

Department of Mathematics and Statistics

A Hybrid Method for Capacitated Vehicle Routing Problem

Mamon Radiy

This thesis is presented for the Degree of

Doctor of Philosophy

of

Curtin University of Technology

March 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195630708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To My Mother

I

Declaration

To the best of my knowledge and belief this thesis contains no materials previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

Mamon Radiy

II

Abstract

The vehicle routing problem (VRP) is to service a number of customers with a fleet

of vehicles. The VRP is an important problem in the fields of transportation,

distribution and logistics. Typically the VRP deals with the delivery of some

commodities from a depot to a number of customer locations with given demands.

The problem frequently arises in many diverse physical distribution situations. For

example bus routing, preventive maintenance inspection tours, salesmen routing and

the delivery of any commodity such as mail, food or newspapers.

We focus on the Symmetric Capacitated Vehicle Routing Problem (CVRP) with a

single commodity and one depot. The restrictions are capacity and cost or distance.

For large instances, exact computational algorithms for solving the CVRP require

considerable CPU time. Indeed, there are no guarantees that the optimal tours will be

found within a reasonable CPU time. Hence, using heuristics and meta-heuristics

algorithms may be the only approach. For a large CVRP one may have to balance

computational time to solve the problem and the accuracy of the obtained solution

when choosing the solving technique.

This thesis proposes an effective hybrid approach that combines domain reduction

with: a greedy search algorithm; the Clarke and Wright algorithm; a simulating

annealing algorithm; and a branch and cut method to solve the capacitated vehicle

routing problem. The hybrid approach is applied to solve 14 benchmark CVRP

instances. The results show that domain reduction can improve the classical Clarke

and Wright algorithm by 8% and cut the computational time taken by approximately

50% when combined with branch and cut.

Our work in this thesis is organized into 6 chapters. Chapter 1 provides an

introduction and general concepts, notation and terminology and a summary of our

work. In Chapter 2 we detail a literature review on the CVRP. Some heuristics and

exact methods used to solve the problem are discussed. Also, this Chapter describes

the constraint programming (CP) technique, some examples of domain reduction,

advantages and disadvantage of using CP alone, and the importance of combining

III

CP with MILP exact methods. Chapter 3 provides a simple greedy search algorithm

and the results obtained by applying the algorithm to solve ten VRP instances. In

Chapter 4 we incorporate domain reduction with the developed heuristic. The

greedy algorithm with a restriction on each route combined with domain reduction

is applied to solve the ten VRP instances. The obtained results show that the

domain reduction improves the solution by an average of 24%. Also, the Chapter

shows that the classical Clarke and Wright algorithm could be improve by 8%

when combined with domain reduction. Chapter 4 combines domain reduction with

a simulating annealing algorithm. In Chapter 4 we use the combination of domain

reduction with the greedy algorithm, Clarke and Wright algorithm, and simulating

annealing algorithm to solve 4 large CVRP instances. Chapter 5 incorporates the

Branch and Cut method with domain reduction. The hybrid approach is applied to

solve the 10 CVRP instances that we used in Chapter 4. This Chapter shows that

the hybrid approach reduces the CPU time taken to solve the 10 benchmark

instances by approximately 50%. Chapter 6 concludes the thesis and provides some

ideas for future work. An appendix of the 10 literature problems and generated

instances will be provided followed by bibliography.

IV

Acknowledgement

My sincerest gratitude to my thesis supervisor Professor Lou Caccetta, for his

invaluable guidance, helpful advices, and encouragement during the preparation of

this thesis, as his guidance and kind help provide me with enough knowledge to

understand the problem and develop solution algorithms . Also I would like to thank

my associate supervisor Stephen Hill for his help.

To my collogue Mark Grigoleit my gratitude and special thanks, for his help and

support. Also, my gratitude to the post graduate coordinator Professor Y. Hong Wu,

for his kind assistance and sincere support for all post graduate students in general

and me in particular. I would like to thank the staff of the department and post

graduate students for their encouragement and support.

To my mother Fadia, my brother Anwar, my father Hamid and my wife Hala, my

gratitude and love for their support and understanding. Also to my uncle Fawzi my

deepest gratitude, for his encouragement and for his helpful advice in how to use x-

press package.

Financially I’m grateful to Professor Lou Caccetta for his kind assistance and

support. Also, I would like to thank Curtin University for providing me with a Curtin

postgraduate award (CUPSA).

.

V

Table of Contents

Chapter 1

Introduction ... 1

1.1 Notation and Terminology .. 3

1.2 Problem Formulation.. 8

1.3 Review and Summary of Thesis .. 9

Chapter 2

Literature review .. 13

2.1 Classical Heuristics .. 17

 2.1.1 The Clarke and Wright Algorithm (1964) ... 17

 2.1.2 Sweep Algorithm (Wren and Holliday (1972)) 20

2.2 Metaheuristics .. 21

 2.2.1 Simulating Annealing (SA) .. 21

 2.2.2 Genetic algorithms (GA) ... 22

2.3 Branch and Bound.. 23

2.4 Cutting Plane Technique .. 26

2.5 Application of Branch and Cut Method to VRP ... 28

 2.5.1 The Laporte, Nobert and Desrochers (1985) 28

 2.5.2 Achuthan, Caccetta and Hill (2003) Improved Branch and Cut

Algorithm. .. 33

2.6 The Advantages and Disadvantages of Branch and Cut 35

2.7 Constraint Programming (CP) .. 36

 2.7.1 Binarization of Constraints .. 37

 2.7.2 Systematic Search Algorithms ... 38

 2.7.3 Consistency Techniques .. 38

 2.7.4 Constraint Propagation .. 39

 2.7.5 Value and Variable Ordering ... 40

 2.7.6 Reducing Search ... 40

2.8 Constraint Programming and Operations Research. 41

2.9 Integrating CP and OR Techniques ... 43

2.10 Constraint Programming and VRP .. 44

2.11 Advantages and Disadvantages of Integrating CP with OR 45

VI

Chapter 3

 Heuristics and Domain Reduction ... 46

3.1 A Simple Heuristic Algorithm for the Symmetric VRP.............................. 47

3.2 Calculations ... 55

3.3 Conclusion ... 61

Chapter 4

 Heuristic Algorithm for CVRP .. 62

4.1 Domain Reduction ... 63

 4.1.1 Computations .. 63

 4.1.2 Distance Constrained Vehicle Routing Problem (DCVRP) 64

4.2 Clarke and Wright (C&W) Algorithm ... 68

4.3 Simulating Annealing Algorithm (SA) .. 69

4.4 Heuristics and large instances ... 71

4.5 Conclusion ... 72

Chapter 5

 A hybrid Method to solve VRP ... 73

5.1 Domain Reduction condition and Implementation 73

5.2 Calculation .. 74

5.3 Conclusions ... 81

Chapter 6

 Conclusion and Future Work .. 82

6.1 Future Work .. 83

Appendix A.. 84

Bibliography .. 96

1

Chapter 1

Introduction

Procurement, production and distribution are the traditional three stages for the

supply chain. Managing the flow of materials and information inside and outside the

production facilities has received increased attention over recent years. Furthermore,

transporting goods and commodities contribute 20%-30% of the overall cost of the

supply chain. Moving towards more complicated logistics options, transportation

optimization has become an important factor in reducing the product cost.

Transporting raw materials to factories or goods to customers are the key objectives

of a distribution network. Surveys done in 2001 by the Council of Logistics

Management (CLM) in North America * showed that transportation represents 6

percent of the U.S. gross domestic product expenses.

The vehicle routing problem (VRP) is an important problem in the distribution

network and has a significant role in reducing the cost and improving the service.

The problem is one of visiting a set of customers using a fleet of vehicles, respecting

constraints on the vehicles, customers, drivers, and so on. The goal is to produce a

minimum cost routing plan specifying for each vehicle, the order of the customer

visits they make. The problem of vehicle scheduling was first formulated by Dantzig

and Ramser (1959) and may be stated as a set of customers, each with a known

location and a known requirement for some commodity, is to be supplied from a

single depot by delivery vehicles, subject to the following conditions and constraints:

 (a) The demands of all customers must be met.

 (b) Each customer is served by only one vehicle.

 (c) The capacity of the vehicles may not be violated (for each route the total

demands must not exceed the vehicle capacity).

* AllBusiness.com (2007).

2

The objective of a solution may be stated in general terms as that of minimizing the

total cost of delivery, namely the costs associated with the fleet size and the cost of

completing the delivery routes (Christofides and Eilon (1969)).The problem

frequently arises in many diverse physical distribution situations. For example bus

routing, preventive maintenance inspection tours, salesmen routing and the delivery

of any commodity such as mail, food or newspapers (Achuthan et al (1996)). The

vehicle routing problem is an integer programming problem that falls into the

category of NP-Hard problems. As the problems become larger, there will be no

guarantee that optimal tours will be found within reasonable computing time

(Achuthan et al (1991)).

Over the past 50 years vehicle routing or dispatching problems have been extensively

studied by researchers around the word. Algorithms have been developed to improve

both exact and heuristic methods. The major focus of this thesis is the development

and implementation of a hybrid approach that combines domain reduction with

heuristics and the branch and cut method. In this thesis we consider the capacitated

vehicle routing problem (CVRP) where the problem is to determine delivery routes,

one for each vehicle, which minimize the total distance traveled by all vehicles. Note

that if the vehicle has infinite capacity, the CVRP may be viewed then as a

symmetric traveling salesman problem (STSP). Much of the computational work on

the CVRP has been motivated by the success of methods to solve the Travelling

Salesman Problem (TSP). Branch and Cut is a method that has been used to solve

larger STSP effectively, the method has also proven to be effective when used to

solve larger CVRP.

The branch and cut method can be considered as an extension of branch and bound.

As in the branch and bound method, one must compute a lower bound and an upper

bound on a problem (minimizing problem) and divide the feasible region of a

problem to create smaller sub-problems. The branch and bound finds a lower bound

and upper bound at the start. If the two bounds are the same, then an optimal solution

has been found. Otherwise, the feasible region is divided into sub-problems

(branching). Note that, solving these subproblems will be easier than dealing with the

original problem. At each stage a sub-problem is selected and an effort is made to

3

find its optimal solution. An optimal solution is found for the problem when no more

branching is possible.

The term Branch and Cut was coined by Padberg and Rinaldi (1987). The branch and

cut solves the linear problem ignoring the integer constraints. After solving the

problem without the integer constraints, the algorithm then generates a cut, if this cut

is violated by the current solution then the generated cut inequality will be added as

an extra constraint to the original problem. The process of solving the relaxation

problem and generating the cuts is repeated until either an integer solution is found

or until no more cutting planes are found. So in this case the problem splits into two

sub-problems, the first with a constraint that is greater than or equal to the greatest

integer in the intermediate result, and the second with a constraint less than or equal

to the lesser integer. The process is repeated starting from solving the relaxed

problem using the simplex method. However, in some NP-hard problems like the

VRP the branch and cut method can take a long time to solve the problem and in

some cases it fails to produce an optimal solution mainly because of the problem

size. At this point using constraint programming (CP) may be helpful since CP is

mainly developed to provide feasible solutions for different types of problems

especially the large ones while branch and cut method showed the importance of

using it to get the optimal solution for various NP-hard problems.

NP-hard problems are a true challenge and often attracted attentions for their

importance in minimizing the cost or maximizing productivity. The approaches to

solve the optimization problems and some needed notations and terminologies are

discussed below.

1.1 Notation and Terminology

In the application of mathematical techniques to problems arising in science and

technology, the problem that often arises is that of optimizing a function subject to

a set of constraints. Usually the function to be optimized represents profit or cost,

while the constraints reflect restrictions imposed by limited resources such as

raw materials, market requirements, equipment availability, capacity and other

restrictions. The problem may be expressed as:

http://en.wikipedia.org/wiki/Linear_programming_relaxation
http://en.wikipedia.org/wiki/Cutting_plane

4

Problem (1.1):

 minimize Z=cx

 subject to

 Ax b

 x 0

The problem is called a Linear Program (LP), when the objective function and

constraint set are linear and called a Mixed Integer Linear Program (MILP), if

some of the variables are specified as integer. The problem is a pure Integer

Linear Program (ILP), if all variable values must be integral. The VRP can be

formulated as either a MILP or ILP. Non-linear constraints problems or

objectives are not considered in this thesis.

LP problems are easier to solve than both MILP and ILP problems. Since

solving MILP or ILP problems normally requires the solution of one or more

easier LP sub-problems, by dropping the integer restrictions or some of the other

constraints. More formally, a problem (F) is a relaxation of a minimization

problem (P) if:

 The set of feasible solutions of P is a subset of the feasible solution

of F.

 The objective function of F bounds the objective function of P

from below over the domain of F.

Solutions of the relaxations are used in a search tree technique, such as the method

of Branch and Bound, or Branch and Cut, to obtain optimality. The sub-problem

is said to be fathomed, if the objective function value of the optimal solution to

the sub-problem is at least equal to the objective function value of the best known

solution of the original problem.

The difficulty of a decision problem is classified into three classes: P, NP and

NP-Complete. Problems for which polynomial time algorithms are known

belong to the class P. In addition, an algorithm solves all instances of a problem

by using a maximum number of steps that increases polynomially with the

5

problem size. The problems which can be solved by a non-deterministic algorithm

in polynomial time and all the problems in P belong to NP class. The class NP-

Complete is a subset of NP having the property that all problems in NP can

be reduced in polynomial time to one of them.

A problem is NP-Hard if every problem in NP is polynomially reducible to

it. Usually MILP and ILP problems are NP-Hard. In the majority of cases, only

exponential time algorithms are known for MILPs and ILPs. For this reason

there is no assurance of finding the solution in a reasonable amount of time.

The following terms are used in the description of the solution space of a discrete

optimization problem. We begin by considering the set of all possible solutions of

a MILP or ILP. The restrictions to find the solutions may be described by a set of

linear constraints, and the problem expressed in the form of Problem (1.1).

Finding these constraints and their properties is the subject of polyhedral

theory. A detail treatment of this subject is presented in the excellent book of

Nemhauser and Wolsey (1988). Some basic aspects are briefly described below.

Given
nRS , a point nRx is a convex combination of points of S if there

exists a finite set of points t

1ii}{x in S and a vector tRλ of non-negative

values with
t

i

iλ =1 and
i

t

1i

i xλx . The convex hull of S, denoted by

conv(S), is the set of all points that are convex combinations of S. Note that as

a result finite S, conv(S) can be described by a finite set of linear inequalities. In

addition conv(S)x:cxminSx:cxmin .Thus any MILP or ILP can be

represented as an LP provided we know a set of linear inequali ties that

represent the solution space. Note that such a system of inequalities is usually

incredibly large in number and generally unknown. To overcome these problems,

the approach is to use a subset of the constraints defining conv(S) and/or

constraints which are redundant in a minimal representation.

The inequality 0ππx is called a valid inequality for Problem (1.1) if it is

satisfied for all points in P. A linear constraint that does not exclude any

6

integer feasible points is called a cutting plane. If
0ππx is a valid

inequality for P, and F = {x P:
0ππx }, then F is called a face of P. A face

of P is a facet of P if dim(F) = dim(P)-1. This leads to the result that for each

facet F of P, one of the inequalities representing F is necessary in the

description of P. Thus the use of facets in the description of the solution space

yields a system of inequalities of smallest number. Also, if P defines the convex

hull of integer solutions of a discrete optimization problem, then the use of facet

defining inequalities is most likely to give the tightest lower bounds in a Branch

and Cut scheme.

The VRP feasible and partial solutions may be modelled using a graph. A graph

G is an ordered triple (V(G),E(G),
G

) consisting of a nonempty set V(G) of

vertices, a set E(G) of edges disjoint from V(G) and an incidence function
G

that associates with each edge of G an unordered pair of vertices of G. If u and v

are vertices of the graph G identified with an edge e, then e is incident with u

and v; u and v are the ends of edge e. If each edge e = uv has a positive edge

weight
uvc associated with it, then the graph is weighted. Consider the

MILP formulation of CVRP with variables x = (
ijx). We can associate a

weighted graph G with any solution
ijC (x) of the problem as follows. V(G) =

{0,1,.. . ,n}, E(G) = }0x:j){(i, ij
, and the weight of edge (i, j) is

ijc .

The degree of a vertex u in a graph G is the number of edges of G incident with

u. For a weighted graph G, the degree of vertex u refers to the sum total of edge

weights,
ijc of edges incident with u. Arc set A(G) is used in place of E(G), if

GΦ specifies the vertices are ordered in its association.

A graph H = (V(H),E(H), HΦ) is a sub-graph of G = (V(G},E(G), GΦ) if

HΦE(G),E(H)V(G),V(H) is the restriction of GΦ to E(H). Let V' be a

non-empty subset of V(G). A graph G[V'] whose vertex set is V' and whose

edge set is the set of those edges of G that have both ends in V' is called an

induced sub-graph of G. ε (G[V']) denotes the number of edges of G[V'].

7

A path in a graph G is a finite, non-empty alternating sequence W =

nn2110 v,e,...,e,v,e,v of vertices and edges, such that for ni1 , the ends of edge

ie are 1iv and iv . If the path has distinct vertices then it is a simple path. A

cycle is a simple path with the origin
0v and terminus nv the same. A 2-cycle is

a cycle on 2 vertices and is of the form W=
02110 v,a,v,a,v where 1a and 2a are

arcs from
0v to 1v and from 1v to

0v , respectively.

A graph G is connected if there is a path between every pair of vertices; otherwise it

is disconnected. A tree is a connected graph without cycles. A maximal connected

sub-graph is called a component.

For a graph with n vertices, a Hamiltonian cycle is a cycle that visits each vertex

exactly once and finishing the cycle at the starting vertex. The Travelling Salesman

Problem (TSP) is to find a cycle through the n vertices that minimize the sum of

the associated edge costs. Hence, any solution for TSP can be seen as a spanning

Hamiltonian cycle of a minimum weight. Including a depot in the vertex set and

considering more than one salesman results in a Multiple Travelling Salesman

Problem that finds m cycles with a common vertex (representing the depot) which

minimizes the sum of the associated edge costs. Note that the degree of the depot

must be 2m and every other vertex has degree 2.

The Bin Packing Problem (BPP) is to assign each of the items to one of the m bins

so that the number of bins used is minimized, with the sum of the weights of items

in any particular bin at most c, where c is the common capacity. Note that vehicle

routing problem (VRP) can be seen as a combination of TSP and BPP. Also, any

solution to VRP with m vehicles can be viewed as m Hamiltonian cycles

Constraint satisfaction problems normally consist of finite variables with finite

domains and finite constraints restricting the values of the variables. The problem

solution will involve the use of logic to assign the variables with values from the

domain so that all constraints are satisfied. The Constraint Programming (CP)

method is the embedding of constraints in a logic programming language to solve

8

constraint satisfaction problems. The method is based on the idea of using logic to

satisfy a large number of constraints. The Domain reduction technique is one of the

approaches to deal with constraint satisfaction problems. As the name suggest, the

domain reduction technique is to use logic to reduce the domain for the given

problem. The next section provides a mathematical formulation to VRP.

1.2 Problem Formulation

The CVRP is to satisfy the demand of a set of customers using a fleet of

vehicles with minimum cost. Achuthan et al (1996) described the problem as

follows:

Let

 C= {1, 2,…, n}:the set of customer location.

 0 : depot location.

 G=(N,E) : the graph representing the vehicle routing network with

N={0,1,…,n} and E={(i,j):i,j N, i<j}.

 jq : demand of customer j.

 Q : common vehicle capacity.

 m : number of delivery vehicles.

ijc : distance or associated cost between locations i and j.

 L : maximum distance a vehicle can travel.

jP : a lower bound on the cost of traveling from the depot to customer

j.

 (S): lower bound on the number of vehicles required to visit all

locations of S in an optimal solution. Note that S C and (S) 1.

 S : the complement of S in C

ijx : 1,2, or 0

The problem is to:

 minimize Z= ij ij
i N i<j

c x i N, i<j (1.2.1)

9

subject to

0i

i C

x =2m , i C (1.2.2)

ij

j<i

x +
ji

i<j

x =2 , i C (1.2.3)

 ijx S - (S) , i,j S, S C,3 S n-2 (1.2.4)

 ijx =1,2,or 0 (1.2.5)

Constraints (1.2.2) and (1.2.3) known as degree constraints. Constraint (1.2.2)

specifies that the number of vehicles leaving and returning to the depot are m.

Constraint (1.2.3) specifies that each customer is visited by only one vehicle.

Constraint (1.2.4) is referred to as subtour elimination constraints, which prevent

subtours from forming loops disconnected from the depot, or eliminate tours that

connected to the depot but violate the capacity restriction. Note that a connected

component of a weighted or un-weighted graph defined over the set of customers is

called a subtour. The subtour will be called a tour if it’s connected to the depot in a

graph defined over all locations. Constraint (1.2.5) specifies that if a vehicle travel on

single trip between i and j then the value of
ijx will be 1,and if i=0 and (0,j,0) is a

route then the value of
ijx will be 2, otherwise the value of

ijx will be 0.

1.3 Review and Summary of Thesis

The major focus of this thesis is to develop a hybrid approach to solve CVRPs. We

develop and implement methods that combine domain reduction with heuristic

algorithms as well as Branch and Cut method.

In this thesis combining domain reduction with a greedy search heuristic (that have

restrictions on each route) improves the solution by average of 24% and combining

the domain reduction with the Clarke and Wright algorithm improves the solution

by average of 8%. When domain reduction combines with branch and cut method,

10

the average time taken to solve the problems have been improved by 49.8%. The

thesis illustrates clearly the benefits of using domain reduction to

 Minimizing the cost when combined with a greedy search heuristic

algorithm.

 Minimizing the time taken to solve CVRPs when combined with a branch

and cut exact method.

The CVRP is a combination of the traveling salesman problem TSP and the bin

packing problem BPP. The early work of Dantzig et al (1954) on the TSP inspired

researchers to develop methods, theories, and constraint to solve the CVRP. In

addition, the CVRP formula in Section 1.2 builds on the paper of Dantzig and

Ramser (1959b) and used by Laporte et al (1985). Moreover, Fisher (1994a) showed

how constraint (1.2.4) can be tightened, while Cornuéjols and Harche (1993)

presented two constraints which, have successfully been used to solve CVRP. These

constraints are:

Let
0 1 iW ,W ,…,W C satisfy:

 i 0W \W 1,i=1.…,s,

 i 0W W 1,i=1.…,s,

 i jW W =0,1 i < j s,

 s 3 and odd.

The comb inequality is given by:

ij

0 , 0

3s 1
x s W (m-1)

2
p

s s

p

p i j W p

 (1.3.1)

where

0

0 j 0

1

0

0, 0 W ,

1, 0 W \ W or 0 W \ W for some j=1,…,s

2, 0 W W for some j 1, ,s.

s

i

i

s

i

i

j

if

if

if

11

 For the case
1 00 \W W the constraints are tightened to

ij 1

0 , 0

3s 1
x W m- (C\W)

2
p

s s

p

p i j W p

 (1.3.2)

 Fisher (1994a) connectivity constraint (1.3.2) tightening can be presented as follows:

0i j ijx e x 2 (S) S C with S 2,,
i S i S j S

 (1.3.3)

where

0, j S,

0, j S and S 2,

e (S)
, j S and S 2,

(S) 1

1, j S S .

j

Constraint (1.3.3) is useful for detecting violating subtour elimination constraints. An

alternative version of this constraint was developed by Achuthan et al (1996).

ij 0i

,

x x m S (S), S C,1 S n 1.
i j s i s

 (1.3.4)

We expect that VRP will receive great attention in the coming years due to the

following reasons:

 The improvements of TSP techniques.

 The improvements of CP approaches and the increased attentions to combine

CP with VRP methods.

 The increased developments in VRP theoretical results.

We review some of the heuristics and the exact methods used to solve the

capacitated vehicle routing problem in Chapter 2. Our discussion on heuristics

surveys both classical and metaheuristics methods. For the classical methods, we

discuss the Clarke and Wright algorithm and the sweep algorithm. Genetic

algorithms and simulating annealing are the metaheuristics that are reviewed. Our

discussion on exact methods focuses on Branch and Cut.

12

Chapter 2 also describes the techniques developed over the years to solve constraint

satisfaction problems. A comparison between constraint programming CP and

operational research OR techniques is provided in this Chapter. The advantages and

disadvantages of using either CP or LP to solve optimization problems are discussed.

Chapter 3 develops a simple classical heuristic algorithm for the CVRP. The

algorithm is implemented in C++ and applied to solve 10 benchmark CVRP

instances. The number of customers for the test problems ranges from 7 to 48. The

optimal solutions (that we compared our results to) are obtained using CPLEX. Also

the Algorithm results are compared to the results obtained by the Symphony

heuristics and the Clarke and Wright (1964) saving Algorithm. Chapter 3 also

provides some observations related to domain reduction.

Chapter 4 develops the domain reduction approach to improve the greedy search

heuristic algorithm introduced in Chapter 3. Chapter 4 combines domain reduction

with the greedy algorithm, the Clarke and Wright algorithm and with a Simulating

Annealing metaheuristic algorithm. This Chapter provides conclusions on the effect

of domain reduction when combined with different heuristic algorithms. Chapter 5

incorporates Branch and Cut method with domain reduction. The hybrid approach

is applied to solve the 10 CVRP literature instances that we used in Chapter 4. A

comparison of the results, time taken and gap reduction will follow. Chapter 6

concludes the thesis and provides some suggestions for future work.

An appendix of the literature and generated instances is provided followed by the

bibliography.

13

Chapter 2

 Literature review

This Chapter reviews some of the heuristics and the exact methods used to solve

the capacitated vehicle routing problem. It surveys both classical and

metaheuristics methods. For the classical methods, we review the Clarke and

Wright algorithm and the sweep algorithm. For metaheuristics we discuss genetic

algorithms and simulating annealing. For exact methods, our focus will be on the

Branch and Cut technique. The Chapter shows the developments of Constraint

Programming (CP) over the recent years. Also, we review the domain reduction

technique. A comparison between constraint programming (CP) and operational

research (OR) techniques, is provided with a discution on the advantages and

disadvantages of using either (CP) or (LP) to solve optimization problems.

The importance of CVRP in minimizing the cost of the distribution network has

motivated many researches in the recent years. Many books, papers and workshops

have presented new approaches to solve the VRP and offer a better understanding to

the problem. Books like Toth and Vigo (2002), Rayward-Smith et al (1996),

Goldberg (1989), Nemhauser (1988) and Golden and Assad (1988) presented the

VRP and various techniques to solve it. Further, survey papers like Attanasio

et al (2003), Erera and Daganzo (2003), Kleywegt et al (2002), Rousseau et al

(1999), Vianna et al (1999) and Prosser and Shaw (1996), offer promising

approaches to solve VRPs.

14

In their paper Garvin et al (1957), discuss the vehicle routing problem in relation to

the distribution of gasoline to service stations, using vehicles with different

capacities. However, Dantzig and Ramser (1959) developed the first mathematical

programming formulation and proposed a heuristic algorithm to solve the vehicle

routing problem. Five years later Clarke and Wright (1964) proposed a greedy

heuristic that improves the Dantzig and Ramser algorithm. For more details on the

methods and techniques to deal with the VRP we refer to the works of Balinski,

and Quandt (1964), Bodin, and Golden (1981), Bodin et al (1983), Brodie and

Waters (1998), Campos et al (1991), Carpaneto, et al(1989), Christofides (1985),

Christofides et al (1981b), Christofides et al (1979), Desrochers et al (1990),

Fischetti et al (1994), Forbes et al (1994), Foster, and Ryan (1976), Gaskell

(1967), Golden and Assad (1986), Hadjiconstantinou et al (1995), Hall et al

(1994), Kolen et al (1987), Kulkarni and Bhave (1985), Lenstra and Rinnooy

Kan (1981), Li et al (1991), Magnanti (1981), Naddef (1994), Nelson et al

(1985), Paessens (1988), Ribeiro and Soumis (1994), Waters (1988),

The VRP variants mentioned in Table 2.1 are the most basic ones. However, there

are many other VRP variants that are more complicated. We refer to the work of

Ferland and Mehelon (1988), Gendreau et al (1999), Taillard (1993a) for more

details about heterogeneous fleet VRP, Li et al (2007) for details about VRP with

multiple vehicle types and Salhi and Rand (1993) for more details about the

Vehicle fleet composition problem.

15

Table 2.1: Vehicle Routing Problem Variants

In this Chapter we consider the capacitated vehicle routing problem. For

convenience we recall the notation introduced in the previous chapter.

 C= {1, 2,…, n}:the set of customer location.

VRP variant Description References

Capacitated

vehicle VRP

VRP with time

window

Multiple depot

VRP

Periodic VRP

Split delivery

VRP

Stochastic VRP

VRP with

backhauls

VRP with pickup

and delivering

Fleet of vehicles with uniform

capacity serves a set of customers with

known demands from a single depot.

Additional constraint that each

customer must be served within a pre-

specified time period.

Fleet of vehicles with uniform

capacity serves a set of customers

from multiple depots.

Scheduling is for a fixed number of

periods.

The same customer may be served by

a number of vehicles.

Values for customers and/or demands

and/or times are random.

Additional constraint that customers

can demand more commodities.

Here commodities may be picked up

from a certain customer and delivered

to other delivery location.

Augerat et al (1995),

Li et al (2005).

Solomon (1987),

Desrochers et al

(1992), Zbigniew and

Piotr (2002).

Salhi and Nagy (1999),

Giosa et al (2002).

Chao et al

(1995),Cordeau et al

(1997).

Archetti et al (2006a),

Archetti et al (2006b).

Stewart and Golden

(1983), Laporte et al

(2002), Bent and Van

Hentenryck (2004).

Goetschalckx et al

(1989), Kim et al

(1997).

Min (1989),

Hernandez and

Gonzales (2004),

Tang and Galvao

(2006)

16

 0 : depot location.

 G=(N,E) : the graph representing the vehicle routing network with

N={0,1,…,n} and E={(i,j):i,j N, i<j}.

jq : demand of customer j.

 Q : common vehicle capacity.

 m : number of delivery vehicles.

ijc : distance between locations i and j.

 L : maximum distance a vehicle can travel.

jP : a lower bound on the cost of traveling from the depot to customer

j.

 (S): lower bound on the number of vehicles required to visit all

locations of S in an optimal solution. Note that S C and (S) 1.

 S : the complement of S in C

ijx : 1,2, or 0

The problem as detailed in the previous chapter is to:

 minimize Z= ij ij
i N i<j

c x (2.1)

subject to

0i

i C

x =2m , i C (2.2)

 ij

j<i

x + ji

i<j

x , i C (2.3)

 ijx S - (S) , i,j S, S C,3 S n-2 (2.4)

 ijx =1,2,or 0 (2.5)

17

Over the past 40 years, many approaches and solution techniques have been

developed to solve VRPs. Some of these approaches are exact like the direct tree

search method (Christofides and Eilon 1969), the minimum K-degree centre tree

relaxation (Christofides et al 1981a), the set partitioning based method (Agarwal et

al 1989), the minimum k-tree relaxation (Fisher 1994 a). Some techniques to solve

VRP are heuristics like the Clarke and Wright algorithm (1964), the multi-route

improvement algorithm (Thompson and Psaraftis 1993 and Van Breedam 1994),

the Fisher and Jaikumar algorithm (1981), the deterministic annealing (Dueck and

Scheurer 1990 and Dueck 1993), the Tabu search (Badeau et al 1997, Amberg et al

2000 and Cordeau, Laporte and Mercier 2001), and the Ant system method (Tian et

al 2003 and Reimann et al 2004). We will describe some of the heuristics and the

exact methods in the following sections.

2.1 Classical Heuristics

Heuristic algorithms to solve VRP have proved to be very useful for solving large

problems in reasonable time (Atkinson (1994). Also, heuristics provide good upper

bounds that play an important role in exact methods such as branch and cut. Over the

last 50 years, many heuristic algorithms had been developed to solve VRP. Classical

algorithms and metaheuristics are the classes or the families that the developed

algorithms belong to.

Constructive methods were the first category of the classical methods. Building a

feasible solution and improving the cost is the idea behind the constructive methods.

An example of the constructive method is the Clarke and Wright savings algorithm

(1964). The second category of classical heuristics is the two-phase heuristics. In this

category, customers are organized into feasible clusters, then the routes constructed

for each of them. An example of the two-phase algorithm is the sweep algorithm of

Laporte (1992). The following is a brief description for the above mentioned

classical algorithms.

2.1.1 The Clarke and Wright Algorithm (1964)

This algorithm is the most popular heuristic for the VRP. The algorithm calculates

all the savings ijs between customers i and j. Assuming that
i0c is the cost of

18

traveling from the depot to customer i and
ijc is the cost of traveling from customer

i to j. The following is a description of the Clarke and Wright algorithm to solve

the CVRP:

Step 1: Compute the savings
ij i0 0j ijs c c -c for i,j=1,…,n and i j. Rank the

savings
ijs and list them in descending order.

Step 2: Creates the "savings list." Process the savings list beginning with the

topmost entry in the list (the largest
ijs). For the savings

ijs under consideration,

include link (i, j) in a route if no route constraints will be violated through the

inclusion of (i, j) in a route. The following three cases need to be considered.

Case 1: If neither i nor j have already been assigned to a route, then a new

route is initiated including both i and j.

Case 2: If exactly one of the two points (i or j) has already been included in an

existing route and that point is not interior to that route (a point is interior to a

route if it is not adjacent to the depot in the order of traversal of points), then

the link (i, j) is added to that same route. If the point is interior and not

violating the capacity then add (i,j) to the same route. If it’s violating the

capacity make a new route with the point (customer) i.

Case 3: If both i and j have already been included in two different existing

routes and neither point is interior to its route, then the two routes are merged

by connecting i and j. If they are interior then the merge cannot be done

Step3: If the savings list
ijs has not been exhausted, return to Step 2, processing

the next entry in the list; otherwise, stop.

Example 2.1

We illustrate the above algorithm using the following CVRP instance:

19

 i

j

0 1 2 3 4

0 2 3 1 8

1 2 3 4

2 2 6

3 8

4

Table 2.1.1 Cost Matrix for Clarke and Wright Example

Note that the matrix in table 2.1.1 is symmetric because we are dealing with

symmetric CVRP.

The demand is (0,6,10,7,4) units and the capacity is 20 units

Solution: Initial set of routes is

Step 1: Compute the savings

The savings

1 to 2 2+3-2=3

1 to 3 2+1-3=0

1 to 4 2+8-4=6

2 to 3 3+1-2=2

2 to 4 3+8-6=5

3 to 4 1+8-8=1

Step 2: Creates the savings list

The savings list

Arc Associated saving

1 to 4 6

2 to 4 5

1 to 2 3

2 to 3 2

3 to 4 1

1 to 3 0

 Step 3:

The first route will be 0-1-4-2-0 and the second route will be 0-3-0. The total

cost is 17.

20

We refer to the work of Altinkemer and Gavish (1990) for more details.

2.1.2 Sweep Algorithm (Wren and Holliday (1972))

In the sweep algorithm each vertex or customer is represented by its polar

coordinates. Mathematically, each vertex i will be represented by

i i(,)θ r where
iθ is the angle for customer i (consider the clock wise) and

ir is

the ray length. Start by assigning *

iθ =0 to an arbitrary vertex *i , then

calculating the rest of the angles from (0, *i). All the calculated angles will

be ranked in an increasing order of their angles. The following steps

describe the sweep algorithm:

Step 1: Choose a vehicle v

Step 2: Start from the vertex with the smallest angle, assign vertices to v

so that the capacity of the vehicle is not violated.

Step 3: Repeat until all vertices assigned.

Step 4: Solve each route as a traveling salesman problem (TSP) to find the

shortest path then stop.

Applying the sweep algorithm to the case of Example 2.1 we get:

Step 1: Choose a vehicle v

Step 2: Start with 0-3 then 3-2. Note that the total demands of customers 2

and 3 is 17, this means that the route cannot have any more customers.

Step 3: Choosing the next vehicle and repeating Step 2. Route 2 will be 0-

1-4-0. The total cost will be 14.

Note that Example 2.1 has 4 customers only. For this reason, Step 4 is not

needed.

Wren and Holliday (1972) presented a different way to calculate the polar angle that

considers the configuration of the points around each depot (clock wise). The new

ordering then used to generate four different initial solutions by assigning customers

(in their paper they used cities instead of customers) starting from four different

21

positions in the ordered list. The best of these four solutions is chosen as an input to

an improvement phase. This latter phase uses seven procedures repeatedly until no

improvement can be done. Accurate results are reported on two problems having two

depots and up to 176 customers.

2.2 Metaheuristics

The quality of the solution obtained by any of the metaheuristic algorithms is

normally far better than the one obtained by the classical algorithms since

metaheuristic algorithms explore deeply all the solution space. However,

metaheuristics take more time than the classical heuristics. The following

details two popular metaheuristics:

2.2.1 Simulating Annealing (SA)

As a stochastic relaxation technique, SA has its origin in statistical mechanics. The

process of crystallizing a solid by heating it to a high temperature and gradually

cooling it down motivates the development of SA. The SA algorithm was introduced

by Metropolis et al. (1953). Assuming () ()tf x f x , where ()f x is the best

value for the objective function found so far, and ()tf x is the value of the objective

function at iteration t. The solution will be accepted as a new current solution

if 0 . If 0 , any moves with a probability of
/Te that increase the objective

function are accepted, where T is the temperature and its value varies from large to

close to zero. The values of T are controlled by a cooling schedule that specifies the

temperature values at each stage. Zbigniew and Piotr (2002) proposed that a solution

x is drawn randomly in ()tN x at iteration t. If () ()tf x f x , then 1tx is set equal to

x ; otherwise

 1

probabilitywith

1probabilitywith
t

t

t
i

x p
x

x p

where tp is a decreasing function of t and of () ()tf x f x .

The SA stops when:hen:

22

 The value *f has not decreased by
1π % for at least

1k consecutive cycles of

T iterations;

 The number of accepted moves has been less than
2π % of T for

2k

consecutive cycles of T iterations;

ik of T iterations have been executed.

where 1π , 2π and
ik are pre-specified values.

The application of SA to solve CVRP is to take an initial solution to the problem and

consider it as the best solution. A neighborhood search of removing and adding

customers from the routes follows. The adding and removing is a random process

within the above mentioned boundaries. Updating the best solution as the cost is

reduced.

Zbigniew and Piotr (2002) use a parallel SA approach to solve the Solomon (1987)

set of problems. The set of problems is 54 instances each with 100 customers. The

obtained results were close to optimal and better than any other algorithm used to

solve the same set. SA proves to be an accurate method when used to solve VRP.

2.2.2 Genetic algorithms (GA)

Inspired by the biological evolutionary, Fraser (1957) proposed a computer

simulation of evolution. The algorithm represents the solution as a population of

chromosomes 1

1

11 { ,..., }NX XX ,where N is the number of vertices or customers.

Then

 Select two parent chromosomes from 1X .

 Use the parent chromosomes to produce offspring that forms the next

generation.

 Mutate randomly each offspring with a small probability.

The above three steps will be repeated K times for each iteration t=1,…,T , where

k / 2N and T is the number of generations. Then the next step will be applied:

23

 Create 1tX , from tX . This will be done by removing the 2k worst

solutions in tX (the ones with the highest cost) and replacing them with the 2k

new offsprings.

In order to apply the genetic algorithm to solve CVRP, the following must be

considered:

 Good genetic representation. This means the number of vehicles (routes) must

be specified.

 Initial population constructor. This means initial solution to the problem must

be provided.

 Determine fitness, crossover and mutation operators. This means a criterion for

improving the solution must be specified.

Now the genetic algorithm will repeat the following for pre-specified number of

iterations:

 Choose two customers.

 Use the two customers to form a route without violating the capacity.

 Repeat until all customer demands are satisfied.

 Use the fitness, crossover and mutation operators to improve the solution.

Berger and Barkaoui (2004) proposed a parallel hybrid algorithm to solve 56

benchmark problems of Solomon (1987). Each problem involves 100 customers,

randomly distributed over a geographical area. The computational results showed

that the algorithm is cost-effective and very competitive to the best known solution,

and generated six new best-known solutions for the Solomon sets.

2.3 Branch and Bound

Branch and Bound (BB) is a systematic method for solving optimization problems.

Presented by Land and Doig (1960), BB was developed to solve general discrete

programming problems and mixed discrete programming problems. Assuming that

the problem is a minimization problem the branch and bound procedure minimizes a

function of the variables over a region of feasible solutions. The main components of

branch and bound can be described as follows:

24

 An upper bound that is obtained by the application of a heuristic. It is

important to start with a tight upper bound on the problem.

 Problem relaxation. Relaxing the original problem by excluding some

constraints. Problem relaxation normally provides a tight lower bound.

 The branching rule. This represents the way to separate the sets.

Let S be the set of feasible solution and T be a superset of S. T is obtained by

excluding one or more constraints from S. The following branch and bound

algorithm steps are as described by Balas and Toth (1985):

Step 1: Set 0S =T the superset of S and U= as the upper bound. Create a list of

active nodes where entries in the list consist of a lower bound
iL and a set

iS .

Initialize the list with initial lower bound 0L and initial set
0S .

Step 2: Stop if there are no entries in the list. If U= then there is no feasible

solution to the original problem, else the stored solution is the optimal solution

and U is the optimal value. Otherwise, if there are entries in the list choose the

entry from the list, say
iS and solve the subproblem.

Step 3: If iL U , then discard iS and go to Step 2.

Step 4: If the solution to the subproblem is also a solution to the original

problem then set U= iL and store the solution. Go to Step 2.

Step 5: Separate the feasible set of solutions iS into smaller subsets

{ i1S , i2S ,…, inS }by the prescribed branching rule where

n

ij i
i=1

S S .

Step 6: Set the lower bounds ijL on the objective function value over each set

ijS to be equal to iL . Go to step 2.

The following example illustrates the algorithm:

Example 2.2: Consider the minimization problem

 Min
3 41 28x 11x 6x 4x (2.2.1)

 Subject to

 1 2 3 45x 7x 4x 3x 14 (2.2.2)

25

jx {0,1} j=1,2,3,4 (2.2.3)

Solving the LP relaxed problem where (2.2.3) replaced by
jx 1 for all j, yields the

solution: 1x =1, 2x =1, 3

1
x

2
, 4x =0. The objective function value is 22. It’s clear

that the LP solution is not satisfying constraint (2.2.3), since 3

1
x

2
 is not integer.

In order to force 3x to be integer, the branching process is applied on 3x this creates

two new problems, one with 3x =0 and the other with 3x =1. Solving the relaxed sub-

problems we get:

 3x =0: 1x =1, 2x =1, 4x =0.667, with objective value 21.65

 3x =1: 1x =1, 2x =0.714, 4x =0, with objective value 21.85.

Since the problem is a minimization problem the solution with the lowest objective

value should be chosen. So we take the sub-problem with 3x =0. Observing that the

value of 4x is not an integer, the branching process is applied again. This results two

sub-problems, one with 4x =0 and one with 4x =1. The procedure continues until all

constraints are satisfied and all the values of jx , j=1,2,3,4 are integers. Figure 2.3.1

illustrates the search tree.

Figure 2.3.1: Branch and Cut Search Tree

Z=22
Fraction
al

4 1x

Z=21.80
Fraction

3 1x

Z=21.85
Fraction

3 0x

Z=21.65
Fraction

4 0x

Z=18
Integer

26

Branch and Bound is one of the good methods to find the optimal solution (Malik,

and Yu (1993)). However, the method can take a long time and could lead to

exponential time complexities in the worst cases (Khoury and Pardalos (1995)).

The next Section provides the cutting plane technique. This technique minimizes the

domain and sometimes accelerates the search.

2.4 Cutting Plane Technique (Cornuejol 2007)

Ralph Gomory introduced the cutting plane method to solve ILP and to solve general

convex optimization problems (Boyd (1994)). The method consists of polyhedral

cutting planes. The idea behind the cutting plane technique is to generate cuts until a

best or an optimal solution is obtained. Figure 2.1 illustrates the method.

Figure 2.1 Gomory cut (A Gomory cut (1998))

The method can be described as follows:

 Solve the LP relaxation of the problem.

 If the result is integer then it will be the optimal solution and no further work

is required.

 If the result of solving the LP relaxation is non-integer, then using the LP

relaxation solution Gomory cuts are generated as we will show in the next

example.

 Add the generated cut to the problem as a constraint then repeat the procedure

starting from the first step.

http://en.wikipedia.org/wiki/Ralph_E._Gomory
http://en.wikipedia.org/wiki/Convex_optimization

27

The following example illustrates the cutting plane method:

Example2.3: Consider the following integer minimization problem

 Min 1 27x 9x (2.3.1)

 Subject to

 1 2-x 3x 6 (2.3.2)

 1 27x x 35 (2.3.3)

 1x , 2x positive integers (2.3.4)

Solving the relaxed problem yields:

Variable
1x 2x 1s 2s -Z RHS

1x

2x

0 1
7

22

1

22
 0

1 0
1

22

3

22
 0

7

2

9

2

-Z
0 0

28

11

15

11
 1

63

Table 2.2 optimal tableau

From Table 2.2 the first constraint will be:

 2x + 1 2

7 1 7
s s

22 22 2
 (2.3.5)

Putting all the integer parts in one side and the fractional in the other side we get:

 2x -3= 1 2

1 7 1
s s

2 22 22
 (2.3.6)

It’s clear that the right hand side must be integer since the left hand side is integer.

Also, since 2x 1 then the right hand side is negative as the left hand side is

negative. Hence we can get the following constraint:

 1 2

1 7 1
s s

2 22 22
0 (2.3.7)

In the current solution 1s and 2s are zero, which means that (2.3.7) is violated.

Constraint (2.3.7) is a cut and it can be added to the original problem. The process

will continue until we have an integer solution.

28

The method when applied to some ILP or MILP problems may generate cuts in a

way that the newly generated cut will result in little improvement from the previous

cut. Hence the majority of the earlier researchers avoided using the method until

Padberg and Rinaldi (1987) highlighted the benefit of combining the method

with Branch and Bound to solve the TSP. The Branch and Cut method used the

strength of Cutting Plane techniques to cover the weakness in Branch and

Bound.

2.5 Application of Branch and Cut Method to VRP

The term firstly coined by Padberg and Rinaldi (1987) in their paper on the

TSP. The term Branch and Cut refers to Branch and Bound (BB) and Cutti ng

plane techniques. The following are some well-known approaches of branch

and cut method to solve the VRPs.

2.5.1 The Laporte et al (1985)

Laporte et al (1985) used a Branch and Cut method to solve CVRP subject to

distance and capacity restrictions. For Euclidean problems, they considered VRP

with symmetric graph G=(N,E),where N is a set of nodes that may represent

customers or cities and E is a set of undirected edges. The distance matrix

associated with the edges is C (
ijc or

jic) whenever i>j. C satisfies the triangle

inequality
ij ik kjc c c (i,j,k N) . Laporte et al (1985) also assumed that all

vehicles have the same capacity. This formulation was:

Formulation:

 minimize Z= ij ij
i<jiÎN

c x i N, i<j (2.5.1)

subject to

0i

i C

x =2m , i C (2.5.2)

 ij

j<i

x + ji

i<j

x , i C (2.5.3)

29

 ijx S - (S) , i,j S, S C,3 S n-2 (2.5.4)

 ijx =1,2,or 0 (2.5.5)

where constraints (2.5.2) and (2.5.3) known as degree constraints. Constraint (2.5.2)

specifies that the number of vehicles leaving and returning to the depot are m.

Constraint (2.5.3) specifies that each customer is visited by only one vehicle.

Constraint (2.5.4) is referred to as subtour elimination constraints, which prevent

subtours from forming loops disconnected from the depot, or eliminate tours that

connected to the depot but violate the capacity restriction. Note that a connected

component of a weighted or un-weighted graph defined over the set of customers is

called a subtour. The subtour will be called a tour if it’s connected to the depot in a

graph defined over all locations. Constraint (2.5.5) specifies that if a vehicle travel on

single trip between i and j then the value of
ijx will be 1,and if i=0 and (0,j,0) is a

route then the value of
ijx will be 2, otherwise the value of

ijx will be 0.

Algorithm:

The algorithm to solve the above Euclidean VRP developed by Laporte ,

Nobert and Desrochers (1985) can be described in the following 10 steps:

Step 1-Solve the problem using simplex method to obtain Z ,where Z is the

solution for the relaxed problem.

Step 2-Compare Z with the cost of best solution Z*. If Z Z* update the list

of sub-problems and choose the next sub-problem then start from step

1.Otherwise continue.

Step 3-Force the variables that are not in the subtour to zero using subtour

prevention constraints.

Step 4-Purge ineffective constraints.

Step 5-Generate distance and capacity constraints.

Step 6-Generate Gomory cuts.

30

Step 7-Apply Branching procedure. If the solution is integer then update Z*

and continue. Otherwise continue.

Step 8-Backup search tree.

Step 9-Update the list of problems.

Step 10-End the algorithm if the list of sub-problems empty. Otherwise

choose the next sub-problem and repeat the procedure.

When the problems are non-Euclidean, Laporte et al (1985) modified the

algorithm and the formulation for the Euclidean problems. Forcing certain

rules on the edge
ijx , i<j to be defined in the formulation. Also, replacing the

subtour elimination constraint by 0i ij

S E(S,S)

x 3 x 4
i

, 3 S n-2.

Laporte et al (1985) used Branch and Cut method to solve CVRP both

Euclidean and non-Euclidean. Their test problems ranged from 15 to 50

customers for the Euclidean type and from 15 to 60 customers for the non-

Euclidean assuming that the number of used vehicles is free. For each problem

size they generated three problems. To determine the problems characteristics,

the three generated problems were tested using different combinations of

maximum vehicle capacity and maximum traveling distance for each vehicle.

Laporte et al (1985) tested their algorithm on a CYBER173 computer, using

Fortran FTN5 compiler. They used the Land and Powell (1973) LP solution

routine. They allowed each problem a running time of 500 seconds. Laporte et

al (1985) showed that solving non-Euclidean problems is much easier than

solving the Euclidean ones and the obtained results were far better than those

obtained by using branch and cut and cutting plane separately in terms of

accuracy.

Figure 2.1 and Figure 2.2 are the flow charts of the Laporte et al. (1985)

algorithm for Euclidean and non-Euclidean problem:

31

Figure 2.1: Algorithm for Euclidian CVRP

32

Figure 2.2: Algorithm for Non-Euclidean Problems.

INITIALIZATION

CHOOSE NEXT SUBPROBLEM

SOLVE

SUBPROBLEM

USING SIMPLEX

?exx

SUBTOUR PREVENTION

CONSTRAINTS

PURGE INEFECTIVE CONSTRAINTS

GOMORY CUTS (1
st
 NODE ONLY)

SOLUTION INTEGER?

DISTANCE

CONSTRAINTS

UPDATE z
*
 AND

STORE SOLUTION

START

CAPACITY CONSTRAINTS

END

LIST

EMPTY

UPDATE LIST

OF SUBPROBLEMS

BACKUP IN

SEARCH TREE

APPLY

BRANCHING

PROCEDURE

yes

no

yes

no

yes

no

?exx

LIST

 SOLUTION

INTEGER?

33

2.5.2 Achuthan et al (2003) Improved Branch and Cut Algorithm.

 Achuthan et al (2003) proposed several new cutting planes for capacitated

vehicle routing problem. The proposed cutting planes used in the branch and

cut algorithm were tested on 1,650 simulated Euclidean problems as well as 24

standard literature problems. The problems ranged from 15-100 customers. The

results obtained by the improved branch and cut algorithm were more accurate

with reasonable time taken to solve the problems.

Achuthan et al (2003) also, developed a number of search procedures to identify

violations to the problem constraints. The following is a brief summary of their

work.

Consider the CVRP formulation mentioned earlier in this Chapter. Achuthan et

al (2003) presented new cuts described in the following results:

Theorem 1: Let S, 1T ,
2T ,…

kT C be such that

a) 2k and

p q

i
i S T T

q Q for every 1 p q k;

b) i jT T for i j;

c) iS T ,1 i ;k

d)
n

i
i=1

T= T .

Then, for any feasible solution (ijx) of the CVRP we have

p=1, S (S,T) i,j T

p

3 3 S 2 Tij ij ij
i j E

x x x k . (2.5.7)

Corollary 2: 1T ,
2T , 3T C satisfy the hypothesis of theorem 1. Then, for any

feasible solution (ijx) of the CVRP we have

p

3

, S (S,T) p=1 i,j T

2 2 S T 4ij ij ij
i j E

x x x (2.5.8)

Theorem 3: There exists an optimal solution X= (ijx) of the CVRP satisfying the

following constraints:

34

 1
i,j S S

S 1ij j
j

x x for all S C and i
i S

q Q , (2.5.9)

Q is vehicle capacity

Theorem 4: There exists an optimal solution X= (ijx) of the CVRP satisfying (2.5.9)

and the following constraints:

 1
i,j S S

Sij j
j

x x
i

i S

2(q)

Q+1+
 , for all S C with 2 S C and

i
i S

q Q (2.5.10)

0,1 according as Q is odd or even

Corollary 5: There exists an optimal solution X= (ijx) of the CVRP with variable m

satisfying

i C

i
i C

1, if Q

2(q)m

min n, ,othrwise
Q+1+

 (2.5.11)

Where 0,1 according as Q is odd or even

In their paper, Achuthan et al (2003) used six searching procedures to detect

violations. The first search was that introduced by Laporte et al (1985), the

second and the third searches were a modification of Achuthan et al (1996).

Others were developed to detect violations either to the elimination constraint

used by Laporte et al (1985) and Achuthan et al (1996) or to the proposed

cutting plane.

Achuthan, Caccetta and Hill (2003) applied the algorithm to solve 24

benchmark problems. Three of these problems were Christofides (1969), four

of them were Christofides (1979), and the rest were Fisher (1994a) and Reinelt

(1981). The algorithm solves three problems optimally when single routes

allowed and 4 of the problems had been solved optimally when single routes

were not allowed. In general the algorithm provides better results than the

known solutions at the time.

35

As any exact method branch and cut has advantages and disadvantages. The

following section explains some of the advantages as well as disadvantages in

using branch and cut method to solve the LP problems.

2.6 The Advantages and Disadvantages of Branch and Cut

When Branch and Cut was first used to solve VRPs, it was clear that the

method performance was good (Araque (1989), and Araque et al (1994)). The

Branch and Cut method improved rapidly in recent years especially when

dealing with VRPs. The improvement of the method and the successful use of

its applications to solve VRP encouraged researchers to use it in solving large

scale Symmetric TSPs in recent years. As any exact method, the Branch and

Cut method has strengths and weaknesses, also using it will result advantages

and disadvantages. The advantages of using Branch and Cut method can be

outlined as follows:

 Using valid cutting planes present in the LP will save enormous time.

 In terms of memory allocation, large savings are made by using the

constraints present in the original linear program LP from previous lower

bound generations.

 By branching, the method overcame the problem of generating cuts in a

way that the newly generated cut might be the same or slightly different than

the previous one.

 Generating cuts and adding the violating ones to as a constraint to the original

problem will accelerate the search for the optimal solution.

The disadvantages of using the method can be described as follows:

 The method removes constraints from the LP tableau as the process continues

searching for the optimal solution. By doing this the method saves time and

memory. However, removing the constraints from the LP tableau (in

some cases) may be too early and the lower bound may not be too

36

high. Therefore regenerating the early removed constraints may be

essential in a certain stages of the process. Laporte, Nobert and

Desrochers (1985) and Achuthan, Caccetta and Hill (2003) have shown

that constraints rarely need to be regenerated for the CVRP.

 At certain stages of the process and for some problems, exploring a

node that has different restrictions to the node which was previously

explored can result many non-tight constraint in the LP may and poor

initial lower bound.

 As part of the process removing child nodes from the list and then

generating lower bound, the generated lower bound may be greater than

the lower bound value stored when the child node was placed on the list.

This is due to the use of different constraints in the LP.

2.7 Constraint Programming (CP)

Constraint Programming (CP) (also called Constraint Logic Programming) is the

embedding of constraints in a logic programming language. The CP method based on

the idea of using logic to satisfy a large number of constraints (Hooker (2005)). In

the seventies, Artificial Intelligence researchers studied constraint satisfaction

problems. However, it was in the eighties that the first systematic use of the

constraint programming emerged (Roman Barták(1998)). In the following years CP

techniques improved rapidly. As computers become faster and the world advanced in

terms of knowledge, CP expanded it applications to solve various real life problems.

Natural language processing, operations research, computer graphing and molecular

biology are examples of the new domains CP expanded its application to (Hooker

(2002)).

The early work of Waltz (1972) and Montanari (1974) on picture processing inspired

Artificial Intelligence researchers to develop logical-algorithms to satisfy the

constraints of certain problems. Constraint satisfaction problems can be seen in

almost all the real life sectors. For example:

 graph coloring

 analysis and synthesis of analog circuits

mailto:bartak@kti.mff.cuni.cz

37

 option trading analysis

 cutting stock

 DNA sequencing

 scheduling

 chemical hypothetical reasoning

 warehouse location

 forest treatment scheduling

 airport counter allocation

 puzzles like crosswords and N-queen.

Constraint satisfaction problems normally consist of finite variables with finite

domains and finite constraints restricting the values of the variables. The problem

solution will involve the use of logic to assign the variables with values from the

domain so that all constraints are satisfied.

Mathematically in most of the cases, solving constraint satisfaction problems using

logic algorithms will result in feasible solutions that are not optimal. The following

are some techniques to solve constraint satisfaction problems:

2.7.1 Binarization of Constraints

The constraint satisfaction problem can be presented as a set of nodes. Each arc

represents a constraint. If the originating and terminating nodes of an arc are the

same, the node is called unary constraint, such constraints can be satisfied by

reducing the domain. Thus, any problem with unary constraints can be converted

to a binary constrained problem. The general approach to converting a constraint

satisfaction problem to binary problem is:

 Minimize the set of constrained variables in the problems by assigning

Cartesian product domain. The summarized variables will be called

encapsulated variables using a valid domain reduction technique.

 Reduce the encapsulated domain.

 Combine the resulting individual solutions to the solution of the constraint

system. This could be achieved by either hidden variable encoding or dual

encoding.

38

2.7.2 Systematic Search Algorithms

Although taking a very long time to process the problem, systematic search

algorithms were used more often in solving constraint satisfaction problems due

to their ability in finding a solution or at least proving that there is no solution to

the given problem. One of the following two approaches must be followed in

order to develop a systematic algorithm:

Generate and Test (GT)

Algorithms in the GT approach start firstly by guessing solutions to the given

problem, then testing if these solutions satisfy the problem constraints. Note that

the method takes the first correct solution that satisfies all the problem constraints

also, it rejects the guessed solution with all the values assigned to the variables

even if one value violates a certain constraint.

Backtracking (BT)

Backtracking algorithms are the most powerful systematic search method used to

solve constraint satisfaction problems. As in the generate and test method (GT),

Backtracking starts by guessing solutions then testing one solution after the other.

The testing procedure based on checking constraint(s) violations caused by the

values assigned to the variables. Unlike GT the method will keep changing the

violating values only.

2.7.3 Consistency Techniques

 First introduced by Waltz (1972), consistency techniques are efficient in ruling

out inconsistent possibilities in the domain. The techniques are normally used

combined with other constraint programming or operational research techniques

and rarely used alone. The consistency of constraint satisfaction problems may be

reached using one of the following techniques.

 Node Satisfaction Technique

This technique is easy to understand and simple to use. The variables in this

technique are represented by nodes. A node will be called node consistent if

39

every value assigned to the variable satisfies all constraints. In case there is an

assigned value that does not satisfy a certain constraint, the assignment will fail

and the assigned values will be removed from the domain.

 Arc Consistency Technique

This technique treats each constraint as an arc connecting the nodes that normally

represent variables. The arc will be called arc consistent if for every value in the

domain of the first node there is a value in the second node domain such that both

values don’t violate any constraint. All the violating values in the first node

domain will be removed. Note that if
i j
,a a are two nodes and the arc (

i j
,a a) is

consistent, it doesn’t mean that arc (
j

a ,
i

a) also consistent.

 Path Consistency Technique

The test for consistency using the arc consistency technique on two or more arcs

will lead to the removal of a large number of values. Path consistency is a more

efficient technique in detecting inconsistency and removing inconsistent values.

In this technique any node with arc consistency (all arcs associated with the node

are arc consistent) is called restricted path consistent. This means a node
i

a will

be called restricted path consistent if (i j
,a a),(

i
a ,

k
a) are arc consistent also if

(
i

a ,
ma) a non consistent arc does not exist. Clearly if (

i
a ,

ma) exists it will be

removed by the method.

2.7.4 Constraint Propagation

Constraint propagation is a technique to solve constraint satisfaction problems by

combining systematic search and consistency techniques. To develop a constraint

propagation algorithm, one of the following approaches is adopted.

 Backtracking Search

The method is a combination of Arc consistency and Backtracking; it starts by

guessing solutions then test the guessed solution for Arc consistency.

40

 Forward Checking

This method uses restricted arc consistency between the current variable and the

future variables.

 Look Ahead Search

Unlike forward checking, this method doesn’t look for restricted arc consistency

between the current variable and the future variables only but also performs full

arc consistency search.

2.7.5 Value and Variable Ordering

This search method requires the specification of the order of variables and the

order of the values assigned to each variable.

 Variable Ordering

The order of the variables may be static or dynamic i.e. either the order of the

variable is found before the search and this ordering is kept until the end or at

each point of the search the next variable must be specified.

Value ordering

After determining the order of variables, the order of the values that must be

assigned to each variable also may be detrained in this method to solve the

constraint satisfaction problems. The most common heuristics to determine the

values are based on the principle of succeed first, where choosing the value of

each variable tested by the constraints and the first succeeded value taking the

first order and so on.

2.7.6 Reducing Search

The idea behind this method is to reduce the domain and eliminate the need for

backtracking. The most common techniques to perform the reducing search are

cycle-cutset and MACE.

41

 Cycle –Cutset

This method maintains variable consistency to cut all the cycles in a graph. This

may help finding the ordering of the rest of variables without needing the

backtrack procedure. The next step in this method is to extend the partial solution

to a complete solution.

 MACE

Named after the American computer scientist McCune (2003). This method

maintains arc consistency in order to cut all the cycles in a constraint graph.

2.8 Constraint Programming and Operations Research

Constraint Programming (CP) and Operation Research (OR) techniques have

provided many solution algorithms to various optimization problems over the years

(Hooker 2007). The strengths of CP and OR algorithms can be seen through the

solutions and the time taken to perform the search. However CP and OR algorithms

have some weakness in processing large scale problems or NP-hard problems.

Hooker (2002) showed that most of the CP and OR algorithms weaknesses can be

covered by combining the two approaches together. CP algorithms can find a feasible

solution to an optimization problem within reasonable time but such solution is

rarely optimal. In theory OR algorithms are able to find an optimal solution for most

of the optimization problems but the time taken to find it may be very long in most

cases. Hence, combining CP algorithms with OR algorithms to solve an optimization

problem may find an optimal solution within a reasonable time. Although developed

by researchers with different scientific background to solve different kinds of

problems, CP and OR sharing almost the same search approaches to solve problems.

Table 2.1 provides more details.

http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Computer_scientist

42

Table 2.1: A Comparison Between CP and OR

CP OR Search

Method(s)

Comments

Systematic search

Domain reduction

and constraint

propagation

Constraints Store

Constraint Store

and Domain

Reduction

Branch and Bound

Cutting Plane and

Benders cuts

Continuous

relaxation

Continuous

Relaxation and

Cutting Plane

Branching

Inference

Relaxation

Strengthen

relaxation by

inference

Both CP and OR

methods relay on

branching to search for

the solution.

To minimize the solution

domain CP uses domain

reduction and constraint

propagation while OR

uses cutting planes and

benders cut approach.

CP keep tracks of

feasible solution using

constraint store while

continuous relaxation is

so important to solve

problems using OR

algorithms.

CP strengthens the

constraint store by

reducing variable

domains while OR

strengthen the

continuous relaxation by

adding cut.

43

2.9 Integrating CP and OR Techniques

In recent years, many researchers have tried to introduce a unifying scheme to

combine CP with OR techniques (Hooker 2007). Using different solving methods

and different problems, most of the papers provided good results and most of them

chose at least one of the following approaches:

 Double modeling

This approach writes the problem as a constraint satisfaction problem. The

problem can be solved using CP techniques and also writes the same problem as

an optimization problem that can be solved using OR techniques. While solving

the problem, the two models will exchange information to accelerate the search

for an optimal solution.

 Search and Infer Duality

This approach normally examines all possible solutions (CP techniques may be

used), if none of the solutions are optimal then it will start branching (OR

techniques may used). Then an inference process will start by reasoning facts

from the constraints.

 Decomposition

 Using Bender’s decomposition, the problem may decompose into a master and

sub-problems each with variable domain. The master problem will perform the

search over some of the problem variables, while the sub-problem will solve the

given problem using the remaining variables and by the information obtained

from the master problem.

 Relaxation

This approach uses an OR relaxation technique(s) combined with search and

infer or with the decomposition approaches. Relaxing the problem will prune the

search tree and accelerate the search and for the decomposition approach it will

improve the sub-problem decomposition.

44

2.10 Constraint Programming and VRP

Commercially there are several software packages to solve VRPs using CP(ILOG

Dispatcher 4.0, ILOG Solver 6.0, etc…) These packages according to Kilby,

Prosser and Shaw (1998) still require additional features to perform the search, as

they don’t have the following:

 The ability to geo code the addresses.

 A graphical user interface for displaying routes.

 The ability to calculate distance and time traveled from one map point to

another.

 The ability to change routes manually.

 A method of easily specifying and entering constraints.

 Interfacing with other systems.

The pruning achieved through propagation attracted an increase attention to use CP

to solve VRPs. On the other hand, OR methods had been proven efficient in

solving VRPs (Baldacci and Mingozzi (2006)). Combining CP with OR

approaches may seems an excellent approach to deal with VRPs. However, the

natures of the search procedures for CP and OR may cause an important problem

that must be overcome. The CP basic principle chronological backtracking means

that all decisions must be undone in the reverse of the order they were made. On

the other hand, OR methods may assign a customer to a route then in the process it

removes this customer and replaces it by another one. Then because of

chronological backtracking to undo this customer and replace it by another one, all

operations performed since that time must be undone as well. Kilby et al (1998)

proposed two ways to overcome this problem. The first is to use the constraint

system as a rule checker by allowing a heuristic or meta-heuristic to control search.

The second way is wrapping up local search changes within an operator to insulate

the Constraint Programming system from the changes being made at the lower

level.

Kilby et al (1998) also suggested that using constraint programming alone to solve

VRPs will provide feasible solutions without considering the objective function.

45

Caseau et al (2001) proposed a hybrid algorithm that combines a genetic algorithm

with CP. The hybrid algorithm has been applied to solve Solomon (1987)

benchmark problems. The obtained results were close to the best known solutions

and the time taken to solve the problems using the hybrid algorithm was less.

2.11 Advantages and Disadvantages of Integrating CP with OR

There are several advantages provided by CP and OR integrated algorithms. The

advantages are:

 Provide better environment in terms of modeling which may make complex

problems simpler.

 Reducing time taken to solve the problem.

 Combining CP with OR techniques provide better algorithms to detect errors

while searching for the optimal solution.

 Using CP techniques will provide better approach to understand OR problems

by visualizing the problem structure.

However some disadvantages can arise when integrating CP with OR techniques.

These disadvantages are:

 Developing an integrated algorithm may take more time than developing CP

algorithm or OR algorithm.

 Integrating both methods may be hard to implement and not easy to

understand by others.

46

Chapter 3

Heuristics and Domain Reduction

In this Chapter we develop a simple greedy search algorithm. The greedy algorithm

is used to solve 10 literature benchmark problems. Developing a simple heuristic that

is also accurate is a key aim of many researchers. Normally, good VRP heuristic

algorithms must meet the following important criteria.

 Accuracy

One of the important aspects in the criteria is accuracy since the results obtained

by using the heuristic algorithm to solve certain VRPs are essential to decide

whether the algorithm is good or bad.

 Speed

If the accuracy test decides the good and the bad, ugly algorithms are those

taking a long time to find a solution. Speed in solving VRPs is another important

point that must be met to provide good heuristic algorithm. Some real-life

problems such as pickup and delivery may require fast actions with reasonable

accuracy. Getting an accurate solution that takes days to be obtained, may not be

considered useful by users who want fast solutions in a dynamic environment.

 Simplicity

Easy to understand not hard to code algorithms, are more likely to be used than

the more complicated algorithms. The Clark and Wright algorithm stands as clear

example of a simple algorithm preferred by end users to solve VRPs over more

accurate but more complicated algorithms.

47

 Flexibility

It’s important for any algorithm to be flexible in term of accommodating changes

in the input data. Flexibility provides more options to improve the heuristic

algorithms.

Section 3.1 provides a simple greedy search algorithm developed by calculating the

cost between each edge in order to minimize the overall cost. The greedy search

algorithm is implemented and used to solve 10 benchmark capacitated vehicle

routing problem instances. Also, in Section 3.1 we apply domain reduction to solve

the generated CVRPs using the greedy search algorithm and compare the results.

Section 3.2 observes the effect of the cost or distance matrix on reducing the domain

and hence on the obtained results. Four examples are provided to help investigate the

role of domain reduction in solving CVRP.

3.1 A Simple Heuristic Algorithm for the Symmetric VRP

 Consider the capacitated vehicle routing problem with the following notation:

 C= {1, 2,…, n}:the set of customer location.

 0 : depot location.

 G=(N,E) : the graph representing the vehicle routing network with

N={0,1,…,n} and E={(i,j):i,j N, i<j}.

 jq : demand of customer j.

 Q : common vehicle capacity.

 m : number of delivery vehicles.

ijc : cost or distance between locations i and j.

 L : maximum distance a vehicle can travel.

jP : a lower bound on the cost of traveling from the depot to customer

j.

 (S): lower bound on the number of vehicles required to visit all

locations of S in an optimal solution. Note that S C and (S) 1.

 S : the complement of S in C

48

 O: Set of the not selected customers.

 W: Set of selected customers.

ijx : 1,2, or 0

The requirements are that:

 The total demands for each route must not exceed the capacity of the vehicle.

 All customers must be visited and supplied by exactly one vehicle.

To solve the above CVRPs, we develop a simple heuristic algorithm. The algorithm

starts by choosing customers with the lowest distance from the depot. The number of

chosen customers is twice the number of the vehicles. Hence, if the number of the

routes or vehicles is m, then the algorithm chooses 2m customers with the minimum

distance from the depot. Next the algorithm takes the remaining customers one by

one and connects them to one of the 2m chosen customers based on the lowest

distance and so on until all customers have been chosen. Now the result will be 2m,

one way edges from the depot. In order to create m routes, the algorithm connects the

last chosen customers based on the lowest cost or distance. This set up provides m

routes with a low distance or cost.

However, to check if the set up is a solution, the algorithm calculates the demands

for each route and compares it with the capacity. If the set up doesn’t violate the

capacity constraint, then the set up is a solution to the problem, otherwise a new set

up will be done. For the route that violates the capacity the most, the algorithm

removes one of the customers (using a removing criterion) and adds the removed

customers in the route with minimum demands (using adding criterion). The process

will be repeated until all routes demands become less than or equal to the capacity.

The feasible solution obtained by the algorithm will be stored and the algorithm

starts searching for another set up that is less than the current solution. The

optimizing process will continue until all possible set ups are exhausted. The

following describes the greedy search algorithm (Algorithm 1) in detail:

49

Algorithm 1

Initialization: W = ф, O = {1,2,…,n}

Step 1: Choose 2m customers with the lowest distance from the depot, let F = 0, c =

common vehicle capacity,
id is the demand for customer i, O is the set of all

non-chosen customers, W is the set of chosen customers
nZ =1000000

(assigning large value to
nZ at start then the value will be updated).

Set up:

Step 2: For each non-chosen customer j from O choose customer i from W such that

ijc is the lowest. Update W and O

Step 3: If O = ф go to step 4, otherwise go to step 2.

Step 4: For each customer j (the last customer connected) connect the ones with the

lowest distance.

Feasibility:

Step 5: Calculate the total distances and demands for each route. If the total demands

for each route is less than or equal to the capacity, then go to step11.

Step 6: Choose the route that violates capacity the most. For each customer i in the

route (the depot is not included) calculate ib =
ijc +

jkc -
ikc , where i is

preceded by customer j (could be the depot) and followed by customer k

(could be the depot).

Step 7: Remove customer i with the maximum ib value and connect customer j with

k.

Step 8: Choose the route with lowest total demand. For each customer j and k in the

route calculate ia =
ijc +

jkc -
ikc , customer i (i is the customer that had been

removed in Step 7) to be added between j and k.

Step 9: Insert customer i between j and k such that ia is the lowest. F=F+1

Optimizing:

Step 10: If F>3600 stop (this limits the setups to 3600 different ones) otherwise

choose different setup and update W and O then go to Step 2.

Step 11: Repeat until all the feasible solutions checked. Let the feasible solution=Z*.

Step 12: If Z*
nZ then

nZ =Z*

50

Step 1 is initialization step that assign values to the needed variables. In steps 2 and 3

the algorithm takes the remaining customers one by one and checks the distance

between them and the chosen customer. Customers with the lowest distances will be

connected and the process will be repeated until all customers are connected. Step 4

decides the group of customers that form a route based on the distance. At this stage

the algorithm provides m routes in which all customers are visited by a vehicle. In

order to be feasible, the solution must also satisfy the capacity condition that ―the

total demand for each route must not exceed the capacity of the vehicle‖. To satisfy

this condition, steps 6 to 10 choose the route with total demand that is beyond the

capacity the most and also choosing the route with lowest demand. Calculating
ib =

ijc +
jkc -

ikc (
ib is the removing criteria) in the first route and removing the customer

with maximum
ib as the equation indicate that removing the customer with the

highest
ib will keep the difference in terms of distance. Now to add the removed

customer to the lowest demand route while keeping the distance lost to this

procedure to a minimum, the algorithm calculates
i*

a =
i j* *

c +
j k* *

c -
i k* *

c (
i*

a is the

adding criteria) and adds the removed customer between the two customers with the

lowest
i*

a . To avoid repeating steps 5 to 10 without getting a feasible solution, step 9

sets F as a counter to find a feasible solution. The search for feasible solutions will be

terminated if the process of removing and adding exceeds 3600 iterations. Steps 11-

13 set the obtained feasible solution as Z* and compare it with the value of nZ as a

process to optimize the solution. The process will be repeated until trying all the

possible moves and nZ will be printed as the final solution.

The greedy search algorithm developed in this section can be illustrated by the

following flow chart:

51

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

Figure 3.1: Flow Chart for VRP Improved Heuristic Algorithm

52

We implemented our algorithm in C++ and tested it on 10 literature test problems.

The number of customers for the test problems ranged from 7 to 48. The optimal

solutions (that we compared our results to) are obtained using CPLEX and the CVRP

formulation that mentioned in Section 1.2. Also the Algorithm 1 results are

compared to the results obtained by Symphony and the Clarke and Wright

Algorithm. Table 3.1 provides details for the benchmark problems.

Problem

number
References

Number of

customers

1 Eilon et al (1971) 7

2 Eilon et al (1971) 13

3 Groetschel (1992) 17

4 Groetschel (1992) 21

5 Groetschel (1992) 24

6 Computational Infrastructure for

Operations Research 2003
26

7 Computational Infrastructure for

Operations Research 2003
29

8 Eilon et al (1971) 31

9 Computational Infrastructure for

Operations Research 2003
42

10 Held and Karp (1970) 48

Table 3.1: Benchmark Problems

Table 3.2 provides the computational results for using Algorithm 1 on the above

mentioned benchmark problems.

53

Table 3.2: Algorithm 1 Computation results

Problem

number

Optimal Algorithm 1 Other heuristics

Optimal

solution
Time in seconds Solution results

Time in

seconds

% from

optimal

Symphony

solutions

%from

optimal

C&W

Saving

solutions

%from

optimal

1 114 23.3 114 0.015 0 114 0 119 4

2 290 2464.73 336 0.001 15.8 300 3 290 0

3 1560 7.20 1909 0.015 22.3 2685 72 2150 38

4 3169 7.15 3833 0.015 21 3704 17 3754 18

5 1373 1002.40 1500 0.015 9 2053 49.5 1659 21

6 1685 275.53 2161 0.015 28 N/A N/A 1891 12

7 1749 2516.14 2559 0.015 46 2050 17 2107 20

8 1111 18286 1372 0.109 23 N/A N/A 1336 20

9 1408 18000 2071 0.093 47 1668 18 2391 70

10 13333 18000 21644 0.125 62 14749 11 19342 45

54

According to Table 3.2, the solution obtained by the algorithm to all the Problems

(except 1 and 5) are far from being accurate. We will discuss the reasons that cause

this divergence. As Problem 2 is smaller in terms of size we choose to select it and

explain the divergence.

Problem 2 is Eilon et al (1971) with 13 customers, 4 trucks, 6000 units capacity,

{1200, 1700, 1500, 1400, 1700, 1400, 1200, 1900, 1800, 1600, 1700, 1100} units

demands and with distance matrix

-1 9 14 21 23 22 25 32 36 38 42 50 52

 0 -1 5 12 22 21 24 31 35 37 41 49 31

 0 0 -1 7 17 16 23 26 30 6 36 44 46

 0 0 0 -1 10 21 30 27 37 43 31 7 39

 0 0 0 0 -1 19 28 25 35 41 29 31 29

 0 0 0 0 0 -1 9 10 16 22 20 28 30

 0 0 0 0 0 0 -1 7 11 13 17 25 27

 0 0 0 0 0 0 0 -1 10 16 10 18 20

 0 0 0 0 0 0 0 0 -1 6 6 14 16

 0 0 0 0 0 0 0 0 0 -1 12 12 20

 0 0 0 0 0 0 0 0 0 0 -1 8 10

 0 0 0 0 0 0 0 0 0 0 0 -1 10

 0 0 0 0 0 0 0 0 0 0 0 0 -1

Using the modeling and solving language and environment (Xpress mosel) to solve

the problem (we assign 1 to depot when using Xpress), we get the following

optimal solution with the routes:

Solution

4 routes

Route 1:1- 2-1

Route 2:1- 3-10-9-1

Route 3:1- 5-6-8-7-1

Route 4:1- 11-13-12-4-1

Total distance= 290

55

While our heuristic gives the solution:

Solution

4 routes

Route 1: 0- 9- 12- 4-0

Route 2: 0- 1- 3- 2- 0

Route 3: 0- 8- 11- 6- 0

Route 4: 0- 5- 7- 10- 0

Total Distance = 336

Comparing the first route in both solutions, one can conclude that any best or optimal

solution to the problem must take the first customer alone as a single customer route

since the distance between the first customer and the depot is only 9 which gives 18

as the total distance for the first route. This will drop down any solution to the given

problem. Unfortunately, our algorithm starts by taking 2m non-removable customers

(where m is the number of customers (Step 1)) which, means single customer routes

solutions are not considered. In the real life problems it’s very rare that the solution

for a given problem will involve single route customers, as running a vehicle with

large capacity to serve only one customer seems unrealistic. For problem 8 the

optimal solution takes customer number 30 as a single route customer which makes

our solution far for the same reason mentioned above.

3.2 Calculations

Good results can be obtained using greedy search algorithms for VRPs when there is

a gap in values between distances in all the rows and/or columns. This gap in values

will help the greedy algorithms in finding the feasible solution. Having close values

in the row or column that are governed by the demands may provide a solution that is

far from the optimal especially in adding and removing customers to meet the

capacity constraint.

 The search for a feasible solution may lead the algorithm in the direction of

choosing big values in order to meet the capacity conditions. The nature of a greedy

search algorithm needs differences in values in the distance matrix. Domain

56

reduction requires differences in values so it can eliminate the large distances in the

distance matrix. Hence, we can suggest that a greedy search algorithm provides good

results for a certain problem as long as the domain of the given problem can be

reduced significantly (around 50% from the maximum value given in the distance

matrix). If the domain of the problem cannot be reduced significantly from the

maximum distance then greedy search algorithm may provide inaccurate solution. To

test this we generate 4 distance or cost matrices. Then we solve them using

Algorithm 1

Example 1: Consider a CVRP with the following cost or distance matrix.

DISTANCE:

-1 10 20 30 10 20 20 10

 0 -1 20 10 10 20 30 20

 0 0 -1 30 10 20 15 10

 0 0 0 -1 10 20 35 10

 0 0 0 0 -1 20 30 15

 0 0 0 0 0 -1 30 40

 0 0 0 0 0 0 -1 10

 0 0 0 0 0 0 0 -1

DEMANDS: [(2) 10 30 10 10 5 5 10]

CAPACITY: 40

Now to reduce the domain significantly we delete the distances within 50% of the

maximum distance. In this example we have 40 as the maximum distance or cost,

hence all the values above 20 will be deleted. This will provides a distance matrix of

the following shape

DISTANCE:

-1 10 20 - 10 20 20 10

 0 -1 20 10 10 20 - 20

 0 0 -1 - 10 20 15 10

 0 0 0 -1 10 20 - 10

 0 0 0 0 -1 20 - 15

 0 0 0 0 0 -1 - -

 0 0 0 0 0 0 -1 10

 0 0 0 0 0 0 0 -1

57

 and solving the resulting problem using Algorithm 1we get:

Solution

2 routes

Route 1: 0- 1- 5- 3- 6- 7- 0

Route 2: 0- 4- 2- 0

Total Distance = 115

Solving the problem without domain reduction using Xpress mosel and fixing 1 as

the depot we gets:

Solution

2 routes

Route 1: 1 - 5-3-1

Route 2:1 - 6-2-4-7-8-1

Total distance= 115

Note that the greedy search algorithm found the optimal solution faster than the exact

method (Algorithm 1 time is 0.15 seconds and Xpress mosel time is 1.30 seconds). In

the next example we change the second row of the distance matrix to closer values.

Example 2: Consider a CVRP with the following cost or distance matrix.

DISTANCE:

-1 10 20 30 10 20 30 10

 0 -1 25 30 25 30 25 30

 0 0 -1 30 10 20 30 10

 0 0 0 -1 10 20 5 10

 0 0 0 0 -1 20 30 10

 0 0 0 0 0 -1 30 30

 0 0 0 0 0 0 -1 10

 0 0 0 0 0 0 0 -1

58

The maximum distance in this example is 30, hence applying domain reduction

within 50% of the maximum distance means deleting all the values above 15.

Solving the reduced distance or cost matrix we obtain no feasible. Solving the

problem without reducing the domain by 50% will give the following results:

Solution

2 routes

Route 1: 0 -1- 6- 7- 0

Route 2: 0- 2- 4 -3 -5- 0

Total Distance = 135

Solving the same problem using Xpress mosel and assigning 1 to the depot we get:

Solution

2 routes

Route1:1- 5-4-7-2-1

Route2:1 - 8-3-6-1

Total distance=120

The result obtained by the greedy search algorithm exceeds the 10% from the

optimal solution. For this problem the greedy search algorithm may not be the best

choice. The domain reduction for the problem indicates that the values in the

distance matrix are so close it also reveals that the simple greedy search algorithm to

deal with the problem may not be a good choice.

To investigate the effect of domain reduction more we generate an 18x18 matrix in

the next example.

Example 3: Consider a CVRP with the following cost or distance matrix.

59

DISTANCE:

-1 121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336 111

 0 -1 246 745 472 237 528 364 332 349 202 685 542 157 289 426 483 155

 0 0 -1 268 420 53 239 199 123 207 165 383 240 140 448 202 57 200

 0 0 0 -1 211 466 74 182 243 105 150 108 326 336 184 391 145 40

 0 0 0 0 -1 70 567 191 27 346 83 47 68 189 439 287 254 250

 0 0 0 0 0 -1 324 638 437 240 421 329 297 314 95 578 435 300

 0 0 0 0 0 0 -1 353 282 110 324 61 208 292 250 352 154 170

 0 0 0 0 0 0 0 -1 505 289 262 476 196 360 444 402 495 120

 0 0 0 0 0 0 0 0 -1 259 555 372 175 338 264 232 249 70

 0 0 0 0 0 0 0 0 0 -1 134 530 154 105 309 34 29 45

 0 0 0 0 0 0 0 0 0 0 -1 80 572 196 77 351 63 89

 0 0 0 0 0 0 0 0 0 0 0 -1 150 488 112 120 267 316

 0 0 0 0 0 0 0 0 0 0 0 0 -1 412 227 169 383 20

 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 91 661 228 117

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 257 390 42

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 633 31

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 215

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

DEMAND: [0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 30]

CAPACITY: 70.

Solving the problem using the greedy search algorithm and reducing the domain by

50% we get:

Solution

3 routes

Route 1: 0- 6 -11 -10- 16- 4- 12- 0

Route 2: 0- 3- 9- 15- 17- 7- 0

Route 3: 0- 8- 2- 5- 14- 13- 1- 0

Total Distance = 1999

Now solving the same problem in order to find the optimal solution we get:

60

Solution

3 routes

Route 1: 1-2-11-12-7-1

Route 2: 1-4-8-18-13-5-9-1

Route 3: 1-16-10-17-3-6-15-14-1

Total distance= 1957

Note that the domain of the problem is reducible by 50% from the maximum value

given in the distance matrix and the result obtained by the heuristic algorithm is very

close to the optimal (only 2% from the optimal).

Example 4:

Changing the last row/column in the distance matrix in Example 3 from

111 155 200 40 250 300 170 120 70 45 89 316 20 117 42 31 215 0

to

 390 399 393 400 399 396 397 390 395 410 389 392 410 395 400 399 390 0

we have close values to the maximum distance given in the distance matrix. Now

solving the new modified problem using the heuristic algorithm without reducing the

domain (since no feasible solution can be obtained if we reduce the domain by 50%)

we obtain:

Solution

3 routes

Route 1: 0- 7- 17- 10- 14- 13- 0

Route 2: 0- 3- 16- 9- 15- 12- 8- 0

Route 3: 0- 6- 11- 4- 5- 2- 1- 0

Total Distance = 2394

Now solving the same problem using Xpress to find the optimal solution we get:

61

Solution

3 routes

Route 1: 1 - 2-18-8-1

Route 2: 1 - 7-4-11-12-13-5-9-1

Route 3: 1 - 14-15-6-3-17-10-16-1

Total distance= 2126

It’s clear that the solution obtained by the heuristic algorithm is more than 10% from

the optimal. The following table provides more details:

Example

number

Optimal

results

Greedy

search results

Results with domain

reduced by 50%

Percentage from optimal

1 115 115 115 0%

2 120 135 N/A 12%

3 1957 1999 1999 2%

4 2126 2394 N/A 13%

Table 3.3 Domain reduction results

3.3 Conclusion

Table 3.3 illustrates that if the distance matrix of a VRP instance cannot be reduced

significantly then the results obtained by the greedy search algorithm may not be

accurate. As we observed, greedy search algorithms may provide more accurate

results if applied to solve VRP instances that allow a significant domain reduction.

According to the examples in this Chapter the form of the given data matrix

influences not only the size of the problem, but also how hard the problem is.

Although it’s simple, fast and flexible, the accuracy of the greedy search algorithm

that we developed in this Chapter may require some improvement. Observing the

effect of domain reduction on the generated problems, we will combine in the next

Chapter the greedy algorithm with domain reduction and observe the results.

62

Chapter 4

Heuristic Algorithm for CVRP

VRP heuristic algorithms can be divided into two types: Classical heuristics such as:

the Clark and Wright algorithm (1964), the sweep algorithms and the Fisher and

Jaikumar (1981) algorithm, and metaheuristics such as: Simulating Annealing and

Genetic algorithms. Heuristic algorithms have proved to be very useful for solving

large VRPs in reasonable time. Also, good heuristics can provide good upper bounds

that play an important role in exact methods.

This Chapter provides computational results that show the domain reduction can

improves the Clarke and Wright algorithm by 8% and Algorithm 1 by 24% when

combined with Distance Constrained VRP (DCVRP). Also, the Chapter

investigates the effect of domain reduction on Simulating Annealing metaheuristic.

In Section 4.1 we provide a description to the domain reduction restriction that we

will use in this Chapter. Section 4.1.1 combines the domain reduction condition with

the greedy search algorithm that we described in Chapter 3 (Algorithm 1). Section

4.1 discuses the importance of tightening Algorithm 1 and we propose a Distance

Constrained VRP (DCVRP) as an approach. Section 4.1.2 describes (DCVRP), and

provides the mathematical formulation to the problem. Section 4.1.2 Also provides

computational results for using Algorithm 2 (a combination of Algorithm 1, domain

reduction and DCVRP) to solve the 10 benchmark problems that we mentioned in

Chapter 3.

Section 4.2 combines the Clarke and Wright (C&W) algorithm with the domain

reduction to solve the 10 literature benchmark CVRPs.

Section 4.3 describes Zbigniew and Piotr (2002) Simulating Annealing (SA)

algorithm and uses it to solve the 10 benchmark CVRPs. This Section observes that

the domain reduction didn’t affect the results of Simulating Annealing metaheuristic

(SA) when applied to solve the 10 benchmark CVRPs.

63

Section 4.4 uses Algorithm 2, (C&W) and (SA) to solve large VRPs combined with

domain reduction. The obtained results showed that combining domain reduction

with the Clarke and Wright algorithm improve the results by 39% when applied to

large CVRP instances. Section 4.5 concludes the Chapter.

4.1 Domain Reduction

To survey the influence of domain reduction on our solution we added a new

constraint that deletes some large numbers from the distance matrix and thus forbids

the use of certain links. The new restriction is

ijc R i,j=1,2,…,n

where
ijc represent the cost between i and j, and R is a threshold that depends on the

maximum number in the distance matrix.

The new domain reduction restriction will delete some unneeded values from the

distance matrix and setting the components to ―0‖. This may help tighten our

heuristic and change the direction of the search.

4.1.1 Computations

In order to observe the effect of the domain reduction restriction more closely, the

value of R will be determined manually by the user based on the maximum number

in the distance matrix. The way we implement the algorithm will calculate the

maximum distance used in the distance matrix and the program will not start unless

we give a percentage on how far from the maximum we need the value of R. If we

take Problem 2 as an example we can see that the maximum distance used in this

problem is 128. By directing the program to solve Problem 2 and assigning 0 to the

percentage, the program will take 100% of the maximum distance. Hence, 90 means

the program set the values above 90% of 128 to infinity.

Algorithm 1 showed some weakness when removing and adding the nodes from the

violating routes. In Algorithm 1 removing nodes one by one to meet the capacity can

increase the objective value rapidly especially when dealing with hard VRPs. One

can suggest removing two or more nodes to improve the solution. However by

64

removing two or more customers every time, we may lose the simplicity and the

speed gained by our developed algorithm.

In Algorithm 1, we use the procedure of removing and adding customers from the

routes without any restrictions on the distance. Using simple equations (removing

equation)
ib =

ijc +
jkc -

ikc and (adding equation)
i*

a =
i j* *

c +
j k* *

c -
i k* *

c only will

direct the search after the initial setup to focus on meeting the capacity constraint

without a real restrictions on how far it can increase the distance in the process.

In order to tighten the solution, the distance constraint vehicle routing problem

(DCVRP) may be helpful. The restrictions that (DCVRP) applied on each route may

be useful in directing the removal and adding customers from each route combined

with domain reduction.

A combination of the greedy search algorithm (Algorithm 1), domain reduction and

distance restriction on each route will be presented next, but first we will give a brief

definition to distance constraint vehicle routing problem (DCVRP) and describe

some of the theory and computations.

4.1.2 Distance Constrained Vehicle Routing Problem (DCVRP)

The distance constrained vehicle routing problem (DCVRP) is another variant of

VRP. The problem is similar to CVRP with extra condition; the total distance (time)

traveled by each vehicle must not be more than a pre-specified number. i.e the

(DCVRP) objective is to minimize the cost or the total distance traveled by the

vehicles without violating the following restrictions:

(a) The demands of all customers must be met.

 (b) The capacity of vehicles may not be violated (i.e. for each route the total

demands must not exceed the vehicle capacity).

 (c) The total time (or alternatively distance) for each vehicle to complete its tour

may not exceed some predetermined level. Referring to Laporte, Desrochers and

Nobert (1984), the mathematical formulation for the problem is:

65

 minimize Z= ij ij
i<jiÎN

c x i N, i<j (4.3.1)

subject to

0i

iÎC

x =2m i N (4.3.2)

 ijx + jix =2 j<i or i<j, i N (4.3.3)

 x S - (S)
ij

, i,j S, S N,3 S n-2 (4.3.4)

ijx =1,2,or 0 (4.3.5)

 m is a positive integer (4.3.6)

where

 N= {1, 2,…, n}:the set of customer location.

 0 : depot location.

 G=(N,E) : the graph representing the vehicle routing network with

N={0,1,…,n} and E={(i,j):i,j N, i<j}.

jq : demand of customer j.

 Q : common vehicle capacity.

 m : number of delivery vehicles.

ijx :distance between locations i and j.

 L : maximum distance a vehicle can travel.

jP : a lower bound on the cost of traveling from the depot to customer j.

 (S): lower bound on the number of vehicles required to visit all

locations in S

In our implementation for the new algorithm, we specify the value of R as an

addition to Algorithm 1. R is to be determined based on the largest distance or cost

value in the distance (cost) matrix. The resulting algorithm will be referred to as

Algorithm 2. R will be used as threshold in order to direct the search. The

restrictions on each route will be selected in a way that tighten the search and less

than the value of L. Applying the algorithm to solve the previously mentioned 10

problems and using the domain reduction and distance restriction we get the

following results.

66

Problem

number

Optimal

solution

Algorithm 2 Other heuristics
Max

value
distance

Domain

reduces solution
% from

optimal

Symphony

solution

%from

optimal

Saving

solution

%from

optimal

1 114 114 0 114 0 119 4

2 290 336

298

314

N/A

15.8

2.7

8

N/A

300 3.4 290 0 128 0

105

100

100

0

80%

0

80%

3 1560 1909
N/A

2413

1881

1719

22.3
N/A

N/A

20

10

2685 72 2150 38 717

0
600

700

900

1010

0
0

0

80%

75%

4 3169 3833

3837

3755

3639

21

22

18

15

3704 17 3754 18 1611 0

1500

1400

1390

0

70%

70%

80%

5 1373 1500

1750

1651

9

27

20

2053 49.5 1659 21 516

0

500

500

0

0

40%

Table 4.1a: Domain Reduction Computation and DCVRP Results

67

Table 4.1b: Domain Reduction Computation and DCVRP Results

Problem

number

Optimal

solution

Algorithm 2 Other heuristics
Max

value
distance

Domain

reduces solution
% from

optimal

Symphony

solution

%from

optimal

Saving

solution

%from

optimal

6 1685 2161

2037

2004

1911

28

21

19

13

N/A N/A 1891 12 925 0

900

800

700

0

80%

60%

70%

7 1749 2559

2326

2066

46

33

18

2050 17 2107 20 821 0

800

750

0

60%

60%

8 1111 1372

1389

23

24

N/A N/A 1336 20 229

223

0

300

0

90%

9 1408 2071
1823

1802

1790

47
29

28

27

1668 18 2391 70 599

0
550

490

490

0
60%

80%

50%

10 13333 21644

21077

20137

19197

14209

62

60

51

44

7

14749 11 19342 45 6571 0

6500

5500

5800

4000

0

50%

60%

40%

60%

68

From Table 4.1(a and b), we conclude that the domain reduction improves the costs

rapidly. Algorithm 2 is far better than Algorithm 1 in terms of accuracy.

4.2 Clarke and Wright (C&W) Algorithm

This section combines the domain reduction with Clarke and Wright algorithm. The

algorithm applied to solve the 10 benchmark VRP instances.

Table 4.2: The C&W Saving Algorithm and Domain Reduction

Table 4.2 provides clear results on how the domain reduction can minimize the cost

when combined with the Clarke and Wright algorithm.

Combining the domain reduction with the classical heuristics will improve the

solution, as detailed in tables 4.1 and 4.2.

Problem

number

Optimal

solution

Modified

C&W

%from

optimal

Domain

reduced

1 114 119 4 N/A

2 290 290 0 N/A

3 1560 2150 38 N/A

4 3169 3754

3658

18

15.4

0

62%

5 1373 1659

1579

1404

21

15

2.3

0

65%

70%

6 1685 1891

1888

12.2

12

0

50%

7 1749 2107 20 0

8 1111 1336

1278

20

15

0

5%

9 1408 2391

1999

1747

70

42

24

0

50%

55%

10 13333 19342

19181

45

43.8

0

65%

69

The next section will investigate the effect of domain reduction on one of the

metaheuristics.

4.3 Simulating Annealing Algorithm (SA)

To investigate the effect of domain reduction when combined with a metaheuristic

algorithm, this section presents one of the simulating annealing algorithms. The

algorithm uses the annealing temperature T developed by Zbigniew, and Piotr (2002)

and the greedy search algorithm developed in Chapter 3 (Algorithm 1). The SA

algorithm can be described in the following steps:

Step 1: Using Algorithm 1, find initial solution.

Step 2: Calculate T= *(d+ (cn+
mine)), where <1, d is the total travel distance

of the routes, is a constant(fixed to 1), c is the number of vehicles, n is the

number of customers, and
mine is the number of customers in the shortest route. Set

f=0. f is a counter.

Step 3: Set f=f+1.

Step 4: Repeat 2n times, swap 2 customers in each route. Store the new route if it’s

better than the original.

Step 5: If T<f then print the best solution and stop, otherwise go to step 6.

Step 6: Take a ―snapshot‖ to the initial solution and generate another one using

Algorithm 1 and go to step 2.

The restriction

 ijc R i,j=1,2,…,n.

is added as a domain reduction condition. The SA algorithm will calculate the

maximum distance used in the distance matrix and let the user choose a percentage

on how far from the maximum the value of R wanted. Implementing the SA

algorithm and domain reduction using C++ we get the following results:

70

Problem

number

Optimal

solution

Modified SA

Algorithm
Other heuristics

Domain

reduces
Results

% from

optimal

Symphony

results

%from

optimal

C&W

Saving

results

%from

optimal

1 114 114 0 114 0 119 4 0

2 290 290 0 300 3.4 290 0 0

3 1560 1629
1686

1700

4.4
8

9

2685 72 2150 38 0
80%

60%

4 3169 3314

3463

3494

4.5

9.2

10.2

3704 17 3754 18 0

80%

60%

5 1373 1473

1431

1545

7.2

4.2

12.5

2053 49.5 1659 21 0

80%

60%

6 1685 1779

1704

1715

5.5

1.1

1.7

N/A N/A 1891 12 0

80%

60%

7 1749 1945

2131
2022

11.2

22
15.6

2050 17 2107 20 0

80%
60%

8 1111 1269

1349

14.2

21.4

N/A N/A 1336 20 0

80%

9 1408 1528

1599

1562

8.5

13.5

10.9

1668 18 2391 70 0

80%

60%

10 13333 17888

18391

18302

34

37.9

37.2

14749 11 19342 45 0

80%

60%

Table 4.3: SA and Domain Reduction

Unlike the classical heuristics, metaheuristics combined with domain reduction may

increase the cost. Domain reduction seems to work perfectly when combined with a

classical heuristic algorithm, but fail to improve the solution when combined with the

metaheuristics.

71

4.4 Heuristics and large instances

Besides providing upper bounds, heuristics are normally useful whenever exact

algorithms fail. In most of the cases, exact algorithms face a real challenge when

applied to solve large VRP instances in terms of the time and space required to solve

the problem to optimality. Also, heuristics can deal with large VRPs efficiently in

terms of time taken to solve the problem.

In order to investigate the effect of domain reduction on the large VRPs, we applied

Algorithm 2, the Clarke and Wright algorithm and the SA algorithm to 4 large

instances. The set of instances are from Christofides, Mingozzi, and Toth, (1979).

The details of each instance and the best published solution can be found at

Computational Infrastructure for Operations Research (2003).Table 4.4 shows the

results:

Dimension Modified

C&W

Modified

SA

Algorithm

2

SYMPHONY Domain

reduced

%

101 803.439

726.249
672.280

409.918

409.918
409.918

1590

1590
1590

820

N/A
N/A

0

30
25

121 933.738

573.689

336.485

336.485

1401

1401

1034

N/A

0

30

151 958.464

894.140

480.326

368.996

368.996

368.996

1498

1498

1498

1053

N/A

N/A

0

30

45

200 1290.961

1079.164

696.730

652.158

652.158

652.158

1975

1975

1975

1373

N/A

N/A

0

35

45

Table 4.4: Heuristics and Large VRPs

From Table 4.4, we can observe that the domain reduction reduced the cost

significantly when combined with the Clarke and Wright algorithm. For the problem

of dimension 101 customers, domain reduction improved the solution by 16%. For

the second problem (121 customers) the solution has been improved by 38%. For the

third large problem with dimension 151 customers, the solution has been improved

by 49.8%. The solution for the problem of dimension 200 customers has been

improved by 46%. From Table 4.2 and 4.4 we observe that the domain reduction

combined with Clarke and Wright improves the solution rapidly as the size of the

72

problems become large. In addition neither SA nor Algorithm 2 shows any

significant response in term of reducing the cost when combined with domain

reduction to solve large scale VRPs.

4.5 Conclusion

The results obtained by combining domain reduction with distance restrictions

shown in Table 4.1 are good considering the time to solve each problem (the overall

time is 0.45 second). The greedy search algorithm provides good results when

domain reduction and distance restrictions for each route get involved in directing

the search. Another thing that can be concluded is the rapid improvement for

problems 9 and 10 in terms of the cost. Also, domain reduction improves the cost

when combined with the Clarke and Wright savings algorithm. This improvement

can be seen clearly in Table 4.2 especially problem 9, as the cost decreases from 70%

from the optimal to 24%. However the results obtained by SA are far better than

those obtained by Algorithm 2 and the saving algorithm. Reducing the domain

minimizes the cost significantly in Algorithm 2 and the Savings Algorithm, but fails

to improve the solution when combined with SA. The deep search procedure for SA

provides the first result as the best obtained. Deleting values from the domain didn’t

help improving the solution for SA algorithm. We observed that SA algorithm is

better than Algorithm 2 and the savings algorithm in terms of accuracy. However, the

classical algorithms are easy to understand and take less time to be implemented.

Furthermore when dealing with large scale VRPs the Clarke and Wright saving

algorithm shows an outstanding improvement when combined with domain

reduction. From Table 4.4 we can observe that the obtained solution in each case

decreased significantly when we apply the Clarke and Wright saving algorithm with

domain reduction.

After we explore the effect of domain reduction on solving vehicle routing problem

using heuristic methods, the next chapter will apply an exact method to solve VRP

combined with domain reduction and observe the effect of reducing the domain on

the time taken and gap closing.

73

Chapter 5

A hybrid Method to solve VRP

In this Chapter we consider the capacitated vehicle routing problem. The branch and

cut procedure is used to solve the 10 benchmark problems without applying the

domain reduction constraint, analyzing the results then solving the same problems

after adding the domain reduction constraint and comparing the results. The

computational results provided in this Chapter show that branch and cut combined

with the domain reduction can improve the time taken to solve the problem by 48%

in comparison with using branch and cut only. In most of the cases the solution value

will remain the same. However, in some problems the solution may become slightly

higher but the improved significantly.

Section 5.1 describes the implementation of the domain reduction restriction. Section

5.2 details how we combine domain reduction with the branch and cut (exact)

method. This Section illustrates the effect of domain reduction in reducing the

duality gap (the difference between primal and dual objective values) when combine

with branch and cut method. Also, this Section shows the effect of domain reduction

on the time taken to solve VRPs. Section 5.3 concludes this chapter.

5.1 Domain Reduction condition and Implementation

The distance matrix for VRP represents the problem domain. Hence, to reduce the

domain we must reduce the domain by eliminating some numbers from the distance

matrix. As described earlier a simple restriction developed to reduce the domain can

be described mathematically as

 ijc R for all i and j

74

where
ijc is the cost or the distance between node i and j, and R is a threshold chosen

logically. Furthermore R value depends deeply on the maximum cost (distance) in

the cost matrix.

As we mentioned earlier this thesis focuses on the Symmetric Capacitated Vehicle

Routing Problem (CVRP) with single commodity and one depot. The restrictions are

capacity and cost or distance. Moreover, as we are dealing with exact method in this

Chapter we expect the improvement of combining domain reduction will apply to

time taken only.

5.2 Calculation

We considered the CVRP formulation provided in Section 2.5.1. We use CPLEX

(ILOG SA) to solve the ten instances used in Chapter 4. We will combine the branch

and cut method with the domain reduction constraint, starting from a distance close

to the maximum cost (distance) down until we reach a value for which a feasible

solution cannot be found. We will analyze the results in each case in terms of time

and the gap closure in order to reach an understanding of the effect of the domain

reduction on the exact methods.

For each problem we find the maximum distance in the distance matrix and flag it as

a threshold, then eliminate all the distances above a chosen percentage from the

maximum. We decreased the percentage gradually until no initial feasible solution

can be found. The values of R, duality gaps, optimal solutions and the time taken to

solve each problem will be presented next but first we will highlight the influence of

domain reduction on closing the duality gap.

Recall the 10 benchmark problem mentioned in the previous Chapters. Problem 9

was chosen to illustrate the effect of the domain reduction on VRPs.

 Problem 9 (42 customers): We choose this problem to show the effect of

domain reduction on the duality gap. Problem 9 is one of the hard literature

problems that require a long time to be solved optimally. In addition, the

initial duality gap for problem 9 is almost 50%. For this reason, the problem

is useful for illustrating the effect of domain reduction on the duality gap.

75

Solving problem 9 using branch and cut only and without reducing the

domain we get:

Objective Gap Depth CPU Time

(Sec)

1429.2

1459

1483.2

1490.25

1462.1

49.75%

49.75%

49.75%

49.75%

49.75%

93

192

292

392

492

0

1449.7485

1429.1009

1446.4211

1382.4805

1456.9

49.75%

49.75%

49.75%

49.75%

49.75%

1092

1192

1292

1392

1492

49.19

1431.5

1447.45

1427
1499.1667

49.75%

49.75%

49.34%
49.34%

2092

2191

14
105

80.06

1477.5405

1434

1402.5

cutoff

1498.1197

1499

49.75%

49.75%

49.34%

49.34%

49.34%

2092

2191

14

205

305

104.39

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1408

3.70%

14

18000

Table 5.1: Duality Gap and First Domain Reduction

76

When reducing the domain by 80% from the maximum value used in the distance

matrix we get:

Objective Gap Depth CPU Time

(Sec)

1414.5000

1425.9268

1426.5139

1474.6667

1484.0132

18.54%

18.11%

17.81%

17.81%

17.81%

89

189

278

84

175

0

1429.2000

1459.0000

1483.2000

1490.2500
0

1462.1000

1449.7485

15.78%

15.78%

15.78%

15.58%
13.51%

13.51%

13.37%

46

141

236

70
82

102

58.88

1431.5000

1447.4500

1427.0000

1299.1667

0

1377.5405

1334.0000

1402.5000

13.19%

13.19%

13.19%

13.17%

10.42%

10.34%

10.17%

10.13%

74

171

64

10

49

21

17

34

121.81

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1408 1.12% 12 18000

Table 5.2: Duality Gap and Second Domain Reduction

Note that the initial gap reduced from 49.75% to 18.54%, when the domain reduced

by 80% from the maximum distance in the distance matrix. Also when solving the

77

problem without the domain reduction, the gap was 49.34% after about 105 seconds.

When the domain reduced by 20%, the gap was about 10.34% (after 105 seconds).

Furthermore, when reducing the domain by 60% from the maximum value used in

the distance matrix we get:

Objective Gap Depth CPU Time

(Sec)

1415.0600

1427.6250
1429.1224

1429.8421

1430.7692

20.12%

20.12%
20.12%

20.12%

20.12%

96

193
293

393

493

0

1495.4000

1326.0000

1429.7857

1445.7449

1476.8571

20.12%

18.38%

18.38%

13.50%

13.50%

1087

5

99

291

25

31.69

1422.4444

1442.8030

1465.8750

1492.2727

1406.1870

13.33%

13.33%

13.33%

13.33%

11.51%

210

310

410

510

184

54.97

1411.0000

1394.8750
1401.0506

1405.6733

1411.2500

5.93%

5.89%
5.82%

5.82%

5.79%

45

22
88

185

45

106.49

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1408 0

13056

Table 5.3: Duality Gap and Third Domain Reduction

78

Note that, although the initial gap (20.12%) when reducing the domain by 40% is not

as good as the initial gap obtained by reducing the domain by 20% (18.54%), the gap

after 105 seconds for the third result was about 5.45% which is better than the

10.34% obtained by reducing the domain 20% and after the same time. In addition,

when reducing the domain by 40% from the maximum value used in the distance

matrix we get:

Objective Gap Depth CPU Time

(Sec)

1411.9000
1417.7692

1424.0500

1397.3333

1418.7632

1409.2917

1416.4167

23.78%
8.09%

8.04%

7.02%

7.02%

7.02%

7.02%

98
198

64

22

122

48

24

0

1399.5000

1390.0833

1409.3636

1372.7000

1420.6667
1421.8190

5.15%

5.15%

5.15%

5.13%

5.08%
5.08%

15

43

11

25

30
37

23.59

1415.4167

1402.8500

1413.5341

1412.8128

1405.0500

1383.6346

2.75%

2.74%

2.73%

2.72%

2.71%

2.69%

20

24

28

23

19

16

52.19

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1417 0 2769.90

Table 5.4: Duality Gap and Fourth Domain Reduction

79

Although the initial gap (23.78%) when reducing the domain by 60% is not as good

as the initial gap obtained by reducing the domain by 20% (18.54%) or when

reducing the domain by 40% (20.12%), the gap after 105 seconds for the fourth

result (2.68%) was far better than the other results after the same time. Also,

reducing the domain by 60% made it possible to find the solution after 2769.90

seconds. However, the obtained solution (1417) after reducing the domain by 60% is

not as good as previous ones (1408).

Figure 5.1, illustrates the effect of domain reduction on the gap (Note that the time

units are seconds).

Figure 5.1 Duality gap and domain reduction

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Time

G
a

p

R=100%

R=80%

R=60%

R=40%

After showing the effect of domain reduction on closing the duality gap, the

following table provides detailed results when applying branch and cut combined

with domain reduction to solve the previously mentioned 10 VRPs.

80

Problem

number

CPU

Time

/second

Solution Duality

gap %

Initial

gap %

Eliminated

columns /

rows

R

%

1 23.3
20.90

26.80

18.14

114
114

114

114

0
0

0

0

29.91
27.59

33.33

29.82

0/0
8/12

24/38

40/64

100
90

70

50

2 2464.73
1526.42

2878.95

355.16

292
292

292

298

0
0

0

0

59.59
49.75

40.00

38.89

0/0
52/84

104/164

144/228

100
80

60

40

3 7.20
6.25

10.60

8.40

1560
1560

1560

1560

0
0

0

0

28.11
21.51

16.50

26.36

0/0
204/309

222/336

267/405

100
80

60

40

4 7.15

11.15
14.34

5.33

3169

3169
3169

3169

0

0
0

0

26.57

24.53
31.39

7.91

0/0

12/18
54/81

663/1008

100

80
60

40

5 1002.40

1258.78
1051.66

541.42

124.64

1373

1373
1373

1373

1459

0

1.58
2.26

0

0

24.07

20.
2465

19.04

49.96
23.77

0/0

48/72
26/404

1324/2008

1736/2632

100

90
80

60

40

6 275.53

103.45

582.23
83.95

9.94

1685

1685

1685
1685

1750

0

0

0
0

0

16.04

10.82

8.13
10.16

8.67

0/0

42/63

84/126
456/696

690/1053

100

90

80
60

40

7 2516.14

721.75
1224.00

1817

1749

1749
1749

1749

0

0
0

0

68.78

22.87
59.52

14.23

0/0

112/168
672/1012

1544/2336

100

80
60

40

8 18286.00

18286.00

18286.00
Infeasible

1111

1111

1118
Infeasible

7.26

6.57

7.98

39.09

24.70

29.85

0/0

90/182

133/259

100

90

80
60

9 18000

18000

13056
2769.90

1408

1408

1408
1417

3.70

1.12

0
0

23.10

18.54

20.12
23.78

0/0

384/588

2776/4216
5196/7864

100

80

60
40

10 18290

12653

7160

13333

13333

13333
Infeasible

3.42

3.09

3.28

28.10

77.83

31.22

0/0

96/144

376/564

100

80

60
40

Table 5.5: Using Exact Method and Domain Reduction to Solve VRPs

81

5.3 Conclusions

The results obtained by using branch and cut and domain reduction illustrate the

importance of domain reduction in reducing the time taken to solve the problems and

reducing the duality gap. In some problems the time and the duality gap reduced

rapidly but the solution was slightly above the optimal. Also in some cases reducing

the domain may increase the time. However, a good results obtained when the

domain had been reduced by around 60% from the maximum value in the distance

matrix (except in the case of 31 customers). Table 5.5 illustrates clearly that domain

reduction reduces the time taken to solve CVRP when combine with the branch and

cut exact method.

82

Chapter 6

Conclusions and Future Work

The Vehicle Routing Problem VRP is different from almost all other optimization

problems. The importance of VRP in reducing the cost of any distribution network

that involves transportation as well as providing good customer service (by satisfying

customer demands), forced the formulation of the problem to find the balance

between reducing the cost and satisfying customer demands. Hence, the equation of

cost demand capacity made CVRP complicated and extremely hard as the

dimensions of the problem increases.

For a long time, simple heuristics have failed to provide satisfactory solutions when

applied to VRP as we also found in Chapter 3. However, by reducing the domain and

force route restrictions, a simple greedy search algorithm performs better. Deleting

some values from the domain may help in some instances, but in general it may

direct the search to the wrong area especially if the heuristic algorithm depends

closely on choosing the next low value in the domain to form a route. As a result,

applying route restrictions helped directing the search. Using domain reduction and

applying restrictions on each route improves the greedy algorithm by 24% as we see

in Chapter 4. Also, Chapter 4 provides computational results that illustrate clearly the

effect of domain reduction when combined with the Clarke and Wright algorithm.

The Clarke and Wright algorithm has been improved by 8% when combined with

domain reduction.

Chapter 5 combined branch and cut with the domain reduction. The CPU time taken

to solve the problems has been reduced by 49.8% when domain reduction is applied.

83

In general, the results obtained by combining domain reduction with heuristics and

exact methods were significant and encouraging. A future work can be highlighted in

the next Section

6.1 Future Work

The pruning that constraint programming provides is a huge encouragement to

explore more CP techniques. One of the techniques that need to be explored is

constraint propagation. As we mentioned in Chapter 2, to develop a constraint

propagation algorithm one of the following approaches must be followed:

 Backtracking Search

The method is a combination of Arc consistency and Backtracking; it starts by

guessing solutions then test the guessed solution for Arc consistency.

 Forward Checking

This method uses restricted arc consistency between the current variable and the

future variables.

 Look Ahead Search

Unlike forward checking, this method doesn’t look for restricted arc consistency

between the current variable and the future variables only but also performs full

arc consistency search.

Note that developing a hybrid approach that combines constraint propagation with

OR methods to solve CVRP must overcome the problem of chronological

backtracking (that all decisions must be undone in the reverse of the order they were

made). Finding the right approach to combine constraint propagation with OR

methods to solve CVRP seems interesting as well as challenging for the future work.

84

Appendix A

EXAMPLE 1- 18 customers generated matrix

CAPACITY : 70

121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336 111 246 745 472

237 528 364 332 349 202 685 542 157289 426 483 155 268 420 53 239 199 123 207

165 383 240 140 448 202 57 200 211 466 74 182 243 105 150 108 326 336 184 391

145 40 70 567 191 27 346 83 47 68 189 439 287 254 250 324 638 437 240 421 329

297 314 95 578 435 300 353 282 110 324 61 208 292 250 352 154 170 505 289 262

476 196 360 444 402 495 120 259 555 372 175 338 264 232 249 70 134 530 154 105

309 34 29 45 80 572 196 77 351 63 89 150 488 112 120 267 316 412 227 169 383

20 91 661 228 117 257 390 42 633 31 215

DEMAND : 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 30

EXAMPLE 2- 7 customers Eilon, Watson-Gandy and Christofides (1971)
CAPACITY : 3

-1 10 20 25 25 20 10

0 -1 12 20 25 30 20

0 0 -1 10 11 22 30

0 0 0 -1 2 11 25

0 0 0 0 -1 10 20

0 0 0 0 0 -1 12

0 0 0 0 0 0 -1

DEMAND: 0 1 1 1 1 1 1

85

EXAMPLE 3-13 customers Eilon, Watson-Gandy and Christofides (1971)
CAPACITY : 6000

-1 9 14 21 23 22 25 32 36 38 42 50 52

0 -1 5 12 22 21 24 31 35 37 41 49 51

0 0 -1 7 17 16 23 26 30 36 36 44 46

0 0 0 -1 10 21 30 27 37 43 31 37 39

0 0 0 0 -1 19 28 25 35 41 29 31 29

0 0 0 0 0 -1 9 10 16 22 20 28 30

0 0 0 0 0 0 -1 7 11 13 17 25 27

0 0 0 0 0 0 0 -1 10 16 10 18 20

0 0 0 0 0 0 0 0 -1 6 6 14 16

0 0 0 0 0 0 0 0 0 -1 12 12 20

0 0 0 0 0 0 0 0 0 0 -1 8 10

0 0 0 0 0 0 0 0 0 0 0 -1 10

0 0 0 0 0 0 0 0 0 0 0 0 -1

 DEMAND: 0 1200 1700 1500 1400 1700 1400 1200 1900 1800 1600 1700 1100

EXAMPLE 4- 17 customers Groetschel (1992)
CAPACITY : 6

-1 121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336

0 -1 246 745 472 237 528 364 332 349 202 685 542 157 289 426 483

0 0 -1 268 420 53 239 199 123 207 165 383 240 140 448 202 57

0 0 0 -1 211 466 74 182 243 105 150 108 326 336 184 391 145

0 0 0 0 -1 70 567 191 27 346 83 47 68 189 439 287 254

0 0 0 0 0 -1 324 638 437 240 421 329 297 314 95 578 435

0 0 0 0 0 0 -1 353 282 110 324 61 208 292 250 352 154

0 0 0 0 0 0 0 -1 505 289 262 476 196 360 444 402 495

0 0 0 0 0 0 0 0 -1 259 555 372 175 338 264 232 249

0 0 0 0 0 0 0 0 0 -1 134 530 154 105 309 34 29

0 0 0 0 0 0 0 0 0 0 -1 80 572 196 77 351 63

0 0 0 0 0 0 0 0 0 0 0 -1 150 488 112 120 267

0 0 0 0 0 0 0 0 0 0 0 0 -1 412 227 169 383

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 91 661 228

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 257 390

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 633

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

DEMAND: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

86

EXAMPLE 5- 21 customers Groetschel (1992) /CAPACITY:7

-1 380 140 495 280 480 340 350 370 505 185 240 310 345 280 105 380 280 165 305 150

0 -1 240 290 590 140 480 255 205 220 515 150 100 170 390 425 255 395 205 220 155

0 0 -1 170 445 750 160 495 265 220 240 600 235 125 170 485 525 405 375 87 315

0 0 0 -1 450 270 625 345 660 430 420 440 690 77 310 380 180 215 190 545 225

0 0 0 0 -1 255 440 755 235 650 370 320 350 680 150 175 265 400 435 385 485

0 0 0 0 0 -1 265 480 420 235 125 125 200 165 230 475 310 205 715 650 475

0 0 0 0 0 0 -1 480 81 435 380 575 440 455 465 600 245 345 415 295 170

0 0 0 0 0 0 0 -1 655 235 585 555 750 615 625 645 775 285 515 585 190

0 0 0 0 0 0 0 0 -1 610 360 705 520 835 605 590 610 865 250 480 545

0 0 0 0 0 0 0 0 0 -1 68 440 575 27 320 91 48 67 430 300 90

0 0 0 0 0 0 0 0 0 0 -1 155 380 640 63 430 200 160 175 535 240

0 0 0 0 0 0 0 0 0 0 0 -1 370 320 700 280 590 365 350 370 625

0 0 0 0 0 0 0 0 0 0 0 0 -1 490 605 295 460 120 350 425 390

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 130 500 540 97 285 36 29

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 110 480 570 78 320 96

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 155 475 495 120 240

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 385 585 390 350

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 91 415 605

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 635 355

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 510

0 -1

DEMAND: 0 1

87

EXAMPLE 6-24 customers Groetschel (1992) /CAPACITY : 7

-1 121 142 99 84 35 29 42 36 220 70 126 55 249 104 178 60 96 175 153 146 47 135 169

0 -1 192 228 235 108 119 165 178 154 71 136 262 110 74 96 264 187 182 261 239 165 151 221

0 0 -1 250 99 89 221 105 189 160 147 349 76 138 184 235 138 114 212 39 40 46 136 96

0 0 0 -1 175 128 76 146 32 76 47 30 222 56 103 109 225 104 164 99 57 112 114 134

0 0 0 0 -1 261 43 200 232 98 200 171 131 166 90 227 195 137 69 82 223 90 176 90

0 0 0 0 0 -1 268 53 138 239 123 207 178 165 367 86 187 202 227 130 68 230 57 86

0 0 0 0 0 0 -1 290 139 98 261 144 176 164 136 389 116 147 224 275 178 154 190 79

0 0 0 0 0 0 0 -1 211 74 81 182 105 150 121 108 310 37 160 145 196 99 125 173

0 0 0 0 0 0 0 0 -1 54 219 92 82 119 31 43 58 238 147 84 53 267 170 255

0 0 0 0 0 0 0 0 0 -1 293 50 232 264 148 232 203 190 248 122 259 227 219 134

0 0 0 0 0 0 0 0 0 0 -1 219 83 172 149 79 139 134 112 126 62 199 153 97

0 0 0 0 0 0 0 0 0 0 0 -1 272 180 315 188 193 245 258 228 29 159 342 209

0 0 0 0 0 0 0 0 0 0 0 0 -1 70 191 121 27 83 47 64 68 173 119 148

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 214 223 49 185 123 115 86 90 313 151

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 185 86 124 156 40 124 95 82 207

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 243 209 286 159 190 216 229 225

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 134 154 63 105 34 29 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 130 167 59 101 56 25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 80 196 88 77 63

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 150 112 96 120

0 -1 91 228 158

0 -1 187 196

0 -1 257

0 -1

DEMAND: 0 1

88

EXAMPLE 7-26 customers (http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/fri-n26-k3.vrp)/CAPACITY : 10
-1 181 197 161 190 182 190 160 148 128 121 103 99 107 130 130 95 51 51 81 79 37 27 58 107 90

0 -1 127 179 157 197 194 202 188 188 155 136 116 100 111 132 122 139 109 125 141 148 80 65 64 93

0 0 -1 220 268 241 278 272 280 257 250 223 210 190 178 189 212 205 196 154 157 186 186 128 102 51

0 0 0 -1 185 223 193 228 222 230 206 198 172 160 140 129 140 163 158 144 102 107 135 136 77 50

0 0 0 0 -1 157 180 147 180 173 181 156 148 122 111 92 83 93 116 113 94 53 64 87 90 26

0 0 0 0 0 -1 147 160 124 155 148 156 130 122 96 86 68 62 71 93 93 68 30 46 63 68

0 0 0 0 0 0 -1 185 165 125 139 128 135 98 78 74 82 77 87 87 100 109 39 38 29 13

0 0 0 0 0 0 0 -1 172 152 112 127 117 124 88 70 62 68 64 75 74 87 96 26 34 33

0 0 0 0 0 0 0 0 -1 181 175 135 156 146 153 119 103 91 91 80 85 89 106 112 54 22

0 0 0 0 0 0 0 0 0 -1 159 156 117 142 133 141 110 98 78 74 61 63 68 87 92 44

0 0 0 0 0 0 0 0 0 0 -1 152 127 86 102 93 100 66 54 37 43 42 56 53 62 73

0 0 0 0 0 0 0 0 0 0 0 -1 81 67 36 76 74 82 78 91 55 34 32 31 24 15

0 0 0 0 0 0 0 0 0 0 0 0 -1 95 68 31 66 62 71 63 76 40 20 27 34 23

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 99 89 54 89 84 92 77 83 47 26 11 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 98 98 64 100 95 103 88 92 56 36 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 110 95 58 88 82 90 71 75 39 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 114 84 44 70 62 71 52 59 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 135 93 54 65 55 63 34 37

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 169 116 81 72 61 65 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 151 91 59 46 35 39

0 -1 139 64 49 11 9

0 -1 133 62 42 11

0 -1 129 53 42

0 -1 93 40

0 -1 83

0 -1

DEMAND: 0 1

89

EXAMPLE 8-29 customers (http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/bayg-n29-k4.vrp) /CAPACITY : 8

-1 97 205 139 86 60 220 65 111 115 227 95 82 225 168 103 266 205 149 120 58 257 152 52 180 136 82 34 145

0 -1 129 103 71 105 258 154 112 65 204 150 87 176 137 142 204 148 148 49 41 211 226 116 197 89 153 124 74

0 0 -1 219 125 175 386 269 134 184 313 201 215 267 248 271 274 236 272 160 151 300 350 239 322 78 276 220 60

0 0 0 -1 167 182 180 162 208 39 102 227 60 86 34 96 129 69 58 60 120 119 192 114 110 192 136 173 173

0 0 0 0 -1 51 296 150 42 131 268 88 131 245 201 175 275 218 202 119 50 281 238 131 244 51 166 95 69

0 0 0 0 0 -1 279 114 56 150 278 46 133 266 214 162 302 242 203 146 67 300 205 111 238 98 139 52 120

0 0 0 0 0 0 -1 178 328 206 147 308 172 203 165 121 251 216 122 231 249 209 111 169 72 338 144 237 331

0 0 0 0 0 0 0 -1 169 151 227 133 104 242 182 84 290 230 146 165 121 270 91 48 158 200 39 64 210

0 0 0 0 0 0 0 0 -1 172 309 68 169 286 242 208 315 259 240 160 90 322 260 160 281 57 192 107 90

0 0 0 0 0 0 0 0 0 -1 140 195 51 117 72 104 153 93 88 25 85 152 200 104 139 154 134 149 135

0 0 0 0 0 0 0 0 0 0 -1 320 146 64 68 143 106 88 81 159 219 63 216 187 88 293 191 258 272

0 0 0 0 0 0 0 0 0 0 0 -1 174 311 258 196 347 288 243 192 113 345 222 144 274 124 165 71 153

0 0 0 0 0 0 0 0 0 0 0 0 -1 144 86 57 189 128 71 71 82 176 150 56 114 168 83 115 160

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 61 165 51 32 105 127 201 36 254 196 136 260 212 258 234

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 106 110 56 49 91 153 91 197 136 94 225 151 201 205

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 215 159 64 126 128 190 98 53 78 218 48 127 214

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 61 155 157 235 47 305 243 186 282 261 300 252

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 105 100 176 66 253 183 146 231 203 239 204

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 113 152 127 150 106 52 235 112 179 221

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 79 163 220 119 164 135 152 153 114

0 -1 236 201 90 195 90 127 84 91

0 -1 273 226 148 296 238 291 269

0 -1 112 130 286 74 155 291

0 -1 130 178 38 75 180

0 -1 281 120 205 270

0 -1 213 145 36

0 -1 94 217

0 -1 162

0 -1

DEMAND: 0 1

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/bayg-n29-k4.vrp

90

Note: Due to the size of the next three examples, we will display them as a numbers not a matrix. In order to put these numbers in a

format similar to the above examples, the following procedure must be applied.

 If (a b c d e f) represent the cost then we can put them in the format as:

-1 a b c

 0 -1 d e

 0 0 -1 f

 0 0 0 -1

Where -1 assigned for the cost of traveling from a customer to himself and the cost below the diagonal is 0 and the given numbers

organized above the diagonal.

91

EXAMPLE 9-31 customers Eilon, Watson-Gandy and Christofides (1971)
CAPACITY : 140

41 38 80 80 97 92 96 78 98 87 95 77 93 91 98 96 40 73 82 55 52 76 76 76 72 98 98

93 89 68 3 54 54 64 59 56 39 59 52 58 38 55 52 58 59 5 34 48 16 16 46 44 50 33 58
58 66 55 32 56 56 67 62 59 41 62 50 61 41 58 53 61 62 5 37 46 19 17 49 46 53 34

61 61 68 58 33 3 19 13 16 54 20 47 15 30 15 25 19 17 60 46 44 54 68 8 11 4 53 33

32 14 10 64 16 10 14 54 17 46 12 29 12 22 16 14 61 46 44 54 68 9 11 4 54 30 29 12

9 64 7 11 53 12 46 8 34 10 24 10 8 71 50 45 58 77 19 20 20 57 27 26 23 8 67 10 57

13 42 8 32 14 19 10 8 65 46 42 55 72 15 15 14 55 30 29 18 5 66 48 4 35 45 25 3

12 4 4 63 39 33 48 69 18 15 18 47 21 20 22 7 57 39 12 45 24 47 30 42 44 40 8 9

22 36 44 42 50 6 27 28 65 48 22 33 6 21 7 9 3 5 66 39 31 45 65 22 19 21 45 15

15 25 10 55 39 18 39 24 36 38 49 12 4 30 46 40 36 43 15 18 20 54 39 38 28 3 15 4

2 65 43 36 53 71 16 18 17 49 19 18 20 5 63 26 14 24 26 40 16 18 24 44 20 18 25 22

19 19 41 29 34 14 6 4 62 41 36 51 68 17 14 16 49 21 20 20 5 60 12 14 54 28 21 38
57 24 18 28 34 8 7 32 18 47 2 65 42 34 48 67 20 20 20 46 17 16 24 9 58 66 44 35

50 69 18 18 19 48 19 18 22 7 60 36 45 18 14 52 47 57 34 60 60 72 62 32 9 22 36 37

35 41 6 26 26 57 44 26 31 45 35 33 40 15 18 19 54 39 33 21 45 39 50 16 44 44 61

51 21 59 57 64 30 61 61 79 69 18 6 5 47 34 34 20 15 66 10 42 28 28 26 12 53 50 35

34 15 11 60 32 34 64 52 18 3 39 24 51 39 23 52 15 76 65

DEMAND: 0 24 34 11 15 11 1 3 29 6 25 6 25 2 28 8 10 18 45 33 17 9 16 35 5 60 80

39 95 90 123

EXAMPLE 10-42customers(http://www.coin-

or.org/SYMPHONY/branchandcut/VRP/data/V/swiss-n42-k5.vrp)

CAPACITY : 9

0 15 30 23 32 55 33 37 92 114 92 110 96 90 74 76 82 67 72 78 82 159

122 131 206 112 57 28 43 70 65 66 37 103 84 125 129 72 126 141 183 124

 15 0 34 23 27 40 19 32 93 117 88 100 87 75 63 67 71 69 62 63 96 164

132 131 212 106 44 33 51 77 75 72 52 118 99 132 132 67 139 148 186 122

 30 34 0 11 18 57 36 65 62 84 64 89 76 93 95 100 104 98 57 88 99 130

100 101 179 86 51 4 18 43 45 95 45 115 93 152 159 100 112 114 153 94

 23 23 11 0 11 48 26 54 70 94 69 89 75 84 84 89 92 89 54 78 99 141
111 109 190 89 44 11 29 54 56 89 47 118 96 147 151 90 122 126 163 101

 32 27 18 11 0 40 20 58 67 92 61 78 65 76 83 89 91 95 43 72 110 141

116 105 190 81 34 19 35 57 63 97 58 129 107 156 158 92 129 127 161 95

 55 40 57 48 40 0 23 55 96 123 78 75 62 36 56 66 63 95 37 34 137 174

156 129 224 90 15 59 75 96 103 105 91 158 139 164 156 78 169 163 191 115

 33 19 36 26 20 23 0 45 85 111 75 82 69 60 63 70 71 85 44 52 115 161

136 122 210 91 25 37 54 78 81 90 68 136 116 150 147 76 148 147 180 111

 37 32 65 54 58 55 45 0 124 149 118 126 113 80 42 42 49 40 87 60 94 195

158 163 242 135 65 63 79 106 101 50 66 118 104 109 103 36 160 178 218 153

 92 93 62 70 67 96 85 124 0 28 29 68 63 122 148 155 156 159 67 129 148

78 80 39 129 46 82 65 55 40 61 157 97 159 135 212 221 159 110 72 95 35
 114 117 84 94 92 123 111 149 28 0 54 91 88 150 174 181 182 181 95 157 159

50 65 27 102 65 110 87 73 50 68 176 112 166 142 229 241 184 99 46 69 38

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/swiss-n42-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/V/swiss-n42-k5.vrp

92

 92 88 64 69 61 78 75 118 29 54 0 39 34 99 134 142 141 157 44 110 161

103 109 52 154 22 63 68 66 61 81 158 107 175 151 216 219 150 137 100 115

37

 110 100 89 89 78 75 82 126 68 91 39 0 14 80 129 139 135 167 39 98 187

136 148 81 186 28 61 92 97 98 117 173 134 204 181 232 229 153 176 137 143
62

 96 87 76 75 65 62 69 113 63 88 34 14 0 72 117 128 124 153 26 88 174

136 142 82 187 32 48 79 85 89 106 159 121 191 168 219 216 140 168 134 145

64

 90 75 93 84 76 36 60 80 122 150 99 80 72 0 59 71 63 116 56 25 170 201

189 151 252 104 44 95 111 130 138 130 127 192 174 186 172 90 205 193 214 135

 74 63 95 84 83 56 63 42 148 174 134 129 117 59 0 11 8 63 93 35 135 223

195 184 273 146 71 95 113 138 138 81 107 159 146 132 113 32 200 209 243 171

 76 67 100 89 89 66 70 42 155 181 142 139 128 71 11 0 11 54 103 46 130

230 198 192 279 155 80 99 117 143 141 74 107 155 143 122 102 22 202 215 250
179

 82 71 104 92 91 63 71 49 156 182 141 135 124 63 8 11 0 65 100 39 140

232 203 192 281 153 78 103 121 147 146 85 115 164 152 133 112 33 208 218 251

178

 67 69 98 89 95 95 85 40 159 181 157 167 153 116 63 54 65 0 127 92 83

224 180 199 269 175 106 95 109 135 125 21 80 107 100 71 63 33 173 205 249

191

 72 62 57 54 43 37 44 87 67 95 44 39 26 56 93 103 100 127 0 67 153 145

139 96 196 53 23 60 70 81 95 134 101 172 149 194 190 115 160 138 159 80

 78 63 88 78 72 34 52 60 129 157 110 98 88 25 35 46 39 92 67 0 152 207

188 162 258 119 48 89 107 129 134 108 114 176 159 163 147 66 200 197 224 147
 82 96 99 99 110 137 115 94 148 159 161 187 174 170 135 130 140 83 153 152

0 188 128 184 222 183 139 95 95 110 91 62 54 24 23 81 110 113 108 164 217

184

 159 164 130 141 141 174 161 195 78 50 103 136 136 201 223 230 232 224 145

207 188 0 65 57 51 109 160 132 116 90 102 217 148 188 168 264 281 231 100

26 30 75

 122 132 100 111 116 156 136 158 80 65 109 148 142 189 195 198 203 180 139

188 128 65 0 91 94 126 145 100 82 60 57 167 99 126 106 208 230 194 36 39

94 103

 131 131 101 109 105 129 122 163 39 27 52 81 82 151 184 192 192 199 96 162
184 57 91 0 106 53 115 104 94 74 94 196 134 192 168 251 260 197 126 64 64

19

 206 212 179 190 190 224 210 242 129 102 154 186 187 252 273 279 281 269 196

258 222 51 94 106 0 158 211 180 163 136 145 259 190 218 200 302 323 278 120

65 49 124

 112 106 86 89 81 90 91 135 46 65 22 28 32 104 146 155 153 175 53 119 183

109 126 53 158 0 75 89 88 83 103 178 129 197 173 236 238 166 156 111 115

34

 57 44 51 44 34 15 25 65 82 110 63 61 48 44 71 80 78 106 23 48 139 160

145 115 211 75 0 53 68 86 95 114 90 160 139 173 168 92 162 150 176 101

 28 33 4 11 19 59 37 63 65 87 68 92 79 95 95 99 103 95 60 89 95 132
100 104 180 89 53 0 18 44 45 92 42 112 89 149 156 99 111 116 155 97

 43 51 18 29 35 75 54 79 55 73 66 97 85 111 113 117 121 109 70 107 95

116 82 94 163 88 68 18 0 27 27 103 42 109 85 157 168 115 94 98 140 90

93

 70 77 43 54 57 96 78 106 40 50 61 98 89 130 138 143 147 135 81 129 110

90 60 74 136 83 86 44 27 0 21 128 62 119 96 179 192 142 79 72 115 74

 65 75 45 56 63 103 81 101 61 68 81 117 106 138 138 141 146 125 95 134 91

102 57 94 145 103 95 45 27 21 0 115 46 98 75 163 179 136 67 81 129 95

 66 72 95 89 97 105 90 50 157 176 158 173 159 130 81 74 85 21 134 108 62
217 167 196 259 178 114 92 103 128 115 0 69 86 81 60 65 54 158 195 243 190

 37 52 45 47 58 91 68 66 97 112 107 134 121 127 107 107 115 80 101 114 54

148 99 134 190 129 90 42 42 62 46 69 0 71 49 117 133 98 95 127 175 132

 103 118 115 118 129 158 136 118 159 166 175 204 191 192 159 155 164 107 172

176 24 188 126 192 218 197 160 112 109 119 98 86 71 0 24 94 127 137 100

163 218 194

 84 99 93 96 107 139 116 104 135 142 151 181 168 174 146 143 152 100 149 159

23 168 106 168 200 173 139 89 85 96 75 81 49 24 0 104 133 127 85 143 197

170

 125 132 152 147 156 164 150 109 212 229 216 232 219 186 132 122 133 71 194
163 81 264 208 251 302 236 173 149 157 179 163 60 117 94 104 0 39 100 190

241 292 246

 129 132 159 151 158 156 147 103 221 241 219 229 216 172 113 102 112 63 190

147 110 281 230 260 323 238 168 156 168 192 179 65 133 127 133 39 0 81 216

259 307 253

 72 67 100 90 92 78 76 36 159 184 150 153 140 90 32 22 33 33 115 66 113

231 194 197 278 166 92 99 115 142 136 54 98 137 127 100 81 0 193 214 253

187

 126 139 112 122 129 169 148 160 110 99 137 176 168 205 200 202 208 173 160

200 108 100 36 126 120 156 162 111 94 79 67 158 95 100 85 190 216 193 0 74

129 137
 141 148 114 126 127 163 147 178 72 46 100 137 134 193 209 215 218 205 138

197 164 26 39 64 65 111 150 116 98 72 81 195 127 163 143 241 259 214 74 0

55 80

 183 186 153 163 161 191 180 218 95 69 115 143 145 214 243 250 251 249 159

224 217 30 94 64 49 115 176 155 140 115 129 243 175 218 197 292 307 253 129

55 0 81

 124 122 94 101 95 115 111 153 35 38 37 62 64 135 171 179 178 191 80 147

184 75 103 19 124 34 101 97 90 74 95 190 132 194 170 246 253 187 137 80 81

0

DEMAND: 0 1

1 1 1

EXAMPLE 11-48 customers Held and Karp (1970)

CAPACITY: 15

0 273 0 1272 999 0 744 809 1519 0 1138 866 140 1425

0 1972 1722 937 1861 1052 0 1580 1338 697 1473 776 400 0

1878 1640 951 1713 1049 182 304 0 1539 1226 267 1761 402 820

699 884 0 1457 1185 227 1617 361 721 538 755 177 0 429

440 1229 370 1119 1735 1335 1612 1486 1362 0 1129 894 587 1073
578 851 454 749 757 587 891 0 1251 992 369 1304 406 740

393 690 506 335 1082 252 0 1421 1173 554 1369 618 551 173

476 609 435 1199 308 222 0 588 334 721 1092 581 1551 1198

94

1501 981 930 726 803 814 1025 0 334 358 1212 453 1095 1769

1370 1654 1474 1358 96 920 1094 1227 663 0 837 626 739 798

670 1159 760 1049 967 819 583 309 510 617 632 610 0 1364

1124 596 1283 641 613 216 516 681 504 1125 238 235 90 999

1156 546 0 229 358 1291 973 1152 2072 1692 1995 1552 1496 653
1252 1335 1525 572 557 983 1479 0 961 847 1114 565 1060 1300

919 1149 1317 1153 563 569 820 835 972 642 397 745 1163 0

754 533 701 1315 567 1605 1286 1580 936 927 947 940 892 1114

225 879 821 1105 676 1183 0 1169 915 426 1204 443 807 435

739 594 428 986 165 100 263 763 1000 411 240 1264 725 865

0 1488 1219 285 1796 374 1017 879 1079 197 341 1493 863 626

770 908 1467 1023 831 1473 1399 821 699 0 720 481 676 846

579 1251 861 1161 928 803 560 414 541 700 451 558 180 645

839 549 644 453 950 0 1280 1009 155 1447 235 818 548 815

316 180 1183 454 219 400 767 1178 651 442 1326 1004 790 290
410 624 0 816 543 456 1143 325 1259 913 1214 723 649 813

552 524 740 293 780 478 723 847 869 388 483 690 325 479

0 664 937 1936 959 1802 2596 2198 2485 2203 2119 882 1745 1897

2049 1240 831 1438 1983 801 1427 1374 1809 2147 1356 1941 1480 0

1178 915 319 1275 331 826 483 780 500 343 1033 269 90 311

726 1038 476 316 1254 818 803 107 594 480 188 435 1829 0

939 667 337 1213 217 1137 803 1100 604 521 902 482 410 630

420 879 485 623 976 882 484 384 590 369 350 129 1603 320

0 1698 1441 604 2085 665 1255 1181 1347 482 652 1763 1188 952

1087 1111 1726 1333 1152 1643 1716 968 1024 326 1241 736 949 2339

919 872 0 983 812 907 742 862 1123 731 985 1104 939 642
355 805 630 862 700 235 543 1157 214 1056 511 1191 413 792

708 1524 605 699 1511 0 1119 848 214 1309 182 943 627 916

455 340 1032 397 238 459 617 1023 525 470 1169 902 655 251

499 473 161 325 1780 154 197 815 697 0 1029 776 424 1479

312 1359 1086 1361 630 649 1131 833 706 924 443 1082 827 939

983 1222 318 712 504 680 547 355 1673 623 358 669 1051 469

0 1815 1560 748 1760 864 188 292 260 641 533 1604 713 570

405 1374 1631 1022 482 1905 1210 1420 646 838 1097 632 1081 2421

652 957 1092 1018 761 1171 0 721 526 817 703 732 1282 883

1171 1058 918 463 432 622 739 586 488 123 669 878 390 794
525 1098 166 745 492 1315 580 529 1397 290 607 847 1144 0

1753 1494 666 1727 783 271 279 328 562 451 1556 666 503 360

1299 1579 973 443 1836 1184 1341 585 758 1038 552 1007 2394 582

881 1019 985 685 1089 83 1094 0 330 598 1592 872 1456 2300

1906 2202 1857 1783 663 1453 1581 1749 887 586 1155 1690 346 1225

1017 1499 1794 1049 1607 1137 357 1508 1263 1982 1280 1446 1316 2145

1036 2083 0 1499 1244 521 1479 608 483 178 445 528 362 1298

410 257 115 1070 1320 715 205 1590 949 1137 330 703 781 375

779 2136 344 660 1010 743 472 919 317 836 259 1828 0 1107

1304 2172 686 2066 2540 2156 2385 2425 2290 947 1758 1985 2055 1633

982 1475 1969 1286 1239 1836 1885 2439 1497 2115 1759 825 1950 1849
2708 1427 1969 2063 2445 1371 2412 1005 2165 0 1576 1306 356 1698

491 609 490 665 220 130 1461 642 396 428 1057 1463 902 510

1621 1210 1056 495 414 905 296 774 2237 429 645 695 996 457

95

776 426 1008 345 1903 330 2377 0 942 685 467 1057 400 1038

662 966 704 568 795 262 309 492 547 796 273 455 1034 660

679 231 751 238 392 291 1589 242 240 1061 466 254 598 875

354 811 1272 559 1723 667 0 484 668 1583 387 1466 2099 1699

1969 1845 1727 371 1260 1453 1568 999 371 953 1492 689 863 1200
1356 1837 925 1547 1148 579 1402 1250 2089 987 1393 1434 1972 833

1925 504 1668 636 1829 1162 0 617 444 882 1252 744 1776 1430

1729 1122 1105 882 1051 1039 1256 252 802 882 1238 503 1207 189

999 1011 702 959 516 1204 949 631 1148 1110 823 507 1584 828

1507 849 1291 1720 1235 792 1087 0 896 1157 2139 904 2013 2699

2300 2568 2405 2301 967 1858 2043 2166 1483 940 1550 2091 995 1446

1645 1949 2374 1506 2121 1688 347 1986 1802 2594 1584 1963 1926 2571

1429 2523 653 2264 534 2410 1744 600 1490 0 1184 1359 2182 668

2082 2493 2117 2333 2428 2285 973 1737 1972 2026 1681 1021 1467 1938

1376 1197 1891 1872 2455 1506 2114 1785 959 1943 1867 2734 1395 1975
2101 2408 1369 2380 1114 2138 145 2367 1724 701 1787 678 0 1030

1176 1961 443 1865 2266 1888 2108 2204 2059 768 1508 1744 1796 1489

826 1240 1709 1239 969 1704 1644 2237 1287 1890 1573 940 1717 1650

2520 1166 1752 1898 2179 1146 2151 1019 1908 290 2139 1500 550 1614

727 229 0 1718 1475 781 1600 875 264 138 177 738 595 1472

592 514 303 1326 1508 898 354 1828 1042 1403 567 928 998 641

1038 2336 603 923 1212 861 739 1187 194 1021 220 2044 268 2281

519 796 1835 1553 2435 2238 2010 0 604 335 678 930 552 1398

1023 1327 945 853 588 598 661 853 236 550 396 813 674 741

442 591 921 216 676 231 1266 582 341 1176 626 515 548 1231

352 1163 932 917 1531 972 361 917 486 1461 1560 1353 1157 0

DEMAND: 0 1

1 1 1 1 1 1 1 1 1

96

Bibliography

Achuthan, N.R. and Caccetta, L. (1991). Integer Linear Programming

Formulation for a Vehicle Routing Problem. European Journal of

Operational Research, 52 pp 86-89.

Achuthan, N.R., Caccetta, L. and Hill, S. P. (1996). A New Subtour

Elimination Constraint for the Vehicle Routing Problem. European Journal

of Operational Research, 91 pp. 573-586.

Achuthan, N.R., Caccetta, L. and Hill, S. P. (2003). An Improved Branch

and Cut Algorithm for the Capacitated Vehicle Routing Problem

Transportation Science, 37 pp. 153-169

Agarwal, Y., Mathur, K. and Salkin, H.M. (1989). A Set Partitioning

Based Exact Algorithm for the Vehicle Routing Problem. Networks, 19 pp

731-749.

A Gomory cut (1998).A cut, Michael A. Trick. Viewed 11/07/2009,

<http://mat.gsia.cmu.edu/orclass/integer/node15.html>.

AllBusiness.com, Inc. (2007), Council of Logistics Management San Francisco

U.S.A. Viewed 31/12/2008.< http://www.allbusiness.com/company-activities-

management/operations-supply/8898081-1.html>.

Altinkemer, K. and Gavish, B. (1991). Parallel Saving Based Heuristics for

the Delivery Problem. Operations Research, 39 pp 456-469.

Amberg,A., Domschke, W. and Voss, S. (2000). Multiple Center Capacitated

Arc Routing Problems: A Tabu Search Algorithm using Capacitated Trees.

European Journal of Operational Research, 124 pp 360-376.

Araque, J. R. (1989). Contributions to the Polyhedral Approach to the

Vehicle Routing Problem. Ph.D Dissertation, State University of New York

at Stony Brook.

Araque, J. R., Kudva, G., Morin, T. L. and Pekny, J. F. (1994). A Branch-

and-Cut Algorithm for Vehicle Routing Problems. Annals of Operations

http://mat.gsia.cmu.edu/orclass/integer/node15.html
http://www.allbusiness.com/company-activities-management/operations-supply/8898081-1.html
http://www.allbusiness.com/company-activities-management/operations-supply/8898081-1.html

97

Research, 50 pp 37 - 59.

Archetti,C. Hertz,A. Speranza,M.G. (2006a). A Tabu Search Algorithm for the

Split Delivery Vehicle Routing Problem, Transportation Science, 40 pp 64-73.

Archetti, C. Savelsbergh, M. Speranza, M.G. (2006 b). Worst-Case Analysis for

Split Delivery Vehicle Routing Problems, Transportation Science 40 pp 226-234.

Atkinson, J. B. (1994). A Greedy Look-ahead Heuristic for Combinatorial

Optimization: An Application to Vehicle Scheduling with Time Windows.

Journal of the Operational Research Society, 45 pp 673 - 684.

Attanasio, A. Cordeau J. Ghiani, G. and Laporte, G. (2003). Parallel Tabu

Search Heuristics for the Dynamic Multi-Vehicle Dial-a-Ride Problem. Working

paper, University of Calabria, Italy.

Augerat, P., Belenguer, J. M., Benavent, E., n, A., Naddef, D. and

Rinaldi G. (1995). Computational Results with a Branch and Cut Code

for the Capacitated Vehicle Routing Problem. Research Report 949-M,

Universite Joseph Fourier, Grenoble, France.

Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y. and Taillard, E.(1997). A

Parallel Tabu Search Heuristic for the Vehicle Routing Problem with Time

Windows. Transportation Research, 5 pp109-122.

Balas, E. and Toth, P. (1985). Branch and Bound Methods, in The Traveling

Salesman Problem (Lawler E.L., Lenstra J.K., Rinnooy Kan A. G. H.

and Shmoys D. B., Editors) John Wiley and Sons, pp 361 - 401.

Baldacci, R. and Mingozzi, A. (2006). Lower Bounds and an Exact Method for

the Capacitated Vehicle Routing Problem. International Conference on Service

Systems and Service Management, 2 pp 1536 – 1540.

Balinski, M. and Quandt, R. (1964). On an Integer Program for a Delivery

Problem. Operations Research, 12 pp 300 - 304.

http://www.hec.ca/chairedistributique/common/parco.pdf

98

Bent, R.W. and Van Hentenryck, P. (2004). Scenario-Based Planning for

Partially Dynamic Vehicle Routing with Stochastic Customers. Operations

research, 52(6) pp 977-987.

Berger, J. and Barkaoui, M. (2004), A parallel hybrid genetic algorithm for the

vehicle routing problem with time windows. Computer & OR. 12, pp 2037-2053.

Bodin, L. and Golden, G. (1981). Classification in Vehicle Routing and

Scheduling. Networks, 11 pp 97-108.

Bodin, L. D., Golden, B. L., Assad, A. A. and Ball, M. 0. (1983). Routing

and Scheduling of Vehicles and Crews, the State of the Art. Computers and

Operations Research, 10 pp 69-211.

Boyd, E. A. (1994). Fenchel Cutting Planes for Integer Programs. Operations

Research, 42 pp 53 - 64.

Brodie, G. R. and Waters, C. D. J. (1998). Integer Linear Programming

Formulation for Vehicle Routing Problems. European Journal of

Operational Research, 34 pp 403 - 404.

Campos, V., Corberan, A. and Mota, E. (1991). Polyhedral Results for a

Vehicle Routing Problem. European Journal of Operational Research, 52

pp 75 - 85.

Carpaneto, G., Dell'Amico, M., Fischetti, M. and Toth, P. (1989). A Branch

and Bound Algorithm for the Multiple Depot Vehicle Scheduling Problem.

Networks, 19 pp 531 - 548.

Chao, I.M., Golden, B., Wasil, E., (1995). An improved heuristic for the period

vehicle routing problem. Networks. 26(1) pp 25—44.

Caseau, Y. Silverstein, G. Laburthe, F. (2001). Learning Hybrid Algorithms for

Vehicle Routing Problems. Theory and Practice of Logic Programming. 1 pp

779-806.

Christofides, N. (1976). The Vehicle Routing Problem. RAIRO, recherche

operationnelle, 10 pp 55 - 70.

Christofides, N. (1979). The Travelling Salesman Problem, in Combinatorial

http://www.zentralblatt-math.org/stmaz/en/?q=au:Berger%2C%20J%2A
http://www.zentralblatt-math.org/stmaz/en/?q=au:Barkaoui%2C%20M%2A

99

Optimization (Christofides, N., Mingozzi, A., Toth, P. and Sandi, C,

Editors) Wiley, pp 131 - 149.

Christofides, N. (1985). Vehicle Routing, in The Traveling Salesman Problem

(Lawler E.L., Lenstra J.K., Rinnooy Kan A. G. H. and Shmoys D. B.,

Editors) John Wiley and Sons, pp 431 - 448.

Christofides, N. and Eilon, S. (1969). An Algorithm for the Vehicle

Dispatching Problem. Operations Research, 20 pp 309 - 318.

Christofides, N., Mingozzi, A. and Toth, P. (1981a). Exact Algorithms for

the Vehicle Routing Problem, Based on Spanning Tree and Shortest Path

Relaxations. Mathematical Programming, 20 pp 255-282.

Christofides, N., Mingozzi, A. and Toth, P. (1981b). State Space Relaxation

Procedures for the Computation of Bounds to Routing Problems. Networks,

11 pp 145-164.

Christofides, N., Mingozzi, A. and Toth, P. (1979). The Vehicle Routing

Problem, in Combinatorial Optimization (Christofides, N., Mingozzi,

A.,Toth, P. and Sandi, C, Editors) Wiley, Chichester, pp 315 - 338.

Clarke, G. and Wright, J. (1964). Scheduling of Vehicles From a Central

Depot to a Number of Delivery Points. Operations Research, 12 pp 568 -

581.

Computational Infrastructure for Operations Research 2003, Vehicle Routing

Data Sets USA, viewed 31 October 2006, http://www.coin-

or.org/SYMPHONY/branchandcut/VRP/data.

Cordeau, J.F., Gendreau, M., Laporte, G., (1997). A Tabu Search heuristic for

periodic and multi-depot vehicle routing problems. Networks, 30(2) pp 105—

119.

Cordeau, J.-F., Laporte, G. and Mercier, A.(2001). A unified tabu search

heuristic for vehicle routing problems with time windows. Journal of the

Operational Research Society, 52 pp 928-936.

100

Cornuejols, G. (2007). Revival of the Gomory Cuts in the 1990s. Annals of

Operations Research, 149 pp. 63-66.

jols, G. and Harche, F. (1993). Polyhedral Study of the Capacitated

Vehicle Routing Problem. Mathematical Programming, 60 pp 21 - 52.

Dantzig, G. B., Fulkerson, D. R. and Johnson, S. M. (1954). Solution of a

Large Scale Travelling Salesman Problem. Operations Research, 2 pp 393 -

410.

Dantzig, G. B., Fulkerson, D. R. and Johnson, S. M. (1959a). On a Linear

Programming, Combinatorial Approach to the Traveling-Salesman Problem.

Operations Research, 7 pp 58 - 66.

Dantzig, G. B. and Ramser, J. H. (1959b). The Truck Dispatching Problem.

Management Science, 6 pp 80 - 91.

Desrochers, M., Desrosiers, J. and Solomon, M. (1992). A New Optimization

Algorithm for the Vehicle Routing Problem with Time Windows. Operations

Research, 40 pp 342 - 354.

Desrochers, M. and Laporte, G. (1991). Improvements and Extensions to

the Miller-Tucker-Zemlin Subtour Elimination Constraints. Operations

Research Letters, 10 pp 27-36.

Desrochers M., Lenstra J. K. and Savelsbergh M. W. P. (1990) A Classi-

fication Scheme for Vehicle Routing and Scheduling Problems. European

Journal of Operational Research, 46 pp 322-332.

Dueck, G.(1993). New Optimization Heuristics: The Great Deluge Algorithm

the Record-To-Record Travel. Journal of Computational Physics, 104 pp 86-92.

Dueck, G. and Scheurer,T.(1990). Threshold Accepting: A General Purpose

Optimization Algorithm. Journal of Computational Physics, 90 pp 161-175.

Eilon, S., Watson-Gandy, C. and Christofides, N. (1971). Distribution

Management, Mathematical Modelling and Practical Analysis. Griffin,

London.

101

Erera, A. and Daganzo, C. (2003). A Dynamic Scheme for Stochastic Vehicle

Routing. Working paper. Georgia Institute of Technology, U.S.A

Ferland, J.A. and Mechelon, P. (1988). The Vehicle Scheduling Problem with

Multiple Vehicle Types. Journal of the Operational Research Society, 39(6)

pp 577-583.

Fischetti M., Toth P. and Vigo D. (1994). A Branch-and-Bound Algorithm

for the Capacitated Vehicle Routing Problem on Directed Graphs.

Operations Research, 42 pp 846 - 859.

Fisher, M. (1994a). Optimal Solution of Vehicle Routing Problems Using

Minimum K-Trees. Operations Research, 42 pp 626 - 642.

Fisher, M. and Jaikumar, R. (1981). A Generalised Assignment Heuristic

for Vehicle Routing. Networks, 11 pp 109-124.

Forbes, M.A., Holt, J.N. and Watts, A.M. (1994). An Exact Algorithm for

Multiple Depot Bus Scheduling. European Journal of Operational Research,

72 pp 115-124.

Foster, B. A. and Ryan, D. M. (1976). An Integer Programming Approach

to the Vehicle Scheduling Problem. Operational Research Quarterly, 27 pp

367 - 384.

Fraser, A. (1957).Simulation of Genetic Systems by Automatic Digital

Computers. Australian Journal of Biological Sciences, 10 pp 484-491.

Garvin, W. M., Crandall, H. W., John, J. B. and Spellman, R. A. (1957).

Applications of Linear Programming in the Oil Industry. Management Sci-

ence, 3 pp 407 - 430.

Gaskell, T. J. (1967).Bases for Vehicle Fleet Scheduling. Operational

Research Quarterly, 18 pp 281 - 295.

Gendreau, M., Laporte, G., Musaraganyi, C., and Taillard, E.D. (1999). A

Tabu Search Heuristic for the Heterogeneous Fleet Vehicle Routing Problem.

Computers & Operations Research. 26(12) pp 1153-1173.

http://www.isye.gatech.edu/faculty/Alan_Erera/pubs/ereradaganzo2003.pdf

102

Giosa, D., Tansini, L. and Viera, O. (2002). New Assignment Algorithms for

the Multi-Depot Vehicle Routing Problem. Journal of the Operational

Research Society, 53 pp 977-984

Goetschalckx, M. and Jacobs-Blecha, C. (1989). The Vehicle Routing Problem

with Backhaul. European Journal of Operational Research, 42 pp 39-51.

Goldberg, D.E (1989), Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley. NY

Golden, B. L. and Assad, A. A. (1986). Perspectives on Vehicle Routing:

Exciting News Developments. Operations Research, 34 pp 803 - 810.

Golden, B. L. and Assad, A. A. (1988). Vehicle Routing: Methods and

Studies. North - Holland, Amsterdam.

Groetschel, M., Monma, C.L AND Stoer, M. (1992). Computational results with

a cutting plane algorithm for designing communication networks with low

connectivity constraints. Operations Research, 40 pp 309-330.

Hadjiconstantinou, E., Christofides, N. and Mingozzi, A. (1995). A New

Exact Algorithm for the Vehicle Routing Problem Based on q-paths and

k-Shortest Paths Relaxations. Annals of Operations Research, 61 pp 21 -

44.

Hall, R. W., Du, Y. and Lin, J. (1994). Use of Continuous Approximations

within Discrete Algorithms for Routing Vehicles: Experimental Results and

Interpretation. Networks, 24 pp 43 - 56.

Held, M., and Karp, R. M. (1970). The Traveling Salesman Problem and

Minimum Spanning Trees. Operations Research, 18 pp 1138-1162.

Held, M., and Karp, R. M. (1971). The Traveling Salesman Problem and

Minimum Spanning Trees: part II. Mathematical Programming, 1 pp 6-25.

Hernandez-Perez, H. and Salazar-Gonzalez, J. (2004).A Branch-and-Cut

Algorithm for A Traveling Salesman Problem with Pickup and Delivery,

Discrete Applied Mathematics, 145 pp 126–139.

Hooker, J. N. (2002).Logic, optimization and constraint programming.

http://wpweb2.tepper.cmu.edu/jnh/joc2.pdf

103

INFORMS Journal on Computing, 14 pp 295-321.

Hooker, J. N. (2005). A hybrid method for planning and scheduling, Constraints

10 pp 385-401.

 Hooker, J. N. (2006). An integrated method for planning and scheduling to

minimize tardiness. Constraints, 11 pp 139-157.

Hooker, J. N. (2007). Planning and scheduling by logic-based Benders

decomposition. Operations Research, 55 pp 588-602.

ILOG S.A. ILOG Dispatcher 4.0 User’s Manual. ILOG S.A., 9 Rue de Verdun,

94253 Gentilly Cedex, France.

ILOG S.A. ILOG Solver 6.0 User’s Manual. ILOG S.A., 9 Rue de Verdun,

94253 Gentilly Cedex, France.

Khoury, B. and Pardalos, P. (1995). (LNCS),An exact branch and bound

algorithm for the Steiner Problem in Graphs. SpringerLink. 959 pp 582-590.

Kilby,P. Prosser,P. and Shaw,P. (1998). Guided local search for the vehicle

routing problem. In Proceedings of the 2nd International Conference on

Metaheuristics. INRIA, France, 1998

Kim, N.M. Rim, S.C. and Min, B.D. (1997). A Heuristic Algorithm for Vehicle

Routing Problem with Backhauls. International Journal of Management science, 3(1)

pp 1-14.

Kleywegt, A.J. Nori, V.S. and Savelsbergh, M.P. (2002). Dynamic Programming

Approximations for a Stochastic Inventory Routing Problem. Working paper,

School of Industrial and Systems Engineering, Georgia Institute of Technology,

Atlanta, USA.

Kolen, A. W. J., Rinnooy Kan, H. G. and Trienekens, H. W. J. M. (1987).

Vehicle Routing with Time Windows. Operations Research, 35 pp 266 -

273.

Kulkarni, R. V. and Bhave, P. R. (1985). Integer Programming Formula-

tions of Vehicle Routing Problems. European Journal of Operational Re

search, 20 pp 58 - 67.

Land, A.H. and Doig, A.G. (1960). An automatic method for solving discrete

programming problems. Econometrica 28 pp 497-520.

http://wpweb2.tepper.cmu.edu/jnh/hybrid.pdf
http://wpweb2.tepper.cmu.edu/jnh/tardiness4.pdf
http://wpweb2.tepper.cmu.edu/jnh/tardiness4.pdf
http://ba.gsia.cmu.edu/jnh/planning2.pdf
http://ba.gsia.cmu.edu/jnh/planning2.pdf
http://www.isye.gatech.edu/faculty/Martin_Savelsbergh/publications/tli-02-07.pdf

104

Land, A. H. and Powell, S. (1973). FORTRAN Codes for Mathematical

Programming: Linear, Quadratic and Discrete. Wiley, New York.

Langevin, A., Soumis, F. and Desrosiers, J. (1990). Classification of Trav-

eling Salesman Problem Formulations. Operations Research Letters, 9 pp

127 - 132.

Laporte, G. (1986). Generalized Subtour Elimination Constraints and

Connectivity Constraints. Journal of the Operational Research Society, 37

pp

509-514.

Laporte, G. (1992a). The Travelling Salesman Problem: An Overview of

Exact and Approximate Algorithms. European Journal of Operational

Research, 59 pp 231-247.

Laporte, G. (1992). The Vehicle Routing Problem: An Overview of Exact

and Approximate Algorithms. European Journal of Operational Research,

59 pp 345-358.

Laporte, G. and Bourjolly, J. M. (1984). Some Further Results on K -Star

Constraints and Comb Inequalities. Cahiers Du GERAD, G-82-10, Ecole

al.

Laporte, G., Desrochers, M. and Nobert, Y. (1984). Two Exact Algorithms

for the Distance Constrained Vehicle Routing Problem. Networks, 14 pp

161 - 172.

Laporte,G. Louveaux, F.V. and Van Hamme, L. (2002). An Integer L-Shaped

Algorithm for the Capacitated Vehicle Routing Problem with Stochastic

Demands. Operations research, 50(3) pp 415-423.

Laporte, G., Mercure, H. and Nobert, Y. (1986). An Exact Algorithm for

the Asymmetrical Capacitated Vehicle Routing Problem. Networks, 16 pp

33 - 46.

Laporte, G., Mercure, H. and Nobert, Y. (1992). A Branch and Bound

Algorithm for a Class of Asymmetrical Vehicle Routing Problems. Journal

105

of the Operational Research Society, 43 pp 469-481.

Laporte, G. and Nobert Y. (1980). A Cutting Plane Algorithm for the

m-Salesman Problem. Journal of the Operational Research Society, 31 pp

1017 - 1023.

Laporte, G. and Nobert Y. (1983). A Branch and Bound Algorithm for

the Capacitated Vehicle Routing Problem. Operations Research Spectrum,

5 pp 77 - 85.

Laporte, G. and Nobert Y. (1984). Comb Inequalities for the Vehicle Routing

Problem. Methods of Operational Research, 51 pp 271 - 276.

Laporte, G. and Nobert, Y. (1987). Exact Algorithms for the Vehicle Routing

Problem. Annals of Discrete Mathematics, 31 pp 147-184.

Laporte, G., Nobert, Y. and Desrochers, M. (1985). Optimal Routing Under

Capacity and Distance Restrictions. Operations Research, 33 pp 1050-1073.

Lenstra, J. K. and Rinnooy Kan, A. H. G. (1981). Complexity of Vehicle

Routing and Scheduling Problems. Networks, 11 pp 221-227.

Li, C, Simchi-Levi, D. and Desrochers, M. (1991). On the Distance

Constrained Vehicle Routing Problem. Operations Research, 40 pp 790-799.

Li, F., Golden, B. and Wasil, E. (2007). A Record-to-Record Travel Algorithm

for Solving the Heterogeneous Fleet Vehicle Routing Problem. Computers &

Operations Research, 34 pp 2734-2742.

Li, F., Golden, B. and Wasil, E. (2005). Very large-scale vehicle routing: New

test problems, algorithms, and results. Computers & Operations Research, 32(5)

pp 1165–1179.

Magnanti, T. L. (1981). Combinatorial Optimization and Vehicle Fleet

Planning: Perspectives and Prospects. Networks, 11 pp 179 - 213.

Malik, K. and Yu, G. (1993). A Branch and Bound Algorithm for the

Capacitated Minimum Spanning Tree Problem. Networks, 23 pp 525 - 532.

106

McCune, W. (2003). Mace4 reference manual and guide. Technical Report

ANL/MCSTM-264, Mathematics and Computer Science Division, Argonne

National Laboratory,Argonne.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E.

(1953). Equation of state calculation by fast computing machines, Journal of

Chemistry and Physics. 21 pp 1087-1091

Min, H. (1989). The Multiple Vehicle Routing Problem with Simultaneous

Delivery and Pick-up Points, Transportation Research Part A,23(5) pp 377–386.

Montanari,U. (1974). Networks of constraints: Fundamental properties and

application to picture processing. Information Science, 7, Also Technical Report,

Carnegie Mellon University, 1970.

Naddef, D. (1994). A Remark on "Integer Linear Programming Formulation

for a Vehicle Routing Problem" by N.R. Achuthan and L. Caccetta, or

How to Use the Clark and Wright Savings to Write Such Integer Linear

Programming Formulations. European Journal of Operational Research, 75

pp 238-241.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial

Optimization. John Wiley and Sons.

Nelson, M. D., Nygard, K. E., Griffin, J. H. and Shreve, W. E. (1985).

Implementation Techniques for the Vehicle Routing Problem. Computers

and Operations Research, 12 pp 273 - 283.

Padberg, M. and Rinaldi, G. (1987). Optimization of a 532-Symmetric

Travelling Salesman Problem Operations Research Letters, 6 pp 1 - 7.

Paessens, H. (1988). The Savings Algorithm for the Vehicle Routing Problem.

European Journal of Operational Research, 34 pp 336-344.

Prosser, P. and Shaw, P. (1996) . Study of Greedy Search with Multiple

Improvement Heuristics for Vehicle Routing Problems. Working Paper,

University of Strathclyde, Glasgow, Scotland.

Rayward-Smith, V.J. Osman, I.H. Reeves, C.R. and Smith, G.D. (1996)

Modern Heuristic Search Methods, John Wiley & Sons.

http://www.dcs.st-and.ac.uk/~apes/papers/RR201.ps.gz

107

Reimann, M., Doerner, K. and Hartl, R.F.(2004). D-ants: savings based ants

divide and conquer the vehicle routing problem. Computers & Operations

Research, 31 pp 563-591.

Reinelt. G. (1981). A Travelling Salesman Problem Library. ORSA Journal

of Computing, 3 pp 376 - 384.

Ribeiro. C. C. and Soumis, F. (1994). A Column Generation Approach to

the Multiple-Depot Vehicle Scheduling Problem. Operations Research, 42

pp 41 - 52.

Roman Barták (1998). Department of Theoretical Computer Science and

Mathematical Logic. Charles University in Prague. Viewed 11/07/2009.

http://ktiml.mff.cuni.cz/~bartak/constraints/intro.html .

Rousseau, L. Gendreau M. and Pesant, G. (1999). Using Constraint-based

Operators with Variable Neighborhood Search to Solve the Vehicle Routing

Problem with Time Windows. Presented at the CP-AI-OR'99 Workshop,

February 25.-26., University of Ferrara, Italy

Salhi, S. and Nagy, G. (1999). A cluster Insertion Heuristic for Single and

Multiple Depot Vehicle Routing Problems with Backhauls. Journal of the

Operation Research Society, 50 pp 1034-1042.

Salhi, S. and Rand, G. (1993). Incorporating Vehicle Routing into the Vehicle

Fleet Composition Problem. European Journal of Operational Research, 66(3)

pp 313-330.

Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling

Problems with Time Window Constraints. Operations Research, 35 pp 254

- 265.

Stewart, W. and Golden, B. (1983). Stochastic Vehicle Routing: A

Comprehensive

Approach. European Journal of Operational Research, 14 pp 371-385.

Taillard, E. (1993a). A Heuristic Column Generation Method for the

Heterogeneous Fleet VRP. RAIRO Recherche Operationnelle, 33(1) pp 1-14.

mailto:bartak@kti.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak/constraints/intro.html
http://www.deis.unibo.it/Events/Deis/Workshops/PapersCPAIOR99/20final.ps

108

Taillard, E. (1993). Parallel Iterative Search Methods for Vehicle Routing

Problems. Networks, 23 pp 661 - 673.

Tang Montane, F.A. and R. D. Galv˜ao,R.D.(2006) A Tabu Search Algorithm for

the Vehicle Routing Problem with Simultaneous Pick-up and Delivery Service,

Computers & Operations Research, 33(3) pp. 595–619.

Thompson, P. M. and Psaraftis, H. N. (1993). Cyclic Transfer Algorithms

for Multivehicle Routing and Scheduling Problems. Operations Research,

41 pp 935 - 946.

Tian, Y., Song, J., Yao, D. and Hu, J. (2003). Dynamic vehicle routing problem

using hybrid ant system, The Proceedings of the 2003 IEEE Intemational

Confuence on Intelligent Transportation Systems, 1(2) pp 970- 974.

Toth,P. Vigo, D.(2002). The Vehicle routing problem.SIAM Monographs on

discrete mathematics and application. NY.

Van breedam, A. (1994). An analysis of the behavior of heuristics for vehicle

routing problem for a selection of problems with vehicle related, customer

related, and time related constraints .Ph.D. dissertation. University of Antwerp.

Vianna, D.S. Ochi, L.S. and Drummond, L.M. (1999). A Parallel Hybrid

Evolutionary Metaheuristic for the Period Vehicle Routing Problem. In

Proceedings of the 1999 Workshop on Biologically Inspired Solutions to Parallel

Processing Problems.

Waltz, D. (1972). Generating Semantic Descriptions from Drawings of Scenes

with Shadows. Ph. D. Thesis, MIT.

Waters, C. D. J (1988). Expanding the Scope of Linear Programming

Solutions for Vehicle Scheduling Problems. OMEGA International Journal

of Management Science, 16 pp 577 - 583.

http://ipdps.eece.unm.edu/1999/biosp3/vianna.pdf

109

Wren, A., and Holliday, A. (1972), Computer scheduling of vehicles from one or

more depots to a number of delivery points, Operations Research Quarterly 23,

333-344.

Zbigniew, J. C.and Piotr C. (2002). Parallel Simulated Annealing for the Vehicle

Routing Problem With Time Windows. 10th Euromicro Workshop on Parallel,

Distributed and Network-based Processing, Canary Islands–Spain.

Every reasonable effort has been made to acknowledge the owners of copyright

martial. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

http://citeseerx.ist.psu.edu/viewdoc/summary?cid=288449
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=288449
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=288449

