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Abstract 

 

The vehicle routing problem (VRP) is to service a number of customers with a fleet 

of vehicles. The VRP is an important problem in the fields of transportation, 

distribution and logistics. Typically the VRP deals with the delivery of some 

commodities from a depot to a number of customer locations with given demands. 

The problem frequently arises in many diverse physical distribution situations. For 

example bus routing, preventive maintenance inspection tours, salesmen routing and 

the delivery of any commodity such as mail, food or newspapers.  

 

We focus on the Symmetric Capacitated Vehicle Routing Problem (CVRP) with a 

single commodity and one depot. The restrictions are capacity and cost or distance. 

For large instances, exact computational algorithms for solving the CVRP require 

considerable CPU time. Indeed, there are no guarantees that the optimal tours will be 

found within a reasonable CPU time. Hence, using heuristics and meta-heuristics 

algorithms may be the only approach. For a large CVRP one may have to balance 

computational time to solve the problem and the accuracy of the obtained solution 

when choosing the solving technique. 

 

This thesis proposes an effective hybrid approach that combines domain reduction 

with: a greedy search algorithm; the Clarke and Wright algorithm; a simulating 

annealing algorithm; and a branch and cut method to solve the capacitated vehicle 

routing problem. The hybrid approach is applied to solve 14 benchmark CVRP 

instances. The results show that domain reduction can improve the classical Clarke 

and Wright algorithm by 8% and cut the computational time taken by approximately 

50% when combined with branch and cut. 

 

Our work in this thesis is organized into 6 chapters. Chapter 1 provides an 

introduction and general concepts, notation and terminology and a summary of our 

work. In Chapter 2 we detail a literature review on the CVRP. Some heuristics and 

exact methods used to solve the problem are discussed. Also, this Chapter describes 

the constraint programming (CP) technique, some examples of domain reduction, 

advantages and disadvantage of using CP alone, and the importance of combining 
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CP with MILP exact methods. Chapter 3 provides a simple greedy search algorithm 

and the results obtained by applying the algorithm to solve ten VRP instances. In 

Chapter 4 we incorporate domain reduction with the developed heuristic. The 

greedy algorithm with a restriction on each route combined with domain reduction 

is applied to solve the ten VRP instances. The obtained results show that the 

domain reduction improves the solution by an average of 24%. Also, the Chapter 

shows that the classical Clarke and Wright algorithm could be improve by 8% 

when combined with domain reduction. Chapter 4 combines domain reduction with 

a simulating annealing algorithm. In Chapter 4 we use the combination of domain 

reduction with the greedy algorithm, Clarke and Wright algorithm, and simulating 

annealing algorithm to solve 4 large CVRP instances. Chapter 5 incorporates the 

Branch and Cut method with domain reduction. The hybrid approach is applied to 

solve the 10 CVRP instances that we used in Chapter 4. This Chapter shows that 

the hybrid approach reduces the CPU time taken to solve the 10 benchmark 

instances by approximately 50%. Chapter 6 concludes the thesis and provides some 

ideas for future work. An appendix of the 10 literature problems and generated 

instances will be provided followed by bibliography.  
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Chapter 1 

Introduction 
 

 

 
 

 

Procurement, production and distribution are the traditional three stages for the 

supply chain. Managing the flow of materials and information inside and outside the 

production facilities has received increased attention over recent years.  Furthermore, 

transporting goods and commodities contribute 20%-30% of the overall cost of the 

supply chain. Moving towards more complicated logistics options, transportation 

optimization has become an important factor in reducing the product cost. 

 

Transporting raw materials to factories or goods to customers are the key objectives 

of a distribution network. Surveys done in 2001 by the Council of Logistics 

Management (CLM) in North America *  showed that transportation represents 6 

percent of the U.S. gross domestic product expenses. 

 

The vehicle routing problem (VRP) is an important problem in the distribution 

network and has a significant role in reducing the cost and improving the service. 

 

The problem is one of visiting a set of customers using a fleet of vehicles, respecting 

constraints on the vehicles, customers, drivers, and so on. The goal is to produce a 

minimum cost routing plan specifying for each vehicle, the order of the customer 

visits they make. The problem of vehicle scheduling was first formulated by Dantzig 

and Ramser (1959) and may be stated as a set of customers, each with a known 

location and a known requirement for some commodity, is to be supplied from a 

single depot by delivery vehicles, subject to the following conditions and constraints: 

  (a) The demands of all customers must be met. 

  (b) Each customer is served by only one vehicle.  

  (c) The capacity of the vehicles may not be violated (for each route the total     

demands must not exceed the vehicle capacity). 

*  AllBusiness.com (2007). 
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The objective of a solution may be stated in general terms as that of minimizing the 

total cost of delivery, namely the costs associated with the fleet size and the cost of 

completing the delivery routes (Christofides and Eilon (1969)).The problem 

frequently arises in many diverse physical distribution situations. For example bus 

routing, preventive maintenance inspection tours, salesmen routing and the delivery 

of any commodity such as mail, food or newspapers (Achuthan et al (1996)). The 

vehicle routing problem is an integer programming problem that falls into the 

category of NP-Hard problems. As the problems become larger, there will be no 

guarantee that optimal tours will be found within reasonable computing time 

(Achuthan et al (1991)).  

 

Over the past 50 years vehicle routing or dispatching problems have been extensively 

studied by researchers around the word. Algorithms have been developed to improve 

both exact and heuristic methods. The major focus of this thesis is the development 

and implementation of a hybrid approach that combines domain reduction with 

heuristics and the branch and cut method. In this thesis we consider the capacitated 

vehicle routing problem (CVRP) where the problem is to determine delivery routes, 

one for each vehicle, which minimize the total distance traveled by all vehicles. Note 

that if the vehicle has infinite capacity, the CVRP may be viewed then as a 

symmetric traveling salesman problem (STSP). Much of the computational work on 

the CVRP has been motivated by the success of methods to solve the Travelling 

Salesman Problem (TSP). Branch and Cut is a method that has been used to solve 

larger STSP effectively, the method has also proven to be effective when used to 

solve larger CVRP. 

 

The branch and cut method can be considered as an extension of branch and bound. 

As in the branch and bound method, one must compute a lower bound and an upper 

bound on a problem (minimizing problem) and divide the feasible region of a 

problem to create smaller sub-problems. The branch and bound finds a lower bound 

and upper bound at the start. If the two bounds are the same, then an optimal solution 

has been found. Otherwise, the feasible region is divided into sub-problems 

(branching). Note that, solving these subproblems will be easier than dealing with the 

original problem. At each stage a sub-problem is selected and an effort is made to 
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find its optimal solution. An optimal solution is found for the problem when no more 

branching is possible. 

The term Branch and Cut was coined by Padberg and Rinaldi (1987). The branch and 

cut solves the linear problem ignoring the integer constraints. After solving the 

problem without the integer constraints, the algorithm then generates a cut, if this cut 

is violated by the current solution then the generated cut inequality will be added as 

an extra constraint to the original problem. The process of solving the relaxation 

problem and generating the cuts is repeated until either an integer solution is found 

or until no more cutting planes are found. So in this case the problem splits into two 

sub-problems, the first with a constraint that is greater than or equal to the greatest 

integer in the intermediate result, and the second with a constraint less than or equal 

to the lesser integer. The process is repeated starting from solving the relaxed 

problem using the simplex method. However, in some NP-hard problems like the 

VRP the branch and cut method can take a long time to solve the problem and in 

some cases it fails to produce an optimal solution mainly because of the problem 

size. At this point using constraint programming (CP) may be helpful since CP is 

mainly developed to provide feasible solutions for different types of problems 

especially the large ones while branch and cut method showed the importance of 

using it to get the optimal solution for various NP-hard problems.  

 

NP-hard problems are a true challenge and often attracted attentions for their 

importance in minimizing the cost or maximizing productivity. The approaches to 

solve the optimization problems and some needed notations and terminologies are 

discussed below. 

 

1.1   Notation and Terminology 

In the application of mathematical techniques to problems arising in science and 

technology, the problem that often arises is that of optimizing a function subject to 

a set of constraints. Usually the function to be optimized represents profit or cost, 

while the constraints reflect restrictions imposed by limited resources such as 

raw materials, market requirements, equipment availability, capacity and other 

restrictions. The problem may be expressed as: 

 

 

http://en.wikipedia.org/wiki/Linear_programming_relaxation
http://en.wikipedia.org/wiki/Cutting_plane
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Problem (1.1): 

                                                   minimize Z=cx                                         

  subject to 

                                                                          Ax b 

                                                                             x 0 

 

The problem is called a Linear Program (LP), when the objective function and 

constraint set are linear and called a Mixed Integer Linear Program (MILP), if 

some of the variables are specified as integer. The problem is a pure Integer 

Linear Program (ILP), if all variable values must be integral. The VRP can be 

formulated as either a MILP or ILP. Non-linear constraints problems or 

objectives are not considered in this thesis. 

 

LP problems are easier to solve than both MILP and ILP problems. Since 

solving MILP or ILP problems normally requires the solution of one or more 

easier LP sub-problems, by dropping the integer restrictions or some of the other 

constraints. More formally, a problem (F) is a relaxation of a minimization 

problem (P) if: 

 

 The set of feasible solutions of P is a subset of the feasible solution 

of F. 

 The objective function of F bounds the objective function of P 

from below over the domain of F. 

 

Solutions of the relaxations are used in a search tree technique, such as the method 

of Branch and Bound, or Branch and Cut, to obtain optimality. The sub-problem 

is said to be fathomed, if the objective function value of the optimal solution to 

the sub-problem is at least equal to the objective function value of the best known 

solution of the original problem.  

 

The difficulty of a decision problem is classified into three classes: P, NP and 

NP-Complete. Problems for which polynomial time algorithms are known 

belong to the class P. In addition, an algorithm solves all instances of a problem 

by using a maximum number of steps that increases polynomially with the 
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problem size. The problems which can be solved by a non-deterministic algorithm 

in polynomial time and all the problems in P belong to NP class. The class NP-

Complete is a subset of NP having the property that all problems in NP can 

be reduced in polynomial time to one of them.  

 

A problem is NP-Hard if every problem in NP is polynomially reducible to 

it. Usually MILP and ILP problems are NP-Hard. In the majority of cases, only 

exponential time algorithms are known for MILPs and ILPs. For this reason 

there is no assurance of finding the solution in a reasonable amount of time.  

 

The following terms are used in the description of the solution space of a discrete 

optimization problem. We begin by considering the set of all possible solutions of 

a MILP or ILP. The restrictions to find the solutions may be described by a set of 

linear constraints, and the problem expressed in the form of Problem (1.1). 

Finding these constraints and their properties is the subject of polyhedral 

theory. A detail treatment of this subject is presented in the excellent book of 

Nemhauser and Wolsey (1988). Some basic aspects are briefly described below. 

 

Given
nRS , a point nRx  is a convex combination of points of S if there  

exists a finite set of points t

1ii}{x  in S and a vector tRλ  of non-negative 

values with 
t

i

iλ =1 and 
i

t

1i

i xλx . The convex hull of S, denoted by 

conv(S), is the set of all points that are convex combinations of S. Note that as 

a result  finite S, conv(S) can be described by a finite set of linear inequalities. In 

addition conv(S)x:cxminSx:cxmin .Thus any MILP or ILP can be 

represented as an LP provided we know a set of linear inequali ties that 

represent the solution space. Note that such a system of inequalities is usually 

incredibly large in number and generally unknown. To overcome these problems, 

the approach is to use a subset of the constraints defining conv(S) and/or 

constraints which are redundant in a minimal representation. 

 

The inequality 0ππx is called a valid inequality for Problem (1.1) if it is 

satisfied for all points in P. A linear constraint that does not exclude any 



6 

integer feasible points is called a cutting plane. If 
0ππx  is a valid 

inequality for P, and F = {x P:
0ππx }, then F is called a face of P. A face 

of P is a facet of P if dim(F) = dim(P)-1. This leads to the result that for each 

facet F of P, one of the inequalities representing F is necessary in the 

description of P. Thus the use of facets in the description of the solution space 

yields a system of inequalities of smallest number. Also, if P defines the convex 

hull of integer solutions of a discrete optimization problem, then the use of facet 

defining inequalities is most likely to give the tightest lower bounds in a Branch 

and Cut scheme. 

 

The VRP feasible and partial solutions may be modelled using a graph. A graph 

G is an ordered triple (V(G),E(G),
G

) consisting of a nonempty set V(G) of 

vertices, a set E(G) of edges disjoint from V(G) and an incidence function 
G

 

that associates with each edge of G an unordered pair of vertices of G. If u and v 

are vertices of the graph G identified with an edge e, then e is incident with u 

and v; u and v are the ends of edge e. If each edge e = uv has a positive edge 

weight 
uvc  associated with it, then the graph is weighted. Consider the 

MILP formulation of CVRP with variables x = (
ijx ). We can associate a 

weighted graph G with any solution 
ijC (x )  of the problem as follows. V(G) = 

{0,1,.. . ,n}, E(G) = }0x:j){(i, ij
, and the weight of edge (i, j) is 

ijc . 

 

The degree of a vertex u in a graph G is the number of edges of G incident with 

u. For a weighted graph G, the degree of vertex u refers to the sum total of edge 

weights, 
ijc  of edges incident with u. Arc set A(G) is used in place of E(G), if 

GΦ  specifies the vertices are ordered in its association. 

 

A graph H = (V(H),E(H), HΦ ) is a sub-graph of G = (V(G},E(G),  GΦ ) if 

HΦE(G),E(H)V(G),V(H)  is the restriction of GΦ  to E(H). Let V' be a 

non-empty subset of V(G). A graph G[V'] whose vertex set is V' and whose 

edge set is the set of those edges of G that have both ends in V' is called an 

induced sub-graph of G. ε (G[V']) denotes the number of edges of G[V']. 
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A path in a graph G is a finite, non-empty alternating sequence W = 

nn2110 v,e,...,e,v,e,v  of vertices and edges, such that for ni1 , the ends of edge 

ie  are 1iv  and iv . If the path has distinct vertices then it is a simple path. A 

cycle is a simple path with the origin 
0v  and terminus nv  the same. A 2-cycle is 

a cycle on 2 vertices and is of the form W=
02110 v,a,v,a,v where 1a  and 2a  are 

arcs from 
0v to 1v and from 1v  to 

0v , respectively. 

 

A graph G is connected if there is a path between every pair of vertices; otherwise it 

is disconnected. A tree is a connected graph without cycles. A maximal connected 

sub-graph is called a component.  

 

For a graph with n vertices, a Hamiltonian cycle is a cycle that visits each vertex 

exactly once and finishing the cycle at the starting vertex. The Travelling Salesman 

Problem (TSP) is to find a cycle through the n vertices that minimize the sum of 

the associated edge costs. Hence, any solution for TSP can be seen as a spanning 

Hamiltonian cycle of a minimum weight. Including a depot in the vertex set and 

considering more than one salesman results in a Multiple Travelling Salesman 

Problem that finds m cycles with a common vertex (representing the depot) which 

minimizes the sum of the associated edge costs. Note that the degree of the depot 

must be 2m and every other vertex has degree 2.  

 

The Bin Packing Problem (BPP) is to assign each of the items to one of the m bins 

so that the number of bins used is minimized, with the sum of the weights of items 

in any particular bin at most c, where c is the common capacity. Note that vehicle 

routing problem (VRP) can be seen as a combination of TSP and BPP. Also, any 

solution to VRP with m vehicles can be viewed as m Hamiltonian cycles 

 

Constraint satisfaction problems normally consist of finite variables with finite 

domains and finite constraints restricting the values of the variables. The problem 

solution will involve the use of logic to assign the variables with values from the 

domain so that all constraints are satisfied. The Constraint Programming (CP) 

method is the embedding of constraints in a logic programming language to solve 
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constraint satisfaction problems. The method is based on the idea of using logic to 

satisfy a large number of constraints. The Domain reduction technique is one of the 

approaches to deal with constraint satisfaction problems. As the name suggest, the 

domain reduction technique is to use logic to reduce the domain for the given 

problem. The next section provides a mathematical formulation to VRP.     

 

1.2     Problem Formulation 

The CVRP is to satisfy the demand of a set of customers using a fleet of 

vehicles with minimum cost. Achuthan et al (1996) described the problem as 

follows: 

 

Let 

 C= {1, 2,…, n}:the set of customer location. 

 0 : depot location. 

 G=(N,E) : the graph representing the vehicle routing network with  

N={0,1,…,n} and E={(i,j):i,j N, i<j}. 

 jq  : demand of customer j. 

 Q : common vehicle capacity. 

 m : number of delivery vehicles. 

 
ijc  : distance or associated cost between locations i and j. 

 L : maximum distance a vehicle can travel.  

 
jP : a lower bound on the cost of traveling from the depot to customer 

j. 

  (S): lower bound on the number of vehicles required to visit all 

locations of S in an optimal solution. Note that S C and (S)  1. 

 S : the complement of S in C 

 
ijx : 1,2, or 0 

  

The problem is to: 

  

       minimize Z= ij ij
i N i<j

c x    i N, i<j                                               (1.2.1) 
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subject to 

 

                  
0i

i C

x =2m  , i C                                                              (1.2.2)  

 

                  
ij

j<i

x +
ji

i<j

x =2  , i C                                                      (1.2.3) 

               

 

                 ijx S - (S) ,    i,j S,   S C,3 S n-2                         (1.2.4) 

 

                         ijx =1,2,or 0                                                                            (1.2.5) 

 

Constraints (1.2.2) and (1.2.3) known as degree constraints. Constraint (1.2.2) 

specifies that the number of vehicles leaving and returning to the depot are m. 

Constraint (1.2.3) specifies that each customer is visited by only one vehicle. 

Constraint (1.2.4) is referred to as subtour elimination constraints, which prevent 

subtours from forming loops disconnected from the depot, or eliminate tours that 

connected to the depot but violate the capacity restriction. Note that a connected 

component of a weighted or un-weighted graph defined over the set of customers is 

called a subtour. The subtour will be called a tour if it’s connected to the depot in a 

graph defined over all locations. Constraint (1.2.5) specifies that if a vehicle travel on 

single trip between i and j then the value of 
ijx  will be 1,and if i=0 and (0,j,0) is a 

route then the value of 
ijx  will be 2, otherwise the value of 

ijx will be 0.  

 

1.3    Review and Summary of Thesis 

The major focus of this thesis is to develop a hybrid approach to solve CVRPs. We 

develop and implement methods that combine domain reduction with heuristic 

algorithms as well as Branch and Cut method. 

 

In this thesis combining domain reduction with a greedy search heuristic (that have 

restrictions on each route) improves the solution by average of 24% and combining 

the domain reduction with the Clarke and Wright algorithm improves the solution 

by average of 8%. When domain reduction combines with branch and cut method, 
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the average time taken to solve the problems have been improved by 49.8%. The 

thesis illustrates clearly the benefits of using domain reduction to 

 

 Minimizing the cost when combined with a greedy search heuristic 

algorithm. 

 Minimizing the time taken to solve CVRPs when combined with a branch 

and cut exact method. 

 

The CVRP is a combination of the traveling salesman problem TSP and the bin 

packing problem BPP. The early work of Dantzig et al (1954) on the TSP inspired 

researchers to develop methods, theories, and constraint to solve the CVRP. In 

addition, the CVRP formula in Section 1.2 builds on the paper of Dantzig and 

Ramser (1959b) and used by Laporte et al (1985). Moreover, Fisher (1994a) showed 

how constraint (1.2.4) can be tightened, while Cornuéjols and Harche (1993) 

presented two constraints which, have successfully been used to solve CVRP. These 

constraints are: 

 

Let  
0 1 iW ,W ,…,W C   satisfy: 

 i 0W \W 1,i=1.…,s,
 

 i 0W W 1,i=1.…,s,
 

 i jW W =0,1 i < j s,
 

 s 3 and odd. 

 

The comb inequality is given by: 

 
ij

0 , 0

3s 1
x s W (m-1)

2
p

s s

p

p i j W p

                                         (1.3.1) 

 

where

0

0 j 0

1

0

0, 0 W ,

1, 0 W \ W or 0 W \ W for some j=1,…,s

2, 0 W W for some j 1, ,s.

s

i

i

s

i

i

j

if

if

if
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 For the case 
1 00 \W W  the constraints are tightened to 

 
ij 1

0 , 0

3s 1
x W m- (C\W )

2
p

s s

p

p i j W p

                                              (1.3.2)                            

 Fisher (1994a) connectivity constraint (1.3.2) tightening can be presented as follows: 

 

0i j ijx e x 2 (S) S C          with S 2,,
i S i S j S

                       (1.3.3) 

          

where 

0,                j S,

0,                j S  and S 2,

e (S)
,     j S  and S 2,

(S) 1

1,                j S S .

j
 

Constraint (1.3.3) is useful for detecting violating subtour elimination constraints. An 

alternative version of this constraint was developed by Achuthan et al (1996). 

  

ij 0i

,

x x m S (S), S C,1 S n 1.
i j s i s

      (1.3.4) 

 

We expect that VRP will receive great attention in the coming years due to the 

following reasons: 

 The improvements of TSP techniques.  

 The improvements of CP approaches and the increased attentions to combine 

CP with VRP methods. 

 The increased developments in VRP theoretical results. 

 

We review some of the heuristics and the exact methods used to solve the 

capacitated vehicle routing problem in Chapter 2. Our discussion on heuristics 

surveys both classical and metaheuristics methods. For the classical methods, we 

discuss the Clarke and Wright algorithm and the sweep algorithm. Genetic 

algorithms and simulating annealing are the metaheuristics that are reviewed.  Our 

discussion on exact methods focuses on Branch and Cut.  

 



12 

Chapter 2 also describes the techniques developed over the years to solve constraint 

satisfaction problems. A comparison between constraint programming CP and 

operational research OR techniques is provided in this Chapter. The advantages and 

disadvantages of using either CP or LP to solve optimization problems are discussed. 

     

Chapter 3 develops a simple classical heuristic algorithm for the CVRP. The 

algorithm is implemented in C++ and applied to solve 10 benchmark CVRP 

instances. The number of customers for the test problems ranges from 7 to 48. The 

optimal solutions (that we compared our results to) are obtained using CPLEX. Also 

the Algorithm results are compared to the results obtained by the Symphony 

heuristics and the Clarke and Wright (1964) saving Algorithm. Chapter 3 also 

provides some observations related to domain reduction.  

 

Chapter 4 develops the domain reduction approach to improve the greedy search 

heuristic algorithm introduced in Chapter 3. Chapter 4 combines domain reduction 

with the greedy algorithm, the Clarke and Wright algorithm and with a Simulating 

Annealing metaheuristic algorithm. This Chapter provides conclusions on the effect 

of domain reduction when combined with different heuristic algorithms. Chapter 5 

incorporates Branch and Cut method with domain reduction. The hybrid approach 

is applied to solve the 10 CVRP literature instances that we used in Chapter 4. A 

comparison of the results, time taken and gap reduction will follow. Chapter 6 

concludes the thesis and provides some suggestions for future work. 

 

An appendix of the literature and generated instances is provided followed by the 

bibliography. 
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Chapter 2 

 Literature review  

 
 

 

 

 

 

 

 

 

This Chapter reviews some of the heuristics and the exact methods used to solve 

the capacitated vehicle routing problem. It surveys both classical and 

metaheuristics methods. For the classical methods, we review the Clarke and 

Wright algorithm and the sweep algorithm. For metaheuristics we discuss genetic 

algorithms and simulating annealing.  For exact methods, our focus will be on the 

Branch and Cut technique. The Chapter shows the developments of Constraint 

Programming (CP) over the recent years. Also, we review the domain reduction 

technique. A comparison between constraint programming (CP) and operational 

research (OR) techniques, is provided with a discution on the advantages and 

disadvantages of using either (CP) or (LP) to solve optimization problems. 

 

The importance of CVRP in minimizing the cost of the distribution network has 

motivated many researches in the recent years. Many books, papers and workshops 

have presented new approaches to solve the VRP and offer a better understanding to 

the problem. Books like Toth and Vigo (2002), Rayward-Smith et al (1996), 

Goldberg (1989), Nemhauser (1988) and Golden and Assad (1988) presented the 

VRP and various techniques to solve it. Further, survey papers like Attanasio 

et al (2003), Erera and Daganzo (2003), Kleywegt et al (2002), Rousseau et al 

(1999), Vianna et al (1999) and Prosser and Shaw (1996), offer promising 

approaches to solve VRPs.  
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In their paper Garvin et al (1957), discuss the vehicle routing problem in relation to 

the distribution of gasoline to service stations, using vehicles with different 

capacities. However, Dantzig and Ramser (1959) developed the first mathematical 

programming formulation and proposed a heuristic algorithm to solve the vehicle 

routing problem. Five years later Clarke and Wright (1964) proposed a greedy 

heuristic that improves the Dantzig and Ramser algorithm. For more details on the 

methods and techniques to deal with the VRP we refer to the works of Balinski, 

and Quandt (1964), Bodin, and Golden (1981), Bodin et al (1983), Brodie and 

Waters (1998), Campos et al (1991), Carpaneto, et al(1989), Christofides (1985), 

Christofides et al (1981b), Christofides et al (1979), Desrochers et al (1990), 

Fischetti et al (1994), Forbes et al (1994), Foster, and Ryan (1976), Gaskell 

(1967), Golden and Assad (1986), Hadjiconstantinou et al (1995), Hall et al 

(1994), Kolen et al (1987), Kulkarni  and Bhave (1985), Lenstra and Rinnooy 

Kan (1981), Li et al (1991), Magnanti (1981), Naddef (1994), Nelson et al 

(1985), Paessens (1988), Ribeiro and Soumis (1994), Waters (1988),  

 

The VRP variants mentioned in Table 2.1 are the most basic ones. However, there 

are many other VRP variants that are more complicated. We refer to the work of 

Ferland and Mehelon (1988), Gendreau et al (1999), Taillard (1993a) for more 

details about heterogeneous fleet VRP, Li et al (2007) for details about VRP with 

multiple vehicle types and Salhi and Rand (1993) for more details about the 

Vehicle fleet composition problem.  
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Table 2.1: Vehicle Routing Problem Variants 

 

In this Chapter we consider the capacitated vehicle routing problem. For 

convenience we recall the notation introduced in the previous chapter. 

 C= {1, 2,…, n}:the set of customer location. 

VRP variant Description References 

Capacitated 

vehicle VRP 

 

 

VRP with time 

window 

 

 

Multiple depot  

VRP 

 

Periodic VRP 

 

 

Split delivery 

VRP 

 

Stochastic VRP 

 

 

 

VRP with 

backhauls  

 

VRP with pickup 

and delivering  

Fleet of vehicles with uniform 

capacity serves a set of customers with 

known demands from a single depot. 

 

Additional constraint that each 

customer must be served within a pre-

specified time period. 

 

Fleet of vehicles with uniform 

capacity serves a set of customers 

from multiple depots. 

Scheduling is for a fixed number of 

periods. 

 

The same customer may be served by 

a number of vehicles. 

 

Values for customers and/or demands 

and/or times are random.  

 

 

Additional constraint that customers 

can demand more commodities. 

 

Here commodities may be picked up 

from a certain customer and delivered 

to other delivery location.  

Augerat et al (1995), 

Li et al (2005). 

 

 

Solomon (1987), 

Desrochers et al 

(1992), Zbigniew and 

Piotr (2002). 

Salhi and Nagy (1999), 

Giosa et al (2002). 

 

Chao et al 

(1995),Cordeau et al 

(1997). 

Archetti et al (2006a), 

Archetti et al (2006b). 

 

Stewart and Golden 

(1983), Laporte et al 

(2002), Bent and Van 

Hentenryck (2004). 

Goetschalckx et al 

(1989), Kim et al 

(1997). 

Min (1989), 

Hernandez and 

Gonzales (2004), 

Tang and Galvao 

(2006) 
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 0 : depot location. 

 G=(N,E) : the graph representing the vehicle routing network with  

N={0,1,…,n} and E={(i,j):i,j N, i<j}. 

 
jq  : demand of customer j. 

 Q : common vehicle capacity. 

 m : number of delivery vehicles. 

 
ijc  : distance between locations i and j.  

 L : maximum distance a vehicle can travel. 

 
jP : a lower bound on the cost of traveling from the depot to customer 

j. 

  (S): lower bound on the number of vehicles required to visit all 

locations of S in an optimal solution. Note that S C and (S)  1. 

 S : the complement of S in C 

 
ijx : 1,2, or 0 

  

The problem as detailed in the previous chapter is to: 

  

                 minimize Z= ij ij
i N i<j

c x                                                       (2.1) 

subject to 

 

                   
0i

i C

x =2m  , i C                                                               (2.2) 

 

                  ij

j<i

x + ji

i<j

x    , i C                                                           (2.3) 

               

 

                 ijx S - (S) ,    i,j S,   S C,3 S n-2                            (2.4) 

 

                        ijx =1,2,or 0                                                                               (2.5) 

                         



17 

Over the past 40 years, many approaches and solution techniques have been 

developed to solve VRPs. Some of these approaches are exact like the direct tree 

search method (Christofides and Eilon 1969), the minimum K-degree centre tree 

relaxation (Christofides et al 1981a), the set partitioning based method (Agarwal et 

al 1989), the minimum k-tree relaxation (Fisher 1994 a). Some techniques to solve 

VRP are heuristics like the Clarke and Wright algorithm (1964), the multi-route 

improvement algorithm (Thompson and Psaraftis 1993 and Van Breedam 1994), 

the Fisher and Jaikumar algorithm (1981), the deterministic annealing (Dueck and 

Scheurer 1990 and Dueck 1993), the Tabu search (Badeau et al 1997, Amberg et al 

2000 and Cordeau, Laporte and Mercier 2001), and the Ant system method (Tian et 

al 2003 and Reimann et al 2004). We will describe some of the heuristics and the 

exact methods in the following sections. 

 

2.1     Classical Heuristics 

Heuristic algorithms to solve VRP have proved to be very useful for solving large 

problems in reasonable time (Atkinson (1994). Also, heuristics provide good upper 

bounds that play an important role in exact methods such as branch and cut. Over the 

last 50 years, many heuristic algorithms had been developed to solve VRP. Classical 

algorithms and metaheuristics are the classes or the families that the developed 

algorithms belong to.  

 

Constructive methods were the first category of the classical methods. Building a 

feasible solution and improving the cost is the idea behind the constructive methods. 

An example of the constructive method is the Clarke and Wright savings algorithm 

(1964). The second category of classical heuristics is the two-phase heuristics. In this 

category, customers are organized into feasible clusters, then the routes constructed 

for each of them. An example of the two-phase algorithm is the sweep algorithm of 

Laporte (1992). The following is a brief description for the above mentioned 

classical algorithms. 

 

2.1.1 The Clarke and Wright Algorithm (1964) 

This algorithm is the most popular heuristic for the VRP. The algorithm calculates 

all the savings ijs between customers i and j. Assuming that 
i0c is the cost of 
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traveling from the depot to customer i and 
ijc is the cost of traveling from customer 

i to j. The following is a description of the Clarke and Wright algorithm to solve 

the CVRP: 

 

Step 1: Compute the savings 
ij i0 0j ijs c c -c  for i,j=1,…,n and i j. Rank the 

savings 
ijs  and list them in descending order.  

Step 2: Creates the "savings list." Process the savings list beginning with the 

topmost entry in the list (the largest
ijs ). For the savings 

ijs  under consideration, 

include link (i, j) in a route if no route constraints will be violated through the 

inclusion of (i, j) in a route. The following three cases need to be considered. 

 

Case 1: If neither i nor j have already been assigned to a route, then a new 

route is initiated including both i and j. 

Case 2: If exactly one of the two points (i or j) has already been included in an 

existing route and that point is not interior to that route (a point is interior to a 

route if it is not adjacent to the depot in the order of traversal of points), then 

the link (i, j) is added to that same route. If the point is interior and not 

violating the capacity then add (i,j) to the same route. If it’s violating the 

capacity make a new route with the point (customer) i. 

Case 3: If both i and j have already been included in two different existing 

routes and neither point is interior to its route, then the two routes are merged 

by connecting i and j. If they are interior then the merge cannot be done 

 

Step3: If the savings list 
ijs has not been exhausted, return to Step 2, processing 

the next entry in the list; otherwise, stop. 

 

Example 2.1 

 

We illustrate the above algorithm using the following CVRP instance: 
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    i 

j 

0 1 2 3 4 

0  2 3 1 8 

1   2 3 4 

2    2 6 

3     8 

4      

Table 2.1.1 Cost Matrix for Clarke and Wright Example 

Note that the matrix in table 2.1.1 is symmetric because we are dealing with 

symmetric CVRP.  

The demand is (0,6,10,7,4) units and the capacity is 20 units 

Solution: Initial set of routes is  

Step 1: Compute the savings 

The savings 

 

1 to 2 2+3-2=3 

1 to 3 2+1-3=0 

1 to 4 2+8-4=6 

2 to 3 3+1-2=2 

2 to 4 3+8-6=5 

3 to 4 1+8-8=1 

 

Step 2: Creates the savings list 

 

 

The savings list 

Arc Associated saving 

1 to 4 6 

2 to 4 5 

1 to 2 3 

2 to 3 2 

3 to 4 1 

1 to 3 0 

 

 

 Step 3:  

The first route will be 0-1-4-2-0 and the second route will be 0-3-0. The total 

cost is 17. 
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We refer to the work of  Altinkemer and Gavish (1990) for more details. 

 

2.1.2    Sweep Algorithm (Wren and Holliday (1972)) 

In the sweep algorithm each vertex or customer is represented by its polar 

coordinates. Mathematically, each vertex i will be represented by 

i i( , )θ r where 
iθ  is the angle for customer i (consider the clock wise) and 

ir  is 

the ray length. Start by assigning *

iθ  =0 to an arbitrary vertex *i , then 

calculating the rest of the angles from (0, *i ). All the calculated angles will 

be ranked in an increasing order of their angles. The following steps 

describe the sweep algorithm: 

 

Step 1: Choose a vehicle v 

Step 2: Start from the vertex with the smallest angle, assign vertices to v 

so that the capacity of the vehicle is not violated. 

Step 3: Repeat until all vertices assigned. 

Step 4: Solve each route as a traveling salesman problem (TSP) to find the 

shortest path then stop. 

 

Applying the sweep algorithm to the case of Example 2.1 we get: 

Step 1: Choose a vehicle v 

Step 2: Start with 0-3 then 3-2. Note that the total demands of customers 2 

and 3 is 17, this means that the route cannot have any more customers.  

Step 3: Choosing the next vehicle and repeating Step 2. Route 2 will be 0-

1-4-0. The total cost will be 14. 

 

Note that Example 2.1 has 4 customers only. For this reason, Step 4 is not 

needed. 

 

Wren and Holliday (1972) presented a different way to calculate the polar angle that 

considers the configuration of the points around each depot (clock wise). The new 

ordering then used to generate four different initial solutions by assigning customers 

(in their paper they used cities instead of customers) starting from four different 
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positions in the ordered list. The best of these four solutions is chosen as an input to 

an improvement phase. This latter phase uses seven procedures repeatedly until no 

improvement can be done. Accurate results are reported on two problems having two 

depots and up to 176 customers. 

 

2.2     Metaheuristics 

The quality of the solution obtained by any of the metaheuristic algorithms is 

normally far better than the one obtained by the classical algorithms since 

metaheuristic algorithms explore deeply all the solution space. However, 

metaheuristics take more time than the classical heuristics. The following 

details two popular metaheuristics: 

 

2.2.1     Simulating Annealing (SA) 

As a stochastic relaxation technique, SA has its origin in statistical mechanics. The 

process of crystallizing a solid by heating it to a high temperature and gradually 

cooling it down motivates the development of SA. The SA algorithm was introduced 

by Metropolis et al. (1953). Assuming ( ) ( )tf x f x , where ( )f x is the best 

value for the objective function found so far, and ( )tf x  is the value of the objective 

function at iteration t. The solution will be accepted as a new current solution 

if 0 . If 0 , any moves with a probability of 
/Te that increase the objective 

function are accepted, where T is the temperature and its value varies from large to 

close to zero. The values of T are controlled by a cooling schedule that specifies the 

temperature values at each stage. Zbigniew and Piotr (2002) proposed that a solution 

x is drawn randomly in ( )tN x at iteration t. If ( ) ( )tf x f x , then 1tx  is set equal to 

x ; otherwise 

 

                                        1

probabilitywith

1probabilitywith
t

t

t
i

x p
x

x p
 

where tp is a decreasing function of t and of ( ) ( )tf x f x . 

 

The SA stops when:hen: 
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 The value *f  has not decreased by 
1π %  for at least 

1k consecutive cycles of 

T iterations;  

 The number of accepted moves has been less than
2π %  of T for

2k  

consecutive cycles of T iterations;  

 
ik of T iterations have been executed.  

where 1π , 2π  and 
ik are pre-specified values. 

The application of SA to solve CVRP is to take an initial solution to the problem and 

consider it as the best solution. A neighborhood search of removing and adding 

customers from the routes follows. The adding and removing is a random process 

within the above mentioned boundaries. Updating the best solution as the cost is 

reduced.  

Zbigniew and Piotr (2002) use a parallel SA approach to solve the Solomon (1987) 

set of problems. The set of problems is 54 instances each with 100 customers. The 

obtained results were close to optimal and better than any other algorithm used to 

solve the same set. SA proves to be an accurate method when used to solve VRP.    

2.2.2 Genetic algorithms (GA) 

Inspired by the biological evolutionary, Fraser (1957) proposed a computer 

simulation of evolution. The algorithm represents the solution as a population of 

chromosomes 1

1

11 { ,..., }NX XX ,where N is the number of vertices or customers. 

Then  

 Select two parent chromosomes from 1X .  

 Use the parent chromosomes to produce offspring that forms the next 

generation. 

 Mutate randomly each offspring with a small probability. 

The above three steps will be repeated K times for each iteration t=1,…,T , where 

k / 2N and T is the number of generations. Then the next step will be applied: 
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 Create 1tX , from tX . This will be done by removing the 2k worst 

solutions in tX (the ones with the highest cost) and replacing them with the 2k 

new offsprings. 

In order to apply the genetic algorithm to solve CVRP, the following must be 

considered: 

 Good genetic representation. This means the number of vehicles (routes) must 

be specified. 

 Initial population constructor. This means initial solution to the problem must 

be provided. 

 Determine fitness, crossover and mutation operators. This means a criterion for 

improving the solution must be specified.  

 

Now the genetic algorithm will repeat the following for pre-specified number of 

iterations:  

 Choose two customers. 

 Use the two customers to form a route without violating the   capacity. 

 Repeat until all customer demands are satisfied. 

 Use the fitness, crossover and mutation operators to improve the solution. 

 

Berger and Barkaoui (2004) proposed a parallel hybrid algorithm to solve 56 

benchmark problems of Solomon (1987). Each problem involves 100 customers, 

randomly distributed over a geographical area. The computational results showed 

that the algorithm is cost-effective and very competitive to the best known solution, 

and generated six new best-known solutions for the Solomon sets.  

 

2.3 Branch and Bound 

Branch and Bound (BB) is a systematic method for solving optimization problems. 

Presented by Land and Doig (1960), BB was developed to solve general discrete 

programming problems and mixed discrete programming problems. Assuming that 

the problem is a minimization problem the branch and bound procedure minimizes a 

function of the variables over a region of feasible solutions. The main components of 

branch and bound can be described as follows: 
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 An upper bound that is obtained by the application of a heuristic. It is 

important to start with a tight upper bound on the problem. 

 Problem relaxation. Relaxing the original problem by excluding some 

constraints. Problem relaxation normally provides a tight lower bound. 

 The branching rule. This represents the way to separate the sets. 

 

Let S be the set of feasible solution and T be a superset of S. T is obtained by 

excluding one or more constraints from S. The following branch and bound 

algorithm steps are as described by Balas and Toth (1985): 

Step 1: Set 0S =T the superset of S and U= as the upper bound. Create a list of 

active nodes where entries in the list consist of a lower bound 
iL and a set

iS . 

Initialize the list with initial lower bound 0L and initial set 
0S . 

Step 2: Stop if there are no entries in the list. If U=  then there is no feasible 

solution to the original problem, else the stored solution is the optimal solution 

and U is the optimal value. Otherwise, if there are entries in the list choose the 

entry from the list, say 
iS  and solve the subproblem. 

Step 3: If iL U , then discard iS and go to Step 2. 

Step 4: If the solution to the subproblem is also a solution to the original 

problem then set U= iL and store the solution. Go to Step 2. 

Step 5: Separate the feasible set of solutions iS into smaller subsets 

{ i1S , i2S ,…, inS }by the prescribed branching rule where 

n

ij i
i=1

S  S . 

Step 6: Set the lower bounds ijL on the objective function value over each set 

ijS to be equal to iL . Go to step 2. 

The following example illustrates the algorithm: 

Example 2.2: Consider the minimization problem 

              Min 
3 41 28x 11x 6x 4x                                                                     (2.2.1) 

                   Subject to      

                                        1 2 3 45x 7x 4x 3x 14                                            (2.2.2) 
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jx {0,1}     j=1,2,3,4                                                   (2.2.3) 

                                       

Solving the LP relaxed problem where (2.2.3) replaced by 
jx 1 for all j, yields the 

solution: 1x =1, 2x =1, 3

1
x

2
, 4x =0. The objective function value is 22. It’s clear 

that the LP solution is not satisfying constraint (2.2.3), since  3

1
x

2
 is not integer. 

In order to force 3x  to be integer, the branching process is applied on 3x  this creates 

two new problems, one with 3x =0 and the other with 3x =1. Solving the relaxed sub-

problems we get: 

                             3x =0: 1x =1, 2x =1, 4x =0.667, with objective value 21.65 

                             3x =1: 1x =1, 2x =0.714, 4x =0, with objective value 21.85. 

Since the problem is a minimization problem the solution with the lowest objective 

value should be chosen. So we take the sub-problem with 3x =0. Observing that the 

value of 4x is not an integer, the branching process is applied again. This results two 

sub-problems, one with 4x =0 and one with 4x =1. The procedure continues until all 

constraints are satisfied and all the values of jx , j=1,2,3,4 are integers. Figure 2.3.1 

illustrates the search tree. 

 

Figure 2.3.1: Branch and Cut Search Tree 

 

Z=22 
Fraction
al 

4 1x  

Z=21.80 
Fraction 

3 1x  

Z=21.85 
Fraction 

3 0x  

Z=21.65 
Fraction 

4 0x  

Z=18 
Integer 
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Branch and Bound is one of the good methods to find the optimal solution (Malik, 

and Yu (1993)). However, the method can take a long time and could lead to 

exponential time complexities in the worst cases (Khoury and Pardalos (1995)).  

 

The next Section provides the cutting plane technique. This technique minimizes the 

domain and sometimes accelerates the search.  

 

2.4 Cutting Plane Technique (Cornuejol 2007) 

  

Ralph Gomory introduced the cutting plane method to solve ILP and to solve general 

convex optimization problems (Boyd (1994)). The method consists of polyhedral 

cutting planes. The idea behind the cutting plane technique is to generate cuts until a 

best or an optimal solution is obtained. Figure 2.1 illustrates the method. 

 

 

Figure 2.1 Gomory cut (A Gomory cut (1998)) 

 

The method can be described as follows: 

 Solve the LP relaxation of the problem. 

 If the result is integer then it will be the optimal solution and no further work 

is required. 

 If the result of solving the LP relaxation is non-integer, then using the LP 

relaxation solution Gomory cuts are generated as we will show in the next 

example.  

 Add the generated cut to the problem as a constraint then repeat the procedure 

starting from the first step. 

http://en.wikipedia.org/wiki/Ralph_E._Gomory
http://en.wikipedia.org/wiki/Convex_optimization
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The following example illustrates the cutting plane method: 

 

Example2.3: Consider the following integer minimization problem 

                                  Min 1 27x 9x                                                                     (2.3.1)    

                             Subject to 

                                               1 2-x 3x 6                                                          (2.3.2)     

                                               1 27x x 35                                                         (2.3.3) 

                                                1x , 2x  positive integers                                       (2.3.4) 

Solving the relaxed problem yields: 

 

Variable 
1x   2x    1s         2s           -Z RHS 

1x  

 
 

2x  

0       1    
7

22
     

1

22
          0 

 

1       0     
1

22
     

3

22
         0 

7

2
 

 

9

2
 

-Z 
0       0     

28

11
     

15

11
          1 

63 

 

Table 2.2 optimal tableau  

From Table 2.2 the first constraint will be: 

                                               2x + 1 2

7 1 7
s s

22 22 2
                                            (2.3.5) 

Putting all the integer parts in one side and the fractional in the other side we get: 

                                               2x -3= 1 2

1 7 1
s s

2 22 22
                                         (2.3.6) 

It’s clear that the right hand side must be integer since the left hand side is integer. 

Also, since 2x 1  then the right hand side is negative as the left hand side is 

negative. Hence we can get the following constraint: 

                                                 1 2

1 7 1
s s

2 22 22
0                                             (2.3.7) 

In the current solution 1s and 2s  are zero, which means that (2.3.7) is violated. 

Constraint (2.3.7) is a cut and it can be added to the original problem. The process 

will continue until we have an integer solution. 
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The method when applied to some ILP or MILP problems may generate cuts in a 

way that the newly generated cut will result in little improvement from the previous 

cut. Hence the majority of the earlier researchers avoided using the method until 

Padberg and Rinaldi (1987) highlighted the benefit of combining the method 

with Branch and Bound to solve the TSP. The Branch and Cut method used the 

strength of Cutting Plane techniques to cover the weakness in Branch and 

Bound. 

 

2.5 Application of Branch and Cut Method to VRP 

The term firstly coined by Padberg and Rinaldi (1987) in their paper on the 

TSP. The term Branch and Cut refers to Branch and Bound (BB) and Cutti ng 

plane techniques. The following are some well-known approaches of branch 

and cut method to solve the VRPs.  

 

2.5.1 The Laporte et al (1985) 

Laporte et al (1985) used a Branch and Cut method to solve CVRP subject to 

distance and capacity restrictions. For Euclidean problems, they considered VRP 

with symmetric graph G=(N,E),where N is a set of nodes that may represent 

customers or cities and E is a set of undirected edges. The distance matrix 

associated with the edges is C (
ijc  or

jic ) whenever i>j. C satisfies the triangle 

inequality
ij ik kjc c c  (i,j,k N) . Laporte et al (1985) also assumed that all 

vehicles have the same capacity. This formulation was: 

Formulation: 

               minimize Z= ij ij
i<jiÎN

c x    i N, i<j                                       (2.5.1) 

 

subject to 

 

                  
0i

i C

x =2m  , i C                                                              (2.5.2) 

 

                  ij

j<i

x + ji

i<j

x    , i C                                                         (2.5.3)  
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                 ijx S - (S) ,    i,j S,   S C,3 S n-2                         (2.5.4) 

 

                         ijx =1,2,or 0                                                                            (2.5.5) 

                                                      

where constraints (2.5.2) and (2.5.3) known as degree constraints. Constraint (2.5.2) 

specifies that the number of vehicles leaving and returning to the depot are m. 

Constraint (2.5.3) specifies that each customer is visited by only one vehicle. 

Constraint (2.5.4) is referred to as subtour elimination constraints, which prevent 

subtours from forming loops disconnected from the depot, or eliminate tours that 

connected to the depot but violate the capacity restriction. Note that a connected 

component of a weighted or un-weighted graph defined over the set of customers is 

called a subtour. The subtour will be called a tour if it’s connected to the depot in a 

graph defined over all locations. Constraint (2.5.5) specifies that if a vehicle travel on 

single trip between i and j then the value of 
ijx  will be 1,and if i=0 and (0,j,0) is a 

route then the value of 
ijx  will be 2, otherwise the value of 

ijx will be 0.  

 

Algorithm: 

The algorithm to solve the above Euclidean VRP developed by Laporte , 

Nobert and Desrochers (1985) can be described in the following 10 steps: 

 

Step 1-Solve the problem using simplex method to obtain Z ,where Z  is the 

solution for the relaxed problem. 

Step 2-Compare Z  with the cost of best solution Z*. If Z Z* update the list 

of sub-problems and choose the next sub-problem then start from step 

1.Otherwise continue. 

Step 3-Force the variables that are not in the subtour to zero using subtour 

prevention constraints. 

Step 4-Purge ineffective constraints.  

Step 5-Generate distance and capacity constraints.  

Step 6-Generate Gomory cuts.   
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Step 7-Apply Branching procedure. If the solution is integer then update Z* 

and continue. Otherwise continue.  

Step 8-Backup search tree.  

Step 9-Update the list of problems.  

Step 10-End the algorithm if the list of sub-problems empty. Otherwise 

choose the next sub-problem and repeat the procedure.  

 

When the problems are non-Euclidean, Laporte et al (1985) modified the 

algorithm and the formulation for the Euclidean problems. Forcing certain 

rules on the edge 
ijx , i<j to be defined in the formulation. Also, replacing the 

subtour elimination constraint by 0i ij

S E(S,S)

x 3 x 4
i

, 3 S n-2. 

Laporte et al (1985) used Branch and Cut method to solve CVRP both 

Euclidean and non-Euclidean. Their test problems ranged from 15 to 50 

customers for the Euclidean type and from 15 to 60 customers for the non-

Euclidean assuming that the number of used vehicles is free. For each problem 

size they generated three problems. To determine the problems characteristics, 

the three generated problems were tested using different combinations of 

maximum vehicle capacity and maximum traveling distance for each vehicle.  

Laporte et al (1985) tested their algorithm on a CYBER173 computer, using 

Fortran FTN5 compiler. They used the Land and Powell (1973) LP solution  

routine. They allowed each problem a running time of 500 seconds. Laporte et 

al (1985) showed that solving non-Euclidean problems is much easier than 

solving the Euclidean ones and the obtained results were far better than those 

obtained by using branch and cut and cutting plane separately in terms of 

accuracy. 

 

Figure 2.1 and Figure 2.2 are the flow charts of the Laporte et al. (1985) 

algorithm for Euclidean and non-Euclidean problem: 
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Figure 2.1: Algorithm for Euclidian CVRP  
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Figure 2.2: Algorithm for Non-Euclidean Problems. 
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2.5.2 Achuthan et al  (2003) Improved Branch and Cut Algorithm. 

 Achuthan et al (2003) proposed several new cutting planes for capacitated 

vehicle routing problem. The proposed cutting planes used in the branch and 

cut algorithm were tested on 1,650 simulated Euclidean problems as well as 24 

standard literature problems. The problems ranged from 15-100 customers. The 

results obtained by the improved branch and cut algorithm were more accurate 

with reasonable time taken to solve the problems. 

 

Achuthan et al (2003) also, developed a number of search procedures to identify 

violations to the problem constraints. The following is a brief summary of their 

work. 

 

Consider the CVRP formulation mentioned earlier in this Chapter. Achuthan et 

al  (2003) presented new cuts described in the following results: 

 

Theorem 1: Let S, 1T , 
2T ,…

kT C be such that 

a) 2k  and 

p q

i
i S T T

q Q    for every 1 p q k;  

b) i jT T  for i j;  

c) iS T ,1 i ;k  

d) 
n

i
i=1

T= T . 

Then, for any feasible solution ( ijx ) of the CVRP we have  

                  
p=1, S (S,T) i,j T

p

3 3 S 2 Tij ij ij
i j E

x x x k .                               (2.5.7) 

Corollary 2: 1T , 
2T , 3T C satisfy the hypothesis of theorem 1. Then, for any 

feasible solution ( ijx ) of the CVRP we have 

                

p

3

, S (S,T) p=1 i,j T

2 2 S T 4ij ij ij
i j E

x x x                                        (2.5.8) 

Theorem 3: There exists an optimal solution X= ( ijx ) of the CVRP satisfying the 

following constraints: 
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                1
i,j S S

S 1ij j
j

x x   for all S C and i
i S

q Q ,                            (2.5.9)  

Q is vehicle capacity 

Theorem 4: There exists an optimal solution X= ( ijx ) of the CVRP satisfying (2.5.9) 

and the following constraints: 

 1
i,j S S

Sij j
j

x x
i

i S

2( q )

Q+1+
  , for all S C with 2 S C  and  

i
i S

q Q                                                                                                             (2.5.10) 

0,1  according as Q is odd or even                                                         

Corollary 5: There exists an optimal solution X= ( ijx ) of the CVRP with variable m 

satisfying 

               

i C

i
i C

1, if Q                                 

2( q )m

min n, ,othrwise
Q+1+

                                                 (2.5.11) 

Where 0,1  according as Q is odd or even 

 

In their paper, Achuthan et al (2003) used six searching procedures to detect 

violations. The first search was that introduced by Laporte et al (1985), the 

second and the third searches were a modification of Achuthan et al (1996). 

Others were developed to detect violations either to the  elimination constraint 

used by Laporte et al (1985) and  Achuthan et al (1996) or to the proposed 

cutting plane. 

 

Achuthan, Caccetta and Hill (2003) applied the algorithm to solve 24 

benchmark problems. Three of these problems were Christofides (1969), four 

of them were Christofides (1979), and the rest were Fisher (1994a) and Reinelt 

(1981). The algorithm solves three problems optimally when single routes 

allowed and 4 of the problems had been solved optimally when single routes 

were not allowed. In general the algorithm provides  better results than the 

known solutions at the time.  
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As any exact method branch and cut has advantages and disadvantages. The 

following section explains some of the advantages as well as disadvantages in 

using branch and cut method to solve the LP problems.  

 

2.6 The Advantages and Disadvantages of Branch and Cut 

When Branch and Cut was first used to solve VRPs, it was clear that the 

method performance was good (Araque (1989), and Araque et al (1994)). The 

Branch and Cut method improved rapidly in recent years especially when 

dealing with VRPs. The improvement of the method and the successful use of 

its applications to solve VRP encouraged researchers to use it in solving large 

scale Symmetric TSPs in recent years. As any exact method, the Branch and 

Cut method has strengths and weaknesses, also using it will result advantages 

and disadvantages. The advantages of using Branch and Cut method can be 

outlined as follows: 

 Using valid cutting planes present in the LP will save enormous time. 

   In terms of memory allocation, large savings are made by using the 

constraints present in the original linear program LP from previous lower 

bound generations. 

   By branching, the method overcame the problem of generating cuts in a 

way that the newly generated cut might be the same or slightly different than 

the previous one. 

 Generating cuts and adding the violating ones to as a constraint to the original 

problem will accelerate the search for the optimal solution. 

The disadvantages of using the method can be described as follows:  

 The method removes constraints from the LP tableau as the process continues 

searching for the optimal solution. By doing this the method saves time and 

memory. However, removing the constraints from the LP tableau (in 

some cases) may be too early and the lower bound may not be too 
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high. Therefore regenerating the early removed constraints may be 

essential in a certain stages of the process. Laporte, Nobert and 

Desrochers (1985) and Achuthan, Caccetta and Hill (2003) have shown 

that constraints rarely need to be regenerated for the CVRP. 

 At certain stages of the process and for some problems, exploring a 

node that has different restrictions to the node which was previously 

explored can result many non-tight constraint in the LP may and poor 

initial lower bound. 

 As part of the process removing child nodes from the list and then 

generating lower bound, the generated lower bound may be greater than 

the lower bound value stored when the child node was placed on the list.  

This is due to the use of different constraints in the LP.  

 

2.7 Constraint Programming (CP) 

Constraint Programming (CP) (also called Constraint Logic Programming) is the 

embedding of constraints in a logic programming language. The CP method based on 

the idea of using logic to satisfy a large number of constraints (Hooker (2005)). In 

the seventies, Artificial Intelligence researchers studied constraint satisfaction 

problems. However, it was in the eighties that the first systematic use of the 

constraint programming emerged (Roman Barták(1998)). In the following years CP 

techniques improved rapidly. As computers become faster and the world advanced in 

terms of knowledge, CP expanded it applications to solve various real life problems. 

Natural language processing, operations research, computer graphing and molecular 

biology are examples of the new domains CP expanded its application to (Hooker 

(2002)).  

  

The early work of Waltz (1972) and Montanari (1974) on picture processing inspired 

Artificial Intelligence researchers to develop logical-algorithms to satisfy the 

constraints of certain problems. Constraint satisfaction problems can be seen in 

almost all the real life sectors. For example: 

 graph coloring  

 analysis and synthesis of analog circuits  

mailto:bartak@kti.mff.cuni.cz
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 option trading analysis  

 cutting stock  

 DNA sequencing  

 scheduling  

 chemical hypothetical reasoning  

 warehouse location  

 forest treatment scheduling  

 airport counter allocation  

 puzzles like crosswords and N-queen. 

Constraint satisfaction problems normally consist of finite variables with finite 

domains and finite constraints restricting the values of the variables. The problem 

solution will involve the use of logic to assign the variables with values from the 

domain so that all constraints are satisfied.  

Mathematically in most of the cases, solving constraint satisfaction problems using 

logic algorithms will result in feasible solutions that are not optimal. The following 

are some techniques to solve constraint satisfaction problems: 

2.7.1 Binarization of Constraints 

The constraint satisfaction problem can be presented as a set of nodes. Each arc 

represents a constraint. If the originating and terminating nodes of an arc are the 

same, the node is called unary constraint, such constraints can be satisfied by 

reducing the domain. Thus, any problem with unary constraints can be converted 

to a binary constrained problem. The general approach to converting a constraint 

satisfaction problem to binary problem is: 

 Minimize the set of constrained variables in the problems by assigning 

Cartesian product domain. The summarized variables will be called 

encapsulated variables using a valid domain reduction technique.  

 Reduce the encapsulated domain. 

 Combine the resulting individual solutions to the solution of the constraint 

system. This could be achieved by either hidden variable encoding or dual 

encoding. 
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2.7.2 Systematic Search Algorithms 

Although taking a very long time to process the problem, systematic search 

algorithms were used more often in solving constraint satisfaction problems due 

to their ability in finding a solution or at least proving that there is no solution to 

the given problem. One of the following two approaches must be followed in 

order to develop a systematic algorithm: 

Generate and Test (GT) 

Algorithms in the GT approach start firstly by guessing solutions to the given 

problem, then testing if these solutions satisfy the problem constraints. Note that 

the method takes the first correct solution that satisfies all the problem constraints 

also, it rejects the guessed solution with all the values assigned to the variables 

even if one value violates a certain constraint.  

Backtracking (BT) 

Backtracking algorithms are the most powerful systematic search method used to 

solve constraint satisfaction problems. As in the generate and test method (GT), 

Backtracking starts by guessing solutions then testing one solution after the other. 

The testing procedure based on checking constraint(s) violations caused by the 

values assigned to the variables. Unlike GT the method will keep changing the 

violating values only. 

2.7.3 Consistency Techniques  

 First introduced by Waltz (1972), consistency techniques are efficient in ruling 

out inconsistent possibilities in the domain. The techniques are normally used 

combined with other constraint programming or operational research techniques 

and rarely used alone. The consistency of constraint satisfaction problems may be 

reached using one of the following techniques. 

 Node Satisfaction Technique 

This technique is easy to understand and simple to use. The variables in this 

technique are represented by nodes. A node will be called node consistent if 
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every value assigned to the variable satisfies all constraints. In case there is an 

assigned value that does not satisfy a certain constraint, the assignment will fail 

and the assigned values will be removed from the domain. 

 Arc Consistency Technique 

This technique treats each constraint as an arc connecting the nodes that normally 

represent variables. The arc will be called arc consistent if for every value in the 

domain of the first node there is a value in the second node domain such that both 

values don’t violate any constraint. All the violating values in the first node 

domain will be removed. Note that if 
i j
,a a  are two nodes and the arc (

i j
,a a ) is 

consistent, it doesn’t mean that arc (
j

a ,
i

a ) also consistent. 

 Path Consistency Technique 

The test for consistency using the arc consistency technique on two or more arcs 

will lead to the removal of a large number of values. Path consistency is a more 

efficient technique in detecting inconsistency and removing inconsistent values. 

In this technique any node with arc consistency (all arcs associated with the node 

are arc consistent) is called restricted path consistent. This means a node 
i

a  will 

be called restricted path consistent if ( i j
,a a ),(

i
a ,

k
a ) are arc consistent also if 

(
i

a ,
ma ) a non consistent arc does not exist. Clearly if (

i
a ,

ma ) exists it will be 

removed by the method. 

2.7.4 Constraint Propagation 

Constraint propagation is a technique to solve constraint satisfaction problems by 

combining systematic search and consistency techniques. To develop a constraint 

propagation algorithm, one of the following approaches is adopted. 

 Backtracking Search 

The method is a combination of Arc consistency and Backtracking; it starts by 

guessing solutions then test the guessed solution for Arc consistency. 
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 Forward Checking 

This method uses restricted arc consistency between the current variable and the 

future variables. 

 Look Ahead Search 

Unlike forward checking, this method doesn’t look for restricted arc consistency 

between the current variable and the future variables only but also performs full 

arc consistency search. 

2.7.5 Value and Variable Ordering 

This search method requires the specification of the order of variables and the 

order of the values assigned to each variable. 

 Variable Ordering 

The order of the variables may be static or dynamic i.e. either the order of the 

variable is found before the search and this ordering is kept until the end or at 

each point of the search the next variable must be specified.  

Value ordering  

After determining the order of variables, the order of the values that must be 

assigned to each variable also may be detrained in this method to solve the 

constraint satisfaction problems. The most common heuristics to determine the 

values are based on the principle of succeed first, where choosing the value of 

each variable tested by the constraints and the first succeeded value taking the 

first order and so on. 

 

2.7.6 Reducing Search   

The idea behind this method is to reduce the domain and eliminate the need for 

backtracking. The most common techniques to perform the reducing search are 

cycle-cutset and MACE. 
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 Cycle –Cutset  

This method maintains variable consistency to cut all the cycles in a graph. This 

may help finding the ordering of the rest of variables without needing the 

backtrack procedure. The next step in this method is to extend the partial solution 

to a complete solution. 

 MACE 

Named after the American computer scientist McCune (2003). This method 

maintains arc consistency in order to cut all the cycles in a constraint graph. 

 

2.8 Constraint Programming and Operations Research 

Constraint Programming (CP) and Operation Research (OR) techniques have 

provided many solution algorithms to various optimization problems over the years 

(Hooker 2007). The strengths of CP and OR algorithms can be seen through the 

solutions and the time taken to perform the search. However CP and OR algorithms 

have some weakness in processing large scale problems or NP-hard problems. 

Hooker (2002) showed that most of the CP and OR algorithms weaknesses can be 

covered by combining the two approaches together. CP algorithms can find a feasible 

solution to an optimization problem within reasonable time but such solution is 

rarely optimal. In theory OR algorithms are able to find an optimal solution for most 

of the optimization problems but the time taken to find it may be very long in most 

cases. Hence, combining CP algorithms with OR algorithms to solve an optimization 

problem may find an optimal solution within a reasonable time. Although developed 

by researchers with different scientific background to solve different kinds of 

problems, CP and OR sharing almost the same search approaches to solve problems. 

Table 2.1 provides more details. 

 

 

 

http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Computer_scientist
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Table 2.1: A Comparison Between CP and OR 

 

CP OR Search 

Method(s) 

Comments 

Systematic search 

 

 

Domain reduction 

and constraint 

propagation 

 

 

Constraints Store 

 

 

 

               

Constraint Store 

and Domain 

Reduction 

 

 

 

Branch and Bound 

 

 

Cutting Plane and 

Benders cuts 

 

  

              

Continuous 

relaxation 

 

                      

                                    

Continuous 

Relaxation and 

Cutting Plane 

 

 

Branching 

  

 

Inference 

 

 

 

Relaxation 

 

 

   

      

Strengthen 

relaxation by 

inference   

Both CP and OR 

methods relay on 

branching to search for 

the solution. 

To minimize the solution 

domain CP uses domain 

reduction and constraint 

propagation while OR 

uses cutting planes and 

benders cut approach. 

CP keep tracks of 

feasible solution using 

constraint store while 

continuous relaxation is 

so important to solve 

problems using OR 

algorithms. 

CP strengthens the 

constraint store by 

reducing variable 

domains while OR 

strengthen the 

continuous relaxation by 

adding cut. 
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2.9 Integrating CP and OR Techniques 

In recent years, many researchers have tried to introduce a unifying scheme to 

combine CP with OR techniques (Hooker 2007). Using different solving methods 

and different problems, most of the papers provided good results and most of them 

chose at least one of the following approaches: 

 Double modeling 

This approach writes the problem as a constraint satisfaction problem. The 

problem can be solved using CP techniques and also writes the same problem as 

an optimization problem that can be solved using OR techniques. While solving 

the problem, the two models will exchange information to accelerate the search 

for an optimal solution. 

 Search and Infer Duality 

This approach normally examines all possible solutions (CP techniques may be 

used), if none of the solutions are optimal then it will start branching (OR 

techniques may used). Then an inference process will start by reasoning facts 

from the constraints. 

 Decomposition 

 Using Bender’s decomposition, the problem may decompose into a master and 

sub-problems each with variable domain. The master problem will perform the 

search over some of the problem variables, while the sub-problem will solve the 

given problem using the remaining variables and by the information obtained 

from the master problem. 

 Relaxation 

This approach uses an OR relaxation technique(s) combined with search and 

infer or with the decomposition approaches. Relaxing the problem will prune the 

search tree and accelerate the search and for the decomposition approach it will 

improve the sub-problem decomposition. 
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2.10 Constraint Programming and VRP 

Commercially there are several software packages to solve VRPs using CP(ILOG 

Dispatcher 4.0, ILOG Solver 6.0, etc…) These packages according to Kilby, 

Prosser and Shaw (1998) still require additional features to perform the search, as 

they don’t have the following: 

 The ability to geo code the addresses. 

 A graphical user interface for displaying routes. 

 The ability to calculate distance and time traveled from one map point to 

another. 

 The ability to change routes manually. 

 A method of easily specifying and entering constraints. 

 Interfacing with other systems.    

The pruning achieved through propagation attracted an increase attention to use CP 

to solve VRPs. On the other hand, OR methods had been proven efficient in 

solving VRPs (Baldacci and Mingozzi (2006)). Combining CP with OR 

approaches may seems an excellent approach to deal with VRPs. However, the 

natures of the search procedures for CP and OR may cause an important problem 

that must be overcome. The CP basic principle chronological backtracking means 

that all decisions must be undone in the reverse of the order they were made. On 

the other hand, OR methods may assign a customer to a route then in the process it 

removes this customer and replaces it by another one. Then because of 

chronological backtracking to undo this customer and replace it by another one, all 

operations performed since that time must be undone as well. Kilby et al (1998) 

proposed two ways to overcome this problem. The first is to use the constraint 

system as a rule checker by allowing a heuristic or meta-heuristic to control search. 

The second way is wrapping up local search changes within an operator to insulate 

the Constraint Programming system from the changes being made at the lower 

level.  

Kilby et al (1998) also suggested that using constraint programming alone to solve 

VRPs will provide feasible solutions without considering the objective function. 
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Caseau et al (2001) proposed a hybrid algorithm that combines a genetic algorithm 

with CP. The hybrid algorithm has been applied to solve Solomon (1987) 

benchmark problems. The obtained results were close to the best known solutions 

and the time taken to solve the problems using the hybrid algorithm was less. 

 

2.11 Advantages and Disadvantages of Integrating CP with OR 

There are several advantages provided by CP and OR integrated algorithms. The 

advantages are: 

 Provide better environment in terms of modeling which may make complex 

problems simpler. 

 Reducing time taken to solve the problem. 

 Combining CP with OR techniques provide better algorithms to detect errors 

while searching for the optimal solution. 

 Using CP techniques will provide better approach to understand OR problems 

by visualizing the problem structure. 

However some disadvantages can arise when integrating CP with OR techniques. 

These disadvantages are: 

 Developing an integrated algorithm may take more time than developing CP 

algorithm or OR algorithm.  

 Integrating both methods may be hard to implement and not easy to 

understand by others. 
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Chapter 3 

Heuristics and Domain Reduction 

 

 

 

In this Chapter we develop a simple greedy search algorithm. The greedy algorithm 

is used to solve 10 literature benchmark problems. Developing a simple heuristic that 

is also accurate is a key aim of many researchers. Normally, good VRP heuristic 

algorithms must meet the following important criteria.  

 

 Accuracy 

One of the   important aspects in the criteria is accuracy since the results obtained 

by using the heuristic algorithm to solve certain VRPs are essential to decide 

whether the algorithm is good or bad.  

 

 Speed 

If the accuracy test decides the good and the bad, ugly algorithms are those 

taking a long time to find a solution. Speed in solving VRPs is another important 

point that must be met to provide good heuristic algorithm. Some real-life 

problems such as pickup and delivery may require fast actions with reasonable 

accuracy. Getting an accurate solution that takes days to be obtained, may not be 

considered useful by users who want fast solutions in a dynamic environment. 

 

 Simplicity 

Easy to understand not hard to code algorithms, are more likely to be used than 

the more complicated algorithms. The Clark and Wright algorithm stands as clear 

example of a simple algorithm preferred by end users to solve VRPs over more 

accurate but more complicated algorithms.  
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 Flexibility  

It’s important for any algorithm to be flexible in term of accommodating changes 

in the input data. Flexibility provides more options to improve the heuristic 

algorithms.        

 

Section 3.1 provides a simple greedy search algorithm developed by calculating the 

cost between each edge in order to minimize the overall cost. The greedy search 

algorithm is implemented and used to solve 10 benchmark capacitated vehicle 

routing problem instances. Also, in Section 3.1 we apply domain reduction to solve 

the generated CVRPs using the greedy search algorithm and compare the results.  

 

Section 3.2 observes the effect of the cost or distance matrix on reducing the domain 

and hence on the obtained results. Four examples are provided to help investigate the 

role of domain reduction in solving CVRP.  

 

3.1 A Simple Heuristic Algorithm for the Symmetric VRP 

 Consider the capacitated vehicle routing problem with the following notation: 

 

 C= {1, 2,…, n}:the set of customer location. 

 0 : depot location. 

 G=(N,E) : the graph representing the vehicle routing network with  

N={0,1,…,n} and E={(i,j):i,j N, i<j}. 

 jq : demand of customer j. 

 Q : common vehicle capacity. 

 m : number of delivery vehicles. 

 
ijc  : cost or distance between locations i and j. 

 L : maximum distance a vehicle can travel.  

 
jP : a lower bound on the cost of traveling from the depot to customer 

j. 

  (S): lower bound on the number of vehicles required to visit all 

locations of S in an optimal solution. Note that S C and (S)  1. 

 S : the complement of S in C 
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 O: Set of the not selected customers. 

 W: Set of selected customers. 

 
ijx : 1,2, or 0 

 

The requirements are that: 

 The total demands for each route must not exceed the capacity of the vehicle. 

 All customers must be visited and supplied by exactly one vehicle. 

 

To solve the above CVRPs, we develop a simple heuristic algorithm. The algorithm 

starts by choosing customers with the lowest distance from the depot. The number of 

chosen customers is twice the number of the vehicles.  Hence, if the number of the 

routes or vehicles is m, then the algorithm chooses 2m customers with the minimum 

distance from the depot. Next the algorithm takes the remaining customers one by 

one and connects them to one of the 2m chosen customers based on the lowest 

distance and so on until all customers have been chosen. Now the result will be 2m, 

one way edges from the depot. In order to create m routes, the algorithm connects the 

last chosen customers based on the lowest cost or distance. This set up provides m 

routes with a low distance or cost. 

 

However, to check if the set up is a solution, the algorithm calculates the demands 

for each route and compares it with the capacity. If the set up doesn’t violate the 

capacity constraint, then the set up is a solution to the problem, otherwise a new set 

up will be done. For the route that violates the capacity the most, the algorithm 

removes one of the customers (using a removing criterion) and adds the removed 

customers in the route with minimum demands (using adding criterion).  The process 

will be repeated until all routes demands become less than or equal to the capacity.  

 

The feasible solution obtained by the algorithm will be stored and the algorithm 

starts searching for another set up that is less than the current solution. The 

optimizing process will continue until all possible set ups are exhausted. The 

following describes the greedy search algorithm (Algorithm 1) in detail:  
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Algorithm 1 

Initialization:    W = ф, O = {1,2,…,n} 

Step 1: Choose 2m customers with the lowest distance from the depot, let F = 0, c = 

common vehicle capacity, 
id is the demand for customer i, O is the set of all 

non-chosen customers, W is the set of chosen customers 
nZ =1000000 

(assigning large value to 
nZ  at start then the value will be updated). 

Set up: 

Step 2: For each non-chosen customer j from O  choose customer i from W such that 

ijc is the lowest. Update W and O 

Step 3: If O = ф go to step 4, otherwise go to step 2.          

Step 4: For each customer j (the last customer connected) connect the ones with the 

lowest distance. 

Feasibility: 

Step 5: Calculate the total distances and demands for each route. If the total demands 

for each route is less than or equal to the capacity, then go to step11.  

Step 6: Choose the route that violates capacity the most. For each customer i in the 

route (the depot is not included) calculate ib  = 
ijc +

jkc -
ikc , where i is 

preceded by customer j (could be the depot) and followed by customer k 

(could be the depot). 

Step 7: Remove customer i with the maximum ib value and connect customer j with 

k. 

Step 8: Choose the route with lowest total demand. For each customer j and k in the 

route calculate ia  = 
ijc +

jkc -
ikc , customer i (i is the customer that had been 

removed in Step 7) to be added between j and k. 

Step 9: Insert customer i between j and k such that ia  is the lowest. F=F+1 

Optimizing: 

Step 10: If F>3600 stop (this limits the setups to 3600 different ones) otherwise 

choose different setup and update W and O then go to Step 2. 

Step 11: Repeat until all the feasible solutions checked. Let the feasible solution=Z*. 

Step 12: If Z*
nZ  then 

nZ =Z* 
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Step 1 is initialization step that assign values to the needed variables. In steps 2 and 3 

the algorithm takes the remaining customers one by one and checks the distance 

between them and the chosen customer. Customers with the lowest distances will be 

connected and the process will be repeated until all customers are connected. Step 4 

decides the group of customers that form a route based on the distance. At this stage 

the algorithm provides m routes in which all customers are visited by a vehicle. In 

order to be feasible, the solution must also satisfy the capacity condition that ―the 

total demand for each route must not exceed the capacity of the vehicle‖. To satisfy 

this condition, steps 6 to 10 choose the route with total demand that is beyond the 

capacity the most and also choosing the route with lowest demand. Calculating  
ib = 

ijc +
jkc -

ikc (
ib is the removing criteria) in the first route and removing the customer 

with maximum 
ib  as the equation indicate that removing the customer with the 

highest 
ib  will keep the difference in terms of distance. Now to add the removed 

customer to the lowest demand route while keeping the distance lost to this 

procedure to a minimum, the algorithm calculates 
i*

a = 
i j* *

c +
j k* *

c -
i k* *

c ( 
i*

a is the 

adding criteria) and adds the removed customer between the two customers with the 

lowest
i*

a . To avoid repeating steps 5 to 10 without getting a feasible solution, step 9 

sets F as a counter to find a feasible solution. The search for feasible solutions will be 

terminated if the process of removing and adding exceeds 3600 iterations. Steps 11-

13 set the obtained feasible solution as Z* and compare it with the value of nZ as a 

process to optimize the solution. The process will be repeated until trying all the 

possible moves and nZ will be printed as the final solution.  

 

The greedy search algorithm developed in this section can be illustrated by the 

following flow chart: 



51 

 

Buy SmartDraw!- purchased copies print this 

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

Figure 3.1: Flow Chart for VRP Improved Heuristic Algorithm 
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We implemented our algorithm in C++ and tested it on 10 literature test problems. 

The number of customers for the test problems ranged from 7 to 48. The optimal 

solutions (that we compared our results to) are obtained using CPLEX and the CVRP 

formulation that mentioned in Section 1.2. Also the Algorithm 1 results are 

compared to the results obtained by Symphony and the Clarke and Wright 

Algorithm. Table 3.1 provides details for the benchmark problems. 

 

 

Problem 

number 
References 

Number of 

customers 

1 Eilon et al  (1971) 7 

2 Eilon et al  (1971) 13 

3 Groetschel (1992) 17 

4 Groetschel (1992) 21 

5 Groetschel (1992) 24 

6 Computational Infrastructure for 

Operations Research 2003 
26 

7 Computational Infrastructure for 

Operations Research 2003 
29 

8 Eilon et al  (1971) 31 

9 Computational Infrastructure for 

Operations Research 2003 
42 

10 Held and Karp  (1970) 48 

Table 3.1: Benchmark Problems 

 

Table 3.2 provides the computational results for using Algorithm 1 on the above 

mentioned benchmark problems.  
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Table 3.2: Algorithm 1 Computation results 

 

Problem 

number 

Optimal Algorithm 1 Other heuristics 

Optimal 

solution 
Time in seconds Solution results 

Time in 

seconds 

% from 

optimal 

Symphony 

solutions 

%from 

optimal 

C&W 

Saving 

solutions 

%from 

optimal 

1 114 23.3 114 0.015 0 114 0 119 4 

2 290 2464.73 336 0.001 15.8 300 3 290 0 

3 1560 7.20 1909 0.015 22.3 2685 72 2150 38 

4 3169 7.15 3833 0.015 21 3704 17 3754 18 

5 1373 1002.40 1500 0.015 9 2053 49.5 1659 21 

6 1685 275.53 2161 0.015 28 N/A N/A 1891 12 

7 1749 2516.14 2559 0.015 46 2050 17 2107 20 

8 1111 18286 1372 0.109 23 N/A N/A 1336 20 

9 1408 18000 2071 0.093 47 1668 18 2391 70 

10 13333 18000 21644 0.125 62 14749 11 19342 45 
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According to Table 3.2, the solution obtained by the algorithm to all the Problems 

(except 1 and 5) are far from being accurate. We will discuss the reasons that cause 

this divergence. As Problem 2 is smaller in terms of size we choose to select it and 

explain the divergence.  

 

Problem 2 is Eilon et al (1971) with 13 customers, 4 trucks, 6000 units capacity, 

{1200, 1700, 1500, 1400, 1700, 1400, 1200, 1900, 1800, 1600, 1700, 1100} units 

demands and with distance matrix 

-1     9    14    21    23    22    25    32    36    38    42    50    52 

 0    -1      5    12    22    21    24    31    35    37    41    49    31 

 0     0     -1      7    17    16    23    26    30      6    36    44    46 

 0     0      0     -1    10    21    30    27    37    43    31      7    39 

 0     0      0      0     -1    19    28    25    35    41    29    31    29 

 0     0      0      0      0     -1      9    10    16    22    20    28    30 

 0     0      0      0      0      0     -1      7    11    13    17    25    27 

 0     0      0      0      0      0      0     -1    10    16    10    18    20 

 0     0      0      0      0      0      0      0     -1      6      6    14    16 

 0     0      0      0      0      0      0      0      0     -1    12    12    20 

 0     0      0      0      0      0      0      0      0      0     -1      8    10 

 0     0      0      0      0      0      0      0      0      0      0     -1    10 

 0     0      0      0      0      0      0      0      0      0      0      0     -1

 

 

 

Using the modeling and solving language and environment (Xpress mosel) to solve 

the problem (we assign 1 to depot when using Xpress), we get the following   

optimal solution with the routes: 

Solution 

4 routes 

Route 1:1- 2-1 

Route 2:1- 3-10-9-1 

Route 3:1- 5-6-8-7-1 

Route 4:1- 11-13-12-4-1 

Total distance= 290 
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While our heuristic gives the solution: 

 

Solution 

4 routes    

Route 1: 0- 9- 12- 4-0   

Route 2: 0- 1- 3- 2- 0   

Route 3: 0- 8- 11- 6- 0   

Route 4: 0- 5- 7- 10- 0   

Total Distance = 336 

 

Comparing the first route in both solutions, one can conclude that any best or optimal 

solution to the problem must take the first customer alone as a single customer route 

since the distance between the first customer and the depot is only 9 which gives 18 

as the total distance for the first route. This will drop down any solution to the given 

problem. Unfortunately, our algorithm starts by taking 2m non-removable customers 

(where m is the number of customers (Step 1)) which, means single customer routes 

solutions are not considered. In the real life problems it’s very rare that the solution 

for a given problem will involve single route customers, as running a vehicle with 

large capacity to serve only one customer seems unrealistic. For problem 8 the 

optimal solution takes customer number 30 as a single route customer which makes 

our solution far for the same reason mentioned above. 

 

3.2 Calculations  

Good results can be obtained using greedy search algorithms for VRPs when there is 

a gap in values between distances in all the rows and/or columns. This gap in values 

will help the greedy algorithms in finding the feasible solution. Having close values 

in the row or column that are governed by the demands may provide a solution that is 

far from the optimal especially in adding and removing customers to meet the 

capacity constraint.  

 

 The search for a feasible solution may lead the algorithm in the direction of 

choosing big values in order to meet the capacity conditions. The nature of a greedy 

search algorithm needs differences in values in the distance matrix. Domain 
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reduction requires differences in values so it can eliminate the large distances in the 

distance matrix. Hence, we can suggest that a greedy search algorithm provides good 

results for a certain problem as long as the domain of the given problem can be 

reduced significantly (around 50% from the maximum value given in the distance 

matrix). If the domain of the problem cannot be reduced significantly from the 

maximum distance then greedy search algorithm may provide inaccurate solution. To 

test this we generate 4 distance or cost matrices. Then we solve them using 

Algorithm 1 

 

Example 1: Consider a CVRP with the following cost or distance matrix. 

DISTANCE:   

-1    10    20     30     10    20    20    10

 0     -1    20     10     10    20    30    20

 0      0     -1     30     10    20    15    10

 0      0      0      -1     10    20    35    10

 0      0      0       0      -1    20    30    15

 0      0      0       0       0     -1    30    40

 0      0      0       0       0      0     -1    10

 0      0      0       0       0      0      0     -1 

   

DEMANDS: [(2) 10 30 10 10 5 5 10] 

 

CAPACITY: 40  

Now to reduce the domain significantly we delete the distances within 50% of the 

maximum distance. In this example we have 40 as the maximum distance or cost, 

hence all the values above 20 will be deleted. This will provides a distance matrix of 

the following shape 

DISTANCE:   

-1    10    20        -     10    20    20    10

 0     -1    20     10     10    20      -     20

 0      0     -1       -      10    20    15    10

 0      0      0      -1     10    20      -     10

 0      0      0       0      -1    20      -     15

 0      0      0       0       0     -1      -       -

 0      0      0       0       0      0     -1    10

 0      0      0       0       0      0      0     -1 
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 and solving the resulting problem using Algorithm 1we get: 

 

Solution 

2 routes    

Route 1: 0- 1- 5- 3- 6- 7- 0   

Route 2: 0- 4- 2- 0   

Total Distance = 115 

 

 

Solving the problem without domain reduction using Xpress mosel and fixing 1 as 

the depot we gets: 

 

Solution 

2 routes 

Route 1: 1 - 5-3-1 

Route 2:1 - 6-2-4-7-8-1 

Total distance= 115 

 

 

Note that the greedy search algorithm found the optimal solution faster than the exact 

method (Algorithm 1 time is 0.15 seconds and Xpress mosel time is 1.30 seconds). In 

the next example we change the second row of the distance matrix to closer values. 

 

Example 2: Consider a CVRP with the following cost or distance matrix. 

DISTANCE: 

-1    10    20    30    10    20    30     10

 0     -1    25    30    25    30    25     30

 0      0     -1    30    10    20    30      10

 0      0      0     -1    10    20      5     10
 

 0      0      0      0     -1    20    30     10

 0      0      0      0      0     -1    30     30

 0      0      0      0      0      0     -1     10

 0      0      0      0      0      0      0      -1
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The maximum distance in this example is 30, hence applying domain reduction 

within 50% of the maximum distance means deleting all the values above 15. 

Solving the reduced distance or cost matrix we obtain no feasible. Solving the 

problem without reducing the domain by 50% will give the following results: 

 

 

Solution 

2 routes    

Route 1: 0 -1- 6- 7- 0   

Route 2: 0- 2- 4 -3 -5- 0   

Total Distance = 135 

 

Solving the same problem using Xpress mosel and assigning 1 to the depot we get: 

 

Solution 

2 routes    

Route1:1- 5-4-7-2-1 

Route2:1 - 8-3-6-1 

Total distance=120 

 

The result obtained by the greedy search algorithm exceeds the 10% from the 

optimal solution. For this problem the greedy search algorithm may not be the best 

choice. The domain reduction for the problem indicates that the values in the 

distance matrix are so close it also reveals that the simple greedy search algorithm to 

deal with the problem may not be a good choice.  

 

To investigate the effect of domain reduction more we generate an 18x18 matrix in 

the next example. 

Example 3: Consider a CVRP with the following cost or distance matrix. 

 



59 

DISTANCE: 

-1  121  518  142     84    297     35    29    36  236  390  238  301   55   96  153  336  111

 0     -1  246  745   472   237   528   364  332  349  202  685  542 157 289  426  483  155

 0      0     -1  268   420     53   239   199  123  207  165  383  240 140 448  202    57  200

 0      0     0      -1   211   466     74   182  243  105  150  108  326 336 184  391  145    40

 0      0     0       0      -1     70   567   191   27   346    83    47    68 189 439  287  254  250

 0      0     0       0       0      -1   324   638 437   240  421  329  297 314  95   578  435  300

 0      0     0       0       0       0      -1   353 282   110  324    61  208 292 250  352  154  170

 0      0     0       0       0       0       0      -1 505   289  262  476  196 360 444  402  495  120

 0      0     0       0       0       0       0       0    -1   259  555  372  175 338 264  232  249    70

 0      0     0       0       0       0       0       0     0      -1  134  530  154 105 309    34    29    45

 0      0     0       0       0       0       0       0     0       0     -1    80  572 196  77   351    63    89

 0      0     0       0       0       0       0       0     0       0      0     -1  150 488 112  120  267  316

 0      0     0       0       0       0       0       0     0       0      0      0     -1 412 227  169  383    20

 0      0     0       0       0       0       0       0     0       0      0      0      0    -1   91   661 228  117

 0      0     0       0       0       0       0       0     0       0      0      0      0     0    -1   257 390    42

 0      0     0       0       0       0       0       0     0       0      0      0   0   0   0     0      -1 633    31

 0      0     0       0       0       0       0       0     0       0      0      0   0   0   0     0       0    -1  215

 0      0     0       0       0       0       0       0     0       0      0      0   0   0   0     0       0     0     -1
 

 

DEMAND: [ 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 30 ] 

CAPACITY: 70. 

Solving the problem using the greedy search algorithm and reducing the domain by 

50% we get: 

 

Solution 

3 routes    

Route 1: 0- 6 -11 -10- 16- 4- 12- 0   

Route 2: 0- 3- 9- 15- 17- 7- 0   

Route 3: 0- 8- 2- 5- 14- 13- 1- 0   

Total Distance = 1999 

 

Now solving the same problem in order to find the optimal solution we get: 
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Solution 

3 routes    

Route 1: 1-2-11-12-7-1 

Route 2: 1-4-8-18-13-5-9-1 

Route 3: 1-16-10-17-3-6-15-14-1 

Total distance= 1957 

 

 

 

Note that the domain of the problem is reducible by 50% from the maximum value 

given in the distance matrix and the result obtained by the heuristic algorithm is very 

close to the optimal (only 2% from the optimal). 

 

Example 4: 

Changing the last row/column in the distance matrix in Example 3 from  

111 155 200  40 250 300 170 120  70  45  89 316  20 117  42  31 215  0 

to 

 390 399 393 400 399 396 397 390 395 410 389 392 410 395 400 399 390 0 

we have close values to the maximum distance given in the distance matrix. Now 

solving the new modified problem using the heuristic algorithm without reducing the 

domain (since no feasible solution can be obtained if we reduce the domain by 50%) 

we obtain: 

 

Solution 

3 routes   

Route 1: 0- 7- 17- 10- 14- 13- 0 

Route 2: 0- 3- 16- 9- 15- 12- 8- 0   

Route 3: 0- 6- 11- 4- 5- 2- 1- 0   

Total Distance = 2394 

 

 

Now solving the same problem using Xpress to find the optimal solution we get: 
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Solution 

3 routes   

Route 1: 1 - 2-18-8-1 

Route 2: 1 - 7-4-11-12-13-5-9-1 

Route 3: 1 - 14-15-6-3-17-10-16-1 

Total distance= 2126 

 

 

It’s clear that the solution obtained by the heuristic algorithm is more than 10% from 

the optimal. The following table provides more details: 

Example 

number 

Optimal 

results 

Greedy 

search results 

Results with domain 

reduced by 50% 

Percentage from optimal 

1 115 115 115 0% 

2 120 135 N/A 12% 

3 1957 1999 1999 2% 

4 2126 2394 N/A 13% 

Table 3.3 Domain reduction results 

 

3.3 Conclusion 

Table 3.3 illustrates that if the distance matrix of a VRP instance cannot be reduced 

significantly then the results obtained by the greedy search algorithm may not be 

accurate. As we observed, greedy search algorithms may provide more accurate 

results if applied to solve VRP instances that allow a significant domain reduction. 

According to the examples in this Chapter the form of the given data matrix 

influences not only the size of the problem, but also how hard the problem is. 

Although it’s simple, fast and flexible, the accuracy of the greedy search algorithm 

that we developed in this Chapter may require some improvement. Observing the 

effect of domain reduction on the generated problems, we will combine in the next 

Chapter the greedy algorithm with domain reduction and observe the results.   
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Chapter 4 

Heuristic Algorithm for CVRP 
 

VRP heuristic algorithms can be divided into two types: Classical heuristics such as: 

the Clark and Wright algorithm (1964), the sweep algorithms and the Fisher and 

Jaikumar (1981) algorithm, and metaheuristics such as: Simulating Annealing and 

Genetic algorithms. Heuristic algorithms have proved to be very useful for solving 

large VRPs in reasonable time. Also, good heuristics can provide good upper bounds 

that play an important role in exact methods.  

 

This Chapter provides computational results that show the domain reduction can 

improves the Clarke and Wright algorithm by 8% and Algorithm 1 by 24% when 

combined with Distance Constrained VRP (DCVRP). Also, the Chapter 

investigates the effect of domain reduction on Simulating Annealing metaheuristic. 

 

In Section 4.1 we provide a description to the domain reduction restriction that we 

will use in this Chapter. Section 4.1.1 combines the domain reduction condition with 

the greedy search algorithm that we described in Chapter 3 (Algorithm 1). Section 

4.1 discuses the importance of tightening Algorithm 1 and we propose a Distance 

Constrained VRP (DCVRP) as an approach. Section 4.1.2 describes (DCVRP), and 

provides the mathematical formulation to the problem. Section 4.1.2 Also provides 

computational results for using Algorithm 2 (a combination of Algorithm 1, domain 

reduction and DCVRP) to solve the 10 benchmark problems that we mentioned in 

Chapter 3. 

 

Section 4.2 combines the Clarke and Wright (C&W) algorithm with the domain 

reduction to solve the 10 literature benchmark CVRPs.  

 

Section 4.3 describes Zbigniew and Piotr (2002) Simulating Annealing (SA) 

algorithm and uses it to solve the 10 benchmark CVRPs. This Section observes that 

the domain reduction didn’t affect the results of Simulating Annealing metaheuristic 

(SA) when applied to solve the 10 benchmark CVRPs. 
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Section 4.4 uses Algorithm 2, (C&W) and (SA) to solve large VRPs combined with 

domain reduction. The obtained results showed that combining domain reduction 

with the Clarke and Wright algorithm improve the results by 39% when applied to 

large CVRP instances. Section 4.5 concludes the Chapter. 

   

4.1 Domain Reduction  

To survey the influence of domain reduction on our solution we added a new 

constraint that deletes some large numbers from the distance matrix and thus forbids 

the use of certain links. The new restriction is 

                                                    
ijc R                    i,j=1,2,…,n 

where
ijc represent the cost between i and j, and R is a threshold that depends on the 

maximum number in the distance matrix. 

 

The new domain reduction restriction will delete some unneeded values from the 

distance matrix and setting the components to ―0‖. This may help tighten our 

heuristic and change the direction of the search. 

 

4.1.1 Computations 

In order to observe the effect of the domain reduction restriction more closely, the 

value of R will be determined manually by the user based on the maximum number 

in the distance matrix. The way we implement the algorithm will calculate the 

maximum distance used in the distance matrix and the program will not start unless 

we give a percentage on how far from the maximum we need the value of R. If we 

take Problem 2 as an example we can see that the maximum distance used in this 

problem is 128. By directing the program to solve Problem 2 and assigning 0 to the 

percentage, the program will take 100% of the maximum distance. Hence, 90 means 

the program set the values above 90% of 128 to infinity. 

 

Algorithm 1 showed some weakness when removing and adding the nodes from the 

violating routes. In Algorithm 1 removing nodes one by one to meet the capacity can 

increase the objective value rapidly especially when dealing with hard VRPs. One 

can suggest removing two or more nodes to improve the solution. However by 
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removing two or more customers every time, we may lose the simplicity and the 

speed gained by our developed algorithm.  

 

In Algorithm 1, we use the procedure of removing and adding customers from the 

routes without any restrictions on the distance. Using simple equations (removing 

equation) 
ib =

ijc +
jkc - 

ikc and (adding equation) 
i*

a = 
i j* *

c +
j k* *

c -
i k* *

c  only will 

direct the search after the initial setup to focus on meeting the capacity constraint 

without a real restrictions on how far it can increase the distance in the process. 

 

In order to tighten the solution, the distance constraint vehicle routing problem 

(DCVRP) may be helpful. The restrictions that (DCVRP) applied on each route may 

be useful in directing the removal and adding customers from each route combined 

with domain reduction. 

 

A combination of the greedy search algorithm (Algorithm 1), domain reduction and 

distance restriction on each route will be presented next, but first we will give a brief 

definition to distance constraint vehicle routing problem (DCVRP) and describe 

some of the theory and computations. 

 

4.1.2 Distance Constrained Vehicle Routing Problem (DCVRP) 

The distance constrained vehicle routing problem (DCVRP) is another variant of 

VRP. The problem is similar to CVRP with extra condition; the total distance (time) 

traveled by each vehicle must not be more than a pre-specified number. i.e the 

(DCVRP) objective is to minimize the cost or the total distance traveled by the 

vehicles without violating the following restrictions: 

 

(a) The demands of all customers must be met. 

 (b) The capacity of vehicles may not be violated (i.e. for each route the total 

demands must not exceed the vehicle capacity). 

 (c) The total time (or alternatively distance) for each vehicle to complete its tour 

may not exceed some predetermined level. Referring to Laporte, Desrochers and 

Nobert (1984), the mathematical formulation for the problem is: 

 



65 

                           minimize Z= ij ij
i<jiÎN

c x    i N, i<j                         (4.3.1) 

subject to 

                                      
0i

iÎC

x =2m   i N                                         (4.3.2) 

 

                   ijx + jix =2    j<i or i<j, i N                                  (4.3.3) 

 

              x S - (S)
ij

,     i,j S,   S N,3 S n-2                            (4.3.4) 

                                                   

                                               
ijx =1,2,or 0                                                     (4.3.5) 

                                      

                                    m is a positive integer                                                   (4.3.6) 

where 

 N= {1, 2,…, n}:the set of customer location.  

 0 : depot location. 

 G=(N,E) : the graph representing the vehicle routing network with  

N={0,1,…,n} and E={(i,j):i,j N, i<j}. 

 
jq  : demand of customer j. 

 Q : common vehicle capacity. 

 m : number of delivery vehicles. 

 
ijx  :distance between locations i and j.  

 L : maximum distance a vehicle can travel.  

 
jP : a lower bound on the cost of traveling from the depot to customer j. 

 (S): lower bound on the number of vehicles required to visit all 

locations in S  

 

In our implementation for the new algorithm, we specify the value of R as an 

addition to Algorithm 1. R is to be determined based on the largest distance or cost 

value in the distance (cost) matrix. The resulting algorithm will be referred to as 

Algorithm 2. R will be used as threshold in order to direct the search. The 

restrictions on each route will be selected in a way that tighten the search and less 

than the value of L. Applying the algorithm to solve the previously mentioned 10 

problems and using the domain reduction and distance restriction we get the 

following results. 
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Problem 

number 

Optimal 

solution 

Algorithm 2 Other heuristics 
Max 

value 
distance 

Domain 

reduces solution 
% from 

optimal 

Symphony 

solution 

%from 

optimal 

Saving 

solution 

%from 

optimal 

1 114 114 0 114 0 119 4    

2 290 336 

298 

314 

N/A 

15.8 

2.7 

8 

N/A 

300 3.4 290 0 128 0 

105 

100 

100 

0 

80% 

0 

80% 

3 1560 1909 
N/A 

2413 

1881 

1719 

22.3 
N/A 

N/A 

20 

10 

2685 72 2150 38 717 
 

0 
600 

700 

900 

1010 

0 
0 

0 

80% 

75% 

4 3169 3833 

3837 

3755 

3639 

21 

22 

18 

15 

3704 17 3754 18 1611 0 

1500 

1400 

1390 

0 

70% 

70% 

80% 

5 1373 1500 

1750 

1651 

9 

27 

20 

2053 49.5 1659 21 516 

 

0 

500 

500 

0 

0 

40% 

 

Table 4.1a: Domain Reduction Computation and DCVRP Results 
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Table 4.1b: Domain Reduction Computation and DCVRP Results 

 

Problem 

number 

Optimal 

solution 

Algorithm 2 Other heuristics 
Max 

value 
distance 

Domain 

reduces solution 
% from 

optimal 

Symphony 

solution 

%from 

optimal 

Saving 

solution 

%from 

optimal 

6 1685 2161 

2037 

2004 

1911 

28 

21 

19 

13 

N/A N/A 1891 12 925 0 

900 

800 

700 

0 

80% 

60% 

70% 

7 1749 2559 

2326 

2066 

46 

33 

18 

2050 17 2107 20 821 0 

800 

750 

0 

60% 

60% 

8 1111 1372 

1389 

23 

24 

N/A N/A 1336 20 229 

223 

 

0 

300 

0 

90% 

9 1408 2071 
1823 

1802 

1790 

47 
29 

28 

27 

1668 18 2391 70 599 
 

0 
550 

490 

490 

0 
60% 

80% 

50% 

10 13333 21644 

21077 

20137 

19197 

14209 

62 

60 

51 

44 

7 

14749 11 19342 45 6571 0 

6500 

5500 

5800 

4000 

0 

50% 

60% 

40% 

60% 
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From Table 4.1(a and b), we conclude that the domain reduction improves the costs 

rapidly.  Algorithm 2 is far better than Algorithm 1 in terms of accuracy. 

 

4.2 Clarke and Wright (C&W) Algorithm 

This section combines the domain reduction with Clarke and Wright algorithm. The 

algorithm applied to solve the 10 benchmark VRP instances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: The C&W Saving Algorithm and Domain Reduction 

 

Table 4.2 provides clear results on how the domain reduction can minimize the cost 

when combined with the Clarke and Wright algorithm. 

 

Combining the domain reduction with the classical heuristics will improve the 

solution, as detailed in tables 4.1 and 4.2. 

Problem 

number 

Optimal 

solution 

Modified 

C&W  

%from 

optimal 

Domain 

reduced 

1 114 119 4 N/A 

2 290 290 0 N/A 

3 1560 2150 38 N/A 

4 3169 3754 

3658 

18 

15.4 

0 

62% 

 

5 1373 1659 

1579 

1404 

21 

15 

2.3 

0 

65% 

70% 

6 1685 1891 

1888 

12.2 

12 

0 

50% 

7 1749 2107 20 0 

8 1111 1336 

1278 

20 

15 

0 

5% 

9 1408 2391 

1999 

1747 

70 

42 

24 

0 

50% 

55% 

10 13333 19342 

19181 

45 

43.8 

0 

65% 
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The next section will investigate the effect of domain reduction on one of the 

metaheuristics.   

 

4.3 Simulating Annealing Algorithm (SA) 

To investigate the effect of domain reduction when combined with a metaheuristic 

algorithm, this section presents one of the simulating annealing algorithms. The 

algorithm uses the annealing temperature T developed by Zbigniew, and Piotr (2002) 

and the greedy search algorithm developed in Chapter 3 (Algorithm 1). The SA 

algorithm can be described in the following steps:  

 

Step 1: Using Algorithm 1, find initial solution. 

Step 2: Calculate T= *(d+ (cn+
mine )), where <1, d is the total travel distance 

of the routes,  is a constant(fixed to 1), c is the number of vehicles, n is the 

number of customers, and 
mine  is the number of customers in the shortest route. Set 

f=0. f is a counter. 

Step 3: Set f=f+1.  

Step 4: Repeat 2n times, swap 2 customers in each route. Store the new route if it’s 

better than the original. 

Step 5: If T<f then print the best solution and stop, otherwise go to step 6. 

Step 6: Take a ―snapshot‖ to the initial solution and generate another one using 

Algorithm 1 and go to step 2.   

 

The restriction   

                                    ijc R     i,j=1,2,…,n. 

is added as a domain reduction condition. The SA algorithm will calculate the 

maximum distance used in the distance matrix and let the user choose a percentage 

on how far from the maximum the value of R wanted. Implementing the SA 

algorithm and domain reduction using C++ we get the following results: 
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Problem 

number 

Optimal 

solution 

Modified SA 

Algorithm 
Other heuristics 

Domain 

reduces 
Results 

% from 

optimal 

Symphony 

results 

%from 

optimal 

C&W 

Saving 

results 

%from 

optimal 

1 114 114 0 114 0 119 4 0 

2 290 290 0 300 3.4 290 0 0 

3 1560 1629 
1686 

1700 

4.4 
8 

9 

2685 72 2150 38 0 
80% 

60% 

4 3169 3314 

3463 

3494 

4.5 

9.2 

10.2 

3704 17 3754 18 0 

80% 

60% 

5 1373 1473 

1431 

1545 

7.2 

4.2 

12.5 

2053 49.5 1659 21 0 

80% 

60% 

6 1685 1779 

1704 

1715 

5.5 

1.1 

1.7 

N/A N/A 1891 12 0 

80% 

60% 

7 1749 1945 

2131 
2022 

11.2 

22 
15.6 

2050 17 2107 20 0 

80% 
60% 

8 1111 1269 

1349 

14.2 

21.4 

N/A N/A 1336 20 0 

80% 

9 1408 1528 

1599 

1562 

8.5 

13.5 

10.9 

1668 18 2391 70 0 

80% 

60% 

10 13333 17888 

18391 

18302 

34 

37.9 

37.2 

14749 11 19342 45 0 

80% 

60% 

Table 4.3: SA and Domain Reduction 

 

Unlike the classical heuristics, metaheuristics combined with domain reduction may 

increase the cost. Domain reduction seems to work perfectly when combined with a 

classical heuristic algorithm, but fail to improve the solution when combined with the 

metaheuristics.
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4.4 Heuristics and large instances 

Besides providing upper bounds, heuristics are normally useful whenever exact 

algorithms fail. In most of the cases, exact algorithms face a real challenge when 

applied to solve large VRP instances in terms of the time and space required to solve 

the problem to optimality. Also, heuristics can deal with large VRPs efficiently in 

terms of time taken to solve the problem. 

 

In order to investigate the effect of domain reduction on the large VRPs, we applied 

Algorithm 2, the Clarke and Wright algorithm and the SA algorithm to 4 large 

instances. The set of instances are from Christofides,  Mingozzi, and Toth, (1979). 

The details of each instance and the best published solution can be found at 

Computational Infrastructure for Operations Research (2003).Table 4.4 shows the 

results: 

 

Dimension Modified 

C&W  

Modified 

SA 

Algorithm 

2 

SYMPHONY Domain 

reduced 

% 

101 803.439 

726.249 
672.280 

409.918 

409.918 
409.918 

1590 

1590 
1590 

820 

N/A 
N/A 

0 

30 
25 

121 933.738 

573.689 

336.485 

336.485 

1401 

1401 

1034 

N/A 

0 

30 

151 958.464 

894.140 

480.326 

368.996 

368.996 

368.996 

1498 

1498 

1498 

1053 

N/A 

N/A 

0 

30 

45 

200 1290.961 

1079.164 

696.730 

652.158 

652.158 

652.158 

1975 

1975 

1975 

1373 

N/A 

N/A 

0 

35 

45 

Table 4.4: Heuristics and Large VRPs 

 

From Table 4.4, we can observe that the domain reduction reduced the cost 

significantly when combined with the Clarke and Wright algorithm. For the problem 

of dimension 101 customers, domain reduction improved the solution by 16%. For 

the second problem (121 customers) the solution has been improved by 38%. For the 

third large problem with dimension 151 customers, the solution has been improved 

by 49.8%. The solution for the problem of dimension 200 customers has been 

improved by 46%. From Table 4.2 and 4.4 we observe that the domain reduction 

combined with Clarke and Wright improves the solution rapidly as the size of the 



72 

problems become large. In addition neither SA nor Algorithm 2 shows any 

significant response in term of reducing the cost when combined with domain 

reduction to solve large scale VRPs. 

 

4.5 Conclusion 

The results obtained by combining domain reduction with distance restrictions 

shown in Table 4.1 are good considering the time to solve each problem (the overall 

time is 0.45 second). The greedy search algorithm provides good results when 

domain reduction and distance restrictions for each route get involved in directing 

the search. Another thing that can be concluded is the rapid improvement for 

problems 9 and 10 in terms of the cost. Also, domain reduction improves the cost 

when combined with the Clarke and Wright savings algorithm. This improvement 

can be seen clearly in Table 4.2 especially problem 9, as the cost decreases from 70% 

from the optimal to 24%. However the results obtained by SA are far better than 

those obtained by Algorithm 2 and the saving algorithm. Reducing the domain 

minimizes the cost significantly in Algorithm 2 and the Savings Algorithm, but fails 

to improve the solution when combined with SA. The deep search procedure for SA 

provides the first result as the best obtained. Deleting values from the domain didn’t 

help improving the solution for SA algorithm. We observed that SA algorithm is 

better than Algorithm 2 and the savings algorithm in terms of accuracy. However, the 

classical algorithms are easy to understand and take less time to be implemented. 

Furthermore when dealing with large scale VRPs the Clarke and Wright saving 

algorithm shows an outstanding improvement when combined with domain 

reduction. From Table 4.4 we can observe that the obtained solution in each case 

decreased significantly when we apply the Clarke and Wright saving algorithm with 

domain reduction.                                                                                                                                                                                                                                                                                                                          

 

After we explore the effect of domain reduction on solving vehicle routing problem 

using heuristic methods, the next chapter will apply an exact method to solve VRP 

combined with domain reduction and observe the effect of reducing the domain on 

the time taken and gap closing.  



73 

 

Chapter 5 

A hybrid Method to solve VRP 

 

 

 

In this Chapter we consider the capacitated vehicle routing problem. The branch and 

cut procedure is used to solve the 10 benchmark problems without applying the 

domain reduction constraint, analyzing the results then solving the same problems 

after adding the domain reduction constraint and comparing the results. The 

computational results provided in this Chapter show that branch and cut combined 

with the domain reduction can improve the time taken to solve the problem by 48% 

in comparison with using branch and cut only. In most of the cases the solution value 

will remain the same. However, in some problems the solution may become slightly 

higher but the improved significantly. 

 

Section 5.1 describes the implementation of the domain reduction restriction. Section 

5.2 details how we combine domain reduction with the branch and cut (exact) 

method. This Section illustrates the effect of domain reduction in reducing the 

duality gap (the difference between primal and dual objective values) when combine 

with branch and cut method. Also, this Section shows the effect of domain reduction 

on the time taken to solve VRPs. Section 5.3 concludes this chapter.     

 

5.1 Domain Reduction condition and Implementation 

The distance matrix for VRP represents the problem domain. Hence, to reduce the 

domain we must reduce the domain by eliminating some numbers from the distance 

matrix. As described earlier a simple restriction developed to reduce the domain can 

be described mathematically as  

 

                                      ijc R               for all i and j    
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where 
ijc is the cost or the distance between node i and j, and R is a threshold chosen 

logically. Furthermore R value depends deeply on the maximum cost (distance) in 

the cost matrix.  

 

As we mentioned earlier this thesis focuses on the Symmetric Capacitated Vehicle 

Routing Problem (CVRP) with single commodity and one depot. The restrictions are 

capacity and cost or distance. Moreover, as we are dealing with exact method in this 

Chapter we expect the improvement of combining domain reduction will apply to 

time taken only. 

 

5.2 Calculation 

We considered the CVRP formulation provided in Section 2.5.1.  We use CPLEX 

(ILOG SA) to solve the ten instances used in Chapter 4. We will combine the branch 

and cut method with the domain reduction constraint, starting from a distance close 

to the maximum cost (distance) down until we reach a value for which a feasible 

solution cannot be found. We will analyze the results in each case in terms of time 

and the gap closure in order to reach an understanding of the effect of the domain 

reduction on the exact methods. 

 

For each problem we find the maximum distance in the distance matrix and flag it as 

a threshold, then eliminate all the distances above a chosen percentage from the 

maximum. We decreased the percentage gradually until no initial feasible solution 

can be found. The values of R, duality gaps, optimal solutions and the time taken to 

solve each problem will be presented next but first we will highlight the influence of 

domain reduction on closing the duality gap.  

 

Recall the 10 benchmark problem mentioned in the previous Chapters. Problem 9 

was chosen to illustrate the effect of the domain reduction on VRPs. 

 

 Problem 9 (42 customers): We choose this problem to show the effect of 

domain reduction on the duality gap. Problem 9 is one of the hard literature 

problems that require a long time to be solved optimally. In addition, the 

initial duality gap for problem 9 is almost 50%. For this reason, the problem 

is useful for illustrating the effect of domain reduction on the duality gap. 
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Solving problem 9 using branch and cut only and without reducing the   

domain we get: 

Objective Gap Depth CPU Time 

(Sec) 

 

 
1429.2 

1459 

1483.2 

1490.25 

1462.1 

 

49.75% 

49.75% 

49.75% 

49.75% 

49.75% 

 

93 

192 

292 

392 

492 

 

0 

 

 

1449.7485 

1429.1009 

1446.4211 

1382.4805 

1456.9 

 

 

49.75% 

49.75% 

49.75% 

49.75% 

49.75% 

 

 

 

1092 

1192 

1292 

1392 

1492 

 

49.19 

 

 

1431.5 

1447.45 

1427 
1499.1667 

 

 

49.75% 

49.75% 

49.34% 
49.34% 

 

 

 

2092 

2191 

14 
105 

 

80.06 

 

 
1477.5405 

1434 

1402.5 

cutoff 

1498.1197 

1499 

 

 
49.75% 

49.75% 

49.34% 

 

49.34% 

49.34% 

 

 

 
2092 

2191 

14 

 

205 

305 

 

104.39 

. 

. 

. 

. 

. 

 

. 

. 

. 

. 

. 

 

. 

. 

. 

. 

. 

 

. 

. 

. 

. 

. 

 

1408 

 

 

3.70% 

 

14 

 

 

18000 

 

Table 5.1: Duality Gap and First Domain Reduction 
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When reducing the domain by 80% from the maximum value used in the distance 

matrix we get: 

 
 

Objective Gap Depth CPU Time 

(Sec) 

1414.5000 

1425.9268 

1426.5139 

1474.6667 

1484.0132 

 

18.54% 

18.11% 

17.81% 

17.81% 

17.81% 

 

89 

189 

278 

84 

175 

 

0 

 

 

1429.2000 

1459.0000 

1483.2000 

1490.2500 
0 

1462.1000 

1449.7485 

 

 

 

15.78% 

15.78% 

15.78% 

15.58% 
13.51% 

13.51% 

13.37% 

 

 

 

46 

141 

236 

70 
82 

102 

 

58.88 

 

 

1431.5000 

1447.4500 

1427.0000 

1299.1667 

0 

1377.5405 

1334.0000 

1402.5000 

 

 

 

13.19% 

13.19% 

13.19% 

13.17% 

10.42% 

10.34% 

10.17% 

10.13% 

 

 

 

74 

171 

64 

10 

49 

21 

17 

34 

 

121.81 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

1408 1.12% 12 18000 

Table 5.2: Duality Gap and Second Domain Reduction 

 

Note that the initial gap reduced from 49.75% to 18.54%, when the domain reduced 

by 80% from the maximum distance in the distance matrix. Also when solving the 
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problem without the domain reduction, the gap was 49.34% after about 105 seconds. 

When the domain reduced by 20%, the gap was about 10.34% (after 105 seconds). 

Furthermore, when reducing the domain by 60% from the maximum value used in 

the distance matrix we get: 

 

Objective Gap Depth CPU Time 

(Sec) 

 

 

1415.0600 

1427.6250 
1429.1224 

1429.8421 

1430.7692 

 

 

20.12% 

20.12% 
20.12% 

20.12% 

20.12% 

 

96 

193 
293 

393 

493 

 

0 

 
 

1495.4000 

1326.0000 

1429.7857 

1445.7449 

1476.8571 

 

 
 

20.12% 

18.38% 

18.38% 

13.50% 

13.50% 

 

 
 

1087 

5 

99 

291 

25 

 

31.69 

 

 

1422.4444 

1442.8030 

1465.8750 

1492.2727 

1406.1870 
 

 

 

13.33% 

13.33% 

13.33% 

13.33% 

11.51% 
 

 

 

210 

310 

410 

510 

184 
 

54.97 

 

 

1411.0000 

1394.8750 
1401.0506 

1405.6733 

1411.2500 

 

 

 

5.93% 

5.89% 
5.82% 

5.82% 

5.79% 

 

 

 

45 

22 
88 

185 

45 

 

106.49 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

1408 0  

 

 
13056 

Table 5.3: Duality Gap and Third Domain Reduction 
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Note that, although the initial gap (20.12%) when reducing the domain by 40% is not 

as good as the initial gap obtained by reducing the domain by 20% (18.54%), the gap 

after 105 seconds for the third result was about 5.45% which is better than the 

10.34% obtained by reducing the domain 20% and after the same time. In addition, 

when reducing the domain by 40% from the maximum value used in the distance 

matrix we get: 

Objective Gap Depth CPU Time 

(Sec) 

 

1411.9000 
1417.7692 

1424.0500 

1397.3333 

1418.7632 

1409.2917 

1416.4167 

 

23.78% 
8.09% 

8.04% 

7.02% 

7.02% 

7.02% 

7.02% 

 

98 
198 

64 

22 

122 

48 

24 

 

0 

 

 

 

1399.5000 

1390.0833 

1409.3636 

1372.7000 

1420.6667 
1421.8190 

 

 

 

 

5.15% 

5.15% 

5.15% 

5.13% 

5.08% 
5.08% 

 

 

 

 

15 

43 

11 

25 

30 
37 

 

23.59 

 

 
1415.4167 

1402.8500 

1413.5341 

1412.8128 

1405.0500 

1383.6346 

 

 

 
2.75% 

2.74% 

2.73% 

2.72% 

2.71% 

2.69% 

 

 

 
20 

24 

28 

23 

19 

16 

 

52.19 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

1417 0  2769.90 

Table 5.4: Duality Gap and Fourth Domain Reduction 
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Although the initial gap (23.78%) when reducing the domain by 60% is not as good 

as the initial gap obtained by reducing the domain by 20% (18.54%) or when 

reducing the domain by 40% (20.12%), the gap after 105 seconds for the fourth 

result (2.68%) was far better than the other results after the same time. Also, 

reducing the domain by 60% made it possible to find the solution after 2769.90 

seconds. However, the obtained solution (1417) after reducing the domain by 60% is 

not as good as previous ones (1408). 

 

Figure 5.1, illustrates the effect of domain reduction on the gap (Note that the time 

units are seconds). 

Figure 5.1 Duality gap and domain reduction
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After showing the effect of domain reduction on closing the duality gap, the 

following table provides detailed results when applying branch and cut combined 

with domain reduction to solve the previously mentioned 10 VRPs.  
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Problem 

number 

CPU 

Time 

/second 

Solution Duality 

gap % 

Initial 

gap % 

Eliminated 

columns / 

rows 

R 

% 

1 23.3 
20.90 

26.80 

18.14 

114 
114 

114 

114 

0 
0 

0 

0 

29.91 
27.59 

33.33 

29.82 

0/0 
8/12 

24/38 

40/64 

100 
90 

70 

50 

2 2464.73 
1526.42 

2878.95 

355.16 

292 
292 

292 

298 

0 
0 

0 

0 

59.59 
49.75 

40.00 

38.89 

0/0 
52/84 

104/164 

144/228 

100 
80 

60 

40 

3 7.20 
6.25 

10.60 

8.40 

1560 
1560 

1560 

1560 

0 
0 

0 

0 

28.11 
21.51 

16.50 

26.36 

0/0 
204/309 

222/336 

267/405 

100 
80 

60 

40 

4 7.15 

11.15 
14.34 

5.33 

3169 

3169 
3169 

3169 

0 

0 
0 

0 

26.57 

24.53 
31.39 

7.91 

0/0 

12/18 
54/81 

663/1008 

100 

80 
60 

40 

5 1002.40 

1258.78 
1051.66 

541.42 

124.64 

1373 

1373 
1373 

1373 

1459 

0 

1.58 
2.26 

0 

0 

24.07 

20. 
2465 

19.04 

49.96 
23.77 

0/0 

48/72 
26/404 

1324/2008 

1736/2632 

100 

90 
80 

60 

40 

6 275.53 

103.45 

582.23 
83.95 

9.94 

1685 

1685 

1685 
1685 

1750 

0 

0 

0 
0 

0 

16.04 

10.82 

8.13 
10.16 

8.67 

0/0 

42/63 

84/126 
456/696 

690/1053 

100 

90 

80 
60 

40 

7 2516.14 

721.75 
1224.00 

1817 

1749 

1749 
1749 

1749 

0 

0 
0 

0 

68.78 

22.87 
59.52 

14.23 

0/0 

112/168 
672/1012 

1544/2336 

100 

80 
60 

40 

8 18286.00 

18286.00 

18286.00 
Infeasible 

1111 

1111 

1118 
Infeasible 

7.26 

6.57 

7.98 

39.09 

24.70 

29.85 

0/0 

90/182 

133/259 

100 

90 

80 
60 

9 18000 

18000 

13056 
2769.90 

1408 

1408 

1408 
1417 

3.70 

1.12 

0 
0 

23.10 

18.54 

20.12 
23.78 

0/0 

384/588 

2776/4216 
5196/7864 

100 

80 

60 
40 

10 18290 

12653 

7160 

13333 

13333 

13333 
Infeasible 

3.42 

3.09 

3.28 

28.10 

77.83 

31.22 

0/0 

96/144 

376/564 

100 

80 

60 
40 

Table 5.5: Using Exact Method and Domain Reduction to Solve VRPs 
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5.3 Conclusions  

The results obtained by using branch and cut and domain reduction illustrate the 

importance of domain reduction in reducing the time taken to solve the problems and 

reducing the duality gap. In some problems the time and the duality gap reduced 

rapidly but the solution was slightly above the optimal. Also in some cases reducing 

the domain may increase the time. However, a good results obtained when the 

domain had been reduced by around 60% from the maximum value in the distance 

matrix (except in the case of 31 customers).  Table 5.5 illustrates clearly that domain 

reduction reduces the time taken to solve CVRP when combine with the branch and 

cut exact method.  
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Chapter 6 

Conclusions and Future Work 

 

 

The Vehicle Routing Problem VRP is different from almost all other optimization 

problems. The importance of VRP in reducing the cost of any distribution network 

that involves transportation as well as providing good customer service (by satisfying 

customer demands), forced the formulation of the problem to find the balance 

between reducing the cost and satisfying customer demands. Hence, the equation of 

cost demand capacity made CVRP complicated and extremely hard as the 

dimensions of the problem increases.  

 

For a long time, simple heuristics have failed to provide satisfactory solutions when 

applied to VRP as we also found in Chapter 3. However, by reducing the domain and 

force route restrictions, a simple greedy search algorithm performs better. Deleting 

some values from the domain may help in some instances, but in general it may 

direct the search to the wrong area especially if the heuristic algorithm depends 

closely on choosing the next low value in the domain to form a route. As a result, 

applying route restrictions helped directing the search. Using domain reduction and 

applying restrictions on each route improves the greedy algorithm by 24% as we see 

in Chapter 4. Also, Chapter 4 provides computational results that illustrate clearly the 

effect of domain reduction when combined with the Clarke and Wright algorithm. 

The Clarke and Wright algorithm has been improved by 8% when combined with 

domain reduction.     

 

Chapter 5 combined branch and cut with the domain reduction. The CPU time taken 

to solve the problems has been reduced by 49.8% when domain reduction is applied.  
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In general, the results obtained by combining domain reduction with heuristics and 

exact methods were significant and encouraging. A future work can be highlighted in 

the next Section  

 

6.1 Future Work 

The pruning that constraint programming provides is a huge encouragement to 

explore more CP techniques. One of the techniques that need to be explored is 

constraint propagation. As we mentioned in Chapter 2, to develop a constraint 

propagation algorithm one of the following approaches must be followed: 

   Backtracking Search 

The method is a combination of Arc consistency and Backtracking; it starts by 

guessing solutions then test the guessed solution for Arc consistency. 

 Forward Checking 

This method uses restricted arc consistency between the current variable and the 

future variables. 

 Look Ahead Search 

Unlike forward checking, this method doesn’t look for restricted arc consistency 

between the current variable and the future variables only but also performs full 

arc consistency search. 

Note that developing a hybrid approach that combines constraint propagation with 

OR methods to solve CVRP must overcome the problem of chronological 

backtracking (that all decisions must be undone in the reverse of the order they were 

made). Finding the right approach to combine constraint propagation with OR 

methods to solve CVRP seems interesting as well as challenging for the future work.   
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Appendix A 

 
 

 

 

 
 

EXAMPLE 1- 18 customers generated matrix 

CAPACITY : 70 

 

121 518 142  84 297  35  29  36  236 390 238 301  55  96 153 336 111 246 745 472 

237 528 364 332 349 202 685 542 157289 426 483 155 268 420  53 239 199 123 207 

165 383 240 140 448 202  57 200 211 466  74 182 243 105 150 108 326 336 184 391 

145 40 70 567 191  27 346  83 47 68 189 439 287 254 250 324 638 437 240 421 329 

297 314  95 578 435 300 353 282 110 324  61 208 292 250 352 154 170 505 289 262  

476 196 360 444 402 495 120 259 555 372 175 338 264 232 249 70 134 530 154 105 

309  34  29 45 80 572 196 77 351  63 89 150 488 112 120 267 316 412 227 169 383 

20 91 661 228 117 257 390 42 633 31 215 

 

DEMAND : 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 30 

 

EXAMPLE 2- 7 customers Eilon, Watson-Gandy and Christofides (1971) 
CAPACITY : 3  

 

 

-1 10 20 25 25 20 10

0 -1 12 20 25 30 20

0 0 -1 10 11 22 30

0 0 0 -1 2 11 25

0 0 0 0 -1 10 20

0 0 0 0 0 -1 12

0 0 0 0 0 0 -1

 
 

 

 

DEMAND: 0 1 1 1 1 1 1   
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EXAMPLE 3-13 customers  Eilon, Watson-Gandy and Christofides (1971) 
CAPACITY : 6000 

 

 

-1 9 14 21 23 22 25 32 36 38 42 50 52

0 -1 5 12 22 21 24 31 35 37 41 49 51

0 0 -1 7 17 16 23 26 30 36 36 44 46

0 0 0 -1 10 21 30 27 37 43 31 37 39

0 0 0 0 -1 19 28 25 35 41 29 31 29

0 0 0 0 0 -1 9 10 16 22 20 28 30

0 0 0 0 0 0 -1 7 11 13 17 25 27

0 0 0 0 0 0 0 -1 10 16 10 18 20

0 0 0 0 0 0 0 0 -1 6 6 14 16

0 0 0 0 0 0 0 0 0 -1 12 12 20

0 0 0 0 0 0 0 0 0 0 -1 8 10

0 0 0 0 0 0 0 0 0 0 0 -1 10

0 0 0 0 0 0 0 0 0 0 0 0 -1

 

 

 DEMAND: 0 1200 1700 1500 1400 1700 1400 1200 1900 1800 1600 1700 1100 

 

 

EXAMPLE 4- 17 customers Groetschel (1992) 
CAPACITY : 6 

 
-1 121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336

0 -1 246 745 472 237 528 364 332 349 202 685 542 157 289 426 483

0 0 -1 268 420 53 239 199 123 207 165 383 240 140 448 202 57

0 0 0 -1 211 466 74 182 243 105 150 108 326 336 184 391 145

0 0 0 0 -1 70 567 191 27 346 83 47 68 189 439 287 254

0 0 0 0 0 -1 324 638 437 240 421 329 297 314 95 578 435

0 0 0 0 0 0 -1 353 282 110 324 61 208 292 250 352 154

0 0 0 0 0 0 0 -1 505 289 262 476 196 360 444 402 495

0 0 0 0 0 0 0 0 -1 259 555 372 175 338 264 232 249

0 0 0 0 0 0 0 0 0 -1 134 530 154 105 309 34 29

0 0 0 0 0 0 0 0 0 0 -1 80 572 196 77 351 63

0 0 0 0 0 0 0 0 0 0 0 -1 150 488 112 120 267

0 0 0 0 0 0 0 0 0 0 0 0 -1 412 227 169 383

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 91 661 228

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 257 390

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 633

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 

DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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EXAMPLE 5- 21 customers Groetschel (1992)  /CAPACITY:7 

-1 380 140 495 280 480 340 350 370 505 185 240 310 345 280 105 380 280 165 305 150

0 -1 240 290 590 140 480 255 205 220 515 150 100 170 390 425 255 395 205 220 155

0 0 -1 170 445 750 160 495 265 220 240 600 235 125 170 485 525 405 375 87 315

0 0 0 -1 450 270 625 345 660 430 420 440 690 77 310 380 180 215 190 545 225

0 0 0 0 -1 255 440 755 235 650 370 320 350 680 150 175 265 400 435 385 485

0 0 0 0 0 -1 265 480 420 235 125 125 200 165 230 475 310 205 715 650 475

0 0 0 0 0 0 -1 480 81 435 380 575 440 455 465 600 245 345 415 295 170

0 0 0 0 0 0 0 -1 655 235 585 555 750 615 625 645 775 285 515 585 190

0 0 0 0 0 0 0 0 -1 610 360 705 520 835 605 590 610 865 250 480 545

0 0 0 0 0 0 0 0 0 -1 68 440 575 27 320 91 48 67 430 300 90

0 0 0 0 0 0 0 0 0 0 -1 155 380 640 63 430 200 160 175 535 240

0 0 0 0 0 0 0 0 0 0 0 -1 370 320 700 280 590 365 350 370 625

0 0 0 0 0 0 0 0 0 0 0 0 -1 490 605 295 460 120 350 425 390

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 130 500 540 97 285 36 29

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 110 480 570 78 320 96

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 155 475 495 120 240

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 385 585 390 350

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 91 415 605

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 635 355

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 510

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 

DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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EXAMPLE 6-24 customers Groetschel (1992) /CAPACITY : 7 
 

-1 121 142 99 84 35 29 42 36 220 70 126 55 249 104 178 60 96 175 153 146 47 135 169 

0 -1 192 228 235 108 119 165 178 154 71 136 262 110 74 96 264 187 182 261 239 165 151 221 

0 0 -1 250 99 89 221 105 189 160 147 349 76 138 184 235 138 114 212 39 40 46 136 96 

0 0 0 -1 175 128 76 146 32 76 47 30 222 56 103 109 225 104 164 99 57 112 114 134 

0 0 0 0 -1 261 43 200 232 98 200 171 131 166 90 227 195 137 69 82 223 90 176 90 

0 0 0 0 0 -1 268 53 138 239 123 207 178 165 367 86 187 202 227 130 68 230 57 86 

0 0 0 0 0 0 -1 290 139 98 261 144 176 164 136 389 116 147 224 275 178 154 190 79 

0 0 0 0 0 0 0 -1 211 74 81 182 105 150 121 108 310 37 160 145 196 99 125 173 

0 0 0 0 0 0 0 0 -1 54 219 92 82 119 31 43 58 238 147 84 53 267 170 255 

0 0 0 0 0 0 0 0 0 -1 293 50 232 264 148 232 203 190 248 122 259 227 219 134 

0 0 0 0 0 0 0 0 0 0 -1 219 83 172 149 79 139 134 112 126 62 199 153 97 

0 0 0 0 0 0 0 0 0 0 0 -1 272 180 315 188 193 245 258 228 29 159 342 209 

0 0 0 0 0 0 0 0 0 0 0 0 -1 70 191 121 27 83 47 64 68 173 119 148 

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 214 223 49 185 123 115 86 90 313 151 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 185 86 124 156 40 124 95 82 207 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 243 209 286 159 190 216 229 225 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 134 154 63 105 34 29 22 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 130 167 59 101 56 25 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 80 196 88 77 63 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 150 112 96 120 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 91 228 158 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 187 196 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 257 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

 

 
DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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EXAMPLE 7-26 customers  (http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/fri-n26-k3.vrp)/CAPACITY : 10 
-1 181 197 161 190 182 190 160 148 128 121 103 99 107 130 130 95 51 51 81 79 37 27 58 107 90 

0 -1 127 179 157 197 194 202 188 188 155 136 116 100 111 132 122 139 109 125 141 148 80 65 64 93 

0 0 -1 220 268 241 278 272 280 257 250 223 210 190 178 189 212 205 196 154 157 186 186 128 102 51 

0 0 0 -1 185 223 193 228 222 230 206 198 172 160 140 129 140 163 158 144 102 107 135 136 77 50 

0 0 0 0 -1 157 180 147 180 173 181 156 148 122 111 92 83 93 116 113 94 53 64 87 90 26 

0 0 0 0 0 -1 147 160 124 155 148 156 130 122 96 86 68 62 71 93 93 68 30 46 63 68 

0 0 0 0 0 0 -1 185 165 125 139 128 135 98 78 74 82 77 87 87 100 109 39 38 29 13 

0 0 0 0 0 0 0 -1 172 152 112 127 117 124 88 70 62 68 64 75 74 87 96 26 34 33 

0 0 0 0 0 0 0 0 -1 181 175 135 156 146 153 119 103 91 91 80 85 89 106 112 54 22 

0 0 0 0 0 0 0 0 0 -1 159 156 117 142 133 141 110 98 78 74 61 63 68 87 92 44 

0 0 0 0 0 0 0 0 0 0 -1 152 127 86 102 93 100 66 54 37 43 42 56 53 62 73 

0 0 0 0 0 0 0 0 0 0 0 -1 81 67 36 76 74 82 78 91 55 34 32 31 24 15 

0 0 0 0 0 0 0 0 0 0 0 0 -1 95 68 31 66 62 71 63 76 40 20 27 34 23 

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 99 89 54 89 84 92 77 83 47 26 11 11 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 98 98 64 100 95 103 88 92 56 36 18 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 110 95 58 88 82 90 71 75 39 20 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 114 84 44 70 62 71 52 59 22 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 135 93 54 65 55 63 34 37 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 169 116 81 72 61 65 26 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 151 91 59 46 35 39 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 139 64 49 11 9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 133 62 42 11 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 129 53 42 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 93 40 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 83 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

 

DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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EXAMPLE 8-29 customers (http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/bayg-n29-k4.vrp) /CAPACITY : 8 

-1 97 205 139 86 60 220 65 111 115 227 95 82 225 168 103 266 205 149 120 58 257 152 52 180 136 82 34 145 

0 -1 129 103 71 105 258 154 112 65 204 150 87 176 137 142 204 148 148 49 41 211 226 116 197 89 153 124 74 

0 0 -1 219 125 175 386 269 134 184 313 201 215 267 248 271 274 236 272 160 151 300 350 239 322 78 276 220 60 

0 0 0 -1 167 182 180 162 208 39 102 227 60 86 34 96 129 69 58 60 120 119 192 114 110 192 136 173 173 

0 0 0 0 -1 51 296 150 42 131 268 88 131 245 201 175 275 218 202 119 50 281 238 131 244 51 166 95 69 

0 0 0 0 0 -1 279 114 56 150 278 46 133 266 214 162 302 242 203 146 67 300 205 111 238 98 139 52 120 

0 0 0 0 0 0 -1 178 328 206 147 308 172 203 165 121 251 216 122 231 249 209 111 169 72 338 144 237 331 

0 0 0 0 0 0 0 -1 169 151 227 133 104 242 182 84 290 230 146 165 121 270 91 48 158 200 39 64 210 

0 0 0 0 0 0 0 0 -1 172 309 68 169 286 242 208 315 259 240 160 90 322 260 160 281 57 192 107 90 

0 0 0 0 0 0 0 0 0 -1 140 195 51 117 72 104 153 93 88 25 85 152 200 104 139 154 134 149 135 

0 0 0 0 0 0 0 0 0 0 -1 320 146 64 68 143 106 88 81 159 219 63 216 187 88 293 191 258 272 

0 0 0 0 0 0 0 0 0 0 0 -1 174 311 258 196 347 288 243 192 113 345 222 144 274 124 165 71 153 

0 0 0 0 0 0 0 0 0 0 0 0 -1 144 86 57 189 128 71 71 82 176 150 56 114 168 83 115 160 

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 61 165 51 32 105 127 201 36 254 196 136 260 212 258 234 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 106 110 56 49 91 153 91 197 136 94 225 151 201 205 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 215 159 64 126 128 190 98 53 78 218 48 127 214 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 61 155 157 235 47 305 243 186 282 261 300 252 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 105 100 176 66 253 183 146 231 203 239 204 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 113 152 127 150 106 52 235 112 179 221 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 79 163 220 119 164 135 152 153 114 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 236 201 90 195 90 127 84 91 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 273 226 148 296 238 291 269 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 112 130 286 74 155 291 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 130 178 38 75 180 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 281 120 205 270 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 213 145 36 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 94 217 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 162 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

                             

DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/bayg-n29-k4.vrp
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Note: Due to the size of the next three examples, we will display them as a numbers not a matrix. In order to put these numbers in a 

format similar to the above examples, the following procedure must be applied. 

 

 If (a b c d e f) represent the cost then we can put them in the format as: 

 

 

-1    a      b      c 

 

 0   -1     d      e 

 

 0    0    -1      f 

 

 0    0     0     -1 

 

 

Where -1 assigned for the cost of traveling from a customer to himself and the cost below the diagonal is 0 and the given numbers 

organized above the diagonal. 
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EXAMPLE 9-31 customers Eilon, Watson-Gandy and Christofides (1971) 
CAPACITY : 140 

 

41 38 80 80 97 92 96 78 98 87 95 77 93 91 98 96 40 73 82 55 52 76 76 76 72 98 98 

93 89 68 3 54 54 64 59 56 39 59 52 58 38 55 52 58 59  5 34 48 16 16 46 44 50 33 58 
58 66 55 32 56 56 67 62 59 41 62 50 61 41 58 53 61 62  5 37 46 19 17 49 46 53 34 

61 61 68 58 33 3 19 13 16 54 20 47 15 30 15 25 19 17 60 46 44 54 68  8 11  4 53 33 

32 14 10 64 16 10 14 54 17 46 12 29 12 22 16 14 61 46 44 54 68  9 11  4 54 30 29 12  

9 64 7 11 53 12 46  8 34 10 24 10  8 71 50 45 58 77 19 20 20 57 27 26 23  8 67 10 57 

13 42  8 32 14 19 10  8 65 46 42 55 72 15 15 14 55 30 29 18  5 66 48  4 35 45 25  3 

12  4  4 63 39 33 48 69 18 15 18 47 21 20 22  7 57 39 12 45 24 47 30 42 44 40  8  9 

22 36 44 42 50  6 27 28 65 48 22 33  6 21  7  9  3  5 66 39 31 45 65 22 19 21 45 15 

15 25 10 55 39 18 39 24 36 38 49 12  4 30 46 40 36 43 15 18 20 54 39 38 28  3 15  4  

2 65 43 36 53 71 16 18 17 49 19 18 20  5 63 26 14 24 26 40 16 18 24 44 20 18 25 22 

19 19 41 29 34 14  6  4 62 41 36 51 68 17 14 16 49 21 20 20  5 60 12 14 54 28 21 38 
57 24 18 28 34  8  7 32 18 47 2 65 42 34 48 67 20 20 20 46 17 16 24  9 58 66 44 35 

50 69 18 18 19 48 19 18 22  7 60 36 45 18 14 52 47 57 34 60 60 72 62 32 9 22 36 37 

35 41  6 26 26 57 44 26 31 45 35 33 40 15 18 19 54 39 33 21 45 39 50 16 44 44 61 

51 21 59 57 64 30 61 61 79 69 18 6  5 47 34 34 20 15 66 10 42 28 28 26 12 53 50 35 

34 15 11 60 32 34 64 52 18 3 39 24 51 39 23 52 15 76 65 

 

DEMAND: 0 24 34 11 15 11 1 3 29 6 25 6 25 2 28 8 10 18 45 33 17 9 16 35 5 60 80 

39 95 90 123 

 

EXAMPLE 10-42customers(http://www.coin-

or.org/SYMPHONY/branchandcut/VRP/data/V/swiss-n42-k5.vrp) 

 

CAPACITY : 9 

 

0  15  30  23  32  55  33  37  92 114  92 110  96  90  74  76  82  67  72  78  82 159 

122 131 206 112  57  28  43  70  65  66  37 103  84 125 129  72 126 141 183 124 

  15   0  34  23  27  40  19  32  93 117  88 100  87  75  63  67  71  69  62  63  96 164 

132 131 212 106  44  33  51  77  75  72  52 118  99 132 132  67 139 148 186 122 

  30  34   0  11  18  57  36  65  62  84  64  89  76  93  95 100 104  98  57  88  99 130 

100 101 179  86  51   4  18  43  45  95  45 115  93 152 159 100 112 114 153  94 

  23  23  11   0  11  48  26  54  70  94  69  89  75  84  84  89  92  89  54  78  99 141 
111 109 190  89  44  11  29  54  56  89  47 118  96 147 151  90 122 126 163 101 

  32  27  18  11   0  40  20  58  67  92  61  78  65  76  83  89  91  95  43  72 110 141 

116 105 190  81  34  19  35  57  63  97  58 129 107 156 158  92 129 127 161  95 

  55  40  57  48  40   0  23  55  96 123  78  75  62  36  56  66  63  95  37  34 137 174 

156 129 224  90  15  59  75  96 103 105  91 158 139 164 156  78 169 163 191 115 

  33  19  36  26  20  23   0  45  85 111  75  82  69  60  63  70  71  85  44  52 115 161 

136 122 210  91  25  37  54  78  81  90  68 136 116 150 147  76 148 147 180 111 

  37  32  65  54  58  55  45   0 124 149 118 126 113  80  42  42  49  40  87  60  94 195 

158 163 242 135  65  63  79 106 101  50  66 118 104 109 103  36 160 178 218 153 

  92  93  62  70  67  96  85 124   0  28  29  68  63 122 148 155 156 159  67 129 148  

78  80  39 129  46  82  65  55  40  61 157  97 159 135 212 221 159 110  72  95  35 
 114 117  84  94  92 123 111 149  28   0  54  91  88 150 174 181 182 181  95 157 159  

50  65  27 102  65 110  87  73  50  68 176 112 166 142 229 241 184  99  46  69  38 

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/swiss-n42-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/swiss-n42-k5.vrp
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  92  88  64  69  61  78  75 118  29  54   0  39  34  99 134 142 141 157  44 110 161 

103 109  52 154  22  63  68  66  61  81 158 107 175 151 216 219 150 137 100 115  

37 

 110 100  89  89  78  75  82 126  68  91  39   0  14  80 129 139 135 167  39  98 187 

136 148  81 186  28  61  92  97  98 117 173 134 204 181 232 229 153 176 137 143  
62 

  96  87  76  75  65  62  69 113  63  88  34  14   0  72 117 128 124 153  26  88 174 

136 142  82 187  32  48  79  85  89 106 159 121 191 168 219 216 140 168 134 145  

64 

  90  75  93  84  76  36  60  80 122 150  99  80  72   0  59  71  63 116  56  25 170 201 

189 151 252 104  44  95 111 130 138 130 127 192 174 186 172  90 205 193 214 135 

  74  63  95  84  83  56  63  42 148 174 134 129 117  59   0  11   8  63  93  35 135 223 

195 184 273 146  71  95 113 138 138  81 107 159 146 132 113  32 200 209 243 171 

  76  67 100  89  89  66  70  42 155 181 142 139 128  71  11   0  11  54 103  46 130 

230 198 192 279 155  80  99 117 143 141  74 107 155 143 122 102  22 202 215 250 
179 

  82  71 104  92  91  63  71  49 156 182 141 135 124  63   8  11   0  65 100  39 140 

232 203 192 281 153  78 103 121 147 146  85 115 164 152 133 112  33 208 218 251 

178 

  67  69  98  89  95  95  85  40 159 181 157 167 153 116  63  54  65   0 127  92  83 

224 180 199 269 175 106  95 109 135 125  21  80 107 100  71  63  33 173 205 249 

191 

  72  62  57  54  43  37  44  87  67  95  44  39  26  56  93 103 100 127   0  67 153 145 

139  96 196  53  23  60  70  81  95 134 101 172 149 194 190 115 160 138 159  80 

  78  63  88  78  72  34  52  60 129 157 110  98  88  25  35  46  39  92  67   0 152 207 

188 162 258 119  48  89 107 129 134 108 114 176 159 163 147  66 200 197 224 147 
  82  96  99  99 110 137 115  94 148 159 161 187 174 170 135 130 140  83 153 152   

0 188 128 184 222 183 139  95  95 110  91  62  54  24  23  81 110 113 108 164 217 

184 

 159 164 130 141 141 174 161 195  78  50 103 136 136 201 223 230 232 224 145 

207 188   0  65  57  51 109 160 132 116  90 102 217 148 188 168 264 281 231 100  

26  30  75 

 122 132 100 111 116 156 136 158  80  65 109 148 142 189 195 198 203 180 139 

188 128  65   0  91  94 126 145 100  82  60  57 167  99 126 106 208 230 194  36  39  

94 103 

 131 131 101 109 105 129 122 163  39  27  52  81  82 151 184 192 192 199  96 162 
184  57  91   0 106  53 115 104  94  74  94 196 134 192 168 251 260 197 126  64  64  

19 

 206 212 179 190 190 224 210 242 129 102 154 186 187 252 273 279 281 269 196 

258 222  51  94 106   0 158 211 180 163 136 145 259 190 218 200 302 323 278 120  

65  49 124 

 112 106  86  89  81  90  91 135  46  65  22  28  32 104 146 155 153 175  53 119 183 

109 126  53 158   0  75  89  88  83 103 178 129 197 173 236 238 166 156 111 115  

34 

  57  44  51  44  34  15  25  65  82 110  63  61  48  44  71  80  78 106  23  48 139 160 

145 115 211  75   0  53  68  86  95 114  90 160 139 173 168  92 162 150 176 101 

  28  33   4  11  19  59  37  63  65  87  68  92  79  95  95  99 103  95  60  89  95 132 
100 104 180  89  53   0  18  44  45  92  42 112  89 149 156  99 111 116 155  97 

  43  51  18  29  35  75  54  79  55  73  66  97  85 111 113 117 121 109  70 107  95 

116  82  94 163  88  68  18   0  27  27 103  42 109  85 157 168 115  94  98 140  90 
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  70  77  43  54  57  96  78 106  40  50  61  98  89 130 138 143 147 135  81 129 110  

90  60  74 136  83  86  44  27   0  21 128  62 119  96 179 192 142  79  72 115  74 

  65  75  45  56  63 103  81 101  61  68  81 117 106 138 138 141 146 125  95 134  91 

102  57  94 145 103  95  45  27  21   0 115  46  98  75 163 179 136  67  81 129  95 

  66  72  95  89  97 105  90  50 157 176 158 173 159 130  81  74  85  21 134 108  62 
217 167 196 259 178 114  92 103 128 115   0  69  86  81  60  65  54 158 195 243 190 

  37  52  45  47  58  91  68  66  97 112 107 134 121 127 107 107 115  80 101 114  54 

148  99 134 190 129  90  42  42  62  46  69   0  71  49 117 133  98  95 127 175 132 

 103 118 115 118 129 158 136 118 159 166 175 204 191 192 159 155 164 107 172 

176  24 188 126 192 218 197 160 112 109 119  98  86  71   0  24  94 127 137 100 

163 218 194 

  84  99  93  96 107 139 116 104 135 142 151 181 168 174 146 143 152 100 149 159  

23 168 106 168 200 173 139  89  85  96  75  81  49  24   0 104 133 127  85 143 197 

170 

 125 132 152 147 156 164 150 109 212 229 216 232 219 186 132 122 133  71 194 
163  81 264 208 251 302 236 173 149 157 179 163  60 117  94 104   0  39 100 190 

241 292 246 

 129 132 159 151 158 156 147 103 221 241 219 229 216 172 113 102 112  63 190 

147 110 281 230 260 323 238 168 156 168 192 179  65 133 127 133  39   0  81 216 

259 307 253 

  72  67 100  90  92  78  76  36 159 184 150 153 140  90  32  22  33  33 115  66 113 

231 194 197 278 166  92  99 115 142 136  54  98 137 127 100  81   0 193 214 253 

187 

 126 139 112 122 129 169 148 160 110  99 137 176 168 205 200 202 208 173 160 

200 108 100  36 126 120 156 162 111  94  79  67 158  95 100  85 190 216 193   0  74 

129 137 
 141 148 114 126 127 163 147 178  72  46 100 137 134 193 209 215 218 205 138 

197 164  26  39  64  65 111 150 116  98  72  81 195 127 163 143 241 259 214  74   0  

55  80 

 183 186 153 163 161 191 180 218  95  69 115 143 145 214 243 250 251 249 159 

224 217  30  94  64  49 115 176 155 140 115 129 243 175 218 197 292 307 253 129  

55   0  81 

 124 122  94 101  95 115 111 153  35  38  37  62  64 135 171 179 178 191  80 147 

184  75 103  19 124  34 101  97  90  74  95 190 132 194 170 246 253 187 137  80  81   

0 

 
DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 

 

EXAMPLE 11-48 customers Held and Karp (1970) 

CAPACITY: 15 

 

0  273    0 1272  999    0  744  809 1519    0 1138  866  140 1425 

0 1972 1722  937 1861 1052    0 1580 1338  697 1473  776  400    0 

1878 1640  951 1713 1049  182  304    0 1539 1226  267 1761  402  820 

699  884    0 1457 1185  227 1617  361  721  538  755  177    0  429 

440 1229  370 1119 1735 1335 1612 1486 1362    0 1129  894  587 1073 
578  851  454  749  757  587  891    0 1251  992  369 1304  406  740 

393  690  506  335 1082  252    0 1421 1173  554 1369  618  551  173 

476  609  435 1199  308  222    0  588  334  721 1092  581 1551 1198 
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1501  981  930  726  803  814 1025    0  334  358 1212  453 1095 1769 

1370 1654 1474 1358   96  920 1094 1227  663    0  837  626  739  798 

670 1159  760 1049  967  819  583  309  510  617  632  610    0 1364 

1124  596 1283  641  613  216  516  681  504 1125  238  235   90  999 

1156  546    0  229  358 1291  973 1152 2072 1692 1995 1552 1496  653 
1252 1335 1525  572  557  983 1479    0  961  847 1114  565 1060 1300 

919 1149 1317 1153  563  569  820  835  972  642  397  745 1163    0 

754  533  701 1315  567 1605 1286 1580  936  927  947  940  892 1114 

225  879  821 1105  676 1183    0 1169  915  426 1204  443  807  435 

739  594  428  986  165  100  263  763 1000  411  240 1264  725  865 

0 1488 1219  285 1796  374 1017  879 1079  197  341 1493  863  626 

770  908 1467 1023  831 1473 1399  821  699    0  720  481  676  846 

579 1251  861 1161  928  803  560  414  541  700  451  558  180  645 

839  549  644  453  950    0 1280 1009  155 1447  235  818  548  815 

316  180 1183  454  219  400  767 1178  651  442 1326 1004  790  290 
410  624    0  816  543  456 1143  325 1259  913 1214  723  649  813 

552  524  740  293  780  478  723  847  869  388  483  690  325  479 

0  664  937 1936  959 1802 2596 2198 2485 2203 2119  882 1745 1897 

2049 1240  831 1438 1983  801 1427 1374 1809 2147 1356 1941 1480    0 

1178  915  319 1275  331  826  483  780  500  343 1033  269   90  311 

726 1038  476  316 1254  818  803  107  594  480  188  435 1829    0 

939  667  337 1213  217 1137  803 1100  604  521  902  482  410  630 

420  879  485  623  976  882  484  384  590  369  350  129 1603  320 

0 1698 1441  604 2085  665 1255 1181 1347  482  652 1763 1188  952 

1087 1111 1726 1333 1152 1643 1716  968 1024  326 1241  736  949 2339 

919  872    0  983  812  907  742  862 1123  731  985 1104  939  642 
355  805  630  862  700  235  543 1157  214 1056  511 1191  413  792 

708 1524  605  699 1511    0 1119  848  214 1309  182  943  627  916 

455  340 1032  397  238  459  617 1023  525  470 1169  902  655  251 

499  473  161  325 1780  154  197  815  697    0 1029  776  424 1479 

312 1359 1086 1361  630  649 1131  833  706  924  443 1082  827  939 

983 1222  318  712  504  680  547  355 1673  623  358  669 1051  469 

0 1815 1560  748 1760  864  188  292  260  641  533 1604  713  570 

405 1374 1631 1022  482 1905 1210 1420  646  838 1097  632 1081 2421 

652  957 1092 1018  761 1171    0  721  526  817  703  732 1282  883 

1171 1058  918  463  432  622  739  586  488  123  669  878  390  794 
525 1098  166  745  492 1315  580  529 1397  290  607  847 1144    0 

1753 1494  666 1727  783  271  279  328  562  451 1556  666  503  360 

1299 1579  973  443 1836 1184 1341  585  758 1038  552 1007 2394  582 

881 1019  985  685 1089   83 1094    0  330  598 1592  872 1456 2300 

1906 2202 1857 1783  663 1453 1581 1749  887  586 1155 1690  346 1225 

1017 1499 1794 1049 1607 1137  357 1508 1263 1982 1280 1446 1316 2145 

1036 2083    0 1499 1244  521 1479  608  483  178  445  528  362 1298 

410  257  115 1070 1320  715  205 1590  949 1137  330  703  781  375 

779 2136  344  660 1010  743  472  919  317  836  259 1828    0 1107 

1304 2172  686 2066 2540 2156 2385 2425 2290  947 1758 1985 2055 1633 

982 1475 1969 1286 1239 1836 1885 2439 1497 2115 1759  825 1950 1849 
2708 1427 1969 2063 2445 1371 2412 1005 2165    0 1576 1306  356 1698 

491  609  490  665  220  130 1461  642  396  428 1057 1463  902  510 

1621 1210 1056  495  414  905  296  774 2237  429  645  695  996  457 
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776  426 1008  345 1903  330 2377    0  942  685  467 1057  400 1038 

662  966  704  568  795  262  309  492  547  796  273  455 1034  660 

679  231  751  238  392  291 1589  242  240 1061  466  254  598  875 

354  811 1272  559 1723  667    0  484  668 1583  387 1466 2099 1699 

1969 1845 1727  371 1260 1453 1568  999  371  953 1492  689  863 1200 
1356 1837  925 1547 1148  579 1402 1250 2089  987 1393 1434 1972  833 

1925  504 1668  636 1829 1162    0  617  444  882 1252  744 1776 1430 

1729 1122 1105  882 1051 1039 1256  252  802  882 1238  503 1207  189 

999 1011  702  959  516 1204  949  631 1148 1110  823  507 1584  828 

1507  849 1291 1720 1235  792 1087    0  896 1157 2139  904 2013 2699 

2300 2568 2405 2301  967 1858 2043 2166 1483  940 1550 2091  995 1446 

1645 1949 2374 1506 2121 1688  347 1986 1802 2594 1584 1963 1926 2571 

1429 2523  653 2264  534 2410 1744  600 1490    0 1184 1359 2182  668 

2082 2493 2117 2333 2428 2285  973 1737 1972 2026 1681 1021 1467 1938 

1376 1197 1891 1872 2455 1506 2114 1785  959 1943 1867 2734 1395 1975 
2101 2408 1369 2380 1114 2138  145 2367 1724  701 1787  678    0 1030 

1176 1961  443 1865 2266 1888 2108 2204 2059  768 1508 1744 1796 1489 

826 1240 1709 1239  969 1704 1644 2237 1287 1890 1573  940 1717 1650 

2520 1166 1752 1898 2179 1146 2151 1019 1908  290 2139 1500  550 1614 

727  229    0 1718 1475  781 1600  875  264  138  177  738  595 1472 

592  514  303 1326 1508  898  354 1828 1042 1403  567  928  998  641 

1038 2336  603  923 1212  861  739 1187  194 1021  220 2044  268 2281 

519  796 1835 1553 2435 2238 2010    0  604  335  678  930  552 1398 

1023 1327  945  853  588  598  661  853  236  550  396  813  674  741 

442  591  921  216  676  231 1266  582  341 1176  626  515  548 1231 

352 1163  932  917 1531  972  361  917  486 1461 1560 1353 1157    0 
 

DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 
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