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Abstract

This Master’s thesis seeks to explore an alternative approach to fibre-optic strain interrogation.

Instead of looking at the conventional phase delays created by fibre strain, frequency-domain shifts

are considerer here. Frequency-domain shift sensing has been made possible by relatively recent

advances in modern optical physics, and this thesis seeks to illustrate that future pressure or strain

sensors could be innovated by incorporating designs discussed here. A number of methods for

frequency-domain sensing are presented and compared with the intention of designing a hydrophone

for seismic acquisition. Of the methods compared, the Long Period Fibre Grating, investigated

thoroughly by this thesis, shows the most promise by exhibiting theoretically high strain sensitivity.

This grating is modelled in detail to ascertain its viability as a hydrophone instrument, with a

goal to utilise tightly bendable plastic fibres to create highly compact compliant mandrels. Aside

from hydrophones, down-hole pressure sensors are also considered, and methods considered are

found to be very viable, as large dynamic range becomes more important than strain sensitivity.

Through uncertainty analysis, Long Period Fibre Grating sensors were found to be too difficult to

manufacture as hydrophones due to the high sensitivity requirements. On the other hand, due to

the frequency-domain sensors having inherently broad dynamic range, down-hole instruments can

be designed based on a number of the considered frequency-domain methods.
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Chapter 1

Thesis Introduction

Fibre optic pressure sensors, in particular hydrophones, have revolved around the concept of sensing

phase differences in a laser driven signal/reference pair since their inception almost 40 years ago

(Shajenko et al., 1978), primarily due to the fact that interferometric techniques which measure

phase change have good sensitivity characteristics (Yu, 2002, p. 425). The purpose of this thesis

is to examine whether alternative instrument designs of strain sensors for the purpose of seismic

acquisition could be conceivably built. Specifically, this thesis looks to present alternative fibre

strain/pressure sensing methods; in particular methods where strain applied on a fibre causes spec-

tral shifts in an observed spectrum. Discussion extends to the design of a compact and cost effective

strain sensor, ending in a proposed design based on the process best fit for seismic acquisition as

well as some applications of interest to Curtin University’s Department of Exploration Targeting,

namely Down-Hole pressure sensing. There is a broad range of applications in the Geo-sciences for

such sensors, including but not limited to long-term Down-Hole monitoring, pressure sensing while

drilling, and hydrophone instruments. The outcomes of this thesis could be made applicable to

pressure sensors for the Shuttle and Coiled Tubing Rigs, being developed by the Deep Exploration

Technologies CRC (DET CRC).

It is the specific goal in this thesis to look at mechanisms associated with optical fibres that

create frequency-domain shifts in the detected spectrum. Spectral analysis has come a long way in

the last two decades, with progress in photodetectors (Wood, 1994), frequency combs for frequency

measurement (Ye and Cundiff, 2005), absorption line-shape measurements (Truong et al., 2012),

super-continuum generation (Dudley and Taylor, 2010, Chapter 8) for generating spectrally broad

signals, and many other tools that can contribute to making better optical sensors. Whilst Optics

has come a long way, few Geophysical optical instruments have adopted modern concepts in their

functionality. This is the driving motivation for this research into ways to utilise frequency-domain

shifts that would be interrogated by methods enabled by modern optics, for the purpose of creating

a pressure sensing instrument that could be applied to a variety of Geophysical applications, like

seismic acquisition and down-hole pressure sensing while drilling.

This thesis will firstly compare a number of intrinsic and extrinsic methods for generating

frequency-domain shifts from fibre strain; then design a fibre wound mandrel pressure sensor based

on the most sensitive mechanism, in order to create a compact sensor; and lastly, analyse whether

such a sensor would be reproducibly constructible through means of uncertainty analysis. Among
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the various ways to utilise frequency domain shifts, several designs stand out as particularly useful.

These are the Tapered-fibre Rayleigh backscatter, the diaphragm extrinsic Fabry-Perot cavity, and

the Long Period Fibre grating.

These three designs have a common feature, that creates predictable interference patterns ob-

servable in the frequency domain, where this interference pattern moves significantly with strains

on the fibre or changes in pressure. The detection of these shifts is best done using cross-correlation

algorithms or heterodyne arrangements, and each have their strengths and weaknesses. A hetero-

dyne, first developed by Forrester (1961), is a method of mixing two signals enabling a bandpass

filter to easily extract the frequency difference between them. Developments by Wood (1994) in

high speed photodetectors, mean that working in the optical spectrum was much easier. With

more recent advances in spectral shift detection with an optical heterodyne implementations, laser

frequency shifts at resolutions as low as 60 Hz can be recovered from spectra (Lu et al., 2015),

though to extend these ideas would required experimentation.

Of the frequency-domain methods looked at, Long Period Fibre Gratings have been mathemat-

ically modelled accurately by Erdogan (1997a), are theoretically promising, and have had little in

the way of development as commercial strain or pressure sensors. Though at least one design has

been proposed by (Wang et al., 2009) where the phase-domain characteristics of a bent Long Period

Fibre Grating is utilised as a hydrophone, it is poorly written and details of strain sensitivity and

resolution are absent. Due to the absence of instrument designs with these gratings, a major goal of

this thesis is to detailed evaluation of a Long Period Fibre Grating (LPFG) based sensor and how

it could be utilised with an optical heterodyne, even though these gratings produce a transmission

absorption line and are not actually a backscattering mechanism.

Shy of constructing a practical LPFG, this thesis delves into implementation with a compliant

mandrel and theoretical evaluation of sensitivity, culminating in a system design. Since the theory

is well established it was possible to conduct careful uncertainty propagation of the geometric

variables defining the optical fibre, in order to determine whether highly sensitive LPFGs capable

of competing with existing sensors are reliably manufacturable. This analysis goes on to show

that, even for a very simple case of an unwound fibre, very precisely manufactured optical fibre

is required to achieve the high sensitivities and narrow absorption lines which are needed for an

effective hydrophone design. However a Down-Hole monitoring pressure sensor is presently more

viable, since sensitivity requirements are lower.

The bulk of this thesis covers the discussion of the Long Period Fibre Grating (LPFG), most of

which was accomplished through mathematical modelling using the Wolfram Mathematica software.

These gratings in particular showed great promise when considered in theory, due to potentially

very high strain sensitivities. Solving for the absorption and strain characteristics is a large part of

the work (covered in LPFGeval.nb), and the code used in solving the gratings (LPFGcalcLoop.nb)

is attached with this thesis. Moreover, a simple implementation of a LPFG wound on compliant

mandrel is illustrated (MandrelEval.nb). Lastly, code for the uncertainty propagation of LPFGs

and mandrels is also attached (LPFGuncertainty.nb).
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Chapter 2

Background

2.1 Introduction

Fibre optic sensors can be split up into two very broad groups based on their principle of function.

The most popular principle is to use interferometric sensors such as Michelson or Fabry-Perot

interferometers to utilise light’s phase differences to measure the strain on an optic fibre. Meanwhile

this thesis focuses on the other main principle, namely wavelength shifts to measure strain, otherwise

known as Optical Frequency Domain Reflectometry (OFDR). Certain interferometric designs can

be altered to utilise OFDR, and are discussed in this chapter.

There main of advantages to OFDR sensors:

• Sensors are immune to power fluctuations of the source since relative amplitudes are not

important.

• Wavelength differences can be measured with high resolution with a heterodyne.

• Dynamic range is limited by the bandwidth of the intermediate filter of a heterodyne, which

can be changed on-the-fly.

Summarising all the different implementations is a difficult task. Some ideas using sensing

crystal strains, or even quantum mechanical strain measurements are not be covered here as the

focus is on making a fibre-optic sensor. This chapter reviews a set of fibre optic based OFDR

options, and goes on to discuss the practicality of using any given fibre based option.

2.2 Review of Processes

2.2.1 Review of Brillouin Scattering

Brillouin backscattering is the scattering of a photon from density (or induced refractive index)

changes. This is known as photon-phonon scattering, where a phonon is a quantum mechanical

pseudo-particle, describing a density wave. Brillouin backscattering has seen industrial applications,

monitoring strain in structures (Measures, 2001).

A mathematical description of Brillouin backscattering frequency down-shift (ωB) is as follows

(Mizuno et al., 2012):
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ωB =
2ncovA
λ

(2.1)

Where nco is the refractive index of the fibre core, vA is the acoustic velocity in the fibre (which

depends on strain) and λ is the wavelength of the incident light.

The Brillouin frequency is linearly related to strain and temperature by the following equations

(Brown et al., 2005):

ωB (T ) = CT T + ωB0 (2.2)

ωB (ε) = Cε ε+ ωB0 (2.3)

The typical value of Cε in silicon is about 0.058 MHz/µε, or 6.35 × 10−4 nm/mε at a laser

wavelength of about 1500 nm. This is a very poor sensitivity compared to others discussed in this

chapter. However the line-width of Brillouin scattering is very narrow (Boyd, 2008, Chapter 9),

on the order of 10 MHz (or about 0.1 pm centred on 1500 nm), meaning that measurements made

using Brillouin scattering will be finely resolved with a heterodyne.

In a paper by Zhu et al. (2010), recovery of a Brillouin scattered signal is demonstrated using

a heterodyne to compare scattered wavelength-shifted coded signal, with an un-shifted coded ref-

erence signal. This allows for real-time Brillouin measurements to be made on a 60 km long cable,

without a requirement for a high power pump (the Local Oscillator, usually the main stable laser

of the system). While this sort of system could be applied to some industrial applications where

the strains exerted on the cable are relatively large, the system is unsuitable for detection of small

changes in strain that would occur in a cable used for seismic acquisition. For this reason Brillouin

backscattering could be implemented in sensors for Down-Hole depth sensing, or strain monitoring

to detect leaks in cemented CO2 trap drill wells.

Brillouin scattering sensitivity and line-width vary with different materials, as exhibited by

Mizuno et al. (2010). They illustrate half the sensitivity of plain silicon fibre but a narrowing of

the line-width by 6 times, through the use of a tellurite optical fibre.

2.2.2 Review of Raman Scattering

Raman backscattering is very low amplitude light that is produced by inelastic scattering from

molecules themselves. This is typically used in crystals, and produces two peaks in the spectrum,

one slightly above the laser frequency, and one below, knows as the Stokes and Anti-Stokes waves

respectively. These peaks shift in frequency due to pressure and temperature variation inside the

crystal. The difference between Brillouin and Raman scattering, is that Raman scattering is an

effect related to individual molecules, while Brillouin backscattering looks at waves among groups

of atoms (phonons). Raman backscattering has seen applications in nanotechnology and Material

science (Das and Agrawal, 2011).

The equation describing Raman backscattering frequency change (∆ωR) in the case where strain

is biaxially isotropic, i.e. εxx = εyy (Callsen et al., 2011), is:

∆ωR = 2 a εxx + b εzz (2.4)
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Where ε is strain, and a and b are coefficients which depend on the elastic stiffness, and are

typically experimentally derived for various compounds which could be used in a doped optical-fibre,

crystal or similar set-up.

While a strain relationship exists, Raman scattering is not commonly utilised in fibre strain

sensing tools. The reason for this is that the signal is very low amplitude, as well as very broad

gain function (about 10 THz). To circumvent the low amplitude issue, implementations of Raman

scattering in fibres often utilise Stimulated Raman Scattering (SRS) (Boyd, 2008, Chapter 8),

however this transfers power from the source into Raman spectra, which limits the range of a

sensor to only a few hundred meters.

Raman scatterings broad gain function could be made more narrow by using doped fibres. As

seen in Galeener et al. (1987), silicon behaves rather poorly, in that its Raman gain function is very

broad and not very strong compared to other materials. Further research is required to examine

the strain sensitivity of each of these materials.

2.2.3 Review of Rayleigh Scattering

Rayleigh scattering is the direct scattering of laser pump photons from the inhomogeneities that

constitute a optical fibre, occurring from electron-photon interaction. In optical fibres, Rayleigh

scattering results in a fraction of the laser pump power to be lost for every unit length. In telecom-

munication applications this is considered detrimental to the operation of the cable, since power is

being lost. Recently there have been applications of this phenomenon where this scattering can be

used to measure the cable’s temperature and strain, at any point in the cable.

2.2.3.1 Polarisation Optical Time Domain Reflectometry Systems

The Polarisation Optical Time Domain Reflectometry (Polarisation-OTDR) concept was first pub-

lished by Rogers (1981), highlighting how the elasto-optic effect of a fibre optical cable can be used

to detect changes in its surrounding, which create changes in the cable’s birefringence. He high-

lighted that optical fibre would be highly sensitive to strain changes, but it would also be highly

sensitive to surrounding electric, magnetic and temperature variation.

In theory a Down-Hole pressure monitor could be designed using Polarisation-OTDR, where

surrounding magnetic fields causing birefringence in the optic cable would be suppressed. For in-

situ stress monitoring, magnetic fields are static over time, this should not impede data acquisition.

Based on this concept, a vibration sensor could be constructed (Zhang and Bao, 2008). It was

shown that multiple frequency events could be detected in a fibre section, across a very broad

bandwidth (1 to 5000 Hz), but is limited by the fact that the detection had to integrate 1.5 seconds

(100 pulses) of data. This was achieved by studying the amplitude changes of backscattering over

a period of time. In an acoustic detector, the pressure sensitive section of a cable longer than an

infinitesimal point, and use the length of the cable for averaging, giving many points to average

across such that there is no need to average as many pulses over time.

In more recent work by Han et al. (2007), Polarisation-OTDR sensors are shown to have greatly

improved signal to noise ratio (SNR) and operational range by generating so called grating-assisted

Polarisation-OTDR. This is achieved by fabricating uniformly distributed weak Fibre Bragg Grat-

ings (FBGs), with FBG intervals on the order of the laser pulse width. This is done in order to

improve the strength of reflections from the fibre and the amplitude of backscattered signal. Han
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et al. (2007) shows that this gives nearly 10 times more accurate readings of fibre bend radius

around a mandrel. In a distributed system the FBGs would need to be inscribed only in areas

where the sensor is located, due amplitude over length losses.

Concerning potential development in Polarisation-OTDR for a seismic sensor (or hydrophone),

the long detection time cripples the ability of a sensor to detect pressure changes on the order of

seismic sampling rates (2 to 4 ms).

Lu et al. (2010) state, in their paper on Phase-OTDR (Phase Optical Time Domain Reflec-

tometry), that detecting the size of a disturbance with Polarisation-OTDR is prevented by the

polarisation evolution along the fibre. Further more, Qin et al. (2012) point out that after the

detection of a vibration, backscattered signals beyond the point of first detection are contaminated

by previous perturbations, meaning distributed seismic sensing is not possible using Polarisation-

OTDR. As such, other Rayleigh based systems have polarisation control methods to eliminate noise

originating from polarisation changes in the cable.

2.2.3.2 Phase Optical Time Domain Reflectometry (Phase-OTDR) Systems

Phase Optical Time Domain Reflectometry (Phase-OTDR) is achieved by detecting the phase of the

Rayleigh backscatter at any point in the fibre cable. Although not a frequency shifting process, it is

discussed here because it has good potential as a distributed compact strain sensing sensor. Signal

from strained or vibrated points in the fibre is frequency shifted using an Acousto-Optic Modulator

(AOM), and mixed with the Local Oscillator, or pump, in a heterodyne, which preserves phase

information, at an intermediate frequency defined by the difference between the pump and the

reflected signal shifted by the AOM. Lu et al. (2010) published a distributed Phase-OTDR sensing

system capable of sensing frequencies between 5 Hz and 1kHz, with sampling intervals as short

as 10 microseconds, depending on desired SNR. This is not far from the sampling rates required

by seismic acquisition. In other publications (Hui et al., 2013), the AOM is replaced by a Mach-

Zehnder Electro-Optic Modulator (EOM) to provide better spacial resolution, however this requires

further processing to correct for its drifts in frequency.

SNR ratio is limited by both shot noise as well as thermal fluctuations in the fibre. Wavelet de-

noising methods implemented by Qin et al. (2012) illustrate that SNR can be improved by having

a wavelet model, rather than using moving average over several detections, providing potential for

extremely fast sampling rates of signals, and very broad frequency detection potential. In their

paper they presented detection of 20 Hz and 8 kHz signal. Although frequencies that high are not

required by seismic sensors, this implies that such sensors can have much wider applicability.

Implementation of Phase-OTDR as a seismic-sensor seems very possible in theory. Decent

spacial resolution, long maximum length, and vibration frequency bandwidth covering seismic fre-

quencies and beyond are all ideal qualities for a seismic sensor, provided required sampling rates

can be reached. Building a sensor can be achieved by spooling sections of fibre around a mandrel

in a localised point, and averaging the frequency content of vibrations of the cable along the length

of the spooled area. Thus SNR and sampling rate issues can be mitigated using more cable in a

detector.

As this method of strain detection is not in-line with this thesis, Phase-OTDR Systems is not

discussed further, however it should be noted as a point of further research in the future.
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2.2.3.3 Optical Frequency Domain Reflectometry (OFDR) Rayleigh scattering Sys-

tems

When modelling Rayleigh scattering in a strain measurement context, it is useful to consider this

scattering as a set of random Bragg gratings, all along the cable, giving weak backscatter at

a range of frequencies in an approach first considered by Froggatt and Moore (1998). Using a

Tunable Laser Source (TLS), they showed that for any point in the cable, the shifted state of the

frequency spectrum defines its stress state. Applying strain to the cable would result in the shifting

of the spectrum, which they illustrated by cross-correlating the spectrum of a point in the cable

in the unstressed state to its stressed state. One of the most attractive aspects of this way of

detecting strain, is that a detector may be defined from any collection of points along the fibre,

where averaging the strains along a section of fibre improves the SNR, at the cost of having to

average a longer section of cable.

Froggatt and Moore (1998) highlighted the drawbacks of such a system, which illustrate that

this would be unsuitable for application as a seismic detector. These drawbacks were: detection

was limited to less than 100m, due to laser dispersion making analysis impossible; strain sensitivity

is no better than Fibre Bragg Gratings; the system had a very poor signal to noise ratio (SNR);

and TLS takes a whole second to complete its sweep, meaning sample rates of 2ms are outright

impossible with simple TLS based devices. The advent of distributed Bragg reflector (DBR) lasers,

meant that sweeping though a range of up to about 80 nm can be done on the order of 100’s of

nanoseconds (Piprek, 2005, Chapter 6), though it a stepwise manner.

Ding et al. (2012) illustrated a vibration sensor reaching lengths of 12 km, which is practical

for seismic purposes, although his results suffered from very poor signal to noise ratio (as low as

approximately 1.5) when measuring the frequency of vibrations at more than one location in the

cable. Their work considered only semi-permanent vibration sources, where having a long time to

complete a TLS sweep was available.

Improvements in strain sensitivity were illustrated by Wang et al. (2012b) where they used a

tapered length of cable to show that it’s temperature and strain sensitivity can be dramatically

improved, for a single mode fibre. They show an impressive strain sensitivity of 17.17 nm/mε,

whereas Froggatt and Moore (1998) showed 1.5 − 2.5 nm/mε for what must be assumed to be a

similar non-tapered fibre. Wang et al. (2012a) discusses the theory, where the effect of the taper is

the introduction of higher order modes in the fibre in the area in or around the taper, depending

on how it is tapered. Refractive index changes due to strain can then be measured as the difference

in effective refractive indices of a pair of modes, using mode-coupling theory crudely analogous to

Fibre-Bragg-Gratings or Long-Period-Gratings. Previous work in this field (Fielding et al., 1999)

experimentally shows how creating the taper in the fibre can force the core mode to propagate in

the cladding, where it would no longer act as a single mode fibre, allowing for power to transfer to

other modes, which would then create interference patterns. In this scenario tapering would create

a frequency profile that has a consistent peak-trough pattern that is much easier to cross-correlate

and would hence improve SNR. Rayleigh backscattering from the tapered sections can show the

wavelength shifts at every 13 µm section in the taper. As such there is no need a very long taper

section to be able to find the strain value in the taper with very good SNR and a sensitivity that

is comparable to sensitivities expected from near turning-point Long-Period-gratings.

Further work on tapered fibres implies that for bent tapered sections sensitivity to external
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effects can increase drastically (Sun et al., 2013), an effect similar to the turning point of Long-

period-gratings. The paper lacks proper derivation of sensitivity relations, and further research

would be required to understand how to fully utilise this property. In the future, incorporating DBR

lasers to enable fast tuning, Rayleigh scattering systems with improved sensitivity from tapering

could make for good sensors.

2.2.4 Review of White light based Fiber-Optic Extrinsic Fabry-Perot

Interferometer

Fabry-Perot cavities are a popular choice for fibre optic interferometric sensor. Extrinsic Fabry-

Perot cavities first proposed by (Murphy et al., 1991), are simply Fabry-Perot cavities that are

created by creating a small, typically air-filled, space between two sections of fibre. This creates

two back reflected pulses, separated by a small difference in phase. In work done by Xiao et al. (2003)

the interference pattern, in the frequency domain of light across a broad spectrum, was studied and

the first designs for a strain and temperature sensor were established. Since cavities are typically

very small, allowing for overall very small sensors, phase detection methods are typically noisy since

the phase difference is not shifting significantly with strain, but observing the interference pattern

would prove the be hugely advantageous for precision and sensitivity.

Later work done by Shen and Wang (2005) started to tackle the issues of detecting the frequency

difference accurately and quickly. Utilising a secondary intrinsic Fabry-Perot cavity, which is sig-

nificantly more temperature sensitive, meant that absolute changes in the temperature (or strain)

of the fibre could be measured by looking at the difference in the frequency of these to adjacent

cavities.

Yu and Zhou (2011) provides a good summary of the progress in these cavities since, and

proposes a pressure sensor for acoustic wave detection. Spectral detection of shifts in the interfer-

ence spectrum have been improved by cross-correlation and demodulation algorithms that provide

extremely precise cavity length resolution.

Diaphragm extrinsic Fabry-Perot cavities are already utilised as acoustic wave sensors. Sen-

sitivities as high as 1 nm/Pa are reported (Wang et al., 2013), but this falls off rapidly and the

gas in the cavity becomes more incompressible with higher pressure. Sensors can be designed such

that they operate very well at very specific depths, such as just 10− 13 m underwater, claiming a

sensitivity of 6.9 nm/Pa while they fall off to 0.11 nm/Pa at depths of 90 m. These are extremely

good figures, but these sensors have a couple of crippling downsides. Firstly they are also very tem-

perature sensitive, facing shifts of 333 nm/C◦ at room temperature. Secondly, sharp changes of the

sensitivity with external pressure means that sensors need to be purpose designed, as hydrophones

would vary greatly in sensitivity as they float up and down a only few meters.

Nevertheless, extrinsic Fabry-Perot Interferometers should be considered in future discussions

of optical geophone/hydrophone development.

2.2.5 Review of Long Period Fibre Grating

2.2.5.1 Description of core and cladding modes

Fibre Bragg Gratings (FBG) in optic cables are used in seismic sensors to create narrow absorption

lines which are unique to each detector and used for frequency division multiplexing of large sets
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of detectors. When the grating is spaced at short periods, such as in FBG, the absorption line

does not shift much with respect to the strain on the cable, and is very narrow (Yu, 2002, Chapter

4). Conversely in the case of Long Period Fibre Gratings (LPFGs), strain sensitivity is shown

to be considerably better (Shu et al., 2002) than even Tapered Rayleigh Scattering, however the

absorption line becomes much broader.

Long-period-gratings are typically produced in much the same way as Fibre-Bragg-Gratings, the

only difference being that the periodicity of the grating is much longer. The effect of this is that

core modes couple with co-propagating cladding modes to produce strong transmission losses at

specific wavelengths. Long-period-gratings have well understood properties and sensitivity relations

(Erdogan, 1997a; Shu et al., 2002).

Shu et al. (2002) identifies conditions where sensitivity of the sensors increases greatly. The

following two chapters discuss that with careful design, any optical fibre with any laser can exhibit

very high strain sensitivity. The other advantage of these detectors is that they are very small,

typically only about 4 cm of fibre-optic cable is required to create a sensor.

The review of the LPFG follows the work of Erdogan (1997a), in the specific case of un-tilted

gratings. The diagram below defines what simple step-index fibre-optic cable looks like, adapted

from Erdogan (1997a).

z

φ

r
a
1

a
2

n
1

n
2

a
3

Figure 2.1: Cross sectional diagram of geometric description of a single mode step index optical
fibre

In Figure 2.1, n1,n2,n3 are the refractive indices of the core, cladding and external region

respectively; and a1 is the radius of the core, and a2 is the radius of the cladding.

Light propagating through the core is denoted to be of mode neffco, meaning the effective

refractive index of the mode corresponding to the propagation speed through the fibre. These

modes have effective refractive indices n1 > neffco > n2, since the light bounces off the core-cladding

boundary and takes longer to propagate through the fibre than a ray that would pass through a

straight fibre section directly. For multi-mode fibres with a large core radius, there can be more

than one mode within the core, which would create interference fringes at certain frequencies due
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to the other modes.

LPFGs force some light energy into cladding modes, which operate similarly but propagate

across the entire radius of the fibre (including the cladding) and have effective refractive indices

denoted by neffcl, which have effective refractive indices n2 > neffcl > n3.

2.2.5.2 Characteristics of a Long Period Fibre Grating

By evaluating the effective refractive indices of the core and cladding modes, the core-cladding

coupling coefficient (κ) for each of the cladding modes can be calculated. This enables the generation

of a predicted absorption spectrum for the grating. One of the better ways to produce gratings is

with refractive index changes created by exposure to intense UV light, this is what was used by

Erdogan (1997a). Gratings can also be produced by periodic changes in the radius of the fibre, and

are discussed in Appendix A.

 n
1
+σ n

1

σ(z) n
1

Λ

L
z

1.4923

1.4924

1.4925

1.4926

1.4927

1.4928
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 n
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+σ m n

1

Figure 2.2: Fibre Core refractive index change model for inscribed gratings

In Figure 2.2, σ is the refractive index contrast, m is the fringe modulation, Λ is the grating

period, and L is the grating width, in the case of uniformly varying gratings (i.e. σ is a constant).

In the Figure 2.2, σ(z) is defined as:

σ(z) = σ

(
1 +m

(
Cos

[
2π

Λ
z

]))
(2.5)

Applying this modulated refractive index model, it is possible to obtain a real value for κ, the

mode coupling coefficient. In a paper by Erdogan (1997b), where spectral properties of LPFGs are

discussed, the definition of the transmission dip wavelength, λD, is:

λD = (neffco − neffcl) Λ (2.6)

with an ideal grating length of (derived later from Eq. 4.1):

L =
π

2κ
(2.7)

From Eq. 2.6 it is important to realise that at a certain operating laser wavelength, grating

period can be chosen in order to select from a set of linearly polarised core-cladding coupled modes.
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This is important to keep in mind because a LPFG’s strain sensitivity varies with grating period, so

if designed with careful consideration to the desired wavelength and mode, a very high sensitivity

can be achieved.

2.2.5.3 Strain sensitivity of a Long Period Fibre Grating

Shu et al. (2002) provides a description for LPFG sensitivity to temperature, strain, and external

refractive index. The change in absorption peak wavelength per unit strain is defined as:

dλ

dε
= γλD (1 + Γstrain) (2.8)

Where:

Γstrain =
ηconeffco − ηclneffcl

neffco − neffcl
(2.9)

γ =
1

1− Λ
d∆neff
dλ

(2.10)

With ηco and ηcl being functions of the elasto-optic coefficients for the core and cladding mate-

rials respectively, and ∆neff = neffco−neffcl. γ is the most important variable when considering the

LPFG sensitivity as it represents the waveguide dispersion. Waveguide dispersion is the chromatic

dispersion arising from waveguide effects; in other words it describes the frequency dependence of

the LPFG due to its design. Chapters 3 and 4 is devoted to the discussion of these equations, and

the of the non-trivial solution of γ approaching infinity, i.e. finding a mode such that:

1

Λ
=
d∆neff

dλ
(2.11)

This is called a turning point, and solving this makes it possible to design strain sensors of very

high sensitivity. This particular solution is discussed in detail throughout Chapters 3 and 4.

2.3 Discussion of Benefits and Limitations

2.3.1 Brillouin/Raman Scattering

Normally, Raman (and Brillouin) scattering are used in structural strain and temperature sensors

(Yu, 2002, Chapter 5), where fast sampling rates are not an issue. Implementing a Raman based

distributed sensor to with improved noise characteristics, such that long time averaging is not

needed requires greater pump power since typically only 10−6 of the pump power is scattered into

the Stokes wave. However with increasing pump power there is a point when Stimulated Raman

Scattering (SRS) is achieved, where most of the energy is transferred into the Stokes wave (Boyd,

2008). This means that over the length of a cable, the majority of the backscattered signal will

be Raman induced. This is also undesirable since the pump power will decrease greatly over a

distance. One way to mitigate this issue and plausibly create a sensor is to use doped optical fibres

in sections where detection is desired, and choose a power such that SRS is achieved only in those

areas.
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With respect to strain sensing, Brillouin scattering is very similar to Raman scattering, however

it is about 103 less sensitive to strain in silicon fibres, but its about 103 times stronger and spectrally

narrower. In a paper by Zhu et al. (2010), a very good Brillouin scattering based sensor is discussed,

using heterodyne detection. The pump source is initially encoded and frequency shifted, allowing

heterodyne detection to occur at approximating real-time rates and at great distances with very

good spatial resolution, without needing a very strong laser (only 2.1 mW). Detectors like this

were the initial goal of this thesis, however other mechanisms (namely the LPFG) promise to be

more sensitive as well as stronger in amplitude contrast than either Raman or Brillouin scattering

processes. The concept of the heterodyne technique employed by Zhu et al. (2010) could be applied

to LPFGs.

2.3.2 Rayleigh Scattering

Rayleigh backscatter mechanisms reviewed in Section 2.2.3, seem to have potential in active dis-

tributed sensing. The main challenge to overcome is that Rayleigh signal tends to be of a low

amplitude, and hence suffers from poor signal to noise ratio (SNR). Phase-OTDR (Phase Optical

Time Domain Reflectometry) seems to be the system most promising for seismic acquisition, since

it can operate at a fast sample rate. OFDR (Optical Frequency Domain Reflectometry) systems

provide much better SNRs at the cost of detection and processing time since it relies on the slow

cross-correlation of a frequency domain spectrum to one of a previous time. This means that in

remote monitoring scenarios, such as Down-Hole over long periods, it is an effective method of

tracking changes in the strain of any arbitrarily defined piece of the cable, where strains develop

quasi-statically over time.

Using a DBR laser to enable fast tuning, a Rayleigh scattering based system employing at

Tapered section is decent topic for future experimental research into making the sort of acoustic

sensors this thesis is trying to cover.

2.3.3 Long Period Fibre Grating

Frequency change at low pressure can be observed with a heterodyne arrangement, but is inherently

not ideal, and Chapter 6 is devoted to this discussion. The problem lies in the fact that for seismic

acquisition at sampling rate of 2 ms (500 Hz) is typical. LPFGs are usable as a detectors at such

sampling rates in heterodyne arrangements, but run into problems when resolving broad spectral

features at a fast speed. Time division multiplexing is the only obvious multiplexing method

available, but the heterodyne would need to have enough time to resolve hundreds of detectors if

the LPFG was implemented as a hydrophone. Using the simple relation of ∆ν = 1
2τ , where ∆ν

is the bandwidth of the heterodyne intermediate bandpass filter and τ is the data collection time

(Bingham et al., 1998), there is less time to collect the light when detecting spectral changes across

a broader bandwidth. Signal power of LPFGs is very high, which will help mitigate SNR issues

that arise from having less time to interrogate the spectrum.

This thesis does not discuss multiplexing methods at length, and is mostly a discussion on the

implementation of functioning ideas. So, the main goal is to demonstrate adequate sensitivity of a

single detector. However it is important to be mindful that regarding multiplexing LPFGs that wave

or frequency division multiplexing is not available since a heterodyne looks at frequency changes.
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Resolving small polarisation differences for potentially hundreds of detectors will be impossible for

polarisation multiplexing. Time division multiplexing alone cannot be applied to large arrays due

to the large collection time required for each detector. Phase division multiplexing is the only other

possible multiplexing option. Otherwise large arrays would require a system with many detectors

is that work completely independently, and be detected by independent heterodyne arrangements,

which is very costly, and will require an individual optical fibre for every channel, which is very

cumbersome.

2.4 Sensitivity Summary / Conclusion

Table 2.1: Summary of sensitivities of various OFDR methods

Sensing Mechanism Sensitivity (nm/mε) Reference
Brillouin backscattering 6.35× 10−4 Mizuno et al. (2012)

FBG shift as WDM in Fabry-Perot cavity 1.1 Chen et al. (2009)
Rayleigh backscattering 2.0 Froggatt and Moore (1998)

Rayleigh backscattering, tapered 17.17 Wang et al. (2012b)
Rayleigh backscattering, bent tapered N/A* Sun et al. (2013)

LPFG 2.2 James and Tatam (2003)
LPFG, asymmetric grating 7.6 Xiao et al. (2006)

LPFG, near turning point (high γ) 30.31 Shu et al. (2002)

A quick look at the summary of sensitivities that have been discussed so far in this chapter

illustrates the main focal point of the research in the chapters to follow. Long Period Fibre Gratings

exhibit the most promise as a potential mechanism for hydrophone or depth sensors.

From the point of view of developing a depth pressure sensor, where high sensitivity is of lesser

concern, many of these methods are appropriate, as long as they can exhibit low, or ideally near

zero, temperature sensitivity.

The strain sensitivity of bent tapered Rayleigh backscattering is yet to be investigated. It

functions on a theory not too dissimilar to the coupled-mode theory that defines LPFGs. Since

tapered designs already exhibit a high strain sensitivity, and the sensitivity to external refractive

index is much higher in bent tapers as illustrated by Sun et al. (2013), it is expected that bent

tapered fibres will exhibit excellent strain sensitivity.

The white light extrinsic Fabry-Perot hydrophones actually exhibit pressure sensitivities that

are dramatically better than what is expected from simple fibre sensors. The quoted sensitivity of

6.9 nm/Pa by Wang et al. (2013) can be compare to figures derived in Chapter 5 discussing pressure

sensitivity of a LPFG wound around a compliant mandrel, where a sensitivity of 0.1 pm/Pa was

estimated. However, such a seemingly low sensitivity is sufficient as a heterodyne can easily resolve

such shifts in the frequency spectrum. Also, the Fabry-Perot sensor is highly non-linear in its

sensitivity, while the LPFG is believed to be somewhat linear is its strain response as evidenced by

Shu et al. (2002); Wang et al. (2006).

For these reasons the main method investigated through the remainder of the thesis is the Long

Period Fibre Grating, with a goal of designing it such that it operates near a turning point (gratings

with high γ, a key variable in defining the sensitivity of gratings).
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Chapter 3

Long Period Fibre Grating Theory

3.1 Description of core and cladding modes and Grating

Characteristics

Fibre Bragg Gratings (FBGs) in optic cables are used in typical hydrophones to create narrow

absorption lines which are unique to each sensor and used for frequency division multiplexing

(Grattan and Sun, 2000) of large sets of sensors. When the grating on a very short period, such

as in FBGs, the absorption line does not shift much with respect to the strain on the cable, and

is very narrow. However in the case of Long Period Fibre Gratings (LPFGs), strain sensitivity is

shown to be considerably better (James and Tatam, 2003) even for a LPFG that does not aim to

be highly sensitive.

Long Period Gratings can be produced in much the same way as Fibre-Bragg-gratings, the only

difference being that the periodicity of the grating is much longer. The effect of this is that core

modes couple with co-propagating cladding modes to produce strong losses at specific wavelengths

(Erdogan, 1997b), whereas a FBG would create coupling between forward and backward propa-

gating core modes. Long Period Gratings have well understood properties and sensitivity relations

(Erdogan, 1997a; Shu et al., 2002), and this chapter looks to cover the mathematical tools needed

to solve for the sensitivity of an arbitrary step-index fibre, with any chosen grating period. Other

than step-index fibres, Photonic Crystal Fibres (PCF) have been modelled using finite element

analysis (Petrovic, 2008) and show promise as temperature insensitive LPFGs (Dobb et al., 2004).

These fibres offer excellent control over the modes propagating in the fibre but they are typically

made from silicon, whereas this research intends to utilise plastic fibres to achieve a tighter bend

radius.

Shu et al. (2002) identifies conditions where sensitivity of the sensors increases greatly, referred

to as turning points. This discussion shows that with careful design, every mode can exhibit

great strain sensitivity. The cladding modes created in the fibre by the gratings are actually come

in pairs, one which couples strongly and the other weakly. The choice between the strong and

weakly coupling modes corresponds to a choice between a LPFG with of short length and broad

transmission dip, or longer length and narrow transmission dip. Regardless, even long LPFGs are

very short, and typically no more than 4 to 8 cm of fibre-optic cable is required to create a sensor.

The review of the LPFG will follow the work of Erdogan (1997a), in the specific case of un-tilted
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gratings. Figure 2.1 illustrates the variables that define a step index optical fibre profile, where

n1,n2,n3 are the refractive indices of the core, cladding and external region respectively; and a1 is

the radius of the core, and a2 is the radius of the cladding. Keep in mind that Erdogan (1997a)

only considered the case where there period grating refractive index contrast is localised to only

the core of the fibre. While this is possible with doped fibres, other methods, especially ones with

diameter modulation discussed in Appendix A, its is by no means the most common way to inscribe

these gratings.

Firstly, the dispersion relation of the core mode, neffco, of a fibre is defined:

V
√

1− b
J1

(
V
√

1− b
)

J0

(
V
√

1− b
) = V

√
b
K1

(
V
√
b
)

K0

(
V
√
b
) (3.1)

where, Jn is a Bessel function of the first kind, and Kn is a modified Bessel function of the

second kind, and;

V =

(
2π

λ

)
a1

√
n1

2 − n2
2 (3.2)

b =
n2

effco − n2
2

n1
2 − n2

2
(3.3)

Hence allowing us to find neffco, which is the effective refractive index of the core mode(s) at a

source, or pump, wavelength λ.

Next, the definition for the dispersion relation for the cladding modes, neffcl, which allows for

the numerical solution for every cladding mode is:

ζ0 = ζ ′0 (3.4)

where,

ζ0 =
1

σ2

u2

(
J K + σ1σ2u21u32

n2
2a1a2

)
pl (a2)−K ql (a2) + J rl (a2)− sl(a2)

u2

−u2

(
u32 J
n2

2a2
− u21 K

n1
2a1

)
pl (a2) + u32ql(a2)

n1
2a2

+ u21rl(a2)
n1

2a1

(3.5)

ζ ′0 = σ1

u2

(
u32 J
a2
− (n3

2u21) K
n2

2a1

)
pl (a2) + u32ql(a2)

a2
+ u21rl(a2)

a1

u2

(
n3

2 J K
n2

2 + σ1σ2u21u32

n1
2a1a2

)
pl (a2)− n3

2 K ql(a2)
n1

2 + J rl (a2)− n2
2sl(a2)
n1

2u2

(3.6)

where,

u1
2 ≡

(
2π

λ

)2 (
n1

2 − neffcl
2
)

(3.7)

u2
2 ≡

(
2π

λ

)2 (
n2

2 − neffcl
2
)

(3.8)

w3
2 ≡

(
2π

λ

)2 (
neffcl

2 − n3
2
)

(3.9)

σ1 ≡
ilneffcl

Z0
(3.10)
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σ2 ≡ ilneffclZ0 (3.11)

u21 ≡
1

u2
2
− 1

u1
2

(3.12)

u32 ≡
1

w3
2

+
1

u2
2

(3.13)

J ≡ J ′l (u1a1)

u1Jl (u1a1)
(3.14)

K ≡ K ′l (w3a2)

w3Kl (w3a2)
(3.15)

pl(r) ≡ Jl (u2r)Nl (u2a1)− Jl (u2a1)Nl (u2r) (3.16)

ql(r) ≡ Jl (u2r)N
′
l (u2a1)− J ′l (u2a1)Nl (u2r) (3.17)

rl(r) ≡ J ′l (u2r)Nl (u2a1)− Jl (u2a1)N ′l (u2r) (3.18)

sl(r) ≡ J ′l (u2r)N
′
l (u2a1)− J ′l (u2a1)N ′l (u2r) (3.19)

where Nn is a Bessel function of the second kind. In these equations, l = 1 since the case of un-tilted

gratings is being considered.

Solving Eq. 3.4 for neffcl will yield an infinite set of solutions that are strictly less than n2.

However, only the solutions in the range of (n2, n3) are useful. For simplicity, this work looks at

the case of n3 = 1. Code for solving this dispersion relation is covered in LPFGcalcLoop.nb, which

solves across a range of pump wavelengths at chosen intervals. Solutions from this are later used

to find turning points in sensitivity.

Having a set of solutions for effective cladding modes is useful before needing to define a grating

period. A normalised coupling coefficient (κnormalised) can be determined, indicting how well

each of the cladding modes will couple to the core mode(s). The stronger the coupling, the less

interaction length and grating refractive index contrast are required to create a strong absorption.

The normalised coupling coefficient can be generated for each cladding mode, by solving for the

pump power distribution in the core (P1), cladding (P2), and external regions(P3), which for the

purpose of this work will be air. A normalised total pump power of 1W is assumed, i.e.:

P1 + P2 + P3 = 1 (3.20)

where,

(3.21)
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These equations need to be solved for the parameter Ecl
1ν , which is the field normalisation

constant for a specific cladding mode number ν. Z0 is the electromagnetic impedance in vacuum,

i.e. approx 377 Ω:

Z0 =

√
µ0

ε0
(3.24)

And the rest of the variables are defined as follows:

F2 = J − ζ0σ2u21

a1n1
2

(3.25)
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σ1u21

a1
+ ζ0J (3.26)
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(3.33)
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J2 (a2u2)Y2 (a2u2) +

1

2
(−J3 (a2u2)Y1 (a2u2)− J1 (a2u2)Y3 (a2u2))

)
− a1

2

(
J2 (a1u2)Y2 (a1u2) +

1

2
(−J3 (a1u2)Y1 (a1u2)− J1 (a1u2)Y3 (a1u2))

)
θ̃J = a2

2
(
J1 (a2u2) 2 + J2 (a2u2) 2

)
− a1

2
(
J1 (a1u2) 2 + J2 (a1u2) 2

)
(3.38)

θ̃N = a2
2
(
Y1 (a2u2) 2 + Y2 (a2u2) 2

)
− a1

2
(
Y1 (a1u2) 2 + Y2 (a1u2) 2

)
(3.39)

˜θJN = a2
2 (J0 (a2u2)Y0 (a2u2)+J1 (a2u2)Y1 (a2u2))−a1

2 (J0 (a1u2)Y0 (a1u2)+J1 (a1u2)Y1 (a1u2))

(3.40)

Ecl
1ν , Eq. 3.20, plays an important part in calculating the coupling coefficient, κ. It is useful

to calculate κnormalised since the grating profile function (σ(z), illustrated in Figure 2.2) can be

chosen later to optimise the absorption bandwidth of the chosen mode.

κnormalised ≡
κ

σ(z)
(3.41)

κnormalised =
1

2
n1

2 ω ε0

(∫ 2π

0

∫ a1

0

r
(
Ecl
r (Eco

r ) ∗ + Ecl
φ

(
Eco
φ

) ∗) drdφ) (3.42)

where variables in the equation are as defined as follows:

ω =
2π

λ
(3.43)

∆ =
n1 − n2

n1
(3.44)

Eco
r = i Eco

01 J0

(√
1− b r V
a1

)
ei(β

co
01 z−ω t)+iφ (3.45)
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Eco
φ = −Eco

01 J0

(√
1− b r V
a1

)
ei(β

co
01 z−ω t)+iφ (3.46)

Ecl
r =

1

2
i u1 E

cl
1ν

(
−ζ0σ2 (J2 (ru1)− J0 (ru1))

n2
1

+ J0 (ru1) + J2 (ru1)

)
ei(β

co
01 z−ω t)+iφ (3.47)

Ecl
φ =

1

2
u1 E

cl
1ν

(
−ζ0σ2 (J0 (ru1) + J2 (ru1))

n2
1

− J0 (ru1) + J2 (ru1)

)
ei(β

co
01 z−ω t)+iφ (3.48)

Eco
01 =

(
Z0 b

π n2

√
1 + 2b∆

) 1
2 1

a1J1

(
V
√

1− b
) (3.49)

βco
01 =

2πneffco

λ
(3.50)

As discussed in Erdogan (1997a), Eq. 3.42 gives results that vary from the following equation

by a constant, so it is used to make numerical calculations significantly easier:

(3.51)

κnormalised =
2π

λ

(
πb

Z0n2

√
1 + 2b∆

) 1
2 n1

2u1

u2
1 −

V 2(1−b)
a12

(
1

+
σ2ζ0
n1

2

)
Ecl

1ν

(
u1J1 (u1a1)

J0

(
V
√

1− b
)

J1

(
V
√

1− b
) − V

√
1− b
a1

J0 (u1a1)

)

This is the equation that is used in this work for evaluating the coupling coefficients, and gives

correct solutions. Code solving the coupling coefficients for all modes calculated for a range of

wavelengths is provided in LPFGcalcLoop.nb.

20 40 60 80 Mode Number HΝL

200 000

400 000

600 000

800 000

1.0´106

1.2´106

1.4´106

È
Κ

Σ HzL
È

Figure 3.1: Absolute value of the normalised coupling coefficient for the first 81 cladding modes
that couple with the fundamental core mode of single-mode PMMA fibre at pump wavelength 600
nm.

Coupling coefficients illustrated in Fig. 3.1 show the LPFG’s characteristic coupling differences

between odd and even modes. The main effect of higher coupling coefficients is that they create

strongly coupling modes create much deeper and broader transmission dips, while weakly coupled

modes create smaller and narrower transmission dips. At high mode numbers, especially for silicon

fibre, this difference becomes less pronounced.
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Having defined the effective refractive indices of the core and cladding modes, and knowing the

core-cladding coupling coefficients for all the cladding modes, a predicted absorption spectrum can

be generated for an grating with known parameters. One of the better ways to produce gratings

is with refractive index changes created by exposure to intense UV light, this is what was used

by Erdogan (1997a). Gratings can also be produced by periodic changes in the radius of the fibre

through electric-arc discharge methods, and will be discussed in Appendix A.

Applying the modulated grating index profile seen previously in Figure 2.2, a real value for

κ can be obtained. In a paper by Erdogan (1997b), where the spectral properties of LPFGs are

discussed, the absorption peak wavelength is defined as:

λD = (neffco − neffcl) Λ (3.52)

and an ideal grating length of (this is derived in the next section):

L =
π

2κ
(3.53)

A uniform grating profile is expressed as:

κ = κnormalised σ

[
1 +m Cos

(
2π

Λ
z

)]
, (3.54)

where z is the length of the grating which is an integer multiple of Λ. Taking into account the

grating index profile, κ now depends maximum refractive index change due to the LPFG, σ. Hence

the condition of ideal bandwidth, Eq. 3.53, can be expanded as:

L =
π

2κnormalised (1 +m)σ
, (3.55)

where m = 1, is the ”induced-index fringe modulation”.

These are all to tools needed to calculate the absorption spectrum for each mode. In the

Chapter 4 these equations are used visualise the absorption spectra for the solutions of high strain

sensitivity to illustrate the effects of choosing between coupling strongly or weakly coupled modes.

Figure 3.2 is a good example of the sort of absorption spectrum that can be expected to be

generated from a strongly coupling cladding mode. This profile becomes broader if the number of

grating periods is lower, and narrower if the number of grating periods is greater. However, this

particular spectrum aims at what is considered the ideal bandwidth, so if there were to have more

grating periods, the spectrum would being to resemble an envelope of thin absorption lines.

3.2 Strain sensitivity of a Long Period Fibre Grating

Shu et al. (2002) provides a description for LPFG sensitivity to temperature, strain, and external

refractive index. The change in absorption peak wavelength per unit strain is defined as:

dλD
dε

= γλD (1 + Γstrain) (3.56)

where,
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Figure 3.2: The absorption spectrum created by a LPFG with strong coupling

Γstrain =
ηεconeffco − ηεcl

neffcl

neffco − neffcl
(3.57)

γ =
1

1− Λ
d∆neff
dλ

(3.58)

with ηεco and ηεcl
being functions of the elasto-optic coefficients for the core and cladding

materials respectively, and ∆neff = neffco − neffcl. ηεco and ηεcl
are defined by the following,

depending on their refractive index, n = n1 or n2 respectively:

ηε = −1

2
n3 (p12 − µ (p12 + p11)) (3.59)

The coefficients p11 and p12 are experimentally derived for a range of materials (Adachi, 2005,

Chapter 11) and µ is the Poisson Ratio of the fibre. Now, the non-trivial solution of γ approaching

infinity will be evaluated, i.e. finding a mode such that:

1

Λ
=
d∆neff

dλ
(3.60)

at a laser wavelength, λ, coincides with the grating design wavelength, λD, such that:

λ ≈ λD = ∆neffΛ (3.61)

Implying,

∆neff
λ

≈ d∆neff

dλ
(3.62)

finally arriving at:

∆neff

λ
− d∆neff

dλ
→ 0 (3.63)
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This gives a single solution for each mode, at a specific wavelength, giving the some flexibility

in designing gratings, as choosing the coupling strength allows the desired grating length and

transmission dip width to be chosen to suit the various detector designs. These solutions are

referred to as turning points by Shu et al. (2002), and imply that the mode is infinitely sensitive in

a positive and negative direction concurrently, which is obviously not physically possible. Instead

it is more useful to aim at a solution just off the turning point, though as discussed in Section 7.1,

even that is difficult.

Calculating
d∆neff
dλ can only be done numerically for any λ, so it is derived by solving ∆neff, for

a large set of λ values separated by small changes in λ to make later interpolation more accurate.

The solutions determine what pump wavelength, λ, and what grating period, Λ, are needed to be

exactly on a turning point.

3.3 Conclusion

Long Period Fibre Grating theory is well established for single mode step-index fibres, and thanks

to the contributions from Erdogan (1997a) numerical solutions of the coupling constants of the

cladding modes is possible. Shu et al. (2002) goes on to illustrate how there are solution with very

high sensitivity, i.e. turning points. Here, a definition for these turning points in Eq. 3.63 is derived,

that can be used to find solutions numerically.

LPFGeval.nb in conjunction with LPFGcalcLoop.nb go about finding and interpolating said

turning point solutions for every mode across the range of pump wavelengths where the fibre has

low attenuation.

The following chapter goes on to discuss how these solutions are useful for the choice plastic

fibre (PMMA), but the code can be altered to cope with fibre of any material.
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Chapter 4

Long Period Fibre Grating

Solution Implementation

4.1 Turning Point Solutions

Using the theory described in the previous chapter, it is possible to solve for the mode coupling

coefficient and strain sensitivity of the fibre at any wavelength for every cladding mode. Figure 4.1,

is one such solution, plotted for the range of wavelengths where PMMA fibre has lowest attenuation,

up to the 63rd mode at every 0.5 nm pump interval. It is necessary to evaluate this numerically at

small intervals of wavelength because, as discussed in the previous chapter and appended code, it is

only possible to solve for the cladding modes numerically and to improve the results of interpolation,

more points are desirable.

Figure 4.1 is the most descriptive representation of the work done on LPFGs in this thesis. It

highlights where the solutions for high sensitivity lie for every mode in red and shows what the

coupling constants would be. The modes are to calculated for small intervals of pump wavelength

,λ, and the coupling coefficients of every mode form smooth curves. Hence it follows that curves

along modes can be interpolated to derive the exact solutions, where λ = λD exactly rather than

approximately. This allows the creation a table of solutions for every mode, namely Table 4.1,

detailing the coupling constant and exact wavelength at which the solution lies.

Aiming for a solution just off resonance will give the desired high sensitivity, but this carries with

it some implications regarding uncertainty which are explored in Chapter 7. Around the turning

point solutions choosing a slightly longer or shorter grating period, Λ, will give large positive or

negative sensitivities, determined by γ in Eq. 3.58.

4.2 Spectral Characteristics

Modes that have a very strong coupling coefficient evaluate to having very broad absorption but

very deep features as the bandwidth, ∆λ
λ . This bandwidth is a function of the coupling coefficient,

κ, as illustrated by Eq. 4.1 (Erdogan, 1997b):
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Figure 4.1: Coupling coefficients per cladding modes coupling with the fundamental core mode,
given for a range of pump frequencies. Regions in red highlight high sensitivity modes, correspond-
ing to being near turning points

∆λ

λ
=

2λ

∆neffL

√
1−

(
κL

π

)2

(4.1)

The κ in this equation is the non-normalised κ, and is a function of the LPFG inscription

strength. Inscriptions strength is measured as the refractive index contrast (σ) in the core of the

fibre, and using methods such in Kim et al. (2002) contrasts are typically between 8×10−5 and 2×
10−4. Consequently, the refractive index contrast required to create a theoretically ideal bandwidth

from Eq. 4.1 can be calculated, namely the condition stated in Eq. 3.53, and the relationship to σ

was discussed previously in Eq. 3.42.

The distinction between the solutions for each mode is fairly trivial, namely that for strongly

coupled modes, with shorter lengths (i.e. less inscribed periods), the transmission dip is much

deeper and spread more broadly, as illustrated by Fig. 4.2.

In the code appendices is a notebook which solves the required refractive index contrast needed

for any desired length of fibre grating (bandwidthcalc.nb), lists the available solutions between σ =

8 × 10−5 and 2 × 10−4 and then plots the absorption spectrum of a chosen solution. For longer

desired lengths, modes with lower coupling coefficients are found.

With very weakly coupling modes such as in Fig. 4.3, the lengths needed become quite large,

which not only makes the gratings harder to produce, but when calculating the interferences of all

the other modes,the spectrum becomes significantly more interesting due to other weakly coupled

modes.

Despite this, longer gratings with modestly lower coupling strength produce much sharper overall

spectral features than gratings with higher coupling strength. This is the reason why mode 31 was
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Table 4.1: Interpolated solutions for every mode across the range of frequencies where PMMA has
spectral attenuation

Mode number Wavelength (λ = λD) (m) Period Grating (Λ) (m) Coupling coefficient (κ)
28 644.60× 10−9 238.57× 10−6 1.37421× 106

29 637.73× 10−9 235.89× 10−6 64849.4
30 606.58× 10−9 217.43× 10−6 1.30810× 106

31 598.54× 10−9 215.96× 10−6 95363.7
32 571.17× 10−9 199.77× 10−6 1.19203× 106

33 564.24× 10−9 199.09× 10−6 169087
34 538.43× 10−9 184.83× 10−6 991733
35 535.16× 10−9 184.55× 10−6 314221
36 509.53× 10−9 172.02× 10−6 742505
37 509.52× 10−9 171.83× 10−6 317805
38 484.03× 10−9 160.87× 10−6 511430
39 486.72× 10−9 160.62× 10−6 141853
40 461.77× 10−9 151.04× 10−6 240461
41 465.80× 10−9 150.67× 10−6 41186.3
42 442.15× 10−9 142.27× 10−6 13970.8
43 446.05× 10−9 141.81× 10−6 437.836
44 424.24× 10−9 134.40× 10−6 228345
45 427.36× 10−9 133.88× 10−6 20167.1
46 407.49× 10−9 127.31× 10−6 401634
47 409.68× 10−9 126.77× 10−6 31419.1
48 391.63× 10−9 120.89× 10−6 539593
49 392.97× 10−9 120.37× 10−6 39033.1
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Figure 4.2: Absorption spectrum with a very short grating (24 periods), with the highest coupling
strength and refractive index contrast

chosen for the modelling in Chapter 5, with a length of L = 400Λ and refractive index contrast of

σ = 1.91 × 10−4, results in spectrum shown in Figure 4.4. This also is the mode of interest that

will be further discussed uncertainty analysis in Chapter 7.
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Figure 4.3: Absorption spectrum with a very long grating (1000 periods), with a low coupling
strength
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Figure 4.4: Absorption spectrum with the 31st mode, a long grating (400 periods, or about 8 cm),
and the contributing effect of all other coupling modes also visible

4.3 Conclusion

This chapter has illustrated the solving the LPFG theory to find a set of solutions that are of interest

for high sensitivity gratings. The fact that there are many solutions is actually beneficial, as there

is choice regarding the coupling constants, enabling the choice of longer or shorter length LPFGs

depending on the limitations of given design parameters. Additionally, as discussed in Chapter 8,

specifically Eq. 8.1, there exists a set of LPFG solutions that are insensitive to temperature and

would form a similar set of solutions to the high γ solutions. Having both sets could allow finding

a highly sensitive LPFG that is immune to temperature changes, however this is not investigated
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in this work, but is hopefully something that will be looked at in the future.

In Chapter 5, on designing a mandrel, a period grating 35 nm shorter is used than the periodicity

of the turning point of the 31st mode, as per Table 4.1. This gives a γ ≈ 6000, and after taking

into account elaso-optic properties defined in Eq. 3.56, gives a sensitivity of about 2000 nm/mε.
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Chapter 5

Mandrel Theory

5.1 Introduction

Having established the theory for the Long Period Fibre Grating (LPFG) coupling modes and

absorption spectra in the previous sections, it is necessary to extend the LPFG strain sensing

model, to understand the spectral shift per Pascal.

There are several ways to convert pressure changes into strain on a fibre, but the most compact

and well understand way is to wrap the fibre around a compliant mandrel. This chapter will

closely follow the work of Pechstedt and Jackson (1995), which modelled a compliant mandrel as

an accelerometer utilising phase changes. In contrast this approach will seek to design a pressure

sensing mandrel, utilising frequency shifts.

5.2 Mandrel Sensitivity Theory

Pechstedt and Jackson (1995) defined the description of the compliant mandrel, which is slightly

modified to calculate wavelength shift per strain, rather than phase shift as is the case for interfer-

ometric hydrophones.

Figure 5.1 illustrates the fibre wound compliant mandrel, where a is the inner radius of the

mandrel, and can be zero; b is the outer mandrel radius; r z, and φ are the cylindrical radial

distance, axial distance, and azimuthal angle defining any point on the mandrel; and L the length

of the mandrel.

Pechstedt and Jackson (1995) establishes the strain tensor to be:

uik =

 urr = α− β
r2 0 0

0 uθθ = α+ β
r2 0

0 0 uzz = γ

 (5.1)

With unknown constants α, β, γ. From Hooke’s Law, the stress tensor is:
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Figure 5.1: Illustration of the concept of a fibre wrapped mandrel, adapted from Pechstedt and
Jackson (1995)

σik =


σrr = E

1+σ

(
α+σγ
1−2σ −

β
r2

)
0 0

0 σθθ = E
1+σ

(
α+σγ
1−2σ + β

r2

)
0

0 0 σzz = E
1+σ

γ(1−σ)+2ασ
1−2σ

 (5.2)

Where E is the Young’s Modulus of the mandrel, and σ is the Poisson ratio of the mandrel. It

is assumed, in this treatment, that the pressure is only applied in the Z-direction on the mandrel.

pz =
Fz

π (b2 − a2)
(5.3)

Due to pz a radial pressure pr is generated acting on the surface of the cylinder towards the

centre, to restore the shape of the mandrel. This leads to boundary conditions:

σrr = 0 @ r = a

σrr = −pr @ r = b

σzz = −pz @ z = 0, z = L

(5.4)

The last of these boundary conditions indicates that pressure is acting on both ends of the

mandrel at the same time. Pechstedt and Jackson (1995) models it in such a way because ”the

discussion is restricted to a quasi-equilibrium state”, and goes on to point out that this treatment

neglects the influence of stresses at the ends of the mandrel. This is a valid assumption since
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the model is considering a thin mandrel, the pressure at both ends of the mandrel is likely to be

approximately equal due to the near-instant stress propagation from one end of the mandrel to the

other.

Taking end effects on the mandrel into fully account would create a very complicated model. At

longitudinal distances larger than approximately the diameter of the mandrel, the strain distribution

on the mandrel would suffer end effects, as per Saint-Venants principle. Modern discussions on the

principle by Mises (1945) looks at to tackle this problem analytically, and states that Saint-Venants

principle only really concerns long, thin rods. Since the compliant mandrel being considered here

is assumed to be small and likely more disc shaped, end effects on the strain distribution should

be small, as it will have its strain almost evenly distributed through its small body. So here Saint-

Venants principle is neglected, in turn avoiding complicated finite element analysis to resolve second

order effects.

Now in order to derive pr, the fibre tension force Ft on the mandrel must be considered.

σrr =
FtN

bL
(5.5)

Where N is the number of turns of the fibre around the mandrel, and Ft is the fibre tension. A

small change to mandrel radius leads to a change in fibre tension and a hence a corresponding

strain on the fibre:

δFt = kfn
δLf
Lf

= kfnε (5.6)

Where Lf is the length of the optical fibre; ε is the strain on the cable; and kfn is the normalised

fibre stiffness:

kfn = Ef π rf
2 (5.7)

Where Ef is the Young’s Modulus of the fibre; and rf is the radius of the fibre. Now:

pr =
N

bL
(kfn − Ft)

δLf
Lf

=
(kfn − Ft)N

bL
ε (5.8)

Using the complete boundary conditions, the stress tensor (Eq. 5.2) can be solved to find α, β,

γ:

α = 1
E

(
σpz + (1− σ)pr

b2

a2−b2

)
β = 1

E (1 + σ)pr
a2b2

a2−b2

γ = 1
E

(
pz + 2σpr

b2

a2−b2

) (5.9)

Allowing us to calculate the changes in Mandrel length and Fibre length:

δL =
∫ L

0
uzz dz = γL = L

E

(
pz + 2σpr

b2

a2−b2

)
δLf =

∫ 2π

0
uθθ(b)b dθ = 2πbuθθ(b) =

Lf
E

(
σpz + pr

(
σ + a2+b2

a2−b2

)) (5.10)

Now eliminating pz gives:

δLf
Lf

= ε = −σ δL
L

1

X
(5.11)
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Where,

X = 1− kfnN

LEb

(
b2

b2 − a2

(
2σ2 − 1

)
− a2

b2 − a2
+ σ

)
(5.12)

Lastly, in order to define the sensitivity of an accelerometer, the effective cylinder stiffness is

defined by:

δL Keff = −Fz = −pzπ
(
b2 − a2

)
(5.13)

Where Keff is the stiffness of the mandrel:

Keff =
E

L
π
(
b2 − a2

)
+

2πσ2kfnNb

L2X
(5.14)

First term here is the contribution from the cylinder material, and the second term is due to

the wrapped fibre. The second term is important for a compliant mandrel, since the wrapping fibre

would effectively stiffen a mandrel.

Resonance frequency is defined as:

f0 =
1

2π

√
Keff

m+
mcyl

3

(5.15)

This definition of resonance frequency by Pechstedt and Jackson (1995) relies on the fact that

these is an external seismic mass, m, which has a large contribution to the resonant frequency.

In the case of a very simple compliant mandrel that is considered here, m will ideally be zero

since there will be no large mass attached to the mandrel, leaving the mass of the cylinder as

the only contribution to the resonant frequency. In this scenario, the definition for the resonant

frequency is a poor one, since it breaks the assumption of m � mcyl if no mass is implemented.

An experimentally derived relationship for the resonant frequency is needed.

Having already defined LPFG sensitivity in Eq. 3.56, an expression for the wavelength shift vs.

acceleration can be defined:

(
δλD
a0

)
0

=

(
∂λD
∂ε

)
ε

a0
(5.16)

Evaluating this using Eq. 5.11

=⇒
(
δλD
a0

)
0

=

(
∂λD
∂ε

) (
−σ δLL

1
X

)
a0

(5.17)

=⇒
(
δλD
a0

)
0

=

(
∂λD
∂ε

)(
−σ

(
a0

(2πf0)2

)
L

1
X

)
a0

(5.18)

=⇒
(
δλD
a0

)
0

=
−σ
(
∂λD
∂ε

)
LX (2πf0)

2 (5.19)

For the purposes of analysis, the equation for f0 is substituted from Eq. 5.15, even though it is

not a good estimate:
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(
δλD
a0

)
0

=
−σ

LXKeff

(
m+

mcyl

3

) ∂λD
∂ε

(5.20)

(
δλD
a0

)
0

is the constant that defines the wavelength sensitivity to acceleration applied on the

mandrel in the Z-direction.

The sensitivity, with respect to signal frequency is as follows:

δλD
a0

(f) =

(
δλD
a0

)
0

f0
2√(

f2 − f0
2
)2

+
(
f×f0
Q

)2
(5.21)

where Q is the quality factor of the mandrel (10 is typical in the work done by Pechstedt and

Jackson (1995)), and f is the signal frequency.

However, it is desirable to treat the mandrel as a pressure sensor, deformable from all directions.

Assuming the mandrel is compliant, deformations from all sides of the mandrel would create strains

on the fibre that is wound around it, and would all be detectable. However, here the analysis is

restricted to pressure applied to one end of the mandrel in the Z-direction, because it greatly

simplifies the ability to estimate sensitivity, however the result will be a considerable underestimate

of real sensitivity.

Here, the top of the mandrel is treated as the only surface which has a pressure applied to it,

to keep the model simple. Pressure, P, is defined as:

P =
F

A
, (5.22)

where F is the force applied, and A is the area. In the mandrel, the area in question will be

defined as:

A = π
(
b2 − a2

)
(5.23)

While F will be mass times acceleration. Because measuring the sensitivity in Pascals (Pa or

kg/m2) is desirable, the acceleration defined by Eq. 5.20, can be written to give a wavelength shift

per unit Pa, which can be converted in the absorption frequency shift per Pa. In other words:

δλD
P0

(f) =

(
δλD
P0

)
0

f0
2√(

f2 − f0
2
)2

+
(
f×f0
Q

)2
(5.24)

with, (
δλD
P0

)
0

= π
(
b2 − a2

)(δλD
a0

)
0

(5.25)

is the wavelength shift, in meters, per Pascal.

This is clearly an underestimate of the pressure applied to a highly compliant mandrel, but

without experimental work and a better definition of f0 this is a good enough approximation for

analytical purposes.
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5.3 Design Specifications

In the design of the mandrel, the first assumption is that the fibre wound be tightly would along

the entire length of the cylinder (L). However, the length of the LPGF, is much shorter than a

tightly fibre around a mandrel of radius 5 mm, and length L = 1.2 r. This model draws upon the

results from Waagaard et al. (2001) and maintains a mandrel Length to radius ratio of 1.2, giving

ideal pressure-to-acceleration responsiveness.

Active fibre should be wound to cover as much of the length of the cylinder, such that it can

deform under any non-uniform strain variations within the mandrel. The rest of the mandrel would

need to be wound with other fibres of similar coiling tension such that the cylinder would have the

stiffness of the fibre acting on its whole length.

It is equivalent to treat the fibre wrapping the cylinder as a single fibre of sufficiently large Lf ,

such that the fibre is wound tightly with no gaps from top to bottom, where only a small section of

the fibre has the LPFG inscribed. Such an arrangement will strictly look at circumference changes

of the around the centre of the mandrel where the LPFG is inscribed, and will hence be vulnerable

to noise generated by end effects due to Saint-Venants principle.

Given the equation for a helically wound fibre of radius rf of length Lf , wound N times around

a cylinder of radius r, with length 1.2 r, the length of the fibre follows equality:

Lf =

√
(r + rf ) 2 +

(
1.2 r

N

)2

2πN (5.26)

where N is the number of turns the fibre makes around the mandrel. If the mandrel is tightly

wound, this would be equivalent to:

N =
L

2rf
(5.27)

=⇒ N =
1.2r

2rf
(5.28)

The mass of the cylinder is assumed to include the mass of the fibre that is wound around it,

since the cylinder will be very small and light, the mass added by wrapping fibre mass will not be

a negligible contribution to resonant properties of the cylinder. So:

mcyl = π
(
b2 − a2

)
L ρ+mf Lf (5.29)

Where ρ is the density of the cylinder, and mf is the mass of the fibre per metre. The mass of

the fibre is estimated at 194 g/km (W. White, Chromis Fibreptics, Personal Communication, 3rd

April 2014).

Lastly, no inner radius is assumed. Inner radius would improve sensitivity due to requiring

added external mass to maintain the area exposed to pressure change, and also prevent water from

entering the centre of the cylinder, which would be detrimental to the sensor’s ability to experience

deformations from directions other than the Z-direction. Section 5.4.1 looks at the case of adding

a zero mass cover to an air-backed mandrel, illustrating loss of sensitivity of a compliant mandrel

with an inner radius.
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5.4 Predicted Operating Specifications

Fibre specifications for modelling will follow to work of Silva-Lpez et al. (2005), which states all the

relevant information regarding Polymethyl Methacrylate (PMMA) fibre, which is an ideal fibre for

the purpose of this sensor. The mandrel specifications (Roylance, 1999) of Polyurethane provide

the rest of the information needed to solve the sensitivity equation, using numerical modelling from

the previous sections and Silva-Lpez et al. (2005) to provide the LPFG resonant wavelength to

stain sensitivity. Other mandrel materials for example, Polybutadiene is even more compliant than

Polyurethane, but could be damaged at higher pressures. All of this information, and its origin is

summarised in Table 5.1.

Table 5.1: Summary variables contributing to the Mandrel

Variable Value Used Reference
Q (mandrel quality factor) 10 Pechstedt and Jackson (1995)

Ft(coiling tension) 1.1N Pechstedt and Jackson (1995)
rf (fibre radius) 62.5 µm Silva-Lpez et al. (2005)

R (outer mandrel radius) 5000 µm Roylance (1999)
a (inner mandrel radius) 0 µm Desired value
ρ (mandrel density) 1200 kg/mˆ3 Roylance (1999)
mf (fibre mass) 0.194 g/m Personal Contact
m (seismic mass) 0 kg Desired value

E (mandrel Young’s Modulus) 0.025 × 109Pa Roylance (1999)
Ef (fibre Young’s Modulus) 2.8 × 109Pa Silva-Lpez et al. (2005)
σ (mandrel Poisson Ratio) 0.5 Roylance (1999)
µ (fibre Poisson Ratio) 0.34 Silva-Lpez et al. (2005)

p11,p12 (strain optic coefficients) 0.300, 0.297 Silva-Lpez et al. (2005)
λD (resonant wavelength) 598.5 nm Mode 31

γ (strain sensitivity constant) 6170.8 Mode 31
n1 (fibre refractive index,core) 1.4923 Silva-Lpez et al. (2005)

n2 (fibre refractive index,cladding) 1.4905 Silva-Lpez et al. (2005)
neffco (effective index,core) 1.4914118992 Mode 31

neffcl (effective index,cladding) 1.4886405100 Mode 31

Using the discussed theoretical and numerical treatment of the wound mandrel, the resonant

frequency shift resulting from pressure variations on the mandrel is modelled across range of acoustic

frequencies. Figure 5.2 is a plot of the response, in terms of sensor frequency shift with respect to

acoustic frequency.

The plot in Fig. 5.2 shows the frequency shift of the resonant peak to be 3.205 × 106 Hz shift

per Pascal (roughly 0.1 pm/Pa centred on 598.5 nm). The detectability of such a shift is discussed

in the Chapter 6, which discusses the experimental set-up and sensitivity of a heterodyne. To

give this sensitivity more meaning, using a typical air-gun in marine acquisition, firing a 10 MPa

wave, spherically expanded from a refection at 3 km down, to a receiver (i.e. this instrument)

5 km horizontally from the source would need to be able to resolve 0.23 Pa Pa of pressure change.

Heterodyne techniques conceptually similar to what is considered in Chapter 6 applied in Lu et al.

(2015), while using a low speed photodetector, resolve shifts as low as 10 kHz with an accuracy of

about 60 Hz. Being able to discriminate 70 kHz shifts on a sensitivity of 3 MHz/Pa, gives precise

recovery of pressure changes as low as 0.023 Pa. This suggests that the sensitivity goal that is
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Figure 5.2: Sensitivity of the mandrel with respect to frequency of incoming pressure signal

being set is sensible. The work of Lu et al. (2015) comfortably achieves a resolution 1000 times

what is required, however the case considered there is a different in that they use a low-speed

photodetector, which is much more accurate, and optical bandwidth of their signal is significantly

narrower. Proving that reliably discriminating 70 kHz shifts for the LPFG design requires an

experimental set-up to be able to test the impact of various noise factors that would influence the

resolution.

Another thing to point out is the strain sensitivity of the fibre itself, being roughly 2000 nm/mε.

This is much higher than most LPFG, because it has been specifically designed to operate on a highly

sensitive mode. If sensitivity this high cannot be achieved in the LPFG (Chapter 7), increasing

the radius (and thus Length) of the mandrel will be able to increase the sensitivity, but this is

undesirable since the aim is to design a compact sensor. Also experimental construction of this

mandrel should exhibit higher pressure sensitivity than what is calculated here, since the model

uses very simple uni-axial pressure applied only to one end of the mandrel.

5.4.1 Air-backed Mandrel

Mandrels for hydrophones are typically designed with air backing to improve their sensitivity.

Modelling done in the code (MandrelEval.nb) for the case of the very small compliant mandrel,

is illustrated by Figure 5.3 showing an air-backed compliant mandrel reduces in sensitivity as an

inner radius is introduced. The model used assumed that some sort of cap was placed on the small

compliant mandrel, to maintain the same effective area exposed to pressure changes. This actually

introduces a non-zero seismic mass to the function that is not accounted for, but when modifying

this mass in the code, shows that the total sensitivity would improve greatly, and would still peak

at inner radius a = 0, but reduces the resonance frequency.

5.5 Conclusion

There are many varieties of plastic fibre available, and the choice of PMMA, while ideal for modelling

due to having a similar structure to regular silicon fibre, is not final, and the choice will depend on
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Figure 5.3: Sensitivity of the mandrel compared to changes in inner radius, a

many variables such as cost, availability, and manufacturing issues concerning LPFGs. Additionally

inscribing the LPFG into a PMMA fibre will almost certainly require diameter modulation (See

Appendix A), and how that fibre conforms to the theory presented here needs to be tested.

Alternative mandrel materials can also be considered. For example, Polybutadiene is even more

compliant than Polyurethane, but is more fragile.

Sensitivity characteristics can be improved with larger mandrel geometries, potentially offsetting

detrimental effects of LPFGs which have lower strain sensitivity. Decisions concerning this will come

from experience with the physical construction with the instrument, as well as the costs.

Lastly, some experimental work needs to be done to fully understand the resonant frequency of

a small, zero-seismic mass, mandrel of arbitrary geometry; whether the mass of the wrapping fibre

has a significant impact; as well as bending effects on the fibre, i.e. birefringence effects.
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Chapter 6

Proposed System Design

6.1 Introduction

Having considered the design of the Long Period Fibre Grating (LPFG) frequency domain sensor it

is necessary to consider how to observe the shift. A simple heterodyne arrangement should be able

to isolate the signal and shift it to a part of the frequency spectrum which is less noisy, and be able

to sample it at fast rates limited only by a photodetector. This chapter is dedicated to what must

be considered when constructing a heterodyne to isolate the pressure sensitive signal, with the main

issue being that LPFG absorption notches are spectrally broad, and heterodyne arrangements have

Signal to Noise Ratio issues when used with broad intermediate filters.

Chapter 4 has modelled that with good LPFG construction, the line-width is expected to be

about 1 nm, centred on about 598.5 nm, meaning it is almost 1 THz wide. It is expected that, when

experimentally investigated, this line-width will prove to be much too broad, and a much longer

LPFG will be required to make it narrower, at the cost of creating strong neighbouring fringes

which will need to be accounted for in the signal processing.

Lets consider the shift generated by the LPFG considered previously, about 3 MHz/Pa. Crudely

speaking, ability to detect a shift of within a resolution of 70 kHz with a sensitivity of 3 MHz/Pa,

means pressure variations on the order of 0.023 Pa can be discerned. Lu et al. (2015) gives a

promising indication that this is possible, but as always this is an aspect that needs experimental

confirmation. Considering the pressure observable due to a 10 MPa air-gun array from sensor

5 km away after a reflection from 3 km down (assuming spherical wave-front spreading) results in

a pressure change of 0.23 Pa, the sensitivity of the sensor considered so far would be sufficient.

There are several complications to consider in the proposed design of a hydrophone utilising a

LPFG, or Varying waveLength Acoustic Detector (VLAD), and this chapter will serve to highlight

what they are and how they can be tackled experimentally. Ideally the conclusion of this chapter

could server as a starting experimental design for future research.

6.2 Signal Spectrum

Chapter 4 demonstrated the expected absorption spectrum of the desired LPFG construction (Fig-

ure 4.4), taking into account all of the cladding mode interference interactions at and around the
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a predetermined wavelength of interest. As illustrated the resonant absorption line is significantly

narrower and stronger than nearby interference fringes caused by other cladding modes.

This was modelled using polymethyl methacrylate (PMMA) (Silva-Lpez et al., 2005) fibre,

since at the time of writing full information concerning strain-optic coefficients as well as Young’s

Modulus and Poisson Ratio of other plastic fibres is not published. The reason plastic, or PMMA,

fibre is desirable is that it can potentially conform to a very tight minimum bend radius of 5 mm,

which would allow for very compact sensors. Also PMMA fibre can be made as a single mode step

index fibre, rather than multi-mode graded-index like most plastic fibres, meaning that no further

assumptions needed to be made concerning LPFG theory which was set down by Erdogan (1997a).

However, the existing model for the LPFG absorption spectrum is incomplete. Since the optic

fibre is ideally going to be wound tightly around a mandrel of minimum radius, it is necessary to

take into account effects from bending and birefringence. Block et al. (2006) discusses bending

of LPFGs creating resonance mode splitting in detail. Bending creates birefringence inside the

fibre, where the two polarisation states of the source light split and become degenerate. What is

concerning is that bending of radius of 25 cm, in the work by Allsop et al. (2004), is already splitting

a resonance mode into two, separated by about 45 nm. Block et al. (2006) and Allsop et al. (2004)

provide linear models for the mode splitting, however it is the intention of this work that the LPFG

be wound tightly around a mandrel of radius 5 mm, and since previous work only considered silicon

fibres, such tight bend radii have not been considered and models cannot be extrapolated to such

an extremely tight radius. This means that to get a meaningful implementation of a tightly wound

LPFG, careful experimental analysis would need to be conducted to understand how to best work

around, or make use of, bending effects. Unfortunately this is beyond the scope of this thesis.

One way to mitigate birefringence problems is to polarise the light, before it enters the LPFG

or a bent fibre section, at a 45◦angle to the bending, such that the fibre has minimum bending

sensitivity (Wang et al., 2007). It is expected that the observed resonance mode will appear like

Figure 4.4, with no mode splitting occurring.

On the other hand, the bent LPFG in Allsop et al. (2004) showed different temperature sensi-

tivity and Chiavaioli et al. (2013) demonstrates external refractive index sensitivity improvements.

A spectral model (Gonzalez et al., 2001) exists and could be used to model spectral changes as a

function of birefringence, but not for very tightly bent fibres. As seen in Shu et al. (2002), tempera-

ture, external refractive index and strain sensitivity are all partially related by the γ term, implying

that improvements in strain sensitivity of one of the degenerate modes in a bent fibre would be

observable. Rather than polarising the light as a work around birefringence issues, polarising the

light before it enters the LPFG in an orientation that would pick out a more strain sensitive de-

generate birefringent mode could improve the sensitivity of the detector, and is a topic for further

experimental research.

This signal spectrum itself is a transmission dip, rather than the emission peak that is usually

used in a heterodyne. This presents the extra challenge that needs to be experimentally solved.

Conceptually, destructively mixing the signal with the unchanged source from the pump should

leave the component of the transmission dip from the signal as the only remaining component.

This has been considered in the optical circuit diagram and is illustrated by the implementation

of variable phase controllers (VPC) that allow fine tuning the phase to get the most out of the

desired destructive interference, though something more fancy would be required to ensure that all
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frequency components from a broad range could cancel out.

6.3 Source Spectrum

The main concern of the heterodyne arrangement is to recover the difference in positions of the

transmission dips between a reference source spectrum and the signal spectrum as quickly as pos-

sible, enabling time-domain multiplexed (TDM) arrays of as many detectors as possible, through

means of a pulsed laser source. Lin et al. (2012) have experimentally demonstrated TDM LPFGs.

It is worth noting that since the detectors have a short active fibre length there would be negligi-

ble change in phase, there is potential for using phase division multiplexing (PDM) (Leonard and

Cimini, 1989). In combination with TDM, hopefully arrays large enough for seismic acquisition

applications can be made. At the moment multiplexing schemes will not be discussed further, until

a more complete understanding of such complications for final instrument is presented, likely after

a prototype.

The source spectrum is an important consideration for the speed and bandwidth of the hetero-

dyne. Because the signal output and the mixing source need to be coherent for ideal signal to noise

ratio (SNR) (Protopopov, 2009), the best practice is to mix the signal with a source that has the

same spectral profile. Generating a broad source spanning 1 THz is possible using super-continuum

generation (Dudley and Taylor, 2010, Chapter 8). For a heterodyne arrangement to function, the

source used for mixing with the signal is typically freuqnecy shifted using an Acousto-Optic Mod-

ulator (AOM). This moves the mixed heterodyne signal to an intermediate frequency (IF), defined

by the frequency of the AOM. With an IF shift it is easy to isolate the signal of interest with a

bandpass filter, leaving only the mixed signal centred on the IF frequency which can analysed by

electronic devices, using a lock-in amplifier. This is the most attractive aspect to the heterodyne

arrangement, as it isolates the signal allowing for observation of frequency shifts in the signal.

There are some complications with this arrangement. To be able to observe frequency shifting

of up to several Pascals, a sufficiently broad optical source is needed. Broad-band photodetectors

have short data collection times (Bingham et al., 1998) (∆ν = 1
2τ , τ is the data collection time),

which is relevant for TDM of the instrument, because a short data collection time means that less

light will be collected by photodetectors, meaning the system will be more prone to noise. This is

thankfully not an issue here since the power of the signal arm of the heterodyne will be comparable

and arbitrarily large compared to the source. Additional problems arise from using an AOM with

a broad source, as the AOM will not preserve the spectrum due to diffraction angle dependence

on wavelength, which will create distortions in the shifted spectrum adding noise to the mixed

signal, but with the use of a spherical mirror this can be compensated for (Hirai, 2001; Matsumoto

and Hirai, 1999), improving SNR. This is however a very fragile arrangement that may work in a

laboratory, but will not be practical for field use.

Lastly, the final design should modify the source spectrum with a reference LPFG with a static

absorption frequency, which should help resolving the signal frequency shift. The heterodyne will

be very good at resolving the shifts in two similar spectral profiles. Regardless, this would need to

be experimentally demonstrated.
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6.4 Heterodyne Signal to Noise Ratio

In a heterodyne, the signal to noise ratio, Q, is defined as (Protopopov, 2009, Chapter 1.3):

SNR = Q =
Signal Strength

Shot noise + Thermal Noise
(6.1)

Q =
2
(
ηq
hν

)2
P1P2R

2qR
(
ηq
hν (P1 + P2 + PB) + jD

)
∆ν + 4kTRF ′ ∆ν

(6.2)

Where η is the quantum efficiency of the photo-detector; R is the active payload resistor of

the photo-detector, depending on its electrical circuit; q is the electron charge; hν is the mean

photon energy of the interfering waves; P1, P2, PB are the effective values of power for the signal,

source, and background radiation incident on the photodetector; ∆ν is the spectral width of the

intermediate frequency (IF) bandpass filter; and jD is the photodetector dark current. If neglecting

thermal noise with a strong source (P2), then R does not affect the signal to noise ratio, but η

does. η is typically higher in more expensive photo-detectors, and if a final design would require a

balanced heterodyne receiver, with two photo-detectors, the cost would be very significant. Since the

product of P1 (signal) and P2 (reference source) is going to be very large (reduced only be Rayleigh

scattering in the longer signal arm), the mixed signal strength will be strong and correspondingly

the SNR will be large. However the spectral width of the IF bandpass filter, ∆ν, will be large due

to the need to capture a broad spectrum. ∆ν will be a product of the required dynamic range of the

pressure sensor, in Pascals, and the frequency shift per Pascal. Reducing sensitivity of the sensor

would help reduce the width of the IF filter, at the cost of sensor precision. Alternatively ∆ν can

be narrowed down to look at only one slope of the LPFG notch - such that the SNR improves.

Typically heterodyne systems can cope with very weak signals (i.e. P2 � P1, PB), in cases

with a narrow IF filter. This less relevant for this LPFG design, but highly applicable to Rayleigh

backscattering techniques. In these situations, with strong enough source power, the signal to noise

ratio approaches:

Q =
ηP1

hν ∆ν
(6.3)

This illustrates that it will be difficult to use a broad IF filter in such situations, since ∆ν will be

large, which is why Rayleigh backscattering techniques often involve complicated cross-correlation

algorithms.

6.5 Proposed Arrangement

Taking into account the discussed considerations required to build a functioning heterodyne detec-

tion scheme, below is a schematic diagram for the final deign of VLAD:

In Figure 6.1 BBS is the broad-band source, BS is a beam-splitter, PC is Polarisation Control,

PD is a photo-detector, VPC is a variable phase controller, and dashed lines indicate electrical

signals, while solid lines indicate optical signals.

A balanced arrangement would also help reduce noise from the reference arm, mitigating high-

frequency variations and industrial noise, however it is more costly to set up, and adds a complexity

with the extra beam-splitter, that could affect reliability. A balanced heterodyne receiver would
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Figure 6.1: Circuit diagram of proposed balanced heterodyne arrangement

allow the direct discrimination of phase information from the signals, where PDM could be applied

by using a variable phase control added to detectors arranged in parallel.

The AOM should be driven at a frequency sufficiently high as to isolate the signal at a high

enough IF to be able to filter out the broad-band signal, but as low as possible to maximise the

SNR. This would occur at frequencies higher than the bandwidth of the source laser. Hence careful

choice of BBS bandwidth, AOM driving frequency, and IF filter bandwidth is required.

6.6 Conclusion

This chapter discusses the design of an optical pressure sensor, VLAD, utilising LPFG’s strong

resonance shift due to strain. It benefits from having a strong signal due to a very strong absorption;

good noise characteristics, limited only by shot noise; and having a small active sensing length,

allowing for compact construction, and phase division multiplexing.

A careful study of tight bending effects of LPFG, using plastic or PMMA fibres, will serve to

better understand, and take advantage of, previously uncharacterised changes to strain sensitivity

of LPFGs in tightly wound scenarios. This, in combination with a prototype construction of the

VLAD for Down-Hole pressure sensing, is expected to be a good point of future work.
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Chapter 7

Uncertainty Analysis

7.1 Forward Uncertainty Propagation Analysis

7.1.1 Introduction

For each variable used when calculating the final sensor sensitivity, there is a certain tolerance

associated with its value due to finite precision of their measurement. These tolerances need to be

propagated to give us an understanding of the uncertainty that is associated with the sensor. When

designing number of sensors that all need to perform similarly, a guarantee of repeatability in the

manufacture of the LPFG is required. Manufacturers of optical fibre publish data sheets with the

values and for most details of their fibre, however characteristics of fibres important for LPFGs are

rarely published, let alone details on their tolerances.

This chapter seeks to illustrate what significance tolerances concerning the fibre have on the

uncertainty in desired sensitivity and absorption bandwidth of a LPFG. It is important to under-

stand whether a LPFG with a desired sensitivity discussed in previous chapters can be reliably

manufactured. To do so, uncertainty propagation is performed through the equations published

in Erdogan (1997a) and Shu et al. (2002), using analytical and Monte Carlo methods discussed in

Bevington and Robinson (2003, Chapter 4). The analytical approach was used wherever possible,

due to the large amounts of time required to numerically evaluate cladding modes of LPFGs using

a Monte Carlo approach. The estimated propagation of uncertainty equation is:

σz
2 =

∑
j

[(
∂z

∂vj

)2 (
σvj
)2]

, (7.1)

where σz is the standard deviation in function z, vj is the jth dependant variable of z, and σvj

is the standard deviation of each variable vj .

In cases where this method is not applicable, Monte Carlo methods were utilised to ascertain the

uncertainty. Uncertainty is investigated using a model of the PMMA single mode fibre, coupling

near the turning point of the 31st mode, which has been the point of discussion in previous chapters.

LPFG strain sensitivity uncertainty is modelled using variables that describe fibres that have

been published in previous works and in data sheets. The model uses published and commercially

advertised uncertainties in: LPFG periodicity, Λ; core radius, a1, and refractive index, n1; cladding
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radius, a2, and refractive index, n2; fibre Poisson Ratio, µ; and elasto-optic coefficients p11, p12, of a

PMMA single mode fibre described in Silva-Lpez et al. (2005). Uncertainties in the laser wavelength

and power, while they will be neglected in this work, have consequences for the effective refractive

indices, neffco and neffcl, LPFG sensitivity, as well as the coupling constant, κ. Lasers with good

frequency and power stability have existed for some time (Morkel et al., 1990), and as a result

play a far less significant role than the geometric uncertainties of a optical fibre, and as such they

are deemed negligible. Concerning the wavelength dependence on refractive index, the wavelength

used in the underlying work described here is similar to that of Silva-Lpez et al. (2005) (35 nm

difference). Consequently, wavelength dependence on refractive index is neglected, as well as any

associated uncertainties. In all cases the stated uncertainty is assumed to be the standard deviation

around the mean value in a Gaussian distribution.

7.1.2 Uncertainty in calculating LPFG coupling and sensitivity

Evaluation of uncertainty was done in LPFGuncertainty.nb. In this file under the heading of ”Prep”

is the symbolic evaluation of every uncertainty concerning a LPFG, except for the uncertainty in

κ, which gets evaluated in memory as the symbolic evaluation in terms of a1, a2,n1 and n2 comes

to almost 80 megabytes of text and effectively cripples the analysis.

The uncertainty in the most critical equations describing the sensitivity (Eq. 3.56) and the

coupling strength, κ (Eq. 3.42) rely entirely on the tolerances in the geometric, refractive and

elasto-optic properties of the fibre. In the case of sensitivity, the tolerance in the period grating,

Λ, is also important. Table 7.1 is a summary of the figures that can be collated from literature and

optical fibre data sheets.

Uncertainties are best stated as a fraction of the uncertainty of a value over the actual value,
σz
z , to best be able to quickly discern the magnitude of the uncertainty for the variable.

Table 7.1: Summary of initial constant tolerances

Variable Value (z) Uncertainty (σz)
σz
z Reference

a1 3 µm 1.2× 10−1 µm 4.00× 10−2 Silva-Lpez et al. (2005); Welker (2014)
a2 62.5 µm 2.0× 10−1 µm 3.20× 10−3 Silva-Lpez et al. (2005); Draka (2010)
n1 1.4923 5.0× 10−5 3.35× 10−5 Silva-Lpez et al. (2005)
n2 1.4905 5.0× 10−5 3.35× 10−5 Silva-Lpez et al. (2005); Waxler et al. (1979)
µ 0.345 5.0× 10−4 1.45× 10−3 Raftopoulos et al. (1976)
p11 0.300 6.0× 10−3 2.00× 10−2 Waxler et al. (1979)
p12 0.297 5.94× 10−3 2.00× 10−2 Waxler et al. (1979)
Λ 216.053 µm 4.00× 10−2 µm 1.85× 10−4 Sugitatsu et al. (2001)

Table 7.1, illustrates the tolerances in the initial constants describing the optical fibre and

period grating, that have been used in the propagation of uncertainties that follow. Tolerance for

a1 having a value of 4% is sourced from personal communication with manufacturer ’Paradigm

Optics’ (Welker, 2014), stating radius uncertainties of this cable to be between 2% to 4%. In

regard to the Poisson ratio, µ, tolerance is assumed to be within the last decimal place. Lastly,

the value of the LPFG grating periodicity, Λ, is such that a sensitivity of roughly 2000 nm/mε is

achieved, which corresponds to the sensitivity discussed in the previous sections. Uncertainty in Λ
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is theoretically lower, since uncertainties of 2.5 nm in the fabrication of Fibre Bragg Gratings are

possible Chung et al. (2011).

Data-sheets regarding other commercial fibres cite tolerance in the cladding radius, a2, to be

as low as or 2.0 × 10−1µm, (Draka, 2010) for silicon fibres. This has a significant impact on the

LPFG uncertainty, as it improves certainty in the cladding mode propagation. For the purposes

of investigating uncertainty propagation the value of 2.0 × 10−1µm is used to evaluate LPFG

uncertainty, rather than the 4% tolerance.

Uncertainty in the refractive index contrast, σ, is estimated from the data in Kim et al. (2002),

to be 1.56× 10−5, though only four data points were provided. This equates to roughly 10% of the

σ value stated in Section 4, which was σ = 1.91× 10−4. This is barely acceptable, but it should be

reiterated that uncertainty in κ degrades the knowledge of what σ value is needed to create ideal

bandwidth LPFG, and this section illustrates that there are significant issues with the uncertainty

in κ.

Table 7.2 shows uncertainties on some of the most critical variables that control the uncertainty

in sensitivity and κ, and have been propagated from the initial variable tolerances.

Table 7.2: Summary of Intermediate uncertainties

Variable Value Uncertainty σz
z

neffco 1.49141 6.06× 10−5 4.06× 10−5

neffcl 1.48864 5.67× 10−5 3.81× 10−5

∆neff 2.77× 10−3 8.30× 10−5 2.99× 10−2

γ 5955.54 1.06× 106 1.78× 102

E1ν
cl 1.36736 3.09345 2.26235

Looking at some intermediate uncertainties in Table 7.2, it is immediately clear that there will

be issues with the final uncertainties. Uncertainty in ∆neff = neffco − neffcl rises significantly as a

proportion of its value (compared to either neffco or neffcl), due to it being the difference in two

similar values. This goes on to have a significant effect on the uncertainty in γ, as γ (Eq. 3.58,

used in calculating strain sensitivity in Eq. 3.56) relates the reciprocal of the product of two small

values, ∆neff and Λ.

The significance of the uncertainty in Ecl1ν is clear from Eq. 3.42. However the cause for this un-

certainty is non-trivial to evaluate, and it is more informative to look at the uncertainty contribution

to κ directly from all independent sources or uncertainty (namely a1, a2,n1 and n2).

It is already clear that geometric tolerances will dominated the uncertainties concerning the

LPFG, and the uncertainty in the precision of the inscription is not a factor for concern.

Table 7.3: Summary of Resulting uncertainties

Variable Value Uncertainty σz
z

λD 598.8 nm 0.18 nm 3.00× 10−4

κ 9.54× 104 3.19× 106 3.34× 101

dλD
dε 1980 nm/mε 353000 nm/mε 1.78× 102

Uncertainty in dλD
dε is effectively entirely due to uncertainty in γ. Meanwhile, as evidenced
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by comparing Table 7.3 and Table 7.2, Ecl1ν is a significant contributor to the uncertainty in κ,

but there are other large contributions. Independent contributions to the uncertainty of κ can be

calculated. The precise evaluation is as follows:

σκ =
√

1.783× 1010 + 9.784× 1012 + 3.696× 1011 + 5.728× 1011, (7.2)

for arguments that represent sources of uncertainty from n1, n2, a1 and a2 respectively. It is

clear here, that the largest source of error was the tolerance in n2, as the uncertainty in the optical

power distribution (Ecl1ν) is likely to also be strongly influenced by it. In theory, even if the only

source of uncertainty was the tolerance of n1, the uncertainty in κ would still be greater than the

value of κ! As touched on in Section 6.1, it is expected that the bandwidth created by the ideal

bandwidth is too broad and that having the LPFG be of much longer length is required. Having

a much longer LPFG will invariably make the transmission dip of interest narrower hopefully to

the point where having such great uncertainty in κ will not be detrimental to the outcome of the

instrument.

From these issues it is clear that finding what tolerances are required for the initial values, such

that the final LPFG uncertainties in κ and sensitivity are reasonable. This is a non-trivial and

informative task that is addressed in Section 7.2.

7.1.3 Uncertainty in calculating Mandrel Sensitivity

So far issues arising from the construction of a LPFG have been looked at, which is unbent, and in

a state of quasi-static stress. Winding and bending the LPFG around a mandrel introduces new

problems, such as fibre birefringence. Birefringence is well beyond the scope of this uncertainty

modelling, as there are significant issues in the uncertainty of the LPFG already. To be able

to say something informative on the topic of uncertainty contributions in final sensitivity due to

properties of the Polyurethane mandrel it is necessary to consider the theoretical scenario where

the uncertainty in the LPFG is at an acceptable magnitude. To do so the uncertainty in sensitivity

is chosen to be 5% of the value of the sensitivity.

Additional values used:

Table 7.4: Summary of Mandrel uncertainties

Variable Value Uncertainty σz
z

dλD
dε 1980 nm/mε 99 nm/mε 5× 10−2

Ef 2.8× 109 Pa 0.2× 109 Pa 7.14× 10−2

µm 4.9× 10−1 0.1× 10−1 2.04× 10−2

E 24× 106 Pa 0.5× 106 Pa 2.08× 10−2

ρ 1200 kg/m3 5 kg/m3 4.16× 10−3

Where Ef is Young’s Modulus of the fibre, µm is the Poisson Ratio of the mandrel, E is the

Young’s Modulus of the mandrel, and ρ is the density of the mandrel. Tolerances in the radius and

length of the mandrel are neglected, as their impact on the sensitivity of a LPFG is negligible.

The theoretical Poisson Ratio of Polyurethane is 0.5, but in uncertainty analysis this cannot

be assumed. The uncertainty stated above is a reasonable estimate as discussed in Qi and Boyce
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(2005). The uncertainty for ρ, is estimated to be within the last decimal place in the provided

density of 1.20g/cm3 (Roylance, 1999).

Resulting Uncertainties:

Table 7.5: Summary of Resultant Mandrel uncertainties

Variable Value Uncertainty σz
z

X 1.07× 100 6.58× 10−2 6.17× 10−2

Keff 6.28× 105 Pa 3.34× 104 Pa 5.33× 10−2(
δλD
a0

)
0
−4.62× 10−11 4.52× 10−12 9.79× 10−2

Considering tolerances in some of the mandrel’s components were up to 7%, the final uncertainty

in the sensitivity of the mandrel is less than 10%. This implies that there were no new significant

concerns in the uncertainty of the mandrel, other than the LPFG sensitivity.

Polyurethane mandrel is considered to be in a quasi-static stress state, and the uncertainties

concerning the various Young’s Moduli and Poisson Ratios used in this calculation are likely greatly

overstated, since these values are experimentally derived by applying much greater stains on the

materials in comparison to what is considered here. For this reason it is reasonable to conclude that

uncertainty contributions to the system, which stem from the fibre’s and the mandrel’s mechanical

properties, are negligible, and only the uncertainty in the LPFG’s sensitivity and κ are important.

Section 7.2 tackles the problem of exactly how much precision is required in making a fibre, such

that the sensitivity discussed in this thesis can be achieved.

7.2 Required Tolerance values for reproducible LPFG

7.2.1 Introduction

In the previous section, a significant problem was identified with the proposed LPFG design, namely

unacceptable uncertainties concerning the sensitivity and mode coupling coefficient. These uncer-

tainties were attributed to the tolerances of initial constants that define the geometry fibre. Working

backwards from a desired strain sensitivity uncertainty, the tolerances in the variables describing

the fibre required in order to achieve said sensitivity uncertainty can be calculated. Doing this has

the added implication that all variables describing the fibre contribute equally to the uncertainty

in LPFG sensitivity, as having any one variable with high tolerance would cause it to dominate the

uncertainty of any variable it is a function of. It follows that, by extending on the work of Bev-

ington and Robinson (2003, Chapter 4) discussed in the previous chapter, the required uncertainty

for each dependant variable σvj is:

σvj =
σz√
jtotal

(
∂z

∂vj

)−1

, (7.3)

where σvj is the required standard deviation of each variable vj , σz is the desired standard

deviation in function z, vj is the jth dependant variable of z and jtotal is number of independent

variables vj that define z.
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Discussed here is how precise of measurement in each of these variables needs to be in order

to achieve a 5% uncertainty in the LPFG sensitivity across a range of sensitivities: 2000 nm/mε,

200 nm/mε, 20 nm/mε, and 2 nm/mε. Additionally, investigated here is the effect on the required

precision in these same variables due to also requiring 5% uncertainty in achieving ideal LPFG

absorption bandwidth, i.e. 5% uncertainty in κ.

7.2.2 Derivation of Uncertainties

Solving the uncertainty in the LPFG strain sensitivity highlights that it is possible to work back-

wards and find what tolerances in the initial constants are required in order to achieve a desired

uncertainty in the sensitivity and/or κ. This is done in such a way that no initial constant domi-

nates final uncertainty of 5% in dλD
dε or κ. As stated, the experimental implication of this is that a

reduction in some but not all, initial constant tolerances which are calculated here, will not be effec-

tive in improving the sensitivity uncertainty. In other words, all variable’s tolerance requirements

need to be met such that the desired uncertainty can be achieved.

To get an understanding of how required tolerances change with different sensitivity require-

ments, minimum initial constants’ tolerances are calculated for sensitivities of: 2000 nm/mε;

200 nm/mε; 20 nm/mε; and 2 nm/mε. Also, uncertainty requirements for κ become relevant

as required sensitivity drops. Both of these cases are looked, firstly where only sensitivity uncer-

tainty is important, and secondly where the uncertainty in κ is also considered. In the latter case,

the evaluation in LPFGuncertainty.nb aims to bring uncertainty of κ to a value where its gives

sufficient knowledge of the maximum refractive index, σ, such that it is comparable to the real

uncertainty in σ of about 5%, as discussed in Section 7.1.2.

Table 7.6: Required tolerances in initial constants for 2000, 200, 20, 2 nm/mε, where uncertainty
in κ is neglected, expressed as σz

z

Variable 2000 nm/mε 200 nm/mε 20 nm/mε 2 nm/mε
a1 3.35× 10−5 3.35× 10−4 3.35× 10−3 3.35× 10−2

a2 5.71× 10−6 5.71× 10−5 5.71× 10−4 5.71× 10−3

n1 5.08× 10−9 5.08× 10−8 5.08× 10−7 5.08× 10−6

n2 5.22× 10−9 5.22× 10−8 5.22× 10−7 5.22× 10−6

µ 5.02× 10−5 5.02× 10−5 5.02× 10−5 5.02× 10−5

p11 1.00× 10−4 1.00× 10−4 1.00× 10−4 1.00× 10−4

p12 5.32× 10−5 5.32× 10−5 5.32× 10−5 5.32× 10−5

Λ 3.39× 10−6 3.39× 10−5 3.39× 10−4 3.39× 10−3

Table 7.6 illustrates that decreases in desired strain uncertainty create proportional decreases in

the required minimum tolerance of most of the variables. However tolerance requirements in µ, p11,

and p12 (which define the elasto-optic properties of the fibre) do not decrease, because their required

tolerance is a function of the desired strain sensitivity uncertainty as well as γ ( Eq. 3.58), both

of which drop proportionately at each desired strain tolerance. In other words when considering

Eq. 7.3, where z = dλD
dε (Eq. 3.56) and j = µ, p11, orp12, it can be shown that a reduction in σz are

offset by equal falls in ∂z
∂vj

due to the inverse relationship.

Typically these variables are considered constants for a material, and may not change drastically

over the length of a single LPFG or a series of LPFGs, however precise knowledge in their value is
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important in designing a LPFG. It may be beneficial to experimentally derive more precise values

for these constants in order to accurately model a LPFG, as their tolerance is not critical to the

reproducibility of fibre manufacture.

Interestingly, at sensitivities around 2 and 20 nm/mε, some of the required tolerances are close

to the initial vales used in Section 7.1. Many reported strain sensitivities in LPFGs (Shu et al.,

2002; Wang et al., 2006; Zhao et al., 2008) fall in this range, which may correspond to a limit

imposed by the tolerances in the LPFG periodicity, Λ, and the radii of the core and cladding, a1

and a2.

When considering κ, to have knowledge of the absorption spectrum, the minimum tolerance do

not change unless a very high sensitivity is required. In Table 7.7 certainty in κ is considered to be

within at 5%:

Table 7.7: Required tolerances in initial constants for 2000, 200, 20, 2 nm/mε, where uncertainty
in κ is not neglected, expressed as σz

z

Variable 2000 nm/mε 200 nm/mε 20 nm/mε 2 nm/mε
a1 3.35× 10−5 1.60× 10−4 1.58× 10−4 1.40× 10−4

a2 5.71× 10−6 1.03× 10−5 1.02× 10−5 9.04× 10−6

n1 5.08× 10−9 5.08× 10−8 5.08× 10−7 5.36× 10−7

n2 5.22× 10−9 2.63× 10−8 2.59× 10−8 2.29× 10−8

µ 5.02× 10−5 5.02× 10−5 5.02× 10−5 5.02× 10−5

p11 1.00× 10−4 1.00× 10−4 1.00× 10−4 1.00× 10−4

p12 5.32× 10−5 5.32× 10−5 5.32× 10−5 5.32× 10−5

Λ 3.39× 10−6 3.39× 10−5 3.39× 10−4 3.39× 10−3

When ideal absorption spectrum bandwidth is important for the LPFG, primarily when one

needs to know how to design a heterodyne for the LPFG, tolerance requirements are difficult

to overcome even at lower desired sensitivities, as illustrated in Table 7.7. At high sensitivities,

uncertainty requirements in sensitivity dominate, as the first columns in both Table 7.6and Table 7.7

are the same.

It is clear from this uncertainty analysis, that tolerance in fibre characteristics has a huge impact

on the function of a LPFG. The difference between fibres being manufactured today and fibres

needed to create highly sensitive, narrow bandwidth LPFGs, which can be utilised as hydrophones,

is on the order of several orders of magnitude. Regardless, low sensitivity, large dynamic range

LPFGs should be feasible, and useful for down-hole depth sensors. This kind of uncertainty analysis

should ideally be applied to analyse the usefulness of every other interferometric or frequency-

domain method conceived in the future, assuming it has a sufficiently robust mathematical model,

as it is faster and cheaper than experimental work.

7.3 Conclusion

The uncertainty analysis has shown that a highly sensitive LPFG build around the concept of a

VLAD discussed in Chapter 6 is difficult to produce with the single-mode optic fibres considered

here, but it is important to keep in mind that other fibre options exist, specifically Photonic Crystal

Fibre (PCF) which is currently a hot topic of research in LPFG design. Moreover a Down-Hole
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instrument is still feasible as in such scenarios sensitivity does not need to be high, only the dynamic

range needs to be broad enough to cope with the high down-hole pressures.
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Chapter 8

Down-Hole Implementation and

Future Work

8.1 Down-Hole Implementation

While Section 7.2 has shown that utilising the LPFG as a hydrophone is a task that is presently

likely unachievable, the analysis did manage to show that reliably making LPFGs of lower sensitivity

is something that can be accomplished with current commercial products. This means that LPFGs

for Down-Hole applications are something that can be immediately possible. However, many of

the methods outlined in Chapter 2 are useful in this implementation. The main benefit of these

methods is that the dynamic range is only limited by the bandwidth which the sensitivity can

sweep across, and that combined with short required lengths of fibre allows for easy down-hole

implementation. One issue that will plague all of these methods is that in Down-Hole scenarios,

high temperatures also create frequency shifts.

For LPFGs, work by Zhao et al. (2008) investigates a case where a strain-sensitive LPFG

inscribed into Photonic Crystal Fibre (PCF), is insensitive to temperature changes. They accom-

plished this by solving the work of Shu et al. (2002) for modes where the thermo-optic effects (ξco

and ξcl) cancel out the thermal expansion (α) of the fibre, as per the following:

dλ

dT
= γλ

(
α+

ξconeffco − ξclneffcl

neffco − neffcl

)
(8.1)

Maintaining a low but modest strain sensitivity of 2.68 nm/mε in experimental confirmation

of their theory, they showed temperature sensitivity as low as 0.007 nm/◦C. Their work used

PCF which has been a focus of much recent research especially with LPFGs as these fibres are

specifically designed to be able to control the modes propagating through them, and also have

naturally very low ξco and ξcl. This is a complicating factor, as typically PCF is made from silicon,

and would not be able to be wound in a sufficiently tight radius, so achieving similar results in a

plastic fibre considered here would rely on using a type of plastic PCF, depending on the fibre’s

thermo-optic coefficients, as well as carefully resolving the tight bending effects. Solving Eq. 8.1 for

zero sensitivity is an exercise not too dissimilar to the analysis for finding high sensitivity modes,

and would require equally rigorous uncertainty analysis.
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Other than LPFGs, there are publications of other temperature insensitive OFDR methods. In

a paper by Martins et al. (2011) Fibre Bragg Gratings (FBG) were utilised as mirrors that shift

spectra created by both Raman shifted and Rayleigh scattered light, creating roughly double the

sensitivity compared to a single FBG, i.e. 2.35 nm/mε. Their arrangement, looks at the difference

in wavelength between two FBGs tuned to act as mirrors to the Rayleigh and Raman pumps,

where they have the same shift to temperature but opposing wavelength shifts to the strain. Thus

they effectively achieved double the strain sensitivity compared to a single FBG, and negated any

temperature variations.

Tapered Rayleigh scattering also shows great promise as a temperature insensitive sensor. Wang

et al. (2012b) investigates the temperature dependence of a tapered fibre, managing to show a

temperature sensitivity of 0.1 nm/◦C and an impressive strain sensitivity of 17.17 nm/mε. However,

such a high sensitivity may be too high for a Down-Hole instrument. Additionally tapered fibres

are quite fragile, and use as a Down-Hole instrument, especially whilst drilling, is likely to damage

them.

Other methods are intrinsically sensitive to temperature, thus sensing only strain and not tem-

perature is not possible. For example, temperature dependence of Brillouin backscattering in a

range of doped fibres was investigated by Mizuno et al. (2012) as well Brown et al. (2005), and

illustrated that while frequency shift per unit temperature (◦C) was up to 50 times less than the

frequency shift per unit strain (mε), there was no way to eliminate temperature shifts entirely,

which would be a significant issue in high temperature and high pressure environments, unless

there was a separate temperature instrument with which to correct against.

Figure 8.1: Illustration of how a LPFG, or other OFDR sensor, could be implemented into a Coiled
Tube section, to act as a depth or acoustic sensor

DET CRC is developing a Coiled Tubing drilling system (CT drilling). This particular drill

has a hollow section in the middle where pressure sensors could be installed. Specifically, a fibre

optic depth sensor could be installed near the drill bit, and/or pressure sensors for seismic while
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drilling could also be arranged at intervals along the entire length of Coiled Tubing. A simple

illustration of all that is needed for such a sensor is show in Figure 8.1. The loop could be any of

the frequency-domain sensors discussed, and simply needs to be adhered to the inside wall of the

Coiled Tubing to be able to couple to external pressure changes.

8.2 Future Work

There is a range of opportunities for future work that have been highlighted so far. Here is a

summary of specific topics that are deemed worthy of detailed research due to exhibiting qualities

that make them appropriate for use in down-hole or hydrophone sensors.

8.2.1 Down-hole

When considering a down-hole instrument, there are several avenues where this research can con-

tinue. The first potential topic of interest is the theoretical evaluation of temperature insensitive

LPFG. Such LPFGs are expected to have solutions for a range of laser wavelengths, likely giving

some control over what sensitivity and absorption bandwidth can achieved with a chosen mode.

Having narrower bandwidth with less sensitivity will make it much easier for a heterodyne ar-

rangement to function to higher Down-Hole pressures without modifying the AOM frequency and

heterodyne intermediate filter. Also worth considering are PCF fibres as PCFs have been shown

to be generally insensitive to temperature (Dobb et al., 2004).

Another good topic would be experimental work extending on the work of Martins et al. (2011)

for FBG based tools. This tool exhibited impressive linear sensitivity to strain in the wavelength

domain, and with some modifications to the sensing mechanism to allow for higher dynamic range

would warrant significant attention. Such a tool would not need to have a broadband source,

however the detectors would still need to be broadband due to resolving the shifts in wavelengths

due to strain across a desired dynamic range.

In the hydrophone scenario, Brillouin backscattering was quickly dismissed due to its poor

sensitivity characteristics. However Down-Hole, its narrow bandwidth and lower sensitivity to strain

make it a fantastic spectroscopic tool in very high pressure (and hence high strain) environments.

Additionally, the nature of Brillouin backscattering means that the requirement for a broadband

source is negated, and modern stable frequency lasers should be used, as that improves the definition

of the Brillouin frequency.

8.2.2 Hydrophones

Much of this thesis has focussed on the viability of frequency-domain sensing methods implemented

into hydrophones. The single biggest challenge was to find a method exhibiting very high strain

sensitivity. The LPFG has been discussed at some length, concluding that the precision of optical

fibre required to have confidence in the cladding modes was not available with commercially ad-

vertised fibres. To further this work, very precisely manufactured and well understood fibre will be

needed, or even research with a plastic variety of PCF.

A topic not deeply explored is the strain sensitivities of bent, tapered Rayleigh backscattering.

As discussed in Section 2.2.3.3, this arrangement exhibited extreme sensitivity to external refractive
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index change. With experimental research into strain sensitivity of Tapered sections using Rayleigh

backscattering bent (or wrapped) around a mandrel, a very sensitive frequency domain sensor could

be feasible, using a DBR laser to allow fast sweeps across wavelengths.

Other than that it is unlikely that fibre only frequency domain sensors will be possible, and

incorporating crystals into the system would open up wide array of options, especially in Raman

spectroscopy or even more modern concepts. There are other avenues such as in monitoring shifts

in excitation transitions of electron-photon emissions. In quantum bit storage research by Robledo

et al. (2011), the quantum spin state of electrons around a defect in a diamond is read from the

florescence due to the decay of optical excitation transitions in the electrons. Their work is plagued

by minute stresses on the diamond crystal which causes spectral line broadening of these emissions.

This can be utilised to instead monitor the stress state of the crystal using a self-heterodyne (Okoshi

et al., 1980). After-all, one man’s noise is another man’s signal.
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Chapter 9

Conclusions

The main goal of the Thesis was to consider the somewhat novel approach of implementing

frequency-domain shifts due to strains on an optic fibre to construct pressure sensors which can be

implemented into a range of geophysical contexts. Frequency-domain sensors are not widely consid-

ered in literature due to an inherent difficulty in achieving good sensitivity with these approaches.

Consequently, the first step in considering such designs was to find a fibre optic implementation

that is frequency sensitive to strains on the fibre. This highlighted Long Period Fibre Gratings

(LPFGs) as one of the most sensitive solutions to this major hurdle. This was due to the gratings

having well understood mechanics, high linear theoretical strain sensitivity, and potentially low

temperature sensitivity. Bent-tapered Rayleigh backscattering mechanism also was identified as

having very high strain sensitivity, however due to the mechanism’s still poorly understood theory

it was not possible to analyse in a way similar to how the LPFG is analysed.

Long Period Fibre Gratings are considered in the context of winding them around a small

compliant mandrel, in order to make the most out of the fact that LPFGs require significantly less

active fibre than traditional phase-domain windings. This requires the use of a variety of plastic

fibre which can be tightly wound, which raises issues of fibre birefringence. This issue can be

resolved by polarizing the light entering the wound LPFG such that the birefringence effects are

minimised. Assuming these issues can be experimentally overcome, small compliant mandrels are

shown to have good sensitivity characteristics and the uncertainty analysis for them indicates that

their fabrication is not a major concern for the operation of the sensor.

Since the intention is that sensing is made in the frequency-domain, a simple heterodyne ar-

rangement is a good way to interrogate the signal with good signal to noise ratio. The wide

bandwidth of the LPFG notch is a problem but the combined strength of the source and signal

arms should be enough to overcome a requirement for a fairly broad intermediate filter. If this is

an issue experimentally, a solution to this is likely to use an intermediate filter which is restricted

to look at only one slope of the absorption curve; or to have a much longer LPFG and deal with

only one of many much narrower signal bands.

Regardless, uncertainty analysis performed on highly sensitive LPFGs reveals that the tolerances

in manufacture of step-index single-mode fibres are much too big to be able to reproducibly create

such gratings. A hot topic of LPFG research is Photonic Crystal Fibres (PCFs), which have

superior modal dispersion properties compared to traditional fibres used in telecommunication
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scenarios. As this is likely to make LPFGs significantly easier to produce, future research into

instrumentation should try to focus on such fibres. Even though the fibres studied here will have

problems performing in a high sensitivity scenario, down-hole sensors would not have such an issue.

Since LPFGs operate in the frequency-domain, the nature of the observed signal lends itself nicely

to down-hole use, since their dynamic range is so broad that a down-hole sensor could operate

across a wide range of pressures.

Overall, frequency-domain strain sensors have very real potential for implementation as pressure

sensors, maybe not yet as hydrophones, but definitely as down-hole pressure sensors. It is important

to go on to do further theoretical and experimental research into several thermally insensitive

mechanisms that would make good down-hole sensors.
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Appendix A

LPFG in fibres with refractive

index and diameter modulation

Whilst UV induced refractive index changes in LPFG inscribed optic fibre are a popular method of

inscribing said LPFG, that is by no means the only way to inscribe a LPFG. Electric arc discharge

or CO2 lasers can be used to create diameter and refractive index contrast, and changes the way

the LPFG is theoretically evaluated.

Palma-Quiroz et al. (2008) illustrates the mathematical model used to cope with these methods

as the calculation for the coupling constant κ (see Eq. 3.42) changes significantly. The evaluation

of κ is split into the sum of the contributions of refractive and radius perturbations.

Refractive index Changes are treated a similar way as in Eq. 3.54:

ni (z) = ni

(
1 + σi

(
1 + cos

(
2π

Λ
z

)))
, (A.1)

where σ is the refractive index modulation profile, and i denotes the layer (i = 1 refers to the

core and i = 2 refers to the cladding). Similarly radial changes are of the following form:

ai (z) = ai

(
1 + ρi

(
1 + cos

(
2π

Λ
z

)))
, (A.2)

where ρ is the radial modulation profile. Using these the full evaluation of κ becomes:

(A.3)

κ =

2∑
i=1

ωε0ni(z)
2αi

4

∫ 2π

0

∫ ai

ai−1

(
Ecl
r (Eco

r )
∗

+ Ecl
φ

(
Eco
φ

)∗)
rdrdφ

+

2∑
i=1

ωε0
(
ni(z)

2 − ni+1(, z)2
)

8

∫ 2π

0

∫ ai(1+2ρi)

ai−1(1+ρi)

(
Ecl
r (Eco

r )
∗

+ Ecl
φ

(
Eco
φ

)∗)
rdrdφ

In this equation Ecl
r and Ecl

φ have different functional forms for r ≤ a1 and a1 ≤ r ≤ a2. In the

cases of r ≤ a1:

Ecl
r = iE1ν

clu1

2

(
J2 (u1r) + J0 (u1r)−

σ2ζ0
n1

2
(J2 (u1r)− J0 (u1r))

)
eiφei(β1

coz−ωt) (A.4)
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Ecl
φ = E1ν

clu1

2

(
J2 (u1r)− J0 (u1r)−

σ2ζ0
n1

2
(J2 (u1r) + J0 (u1r))

)
eiφei(β1

coz−ωt) (A.5)

And in the cases of a1 ≤ r ≤ a2:

Ecl
r = iE1ν

clπa1u
2
1J1 (u1a1)

2

(
−F2

r
pl(r) +

1

u2r
ql(r)−

σ2

n2
2

(
u2G2rl(r)−

n2
2ζ0
n1

2
sl(r)

))
eiφ+i(β1

coz−ωt)

(A.6)

Ecl
φ = E1ν

clπa1u1
2J1 (u1a1)

2

(
σ2

n2
2

(
G2

r
pl(r) +

n2
2ζ0

n1
2u2r

ql(r)

)
+ u2F2rl(r)− sl(r)

)
eiφ+i(β1

coz−ωt)

(A.7)

This evaluation of κ will be needed for correct modelling of LPFGs with inscriptions that alter

the fibre radius. However the uncertainty analysis significantly more difficult, as uncertainties in

the repeatability of the radial inscription profile discussed in Yin et al. (2014) need to be accounted

for.
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