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Several large mass extinction events have occurred throughout Earth’s history and 

significantly shaped life on our planet by both, wiping out a large variety of species 

on the one hand, and promoting the evolution of new life forms to fill empty niches 

on the other. The largest extinction occurred about 252 million years ago (Ma) at the 

Permian-Triassic boundary, wiping out 80-96% of all marine species. The Late 

Devonian extinction, which has been further investigated in this PhD project, is also 

ranked amongst the biggest mass extinction events in the Phanerozoic. Causes and 

nature of most extinction events are still poorly understood and their investigation 

seems particularly relevant in the present-day since scientific evidence points to 

perhaps another imminent mass extinction, this time predominantly driven by human 

impact such as large scale changes of natural environments and the promotion of 

climate change (e.g. burning of fossil fuels). 

The analysis of sedimentary biomarkers (i.e. molecular skeletons) and their stable 

isotopic composition bears a great potential for the investigation of recent and 

ancient palaeoenvironments including extinction horizons since they can be used to 

help reconstruct environmental and climatic conditions or organic matter (OM) 

sources in past depositional settings. Although some biomarkers are source specific 

and have been used as established palaeoenvironmental indicators for several 

decades, the field of biomarker research is highly dynamic. New relationships 

between organic constituents of palaeoenvironments and extant organisms are still 

explored to identify new biomarkers and establish origin or formation pathways of 

many sedimentary compounds which presently remain unknown. 

In this PhD-project a broad range of applications for sedimentary biomarker studies 

and stable isotope analysis was demonstrated by the reconstruction of 

palaeoenvironmental changes in (i) the recent Coorong Lagoon, an estuarine 

ecosystem in South Australia severely impacted by human practices and (ii) ancient 

marine environments associated with reef-systems affected by the Late Devonian 

extinction. A primary focus of this project was the reconstruction of salinity and 

water-column stratification. Both conditions can significantly impact estuarine and 

marine ecosystems and often correlate with each other. Water-column stratification 

was particularly widespread in (global) oceanic anoxic events associated with many 
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mass extinction events and may have also contributed to the Late Devonian 

extinctions. 

In Chapter 2 of this thesis, recent ecological changes in the northern Coorong 

Lagoon were investigated by the analysis of distributions and stable isotopic 

composition (δ13C and δD) of biomarkers as well as δ13C of bulk OM in a 

sedimentary core spanning the past ~5000 years. The aim was to reconstruct 

palaeoenvironmental conditions such as salinity and OM matter sources in the North 

Lagoon prior to European settlement, providing a natural baseline to explore the 

extent and nature of changes in these parameters which occurred as a direct result of 

human modifications to the complex natural water-regime. The Coorong is part of a 

terminal lake system at the mouth of the River Murray, which is of great ecological 

significance but has undergone a severe decline in biodiversity over the past decades 

largely driven by a significant increase of salinity caused by a progressive isolation 

of the lagoon complex by human practices as well as a prolonged drought from 

2000-2010. Changes in molecular distributions of long-chain n-alkanes, hopanoids 

and steroids as well as an increase in phytoplanktonic biomarkers and a shift in δ13C 

of bulk OM and n-alkanes indicated significant changes in OM sources and primary 

production in the North Lagoon after the 1950s, most likely due to the aquatic 

macrophytes changing towards a major algal and (cyano)bacterial input. δD profiles 

of n-alkanes revealed variable salinities throughout the Holocene but yet with an 

overall increasing trend. However, the most significant increase occurred over the 

past decades. The changes in the investigated biomarker parameters were 

consistently much more pronounced in sediments deposited after the 1950s 

coinciding with the implementation of substantial water management practices 

compared to variations in the older sediments representing several thousand years. 

Chapter 3 presents a new analytical approach with the potential to elucidate the 

origin and formation pathway of sedimentary methyltrimethyltridecylchromans 

(MTTCs). MTTCs are isoprenoid-substituted aromatic compounds and the “chroman 

ratio” between different isomers has been frequently used as a palaeosalinity 

indicator. It is still debated whether these compounds are directly biosynthesised by 

phytoplankton organisms or represent early diagenetic products from condensation 

reactions of phytol (predominantly algal-derived) with alkyl phenols (presumably 

higher plant-derived). In the latter case their isoprenoid and phenolic subunits would 
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largely originate from different source organisms, which may also be reflected by 

differences in the stable isotopic compositions of these moieties. Therefore a 

pyrolysis - gas chromatography - isotope ratio mass spectrometry (Py-GC-irMS) 

method was developed in this project to analyse the δ13C value of chroman fragments 

(i.e. the respective alkylphenol and pristenes). High accuracy and reproducibility of 

the method was demonstrated by analysis of an authentic 5,7,8-trimethyl-MTTC 

standard. However, matrix effects prevented the formation of the alkylphenol when 

isolates of this chroman from natural samples were analysed. Although sample 

preparation and/or pyrolysis conditions still require further optimization for the 

analysis of chromans in geological samples, the development and demonstration of 

this straight-forward method showed great potential for future applications to 

investigate MTTC-formation. A better understanding of the origin of MTTCs would 

also help to interpret variations in the chroman ratio with regards to more accurate 

salinity reconstructions. 

In Chapter 4 a novel conceptual model utilising MTTCs in combination with other 

molecular indicators for the reconstruction of freshwater incursions in marine 

palaeoenvironments was introduced and applied for the reconstruction of 

palaeoenvironmental conditions in a Devonian (Late Givetian-Early Frasnian) 

marine setting. The disposition of reef systems in this time period restricted water-

exchange between the somewhat enclosed embayment and the open ocean. A 

freshwater lens predominantly from riverine input was overlying the more saline 

bottom waters leading to persistent density stratification of the water-column with a 

sharp chemo-, pycno- and halocline at the interface. The high abundance of specific 

Chlorobi biomarkers indicated the presence of photic zone euxinia (PZE) which was 

promoted by the stagnant water column. PZE describes a condition where anoxia and 

high concentrations of hydrogen sulfide produced by anaerobic sulfate reducing 

bacteria in sediments or the lower water-column reach the photic zone. It represents 

elevated levels of biotic stress and has been associated with various mass extinction 

events. High chroman ratios (> 0.9) reflected the freshwater conditions in the 

epilimnion whereas pristane/phytane ratios < 1 were indicative of anoxia and higher 

salinities in the hypolimnion and sediments. The correlation of MTTC abundances 

with perylene, a polycyclic aromatic hydrocarbon (PAH) presumably originating 

from pigments in wood degrading fungi, may be indicative of a common terrigenous 
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source, supporting the formation of MTTCs during early diagenetic condensation 

reactions of higher plant derived alkylphenols with phytol. This formation pathway 

would also account for the similar δ13C values of phytane (phytol-derived) and 

MTTCs (n.b. due to the significantly higher number of carbon atoms in the 

isoprenoid subunit of MTTCs, this part of the molecule largely determines the 

overall δ13C value). 

In Chapter 5 a sedimentary core from the Canning Basin (WA) spanning the time 

period from close to or at the Givetian-Frasnian (G-F) boundary until later in the 

Frasnian was investigated with a comprehensive analytical approach which included 

molecular, elemental (C, N and S) and stable isotope (δ13C of OM, carbonates and 

biomarkers, δDkerogen and δ34Spyrite) analysis to reconstruct palaeoenvironmental 

changes associated with the Late Devonian extinctions. Although the most 

pronounced loss of species in the Late Devonian occurred at the Frasnian-Famennian 

(F-F) boundary, there have also been major biotic crises in the Late Givetian and 

possibly Frasnian as well as at the end of the Famennian which have been explored 

to a lesser extent. Chapter 5 analysed the same sediments studied in Chapter 4. 

Whilst the research in Chapter 4 mainly focussed on the basinal part of the core, 

Chapter 5 also investigated palaeoenvironmental settings later in the Frasnian, 

corresponding to the upper core section, and was mainly focussed on variations of 

the investigated parameters throughout the core for a potential correlation with 

extinction events in that time period. It also included additional elemental, biomarker 

and stable isotope parameters. Whereas the palaeoenvironment close to or at the G-F 

boundary represented a time period of elevated biotic stress and was characterised by 

a stratified water-column (enhanced gammacerane indices), anoxia (e.g. low Pr/Ph 

ratios) and PZE (abundance of Chlorobi biomarkers), the setting in the Frasnian 

appeared to be less restricted with more oxic conditions (e.g. Pr/Ph > 1) and no 

indications of severe biotic crisis (e.g. low abundances of gammacerane and absence 

of the Chlorobi derivatives palaeorenieratane and isorenieratane). Variations in 

hopane and sterane distributions indicated significant changes in bacterial and algal 

populations with an algal predominance in the lowermost part of the core and a 

significantly higher bacterial contribution in the upper section. Distinct sterane 

distributions in sediments deposited close to or at the G-F boundary may furthermore 

reflect input from freshwater algae or algal blooms due to terrigenous nutrient input. 
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Sediments throughout the whole core exhibited an exceptionally low thermal 

maturity which was evident in a low degree of biomarker isomerization as well as in 

low Tmax values from Rock Eval pyrolysis (< 421 °C) and palynological analyses of 

the spore colour (pale to mid yellow). The sediments also contained the presumably 

oldest preservation of biologically sourced C/N ratios. This further demonstrated the 

remarkable preservation of OM and biomarkers in the Gogo Formation, which 

represents the Givetian-Frasnian basin facies of the reef systems in the Canning 

Basin. 

This thesis presents the successful application of integrated biomarker, elemental and 

stable isotope approaches to reconstruct recent and ancient marine or estuarine 

depositional environments affected by significant ecological and environmental 

changes. It also further investigated or introduced various parameters for 

reconstruction of palaeosalinity and water-column stratification including δD 

analyses of n-alkanes and kerogens as well as a novel conceptual model based on 

abundances of MTTCs. Furthermore, a new analytical method which may be applied 

to investigate origin and formation pathway of MTTCs was introduced. 
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1. Introduction and overview 

 

 

Mass extinctions in Earth’s history (and in the near future?) 

Since life evolved on Earth there have been several major extinction events which 

wiped out a variety of life-forms but at the same time also left empty ecological 

niches and habitats for new and often more complex organisms to evolve and 

diversify. One of the first great biotic crises occurred in the Paleoproterozoic 

between ~2.5 and ~2.2 billion years ago with the oxygenation of the atmosphere 

driven by the rise of cyanobacteria which produced O2 as a product of oxygenic 

photosynthesis (e.g. Bekker et al., 2004; Catling and Claire, 2005). Although many 

organisms today have a metabolism depending on free oxygen, it was highly toxic to 

the majority of the mainly anaerobic life-forms present at that time. In addition the 

oxygenation of the atmosphere and the consequential removal of greenhouse gases 

was also most likely linked to a dramatic global cooling which created the 

Paleoproterozoic “Snowball-earth”-event (Pavlov et al., 2000; Kopp et al., 2005).  

Throughout the Phanerozoic, various biotic crises took place with the 5 biggest 

extinction events occurring in the Late Devonian and at the Ordovician–Silurian, 

Permian–Triassic, Triassic–Jurassic and Cretaceous–Tertiary boundaries as 

illustrated Figure 1.1 (e.g. Sepkoski 1986, 1993). The reconstruction of possible 

causes and extents of these mass extinctions and their often selective effects on 

different species are issues of ongoing investigation and many questions still remain 

to be solved (e.g. Bambach, 2006). It is now largely accepted by most scientists that 

the famous End-Cretaceous extinction (65 Ma), which wiped out the dinosaurs, is 
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associated with a large bolide impact (e.g. Alvarez et al., 1980; Kring, 2007). In 

contrast, the by far biggest of all extinctions at the Permian–Triassic boundary was 

most likely caused by the combined effects of different terrestrial events; i.e. 

dramatic global warming started by increased volcanic activity and further enhanced 

by outgassing of methane hydrates combined with persistently anoxic and sulfidic 

oceans emitting toxic gases such as H2S into the atmosphere, which impacted 

terrestrial as well as marine organisms (Grice et al., 2005a; Kump et al., 2005; Racki 

and Wignall, 2005; Nabbefeld et al., 2010a). However, a detailed reconstruction of 

incidents leading to many other extinction events including the Late-Devonian and 

Triassic-Jurassic extinctions has not been established so far. It also remains difficult 

to determine accurate duration and intensities of the Phanerozoic extinction events 

(e.g. Bambach, 2006). 

 

Figure 1.1: Total biodiversity of marine species throughout the Phanerozoic (after Sepkoski, 1993). 
Arrows mark the five major mass extinction events of Earth’s history. 
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Detailed investigations of causes, nature and effects of these events appear to be 

especially relevant for the present-day given the many scientific predictions of 

another imminent mass extinction which is believed to be largely driven or at least 

accelerated by anthropogenic activities such as large scale changes of natural 

environments and ecosystems, decimation of species or increased emission of 

greenhouse gases (especially CO2) as a result of fossil fuel burning and deforestation, 

ultimately leading to climate change (e.g. Myers, 1990; Dirzo and Raven, 2003; 

Wake and Vredenburg, 2008; Barnosky et al., 2011). 

This PhD-project demonstrates the great potential of sedimentary biomarker studies 

combined with stable isotope analysis for the investigation of conditions in recent 

and ancient palaeoenvironments and the reconstruction of changes which occurred in 

past ecosystems. Both of these techniques are frequently applied in organic 

geochemistry and their operation and application will be explained in detail 

throughout the following sections of this introduction. Recent environmental changes 

were investigated in the Coorong Lagoon, an ecosystem which has been severely 

affected by human practices, as well as conditions in palaeoenvironments associated 

with the Late Devonian extinctions, to show the broad range of applications of these 

organic geochemical and stable isotope techniques. 

Late Devonian extinctions 

The Devonian was a relatively warm time period in which extensive reef-systems 

mainly built by ancient rugose corals, stromatoporoids (extinct calcareous sponges) 

and calcareous algae and bacteria flourished in tropical, shallow waters (e.g. Playford 

et al., 2009). A Devonian timescale is shown in Figure 1.2 and a map of the Early 

Devonian world is displayed in Figure 1.3. Fish, in particular the extinct placoderms, 

continued to diversify rapidly and developed many unique morphological variations 

(Long and Trinajstic, 2010). Furthermore, the first lung-fish and early tetrapods 

evolved over the time period from the Givetian to the Late Famennian (Ahlberg et 

al., 1994; Clack, 2007). However, the most drastic environmental changes were 

caused by the rise of terrestrial plants. Primitive vascular land plants, which first 

occurred globally in the Upper Silurian (Steemans et al., 2009), started to diversify 

rapidly throughout the Devonian and were the first complex organisms to colonize 
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terrestrial environments (Chaloner, 1967). The development of more diversified 

tissues including deeper roots, led to enhanced weathering of rocks and the first 

significant formation of soil organic matter (e.g. Algeo and Scheckler, 2010). By the 

Givetian, primitive woody plants had evolved, and were forming widespread forests 

(Grice et al., 2009; Meyer-Berthaud et al., 2010; Mintz et al., 2010). This was 

accompanied by a decrease of atmospheric CO2 since the increasing terrestrial 

biomass acted as a carbon-sink. Furthermore, there were significant changes in 

sediments and in the cycling of nutrients and water (Walliser, 1996; Algeo and 

Scheckler, 2010). The first direct ancestors of seed bearing plants were reported from 

the Givetian (Gerrienne et al., 2004) and by the Famennian seed bearing plants were 

already quite common (e.g. Chaloner, 1967; Fairon-Demaret, 1996). 

 

 

Figure 1.2: Devonian timescale after International Commission of Stratigraphy (ICS) 2013 

 

The Late-Devonian extinction at the Frasnian–Famennian (F-F) boundary (Upper-

Kelwasser event) is regarded as one of the “big five” mass-extinction events 

described in the previous section (Sepkoski, 1986, 1993). However, it was not the 

only major biodiversity crisis occurring towards the end of the Devonian era; 

extinction rates were generally high and origination of new species low from the 

Middle Givetian until the Late-Famennian (Bambach, 2006). There were distinct 

extinction events in the Late Givetian (Walliser, 1996; Aboussalam and Becker, 

2001) and also the Famennian was closed by the Hangenberg-event, which almost 

reached the intensity of the F-F extinctions (Walliser, 1996; Caplan and Bustin, 

1999; Streel et al., 2000). These biotic crises mainly diminished organisms in 

shallow marine environments, in particular rugose corals and stromatoporoids, 

whereas terrestrial ecosystems were only marginally affected (Copper, 1986; 

Fagerstrom, 1994; McGhee, 2005). 
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Figure 1.3: Map of the Devonian world at 370 Ma. Modified after Ron Blakey, Colorado Plateau 
Geosystems, Arizona USA; http://cpgeosystems.com/paleomaps.html 

 

There are still many ongoing arguments about intensity, nature and causes of the 

Late Devonian biotic crises. One or several bolide impacts have been suggested as 

possible triggers (McLaren, 1970; Sandberg et al., 2002; Ellwood et al., 2003), 

however a combination of terrestrial causalities seems more plausible at this point 

since timing and intensities of potential impacts generally do not match the 

geological/paleontological records, although some local influence of impacts cannot 

be excluded (McGhee, 2005; Racki, 2005). Algeo and Scheckler (2010) suggested 

some major environmental changes were linked to the rise of terrestrial plants, e.g. 

global cooling as a result of reduced atmospheric CO2 and anoxia/eutrophication in 

the ocean generated from increased weathering and nutrient input. Other potential 

causes include volcanism as trigger for climate change or rapid sea-level fluctuations 

possibly linked to glaciations and combinations of all (Caputo and Crowell, 1985; 

Stanley, 1988; Murphy et al., 2000; Courtillot and Renne, 2003; McGhee, 2005). 

There is also evidence of at least episodically euxinic (i.e. anoxic and sulfidic) 

epicontinental oceans in different parts of the world from the Late Givetian until the 

early Carboniferous (Summons and Powell, 1986; Requejo et al., 1992; Joachimski 

et al., 2001; Brown and Kenig, 2004; Marynowski et al., 2000, 2011; Maslen et al., 

2009; Melendez et al., 2013a, 2013b). 
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Geological settings in the Canning Basin, Western Australia 

In the Canning Basin located in the Western Australian Kimberleys, a well exposed 

large Devonian barrier-reef extends over ~350 km. It is probably the most well 

preserved reef system from that time period which was largely unaffected by tectonic 

movements and other geological alteration (Playford et al., 2009). Furthermore, it is 

well known for its exceptionally well preserved fossils (including soft tissue) in 

calcareous nodules deposited within the Gogo Formation (e.g. Long and Trinajstic, 

2010; see Figure 1.4 for geological formations). Besides conventional fossils, some 

of these nodules also contain remarkably well preserved biomarkers, which are 

molecular fossils of biolipids in the specimen as well as of micro-organisms present 

in the time of deposition and involved in the nodule-formation (Melendez et al. 

2013a, 2013b). 

 

 
Figure 1.4: Formations in the Devonian reef systems of the Canning Basin modified after Playford et 
al. (2009) 
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and (ii) the Famennian Nullara sequence laid down largely unconformably over the 

Pillara sequence as a result of a significant drop in sea-level. 

The Pillara sequence comprises the Pillara Formation (platform facies), the Sadler 

Formation (marginal slope facies) and the Gogo Formation (basin facies). Especially 

the Gogo Formation is organic rich in most parts and gave rise to the high quality 

oils of the Canning Basin (Cadman et al., 1993; Barber et al., 2001; Greenwood and 

Summons, 2003; Maslen et al., 2009, 2011). Also the Pillara formation contains 

relatively well preserved organic matter (OM) compared to later platform facies. The 

Nullara sequence mainly consists of the Windjana and Nullara Formations 

(Famennian platform facies), the Virgin Hills Formation (Upper-Frasnian to Middle 

Famennian marginal slope and basin facies) and the Piker Hills and Bugle Gap 

Formations (Middle to Upper-Famennian marginal slope and basin facies). 

 

 

Figure 1.5: Different facies associated with reef systems; after Playford et al. (2009) 

 

Throughout the Givetian and until the Middle Frasnian rising sea-levels led to 

advancing reef platforms, whereas a global fall in sea-level in the latest Frasnian and 

Famennian caused retreating and backstepping of the reef-systems. The main reef-
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stromatoporoids and calcareous bacteria. Whereas the latter were relatively 

unaffected by the F-F extinction, corals and stromatoporoids were almost completely 

wiped out at that point, however they had already started declining in diversity and 

abundance earlier in the Frasnian (Becker et al., 1991; Fagerstrom, 1994; Wood, 

2004; Playford et al., 2009). Famennian reef-systems in the Canning Basin therefore 

largely consisted of stromatolitic bacteria. In the end of that epoch, reef building 

ceased altogether and throughout the Carboniferous and Permian the area was 

covered by large continental glaciers. 

Environmental conditions in the present day Coorong 

The Coorong comprises two shallow coastal lagoons (North and South Lagoon) and 

is located in South Australia. It is part of a terminal lake system at the mouth of the 

River Murray; a formerly complex ecosystem with a particularly high significance 

for migratory and native water-birds (Paton et al., 2009). The region is unfortunately 

a classical example of the detrimental effects human interference in natural processes 

and exploitation of resources can have. Furthermore, it is also representative of many 

other estuarine ecosystems in South Australia and around the world which have been 

similarly impacted by anthropogenic activities. However, the recent end of a severe 

drought and the associated flood has led to a short term improvement of the 

ecological situation. In addition, various remediation strategies have been recently 

implemented and future monitoring will evaluate their success. To be able to fully 

evaluate both the ecological deterioration following development of European 

settlements and the apparent ecological recoverability with the recently improved 

hydrological situation, the environmental conditions in the ecosystem (e.g. salinity or 

type of primary production at the base of the food-web) prior to human influence 

first need to be established. 

Human influence in the region began about 100 years ago. Prior to this water levels 

and salinities in the Coorong fluctuated dynamically as a result of seawater input 

from the Murray Mouth and freshwater input from the connected Lake system 

(which is supplied with water from the River Murray). This created a variety of 

different habitats in and around the lagoons supporting a diverse ecosystem (Boon, 
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2000; Geddes, 2003; Webster, 2005). However, the almost complete isolation of the 

Coorong from the other lakes through newly installed barrages (beginning in the 

1940s and intensifying in the 1950s), and an additional reduction of inflow from the 

River Murray as a result of excessive water abstraction and a severe drought from 

2000-2010, led to an increase of salinity, particularly in the South Lagoon, and a 

progressive siltation of the connection to the ocean. The overall consequences were 

the extinction of key species such as macrophytes, which were important primary 

producers at the base of the food-web, and a dramatic decline of biodiversity in fish 

and bird populations (Boon, 2000; Nicol, 2005). 

Significance of biomarkers in organic geochemistry 

Biomarkers are “molecular fossils” preserved in sediments or petroleum which 

originated from biolipids of once living organisms (Figure 1.6). Usually the more 

reactive functional groups of biolipids are lost after burial whereas the basic carbon 

skeleton often gets preserved (Peters et al., 2005, see also following sections for 

more details about biomarker formation and preservation).  

The identification and quantification of biomarkers in geological samples is of great 

significance for the reconstruction of recent and ancient environments since the 

biomarker composition may reflect the ecological communities and OM sources in 

the depositional environment. Some biomarkers are specific for a particular species, 

group of organisms or metabolic pathway whereas others have multiple sources from 

biolipids abundant in a variety of different organisms. Particularly the source specific 

biomarkers may also provide information about environmental conditions at the time 

of deposition such as salinity (ten Haven et al., 1985, 1988), water-column 

stratification (Sinninghe Damsté et al., 1995) or euxinia (Summons and Powell, 

1986) since many organisms prefer particular environments or produce certain 

molecules as a result of environmental stress. Exemplary applications of biomarker 

studies for the investigation of past environments are described from page 30 

onwards. Much ongoing research aims to establish the origin and formation 

pathways of novel biomarkers which often involves correlation to, and thus analysis 

of, lipids in extant organisms (e.g. Volkman et al., 1998; Grice et al., 2009). Further 
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applications of biomarker analysis are in the field of petroleum exploration and 

include oil-oil and oil-source rock correlations and estimation of quality and 

economic value of oil reservoirs (e.g. Hughes and Holba, 1988; Grosjean et al., 2009; 

Maslen et al., 2009). 

 

 

Figure 1.6: Simplified illustration of biomarker formation 

 

Organic matter (OM) deposition and preservation in sediments 

Biomass is formed by autotrophic primary producers which assimilate inorganic 

components such as CO2 into a large variety of biomolecules. The vast majority of 

biomass is generated by algae, cyanobacteria and terrestrial and aquatic plants via 

oxygenic photosynthesis. These primary producers form the base of the food-web 

and support a great diversity of heterotrophic organisms. Most of the detrital OM 

from dead organisms gets recycled by decomposers and is re-introduced into the 

food-web. A small part, however, accumulates in sediments together with inorganic 

debris. 

X, Y = H, OH
Z = H, OH, NHR 

death
burial

diagenesis

X

Y OH

OH

Z

OH

R2

R1

biomarkers / “molecular fossils” in sediments 

and petroleum
N N

NN
V O

N N

NN
Mg

OOO

O
phytyl

highly functionalized biolipids in living 

organisms

R1 = H; R2 = Me, H
or R1 = Me; R2 =H

high temperature 
and pressure



Chapter 1 

 

 

11 
 

Sediments are deposited in various environments which largely influence their 

composition and properties. Marine sediments can for example be deposited in deep 

or shallow water settings, and can be associated with reef-systems or in deltaic 

settings. All of these show significant differences with regard to the type of organic 

and inorganic debris typically present in the particular environment as well as other 

conditions such as water movement or currents. Continental depositional settings 

include lakes, rivers, lagoons or swamps but also glaciers or wind can transport 

particles and accumulate sediments. Sedimentary OM can be autochthonous, i.e. 

produced in situ; or allochthonous, i.e. transported from a different source; e.g. 

terrestrial OM transported into the oceans or lacustrine settings via rivers or surface 

runoff. Estuarine or deltaic ecosystems commonly have a large variety of OM-

sources whereas in many deep marine settings a large part of the deposited OM is 

autochthonous. 

After the accumulation of OM in sediments it continues to be subject to degradation 

and remineralisation. Only less than 0.1% of total biomass gets preserved over 

geological timescales (Holser et al., 1988). The best OM preservation is commonly 

achieved in anoxic depositional environments since anaerobic degradation processes 

are typically not as efficient as aerobic processes (Claypool and Kaplan, 1974; 

Moodley et al., 2005). Anaerobic conditions often develop in the bottom of stagnant 

and stratified water-columns where oxygen in the lower part gets consumed by 

aerobic decomposers and mixing with the oxygenated top water is prevented. This 

occurs for example during density stratification of a warm water layer over cold 

bottom waters or (riverine) freshwater over more saline water, resulting in the 

formation of a thermocline or halocline, respectively (e.g. Kling, 1988; Grice et al., 

1998a). OM preservation in sediments is also influenced by physical properties such 

as sedimentation rate and grain size (Huc, 1988). During the big mass extinction 

events large amounts of detrital material was created, often leading to global anoxia 

in the oceans and high rates of burial. The large amount of well-preserved OM often 

generated big petroleum reservoirs. 
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Transformation of sedimentary OM 

The transformation of sedimentary OM after burial is often referred to as thermal 

maturation. In the beginning these processes are largely driven by biological and 

chemical transformations (i.e. diagenesis) whereas with increasing burial depth and 

time thermal alteration become predominant (i.e. catagenesis). A simplified version 

of these processes and their relationship to fossil hydrocarbon generation is shown in 

Figure 1.7. 

 

 
Figure 1.7: Transformation of sedimentary OM after burial (modified after Peters et al., 2005) 
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already starts in the water-column and continues in the sediment where it is enhanced 

by the increasing temperatures with deeper burial. The processes during diagenesis 

are highly diverse and are strongly influenced by conditions in the depositional 

environment such as O2 or H2S levels and many other biochemical parameters 

(Brocks and Grice, 2011 and references therein). In some cases the type and 

abundances of the generated biomarkers can be indicative of diagenetic reactions 

specific to particular environments. Two examples are the preferential formation of 

phytane (I, see Figure A1.1 for chemical structures) over pristane (II) from the 

phytol side-chain of different chlorophylls (III), which occurs under anaerobic 

conditions (Brooks et al., 1969) or the enhanced formation of diasteranes (IV) in the 

presence of clay minerals (Rubinstein et al., 1975; van Kaam-Peters et al., 1998; 

Nabbefeld et al., 2010b). 

During diagenesis a highly complex macromolecular matrix (kerogen) is formed by 

enrichment of resistant biological (macro)molecules (e.g. algaenan, cellulose or 

diamondoids) due to selective degradation (Largeau and Derenne, 1993; Grice et al., 

2000, 2003) and the incorporation of these macromolecules and other smaller 

compounds in sedimentary OM through condensation and cross-linking reactions 

(Tissot and Welte, 1984). 

Catagenesis 

Catagenesis takes place at temperatures between ~50 to 150 °C and can last several 

million years. The kerogen is thermally altered, bonds are cracked and lower-

molecular-weight hydrocarbons are released to form liquid bitumen (e.g. Peters et al., 

2005, Killops and Killops, 2013). Bitumen is operationally defined as the free OM 

which is indigenous to the rock and extractable with organic solvents. It consists 

mainly of defunctionalised and isomerised saturated and aromatic hydrocarbons, 

including many biomarkers, as well as some polar compounds (Brocks and Grice, 

2011). With increasing pressures the bitumen will start to migrate through porous 

rocks. If it reaches an impermeable cap rock it may accumulate and form a petroleum 

reservoir. 
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The nature of kerogens and their potential for petroleum formation are determined by 

the type of source OM and the environmental conditions during early diagenesis. 

Several different types of kerogens can be distinguished on this basis:  

 Type I kerogens typically originate from algal rich OM with a low sulfur 

content, which was deposited in lacustrine or brackish environments. They 

are highly oil prone and form very high quality oils.  

 Type II kerogens usually originate from mainly marine OM and typically 

have higher sulfur contents and larger contributions of aromatic and ketone 

structures compared to Type I kerogens. They are also oil prone. 

 Type II-S kerogens represent Type II kerogens with a high sulfur content 

 Type III kerogens originate from terrestrial OM mainly composed of vascular 

plants, typically deposited in a deltaic environment. They yield less 

hydrocarbons compared to the other kerogens and are gas prone.  

 Type IV kerogens do not yield any hydrocarbons. 

Metagenesis 

Metagenesis is the process in which hydrocarbons (including biomarkers) are 

extensively cracked and transformed into gases at temperatures between ~150 and 

200°C (e.g. Peters et al., 2005, Killops and Killops, 2013). During this process gas 

reservoirs might develop. 

Maturity parameters 

The state of thermal maturity of a (potential) source rock indicates if it may have 

already generated oil or gas. Rocks that have undergone diagenesis but have not yet 

been thermally altered are referred to as immature. Rocks in and after the oil-

generative window (Figure 1.7) are defined as mature and post-mature, respectively. 

During the process of diagenesis and thermal maturation, sedimentary biolipids 

undergo various transformations including the loss of the more reactive functional 

groups and unsaturated bonds, leaving only the basic hydrocarbon skeleton. Another 

characteristic alteration which commonly occurs in biomarkers is a change in 

stereochemistry from the biological configuration, created by enzymes during 

biosynthesis, into the configuration with the greatest thermal stability. As an 



Chapter 1 

 

 

15 
 

example, biological (thermally unstable) and geological (thermally stable) isomers of 

hopanes derived from bacterial membrane lipids (Rohmer et al., 1984; Ourisson and 

Albrecht, 1992), are illustrated in Figure 1.8. Isomerisation at C-17 and C-21 occurs 

in all hopanes whereas isomerisation at C-22 can only take place in homohopanes  

(> C30) since an asymmetric centre at C-22 does not exist in the lower-molecular-

weight homologues. Hopanes with the 17α (H), 21β (H) configuration (αβ) exhibit 

the greatest thermal stability and are therefore dominant in oils and mature source 

rocks. In contrast, ββ-hopanes are the least thermally stable and are therefore only 

found in very immature sediments. 22S and 22R isomers are both abundant in mature 

samples with 22S showing a slightly higher thermal stability. The abundance ratio of 

22S/(22S + 22R) is frequently used to assess thermal maturity and approaches values 

of ~0.6 (for the C31-homologue) in endpoint mixtures of very mature crude oils 

(Seifert and Moldowan, 1980; Zumberge, 1987) 

 

 
Figure 1.8: Isomerisation of hopanes during diagenesis and thermal maturation 

 

Other biomarker parameters commonly used to determine thermal maturity are for 

example βα-hopane/αβ-hopane, the ratio of the trisnorhopanes: Ts/(Ts + Tm) (V, VI) 

or the 20S/(20S + 20R) ratios of steranes (VII). However, there are many more 

biomarker ratios which can be used as maturity parameters, most of these are listed 

in Peters et al. (2005). 

Another frequently used maturity indicator is the methylphenanthrene (VIII) index 

which has been used in several slightly modified versions (e.g. Radke et al., 1982; 

Boreham et al., 1988; Cassani et al., 1988). Due to the higher thermal stability of the 
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phenanthrenes (VIII) it can also be used at later stages of maturation when 

conventional biomarkers are already affected by metagenesis. 

Non-molecular maturity indicators are vitrinite reflectance (R0 %) and parameters 

determined by Rock-Eval pyrolysis (Tmax and production index (PI)). Vitrinite is 

derived from tissue of terrestrial plants and is an important component of many 

kerogens. With increasing thermal maturity it becomes more reflective and therefore 

the measured vitrinite reflectance (R0 %) can be used as a maturity parameter (Dow, 

1977). Values < 0.6 % and > 1.35 % correspond to immature and overmature 

sediments, respectively (Peters and Cassa, 1994). Rock Eval is a stepwise pyrolysis 

technique which is used frequently as a screening method to evaluate maturity and 

quality of source rocks. The analysed parameters include S1 and S2, which refer to 

the amount of volatile organic compounds in a rock and the amount of organic 

compounds generated from cracking of the kerogen, respectively. The frequently 

used parameter Tmax is the oven temperature corresponding to the maximum of 

hydrocarbon generation from a sample (maximum of the S2 peak) during Rock Eval 

analysis. PI is defined as S1/ (S1+S2). Tmax of < ~435°C and PI < 0.1 indicate 

immature OM whereas values of ~470°C and ~0.4 for Tmax and PI, respectively, are 

indicative of the wet gas window (Figure 1.7). For more details on Rock Eval 

analysis see Espitalié et al. (1977) and Peters (1986). 

Biomarker analysis 

This section is intended to give a brief overview of analytical techniques and basic 

steps commonly used for the analysis of sedimentary biomarkers. Some of these are 

illustrated in Figure 1.9. However, this discussion is not exhaustive and there are 

other means of analytical chemistry and preparation techniques which are applied in 

biomarker studies but are not mentioned here. 

The first step usually is to extract the free OM from the powdered sample. Typically 

a mixture of dichloromethane (DCM) and methanol is used for this purpose but 

solvents with a higher polarity might be more suitable in some cases including recent 

samples. Depending on the type of sample and availability of equipment either 

Soxhlet extraction, accelerated solvent extraction (ASE) or ultrasonic extraction can 

be performed. ASE is an automated extraction technique in which the sample is 
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loaded in a metal cell and extracted in a relatively quick timeframe under elevated 

temperature and pressure. 

In the next step the obtained total lipid extract (TLE, typically bitumen) is further 

fractionated in order to make it more amendable to gas chromatograpy mass 

spectrometry (GC-MS) and avoid co-elutions. This can for example be achieved by 

thin layer chromatography (TLC) or silica gel / alumina column chromatography 

with solvents of different polarities. Often various procedures are applied to further 

clean-up or separate the obtained fractions. An example for this is a 5Å-molecular 

sieving procedure which separates aliphatic fractions into n-alkanes and branched / 

cyclic compounds in (Grice et al., 2008b). Furthermore, polar compounds have to be 

derivatised if GC analysis is intended. 

 
Figure 1.9: Flowchart of basic sample preparation and analyses steps performed in many biomarker 
studies. GC-irMS = gas chromatography-isotope ratio mass spectrometry; GC-MS = gas 
chromatography-mass spectrometry; HPLC = high performance liquid chromatography; BSIA = bulk 
stable isotope analysis; EA = elemental analysis 
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The obtained fractions are usually analysed by GC-MS (used the most frequently), 

GC-flame ionisation detection (FID) or high performance liquid chromatography 

(HPLC) for identification and quantification of biomarkers and other compounds. 

Furthermore, they can be analysed by GC-isotope ratio mass spectrometry (irMS) to 

obtain the stable isotopic composition of biomarkers (see following sections). 

Bound biomarkers in the extracted residue (kerogen) can be released with various 

on- and off-line pyrolysis techniques and subsequently analysed by GC-MS. 

Furthermore, it is becoming more common to extract a second bitumen trapped in the 

inorganic matrix after acid digestion of carbonates and silicates with hydrochloric 

and hydrofluoric acid, respectively (e.g. Sherman et al., 2007; Nabbefeld et al., 

2010b; Holman et al., 2012). 

Finally, biomarker studies are frequently complemented with the analysis of bulk 

parameters such as elemental analysis (EA), Rock Eval pyrolysis or bulk stable 

isotope analysis (see following section for the latter). 

Significance of stable isotopes in organic geochemistry 

Conventional biomarker analysis in sediments and petroleum provides valuable 

information for detailed reconstructions of palaeoenvironments or oil–source rock 

correlations. However, the precursor lipids of many sedimentary hydrocarbons (e.g. 

n-alkanes or aryl isoprenoids) are abundant in many different types of organisms and 

thus their potential use as source specific biomarkers is often limited (e.g. Collister et 

al., 1994a; Grice et al., 1996a; Koopmans et al., 1996a; Volkman et al., 1998). 

Furthermore, the source organism or formation pathways of many biomarkers still 

remain unclear (e.g. Sinninghe-Damsté et al., 1987; Grice et al., 2009). Some of 

these problems can be overcome by complementing biomarker studies with stable 

isotope analysis. 

Most elements of geochemical interest have two to four non-radioactive (i.e. stable) 

isotopes which occur in relatively constant natural abundances. Stable isotopes of the 

major elements in biolipids are displayed in Table 1.1. The light isotopes are 

generally much more abundant than their heavier counterparts. C and H isotopes are 

used the most frequently in biomarker studies since they form the backbone of all 
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organic compounds. In this PhD project mainly stable isotope analysis of carbon, 

hydrogen and sulphur were performed. Therefore descriptions in the following 

sections focus only on these elements. 

Table 1.1: Stable isotope abundances (atom %, Faure and Mensing, 2005 and references therein) 

Carbon Hydrogen Sulfur  Oxygen Nitrogen 
12C 98.899 % 1H 99.985 % 32S 95.02 % 16O 99.762 % 14N 99.9634 % 
13C 1.111 % D 0.015 % 33S 0.75 % 17O 0.038 % 15N 0.3663 % 

34S 4.21 % 18O 0.200 % 

    36S 0.02 %     

 

Isotopic fractionation 

Although the overall abundance of stable isotopes remains constant, most physical, 

chemical and biological processes, such as phase transfer, chemical reactions or steps 

in metabolic pathways, lead to characteristic isotopic fractionations as a result of 

slightly different physicochemical properties of heavier and lighter isotopes. Lighter 

elements generally show much more significant isotope effects as a result of the 

bigger relative mass difference between the isotopes. 

Equilibrium isotope effects are defined as the isotopic fractionations which take 

place between different phases or compounds in a closed system in the state of 

thermodynamic equilibrium. The intensity of fractionation is temperature dependent 

and the effects are reversible. Since heavier isotopes tend to form stronger bonds 

they usually are enriched in the phase with stronger intra-molecular interactions or in 

molecules with stronger covalent bonds (Urey, 1947). An equilibrium isotope effect 

for example occurs between the liquid and vapour phase of water in a closed system 

where deuterium gets enriched in the liquid phase and depleted in the vapour. Kinetic 

isotope effects in contrast are unidirectional processes which lead to irreversible 

isotopic fractionations and a net change of the stable isotopic composition in a 

system. These processes for example include isotopic fractionation in metabolic 

pathways or diffusion reactions. Since heavier isotopes generally have slower 

reaction rates they usually become depleted in the products (Bigeleisen and 

Wolfsberg, 1958). 
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The stable isotopic composition of a particular sample or compound can often 

provide diagnositic information about its origin and geological/environmental fate. 

Therefore stable isotope analysis has a wide field of applications in various 

disciplines including forensic sciences (e.g. Benson et al., 2006), environmental 

science (e.g. tracing the origin or monitoring diffusion and degradation of 

environmental contaminants; Schmidt et al., 2004; Vitzthum von Eckstaedt et al., 

2011, 2012) or organic geochemistry (e.g. origin of biomarkers and reconstruction of 

palaeo-climates; Summons and Powell, 1986; Polissar and Freeman, 2010). 

Notation, standards and analysis 

Isotope abundances in samples are not measured in absolute values but as ratios of 

the heavier to the lighter isotopes relative to reference standards with a known 

isotopic composition. This is essential to avoid analytical errors since the abundances 

of heavier isotopes are very low and differences in isotopic compositions are 

minuscule. Stable isotopic compositions are reported in the δ-notation in units of ‰ 

relative to international reference materials. 

00
0

reference

sample
Sample 10001

R

R
δE 








  

R stands for the ratio of the heavier to the lighter isotope (e.g. 13C/12C).  

δ13C values are reported against Vienna Pee Dee Belemnite (VPDB), which is an 

international reference standard calibrated against the original marine limestone from 

the Pee Dee formation in South Carolina (USA). For δD analyses, Vienna Standard 

Mean Ocean Water (VSMOW) is used as an international standard and δ18O can be 

reported relative to either of the before-mentioned standards. For δ34S and δ15N 

Canyon Diablo Troilite (CD) and atmospheric nitrogen are used as international 

standards, respectively. 

Stable isotope analysis is performed on isotope ratio mass spectrometers (irMS). The 

main difference to conventional mass spectrometry is the utilization of fixed 

collector cups which simultaneously monitor abundances of selected ions at set m/z 

ratios. This is required to achieve the high precision and accuracy needed to detect 

the minor variations of isotope ratios in the analytes from different samples. To make 
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a sample amenable to irMS it is first converted into a suitable gas (CO2, N2, SO2 and 

H2 for C-, N-, S- and H-analysis, respectively) on which the isotope ratios are 

measured. With δ13C analysis, for example, the traces of m/z 44 (12CO2), 45 (13CO2) 

and 46 (12C18O16O) are monitored whereas the detectors for δD-analysis are set to 

m/z of 2 (H2) and 3 (DH). All abundances are measured relative to reference gas 

pulses of known isotopic composition which are measured shortly before and/or after 

the gas created from the analytes enters the irMS. 

A problem which occurs in δD-analysis is the formation of H3
+ as a by-product in the 

ion source. Since this creates an isobaric interference with DH, the H3
+-factor has to 

be determined for appropriate correction of the measured isotope ratios. A detailed 

description of this correction method can be found in Sessions et al. (2001). 

Bulk stable isotope analysis (BSIA) 

In BSIA the average isotopic composition of the whole sample, often a complex 

mixture of different compounds, is measured. Stable isotope ratios are determined in 

a continuous-flow (CF) system with an elemental analyser (EA, for C, N and S) or a 

Thermochemical conversion (TC)-EA (for H and O) connected to an isotope-ratio-

mass-spectrometer (irMS). The basic steps involve conversion of the sample into the 

suitable gas (see previous section), purification steps to remove by-products and 

analysis in an irMS relative to a reference gas of known isotopic composition. 

For 13C/12C and 15N/14N analysis the samples are weighed into tin capsules and 

oxidized in a high temperature combustion furnace (~1050°C). This is followed by 

several clean-up steps including a reduction furnace for the removal of remaining 

oxygen and reduction of NOx-compounds and a nafion-membrane or cold-trap to 

remove H2O. 34S/32S is analysed by conversion into SO2 using a similar setup but 

with a slightly different initial purification step. 

13C/12C of carbonates can be analysed with a gas bench sample preparation device 

connected online to an irMS. With this procedure carbonates in a sample are 

selectively digested and converted into CO2 by the addition of phosphoric-acid under 

a helium atmosphere. The generated CO2 is then diverted into the irMS. Organic-

carbon (OC) is not affected by this acid treatment.  
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For D/H and 18O/16O analysis the samples are weighed into silver capsules, pyrolysed 

in a glassy carbon furnace (~1300°C) and converted into H2 and CO, which are 

separated by gas-chromatography (GC) and diverted into the irMS. Schimmelmann 

(1991) developed a technique to account for exchangeable hydrogen in geological 

samples which involves equilibration of duplicate samples with two different D-

enriched waters of known δD (one each) prior to TC/EA-irMS analysis and the 

subsequent application of a mass balance. For examples H bound to aromatic C is 

considered readily exchangeable and therefore does not reflect the true isotopic 

composition of the original compound/sample (e.g. Schimmelmann, 1991). 

For BSIA of geological sediments the samples are often pre-treated to analyse 

particular fractions. For example selective δ13C or δ18O analysis of organic carbon 

(kerogen) can be achieved following the removal of carbonates with hydrochloric 

acid. BSIA is generally a robust and straight forward technique and is frequently 

applied in geological studies (e.g. Joachimski et al., 2001; Pancost et al., 2004; 

Dawson et al., 2007; Nabbefeld et al., 2010c). Compared to biomarker analysis or 

compound specific isotope analysis (following section) the effort for sample 

preparation is low. The application of BSIA in environmental studies is however 

limited to a single value representing the average stable isotopic value of all 

components in the analysed sample. 

Compound specific stable isotope analysis (CSIA) 

CSIA enables the determination of stable isotope ratios in individual compounds 

which can often provide a much more detailed insight into biogeochemical processes 

compared to BSIA. This section will focus on carbon (C-) and hydrogen (H-) CSIA 

since these were the techniques used in the current PhD project and are generally the 

most common stable isotopes measured in biogeochemical studies. However, 

methods enabling nitrogen, oxygen and sulfur CSIA have also been developed 

(Brand et al., 1994; Amrani et al., 2009). 

CSIA is commonly performed with a GC connected to an irMS via a suitable 

interface which quantitatively converts the chromatographically separated 

compounds into gases amenable to irMS. More recently high performance liquid 

chromatography (HPLC)–irMS facilities have been developed although various 
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analytical problems still remain to be solved before it will be suitable for a broader 

range of applications (Godin et al., 2005; Kujawinski et al., 2012). S-CSIA has been 

realised by interfacing a GC to high resolution (e.g., multicollector) ICP-MS 

(Amrani et al., 2009). 

For C-CSIA the analytes are converted into CO2 and H2O at ~850 – 940 °C in a 

combustion furnace containing CuO (and in some systems also NiO) as oxidant. H2O 

is subsequently removed by a liquid nitrogen-trap or a nafion-membrane. For H-

CSIA, compounds are reduced to H2, C and CO by high temperature conversion at 

~1450°C (without a catalyst) or ~1050°C (with a chromium catalyst). 

Since the development of carbon (C-) CSIA by Matthews and Hayes (1978) it has 

been widely used in geochemical studies for a range of applications including the 

elucidation of biomarker origins or reconstructions of changes in the carbon cycle 

(e.g. Summons and Powell, 1986; Grice et al., 2005a; Nabbefeld et al., 2010a). The 

technique for hydrogen (H)-CSIA was developed more recently (Burgoyne and 

Hayes, 1998; Hilkert et al., 1999) but is becoming similarly popular mainly due to its 

great significance in climate and salinity reconstructions (see “Significance of δD-

analysis” page 27). 

Significance of δ13C-analysis 

Together with hydrogen, carbon is the most common element in biomolecules (e.g. 

DNA, lipids, proteins, polysaccharides) and therefore an abundant constituent in 

biomarkers and fossil fuels. It also forms the greenhouse gases CO2 and methane, 

which are only minor components of the atmosphere but have a great significance for 

the climatic conditions on Earth. Over geological timescales variations in their 

concentrations have been associated with major climate change (e.g. Kopp et al., 

2005; Racki and Wignall, 2005). Furthermore, the carbonate system between 

atmospheric CO2, dissolved bicarbonate and carbonate precipitation and solution 

plays an important role in controlling the pH of oceans and other water bodies.  

Figure 1.10 illustrates basic processes in the global carbon cycle and shows average 

stable isotopic compositions of different carbon reservoirs. This model was designed 

to give a general overview of the isotopic fractionations caused by physical, 

chemical, biological, and anthropogenic processes occurring in nature. However, 
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these values represent the estimated global average and do not consider local 

variations, which can be quite large particularly in δ13C of biomass. These values are 

also representative of the present day environment and do not take into account 

variations which occurred throughout Earth’s history especially during mass 

extinction events, which were often accompanied by oceanic anoxic events and 

major perturbations in the carbon cycle. 

 

 
Figure 1.10: Global carbon cycle including average δ13C-values in major carbon reservoirs. The most 
significant isotopic fractionation takes place during carbon fixation (mainly photosynthesis); isotopic 
fractionations in heterotrophic pathways are comparatively minor (e.g. Peterson and Fry, 1987) a from 
Hoefs (1997), b from Peterson and Fry (1987) and references therein, c from Schidlowski (1988),  
d from Kroopnick (1985) 
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(Keeling et al., 1989). The enhanced burning of 13C-depleted fossil fuels may have 

also caused a slight decrease in this value (e.g. Friedli et al., 1986). The most 

significant isotopic fractionations in the carbon cycle occur (i) in the equilibrium 

between atmospheric CO2 and aqueous dissolved inorganic carbon (DIC; Mook et al. 

1974) and (ii) during CO2 fixation via photosynthesis.  
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The isotopic fractionation between gaseous CO2 and the marine carbonate system 

(CO2, gas ↔ CO2,aq ↔ HCO3
- ↔ CO3

2-) is temperature dependent and leads to 

relatively 13C-enriched marine DIC with δ13C values of up to 2 ‰ in surface oceans 

(Mook et al., 1974; Kroopnick, 1985; Zhang et al., 1995). Due to the input of 

isotopically light CO2 from respiration and decomposition of OM, the DIC in 

samples from greater depths as well as marine carbonates deposited in sediments, 

become slightly more depleted in heavier isotopes with δ13C values around 0. The 

largest isotopic fractionation of this type occurs during the formation of bicarbonate 

from CO2. The precipitation of carbonate minerals only causes very minor isotope 

effects (Zhang et al., 1995); however secondary effects during diagenesis may 

significantly alter δ13C values of carbonates (e.g. Scholle, 1995). In more isolated 

systems, such as lacustrine settings, δ13C values of components in the carbonate 

system can show large variations depending on factors such as the amount of 

weathering from enriched carbonate rocks or depleted allochthonous carbon sources 

derived from respiration or decomposition in soils (e.g. Rounick and Winterbourn, 

1986; Rau, 1978; Drummond et al., 1995). 

The largest isotopic fractionation in the carbon cycle is however caused by the 

preferred assimilation of 12C over 13C in photosynthetic CO2 fixation. The different 

biosynthetic pathways used by primary producers greatly vary in the extent of 

isotopic fractionation. Typical δ13C ranges of biomass generated by several types of 

primary producers are illustrated in Figure 1.11. The Calvin cycle (C3 pathway), 

which is carried out by the majority of terrestrial plants and almost all aerobic marine 

primary producers, causes a strong isotopic fractionation and generates biomass 

depleted by an average of ~21 ‰ from the carbon source. Typically δ13C in biomass 

produced by terrestrial plants using the C3 pathway ranges from -34 to -23 ‰ and 

shows a clear distinction to the less 13C-depleted biomass generated by plants using 

the C4 pathway, which mainly include grasses, saltmarsh or desert plants (Figure 

1.11). δ13C signatures of phytoplanktonic biomass and of plants using the CAM 

pathway exhibit a comparatively broad range (Figure 1.11). Carbon fixation via the 

(reductive) tricarboxylic acid (TCA)-cycle, which occurs predominantly in some 

facultatively and obligately anaerobic autotrophs including green sulfur bacteria 

(Chlorobiaceae; Sirevåg et al., 1977; Quandt et al., 1977) as well as several sulfur-
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dependent archaebacteria and eubacteria (e.g. Beh et al., 1993), leads to 

comparatively minor isotopic fractionations reflected in less 13C-depleted biomass 

(Quandt et al., 1977; Sirevåg et al., 1977; Schidlowski, 1988; Scott et al., 2006). 

Different metabolic pathways used for biosynthesis can also lead to distinct isotopic 

values between compound classes within the same organism (e.g. Sakata et al., 

1997). Long-chain n-alkanes in many terrestrial plants for example show a distinct 

zig-zag pattern, with a depletion of even-carbon numbered n-alkanes compared to 

their odd-numbered homologues (Grice et al., 2008b; Zhou et al., 2010). 

 

 
Figure 1.11: Stable carbon isotope ratios in different primary producers and fossil fuels. Adapted 
from Schidlowski (1988) and Peters et al. (2005) 
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lower CO2 abundances and a 13C-enrichment in organisms (Schidlowski et al., 1984; 

Grice et al., 1998b; Andersen et al., 2001). Growth forms of bacteria (e.g. planktonic 

or in microbial mats) and plant morphologies can also have an influence on the 

extent of isotopic fractionation (e.g. Freeman et al., 1994; Logan et al., 1999). The 

isotopic fractionation in metabolic pathways of heterotrophic organisms is 

comparatively minor and δ13C values therefore largely resembles the values in their 

diet (e.g. Rounick and Winterbourn, 1986; Grice et al., 1998c; Kohn, 1999). 

The δ13C signatures of fossil fuels are generally depleted and largely reflect their 

biological origin (e.g. Hoefs, 1997; see Figure 1.11). During maturation the lighter 

isotopes become enriched in bitumen, accordingly leading to heavier isotopic values 

of residual kerogen (Peters et al., 1981). Geothermal natural gas can reach very 

depleted δ13C values as low as -90 ‰ (Peters et al., 2005). Biogenic methane may be 

even more depleted as a result of fractionation effects in the metabolism of 

methanogens (Blair et al., 1993; Whiticar, 1999). 

Significance of δD-analysis 

Hydrogen is a significant element in geochemical studies since it is present in water 

as well as in all biomolecules. Due to its light atomic weight it shows the largest 

relative mass difference between its two stable isotopes and therefore also the biggest 

isotope effects. Whereas fractionation effects in the hydrological cycle are well 

known (Figure 1.12), isotope effects caused by biosynthetic pathways are just 

beginning to be investigated (e.g. Sessions et al., 1999, 2002; Chikaraishi and 

Naraoka, 2003; Bi et al., 2005; Smith and Freeman, 2006; Zhou et al., 2010). 

In the hydrological cycle significant isotopic fractionations take place during phase 

transfer processes, which lead to a progressive D-depletion in meteoric waters (i.e. 

water derived from precipitation) with increasing distance from the ocean and 

amount of precipitation (Figure 1.12). This is largely driven by the lower vapour 

pressure of water molecules containing heavy isotopes, leading to a D-enrichment in 

the liquid phase during evaporation as well as precipitation (Gat, 1996; Majoube, 

1971). Furthermore, δD signatures in meteoric waters are strongly influenced by 

factors such as temperature or latitude (Craig, 1961; Dansgaard, 1964; Kehew, 

2001). δD values in oceanic waters are close to 0, as defined by the international 
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standard VSMOV (see page 20), while meteoric waters can be depleted by more than 

400 ‰ under extreme conditions (e.g. Dawson, 1993 and references therein). The 

isotopic composition in meteoric waters is largely reflected in δD values of biolipids 

in local primary producers, which makes H-CSIA of biomarkers an excellent tool for 

reconstructions of palaeo-climates and hydrological conditions at the time of 

deposition (e.g. Sessions et al., 1999; Xie et al., 2000; Andersen et al., 2001; Dawson 

et al., 2004; Sachse et al., 2004a; Sauer et al., 2001; Schefuß et al., 2005;). However, 

fractionation effects during biosynthesis can show large variations between 

organisms using different metabolic pathways or plants with different growth form or 

leaf morphologies (Chikaraishi and Naraoka, 2003, 2007; Sachse et al., 2006; Hou et 

al., 2008; Pedentchouk et al., 2008; Polissar and Freeman, 2010;; Smith and 

Freeman, 2006). Nevertheless, changes in D/H ratios of higher plant biomarkers, 

which correlate with the isotopic composition in local precipitation (Sachse et al., 

2004; Sachse et al., 2006; Smith and Freeman, 2006; Hou et al., 2008; Mügler et al., 

2010; Polissar and Freeman, 2010), have been successfully used in various climate 

proxies including for example the reconstruction of African monsoon-patterns 

throughout the Late Quarternary (Schefuß et al., 2005; Tierney et al., 2011). δD 

values of biolipids in aquatic primary producers, such as phytoplankton or aquatic 

plants, reflect the D-abundance in the water-body (Sachse et al., 2006; Mügler et al., 

2010), which is in turn largely controlled by the amount of external freshwater input 

including precipitation (mostly D-depletion) and evaporation (D-enrichment; Gat, 

1996; Ingram et al., 1996). In many aquatic settings, in particular those with a marine 

influence, the same parameters also cause variations in salinity, which therefore often 

correlate with changes in δD signatures of biomarkers derived from aquatic 

organisms (Andersen et al., 2001; McKirdy et al., 2010; Mügler et al., 2010). In 

addition, salinity can also affect D/H ratios in some biolipids independently from the 

isotopic composition of the source water (Schouten et al., 2006, Sachse and Sachs, 

2008). This effect has been used for the development of a salinity proxy based on δD 

variations in long-chain alkenones derived from haptophyte algae (Schouten et al., 

2006; van der Meer et al., 2008). 

However, δD analyses of biomarkers and kerogens for environmental reconstructions 

are restricted to relatively immature sediments since hydrogen exchange with 
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formation water takes place during thermal maturation, which significantly alters the 

original D/H composition (Schimmelmann et al., 1999, 2001; Leif and Simoneit, 

2000; Sessions et al., 2004; Dawson et al., 2005; Nabbefeld et al., 2010c). 

 
Figure 1.12: Simplified hydrological cycle including approximate stable hydrogen isotopic 
compositions at mid-latitudes; values in parentheses represent potential ranges inferred from literature 
reports at different latitudes and temperatures. Modified after Dawson (1993).  

 

Significance of δ34S-analysis 

Sulfur occurs in nature in many forms with oxidation states ranging from -2 to +6. It 

is abundant in the atmosphere (SO2), geosphere (metal sulfides, elemental sulfur) and 

oceans (mainly SO4
2-) as well as in a variety of organosulfur compounds present in 

the biosphere, sediments and petroleum. Sulfur has four stable isotopes (see Table 

1.1) and is measured as 34S/32S, since 34S is the most abundant of the heavier isotopes 

and the relative mass difference to 32S is sufficient to cause significant isotope 

effects. 

The most significant isotopic fractionation in sulfur cycling takes place during 

bacterial sulfate reduction, which commonly occurs in anoxic marine sediments. 

Under laboratory conditions this process has caused a 34S-depletion in the generated 

sulfides by up to 30 ‰ depending on sulfate availability (Rees, 1973; Habicht et al., 

2002). In the natural environment even greater differences of up to ~50 ‰ between 

sulfate and associated pyrite (predominant inorganic sulfur species in sediments) 
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have been measured (Canfield and Thamdrup, 1994; Passier et al., 1999; Grice et al., 

2005a; Nabbefeld et al., 2010a). Light δ34S signatures in marine sedimentary pyrite 

can be indicative of widespread euxinia in the depositional environment. For more 

details about sulfur species and their stable isotopic compositions in euxinic marine 

environments see “Evidence of photic zone euxinia (PZE)” page 30ff. 

δ34S values of petroleum, which often contain bound sulfur in significant amounts, 

can vary over a wide range (-8 to 32 ‰; Faure and Mensing, 2005). Although these 

values only contain limited information about OM-sources and palaeoenvironmental 

conditions (due to significant isotopic fractionations by relatively unknown reactions 

during S-incorporation) δ34S analysis of petroleum can be very useful in oil-oil 

correlations (e.g. Gaffney et al., 1980). Furthermore, δ34S analysis of metal sulfides 

finds applications in the investigation of ore deposits (e.g. Kajiwara and Krouse, 

1971; Rye and Ohmoto, 1974). 

S-CSIA has only been developed recently (Amrani et al., 2009), therefore 

investigations of δ34S compositions of natural organosulfur compounds are still in 

very early stages (e.g. Amrani et al., 2012). 

Reconstruction of palaeoenvironments using biomarkers and stable 

isotopes 

There are numerous source specific biomarkers or biomarker ratios and stable 

isotope parameters which can be indicative of different OM-sources, environmental 

conditions, maturities or depositional ages. Many of these have been summarized and 

reviewed by Peters et al. (2005), Brocks and Grice (2011) and Grice and Brocks 

(2011). This section describes selected environmental and source indicators 

(including biomarkers as well as compound specific and bulk stable isotopic 

compositions) for ecological conditions of particular relevance to the present 

research project. 

Evidence of photic zone euxinia (PZE) 

Photic zone euxinia (PZE) is a condition which can develop in marine settings with a 

stagnant water-column, where anoxia and high concentrations of toxic H2S produced 
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by anaerobic sulfate reducing bacteria (SRB) in or near sediments (Reaction 1.1) 

extend to the photic zone (i.e. zone with enough light penetration for photosynthesis 

to occur; see Figure 1.13). In the present day this phenomenon only occurs 

persistently in very few locations such as some isolated deep Fjords (e.g. Anderson et 

al., 1988; Millero, 1991) and in the Black Sea, which exhibits a sharp chemocline as 

a result of permanent density stratification with freshwater over saline bottom waters 

(Murray et al., 2007). During some periods in the past, however, PZE prevailed 

globally in oceanic anoxic events (OAE) associated with several big mass extinctions 

including the Permian–Triassic (P-T) extinction (Grice et al., 2005a; Summons et al., 

2006; Hays et al., 2007; Nabbefeld et al., 2010a) and several Mesozoic events 

(Sinninghe Damsté and Köster, 1998; Pancost et al., 2004; Jaraula et al., 2013). In 

some cases, when H2S in bottom waters exceeds a certain threshold, the chemocline 

can abruptly move upwards and rise to the water surface, leading to outgassing of 

toxic H2S (Kump et al., 2005). This phenomenon has been observed periodically in 

present day fjords (Skei, 1988; Meyer and Kump, 2008) and most likely also 

occurred persistently at the P-T extinctions (Grice et al., 2005a; Kump et al., 2005; 

Nabbefeld et al., 2010a). Evidence of PZE has also been reported in Middle to Late 

Devonian sediments from different parts of the world, which may have potentially 

been a driver in the Late Devonian extinctions (see “Late Devonian extinctions” page 

3 ff.). However, at least some of these events in the Devonian were only episodical as 

indicated for example by bioturbation in sediments (Brown and Kenig, 2004). 

SH2HCOSOO2CH 2
-
3

-2
42   (1.1) 

Green and brown pigmented Chlorobiaceae (both referred to as “green sulfur 

bacteria”, GSB) are obligate anaerobic phototrophs, which fix CO2 via anoxygenic 

photosynthesis utilising H2S generated by SRB as an electron donor (Reaction 1.2). 

Therefore they can only thrive under PZE conditions or occasionally in thick 

microbial mats in shallow waters, where euxinic microenvironments are created 

within the mat structures (Nicholson et al., 1987; Brocks and Pearson, 2005). Since 

Chlorobiaceae utilize the TCA-cycle for carbon fixation, their biolipids are less 13C-

depleted compared to those of most other marine phytoplankton (see “Significance of 

δ13C-analysis” page 23). 
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OHOCH2SCOS2H 22
hν

22   (1.2) 

There are several source specific biomarkers derived from unique carotenoids and 

bacteriochlorophylls in the photosystem of Chlorobiaceae, which provide 

unequivocal evidence for PZE in the depositional environment if significant input 

from microbial mats can be excluded. These include for example isorenieratane (IX), 

palaeorenieratane (X), chlorobactane (XI), specific maleimides (XII) or a suite of 

relatively 13C-enriched 2,3,6-aryl isoprenoids (XIII) (Summons and Powell, 1986, 

1987; Requejo et al., 1992; Grice et al., 1996a; Grice et al., 1996b; Koopmans et al., 

1996b). 2,3,6-Aryl isoprenoids (XIII) can however also be derived from β-carotene, 

which is a non-specific biomarker, abundant in many organisms (e.g. Koopmans et 

al., 1996a). Especially if no intact C40 carotenoids (e.g. isorenieratane; IX) or other 

specific biomarkers for Chlorobiaceae are present in the same sample, the origin of 

2,3,6-aryl isoprenoids (XIII) should be confirmed by CSIA.  

 

 

Figure 1.13: Illustration of photic zone euxinia with associated organisms, typical pigment 
biomarkers and some basic steps of sulfur cycling in a euxinic marine environment. Purple sulfur 
bacteria and green pigmented Chlorobiaceae usually thrive in water depths up to ~13 and 20 m, 
respectively, whereas brown pigmented Chlorobiaceae require less light and grow in depths of up to 
80 m (Brocks and Pearson, 2005 and references therein) 
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Typical organisms present at PZE, their interactions and some associated pigments 

yielding characteristic biomarkers are displayed in Figure 1.13. Purple sulfur 

bacteria (PSB, Chromatiaceae) are also anoxygenic phototrophs which flourish 

under these conditions and usually grow in a layer above the green pigmented 

Chlorobiacea on the upper end of the chemocline. Brown pigmented Chlorobiaceae 

require less light for photosynthesis than the other species and can grow in depths of 

up to 80 m (Brocks and Pearson, 2005 and references therein). However, unlike 

Chlorobiaceae, many species of PSB are facultative anaerobes and capable of using 

a wider range of electron donors for photosynthesis if required (de Wit, 1992 and 

references therein). Therefore PSB derived biomarkers such as okenane (XIII) have 

to be interpreted accordingly. 

A further indication of widespread euxinia in marine environments can be a 34S-

depletion in sedimentary pyrite (FeS2) and high S/C ratios (e.g. Grice et al., 2005a; 

Meyer and Kump, 2008). In present day conditions SO4
2- in ocean water exhibits 

relatively constant δ34S-values around +20 ‰ (Canfield and Teske, 1996; Faure and 

Mensing, 2005) although alterations of this value have been reported in persistently 

euxinic environments (values < 20 ‰ in upper water-column, values > 20 ‰ in 

lower water-column; e.g. Anderson et al., 1988). Similar varitions have also occurred 

throughout Earth’s history, in particular during mass extinction events (e.g. Newton 

et al., 2004; Kampschulte and Strauss, 2004; Wortmann and Paytan, 2012). A major 

isotopic fractionation takes place during the reduction of SO4
2- to H2S by SRB in 

surface sediments or in the water column with unlimited access to SO4
2-. In deeper 

sediments, which represent a more closed system, significantly less fractionation 

occurs during H2S formation. In the case of an oxic/non-euxinic water-column, H2S 

formation is restricted to sediments and therefore less 13C-depleted isotopic 

signatures occur. Some of the H2S in the water column as well as in sediments is 

scavenged by Fe2+ species, which are commonly present in anoxic seawater and 

originate from dissolution of iron oxides or hydroxides (Passier et al., 1999), and 

deposited mainly as pyrite without any major isotopic fractionation (Faure and 

Mensing, 2005). In laboratory experiments with cultured and natural SRB, 

fractionations during SO4
2- reduction (under high [SO4

2-]aq) led to a 34S-depletion in 

the product of up to ~30 ‰ (Rees, 1973; Habicht et al., 2002). However, in natural 
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environments even greater depletions of ~50 or 60 ‰ from average ocean water 

SO4
2- is often measured in associated sulfides (Canfield and Thamdrup, 1994; 

Canfield and Teske, 1996; Passier et al., 1999). Under persistent PZE the sulfide pool 

in seawater can become more depleted if the sulfur produced by Chlorobiaceae is 

repeatedly re-oxidized through anaerobic bacterial sulfur disproportionation 

(Reaction 1.3; leading to only relatively minor 34S-enrichment in sulfate) or in the 

oxygenated zone and reduced again by SRB, leading to a further depletion of H2S 

(Jørgensen, 1990; Canfield and Thamdrup, 1994; Canfield and Teske, 1996). 

However, reservoir effects in the SO4
2- pool, particularly at greater depths, as a result 

of enhanced burial of isotopically light pyrite or outgassing of depleted H2S can also 

have the opposite effect in some environments and lead to a 34S-enrichment in the 

remaining SO4
2- (Anderson et al., 1988; Newton et al., 2004; Grice et al., 2005a). 

  2HSOS3HO4H4S 2
422

0
  (1.3) 

Reconstruction of salinity 

Changes in the salinity of an aquatic ecosystem can have a profound impact on 

biodiversity and the types of organisms present in a particular environment. For 

example in the Coorong a significant increase in salinity, caused mainly by human 

alterations to the natural water regime, was likely the main driver of the extinction of 

key seagrass species and significant alteration of in situ primary production (see 

“Environmental conditions in the present day Coorong” page 8 and Chapter 2). 

Changes in salinity over time can also be an indication of fluctuating water levels 

and climatic conditions since they co-vary with the amount of evaporation and 

precipitation. Furthermore, high salinities in combination with freshwater input can 

also lead to density stratification promoting anoxia or euxinia in the bottom waters 

(see previous section).  

As described previously in “Significance of δD-analysis” (page 27), changes in δD 

signatures of sedimentary biomarkers derived from aquatic primary producers are 

often indicative of salinity variations. Generally, higher salinities are reflected in a 

D-enrichment in water and phytoplankton (page 28). The δ13C values of 

phytoplanktonic biomarkers may also be indicative of salinity variations which 

influence the solubility of CO2, the carbon source of most phytoplankton. A 
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significant increase in salinity can therefore be reflected in a 13C-enrichment in 

primary producers (for a more detailed explanation see page 26). However, there are 

many more parameters which can have a bigger influence than salinity on the δ13C of 

primary producers. Variations in the stable isotopic composition of biolipids as a 

result of metabolic pathways are generally more pronounced in δ13C compared to δD 

(e.g. Chikaraishi and Naraoka, 2003; Polissar and Freeman, 2010).  

Another phenomenon which is often associated with hypersaline depositional 

environments is an even-over-odd predominance in n-alkanes, often with an 

unusually high relative abundance of the C22 n-alkane (ten Haven et al., 1985, 1988). 

Accordingly ten Haven et al. (1988) introduced the R22-index (2×n-C22/(n-C21+n-C23) 

as an indicator of hypersalinity. Furthermore, the enhanced relative abundance of an 

extended hop-17(21)-ene (XVII) series (up to C35) and regular extended αβ-hopanes 

(ten Haven et al., 1985, 1986, 1988) are an indication for hypersaline 

palaeoenvironments. 

Pristane (II) and phytane (I) in geological samples are predominantly derived from 

the phytol side-chain of chlorophyll a (III) in oxygenic phototrophs (Brooks et al., 

1969). However, there are also other known sources of these isoprenoids including 

bacteriochlorophylls in PSB, archaeal membrane components (Chappe et al., 1982; 

Rowland, 1990), zooplankton (Blumer et al., 1963) or the diagenetic formation of 

pristane (II) from compounds such as tocopherols (XV), or 

methyltrimethyltridecylchromans (MTTCs; XVI; Goossens et al., 1984; Li et al., 

1995). The pristane/phytane ratio is commonly used as an indicator for the redox 

potential of depositional environment with values < 1 indicative of reducing 

conditions (Didyk et al., 1978). However, this ratio also depends on salinity, with 

lower values generally occurring in more saline environments (ten Haven et al., 

1985; Schwark et al., 1998).  

The MTTC ratio of 5,7,8-trimethyl-MTTC/total MTTCs has proven to be a reliable 

indicator for palaeosalinities (Sinninghe-Damsté et al., 1987, 1993; Grice et al., 

1998d; Schwark et al., 1998). In freshwater settings the 5,7,8-trimethyl-MTTC is 

predominant and the 8-methyl-MTTC is absent whereas in hypersaline settings 

mono- and dimethyl-MTTCs are a lot more abundant. However, in depositional 

settings with a stratified water-column the application of the chroman ratio to infer 
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palaeosalinities might be less clear. The chroman ratio seems to reflect the salinity in 

the surface water in these cases (Sinninghe Damsté et al., 1993). Although the 

relation of the chroman ratio to salinity in the palaeoenvironment has been well-

studied, the origin and formation pathway of MTTCs (XVI) remain unclear (see 

following section).  

Gammacerane (XVIII) is not a direct indicator of salinity, however its presence 

reflects a density stratification of the water column, which is often the result of 

saline/hypersaline bottom waters overlain by freshwater (e.g. Sinninghe Damsté et 

al., 1995; Grice et al., 1998a). The predominant source of gammacerane (XVIII) in 

sediments is tetrahymanol (XIX), a membrane component of bacteriovorous 

protozoans living at the oxic/anoxic interface in the water-column (Sinninghe 

Damsté et al., 1995). Gammacerane (XVIII) is often quantified relative to the regular 

αβ-hopane (“gammacerane index” = gammacerane/(gammacerane + αβ-hopane)). 

Methyltrimethyltridecylchromans (MTTCs) 

As mentioned previously, the abundance of 5,7,8-trimethyl-MTTC relative to other 

MTTCs (XVI) is an excellent indicator for palaeosalinities. However, it remains 

unclear how these compounds are formed or why their ratio reflects salinity. MTTCs 

(XVI) have been reported in significant abundances in many sediments and crude 

oils from various depositional environments (Sinninghe-Damsté et al., 1987; 

Schwark and Püttmann, 1990; ten Haven et al., 1990; Li et al., 1995; Grice et al., 

1998a; Schwark et al., 1998). Only certain isomers of mono-, di- and trimethyl-

MTTCs occur in geological samples (see Figure A1.1; Sinninghe-Damsté et al., 

1987). So far, MTTCs (XVI) could not be isolated from any organisms and there is 

an ongoing debate whether these compounds are true biomarkers with a biological 

origin or if they are formed in condensation reactions during (early) diagenesis 

(Sinninghe Damsté et al., 1993; Li and Larter, 1995; Li et al., 1995; Sinninghe-

Damsté and De Leeuw, 1995; Zhang et al., 2012). Despite a structural similarity to 

tocopherols (XV), these are not thought to be feasable precursors due to the hydroxyl 

group at C-6 (Sinninghe-Damsté et al., 1987; Li et al., 1995). On account of the 

limited number of MTTC isomers present in geological samples (XVI) and the 

influence of salinity in surface water on the chroman ratios, Sinninghe Damsté et al. 
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(1993) suggested a direct biosynthetic origin from phytoplankton. On the contrary, Li 

et al. (1995) proposed the formation of MTTCs (XVI) through condenstion reactions 

of presumably higher plant-derived alkylphenols (e.g. bound in lignin) with phytol 

from the sidechain of chlorophylls (most commonly derived from phytoplakton). 

They demostrated the generation of MTTCs (XVI) in various condensation reactions 

between several free or bound alkylphenols with phytol or chlorophyll a (III). 

Furthermore, they showed that pristenes were generated from pyrolysis of MTTCs 

(XVI) and therefore suggested these compounds as a likely source of pristane (II) in 

mature geological samples. 

Perylene 

Perylene (XX) is an unsubstituted PAH which is abundant in many Mesozoic and 

Cenozoic sediments (e.g. Blumer, 1960; Orr and Grady, 1967; Aizenshtat, 1973; 

Laflamme and Hites, 1978) and occasionally also occurs in samples as old as the 

Devonian (Grice et al., 2009). Whereas the majority of unsubstituted PAHs originate 

from incomplete combustion processes or anthropogenic contamination, perylene 

(XX) has a different, but still unclear origin. Only small amounts of this compound 

are formed during combustion of organic materials (Kawka and Simoneit, 1990; 

Jenkins et al., 1996) and its abundance profiles usually differ to those of other 

combustion PAHs (Jiang et al., 2000; Atahan et al., 2007; Grice et al., 2009; Suzuki 

et al., 2010). Perylene (XX) is almost exclusively found in sediments deposited under 

reducing conditions (Aizenshtat, 1973; Wakeham et al., 1980). Furthermore, a 

diagenetic origin of perylene (XX) has now been widely accepted, based on its 

increasing abundances with burial depth which commonly occurs in recent settings 

(Orr and Grady, 1967; Aizenshtat, 1973; Wakeham et al., 1980; Gschwend et al., 

1985). 

A likely source seems to be quinone pigments (XIX) abundant in a variety of extant 

organisms including wood-degrading fungi, crinoids and some plants and insects 

(Jiang et al., 2000; Grice et al., 2009; Suzuki et al., 2010). Suzuki et al. (2010) found 

loosely correlated perylene (XX) abundances with the amount of terrigenous OM 

input in Cretaceous to Paleogene sediments and suggested a fungal origin based on 

distinct δ13C signatures of perylene (XX). In addition, perylene (XX) has been linked 
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to wood/lignin degradation in Holocene sediments by its appearance in intervals with 

woody vegetation and an inverse correlation to the lignin biomarker guaiacol, all 

described in Grice et al. (2009). They furthermore analysed various sediments and 

crude oils from different time periods and did not find perylene (XX) in samples 

deposited prior to the rise of vascular plants or in exclusively marine depositional 

environments. However, despite its structural similarities to quinone pigments and its 

association with fungal wood degradation, a chemical formation pathway has not 

been proposed so far. Nevertheless, high abundances of perylene (XX) imply an 

anoxic depositional environment and in many cases also terrestrial input and the 

presence of (wood degrading) fungi or possibly other quinone pigment bearing 

organisms such as crinoids. 

Aims of the thesis 

The main objectives of this thesis were to explore biomarker and stable isotope 

approaches for the reconstruction of environmental and ecological changes in recent 

and ancient depositional settings with a particular focus on reconstructions of 

palaeosalinity and water-column stratification. A specific interest was to further 

investigate the origin and formation pathway of MTTCs in geological samples and 

their significance in palaeoenvironmental reconstructions, not only as palaeosalinity 

indicators but also in novel applications as potential markers for terrigenous input 

and riverine freshwater incursions (possibly leading to water-column stratification). 

Another aim was to use comprehensive biomarker, elemental and stable isotope 

studies to gain a more detailed knowledge on environmental changes (i) in a 

depositional setting associated with ancient reef systems, which were severely 

affected by the Late Devonian extinctions, and (ii) in the recent Coorong Lagoon, 

which is representative of modern ecosystems undergoing severe ecological declines 

as a result of human impact. In both environmental settings salinity and freshwater 

incursion were major parameters influencing the ecosystem conditions. 

Chapter 2 

The Coorong region is an estuarine ecosystem in South Australia which has been 

significantly affected by human alterations to its natural water-regime (page 8). 
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Previous studies of the Coorong Lagoons indicated significant changes in primary 

production (Krull et al. 2009; McKirdy et al. 2010) as well as an increase in salinity 

(e.g. Webster 2005) which occurred as a direct result of the human water-

management and a prolonged drought. The objectives of Chapter 2 were to 

investigate OM sources and salinity in the northern Coorong Lagoon prior to human 

influence and further explore the nature and extent of changes in these parameters 

over the past several decades. For this purpose, biomarker distributions and their 

stable isotopic compositions (δ13C as well as δD) as well as δ13C of bulk OM were 

analysed in a core from the North Lagoon spanning more than 5000 years. 

Chapter 3 

More knowledge about the origin and formation pathway of MTTCs in geological 

samples may significantly enhance their significance in palaeoenvironmental 

reconstructions and might enable their application in proxies for freshwater-

incursions or terrigenous input (pages 35-37). Therefore the purpose of Chapter 3 

was the development of a pyrolysis-GC-irMS method which enables the 

measurement of individual δ13C values of the isoprenoid- and alkylphenol subunits 

of MTTCs in order to possibly distinguish an origin of these compounds from (i) 

direct biosynthesis or (ii) early diagenetic condensation reactions of higher plant-

derived alkylphenols with predominantly phytoplankton-derived phytol. In the case 

of MTTC formation via condensation reactions, these individual δ13C values may 

reflect the different source organisms of the MTTC moieties (i.e. higher plants and 

phytoplankton). 

Chapter 4 

The main intention of Chapter 4 was to further investigate the origin of MTTCs as 

well as their significance in palaeoenvironmental reconstructions and possibly 

develop a novel biomarker approach for the reconstruction of freshwater incursions 

in marine palaeoenvironments. Therefore the relations of chroman ratios and MTTC 

abundances to other molecular and stable isotopic indicators of water-column 

stratification, salinity, terrigenous input, anoxia and photic zone euxinia were 

investigated in sediments of a restricted marine Late Devonian palaeoenvironment 
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associated with reef systems. The main aims were (i) the establishment of the 

relation between chroman ratios and palaeosalinities, particularly in a stratified 

water-column and (ii) to explore the potential link of MTTC abundances to 

terrigenous input and (riverine) freshwater-incursions.  

Chapter 5 

Although the Late Devonian extinctions rank amongst the biggest mass extinction 

events in Earth’s history their nature and caus(es) remain unclear (pages 3-5). The 

biggest and most famous of the associated events occurred at the F-F boundary; 

however there were also less intensively studied extinction pulses throughout the 

time period from the Middle Givetian until the end of the Famennian. In Chapter 5 

the main intention was to gain a more detailed insight into palaeoenvironmental 

conditions in marine depositional settings associated with reef systems close to or at 

the G-F boundary as well as later in the Frasnian to identify periods of elevated biotic 

stress and further explore potential events related to the Late Devonian extinctions. A 

secondary interest was the investigation of conditions supporting the exceptional OM 

and biomarker preservation in the Gogo Formation of the Canning Basin. To achieve 

these goals an integrated biomarker, elemental and stable isotope approach combined 

with palynolgical data and Rock Eval pyrolysis was used to analyse sediments in a 

core from the Canning Basin, WA spanning the before-mentioned time periods.  
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Figure A1.1: Structures referred to in the text 
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Abstract 

European settlement and drought have significantly impacted the hydrology of the 

Coorong, a shallow coastal lagoon complex in South Australia, which is part of a 

terminal wetland at the Mouth of the River Murray. An increased salinity associated 

with lower water levels and progressive isolation from ocean flushes contributed to a 

severe decline in ecological diversity over the last several decades. Here we have 

conducted a molecular and stable isotopic study of a sedimentary core from the 

northern Coorong Lagoon spanning more than 5000 years to investigate the recent 

palaeoenvironmental history of the ecosystem. Major alterations were evident in 

many biogeochemical parameters in sediments deposited after the ~1950s coinciding 

with the beginning of intensified water regulations. The most prominent shift 

occurred in δ13C profiles of long chain n-alkanes (C21-C33) from average values of -

22.6 ‰ to an average of -29.5 ‰. Further changes included decreases in carbon 

preference index (CPI) and average chain length (ACL) of the n-alkane series as well 

as significant increases in algal (e.g. C20HBI, long chain alkenes and C29-alkadiene) 

and bacterial (e.g. 13C depleted short-chain n-alkanes and hopanoids, δ13C values:  

-35.9 to -30.1 ‰) derived hydrocarbons. Long-chain n-alkanes with a strong odd-

over-even predominance as observed here are typically attributed to terrestrial plants. 

In the Coorong however, terrestrial input to sedimentary OM is only minor. 

Therefore changes in the before mentioned parameters were attributed to a source 

transition from predominantly aquatic macrophytes towards a major contribution 

from microalgae and bacteria. 

δD values of long chain n-alkanes showed a general trend towards less depleted 

values in younger sediments, indicating an overall rising salinity. However, the most 

pronounced positive shift in these profiles again occurred after the 1950s. Altogether 

this study demonstrates that the recent human induced changes of the Coorong 

hydrology, compounded by a severe drought led to an increase in salinity and 

alterations of primary production which have been much more significant than 

natural variations occurring throughout the Holocene over several thousands of 

years. 

Keywords: Coorong Lagoon, δD, salinity, organic matter, perylene, 1-chloro-n-

alkanes 
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Introduction 

The Coorong is part of a terminal lake system in South Australia at the mouth of the 

River Murray. It consists of two narrow coastal lagoons (North and South Lagoon) 

which are connected through a small channel and together extend for more than  

130 km in length (Figure 2.1). The wetland is of great ecological significance, in 

particular for water birds (migratory and native; Paton et al., 2009), and is therefore 

listed under the Ramsar Convention on Wetlands and is protected as a national park. 

However, substantial water regulations imposed on the River Murray and the lake 

system in the second half of the 20th century, compounded by a severe drought from 

2000-2010, have significantly altered the complex and dynamic hydrology of the 

ecosystem leading to a marked increase of salinity in the Coorong and a severe 

decline of ecological diversity over the past several decades (e.g. DEH, 2000; 

Shuttleworth et al., 2005; Paton et al., 2009; Dick et al., 2011). Although recent 

floods in 2010 temporarily improved the ecological state of the Lower Lakes and led 

to a short term recovery of the freshwater levels in the Coorong, the long term issue 

of providing continuous riverine input (especially under future drought conditions) 

has not been resolved and an extensive water management plan is required to further 

restore and maintain the diverse ecosystem of the Coorong (Kingsford et al., 2011). 

Estuarine systems like the Coorong have multiple organic matter (OM) sources 

including in situ primary production by organisms such as phytoplankton, microbial 

mats, macroalgae or aquatic and benthic plants as well as allochthonous input from 

terrestrial plant debris and soil OM which enter the system mainly through riverine 

inflow (e.g. Shuttleworth et al., 2005; Volkman et al., 2008). Changes in the type of 

OM – for example caused by different flow regimes – can have a profound impact on 

the ecosystem since the base of the food-web is affected (Krull et al., 2009). Efficient 

remediation measures for the Coorong require a profound understanding of the 

effects of alterations in parameters such as water-level, salinity or quantity of riverine 

input (all of which have occurred as an immediate result of human water 

management) on the ecosystem. This also involves gaining detailed knowledge about 

ecology and palaeoenvironmental conditions prior to human influence, and tracking 

changes in OM sources over time to establish their relationship with the key 

environmental parameters previously mentioned.  
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Figure 2.1: Location of the Coorong including the sampling site 

 

The analysis of sedimentary biomarkers in combination with compound specific 

stable isotope analysis (CSIA) is a powerful analytical tool for this purpose and has 

been frequently used to elucidate OM sources and/or environmental conditions at the 

time of deposition (e.g. Freeman et al., 1994; Grice et al., 1996, 2001, 2005a; 

Volkman et al., 2008; McKirdy et al., 2010). Compound specific δD analysis has a 

great potential for reconstructions of climate and hydrological conditions in 

palaeoenvironments since D/H-ratios of biolipids in autotrophic organisms are 

strongly influenced by the composition of the utilized source water (Sessions et al., 

1999; Andersen et al., 2001; Sauer et al., 2001; Dawson et al., 2004; Nabbefeld et al., 

2010). δD signatures of biomarkers derived from aquatic or benthic organisms thus 

reflect D/H ratios in the lake or seawater (Sachse et al., 2006; Mügler et al., 2010) 

and therefore often strongly correlate with palaeosalinities (Andersen et al., 2001; 

McKirdy et al., 2010; Mügler et al., 2010). Salinity in estuarine systems such as the 

Coorong co-varies with δD signatures of lake water since it is largely determined by 

the balance of evaporation and seawater inflow (both leading to a D-enrichment in 

the reservoir) and the input of D-depleted meteoric waters from precipitation or 

riverine influx (Gat, 1996; Ingram et al., 1996). 
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A detailed investigation of OM sources in the recent Coorong was performed by 

Revill et al. (2009) who analysed abundances and stable isotopic compositions of 

pigment and lipid biomarkers in the water-column and surface sediments throughout 

both lagoons. McKirdy et al. (2010) carried out a comprehensive study which also 

included bulk and compound specific isotope analysis to reconstruct variations in 

environmental conditions and OM sources in the Coorong from the mid to late 

Holocene. However, their main focus was a core from the South Lagoon and only 

some elemental and bulk isotope data from the North Lagoon was included. 

Nevertheless their data revealed significant differences between the ecosystems of 

the North and South Lagoon. Krull et al. (2009) combined elemental, bulk δ13C and 
13C-NMR analyses with radionuclide dating in several cores from both lagoons 

spanning the past 100 years and found evidence for significant changes in 

sedimentary OM, which coincided with the beginning of substantial human impact 

on the water regime. 

However, so far there have been no biomarker studies in sediments from the North 

Lagoon spanning the time periods before and after European settlement. Here we 

analysed δ13C of bulk OM as well as abundances and stable isotopic compositions 

(δ13C and δD) of lipid biomarkers in a core from the North Lagoon dating back more 

than 5000 years. The aim was to gain insight into the ecosystem of the North Lagoon 

in pre-European times, reconstruct salinity variations over an extended timeframe 

and more robustly scrutinise the recent changes in OM sources observed by Krull et 

al. (2009). Pollen analysis and different dating techniques performed previously by 

Krull et al. (2009) and Fluin et al. (2007) in a core nearby allowed for a correlation of 

our data with recent events in the Coorong. 

Analysed samples 

Environmental settings 

Together with Lakes Alexandrina and Albert the Coorong forms a terminal wetland 

at the mouth of the River Murray (Figure 2.1). The region experiences a 

Mediterranean climate, with comparatively cool and moist winters and long dry 

summers. The elongated Coorong covers an area between 150-240 km2 depending on 
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seasonal changes and features an average depth around 1 m with maximum depths of 

4 m (Boon, 2000). In its natural state the North Lagoon used to be connected to Lake 

Alexandrina which receives freshwater input from the River Murray. The hydrology 

of the Coorong was determined by seawater exchange through the Murray Mouth 

and freshwater input from Lake Alexandrina as well as groundwater and surface 

runoff via Salt Creek at the southern end of the lagoons (Boon, 2000; Webster, 

2005). Seasonal and tidal changes created various dynamic habitats in and around the 

lagoons, supporting a diverse range of bird, fish and plant species (DEH, 2000; 

Boon, 2000). 

Human water management with an impact on the Coorong commenced 

approximately 100 years ago in the form of regulations and diversions from the River 

Murray for agricultural use and ship navigation (Maheshwari et al., 1995). In 1940 

barrages were installed between the Coorong and Lake Alexandrina which largely 

prevented water exchange and reduced riverine input. However, there was still 

regular freshwater flow into the North Lagoon until the 1950s as the barrages were 

regularly opened to prevent flooding of the surrounding areas (Krull et al., 2009). 

After a major flood event in 1956 the inflow from the River Murray was reduced 

significantly due to increased abstraction for agricultural and domestic use. A severe 

drought between 2000 and 2010 has led to a further decline in freshwater input 

(Webster, 2005, 2010; Kingsford et al., 2011). The reduced inflows contributed to 

siltation of the Murray Mouth, limiting the seawater exchange with a temporary 

closure occurring in 1981. During the recent drought at the beginning of this century 

an open connection has only been maintained by regular dredging (Webster, 2005; 

Kingsford et al., 2011).  

Depending on the amount of freshwater inflow through the barrages the salinities in 

the northern part of the lagoon close to the Murray Mouth can vary from values 

approaching zero to seawater levels. Salinity increases with distance from the 

Murray Mouth, and constant hypersalinity prevails in the South Lagoon during 

periods of low freshwater inflow such as the drought from 2000 to 2010 (e.g. Boon, 

2000; Webster, 2005; Webster, 2010). The salinity increase is usually considered the 

main cause for the extinction of key species such as the macrophytes Ruppia 

megacarpa and other significant alterations to the ecosystem (Nicol, 2005; Dick et 
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al., 2011). Increased environmental flows after 2010 have caused a slight and 

temporary improvement of the ecological state in the Coorong (Kingsford et al., 

2011) but this is not addressed here since the presently analysed samples were 

collected in 2005. 

Sample collection 

The core analysed in this study was part of a suite of samples collected throughout 

the Coorong in 2005 by University of Adelaide researchers for a project 

commissioned by the Department of Water, Land and Biodiversity Conservation 

(DWL&BC) for the Upper South East (USE) Program. The sampling site was 

located in the middle of the North Lagoon slightly south of the Murray Mouth 

(Figure 2.1) and is equivalent to core “C4” in Krull et al. (2009). Sample collection 

and preparation of the core are described elsewhere (e.g. Krull et al., 2009; see 

Appendix 2). For this study the core was sampled between the depths of 0 and 115 

cm in 5 cm intervals for biomarker analysis and 1 cm intervals for bulk stable isotope 

and TOC measurements. 

Chronology 

In the present study we used chronological data obtained by Krull et al. (2009) and 

Fluin et al. (2007) from a core referred to as “C3” (located in close vicinity to C4) to 

correlate observed alterations in biomarker parameters and their stable isotopic 

compositions with significant events in the Coorong. Krull et al. (2009) used a 

combination of Pinus pollen analysis (a species introduced by Europeans) and 

radionuclide-dating (137Cs and Pu isotopes) in various cores collected throughout the 

Coorong to establish chronologies over the past 50-60 years. Sediment ages in more 

basal parts of some of these cores, obtained from 14C–accelerator mass spectrometry 

(AMS), have been published by Fluin et al. (2007).  

The first appearance of Pinus pollen in sediments from southeastern Australia is a 

common indicator for the evolution of European settlement and is often used in 

combination with other dating techniques (Tibby, 2003). In the Coorong its first 

occurrence roughly correlates with the 1950s (Krull et al., 2009). In core C3 and core 

C4 the first Pinus pollen were detected at depths of 23 and 27 cm, respectively (Krull 
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et al., 2009). A detailed description of the principles of 137Cs and Pu radionuclide 

dating can be found in Krull et al. (2009). 

Analytical methods 

Sample preparation and analytical methods can be found in the supplementary 

information (SI) included in Appendix 2. 

Results and discussion 

Changes of OM sources in the North Lagoon 

Figure 2.2 displays depth profiles of selected parameters indicative of changing OM-

sources in the North Lagoon in a chronological context. A pronounced excursion in 

the TOC profile shortly below a depth of 20 cm marks the increased input of 

(terrestrial) OM being flushed into the lagoon during a large flood event in 1956. A 

second excursion at ~ 50 cm might indicate an earlier and non-reported flood. 

The first occurrence of Pinus pollen at a depth of 27 cm indicates the beginning of 

European influence in the Coorong region and roughly coincides with the beginning 

of a restricted freshwater inflow into the North Lagoon through the barrages (see 

“Chronology” page 67). Sediment ages also included in Figure 2.2a were published 

by Krull et al. (2009) and Fluin et al. (2007). Sediments < 25 cm, deposited after 

drastic alterations of the Coorong water regime, are hereafter referred to as “recent 

sediments” and the remaining sediments deposited before a significant European 

influence as “older sediments”. 

Evidence from microalgal and bacterial biomarkers 

A notable difference in recent sediments of the North Lagoon deposited after the 

~1950s was a significant increase in relative abundances of microalgal- and 

bacterial-derived hydrocarbons including the C20 highly branched isoprenoid (HBI; I, 

see Figure A2.1 for structures), C27 - C29-alkadienes and short chain n-alkanes (C14-

C20, Figure 2.2a and Figure 2.3). Also steroid and hopanoid distributions showed 

significant alterations in recent sediments (Figure 2.4a and b and Figure 2.5). 
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Figure 2.2: Alterations in TOC [%], n-alkane distributions (carbon preference index (CPI), average 
chain length (ACL)) and abundances of selected biomarkers relative to long-chain n-alkanes (a) and 
δ13C- profiles  in a core from the northern Coorong Lagoon (b) put into perspective with events in the 
region and inferred sediment ages from 137Cs, Pu and 14C-AMS dating (dating was performed on a 
neighbouring core). Flood events were marked according to excursions in the TOC profile. The first 
occurrence of Pinus pollen (Pinus line) indicates the beginning of European influence and roughly 
coincides with the 1950s (Krull et al., 2009). n-Ci = n-alkane with chain length “i”; C31ββH = 
17β,21β-22R-homohopane; CPI = ∑Codd/∑Ceven over the range from C21-C30, where “Codd” and “Ceven" 
are peak areas from TIC chromatograms of n-alkanes with odd and even numbered chain lengths, 
respectively; ACL = ∑(i×Ci)/∑Ci where “Ci” is the peak area of the n-alkane with carbon number “i” 
over the range from C21–C31; 

a from Krull et al., (2009), b from Fluin et al. (2007). OM = organic 
matter 
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Figure 2.3: Typical distributions and stable isotopic compositions (δ13C, δD) of n-alkanes, n-alkenes and n-alkadienes in sediments from the northern Coorong Lagoon before 
(depth: 100-105cm) and after (depth: 5-10 cm) human interference with the water-regime. Relative abundances were determined from peak areas in the TIC trace of GC-MS 
chromatograms and calculated relative to the most abundant compound. Stable isotopic compositions include n-alkanes and their corresponding monoenes. Error bars indicate 
standard deviations of 2 replicate analyses, where error bars are not visible their size is smaller than the symbol.  
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The C20HBI has been frequently assigned to a diatomaceous origin (e.g. Volkman et 

al., 1998; Atahan et al., 2007; McKirdy et al., 2010) based on stable isotopic 

compositions and abundance profiles as well as structural similarities to the C25 and 

C30 HBIs (II, III), which are established biomarkers for these microalgae (Volkman 

et al., 1998). However, the C20HBI or potential precursors have, unlike the larger 

analogues, never been isolated from cultured organisms. The enriched δ13C values of 

the C20HBI in sediments from the North Lagoon (-18.8 to -13.9 ‰) were typical of 

lipids produced by diatoms since many species are capable of assimilating enriched 

bicarbonate as opposed to more depleted CO2 (Freeman and Hayes, 1992; Bieger et 

al., 1997). The C20HBI was the dominant aliphatic product in most sections of a core 

from the South Lagoon, where conditions such as high salinities and a higher degree 

of isolation have prevailed throughout the Holocene before being significantly 

enhanced by the recently employed interferences with the water regime (McKirdy et 

al., 2010). The elevated abundance of the C20HBI in recent sediments of the North 

Lagoon indicates important changes in the environmental conditions and water 

regime since a diatom population similar to that previously present in the South 

Lagoon became supported.  

Furthermore, the uppermost sediments (< 20 cm) contained high concentrations of 

unsaturated aliphatics, with C23-C29 n-alkenes and a C29 n-alkadiene of notably high 

abundance (Figure 2.3). Long-chain n-alkenes with a strong odd-over-even 

predominance are produced by some green microalgae and possibly cyanobacteria 

(Gelpi et al., 1970; Gelin et al., 1997; Allard and Templier, 2000). The C27-C29 n-

alkadienes were most likely derived from the A race of the green algae Botryococcus 

braunii which is known to produce odd-carbon-numbered C27-C31 n-alkadienes and 

minor amounts of the C29 n-alkatriene (Metzger et al., 1986; Metzger and Largeau, 

2005). n-Alkadienes of similar chain lengths have also been isolated from some 

chlorococcales algae (Allard and Templier, 2000). Although Botryococcus braunii is 

a freshwater species, there is reported evidence of its presence in hypersaline 

environments, mainly due to salinity stratification in the water-column (e.g. Grice et 

al., 1998a) which also periodically occurs in the Coorong (Webster, 2005). Blooms 

of this species have previously been observed in the Coorong region (Cane, 1976) 

and δ13C signatures of the C29 n-alkadiene (-24.6 to -22.5 ‰) would also be 
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consistent with an origin from these algae (Grice et al., 1998a). The high relative 

abundance of the unsaturated aliphatics in recent sediments is in accordance with the 

high abundance of green algae in the water-column of the present day Coorong 

(Revill et al., 2009). However, the difference to older sediments, in which these 

compounds showed very low abundances or were absent, can also be partly 

attributed to their relatively unstable structures resulting in an early transformation 

into more stable n-alkanes during diagenesis.  

 

 

Figure 2.4: Alterations of biomarker abundances relative to ∑C21-C31 n-alkanes in a core from the 
North Lagoon. *Concentration in dry weight sediment [ng/g]. The first occurrence of Pinus pollen 
(Pinus line) indicates the beginning of European influence and roughly coincides with the 1950s 
(Krull et al., 2009). The corresponding depths of flood-events were determined from excursions in the 
TOC profile. a from Krull et al. (2009). Tm-β = . 17β-22,29,30-trisnorhopane 
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depleted than planktonic microalgal lipids (Collister et al., 1994b; Freeman et al., 

1994; Bieger et al., 1997; Logan et al., 1999). Bacterial-derived hopanoids (C27-C32) 

were abundant in all samples (Figure 2.4b) and showed distributions typical of 

immature sediments with a complex suite of hopenes (hop-17(21)-enes, neohop-
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13(18)-enes and hop-22(29)-ene (diploptene)) and high abundances of 17β,21β-

hopanes (biological configuration) relative to 17β,21α and 17α21β isomers. Most 

hopanoids exhibited highest abundances (cf. n-alkanes) in the uppermost 20 cm 

indicating an increased bacterial input. The molecular distribution of hopanoids 

showed slight variations throughout the core, however they were most pronounced in 

recent sediments presumably reflecting changes in the bacterial populations. 

 

 

Figure 2.5: Ternary diagram of ster-2-enes and cholestane (only steroids in the aliphatic fractions) in 
a core from the northern Coorong Lagoon. Sediments between 0-25 cm were deposited after the 
~1950s, a period when human interference with the water regime intensified significantly. Deeper 
sediments were deposited over several thousands of years. 

 

The most abundant steroids in the aliphatic fractions were C27, C28 and C29 5α, 14α, 

17α, 20R ster-2-enes, which are early diagenetic products of biological steroids (e.g. 

Mackenzie et al., 1982). We also detected low abundances of 5α,14α,17α 20R-

cholestane, a product formed during slightly later stages of diagenesis (Mackenzie et 

al., 1982), which showed increasing abundances with sediment age typical of a 

diagenetic product (Figure 2.4b).The ternary diagram in Figure 2.5 showed distinct 

changes in ster-2-ene distributions in recent sediments, with a significantly increased 

abundance of cholest-2-ene and other C27-steroids.  

Although C29 desmethyl-steroids are often assigned to a terrestrial plants origin (e.g. 

Huang and Meinschein, 1979) they have also been detected in significant amounts in 

microalgae, seagrasses and sediments without higher plant input (Attaway et al., 
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1971; Volkman, 1986; Volkman et al., 1998; Grosjean et al., 2009). Revill et al. 

(2009) attributed all sterols they detected in water-column and surface sediments 

throughout the Coorong to aquatic organisms, namely different types of green 

microalgae, diatoms (C29- and C28-sterols) and zooplankton (C27-sterols). The high 

relative abundance of cholest-2-ene in recent sediments of the North Lagoon may be 

an indication for an increased population of zooplankton feeding on benthic 

microbial mats (McKirdy et al., 2010). The primary source organisms of the C29 ster-

2-ene in the North Lagoon sediments are most likely microalgae and aquatic plants 

(the latter particularly in older sediments) possibly with a minor contribution from 

terrestrial plants. The relatively lower abundance of C29 ster-2-enes in recent 

sediments might reflect the recent extinction of aquatic macrophytes due to the rising 

salinities (Nicol, 2005; Krull et al., 2009; Dick et al., 2011). 

Evidence from long-chain n-alkane distributions 

The aliphatic fractions were dominated by a suite of mid- to long-chain n-alkanes 

(C21-C33) with a strong odd over even predominance (e.g. Figure 2.3). In recent 

sediments (< 25 cm) their distribution profiles showed significant alterations evident 

in decreasing carbon preference indexes (CPI, calculated after Eq. 2.1) and average 

chain length (ACL, calculated after Eq. 2.2) which both pointed towards a change in 

the type of source organisms (Figure 2.2a). 

 




even

odd

C

C
CPI    (2.1) 

where “Codd” and “Ceven" are peak areas from TIC chromatograms of n-alkanes with 

odd and even numbered chain lengths, respectively over the range from C21–C30 

 


 


i

i

C

Ci )(
ACL     (2.2) 

where “Ci” is the peak area of the n-alkane with carbon number “i” over the range 

from C21–C31 
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Typically long-chain n-alkanes with high CPIs are ascribed to epicuticular waxes of 

vascular plants (Eglinton and Hamilton, 1967). However, also various aquatic 

organisms including microalgae, cyanobacteria or aquatic macrophytes are known to 

produce long-chain n-alkanes or long-chain n-alkyl precursors such as fatty acids, n-

alcohols or n-alkenes (e.g. Cranwell, 1984; Volkman et al., 1998; Ficken et al., 2000; 

Jaffé et al., 2001). A major contribution from terrestrial plants to the long-chain n-

alkanes detected here seems unlikely since several studies (using various analytical 

approaches) confirmed only a minor terrestrial input to the sediments of the North 

Lagoon. These included biomarker analysis in surface sediments and the water-

column (Revill et al., 2009) as well as elemental (low C/N values; Krull et al., 2009; 

McKirdy et al., 2010) and 13C-NMR analysis (Krull et al., 2009) in sediment cores. 

Also the ACL of n-alkanes detected in this study (25.2 - 26.6) was lower than the 28 

to 33 typical of terrestrial plants (Chikaraishi and Naraoka, 2003). However, the 

presence of pollen (e.g. Pinus, Krull et al., 2009) does indicate a minor terrestrial 

input. 

An alternative source of these hydrocarbons in an estuarine system like the Coorong 

could be aquatic plants, which mainly synthesise n-alkanes of mid-chain lengths 

typically maximising at C21, C23 or C25 (Botello and Mandelli, 1978; Cranwell, 1984; 

Ficken et al., 2000; Jaffé et al., 2001). Paq values (Eq. 2.3, where “C” is the peak area 

of n-alkanes), determined according to a proxy to distinguish input from terrestrial 

vs. aquatic plants (Ficken et al., 2000), varied between 0.37 and 0.61, indicating a 

major contribution from non-emergent aquatic plants to the n-alkanes found in the 

North Lagoon. This is in accordance with the formerly high abundance of aquatic 

macrophytes, in particular Ruppia megacarpa, which used to be a significant source 

of OM before its recent extinction due to the rising salinity (Krull et al., 2009). 

 

)/()(P 312925232523 CCCCCCaq     (2.3) 

 

Other potential sources of sedimentary n-alkanes in the North Lagoon are aquatic 

microorganisms such as diatoms, green algae or bacteria. Although most of these 

organisms commonly produce n-alkanes of a shorter chain length (C14-C20, 
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“Evidence from microalgal and bacterial biomarkers”, page 67ff.), long-chain n-

alkanes have also been attributed to some of these species (e.g. Cranwell, 1982, 

1984; Collister et al., 1994a; Lichtfouse et al., 1994; Volkman et al., 1998; Logan et 

al., 1999; McKirdy et al., 2010). Whereas diatoms and bacteria typically generate 

(long-chain) n-alkane distributions without a pronounced odd-over-even 

predominance (Oró et al., 1967; Davis, 1968; Han and Calvin, 1969; Jones and 

Young, 1970; Volkman et al., 1980; Nichols et al., 1988), green algae often 

synthesise long-chain n-alkenes with odd carbon numbers leading to n-alkane 

distributions with high CPIs (Gelpi et al., 1970; Gelin et al., 1997; Allard and 

Templier, 2000). The decreasing CPIs observed in the most recent sediments of the 

North Lagoon (Figure 2.2a) could therefore indicate an increasing abundance of 

cyanobacteria or diatoms consistent with the increase of phytoplanktonic biomarkers 

observed in this and other studies (“Evidence from microalgal and bacterial 

biomarkers” page 68ff.). Low CPI distributions are also commonly found in mature 

sediments as the result of degradation processes during diagenesis (Peters et al., 

2005) and can therefore be indicative of contamination with petroleum products. 

However such contamination in the Coorong seems unlikely since there has been no 

other indication for this in the present project or in previous studies.  

Evidence from δ13C and δD profiles 

δ13C profiles of bulk organic carbon and selected biomarkers throughout the analysed 

core are displayed in Figure 2.2b. Most profiles showed comparatively minor 

variations in older sediments representing several thousand years (25-115 cm), but a 

marked negative shift in recent sediments (< 25 cm), indicating significant changes 

in the ecosystem of the North Lagoon since the ~1950s. The bulk δ13C profile also 

exhibited a -5 ‰ shift coincident with this point but showed an additional sharp 

negative spike shortly below 20 cm reflecting depleted terrestrial OM being flushed 

into the system during the large flood event in 1956. The flood was also reflected in 

the TOC values but its direct effects were not visible in other profiles due to their 

lower resolution. The bulk δ13C signatures were generally slightly heavier than 

corresponding values obtained for n-alkanes, which is to be expected since lipids in 

autotrophs are generally more depleted compared to total biomass (Monson and 

Hayes, 1982). 
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The most pronounced negative shift (average: 7 ‰) in recent samples occurred in 

δ13C values of C21-C29 n-alkanes (+ their monoenes if present, see SI page 93ff.). It 

was most likely caused by a significant change in source organisms, although 

environmental factors such as increasing salinity can also influence δ13C values in 

biomarkers and sediments. However, an elevated salinity as reported in the Coorong 

over the past decades is usually associated with heavier isotopic signatures in 

biolipids (Schidlowski et al., 1984; Grice et al., 1998; Andersen et al., 2001) and the 

opposite (lighter isotopic signatures) is observed in the North Lagoon. 

Further indications for a change in source organisms were distinct sawtooth patterns 

with 13C depleted and D enriched even-carbon-numbered n-alkanes in older 

sediments (> 25 cm) whereas these features diminished and became absent in more 

recent samples (e.g. Figure 2.3). Similar sawtooth patterns have been reported in 

various higher plant waxes due to different metabolic pathways used for the 

synthesis of odd and even numbered homologues (Grice et al., 2008a; Zhou et al., 

2010) as well as in sediments, where this pattern may also be enhanced by or be the 

result of input from different source organisms such as a microalgal bias to odd 

numbered n-alkanes (Logan et al., 1999; Grice et al., 2001; Dawson et al., 2004).  

The isotopic differences evident throughout the studied core were also visible in a 

crossplot of δ13C vs. δD values of long chain n-alkanes in representative samples 

from the North Lagoon well before (105-110 cm) and significantly after (0-15 cm) 

human interferences had impacted the water regime (Figure 2.6). Three groups, 

namely n-alkanes in recent sediments and odd-chain and even-chain n-alkanes in 

older sediments, were clearly separated. The distinction was however somewhat 

more obvious in δ13C than in δD signatures since isotopic fractionations in different 

metabolic pathways are usually reflected more strongly by δ13C values (e.g. 

Chikaraishi and Naraoka, 2003; Polissar and Freeman, 2010). The enrichment in D in 

the most recent samples is also a result of the rising salinity and decreased freshwater 

input (see “Salinity variations in the North Lagoon over time” page 83). 

δ13C signatures of long chain n-alkanes in older sediments are consistent with a 

predominant origin from aquatic C3 plants such as seagrasses, which produce 

relatively enriched hydrocarbons compared to their terrestrial counterparts. 

Chikaraishi and Naraoka (2003) reported an average δ13C value of n-alkanes 
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extracted from three marine seagrass species of -22.8 ±1.0 ‰ and slightly more 

depleted values for aquatic freshwater plants of -25.3 ±1.9 ‰. There may also be a 

minor contribution from phytoplankton and a small allochthonous input from 

terrestrial plants potentially including species from halophytes (see “Significance of 

1-chloro-n-alkanes” page 81). 

 

 

Figure 2.6: Crossplot of δ13C vs. δD values of long-chain n-alkanes (C21-C29) in representative 
sediments from the northern Coorong lagoon deposited prior (100-115 cm) and after (0-15 cm) the 
beginning of human control over the water regime in the Coorong. n-Ceven and n-Codd stands for n-
alkanes with an even- and odd-numbered carbon chain, respectively. 

 

Although the 13C depleted n-alkanes in recent sediments of the North Lagoon are in 

the range of terrestrial C3 plants waxes (e.g. Chikaraishi and Naraoka, 2003), a 

predominant origin from these organisms seems implausible since a high 

allochthonous contribution to sedimentary OM in the North Lagoon, especially in 

recent years, is unlikely (see “Evidence from long-chain n-alkane distributions” page 

74ff.). According to Revill et al. (2009) the primary source of OM in surface 

sediments of the North Lagoon were benthic diatoms and cyanobacteria whereas OM 

in the water-column was mainly derived from green algae. Diatom derived lipids 

often have more 13C-enriched signatures (“Evidence from microalgal and bacterial 

biomarkers” page 68ff.), which makes them an unlikely source of the 13C-depleted n-

alkanes in the recent sediments from the North Lagoon. McKirdy et al. (2010) 
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observed a similar shift in δ13C values of n-alkanes in recent sediments of the South 

Lagoon and attributed it to a primary source change from aquatic macrophytes to 

bacteria. Such a source transition also seems plausible in the North Lagoon. A 

depletion would be expected from a higher bacterial contribution to the long-chain n-

alkanes since also other bacterial derived hydrocarbons such as short-chain n-alkanes 

or hopanoids had very light δ13C signatures (“Evidence from microalgal and bacterial 

biomarkers” page 68ff.).  

In the most recent samples (< 20 cm) longer-chain n-alkanes/alkenes > C24 were on 

average 4‰ enriched in 13C compared to their shorter chain homologues, with δ13C 

values from -29.3 to -26.1 ‰. This is presumably caused by a contribution from 

green algae (possibly the A race of Botryococcus braunii) to these biomarkers, in 

particular the n-alkenes. It is however more depleted than odd-carbon numbered n-

alkanes in older sediments which largely originated from aquatic macrophytes. This 

indicates a mixed source for n-alkanes > C24 in recent sediments with contributions 

from bacteria as well as green algae and potentially also a minor input from 

terrestrial higher plants. Revill et al. (2009) reported depleted values in green algal 

derived phytol in the water-column sometimes approaching -30 ‰ which they 

attributed to a slow growth rate. 

The δ13C values of predominantly bacterial-derived C17 n-alkane and the 17β,21β-

22R-homohopane also shifted towards more depleted values in the recent sediments, 

although the trend was not as pronounced as that evident in (odd-carbon-numbered) 

long-chain n-alkanes (Figure 2.2b). A possible explanation for this shift might be a 

change in the bacterial population, which was also reflected by differences in 

hopanoid distributions in that core-section (“Evidence from microalgal and bacterial 

biomarkers” page 68ff.). For example an increase of bacterial growth in benthic 

microbial mats, often favoured in highly saline environments as opposed to 

planktonic organisms, would likely cause a negative shift in δ13C values (Logan et 

al., 1999). However, the observed shifts could also be the result of an increased 

abundance of dissolved CO2 caused for example by enhanced heterotrophic activity 

after algal blooms or by a slight decrease of the pH which would lead to a 13C-

depletion in lipids of primary producers. Although the Coorong remains an alkaline 

system (Revill et al., 2009) temporary stratification with more acidic bottom waters 
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(pH: 6.8) have been observed (Geddes, 2003). With limited supply of [CO2]aq 

phytoplanktonic organisms show less discrimination against 13C resulting in 

significantly enriched biolipids whereas a high abundance of this carbon source leads 

to an enhanced discrimination and more depleted biolipids (Takahashi et al., 1990; 

Freeman and Hayes, 1992). 

The C20HBI was significantly more enriched in 13C compared to n-alkanes and 

hopanoids and also the sedimentary δ13C depth profile of the C20HBI was different to 

those from the other hydrocarbons (Figure2.2b). This is a further indication of its 

diatomaceous origin and the utilization of a different carbon source (i.e. bicarbonate 

as opposed to [CO2]aq). 

Most of the stable isotope and biomarker profiles described were distinctly greater in 

magnitude than natural variations over thousands of years, thus indicating 

unambiguous ecological changes in recent sediments (younger than ~1950). 

However, it should be noted that sediments at greater depths of this core had a very 

different time resolution (cf. radionuclide dates with radiocarbon age) and averaging 

effects were much more significant for these compared to the recent sediments. 

Origin of perylene 

The PAH perylene (IV) was only present in trace amounts in sediments of the 

uppermost 30 cm but increased significantly in concentration at greater depths 

(Figure 2.4d). Unlike most other unsubstituted PAHs, which are mainly of a 

thermogenic or pyrogenic origin, perylene is presumably a diagentic product and 

typically shows different sedimentary abundances compared to these combustion 

markers (Jiang et al., 2000; Atahan et al., 2007; Grice et al., 2009; Suzuki et al., 

2010). A likely source for perylene seems to be quinone pigments associated with 

wood degrading fungi in particular but also with other organisms including crinoids 

and certain plants and insects (Jiang et al., 2000; Grice et al., 2009; Suzuki et al., 

2010). A link to fungal wood/lignin degradation is also supported by the absence of 

perylene in sediments and crude oils predating the evolution of vascular plants and in 

marine sourced oils (Grice et al. 2009). 

In the sediment core from the North Lagoon the increasing abundance of perylene 

with depth (Figure 2.4d) is consistent with a diagenetic origin. Furthermore, 13C-



Chapter 2 

 

 

81 
 

NMR analyses performed by Krull et al. (2009) showed that a significant lignin 

source -most likely the macrophyte Ruppia megacarpa- was present in older 

sediments from the North Lagoon (i.e. < 1950s) but absent in more recent sediments. 

The co-occurrence of perylene and lignin in older sediments from the North Lagoon 

and the absence of both in recent sediments do concur with the source correlation of 

perylene to fungal lignin degradation. 

Significance of 1-chloro-n-alkanes 

The aliphatic fractions also contained a series of C10-C25 1-chloro-n-alkanes which 

can be identified in the m/z 91 mass chromatograms (Grossi and Raphel, 2003) 

illustrated in Figure 2.8. This product series may extend to higher MW homologous, 

but co-elutions with other analytes (i.e. alkenes, hopanoids and steroids) would have 

compromised their detection. Nevertheless, C30:1 and C32:1 chloro-n-alkenes have 

been tentatively identified by relative retention times which were consistent with 

previous reports (Zhang et al., 2011) and by mass spectral features. The abundance 

profiles of the C16-1-chloro-n-alkane (representative of other homologues) and the 

putative C32:1 chloro-n-alkene throughout the core are displayed in Figure 2.4c. The 

general similarity of both profiles is indicative of a common source and supportive of 

our putative identification. 

Although a variety of organohalogens are produced biosynthetially, in particular by 

marine organisms but also by some terrestrial life forms including plants and higher 

animals (e.g. Gschwend et al., 1985; Winterton, 2000; Gribble, 1996, 2003), reports 

of mid- to long-chain 1-chloro-n-alkanes in sediments are sparse. Zhang et al. (2011) 

detected C30:1 and C32:1 1-chloro-n-alkenes, which we also tentatively identified in 

this study, in sediments from a freshwater crater lake in the Galápagos Islands. A 

series of long-chain 1-chloro n-alkanes (C19-C29) has been isolated from 3 genera 

(Suaeda, Sarcocornia and Halimione) of halophytic Chenopodidaceae (Grossi and 

Raphel, 2003). Some of these species (including Sarcocornia and Suaeda) are also 

found in the Coorong region (Boon, 2000 and references therein) and represent a 

potential source for the chlorinated paraffins in the North Lagoon sediments. 

However, the series detected in this study did not show the odd-over-even carbon 

number predominance that Grossi and Raphel (2003) had previously observed in 
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halophytes and it also comprised shorter-chain homologues (C12-C18), which have 

not been detected in the Chenopodiaceae.  

 

 

Figure 2.7: Total ion chromatogram (TIC, (a)) and m/z 91 extracted ion chromatogram (b) of the 
aliphatic fraction in sediments from the North Lagoon between depths of 0-5 cm. (c) is the EI mass 
spectrum of the C16-1-chloro-n-alkane. Ci: carbon number of displayed compound classes;  

: n-alkanes; : n-alkenes; * : n-alkadienes; : 1-chloro-n-alkanes; : tentatively identified 1-
chloro-n-alkenes; C31ββH = 17β,21β-22R-homohopane 

 

Other sources of these compounds in the North Lagoon may include algae, 

seagrasses or cyanobacteria. Although no long-chain-chloro-n-alkanes/ n-alkenes 

have been isolated from these organisms so far, they are known to produce a variety 

of other chloro-organic compounds including volatile 1-chloro-n-alkanes in the range 

from C1 to C5 (Mynderse and Moore, 1978; Gribble, 1996, 2003). The increased 

relative abundances of 1-chloro-n-alkanes and 1-chloro n-alkenes in the most recent 

sediments of the North Lagoon (Figure 2.4) point towards an algal or cyanobacterial 

source since these organisms also were significantly more abundant in that part of the 

core (see “Changes of OM sources in the North Lagoon”). Nevertheless, 
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Chenopodiaceae have a high tolerance to salinity and may have become more 

abundant in the lagoon catchment with the rising salinities in the Coorong. 

Mid- and long-chain chloro-paraffins (CPs; C10 - C30) are also known anthropogenic 

contaminants due to many industrial applications (Tomy et al., 1998; Štejnarová et 

al., 2005). However, anthropogenically-sourced CPs commonly exhibit complex 

distributions with various stereoisomers and different degrees of chlorination as a 

result of the synthesis process (Tomy et al., 1998). Therefore the relative specificity 

of the distinct series of 1-chloro-n-alkanes detected here precludes such an origin. 

 

Table 2.1: δ13C [‰] ± standard deviation of 2 replicates of 1-chloro-n-alkanes/n-alkenes throughout a 
sediment core from the North Lagoon. Ci = carbon number 

Depth [cm] 
1-chloro-n-alkanes 1-chloro-n-alkene 

C15 C16 C17 C32:1 

0-5 -29.0 ±0.0 -29.2 ±0.4 -31.8 ±0.1 -29.8 ±0.1 

5-10 -28.1 ±0.1 -26.5 ±0.0 -27.8 ±0.2 -26.6 ±0.3 

10-15 -29.1 ±0.2 -30.4 ±0.3 -25.4 ±0.2 

15-20 -26.1 ±0.4 

25-30 -26.9 ±0.1 

30-35 -24.8 ±0.4 

40-45 -24.5 ±0.3 -27.4 ±0.5 

45-50 

50-55 -26.4 ±0.0 

55-60 -25.1 ±0.2 -25.7 ±0.1 -26.0 ±0.2 

70-75 -25.5 ±0.2 -24.8 ±0.3 -26.4 ±0.1 

85-90 -26.0 ±0.2 -26.6 ±0.1 

100-105 -25.8 ±0.5 -26.1 ±0.2 -27.3 ±0.5 

110-115 -26.3 ±0.5 -26.3 ±0.4 -25.9 ±0.0 

 

δ13C values of the mono-chlorinated paraffins in the North Lagoon ranged from  

-31.8 to -24.5 ‰ (Table 2.1) and are consistent with both a C3 plant source (such as 

the chloro-paraffin containing Chenopodiceae analysed by Grossi and Raphel (2003) 

and most Chenopodiaceae in the Coorong region) as well as with a bacterial or 

microalgal origin (cf. δ13C values of algal- and bacterial derived hydrocarbons, 

“Evidence from microalgal and bacterial biomarkers” 68ff.). 

Salinity variations in the North Lagoon over time 

δD signatures of selected even and odd numbered n-alkanes (+corresponding 

monoenes if present, see SI page 93ff.) throughout the analysed core are displayed in 

Figure 2.8. As previously discussed (“Changes of OM sources in the North Lagoon” 
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page 68ff.) these hydrocarbons primarily originated from autochthonous in situ 

production and therefore their δD signatures reflect the D/H abundance (and thus 

also salinity) in the lake water (Sachse et al., 2006; Mügler et al., 2010), with more 

depleted δD values indicating lower salinities. The δD profiles of all long chain n-

alkanes showed some variations but a general trend towards enriched δD values in 

younger sediments, indicating an overall rising salinity (Figure 2.8). The most 

pronounced enrichment was evident in recent sediments (< 20 cm) presumably 

representing a more pronounced increase in salinity over the past decades than the 

previous hundreds/ thousands of years represented by the deeper sediments. The n-

alkanes deposited shortly after the flood event in 1956 showed a slight depletion in 

δD values, reflecting a temporary freshening of the system. Similar variations in 

salinity, including the pronounced increase over the past decades, have also been 

observed in studies of diatom assemblages in the North Lagoon (McKirdy et al., 

2010). Relatively large variations of δD values in older sediments also seem 

consistent with variations in aridity in the Coorong region throughout the Late 

Holocene e.g. (Ahmad, 1996; Mee et al., 2007). Possibly these changes would have 

been more pronounced in δD profiles at a higher time resolution. 

 

 

Figure 2.8: δD profiles of representative n-alkanes with odd and even chain lengths (n-Ceven and n-
Codd, respectively) and other potential salinity indicators throughout a core from the North Lagoon. 
R22index = 2×C22/(C21+C23) where “Ci” is the peak area in GC-MS chromatograms of the n-alkane 
with chain length “i” (ten Haven et al., 1988). The first occurrence of Pinus pollen (Pinus line) 
indicates the beginning of European influence and roughly coincides with the 1950s (Krull et al., 
2009). The corresponding depths of flood-events were determined from excursions in the TOC 
profile. a from Krull et al. (2009) 
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Furthermore, the shift in δD values of n-alkanes in the recent sediments might also 

be enhanced by the change in source organisms discussed in “Changes of OM 

sources in the North Lagoon”, page 68ff.. The influence of the different source 

organisms on δD signatures of n-alkanes is for example evident in the sawtooth 

pattern described previously (Figure 2.3) which is only present in older sediments 

prior to a significant human impact. 

Another potential parameter reflecting the rising salinity in recent sediments was the 

increasing abundance of the hop-(17)21-ene relative to other hopanes (Figure 2.8). 

Hop-(17)21-enes seem to be formed during early diagenesis in hypersaline 

environments in preference to 17α,21β-hopanes (ten Haven et al., 1985; ten Haven et 

al., 1988). However, longer chain homologues (C31-C35), which are also indicative of 

high salinities (e.g. ten Haven et al., 1985), were not abundant in the North Lagoon. 

The R22-index, displaying the abundance of the C22 n-alkane relative to the C21 and 

C23 n-alkanes, can also be a marker for hypersaline depositional environments (ten 

Haven et al., 1985; ten Haven et al., 1988). In the recent sediments from the North 

Lagoon it increases significantly, as it is expected for rising salinities. However, 

these recent sediment values of ~0.35 are still much lower than those reported by ten 

Haven et al. (1985) in hypersaline environments. Despite the increase in salinity 

evident in the North Lagoon it had not yet progressed to prevalent hypersalinity (e.g. 

Webster, 2005). 

Conclusions 

The molecular and isotopic sedimentary record included evidence that human 

interference with the water regime of the Coorong, namely a drastic reduction of the 

freshwater inflow due to installation of barrages and extensive water abstractions 

from the River Murray, was immediately responsible for major changes in the types 

of primary production, sedimentary OM and salinity in the North Lagoon over the 

past ~50 years. The magnitude of these parameter changes has been significantly 

more pronounced than natural variations over thousands of years. Aliphatic and 

aromatic biomarker analyses (including CSIA, C and H) in a sediment core from the 

North Lagoon spanning more than 5000 years revealed changes in the populations of 
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primary producers contributing to sedimentary OM from predominantly macrophytes 

in sediments deposited prior to the 1950s towards bacteria and microalgae in more 

recent sediments. Furthermore, H-CSIA enabled the reconstruction of salinity 

variation in the North Lagoon, showing dynamic changes with an overall rise of 

salinity throughout the Holocene. However, a sharp increase took place shortly after 

the 1950s presumably due to the restriction of freshwater inflow through the 

barrages. We also detected an interesting series of mid- to long-chain 1-chloro-n-

alkanes in these sediments. Potential sources of these compounds could be 

halophytic Chenopodiaceae, cyanobacteria or microalgae.  
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Appendix 2 

Supplementary online material 

Analytical methods 

Sample collection 

The core was collected with a field piston corer and sliced vertically using a circular 

saw and ‘dustless’ diamond blade and stored at the University of Adelaide in a cold 

room at 4°C. Subsamples were stored in glass vials at 4°C at CSIRO Land and 

Water. The core was sampled between the depths of 0 and 115 cm in 5 cm intervals 

for biomarker analysis and 1 cm intervals for bulk stable isotope and TOC 

measurements. Ice boxes were used to keep samples cold during transfers between 

different institutes.  

Bulk stable isotope and TOC analysis 

Sediment samples were dried at 55 °C overnight, ground, homogenised and weighed 

into tin cups for analysis. For carbonate removal sulfurous acid was added directly 

into the tin cups to prevent loss of acid-soluble organic carbon (Verardo et al., 1990). 

After re-drying the samples were analysed for C content and δ13C using a Carlo Erba 

NA1500 CNS analyser interfaced via a Conflo II to a Finnigan Mat Delta S isotope 

ratio mass spectrometer operating in the continuous flow mode. Combustion and 

oxidation were achieved at 1090 ºC and reduction at 650 ºC. To ensure 

reproducibility samples were analysed at least in duplicate. Results are presented in 

the standard delta ( notation relative to the international standard VPDB:  

00
013 10001)‰( 




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
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where R = 13C/12C. % TOC was calculated from mass spectrometer peak areas using 

standards with a known C content. The reproducibility of stable isotope 

measurements was ± 0.2 ‰. 

Sample preparation and extraction for biomarker analysis 

Samples were dried on a heated sandbath (55 °C) or in a cool oven (45 °C), 

powdered and extracted with a mixture of 9:1 dichloromethane (DCM): methanol by 

accelerated solvent extraction (ASE) using a Dionex ASE 200 (Dionex, Sunnyvale, 

CA, USA). The extracts were desulfurized overnight following addition of activated 

copper powder. The filtered extracts were successively fractionated by silica gel 

chromatography (column size: 20 cm x 0.9 cm I.D.) using approximately two column 

volumes of increasingly polar solvents. Aliphatic and aromatic fractions relevant for 

this study were eluted with n-hexane and 30% dichloromethane in n-hexane, 

respectively. An internal perdeuterated standard (p-terphenyl d14) was added to the 

aromatic fraction to assist semi quantitative analysis. Abundances of hopanoids, 

sterenes and steranes were calculated from peak areas in m/z 191, m\z 215 and m/z 

217 extracted ion chromatograms, respectively and reported relative to peak areas of 

long-chain n-alkanes (C21-C31) from total ion chromatograms (TIC) without the 

consideration of response factors. 

Gas chromatography mass-spectrometry (GC-MS) 

GC-MS analyses were performed on an Agilent 5973 Mass-Selective Detector 

(MSD) interfaced to an Agilent 6890 gas chromatograph (GC). For the separation of 

the analytes a capillary column (60 m x 0.25 mm) coated with a 0.25 µm 5% phenyl 

95% methyl polysiloxane stationary phase (DB-5MS, J & W scientific) was used. 

The GC-oven was temperature programmed from 50 °C to 310 °C at a rate of 3 

°C/min with initial and final hold times of 1 and 20 minutes, respectively. Samples 

were injected (split/splitless injector) with a HP 6890 auto-sampler operated in a 

pulsed-splitless mode at 280 °C. Helium was used as the carrier gas at a constant 

flow rate of 1.1 mL/min. Full scan (50 - 550 Daltons) 70 eV mass spectra were 

acquired typically with an electron multiplier voltage of 1800 V and a source 

temperature of 230 °C. 
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Gas chromatography-isotope ratio mass-spectrometry (GC-irMS) 

GC-irMS analyses were performed on a Micromass IsoPrime mass-spectrometer 

interfaced to either i) an Agilent 6890 GC equipped with a 6890 autosampler for 

carbon isotope analysis; or ii) an Agilent 6890N GC with 7683 autosampler for 

hydrogen isotope analysis. The GC- column, carrier gas, injector conditions and oven 

temperature program were identical to the settings described for GC-MS. For δ13C 

analyses an interface consisting of a quartz tube packed with CuO-pellets (4 mm x 

0.5 mm, isotope grade, Elemental Microanalysis LTD.) maintained at 850 °C was 

used to oxidize the organic analytes to CO2 and H2O. The latter was subsequently 

removed by a liquid nitrogen trap at -100 °C. Isotopic compositions were determined 

by integration of the m/z 44, 45 and 46 ion currents of CO2 peaks from each analyte 

and reported relative to CO2 reference gas pulses of known 13C-content. Isotopic 

values are given in the delta () notation relative to the international standard VPDB. 

For hydrogen isotope (D) analysis the gas chromatographically separated analytes 

were converted into hydrogen gas in a pyrolysis furnace packed with chromium 

catalyst at 1050 °C. D values were determined by integration of the m/z 2 and 3 ion 

currents of H2 peaks generated by the chromatographically separated analytes and 

reported relative to H2 reference gas pulses of known D/H content relative to the 

international standard VSMOW. A correction factor accounting for contributions 

from H3
+ produced in the ion source was determined by m/z 3 analyses at two 

different H2 gas pressures. 

Each sample was analysed in duplicate and average values and standard deviations 

were reported. Standard deviations for C-CSIA in all reported results were < 0.5 ‰ 

and for H-CSIA always < 7 ‰ and in most cases < 5 ‰. In house standard solutions 

containing a mixture of n-alkanes with a known isotopic composition were regularly 

(after ~8 analyses) analysed to confirm accuracy of measured isotopic ratios. 

Peaks of corresponding monoenes (if present) were included for the calculation of 

δ13C and δD values of n-alkanes since co-elution prevented baseline separations. A 

further separation of the aliphatic fraction by procedures such as 5A-molecular 

sieving (Grice et al., 2008a) or argentation-thin layer chromatography (TLC) was not 

possible due to the limited amounts of sample material. 
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Structures referred to in the text 

 

Figure A2.1: Structures referred to in the text 
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Data included in figures 

Table A2.2: TOC % and δ13C of bulk organic matter (δ13COM) included in Figure 2.2 

depth [cm] TOC % 
δ13COM 

[‰ VPDB] 

 
depth [cm] TOC %

δ13COM 

[‰ VPDB] 

 
depth [cm] TOC % 

δ13COM 

[‰ VPDB] 

1 2.9 -22.8  54 1.7 -20.5  108 1.8 -20.2 

2 2.9 -24.5  55 1.4 -21.3  109 1.8 -20.8 

3 2.7 -24.7  56 1.4 -21.6  110 1.9 -20.7 

4 2.5 -24.6  57 1.5 -21.2  111 1.9 -21.0 

5 2.5 -24.4  58 1.5 -21.1  112 1.9 -21.1 

6 2.3 -24.3  59 1.4 -21.6  113 1.8 -21.2 

7 2.3 -24.3  60 1.3 -20.9  114 1.8 -22.1 

8 2.3 -24.2  61 1.2 -21.2  115 1.8 -21.5 

9 2.3 -24.2  62 1.2 -21.0  107 1.8 -20.2 

10 2.3 -24.1  63 1.3 -21.3  108 1.8 -20.8 

11 2.1 -24.2  64 1.3 -21.3  109 1.9 -20.7 

12 2.1 -24.2  65 1.4 -21.0  110 1.9 -21.0 

13 1.9 -24.1  66 1.5 -20.9  111 1.9 -21.1 

14 2.0 -24.1  67 1.8 -20.8     

15 1.6 -23.7  68 1.8 -20.4     

16 1.6 -23.5  69 1.9 -20.0     

17 1.5 -23.1  70 2.0 -20.0     

18 1.5 -23.2  71 1.9 -20.1     

19 1.7 -22.4  72 1.9 -20.0     

20 1.9 -21.5  73 2.1 -20.1     

21 2.6 -19.2  74 2.1 -19.8     

22 2.1 -21.4  75 2.0 -20.1     

23 5.5 -25.9  76 1.8 -20.1     

24 1.9 -19.3  77 1.7 -20.1     

25 1.0 -19.7  78 1.9 -19.9     

26 1.3 -18.8  79 1.8 -19.8     

27 1.3 -17.9  80 2.0 -19.8     

28 1.8 -17.6  81 2.0 -20.3     

29 1.4 -18.1  82 2.0 -20.4     

30 1.5 -18.2  83 2.0 -20.2     

31 1.9 -18.0  84 2.0 -19.7     

32 1.6 -17.8  85 1.9 -20.3     

33 0.6 -18.6  86 1.6 -19.8     

34 0.7 -18.6  87 1.8 -20.2     

35 1.2 -18.4  88 1.8 -20.4     

36 1.0 -18.3  89 1.7 -20.5     

36 0.8 -18.7  90 1.7 -20.5     

37 1.7 -18.1  91 1.8 -20.7     

38 0.8 -18.6  92 2.0 -20.6     

39 1.0 -19.0  93 1.9 -20.6     

40 0.7 -18.8  94 1.8 -20.6     

41 0.8 -18.6  95 1.9 -20.7     

42 1.4 -18.8  96 1.8 -20.5     

43 1.3 -18.7  97 1.8 -21.4     

44 1.6 -18.9  98 1.8 -20.5     

45 1.5 -19.3  99 1.7 -20.5     

46 1.5 -19.7  100 1.7 -20.7     

47 0.5 -19.6  101 1.7 -20.9     

48 1.8 -19.6  102 1.6 -21.0     

49 3.8 -20.1  103 1.4 -20.8     

50 1.7 -20.0  104 1.6 -20.9     

51 2.0 -19.3  105 1.7 -21.0     

52 2.0 -19.5  106 1.8 -20.9     

53 1.9 -19.7  107 1.8 -21.2     



 

 
 

Table A2.2: Data included in Figure 2.2 except for TOC % and bulk δ13C of organic matter. Standard deviations were calculated between two replicate analyses. 

medium depth 

[cm] 
CPI ACL 

∑ n-C15-20/ 

∑ n-C21-31 

n-C29:2/ 

∑ n-C21-31

C20HBI/ 

∑ n-C21-31

δ13C [‰ VPDB] ±standard deviation. 

n-C23 n-C25 n-C27 n-C24 n-C26 n-C17 C31ββ H C20HBI 

2.5 3.73 25.23 0.07 0.15 0.07 -31.7 ±0.0 -27.1 ±0.0 -27.8 ±0.1 -29.3 ±0.2 -31.6 ±0.2 -33.3 ±0.1 -36.1 ±0.1 -16.1 ±0.1 

7.5 4.58 25.78 0.04 0.08 0.06 -30.4 ±0.2 -26.4±0.1 -26.5 ±0.1 -28.6 ±0.1 -28.9 ±0.2 -31.6 ± 0.1 -34. ±0.49 -14.2 ±0.1 

12.5 4.07 26.07 0.04 0.06 0.04 -29.4 ±0.3 -25.5 ±0.2 -26.3 ±0.1 -28.4 ±0.5 -28.5 ±0.3 -31.5 ±0.4 -35.1 ±0.5 -14.6 ±0.4 

17.5 4.64 26.47 0.02 0.02 0.05 -26.1 ±0.1 -24.1 ±0.1 -25.7±0.1 -27.1 ±0.1 -28.1 ±0.1 -32.2± 0.1 -33.8 ±0.2 -14.7 ±0.3 

22.5 5.99 26.60 0.01 0.01 0.03 -20.9 ±0.2 -20.3 ±0.2 -20.8 ±0.2 -24.6 ±0.4 -24.1 ±0.5 -28.4 ±0.4 -30.8 ±0.2 -13.9 ±0.3 

27.5 7.01 26.27 0.02 0.00 0.01 -19.6 ±0.0 -19.6 ±0.0 -19.8 ±0.0 -23.9 ±0.2 -24.6 ±0.2 -28.4 ±0.2 -31.3 ±0.1 -14.9 ±0.3 

32.5 6.39 26.24 0.02 0.00 0.02 -20.6 ±0.1 -20.6 ±0.0 -21.3 ±0.0 -24.5 ±0.2 -26.1 ±0.1 -27.4 ±0.2 -30.6 ±0.2 -14.7 ±0.4 

37.5 7.05 25.82 0.03 0.00 0.02         

42.5 6.31 25.83 0.04 0.00 0.03 -20.0 ±0.0 -20.0 ±0.1 -20.8 ±0.1 -23.7 ±0.0 -25.1 ±0.1 -27.4 ±0.4 -31.0 ±0.2 -14.3 ±0.2 

47.5 6.35 26.26 0.02 0.00 0.02 -20.0 ±0.1 -20.0 ±0.1 -20.8 ±0.0 -23.7 ±0.2 -25.1 ±0.1 -27.4 ±0.6 -31.0 ±0.5 -14.3 ±0.4 

52.5 5.24 26.15 0.02 0.00 0.01 -20.7 ±0.1 -21.0 ±0.0 -21.9 ±0.0 -24.7 ±0.0 -26.9 ±0.3 n.d. -31.2 ±0.0 -14.3 ±0.0 

57.5 5.14 26.58 0.02 0.00 0.01 -20.8 ±0.3 -21.1 ±0.2 -21.7 ±0.2 -24.5 ±0.4 -26.4 ±0.3 -29.1 ±0.1 -30.0 ±0.3 -18.8 ±0.1 

67.5 6.06 26.40 0.02 0.00 0.01         

72.5 5.28 26.16 0.02 0.00 0.01 -19.3 ±0.2 -19.3 ±0.2 -19.6 ±0.3 -22.6 ±0.1 -24.6 ±0.3 -28.1 ±0.2 -28.3 ±0.1 -15.9 ±0.0 

77.5 4.69 26.38 0.02 0.00 0.00         

82.5 6.25 26.12 0.02 0.00 0.01         

87.5 4.72 25.86 0.02 0.00 0.01 -20.9 ±0.2 -21.4 ±0.2 -21.9 ±0.3 -25.0 ±0.3 -27.0 ±0.2 -29.9 ±0.1 -30.2 ±0.4 -17.9 ±0.1 

92.5 7.05 25.61 0.02 0.00 0.01         

97.5 6.29 25.74 0.03 0.00 0.01         

102.5 5.50 25.99 0.03 0.00 0.01 -21.7 ±0.0 -21.8 ±0.0 -21.8 ±0.1 -25.9 ±0.1 -27.3 ±0.0 -29.3 ±0.0 -30.9 ±0.1 -14.6 ±0.1 

107.5 9.09 25.86 0.02 0.00 0.01         

112.5 5.99 26.20 0.03 0.00 0.01 -21.3 ±0.2 -21.4 ±0.2 -21.5 ±0.2 -25.9±0.1 -27.4 ±0.2  -30.8 ±0.4  
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Table A2.3: Data included in Figure 2.3. Abundance was calculated relative to the largest peak area. 
Stable isotope values are reported ± standard deviations between two replicate analyses. 

 

depth 

[cm] 
chain length 

relative abundance [%] δ13C n-alkanes  

[‰ VBDB] 

δD n-alkanes  

[‰ VSMOW] n-alkanes n-alkenes n-alkadienes 

5-10 C15 0.54 0.05 n.d. n.d. n.d. 

 C16 0.83 0.08 n.d. n.d. n.d. 

 C17 6.07 0.13 n.d. -31.6 ±0.1 n.d. 

 C18 1.50 0.22 n.d. -32.5 ±0.3 n.d. 

 C19 6.77 0.34 n.d. -31.0 ±0.0 n.d. 

 C20 4.09 0.21 n.d. -30.3 ±0.1 n.d. 

 C21 25.46 0.80 n.d. -32.4 ±0.1 -98 ±2 

 C22 17.59 1.14 n.d. -30.1 ±0.2  

 C23 87.79 10.20 n.d. -30.4 ±0.2 -103 ±2 

 C24 22.54 4.57 n.d. -28.6 ±0.1 n.d. 

 C25 93.49 18.69 n.d. -26.4 ±0.1 -109 ±2 

 C26 23.73 3.30 n.d. -28.9 ±0.2 -99 ±4 

C27 100.00 79.14 2.00 -26.5 ±0.1 -102 ±3 

 C28 13.84 11.47 11.47 -26.4 ±0.1 -104 ±3 

 C29 62.24 31.58 43.88 -26.1 ±0.1 -134 ±0 

 C30 2.89 n.d. n.d. n.d. n.d. 

 C31 33.25 n.d. n.d. n.d. n.d. 

 C32 n.d. n.d. n.d. n.d. n.d. 

 C33 10.88 n.d. n.d. n.d. n.d. 

100-105 C15 0.60 n.d. n.d. n.d. n.d. 

 C16 1.14 0.12 n.d. n.d. n.d. 

 C17 2.62 n.d. n.d. -29.3 ±0.0 n.d. 

 C18 1.30 n.d. n.d. n.d. n.d. 

 C19 2.58 n.d. n.d. -28.2 ±0.2 n.d. 

 C20 2.91 n.d. n.d. -28.0 ±0.3 n.d. 

 C21 15.34 n.d. n.d. -23.8 ±0.1 -126 ±2 

 C22 11.95 n.d. n.d. -24.3 ±0.2 n.d. 

 C23 80.36 4.86 n.d. -21.7 ±0.0 -115 ±5 

 C24 13.59 3.12 n.d. -25.9 ±0.1 n.d. 

 C25 83.17 1.45 n.d. -21.8 ±0.0 -138 ±2 

 C26 16.65 n.d. n.d. -27.3 ±0.0 -110 ±6 

 C27 100.00 n.d. n.d. -21.8 ±0.1 -151 ±4 

 C28 11.52 n.d. 1.53 -26.7 ±0.1 -115 ±2 

 C29 50.73 n.d. n.d. -24.1 ±0.0 -150±4 

 C30 6.24 n.d. n.d. n.d. n.d. 

 C31 34.44 n.d. n.d. n.d. n.d. 

 C32 n.d. n.d. n.d. n.d. n.d. 

 C33 12.71 n.d. n.d. n.d. n.d. 



 

 
 

Table A2.4: Relative abundances included in Figure 2.4 were reported cf. C21-C31 n-alkanes calculated from peak areas of m/z 191 (hopanoids), m/z 215 (sterenes), m/z 217 
(cholestane) extracted ion chromatograms and total ion chromatograms (TIC). Tm-β = . 17β-22,29,30-trisnorhopane 

medium 

depth [cm] 

trisnor-

hopane 
diploptene 

C27  

hop13(18)ene 
hop13(18)ene Tm-β ββ-hopane

ββ-22R 

homohopane 

ααα-20R 

cholestane 

C27 

ster-2-ene 

C29 

ster-2-ene 

C16 1-chloro- 

n-alkane 

C32 1-chloro- 

n-alkene 
*perylene 

2.5 0.0022 0.0011 0.0004 0.0012 0.0023 0.0035 0.0047 0.0001 0.0022 0.0006 0.0142 0.0768 0.02 

7.5 0.0026 0.0009 0.0002 0.0004 0.0016 0.0022 0.0028 0.0000 0.0008 0.0002 0.0123 0.0298 n.d. 

12.5 0.0061 0.0022 0.0001 0.0002 0.0016 0.0026 0.0035 0.0000 0.0013 0.0004 0.0042 0.0743 0.00 

17.5 0.0063 0.0022 0.0002 0.0001 0.0016 0.0021 0.0025 0.0000 0.0014 0.0005 0.0003 0.0226 0.03 

22.5 0.0045 0.0022 0.0001 0.0001 0.0015 0.0016 0.0019 0.0001 0.0013 0.0006 0.0001 0.0086 0.00 

27.5 0.0022 0.0007 0.0001 0.0003 0.0014 0.0011 0.0013 0.0002 0.0006 0.0006 0.0023 0.0065 0.00 

32.5 0.0009 0.0002 0.0001 0.0002 0.0016 0.0012 0.0013 0.0002 0.0003 0.0003 0.0039 0.0055 0.02 

37.5 0.0014 0.0004 0.0002 0.0005 0.0033 0.0030 0.0035 0.0004 0.0002 0.0003 0.0044 0.0040 0.45 

42.5 0.0010 0.0001 0.0001 0.0002 0.0019 0.0017 0.0022 0.0002 0.0001 0.0002 0.0066 0.0051 0.42 

47.5 0.0009 0.0002 0.0002 0.0004 0.0022 0.0017 0.0022 0.0003 0.0002 0.0003 0.0045 0.0076 0.25 

52.5 0.0006 0.0001 0.0001 0.0004 0.0020 0.0017 0.0021 0.0002 0.0002 0.0003 0.0040 0.0099 n.d. 

57.5 0.0005 0.0002 0.0002 0.0006 0.0027 0.0022 0.0028 0.0003 0.0003 0.0004 0.0096 0.0700 0.51 

67.5 0.0005 0.0001 0.0001 0.0003 0.0027 0.0019 0.0024 0.0003 0.0004 0.0006 0.0018 0.0143 0.84 

72.5 0.0006 0.0001 0.0002 0.0005 0.0024 0.0018 0.0024 0.0002 0.0003 0.0005 0.0037 0.0183 0.57 

77.5 0.0011 0.0002 0.0003 0.0009 0.0030 0.0023 0.0031 0.0004 0.0003 0.0005 0.0039 0.0144 n.d. 

82.5 0.0009 0.0002 0.0002 0.0007 0.0028 0.0021 0.0027 0.0004 0.0003 0.0005 0.0053 0.0111 1.27 

87.5 0.0018 0.0004 0.0004 0.0010 0.0048 0.0034 0.0043 0.0006 0.0005 0.0007 0.0060 0.0098 1.60 

92.5 0.0015 0.0003 0.0003 0.0009 0.0050 0.0037 0.0048 0.0006 0.0006 0.0007 0.0068 0.0115 1.28 

97.5 0.0012 0.0002 0.0003 0.0011 0.0042 0.0034 0.0046 0.0004 0.0005 0.0006 0.0116 0.0130 0.68 

102.5 0.0014 0.0002 0.0003 0.0008 0.0038 0.0030 0.0039 0.0004 0.0003 0.0003 0.0093 0.0109 0.63 

107.5 0.0014 0.0003 0.0003 0.0009 0.0041 0.0029 0.0037 0.0004 0.0004 0.0006 0.0035 0.0066 1.41 

112.5 0.0010 0.0003 0.0002 0.0008 0.0031 0.0023 0.0031 0.0003 0.0004 0.0004 0.0102 0.0131 2.27 

* concentration ng/g sediment 
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Table A2.5: Peak areas of sterenes and steranes from extracted ion chromatograms (m/z 215 and m/z 
217, respectively) included in Figure 2.5 

Medium 

depth [cm] 
∑C27 steroids ∑C28 steroids ∑C29 steroids 

2.5 613784 125538 211641 

7.5 143389 34880 52286 

12.5 423477 111844 159943 

17.5 261543 83106 110634 

22.5 300751 95279 148991 

27.5 147588 54276 139184 

32.5 30263 13538 39598 

37.5 11506 6446 23014 

42.5 14313 11274 35996 

47.5 29046 18273 57445 

52.5 30264 18369 59770 

57.5 70899 42911 134701 

67.5 123821 100222 265255 

72.5 115795 66878 264802 

77.5 72253 44394 154829 

82.5 136761 81341 271985 

87.5 61234 35909 122546 

92.5 51114 25395 89124 

97.5 129705 69550 235119 

102.5 92621 40652 136610 

107.5 55558 36194 124201 

112.5 142179 63532 220965 

 

Table A2.6: Data included in Figure 2.8 

Medium 

depth [cm] 

δD of n-alkanes [‰ VSMOW] 
R22-index 

hop17(21)ene / 

∑hopanoids C23 C25 C26 C27 C28 

2.5 -96 ±6 -104 ±2 -79 ±5 -89 ±0 -89 ±1 0.34 0.13 

7.5 -103 ±2 -109 ±2 -99 ±4 -102 ±3 -104 ±3 0.31 0.07 

12.5 -89 ±4 -118 ±2 -95 ±1 -105 ±0 -116 ±4 0.33 0.04 

17.5 -109 ±2 -148 ±4 -122 ±4 -143 ±0 -134 ±2 0.28 0.03 

22.5 -110 ±3 -134 ±3 n.d. -142 ±1 -125 ±0 0.19 0.04 

27.5 -120 ±6 -128 ±6 -101 ±3 -148 ±1 -99 ±0 0.15 0.07 

32.5 -125 ±3 -139 ±3 -113 ±1 -148 ±3 -110 ±5 0.18 0.04 

37.5 n.d. n.d. n.d. n.d. n.d. 0.19 0.03 

42.5 -106 ±6 -124 ±0 -102 ±7 -132 ±0 -107 ±2 0.21 0.03 

47.5 -106 ±4 -117 ±2 -111 ±4 -142 ±0 -119 ±0 0.21 0.04 

52.5 -107 ±2 -114 ±1 n.d. -136 ±4 -99 ±4 0.22 0.04 

57.5 -100 ±1 -118 ±3 n.d. -135 ±1 -115 ±3 0.24 0.03 

67.5 -112 ±1 -128 ±1 -112 ±0 -147 ±1 -114 ±1 0.22 0.01 

72.5 -103 ±2 -127 ±1 -102 ±1 -145 ±0 -107 ±2 0.23 0.04 

77.5 -115 ±4 -134 ±3 -114 ±1 -154 ±0 -112 ±0 0.24 0.04 

82.5 -119 ±4 -138 ±2 -105 ±5 -155 ±1 -109 ±2 0.23 0.04 

87.5 -131 ±5 -152 ±1 -122 ±4 -162 ±1 -118 ±0 0.23 0.04 

92.5 -113 ±6 -136 ±2 -103 ±2 -144 ±1 -113 ±1 0.21 0.04 

97.5 -142 ±6 -154 ±1 -109 ±5 -168 ±0 -121 ±5 0.22 0.04 

102.5 -115 ±5 -138 ±2 -110 ±6 -151 ±4 -115 ±2 0.25 0.04 

107.5 -127 ±3 -166 ±6 -128 ±3 -168 ±2 -118 ±4 0.22 0.06 

112.5 n.d. -143 ±3 -105 ±2 -160 ±2 -118 ±4 0.24 0.04 
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Table A2.7: Data included in Figure 2.6 

depth [cm] chain length
δ13C n-alkanes  

[‰ VBDB] 

δD n-alkanes  

[‰ VSMOW] 

0-5 C21 -32.1 ±0.2 -100 ±1 

 C22 -30.9 ±0.1 -73 ±4 

 C23 -31.7 ±0.0 -96 ±6 

 C24 -29.3  ±0.2 n.d. 

 C25 -27.1 ±0.0 -104 ±2 

 C26 -31.6 ±0.2 -79 ±5 

C27 -27.8 ±0.1 -89 ±0 

 C28 -27.6 ±0.1 -89 ±1 

 C29 -27.6 ±0.2 -134 ±1 

5-10 C21 -32.4 ±0.1 -98 ±2 

 C22 -30.1 ±0.2 n.d. 

 C23 -30.4 ±0.2 -103 ±2 

 C24 -28.6 ±0.1 n.d. 

 C25 -26.4 ±0.1 -109 ±2 

 C26 -28.9 ±0.2 -99 ±4 

 C27 -26.5 ±0.1 -102 ±3 

 C28 -26.4 ±0.1 -104 ±3 

 C29 -26.1 ±0.1 -134 ±0 

10-15 C21 -31.1 ±0.3 -113 ±1 

 C22 -30.0 ±0.5 -69 ±3 

 C23 -29.4 ±0.3 -89 ±4 

 C24 -28.4 ±0.3 n.d. 

 C25 -25.5 ±0.2 -118 ±2 

 C26 -28.5 ±0.3 -95 ±1 

 C27 -26.3 ±0.1 -105 ±0 

 C28 -26.9 ±0.1 -116 ±4 

 C29 -26.3 ±0.0 -135 ±1 

100-105 C21 -23.8 ±0.1 -126 ±2 

 C22 -24.3 ±0.2 n.d. 

 C23 -21.7 ±0.0 -115 ±5 

 C24 -25.9 ±0.1 n.d. 

 C25 -21.8 ±0.0 -138 ±2 

 C26 -27.3 ±0.0 -110 ±6 

 C27 -21.8 ±0.1 -151 ±4 

 C28 -26.7 ±0.1 -115 ±2 

 C29 -24.1 ±0.0 -150 ±4 

110-115 C21 -23.3 ±0.1 -115 ±4 

 C22 -24.4 ±0.1 n.d. 

 C23 -21.3 ±0.2 -99 ±0 

 C24 -25.9 ±0.1 n.d. 

 C25 -21.4 ±0.2 -143 ±3 

 C26 -27.4 ±0.2 -105 ±2 

 C27 -21.5 ±0.2 -160 ±2 

 C28 -27.1 ±0.3 -118 ±4 

 C29 -24.2 ±0.2 -143 ±3 
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Abstract 

Methyltrimethyltridecylchromans (MTTCs) have been widely detected in sediments 

and crude oils from various depositional settings and are established markers for 

palaeosalinities. A likely origin of these compounds, which show a distinctive 

isoprenoid substituted aromatic structure, seems to be condensation reactions of 

phytol with higher plant-derived alkyl phenols during early diagenesis. However, a 

direct biological origin from phytoplanktonic organisms cannot be excluded. To 

further investigate the potential origin from condensation reactions, an online 

pyrolysis-gas chromatography- isotope ratio mass spectrometry (Py-GC-irMS) 

method with the capacity to measure δ13C in fragments (trimethylphenol and 

pristenes) generated from 5,7,8-trimethyl-MTTC was developed in this study. This 

straight forward technique poses a great potential for the elucidation of chroman 

formation in geological samples as it possibly enables the distinction between the 

different proposed sources of isoprenoid and alkyl-phenol fragments (mainly 

phytoplankton and higher plants, respectively) based on their stable isotopic 

compositions. Furthermore, it might be useful for the investigation of products 

generated from MTTCs during thermal maturation of geological samples. 

Keywords: Flash- pyrolysis, CSIA, palaeosalinity, phenols 
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Introduction 

Methylated 2-methyl-2-trimethyltridecylchromans (MTTCs, I in Figure 3.1) in 

sediments or crude oils generally occur as distinct isomers of monomethyl, dimethyl 

and trimethyl homologues. They were first identified in geological samples by 

Sinninghe-Damsté et al. (1987), who also introduced them as palaeosalinity 

indicators. MTTCs have since been reported in a great variety of geological samples 

and the “chroman ratio” (5,7,8-trimethyl-MTTC/total MTTCs) has been established 

as a powerful tool in salinity reconstructions (e.g. Schwark and Püttmann, 1990; 

Grice et al., 1998a; Schwark et al., 1998; Sinninghe Damsté et al., 1993). However, 

their origin and geological formation pathway remain debated (Sinninghe Damsté et 

al., 1993; Li and Larter, 1995; Li et al., 1995, Sinninghe-Damsté and De Leeuw, 

1995). Based on correlation of abundances and chroman ratios with other geological 

parameters and as an explanation for the limited number of naturally occurring 

isomers, a biosynthetic origin of MTTCs from phytoplanktonic organisms has been 

suggested (e.g. Sinninghe Damsté et al., 1993), although to date MTTCs or suitable 

direct precursors have not been found in organisms. An origin from higher plant 

tocopherols (II, Figure 3.1), which bear a strong structural similarity, has been ruled 

out due to their comparatively low abundances in the geosphere and the presence of a 

phenolic hydroxyl group at C-6 (Sinninghe Damsté et al., 1993; Li et al., 1995). Li et 

al. (1995) alternatively proposed that MTTCs might form via early diagenetic 

condensation reactions of the phytol side chain in chlorophylls with higher plant 

derived phenols, which would imply largely different source organisms for the 

isoprenoid and alkylphenol moiety of geological chromans. To further investigate 

this potential formation pathway, we developed a pyrolysis-stable isotope analytical 

method for δ13C determination in isoprenoid and alkylphenol fragments generated 

from MTTCs, which could possibly be used to establish the relationship to the 

different proposed source organisms of these fragments on a stable isotopic basis. 

Furthermore, tocopherols and MTTCs have been suggested as an additional source of 

pristane in more mature sediments/crude oils (Goossens et al., 1984; Li et al., 1995), 

which could also possibly be explored with this technique. The method was initially 

investigated by thermal degradation of an authentic 5,7,8-trimethyl-MTTC 

(triMeMTTC) standard in order to establish the stable isotopic relationship between 

the parent compound and the distinctive degradation products. Subsequently, 
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chroman isolates from three Middle to Upper Devonian sediments (Canning Basin, 

WA) were analysed to demonstrate the applicability of the method in natural 

samples. Although pyrolysis products of natural and artificial MTTCs and related 

compounds have been thoroughly investigated by Li et al. (1995), there have been no 

previous isotopic based studies of these compounds to establish the formation 

mechanism of MTTCs. 

 

 

Figure 3.1: Chemical structures referred to in the text 

Experimental 

The authentic 5,7,8-trimethyl-MTTC standard was synthesised from 2,3,5-

trimethylphenol and phytol according to Sinninghe-Damsté et al. (1987). 

Sediments (MWR-30.7 m, MWR-40.7 m and MWR-41.2 m) with high triMeMTTC 

abundances and exceptionally low maturities (e.g. Tmax 405–413 °C; unpublished 

data) originated from basin facies associated with Middle to Upper Devonian reef 

systems in the Canning Basin, Western Australia. The powdered rock was Soxhlet 

extracted and the total lipid extract fractionated by silica gel column chromatography 

(for details see Grice et al., 2005a; supplementary material). Unsaturated compounds 

were separated from the aliphatic fraction by AgNO3 silica column chromatography 

(10%) using hexane (saturated compounds) and DCM (unsaturated compounds) as 

eluents. n-Alkanes were subsequently removed with ZSM5 molecular sieve (e.g. 

Audino et al., 2001) to obtain a branched and cyclic fraction. 5,7,8-trimethyl-MTTC 

was further isolated from the aromatic fractions of MWR-40.7 m and MWR-41.2 m 

by AgNO3 thin layer chromatography (Eglinton and Murphy, 1969) using hexane as 
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developer and the authentic chroman standard (visualized with rhodamine spray 

under UV-light) as reference. The MTTC containing silica band was scraped off, 

extracted with DCM and filtered through a glass sinter funnel under vacuum. The 

low amount of aromatic compounds in the MWR-30.7 m sample precluded a TLC 

isolate being obtained. 

For bulk δ13C analysis a Delta V Plus mass spectrometer connected to a Thermo 

Flush 1112 via Conflow IV (Thermo-Finnigan/Germany) was used. Analytes were 

combusted at 1020 °C.  

Gas chromatography-mass spectrometry (GC-MS) was performed on an Agilent 

5973 GC-MS equipped with a HP 6890 auto-sampler and a DB-5MS capillary 

column. The GC oven was heated from 40–310 °C or 325 °C at 3 °C/min with initial 

and final hold times of 1 min and 30 min, respectively. A CDS 5350 Auto-pyroprobe 

was used for flash pyrolysis (Py)-GC-MS. The pyrolysis chamber and injector were 

held at 300 °C and pyrolysis was separately performed at temperatures of 550 °C, 

650 °C or 750 °C applied for 20 s. The pyrolysates were analysed with a 60:1 split. 

He carrier gas at a constant pressure of 17.5 psi was used and the GC oven was 

temperature programmed from -20 °C to 40 °C at 8 °C/min and then to 320 °C at 4 

°C/min with initial and final hold times of 1 and 25 min, respectively. All other 

settings remained unchanged. 

Gas chromatography-isotope ratio mass spectrometry (GC-irMS) was performed on a 

Micromass IsoPrime irMS interfaced to an Agilent 6890N GC fitted with a HP 7683 

autosampler. GC parameters were similar to those used for GC-MS. For Py-GC-irMS 

a CDS-Pyroprobe 5000 was mounted directly on the vaporisation injector of the GC-

irMS system. The pyrolysis chamber and injector were set to 300 °C. Analytes were 

pyrolysed at 650 °C for 20s, injected with a 30:1 split or splitless (for increased 

sensitivity) and trapped in liquid nitrogen until the end of pyrolysis. The GC oven 

was programmed from 40–325 °C at 4 °C/min with initial and final hold times of 2 

and 15 min, respectively. GC column and all other settings remained unchanged. 

Reference standards of known isotopic composition were regularly analysed to 

confirm accuracy of isotope analysis. All δ13C values reported in this study are the 

average of at least two replicates and standard deviations were reported. 
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Further details about typical injector, carrier gas and MS/irMS settings as well as GC 

column, interface (for GC-irMS) and instrument software used for GC-MS/irMS can 

be found in supplementary materials of Melendez et al. (2013). 

Results and discussion 

The aim of this study was to develop an online flash pyrolysis-GC-irMS method 

which would allow stable isotopic correlation of MTTCs and related lower molecular 

weight products for the elucidation of their sources and formation pathways in 

geological samples. An authentic 5,7,8-triMeMTTC standard (often the most 

abundant natural chroman) was first analysed by Py-GC-MS to identify major 

degradation products of the parent structure and investigate pyrolysis efficiency at 

different temperatures (550 °C, 650 °C and 750 °C) in separate pyrolysis 

experiments. The major pyrolysates in all analyses were 2,3,5-trimethylphenol (see 

appendix for compound identification) and pristenes as well as the intact chroman 

(e.g. Figure 3.2a). The extent of pyrolytic degradation was inferred from the ratio 

between the abundance (peak area) of the trimethylphenol and all pristene products 

relative to the original chroman in four replicate analyses. The highest degradation 

efficiency was achieved at a pyrolysis temperature of 650 °C (ratios of 0.8, 1.6, 1.2 

for 550 °C, 650 °C and 750 °C, respectively), which therefore was used in all 

subsequent analyses. However, the replicates generally showed some variability 

which is typical of many analytical pyrolysis studies. Li et al. (1995) conducted 

offline pyrolysis over 65 h at 350 °C on chroman isolates which similarly showed 

high amounts of pristenes, but contrary to present data generated tetramethylphenol 

instead of trimethylphenol. This was also the main product we generated in 

preliminary and unpublished pyrolysis experiments of the 5,7,8-triMeMTTC in 

sealed glass tubes at temperatures of 310 and 390 °C over 72h. The different product 

obtained from flash pyrolysis may be the result of the elevated pyrolysis 

temperatures leading to a different bond cleavage in the chroman. In an earlier study, 

tocopherols have also been shown to generate significant amounts of pristenes during 

pyrolysis and have therefore been suggested as a contributor to pristane in geological 

samples (Goossens et al., 1984). 
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Figure 3.2: Total ion chromatograms of a typical pyrolysate obtained from an authentic 5,7,8-
trimethyl-2-methyl-2-trimethyltridecylchroman (triMeMTTC) standard (a), and triMeMTTC in 
isolates from natural samples (MWR-30.7 m, aromatic fraction; b, and MWR-40.7 m thin layer 
chromatography isolate from aromatic fraction (c), which were pyrolysed in subsequent experiments. 
TMP = trimethylphenol; * = Impurities in triMeMTTC standard. 

 

Precision and accuracy of δ13C values measured by Py-GC-irMS were tested with 

five replicate analyses of the 5,7,8-triMeMTTC standard (using split and splitless 

injections). Standard deviations between 0.2‰ and 0.4‰ for all measured 

compounds confirmed an excellent precision (Table 3.1). δ13C values reported for 

prist-1-ene include a coeluting pristene isomer (cf. Figure 3.2a and Figure 3.3a, b). 

Apart from that, good baseline separations, essential for GC-irMS analysis, were 

achieved for all remaining products. δ13C values of trimethylphenol, pristenes and 

triMeMTTC in pyrolysates were comparable to reference values obtained by 

elemental analysis (EA)-irMS of the chroman standard as well as the phytol and 

trimethylphenol utilised for its synthesis (Table 3.2). This confirmed both the 

accuracy of the data and the preservation of the δ13C signature of source compounds 

during condensation reactions and pyrolysis. The slight systematic depletion of δ13C 

values obtained from EA-irMS in comparison to corresponding values measured on 

the GC-irMS system (in pyrolysis products as well as in the chroman standard 

analysed by conventional liquid injection; Table 3.2)  can be attributed to 
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instrumental bias. Similar systematic variations between different systems for EA- 

and GC-irMS have previously been reported (e.g. Zwank et al., 2003). Nevertheless, 

values obtained from both methods are in accordance with the following mass 

balance equation: 

29

Cδ20Cδ9
Cδ stenesphytol/pri

13
henoltrimethylp

13

triMeMTTC
13




 

where “δ13Cphytol/pristenes” stands for δ13C of phytol (for bulk-irMS) or average δ13C of 

all pristenes (for Py-GC-irMS). The calculated δ13C values for triMeMTTC of -

32.5‰ and -33.3‰ for Py-GC-irMS and EA-irMS, respectively, are almost identical 

to the measured values (Tables 3.1 and 2). 

 

Table 3.1: δ13C values of compounds in the pyrolysate obtained from five replicate analyses of an 
authentic chroman standard including average δ13C values  ± standard deviation. a injection with 30:1 
split; b splitless injection; * joined peak of prist-1-ene and second, less abundant pristene isomer 

 

δ13C [‰ VPDB] 

 
Average 

run 1
a
 run 2

a
 run 3

b
 run 4

b
 run 5

b
 

trimethylphenol -29.6 -29.9 -29.7 -29.4 -29.6 -29.6 ±0.2 

prist-1-ene* -33.5 -34.2 -34.1 -33.7 -33.9 -33.9 ±0.3 

prist-2-ene -33.4 -34.2 -33.9 -33.4 -34.0 -33.8 ±0.4 

5,7,8-triMeMTTC -32.2 -32.8 n.d. n.d. n.d. -32.5 ±0.4 

 

 

Figure 3.3: Pyrolysis-gas chromatography-isotope ratio mass spectrometry (Py-GC-irMS) 
chromatograms of authentic 5,7,8-trimethyl-2-methyl-2-trimethyltridecylchroman (triMeMTTC) 
standard (a and b) and MTTC-isolate from the MWR-40.7 m natural sample (c). 
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Table 3.2: δ13C values of the  synthesized chroman standard and source compounds ± standard 
deviations between 3 (a) or 2 (b) replicates obtained by elemental analysis-isotope ratio mass 
spectrometry (EA-irMS) and gas chromatography (GC)-irMS.  n.d. = not determined 

 

 

δ13C [‰ VPDB] 

2,3,5-trimethylphenol phytol 5,7,8-triMeMTTC 

EA-irMS -30.6 ±0.0a -34.5 ±0.0b -33.4 ±0.2b 

GC-irMS n.d. n.d. -32.9 ±0.1a 

 

Py-GC-irMS was applied to the TLC-isolates from MWR-40.7 m and MWR-41.2 m 

(Figure 3.2c) and the whole aromatic fraction of MWR-30.7 m (containing abundant 

triMeMTTC – Figure 3.2b). Figure 3.3c shows a typical GC-irMS trace of 

pyrolysates obtained from these samples. Notable differences to the pyrolysate 

distribution of the chroman standard include the absence of trimethylphenol and 

prist-2-ene, which can probably be attributed to matrix effects, i.e. other compounds 

present in the TLC isolates/aromatic fraction influencing thermal behaviour, which 

can alter flash pyrolysis product distributions (e.g. Greenwood et al., 2006). Further 

optimisation of the pyrolysis conditions for the challenges of geological samples 

would be useful, but was not done here due to the limited quantity of these samples. 

The δ13C values of pristene (most likely prist-1-ene and a second co-eluting isomer) 

measured by Py-GC-irMS of the three samples was consistently similar to the 

corresponding values of pristane and phytane obtained from traditional liquid 

injection GC-irMS. This correlation strongly points to a common source for these 

products, most likely the phytol side chain in chlorophylls (Table 3.3). Furthermore, 

the traditionally measured δ13C values of triMeMTTC were also similar to the 

isotopic signatures of these products, although a very small 13C enrichment was 

notable (Table 3.3). However, since the δ13C value of the alkylphenol moiety of the 

chroman standard could not be measured, the suggested formation of chromans by 

biosynthesis in phytoplanktonic organisms (Sinninghe Damsté et al., 1993) cannot be 

discounted based on these results. 
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Table 3.3: δ13C [‰ VPDB] of selected hydrocarbons in the aliphatic and aromatic fractions as well as 
pristenes generated by flash pyrolysis of the aromatic fraction (a) or isolated chroman (b) ± standard 
deviation of 2 replicate measurements. *Only measured once due to limited sample material. 

 Sample i.d.  
GC-irMS       Py-GC-irMS 

pristane phytane 5,7,8-triMeMTTC Pristenes 

MWR-30.7 m -31.3 ±0.2 -29.9 ±0.4 n.d. -31.2a*  

MWR-40.7 m -33.2 ±0.1 -32.9 ±0.4 -32.7 ±0.2 -33.0 ±0.1 

MWR-41.2 m -32.7 ±0.1 -32.6 ±0.0 -32.1 ±0.0   -32.4 ±0.0 

Conclusions and outlook 

An online Py-GC-irMS method which enables δ13C analysis of major thermal 

breakdown products of triMe-MTTC (trimethylphenol and pristenes) was developed. 

Initial application to a triMeMTTC standard confirmed high precision and accuracy 

of the δ13C data. Furthermore, the isotopic relationship of major pyrolysis products to 

the parent chroman as well as to the corresponding source compounds used for 

synthesis of the standard was established. Similar analyses of triMeMTTC in isolates 

from immature sediments also generated a pristene peak, however, trimethylphenol 

and prist-2-ene, which were obtained from the standard in the previous analyses, 

were lacking. A more complete suite of MTTC pyrolysis markers should be 

achievable with further optimisation of pyrolysis conditions. Nevertheless, the few 

MTTC products detected in these initial analyses of geological material show a great 

potential for the application of this analytical method to probe the origin of MTTCs 

in geological samples. 
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Appendix 3 

Identification of 2,3,5-trimethylphenol 

The identity of 2,3,5-trimethylphenol (TMP) generated by pyrolysis of the 5,7,8-

triMeMTTC standard was confirmed by the comparison of retention times with an 

authentic 2,3,5-TMP standard. For this purpose a CDS-Pyroprobe 5000 was mounted 

directly on the vaporisation injector of the GC-MS system described in the 

experimental section. Except for increasing the initial hold time at -20 °C to 2 min, 

and the utilization of a different GC-column (ZB-5; Phenomenex), all GC-MS 

conditions were the same as described in the experimental section. Previous studies 

have shown that 2,3,5-TMP did not co-elute with other TMP isomers at comparable 

GC conditions (Alexander et al., 2011; Bastow et al., 2005), which enables an 

unequivocal identification of the generated TMP using this standard. The 5,7,8-

triMeMTTC standard was pyrolysed at 650 °C for 20s. For the analysis of the 2,3,5-

TMP standard the pyrolysis chamber was kept at 300 °C for 20s. Total ion 

chromatograms (TIC) of the 2,3,5-TMP standard and the MTTC pyrolysis product 

are displayed in Figure A3.1. The mass spectrum of the TMP generated from MTTC 

pyrolysis is shown in Figure A3.2. 

 

Figure A3.1: Overlain TIC chromatograms of the 2,3,5-trimethylphenol (TMP) standard and the TMP 
in the pyrolysate of 5,7,8-trimethyl-methyltrimethyltridecylchroman (triMeMTTC) analysed under the 
same GC-conditions confirming the identity of the latter 
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Figure A3.2: Mass spectrum of 2,3,5-trimethylphenol in the pyrolysate of 5,7,8-trimethyl-
methyltrimethyltridecylchroman (triMeMTTC) 

 

Supplementary experimental details 

Synthesis of 5,7,8-trimethyl-MTTC 

The authentic 5,7,8-trimethyl-MTTC standard was synthesised from 2,3,5-

trimethylphenol and phytol (Sinninghe-Damsté et al. 1987). In brief, phytol, 2,3,5-

trimethylphenol and phosphorus pentoxide were refluxed for 3.5 h in toluene. After 

cooling, the toluene layer was decanted and the residue was washed with toluene. 

Diethylether was added to the combined toluene layers and the mixture was washed 

several times with NaCl-saturated 1M KOH solution and subsequently with a 5% 

NaCl solution until the pH was neutral. The toluene/diethylether solution was dried 

over anhydrous MgSO4, evaporated and purified by Al2O3-column chromatography 

using hexane as eluent. 

Sample collection, preparation and extraction 

The analysed samples originate from a core collected in the Canning Basin, WA 

(location: McWhae Ridge; see Appendices 4 and 5). The core was sliced with a 
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rocksaw (diamond crystal edge with carbon steel centre) and the samples were pre-

extracted (ultrasonication) in methanol and dichloromethane (DCM). Subsequently, 

the powedered rock (stainless-steel rock-mill) was Soxhlet-extracted with 90 % 

DCM in methanol for 48 h. Activated copper turnings were added to the extracts for 

elemental sulfur removal. The total lipid extracts were fractionated by silica gel-

column chromatography (20 cm x 0.9 cm I.D.) using solvents with increasing 

polarity. The aliphatic and aromatic hydrocarbon fractions were eluted in hexane and 

20 % DCM in hexane, respectively. Subsequently the unsaturated compounds were 

separated from the aliphatic fraction by AgNO3 silica column chromatography (10%) 

using hexane (saturated compounds) and DCM (unsaturated compounds) as eluents. 

n-Alkanes were subsequently removed by passing the saturated fraction through a 

small column (~7 cm x 0.5 cm I.D.) of activated (> 8 h at 250 °C) and pre-rinsed 

ZSM5 molecular sieve using hexane as a solvent. In this procedure the saturated 

fraction was transferred onto the column in a minimum amount of solvent and 

allowed to stand for 2 min before it was eluted with hexane (~2 ml).  

5,7,8-trimethyl-MTTC was further isolated from the aromatic fractions by AgNO3 

thin layer chromatography using hexane as developer. Silica plates were prepared by 

exposure to a AgNO3 solution (1 % in methanol/milliQ-water, 1:4 v/v) for 45 s and a 

subsequent activation for 1 h at 120 °C. The previously synthesised 5,7,8-trimethyl-

MTTC standard was used as a reference to identify the MTTC-containing silica band 

(visualization of the standard with rhodamine spray under UV-light). The MTTC 

containing silica band was scraped off, extracted with DCM and filtered through a 

glass sinter funnel under vacuum. During these procedures the exposure of the 

AgNO3 solution as well the prepared silica plates to light was avoided. Preparation of 

silica plates and chromatography were performed in a dark room. 

Supplementary information on GC-MS conditions 

For GC-MS analyses the samples were injected into a split/splitless injector kept at 

320 °C in a pulsed-splitless mode. Helium was used as the carrier gas at a constant 

flow rate of 1.1 mL/min. 

For all GC-MS and Py-GC-MS analyses (except for the identification of the TMP, 

Appendix 3) the GC-oven was equipped with a capillary column (60 m x 0.25 mm 
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I.D.) coated with a 0.25 µm 5% phenyl 95% methyl polysiloxane stationary phase 

(DB-5MS, J & W scientific). Full scan (typically 50-600 Daltons) at 70 eV mass 

spectra were acquired with an electron multiplier voltage of 1800 V and a source 

temperature of 230 °C. ChemStation Data Analysis software was used for data 

acquisition and processing. 

Supplementary information on GC-irMS conditions 

For GC-irMS analyses carrier gas and injector conditions were identical to the 

settings for GC-MS analysis. For all GC-irMS and Py-GC-irMS analyses the same 

GC-column as for GC-MS analyses was used. 

The analytes were oxidized to CO2 and H2O in a combustion interface (quartz tube 

packed with CuO-pellets; 4 mm x 0.5 mm, isotope grade) at 850 °C. H2O was 

subsequently removed by a liquid nitrogen trap maintained at -100 °C. Isotopic 

compositions were determined by integration of the m/z 44, 45 and 46 ion currents of 

CO2 peaks from each analyte and reported relative to CO2 reference gas pulses of 

known 13C-content. For data acquisition and processing MassLynx (Micromass Ltd.) 

was used. Standard solutions containing compounds with a known isotopic 

composition were analysed after every second sample to confirm accuracy of the 

instruments. 
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Abstract 

Salinity-related density stratification in marine environments is one of the main 

drivers for the development of persistent anoxic and photic zone euxinic (PZE) 

conditions and thus presumably contributed significantly to global oceanic anoxic 

events (OAEs) associated with several mass extinctions in Earth’s history. Here we 

present a new molecular proxy with methyltrimethyltridecylchromans (MTTCs) as 

indicators of freshwater incursions into a Middle to Late Devonian marine 

palaeoenvironment with prevailing anoxia (e.g. low pristane/phytane), PZE 

(Chlorobi biomarkers) and water-column stratification (gammacerane abundance). 

Although ratios between different MTTC isomers have been established as salinity 

indicators the origin of these isoprenoid-substituted aromatic compounds remains 

unclear. Similar δ13C values of 5,7,8-trimethyl-MTTC and phytane as well as its co-

variations with perylene abundance is consistent with the early diagenetic formation 

of MTTCs from condensation reactions of phytol with higher plant derived 

alkylphenols, possibly linking the abundance of MTTCs to predominantly riverine 

terrigenous input. 
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Introduction 

Persistent salinity-related density stratification in marine environments, as can be 

observed in the modern Black Sea, has been a significant palaeoenvironmental and 

palaeoecological feature throughout Earth’s history. Such stratification was 

particularly widespread during global oceanic anoxic events (OAEs) associated with 

mass extinctions (e.g. Meyer and Kump, 2008). Water-column stratification in these 

environments is often accompanied by photic zone euxinia (PZE), a condition where 

enhanced concentrations of toxic hydrogen sulfide produced by anaerobic sulfate 

reducing bacteria in the sediments or even the water-column, extend to the photic 

zone (i.e. upper part of the water-column with sufficient light penetration to allow for 

photosynthesis). The few highly specialized organisms thriving under such 

conditions typically include the obligately anaerobic green sulfur bacteria (Chlorobi), 

which grow directly at the chemocline since they can access hydrogen sulfide as an 

electron donor for anoxygenic photosynthesis. Therefore, the presence of 

characteristic 13C-enriched Chlorobi biomarkers derived from carotenoid pigments in 

their unique photosystem (e.g. isorenieratane, I and related aryl isoprenoids, II, 

Figure A4.1) represents unequivocal evidence for palaeoenvironmental PZE (e.g. 

Summons and Powell, 1986; Grice et al., 2005a). A biomarker presumably indicative 

of water-column stratification is gammacerane (III), which is most likely derived 

from tetrahymanol (IV) in bacterivorous ciliates living at the interface between 

stratified water layers (Harvey and McManus, 1991; Sinninghe Damsté et al., 1995). 

Whereas the biomarkers mentioned previously are indicative of the conditions in the 

lower part of a stratified water-column, other compounds such as 

methyltrimethyltridecylchromans (MTTCs, V) are believed to reflect the conditions 

above the chemocline (e.g. Sinninghe Damsté et al., 1993). Although specific origin 

and formation pathway of MTTCs (V) in geological samples remain unclear, the 

ratio between different chroman isomers has been established as reliable indicator for 

palaeosalinity (e.g. Schwark and Püttmann, 1990; Grice et al., 1998a; Schwark et al., 

1998). Hypotheses for the formation of MTTCs (V) include direct biosynthesis by 

phytoplanktonic organisms (Sinninghe Damsté et al., 1993), early diagenetic 

condensation reactions of phytol with alkylphenols (e.g. from higher plant-derived 

lignin; Li et al., 1995; Tulipani et al., 2013) or cyclization of alkylphenols (Barakat 

and Rullkötter, 1997). Here we introduce a new conceptual model with MTTCs (V) 
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as indicators of freshwater incursions and possibly also of terrigenous input to a 

stratified marine palaeoenvironment associated with Middle to Late Devonian reef 

systems. 

Experimental 

Samples originated from a core collected in the Canning Basin, WA and comprised 

Late Givetian-Frasnian age sediments from the marginal slope and basin facies 

(Sadler- and Gogo Fm.) of ancient reef systems. A description of the geological 

settings can be found in supplementary information (SI) in Appendix 4. Biomarkers 

and bulk parameters were analysed by conventional methods (see SI in Appendix 4). 

Results and discussion 

Reconstruction of the depositional environment 

The palaeoenvironmental setting corresponding to the Late Givetian-Early Frasnian 

age sediments of the analysed core is schematically displayed in Figures 4.1a and b. 

Water-exchange with the open ocean was controlled by the disposition of reef 

systems forming a somewhat enclosed basin which promoted the development of a 

stagnant and persistently stratified water-column as indicated by enhanced 

gammacerane indices (gammacerane/17α, 21β-hopane; 0.55-1.71). The presence of 

this triterpenoid has been frequently associated with hypersaline palaeoenvironments 

and more recently has been suggested as a marker for water-column stratification 

(Sinninghe Damsté et al., 1995). Typically persistent stratification in marine 

environments is the result of density differences between (hyper)saline bottom 

waters and an overlying freshwater lens from riverine input, surface runoff or 

precipitation leading to the development of anoxic conditions in the lower layer with 

a sharp chemo-, pycno-, thermo- and halocline at the interface (Figure 4.1a). A 

modern analogue for these conditions is the Black Sea, where big rivers from Eastern 

Europe provide freshwater input and terrigenous runoff, supporting a high primary 

productivity. The previously described density stratification leads to an oxygenated 



 

 

 

 

Figure 4.1: (A) Schematic model 
of the depositional conditions in 
the stratified Late Givetian-Early 
Frasnian palaeoenvironment with 
freshwater incursions overlying 
more saline bottom waters. (B) 
Photic zone euxinic conditions in 
the corresponding water-column 
and associated microorganisms 
and organic matter sources with 
their molecular indicators relevant 
for this study. MTTCs = 
methyltrimethyltridecylchromans, 

PZE = photic zone euxinia, SRB = 
sulfate reducing bacteria. Water-
column stratification and PZE are 
evident in the abundance of 
gammacerane and Chlorobi 
carotenoid derivatives (e.g. 
isorenieratane), repectively. 
Higher plant input is indicated by 
the abundance of perylene and 
MTTCs. (C) Proposed mechanism 
of chroman formation from 
predominantly phytoplankton 
derived phytol with higher plant 
phenols during early diagenesis. 
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epilimnion of ~50 m overlying deep sulfidic and anoxic waters (> 100 m; e.g. 

Murray et al. 2007). 

Another molecular indication for a stagnant water-column is the presence of a suite 

of 13C-enriched Chlorobi biomarkers including intact isorenieratane (I, Figure A4.2) 

and palaeorenieratane (VI, Table 4.1), confirming photic zone euxinia (PZE) in the 

palaeoenvironment (Figure 4.1b). These results are further corroborated by the δ34S 

signatures of pyrite (Table 4.1), which indicate that bacterial sulfate reduction was 

not limited by dissolved sulfate and occurred under essentially open conditions (e.g. 

Canfield and Teske, 1996; Meyer and Kump, 2008) considering a range for 

Devonian seawater sulfate between about +15 and +20 ‰ (Kampschulte and Strauss, 

2004; Wortmann and Paytan, 2012). The values were in the same range as δ34S 

signatures of pyrite reported in European Late Devonian sediments corresponding to 

a euxinic paleoenvironment (Joachimski et al., 2001) and modern euxinic basins of 

the brackish Baltic Sea (Böttcher and Lepland, 2000; Böttcher et al., 2004). They 

were, however, less 34S-depleted compared to the Holocene Black Sea (Fry et al., 

1991; Böttcher et al., 2004; Jørgensen et al., 2004). 

Low pristane (VII)/phytane (VIII, Pr/Ph) ratios (0.39–1.0) indicate anoxia or 

relatively high salinities in the lower water-column. In contrast, high chroman ratios 

(5,7,8-trimethyl-MTTC/total MTTCs; 0.93-0.95) reflect the epilimnetic freshwater 

conditions (see subsequent sections). The anoxic sediments provided ideal conditions 

for organic matter (OM) and biomarker preservation. Another significant factor for 

biomarker preservation is the clay content in sediments since these minerals are 

known to catalyse various isomerization reactions. Therefore low clay contents lead 

to more immature biomarker ratios (e.g. Nabbefeld et al., 2010b). Biomarker 

parameters, such as very low ratios of homohopane (X) isomerization (Table 4.1), 

low Tmax values in Rock Eval analysis (Table A4.1) and palynological indicators 

including pale to mid yellow spore colors (unpublished data) in the presently 

analysed sediments are all indicative of extremely low thermal alteration. Immature 

biomarker signatures have also been reported for calcareous nodules from other 

nearby sections of the Gogo Fm. (Melendez et al., 2013b). However, despite these 

excellent prerequisites for OM preservation, the total organic carbon content (TOC 
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%) of the sediments was surprisingly low (Table 4.1), pointing towards some 

dilution by carbonate precipitation and oligotrophic palaeoenvironmental conditions, 

which is contrary to most euxinic environments (e.g. Grice et al., 2005a). 

Nevertheless, PZE could prevail in the environment described here due to the 

stratification of the water-column limiting vertical circulationPerylene (IX), which 

was also present in the analysed samples, is often used as an indicator for terrigenous 

input. Unlike the pyrogenic origin of most unsubstituted PAHs, perylene (IX) 

presumably forms via diagenetic processes under anoxic conditions and has often 

been linked to fungal wood/lignin degradation (Grice et al., 2009; Suzuki et al., 

2010). Whilst an origin from quinone pigments in marine fungi (mainly lignin 

degraders) or crinoids cannot be excluded, its abundance in the Devonian samples, 

coinciding with the evolution of the first woody plants and formation of forests (e.g. 

Meyer-Berthaud et al., 2010), points to a likely terrigenous source. 

 

Table 4.1: Selected elemental, stable isotope and maturity parameters in Late Givetian-Early Frasnian 
sediments deposited in a stratified and anoxic/euxinic marine environment. Due to the low amount of 
sample material molecular sieving for the determination of δ13C of pristane and C17 and C18 n-alkanes 
was not performed in this study. TOC = Total organic carbon, Carb. = carbonate, C31-hopane S/(S+R) 
= 17α,21β-homohopane isomerization at C22 

Depth [m] TOC % Carb. % 
C31-hopane 

S/(S+R) 

δ13C [‰ VPDB] 
δ34Spyrite 

[‰ VCDT] pristane phytane n-alkanes C19-21 
Palaeo-

renieratane 

40.2 0.1 62.6 0.23 n.d. -33.5 -33.0 n.d. -24.0 

40.3 0.3 68.1 0.20 n.d. -33.6 -32.8 -15.3 -13.8 

40.5 0.9 15.2 n.d. n.d. n.d. n.d. n.d. n.d. 

40.7 0.8 10.5 0.13 *-33.2 *-32.9 -32.3 -15.4 -11.9 

41.2 0.7 32.1 0.12 *-32.7 *-32.6 -32.8 n.d. -15.0 

41.9 0.7 13.3 0.11 n.d. -33.9 -33.4 -15.1 -19.1 

*from Tulipani et al. (2013) 

Origin of pristane and phytane 

The most common source of sedimentary Pr and Ph is the phytol side chain in 

chlorophyll-a (XI), which in the marine setting described here would typically be 

provided by phytoplankton, potentially with some additional terrestrial plant input 

(e.g. Hayes et al., 1990). However, there are also other potential Pr and Ph sources 

including archaea (e.g. Rowland, 1990; Grice et al., 1998b) and Pr may be generated 

during thermal maturation from chromans (Li et al., 1995; Frimmel et al., 2004; 

Tulipani et al., 2013) or tocopherols (XII, Goossens et al., 1984). Similar and 

relatively depleted δ13C values measured for Pr and Ph in this sample suite point 
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towards common algal, cyanobacterial or higher plant sources. δ13C values of short 

chain n-alkanes (C19-C21) were in the same range or slightly more enriched in 

comparison to the isoprenoids, indicating a mixed n-alkanes source from 

phytoplankton and heterotrophic bacteria (Schouten et al., 1998; Grice et al., 2005a). 

It could also indicate a contribution of 13C depleted Pr and Ph derived from purple 

sulfur bacteria (Chromatiaceae). However, okenane (XIII), which is also indicative 

of these organisms, was not detected. 

Significance of MTTCs 

Although the chroman ratio has been established as palaeosalinity indicator, the 

actual source of MTTCs (V) and their formation pathway remain obscure. Sinninghe 

Damsté et al. (1993) and Sinninghe-Damsté and De Leeuw (1995) suggested a 

biosynthetic origin from phytoplankton based on abundance profiles and to account 

for the limited number of naturally occurring MTTC isomers. However, to date 

neither MTTCs (V) nor plausible precursors have been found in any organisms. 

Whilst tocopherols are structurally similar, the hydroxyl group at C-6 disqualifies 

them as diagenetic precursor of sedimentary MTTCs (e.g. Sinninghe Damsté et al., 

1993). Li et al. (1995) alternatively suggested an origin of MTTCs (V) from early 

diagenetic condensation reactions between bound or free alkyl phenols (most likely 

predominantly higher plant derived) and phytol from chlorophylls (Figure 4.1c). 

MTTCs (V) have almost exclusively been found in geological samples post-dating 

the evolution of vascular plants, mainly in samples of Permian age or younger (e.g. 

Sinninghe-Damsté et al., 1987) but also occasionally in Middle to Late Devonian 

sediments (e.g. Marynowski and Filipiak, 2007). However, they have also once been 

reported in Neoproterozoic/Early Cambrian crude oils (Dutta et al., 2013) which may 

in this case be explained by sources of alkyl phenols other than higher plants (e.g. 

algal derived macromolecular structures or bacteria; Li and Larter, 1995 and 

references therein). Li et al. (1995) demonstrated that MTTCs (V) could be formed 

by condensation reactions from phytol as well as chlorophyll-a with a variety of free 

and bound alkylphenols including cresols and polyvinylphenol. 
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Figure 4.2: Co-variation of characteristic methyltrimethyltridecylchroman (MTTC) parameters with 
other biomarkers. triMeMTTC = 5,7,8-trimethyl-MTTC, chroman ratio = triMeMTTC/Total MTTC, 
Pr/Ph = pristane/phytane, PZE = photic zone euxinia. Red diamonds represent sediments deposited in 
the Late Givetian-Early Frasnian in a stratified, anoxic and euxinic palaeoenvironment whereas blue 
diamonds represent overlying sediments deposited later in the Frasnian in a less restricted setting. The 
chroman ratio is an established palaeosalinity indicator with values < 0.5 reflecting hypersaline and 
values > 0.6 normal marine or freshwater conditions (Sinninghe Damsté et al., 1993). However, their 
origin or formation pathway remain unclear. The relative 13C depletion of Ph and triMeMTTC in the 
older samples (E) are consistent with δ13C trends of bulk OM and carbonates (Table A4.1) and likely 
represent enhanced recycling of 12C-rich OM by SRB in the anoxic environments (Küspert, 1982). 

Chroman Ratio
0

1

2

0.8 0.9 1.0
Ga

m
m

ac
er

an
e 

In
de

x

B

persistence 
of stratification

mo
re

les
s

R² = 0.97

0

1

2

3

Pr
/P

h

an
ox

ic
ox

ic

A

decreasing salinity

C
R² = 0.81

0

0.4

0.8

1.2

Pe
ry

len
e [

µg
 / 

gT
OC

]

R² = 0.82

0.5

1.5

2.5

Pa
lae

or
en

ier
ata

ne
 [µ

g/
gT

OC
]

triMeMTTC [ µg/gTOC]
0 10 20 30 40

D

E

-34.5

-33.5

-32.5

-31.5

-30.5

-34.5 -33.5 -32.5 -31.5 -30.5

δ13
C 

ph
yt

an
e [

‰
]

δ13C triMeMTTC [‰]

persistence 
of PZE

les
s

mo
re



Chapter 4 
 

 

129 
 

Figure 4.2 illustrates correlations of MTTC (V) parameters with other molecular 

indicators in the analysed core. It also includes sediments deposited later in the 

Frasnian which were laid down in a less restricted setting at higher sea-levels without 

indications of water-column stratification, anoxia or PZE (i.e. Pr/Ph > 1, low 

gammacerane index and perylene (IX) concentrations and the absence of diaryl 

isoprenoids e.g. palaeorenieratane, VI). The chroman ratio exhibited a strong inverse 

relation (R2=0.97) to Pr/Ph (Figure 4.2a), contrary to several previous studies in 

more open marine settings, where an evident positive correlation between these 

parameters was attributed to the mutual salinity dependency of both ratios (e.g. 

Schwark et al., 1998). The inverse correlation presently observed indicates that 

chroman ratios reflected salinity in the epilimnion whereas Pr/Ph was influenced by 

the conditions in the bottom water or sediments (i.e. higher salinity and anoxia), 

which is consistent with previous suggestions of chroman formation in the upper 

water-column (e.g. Sinninghe Damsté et al., 1993). 

Further evidence for this, comes from the sharp increase of the gammacerane index 

in samples with higher chroman ratios (Figure 4.2b). The concentration of 

sedimentary gammacerane (III) is largely determined by (i) the persistence of 

stratification over time and (ii) the abundance of Chlorobi and Chromatiaceae, the 

main food source of bacterivorous ciliates at the chemocline. The positive correlation 

between these parameters reflects the interdependency of salinity levels in the upper 

water layer (reflected in chroman ratios) and persistence of stratification. The trophic 

link between ciliates and Chlorobi and additionally the promotion of PZE by water-

column stratification, account for the co-occurrence of high gammacerane indices 

(Figure 4.2b) and abundant Chlorobi biomarkers (e.g. palaeorenieratane, VI, Figure 

4.2d). 

The co-variance between 5,7,8-trimethyl-MTTC (triMeMTTC) and perylene (IX) 

concentrations (Figure 4.2c) might represent a link to similar higher plant sources, 

also supporting a diagenetic formation of MTTCs from alkyl phenols with phytol 

(Figure 4.1c). Higher plant input was in addition confirmed by palynological 

analyses (e.g. comminuted plant debris, resin bodies and microfossils of 

progymnosperms; unpublished results). However, reducing conditions favoring 

perylene (IX) abundance were stabilized by hyposaline surface waters hindering 
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vertical water mixing. Also the similar δ13C values of Ph and triMeMTTC observed 

here (Figure 4.2e), and generally similar δ13C values of Pr or Ph and MTTCs (V) 

reported in several previous studies (van Kaam-Peters et al., 1997; Grice et al., 

1998a; Grice et al., 1998d; Hong et al., 2007) concur with a common phytol source 

of Pr, Ph and the isoprenoidal subunit of MTTCs. The latter largely influences the 

stable isotopic composition of the whole molecule due to its larger size compared to 

the phenolic moiety. However, this isotopic relationship could also indicate a direct 

origin of phytol and MTTCs from similar phytoplanktonic source organisms as 

suggested by Sinninghe Damsté et al. (1993). To further investigate potentially 

different sources of the phenolic and isoprenoidal subunits in MTTCs it would be 

useful to separately measure the δ13C of these distinct moieties, which might be 

possible by pyrolysis-GC-irMS (Tulipani et al., 2013). 

Conclusions and implications 

This study introduces a new conceptual model for the reconstruction of freshwater 

incursions in a stratified marine palaeo-water-column using chroman ratios in 

combination with other molecular indicators including gammacerane index, Pr/Ph 

and Chlorobi biomarkers. We demonstrate that chroman ratios in the analysed 

Middle to Late Devonian sediments were determined by hyposalinity in the upper 

water column. Physicochemical properties between epi- and hypolimnion differed 

strongly, minimizing vertical mixing of the water body and favoring growth of 

floating microbial mats at the interface layer. Grazing of these floating mats by 

bacterivorous ciliates is indicated by the presence of gammacerane (III) and 

confirmed by strong correlations with other biomarker parameters indicating 

reducing and euxinic conditions in the epilimnion. The co-variance of triMeMTTC 

abundance with perylene (IX) indicates that MTTCs (VI) might be representative of 

terrigenous/higher plant sources which would be consistent with a diagenetic 

formation from condensation reactions of higher plant derived alkylphenols with 

phytol. This study is of interest to the broader geological community since water-

column stratification and related anoxia are important factors in OM preservation and 

often related to biological crises or mass extinction events. A better understanding of 
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source and formation pathway of MTTCs also helps to correctly interpret the 

chroman ratio with regards to salinity and other palaeoenvironmental conditions. 

Acknowledgements 

We acknowledge Geoff Chidlow and Steven Clayton for technical support with GC-

MS and GC-irMS analysis. ST thanks Curtin University for providing a Curtin 

Strategic International Research Scholarship (CSIRS) and the Institute for 

Geoscience Research (TIGeR) for a top-up scholarship. KG acknowledges the 

Australian Research Council (ARC) for a Discovery QEII grant supporting this 

research, and the John de Laeter Centre for Isotope Research and ARC LIEF grants 

which provided the infrastructure support. Chevron (Ted Playton), the Geological 

Survey of Western Australia and the Minerals and Energy Research Institute of 

Western Australia (M396) are thanked for sponsoring an ARC Linkage grant 

(LP0883812) which supported the fieldwork and research. Wundargoodie, Mimbi 

Community, and Mount Pierre Station are thanked for supporting the field work. 

MEB wishes to thank P. Escher and I. Scherff, for analytical support. 

References 

Barakat, A., Rullkötter, J., 1997. A Comparative Study of Molecular Paleosalinity 
Indicators: Chromans, Tocopherols and C20 Isoprenoid Thiophenes in Miocene 
Lake Sediments (Nördlinger Ries, Southern Germany). Aquatic Geochemistry 
3, 169-190. 

Böttcher, M.E., Lepland, A., 2000. Biogeochemistry of sulfur in a sediment core 
from the west-central Baltic Sea: Evidence from stable isotopes and pyrite 
textures. Journal of Marine Systems 25, 299-312. 

Böttcher, M., Jørgensen, B., Kallmeyer, J., Wehausen, R., 2004. S and O isotope 
fractionation in the western Black Sea. Geochimica et Cosmochimica Acta 68, 
A345. 

Canfield, D.E., Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen 
concentration inferred from phylogenetic and sulphur-isotope studies. Nature 
382, 127-132. 

Dutta, S., Bhattacharya, S., Raju, S.V., 2013. Biomarker signatures from 
Neoproterozoic-Early Cambrian oil, western India. Organic Geochemistry in 
press. 



Chapter 4 
 

 

132 
 

Frimmel, A., Oschmann, W., Schwark, L., 2004. Chemostratigraphy of the Posidonia 
Black Shale, SW Germany: I. Influence of sea-level variation on organic facies 
evolution. Chemical Geology 206, 199-230. 

Fry, B., Jannasch, H.W., Molyneaux, S.J., Wirsen, C.O., Muramoto, J.A., King, S., 
1991. Stable isotope studies of the carbon, nitrogen and sulfur cycles in the 
Black Sea and the Cariaco Trench. Deep Sea Research Part A. Oceanographic 
Research Papers 38, Supplement 2, S1003-S1019. 

Goossens, H., de Leeuw, J.W., Schenck, P.A., Brassell, S.C., 1984. Tocopherols as 
likely precursors of pristane in ancient sediments and crude oils. Nature 312, 
440-442. 

Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., Sinninghe Damsté, J.S., 
1998a. A remarkable paradox: Sulfurised freshwater algal (Botryococcus 
braunii) lipids in an ancient hypersaline euxinic ecosystem. Organic 
Geochemistry 28, 195-216. 

Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., Sinninghe Damsté, J.S., 
1998b. Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-
rich deposits from the Sdom Formation, Dead Sea Basin, Israel. Organic 
Geochemistry 28, 349-359. 

Grice, K., Schouten, S., Peters, K.E., Sinninghe Damsté, J.S., 1998d. Molecular 
isotopic characterisation of hydrocarbon biomarkers in Palaeocene–Eocene 
evaporitic, lacustrine source rocks from the Jianghan Basin, China. Organic 
Geochemistry 29, 1745-1764. 

Grice, K., Cao, C., Love, G.D., Böttcher, M.E., Twitchett, R.J., Grosjean, E., 
Summons, R.E., Turgeon, S.C., Dunning, W., Jin, Y., 2005a. Photic zone 
euxinia during the Permian-Triassic superanoxic event. Science 307, 706-709. 

Grice, K., Lu, H., Atahan, P., Asif, M., Hallmann, C., Greenwood, P., Maslen, E., 
Tulipani, S., Williford, K., Dodson, J., 2009. New insights into the origin of 
perylene in geological samples. Geochimica et Cosmochimica Acta 73, 6531-
6543. 

Harvey, H.R., McManus, G.B., 1991. Marine ciliates as a widespread source of 
tetrahymanol and hopan-3β-ol in sediments. Geochimica et Cosmochimica 
Acta 55, 3387-3390. 

Hayes, J.M., Freeman, K.H., Popp, B.N., Hoham, C.H., 1990. Compound-specific 
isotopic analyses: A novel tool for reconstruction of ancient biogeochemical 
processes. Organic Geochemistry 16, 1115-1128. 

Hong, L.U., Linhui, H.O.U., Tengshui, C., Ping'an, P., Guoying, S., 2007. Stable 
Carbon Isotopic Compositions of Methylated-MTTC in Crude Oils from Saline 
Lacustrine Depositional Environment: Source Implications. Acta Geologica 
Sinica - English Edition 81, 1041-1048. 

Joachimski, M.M., Ostertag-Henning, C., Pancost, R.D., Strauss, H., Freeman, K.H., 
Littke, R., Sinninghe Damsté, J.S., Racki, G., 2001. Water column anoxia, 
enhanced productivity and concomitant changes in δ13C and δ34S across the 
Frasnian–Famennian boundary (Kowala-Holy Cross Mountains/Poland). 
Chemical Geology 175, 109-131. 



Chapter 4 
 

 

133 
 

Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., Volkov, I.I., 2004. 
Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy 
sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta 68, 2095-
2118. 

Kampschulte, A., Strauss, H., 2004. The sulfur isotopic evolution of Phanerozoic 
seawater based on the analysis of structurally substituted sulfate in carbonates. 
Chemical Geology 204, 255-286. 

Küspert, W., 1982. Environmental changes during oil shale deposition as deduced 
from stable isotope ratios, in: Einsele, G., Seilacher, A. (Eds.), Cyclic and 
Event Stratification. Springer, Berlin, pp. 482–501. 

Li, M., Larter, S.R., 1995. Reply to comments by Sinninghe Damsté and De Leeuw 
(1995) on Li et al. (1995), Organic Geochemistry 23, 159–167. Organic 
Geochemistry 23, 1089-1093. 

Li, M., Larter, S.R., Taylor, P., Jones, D.M., Bowler, B., Bjorøy, M., 1995. 
Biomarkers or not biomarkers? A new hypothesis for the origin of pristane 
involving derivation from methyltrimethyltridecylchromans (MTTCs) formed 
during diagenesis from chlorophyll and alkylphenols. Organic Geochemistry 
23, 159-167. 

Marynowski, L., Filipiak, P., 2007. Water column euxinia and wildfire evidence 
during deposition of the Upper Famennian Hangenberg event horizon from the 
Holy Cross Mountains (central Poland). Geological Magazine 144, 569-595. 

Melendez, I., Grice, K., Trinajstic, K., Ladjavardi, M., Greenwood, P., Thompson, 
K., 2013b. Biomarkers reveal the role of photic zone euxinia in exceptional 
fossil preservation: An organic geochemical perspective. Geology 41, 123-126. 

Meyer-Berthaud, B., Soria, A., Decombeix, A.-L., 2010. The land plant cover in the 
Devonian: a reassessment of the evolution of the tree habit. Geological Society, 
London, Special Publications 339, 59-70. 

Meyer, K.M., Kump, L.R., 2008. Oceanic Euxinia in Earth History: Causes and 
Consequences. Annual Review of Earth and Planetary Sciences 36, 251-288. 

Murray, J. W., Stewart, K., Kassakian, S., Krynytzky, M., and DiJulio, D., 2007, 
Oxic, suboxic, and anoxic conditions in the Black Sea, in Yanko-Hombach, 
V., Gilbert, A. S., Panin, N., and Dolukhanow, P. M., eds., The black sea 
flood question, changes in coastline, climate and human settlement, Springer, 
Dordrecht. 

Nabbefeld, B., Grice, K., Schimmelmann, A., Summons, R.E., Troitzsch, U., 
Twitchett, R.J., 2010b. A comparison of thermal maturity parameters between 
freely extracted hydrocarbons (Bitumen I) and a second extract (Bitumen II) 
from within the kerogen matrix of Permian and Triassic sedimentary rocks. 
Organic Geochemistry 41, 78-87. 

Rowland, S.J., 1990. Production of acyclic isoprenoid hydrocarbons by laboratory 
maturation of methanogenic bacteria. Organic Geochemistry 15, 9-16. 

Schouten, S., Klein Breteler, W.C.M., Blokker, P., Schogt, N., Rijpstra, W.I.C., 
Grice, K., Baas, M., Sinninghe Damsté, J.S., 1998. Biosynthetic effects on the 
stable carbon isotopic compositions of algal lipids: implications for 



Chapter 4 
 

 

134 
 

deciphering the carbon isotopic biomarker record. Geochimica et 
Cosmochimica Acta 62, 1397-1406. 

Schwark, L., Püttmann, W., 1990. Aromatic hydrocarbon composition of the 
Permian Kupferschiefer in the Lower Rhine Basin, NW Germany. Organic 
Geochemistry 16, 749-761. 

Schwark, L., Vliex, M., Schaeffer, P., 1998. Geochemical characterization of Malm 
Zeta laminated carbonates from the Franconian Alb, SW-Germany (II). 
Organic Geochemistry 29, 1921-1952. 

Sinninghe-Damsté, J.S., De Leeuw, J.W., 1995. Comments on “Biomarkers or not 
biomarkers. A new hypothesis for the origin of pristane involving derivation 
from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis 
from chlorophyll and alkylphenols” from M. Li, S. R. Larter, P. Taylor, D. M. 
Jones, B. Bowler and M. Bjorøy. Organic Geochemistry 23, 1085-1087. 

Sinninghe-Damsté, J.S., Kock-Van Dalen, A.C., De Leeuw, J.W., Schenck, P.A., 
Guoying, S., Brassell, S.C., 1987. The identification of mono-, di- and 
trimethyl 2-methyl-2-(4,8,12-trimethyltridecyl)chromans and their occurrence 
in the geosphere. Geochimica et Cosmochimica Acta 51, 2393-2400. 

Sinninghe Damsté, J.S., Keely, B.J., Betts, S.E., Baas, M., Maxwell, J.R., de Leeuw, 
J.W., 1993. Variations in abundances and distributions of isoprenoid chromans 
and long-chain alkylbenzenes in sediments of the Mulhouse Basin: a molecular 
sedimentary record of palaeosalinity. Organic Geochemistry 20, 1201-1215. 

Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, 
J.M., de Leeuw, J.W., 1995. Evidence for gammacerane as an indicator of 
water column stratification. Geochimica et Cosmochimica Acta 59, 1895-1900. 

Summons, R.E., Powell, T.G., 1986. Chlorobiaceae in Palaeozoic seas revealed by 
biological markers, isotopes and geology. Nature 319, 763-765. 

Suzuki, N., Yessalina, S., Kikuchi, T., 2010. Probable fungal origin of perylene in 
Late Cretaceous to Paleogene terrestrial sedimentary rocks of northeastern 
Japan as indicated from stable carbon isotopes. Organic Geochemistry 41, 234-
241. 

Tulipani, S., Grice, K., Greenwood, P., Schwark, L., 2013a. A pyrolysis and stable 
isotopic approach to investigate the origin of methyltrimethyltridecylchromans 
(MTTCs). Organic Geochemistry 61, 1-5. 

van Kaam-Peters, H.M.E., Schouten, S., de Leeuw, J.W., Sinninghe Damsté, J.S., 
1997. A molecular and carbon isotope biogeochemical study of biomarkers and 
kerogen pyrolysates of the Kimmeridge Clay Facies: palaeoenvironmental 
implications. Organic Geochemistry 27, 399-422. 

Wortmann, U.G., Paytan, A., 2012. Rapid variability of seawater chemistry over the 
past 130 million years. Science 337, 334-336. 



Appendix 4 

 

 

135 

 

Appendix 4 

Supplementary information 

Supplementary figures 

 

Figure A4.1: Structures referred to in the text 
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Figure A4.2: Arylisoprenoids, 5,7,8-trimethylmethyltrimethyltridecylchroman (triMeMTTC) and 
perylene in a typical aromatic fraction from the restricted Late Givetian-Early Frasnian 
palaeoenvironment. pal. = palaeorenieratane, isor. = isorenieratane, ren. = renieratane 
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included in this study. All samples show an extraordinarily low maturity with very 

low Tmax values (Rock Eval analysis, 405-418 °C; Table A4.1). For a comprehensive 

description of the geology in the Canning Basin and more details about the 

investigated section at McWhae Ridge see Playford et al. (2009). 

Throughout most of the Devonian the climate was tropical without polar ice caps. 

According to Joachimski et al. (2009) temperatures were slightly cooler in the Late 

Givetian with an average of ~25°C but increased again throughout the Frasnian to 

~30°C. Furthermore, there was a global sea-level rise from the Givetian to the Late 

Frasnian (Johnson et al., 1985; Playford et al., 2009). The expansion of terrestrial 

plants with the first forests occurring in the Givetian (e.g. Grice et al., 2009; Meyer-

Berthaud et al., 2010; Mintz et al., 2010), likely had a major influence on climate and 

biogeochemical cycling (e.g. Algeo and Scheckler, 2010). 

Experimental 

Sample collection, preparation and extraction 

The core was collected using a Winkie-drill (small portable drilling-rig) without 

drilling fluids or lubricants, which also previously had never been in contact with the 

equipment. Samples for biomarker, elemental and stable isotope analyses were cut 

from one half of the core with a rocksaw (diamond crystal edge with carbon steel 

centre) and pre-extracted by ultrasonication in methanol and dichloromethane 

(DCM) to remove potential surface contamination. Subsequently, samples were 

powdered in a stainless-steel rock-mill and Soxhlet-extracted with 90 % DCM in 

methanol for 48 hours. Activated copper turnings were added to the round bottom-

flask during extraction to remove elemental sulfur. The extracts were separated by 

silica gel-column chromatography (20 cm x 0.9 cm I.D.) using solvents with 

increasing polarity. The aliphatic and aromatic hydrocarbon fractions relevant for 

this study were eluted in hexane and 20 % DCM in hexane, respectively. 

Gas chromatography-mass spectrometry (GC-MS) 

GC-MS analyses were performed using an Agilent 5973 Mass-Selective Detector 

(MSD) interfaced to an Agilent 6890 gas chromatograph (GC) equipped with a HP 
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6890 auto-sampler and a capillary column (60 m x 0.25 mm I.D.) coated with a 0.25 

µm 5% phenyl 95% methyl polysiloxane stationary phase (DB-5MS, J & W 

scientific). For the analysis of aliphatic fractions the GC-oven was heated from 40 °C 

to 310 °C at 3 °C/min with initial and final hold times of 1 and 30 minutes, 

respectively. For the analysis of aromatic fractions the final temperature was 

increased to 325 °C with the rest of the parameters remaining unchanged. Samples 

were injected into a split/splitless injector kept at 320 °C in a pulsed-splitless mode. 

Helium was used as the carrier gas at a constant flow rate of 1.1 mL/min. Full scan 

(typically 50-600 Daltons) at 70 eV mass spectra and selected ion monitoring (SIM) 

spectra (used to achieve a better resolution for quantification of aromatic 

compounds) were acquired with an electron multiplier voltage of 1800 V and a 

source temperature of 230 °C. ChemStation Data Analysis software was used for 

data acquisition and processing. Perylene, palaeorenieratane and isorenieratane were 

identified by comparison of retention times with authentic standards. For semi-

quantitative analyses the aromatic fractions were spiked with a known amount of 

perdeuterated terphenyl (d14). 

Gas chromatography-isotope ratio mass spectrometry (GC-irMS) 

GC-irMS analyses were performed on a Micromass IsoPrime mass-spectrometer 

interfaced to an Agilent 6890N GC fitted with a 7683 autosampler. The GC-column, 

carrier gas, injector conditions and oven temperature programs were identical to the 

settings for GC-MS analysis. Analytes were oxidized to CO2 and H2O in an interface 

consisting of a quartz tube maintained at 850 °C packed with CuO-pellets (4 mm x 

0.5 mm, isotope grade, Elemental Microanalysis LTD.). H2O was subsequently 

removed by a liquid nitrogen trap at -100 °C. Isotopic compositions were determined 

by integration of the m/z 44, 45 and 46 ion currents of CO2 peaks from each analyte 

and reported relative to CO2 reference gas pulses of known 13C-content. Isotopic 

values are given in the delta () notation relative to the international standard VPDB. 

For data acquisition and processing MassLynx (Micromass Ltd.) was used. Each 

sample was analysed at least in duplicate and average values and standard deviations 

were reported. Standard solutions containing compounds with a known isotopic 

composition were analysed after every second sample to confirm accuracy of the 

instruments. 
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Multiple reaction monitoring (MRM) GC-MS 

Selected aliphatic fractions were analysed on a Micromass Autospec Ultima mass 

spectrometer operating in MRM-mode, which was interfaced to an Agilent 6890 N 

gas chromatograph fitted with an autosampler and a DB-5MS fused silica capillary 

column (60 m; 0.25 mm I.D.; 0.25 μm film thickness; J&W Scientific). Helium at a 

constant flow of 2 ml/min was used as carrier gas. The GC-oven was programmed 

from 60°C to 150°C at 10°C/min and to 315°C at 3°C/min with initial and final hold 

times of 2 and 24 min, respectively. The source was operated in electron impact (EI, 

70 eV) mode at 250° C, with 8 kV accelerating voltage. Data was acquired and 

processed using MassLynx 4.0 (Micromass Ltd.) software. Identification of 

compounds was achieved by comparison with a synthetic mixture of oils (AGSO 

standard) that contains most common hopanes and steranes. Gammacerane indeces 

were calculated from peak areas of gammacerane and the 17α,21β-hopane in the 

chromatogram of the precursor-product reaction of m/z 412 to m/z 191. 

Determination of total organic carbon (TOC) and carbonate content 

Small fractions of the non-extracted powdered samples were decarbonated by the 

addition of hydrochloric acid (~5%), washed, dried and analysed on a VARIO EL-III 

elemental analyser for the determination of C%. The carbonate content [%] was 

inferred from the difference of sample weight before and after decarbonation. TOC% 

was calculated from C% in the decarbonated samples. 

RockEval pyrolysis 

RockEval pyrolysis was performed on the decarbonated samples (see previous 

section) due to the low TOC% using a VINCI Rock Eval 2 instrument. 

δ13C of carbonates 

δ13C of carbonates was measured by continuous-flow (CF) analysis on a GasBench II 

coupled with a Delta XL Mass Spectrometer (Thermo-Fisher Scientific) using the 

method described in Paul and Skrzypek (2007). In brief, carbonates in the powdered 

samples were digested by addition of ortho-phosphoric acid in a helium atmosphere. 
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The generated CO2 was trapped, purified and diverted to the irMS. Isotope values 

were reported in the delta () notation relative to the international standard VPDB. 

δ13C of organic carbon 

Fractions of the sample residues after Soxhlet-extraction were decarbonated by the 

addition of ~7N hydrochloric acid. Bulk δ13C analysis of the washed, dried and 

homogenized samples was performed on a continuous flow (CF) system consisting 

of a Delta V Plus mass spectrometer connected to a Thermo Flash 1112 via Conflo 

IV (Thermo-Finnigan/Germany). Combustion and oxidation were achieved at 1700-

1800°C and reduction at 650°C. Results were reported in the delta () notation 

relative to the international standard VPDB. For more details see Skrzypek and Paul 

(2006). 

δ34S of pyrite 

δ34S of total reducable inorganic sulphur (TRIS, mainly pyrite) was measured in a 

fraction of the sample residue after Soxhlet-extraction. TRIS was extracted from the 

sample by treatment with hot acidic chromium (II) chloride (Fossing & Jørgensen, 

1989). The generated H2S was precipitated quantitatively as ZnS, which was then 

converted to AgS2. 
34S/32S ratios were measured by combustion - isotope ratio 

monitoring - mass spectrometry (C-irm-MS) using a Thermo Finnigan MAT 253 

mass spectrometer coupled to an elemental analyser (Thermo Flash 2000) via a split 

interface (Thermo Finnigan Conflo IV). Measured isotope ratios were calibrated with 

in-house and international reference materials (Mann et al., 2009) and reported in the 

δ-notation relative to the V-CDT (Vienna Cañon Diablo Troilite) standard. 

Supplementary data 

Table A4.1: Tmax (RockEval) and δ13C values of bulk organic matter (OM) and carbonates (carb.) 
(reported in ‰ relative to VPDB), in the investigated Devonian samples 

Sample 

depth [m] 
27.3 28.1 29.0 30.9 31.9 33.0 33.2 33.4 40.2 40.3 40.5 40.7 41.2 41.9 

Tmax [°C] 413 410 418 405 405 410 415 410 n.d. 415 413 414 410 413 

δ13COM -29.7 -29.9 -28.3 -28.4 -27.8 n.d. -28.3 -27.2 -29.0 -29.6 n.d. -28.7 -29.0 -29.2 

δ13CCarb. 1.0 0.7 1.6 1.1 1.4 n.d. 1.9 1.2 0.1 -3.0 n.d. 0.5 -1.6 0.1 
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Abstract 

Although the Late Devonian extinctions rank amongst the “big five” mass extinction 

events in the Phanerozoic, causes, nature and exact timing of the associated events 

remain poorly understood. Besides the most pronounced biodiversity loss at the 

Frasnian-Famennian (F-F) boundary and towards the end of the Famennian, there 

were also less extensively studied extinction pulses in the Middle to Late Givetian 

and in the Frasnian. Here a combination of elemental, molecular and stable isotope 

analysis (including δ13C of carbonates, organic matter (OM) and biomarkers, 

δ18Ocarbonates, δDkerogen and δ34Spyrite) was used for the investigation of a sedimentary 

record from this time period (latest Givetian or earliest Frasnian until later in the 

Frasnian) collected in the Canning Basin (Lennard Shelf), WA. 

Depth profiles of most investigated palaeoenvironmental indicators showed distinct 

variations between sediments corresponding to the time period close to or at the 

Givetian-Frasnian (G-F) boundary and sediments deposited later in the Frasnian. 

Alterations in parameters such as pristane/phytane ratios, gammacerane index, 

abundance of Chlorobi biomarkers as well as δDkerogen and chroman ratios describe 

the change from a restricted marine palaeoenvironment with a persistently stratified 

water-column and prevailing anoxia and photic zone euxinia (PZE) towards a 

presumably open marine setting with a vertically mixed water-column and oxic to 

suboxic conditions. Furthermore, simultaneous excursions in δ13C profiles of 

carbonates, OM and hydrocarbons reflect changes in the inorganic carbon pool 

indicating enhanced recycling of 13C-depleted OM by sulfate reducing bacteria in the 

older sediments, most likely induced by water-column stratification. Elevated 

abundances of methyltrimethyltridecylchromans (MTTCs) and perylene as well as 

alterations in sterane distributions likely point to an increased terrigenous input via 

riverine influx. The resulting increase in nutrient input and associated phytoplankton 

blooms probably represented a crucial factor in the development of anoxia together 

with the stagnant water-column. 

The collected data identify a distinct period of elevated biotic stress close to or at the 

G-F boundary, particularly for reef-builders and associated organisms, which may be 

related to a local or global extinction event. It furthermore suggests that PZE may 

have contributed to the Late Devonian extinctions, consistent with previous studies, 
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which also reported evidence of this condition in various Middle to Late Devonian 

sediments. The relation of terrigenous nutrient input and anoxia also supports the 

hypothesis of a link between the expansion of higher plants and the Late Devonian 

extinctions. 

Introduction 

In the Late Devonian some of the biggest mass extinctions in Earth’s history 

ultimately wiped out the extensive reef systems prominent throughout that era 

(Sepkoski, 1986, 1993; Walliser, 1996; Bambach, 2006;). The most pronounced 

biodiversity loss occurred at the Frasnian-Famennian (F-F) boundary; however there 

were also distinct biodiversity crises towards the end of the Famennian time period 

and in the Middle to Late Givetian and earlier Frasnian (Walliser, 1996; Caplan and 

Bustin, 1999; Aboussalam and Becker, 2001). The most severely affected organisms 

were reef-building communities and associated fauna in tropical, shallow marine 

settings whereas terrestrial ecosystems were only marginally impacted (Copper, 

1986; Fagerstrom, 1994; McGhee, 1996). Cause and nature (distinct events, several 

smaller pulses or rather gradual diversity decline) of the extinctions continue to be 

debated (e.g. McGhee, 1996; House, 2002; Racki, 2005). Hypotheses range from one 

or several bolide impacts (McLaren, 1970, 1983; Sandberg et al., 2002; Ellwood et 

al., 2003) to climate change and rapid sea-level fluctuations in response to various 

parameters including atmospheric CO2 reduction due to the rise of terrestrial plants 

or extensive volcanism (Murphy et al., 2000; Courtillot and Renne, 2003; McGhee, 

2005; Algeo and Scheckler, 2010). The expanding terrestrial vegetation and the 

associated higher nutrient input from enhanced weathering and soil formation may 

have further contributed to the widespread anoxia and eutrophication in Late 

Devonian oceans, which have in particular (but not only) been linked to the F-F 

extinctions (Joachimski and Buggisch, 1993; Bond et al., 2004; Algeo and Scheckler, 

2010). Whereas most research focuses on the investigation of the F-F or the End-

Famennian extinctions, studies about earlier events in the Late Givetian and Early to 

Middle Frasnian are comparatively rare. 

Several mass extinction events including the Permian-Triassic extinction (Grice et 

al., 2005a; Summons et al., 2006; Hays et al., 2007; Nabbefeld et al., 2010a) and 
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some Mesozoic events (Sinninghe Damsté and Köster, 1998; Pancost et al., 2004; 

Jaraula et al., 2013) have been associated with (global) oceanic anoxic events 

(OAEs) in which a stagnant water-column led to persistent stratification and 

widespread anoxia and photic zone euxinia (PZE). PZE describes a condition where 

high concentrations of toxic hydrogen sulfide produced by anaerobic sulfate reducing 

bacteria (SRB) in or near sediments expand into the photic zone (i.e. the surface 

water layer with enough light penetration for photosynthesis to occur). Whereas 

these environments are highly unfavourable for most organisms, the obligately 

anaerobic green sulfur bacteria (Chlorobi) only thrive under these conditions since 

they use hydrogen sulfide as an electron donor to perform anoxygenic 

photosynthesis. Therefore the presence of distinctive 13C-enriched sedimentary 

biomarkers derived from carotenoids in their unique photosystem, such as 

isorenieratane (I, Figure A5.1), palaeorenieratane (II) or a series of aryl isoprenoids 

(III), represents unambiguous evidence for PZE in the palaeoenvironment 

(Summons and Powell, 1986, 1987; Requejo et al., 1992; Grice et al., 1996b, 1997; 

Koopmans et al., 1996b; Schwark and Frimmel, 2004). PZE may have also been a 

significant factor in the Late Devonian extinctions since evidence of this condition 

has been reported in Middle to Late Devonian sediments and crude oils from various 

locations including the Western Canada Sedimentary Basin (Summons and Powell, 

1986, 1987; Requejo et al., 1992; Maslen et al., 2009), the Michigan and Illinois 

Basin, USA (Brown and Kenig, 2004), the Holy Cross Mountains, Poland 

(Marynowski et al., 2000, 2011; Joachimski et al., 2001; Marynowski and Filipiak, 

2007) and in the Canning Basin, Western Australia (Maslen et al., 2009; Melendez et 

al., 2013a, 2013b; Chapter 4 this thesis). 

The Canning Basin in Western Australia is of high significance for the investigation 

of Late Devonian extinction events due to the excellent preservation of extensive and 

well exposed Middle to Late Devonian reefs (e.g. Playford et al., 2009). The Gogo 

Formation represents the Givetian to Middle Frasnian basin facies of these reef 

systems and was deposited largely under suboxic, anoxic or euxinic conditions 

(Maslen et al., 2009; Playford et al., 2009; Melendez et al., 2013a, 2013b). It is of 

particular significance for studies of macro as well as molecular fossils (i.e. 

biomarkers) due to the exceptional preservation of soft tissue and original biomarker 
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signatures in calcareous nodules of some sections (e.g. Long and Trinajstic, 2010; 

Melendez et al., 2013b). 

This manuscript presents data from a comprehensive biomarker, elemental and stable 

isotope approach (S, N, and C %; δ13C of biomarkers, OM and carbonates, 

δ18Ocarbonates, δDkerogen and δ34Spyrite), complemented with Rock Eval pyrolysis, in 

sediments from a lower slope/basinal core, which reflect paleoenvironmental 

changes in the time period from close to or at the Givetian-Frasnian (G-F) boundary 

until later in the Frasnian. The primary aim was to identify environmental conditions 

which may reveal causes and timeframes of potential extinction events whilst also 

extending the general interest in biomarker preservation in the Gogo Formation. 

Chapter 4, which introduces a novel biomarker proxy for freshwater incursions in 

marine palaeoenvironments based on the analysis of sediments from the lowermost 

section of this core, revealed evidence of a persistently stratified water-column 

(freshwater lens overlying more saline bottom water), with prevailing anoxia and 

photic zone euxinia (PZE) in the corresponding depositional setting. Here a more 

comprehensive approach was presented including additional parameters and a further 

extension of palaeoenvironmental reconstructions until later in the Frasnian. 

Geological setting 

The samples analysed here originate from a core collected at McWhae Ridge 

(18.72796°S, 126.0682°E), a locality along the Lennard Shelf, Canning Basin, WA 

located at the southern end of South Lawford Range (Figure 5.1a), in which the F-F 

boundary has been well defined in distal marginal slope/basinal facies. The 

geological setting at this location is displayed in a cross section in Figure 5.1b and 

has been described in detail elsewhere (e.g. Becker et al., 1991; Playford et al., 

2009). In brief, it comprises a faulted reef spine (Pillara-Limestone, Givetian-

Frasnian) which was drowned in the early Frasnian and overlain by marginal slope 

(Sadler Formation, Givetian-Middle Frasnian and Virgin Hills Formation, Frasnian-

Famennian) and basin facies (Gogo Formation). Furthermore it was overgrown by a 

stromatolitic bioherm (now largely eroded) in the latest Frasnian and Early 

Famennian. The Sadler formation is interfingering with the equivalent basin facies 

(Gogo Formation) below the surface. 
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Figure 5.1: Sedimentary log (C) and location (A) of the core collected from McWhae Ridge. (B) 
Displays the geological setting at that location in a cross section with the red arrow indicating the 
approximate location of the collected core. Map and cross section were modified after Playford et al. 
(2009). The graphical illustration of the Dunham scale is used to visualize grain size. 
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Figure 5.1c shows the sedimentary log of the sampled core. The upper section  

(< 27.2 m) includes the F-F boundary and consists of the Virgin Hills Formation. 

However, due to its low OM content this interval is not suitable for biomarker 

analysis and has not been considered here. In this part of the core beds of red-brown, 

pale grey-green or pale brown-grey calcareous siltstone partly with abundant micritic 

nodules are alternating with poorly bedded red, pale red-brown or pale-brown 

argillaceous wackestone and micrite. There is also an interval of pale brown 

calcareous and argillaceous, very fine siliciclastic-rich sandstone and argillaceous 

and sandy, micritic limestone between 5 and 7 m. The more OM-rich section of the 

core (27.2-42.1 m), which is included in the present study, consists of the 

interfingering Sadler and Gogo Formations. Depth between 34 and 39 m correspond 

to conodont zones 1-4 (unpublished results). The lowest part of the sampled interval 

(40.1-42.1 m) is from the Gogo Formation and of latest Givetian-earliest Frasnian 

age. Dating of this interval was based on unpublished palynological analysis, in 

particular the abundance of the plant microfossils of the key taxon 

Archaeozonotriletes timanicus Naumova 1953 which McGregor and Playford (1993) 

listed as a characteristic element of Australian plant microfossil assemblages 

assigned to the optivus-triangulatus Zone. The core interval consists of laminated 

argillaceous shales with thin limestone interbeds and some narrow irregular beds of 

shelly wackestone and fine grained packstone. Brachiopods are abundant throughout 

the interval and crinoids and stromatoporoid fragments are present in the lowermost 

40 cm. The section is followed by an OM-lean interval (33.5-40.1 m) of irregular 

bedded grey or pale yellowish-grey calcareous siltstone with abundant micrite 

nodules (37.5-40.1 m) and argillaceous limestone (33.5-37.5 m). The uppermost part 

of the sampled interval (27.2-33.5 m) consist of medium grey finely laminated 

calcareous shale and a few narrow beds of nodular and brecciated micrite and fine 

packstone. Towards lower depths the calcareous content increases whereas 

lamination decreases. 

From the Late Givetian until the Middle to Late Frasnian a long-term global rise in 

sea-level has been linked to the retreating and backstepping of reef platforms 

observed in the Canning Basin. This was followed by a decrease in subsidence and 

dropping sea-levels in the Late Frasnian and Famennian leading to advancing 
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platforms (e.g. Playford et al., 2009). Similar effects were also observed in reef-

systems located in other parts of the world (e.g. Western Canada sedimentary Basin; 

Atchley et al., 2006).  

Experimental 

Analytical methods and sample preparation are described in the supplementary 

information (SI) included in Appendix 5. 

Results and discussion 

Aliphatic hydrocarbons 

Figure 5.2 displays typical total ion chromatograms (TICs) from gas 

chromatography-mass spectrometry analysis (GC-MS) analysis of aliphatic fractions 

in the sediments which were deposited close to or at the G-F boundary (depth > 40 

m; e.g. A, MWR-40.7) and later in the Frasnian (depth 27.2-33.5 m; e.g. B, MWR-

29.9), respectively. The aliphatic fractions throughout the core, with the exception of 

the OM-lean interval between 33.5-40 m, contained n-alkanes with chain lengths 

from C13, C14, or (occasionally) C15 to C33 with distributions typically maximising at 

C21. n-Alkanes in the sample from the OM-lean section (depth 37.8 m) were present 

at low concentrations and ranged from C16 to C33. In most samples a slight odd-over-

even predominance in short-chain as well as long-chain n-alkanes was evident (see 

carbon preference indices (CPIs) in Table 5.1). The isoprenoids pristane (IV) and 

phytane (V) were present in all samples and dominated the aliphatic fractions of all 

sediments from the lowermost part of the core (> 40 m). Furthermore, the samples 

contained complex distributions of saturated and unsaturated hopanoids and steroids. 

The most abundant of these were C27 to C29 diaster-(13)17-enes (VI) highlighted in 

the m/z 257 mass chromatograms in Figure 5.2. The hopanoids included C29 to C35 

regular hopanes with 17β,21β (ββ), 17β,21α (βα) and 17α,21β (αβ) configurations 

(VII) as well as 18α 22,29,30-trisnorhopane (Ts), 17α 22,29,30-trisnorhopane (Tm), 

17β  22,29,30-trisnorhopane (Tm-β). 29,30 and 28,30-bisnorhopane (BNH; Figure 

A5.2) and also C31 to C36 2β- and 3β-methylhopanes were detected in relatively low 
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concentrations (Figure A5.3). Hopenes included hop-(13)18-enes and C30 to C35 

hop-(17)21-enes (Figure A5.4). Regular steranes were present in the 5α,14α,17α 

(ααα), 5α,14β,17β (αββ) and 5β,14α,17α (βαα) configurations (VIII) from C27 to C30 

as well as 3 and 4 methyl 24-ethylcholestanes (Figure A5.5). The C30 triterpenoid 

gammacerane (IX) was also only present in significant concentrations in the 

lowermost samples from depths > 40 m. The identity of hopanes and steranes and 

also gammacerane (IX) were confirmed by multiple reaction monitoring (MRM) gas 

chromatography-mass spectrometry (GC-MS). 

Aromatic hydrocarbons 

The most abundant compound in aromatic fractions of all sediments was the  

5,7,8-trimethylmethyltrimethyltridecylchroman (X; triMeMTTC). The other MTTC 

isomers which commonly occur in geological samples (X; Sinninghe-Damsté et al., 

1987) were also present, albeit at much lower concentrations. Sediments at depth  

> 40 m furthermore contained a series of abundant mono- and diaryl isoprenoids 

including intact iso- and palaeorenieratane (I and II; Figure 5.3 and 5.4). PAHs were 

present at relatively low abundances and included typical combustion markers such 

as benzo[a]pyrene (XI), benzo[e]pyrene (XII), coronene (XIII), benzo[ghi]perylene 

(XIV), fluoranthenes (XV) or pyrenes (XVI) as well as the presumably fungal-

derived perylene (XVII; e.g. Grice et al., 2009; Chapter 2 this thesis). 

Evidence of water-column stratification, anoxia and PZE 

The palaeoenvironmental setting corresponding to the lowermost part of the core in 

depth > 40 m (Late Givetian-Early Frasnian) has been described in Chapter 4. To 

summarize, enhanced gammacerane indices indicated a stratified water-column 

which promoted the development of PZE, evident in the abundance of 

palaeorenieratane (II) and other Chlorobi carotenoid derivatives. Low 

pristane/phytane ratios (Pr/Ph < 1) indicated anoxia and higher salinities in the 

hypolimnion and sediments whereas high chroman ratios (triMeMTTC/total MTTCs) 

> 0.9 reflected the low salinities in an overlying freshwater lens from likely 

predominantly riverine incursions. High abundances of perylene (XVII) and MTTCs 

(X) presumably represented significant terrigenous input. 



 

 

 

 

 

 

Figure 5.2: Total ion chromatograms showing two representative aliphatic fractions of samples deposited in (A) the earliest Frasnian or latest Givetian under anoxic/euxinic 
conditions (MWR-40.7 m) and (B) later in the Frasnian in a more oxic setting (MWR-29.9 m), respectively. Extracted ion chromatograms of m/z 257 show distributions of 
C27–C29 diaster-13(17)-enes with carbon number Ci. Not all isomers of the C28 diaster-13(17)-enes could be identified due to coelutions with more abundant C27 and C29 
isomers. Red dots represent diasterenes, blue diamonds n-alkanes. 5αSt = regular 5α,14α,17α-20R-steranes; C304αMeSt = 4α-methyl-5α,14α,17α-20R-24-ethylcholestane; 
C31αβH and C31ββH = 17α,21β and 17β,21β-22R-homohopane 
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Figure 5.3: Depth profiles of stable isotope and biomarker parameters (potentially) indicative of 
redox conditions, photic zone euxinia, water-column stratification or salinity throughout the analysed 
core from McWhae Ridge. Pr/Ph = pristane/phytane; C35HHI % stands for C35-homohopane index and 
was calculated according to: C35-homohopanes/∑(C31–C35 homohopanes) 100 %; 28,30-BNH/C30H 
= 28,30-bisnorhopane/ 17α,21β-hopane; gammacerane index = gammacerane/17α,21β-hopane; the 
three previous parameters were all calculated from peak areas in suitable MRM-GC-MS transitions. 
Isoren. = isorenieratane; palaeoren. = palaeorenieratane; isopr. = isoprenoids; triMeMTTC/total 
MTTC = 5,7,8-trimethylmethyltrimethyltridecylchroman/ total methyltrimethyltridecylchromans, 
calculated from peak areas of selected ion monitoring traces; carb. = carbonates. δ34S was reported in 
‰ relative to VCDT; δD was reported in ‰ relative to VSMOW and has been corrected for 
exchangeable hydrogen according to Schimmelmann (1991); δ18O was reported in ‰ relative to 
VPDB. Some of the included data has already been presented in a different context in Chapter 4 (see 
Table A5.1 for more detail) 

 

27

30

33

36

39

42

D
e
p

th
 [

m
]

Is
ore

n. &
 p

al
eo

re
n.

μg
/g

 T
O
C

Lith
olo

gy

M
onoar

yl
 is

opr.

μg
/g

 T
O
C

0 1 2 3
P
r/
P
h

0 0.5 1.0 1.5
G
am

m
ac

er
an

e

in
dex

0.8 0.9

tr
iM

eM
TTC

/

to
ta

l M
TTC

s

-135 -120 -105
δD ke

ro
gen

 [‰
]

-27 -22 -17 -12
δ
34 S pyr

ite
 [‰

]

0 2 4
C 35

 H
H
I %

0 0.03 0.06
28

,3
0 

B
N
H
/

C
30

H

27

30

33

36

39

42

D
e
p

th
 [

m
]

-6 -4 -2
δ
18 O ca

rb
. [‰

]

isoren.
paleoren.

0 1 2

C14 

C20 
C16 

0 2 4 6



Chapter 5 
 

 

154 

 

Figure 5.3 shows depth profiles of molecular and stable isotope indicators of redox 

conditions, salinity, stratification and PZE in the analysed core which will be 

discussed in the following sections. 

Indicaticators of anoxia 

Pr/Ph is a frequently used redox indicator; however it is also influenced by other 

parameters including salinity (ten Haven et al., 1985; Schwark et al., 1998). Pr/Ph in 

sediment depths < 33.5 m was higher than in the lowermost part of the core 

indicating less reducing conditions and lower salinities in the hypolimnion and 

sediments in the corresponding palaeoenvironment, which would be consistent with a 

more open setting at higher sea-levels (Playford et al., 2009). In the two uppermost 

samples Pr/Ph showed a further increase to values approaching 3, reflecting a well-

mixed and oxygenated water-column at the time of deposition. A further potential 

redox indicator is the C35 homohopane index (Figure 5.3), with higher values 

indicating the enhanced preservation of extended hopanoids, which is often 

associated with reducing conditions at the time of deposition and shortly after burial 

 

Figure 5.4: Chlorobi carotenoid derivatives in the m/z 133 trace from selected ion monitoring (SIM) 
GC-MS of a representative sample in the lowermost part of the analysed core corresponding to the 
Late Givetian-Early Frasnian (depth 40.7 m). “Ci” mark monoaryl isoprenoids with carbon number 
“i”. δ13C values represent the average for the respective compound in all samples below 40 m with 
error bars indicating the standard deviations. The two values without error bars could only be 
measured in 1 sample. Blue arrows indicate the peak corresponding to the respective δ13C value. 
Question-marks indicate tentatively identified structures. The chromatogram as well as the stable 
isotopic composition of palaeorenieratane is presented in Chapter 4. 
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 (e.g. Peters and Moldowan, 1991 and references therein). However, also other 

parameters such as source organisms, composition of the sediment (e.g. clay 

contents) or thermal maturity may influence relative abundance and preservation of 

C35-homohopanes. Some of the trends in the depth profile displayed in Figure 5.3 

are consistent with Pr/Ph ratios although differences between the lowermost (> 40 m) 

and upper samples (> 33.5 m) were not as pronounced. 28,30-BNH has also 

frequently been linked to anoxic depositional environments. The bisnor-hopane is 

thought to originate from chemoautotrophic bacteria living at the oxic-anoxic 

interface, although to date it has not been isolated from a particular source organism 

(Peters et al., 2005 and references therein). Its sedimentary abundance is also 

particularly sensitive to changes in bacterial populations and furthermore influenced 

by parameters such as sediment composition and maturity. Here it showed elevated 

abundances relative to the αβ-hopane in sediment depths > 40 m consistent with 

anoxic conditions in the depositional environment. However, it also showed an 

increase in relative abundance in sediments around a depth of 33 m, which exhibited 

Pr/Ph ratios > 1. 

Chlorobi carotenoid derivatives 

The intact carotenoid pigments isorenieratane (I), palaeorenieratane (II) and 

renieratane (XVIII), which represent unequivocal evidence for the presence of 

Chlorobi and hence PZE (e.g. Summons and Powell, 1986; Schwark and Frimmel, 

2004; Grice et al., 2005a), were only abundant in sediments of a depth > 40 m. In 

contrast, monoaryl isoprenoids (III), which do have other sources (e.g. Grice et al., 

1996b; Koopmans et al., 1996a), were also present at low concentrations in aromatic 

fractions from the remaining part of the core. The average δ13C values of aryl 

isoprenoids (III) in samples > 40 m are displayed in Figure 5.4 along with a 

representative SIM trace (m/z 133). These data indicate mixed sources of all 

monoaryl isoprenoids (III) and some diaryl derivatives since they were significantly 

more 13C depleted compared to the exclusively Chlorobi-derived palaeorenieratane 

(II), which exhibited heavier δ13C signatures of around -15 ‰, typical of lipids 

synthesised via the tricarboxylic acid (TCA) cycle used by Chlorobi (Quandt et al., 

1977; Sirevåg et al., 1977).  
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δ34S of pyrite 

δ34S signatures of total reduced inorganic sulfur (~pyrite) throughout the core ranged 

from -24.4 to -11.9 ‰ (Figure 5.3) which is comparable to data from other Late 

Devonian sediments obtained by Joachimski et al. (2001). The strong 34S depletion 

compared to the estimated value for Devonian sea-water (+15 and +20 ‰; 

Kampschulte and Strauss, 2004; Wortmann and Paytan, 2012) indicate that microbial 

sulfate reduction took place in surface sediments or even the water-column where it 

was not limited by sulfate abundance (e.g. Canfield and Teske, 1996; Meyer and 

Kump, 2008). The values were similar to those in the modern euxinic Baltic Sea 

(Böttcher and Lepland, 2000; Böttcher et al., 2004), sediments of the hypersaline 

Basins of the eastern Mediterranean (Ziebis et al., 2000) but less enriched in the light 

isotope when compared to the Holocene Black Sea (Fry et al., 1991; Böttcher et al., 

2004; Jørgensen et al., 2004). 

Gammacerane index 

Gammacerane indices in the samples deposited later in the Frasnian (< 33.5 m) were 

low (Figure 5.3) suggesting a vertically mixed water-column contrary to the 

conditions in the Late Givetian-Early Frasnian which exhibited significantly higher 

gammacerane indices. Gammacerane (IX) is presumably sourced from tetrahymanol 

in bacterivorous cilitates living exclusively at the chemocline and is therefore an 

indicator for water-column stratification (Harvey and McManus, 1991; Sinninghe 

Damsté et al., 1995; Grice et al., 1998d; Chapter 4 this thesis). A vertically mixed 

water column in palaeoenvironments corresponding to samples from the upper part 

of the core (in particular the uppermost two samples) is also consistent with lower 

chroman ratios in these samples reflecting higher salinities in the epilimnion 

(Chapter 4). 

δD of kerogen 

The δD values of kerogen displayed in Figure 5.3 represent the isotopic composition 

of non-exchangeable hydrogen, which was determined according to a method 

developed by Schimmelmann et al. (1999; 2006) to reduce distorting effects on δD 

signatures by hydrogen exchange between OM and water during diagenesis. 



Chapter 5 
 

 

157 

 

However, hydrogen that is typically considered as non-exchangeable can also be 

replaced during later stages of thermal maturation (e.g. Schimmelmann et al., 2004; 

Dawson et al., 2005, 2007; Pedentchouk et al., 2006; Maslen et al., 2013). 

Nevertheless, immature kerogens have shown a good preservation of original D/H 

content and have been frequently used to reconstruct palaeoenvironmental changes 

(e.g. Hassan and Spalding, 2001; Lis et al., 2006; Nabbefeld et al., 2010c). Since the 

samples analysed here exhibit a very low thermal maturity (“Thermal maturity and 

organic matter preservation” page 158), δD values of their kerogens are likely 

representative of the palaeoenvironment. Generally, δD signatures of biomass are 

strongly influenced by the D/H composition of the source water used for biosynthesis 

(Sessions et al., 1999; Dawson et al., 2004; Grice et al., 2008b; Nabbefeld et al., 

2010c; Zhou et al., 2011). Therefore the comparatively D-depleted value for the 

sample in the lowermost part of the core (> 40 m) potentially reflects the freshwater 

incursions (evident in elevated chroman ratios; Chapter 4) which typically lead to a 

D-depletion in the marine environment. Due to fractionation effects in the 

hydrological cycle, meteoric waters are more depleted compared to seawater, which 

exhibits a δD value of ~0 (Gat, 1996). Variations in the δD profile could represent 

changes in the type of source organisms or growth forms (Nabbefeld et al., 2010c; 

Polissar and Freeman, 2010), and the more highly depleted values of the deeper 

sediments may have been influenced by increased input of D-depleted terrestrial 

biomass (organisms utilizing meteoric waters). 

δ18O of carbonates 

δ18O values of carbonates in the lowermost part of the core corresponding to the 

anoxic/euxinic palaeoenvironment with freshwater incursions showed significant 

variations, but were on average more 18O-depleted than samples in the upper section 

of the core. δ18O and δ13C values of carbonates showed only a slight correlation (R2 

= 0.3, Figure A5.6) indicating largely different influences on both parameters and 

most likely no significant diagenetic control. δ18O signatures of carbonates are 

typically representative of the stable isotopic composition of the corresponding water 

(e.g. Sachse et al., 2004b). Therefore the greater 18O-depletion of some samples in 

the lowermost part of the core might be indicative of freshwater incursions since 

meteoric waters are depleted in heavy isotopes. 
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Table 5.1: Selected elemental and molecular maturity parameters throughout the analysed core 
indicating an exceptionally low thermal maturity. Tmax was determined by Rock Eval pryolysis. Ts = 
18α 22,29,30-trisnorhopane; Tm = 17α 22,29,30-trisnorhopane. C31H = 17α,21β-homohopane; C29 
ααα St = 5α,14α,17α 24-ethylcholestane; S and R represent the stereochemistry at C22 and C20 for 
hopanes and steranes, respectively. CPI stands for carbon preference index and was calculated 
according to ∑Codd/∑Ceven over the range of C16 to C22 and C23-C33, respectively. 

Depth [m] Tmax [°C] Ts/(Ts/Tm) C31H S/(S+R) 
C29 ααα St 

S/(S+R) 
CPI (C15-C22) CPI (C23-C33) 

27.3 *413 0.14 0.18 0.14 1.07 1.53 

28.1 *410 0.15 0.16 0.15 1.18 1.59 

29.0 *418 0.13 0.15 0.12 1.16 1.49 

29.7 *409 n.d. n.d. n.d. n.d. n.d. 

29.9 *407 0.14 0.15 0.04 1.18 1.58 

30.7 *405 0.14 0.14 0.12 1.12 1.53 

30.9 *421 0.14 0.15 0.11 1.20 1.82 

31.9 *405 0.16 0.14 0.11 1.11 1.16 

32.8 *406 0.18 0.16 0.10 1.02 1.46 

33.0 *410 0.18 0.16 0.11 1.10 1.47 

33.2 *415 0.19 0.16 0.10 0.93 1.18 

33.4 *410 0.18 0.20 0.08 0.97 1.00 

34.6 *417 n.d. n.d. n.d. n.d. n.d. 

37.8 n.d. 0.47 0.36 0.19 1.04 1.03 

40.2 n.d. 0.22 *0.23 0.08 1.43 1.30 

40.3 *415 0.16 *0.20 0.09 1.27 1.20 

40.5 *413 n.d. n.d. n.d. 1.00 0.89 

40.7 *414 0.13 *0.13 0.09 1.04 1.13 

41.2 *410 0.10 *0.12 0.09 1.07 1.24 

41.9 *413 0.11 *0.11 0.09 1.00 1.16 

* also included in Chapter 4 

 

Thermal maturity and organic matter preservation 

The analysed sediments showed an exceptionally low thermal maturity despite their 

Palaeozoic depositional age, evident in elemental as well as molecular maturity 

parameters (Table 5.1). Tmax values from Rock Eval pyrolysis were all < 421 °C 

indicative of very low thermal alteration (Table 5.1; sediments with Tmax < 435 °C 

are typically considered immature; e.g. Peters et al., 2005). Furthermore, the aliphatic 

fractions contained complex hopanoid and steroid distributions typical of immature 

sediments with high concentrations of biological isomers such as ββ-hopanes and 

ααα-20R-steranes  compared to the more thermally stable geological configuration 

(Figure 5.2 and Figures A5.2 to A5.5). This was evident in very low values of 

frequently used molecular maturity indicators such as the C22 homohopane ratio 

(22S/ (22S+22R)), ααα 24-ethylcholestane isomerisation at C20 (20S/ (20S+20R)) or 

Ts vs. Tm (Ts/ (Ts+Tm)) displayed in Table 5.1. All of these values (with the 

exception of the organic lean sample at 37.8 m) correspond to vitrite reflectance 

equivalents < 0.5 % and mostly < 0.4 % (Hulen and Collister, 1999 and references 
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therein) corresponding to burial heating < 80 and < 60 °C, respectively (Barker and 

Pawlewicz, 1994). The high relative abundances of hopenes and sterenes were also 

highly unusual for Palaeozoic sediments as these compounds are usually converted to 

their saturated counterparts during relatively early stages of diagenesis (e.g. 

Mackenzie et al., 1982; Peters et al., 2005). Regular steranes were generally much 

more abundant than their corresponding diasteranes (Figure A5.5), which is typical 

of carbonate-rich and clay-poor sediments (e.g. Nabbefeld et al., 2010b). However, 

diasterenes, which represent diagenetic precursors of diasteranes (Mackenzie et al., 

1982) were highly abundant (Figure 5.2). A low thermal maturity was also evident 

in pale to mid to yellow spore colours (thermal alteration index; Staplin, 1969), 

observed from palynological analysis (unpublished results).  

Furthermore, the strong correlation of total organic nitrogen content (TNorg %) to 

TOC % (R2 = 0.97) and relatively low values of the C/N ratio (Figures 5.5a and 5.6) 

suggest these data are representative of the source OM, which to the best of our 

knowledge would be the oldest reported preservation of C/N source ratios. The C/N 

ratio can generally provide a reliable distinction of marine vs. terrestrial OM since 

phytoplanktonic organisms typically have a higher nitrogen-content (C/N: ~4-10) 

than terrestrial vegetation (C/N > 20; Meyers, 1994 and references therein). 

However, the ratio can be influenced by the enhanced loss of organic nitrogen over 

organic carbon during diagenesis, leading to artificially high values of the C/N ratio 

in affected sediments (e.g. Sampei and Matsumoto, 2001). Furthermore, C/N ratios 

can be influenced by the contribution of inorganic nitrogen (typically ammonium), 

particularly in OM-lean sediments with TOC contents < 1 % (e.g. Müller, 1977; 

Sampei and Matsumoto, 2001). Therefore TN % was corrected to obtain TNorganic % 

by assuming a constant contribution of 0.02% TNinorganic, which was determined from 

the axis intercept of the TN % vs. TOC % plot. C/N ratios illustrated in Figure 5.6 

were calculated using TNorganic %. The unusual preservation of C/N ratios in the 

Palaeozoic sediments furthermore points to the unique OM preservation in some 

sections of the Gogo Formation and a very immature character of the OM. 

A low thermal maturity based on molecular ratios has also been reported for a 

calcareous nodule hosting a well preserved crustacean from a nearby section of the 

Gogo Formation (Melendez et al., 2013b). However, values for the 24-
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ethylcholestane isomerisation at C20 and for Ts/ (Ts+Tm) in the nodule were slightly 

higher than in most parts of the presently analysed core, and unsaturated steroids or 

hopanoids were absent. In contrast, other sections of the Gogo Formation, which 

represent the source rocks of the high quality oils in the Canning Basin, showed 

significantly higher thermal maturities (Cadman et al., 1993; Barber et al., 2001; 

Greenwood and Summons, 2003; Maslen et al., 2009, 2011). Nevertheless, the now 

exposed or near-surface rocks in most parts of the reef systems in the northern 

Canning Basin (Lennard Shelf) have likely never been exposed to temperatures 

exceeding 60 to 70 °C during their geothermal history (Playford et al., 2009 and 

references therein). 

 

 

Figure 5.5: Plots showing positive correlations of total organic carbon (TOC %) to (A) total organic 
nitrogen (TNorg %, corrected from TN % assuming a constant contribution of TNinorganic of 0.02 %) and 
(B) total sulphur (TS %) 

 

The thermal alteration of biomarkers in the studied core seems to be largely 

independent of the redox conditions at the time of deposition, since all previously 

discussed parameters indicate similarly low thermal maturities in sediments > 40 m 

presumably deposited under anoxic/euxinic conditions (see previous section) as well 
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as in overlying sediments deposited under more oxic conditions. However, the 

measured TOC % was slightly higher in sediments > 40 m (Figure 5.6) which would 

be consistent with enhanced OM preservation under anoxic/euxinic conditions 

(Claypool and Kaplan, 1974) The estimated original TOC (TOCor, Figure 5.6) was 

calculated according to the following equation developed by Vető et al. (1994).  

TOCor = TOC + Sൈ0.75ൈ1.33 

This proxy is based on the assumptions that (i) all reduced sulfur was formed 

syngenetically and (ii) the degradation of OM was essentially due to microbial 

sulfate reduction (MSR) with the benthic system being more or less closed for 

dissolved sulfide. The positive correlation between the measured TOC % and TS % 

(Figure 5.5b) may indicate a control of MSR by OM availability. When compared to 

the relationship established for modern marine sediments (Raiswell and Berner, 

1987), all investigated samples contain an excess in reduced sulfur, that may indicate 

euxinic conditions. Since the degree of OM alteration is small, there is no indication 

given for a thermal change in the C/S ratios (Raiswell and Berner, 1987). 

The slightly higher values for TOC % and TOCor % in the lowermost part of the core 

may reflect increased phytoplanktonic productivity compared to the other samples 

due to enhanced terrigenous nutrient input (“Thermal maturity and organic matter 

preservation” page 158). However, measured as well as calculated TOC % in these 

samples were still realtively low which can possibly be explained by oligotrophic 

conditions (despite some terrigenous input) or dilution from carbonate precipitation 

(Chapter 4). The latter is also presumably the main reason for the low TOC% in 

samples between depths of 33.5-40 m, which had high carbonate contents between 

62.6 and 86.2 % (Figure 5.6). 

Organic matter sources 

Whereas relatively low C/N and C/S signatures (Raiswell and Berner, 1987; Meyers, 

1994) were indicative of predominantly marine sourced OM, albeit with some 

terrestrial contribution, high Oxygen Indices (OI) and low Hydrogen Indices (HI) 

were indicative of Type III kerogens (Figure 5.6), which are typically terrestrial 

derived (also see van Krevelen diagram in Figure A5.5). In some cases Type III 

kerogens may also be derived from oxic or suboxic open marine settings (Peters et  



 

 

 

 

 

Figure 5.6: Depth profiles of selected parameters determined by elemental analysis and Rock Eval pryrolysis throughout the analysed core from McWhae Ridge. TOC 
represents the measured total organic carbon content. TOCor  refers to the estimated original TOC in sediments at the time of deposition which was calculated after Vető et al. 
(1994). TNorg = total organic nitrogen content calculated from TN assuming a constant contribution of TNinorganic of 0.02 %. TS = total sulphur content. 
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al., 2005) which would be consistent with the samples deposited later in the Frasnian 

(depth > 40 m). However, biomarker parameters in the lowermost part of the core  

(> 40 m) strongly indicate an anoxic and euxinic marine setting, possibly with some 

terrigenous input. An increase of HIs and a simultaneous decrease of OIs in this core 

interval reflects more reducing conditions, although the values were still not in the 

range expected for an anoxic marine setting (Figure A5.6). Although Rock Eval 

pyrolysis is a very useful screening method, it does have some limitations and can 

give misleading information about kerogen types due to effects from the mineral 

matrix, which are particularly relevant in immature organic lean samples such as in 

the presently analysed core and typically lead to artificially low values for HIs (e.g. 

Katz, 1983; Cowie et al., 1999). Although the samples were decarbonated prior to 

Rock Eval pyrolysis, matrix effects may have still influenced the results. However, 

these data could also indicate that periods of persistent water-column stratification 

accompanied by anoxia and PZE were only episodic. 

Significance of δ13C variations 

δ13C profiles of carbonates, bulk OM and biomarkers generally showed similar 

trends most likely reflecting variations in the stable isotopic composition of the 

dissolved inorganic carbon (DIC) pool (Figure 5.7). All profiles showed a  
13C-depletion (~2-3 ‰ in hydrocarbons and carbonates and slightly less pronounced 

in OM) in the lowermost part of the core deposited under a stratified water-column 

(depth > 40 m) compared to the samples deposited in a more oxic palaeoenvironment 

between the depths of 28.8 and 33.5 m. Negative δ13C signatures of carbonates 

reaching values of -3 ‰ in the lowermost part of the core can likely be explained 

with a model introduced by Küspert (1982). Stratification-induced enhanced 

degradation of 13C depleted OM (mainly by SRB) led to the accumulation of 13C-

depleted DIC in the lower part of the water-column. Some of it escaped to the photic 

zone and was recycled by phytoplankton leading to a further 13C-depletion of 

biomass. The fluctuation of δ13Ccarbonate in that interval might be explained by 

alternation of periods with enhanced recycling of OM, leading to a 13C-depletion of 

DIC and enhanced burial of 13C-depleted OM, leading to a 13C-enrichment.  



 

 

 

 

 

 

Figure 5.7: δ13C depth profiles (reported in ‰ relative to VPDB) throughout the analysed core of carbonates, bulk organic matter (OM), representative long- and short-chain 
n-alkanes, phytane, selected regular 5α,14α,17α-20R-steranes (5α 20R steranes) and the 17β,21β-22R-homohopane (C31 ββ hopane). 
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However, these shifts in δ13C values were not evident in the profiles of hydrocarbons 

or OM.  

Carbonates as well as OM exhibited noticeably heavier δ13C signatures in the OM-

lean limestone section of the core between depths of 33.5 and 40 m (Figure 5.7). 

Unfortunately, compound specific δ13C could not be measured in these sediments 

due to the low OM content. This shift is likely due to a facies change from Gogo 

Formation (basin facies) in the lowermost part of the core to the Sadler formation 

(marginal slope facies). The difference in δ13C in the OM-lean section may also be 

the result of diagenetic effects. However, the simultaneous shift in OM and 

carbonates is evidence against this.  

Furthermore, δ13C profiles of OM, n-alkanes and the ββ-homohopane showed a 

distinctive negative shift in the two uppermost samples (~2 ‰ in OM and ~3‰ in 

hydrocarbons) deposited under presumably the most oxic conditions (very high Pr/Ph 

of ~3). Since this excursion was not evident in the δ13C profile of carbonates it likely 

represents a change in source organisms, or possibly nutrient-poor conditions that 

contributed to slower growth of phytoplankton, which typically leads to enhanced 

fractionation against 13C during biosynthesis due to the higher accessibility of 

dissolved CO2, the carbon source for most of these organisms (Freeman and Hayes, 

1992). The latter would also be consistent with the lower TOCor % and decreasing 

biomarker concentrations in these samples. 

Changes in populations of primary producers 

Variations in steroid and hopanoid distributions 

Figure 5.8 shows depth profiles of selected molecular parameters which indicate 

significant differences between phytoplankton and algal communities in the Late 

Givetian-Early Frasnian and later in the Frasnian. Elevated sterane/hopane ratios 

reaching values > 6 in the lowermost part of the core (> 40 m) are suggestive of a 

strong predominance of eukaryotic algae over bacteria, whilst values < 1 in the OM-

lean part of the core (37.8 m) as well as between depths of 27.3-30.7 m indicate 

relatively higher bacterial input (e.g. Ourisson et al., 1979; Mackenzie et al., 1982; 

Brocks et al., 1999). Furthermore, changes in algal populations are evident in 
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variations of sterane distributions (see ternary diagram in Figure 5.9). Sediments  

> 40 m showed a significantly enhanced relative abundance of C27-

desmethylsteranes, and also slightly more abundant C28-desmethylsteranes. Although 

C29-desmethylsteroids are often attributed to a terrestrial origin (e.g. Huang and 

Meinschein, 1979), here they are probably mainly sourced from green algae 

(Volkman, 1986, 1998; Kodner et al., 2008; Grosjean et al., 2009) which were 

prominent in the Devonian palaeoenvironment. Nevertheless, higher plant input may 

also have contributed to the C29-steranes. 

C27 desmethyl steroids are commonly attributed to zooplankton or red algae, but are 

also produced by some green algae (Volkman, 1986; Kodner et al., 2008). A higher 

abundance of red algae, which are predominantly macrophytes, would be consistent 

with shallower water depth at the comparatively lower sea-level in the Late Givetian-

Early Frasnian. Furthermore, Kelly (2009) suggested a relation of the C27/C29 sterane 

ratio in Neoproterozoic-Cambrian sediments to redox conditions in the 

palaeoenvironment, with higher values under more euxinic conditions due to the 

higher tolerance of red algae to iron limitation. This would also be in accordance 

with the presently observed increase in sediments at depths > 40 m.  

C28-desmethylsteroids have been frequently attributed to modern green algae and 

became significantly more abundant in the geological record after the end of the 

Devonian (Grantham and Wakefield, 1988). Nevertheless, short term increases of 

C28-steranes relative to C29-steranes have been reported in Late Devonian sediments 

and were attributed to temporary changes in algal populations with more abundant 

modern green algae and less contributions from red algae (Schwark and Empt, 2006). 

Ergosterol (C28) is a common fungal biomarker (Volkman, 2003) and the co-

variation of C28-desmethylsterane abundances and perylene (XVII) concentrations 

may be indicative of a common fungal source (“Evidence of terrigenous input and 

combustion sources” page 170). 

Changes in the algal communities in the palaeoenvironments of sediments > 40 m 

were also evident in enhanced relative abundances of 3- and 4-methyl-24 

ethylcholestanes (Figure 5.8a). The main source of 4-methylsteranes in geological 

samples are thought to be dinoflagellates or their ancestors if found in Palaeozoic 

sediments (Wolff et al., 1986; Peters et al., 2005). However, 4-methylsterols have  



 

 

 

 

 

Figure 5.8: Depth profiles of selected molecular parameters indicative of (A) phytoplankton communities and (B) terrigenous OM-input and combustion sources. C30 
Methylst./C27-29 Sts = abundance of selected methylated 24-ethylcholestanes relative to the sum of regular C27 – C29 5α14α17α-20R-steranes with 3β-Me, 4α-Me and 4β-Me 
standing for 3β-methyl, 4α-methyl and 4β-methyl -5α14α17α 20R 24-ethylcholestane, respectively. Propylchol. = propylcholestane; Pr = pristane; Ph = phytane; n-Ci = n-
alkane with chain-length “i”; MTTCs = methyltrimethyltridecylchromans; BaPyr = Benzo[a]pyrene; BePyr = Benzo[e]pyrene; Bpery = Benzo[ghi]perylene; Cor = coronene; 
DBF = dibenzofuran 
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also been found in some marine/brackish prymnesiophyte algae (Volkman et al., 

1990) and methanotrophs may also represent a potential source (Grice et al., 1998d; 

Kodner et al., 2008). The δ13C values of 3- and 4-methyl-24 ethylcholestanes, which 

could be measured in some samples > 40 m, ranged from -29.1 to -32.5 ‰, 

consistent with a phytoplanktonic source. An origin from methanotrophs, however, 

seems unlikely as biolipids of these organisms are typically more 13C-depleted 

(Kodner et al., 2008). 4-Methylsteranes are common in the Mesozoic sedimentary 

record and some older sediments, but are largely absent in the Carboniferous and 

Permian (Peters et al., 2005). Ancestors of dinoflagellates may also be the source of 

arcritarchs found in the palynological record of the presently analysed core 

(unpublished results). An association of these microfossils to dinoflagellate cysts has 

been suggested by several authors (Tappan, 1980; Moldowan and Talyzina, 1998; 

Schwark and Empt, 2006; Armstrong and Brasier, 2009). Jiamo et al. (1990) 

investigated various Cretaceous to Tertiary sediments and found generally higher 

concentrations of 4-methyl-24-ethylcholestanes in freshwater settings as opposed to 

brackish and hypersaline palaeoenvironments. Their enhanced abundance in 

sediments > 40 m may reflect differences in algal populations or algal blooms due to 

the freshwater incursion and terrigenous nutrient input in the Late Givetian-Early 

Frasnian palaeoenvironment. The covariance of 3β-methyl-24-ethylcholestane and 4-

methyl-24-ethylcholestanes concentrations (Figure 5.8a) and similar δ13C signatures 

are strongly suggestive of a common source for both compound classes. High 

abundances of 3β-alkyl steranes in comparable facies of European Late Devonian 

sediments were also reported by Marynowski and Filipiak (2007). 

The specific sponge biomarker 24-isopropylcholestane (McCaffrey et al., 1994; Love 

et al., 2009) was present at low abundances throughout the core and most likely 

originated from stromatoporoids, which are classified as sponges and were together 

with rugose corals and calcareous microbes the main reef-builders throughout the 

Devonian until the F-F boundary (e.g. Playford et al., 2009). Although 

stromatoporoids were amongst the most severely affected organisms in the Late 

Devonian extinctions (e.g. Fagerstrom, 1994; Playford et al., 2009), the relative 

abundance of 24-isopropylcholestane cf. 24-n-proylcholestane did not show 

significant variations throughout the analysed core (Figure 5.8a). 
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Figure 5.9: Ternary diagram of regular C27 – C29 steranes in the analysed core from McWhae Ridge. 
Red diamonds represent samples from a depth > 40 m deposited under anoxic and euxinic conditions 
and a stagnant, stratified water-column. Blue diamonds represent samples > 40 m presumably 
deposited under more oxic conditions. 

 

Variations in pristane, phytane and n-alkanes 

n-Alkane distributions in sediments corresponding to palaeoenvironments with 

complex marine and terrigenous OM input, such as the presently analysed core, 

typically have mixed sources (e.g. bacteria, archaea, algae, terrestrial/aquatic plants; 

e.g Collister et al., 1994a; Lichtfouse et al., 1994; Chapter 2 this thesis). δ13C values 

of the predominantly phytoplankton-derived phytane were generally in the same 

range or slightly more depleted than short chain n-alkanes (Figure 5.7). This 

indicates a mixed n-alkane source from phytoplankton as well as possibly 

heterotrophic bacteria (Chapter 4). Short and long-chain n-alkanes in all 

investigated samples generally showed similar δ13C signatures (Figure 5.7) which 

may be indicative of a common source. A slight odd-over-even predominance in the 

n-alkanes, particularly > C22 but also in shorter chain lengths (Table 5.1), would be 

consistent with high algal input (Gelpi et al., 1970; Volkman et al., 1998; Allard and 

Templier, 2000) and possibly additional contributions, particularly to longer chain-

lengths, from aquatic and terrestrial plants (Eglinton and Hamilton, 1967; Ficken et 

al., 2000). The n-alkanes exhibited similar δ13C signatures to predominantly algal-

derived steranes, whereas the bacterial-derived ββ-20R-homohopane was slightly 
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more 13C enriched (Figure 5.7). This furthermore indicates a high algal contribution 

to n-alkanes.  

Apart from lower abundances of short-chain n-alkanes in the OM-lean part of the 

core (depth 33.5-40 m), the n-alkane distributions showed generally consistent 

features in parameters such as average chain-length (21.7-23.9) or relative 

abundances of short-chain vs. long-chain n-alkanes. The CPI was slightly lower in 

sediments > 40 m (Table 5.1), despite a presumably higher terrigenous input 

(“Evidence of terrigenous input and combustion sources” page 170), possibly due to 

an increased contribution from SRB which are known to produce long-chain n-

alkanes without an odd-over-even predominance (Davis, 1968; Melendez et al., 

2013b). The differences in some of these parameters in the OM-lean horizon are 

presumably the result of diagenesis or biodegradation after the uplift that followed 

burial, which both would likely have enhanced effects in OM-lean intervals. 

The ratios of pristane/C17 n-alkane and phytane/C18 n-alkane were significantly 

higher in the lowermost part of the core (> 40 m, Figure 5.8), which may be 

indicative of changes in phytoplankton/algal populations. Similar variations of these 

ratios, with higher values in OM-richer sediments with evidence of PZE compared to 

more OM-lean sections have been reported in European Late Devonian (Famennian) 

sediments (Marynowski and Filipiak, 2007) and attributed to variations in source 

organisms. 

Evidence of terrigenous input and combustion sources 

Figure 5.8b shows concentrations of selected unsubstituted PAHs as well as the total 

concentration of all MTTCs (X) throughout the analysed core. The most common 

source of many unsubstituted PAHs in sediments is combustion of plant material or 

fossil fuels (Killops and Massoud, 1992; Jiang et al., 1998; Grice et al., 2005b, 2007; 

Nabbefeld et al., 2010d). Their abundance has in some cases also been associated 

with higher thermal maturities and volcanism (e.g. Murchison and Raymond, 1989). 

On the contrary, perylene (XVII) has a diagenetic origin and is most likely derived 

from quinone pigments in wood degrading fungi and is therefore presumably linked 

to terrigenous input (Jiang et al., 2000; Grice et al., 2009; Suzuki et al., 2010). Its 
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covariance with chroman abundances (Figure 5.8b) may be indicative of a common 

terrestrial source or influence, with highest abundances in sediments > 40 m pointing 

towards enhanced terrigenous OM input via riverine inflow (Chapter 4). This would 

also be consistent with slightly increased C/Norg ratios in the same core-section 

(Figure 5.6). The depth profiles of perylene (XVII) and chroman concentrations 

were distinct to those of the other PAHs, reflecting the different origins.  

Pyrogenic PAHs often reach sediments via airborne particles and their presence in 

the analysed sediments may be indicative of wildfires. Benzo[a]pyrene (XI) and 

coronene are most likely exclusively formed by pyrogenic processes, whereas other 

PAHs such as benzo[e]pyrene, chrysene or triphenylene may have additional algal 

sources (Grice et al., 2007; Nabbefeld et al., 2010d). The co-variation of all of these 

compounds in the present core, with highest concentrations in the uppermost sample 

as well as at depths around 33 m, strongly indicates a predominant origin from 

combustion sources (e.g. Figure 5.8b). Although benzo[ghi]perylene is typically 

assigned to a pryogenic origin (Blumer and Youngblood, 1975; Killops and 

Massoud, 1992), it has in some cases shown similar sedimentary distributions similar 

to perylene (XVII; Jiang et al., 1998), implying additional sources of this PAH. Here 

its depth profile was largely similar to the previously described combustion markers 

in the upper part of the core, but it also showed an increase in concentration similar 

to perylene (XVII) and MTTCs (X) below a depth of 40 m. Dibenzofuran (XIX) has 

been frequently used as indicator of higher plant input (Fenton et al., 2007; 

Nabbefeld et al., 2010d). However, its depth profile in the core analysed here largely 

resembled those of the combustion markers (Figure 5.8b).  

Conclusions and outlook 

This organic geochemical based study demonstrates the highly unusual preservation 

of OM in the Gogo Formation of the Canning Basin, including the oldest known 

preservation of biological C/N values. This preservation is supported by 

exceptionally low thermal maturity, consistently evident in elemental and molecular 

maturity parameters, and largely unaltered biomarker distributions which included 



Chapter 5 

 

 

172 

 

unsaturated hopenes and sterenes which are typically highly susceptible to diagenesis 

and thermal maturity. 

Furthermore, molecular and elemental data from the Late Givetian-Frasnian core 

facilitated a detailed reconstruction of the paleoenvironment over this time period. 

Evidence for a distinct time interval of elevated biotic stress was found, in particular 

for reef-building organisms and associated fauna, close to or at the G-F boundary, 

which may represent a local or global event related to the Late Devonian extinctions. 

The associated palaeoenvironment was characterised by persistent water-column 

stratification, freshwater incursions, widespread anoxia and enhanced sulfate 

reduction resulting in the development of persistent anoxia and PZE in the 

hypolimnion. Elevated concentration of perylene (XVII) and MTTCs (X) in 

sediments from this time interval, likely point towards enhanced terrigenous nutrient 

input leading to phytoplankton blooms. The latter commonly represent an important 

factor in the development of anoxia and PZE, particularly in such a stratified 

palaeoenvironment. In contrast, sediments deposited later in the Frasnian were 

presumably layed down under more oxic conditions and a largely well-mixed water-

column without particular indications of biotic stress. The abundance of combustion 

derived PAHs, particularly in the younger sediments, may be indicative of wildfires. 

The present study adds to the knowledge about conditions in palaeoenvironments 

associated with the Late Devonian extinctions and might be useful to reconstruct 

global events if correlated with other datasets. Furthermore, the correlation of anoxia 

and PZE with markers of terrigenous input may point towards a link between the 

Late Devonian extinctions and the rise of higher plants. Data from this work 

combined with some previous studies indicate that PZE likely was a significant 

factor in Middle to Late Devonian extinction events. 
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Appendix 5 

 

Supplementary online material 

Experimental 

If not indicated otherwise, all analyses were performed in the laboratory of WA-

OIGC at Curtin University. All used glassware was pyrolysed at 550 °C for 1 hour 

and procedural blanks were run regularly. 

Sample collection, preparation and extraction 

Sample collection and preparation have been described in detail in the supplementary 

information in Appendix 4. To summarize, the core was collected without any 

drilling fluids or lubricants using a small portable drilling rig. Samples were cut with 

a rocksaw (diamond crystal edge with carbon steel centre) and pre-extracted in 

methanol and dichloromethane (DCM) in an ultrasonic bath to remove any potential 

surface contamination. Samples were ground in a stainless-steel rock-mill and 

Soxhlet extracted with 90% DCM in methanol for 48 hours. Activated copper 

turnings were used for the removal of elemental sulfur. The extracts were further 

separated by silica gel-column chromatography using solvents with an increasing 

polarity. Aliphatic and aromatic fractions were eluted in hexane and 20% DCM in 

hexane, respectively. Samples for palynological analyses were not identical to the 

larger samples for biomarker, elemental and isotope analysis and represented small 

chips taken throughout the core. 

Gas-chromatography (GC-MS) 

GC-MS analyses were performed on an Agilent 5973 Mass-Selective Detector 

(MSD) interfaced to an Agilent 6890 gas chromatograph (GC) fitted with an 

autosampler, utilizing a DB-5MS capillary column (60 m ൈ 0.25 mm I.D.,0.25 μm 

film thickness; J & W scientific). The GC-oven was typically heated up from 40 °C 
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to 310 °C (aliphatic fractions) or 325 °C (aromatic fractions) at 3 °C/min with initial 

and final hold times of 1 and 30 minutes, respectively. Samples were injected into a 

split/splitless injector at 320 °C in a pulsed-splitless mode. The carrier gas (helium) 

flow rate was kept constant at 1.1 mL/min. Full scan (50 - 550 Daltons) at 70 eV 

mass spectra and selected ion monitoring (SIM) spectra (used for quantification of 

aromatic compounds) were typically acquired with an electron multiplier voltage of 

1800 V and a source temperature of 230 °C. ChemStation Data Analysis software 

was used for data acquisition and processing. Perylene, palaeorenieratane (II) and 

isorenieratane (I) were identified by comparison of retention times with authentic 

standards. For semi-quantitative analyses the aromatic fractions were spiked with a 

known amount of perdeuterated terphenyl (d14). 

Multiple reaction monitoring (MRM) GC-MS 

MRM-GC-MS analyses were performed at Department of Earth, Atmospheric and 

Planetary Sciences, MIT, USA on a Micromass Autospec Ultima mass spectrometer 

interfaced to an Agilent 6890 N gas chromatograph fitted with an autosampler and a 

DB-5MS capillary column (60 mൈ0.25 mm I.D.; 0.25 μm film thickness; J&W 

Scientific). The carrier gas (helium) flow rate was kept constant at 2 ml/min. The 

GC-oven was programmed from 60°C to 150°C at 10°C/min and to 315°C at 

3°C/min with initial and final hold times of 2 and 24 min, respectively. The source 

was operated in electron impact (EI, 70 eV) mode at 250° C, with 8 kV accelerating 

voltage. Data was acquired and processed using MassLynx 4.0 (Micromass Ltd.) 

software. Identification of compounds was achieved by comparison with a synthetic 

mixture of oils (AGSO standard) that contains most common hopanes and steranes. 

Semi quantitative analyses were achieved by spiking the samples with a known 

amount of perdeuterated (d4) 24-ethylcholestane. The transitions of precursor-

product reactions used to monitor the compounds relevant for this study are included 

in Figures A5.2, A5.3 and A5.5. 

Compound specific stable isotope analysis 

For GC-irMS analyses a Micromass IsoPrime mass-spectrometer interfaced to an 

Agilent 6890N GC fitted with an autosampler was utilized with GC- column, carrier 
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gas, injector conditions and oven temperature programs identical to the settings for 

GC-MS analysis. The interface for the conversion of analytes to CO2 and H2O 

consisted of a quartz tube packed with CuO-pellets (4 mm x 0.5 mm, isotope grade, 

Elemental Microanalysis LTD.) and was maintained at 850 °C. H2O was removed 

cryogenically at -100 °C. Isotopic compositions were determined by integration of 

the m/z 44, 45 and 46 ion currents of CO2 peaks from each analyte and reported 

relative to CO2 reference gas pulses of known 13C-content. Isotopic values are given 

in the delta () notation relative to the international standard VPDB. For data 

acquisition and processing MassLynx (Micromass Ltd.) was used. Each sample was 

analysed at least in duplicate and all reported values had standard deviations  

< 0.5 ‰. To ensure accuracy, in house standard solutions containing n-alkanes with a 

known isotopic composition were analysed after every second sample. 

Elemental analysis 

Elemental analysis (C, N, S) was performed in the laboratory of the Institute of 

Geoscience, Kiel University. Prior to analysis fractions of the ground samples were 

decarbonated with hydrochloric acid (5%), washed, dried and homogenized. The 

carbonate content [%] was calculated based on weight differences before and after 

decarbonation. The reported values for TOC %, TN % and TS % have also been 

corrected for these weight differences. Analyses were performed on a VARIO EL-III 

elemental analyser. About every second sample was analysed in duplicate or 

triplicate to ensure reproducibility. 

Rock Eval pyrolysis 

Rock Eval pyrolysis was performed in the laboratory of the Institute of Geoscience, 

Kiel University on fractions of the decarbonated samples (previous section) using a 

VINCI Rock Eval 2 instrument. 

δ13C and δ18O of carbonates 

δ13C and δ18O of carbonates were measured in the laboratory of the School of Plant 

Biology at the University of Western Australia by continuous –flow (CF) analysis 

using a GasBench II coupled with a Delta XL Mass Spectrometer (Thermo-Fisher 
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Scientific) after the method described in Paul and Skrzypek (2007). In brief, 

carbonates in the powdered samples were digested by addition of ortho-phosphoric 

acid in a helium atmosphere. The generated CO2 was trapped, purified and diverted 

to the irMS. Isotope values were reported in the delta () notation relative to the 

international standard VPDB. 

δ13C of organic carbon 

δ13C of organic carbon was measured in the laboratory of the School of Plant 

Biology at the University of Western Australia. Residues left after Soxhlet extraction 

were treated with ~7M hydrochloric acid to remove carbonates, washed, dried and 

homogenized. δ13C analyses were subsequently performed on a continuous flow (CF) 

system consisting of a Delta V Plus mass spectrometer connected to a Thermo Flush 

1112 via Conflo IV (Thermo-Finnigan/Germany) after the method described in 

Skrzypek and Paul (2006). The combustion and oxidation temperatures were 1700-

1800°C, the reduction temperature 650°C. Results were reported in the delta () 

notation relative to the international standard VPDB. 

δ34S of pyrite 

δ34S of total reducable inorganic sulphur (TRIS, basically pyrite) was measured at 

the Marine Geology Department, Geochemistry & Isotope Geochemistry Group, 

Leibniz-Institute for Baltic Sea Research in a fraction of the sample residue after 

Soxhlet-extraction. In brief, TRIS was extracted from the sample by treatment with 

hot acidic chromium (II) chloride (Fossing & Jørgensen, 1989) and the generated H2S 

was precipitated as ZnS and subsequently converted to AgS2. 
34S/32S ratios were 

measured by combustion - isotope ratio monitoring - mass spectrometry (C-irm-MS) 

on a Thermo Finnigan MAT 253 mass spectrometer coupled to an elemental analyser 

(Thermo Flash 2000) via a split interface (Thermo Finnigan Conflo IV). Measured 

isotope ratios were calibrated with in-house and international reference materials 

(Mann et al., 2009) and reported in the δ-notation relative to the V-CDT (Vienna 

Cañon Diablo Troilite) standard. 

δD of kerogen 
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δD of kerogen was measured at the Department of Geological Sciences, Indiana 

University. Kerogens were isolated from the extracted residue by decarbonation with 

~7M hydrochloric acid and a subsequent treatment with 25 % hydrofluoric acid to 

remove silicates and other hydrogen-bearing inorganic phases. Heavy minerals such 

as acid-insoluble sulfides, titanium oxides and zircon were removed from the 

kerogen by density separation using aqueous zinc bromide solution (~2.4 g/mL). 

Zinc bromide was subsequently removed by washing with slightly acidified water. 

Samples were freeze dried and extracted ultrasonically in DCM for 2 hours to 

remove any bitumen previously trapped in the mineral matrix. After washing with 

DCM, drying and homogenization kerogens were weighed into silver capsules for δD 

analysis. 

To account for exchangeable hydrogen, aliquots of the kerogens (2 replicates each) 

were equilibrated in the steam of two different waters with known D/H content for 6 

to 10 hours prior to analysis according to a method developed by Schimmelmann et 

al. (1999; 2006). δD analysis were performed using a Costech elemental analyser 

(EA). The contents of exchangeable hydrogen were determined using mass balance 

equations and the measured δD values were corrected accordingly (Schimmelmann 

et al. 1999; 2006). 
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Supplementary figures 

 

 

Figure A5.1: Structures referred to in the text 
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Figure A5.2: MRM chromatograms showing hopanes in a sample from the analysed core at the depth 
of 40.7 m. S and R stand for the stereochemistry at C22.  
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Figure A5.3: MRM chromatograms showing methylhopanes in a sample from the analysed core at 
the depth of 40.3 m. Crossed out peaks mark cross-talk from regular homohopanes. S and R stand for 
the stereochemistry at C22. Me = methyl  
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Figure A5.4: Extracted ion chromatograms of a sample from the analysed core at the depth of 40.3 m 
showing the distributions of hopanes and hopenes in the aliphatic fraction. S and R stand for the 
stereochemistry at C22 
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Figure A5.5: MRM chromatograms showing steranes in a sample from the analysed core at the depth 
of 40.3 m. S and R stand for the stereochemistry at C20. Me = methyl ; βα = 13β,17α-diasteranes  
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Figure A5.6: Plot of δ18O vs δ13C of carbonates in the analysed core from McWhae Ridge 

 

 

Figure A5.7: Van Krevelen diagram of the analysed sediments indicating the kerogen type. 
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Data included in figures 

Table A5.1: Data included in Figure 5.3 

Depth 

[m] 
Pr/Ph 

C35 HHI 

[%] 

28,30 BNH/ 

C30H 

Isor.  

[µg/g TOC] 

Palaeoren. 

[µg/g TOC] 

Monoaryl isopr. [µg/g TOC] δ34Spyrite 

[‰] 

Gammacerane 

index 

triMeMTTC/ total 

MTTCs 

δDkerogen 

[‰ VSMOW] 

δ18Ocarb. [‰ 

VPDB] C14 C16 C20 

27.3 *2.99 1.05 0.01 0.00 *0.00 0.39 0.12 0.03 -24.4 *0.05 *0.79 -109 -4.0 

28.1 *2.47 2.04 0.02 0.00 *0.00 0.09 0.03 0.01 n.d *0.08 *0.83 n.d -4.2 

29.0 *1.47 2.03 0.02 0.00 *0.00 0.53 0.11 0.04 -11.9 *0.11 *0.89 n.d -3.4 

29.7 n.d. n.d n.d 0.00 *0.00 0.21 0.08 0.02 -13.6 n.d *0.88 -115 -3.1 

29.9 *1.76 1.70 0.02 0.00 *0.01 0.28 0.09 0.02 n.d *0.18 *0.88 -121 n.d 

30.7 *1.45 1.75 0.04 0.00 *0.00 0.49 0.14 0.04 n.d *0.05 *0.91 -118 n.d 

30.9 *1.31 2.14 0.04 0.00 *0.00 1.27 0.28 0.07 -12.6 *0.16 *0.89 -126 -3.5 

31.9 *1.26 2.61 0.04 n.d n.d n.d n.d n.d -16.7 *0.27 *0.91 -113 -3.6 

32.8 *1.17 2.66 0.07 0.00 *0.00 0.01 0.08 0.03 -16.5 *0.43 *0.91 -109 -2.7 

33.0 *1.29 2.53 0.05 0.00 *0.00 0.01 0.11 0.03 n.d *0.06 *0.91 -117 n.d 

33.2 *0.99 3.36 0.07 0.03 *0.02 0.00 0.03 0.04 -16.5 *0.43 *0.93 -121 -3.1 

33.4 *1.00 3.57 0.04 0.00 *0.00 0.00 0.01 0.00 -19.6 *0.24 n.d n.d -3.3 

34.6 n.d n.d n.d n.d n.d n.d n.d n.d -16.0 n.d n.d n.d -4.4 

37.8 *0.32 2.67 0.03 0.00 *0.00 0.00 0.00 0.00 -16.2 *0.14 n.d n.d -4.0 

40.2 *0.39 2.64 0.08 0.00 *0.06 0.02 0.22 0.18 *-24.0 *0.55 *0.95 n.d -5.2 

40.3 *0.41 4.36 0.05 0.58 *2.34 4.18 2.19 1.14 *-13.8 *1.71 *0.95 n.d -5.4 

40.5 *0.51 n.d. n.d. 0.37 *1.66 2.49 2.11 0.90 n.d n.d *0.94 n.d n.d 

40.7 *0.51 3.01 0.04 0.13 *0.50 1.42 1.19 0.49 *-11.9 *1.24 *0.94 -130 -2.8 

41.2 *0.48 2.65 0.07 0.25 *1.24 6.62 4.01 1.23 *-15.0 *1.37 *0.95 n.d -5.2 

41.9 *1.00 2.17 0.05 0.02 *0.11 0.19 0.38 0.11 *-19.1 *0.75 *0.93 n.d -3.4 

* also included in figures of Chapter 4 

 

  



 

 

 

Table A5.2: δ13C values of the compounds included in Figure 5.4 in ‰ vs. VPDB. “Ci” stands for monoaryl isoprenoids with the carbon number “i” 

Depth [m] 
Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7 Peak 8 Peak 9 Peak 10 Peak 11 

C15 C16 C18 C19 see Fig. 5.4 see Fig. 5.4 ? ? see Fig. 5.4 see Fig. 5.4 palaeorenieratane 

40.2 n.d. n.d. n.d. -15.1 -17.8 -20.8 -17.7 -17.0 n.d. n.d. n.d. 

40.3 n.d. n.d. -21.7 -16.8 -18.4 -20.1 -17.0 -16.0 n.d. n.d. *-15.3 

40.7 -17.2 -16.4 -19.6 -18.6 -16.7 -19.2 -17.9 -17.4 -15.5 -15.9 *-15.4 

41.2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

41.9 -19.4 -17.9 -21.2 -19.6 -16.7 -18.9 -17.4 -18.4 n.d. n.d. *-15.1 

* also included in Chapter 4 

 

Table A5.3: Data included in Figure 5.6 

Depth [m] TOC [wt. %] TOCor [wt. %] Carbonates [wt. %] TNorg [wt.%] TS [wt. %] C/Norg [molar] HI [mg HC/g TOC] OI [mg CO2/g TOC] 

27.3 0.3 0.7 9.1 0.02 0.3 12.3 70 102 

28.1 0.3 1.1 23.7 0.02 0.8 12.3 72 108 

29.0 0.5 1.8 15.8 0.02 1.3 19.9 115 35 

29.7 0.5 2.1 12.5 0.03 1.6 16.3 124 71 

29.9 0.5 2.1 14.7 0.03 1.6 15.8 101 51 

30.7 0.6 2.0 11.9 0.03 1.5 15.9 105 42 

30.9 0.8 2.8 12.4 0.04 2.0 17.8 166 32 

31.9 n.d. n.d. n.d. n.d. n.d. 20.4 131 48 

32.8 0.5 2.0 12.4 0.03 1.5 15.7 107 46 

33.0 0.5 2.3 13.5 0.03 1.8 15.6 128 57 

33.2 0.5 2.0 12.8 0.03 1.5 14.9 116 44 

33.4 0.1 1.0 65.9 0.00 0.9 28.1 82 82 

34.6 0.0 0.2 86.2 0.00 0.2 7.8 38 200 

37.8 0.0 0.7 70.3 0.00 0.6 5.9 n.d. n.d. 

40.2 *0.0 0.5 *62.6 0.00 0.5 16.8 n.d. n.d. 

40.3 *0.3 1.0 *68.1 0.01 0.7 17.9 252 39 

40.5 *0.9 2.4 *15.2 0.05 1.5 16.8 223 28 

40.7 *0.8 2.7 *10.5 0.04 1.9 16.8 211 42 

41.2 *0.7 2.1 *32.2 0.04 1.4 18.0 264 32 

41.9 *0.7 2.4 *13.3 0.04 1.6 17.6 169 52 

* also included in Chapter 4 

 



 

 

 

Table A5.4: Data included in Figure 5.8 

Depth 

[m] 

Steranes/ 

hopanes 

C30 Methylst./C27-29 Sts iso-propylchol./

n-propylchol. 

Pristane/ 

n-C17 

Phytane/ 

n-C18 

Concentration μg/g TOC 

3β-Me 4α-Me 4β-Me Perylene ∑MTTCs BaPy BePyr Bpery Cor DBF 

27.3 0.20 0.00 0.01 0.00 0.28 0.51 0.16 *0.13 *1.83 0.33 0.54 0.96 0.66 0.24 

28.1 0.39 0.04 0.02 0.01 0.17 0.77 0.37 *0.02 *2.12 0.04 0.06 0.03 0.01 0.01 

29.0 0.84 0.07 0.03 0.01 0.11 1.38 0.97 *0.07 *7.99 0.12 0.13 0.09 0.05 0.14 

29.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. *0.03 *3.60 0.03 0.03 0.01 0.00 0.01 

29.9 0.76 0.03 0.02 0.01 0.10 1.61 0.95 *0.02 *4.04 0.03 0.03 0.02 0.01 0.02 

30.7 0.88 0.05 0.03 0.01 0.12 1.86 1.30 *0.05 *10.35 0.10 0.11 0.16 0.07 0.17 

30.9 1.27 0.06 0.03 0.01 0.13 1.67 1.46 *0.05 *12.99 0.07 0.09 0.34 0.14 0.34 

31.9 1.44 0.06 0.02 0.01 0.10 2.63 2.15 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

32.8 2.47 0.06 0.02 0.01 0.11 2.04 1.61 *0.23 *11.56 0.21 0.36 0.60 0.14 0.07 

33.0 2.69 0.04 0.02 0.01 0.14 1.82 1.53 *0.23 *12.26 0.27 0.36 0.71 0.15 0.08 

33.2 3.86 0.05 0.02 0.01 0.12 2.21 2.02 *0.21 *10.12 0.23 0.33 0.17 0.04 0.01 

33.4 2.37 0.00 0.01 0.00 0.14 0.66 0.94 *0.02 n.d. 0.02 0.04 0.02 0.01 0.00 

34.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

37.8 0.49 0.00 0.00 0.00 0.20 0.16 0.66 *0.00 n.d. 0.00 0.01 0.00 0.00 0.00 

40.2 4.94 0.08 0.07 0.03 0.13 1.75 4.54 *0.14 *6.75 0.03 0.05 0.00 0.00 0.00 

40.3 6.36 0.15 0.21 0.07 0.15 3.13 9.35 *1.06 *38.54 0.17 0.19 1.08 0.39 0.23 

40.5 n.d. n.d. n.d. n.d. n.d. 4.01 6.99 *0.92 *22.42 0.17 0.17 0.90 0.14 0.22 

40.7 4.62 0.12 0.34 0.06 0.13 3.09 5.87 *0.54 *14.29 0.10 0.11 0.28 0.04 0.09 

41.2 2.17 0.10 0.24 0.04 0.20 5.07 11.12 *0.42 *21.19 0.07 0.08 0.27 0.03 0.20 

41.9 1.17 0.04 0.11 0.02 0.13 3.21 3.67 *0.04 *2.68 0.01 0.01 0.01 0.00 0.00 

* also included in Chapter 4 

 

  



 

 

 

Table A5.5: Data included in Figure 5.9. Peak areas were inferred from suitable transitions of multiple reaction monitoring-gas chromatography- mass spectrometry (MRM-
GC-MS) 

Depth [m] 
Peak areas 

∑cholestanes ∑24-methylcholestanes ∑24-ethylcholestanes 

27.3 378495 124937 678755 

28.1 1993635 707340 3861990 

29.0 10189203 3458112 17904085 

29.7 n.d. n.d. n.d. 

29.9 5618845 2099182 10484379 

30.7 8955227 3410066 17844243 

30.9 20036199 7667875 35901309 

31.9 9733470 3956699 20775005 

32.8 11028498 4975431 22450442 

33.0 24274101 11377345 48922215 

33.2 30561811 14750194 64474802 

33.4 1022704 417535 2507036 

34.6 n.d. n.d. n.d. 

37.8 326084 102564 511516 

40.2 5677128 2771224 9992119 

40.3 51521847 25616683 82671752 

40.5 n.d. n.d. n.d. 

40.7 15859006 7138781 19431634 

41.2 10344653 4529279 13476443 

41.9 2382601 1215802 4162140 

 

 



Appendix 5 

 

 

199 

 

References Appendix 5 

Fossing, H., and Jørgensen, B., 1989, Measurement of bacterial sulfate reduction in 
sediments: Evaluation of a single-step chromium reduction method: 
Biogeochemistry 8, 205-222. 

Mann, J.L., Vocke, R.D., Kelly, W.R., 2009. Revised δ34S reference values for IAEA 
sulfur isotope reference materials S-2 and S-3. Rapid Communications in Mass 
Spectrometry 23, 1116-1124. 

Paul, D., Skrzypek, G., 2007. Assessment of carbonate-phosphoric acid analytical 
technique performed using GasBench II in continuous flow isotope ratio mass 
spectrometry. International Journal of Mass Spectrometry 262, 180-186. 

Schimmelmann, A., Lewan, M.D., Wintsch, R.P., 1999. D/H isotope ratios of 
kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks 
containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta 
63, 3751-3766. 

Schimmelmann, A., Sessions, A.L., Mastalerz, M., 2006. Hydrogen isotopic (D/H) 
composition of organic matter during diagenesis and thermal maturation. 
Annual Review of Earth and Planetary Science 34, 501-533. 

Skrzypek, G., Paul, D., 2006. δ13C analyses of calcium carbonate: comparison 
between the GasBench and elemental analyzer techniques. Rapid 
Communications in Mass Spectrometry 20, 2915-2920. 

 



Chapter 6 
 

 

 

200 

 

 

6. Conclusions and outlook 

 

 

 

This PhD primarily explores and introduces (novel) biomarker and stable isotope 

approaches for the reconstruction of palaeosalinity and water-column stratification 

and demonstrates their practical applications in the investigation of 

palaeoenvironmental conditions in the modern Coorong Lagoon, an estuarine lagoon 

complex in South Australia and in a Middle to Late Devonian marine setting 

associated with reef-systems affected by the Late Devonian extinctions. Furthermore, 

a new analytical approach with a great potential for the investigation of source and 

formation pathway of the palaeosalinity markers methyltrimethyltridecylchromans 

(MTTCs) is developed. 

Integration of the comprehensive biomarker, elemental and stable isotope data 

acquired provides an in-depth insight into both the human-induced environmental 

and ecological changes in the northern Coorong Lagoon as well as changes in levels 

of biotic stress in depositional settings associated with the Late Devonian extinctions. 

Changes of salinity in aquatic environments are often of great ecological significance 

since they typically have a substantial effect on in situ primary production, which 

forms the base of the food-web (e.g. modern Coorong Lagoon, see subsequent 

section). Furthermore, salinity differences between the epilimnion and hypolimnion 

in (typically somewhat enclosed) marine settings are often responsible for a 

persistent density stratification of the water-column. Such conditions commonly lead 

to prevailing anoxia or euxinia in the hypolimnion, which may also extend to the 
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photic zone, and have been frequently associated with (global) oceanic anoxic events 

in Earth’s history accompanying mass extinction events. 

Mass extinction events had a great significance for the evolution of life throughout 

Earth’s history and their investigation may provide a useful insight into present day 

climate change, particularly given speculation that dramatic anthropogenic impacts 

on sensitive environmental conditions may represent the beginning of yet another big 

extinction. The Coorong Lagoon represents such an ecosystem recently impacted by 

a major anthropogenic influence. 

Nature and extent of human-induced changes in the modern 

Coorong Lagoon 

The Coorong Lagoon is part of an ecologically significant wetland located at the 

Mouth of the River Murray. Similar to many other estuarine environments it has 

been subject to a dramatic decline in biodiversity over the past several decades as a 

result of human interference with the natural water-regime, which was compounded 

by a prolonged drought from 2000-2010. 

Despite many previous studies of the present day Coorong, including investigations 

of hydrology, ecology and organic geochemistry of the water-column and surface 

sediments, little was known about conditions in the ecosystem of the North Lagoon 

prior to European settlement and the nature and extent of changes that human water 

management had produced. The present study (Chapter 2) uses biomarker and stable 

isotope analysis of a sedimentary core from the northern Coorong Lagoon spanning 

the past ~5000 years to track ecological and environmental changes both prior to 

European settlement and after the 1950s introduction of substantial water 

management practices. The newly acquired organic geochemical data clearly 

demonstrate significant alterations in the deposited organic matter (OM) of the North 

Lagoon which could be directly related to the introduction of these water 

management practices. More specifically, there is strong evidence for a change in 

OM production from a predominant source of aquatic macrophytes prior to the 1950s 

towards a major input from microalgae and bacteria in more recent sediments. 

Compound specific δD analysis, a relatively new analytical technique developed in 
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1998/99, was applied to predominantly in situ produced n-alkanes, which proves a 

particularly useful indicator of palaeosalinity. The obtained values indicate a general 

salinity increase in the North Lagoon throughout the Holocene, despite some 

variability, and then a pronounced positive shift after the 1950s, indicating a strong 

elevation of salinity over the past decades. The increase in salinity caused by the new 

water-management regime and further compounded by the severe drought of recent 

times, has been generally regarded as one of the major drivers for the ecological 

decline and extinction of key species. A recent flood in 2010 temporarily improved 

ecological conditions, but the long-term issue of providing sufficient freshwater 

input, particularly under future drought conditions has not been fully resolved. The 

present study extends the knowledge of OM sources and natural salinity levels in the 

North Lagoon prior to European settlement, and provides an important basis against 

which the success of remediation measures can be assessed. Furthermore, conditions 

in the Coorong may also be relevant for other wetlands exposed to similar ecological 

disturbances. In the future a similar approach may also be used in new sediment 

cores which include OM deposited after the recent flood in 2010, to track changes 

induced by the temporary high freshwater input. Furthermore, it could also be 

extended to other water-bodies of the Coorong region to follow changes in primary 

production and salinity over time. 

Elevated levels of biotic stress in a marine Middle to Late Devonian 

palaeoenvironment 

An integrated analytical study, including use of biomarkers, elemental and stable 

isotope values, Rock Eval pyrolysis and palynological data, is undertaken on a 

depositional setting from the Lennard Shelf, Canning Basin, WA associated with 

reef-systems close to or at the Givetian-Frasnian (G-F) boundary and later in the 

Frasnian to investigate the palaeoenvironmental conditions and changes possibly 

related to events associated with the Late Devonian extinctions (Chapter 5). As part 

of this investigation, a novel approach for reconstructions of freshwater incursions in 

marine palaeoenvironments is also developed (Chapter 4; see following section). 
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Most research of the Late Devonian extinctions, which are amongst the biggest mass 

extinction events in the Phanerozoic, have focussed on the most pronounced 

biodiversity loss at the Frasnian-Famennian (F-F) boundary, and investigations of 

potential events in the Givetian and Early to Middle Frasnian have been 

comparatively rare. Altogether, only little is known about causes or the exact timing 

and amount of associated extinction pulses.  

The corresponding analyses of the Canning Basin sediments provided evidence of a 

persistently stratified water-column with freshwater incursions overlying more saline 

bottom waters as well as prevailing anoxia and photic zone euxinia (PZE) in the 

marine palaeoenvironment close to or at the G-F boundary. These conditions are all 

consistent with increased levels of biotic stress for reef-builders and associated 

organisms, which were amongst the most severely affected life-forms during the Late 

Devonian extinctions. Later in the Frasnian, the analytical data are indicative of more 

oxic conditions and a vertically mixed water-column without any evidence of PZE 

(Chapter 5). Distributions and abundances of algal and bacterial biomarkers also 

showed significant variations between the Late Givetian/Early Frasnian and later in 

the Frasnian, possibly reflecting riverine incursions in the older sediments. The 

dataset presented in Chapter 5 indicates a distinct time period of biotic crisis in the 

Devonian Canning Basin close to the G-F boundary, which adds to the knowledge 

about conditions in palaeoenvironments associated with the Late Devonian 

extinctions and might be useful to reconstruct global events if correlated with other 

datasets. Chapter 4 and 5 also provide a further indication that PZE and enhanced 

terrigenous nutrient input (likely related to the expansion of vascular plants) may 

have significantly contributed to mass extinctions in the Middle to Late Devonian, 

also prior to the F-F boundary, which is consistent with previous studies. In the near 

future the present study will be complemented with detailed palynological analyses 

in the same core. Similar biomarker and stable isotope studies should also be used to 

explore palaeoenvironmental changes in other regions of the Canning Basin, 

particularly since this study has furthermore shown an extremely good preservation 

of biomarkers and OM in the Gogo Formation. 
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Organic matter (OM) preservation in the Canning Basin, WA 

The Canning Basin, WA is famous for its extensive and well-exposed Middle to Late 

Devonian reef systems showing only minor geological alteration in most areas. The 

Gogo Formation, which represents Givetian to Frasnian basin facies, was laid down 

predominantly under suboxic and anoxic conditions and is of particular interest for 

many scientists. It forms the source rocks for the high-quality oils in the Canning 

Basin and contains exceptionally well-preserved macrofossils. A few studies also 

indicated a very unusual preservation of molecular fossils (i.e. biomarkers) in some 

sections, which showed very immature profiles despite their Palaeozoic age. The data 

collected in Chapter 5 also confirm this very high level of OM and biomarker 

preservation in the Gogo formation. A high proportion of hopanes and steranes still 

exhibited their less thermally stable biological configuration and even some 

unsaturated precursors were present. Furthermore, the presumably oldest 

preservation of original C/N was reported in the samples analysed in Chapter 5. A 

possibility to further extend this study would be the analysis of more polar 

compounds, which might be well preserved as indicated by the extremely low 

thermal maturity of the OM. 

Significance of MTTCs in palaeoenvironmental reconstructions 

Origin of MTTCs in geological samples 

The “chroman ratio” between different MTTC isomers is a frequently used 

palaeosalinity indicator, despite uncertainties about the origin and formation pathway 

of these compounds. Condensation reactions between chlorophyll-derived phytol and 

presumably higher plant-derived alkylphenols during early stages of diagenesis 

represent a likely formation pathway, however direct biosynthesis of MTTCs (or 

structurally similar precursors) from phytoplankton has also been suggested. A 

clarification of their source(s) would help to more accurately utilize chroman ratios 

to infer palaeosalinities (especially in a stratified water-column) and it may also 

broaden the field of MTTC applications in palaeoenvironmental reconstructions, 

particularly regarding a potential relation to terrigenous input or freshwater 

incursions. 
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Chapter 3 presents a new and relatively simple flash pyrolysis-gas chromatography-

isotope ratio mass spectrometry (Py-GC-irMS) method to support the investigation 

of MTTC origins. This analytical technique enables the separate δ13C measurement 

in the isoprenoid and alkylphenol subunits of a 5,7,8-trimethyl-MTTC standard 

(often the most abundant natural isomer) with high accuracy and reproducibility. The 

formation of MTTCs by condensation reactions of higher plant-derived alkylphenols 

with predominantly phytoplankton-derived phytol (typically main source of 

chlorophyll in marine environments), should be reflected by the different 12C/13C 

composition of the respective MTTC subunits. However, matrix effects prevented 

the formation of 2,3,5-trimethylphenol (alkylphenol subunit of 5,7,8-trimethyl-

MTTC) when isolates of this chroman from sediments were analysed. Further 

optimisation of sample preparation or pyrolysis conditions will therefore be 

necessary before this method can be effectively applied to geological sediments. It 

might also be useful to use this method for the analysis of tocopherols, which show 

strong structural similarities to MTTCs but are biosynthesised, to detect potential 

isotopic differences in the subunits resulting from biosythestic processes and 

compare these to chromans in natural samples. 

Novel conceptual biomarker-model for freshwater incursions in marine 

palaeoenvironments  

Chapter 4 provides valuable information for the investigation of origin and 

formation pathway of sedimentary MTTCs, which point towards an origin from the 

previously described early diagenetic condensation reactions. Furthermore, a novel 

conceptual model using MTTCs as indicators for freshwater incursions in a marine 

depositional environment was introduced. This hypothesis was based on the analysis 

of MTTCs in sediments corresponding to a Middle to Late Devonian marine 

palaeoenvironment in which the disposition of reef systems restricted water 

exchange with the open ocean, leading to a stagnant and persistently stratified water-

column (also see “Elevated levels of biotic stress in a marine Middle to Late 

Devonian palaeoenvironment” page 202). The relation of chroman ratios and MTTC 

abundances to other molecular and stable isotopic indicators for water-column 

stratification, anoxia, salinity and PZE indicate that the chroman ratio is strongly 

influenced by the persistency of water-column stratification and generally reflected 
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low salinities in the overlying freshwater lens. Furthermore, the strong positive 

correlation of sedimentary abundances of MTTCs and perylene indicate a potential 

relation to terrigenous input. 

In the future, similar studies should also be performed in sediments from other 

stratified marine palaeoenvirmonments as well as from freshwater settings with high 

chroman abundances to validate this study and further explore the MTTC formation 

pathway and the relation of the chroman ratio to other molecular parameters. 

Furthermore, it should still be considered to keep searching for potential MTTC 

precursors in extent organisms, although this study strongly indicates a diagenetic 

origin of these compounds. 
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