given change by different 

users [11]. Information gathered and available with one user may be shared with 

other close by users of the system. The smartphone acts as the human computer 

interface, which is used to translate guidance information and alerts to the user as 

tactile, audio and voice messages. It is also used for running the map software 

navigation algorithms and as a communication device to transfer data to and from the 

centralised map server. 

Displacement of the user is calculated by means of gait analysis and tracking 

with a single thigh mounted IMU (Inertial Measurement Unit) (placed in the trouser 

pocket or attached to the thigh). The step length and the direction are estimated from 

data collected from the thigh mounted IMU and the current position of the subject 

are estimated using a pedestrian dead-reckoning approach.  

 

1.3 Problem Statement 

The gait analysis component of the project discussed in Section 1.2 is 

addressed in the research discussed in this thesis and following are the problems 

addressed in this research. 

 The accuracy of step detection (pedometer) algorithms is very poor at 

slow walking speeds. There is a high need of developing an accurate 

pedometer to improve the accuracy of way-finding in indoor pedestrian 

navigation systems and many other uses. 
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 Almost all indoor navigation systems are costly and therefore 

unaffordable to the vision impaired community. In reducing the cost, the 

algorithms used in wayfinding systems have to require lower 

computational resources. Almost all existing algorithms used for 

orientation estimation require high computational resources (when a 

mobile platform is considered) that increases the cost of the system as 

well as its weight. Therefore, a less computationally expensive 

orientation estimation algorithm, without compromising the estimation 

accuracy, is required to cater this constrain. 

 Most human gait analysis approaches for navigation purposes using 

MEMS (Micro Electro-Mechanical Systems) sensors are based on 

acceleration measurements of a section of body. Acceleration measured 

by an accelerometer consists of both gravity and the linear acceleration of 

the section of the body onto which the sensor is attached. For accurate 

modelling of gait based on the acceleration, the gravity component has to 

be removed from the accelerometer reading. The gravity read by each 

axis of the accelerometer is neither a constant, nor a slow varying 

component due to the fast rotary movement of the sensor during human 

walking, which makes removal of gravity a difficult task. Therefore, 

complex algorithms are required for accurate removal of gravity 

component that results in costly hardware. Hence, there is a requirement 

of identifying gait modelling techniques that avoids accurate estimation 

of gravity. 

 Continuous estimation of the step length improves the accuracy of 

approximation of the distance travelled by the user. Most of step length 

estimation techniques are either based on fixed step length or based on 

acceleration measurements. Hence, in this case too, higher amounts of 

computations required for accurate acceleration estimations limit the 

existing techniques being used in low cost devices. Therefore, a simple 

model for step length with minimal computation requirements is a 

requirement for accurate step length estimation in inertial navigation 

systems. 
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 Knowing the activity performed by the user helps avoiding false 

propagation estimates in navigation systems. Hence, accurate activity 

recognition helps improving the accuracy and performance of human 

tracking systems. Light weight activity recognition algorithms without 

compromising the accuracy of recognizing activities is another 

requirement for a low cost navigation aid. 

 Existing step detection and gait analysis techniques use intense 

computations that restricts them being implemented in low cost 

processors. Therefore, existing techniques and algorithms are not 

favourable in navigation aids for vision impaired. Hence, there is a great 

requirement of developing algorithms that demand minimal 

computational resources so that they can be implemented in low end 

devices. However, the accuracy cannot be compromised. 

 

1.4 Objectives of this research  

The main objective of this research is to develop a model to estimate the step 

length of each step during walking by taking the thigh movement as the input such a 

way that this can be used for estimating the displacement of a vision impaired subject 

within the environment, who is navigating in an unknown environment. The specific 

outcomes of this study are as follows: 

1. Design and develop a robust and accurate step detection (pedometer) 

algorithm to detect steps accurately even at low walking speeds. 

2. Formulate efficient and accurate techniques for estimation of flexion and 

extension angles of the thigh during walking and validate them against 

standards. 

3. Mathematically model human gait during walking. 

4. Formulate algorithms to identify the activity the subject is performing. 

5. Formulate a model to estimate the step length taking the thigh angle and/or 

gyroscopic data as the input. 

6. All algorithms be computationally light weighted so that they can be 

implemented in low end hardware. 
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1.5 Novel Approaches Presented in this Thesis 

This thesis presents several novel approaches and directives in human gait 

analysis. The step detection algorithm presented in this thesis uses single axis 

gyroscopic signal of a single thigh mounted IMU and achieved close to 100% 

accuracies in practical tests. To the author’s best knowledge, the technique used in 

the pedometer algorithm is a novel directive and there are no other pedometer 

technique that could achieve this level of accuracy. 

Human gait during level walking was modelled based on thigh angle and the 

gyro signal read by a thigh mounted IMU with above 99% regeneration accuracies. 

Modelling human gait based on the gyro signal measured from a thigh mounted IMU 

(angular velocity of the thigh) and the thigh angle is also a novel approach according 

to the author’s best knowledge. 

Further, the thigh angle estimation algorithm presented in this thesis is also a 

novel approach where the estimation of the angle is based on the integration of the 

gyro signal and only the integration drift correction is done with the angle calculated 

from the accelerometer signal. 

The main concern in developing these techniques was that the algorithms to 

be demanding minimal computational resources, so that they can be implemented on 

low cost hardware. Although all these approaches are proven to be demanding less 

computational resources compared to techniques such as Kalman filters, and are 

novel techniques, they have demonstrated significantly higher accuracies compared 

to existing techniques.  

1.6 Outline of the Thesis 

This thesis is organised in six (6) chapters as listed. 

 Chapter 2 (Human Gait and Existing Technology and Work on Gait 

Analysis and Pedestrian Navigation) presents the details of the human gait 

cycle, techniques used and technology currently available for human gait 

analysis. 

 Chapter 3 (Methodology) explains the methodology used in this research. 
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 Chapter 4 (Experimental Platform) details the development of the hardware 

and software for data capture. It also discusses the details of the optical 

motion capture systems used to validate the orientation estimation technique 

used in this research. 

 Chapter 5 (Gait Modelling and Algorithms) presents the main contributions 

of this research, namely, the step detection algorithm, the thigh angle 

estimation algorithm, the harmonic model for human gait, the activity 

detection algorithm and the step length estimation model. 

 Chapter 6 summarises the thesis with main conclusion and some 

recommendations for future directives of research. 
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Chapter 2 

2 HUMAN GAIT AND EXISTING TECHNOLOGY AND WORK ON 

GAIT ANALYSIS AND PEDESTRIAN NAVIGATION 

2.1 Introduction 

Human gait analysis for the purpose of pedestrian tracking and navigation is 

the main theme of this research. Thus an understanding of human gait cycle, motion 

tracking and capture techniques, and orientation estimation is important in 

developing novel techniques for gait analysis. Details about human gait and 

techniques used for gait capture, analysis and modelling are discussed in this chapter. 

Human gait cycle is introduced in this chapter with details of its main phases 

and sub phases to provide an understanding of how a human walks and possible 

patterns that may be used to characterise human walking.  

A variety of different methods are used in different subject areas for human 

motion tracking and capture. Each of these method has their own characteristics, 

purposes of usage, advantages and disadvantages. Details on these techniques with 

the situations and targeted application they are used for and their advantages and 

disadvantages are also discussed in this chapter. 

The major areas investigated in this work are pedometer algorithms, 

orientation estimation algorithms, gait modelling, continuous step length estimation 

and human activity recognition. Details of some key examples available in literature 

on each of these topics are discussed in this chapter with the methods they have used, 

the features of these techniques and limitations of these techniques that restricts them 

being used in low cost systems. 

2.2 Human Gait Cycle 

Walking is the coordinated movement of limbs for the purpose of moving the 

body forward, while maintaining the stance balance. Gait is the pattern of moving a 

leg during walking and is repetitive [12]. 
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The human gait cycle is defined as the period starting with an initial floor 

contact of one heel (Initial Contact) to the next similar posture. A gait cycle can be 

divided into two main phases: Stance and Swing. During Stance, the reference foot is 

in contact with the ground while the other foot is in swing, and Swing is where the 

reference foot is swinging over the ground while the other foot is in contact with the 

ground [12] as shown in Figure 2.1. The Stance phase is further divided into five sub 

phases: Initial Contact, Loading Response, Mid Stance, Terminal Stance and Pre-

Swing whereas the Swing phase is further divided into three sub phases: Initial 

Swing, Mid Swing and Terminal Swing. Figure 2.2 shows the eight sub phases of the 

human gait cycle. 

 

 

Initial contact is the moment at which the heel of the reference leg contacts 

the ground and the other leg is by the end of Terminal Stance phase. The reference 

foot goes from heel contact to full foot contact during the Loading Response phase 

while the other leg has the Pre-Swing. By the end of the Loading Response, the body 

weight is fully transferred to the reference leg (known as single limb support) and 

during Mid Stance the body weight is tolerated by the reference leg while the other 

leg is in Initial Swing and Mid Swing phases. During the Terminal Stance, the heel 

of the reference leg starts moving away from the ground while the toe is still on the 

ground and the other leg is in Terminal Swing. By the end of the Terminal Stance of 

the reference leg, the other leg gets the Initial Contact. The last sub phase of Stance, 

 

Figure 2.1 – Main Phases of the Gait Cycle [12] 

 

Figure 2.2 – Eight Sub Phases of the Gait Cycle [12] 
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Pre-Swing, is where the reference foot moves further keeping the toe on the ground 

while the other leg is in Loading Response. During Initial Swing, Mid Swing and 

Terminal Swing phases, the reference leg is swinging above the ground while the 

other leg undergoes in Mid Stance and Terminal Stance phases. Table I shows the 

duration of each sub phase of the gait cycle as a percentage of the gait cycle. 

 

 

2.3 Motion Tracking and Capture Technology 

2.3.1 Introduction 

Motion tracking and capture technologies vary from simple mechanical 

systems to high end optical motion capture systems. It can be seen in the literature 

that different motion capturing and tracking techniques are used depending on the 

nature of the application and accuracies required in the particular application. 

Different technology used for capturing and tracking motion for navigation and 

clinical/rehabilitation applications, with their features and characteristics, are 

discussed in this sub section. 

2.3.2 Visual Measurements 

The most fundamental measurement technique for taking joint movement 

measurements is by observation. Although it is not an appropriate technique for 

measurements in real–time applications, visual measurements are not uncommon in 

clinical and rehabilitation research. [13] and [14] are evidences for the usage of 

visual measurements in clinical research where the measurement is taken by a 

TABLE I – DURATION OF SUB PHASES OF HUMAN GAIT CYCLE [12] 

Sub Phase Interval (of Gait Cycle) 

Initial Contact 0% – 2% 

Loading Response 2% – 12% 

Mid Stance 12% – 31% 

Terminal Stance 31% – 50% 

Pre-Swing 50% – 62% 

Initial Swing 62% – 75% 

Mid Swing 75% – 87% 

Terminal Swing 87% – 100% 
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specialist. Although both these report inter-measurement correlations above 79%, 

[14] reports more than 5% error between visual estimate and the actual value in 45% 

of the samples. 

2.3.3 Mechanical and Electro–Mechanical Apparatus 

A goniometer (Figure 2.3) is one of common angle measuring apparatus used 

to measure flexion and extension angles of joints in clinical and rehabilitation 

research. Watklns et al. reported above 98% intratester reliability and above 85% 

intertester reliability for knee angle measurements using goniometers [13]. However, 

Edwards et al. have reported that 22 % of the measurements taken for 27 knees in 16 

patients were with 5º or more error [14]. Although 5º is an acceptable level of error, 

the mechanical goniometer cannot be used in real-time application such as pedestrian 

navigation, because there is not any means of taking the reading electronically. 

However, they are suitable for rehabilitation application where the measurement is 

taken when the subject is stationary. 

 

However, electro–goniometers may be used in navigation applications. An 

electro-goniometer is a device similar to a mechanical goniometer with possibility of 

taking the measurement electrically by means of a potentiometer or a strain gauge. 

Electro–goniometers are often used in clinical tests to capture continuous motion of a 

joint. In [15], the authors have used an electro–goniometer as a reference for knee 

angle estimation using accelerometers and gyroscopes attached to the thigh and 

shank. To increase the accuracy of the goniometer reading, they have calibrated the 

goniometer before each sit–stand trial. 

 

Figure 2.3 – Goniometer 
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Force sensors, bend sensors and pressure sensors are some other methods 

used in research to identify foot contact with the ground. The work discussed in [16] 

used these sensors to detect which areas of the foot are contacted with ground and to 

detect the bending of the foot. The work discussed in [17] also used pressure sensors 

to detect the foot contact. This has been used to identify the acceleration pattern at 

the heel contact point. Although these devices make identification of key points of 

stride cycle easy, wearing these devices on the foot or shoes is not convenient. These 

devices may be effective in clinical tests, but become un-usable in real-time 

application due to inconvenience of wearing them. 

2.3.4 Optical Motion Capture Systems 

Optical motion capture systems are used extensively in gait analysis research 

both in navigation and clinical/rehabilitation applications. [18], [19] and [20] are 

examples that use optical motion capture systems for taking measurements as well as 

a baseline system. The development of an optical motion capture system and the 

algorithms used for real–time estimation of the marker coordinates in the space with 

reference to a calibrated origin are discussed in [21]. This system uses 6 cameras to 

record the position of reflective markers in the frame and use a server system to 

record data and estimate the positions of the markers. 

Vicon [22], Tracklab OptiTrack [23] and Qualisys Oqus [24] are some 

examples for commercially available optical motion capture systems. These systems 

estimate the coordinates of retro–reflective markers with respect to a pre–calibrated 

origin of the environment. A number of Infra–red (IR) cameras equipped with IR 

emitters are used to illuminate markers and capture their positions. Triangulation 

techniques are used to estimate the coordinates of each marker and all other motions 

are estimated based on the marker coordinates. These systems are capable of 

capturing data at rates of several hundred frames per second (fps). Windolf et al. 

have reported an overall accuracy of 635 μm and overall noise level of 15 μm for 

Vicon-460 system with four cameras [25]. 

Optical capture systems provide higher accuracy in position and angular 

estimates compared to other techniques. However, these systems are suitable for 

laboratory experiments and are not usable outside the laboratory. Further, the activity 
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area is limited to few cubic meters. Hence, optical motion capture systems are not 

usable in real-time applications such as pedestrian navigation. 

2.3.5 Inertial Sensors 

Inertial sensors are the main signal source in most infrastructure–free 

navigation systems. In addition to navigation systems, inertial sensors are now 

increasingly be used in clinical and rehabilitation studies [26, 27, 28, 29]. The three 

main sensors used in inertial systems are accelerometer, gyroscope and 

magnetometer. This sub–section discusses the measurements that may be taken using 

each of these sensors, error components of those and techniques that may be used to 

minimize those errors. 

Accelerometers 

Accelerometers measure the linear acceleration asserted on the sensor [30]. 

As gravity is also a linear acceleration, the reading includes gravity. It should be 

noted that the gravitational acceleration is read as –g towards earth due to the 

construction of an accelerometer [30]. Accelerometers may have one, two or three 

mutually orthogonal axis of measurement. The measurement of the ith axis (where i = 

x, y, z) can be given by the simplified error model given in equation (2.1) [31]. 

ifiiii nBaSaa ~  (2.1) 

where ia~  is the acceleration output for the ith axis, ia  is the acceleration applied 

along the ith axis, Si is the scale factor error (usually presented as a polynomial to 

include the non-linear effects), Bf  is the zero–offset bias of the measurement and ni is 

the random noise. The scale factor error, the zero–offset bias and the random noise 

are depicted in Figure 2.4. The scale factor error and the zero–offset bias can be 

compensated by laboratory calibration whereas a filter has to be used to filter out the 

random noise. 
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Gyroscopes 

Gyroscopes measure the angular rates with respect to an inertial frame of 

reference [30]. The direction of the angular velocity vector follows the right hand 

rule as shown in Figure 2.5 [32]. The word gyro is often used as a short form of the 

word gyroscope. In this thesis, these two words are interchangeably used. As there 

are no static rotations in the environment, a gyro does not read any environmental 

data as the accelerometer does with gravity. Therefore, the angular rate measured by 

the gyro is purely the angular rate of the device. However, there are error 

components contained in the gyro output, such as in the accelerometer. The angular 

rate measurement of the gyro along ith axis (where i = x, y, z) can be given by the 

simplified error model: 

ifiiii nBS  ~  (2.2) 

where i
~  is the angular velocity output for the ith axis, i  is the angular velocity 

applied along the ith axis, Si is the scale factor error, Bf  is the measurement zero–

offset bias and ni is the random noise [31]. Similar to the accelerometer, the scale 

factor error and the measurement zero–offset can be compensated by a laboratory 

calibration and the random noise by filters. 

Although equations (2.1) and (2.2) illustrate the noise models for 

accelerometer and gyroscope respectively for most applications, there are many other 

noise types that may exist in these sensors. These errors are discussed in detail in 

[30].  

 

   

 Figure 2.4 – Error present in inertial sensor output [30] 

Scale factor error (left), Zero–offset bias (centre), Random noise (right) 
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Magnetometers and e-Compasses 

Magnetometer measures the magnetic field along its three axes. 

Magnetometers are used in conjunction with accelerometer to estimate the north 

heading. An e-Compass is a device that directly gives the north heading reading [30]. 

Both these devices read the magnetic north and therefore, a correction is necessary to 

derive the geographic north heading. One main drawback in estimating north heading 

using these devices is that their reading is susceptible to ambient magnetic fields 

such as electromagnetic noise [30]. Further details on magnetometers and e-

compasses are excluded as the focus of this research is on flexion/extension 

estimation of the thigh and hence pitch/roll estimation is sufficient. 

2.4 Existing Work in the Literature 

2.4.1 Techniques Used for Pedestrian Localization 

For the purpose of this discussion, localization and tracking techniques used 

in indoor navigation systems may be divided into two main categories: infrastructure 

based and infrastructure free. Infrastructure based techniques use one or many pre-

installed equipment, such as Radio Frequency Identification (RFID) tags [33], Ultra-

Wideband (UWB) Radio Frequency (RF) signals [34], pre-installed markers in the 

environment [35], a pre-photographed environment [36], supplied maps (as in google 

indoor maps) and WiFi networks [37]. These systems give better localization 

 

Figure 2.5 – Vector Direction of the Angular Velocity Following the Right Hand Rule [32] 
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accuracies due to the fact that they have a reference system provided by the pre-

installed units. Ultrasound has the highest localisation accuracy of 1 cm among these 

techniques, while UWB being the next with 15 cm accuracy [5]. However, the major 

issue with these systems is the need of pre-installed hardware in the building, which 

limits the availability of these systems. It should be noted that installing hardware to 

the building needs capital investment as well as the contribution and participation of 

building owners/ managers. 

Alternatively, the infrastructure free techniques do not require any pre-

installed components in the environment. Many of these techniques include Inertial 

Navigation systems that use inertial sensors to measure the movement of the human 

body during human locomotion and predict the distance and direction travelled. 

Some of these systems use standalone sensors or IMUs [6, 7, 38] while the others use 

inertial sensors available in mobile phones [39, 40, 41, 42, 43]. The advantage of 

these systems is the lower implementation cost compared to infrastructure based 

systems and they don’t require any additional components be installed in the 

building, which makes them more flexible. However, the benefit of not having to 

implement any infrastructure for inertial navigation systems comes at the cost of 

their lower accuracies compared to some infrastructure based systems due to the fact 

that they do not have a well-defined origins and reference points. 

2.4.2 Step Detection 

Accurate step detection is a critical component of an inertial pedestrian 

navigation system. A Pedometer is a device that is used for detecting steps, usually in 

exercise activities like running and jogging. With increasing usage of smartphones 

consisting built-in inertial sensors, usage of pedometer software have also become 

popular. However, although these software and hardware pedometers perform 

sufficiently accurate when performing exercise activities, they perform very poor at 

slow walking speeds that are usually observed in indoor navigation, particularly for 

the vision impaired [44, 45, 46, 47, 48]. 

Jerome and Albright [44] have compared the performance of five 

commercially available talking pedometers with the involvement of 13 vision 

impaired adults and 10 senior adults, and observed that the step detection accuracy 

for all of them were poor (41 – 67%) while walking on flat land and the situation was 
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deteriorated when ascending stairs (9 – 28%) or descending stairs (11 – 41%). 

Crouter et al. [45] have compared 10 commercially available electronic pedometers 

and confirmed that they underestimate steps in slow walking. Garcia et al. [46] have 

compared the performance of software pedometers and hardware pedometers and 

observed that both these types are comparable in all walking speeds and both types 

have demonstrated poor accurately in slow (58 to 98 stepsmin-1 ) walking speeds: 

20.5% ± 30% for hardware pedometer and 10% ± 30% for software pedometer.  

Waqar et al. [47] have used an accelerometer based pedometer algorithm 

with fixed threshold in their indoor positioning system. They have reported a mean 

accuracy of 86.67% in their 6 straight walk trials of 40 steps each, with a minimum 

accuracy of 82.5% and a maximum of 95%. The median accuracy was 85%. Having 

a 15% error in the step count is not appropriate for vision impaired navigation. 

A Smartphone pedometer algorithm based on an accelerometer is discussed 

by Oner et al. [48] and their algorithm demonstrated better accuracies at walking 

speeds higher than 90 beats per minute (bpm) (or steps per minute), but its 

performance degrades as speeds fall below 90 bpm. Their algorithm has over counted 

steps and the error was approximately 20% at 80 bpm, 60% at 70 bpm and 90% at 

60 bpm.  

Lim et al. [49] have proposed a foot mounted gyroscope based pedometer, 

but the authors have not mentioned the accuracy of their system. Further, they use 

force sensitive resisters (FSR) to detect the toe and heel contacts, and hence the 

accuracy of step detection should be higher as they can easily detect the Initial 

Contact using the FSR. Using many devices to measure parameters at the foot is not 

very convenient and having these additional sensors at the foot increases the number 

of wires required from them to the controller of the system. 

Ayabe et al. [50] have examined the performance of some commercially 

available pedometers in stair climbing and bench stepping exercises and reported that 

the pedometers could count steps with an error of ± 5% at speeds of 80 to 120 

stepsmin-1. However, the accuracy was poor for short step sizes and lower stepping 

rates ( > ± 40% at 40 stepsmin-1). 
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Most of the examples discussed here used accelerometer data to detect steps 

and they perform poorly at slow walking speeds. The main reasons for this poor 

performance at low speeds are the static value (gravitational acceleration) present in 

the accelerometer, slow response of accelerometer and that most of these algorithms 

cannot adopt their threshold levels to suit with the pace of walking. This indicates the 

requirement of developing a step detection technique that can perform accurately at 

all walking speeds including slow walking. 

2.4.3 Estimation of Orientation 

2.4.3.1 Introduction 

This research focused in gait analysis and modelling using signals of a single 

thigh mounted IMU. In addition to the raw sensor signals, the thigh angle was also 

considered as a possible parameter for modelling. Orientation estimation algorithms 

are used to estimate the thigh angle from the raw sensor signals. The following 

discussion summarises the basics on orientation estimation and different techniques 

used in orientation estimation using inertial sensors. 

2.4.3.2 Orientation Estimation using Inertial Sensors 

There are several methods of representing the orientation of a system. Some 

of them are using Euler angles, Quaternions and axis angles [51]. Out of these 

methods, this thesis uses Euler angles because of its simplicity. Although Euler 

angles suffer from a phenomenon called Gimbal Lock when the pitch angle is at 90º 

[51, 52], this is not a problem for the work discussed in this thesis as the flexion and 

extension of the thigh does not reach 90º. The three orientation angles, Pitch, Roll 

and Yaw are defined as shown in Figure 2.6. Out of these three angles, pitch and roll 

estimations are considered in this thesis. The estimation of these two angles may be 

done using three methods: using accelerometer measurement only, using gyroscopic 

measurement only and using both accelerometer and gyro measurements [53]. These 

three techniques with their advantages and drawbacks are discussed in the following 

sub sections. 
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Estimating Angles with Accelerometer 

The pitch ( accel̂ ) and the roll ( accel̂ ) can be estimated using the x, y and z 

measurements of the accelerometer as given by equation (2.3). 























z

y

accel

x
accel

a

a

g

a

arctanˆ

arcsinˆ





 (2.3) 

where ax, ay and az are the acceleration measured along x, y and z axis by the 

accelerometer and g is the gravitational acceleration [53]. These angles are accurate 

if the accelerometer is only reading gravity. However, when there is an additional 

acceleration on the body, by means of vibration or external force, then the results 

will be affected, making them unusable in most cases. 

Estimating Angles with Gyroscope 

The gyroscope can also be used to estimate the pitch and the roll. Rate gyros 

are normally unaffected by acceleration, which makes gyro-based angle estimates 

immune to external forces. Therefore, gyro-based angle estimated are usable in 

situations where accelerometers cannot be used for angle estimations. If the pitch and 

roll are as defined before and the rate gyros are sampled at a fixed interval T, the new 

estimates of pitch and roll, ̂  and ̂ , can be estimated using Euler Integration as 

[53]: 

 

Figure 2.6 – The Inertial Frame [52] 
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where ̂  and ̂  are the previous estimates of pitch and roll angles, and   and   are 

the angular velocities along pitch and roll axes. 

Although the angle estimated by this method is immune to external forces, if 

even a small error exists in the gyro measurement can cause the angle to drift due to 

integration of the error [51, 53]. It is also clear that the initial angle should be known 

to estimate the pitch and roll using equation (2.4). As each method described earlier 

has its own advantages, disadvantages and limitations, fusing (mixing) the 

accelerometer and gyroscope measurements can increase the accuracy and reliability 

of the angle estimates [51, 53]. In fact, the drift caused by the gyro integration is 

corrected by the angle estimated by the acceleration. Following is a discussion of 

some techniques used to fuse accelerometer and gyroscope measurements. 

Sensor Fusion for Improved Angle Estimation Accuracy 

It was seen in the previous discussion that estimating pitch and roll using 

either acceleration or angular rate only has their own limitations, which can be 

compensated by fusing gyro and acceleration data. The method used for this is that 

the angle derived using gyro measurement is corrected using the angle derived using 

acceleration. The fused pitch and roll angles (̂  and ̂ ) can be estimates as shown in 

equation (2.5) [53]. 
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All terms in equation (2.5) are as defined for (2.3) and (2.4), except L, which 

is the fusing factor. L is a constant that takes a value between 0 and 1 (inclusive) for 

the Complementary Filter (CF) [54]. When L = 0, the angle estimation is purely on 

Euler Integration and when L = 1, it is purely on acceleration and takes more 

contribution from Euler Integration when L is close to 0 and from angle estimated 

from acceleration when close to 1. CF is known to be fast and simple method for 

fusing gyro measurement and acceleration to estimate tilt angles. 
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The Kalman Filter (KF), on the other hand, has a dynamically selected L [53, 

54]. The advantage of KF is that the parameters can be selected to constrain the 

outputs within certain range, rate of change, directions, etc. so that the estimated 

angles have better accuracy [30, 54]. However, it can be seen that the KF 

implementations have a greater number of computations compared to the CF [26, 

54]. 

Gradient Descent based Orientation Filter (GDOF) [55] (also known as 

Madgwick Filter) is another comparatively efficient orientation estimation algorithm. 

It may be seen that the accuracy of GDOF falls below Extended KL (EKF) [56]. 

2.4.3.3 Existing Work on Orientation Estimation 

Much of previous work available in literature on orientation estimation of 

IMUs and techniques used in commercially available IMUs are based on Kalman 

filters. Although Kalman filters give a much better accuracy of output, they require a 

number of matrix computations to be performed [26]. Performing many matrix 

calculations require longer processing times, especially in low end (8-bit) 

microcontrollers. 

Won et al. have used a Kalman Filter in combination with a Particle Filter in 

their orientation and position estimation technique [26]. Their experiments have 

shown that they can estimate pitch and roll with errors less than 1º with the proposed 

method when the initial orientation is known. They have reported errors greater than 

2º for EKF. However, this has been achieved with the expense of high computational 

cost. They have executed their computations in an Intel Core2 Duo Processor E8400 

with 3 GB memory and the execution times were greater than 40 s. As 40 s is a 

significantly longer time as far as walking rates (approximately 60 steps per minute) 

are considered, this system is not practically usable in real time navigation systems at 

this time. It is obvious that the time taken for the processing will be much longer 

when implemented in a low end embedded system. 

Luinge and Veltink have discussed a human body segment orientation 

measurement technique using an IMU, where they have used Kalman filtering to fuse 

gyroscope and accelerometer to derive roll and pitch of the device [57]. They have 

compared the error of orientation estimated by sensor fusion against the orientation 

error when only accelerometer or the gyroscope is used to estimate the orientation. 
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The authors have observed about 3º Root Mean Square Error (RMSE) for the 

forearm where the movement is the highest, compared to about 2º and 1º RMSE for 

trunk and pelvis respectively, with their Kalman filter implementation. The root 

mean square value of the inclination error is about 10º for the forearm when only 

accelerometer was used to estimate the inclination. 

YEI Technologies use Kalman filters to compute the orientation of YEI 3-

space sensors [58]. These sensors contain high end microcontrollers, which 

contribute to the relatively high price of US$ 150 for the basic version without 

wireless connectivity.  

Complementary Filter [54] and Gradient Descent based Orientation Filter 

(GDOF) [55] are two less computationally expensive alternatives for orientation 

estimations of low cost IMUs. Alam et al. have compared the accuracy of explicit 

complementary filter (ECF) and GDOF with both simulated data and data collected 

with a MPU-6050 IMU [56]. They have reported errors in the scale of 10º for GDOF 

and 5º for ECF for the roll angle and 5º and 2º for GDOF and ECF respectively for 

pitch angle with simulated data. However, they have not reported error 

characteristics for these filters for data measured with MPU-6050. Further, the 

movements they have considered were simple roll and pitch movements where the 

orientation remains constant for some period after a change. Estimating orientation 

accurately is easier in this scenario as the accelerometer gives a stable value when 

stationary. 

GDOF is used in x-IMU [59] for its orientation estimations and it uses a 

microcontroller with a DSP as the processor. The cost of x-IMU is £249. 

Orientation estimation techniques discussed earlier are suitable where higher 

accuracy is needed and the computational expense is not of concern. However, the 

main concern of the vision impaired navigation system was the cost which drove the 

focus of the project to find less computationally expensive techniques for pedestrian 

tracking. Further, the positioning of the sensors has to be convenient for vision 

impaired people as they may have difficulty with accurate placement of said devices. 
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2.4.4 Human Gait Modelling 

A number of different approaches are available in literature for detecting and 

modelling of human gait. They are generally based on the hip, chest, foot or thigh 

movements. Some work exist in literature use optical tracking systems to track the 

motion for the purpose of gait modelling/analysis while others use inertial sensors to 

track motion. Majority of existing research that use inertial sensors recognise or 

model gait based on the acceleration of a particular section of the body. With the 

increasing availability of low cost gyroscopes, the usage of them in addition to 

accelerometers has increased. Although, availability of literature for gait analysis and 

modelling using gyroscopes or gyroscope-accelerometer combination was limited by 

the time of the commencement of this research, literature is becoming increasingly 

available. 

Although many other mathematical [60] and mechanical [61] models are 

available in literature, the discussion of those is excluded in this thesis as they are 

purely theoretical approaches. The examples discussed next are modelling techniques 

based on experimental data. 

2.4.4.1 Gait Analysis using Optical Motion Capture Systems 

Literature suggests that optical systems have been used for gait analysis for a 

significant time in the history. M. P. Murray (in 1967) has presented the ranges of 

normal values for 20 simultaneous gait components including the displacement 

patterns of head, neck, trunk and upper and lower limbs [18]. In this study he has 

used interrupted-light photography to capture the motion of different sections of the 

body of subjects walking in front of a camera. Reflective markers have been attached 

to specific anatomical landmarks and a strobe light flashing 20 times per second 

allowing 20 samples per second capture rate. Images captured have been used to 

measure the angles of motion of all considered sections of the body. The movement 

curves presented in this paper may be considered as a norm for that age group 

because the measurements have been taken from 60 normal men from 20 to 65 years 

of age. 

Geisheimer et al. have presented a high resolution Doppler model for human 

gait [19]. The authors have used an infrared motion capture system to derive the 

Doppler model. In order to identify the patterns in the Doppler spectrum, they have 
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compared the outputs generated using this model with the data recorded from the 

Doppler radar system. In this work, they have tried to identify the motion of different 

sections of the body during walking by means of the Doppler spectrum. However, it 

is observed in the paper that these patterns are not very clearly visible in the Doppler 

spectrum. 

According to literature, many researches have used optical tracking systems 

to study joint angles during gait, which is generally used in clinical applications. 

These usually do not discuss any other modelling other than gait pattern recognition. 

Due to immobility of optical motion capture systems, they cannot be used in 

navigation applications. However, optical systems are used as reference for 

validation purposes of the navigation techniques being developed by researchers. 

2.4.4.2 Gait Analysis using Inertial Sensors 

Techniques using inertial sensors, accelerometers in particular (due to their 

high availability in the past compared to gyroscopes and low cost), are often used in 

navigation research due to their higher portability. With recent increased availability 

of low cost MEMS (Micro Electro-Mechanical Systems) gyroscopes, the usage of 

gyroscope in gait analysis and modelling has increased in the recent past. Some 

commonly used gait analysis and modelling techniques available in literature using 

accelerometers, gyroscopes and combinations of those are discussed in this sub 

section.  

Tong and Granat have utilised two single–axis gyroscopes to analyse 

movement of the thigh and the shank during walking [62]. They have estimated the 

thigh and the shank inclination and the knee angle and validated the results against 

an optical tracking system. The paper also presents the angular velocity of the thigh 

and the shank as a time series during a stride cycle. The scope of this work was 

identifying normalized waveform patterns for inclinations and angular velocities of 

the thigh and shank. They have used two techniques to compensate the integration 

drift: automatically resetting the angle at each gait cycle and low pass filtering. The 

authors have achieved correlation coefficients above 0.90 between the angles and 

angular velocities derived using their techniques and these values derived from the 

optical tracking system. 
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A personal positioning system based on walking locomotion analysis is 

presented in [36]. In this work, authors have used a hip mounted accelerometer and a 

gyroscope for estimating acceleration of the body accurately. They have estimated 

the gravitational vector using both accelerometer reading and gyroscope reading 

using a Kalman filter so that the linear acceleration components of the hip can be 

estimated with better accuracy. In this work too, the gait modelling is based on 

acceleration and the distance travelled is formulated as a function of the hip 

acceleration. They have recognized the activities (flat walking, climbing stairs and 

using an elevator) with above 85% accuracy.  

Bamberg et al. presented a gait analysis technique using shoe–integrated 

inertial sensors [16]. They have detected heel–strike and toe–off as well as estimated 

foot orientation and position. They have utilised force sensors, bend sensors, pressure 

sensors and electric field height sensors in addition to accelerometers and gyroscopes 

to identify the key calibration points of the stride cycle such as heel contact and toe 

off. Although this may permit detecting many gait phases, it increases the complexity 

of the system as well as the system becomes uncomfortable to the use. The results 

have been validated against an optical motion analysis system and the RMSE 

reported for the pitch is 5.2  2.0º (for 195 samples) and the RMSE for the 

displacement is 8.5  5.5 cm. 

Zijlstra and Hof have modelled spatio-temporal gait parameters based on a 

single 3–axis accelerometer [63]. In this paper, they have studied the acceleration 

pattern of the pelvis (hip) along all three axes during the gait cycle. They have 

modelled step length and walking speed as functions of hip displacement derived 

from the hip acceleration. The hip displacement is derived by double integrating 

acceleration. The error between the estimated and measured step length and walking 

speed were lower than 16%. This level of error in a navigation system is not 

desirable especially when used by vision impaired due to the fact that as they cannot 

see the environment, they may end up in a disaster such as falling off an edge or a 

step. 

Ibrahim has used a hip mounted accelerometer for gait modelling and has 

derived harmonic models for body acceleration for different activities [64]. He has 

used a 3–axis accelerometer attached to the hip of the subjects as the input in his 
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studies. A liner predictive model has been used to estimate the fundamental 

frequency of the signal. It has been discovered that there are 12 significant harmonic 

components in the spectrum of the acceleration signal. Harmonic models for the 

acceleration of the trunk while flat walking, slope up, slope down, stairs up and stairs 

down are presented and the difference in the harmonic models for these activities in 

all three axes are discussed. The author has claimed that the harmonic model derived 

is a good fit for the original signal, but the figures indicate that there are large 

deviations of the reconstructed signal to the original. 

Qiuyang and Zaiyue have used spectral model to predict the thigh angle 

during level walking. They have also used linear predictive techniques to estimate 

the frequencies [65]. However, in this work they have not mentioned how many 

harmonics are required to reconstruct the original waveform accurately. The thigh 

angle is reconstructed using the harmonic components extracted and compared with 

the original. They have reported mean square errors of 0.2 rad (11.5º) for some 

subjects. It can be seen from the figures that the deviation in the predicted waveform 

to the original is very high. 

2.4.5 Step Length Estimation 

Step length estimation is an important part of a pedestrian navigation system 

based on dead reckoning. Several different models available in literature for 

estimating step length during level walking. Most of these models are based on the 

step frequency, the height of the subject and the acceleration of the body or leg and 

some are presented in the following discussion. Activities such as running and 

jogging were not considered in this study because these activities are not performed 

by vision impaired people during navigation. 

Shin et al. have presented a model for step length as a function of the stride 

frequency and the variance of acceleration of a hip mounted IMU [66]. The step 

length, sl , in their model is given by: 

  ass fl  (2.6) 

where sf is the step frequency, a is the variance of the acceleration and α, β and γ 

are pre-learnt parameters. The authors claim above 95% accuracy of the model, 
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however, it is not clear in the paper if the trials were performed using a single subject 

or many. 

Gusenbauer et al. have presented a model to estimate step length as a 

function of stride frequency only [67]. The model, however, incorporates a parameter 

to represent the random walk, which is modelled as Gaussian noise with a varying 

standard deviation that depends on the step frequency. Their model is given by 

 ss fbal  (2.7) 

where sf is the step frequency, a and b are pre-estimated parameters and ω is the 

random walk parameter. The errors reported in their experiments for three different 

scenarios are 4%, 2.76% and 12.35%. These experiments have been conducted using 

a smartphone carried on the subject’s hand, in front of the subject. 

The step length as a function of step frequency and the height of the subject is 

presented in [68]. In their work, the IMU is hand held. Their model is given as 

  cbfahl ss   (2.8) 

where h is the height of the subject and sf is the step frequency. a, b and c are pre-

learnt parameters. They have reported error between 2.5% and 5% for the total 

distance travelled. The experiment had been conducted with the involvement of 10 

test subjects. 

Lee et al. have incorporated gyroscope integration of a hand held device in 

the step length estimation model in addition to the step frequency and acceleration 

variance [69]. In this model, a correction is added to the normalised step length to 

estimate the actual step length and the correction factor is estimated as a function of 

the difference of the measured and norm of afore said parameters. The model is 

given by  

      0000 lGIGIffl ssas    (2.9) 

where a , sf  and sGI  are acceleration variance, step frequency and the gyro integral 

for the particular step and these parameters with subscript ‘0’ are the norms of each 

parameter. sl  is the estimated step length and 0l  is the normalised step length. α, β 
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and γ are the scaling factors for each parameter of their linear combination model. In 

an experiment conducted with the involvement of a single subject walking 3 circles 

around a rectangular path of 400 m long, has reported RMSE of 14.18, 4.23 and 

11.68 cm. 

Zhao et al. have modelled the step length as a function of the amplitude of the 

waist-swing in vertical direction [70]. They have presented 2 models, a simple model 

assuming no bending of the knee at toe off, and an advanced model assuming the 

knee bending. The two models are given by 

 222 hllls   (2.10) 

and 

      ffs lhllhllll 
22222  (2.11) 

where sl is the step length, h is the amplitude of the waist-swing, l and fl  are the 

length of leg when the knee is not bent and bent respectively. The authors claim that 

they achieved 96.9% accuracy in walking distance estimation with this model. 

All the models discussed are based on the acceleration measured, height of 

the subject, step frequency, length of leg or a combination of these parameters. A 

different approach for modelling step length is used by Diaz and Gonzalez [71], 

where they have modelled the step length as a function of opening angle, which is 

measured as the angle of the thigh between the heel off and the initial contact: i.e., 

the difference between the maximum and the minimum of the thigh angle for a given 

step. To the author’s best knowledge, this is the only approach found in literature that 

uses the thigh angle extrema to estimate the step length. Their model is given by 

 minmax 





 bals
 (2.12) 

where sl is the step length and   is the thigh angle. The constants a and b are 

personalised parameters fitting each regression line. They have reported 0.15% mean 

error for distance estimation in an experiment conducted with the involvement of 1 

test subject who has walked 10 trail on the same path. The parameters a and b were 
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derived from the same subject while walking on a treadmill in an optical motion 

analysis lab. Although very low error is reported, this work cannot be considered as 

accurate because only one subject was participated in the experiment. The reliability 

of the algorithm against different subjects is questionable. 

2.4.6 Activity Recognition 

The majority of the existing work on human activity detection use 3-axis 

accelerometers to measure the trunk or the leg movement while few uses a gyroscope 

in conjunction with the accelerometer. Bocksch et al. have discussed an activity 

classification method that uses a 9-degree of freedom IMU [72]. They detect 

standing, running, walking, being in the car, lying, cycling and falling in their 

system. The magnetometer is used to detect the car entry and exit by analysing the 

magnetic distortion, whereas the other inertial sensors are used to detect other 

activities. The device is placed on the belt (hip mounted) and they could detect 

walking, running, throwing and lying with 100 % accuracy and standing, entering a 

car and cycling with 92 %, 76 % and 72 % accuracies respectively. However, their 

algorithms are computationally intensive and may require high processing and 

memory capabilities in the device. 

Kwapisz et al. have discussed an activity recognition system using the 

accelerometer data of a mobile phone placed in the pocket [73]. In this system, they 

have processed the average, standard deviation, average absolute difference, average 

resultant acceleration, time between peaks and binned distribution of acceleration 

data. They have considered the activities walking, jogging, ascending stairs, 

descending stairs, sitting, and standing. They could achieve detection accuracies 

above 90 % for walking, jogging, sitting and standing, but 61.5 % accuracy for 

walking upstairs and 55.5 % accuracy for walking downstairs. Their technique too, 

requires higher computational capabilities than what is available in current low end 

microcontrollers. 

Most of these existing techniques use threshold detection of the 

accelerometer to detect the activities, which performs less accurately in slow walking 

speeds and stair climbing. Further, they require significant computations to be 

performed, which is not favourable for low cost devices.  
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2.5 Summary and Conclusions 

Walking is a synchronised movement of a human’s lower limb for the 

purpose of navigation. The main contributors to the walking are the person’s legs. It 

is clear that the major movement of a leg during normal walking is the flexion 

(backward) and extension (forward) and that movement can be considered as a rotary 

motion around the hip joint. Hence, measuring rotary movement (angular velocity) of 

the thigh is more meaningful than measuring the linear movement (linear 

acceleration). A literature review was conducted to confirm this argument and the 

findings are presented in this chapter discussing some theories and work available in 

literature on the areas relevant to this thesis. The discussion started with explaining 

details of the gait cycle and its sub phases followed by a discussion on the 

technology available for gait measurement and capturing. Details on work available 

in literature on pedestrian navigation, step detection, orientation estimation of IMUs, 

human gait recognition and modelling, step length estimation and activity 

recognition were also presented in this chapter. 

Great deal of research into gait recognition and characterisation techniques 

focus on the use of inertial sensors to measure the acceleration of trunk, foot or thigh 

movement [41], [63], [74]. In addition, gyroscopes were used in conjunction with 

accelerometers to measure the trunk movement in some other systems [38], [75]. 

The argument that the rotary movement of the thigh gives more meaningful 

data for gait analysis compared to linear measurements, was confirmed in the 

preliminary studies and experiments conducted (presented in Section 5.2), by the 

observation that the gyroscopic data of a thigh mounted device (a smartphone placed 

in the subject’s trouser pocket) gives better details and information on the thigh 

movement than an accelerometer does [76]. The correlation of the signal between 

strides was higher for the gyroscopic data than accelerometer data. It was also 

observed that thigh is the best position for the inertial sensor against hip and hand. 

Therefore, it was concluded that a thigh mounted inertial sensor and gyroscopic data 

to be selected as key inputs of this study. 
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Chapter 3 

3 METHODOLOGY 

3.1 Research Methodologies 

Research methodologies are generally divided into two main categories. They 

are: 

1. Social sciences methodology; and 

2. Science and engineering methodology. 

Social science methodology is used in researching social issues, concepts and 

ideas, whereas science and engineering methodology is used technical research. As 

the goal of this research falls under science and engineering, Science and 

Engineering Methodologies are appropriate. There are many different methods under 

Science and Engineering Methodology that are suitable for different research areas as 

discussed in [77]. 

3.2 Research Methodology Followed 

The main objectives of the research discussed in this thesis are development 

of models for human gait and algorithms to identify gait features. Therefore a 

combination of “Construct a Model” and “Algorithm Development” methods for 

scientific research discussed in [77] was used as the main research method. The flow 

chart in Figure 3.1 depicts the main steps of the research method used, which is 

further described in details later. 
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Figure 3.1 – Flow Chart of the Research Method Used 

3.2.1 Construct a Model 

This research method is more appropriate for mathematics, theoretical 

physics, theoretical chemistry, theoretical geology, theoretical astronomy, or 

theoretical biology [77]. This may be started with a hypothesis and developed until a 

satisfactory model is derived, based on experimental results. Another variant of this 

mode of research is the modelling without any experimental results. However, the 

modelling was done based on the experimental results in the research discussed in 

this thesis. The steps that may be followed for this model are as follows: 

1. Identify a regularity or relation discovered through experimental 

investigation. 

2. Build mental pictures to explain regularity, and develop hypothesis 

about origin of phenomenon. 

3. Identify basic mathematical relations from which regularity might 

result. 

4. Using analytical or numerical techniques, determine whether 

experimental regularities result from the starting mathematical 

equations. 

5. If incorrect, find new mathematical starting point. 

6. If correct, predict new regularities to be found in future experiments. 

Data Collection 
and Analysis

Modeling of 
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Development of 
the Gait 
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3.2.2 Algorithm Development 

This method is appropriate for developing an algorithm for achieving a 

certain goal. The techniques involved in this method may include proofs that a 

programme is correct or can terminate or ideas that underlie new classes of computer 

languages. The steps that may be followed in this method are as follows: 

1. Learn the vocabulary and concepts of an existing area of computer 

science. 

2. Develop a new conceptual method for solving a problem in this area. 

3.3 Work Flow of this Research 

3.3.1 Data Collection and Analysis 

Initial collection of data was conducted to identify better carrying positions 

for the data collection device. The carrying positions tested were based on techniques 

presented in the literature. Once the best carrying position was identified form the 

analysis of these data, further collection of data was conducted to collect data 

required for step detection and gait modelling and analysis were conducted to test 

collected data and to identify the requirement of further data collection. 

3.3.2 Modelling of Human Gait 

Human gait was modelled targeting two applications: gait modelling for level 

walking and step length estimation, using the thigh movement data collected with 

multiple male and female subjects. The accuracy of the model was evaluated by 

analysing the correlation and the error between the model generated data and the 

collected data. Part of the data set was used to derive the models and the balance was 

used to evaluate the models.  

To identify gait patterns and establish models, data were collected with the 

participation of multiple non-vision impaired male and female subjects known to 

have no disability or other impairments. Once the patterns are identified and initial 

models are established for non-vision impaired subjects, data were collected from 

vision impaired subjects to study the differences. 
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3.3.3 Gait Identification Algorithms 

Gait identification algorithms were developed for different purposes using 

parameters derived from the data collected. The algorithms derived are discussed in 

Chapter 5. Lower computation requirements were targeted when developing the 

algorithms so that they can be implemented on low end microcontroller platforms. 

3.3.4 Simulation of Algorithms 

The algorithms were simulated on Matlab with pre collected data to confirm 

the performance of them. Modifications to the algorithms were done until they 

perform satisfactorily. 

3.3.5 Validation of Algorithms 

Once the algorithms are tuned up in simulation, they were implemented and 

verified. Reference systems such as Vicon optical motion capture system were used 

in some cases were as others were verified in real application with the involvement 

of test subjects. 
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Chapter 4 

4 EXPERIMENTAL PLATFORM 

4.1 Introduction 

The work presented in this thesis used three different experimental platforms. 

A fourth platform was tested for possibility of using in this work and was 

discontinued. At the beginning of this work, a smartphone with in-built inertial 

sensors was used to capture data. An Android application was developed, which is 

discussed in Section 4.2. Due to limitations of using a phone in capturing movement 

of multiple sections of the body, an off-the-shelf IMU system was tested for 

feasibility of use in this research. Details of these IMUs and test results are discussed 

in Section 4.3. Due to data losses occurred when more than one units of the off–the–

shelf IMU was used, a custom made IMU was developed and used to capture inertial 

data in the latter stages of this work and the design and the construction of the 

custom–made IMU is discussed in Section 4.4. Details of the optical motion capture 

system installed in the MAL are discussed in Section 4.5. MAL was used to capture 

data for verifying the thigh angle estimation algorithm and data needed for 

developing step length estimation algorithm. 

4.2 Data Capture Application for the Smartphone 

At the early stages of the work presented in this thesis, sensor data were 

collected using Android based smartphones with gyroscope. An application was 

developed to record accelerometer, gyroscope, magnetometer and orientation data 

from the in–built sensors at a rate of 100 samples per second. 100 samples per 

second was selected so that the sub-gait level details can be extracted even for fast 

gait which is about 3 steps per second. 

Accessibility was also a concern when developing this application. The 

details of the activity performed can be recorded as a voice message, so that the 

application may be used by vision impaired people and no paper records are needed 

to track the activity performed. Further, to make the application accessible, the full 

screen was assigned as a button and screen press sequences such as press–and–hold, 
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release and tap (short press) were used to trigger the voice recording and sensor data 

recording. When each event is triggered, it is informed to the user as the voice 

message to improve the accessibility. The user interface of the application is shown 

in Figure 4.1. 

 

The main challenge faced in developing the application is that the Android 

Sensor Manager (the interface available to access sensor data) uses an event driven 

architecture [78]. Sensor data are updated only when a change in value occurs. 

However, for digital signal processing purposes, the sensors prefered to be sampled 

at a consistent sampling rate. Therefore, it was required to convert the event driven 

architecture of Android Sensor Manager into a time driven architecture as follows. A 

set of temporary variables keep the latest updates of the sensor values provided by 

the Sensor Event Listener of the Sensor Manager. A timer is run at 10 ms timing to 

provide 100 Hz sampling rate. Each time the timer ticks, the aforementioned last 

sensor values are taken as the new sample of sensor values. This way, the sensor 

samples are produced at 10 ms intervals, so that the sampling rate is kept constant at 

100 samples per second. The event–driven to time–driven conversion is shown in the 

flow chart in Figure 4.2. 

 

Figure 4.1 – User Interface of the Android Application 
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All values with the sample time are stored into a comma separated value 

(CSV) file in the phone storage with the date and time that the trial started as the 

name of the file. A unique file name for each trial is created this way. The voice label 

(that explains the activity performed) recorded prior to the sample is also saved as an 

audio file with the same file name (with appropriate file extension), so that one can 

easily identify the audio label and sensor data pair. 

 

Although a smartphone could be successfully used to capture the motion of a 

single body section of many blind and non–blind subjects, capturing motion of 

multiple sections is difficult with smartphones due to synchronization issues and 

difficulty to communicate between phones. Further, attaching smartphone on to 

multiple sections of the body is not convenient. Another limitation in using 

smartphones for data recording is that, the user has to rely on the data made available 

from the Android operating system, and these data are not properly time 

synchronized as a result of the event driven architecture. It was decided to explore 

the possibility of using multiple IMUs for data capture due to these limitations. 

4.3 Off–the–Shelf IMU 

The application in the smartphone can be used for collecting inertial data of a 

single section of the body. Although attaching a smartphone to a section like hip or 

thigh is not very convenient, for sections like foot and shank, the smartphone 

Sensor Manager

Is new data 

awailable?

Latest 

Data

Yes

10 ms 

Timer

Is 10 ms 

reached?

Copy latest data as 

new sample

Yes

New 

sample
 

Figure 4.2 – Event-driven to time-driven conversion 
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becomes practically unusable because of the size. Further, smartphone becomes 

unusable when inertial data of more than one section of the body has to be recorded 

synchronously because multiple smartphones cannot be easily synchronized. Due to 

these reasons, it was decided to use multiple IMUs when data of multiple sections 

were to be collected. 

YEI 3–Space Bluetooth IMUs were selected for this purpose [58]. These 

IMUs communicate with the host computer via Bluetooth. The IMU includes a 3–

axis accelerometer, a 3–axis gyroscope and a 3–axis magnetometer. The 

specifications of these sensors are given in Table II. These IMUs have two modes of 

data collection. One of them is the poling mode where the host computer request a 

sample from the IMU and the second is the streaming mode where the host computer 

sends a sampling frequency to the IMU at the initialization and the IMU samples and 

streams data to the host for a pre–set period. Software was written for the host 

computer by modifying the sample code provided by the vendor to test the poling 

mode. It was observed that 100 samples per second sampling rate is unachievable 

when the IMU is sending data via Bluetooth in this mode. Therefore, the software 

was modified to use the streaming mode of the IMU. The IMU was configured to 

sample data at 10 ms intervals. With this method, it was possible to receive data at 

100 samples per second with 3 sensors simultaneously when the sensors are not in 

motion. However, during the testing done with the involvement of multiple blind and 

non–blind subjects, it was observed that there were packet losses when the sensor is 

in motion which causes the total set of data after the packet loss becomes unreadable. 

Further, the data presented by these sensors are not the raw sensor data, but biased 

and scaled data. Due to these reasons, these IMUs were not used for any data 

recording. 
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4.4 Custom–made IMU 

As YEI sensors didn’t work as expected at 100 samples per second data rate, 

it was decided to develop a custom–made IMU for collecting inertial data 

particularly when data of multiple sections are to be recorded. These custom–made 

Inertial Measurement Unit (IMU) were used for data collections in the latter parts of 

the research due to the convenience they offered. This sub section discusses the 

development and features of the custom made IMU. Some parts of this discussion are 

published in [79]. 

Although there are several commercially available options for 9 degree of 

freedom (DOF) IMUs [58], [59], they were not opted for mainly because they do 

some pre–processing before presenting sensor data to the user. Raw data is required 

for this project because developing an efficient orientation estimation algorithm was 

also a scope. Further, they have limited sampling rates, especially when using 

wireless connectivity. Another reason was their high price: £309.00 for x–IMU and 

US$309.00 for YEI 3–space Bluetooth version. There was also a need of a 

customizable low cost IMU platform for the work of the rest of the project. The 

construction, specifications and the operation of the IMU are discussed in next sub 

sections. 

4.4.1 Construction and Specifications of the IMU 

The IMU was implemented using “Off–the–shelf” boards to make the 

building process easier. The inertial sensor used for the IMU is MPU–9150 by 

Invensense that consist of a 3–axis accelerometer, a 3–axis gyroscope and a 3–axis 

TABLE II – TECHNICAL DETAILS OF YEI TECHNOLOGIES IMUS [58] 

Sensor Parameter Value 

Accelerometer 
Bit size 14 bits 

Max. Range 8 g 

Gyroscope 
Bit size 16 bits 

Max. Range 2000º/s 

Magnetometer 
Bit size 12 bits 

Max. Range 8.1 G 
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magnetometer in a single IC (Integrated Circuit) [80]. A 9–axis sensor was selected 

to minimise the error caused by the spatial diversity of having three sensors. Key 

specifications of MPU–9150 are shown in Table III and they are compared with two 

other 9–axis sensors, LSM9DS0 from STMicroelectronics [81] and BMX055 from 

Bosch Sensortec [82] in Appendix A. All these sensors have comparable 

specifications and are used in mobile applications. The MPU–9150 communicates 

with an application processor through I2C (Inter IC) bus. 

The application processor used for the IMU is an Arduino Pro Mini board 

that contains an Atmel Atmega 328 8–bit microcontroller and operated with a 3.3 V 

supply [83]. 3.3 V operation was selected so that a 3.7 V Li–Po (Lithium–Polymer) 

battery can power the system. The microcontroller is operated at 8 MHz and has I2C 

and SPI (Serial Peripheral Interface) interfaces. 

 

The IMU communicates with the data logging computer through a wireless 

link using an nRF24l01+ 2.4 GHz transceiver. nRF24l01+ transceivers can give an 

air baud rate of 2 Mbps and one master can communicate with up to six slave devices 

simultaneously [84]. The radio board communicates with the application processor 

through SPI interface. 

The IMU is powered by a 3.7 V 900 mAh Li–Po battery which can keep the 

IMU running in data transmission mode for more than 2 days continuously before the 

battery is fully drained. The three boards used for the IMU are shown in Figure 4.3. 

TABLE III – COMPARISON OF KEY SPECIFICATIONS OF THE INERTIAL SENSORS [80] 

Specification Accelerometer Gyroscope Magnetometer 

Measurement Ranges ±2 g, ±4 g, 

±8 g, ±16 g 

±250 °/s, 

±500 °/s, 

±1000 °/s, 

±2000 °/s 

±1200 μT 

Sensitivity 16384 LSB/g , 

8192 LSB/g, 

4096 LSB/g, 

2048 LSB/g 

131 LSB/°/s, 

65.5 LSB/°/s, 

32.8 LSB/°/s, 

16.4 LSB/°/s 

0.3 μT/LSB 

Zero-point Offset ± 80 mg (x, y), 

± 150 mg (z) 

± 20 °/s ±1000 LSB 

Noise Density 400 μg/√𝐻𝑧 0.005 °/s /√𝐻𝑧 N/A 
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The data streamed from the IMU is received by a “dongle” built using an Arduino 

Nano and an nRF24l01+ with a low noise amplifier and an external antenna. The 

external antenna option was selected to have a higher gain at the receiving end to 

avoid data loss as much as possible and to increase the range of operation. Both IMU 

and dongle were enclosed in 3D printed enclosures to allow the IMU to be used in 

different mounting positions and these to be secure for human use (no electrical 

contact with the body). The assembled IMU, enclosed IMU and the dongle are 

shown in Figure 4.4. The dimensions of the IMU are 55 mm  41 mm  23 mm 

without the strapping loops and the total cost was about AUD 35. 

 

 

 

4.4.2 Operation of Dongle–IMU System 

As the dongle collects data from more than one IMU, they have to operate in 

synchronization. To achieve this, at the initialization, all IMUs wait to receive a 

synchronization signal. The dongle poles each IMU and send the time stamp of the 

dongle which is recorded by the IMUs together with the IMU time stamp (the time at 

which the synchronization signal is received). Thereafter, each IMU is switched into 

 

Figure 4.3 – Devices used for the IMU 

MPU-9150 (left), Pro-mini (centre), nRF2401+ (right) 

       

Figure 4.4 – Completed IMU and Dongle 

Assembled IMU (left), IMU with enclosure (centre), Dongle (right) 
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data collection mode in which they sample the inertial sensors at 10 ms intervals 

(100 samples per second) and each data sample is returned to the dongle with the 

sample time computed with respect to the time of the dongle. Testing of the system 

indicated that the synchronisation of the IMUs is accurate to 1 ms, which is 

acceptable as the time between samples is 10 ms. The data frame transmitted by the 

IMU has eleven 16–bit values that are organised as shown in Figure 4.5. The frame 

carries the sensor ID, time stamp of the sample, and x, y and z –axis data of 

accelerometer, gyroscope and magnetometer in that order. 

Data received by the dongle are routed to the computer through USB 

interface with commas and line breaks inserted, which can be recorded using 

terminal software and saved into a CSV file easily. Time stamp of each sample is the 

time stamp generated by the IMU that reflects the time of the sample. Therefore, any 

delays that may occur in the terminal software does not affect the operation of this 

system. No processing of raw sensor data is done either in IMU and dongle so that 

the performance of the low cost processors is sufficient to achieve the targeted 

sampling rates (100 samples per second of all sensors). Raw data collected by this 

system are converted to human readable measurements by mapping binary data into 

acceleration, angular velocity and magnetic field strength with units of g (gravity), º/s 

(degrees per second) and μT (micro Tesla) after data being recorded. This conversion 

was done because the binary data are unusable if the scale setting of the sensor is 

unknown. Once the data are converted to human readable measurements, they can be 

used by other researchers for any further processing. 

 

4.4.3 Calibration of IMU 

As no pre–processing of sensor data is performed inside the IMU, calibration 

data is pre–recorded as follows. To estimate the gyro offsets, gyro data were 

recorded while the IMU is stationary and average the values and used as an estimate 

Sensor 

ID

Time 

Stamp
Ax Ay Az Gx Gy Gz Mx My Mz

 

Figure 4.5 – Format of a data frame of the IMU 

A, G and M indicate accelerometer, gyroscope and magnetometer in that order and the subscript indicate the 

relevant axis 
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for the gyro offset. Further filtering was used to estimate the gyro offset 

continuously, as discussed further in Chapter 5. 

Data required for accelerometer offset and scale error corrections were 

recorded by holding positive and negative directions of each orthogonal axis of the 

accelerometer to be vertical (in the direction of gravity as shown in Figure 4.6). 

These measurements were taken while the readings on the other axes approaching 

zero. The offset and the scale error were computed using these readings. After 

performing the offset and scale error correction, the measurements needed to 

estimate the axis misalignments were taken by keeping each edge of the IMU body 

vertical. The misalignments were computed by the accelerations read by each axis 

when a particular edge is vertical. The calibration procedure used is explained further 

in [30]. 

 

4.5 Optical Motion Capture System 

The Vicon Motion Capture System [22] installed in the Motion Analysis Lab 

(MAL) of the School of Physiotherapy and Exercise Science of Curtin University 

was used to capture data required for validating the orientation estimations done 

using the developed IMU and to capture data needed for the development of step 

length estimation model. The MAL is equipped with 14 advanced semi–infra–red 

Vicon F40 cameras and Vicon controller with a workstation computer for real–time 

IMU

x

y

z g

 

Figure 4.6 – Alignment of the IMU for calibration 
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3D motion capture. The system can estimate the coordinates of spherical retro 

reflective markers attached to the body or the object in motion, with respect to a pre–

calibrated system origin with sub–millimetre accuracies [25]. 

The Vicon system was calibrated at the beginning of each experiment by 

waving its calibration tool (Vicon active wand shown in Figure 4.7) over the capture 

area, so that the cameras can adjust their settings. Further calibrations were 

performed to check if all cameras are properly calibrated, by placing markers on the 

walk–way and observing the measurements of each camera and manually adjusting 

the camera settings. This procedure was followed only once by the beginning of the 

total capture and these settings were saved in the profile of the experiments. 

Vicon Nexus 1.8.5 motion processing software is used in the MAL to capture 

data and it was also used to regenerate the captured records. Each trial recorded was 

rerun through the motion capture pipelines of the software to regenerate the motion 

and then all markers were labelled appropriately. Gap filling was done when 

necessary to retrieve missing and broken marker tracks. Data were cropped at the 

beginning and the end of the trial if all markers were not available. Once the trial is 

regenerated to cover the full walking length, the coordinates of the markers were 

exported to a CSV file. The rest of the analysis was done in Matlab, so that 

performing batch processing is easier. 

 

 

Figure 4.7 – Vicon active wand [22] 
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4.6 Summary 

Three systems used for data capture during the work of this thesis, mobile 

phone software, custom made IMU and the Vicon system, were discussed in this 

section. In addition, the off–the–shelf IMUs that were tested, by the involvement of 

several blind and non–blind subjects, for feasibility to be used in this work was also 

discussed. The development of the mobile phone software, how the custom made 

IMUs were built and their features were discussed in detail. Specifications of the 

Vison Optical Motion Capture system used for capturing data for validation purposes 

and to capture data required for step length model was also discussed in this chapter. 

How these techniques were used in particular experiments are discussed in relevant 

sections of Chapter 5. 
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Chapter 5 

5 GAIT MODELLING AND ALGORITHMS 

5.1 Introduction 

This chapter presents the main contributions of the research discussed in this 

thesis by presenting the observation made during the preliminary experiments 

conducted to check the feasibility of inertial pocket navigation, followed by 

discussions on the following: 

 Pedometer algorithm designed and developed based on the 

preliminary observations 

 Thigh angle estimation algorithm with the validation of the results of 

the algorithm 

 Harmonic modelling of the thigh angle and the gyroscopic waveform 

of the thigh mounted IMU 

 Models for estimating step length as a function of thigh angle peaks as 

well as gyro signal peaks 

 The possibility of detecting gait phases using gyro signal and its first 

time derivative and an algorithm for detecting indoor human activities 

based on thigh angle. 

The existing algorithms for step detection and gait analysis comprise of heavy 

computations that restricts them being implemented in low end hardware. Hence, all 

the algorithms discussed in the thesis were targeted to be implemented on low cost 

devices and hence high end computations were eliminated as much as possible. 

Although this is the case, the accuracies of the algorithms were targeted to be 

comparable or better than existing gait analysis algorithms and techniques that use 

complex computations. 
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5.2 Feasibility Study for Inertial Pocket Navigation 

5.2.1 Introduction 

In this study, the feasibility of using single–point inertial sensors embedded 

to mobile devices was investigated. The main objective was to check the possibility 

of gait identification using a device placed in the subject’s trouser pocket. Some of 

the content discussed in this subsection is published in [76]. 

Sensor data were collected while multiple male and female subjects were 

performing different activities. The activities considered were walking on flat land, 

walking up/down stairs and walking on an inclined plane upwards and downwards. 

To identify the best carrying position, two positions were considered when walking 

on the flat land. They are the hip–pocket (pocket of the trouser) and the hip (clipped 

to the belt). The activity performed by the subject was recorded as a voice label with 

the feature included in the data logging software discussed in Section 4.2. 

Data collection was performed with a specific orientation of the data 

collecting device (an Android Smartphone) with respect to the body. When the 

device is carried in the hip–pocket, it was placed in the right hand side hip–pocket 

with an upright portrait orientation, screen facing forward. The phone was attached 

to the belt on the right hand side hip with an upright portrait orientation, screen 

facing outward. 

The reference axis of the accelerometer, x, y and z, are as indicated in Figure 

5.1 and the x, y and z coordinates of the gyroscopic sensor are measured around x, y 

and z axes marked on Figure 5.1 and the direction of gyro data follows the right hand 

rule for rotary vectors (is as in Figure 2.5). In the analysis, the vertical orientation 

angle was taken as 0º when the phone is kept in a vertical position. 
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5.2.2 Empirical Observations 

Data were collected with the participation of 5 male and 5 female 

participants, all having no vision impairment and known to have no other walking 

impairment or disability. By comparing the waveforms and the timing, it was 

observed that there is a closer correlation of acceleration and gyroscopic data to the 

gait cycle when the device is carried in the hip–pocket than when attached to the hip. 

This is because the sensors read the inertial parameters of the thigh. Stride–to–stride 

correlation of vertical acceleration and the rolling angular rate of the device 

(gyroscopic x–axis) of ten consecutive steps extracted from the middle of the walk 

were computed. Table IV shows the statistics of the computed correlations of gyro–x 

and vertical acceleration readings. The results indicated that there is a higher 

correlation of gyro–x between steps than the vertical acceleration. 

 

It was further observed that when the gyro data is filtered with a simple sixth 

order Butterworth low–pass filter having a cut–off frequency of 5 Hz, the resultant 

waveform can be used to easily identify the steps. The Butterworth filter was 

 

Figure 5.1 – Reference Coordinates of the Phone Sensors [98] 

TABLE IV – STRIDE-TO-STRIDE CORRELATION STATISTICS OF VERTICAL ACCELERATION AND ROLL OF THE PHONE 

 Vertical 

Acceleration 

Roll of the Phone 

Number of steps (total/per 

person) 

100/10 60/10 

Mean correlation 0.887305 0.907205 

Standard deviation 0.074488 0.055523 

Minimum correlation 0.635118 0.701938 

Maximum correlation 0.988070 0.976055 
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selected as it gives a maximally flat pass-band and hence the output of the filter is 

accurate over the interested frequency band. As the fall-off of Butterworth filter is 

not very sharp, 6th order was selected to improve the selectivity of the filter. Further, 

when the filtered version of gyro–x is plotted with the vertical orientation of the 

device (i.e. the thigh angle), it was observed that, the gyro–x reading is closely 

related to the movement of the thigh as seen in Figure 5.2. It can be seen that the 

stride cycles can easily be identified by the zero crossings of the filtered version of 

gyro–x data. The gyro–x reading gives the rolling angular velocity of the device, and 

hence of the thigh. Filtering was done to suppress any noise introduced to gyro data 

due to the lose attachment of the device to the body, and any other noise. The 

filtering frequency was selected to avoid vibrations occurred at different foot 

touching events. A closer look at the gyro waveform with thigh angle is available in 

sections 5.3 to 5.8. 

 

One major issue in existing step identification techniques, both hardware 

based and mobile phone based, is their very poor performance in detecting steps at 

slow walking speeds [44], [45], [46]. These techniques are based on threshold 

detection of the accelerometer reading and very low movements cause insufficient 

reading to be detected as a step, which is the reason for poor step identification 

accuracies at slow walking speeds. The main issue in acceleration based step 

detection is that the accelerometer reads gravity and the errors caused in filtering out 

gravity to derive the linear acceleration. As can be seen in Figure 5.3, the 

accelerometer reading is contaminated with gravity and identifying a feature in that 

 

Figure 5.2 – Filtered Gyro-x with Thigh Angle 
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waveform for detecting steps is more difficult than detecting zero crossings in the 

gyro signal which has a zero average. It can be clearly seen in the figure that zero 

crossings are clearly visible in gyro signals even at the beginning of the walk where 

deflection of the signal is typically lower. However, the slower steps cannot be 

clearly recognized in the vertical acceleration signal. 

 

The periodic nature of the gyro signal was also observed in the data recorded 

while walking up/down stairs and walking on an inclined plane upwards and 

downwards which supports the thesis that the gyro signal may be used for step 

detection during these activities too. 

 

5.2.3 Summary and Conclusions 

During experiments conducted with the involvement of 10 volunteers, it was 

observed that a single thigh mounted IMU embedded in a smartphone (placed in 

trouser pocket) gives sufficient information needed for step detection and gait 

analysis. Inter–step correlation of gyro signal was better than that of the acceleration 

signal. Therefore, it was concluded from this study that the gyro data of a single 

thigh mounted IMU provides sufficient information for gait analysis for pedestrian 

navigation. 

    

Figure 5.3 – Filtered Gyro-x (left) and filtered vertical acceleration (right) at the beginning of the walk 
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5.3 A Gyroscope Based Accurate Pedometer Algorithm 

5.3.1 Introduction 

Accurate step counting is a critical parameter in pedometer based indoor 

localization systems in improving their accuracy and reliability. Existing step 

detection techniques, both hardware and software, does not satisfactorily cater the 

accuracies demanded by localization systems especially at low walking speeds 

observed in natural walking [44], [45], [46]. Situation may be worse with vision 

impaired indoor navigation is considered, especially in an unfamiliar environment. 

Most of existing pedometers use accelerometer data in detecting steps and are based 

on threshold detecting [47], [48]. 

The pedometer algorithm discussed in this section is based on the proposal 

made by the author of this thesis in [79], which states that a single thigh mounted 

gyroscope may be used in human gait identification for indoor localization. The 

implementation of this algorithm in an Apple iPhone was done in collaboration with 

Sampath Jayalath, as his final year project under the supervision and guidance of the 

author. The work presented in this section is published in [85], [86] and [87]. 

One of the main concerns in developing the algorithm was to make it light 

weight which is favourable when implementing the algorithm on low cost devices 

and smart devices without loading the device heavily. Heavy computations such as 

Kalman filters were eliminated in the algorithm due to this reason. 

5.3.2 Relationship between Gyroscopic Data and Movement of the Thigh 

A stride cycle is measured from the Initial Contact of one heel to the next 

Initial Contact of the same heal [12]. At the Initial Contact, the extension of the thigh 

is a maximum. Figure 5.4 shows the thigh angle computed using gyroscopic data and 

low–pass filtered (with a 6th order Butterworth low pass filter with cut–off frequency 

of 5 Hz) gyroscopic x–axis reading (according to the reference coordinates shown in 

Figure 5.1). Initial Contact points and the stride cycle identified based on the 

orientation are marked on the graph. The initial thigh angle when the leg is at rest 

was calculated using accelerometer data and the gyro data is integrated to derive the 

thigh angle thereafter. For this computation, the static value of the gyroscopic data 

was removed by deducting the average gyro value from gyro signal per each sample. 
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It can be clearly seen that the filtered gyroscopic data is close to zero at the 

Initial Contact point of the particular leg and has a negative gradient. Hence, the 

period from one negative gradient zero crossing point to the next of the filtered 

gyroscope reading is a stride cycle as shown in the figure. 

 

It was also observed that the negative gradient zero–crossing corresponds to 

the Initial Contact of that leg when walking on stairs and on an inclined plane. 

Therefore it is clear that zero crossing detection of filtered gyroscopic data may be 

used in detecting the stride cycle, hence the steps, even if the person is walking on 

stairs or on a ramp. Later findings about the synchronization of the thigh angle 

waveform, gyro signal and the gait cycle are presented in Section 5.4. 

In line with these observations, the device is assumed to be in vertical 

placement where forward and backward rotation of the thigh is read as gyro–x 

reading. Hence the real time processing is limited to gyro–x only. 

5.3.3 Step Detection Algorithm 

5.3.3.1 Pre Processing of Data 

Before attempting to identify zero crossings, the gyro–x data is filtered with a 

6th order discrete Butterworth low–pass filter with cut–off frequency of 3 Hz. 3 Hz 

was selected as the cut–off frequency because the mean speed of fast gait is in the 

range of 2.5 steps per second [88]. The Butterworth filter was selected as it gives a 

maximally flat pass-band and hence the output of the filter is accurate over the 

 

Figure 5.4 – Thigh angle with filtered gyro-x reading for level walking 
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interested frequency band. As the fall-off of Butterworth filter is not very sharp, 6th 

order was selected to improve the selectivity of the filter. The cut–off frequency was 

lowered as much as possible for better smoothness of the waveform so that the 

unwanted oscillations around zero are minimal, but still the stride cycle is visible in 

the waveform. 

5.3.3.2 Zero–Crossing Detector 

A 2–point zero–crossing detection was used to simplify the algorithm. Both 

positive and negative zero–crossings were detected by alternating the polarity of the 

zero–crossing detector because the positive zero–crossing corresponds to the starting 

point of Pre Swing of the particular leg, or the Initial Contact of the other leg. Hence, 

the total count of zero–crossings is the number of steps the person has walked. 

5.3.3.3 Avoiding False Detections 

As indicated by the circle in Figure 5.4, the filtered gyroscopic signal may 

cross zero with a negative gradient more than one time during the period from Initial 

Contact to Loading Response. However, because this period is between 0–10% of 

the gait cycle [12] a timeout mechanism was used to avoid this unwanted zero–

crossing being detected. Once a zero–crossing is detected, the zero–crossing detector 

remains disabled for 100 ms to avoid detecting these multiple zero crossings. 100 ms 

was selected as 15% of the stride cycle assuming a step frequency of 1.5 steps per 

second for slow gait [88]. This time delay is 30% of the stride cycle of average fast 

gait of 3 steps per second and hence it will not disturb the detection of the next zero–

crossing of fast gait. 

5.3.3.4 Validating the Detected Zero Crossings 

A threshold detection mechanism was used in the algorithm to validate each 

zero–crossing detected. As shown in Figure 5.4, the gyroscopic reading reaches the 

corresponding peak after the zero–crossing point. However, in the area marked by 

the circle, the relative maximum is well below the peak of the signal and that relative 

maximum does not correspond to the middle of the swing of a leg, hence should not 

be counted as a step. The application includes a calibration mode where the user has 

to walk with the slowest possible speed so that the smallest deflection of the 

gyroscope signal is learnt by the algorithm. After detecting a zero–crossing, the 

algorithm checks for the peak that follows the zero–crossing, and checks if it is larger 
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than the threshold. The counter is incremented only if the peak is larger than the 

threshold. 

5.3.3.5 The Step Detection Algorithm 

A flow chart illustrating the step detection algorithm is depicted in Figure 5.5. 

It should be noted that both positive and negative zero–crossings are detected by the 

algorithm and the polarity to be checked is toggled after each detection. However, 

the polarity toggling is not indicated in the figure to reduce graphical complexity. 

5.3.3.6 Implementation of the Algorithm 

The algorithm was implemented in Matlab for simulation purposes and after 

confirming the outcomes of the algorithm using pre–recorded data, it was 

implemented in an Apple iPhone 4S. During the implementation it was noticed that 

the algorithm may count the movements of the phone while in the hand, when 

placing the phone in the pocket before the trial and taking out of the pocket after the 

trial. As Apple license does not allow use of some phone features [89], such as 

ambient light sensor to detect placement in the pocket, a time out mechanism and a 

manual correction was used at the beginning and at the end of the trial respectively. 

After pressing the start button, the application allows a timeout to allow user to place 

the phone in the pocket. The algorithm starts detecting steps only after the timer has 

timed out. Manual decrement of the total count by one was done to compensate the 

false count at the end when the phone is taken out of the pocket. 
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5.3.4 Empirical Results 

The simulations indicated that the accuracy of step counting of the algorithm 

on pre–recorded data was 100% for all the trials. The algorithm was tested in the real 

world for five different activities: walking on flat land, upstairs, downstairs, ramp 

upwards and ramp downwards, with the involvement of 5 male and 5 female 

volunteers. They were asked to place the phone vertically in the pants pocket and 

perform the relevant activity. The tests were conducted in two stages: first with 

normal walking speed and then with five different stepping rates (50, 75, 100, 125 

and 150 stepsmin-1). The actual number of steps that the subject travelled was 

counted for each trail by a manual recorder.  

Table V shows sample results of a single subject performing different 

activities with normal stepping rate. In that set of trials, the algorithm showed above 

95% accuracy in every activity. 

Capture Gyro-X reading

Low-pass filter

Zero-cross detected?
No

Is the peak larger than 

the threshold?

Yes

No

Increment the step count 

by 1

100 ms 

Timer

Is Timer timed out?

Yes

No

 

Figure 5.5 – Flow Chart of the Step Detection Algorithm 
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Table VI shows statistics of actual number of steps, number of steps counted 

by the algorithm and the accuracy in all trials. It can be seen that the algorithm has 

shown a minimum mean accuracy of 94.55% for going downstairs and the minimum 

reported accuracy for all the trials of 90.91% on stairs (both up and down). However, 

the minimum accuracy reported by the algorithm for walking on flat land is 96.00% 

with a maximum of 100%. The algorithm has reported accuracies greater than 95% 

for walking on an inclined surface with a mean accuracy of 97.17% for going down 

and 98.18% for going up. 

 

The second set of experiments were conducted for walking on flat land and 

on stairs only, where the subjects were asked to walk with five stepping rates: 50, 75, 

100, 125 and 150 stepsmin-1. For walking on flat land, the minimum accuracy of 

TABLE V – SAMPLE RESULTS OF ONE SUBJECT 

Activity Actual No. of Steps 
Steps Counted 

by Algorithm 
Accuracy (%) 

Slow level walking 

(< 60 stepsmin-1) 
27 26 96.30 

Fast level walking 

(> 100 stepsmin-1) 
49 49 100.00 

Going up stairs 11 11 100.00 

Going down stairs 11 11 100.00 

Ramp up 40 40 100.00 

Ramp down 43 41 95.35 

 

TABLE VI – STATISTICS OF THE PERFORMANCE OF THE ALGORITHM FOR DIFFERENT ACTIVITIES 

Activity 

Actual No. of 

Steps 

Steps Counted by 

Algorithm 
Accuracy (%) 

Mean Var Mean Var Mean Var Min Max 

Slow level walking 

(< 60 stepsmin-1) 
28.50 2.45 27.60 2.64 96.82 1.16 96.00 100.00 

Fast level walking 

(> 100 stepsmin-1) 
49.10 1.29 48.50 0.65 98.80 1.73 96.08 100.00 

Going up stairs 11.00 0.00 10.70 0.21 97.27 17.36 90.91 100.00 

Going down stairs 11.00 0.00 10.40 0.24 94.55 19.83 90.91 100.00 

Ramp up 43.30 2.01 42.50 1.45 98.18 1.87 95.45 100.00 

Ramp down 42.20 1.36 41.00 1.20 97.17 2.02 95.24 100.00 
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94.59% was reported at 75 stepsmin-1 whereas the mean accuracy for that speed was 

97.89%. However, the minimum accuracy reported at 50 stepsmin-1 was 96% and 

the accuracy was greater than 96% at all other stepping speeds. The statistics are 

shown in Table VII. 

The minimum accuracy reported in going up stairs and down stairs was 

90.91% where the total number of steps considered in each case was 11. Although 

this is the absolute minimum, the lowest mean accuracy reported when walking up 

stairs was 96.36% and that is at 75 and 125 stepsmin-1. For walking down stairs, the 

lowest mean accuracy reported was 95.45% for the stepping speeds of 50 and 125 

stepsmin-1. 

 

5.3.5 Summary and Discussion 

An efficient and accurate pedometer algorithm was presented with the 

experiment results in this section. One of the targets in this work was to make the 

step detection algorithm require minimum computational resources so that it can be 

implemented on a low cost processor without loading the system. Achieving the 

target, the pedometer algorithm was implemented with minimal computational 

complexity avoiding high end techniques such as Kalman filtering, but still 

experimentally proven to be providing accuracies close to 100% even at slow 

walking speeds, compared to accuracies below 50% in existing algorithms at slow 

walking speeds. Further, according to the best of the knowledge of the author, a thing 

mounted gyroscope had not been used in pedometers in the past. 

TABLE VII – STATISTICS OF THE PERFORMANCE OF THE ALGORITHM FOR WALKING ON FLAT LAND WITH DIFFERENT 

STEPPING RATE 

Level Walking Speed 

Actual No. of 

Steps 

Steps Counted 

by Algorithm 
Accuracy (%) 

Mean Var Mean Var Mean Var Min Max 

50 stepsmin-1 25.90 1.09 25.50 0.85 98.49 3.43 96.00 100.00 

75 stepsmin-1 37.80 0.96 37.00 1.20 97.89 2.58 94.59 100.00 

100 stepsmin-1 51.00 1.00 49.90 1.29 97.85 1.89 96.00 100.00 

125 stepsmin-1 62.50 0.65 62.00 0.40 99.21 0.63 98.39 100.00 

150 stepsmin-1 74.50 0.65 73.90 1.69 98.92 0.66 97.26 100.00 
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Trials of walking on stairs had to be limited to 11 steps per trial due to limited 

access to long stairways. Due to this reason, the false count at the end of the trail is 

large as a percentage to the total number of steps. This may be the reason for low 

accuracies shown on stairs. Although the number of steps will be less in practical 

circumstances, the phone will not be taken out of the pocket at the end of the stair 

case and hence the aforementioned error count will not occur. In addition, the vendor 

have restricted using some facilities of the phone to detect whether the phone is in 

the pocket. 

Kwon et al. have used the step detection algorithm discussed in this section in 

their cross–platform and cross–device pedometer system and reported higher step 

detection accuracies [90]. They have tested the algorithm on an iPhone 4S, iPhone 

5S, Galaxy Nexus and Nexus 5 over about 6000 steps and reported 0.81%, 2.27%, 

0.88% and 0.91% error percentages. Except for iPhone 5S, the error percentage 

reported by all other devices is under 1%, which indicates the performance of the 

algorithm is much better than other pedometer algorithms, despite the fact that the 

phone has a restricted placement in the trouser pocket. 

Although heavy computations are not included in the algorithm in order to 

make it possible to be implemented in low cost devices and smart devices without 

loading them heavily, the algorithm was experimentally proven to have better 

performance compared to existing high end techniques. Hence, the pedometer 

algorithm can be considered to have better step detection accuracy despite its 

simplicity. 

5.4 Thigh Angle Estimation and Validation 

5.4.1 Introduction 

Orientation estimation is an important task in thigh angle based gait analysis. 

As only flexion and extension of the thigh was considered in this study, single axis 

orientation was the main focus. Most of orientation estimation algorithms available 

are based on Kalman Filters [26], [58], [57]. Although Kalman filters are fast enough 

in personal computers or workstations, implementing them in low end real time 

embedded systems is not an easy task. One main drawback in using these techniques 

is that the embedded devices have to be capable of executing these in real time, 
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usually achievable with a 32–bit microcontroller with a digital signal processor 

(DSP), which increases the cost and power consumption. As the application 

processor used in the low cost custom made IMU discussed in Section 4.4 is an 8–bit 

microcontroller running at 8 MHz, implementation of computationally less expensive 

orientation estimation algorithms was an important task. 

This section discusses a computationally economical algorithm (Gyro 

Integration based Orientation Filter – GIOF), that may be implemented in a low cost 

8–bit microcontroller, to estimate single dimensional orientation by fusing 

accelerometer and gyroscopic data of an IMU. One of the main targets was to 

develop the algorithm to demand minimal computational resources while serving 

accuracies comparable to existing high-end algorithms. GIOF was used to estimate 

the flexion and extension angles of the thigh (herein after also referred to as the 

“thigh angle”) and validate the results of GIOF against Vicon Optical Motion 

Analysis system, which is well documented to be accurate enough for measuring 

motion of human body for clinical and rehabilitation purposes [25]. The work 

presented in this chapter is submitted to IEEE Transactions of Biomedical 

Engineering on Dec 11, 2015 as second revision and is under review. 

5.4.2 Some Key Observations on Limb Synchronization 

To enable identifying key points of stride cycle in the thigh angle waveform, 

the foot movement with the thigh movement was captured in MAL. Details of the 

experiment are discussed later in this section. Figure 5.6 shows a time synchronized 

plot of the thigh angle with the vertical and forward movements of the foot. The 

maximum thigh angle was misinterpreted as the Initial Contact point previously, but 

by observing the foot movement waveforms, it was identified that the local minima 

of the thigh angle waveform next to the maximum (point ‘a’ of Figure 5.6) refers to 

the Initial Contact point. Further, it can be seen that the minimum (point ‘b’ of Figure 

5.6) of the thigh angle waveform is the toe–off point of the stride cycle. The stride 

cycle and its two main phases, Stance and Swing, are shown in the figure. 

The synchronization of the movement of the two thighs was also measured 

and depicted in Figure 5.7. It can be seen that the toe–off of one leg is closely related 

to the Initial Contact of the other leg. 
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These observations indicate that proper estimation of the thigh angle of one 

leg is sufficient to identify key points of the stride cycle of both legs on subjects 

without gait impairment, in this scenario. However, these observations were made 

with the Vicon optical motion capture system and it is necessary to compare the 

thigh angle computed with IMU data for the purpose of validation. 

5.4.3 Experimental Setup and Analysis Technique 

The experiment was conducted with the participation of 9 female and 10 male 

volunteer participants. All participants are non–vision impaired and known to have 

no other impairment or disability. The experimental setup, the procedures followed 

 

Figure 5.6 – Thigh angle synchronized with the vertical and forward movements of the foot 

Vertical and forward movements of the foot are used to identify the key points of the thigh angle waveform. 

 

Figure 5.7 – Thigh angle of left and right legs 

This indicates that the toe off of one leg is synchronized with the initial contact of the other leg as shown by 

vertical dashed lines. 
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in the experiment and the analysis techniques are discussed in this section. MAL and 

IMU data were recorded in two independent systems. How they were synchronized 

in the analysis is also discussed in this section. 

5.4.3.1 Experimental Setup 

This experiment was conducted in MAL (discussed in Section 4.5). Figure 

5.8 shows the marker positioning on the subject’s legs. A custom made IMU 

discussed in Section 4.4 (with a shape more suitable for mounting on thigh) was 

attached to the right thigh of the subject and two markers were placed on that as 

shown in Figure 5.8 to capture the tilt of the IMU. A marker cluster was attached to 

the subject’s left thigh to capture the thigh angle of the left leg. A marker was 

attached to the heel of each shoe to capture the movement of the heel (or the foot), so 

that the Initial Contact and the toe–off points can be identified. 

The Vicon system was calibrated before collecting data of each batch of test 

subjects as discussed in Section 4.5. The IMU data were recorded in a laptop that 

operated independent to the Vicon system. Both data were sampled at 100 samples 

per second. IMU and Vicon data logging were manually triggered separately before 

the subject started their trial. The subjects were asked to walk in a straight line with 

their natural walking style with normal gait of about 2 steps per second. Both MAL 

and IMU data were recorded for 20 walking trials (10 trails in each direction of the 

MAL capture area) per each subject. 

 

 

 

Figure 5.8 – Marker and IMU placement on legs 

The left picture shows the full placement. The top two pictures on the right shows the marker cluster attached to 

the left thigh of subject and the markers on it (left) and the custom made IMU attached on the right thigh and the 

markers placed on it (right) and the right lower picture shows the markers attached to the heels. 



Gait Modelling and Algorithms 

 

65 

 

5.4.3.2 Data Analysis Technique 

As MAL and IMU data were recorded in independent systems, they were 

pre–processed separately. Vicon Nexus software was used to pre–process MAL data 

and export coordinates of each marker into comma separated value (CSV) format. 

These coordinates were then used to compute the thigh angles using Matlab. 

The algorithm discussed in Section 5.4.4 was used to compute the thigh angle 

using IMU data. Both angle data were then resampled (interpolated) at 1000 samples 

per second and sent through an extrema detection algorithm to pick all maxima and 

minima of the two waveforms. Both waveforms were then trimmed at identical 

points of the two waveforms, starting from a minimum and ending at a minimum. 

The identical points were identified manually by visually comparing the two 

waveforms. Although by definition, the beginning of a stride cycle is the Initial 

Contact where the thigh angle is a maximum, cropping was dome from a minimum 

to a minimum to extract maximum possible number of stride cycles. These trimmed 

waveforms were then used to compute the correlation coefficients and the error 

characteristics between the two methods. 

5.4.4 Gyro Integration based Orientation Filter (GIOF) 

The thigh angle is estimated by fusing accelerometer and gyroscope data. The 

gyroscopic signal is low–pass filtered using a moving average filter with 10–sample 

window size to remove the high frequency noise. Further, another moving average 

low–pass filter was used to compute the static error of the gyroscope and remove it 

from the gyroscopic signal. When compared with the thigh angle computed from 

MAL data, it was observed that the gyro integration does not drift when the window 

size is 150 samples. 150–samples is approximately two strides long. 

The reference axis of the IMU is shown in Figure 5.9 and it is clear that only 

gyroscopic z–axis data is needed to measure the angular velocity of forward and 

backward movements of the thigh. 
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The thigh angle estimation is based on integration of gyro–z signal and the 

integration drift is compensated by zero–acceleration update when the total 

acceleration read by the accelerometer is within a certain thresholds (typically 

gravitational acceleration + noise margin). Hence, one condition for zero acceleration 

update was taken as: 

2

222

1  
kkk zyx aaa  (5.1) 

where 𝑎𝑖𝑘
 (𝑖 = 𝑥, 𝑦, 𝑧) is the acceleration of 𝑖 − axis measured at time stamp k. The 

parameters 𝛾1 and 𝛾2 are selected to accommodate the noise embedded in the 

accelerometer reading and (𝛾1 + 𝛾2) 2⁄  to be equal to gravitational acceleration, 𝑔.  

The second condition for taking zero acceleration updates is the angular 

velocity to be close to zero, which implies that the thigh is not in motion. It was 

observed that this condition improves the smoothness and the accuracy of the thigh 

angle. The condition is given as 

3zkg  (5.2) 

where 
zkg  is the angular velocity of 𝑧 − axis measured at time stamp k and 𝛾3 is 

selected to accommodate error in gyro data. 

When the conditions in (5.1) and (5.2) are satisfied, thigh angle update is 

taken from the accelerometer reading and otherwise gyro is integrated to get the 

thigh angle update. Trapezoidal rule was used in the integration of the gyro reading 

 

Figure 5.9 – Reference axis of IMU data 
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instead of using rectangle method which is commonly used in literature. The GIOF is 

shown as pseudo code in Figure 5.10 and line 6 of it illustrates the use of trapezoidal 

rule for integration. Note that the square root calculation of (5.1) is not performed in 

the algorithm and 𝛾1 and 𝛾2 are squared instead, to reduce the computational 

demand. 

 

5.4.5 Experimental Results 

5.4.5.1 Comparison of MAL vs. IMU 

Trimmed versions of the angle computed using MAL data (𝜃𝑀𝐴𝐿) and IMU 

data (𝜃𝐼𝑀𝑈) were used to compute the correlation of the two waveforms. 𝜃𝑀𝐴𝐿 and 

𝜃𝐼𝑀𝑈 of one of the trials are shown in Figure 5.11 with the correlation coefficient. It 

was observed that the correlation of the two waveforms was higher when the 

correlation was calculated for a single stride cycle. However, the intention was to 

find the correlation for the entire trial. The analysis of 361 trials of 19 subjects (10 

male and 9 female) reported a mean correlation of 99.58% between 𝜃𝐼𝑀𝑈 and 𝜃𝑀𝐴𝐿 

with a standard deviation of 0.34%. The maximum and minimum correlations 

reported were 99.96% and 97.33% respectively. The correlation statistics of the trials 

are shown in Table VIII. 

Inputs : 𝑎𝑘𝑥
,  𝑎𝑘𝑦

,  𝑎𝑘𝑧
,  𝑔𝑘𝑧

, 𝑔(𝑘−1)𝑧
,  𝜃𝑘−1, 𝑡𝑘, 𝑡𝑘−1 

Outputs: 𝜃𝑘 

 

1. Read inputs 

2. ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1 

3. if 𝛾1
2 < (𝑎𝑘𝑥

2 + 𝑎𝑘𝑦

2 + 𝑎𝑘𝑧

2 ) < 𝛾2
2 and 𝑔𝑘𝑧

<  𝛾3 then 

4.   𝜃𝑘 = 𝑎𝑡𝑎𝑛2 (𝑎𝑘𝑥
, 𝑎𝑘𝑦

) 

5. else 

6.   𝜃𝑘 = 𝜃𝑘−1 + 0.5 ∙ ∆𝑡(𝑔𝑘𝑧
+ 𝑔(𝑘−1)𝑧

) 
7. end if 

8. return 𝜃𝑘 

 

Figure 5.10 – Gyro Integration based Orientation Filter (GIOF) algorithm 

𝒂𝒊𝒌
 (𝒊 = 𝒙, 𝒚, 𝒛) is the acceleration of 𝒊 − axis measured at time stamp k;  𝒈𝒌𝒛

 and 𝒈(𝒌−𝟏)𝒛
 are gyroscope 𝒛 − axis 

reading measured at time stamps k and (k-1); 𝒕𝒌 and 𝒕𝒌−𝟏 are the time values of time stamps k and (k-1); 𝜽𝒌−𝟏 is 

the previous estimation of thigh angle and 𝜽𝒌 is the current estimation of thigh angle. 
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In addition to estimating correlation of the two waveforms, the error of the 

peak values was also calculated to check the goodness of the thigh angle estimation. 

The error of the estimated peak value was considered because the maximum and the 

minimum of the thigh angle are used to estimate the open angle and the swing angle 

of the stride. The histograms of the positive peak error and negative peak error are 

shown in Figure 5.12. The distributions show that the majority of error lies between 

3º. The RMSE for the positive and negative peaks are 2.0954º and 2.4967º 

respectively. The RMSE of each trial was also calculated and the mean of RMSE for 

all 374 trials was 1.8477º with a standard deviation of 0.56766º. 

 

 

Figure 5.11 – Thigh angle computed from MAL data (𝜽𝑴𝑨𝑳) and IMU data (𝜽𝑰𝑴𝑼) for a sample trial 

Correlation coefficient of the two waveforms is 0.99932 and RMSE is 1.0675 for this trial. 

 

Figure 5.12 – Histograms of positive and negative peak angle errors 
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The same experiment was conducted with the involvement of 6 male and 4 

female vision impaired subjects. With a total of 138 trials, the mean correlation 

between the thigh angle 𝜃𝐼𝑀𝑈 and 𝜃𝑀𝐴𝐿 was 99.16% with a standard deviation of 

0.67%. The minimum and maximum correlations were 96.38% and 99.92%. The 

mean RMSE for all 138 trials was 1.9317º with a standard deviation of 0.4949º. The 

distributions of correlation and RMSE between 𝜃𝐼𝑀𝑈 and 𝜃𝑀𝐴𝐿 for vision impaired 

subjects are shown in Figure 5.13. These results imply that the algorithm gives 

comparable results in the case of vision impaired subjects too. 

 

5.4.5.2 Real–time Implementation for Performance Comparison 

The GIOF was implemented in the IMU discussed in Section 4.4 to compare 

its performance with complementary filter implementation. The execution time for 

GIOF and complementary filter implementation were measured separately by 

implementing complementary filter on the same platform. Complementary filter is 

selected to compare the performance as it is known to be a faster filter that consumes 

TABLE VIII – CORRELATION STATISTICS BETWEEN 𝜃𝑀𝐴𝐿  AND 𝜃𝐼𝑀𝑈 

 No. of 

Subjects 

No. of 

Trials 

Correlation Coefficient 

Mean Max Min Std 

Males 10 196 0.9960 0.9995 0.9822 0.003114 

Females 9 178 0.9955 0.9996 0.9733 0.003559 

All 19 374 0.9958 0.9996 0.9733 0.003337 

 

 

Figure 5.13 – Distributions of correlation and RMSE between 𝜽𝑰𝑴𝑼 and 𝜽𝑴𝑨𝑳 for vision impaired subjects 
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lower amount of resources. It was observed, in Matlab analysis, that the 

complementary filter gives correlation close to afore mentioned correlations, when 

𝛼 = 0.9999. Therefore, this value was used in the implementation. The first order 

complementary filter discussed in [54] was implemented in the microcontroller and 

is given by: 

    kkkk at    11  (5.3) 

where 𝜃𝑘and 𝜃𝑘−1 are the new and previous estimates of the thigh angle, 𝜔𝑘 is the 

current gyro reading, ∆𝑡 is the sample time, 𝑎𝑘 is the angle estimated by taking 

𝑎𝑡𝑎𝑛2 of the accelerometer readings. 

The average execution time reported for the complementary filter 

implementation was approximately 570 μs on Arduino pro mini that has an 8–bit 

microcontroller running at 8 MHz. The execution time for GIOF was about 225 μs 

on the same platform when not performing 𝑎𝑟𝑐𝑡𝑎𝑛 and about 500 μs when 

performing 𝑎𝑟𝑐𝑡𝑎𝑛. The average execution time is about 250 μs for walking trials. 

This implies that the GIOF is computationally economical (by a factor of ½). 

Further, although the complementary filter had similar correlations when 𝛼 =

0.9999 in Matlab simulations, in real time implementation, the output of 

complementary filter drifted for that 𝛼 value. Higher the 𝛼, the higher the output 

depends on the integration, which causes more drift in the output, but smoother the 

output is. Therefore, to minimize the drift 𝛼 had to be reduced to 0.999 in the real 

time implementation. 

All six (accelerometer and gyro) raw sensor data were low–pass filtered with 

a second order Butterworth low–pass filter with cut–off frequency of 10 Hz. A gyro 

calibration was performed to estimate the offset of each gyro axis and the offset was 

subtracted from the raw sensor data during computation. The thigh angle estimated 

by both GIOF and complementary filter in real–time in the IMU in several test trials 

were comparable. 

5.4.6 Summary and Discussion 

A novel single axis orientation estimation algorithm, Gyro Integration based 

Orientation Filter (GIOF) was presented in this section with a comparison of the 
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angle estimated by GIOF with a reference optical motion capture system. It was 

shown that the correlation of the angle estimated by GIOF to the angle measured by 

the reference system is above 97% with mean correlations above 99.5%. It was also 

shown that GIOF gives comparable results with vision impaired subjects. Two main 

features of GIOF are that it does a correction to the estimated orientation using 

acceleration, only when the acceleration is restricted to read gravity and that it uses 

trapezoidal rule instead of rectangle method for gyro integration. 

Achieving one of the targets, the GIOF was proven to consume one half of 

the computation time consumed by the complementary filter on a low end 8-bit 

processor. The complementary filter is known to have lower computational demands 

and hence the comparison was done against it. The main reason for this is that the 

GIOF does not perform 𝑎𝑟𝑐𝑡𝑎𝑛 in each computation. Instead, it performs 𝑎𝑟𝑐𝑡𝑎𝑛 

only when the accelerometer reading is stable which saves a number of floating point 

calculations. On the other hand, the complementary filter performs 𝑎𝑟𝑐𝑡𝑎𝑛 in its 

each iteration, hence consume more processor time. Further, the complementary 

filter produces low drift when 𝛼 is lower, but the output becomes less smooth. 

However, the drift in the output is avoided to a great extent because the GIOF 

corrects the angle using the accelerometer. 

Although memory expensive, a moving average filter has shown better 

performance in removing the bias of the gyro reading. With properly selected 

window size, the drift in the estimated angle may be significantly reduced with the 

moving average filter. However, the delay occurred in the filter becomes larger when 

the window size increases. For the window size selected in the analysis (150 

samples), for a sampling rate of 100 samples per second, the moving average filter 

produces its output using 75 samples from either side of the current sample, which 

maps into a delay of 750 ms. This delay is not preferable for real time 

implementations, hence a high pass filter may be desirable in real–time 

implementation. Further, a buffer of 150 samples has to be maintained for the 

moving average filter, which is also not desirable for low end embedded systems. 

Compared with RMSE of 3º reported in [57] for the forearm with Kalman 

filters, the RMSE of less than 2.5º and mean RMSE of 1.85º reported by GIOF is 

accurate enough for thigh angle estimation for gait analysis. This indicates that the 
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GIOF has achieved better processing speed on low end processors without 

compromising the accuracy. 

Although the GIOF was implemented to estimate pitch of the IMU, it can 

easily be extended to 2–D and estimate both pitch and roll. Further, it may be 

extended to fuse magnetometer and gyroscope to estimate the yaw as well. 

 

5.5 Harmonic Models for Thigh Movement during Walking 

5.5.1 Introduction 

Different gait modelling and identification approaches exist in literature using 

trunk movement [64], [72], foot movement [91], [92] or thigh movement [93]. Some 

of these techniques use acceleration whereas the others use the rotation or the 

orientation of the particular body section. 

This section presents harmonic models for thigh flexion and extension of 

commonly observed stride patterns, derived from empirical data collected from a 

single thigh mounted IMU. It also presents harmonic models for the gyroscopic data 

of a thigh mounted IMU for the same stride patterns. Further, the possibility of 

classifying stride patterns using the derived harmonic models is discussed in this 

section. Data used for this analysis are same as collected in the experiment discussed 

in Section 5.4. The work presented in this chapter is submitted to Elsevier 

Measurement on Dec 11, 2015 and is under review. 

5.5.2 Modelling of Thigh Angle 

The flexion and extension (thigh angle) of both thighs shown in Figure 5.7 

indicates that the two legs are in synchronization and hence, modelling one leg will 

help predicting the movement of the other leg in case of no other disability exists. 

Further, modelling of one leg may be sufficient to analyse the motion of both legs. 

Raw data collected was used to estimate the thigh angle using GIOF 

discussed in Section 5.4.4. Then the thigh angle was cropped from a minimum (toe 

off) to a minimum excluding the first and the last strides of the walk. The rest of the 

analysis was performed on these cropped thigh angle waveforms. 
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As seen in Figure 5.7 and also verified in previous research [94], [95] that the 

thigh angle for level walking is periodic. The most common way of modelling a 

periodic signal is a harmonic model 

    ,2,1,2cos
1

0  


ntnfabty
N

n

nn   (5.4) 

where 𝑓0 is the fundamental frequency and n being the harmonic number with 𝑁𝑡ℎ 

harmonic be maximum significant harmonic. 𝑎𝑛 and n are the amplitude and the 

initial phase of the 𝑛𝑡ℎ harmonic [96]. The dc component present in the waveform is 

denoted by b. 

To estimate values for these unknown parameters in the harmonic model in 

(5.4) empirically, the spectrum of each trial was derived using FFT (Fast Fourier 

Transform) function in Matlab. The number of frequency components in the FFT 

output was selected as the length of the time series sample instead of a power of 2, 

due to limited sample length. In addition to functions available in Matlab for deriving 

FFT and extracting peaks, a custom made function was used to extract the harmonics 

from the frequency spectrum. Figure 5.14 shows the frequency spectrum of a single 

trial and the harmonics extracted from the spectrum (shown by circles) by the 

function. The function also picks up the DC component of the spectrum. It can be 

seen that the fundamental has the highest amplitude, which was the feature used in 

the custom made function (listed in Appendix B) that identifies the fundamental 

frequency and extracts the amplitudes and initial phases of a specified number of 

harmonics (given as an input argument to the function) when the frequencies, 

amplitudes and phases of FFT are given as input to the function. 
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Figure 5.15 shows the amplitude distribution of first nine overtones of the 

frequency spectrum of all 372 trials, normalized to fundamental amplitude. It is seen 

by the figure that the median amplitude becomes lower than 1 % of the fundamental 

amplitude beyond fifth overtone. (The dash–dot line close to the bottom of the plot 

shows the 1 % of the fundamental amplitude.) Therefore, it can be concluded that, 

only first five harmonics are the significant frequency components of the thigh angle 

waveform for level walking. 

 

Based on this observation, the thigh angle waveform for each trial was 

reconstructed using (5.4) with coefficients of first five harmonics extracted from the 

same trial. The original and reconstructed thigh angle waveform of a sample trial is 

shown in Figure 5.16 and histograms of the correlation and RMSE between the 

original and the reconstructed waveforms of all 372 trials are shown in Figure 5.17. 

 

Figure 5.14 – Frequency spectrum of a sample trial and harmonic components picked from the function (shown 

by circles) 

 

Figure 5.15 – Amplitude distribution of first nine overtones of all trials normalised to the fundamental amplitude 
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It can be seen that the majority of the correlation between the original and the 

reconstructed signals is greater than 0.995 while the majority of RMSE is less than 

2º, which indicates that the thigh angle waveforms can be accurately represented 

using harmonic model in (5.4) with five harmonics. This result is much better than 

the correlations achieved by Ibrahim with 12 harmonics for accelerometer [64]. 

The distributions of normalised amplitudes and initial phase of first five 

harmonics of all female and male trials are shown in Figure 5.18 and Figure 5.19. 

The amplitudes are normalized to fundamental amplitude. The figures indicate that 

the normalized amplitudes of the overtones are smaller for males than for females in 

the selected sample base, but phase of the harmonics are comparable. 

 

 

 

Figure 5.16 – Original and reconstructed thigh angle waveform of a sample trial 

 

Figure 5.17 – Histograms of correlation and RMSE between original and reconstructed thigh angle waveform 

using 5 harmonics 
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The fundamental frequencies of the FFT, i.e. the stride frequencies of females 

were lower than to males in the subject sample volunteered for the trials. The peak 

stride frequency for females is about 0.925 Hz while for males that is close to 1 Hz. 

The distributions of the fundamental stride frequencies of female and male subjects 

are shown in Figure 5.20. The stride frequency was also computed using the stride 

time and compared with the fundamental frequency extracted from the spectrum. The 

error between stride frequencies estimated using stride time and the fundamental 

frequency was (0.04790.0029)% for a total of 750 strides for all subjects, which 

indicates that estimating the stride frequency using stride time is accurate. 

 

 

Figure 5.18 – Distribution of normalised harmonic amplitude of first four overtones of all female and male trials 

 

Figure 5.19 – Distribution of initial phase of first five harmonics of all female and male trials 
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The next stage of processing was to perform spectral analysis for each stride. 

Each stride was extracted from a minimum to the next minimum of the thigh angle 

waveform and the spectral data were extracted for each stride using the same 

procedure followed to extract the harmonic model for the full trial. The extracted 

stride was cascaded four times before using FFT function to derive the spectrum in 

order to increase the data length as well as the resolution of the FFT output. In this 

case too, the number of frequency components of FFT output was selected as the 

input data length. Each stride was then reconstructed using (5.4) and the correlation 

and RMSE between the original and the reconstructed waveforms were computed. 

As seen in Figure 5.21, the majority of correlation is greater than 0.999 and the 

majority of RMSE is below 0.5º, which indicates that the model in (5.4) with five 

harmonics can be used to represent the thigh angle with high accuracy when each 

stride is considered. 

 

 

 

Figure 5.20 – Distribution of fundamental frequency (stride frequency) of female and male subjects 

 

Figure 5.21 – Correlation and RMSE between original and reconstructed thigh angles for each stride 
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5.5.3 Harmonic Models for Thigh Flexion and Extension Derived from 

IMU data 

To establish harmonic models for thigh angle derived from IMU data for 

level walking, thigh angle for each stride was plotted. It was observed that some 

stride patterns are frequently found in the set of 750 strides collected from all 

subjects, both male and female. Therefore, it was decided to formulate harmonic 

models for those frequently observed stride patters. Figure 5.22 depicts six such 

thigh angle patterns starting with almost no oscillation after the main maximum (end 

of swing and heal contact) and ending with a pattern where the secondary peak is 

approximately as strong as the primary peak. The reasons for these stride patterns as 

observed in the experiments are as follows. 

 Pattern 1: The heal contact is exactly at the end of the swing of the 

reference leg and the foot is almost flat by the time of the heal contact 

so that no oscillation of thigh is visible during Loading Response. 

 Pattern 2: The heal contact is slightly after the end of the swing of 

the reference leg and the foot is having a small angle to ground so that 

an angle change in the thigh is slightly visible during Loading 

Response. 

 Pattern 3: The heal contact is slightly after the end of the swing of 

the reference leg and the foot is having a larger angle to ground than 

to previous case so that a larger angle change in the thigh is visible 

during Loading Response. 

 Pattern 4: The heal contact occurs after the end of the swing of the 

reference leg, so that the leg moves downwards before heal contact 

and the foot is in an angle to ground by the time of the heal contact. 

Hence, an oscillation of the thigh is visible during Loading Response. 

 Pattern 5: The heal contact occurs after the end of the swing of the 

reference leg, so that the leg moves downwards before heal contact 

and the foot is in an angle to ground by the time of the heal contact. 

More oscillation of the thigh is visible during Loading Response in 

this case compared to the previous. 

 Pattern 6: The heal contact occurs after the end of the swing of the 

reference leg, so that the leg moves downwards before heal contact 
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and the foot is in an angle to ground by the time of the heal contact. A 

strong oscillation is visible during Loading Response so that the 

secondary peak is comparable to the primary peak. 

For deriving harmonic models for these six patterns, sample trails that have 

thigh angle patterns similar to each of these patterns were collected using the 

following procedure: 

Each stride was resampled to 2000 sample points and normalised in time and 

amplitude. The stride time was normalised to 1s while the amplitude was normalized 

in such a way that the minimum of the waveform be 0 and the maximum be 1. Then 

all strides having RMSE less than 2.5 % to each of the selected stride pattern (each of 

Figure 5.22) were extracted from all 750 strides. The stride waveforms extracted 

such a way was used to estimate a mean waveform to represent each of the wave 

patters shown in Figure 5.22. Harmonic models as given in (5.4) were derived for 

each of these mean curves with five significant harmonics and are depicted in Figure 

5.23. n in the right hand side figure for each pattern indicates how many samples of 

similar shape were used to derive the mean thigh angle pattern for each different 

pattern. Table IX shows the normalised amplitudes and initial phases extracted for 

the six models. 

 

 

Figure 5.22 – Six common thigh angle patterns observed in all trials 



Harmonic Models for Thigh Movement during Walking 

80 

 

 

 

 

Figure 5.23 – Harmonic models for six commonly observed thigh angle patterns 
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The spectrums of the gyro signals for each stride were also derived using 

FFT. It was seen that there are nine significant harmonic components in the case of 

gyro signals. In a similar way to thigh angle, the gyro signal was also reconstructed 

using the amplitudes and initial phases of the first nine harmonics using (5.4). The 

histograms of correlation and RMSE between original and reconstructed gyro signals 

are shown in Figure 5.24. It can be seen from the figure that the gyro signal can be 

reconstructed using the harmonic model with nine significant harmonic components 

with better regeneration accuracies than that of the thigh angle waveform. 

The spectrums of the gyro signals of afore mentioned stride patterns were 

also derived. The normalized amplitudes and initial phases of first nine harmonics of 

the spectrum of the gyroscopic signals of the six commonly observed stride patterns 

are shown in Figure 5.25 and the coefficients are tabulated in Table X. 

 

 

TABLE IX – COEFFICIENTS OF HARMONIC MODELS OF THE SIX COMMON THIGH ANGLE PATTERNS 

Model 
1st Harmonic 2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic 

an ϕn (rad) an ϕn (rad) an ϕn (rad) an ϕn (rad) an ϕn (rad) 

1 1 3.6133 0.18150 2.8125 0.08525 1.7860 0.015085 2.8816 0.013952 1.4683 

2 1 3.4174 0.21348 2.7200 0.03001 0.6868 0.022038 2.7407 0.010615 0.7321 

3 1 3.5088 0.20959 3.0176 0.07352 1.3860 0.028212 3.6534 0.019884 1.5846 

4 1 3.4504 0.23148 3.0875 0.09581 1.2984 0.030199 3.727 0.018138 1.3387 

5 1 3.4057 0.26781 3.2431 0.08322 1.1994 0.038494 3.7332 0.014827 1.4261 

6 1 3.4515 0.18452 3.2409 0.10950 1.5581 0.021041 4.0952 0.022180 2.3650 

 

 

Figure 5.24 – Correlation and RMSE between original and reconstructed gyro signal for each stride 
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Figure 5.25 – Harmonic models of gyro signal for six commonly observed thigh angle patterns 
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5.5.4 Classification of Strides Using Harmonic Models 

Identifying and classifying different stride patterns is important in 

rehabilitation and navigation applications because the prediction accuracies may be 

increased by using different models for different stride patterns. Therefore, the 

possibility of classifying strides using the harmonic models derived using IMU data, 

was also investigated in this research. The following sections discuss how the 

harmonic models derived earlier can be used to predict the thigh angle waveform and 

classify strides of a long walking trial. 

5.5.4.1 Predicting Thigh Angle Using Harmonic Model 

Thigh angle of a long walk (approximately 20 strides) of a single subject was 

first reconstructed using harmonic model extracted from the first stride. Normalised 

harmonic amplitudes and initial phases of harmonics were extracted from the first 

stride of the trial and were used to regenerate the thigh angle waveform for the full 

trial. The thigh angle was reconstructed using the timing of the stride and then 

rescaled in the amplitude axis to match the peak–to–peak variation of the measured 

thigh angle of the stride. The total stride was reconstructed with an RMSE of 1.33º 

TABLE X – COEFFICIENTS OF HARMONIC MODELS OF GYRO SIGNALS OF THE SIX COMMON THIGH ANGLE PATTERNS 

Model 1st Harmonic 2nd Harmonic 3rd Harmonic 4th Harmonic 5th Harmonic 

an ϕn (rad) an ϕn (rad) an ϕn (rad) an ϕn (rad) an ϕn (rad) 

1 1 5.19 0.36027 4.402 0.2489 3.3649 0.059486 4.5546 0.063368 3.0386 

2 1 4.996 0.42343 4.3092 0.084499 2.1904 0.085638 4.3984 0.047704 2.1871 

3 1 5.0759 0.42098 4.58 0.22486 2.9632 0.11145 5.1886 0.10383 3.1609 

4 1 5.0243 0.46313 4.666 0.28408 2.8688 0.12266 5.3146 0.087658 2.9082 

5 1 4.9736 0.53663 4.8087 0.25256 2.7775 0.15274 5.2844 0.077172 3.0107 

6 1 5.0247 0.36973 4.8195 0.32584 3.1308 0.086019 5.6766 0.10968 3.9544 

 

Model 6th Harmonic 7th Harmonic 8th Harmonic 9th Harmonic 

an ϕn (rad) an ϕn (rad) an ϕn (rad) an ϕn (rad) 

1 0.051567 2.0871 0.043595 5.3394 0.06063 2.397 0.006469 4.7733 

2 0.01632 2.187 0.028081 3.7139 0.008522 1.0669 0.00339 5.8446 

3 0.014819 1.4992 0.042851 4.2084 0.031311 1.8894 0.002707 4.9969 

4 0.039558 0.79304 0.064016 4.4247 0.030717 1.7806 0.002826 4.7229 

5 0.029039 3.3201 0.049497 4.3447 0.015691 1.9591 0.000666 3.3624 

6 0.069381 1.4251 0.067827 4.5243 0.022453 1.9092 0.000749 4.6469 
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and a correlation of 0.997. The original thigh angle waveform and the thigh angle 

reconstructed using the harmonic model in (5.4) with 5 significant harmonics is 

shown in Figure 5.26. It can be seen in the figure that the reconstructed waveform is 

deviated from the original in some strides. That is because a person may have 

different stride patterns as discussed in Section 5.5.3. This observation was the basis 

for the work discussed in Section 5.5.4.2. 

 

5.5.4.2 Classifying Strides 

Based on the observation that a person may have different stride patterns 

even within the same trial, the possibility of classifying strides using the harmonic 

model was investigated. The correlation and RMSE of thigh angle of each stride with 

the thigh angle generated by the six models were computed for four different cases. 

The reconstructed thigh angle was scaled to match the measured thigh angle using 

the same method discussed before. The cases considered were walking with 3 self–

selected stride rates (slow, medium and fast) on a hard floor and walking on sand (to 

test if this method can be used to distinguish different floor hardness). The variation 

of the stride pattern through the walk and for different cases can be seen by analysing 

the correlation and RMSE matrices. Figure 5.27 depicts the correlation matrices as 

colour maps. Each matrix shows the correlation of each stride of a given trial to the 

pattern reconstructed using each model. Each column of a matrix represents a single 

stride and a raw represents a particular model. 

It can be seen in the figure that all the strides are having better correlation to 

Model 1 for slow walking whereas for medium walking, most of the strides have 

 

Figure 5.26 – Thigh angle waveform reconstructed using harmonic model with 5 harmonics and the original thigh 

angle waveform for a long walk  
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closer correlation to Model 3 while some strides are of the patterns of Models 1, 4 or 

6. For fast walking, the stride pattern has become that of Model 6 while on sand it 

becomes Model 1 except for few strides where the stride pattern is Model 3. 

According to the observations made during the trial on sand, the stride pattern 

becomes that of Model 3 when the sand is hard, and to Model 1 when sand in loose. 

These observations indicate that the harmonic models of thigh angle can be used to 

identify the variation of strides during a single walking trial. 

 

The classification of strides using the correlation of the original stride 

waveform to the reconstructed waveform may be verified using RMSE between the 

stride waveform and the model. Figure 5.28 shows the RMSE matrices as a colour 

Slow Walking 

 
Medium Walking 

 
Fast Walking 

 
Walking on Sand 

 
Figure 5.27 – Correlation of each stride with model generated waveform for different cases 
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map for afore said scenarios. It is clear that the RMSE matrices also followed the 

same pattern to the correlation matrices. The closer the correlation of the thigh angle 

waveform of a particular stride and the waveform generated by a particular model to 

1, the higher the shape of the stride is of the shape of the model. In the case of 

RMSE, the smallest value represents the best model. Hence, the best model that 

represents the shape of a particular stride is the one that gives the highest correlation 

and the smallest RMSE. 

The same classification can be performed using the gyro signal of each stride. 

As seen in Figure 5.25, the toe–off point is the positive zero crossing of the gyro 

signal. The classification performed with gyro signal also gives similar results as 

shown in Figure 5.29. This indicates that the classification and reconstruction can be 

performed using gyro signal. 
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Slow Walking 

 
Medium Walking 

 
Fast Walking 

 
Walking on Sand 

 
Figure 5.28 – RMSE of each stride with model generated waveform for different cases 
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5.5.5 Summary and Discussion 

Harmonic models for the thigh angle and the gyroscopic signal were 

presented in this section. By analysing spectrums of thigh angle of 372 level walking 

trials of 19 subjects, both male and female, it was observed that the first 5 harmonics 

are significant. The condition for significance was selected as 1% of the fundamental 

amplitude (i.e. the maximum amplitude). The harmonics were derived for the full 

trial of all samples using FFT and the waveforms were reconstructed using the 

harmonic model of (5.4). The correlation greater than 99.5% and RMSE less than 2° 

between the original and reconstructed indicated that the thigh angle waveform can 

be well reconstructed with a harmonic model with first 5 harmonics. For the gyro 

signal, the number of significant harmonic components is 9. The thigh angle and the 

gyro signal for each stride were reconstructed with the harmonic models with 

correlations greater than 99.9% and 99.99% and RMSE less than 1° and 5% 

respectively, which is a better fit than to the full stride. 

Harmonic models for thigh angle and gyro signal for 6 commonly observed 

stride patterns were also presented in this section. The models were then used to 

classify strides of a trial of long flat walk (about 20 strides). It was shown that the 

correlation and the RMSE between the original and the model generated signals may 

be used together to identify the stride patterns. Correlations above 99% and RMSE 

less than 2º were observed with the best matching model. Best correlation and the 

 

Figure 5.29 – Correlation and RMSE of gyro signal of each stride to the model generated waveform for slow 

walking 
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RMSE indicate the model that matches the particular stride most in the classification 

process. The thigh angle waveform of a long level walk was reconstructed using the 

harmonic model extracted from the first stride with 5 harmonics with a correlation of 

99.7% and RMSE of 1.3°. All these correlation and RMSE figures are far better than 

the correlation and error figures achieved in [64] and [65]. Further, it can be seen that 

these harmonic models can be used for different applications as discussed in the 

following paragraphs. 

Harmonic models for common stride patterns may be derived from a set of 

samples for the purpose of classification for a selected group of subjects. These 

groups may be people with no impairment or disability, patients having a certain 

lower limb disability or patients who underwent a lower limb surgery. These models 

may then be used to classify or identify one’s stride patterns in order to identify 

certain lower limb disability or for pre and post movement analysis of a surgery, 

however, may need higher sampling rates and sensors with higher accuracy to 

identify fine details of the gait pattern. 

Further, the harmonic models may be used to identify a person’s stride 

patterns for the purpose of navigation application. Harmonic models may be 

extracted for a given subject to identify different stride patterns that a particular 

person has, with different terrains, activities or footwear. Figure 5.30 shows some 

sample strides for up and down walking on stairs and ramp. It can be seen that the 

stride patterns are quite different from the patterns of level walking in these cases, 

which may be used in activity recognition. 

 

 

Figure 5.30 – Thigh angle patterns for different activities 
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It was also shown that the stride modelling and classification can be 

performed using the gyro signal and the harmonic models derived for the selected 

thigh angle patterns. However, in this case the first 9 harmonics became significant. 

Thigh angle waveform patterns, similar to the patterns observed with non–

vision–impaired subjects, were observed with vision impaired subject. Therefore, 

same techniques may be applicable to vision impaired subjects too. 

In conclusion, the thigh angle can be reconstructed with a harmonic model 

with 5 harmonics and the gyro signal with 9 harmonics with great accuracy. These 

harmonic models may be used for many different navigation and rehabilitation 

applications. 

 

5.6 Step Length Estimation 

5.6.1 Introduction 

Two different step length models that use the maximum and minimum thigh 

angle are presented in this section and the estimation performances are compared. A 

technique to estimate the peak thigh angles using the gyro peaks is also presented in 

this section. With this technique, one of the step length models was rewritten to 

derive an additional model for step length as a function of gyro peaks and time 

between peak and zero crossing. The performance of this model is also evaluated for 

the estimation accuracy taking gyro peaks as inputs.  

5.6.2 Step Length Model 

Figure 5.31 was used to derive a model to estimate step length as a function 

of the thigh angle. The figure represents the swing of the reference leg, which is 

shown in blue and the other leg that goes in stance phase is shown in red. In practical 

scenarios, the effective leg lengths and maximum flexion and extension angles are 

not identical stride to stride, hence different labels are used for each posture. 

Referring to the diagram, the step length, sl , can be written as: 

2144332211 sinsinsinsin   llllls  (5.5) 
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where 1l , 2l , 3l  and 4l are the effective leg lengths and 1 , 2 , 3  and 4  are the 

angles of the thigh to vertical of the two legs at each posture as shown in Figure 5.31. 

1  and 2  are the lengths that are not covered under the open angle of the leg. 

Analysing gait using a single thigh mounted IMU was considered in this study, as 

such, the angles of the non–reference leg is not measured. Therefore, to make the 

model simple and usable with a single thigh mounted IMU, it is assumed that 31 ll  , 

42 ll  , 31   , 42    and 21   , which is depicted in Figure 5.32. With these 

assumptions, (5.5) can be deduced as 

   2211 sinsin2 llls . (5.6) 

where all values are as in Figure 5.32. 

 

l1

θ1 θ3

θ2 θ4

ε1 ε2

l3 l4l2

ls

 

Figure 5.31 – Representation of leg positions during a step 

Blue leg represents the reference leg. 



Step Length Estimation 

92 

 

 

The model in (5.6) can be written in a generalized form as 

cbals  21 sinsin   (5.7) 

where a, b and c are model parameters that need to be learnt per each subject, 1  and 

2  are the thigh angles at toe off and Initial Contact of the particular step. It was 

shown in Section 5.4.2 (in Figure 5.6) that the minima of the thigh angle next to the 

positive peak synchronizes with the heel contact. It was also shown in Section 5.5 

that this minima is invisible in some stride patterns. Therefore, the positive thigh 

angle peak has to be taken as 2  in practical scenarios. For small thigh angles, 

because  sin , (5.7) may be further deduce as 

cbals  21  . (5.8) 

The models in (5.7) and (5.8) were considered in the experiment to test the 

accuracies of step length estimation. The experiment and the results are discussed in 

Section 5.6.5. 

5.6.3 Estimating Maximum Thigh Flexion and Extension without 

Integration 

The gyroscope signal is integrated to estimate the thigh angle in the 

orientation estimation algorithm discussed in Section 5.4. As discussed there, one 

l1

θ1

θ2

ε ε

l2

ls

 

Figure 5.32 – Simplified representation of leg positions during a step 

Blue leg represents the reference leg. 
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main issue faced in integrating gyro signal is the drift caused in the integration. 

When there is an error in the estimated thigh angle, that error will be translated into 

an error in the estimated step length. This subsection discusses the possibility of 

estimating the maximum flexion and extension angles of the thigh during walking 

without integrating the gyro signal. 

It was observed that the peak of the gyro signal that comes before the zero 

crossing corresponds to a zero crossing of the thigh angle and the zero crossing of the 

gyro signal corresponds to the peak of the thigh angle as shown in Figure 5.33. 

Therefore, the gyro signal that contributes to the peak thigh angle is the part between 

the maxima of the gyro signal to the zero crossing. Hence, if the curve is 

approximated to a mathematically defined shape such as a straight line, cosine or a 

polynomial, the maximum thigh angle may be estimated using the peak gyro value 

and the time between the peak and the zero crossing. Three approximations for each 

part of the curve, i.e. the part from positive peak of the gyro signal to zero crossing 

and the part from negative peak of the gyro signal to zero crossing, were considered 

in this study. These sections were considered separately because of their different 

shapes. The three approximations considered are straight line, cosine and a 

polynomial fit for the gyro signal representing the shape of the sections. 

 

Figure 5.34 shows straight line approximation for the 2 sections of the gyro 

signal that contribute to positive (shown in blue) and negative (shown in red) peaks. 

Now, the integration of gyro of each potion can be approximated to the area of the 

 

Figure 5.33 – Synchronization of gyro and thigh angle waveforms 

Vertical dash lines indicate the key points 
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triangle between the line and the time axis as shown in Figure 5.34. In the case of the 

cosine and fitted curve approximations, the peak thigh angle may be approximated to 

the area under the curve. To fit a curve for each section of gyro signal, the mean 

curve of 948 samples was considered as the curve representing the set of curves. The 

fit was derived for both parts of the gyro signal separately and the best fit for both 

sections were 7th order polynomials. The coefficients of the polynomial for each 

section was estimated separately using Matlab Curve Fitting Tool. If θ is the 

corresponding peak thigh angle, GP is the corresponding peak gyro value and t is the 

time between the gyro peak and zero crossing, then θ can be approximated by the 

three methods as given in (5.9). 
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 (5.9) 

It can be seen that all these approximations have a constant in front of the 

product of gyro peak and the time, which means that the plot of the estimated peak 

angle and the peak angle computed by integration should look similar except a 

gradient difference. The goodness of the three approximations given in (5.9) were 

tested using data collected. 948 strides were used for this assessment. The results 

indicated that the R–square and Adjusted R–square values of the line fitted in all 

 

Figure 5.34 – Straight line approximations for the sections of the gyro curves that contribute to the thigh angle 

peaks 
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three cases take the same value. However, the RMSE was lowest for the straight line 

approximation while cosine approximation had the gradient closest to 1, which 

indicate that the cosine approximation is the closest approximation. Figure 5.35 

shows the estimated peak thigh angle vs. integrated peak thigh angle with straight 

line approximation for positive and negative peak angles with the goodness figures. 

 

5.6.4 Step Length as a Function of Gyro Peaks 

With the approximations discussed in Section 5.6.3, the step length models 

can now be represented as functions of gyroscopic peaks. To generalize the 

approximations, the peak thigh angle, θ, can be replaced with a function of gyro peak 

and the time between the peak and zero crossing of gyro signal as 

tGP   (5.10) 

where PG  and t are the gyro peak and the time between gyro peak and zero crossing 

that contributes to the particular peak thigh angle and   is a constant that includes 

the correction factors. Now (5.8) can be rewritten as in (5.11) by substituting (5.10). 

ctGbtGal PPs  222111   (5.11) 

Here, the numeric subscript 1 refers to the minimum thigh angle and 2 refers 

to the maximum thigh angle. (5.11) can be minimized as shown in (5.12) by 

considering all constants in each term into one lumped constant. 

0222111 atGatGal PPs   (5.12) 

 

Figure 5.35 – Estimated peak thigh angle vs. integrated peak thigh angle with straight line approximation for 

positive and negative peak angles 
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5.6.5 Experiment and Results 

Data required for these analysis was also collected in the same experiment 

conducted in MAL as described in Section 5.4. Marker clusters were attached to both 

thighs to caption the flexion and extension. One marker was attached to the heel of 

each shoe to capture the step length. An IMU was attached to the right thigh to 

measure the movement of the thigh. Data captured in such a way was cropped to 

extract the mid walk as described in Section 5.4. Gyro data were also cropped at the 

same points as thigh angle of each sample. Data cropped in this manner were used 

for the rest of the analysis as explained in the following discussion. 

Minimum and maximum thigh angles for each stride were extracted using 

custom written Matlab functions listed in Appendix B. As seen in Figure 5.6, the heel 

contact occurs just after the positive peak of the thigh angle waveform. This feature 

was used in the custom written function to pick the two heel contact points that 

correspond to a particular step. Using this method, the minimum thigh angle  1 , the 

maximum thigh angle  2  and the step length  sl  were extracted for each step of 

each subject for both legs using MAL data. Then the straight line was fitted to data of 

each leg of a particular subject and this model was used to remove the outliers. If the 

error between the estimated and measured step lengths is greater than 1.5 times the 

standard deviation of measured step length, then that sample was considered as an 

outlier. The outlier removed step data were considered as the data set for the 

analysis. This data set was then divided into two parts: 25% for deriving model and 

the balance 75% for evaluating the model. This division was done per subject per 

each leg. Model parameters were derived for equations in (5.7) and (5.8) separately 

from the data set for the model and the remaining data set was used to evaluate the 

fits. 
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A total of 1283 step samples were included in the evaluating data set for 18 

subjects: 9 males and 9 females. The RMSE of the step length for both legs was 

54.60 mm when using (5.7) and 54.50 mm when using (5.8). This implies that using 

the approximation in (5.8) does not compromise the accuracy. The error percentage 

distribution of estimated step length for the model in (5.8) is shown in Figure 5.36 

while Figure 5.37 shows the estimated step length vs. measured step length for all 

samples of all subjects used for evaluation. Figure 5.36 shows that the majority of 

error percentage per each step is in the range of 7%. 

Then the same analysis was performed using the gyro peaks as inputs, with 

the model in (5.12). Outliers were removed from the full sample using the same 

procedure as before, then each data set was divided into two part in a similar way. 

The total number of samples for all subjects after outliers being removed was 1018. 

 

Figure 5.36 – Error percentage of step length estimated as a function of thigh angle peaks 

 

Figure 5.37 – Estimated step length vs. measured step length for step length as a function of thigh angle peaks 
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The RMSE of estimated step length was 55.92 mm, which is comparable with the 

RMSE reported for the model of step length as a function of peak thigh angles. 

Further, it was seen that the majority of the error lies between 6% in this case which 

is slightly better than the previous case. The error distribution of the step length 

estimated with gyro peaks and the estimated step length vs. measured step length are 

shown in Figure 5.38 and Figure 5.39. 

The model used in [71] that is shown in (2.12) was also tested on these data 

in a similar procedure to compare the performance of the proposed models with the 

model in (2.12). The RMSE was 56.97 mm when thigh angle peaks were taken as 

inputs to (2.12) and 56.28 when gyro peaks were taken as inputs. This indicates that 

the proposed step length estimation models perform better than the one in (2.12). 

 

 

 

Figure 5.38 – Error percentage of step length estimated as a function of gyro peaks 

 

Figure 5.39 – Estimated step length vs. measured step length for step length as a function of gyro peaks 
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Similar experiment was conducted with the involvement of vision impaired 

subjects. The results of 4 female and 5 male vision impaired subjects indicated that 

the performance of the models are comparable to those of non–vision–impaired 

subjects, but with slightly higher error percentages. The error percentage distribution 

of estimated step length for the model in (5.8) for vision impaired subjects is shown 

in Figure 5.40 while Figure 5.41 shows the estimated step length vs. measured step 

length for all samples of all vision impaired subjects used for evaluation. Figure 5.40 

shows that now the majority of error percentage per each step is in the range of -12% 

to +6%, which is a wider spread compared to non–vision–impaired case. When the 

model in (5.12) was used on data collected with vision impaired subjects, the results 

were comparable to the results when (5.8) is used on vision impaired data, as shown 

in Figure 5.42 and Figure 5.43. The RMSE values for the models in (5.7), (5.8) and 

(5.12) are 73.77 mm, 73.65 mm and 85.10 mm respectively. 

 

 

Figure 5.40 – Error percentage of step length estimated as a function of thigh angle peaks of vision impaired 

subjects 
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Figure 5.41 – Estimated step length vs. measured step length for step length as a function of thigh angle peaks of 

vision impaired subjects 

 

Figure 5.42 – Error percentage of step length estimated as a function of gyro peaks of vision impaired subjects 

 

Figure 5.43 – Estimated step length vs. measured step length for step length as a function of gyro peaks of vision 

impaired subjects 
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5.6.6 Summary and Discussion 

Two models for estimating step length using the peak thigh angles and 

gyroscopic peak values were presented in this section. In the first model, the step 

length is modelled as a function of the negative thigh angle peak (peak hip flexion 

angle) and positive thigh angle peak (peak hip extension angle). It was shown that 

the thigh angle peaks can be estimated by the product of the corresponding gyro peak 

and the time between the peak and the zero crossing of gyro signal. The second 

model uses this result and present step length as a function of negative gyro peak, 

time between negative peak and zero crossing of gyro signal, positive gyro peak and 

time between positive peak and zero crossing of gyro signal. It was shown that the 

step length can be predicted with similar accuracies with both these models. 

The advantage of using the gyro peaks and time for zero crossing after peak, 

is that it avoids the integration of the gyro to derive thigh angle. Avoiding gyro 

integration is beneficial in two ways. Firstly, integrating uses significant amount of 

processor time and resources when deriving thigh angle, which is avoided when gyro 

peaks are used to estimate thigh angle peaks. Secondly, as discussed in Section 5.4, 

any static error present in gyro signal causes a drift in the angle that will cause errors 

in the step length estimated. Instead, when the gyro signal itself is used, this effect 

may be minimised. 

The error reported when step length is estimated as a function of thigh angles 

is approximately 54 mm RMSE for the data set (1283 steps) used for the validation 

with an error percentage of 7% to the measured step length for majority of samples. 

The RMSE reported was approximately 56 mm (for 1018 steps used for validation) 

when gyro peaks were used to estimate the step length with a percentage error of 

6% of the measured step length. Although these error figures appear to be larger 

when compared with the error figures presented in literature [71], the model in [71] 

reported greater errors when applied on the data set used in this study. This is an 

indication that the proposed models may perform better in practical applications. 

These models perform in a similar way for vision impaired subjects, but with 

slightly higher errors. The RMSE reported when thigh angle peaks are used to 

estimate the step length was approximately 74 mm when compared with 54 mm for 

non–vision–impaired subjects. When gyro peaks are used to estimate the step length 
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the RMSE becomes 85 mm. This indicates that these models may be used with vision 

impaired subjects. However, the accuracies may improve if more subjects were 

considered and more samples were taken into consideration. 

 

5.7 Gait Phase Identification 

5.7.1 Introduction 

Proper recognition of gait phases is important for accurate outcomes in gait 

modelling in pedestrian navigation and locomotion analysis applications. This 

section discusses the possibility of recognizing gait phases from the thigh angle and 

the gyro signal of single thigh mounted IMU. The signal features that may be used to 

identify key gait phases are also discussed in this section. The details of the two main 

phases and the eight sub phases of gait cycle are as discussed in Section 2.2. 

5.7.2 Identify Gait Phases from the Thigh Angle and Gyro Waveforms 

Figure 5.44 shows the thigh angle, gyro signal and time derivative of gyro 

signal, all normalised to their peak value and drawn on the same time axis. The 

letters a – g represent the key points of the stride cycle identifiable in the thigh angle 

waveform. Although it is the positive peak of the thigh angle waveform, point a is 

not the initial contact as shown in Figure 5.6. Point a is the end of the swing of the 

leg. The Initial Contact point is point b of the diagram. Description of all phases 

identifiable in the thigh angle waveform is given in Table XI. It can be seen that 

except point c, all other points can be detected by detecting zero crossings of the 

gyro signal or its time derivative. Table XII shows which signal can be used to detect 

each point of the stride cycle. It should be noted that point g is as same as point b. 

Further, the end of Loading Response (point c) may be approximately detected by 

the relative maxima of the time derivative of gyro signal. 
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It was observed that the three sub phases of Swing phase (Initial Swing, Mid 

Swing and Terminal Swing) cannot be distinguished in the thigh angle waveform. 

However, all five sub phases of Stance phase can be identified in the thigh angle 

waveform and four of these can be detected using zero crossing detectors on gyro 

signal and derivative of gyro signal. Implementing zero crossing detectors in real–

time systems is not a difficult task as shown in Section 5.3. 

 

Figure 5.44 – Normalised thigh angle, gyro signal and time derivative of gyro signal 

TABLE XI – PHASES OF GAIT CYCLE AS IDENTIFIED IN THE THIGH ANGLE WAVEFORM 

Point/Points Phase/Point of Gait Cycle 

a End of swing 

b Initial Contact 

b–c Loading Response 

c–d Mid Stance 

d–e Terminal Stance 

e–f Pre-Swing 

f–g Swing 
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5.7.3 Summary 

A simple technique to identify phases of gait cycle using gyro signal and the 

first time derivative of gyro signal of a single thigh mounted IMU was presented in 

this section. Six key points of the gait cycle that are needed to detect gait sub phases 

were identified. Out of these six, five points can be detected using zero crossing 

detectors on gyro signal and derivative of gyro signal. Four sub phases of Stance 

phase as well as the Swing phase can be detected by this method in real time 

applications. 

 

5.8 Activity Recognition 

5.8.1 Introduction 

Accurate human activity recognition plays a significant role in making 

pedestrian tracking accurate. Although many different activities are performed by 

people during navigation, the three main activities found in indoor navigation are 

standing, sitting and walking. Additional activities may include walking on stairs, 

going on an escalator or a travelator ramp and going in an elevator. 

Researchers have used many approaches to detect different human activities. 

In most of these techniques, a 3–axis accelerometer is used to measure the 

acceleration of the trunk [72] or a section of a leg [73]. This section proposes a new 

approach for human activity detection using the thigh angle derived from a single 

thigh mounted IMU. Further, the outcomes of preliminary activity detection 

TABLE XII – SIGNAL FEATURE THAT CAN BE USED TO DETECT EACH POINT OF THE STRIDE CYCLE 

Point 
Signal to Detect Zero Crossing to 

Detect Each Point 

a Gyro 

b Derivative of gyro 

c – 

d Derivative of gyro 

e Gyro 

f Derivative of gyro 
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algorithm are presented in this section. The activities considered in the data 

collection are standing, sitting and walking. No data filtering was included in the 

algorithm because minimal computational demand was the main aim when 

developing the algorithm. Some of work presented in this paper are published in 

[97]. 

The primary concerns of developing a navigation aid for vision impaired 

people were low cost devices which leads to the requirement of less computationally 

intense algorithms. Further, the scope of this research was to perform human gait 

analysis based on the thigh movement during walking. Hence, the activity 

recognition was also based on the thigh angle. 

5.8.2 Indoor Activity Detection Algorithm 

The observations used as the basis for developing the activity detection 

algorithm, details on the activity recognition algorithm and data processing technique 

used in it, and the empirical results are presented in this sub section. 

5.8.2.1 Observations 

The indoor activities considered in this study are walking, standing and 

sitting as they are the most common indoor activities performed by vision impaired 

people. Movement of the thigh was captured using the IMU discussed in Section 4.4. 

The IMU was strapped to the subject's thigh while performing a “sit, stand and walk” 

activity chain. Measurements were taken for standing posture with the test subject in 

slight motion, i.e., whist changing the supporting leg. Figure 5.45 shows the thigh 

angle computed for a trial of stand–sit–stand–walk–stand–sit–stand activity chain. 

Thigh angle was computed using the GIOF discussed in Section 5.4. 
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5.8.2.2 Data Processing and the Algorithm 

The indoor activity detection algorithm is based on the envelope of the thigh 

angle and steps detected. As shown in Figure 5.45, the thigh angle is less than 20º 

when standing, close to 90º when sitting and the peak of thigh angle lies in between 

20º and 70º when walking. Detection of steps is used to confirm if the subject is 

walking. Steps are detected by checking the delay between zero crossings of the 

thigh angle. If the delay is between 0.2 s and 1 s, then it is considered as a stride is 

detected. These times were selected to accommodate slow gait of 1.5 steps per 

second as presented in [88]. 

The envelope of the thigh angle is computed using a peak–hold mechanism. 

The positive peak of the thigh angle is taken as the envelope till the next positive 

peak is detected. Zero crossings of the thigh angle are detected simultaneously. 

Sitting is distinguished from standing and walking if the envelope of the thigh angle 

is larger than 70º. If the activity is not sitting, then if the envelope is less than 20º and 

walking is not detected, then the activity is taken as standing. Else the activity is 

considered as walking. Finally, this activity state is sent through a timing mechanism 

to avoid the activity state being switched to a different state for a very short period. 

Slow walking speed is in the range of 1.5 steps per second [88] and slow gait is 

observed in most of indoor navigation situations particularly for people with vision 

impairment in unfamiliar surroundings. Therefore the duration of the timer is set as 

2 s, hence the activity is detected with a delay no more than one stride. The indoor 

activity detection algorithm is shown in Figure 5.46. 

 

Figure 5.45 – Thigh angle while standing, sitting and walking 
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Figure 5.47 depicts the envelope detected by the algorithm and Figure 5.48 

shows walking detected by the algorithm. For illustrative purposes, zero indicates 

that walking is not detected and 90 indicates areas where walking is detected. Figure 

5.49 shows the final activity output (after the delay mechanism) of the algorithm. 

Each activity was represented by a value as shown in Table XIII for demonstrative 

purposes. The delay seen in the activity plot of Figure 5.49 is due to the delay timer 

in the algorithm. 

 

Figure 5.46 – Indoor activity detection algorithm 
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Figure 5.47 – Envelope detected by the algorithm 

 

Figure 5.48 – Walking detected by the algorithm 

 

Figure 5.49 – Activities detected by the algorithm 

TABLE XIII – VALUES ASSIGNED FOR ACTIVITIES 

Activity Value 

Standing 0 

Walking 45 

Sitting 90 
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5.8.2.3 Experimental Setup 

The experiment was conducted with the participation of two healthy females 

and two healthy males, all known to have no disability or impairment. Observations 

were recorded with the IMU (discussed in Section 4.4) attached to either thigh with 

two trials per each thigh. Subjects were asked to perform standing, sitting and 

walking activities. While standing, they were asked to behave naturally without 

conscious attempts to remain stationary and changing the support limb as they wish. 

In sitting posture, subjects were requested to move normally. Walking was done with 

medium and slow gait.  

5.8.2.4 Empirical Results 

The activities performed and activities detected by the algorithm were 

recorded by observing the thigh angle and the output of the algorithm. 78.26% of 

standing activities were detected as standing when the IMU is mounted to the left 

thigh and the rest were detected as walking. Walking and sitting activities were 

detected with no errors for the trials performed with IMU mounted to the left thigh. 

When the IMU is mounted to the right thigh, standing was detected by the 

algorithm with an accuracy of 90% and walking with an accuracy of 92.86%. Some 

standing activities were detected wrongly as walking and some walking activities as 

standing. However, for this case too, sitting activities were detected without errors 

for the trials recorded. The difference of accuracies of the algorithm for two legs will 

have to be further studied. The overall performance of the activity detection 

algorithm is given in Table XIV. This indicate that the detection accuracy is above 

80% for all three activities. 

 

 

TABLE XIV – OVERALL ACTIVITY DETECTION PERFORMANCE OF THE ALGORITHM 

Activity 

Performed 

Activity Detected Activity Count 

(n) 
Standing Sitting Walking 

Standing 83.72 0.00 16.28 43 

Sitting 0.00 100.00 0.00 16 

Walking 4.00 0.00 96.00 25 
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5.8.3 Using Pressure Variation for Activity Detection 

The activities found in indoor navigation in addition to the activities 

considered in this algorithm are walking on a travelator ramp or a stair case, going on 

an escalator and going in an elevator. Preliminary observations of an experiment 

performed using a Google Nexus 5 smartphone indicated that the pressure sensor 

reading in combination with the activity detection algorithm discussed in Section 

5.8.2 may be used to identify these activities. Figure 5.50 shows the pressure 

variation when walking on stairs while keeping the phone in the trouser pocket. The 

algorithm detects the activity as walking when walking on stairs too, but abrupt 

pressure changes were not observed when walking on level surfaces. Therefore, 

combining pressure data and the aforementioned algorithm may be used to identify 

walking on stairs and distinguish it with walking on level surfaces. The pressure 

readings when going on an escalator and a travelator ramp are shown in Figure 5.51. 

In both these cases, the algorithm detects them as standing as there is no leg 

movement. Therefore, the algorithm in combination with the pressure reading may 

be used to detect going on an escalator or a travelator ramp. Escalator and ramp may 

be distinguished from the gradient of the pressure variation. 

 

 
Figure 5.50 – Pressure reading when walking on stairs 
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Pressure reading when going in an elevator is shown in Figure 5.52. Although 

a gradual pressure change was observed when going down, a sudden pressure drop 

was observed when going up. This was observed in all the trials conducted. This may 

be because of the characteristics of the air flow in to and out of the elevator. 

However, a significant pressure change is read when going in the elevator and the 

algorithm will detect this as standing. Hence, the algorithm in combination with the 

pressure reading may also be used to identify traveling in an elevator. 

 

Further testing on the pressure data will have to be conducted to check if the 

pressure readings are consistent in repetitive measurements and over time. Once this 

is established, pressure input can also be taken into the algorithm and the algorithm 

can be improved to detect all possible indoor activities. 

  

Figure 5.51 – Pressure reading on escalator going upwards (left) and on travellator ramp going up and down 

(right) 
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Figure 5.52 – Pressure reading when going down and up in an elevator 
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In addition, Section 5.5 illustrates that the thigh angle waveform has different 

shapes when walking on stairs and ramps than to level walking. This feature may 

also be used to identify walking up and down on stairs and ramps in conjunction with 

the algorithm discussed in this section. 

5.8.4 Discussion 

The simulation results of the algorithm indicates that it gives promising 

results. However, the activities identified in this algorithm are limited to sitting, 

standing and walking. Some of the errors in detecting the activities are due to non–

smooth thigh angle waveform due to packet losses between the IMU and the 

computer that has caused as a result of signal drops of the radio. There were some 

occasions where the delay between two samples received were 1 s. Accuracies of the 

algorithm may improve when the algorithm is implemented in an embedded device 

that includes the sensor so that transmitting of samples is not required. 

The capabilities of the algorithm may be expanded by using a pressure sensor 

in addition to the thigh mounted IMU. By fusing these two, sitting, standing, level 

walking, walking in an elevator, walking on stairs and waking on an escalators and 

travellator ramps can be detected. This set of activities covers most of the activities 

found in vision impaired indoor navigation. 

5.8.5 Summary 

This section proposed a human indoor activity detection algorithm with 

minimal computational demands. It was observed that the algorithm detects activities 

with mean accuracies above 83% with lower processing and storage requirements 

than existing algorithms. However, the activities detectable by the algorithm are 

limited to walking, sitting and standing. 

Preliminary observations of the possibility of using pressure data to detect 

walking on travelator ramps, escalators, stairs and in elevators were also presented. 

Results indicated that pressure input may be effectively used to improve the 

algorithm to detect all possible indoor activities. Harmonic models of thigh angle 

waveform may be used in combination with the pressure to identify walking on 

ramps and stairs. 



Conclusion and Future Directions 

 

113 

 

Chapter 6 

6 CONCLUSION AND FUTURE DIRECTIONS 

6.1 Conclusions 

During the initial experiments, it was observed that the flexion–extension 

reading taken from a single thigh mounted gyroscope provides sufficient information 

for step detection and gait analysis for pedestrian walking. Inter–step correlation of 

the gyroscope signal was better than that of the accelerometer signal of a thigh 

mounted IMU. Further, the gyroscopic signal has a clearly visible periodic nature 

which was less visible in the reading of a hip mounted and hand held accelerometer. 

This indicated that a single thigh mounted IMU provides sufficient information for 

gait analysis for pedestrian navigation. 

From this observation, a pedometer algorithm based on a single axis gyro 

reading (axis that reads the flexion–extension movement of the thigh) was developed 

and tested for accuracy. The step counting in the algorithm is based on zero crossing 

detection of the low pass filtered gyro signal. The algorithm was implemented on an 

Apple iPhone 4S and tested with the involvement of multiple male and female 

volunteers and demonstrated step counting accuracies above 97% for level walking 

at different walking speeds, including slow walking (50 steps/min). This pedometer 

algorithm had been used by Kwon et al. in their cross–platform and cross–device 

pedometer system that has reported accuracies above 99% over more than 6000 

steps. This has confirmed the higher accuracy of the gyro based pedometer algorithm 

(compared to acceleration based algorithms) despite its lower processing demands. 

A single axis orientation estimation algorithm, Gyro Integration Based 

Orientation Filter (GIOF) was developed and validated for accuracy against an 

optical motion capture system. The estimation of inclination is based on integration 

of gyro signal. The drift caused by the integration is corrected using the inclination 

estimated by accelerometer data and the correction is performed only when the 

accelerometer reads gravity only. The minimum correlation reported between the 

angle estimated by GIOF and the angle computed from the optical motion capture 

system was greater than 97% with an average correlation of 99.5%. It was also 
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shown that the GIOF consumes one half of the computation time consumed by the 

complementary filter (known to have lower computational demands) on low end 

embedded systems. The main reason for this is that GIOF performs the angle 

estimation using the accelerometer signal using 𝑎𝑟𝑐𝑡𝑎𝑛, only when the 

accelerometer reads gravity only, whereas the complementary filter performs 𝑎𝑟𝑐𝑡𝑎𝑛 

in its each iteration. Performing 𝑎𝑟𝑐𝑡𝑎𝑛 requires longer computational times and 

resources in low end embedded systems such as 8–bit microcontrollers. The RMSE 

reported was less than 2.5º with mean RMSE of 1.85º, which is better than errors 

reported in techniques that use high end Kalman filters. Although GIOF was 

implemented and tested for one dimension, it may be extended to 3–D. 

The thigh angle estimated using GIOF was used to model the thigh 

movement during level walking. Thigh movement was also modelled using the 

flexion–extension gyro axis data. Analysing 372 level walking trials of 19 subjects, 

both male and female, it was shown that only first 5 harmonics have normalised 

amplitudes greater than 1% in the spectrum of thing angle. The thigh angle 

regenerated for the full trial using a harmonic model with 5 significant harmonics 

had correlations greater than 99.5% with the original waveform and RMSE less than 

2º. Therefore, it can be concluded that the thigh angle during level walking can be 

modelled with sufficient accuracy for pedestrian navigation with a harmonic model 

with 5 harmonic components. There are 9 significant harmonic components for the 

gyro signal spectrum. The thigh angle and the gyro signal for each stride were 

regenerated with 5–harmonic model for thigh angle and 9–harmonic model for gyro 

signal with correlations greater than 99.9% and 99.99% respectively and RMSE less 

than 1º and less than 5% of the peak respectively, which indicates that each stride can 

be modelled using a harmonic model with better accuracies compared to the full trial. 

Therefore, it can be concluded that the thigh angle waveform for level walking can 

be modelled with accuracies better than the accuracies of acceleration based 

modelling reported in literature, using a harmonic model with 5 significant 

harmonics and the gyro signal of level walking using a harmonic model with 9 

significant harmonics.  

Harmonic models for thigh angle and gyro signal for 6 commonly observed 

stride patterns were presented and they were used to classify the strides of a long 

level walk. The best correlation and the best RMSE indicates the best matching 
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model to the particular stride. Correlations greater than 99% and RMSE less than 2º 

were observed for the best matching thing angle model. It was observed that the 

stride pattern may vary during a single continuous walking trial of a given subject. 

Further, the stride pattern changes with different terrains (such as hard floor and 

sand) and walking task (such as stairs and ramps). Harmonic models may be used to 

identify the different walking tasks and terrains if a complete sample database is 

available. 

A model to estimate step length based on the peak flexion and peak extension 

angles of the thigh was also presented in this thesis. The step length estimation error 

reported is approximately 54 mm RMSE for a data set of 1283 steps with an error 

percentage of 7% to the measured step length for majority of samples. Although 

these error figures appear to be larger than the error figures reported in literature, the 

errors reported when these models were tested with the collected data set was higher 

than the error reported with the proposed model. A method to derive thigh angle 

peaks using gyro peaks and time between peak and zero crossing of gyro signal was 

proposed to avoid integration of gyro signal to derive thigh angle peaks. The 

relationship between the thigh angle peaks estimated with this method and the peak 

derived by integration gyro signal was linear with RMSE of approximately 1º for a 

sample base of 948 strides. The step length estimation model was re–written to 

derive a new model for step length as a function of gyro peaks and time between 

peak and zero crossing of gyro signal. The RMSE of step length reported with this 

model was approximately 56 mm for 1018 steps, with an error percentage of 6% of 

the measured step length for majority of samples. These two step length models 

performed similarly for vision impaired subjects, but with slightly higher errors: 74 

mm for step length as a function of thigh angle peaks and 85 mm for step length as a 

function of gyro peaks and time between peak and zero crossing of gyro signal. It 

should be noted that the number of vision impaired subjects was less than the number 

of non–vision impaired subjects, which may have affected poor accuracies for vision 

impaired subjects. 

A simple technique to identify gait phases based on zero crossing detection of 

gyro signal and the first time derivative of gyro signal of a single thigh mounted IMU 

was presented in this thesis. Six key points of the stride cycle that are needed to 

detect sub phases can be detected using this technique. Four sub phases of the Stance 
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phase can be distinguished with this method. However, although the Swing phase 

can be identified, sub phases of Swing phase cannot be distinguished with this 

method. The advantages of this technique compared to the techniques available in 

literature are the lower computational cost and use of a single point sensor. 

An indoor activity detection algorithm based on the flexion–extension angle 

of the thigh was also proposed in this thesis. The flexion–extension angle estimation 

was performed using GIOF with data from a single thigh mounted IMU as input. The 

algorithm could recognize sitting, standing and walking activities with accuracies 

greater than 83% in an experiment conducted with the participation of multiple 

healthy male and female subjects performing sit–stand–walk activity chain. The 

errors were only reported during activity transitions. The feasibility of using the 

pressure sensor to enable recognising activities such as going in an elevator, on an 

escalator and on stairs, was also tested and was successful. When the single thigh 

mounted IMU and a thigh mounted pressure sensor is combined, it may be possible 

to detect most of the activities one would perform during indoor navigation. 

With these observations and results, it can be concluded that single axis 

(flexion–extension measuring axis) gyroscopic data of the single thing mounted IMU 

and the flexion and extension derived from a single thigh mounted IMU can be 

effectively used for step detection, indoor activity recognition and gait modelling for 

pedestrian navigation with higher accuracies compared to hip and foot mounted 

techniques and other acceleration based gait modelling techniques. The key 

advantages of the thigh mounted gyroscope based step detection and gait modelling 

techniques presented in this thesis are the simplicity and lower computational 

demands that enable them to be used in low cost, low end embedded devices, but 

experimentally proven to have comparable or better accuracies compared to the 

existing techniques that incorporate intense computations. 

 

6.2 Future Directions 

Directions for future research based on the observations and results presented 

in this thesis are as follows. 
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The pedometer algorithm presented in this thesis was implemented and tested 

by the author as well as by Kwon et al. on smartphones, where there are limitations 

in using the full control and capabilities of hardware. The performance of the 

algorithm may be further improved if it is implemented on an embedded device. The 

embedded device may be improved as a miniature wearable device so that the 

usability of the device increases and it becomes convenient to use. Further, the 

presented algorithm assumes that the device is kept in a fixed placement on the thigh 

which limits the flexibility of the algorithm. The usability and the flexibility of the 

algorithm can be improved by introducing tilt detection to detect if the device is 

tilted with respect to the thigh and selecting a different measurement axis and/or 

change the thresholds of the algorithm according to the tilt of the device. 

The GIOF was implemented and tested during this research only for a single 

axis. However, it can be extended to 2–D easily by considering both pitch and roll 

axes and into 3–D by adding the magnetometer reading to get a correction for yaw. 

It was shown that harmonic models can be used to extract different stride 

patterns a particular person or a group of people has and also to identify the variation 

of the stride pattern with varying circumstances, such as hard floor, sand, ramps and 

stairs. Further, harmonic models of thigh mounted gyro and/or the flexion–extension 

angle of the thigh may be used to study the following: 

 Compare normal stride patterns with stride patterns observed when a 

certain lower limb injury is present. 

 Compare pre and post operation stride patterns of a lower limb 

operation. 

 To recognize foot drop of patients who are having L6 problem. 

This thesis presented 6 commonly observed stride patterns of healthy 

subjects. However, to study the variation of stride pattern with different conditions 

and disabilities, a sufficient database for each stride pattern or subject group has to be 

collected. Models derived in such a way can then be used to identify the variation of 

stride pattern of a particular person with different activities and conditions. Further, 

these models can be used to identify a particular disability or to identify whether a 

recovering patient has achieved normal walking. In addition, the harmonic models of 

gyro signal and thigh angle obtained from a single thigh mounted IMU can be used 
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for activity detection. Further collection of data and analysis are needed for these 

applications. 
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APPENDIX B 

Custom Written Matlab Functions 

Harmonic Extraction Function 

function [h_f,h_amp,h_phs]=harmonics(f,r,alpha,n_ham) 

  

% =========================================================================== 

% This function pics harmonics and the DC component of a frequency spectrum 

% where the fundamental has the highest amplitude. Below are the definitions  

% of variables. 

%  

% Inputs: 

% f - frequencies of the spectrum 

% r - amplitudes of the spectrum 

% alpha - phases of the spectrum 

%  

% Outputs: 

% h_f - Harmonic frequencies where h_f(1) is 0 that represent DC component 

% h_amp - Harmonic amplitudes where h_amp(1) is the DC component 

% h_phs - Phases of harmonic where h_phs(1) is 0 to represent DC component 

% =========================================================================== 

  

[pks,index]=findpeaks(r); 

peak=max(pks); 

  

  

  

for i=1:1:length(index) 

    pksf(i)=f(index(i)); 

    if pks(i)==peak 

        if r(index(i)+1)>=0.99*r(index(i)) 

            fundamental=(f(index(i)+1)+f(index(i)))/2; 

            h_f(1)=fundamental; 

            h_amp(1)=peak; 

            h_phs(1)=(alpha(index(i)+1)+alpha(index(i)))/2; 

        else 

            fundamental=pksf(i); 

            h_f(1)=fundamental; 

            h_amp(1)=r(index(i)); 

            h_phs(1)=alpha(index(i)); 

        end 

         

    end 

end 

  

  

n=2; 

for i=1:1:length(f) 

    if roundn(f(i),-1)==roundn(fundamental*n,-1) 

        if n<5 

            if r(i-1)>r(i) 

                h_amp(n)=r(i-1); 

                h_f(n)=f(i-1); 

                h_phs(n)=alpha(i-1); 

            elseif r(i+1)>r(i) 

                h_amp(n)=r(i+1); 

                h_f(n)=f(i+1); 

                h_phs(n)=alpha(i+1); 

            else 

                h_amp(n)=r(i); 

                h_f(n)=f(i); 

                h_phs(n)=alpha(i); 

            end 

        else 

            h_amp(n)=r(i); 

            h_f(n)=f(i); 

            h_phs(n)=alpha(i); 

        end 
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        n=n+1; 

    end 

    if n==n_ham+1 

        break; 

    end 

end 

h_amp=[r(1) h_amp]; 

h_f=[0 h_f]; 

h_phs=[0 h_phs]; 

 

Function that Extracts Thigh Angle Peaks 

function [tMax,ThetaMax,tMin,ThetaMin]=thetaextrema(t,Theta) 

% Identify Maximas and minimas of thigh angle 

dataLength=length(t); 

j=0; 

l=0; 

threshold1=2; % Threshold for peak detection 

threshold2=-2; % Threshold for peak detection 

t1=0; 

t2=0; 

max_pre=0; 

min_pre=0; 

k=0; 

m=0; 

a=0; 

b=0; 

  

for i=2:1:dataLength-1 

    % Pick Maximas 

    if (Theta(i)>Theta(i-1))&&(Theta(i)>Theta(i+1)) 

        if Theta(i)>=threshold1 

            if t1==0 

                j=j+1; 

                tMax(j)=t(i); 

                ThetaMax(j)=Theta(i); 

                t1=t(i); 

                if max_pre~=0 

                    k=k+1; 

                    max_gap(k)=t(i)-max_pre; 

                end 

                max_pre=t(i); 

            elseif (t(i)-t1)>0.3 

                j=j+1; 

                tMax(j)=t(i); 

                ThetaMax(j)=Theta(i); 

                t1=t(i); 

                if max_pre~=0 

                    k=k+1; 

                    max_gap(k)=t(i)-max_pre; 

                end 

                max_pre=t(i); 

            end 

        end         

    end 

     

    % Pick Minimas 

    if (Theta(i)<Theta(i-1))&&(Theta(i)<Theta(i+1)) 

        if Theta(i)<=threshold2 

            if t2==0 

                l=l+1; 

                tMin(l)=t(i); 

                ThetaMin(l)=Theta(i); 

                t2=t(i); 

                if min_pre~=0 

                    m=m+1; 

                    min_gap(m)=t(i)-min_pre; 

                end 

                min_pre=t(i); 

            elseif (t(i)-t2)>0.3 

                l=l+1; 
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                tMin(l)=t(i); 

                ThetaMin(l)=Theta(i); 

                t2=t(i); 

                if min_pre~=0 

                    m=m+1; 

                    min_gap(m)=t(i)-min_pre; 

                end 

                min_pre=t(i); 

            end 

        end         

    end     

end 

 

Zero-crossing Detector 

function [tz,yzeros] = zerocrosss(t,y) 

     

% This function detects zero crossings of the time series y.  

% It interpolates y data to find the exact zero crossing point.  

  

    tz=[]; 

     

    for i=1:1:length(t)-1 

         

        if y(i)==0 

            tz=[tz,t(i)]; 

             

             

        elseif (y(i)*y(i+1))<0 

            m=(y(i+1)-y(i))/(t(i+1)-t(i)); 

            newtz=(-y(i)/m)+t(i); 

            tz=[tz,newtz]; 

             

             

        end 

         

    end 

    yzeros=zeros(size(tz)); 

     

end 

 

 

Matlab Code that was used to Extract Thigh Angle Peaks and Heal 

Contact Points 

clear; 

close all; 

  

mf='F'; 

  

fs=100; 

  

radindeg=180/pi(); 

deginrad=pi()/180; 

  

for subjectn=4:1:11 

    for trial=3:1:20 

        %% MAL Data Read 

        if trial<10 

            fileName1=['Data/' mf int2str(subjectn) '/Trial 0' ... 

                int2str(trial) '.csv']; 

  

        else 

            fileName1=['Data/' mf int2str(subjectn) '/Trial ' ... 

                int2str(trial) '.csv']; 

        end 

  

        if exist(fileName1, 'file') 
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            outputfolder=['Output/' mf int2str(subjectn) '/']; 

            A=exist(outputfolder, 'dir'); 

            if ~exist(outputfolder, 'dir') 

                mkdir(outputfolder) 

            end 

            rightoutfile=['Output/' mf int2str(subjectn) '/'  mf ... 

                int2str(subjectn) 'T' int2str(trial) '_right.csv']; 

            leftoutfile=['Output/' mf int2str(subjectn) '/' mf ... 

                int2str(subjectn) 'T' int2str(trial) '_left.csv']; 

            figfile=['Output/' mf int2str(subjectn) '/' mf ... 

                int2str(subjectn) 'T' int2str(trial) '.jpg']; 

  

            inputM=csvread(fileName1,5,0); 

  

            if size(inputM,2)==20 

                t=inputM(:,1)/fs; 

                rightleg=inputM(:,3:11); 

                leftleg=inputM(:,12:20); 

  

                rt=[]; 

                rth1x=[]; 

                rth1y=[]; 

                rth1z=[]; 

                rth2x=[]; 

                rth2y=[]; 

                rth2z=[]; 

                rhx=[]; 

                rhy=[]; 

                rhz=[]; 

  

  

                for i=1:1:length(t) 

                    if rightleg(i,1)&&rightleg(i,2)&&rightleg(i,3)&&... 

                            rightleg(i,4)&&rightleg(i,5)&&rightleg(i,6)... 

                            &&rightleg(i,7)&&rightleg(i,8)&&rightleg(i,9) 

                        rt=[rt;t(i)]; 

                        rth1x=[rth1x;rightleg(i,1)]; 

                        rth1y=[rth1y;rightleg(i,2)]; 

                        rth1z=[rth1z;rightleg(i,3)]; 

                        rth2x=[rth2x;rightleg(i,4)]; 

                        rth2y=[rth2y;rightleg(i,5)]; 

                        rth2z=[rth2z;rightleg(i,6)]; 

                        rhx=[rhx;rightleg(i,7)]; 

                        rhy=[rhy;rightleg(i,8)]; 

                        rhz=[rhz;rightleg(i,9)]; 

                    end 

                end 

  

                % rt=rt-rt(1); 

  

                lt=[]; 

                lth1x=[]; 

                lth1y=[]; 

                lth1z=[]; 

                lth2x=[]; 

                lth2y=[]; 

                lth2z=[]; 

                lhx=[]; 

                lhy=[]; 

                lhz=[]; 

  

  

                for i=1:1:length(t) 

                    if leftleg(i,1)&&leftleg(i,2)&&leftleg(i,3)&&... 

                            leftleg(i,4)&&leftleg(i,5)&&leftleg(i,6)&&... 

                            leftleg(i,7)&&leftleg(i,8)&&leftleg(i,9) 

                        lt=[lt;t(i)]; 

                        lth1x=[lth1x;leftleg(i,1)]; 

                        lth1y=[lth1y;leftleg(i,2)]; 

                        lth1z=[lth1z;leftleg(i,3)]; 

                        lth2x=[lth2x;leftleg(i,4)]; 

                        lth2y=[lth2y;leftleg(i,5)]; 

                        lth2z=[lth2z;leftleg(i,6)]; 

                        lhx=[lhx;leftleg(i,7)]; 

                        lhy=[lhy;leftleg(i,8)]; 

                        lhz=[lhz;leftleg(i,9)]; 

                    end 
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                end 

  

                % lt=lt-lt(1); 

  

                %% ======= Right Leg Analysis ======= 

  

                if rhx(1)>rhx(end) 

                    rthx=rth1x-rth2x; 

                else 

                    rthx=rth2x-rth1x; 

                end 

                rthy=rth1y-rth2y; 

                rthz=rth1z-rth2z; 

  

                rtheta=atan2(rthx,rthz)*radindeg; 

  

                %Filter Theta at 15 Hz 

                fc=15; 

                F_order=4; 

                Wn=fc/fs; 

                [b1,a1]=butter(F_order,Wn); 

  

                rtheta=filtfilt(b1,a1,rtheta); 

                 

                if isempty(lt) 

                    limits=[min(rt) max(rt)]; 

                elseif isempty(rt) 

                    limits=[min(lt) max(lt)]; 

                else 

                    limits=[min(min(lt),min(rt)) max(max(lt),max(rt))]; 

                end 

  

                 

  

                % Extremas of Right Leg 

                [rthetamax,irthetamax,rthetamin,irthetamin] = extrema(rtheta); 

                [rhzmax,irhzmax,rhzmin,irhzmin] = extrema(rhz); 

  

                irhzmin=sort(irhzmin); 

                rhzmin=rhz(irhzmin); 

  

                % Filter extremas 

                newirhzmin=[]; 

                newrhzmin=[]; 

                newirhzmin(1)=irhzmin(1); 

                newrhzmin(1)=rhzmin(1); 

                n=1; 

                for i=2:1:length(irhzmin) 

                    if (rhzmin(i)>newrhzmin(n)+2) || (rhzmin(i)<newrhzmin(n)-2) 

                        n=n+1; 

                        newirhzmin(n)=irhzmin(i); 

                        newrhzmin(n)=rhzmin(i); 

                    end 

                end 

  

                irhzmin=newirhzmin'; 

                rhzmin=newrhzmin'; 

  

                newirthetamax=[]; 

                newrthetamax=[]; 

                for i=1:1:length(irthetamax) 

                    if rthetamax(i)>=10 

                        newirthetamax=[newirthetamax;irthetamax(i)]; 

                        newrthetamax=[newrthetamax;rthetamax(i)]; 

                    end 

                end 

  

                irthetamax=sort(newirthetamax); 

                rthetamax=rtheta(irthetamax); 

  

                newirthetamin=[]; 

                newrthetamin=[]; 

                for i=1:1:length(irthetamin) 

                    if rthetamin(i)<=0 

                        newirthetamin=[newirthetamin;irthetamin(i)]; 

                        newrthetamin=[newrthetamin;rthetamin(i)]; 

                    end 
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                end 

  

                irthetamin=sort(newirthetamin); 

                rthetamin=rtheta(irthetamin); 

  

                fig1=figure;  

                subplot(411); plot(rt,rtheta,rt(irthetamax),rthetamax,... 

                    'r.',rt(irthetamin),rthetamin,'r.');  

                xlim(limits); grid on; 

                for i=1:1:length(irthetamax) 

                    text(rt(irthetamax(i)),rthetamax(i),... 

                        num2str(irthetamax(i)),'horiz','left','vert',... 

                        'bottom','fontsize',6); 

                end 

                for i=1:1:length(irthetamin) 

                    text(rt(irthetamin(i)),rthetamin(i),... 

                        num2str(irthetamin(i)),'horiz','left','vert',... 

                        'bottom','fontsize',6); 

                end 

  

                subplot(412); plot(rt,rhz,rt(irhzmin),rhzmin,'r.');  

                xlim(limits); grid on; 

  

                for i=1:1:length(irhzmin) 

                    text(rt(irhzmin(i)),rhzmin(i),num2str(irhzmin(i)),... 

                        'horiz','left','vert','bottom','fontsize',6); 

                end 

  

 

                %% ======= Left Leg Analysis ======= 

  

                if ~isempty(lt) 

                    if lhx(1)>lhx(end) 

                        lthx=lth1x-lth2x; 

                    else 

                        lthx=lth2x-lth1x; 

                    end 

                    lthy=lth1y-lth2y; 

                    lthz=lth1z-lth2z; 

  

                    ltheta=atan2(lthx,lthz)*radindeg; 

  

                    ltheta=filtfilt(b1,a1,ltheta); 

  

                    % Extremas of Left Leg 

                    [lthetamax,ilthetamax,lthetamin,ilthetamin] = extrema(ltheta); 

                    [lhzmax,ilhzmax,lhzmin,ilhzmin] = extrema(lhz); 

  

                    ilhzmin=sort(ilhzmin); 

                    lhzmin=lhz(ilhzmin); 

  

                    % Filter extremas 

  

                    newilhzmin=[]; 

                    newlhzmin=[]; 

                    newilhzmin(1)=ilhzmin(1); 

                    newlhzmin(1)=lhzmin(1); 

                    n=1; 

                    for i=2:1:length(ilhzmin) 

                        if (lhzmin(i)>newlhzmin(n)+2) || (lhzmin(i)<newlhzmin(n)-2) 

                            n=n+1; 

                            newilhzmin(n)=ilhzmin(i); 

                            newlhzmin(n)=lhzmin(i); 

                        end 

                    end 

  

                    ilhzmin=newilhzmin'; 

                    lhzmin=newlhzmin'; 

  

                    newilthetamax=[]; 

                    newlthetamax=[]; 

                    for i=1:1:length(ilthetamax) 

                        if lthetamax(i)>=10 

                            newilthetamax=[newilthetamax;ilthetamax(i)]; 

                            newlthetamax=[newlthetamax;lthetamax(i)]; 

                        end 

                    end 
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                    ilthetamax=sort(newilthetamax); 

                    lthetamax=ltheta(ilthetamax); 

  

                    newilthetamin=[]; 

                    newlthetamin=[]; 

                    for i=1:1:length(ilthetamin) 

                        if lthetamin(i)<=0 

                            newilthetamin=[newilthetamin;ilthetamin(i)]; 

                            newlthetamin=[newlthetamin;lthetamin(i)]; 

                        end 

                    end 

  

                    ilthetamin=sort(newilthetamin); 

                    lthetamin=ltheta(ilthetamin); 

  

  

                    subplot(413); plot(lt,ltheta,lt(ilthetamax),lthetamax,... 

                        'r.',lt(ilthetamin),lthetamin,'r.');  

                    xlim(limits); grid on; 

                    for i=1:1:length(ilthetamax) 

                        text(lt(ilthetamax(i)),lthetamax(i),... 

                            num2str(ilthetamax(i)),'horiz','left','vert',... 

                            'bottom','fontsize',6); 

                    end 

                    for i=1:1:length(ilthetamin) 

                        text(lt(ilthetamin(i)),lthetamin(i),... 

                            num2str(ilthetamin(i)),'horiz','left','vert',... 

                            'bottom','fontsize',6); 

                    end 

  

                    subplot(414); plot(lt,lhz,lt(ilhzmin),lhzmin,'r.');  

                    xlim(limits); grid on; 

  

                    for i=1:1:length(ilhzmin) 

                        text(lt(ilhzmin(i)),lhzmin(i),num2str(ilhzmin(i)),... 

                            'horiz','left','vert','bottom','fontsize',6); 

                    end 

  

                end 

  

                %% ===== Output Data ===== 

                 

                rightoutputM=[]; 

                leftoutputM=[]; 

  

                rightoutputM=[irthetamin,rthetamin;... 

                                0,0;... 

                                irthetamax,rthetamax;... 

                                0,0;... 

                                irhzmin,rhx(irhzmin)]; 

  

                if ~isempty(lt) 

                    leftoutputM=[ilthetamin,lthetamin;... 

                                0,0;... 

                                ilthetamax,lthetamax;... 

                                0,0;... 

                                ilhzmin,lhx(ilhzmin)]; 

                end 

  

                %% ===== Save ===== 

  

                csvwrite(rightoutfile,rightoutputM); 

                if ~isempty(lt) 

                    csvwrite(leftoutfile,leftoutputM); 

                end 

                saveas(fig1,figfile); 

  

                close(fig1); 

            end 

        end 

    end 

end 
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