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Abstract

In this research, we will focus on investigating the relationship between risk

and return. We will propose a new model which leads to a more sensible

approach to modelling the relationship between risk and return under different

market conditions. It is an extension of the traditional single-index capital

asset pricing model (CAPM) which reads as: The return Ri on individual

Security i can be decomposed into the specific return αi +εi (expected specific

return αi and random specific return εi ) and the systematic return βiRm owing

to the common market return Rm.

In our new model, we suggest a functional-beta single-index CAPM, ex-

tending the work of three-beta CAPM (Galagedera and Faff, 2004) that takes

into account the condition of market volatility. Differently from the three-beta

CAPM, we allow βi changing functionally with the market volatility σm, which

is more flexible and adaptable to the changing structure of financial systems.

The main contributions of this thesis are summarised as follows:

• A new functional-beta CAPM, taking into account the conditions of mar-

ket volatility, is proposed under the framework of widely applicable data

generating processes of near epoch dependence (NED).

• A semi-parametric estimation procedure based on least squares local lin-
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ear modelling technique under NED is suggested with the large sample

distributions of the estimators established.

• Simulation study is fully made, illustrating that the suggested estima-

tion procedure for the proposed functional-beta CAPM under near epoch

dependence can work well. It provides reasonable estimates of the func-

tional beta in the condition of moderate market volatility.

• By using a set of stocks data sets collected from Australian stock market

in the past ten years, empirical evidences of the functional-beta CAPM

in Australia are carefully examined under both nonparametric and para-

metric model structures. Differently from the three- or multi-beta (con-

stant) CAPM in Galagedera and Faff (2005), our new findings show

that the functional beta can be reasonably parameterized as threshold

(regime-switching) linear functions of market volatility with two or three

regimes of market condition. In the condition of extreme market volatil-

ity, a threshold functional-beta CAPM is suggested.

The CAPM provides a usable measure of risk that helps investors determine

what return they deserve for putting their money at risk. Our new model is no

doubt helpful to better understand the relationship between risk and return

under different market conditions. It can be potentially applied widely, for

example, it may be useful both for market investors and financial risk managers

in their investment/management decision-making.
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Chapter 1

Background: Literature and

Problems

1.1 Introduction

Modern financial management requires a number of key mathematical con-

cepts. As commented by Smith (1997), this is particularly relevant to fi-

nancial risk management and risk management products. Because of various

information shocks, financial systems are frequently evolving with the time.

The reason why we would attempt to study the risk-return relation variation

is obvious. For example, Carvalho, Durand and Hock Guan (2002) studied

daily returns on a primary sample of the 21 Australian Internet stocks in the

Merrill Lynch (Australian) Internet Stock Index at the climax of the boom-

bust period, between 21 September 1999 and 20 September 2000. They found

evidence that Internet stocks exhibited positive risk adjusted returns in the

pre-Crash period but that these returns disappear in the post-Crash period,

indicating the importance of market conditions.
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Classical portfolio theory examines risk/return tradeoffs from a “mean-

variance” framework. In this model, the risk of an individual security is mea-

sured by the variance (or, equivalently, standard deviation) of its return. Di-

versification by creating a portfolio of securities makes investors decrease their

risk while maintaining their expected return target. In the traditional capital

asset pricing model (CAPM), beta is assumed to be constant, where the mar-

ket portfolio can be considered as: the more securities you choose, the lower

risk you have, and the return of portfolio tends to the exact number of the

market return.

1.2 Literature review

Capital asset pricing model (CAPM) due to Sharpe(1964) and Lintner(1965)

conveys the important information that securities are priced so that their ex-

pected return will compensate investors for their expected risk. Symbolically,

CAPM is expressed as

E(Ri) = Rf + βi[E(Rm)−Rf ], (1.1)

where Ri is the return on security i, Rf is the return on risk-free asset, Rm is

the return on the market portfolio and βi is the measure of security i’s non-

diversifiable risk relative to that of the market portfolio. More generally, (1.1)

can be expresses in a non-expected form as

Ri = αi + βiRm + εi, (1.2)
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where the return on individual security Ri can be decomposed into the specific

return, including expected specific return αi and random specific return εi,

and the systematic return, βiRm, owing to the common market return Rm.

Clearly, model (1.2) reduces to (1.1) if setting αi = (1− βi)Rf and E(εi) = 0

in (1.2). In this model, the quantity βi is particularly important, which is

an alternative measure of the risk that the investor has to bear owing to the

systematic market movement.

In the traditional CAPM, βi is assumed to be constant. This assumption

has been widely documented to be untrue in the literature. Blume (1971)

was among the first to consider the time-varying beta market model, which

showed that the estimated beta tended to regress toward the mean; see also

Blume (1975). Earlier studies that attempted to apply random coefficient

model to beta include, among others, Sunder (1980) and Simonds, LaMotte

and McWhorter (1986) who suggested a random-walk coefficient model, and

Ohlson and Rosenberg (1982) and Collins, Ledolter and Rayburn (1987) who

proposed an ARMA(1,1) model for the beta coefficient. More recent literature

has widely recognized that the systematic risk of asset changing over time

may be due to both the microeconomic factors in the level of the firm and the

macroeconomic factors (see Fabozzi & Francis 1978; Bos & Newbold 1984).

Considerable empirical evidences have suggested that beta stability assumption

is invalid. The literature is abundant, see, for example, Kim (1993), Bos and

Ferson (1992, 1995), Wells (1994), Bos, Ferson, Martikainen and Perttunen

(1995), Brooks, Faff and Lee (1992) and Cheng (1997).

The time-varying beta models have also been investigate in Australia.

Brooks, Faff and Lee (1992), and Faff, Lee and Fry (1992) were among the

first to investigate the time-varying beta models. Faff, Lee and Fry (1992) em-
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ployed a locally best invariant test to study the hypothesis of stationary beta,

with evident finding of nonstarionarity across all of their analysis. The ran-

dom coefficient model was further suggested by Brooks, Faff and Lee (1994)

as the preferred model to best describe the systematic risk of both individ-

ual shares and portfolios. However, Pope and Warrington (1996) reported

that random coefficient model was appropriate only for a bit more than 10%

companies in their studies. Faff, Lee and Fry (1992) investigated the links be-

tween betas nonstationarity and the three firm characteristics: riskiness, size

and industrial sector, without finding the strong pattern between firm size or

industry sector and nonstationarity. Faff and Brooks (1998) modelled indus-

trial betas by different regimes based on market returns and volatility of the

risk-free interest rate, their univariate and multivariate tests providing mixed

evidence concerning the applicability of a time-varying beta model which in-

corporates these variables. Groenewold and Fraser (1999) argued that the

industrial sectors could be divided into two groups: one of them has volatile

and non-stationary betas and the other group has relatively constant and gen-

erally stationary beta. Other recent studies include Gangemi, Brooks and Faff

(2001), Josev, Brooks and Faff (2001), and others. An interesting study re-

cently made by Yao and Gao (2004) investigated the problem of choosing a

best possible time-varying beta for each individual industrial index using the

state-space framework, including the random walk models, random coefficient

models and mean reverting models, which were examined in detail by using

the Kalman filter approach.

When testing the validity of asset pricing models, many studies account for

market movements, defined as up and down markets. For example, Kim and

Zumwalt (1979) used the average monthly market return, the average risk-free
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rate and zero as three threshold levels; when the realized market return is above

(below) the threshold level the market is said to be in the up (down) market

state. Crombez and Vennet (2000) conducted an extensive investigation into

the risk-return relationship in the tails of the market return distribution; they

defined up and down markets with two thresholds: zero and the risk-free rate.

Further, to define three regimes for market movements, that is substantially

upward moving, neutral and substantial bear, different threshold points were

used, such as: the average positive (negative) market return, the average posi-

tive (negative) market return plus (less) half the standard deviation of positive

(negative) market returns, and the average positive (negative) market return

plus (less) three-quarters of the standard deviation of positive (negative) mar-

ket returns. The conditional beta risk-return relation has been found to be

stronger if the classification of up and down markets is more pronounced.

Galagedera and Faff (2005) has recently argued as in the finance literature

and media that high volatility leads to high returns. High volatility in equity

prices in many situations has been related to negative shocks to the real econ-

omy. On one hand, the volatility of macro-economic variables may partially

explain the equity market price variation. On the other hand, the volatility in

equity market prices may also be entrenched more in financial market distur-

bances. In particular, when the market volatility becomes extreme, it could

have an impact on financial markets. Some securities are more susceptible

to market volatility than others. Two interesting questions that arise in this

setting were posed by Galagedera and Faff (2005): (i) Does the beta risk-

return relationship depend on the various market volatility regimes? (ii) Are

the betas corresponding to these volatility regimes priced? There have been

empirical evidences raising concern about the ability of a single beta to explain
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cross-sectional variation of security and portfolio returns. Security or portfolio

systematic risk is known to vary considerably over time, as documented in the

literature in the above. It is further well known that the volatility of financial

time series, particularly in high frequency data, changes over time.

In their pioneering work of three-beta CAPM, Galagedera and Faff (2005)

made an assumption that the market conditions can play an important part in

explaining a changing beta and could be divided into three states specified as

“low”, “neutral” or “high” market volatility. First, they fit a volatility model

for daily market returns and obtain the estimates for conditional variance.

Then, based on the magnitude of these estimates, Galagedera and Faff classify

daily market volatility σMt into one of three market volatility regimes, using

appropriately defined indicator functions:

ILt =





1 if σ2
Mt < σ2

L

0 if otherwise

(1.3)

INt =





1 if σ2
L < σ2

Mt < σ2
H

0 if otherwise

(1.4)

IHt =





1 if σ2
H < σ2

Mt

0 if otherwise.

(1.5)

Here σL, σN and σH are constants: σL represents the low market condition, σN

represents the neutral market condition, σH represents high market condition.

By investigating empirically on the single factor CAPM Rit = αi + βiRmt +

εit , to estimate the betas in the low, neutral and high volatility markets,
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Galagedera and Faff extended the market model given in (1.2), in the form:

Rit = αi + βiL(ILtRMt) + βiN(INtRMt) + βiH(IHtRMt) + εi, (1.6)

where βiL, βiN , βiH are three constants defined as the systematic risks corre-

sponding to the low, neutral and high market volatility regimes, respectively.

This model is a richer specification than the traditional single factor CAPM. It

is a three-state regime-switching model with the percentiles of market volatil-

ity used as threshold parameters. The methodology that applies in analyzing

the three-beta CAPM model in Galagedera and Faff (2005) consists of beta

estimation using time series data, estimation of cross-sectional relationship

between returns and betas and accommodating market movement.

1.3 Objective of This Study

In this thesis, following the idea of Galagedera and Faff (2005), we consider

new possibility of incorporating market movements into asset pricing models

by including the changes in the conditional market volatility. We achieve this

by noticing that the model (1.6) can be expressed as

Rit = αi + (βiLILt + βiNINt + βiHIHt)RMt + εit ≡ αi + βitRMt + εit, (1.7)

which is a time-varying beta model, with

βit = βiLILt + βiNINt + βiHIHt. (1.8)

17
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Note that the volatility of market returns is partitioned into three regimes

in (1.3)–(1.5), which are the functions of the size of the conditional market

volatility, say, σMt. Therefore βit is a simple functional of the market volatility

σMt, that is

βit =





βiL if σ2
Mt < σ2

L,

βiN if σ2
L ≤ σ2

Mt < σ2
H ,

βiH if σ2
Mt ≥ σ2

H .

(1.9)

So the three-beta CAPM proposed by Galagedera and Faff (2005) is a simple

functional beta model. Although this model is more reasonable than the tradi-

tional (constant-beta) CAPM, it still suffers from some obvious shortcomings:

• First of all, why are only three beta’s sufficient for characterising the

time-varying beta? It lacks an obviously reasonable theoretical under-

pinning in practice.

• Secondly, how to choose the thresholds of σL and σH that determine the

regimes of market conditions? It lacks a reasonable method on the choice

of the thresholds, which are very important in practice, but only chosen

subjectively in Galagedera and Faff (2005).

• Thirdly, the empirical performance of the three-beta CAPM that was

developed based on the model (1.6) looks quite marginal according to

the results reported in Table 2 of Galagedera and Faff (2005), which,

as pointed out by themselves (Galagedera and Faff, 2005, Page 84), are

inconsistent across the market volatility regimes. This indicates that the

model (1.6) proposed by Galagedera and Faff (2005) may not be very

reasonable practically.
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In this thesis, we will extend the model (1.6) that was suggested by Galaged-

era and Faff (2005) and propose a general functional-beta model as follows:

Rit = αi + βi(σMt)RMt + εit, (1.10)

where βi(σMt) is a functional of the market volatility σMt. Our main objective

is to investigate whether and how securities responses to the market vary

depending on changing market volatility. In particular, we investigate whether

systematic market risks as measured by betas estimated across different market

volatility regimes are useful in explaining asset or portfolio returns.

Generally, our proposed functional-beta model (1.10) can be seen as a kind

of varying-coefficient models in the literature of statistics and econometrics,

defined by

Yt = α(Zt) + β(Zt)Xt + εt, (1.11)

where Yt and Xt are the response and regressor variables, respectively, and Zt

is a regime variable that is usually assumed to be observable in the literature of

varying-coefficient models. However, note that the market volatility σMt in our

proposed model (1.10) can not be observed directly; we have to estimate the

market volatility based on some reasonable econometric/ statistical models.

In general case, we may also assume the intercept αi depending on σMt in

the model (1.10), as done in (1.11); however, the value of αi in model (1.10)

is usually very small in practice, and therefore can be seen as a constant for

simplicity as in the usual finance literature. For a recent review regarding

varying-coefficient statistical models, the reader is referred to Fan and Zhang

(2008); see also Cai (2005) and the references therein for the varying-coefficient

econometric models under strongly (i.e., α-) mixing data generating processes,
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and Gao (2008) for review of applications of models (1.11) in economics and

finance.

In this research we focus on the problems on the functional beta in the

model (1.10). Detailedly, we are concerned with:

• A new functional-beta CAPM, which is proposed to take into account the

conditions of market volatility, under the framework of data generating

processes of near epoch dependence (NED).

This framework of data generating processes is more generally verifiable

than strongly (i.e., α-) mixing processes and is widely applicable and

necessary in the setting of the proposed model (1.10) due to the unob-

servable nature of market volatility. This is will be discussed in Section

2.2.

• How to estimate the unknown systematic market risk functional β(·)?

This is a very important and fundamental question in applications. A

nonparametric estimation procedure under NED will be suggested in

Sections 2.3 and 2.4, with the large sample distributions established in

Chapter 3, by applying the least squares local linear modelling technique

developed in Lu and Linton (2007).

• How about the finite sample performance of the suggested nonparametric

estimation procedure in estimating the functional beta model under near

epoch dependence?

Simulation study will be carefully made in Chapter 4, illustrating that

in the condition of moderate market volatility, our method provides rea-

sonable estimates of the unknown functional beta.
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• What kind of parametric forms that can be taken in the proposed functional-

beta CAPM, which is empirically satisfying with real financial data sets?

By using a set of stocks data sets collected from Australian stock mar-

ket in the past ten years, we are carefully examining the evidences of

functional-beta model in Australia, under the structure of nonparamet-

ric and parametric models, respectively, in Chapter 5. Differently from

the three- or multi-beta CAPM in Galagedera and Faff (2005), our new

findings indicate that the functional beta can be reasonably parame-

terized as threshold (regime-switching) linear functionals of the market

volatility, rather than three or more simple constant beta’s. The diffi-

cult choice of the specific regimes of market condition is suggested in

accordance with the nonparametric outcomes of the functional beta.

According to the results from nonparametric estimation, we will select rea-

sonable changing points (thresholds) that are needed in parametric estimation.

The problem of how many thresholds we should choose in the functional-

beta model will be solved by Akaike’s information corrected criterion (AICc).

Therefore, we can have a general functional-beta model which can fit the fi-

nancial real data more adaptively.

We conclude in Chapter 6, with possible future research direction sug-

gested.

1.4 Significance of This Study

By now people get a common idea: the higher the risk the higher is the ex-

pected return. This doesn’t mean, however, that investing in higher risk valu-

ables will always bring you the best return. It only means that expected returns
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will be higher in this kind of investments. How to manage the portfolio total

risk in a better way and understand the relationship between risk and return

becomes essential.

The traditional CAPM has been widely applied in financial risk manage-

ment. Similarly, our new model can be utilised extensively. For example, by

better understanding the systematic risk and the risk-return relation variation

with the market conditions, the managers of companies could make decisions

by analyzing the risk-return relationship more rationally. Investors can use

this tool to analyze their investment which is potentially more effective and

reasonable. Moreover, the empirical research allows to take a close look at the

portfolio and the principle it contains in practice. No matter how it is, it is a

useful way to better manage financial risk.
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Chapter 2

Methodology: Model and

Estimation

2.1 Introduction

We first consider the case of single security, that is i = 1 in (1.6); for simplicity

of notation we rewrite (1.6) as

Rt = α + β(σMt)RMt + εt. (2.1)

Assume we have the historical time series observations {Rt, σMt, RMt}T
t=1, and

we would estimate the unknown functions α(·) and β(·) based on these observed

data. One method that we will propose is to apply the least squares method

with combination of local linear ideas (c.f., Fan and Gijbels, 1996, Lu and

Linton, 2007). However, note that the market volatility σMt is not observable

practically, which needs to be estimated. Before we proceed on estimation, we

first of all discuss the data structure that we will assume are easily applicable
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in practice.

2.2 Data generating process: Near epoch de-

pendence

Consider to establish a model in a time series context under near epoch depen-

dence. Andrews(1995)’s work discussed nonparametric density and regression

estimators based on the local constant paradigm also under near epoch depen-

dence conditions. Lu and Linton (2007) recently established a Central Limit

Theorem for the more desirable class of local linear estimators (Fan and Gij-

bels (1996)) under similar weak dependence conditions, which provides a key

tool for developing the theory in this paper.

In time series analysis, the observations {Rt, σt, RMt}T
t=1 are conventionally

assumed to be from some stationary stochastic process that satisfies some type

of mixing conditions (c.f., Tong(1990), Fan and Yao(2003), Gao(2007)), defined

on some probability space (Ω,F ,P) (throughout the paper all the random vari-

ables are defined on this space). Among the widely used mixing conditions,

such as φ−, ρ−, β− and α− mixings, α− mixing is no doubt the weakest and

most popular in the econometric literature. For example, Cai (2005) estab-

lished the asymptotic theory for the varying-coefficient models (1.11) under

α− mixing. The rational behind this assumption is that under some suitable

conditions, the stationary solutions of many time series econometric models

(linear or nonlinear) are α− mixing; see, e.g., Gorodeskii (1997), Pham and

Tran (1985), Masry and Tostheim (1995), Lu (1998), Cline and Pu (1999),

Carrasco and Chen (2002), and Saikkonen (2001). For reference, its definition
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is stated as follows.

Definition 0. A stationary sequence Xt, t = 0,±1, ... is said to be α−mixing

if

µ(k) = sup
A∈Γn

−∞,B∈Γ∞
n+k

= |P (AB)− P (A)P (B)| → 0, (2.2)

as k → ∞ , where Γn
−∞ and Γ∞n+k are two fields generated by Xt, t ≤ n and

Xt, t ≥ n + k, respectively. We call µ(·) the mixing coefficient.

However, from a practical point of view, the α−mixing is hard to verify in

practice, especially in the case of compound processes. For the former case,

the reader is referred to Andrews (1984). For the latter case, the ARMA pro-

cess with ARCH/GARCH errors, discussed in Engle (1982) and Weiss (1984)

as well as Lin and Li (1997), is well applied in financial econometrics, where

the model is composed of two time series models, such as AR and GARCH:

Rt = a0 + a1Rt−1 + εt, εt = eth
1/2
t , ht = α0 + α1ε

2
t−1 + β1ht−1, (2.3)

where ai ’s are the coefficients in the AR model, αi ’s and βi are the coefficients

in the GARCH model, with et being i.i.d innovation with mean 0 and variance

1. It is well known that ARCH/GARCH model is α− mixing under some

mild conditions (c.f., Lu (1996a, b), Carrasco and Chen (2002)), however,

except some special cases, no general results are available to guarantee that

Rt defined in (2.3) is α− mixing. For more complex models than (2.3), it
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can be imagined that it is harder to verify the α− mixing of data generating

processes. Especially, in our functional-beta model (2.1), the market volatility

process σMt is unobservable, which is difficult to reasonably assume and verify

to be α− mixing in general. We will therefore suggest using a generalized

version of mixing processes, called stable or near epoch dependent processes,

which can easily cover the compounded processes and many nonlinear/ non-

α−mixing processes (c.f., Ibragimov (1962), Billingsley (1968) and Mcleish

(1975a, 1975b, 1977)) and has been used extensively in econometrics following

Bierens (1981), see for example Gallant (1987), Gallant and White (1988),

Andrew (1995), Lu (2001) and Lu and Linton (2007).

In general, let Yt and Xt be both stationary processes, of R1− and Rd−
valued, respectively, defined based on a stationary process {εt}by

Yt = ΨY (εt, εt−1, εt−2, ...), (2.4)

Xt = (Xt1, ..., Xtd)
τ = ΨX(εt, εt−1, εt−2, ...), (2.5)

where Xτ denotes the transpose of X (a vector or matrix),ΨY : R∞ → R1 and

ΨX : R∞ → Rd are two Borel measurable functions, respectively, and {εt} may

be vector-valued. Let V > 0 be a positive real number.

Definition 1. The stationary process {(Yt, Xt)} is said to be near epoch depen-

dent in LV norm (NED in LV for simplicity) with respect to a stationary α−
mixing process {εt}, if

vV (m) = E | Yt − Y
(m)
t |V +E||Xt + X

(m)
t ||V → 0, (2.6)
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as m → 0, where | · | and || · || are the absolute value and the Euclidean norm

of Rd, respectively,

Y
(m)
t = ΨY,m(εt, εt−1, εt−2, ..., εt−m+1),

X
(m)
t = ((X

(m)
t1 , ..., (X

(m)
td )τ = ΨX,m(εt, εt−1, εt−2, ..., εt−m+1),

ΨY,m and ΨX,m are R1− and Rd− valued Borel measurable functions with m

arguments, respectively. We will call vV (m) the stability coefficients of order

V of the process {(Yt, Xt)} .

Clearly, {(Y (m)
t , X

(m)
t )} is an α− mixing process with mixing coefficient

µm(k) ≤





µm(k −m) k ≥ m + 1

1 k ≤ m

(2.7)

The type of the setting where our results are useful is for models with compli-

cated dynamics in both mean and variance for which the usual mixing condi-

tions do not necessarily apply. These sorts of models are common in finance

and economics, and near-epoch dependence is sometimes easier to verify in the

case of these models.
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2.3 Methodology of estimation

2.3.1 Model and observations

By extending the single-factor CAPM, we propose a functional-beta CAPM

for Asset i, which reads as:

Rit = αi(σMt) + βi(σMt)RMt + εit. (2.8)

In this model, Rit is the return of financial asset i at time t, RMt is the market

return at time t, σ2
Mt is the market volatility at time t, αi is the conditional

expected specific return, εit is random specific return, and βi is the coefficient of

the contribution due to the market factor, changing with the market volatility.

For generality, we allow both αi and βi varying with the condition of market

volatility σMt, where βi(·) is particularly important, which is the systematic

risk functional, in capital asset pricing modelling.

Given the historical observations (Rit, RMt), t = 1, 2, · · · , T , we are con-

cerned with how to estimate the unknown functional beta. First of all, we

need some way to estimate the unobservable market volatility σ2
Mt. Using the

market returns RMt, t = 1, 2, · · · , T , we can try to estimate σ2
Mt in various

ways. A simple way is to apply the econometric models of ARCH of Engle

(1982) or GARCH of Bollersleve (1986), as done in Galagedera and Faff (2005).

More involved stochastic volatility models can also be applied (c.f., Gao, 2007,

Page 169). Alternatively, we can use realized market volatility as an estimate

of σ2
Mt; see Allen et al. (2008) for a comprehensive review on realized volatil-

ity. In the following we assume the market volatility σ2
Mt has been estimated,
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denoted by σ̂2
Mt, t = 1, 2, · · · , T .

2.3.2 Estimation

We now propose our methodology to estimate the unknown functional beta

in the model (2.8). As we now are only concerned with the performance of

individual asset i below, we drop the subscript i as in (2.1) for notational

simplicity. Therefore we write model (2.8) as:

Rt = α(σMt) + β(σMt)RMt + εt. (2.9)

Assume we have the historical data (Rt, RMt), t = 1, 2, · · · , T .

In this research we will estimate the unknown functional β(x) at x by least

squares local linear modelling technique (c.f. Fan and Gijbels, 1996). Al-

though the Nadaraya-Watson method is central in most nonparametric regres-

sion method in the traditional i.i.d. series case, it has been well documented

(see, for instance, Fan and Gijbels 1996) that this approach suffers from sev-

eral severe drawbacks, such as poor boundary performances, excessive bias

and low efficiency, and that the local polynomial fitting methods developed

by Stone (1977) and Cleveland (1979) are generally preferable. Local poly-

nomial fitting, and particularly its special case—local linear fitting —recently

have become increasingly popular in the light of recent work by Cleveland

and Loader (1996), Fan (1992), Fan and Gijbels (1992, 1995), Hastie and

Loader (1993), Ruppert and Wand (1994), and several others. Masry and

Fan (1997) have studied the asymptotics of local polynomial fitting for regres-

sion under general α-mixing conditions; see also Fan and Yao (2003). Recently,

Lu and Linton (2007) extend this approach to the context of our generalized
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mixing dependence—NED processes by defining an estimator of regression

function based on local linear fitting and establishing its asymptotic proper-

ties.

The basic idea of least squares local linear modelling technique with β(·)
can be described as follows. When σMt is close to x, then β(σMt) can be

approximated by

β(x) + β′(x)(σMt − x) ≡ β0 + β1(σMt − x) (2.10)

Locally at x, the model can then be approximately expressed as:

Rt ≈ α + (β0 + β1(σMt − x))RMt + εt, (2.11)

where though we also assume α depending on σMt in model (2.9) and we can

also apply local linear idea to α(·), the estimation of α(·) is of less interest

in capital asset pricing modelling, therefore in (2.11) only a local constant

method is applied to α(·) to reduce the number of unknown local parameters.

As explained in Chapter 1, we may assume α is constant as it takes on rather

small values in financial practice.

Therefore, replacing σ2
Mt by σ̂2

Mt, the least squares local linear estimate of

α(·) and β(·) in (2.9) can be made by setting α̂(x) = α̂ and β̂(x) = β̂0, where

(α̂, β̂0, β̂1) minimizes:

L(α, β0, β1) =
T∑

t=1

(Rt − [α + (β0 + β1(σ̂Mt − x)RMt]))
2K(

σ̂Mt − x

h
), (2.12)

where h = hT → 0 is bandwidth, K(x) is a kernel function, which may, for

30



Chapter 2. Methodology: Model and Estimation

example, take

K(x) = φ(x) =
1√
2π

e−
x2

2 . (2.13)

Therefore, we have three unknown local parameters α, β0 , β1 . Applying

partial differentiation, we get the expression of the estimators of the three

unknown local parameters at x as follows:




α̂

β̂0

β̂1




= A−1
T BT , (2.14)

where

AT =
T∑

t=1




1 RMt RMt(σ̂Mt − x)

RMt R2
Mt R2

Mt(σ̂Mt − x)

(σ̂Mt − x)RMt (σ̂Mt − x)R2
Mt (σ̂Mt − x)2R2

Mt




K

(
σ̂Mt − x

h

)
,

BT =




∑T
t=1 RtK( σ̂Mt−x

h
)

∑T
t=1 RMtRtK( σ̂Mt−x

h
)

∑T
t=1(σ̂Mt − x)RMtRtK( σ̂Mt−x

h
)




.

After that we can plot graphs of α(·) and β(·) according to which we will

decide the borders of market volatility regimes. Furthermore, we can divide

the beta functional into different parts by the thresholds.
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2.4 Bandwidth selection

It is obvious that the bandwidth plays an important role in the process of

estimation. Therefore, how to choose the bandwidth becomes a serious prob-

lem in the whole process. Referring to Cai and Tiwari (2000) and Cai(2002),

we choose a simple way to obtain the bandwidth for the suggested estimation

procedures. The method is described as follow:

For the given observed values {Yt = Rt}T
t=1 , the fitted values Ŷi can be calcu-

lated as

Ŷ = HhY. (2.15)

Here Y = (Y1, Y2, ..., YT )′ and Hh is called the T × T smoother or hat matrix

associated with the smoothing parameter h, whose ith row is given by

Hh,i = (1 RMi)




1 0 0

0 1 0


 (X(σ̂Mi)

′W (σ̂Mi)X(σ̂Mi)+0.0001·I)−1X(σ̂Mi)
′W (σ̂Mi),

where

X(σ) =




1 RM1 (σ̂M1 − σ)RM1

1 RM2 (σ̂M2 − σ)RM2

1 RM3 (σ̂M3 − σ)RM3

...
...

...

1 RMT (σ̂MT − σ)RMT




,
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W (σ) =




K( σ̂M1−σ
h

) 0 · · · 0

· · · · · · · · · · · ·
0 · · · 0 K( σ̂MT−σ

h
)




.

Here K(·) is the kernel function, h is the bandwidth. We apply the following

nonparametric version of AICc(h) , due to C. M. Hurvich and C. L. Tsai

(1989), to select the optimal bandwidth hopt by minimizing

AICc(h) = T log σ̂2
ε + T (1 + Th/T )(1− (Th + 2)/T ) (2.16)

σ̂2
ε =

1

T
(Y − Ŷ )′(Y − Ŷ ) =

1

T
Y ′(I −Hh)

′(I −Hh)Y (2.17)

Th is the trace of the hat matrix Hh . This selection criterion counteracts the

over/under-fitting tendency of the generalized cross-validation and the classi-

cal AIC.
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Theoretical studies: Large

sample property under NED

3.1 Notation and Assumptions

Before we state the main asymptotic distributions, we give the notation and

assumptions that will be required below.

3.1.1 Notation and main assumptions

We summarize here the main assumptions we are making on the data gen-

erating process (DGP) (Rt, σMt, RMt) in model (2.9) and the kernel K and

bandwidth h used in the estimation method (2.12). These assumptions are

basically inherited from Lu and Linton (2007).

Assumptions (A1)-(A4) are related to the nonlinear process itself.

(A1) The DGP {(Rt, σMt, RMt)} in model (2.9) is a strictly stationary NED

process (c.f., (2.6)), with order V = 2 + δ/2, with respect to some α-
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mixing process {εt} in Definition 1 in §2.2, where the constant δ > 0 is

specified in Assumption (A2) below. For all i and j in Z, the market

volatilities σMi and σmj admit a joint density fij; moreover, fij(x
′, x′′) ≤

C for all i, j ∈ Z, all x′, x′′ ∈ R1, where C > 0 is some constant, and f

denotes the marginal density of σMi.

(A2) The random variables RMt and εt in model (2.9) have finite absolute

moment of order (2 + δ), that is, E
[
|R2

Mt|2+δ
]

< ∞ and E
[
|ε2

t |2+δ
]

< ∞
for some δ > 0.

(A3) (i) The coefficient functions α(x) and β(x) in model (2.9) are twice dif-

ferentiable with their second derivatives continuous at all x. (ii) The

density function of σMt, f(x), is continuous at x. (iii) The conditional

functions gM,i(x) = E(Ri
Mt|σMt = x) and gε

M,i(x) = E(Ri
Mtε

2
t |σMt = x)

are continuous at all x, for i = 0, 1, 2.

Assumption (A4) is an assumption of the mixing coefficients in Definition

0.

(A4) For the α-mixing process εt in Definition 1, the mixing function µ(·) is

such that

lim
k→∞

ka
∞∑

j=k

{µ(j)}δ/(4+δ) = 0 for some constant a > δ/(4 + δ).

Assumption (A5) deals with the kernel function K : R→ R, to be used in

the estimation method (2.12).

(A5)(i) K is a symmetric probability density function, with |K(u)| is uniformly

bounded by some constant K+.
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(ii) |K| has an integrable second order radial majorant, that is, QK(x) :=

sup|y|≥|x|[|y|2K(y)] is integrable.

(iii) K is first order differentiable with its derivative K̇ being bounded and

Lipschitz continuous of order 1, that is, for some constant C > 0,

|K̇(u)− K̇(v)| ≤ C|u− v| for any u, v ∈ R.

This assumption allows an unbounded support for the kernel function; com-

pare this with Condition 2(i) of Masry and Fan (1997, page 170) who require

the kernel function to have a bounded support.

Throughout, for convenient reference, we are listing here some conditions

on the asymptotic behavior, as T →∞, of the bandwidth h = hT that will be

used for generality in the sequel, where Assumption (B1) below is standard,

while Assumptions (B2) through (B4) below look complex: some simple and

verifiable conditions on the stability and mixing coefficients to ensure they hold

can be given as in the main theorem of Lu and Linton (2007, Theorem 3.1 and

Corollary 3.1).

(B1) The bandwidth h tends to zero in such a way that Th →∞ as T →∞.

(B2) There is a positive integer m = mT → ∞ such that the stability coeffi-

cients, defined in (2.6) with V = 2 and V = 2 + δ/2, satisfy

T 2+4/δh−(3+2/δ)v2(m) → 0, and h−4(2+2/δ)v2(m) = O(1),

and

h−(4+δ/2+4/δ)v2+δ/2(m) = O(1).
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(B3) There exist two sequences of positive integer vectors, p = pT ∈ Z and

q = qT = 2mT ∈ Z, with m = mT →∞ such that p = pT = o(( Th)1/2),

q/p → 0 and T/p →∞, and Tp−1µ(m) → 0.

(B4) h tends to zero in such a manner that qh = O(1) such that

h−δ/(4+δ)
∞∑

t=q

{µm(t)}δ/(4+δ) → 0 as T →∞. (3.1)

Remark. Assumption (B1) is standard on the bandwidth, the same as

that in the i.i.d. case; Assumption (B2) is concerned with the conditions on

the stability coefficients related to the bandwidth; and Assumptions (B3) and

(B4) are on the mixing coefficients which are associated with the bandwidth,

among which (B3) together with (B1) is similar to the conditions specified

for the strongly mixing processes in Condition 3 of Masry and Fan (1997,

page 172). Assumptions B2-B4 are phrased as restrictions on the decay rates

of the stability and mixing coefficients for a given bandwidth, although one

could rewrite these conditions as restrictions on the bandwidth (and hence the

implied rate of convergence of the estimator) for a given decay rate thereby

allowing greater dependence at the cost of slower convergence. Although As-

sumptions (B2) through (B4) look somewhat complex, some milder and more

specific conditions can be derived from them with the bandwidth set as a power

function of the number of observations, as is generally the case in practice. For

the details, see Theorem 3.2.1 together with corollary and the remark there in

Section 3.2.

Finally, in the least squares local fitting (2.12), we assume the market

volatility σMt has been estimated by σ̂Mt, as explained in Section 2.3.1, with

the property
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(B5) max1≤t≤T |σ̂Mt − σMt| = o((Th)−1/2).

This assumption (B5) is easily satisfied when the market volatility is esti-

mated by some parametric volatility models, which is in fact of root-T conver-

gence rates.

3.2 Theorems

Let ϑ̂ = (α̂(x), β̂(x))′, which is defined in (2.12), and ϑ = (α(x), β(x))′, de-

fined in model (2.9). Then ϑ̂ is a consistent estimator of ϑ with asymptotic

distribution as follows.

Theorem 3.2.1 Assume the assumptions (A1)-(A5) and (B1-B5) hold. Then

(Th)1/2
(
ϑ̂− ϑ− 1

2
h2C∗

1(x)
)

Ã N(02, A
∗(x)−1C∗

2(x)A∗(x)−1/f(x)),

where 02 = (0, 0)′, C∗
1(x) = (α̈(x)gM,0(x)+β̈(x)gM,1(x), α̈(x)gM,1(x)+β̈(x)gM,2(x))′κ21,

A∗(x) =




1 gM,1(x)

gM,1(x) gM,2(x)


 ,

C∗
2(x) =




gε
M,0(x) gε

M,1(x)

gε
M,1(x) gε

M,2(x)


 κ02,

and κij =
∫

uiKj(u)du, gM,i(x) = E(Ri
Mt|σMt = x) and gε

M,i(x) = E(Ri
Mtε

2
t |σMt =

x).

The following corollary specifies more verifiable conditions on the mixing

and stable coefficients, as derived similarly in Theorem 3.1 of Lu and Linton

(2007, Page 47).
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Corollary 3.2.2 Let Assumptions (A1), (A2), (A3), (A5) and (B5) hold,

with v2+δ/2(x) = O(x−µ) and α(x) = O(x−λ) for some µ ≥ max{4(κ1 −
1), κ3/(1+δ/4)}κ2 and some λ > (a+1)(1+4/δ) with a > δ/(4+δ), such that

T 2+4/δhµ/κ2−κ1 → 0, Th[1+2/{(a(1+4/δ)}]/ log T →∞, and Th[2λ/{(a(1+4/δ)}−1] log T →
0 as T → ∞, where κ1 = 3 + 2/δ and κ2 = a(1 + 4/δ)(1 + δ/4)/d, κ3 =

4 + δ/2 + 4/δ. Then the conclusion of Theorem 3.2.1 holds.

Further, we can derive the following corollary which gives the conditions

under which the usually used optimal bandwidth, h = O
(
T−1/5

)
, is achievable,

as done in Corollary 3.1 of Lu and Linton (2007, Page 48).

Corollary 3.2.3 Let Assumptions (A1), (A2), (A3), (A5) and (B5) hold,

with v2+δ/2(x) = O(x−µ) and α(x) = O(x−λ) for some µ ≥ max{4(κ1 −
1), κ3/(1 + δ/4), (κ4 + κ1)}κ2 and some λ > max{(a + 1), 3a}(1 + 4/δ) with

a > δ/(4 + δ), and h = O
(
T−1/5

)
, where κ1, κ2 and κ3 are specified in Corol-

lary 3.2.2, and κ4 = 10(1 + 2/δ). Then the conclusion of Theorem 3.2.1

holds.

3.3 Sketch of Proof

As done in Lu and Linton (2007), a fundamental technique which is required

to study (2.14) is the following approximation to an NED process {(Yt, Xt)}
by an α-mixing process {(Y (m)

t , X
(m)
t )} defined in Definition 1, that is

Yt = Y
(m)
t +

(
Yt − Y

(m)
t

)
:= Y

(m)
t + δ

(m)
Y,t , (3.2)

Xt = X
(m)
t +

(
Xt −X

(m)
t

)
:= X

(m)
t + δ

(m)
X,t , (3.3)
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where

E
[
δ
(m)
Y,t

]2
= O(v2(m)), and E

[
δ
(m)
X,t

]2
= O(v2(m)), as m →∞, (3.4)

and the mixing coefficients of {(Y (m)
t , X

(m)
t )} satisfy

αm(k) ≤ 1 for k = 0, 1, . . . , m, and αm(k) = α(k−m) for k ≥ m+1, (3.5)

with α(·) defined in Definition 0. For details the reader is referred to Lu and

Linton (2007).

Proof of Theorem 3.2.1: Set ϑ̂ = (α̂, β̂0)
′, ϑ = (α(x), β(x))′, Γ =

diag{1, 1, 0} a diagonal matrix, and θ̂ = (α̂, β̂0, β̂1)
′ and θ = (α, β0, β1)

′ =

(α(x), β(x), β̇(x))′. Then it follows from (2.14) that

ϑ̂− ϑ = Γ(θ̂ − θ) = ΓA−1
T [BT − AT θ] = ΓA−1

T CT , (3.6)

where CT = BT − AT θ. For notational simplicity, we will denote ηmt =

(1, RMt, RMt(σMt − x))′. Then applying Assumptions (B5) and (A5)(iii), we

easily have

AT =
T∑

t=1

ηmtη
′
mtK((σMt − x)/h)[1 + oP ((Th)−1/2)],

BT =
T∑

t=1

ηmtRtK((σMt − x)/h)[1 + oP ((Th)−1/2)],

and

CT =
T∑

t=1

ηmt[Rt − η′mtθ]K((σMt − x)/h)[1 + oP ((Th)−1/2)],

where oP (1) is uniform in t.
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First of all, let γT = diag{1, 1, h} be a diagonal matrix, gM,i(x) = E(Ri
Mt|σMt =

x), κij =
∫

uiKj(u)du and f(x) be the probability density function of σMt.

Note that κ11 = κ31 = κ12 = κ32 = 0 for K(·) is symmetric. It follows from

Lemma 3.1 of Lu and Linton (2007) that

(Th)−1γ−1
T AT γ−1

T
P→ A(x)f(x),

where

A(x) =




1 gM,1(x) 0

gM,1(x) gM,2(x) 0

0 0 gM,2(x)κ21




.

Applying (2.9) with Taylor’s expansion, we have

Rt − η′mtθ = α̇(x)(σMt − x) +
1

2
α̈(x + ζ1(σMt − x))(σMt − x)2

+
1

2
β̈(x + ζ2(σMt − x))(σMt − x)2RMt + εt,

where |ζi| < 1 for i = 1, 2, by which we can decompose CT into two parts

CT = CT1 + CT2, (3.7)

where

CT1 =
T∑

t=1

ηmt[α̇(x)(σMt − x) +
1

2
α̈(x + ζ1(σMt − x))(σMt − x)2]K((σMt − x)/h)

+
T∑

t=1

ηmt
1

2
β̈(x + ζ(σMt − x))(σMt − x)2RMtK((σMt − x)/h), (3.8)
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and

CT2 =
T∑

t=1

ηmtεtK((σMt − x)/h). (3.9)

Now we consider

(Th)−1γ−1
T CT1

= (Th)−1
T∑

t=1

γ−1
T ηmt[α̇(x)(σMt − x) +

1

2
α̈(x + ζ1(σMt − x))(σMt − x)2]K((σMt − x)/h)

+ (Th)−1
T∑

t=1

γ−1
T ηmt

1

2
β̈(x + ζ(σMt − x))(σMt − x)2RMtK((σMt − x)/h)

= α̇(x)(Th)−1
T∑

t=1

γ−1
T ηmt(σMt − x)K((σMt − x)/h)

+
1

2
α̈(x)(1 + oP (1))(Th)−1

T∑

t=1

γ−1
T ηmt(σMt − x)2K((σMt − x)/h)

+
1

2
β̈(x)(1 + oP (1))(Th)−1

T∑

t=1

γ−1
T ηmt(σMt − x)2RMtK((σMt − x)/h)

= [hα̇(x)C10(x) +
1

2
h2α̈(x)C11(x) +

1

2
h2β̈(x)C12(x)](1 + oP (1))f(x), (3.10)

where C10(x) = (0, 0, gM,1(x)κ21)
′, C11(x) = (gM,0(x)κ21, gM,1(x)κ21, 0)′, C12(x) =

(gM,1(x)κ21, gM,2(x)κ21, 0)′, and the final equality is derived by applying Lemma

3.1 of Lu and Linton (2007, page 45).

The remaining is to establish the asymptotic normality of CT2. By applying

Lemma 3.4 of Lu and Linton (2007)

(Th)−1/2γ−1
T CT2

= (Th)−1/2
T∑

t=1

γ−1
T ηmtεtK((σMt − x)/h)

Ã N(0, C2(x)f(x)), (3.11)
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where Ã stands for the convergence in distribution, 0 = (0, 0, 0)′ and

C2(x) =




gε
M,0(x)κ02 gε

M,1(x)κ02 0

gε
M,1(x)κ02 gε

M,2(x)κ02 0

0 0 gε
M,2(x)κ22




,

with gε
M,i(x) = E(Ri

Mtε
2
t |σMt = x).

Then combining (3.6)–(3.11) leads to

(Th)1/2
(
ϑ̂− ϑ− 1

2
h2ΓA(x)−1[α̈(x)C11(x) + β̈(x)C12(x)]

)

Ã N(0, ΓA(x)−1C2(x)A(x)−1Γ/f(x)).

Note that

ΓA(x)−1[α̈(x)C11(x) + β̈(x)C12(x)] = A∗(x)−1C∗
1(x)

ΓA(x)−1C2(x)A(x)−1Γ/f(x) = (A∗(x))−1C∗
2(x)(A∗(x))−1/f(x)

where C∗
1(x) = α̈(x)C11(x)+β̈(x)C12(x) = (α̈(x)gM0(x)+β̈(x)gM1(x), α̈(x)gM1(x)+

β̈(x)gM2(x))′κ21. The proof is completed.
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Chapter 4

Simulation studies: Finite

sample performance

In this section, we report the results of a small Monte Carlo study of the

method given in this paper, the purpose of which is to illustrate that local

linear estimate of functional beta with a bandwidth gained by a method of

AICc can work well in finite samples.

4.1 GARCH Model for market volatility

We will model the market volatility by an GARCH model as follows.

As is known, GARCH model is commonly used in many researches based

on CAPM model, which can be expressed for market return process:





RMt = a0 + a1RM,t−1 + εt

εt = etσ
1/2
Mt

σ2
Mt = α0 + α1ε

2
t−1 + β1σ

2
M,t−1

(4.1)
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In the conditional mean model, in (4.1), the returns, RMt , consist of a

simple constant, plus an uncorrelated, white noise disturbance,εt . This model

is often sufficient to describe the conditional mean in a financial return se-

ries. Most financial return series do not require the comprehensiveness that

an ARMAX model provides.

In the conditional variance model, in(4.1), the variance forecast, σ2
Mt, con-

sists of a constant plus a weighted average of last period’s forecast, ε2
t−1, and

last period’s squared disturbance, σ2
Mt and et being an i.i.d. random sequence

with Eet = 0 and Ee2
t = 1. Once more, according to GARCH(1,1) model,

α0 > 0, α1 ≥ 0, β1 ≥ 0.

Since α1 + β1 < 1 in (4.1) with some suitably regular conditions (cf. Car-

rasco and Chen, 2002), the εt in GARCH(1,1) model is strongly α− mixing

with a geometrically decaying mixing coefficient.

4.2 Simulation study

In this simulated example, we will simulate samples of size 100, 300 and 500,

respectively, from the following model, to examine the estimation of the beta

functional.

According to expression (2.8), our model reads:

Rit = αi(σMt) + βi(σMt)RMt + εit, (4.2)

where

αi(x) = 1.6x, (4.3)

βi(x) = 2x + exp(−16(x− 0.5)2)− 1, (4.4)
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and

RMt = a0 + a1RM,t−1 + εt (4.5)





εt = etσMt

σ2
Mt = α0 + α1ε

2
t−1 + β1σ

2
M,t−1

(4.6)

We took the parameters a0 = 0.001682, a1 = 0.020602, α0 = 0.137526, α1 =

0.094518, β1 = 0.726777, which are the parameter estimates of the model (4.1)

obtained from the real data of the FT100 Index by using the maximum like-

lihood method procedure in the GARCH module of S-plus, which is referred

to (Lu and Linton 2007). As showed in Lu and Linton (2007, Page 50), RMt

and σMt are NED of order 2 + δ w.r.t. a strongly (α-) mixing process, if

E|εt|2+δ < ∞, with stable coefficients

v2+δ(k) = E
∣∣∣RMt −R

(k)
Mt

∣∣∣
2+δ

= O
(
|a1|(2+δ)k

)
,

decaying at a geometric rate, where R
(k)
Mt = a0/(1− a1) + εt +

∑k
j=1 aj

1εt−j, and

wk =
∑∞

j=k+1 aj
1 = O(ak

1). Here the conditions to ensure E|ε2
t |2+δ < ∞ can

be found in Carrasco and Chen (2002), and therefore E|R2
Mt|2+δ < ∞ can be

guaranteed. Hence it follows from (4.2) that (Rit, RMt, σMt is NED of order

2 + δ.

Corresponding to (2.8) in chapter 2, we have:

Rit = 1.6σMt + (2σMt + e(−16(σMt−0.5)2) − 1)RMt + εit

The boxplots of the local estimators of β(·), at 50 equally partitioned points,

based on 100 replications with each sample size equal to 100, 300 and 500,

respectively, are depicted in Figures 4.1, 4.5, and 4.9. The boxplots of the local
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estimators of α(·) are also plotted in Figures 4.3, 4.7, and 4.11 for different

sample sizes.

Overall, the simulation results in the example adapt very well to our asymp-

totic theory: with the sample size increasing, the locally estimated curves with

an AICc choice of bandwidth become more stable and fit better to actual

curve lines both for the β(·) and α(·) functions. Clearly, for beta functional,

the dashed line which represents the median value of the estimated results

of the 100 simulations tends to the solid line standing for the true value in

our assumed model with the sample size increasing in Figures 4.2, 4.6, 4.10,

respectively. Also, as Figures 4.4, 4.8, 4.12 show, the difference between the

median value of 100 simulation outcomes and the true value of alpha function

is decreasing as the sample size increases. In addition, from Figures 4.1-4.12,

it is quite obvious that the curves of β(·) and α(·) at the extreme points of

market volatility are less well estimated.
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Figure 4.1: sample size=100 boxplot
of βi(x)

Figure 4.2: sample size=100 The
dash line represents median line of
βi(x), the other is the true value of
βi(x).
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Figure 4.3: sample size=100 boxplot
of αi(x)

Figure 4.4: sample size=100 The
dash line represents median line of
αi(x), the other is the true value of
αi(x).
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Figure 4.5: sample size=300 boxplot
of βi(x)

Figure 4.6: sample size=300 The
dash line represents median line of
βi(x), the other is the true value of
βi(x).
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Figure 4.7: sample size=300 boxplot
of αi(x)

Figure 4.8: sample size=300 The
dash line represents median line of
αi(x), the other is the true value of
αi(x).
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Figure 4.9: sample size=500 boxplot
of βi(x)

Figure 4.10: sample size=500 The
dash line represents median line of
βi(x), the other is the true value of
βi(x).
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Figure 4.11: sample size=500 box-
plot of αi(x)

Figure 4.12: sample size=500 The
dash line represents median line of
αi(x), the other is the true value of
αi(x).
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Chapter 5

Empirical studies: Australian

evidence

5.1 Data

We will use a set of stocks data sets collected from Australian stock market

and the exchange rate data in the past ten years. The reason why we use the

Australian data is because we believe an Australian dataset is ideal for this

task. The Australian evidence regarding the CAPM is well studied by Ball,

Brown and Officer (1976); Faff (1991); Wood (1991); Faff (1992); Brailsford

and Faff (1997); and Faff and Lau (1997) as well as Yao and Gao (2004). Ball,

Brown and Officer (1976) may be the first published test of the CAPM using

Australian data. They employed the basic univariate testing methodology in

vogue at the time and found evidence supporting the model. On the one hand

it can be seen that a relatively few, very large companies dominate the Aus-

tralian market. For example, around forty per cent of market capitalization

and trading value is produced by just 10 stocks, whereas a similar number of
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the largest US stocks constitute only about 15 per cent of the total US mar-

ket. Moreover, there are typically prolonged periods in which many smaller

Australian companies do not trade. On the other hand, despite the above

argument, the Australian equity market belongs to the dominant group of de-

veloped markets. For instance, as at the end of 1996 it ranked tenth among all

markets in terms of market capitalization at about $US312,000 million. Inter-

estingly, this is not greatly dis-similar from the size of the Canadian market

which ranked sixth. (Faff, Brooks, Fan 2004)

According to ASX Indices (including All Ordinaries Index, ASX 200 GICS

Sectors Index), we take sample size 986, from August 2nd 2004 to August

8th 2008, for an illustration. The sectors indexes include ASX 200 GICS

Energy, ASX 200 GICS Materials, ASX 200 GICS Health Care, ASX 200

GICS Financials, ASX 200 GICS Finance-x-property trusts and ASX 200 GICS

Telecomm. Moreover, we also take two groups of individual stock data which

are ANZ bank group limited and Common Wealth bank of Australia as survey

sample of individual stock analysis.

At first we review the market return of Australia Index from August 2nd

2004 to August 8th 2008. The daily return data as Rt (for individual sector

index or for individual security), can be expressed as:

Rt = (log Pt − log Pt−1)× 100, (5.1)

where Pt represents the closing price of individual sector index in day t. The

daily market return data, RMt , can be expressed as:

RMt = (log PMt − log PM,t−1)× 100, (5.2)
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Figure 5.1: All Ordinaries Index in
Australia from August 2nd 2004 to
August 8th 2008. Sample size =986.
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Figure 5.2: the market returns of All
Ordinaries Index in Australia from
August 2nd 2004 to August 8th 2008.
Sample size =985.
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Figure 5.3: The density of market volatility of the returns on All Ordinaries Index

and PMt represents the closing price of all ordinaries index in day t, both of

which are plotted in Figures 5.2 and 5.1, respectively.

Further, we produce the market volatility by GARCH(1,1) model accord-

ing to All Ordinaries Index. In the GARCH(1,1) model (4.1), we use MAT-

LAB to calculate the parameters with: a0 = −0.10591, a1 = −0.06262, α0 =

0.006257, α1 = 0.11541, β1 = 0.88163. The kernel density estimator of the

estimated market volatility is plotted in Figure 5.3.

Both the market return and the estimated market volatility are summarized
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in the following Table 5.1:

Table 5.1: Some statistics data for the Australia index

mean std skewness kurtosis median min max
Market return -0.0354 0.9833 0.5324 8.6204 -0.0766 -4.8826 7.5389

Market volatility 0.896 0.4449 1.8904 8.6092 0.7876 0.3133 3.5655

5.2 Nonparametric evidence

Referred to Section 2.3, we use the real data to calculate the ideal bandwidth

for each Sector index. The values of AICc against 25 points of the bandwidth h

for eight groups of data (with bandwidth ranging from 0.1 to 0.7 with partition

interval of length 0.025) can be found in Figure 5.4. Hence by minimizing the

value of AICc, we can have the chosen bandwidths as follows:

Table 5.2: Bandwidth Selection

a b c d e f g h
Bandwidth 0.4 0.3 0.475 0.325 0.225 0.15 0.325 0.15

According to Section 2.3, the results of nonparametric estimation of beta

functional can be plotted in graphs. For each of eight groups of data (men-

tioned in Section 5.1), we can have a curve of beta function plotted in the solid

line in Figures 5.5-5.12, respectively. As all the beta functions are positive,

it means that the market return has positive effects on all individual return.

Moreover, the time changing of the beta factor is obvious; it also shows that

the individual returns are influenced by the market returns under conditions

of market volatility at different levels.

53



Chapter 5. Empirical studies: Australian evidence

0 5 10 15 20 25
1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

0 5 10 15 20 25
118

120

122

124

126

128

130

132

134

a) Energy sector index b) Finance sector index

0 5 10 15 20 25
830

831

832

833

834

835

836

837

838

839

840

0 5 10 15 20 25
711

712

713

714

715

716

717

718

719

720

c) Health Care sector index d) Materials sector index

0 5 10 15 20 25
325

330

335

340

0 5 10 15 20 25
1116

1118

1120

1122

1124

1126

1128

1130

1132

1134

e) Financial-x-property trusts sector
index

f) Telecomm sector index

0 5 10 15 20 25
1294

1296

1298

1300

1302

1304

1306

1308

1310

0 5 10 15 20 25
1065

1070

1075

1080

1085

1090

1095

g) ANZ bank group limited h) Common Wealth bank of
Australia

Figure 5.4: The AICc against the bandwidth h for different sector indexes.
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5.3 Parametric evidence

In this part we will focus on further investigation according to the previous

work of nonparametric outcomes in Section 5.2, which provide us with some

possible ways of parametrization of the beta functional. In a recent pioneering

work of three-beta CAPM, Galagedera and Faff (2005) who made an assump-

tion that the market conditions can play an important part in explaining a

changing beta and could be divided into three states specified as -”low”, ”neu-

tral” and ”high”.

Here we consider four types of parametric models to examine which one

appears more flexible and better fitted to the real data. (i) The first one is

the traditional CAPM with a constant beta as coefficient. (ii) The second one

is similar to the first one but it has a linear functional beta. (iii) In the third

one, we divide the market volatility into two regimes and the beta functional

can be parameterized as a two stepwise linear function. (iv) In the fourth one,

we divide the market volatility into three regimes and the beta functional can

be parameterized as a three stepwise function. Specifically,

(i) Rit = αi + βiRmt + εit βi = c

(ii) Rit = αi + βitRmt + εit βit = βi0 + βi1σMt

(iii) Rit = αi + βit,L(ILtRMt) + βit,H(IHtRMt) + εit



βit,L = βi0 + βi1σMt σMt < σL

βit,H = βi2 + βi3σMt σL < σMt

(iv) Rit = αi + βit,L(ILtRMt) + βit,N(INtRMt) + βit,H(IHtRMt) + εit
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βit,L = βi0 + βi1σMt σMt < σL

βit,N = βi2 + βi3σMt σL < σMt < σH

βit,H = βi4 + βi5σMt σH < σMt

where all the αi, βi0, βi1, βi2, βi3, βi4, βi5 are constants to be estimated by linear

regression method.

With reference to the results of non-parametric estimates in Figures 5.5-

5.12, the market volatility changing regime points σL and σH are listed below in

Table 5.3. Quite amazingly, these regime points are quite similar for different

sector indexes.

Table 5.3: Value of σL and σH

a b c d e f g h
σL 1.8 1.8 1.7 1.8 1.78 1.25 1.85 1.93
σH 2.9 2.8 2.8 3.1 2.6 2.5 2.98 2.68

One important problem in practice is the model selection, that is, which

model is the best suitable for a real data set among Models (i)–(iv). In order

to verify which type of CAPM best suits each group of data respectively,

a criterion of Akaike’s information corrected criterion, AICc, is applied in

this part by minimizing the value of AICc(m). Note that all 4 models (i)–

(iv) can be expressed in a linear model in the form Ri = (Ri1, · · · , RiT )′ =

Xb+(εi1, · · · , εiT )′ by suitably defining a T ×m matrix X and a m×1 vector

b of unknown parameters. Then we can define

AICc(m) = T log σ̂2 + T
1 + m/T

1− (m + 2)/T

R̂i = HRi H = X(X ′X)−1X ′ (5.3)
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σ̂2 =
1

n
(Rit − R̂it)

′(Rit − R̂it) =
1

n
Ri(I −H)′(I −H)Ri, (5.4)

where m is the number of parameters in each of the four CAPMs (See Ta-

ble 5.4). The results in Table 5.4 show that all the data sets select either

Model (iii) or Model (iv), which means the beta functional could be divided

into two or three regimes. Models (i) and (ii) may be too simple to describe

the relationship between market return and individual return.

Table 5.4: AICc(m) and The Type of CAPM Chosen

Model (i): m=2 (ii): m=3 (iii): m=5 (iv): m=7 chosen CAPM
Energy 1167.4258 1169.1786 1160.6101 1163.0514 (iii)
Finance 151.5946 151.8064 126.1782 129.5255 (iii)
HealthCare 860.1192 846.1207 830.3054 828.052 (iv)
Materials 741.8942 725.0961 716.733 720.3224 (iii)
F-x-P Trusts 351.267 352.6266 335.7377 337.4171 (iii)
Telecomm 1140.1429 1133.2938 1126.3665 1122.3202 (iv)
ANZ bank 1304.3262 1306.2986 1303.5346 1305.626 (iii)
Common 1074.3087 1073.4483 1091.7984 1070.8326 (iv)

The two-stepwise beta functional in Model (iii) estimated by using the com-

mon changing point σL for each data set is plotted in dashed line in the right

panel of Figures 5.5-5.12, respectively, and the three-stepwise beta functional

in Model (iv) in dashed line in the left panel of Figures 5.5-5.12, respectively.

Obviously, due to the sparseness of highly extreme market volatility σMt (c.f.,

Figure 5.1), the results of nonparametric estimation are poor and unreliable

at extreme market volatility, while the parametric results of two-stepwise or

three-stepwise beta functionals provide reasonable outcomes in Figures 5.5-

5.12. Under moderate market volatility, both nonparametric and parametric

outcomes are pretty consistent.
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In the Galagedera and Faff (2005)’ work, the functional beta is assumed as

three constants over three regimes, which is a special case of Model (iv) with

βi1 = βi3 = βi5 = 0. To examine their work, here we test the significance of

βi1, βi3, βi5 by applying T-statistics:

H0 : βi1 = βi3 = βi5 = 0 (5.5)

Applying linear regression method we get b̂ , and residuals r̂:

b̂ = (X ′X)−1X ′Ri, where b = (αi, βi0, βi1, βi2, βi3, βi4, βi5)
′, (5.6)

and let δ stand for the standard deviation of r̂ = Ri − Xb̂ . Then the T-

statistics value of each estimated parameter, Tj = b̂j√
(XXT )−1

jj δ2
, b̂j represents

the jth element of b̂ . In a standard normal distribution, only 5% of the values

fall outside the range plus-or-minus 2. Hence, as a rough rule of thumb, a t-

statistic larger than 2 in absolute value would be significant at the significance

level of 5%. The outcomes of the T-statistics with p-values for Model (iv) and

Model (iii) are listed in Tables 5.5–5.12, respectively, which indicate that the

Galagedera and Faff (2005)’ three-beta model is basically rejected.
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Table 5.5: T-statistics value, p-value for each parameter and the linear estimate
value of β̂ for Energy Sector Index

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) -1.2059 11.5787 -2.4497 -0.3729 2.5969 -0.6727 0.9653
Estimate value -0.0426 1.4396 -0.2692 -0.189 0.5783 -3.1511 1.3262
p-value (3 step) 0.2278 0 0.0143 0.7092 0.0094 0.5012 0.3344

T statistic (2 step) -1.2432 11.5622 -2.4409 0.3315 2.6166
Estimate value -0.0439 1.4387 -0.2685 0.1295 0.4277
p-value (2 step) 0.2138 0 0.0147 0.7402 0.0089

Table 5.6: T-statistics value, p-value for each parameter and the linear estimate
value of β̂ for Finance Sector Index

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) 0.429 8.9431 5.1589 5.8264 -2.179 0.8613 -0.5422
Estimate value 0.009 0.6729 0.3479 1.6381 -0.2728 2.3877 -0.4408
p-value (3 step) 0.6679 0 0 0 0.0293 0.3891 0.5877

T statistic (2 step) 0.4577 8.9454 5.1521 6.89 -2.2583
Estimate value 0.0096 0.6733 0.3475 1.5058 -0.2095
p-value (2 step) 0.6472 0 0 0 0.0239

Table 5.7: T-statistics value, p-value for each parameter and the linear estimate
value of β̂ for Health care Sector Index

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) -0.5522 11.7196 -5.1893 -0.4069 2.2513 1.6625 -1.5448
Estimate value -0.0165 1.3798 -0.5759 -0.1363 0.3496 6.5701 -1.7904
p-value (3 step) 0.5808 0 0 0.6841 0.0244 0.0964 0.1224

T statistic (2 step) -0.6096 11.6717 -5.163 1.0723 1.1938
Estimate value -0.0182 1.3785 -0.5748 0.2865 0.1413
p-value (2 step) 0.5421 0 0 0.2836 0.2325
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Figure 5.5: a) For Energy sector index:
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Figure 5.6: b) For Finance sector index:
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Figure 5.7: c) For Health care sector index:
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Figure 5.8: d) For Materials sector index:
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Figure 5.9: e) For Financial-x-Properties Trusts sector index:
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Figure 5.10: f) For Telecomm sector index:
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Figure 5.11: g) For ANZ bank group limited:
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Figure 5.12: h) For Common Wealth bank of Australia:
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Table 5.8: T-statistics value, p-value for each parameter and the linear estimate
value of β̂ for Materials Sector Index

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) -0.221 19.0194 -4.8549 2.7496 0.2854 -0.3508 0.7135
Estimate value -0.0062 1.8888 -0.4262 1.1126 0.0507 -1.3254 0.7902
p-value (3 step) 0.8251 0 0 0.006 0.7753 0.7257 0.4756

T statistic (2 step) -0.22 19.0152 -4.854 3.2799 0.7051
Estimate value -0.0062 1.8888 -0.4262 1.0225 0.092
p-value (2 step) 0.8258 0 0 0.001 0.4808

Table 5.9: T-statistics value, p-value for each parameter and the linear estimate
value of β̂ for Financial-x-trusts Sector Index

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) 0.1413 8.8193 4.2536 3.8508 -1.9635 1.1098 0.1096
Estimate value 0.0033 0.7375 0.3187 2.1994 -0.5568 0.8636 0.0297
p-value (3 step) 0.8876 0 0 0.0001 0.0496 0.2671 0.9128

T statistic (2 step) 0.2208 8.8239 4.2347 6.0216 -1.7991
Estimate value 0.0051 0.7387 0.3177 1.4638 -0.1857
p-value (2 step) 0.8253 0 0 0 0.072

Table 5.10: T-statistics value, p-value for each parameter and the linear esti-
mate value of β̂ for Telecomm Sector Index

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) 1.1926 4.9352 -1.9434 -2.1654 4.1877 -0.2755 1.017
Estimate value 0.0415 0.9055 -0.3884 -0.7364 0.8169 -0.3193 0.4112
p-value (3 step) 0.233 0 0.052 0.0304 0 0.7829 0.3091

T statistic (2 step) 1.0371 4.8863 -1.91 0.1592 3.5012
Estimate value 0.0361 0.9002 -0.3833 0.0316 0.3476
p-value (2 step) 0.2997 0 0.0561 0.8735 0.0005
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Table 5.11: T-statistics value, p-value for each parameter and the linear esti-
mate value of β̂ for ANZ bank group limited

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) 0.7384 6.6172 1.5053 2.4294 -0.9158 -0.7127 0.7853
Estimate value 0.028 0.8407 0.1637 1.6479 -0.2627 -3.6239 1.1705
p-value (3 step) 0.4603 0 0.1322 0.0151 0.3598 0.476 0.4323

T statistic (2 step) 0.7024 6.6044 1.5098 3.9594 -2.0641
Estimate value 0.0266 0.8399 0.1644 1.9847 -0.416
p-value (2 step) 0.4824 0 0.1311 0.0001 0.039

Table 5.12: T-statistics value, p-value for each parameter and the linear esti-
mate value of β̂ for Common Wealth bank of Australia

αi βi0 βi1 βi2 βi3 βi4 βi5

T statistic (3 step) -0.4701 6.3163 2.6896 5.0352 -4.2774 -1.734 2.3851
Estimate value -0.0158 0.6872 0.2446 7.138 -2.7761 -1.9581 0.9395
p-value (3 step) 0.6383 0 0.0072 0 0 0.0829 0.0171

T statistic (2 step) -0.307 6.2653 2.6284 3.4314 -1.7933
Estimate value -0.0105 0.6903 0.242 1.8461 -0.3747
p-value (2 step) 0.7588 0 0.0086 0.0006 0.0729
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Chapter 6

Conclusions

In our new model, we have suggested a functional-beta single-index CAPM,

extending the work of three-beta CAPM (Galagedera and Faff, 2004) that takes

into account the condition of market volatility. Differently from the three-beta

CAPM, we allow systematic risk βi changing functionally with the market

volatility σm, which is more flexible and adaptable to the changing structure

of financial systems. The main contributions of this thesis are summarised as

follows:

• A new functional-beta CAPM, taking into account the conditions of mar-

ket volatility, has been proposed under the framework of widely applica-

ble data generating processes of near epoch dependence (NED).

• A semi-parametric estimation procedure based on least squares local lin-

ear modelling technique under NED has been suggested with the large

sample distributions of the estimators established.

• Simulation study is fully made, illustrating that the suggested estima-

tion procedure for the proposed functional-beta CAPM under near epoch
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dependence can work well. It provides reasonable estimates of the func-

tional beta in the condition of moderate market volatility.

• By using a set of stocks data sets collected from Australian stock market

in the past ten years, empirical evidences of the functional-beta CAPM

in Australia have been carefully examined under both nonparametric

and parametric model structures. Differently from the three- or multi-

beta (constant) CAPM in Galagedera and Faff (2005), our new findings

have convincingly showed that the functional beta can be reasonably pa-

rameterized as threshold (regime-switching) linear functionals of market

volatility with two or three regimes of market condition. In the condi-

tion of extreme market volatility, a parametric threshold functional-beta

CAPM is found useful.

The CAPM provides a usable measure of risk that helps investors determine

what return they deserve for putting their money at risk. Our new model is no

doubt helpful to better understand the relationship between risk and return

under different market conditions. It can be potentially applied widely, for

example, it may be useful both for market investors and financial risk managers

in their investment/management decision-making.

As done in Galagedera and Faff (2005), it is interesting to investigate how

the functional beta systematic risk is priced in the real financial assets, which

is left for future work.
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