
Department of Computing

Empirical Investigations Supporting an Extensible,

Theoretical Approach to Understanding Software

Inspections

David James Arthur Cooper

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University of Technology

June 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195630681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Declaration

To the best of my knowledge and belief this thesis contains no material previously
published by any other person except where due acknowledgment has been made. This
thesis contains no material which has been accepted for the award of any other degree
or diploma in any university.

David J. A. Cooper Date

Abstract

Empirical software engineering research has directed substantial effort towards under-
standing and improving software inspection, a defect detection method much less costly
than testing. However, software inspection suffers from a lack of theory governing the
process and its outcomes, leading to apparently contradictory experimental outcomes
that cannot easily be reconciled. This theoretical uncertainty hinders efforts to ef-
fectively address delocalisation — the occurrence of related information in different
artefacts, or parts of a software system. Delocalisation is a hurdle to software compre-
hension, an activity fundamental to inspection.

A gap currently exists between the development of inspection strategies and theories of
software comprehension, manifested in two ways. First, although some strategies seek to
enhance an inspector’s understanding of key parts of the software, they generally ignore
variability between inspectors. A particular form of guidance or cognitive support given
to one inspector may have a different effect when given to another. Second, while
models of inspection cost effectiveness exist, they are not expressed in terms of factors
that might be manipulated to improve inspection performance. It is not clear how far
an inspector should go to address one particular concern in the software, before the
benefits of doing so are outweighed by the risk of ignoring other concerns.

This thesis first reports on an industry survey examining the current state of practice
with respect to peer reviews. Two more qualitative studies were conducted to explore
approaches inspectors might take to the comprehension of artefact interrelationships
and the challenges posed by delocalisation. A controlled experiment is then presented
to show how active guidance and inspector expertise affect the detection of individual
defects.

Using the results of these studies, a theoretical framework and model of inspection
cost effectiveness are proposed in which the effects of experience, cognitive support and
the reading technique can be used to predict the consequences of a given inspection
strategy. A simulation of the model was conducted to compare several new and existing
inspection strategies. Thus, the framework and model provide a basis upon which an

iv

appropriate inspection strategy can be developed, selected or refined for a given software
project.

The results of these investigations suggest several ways in which inspection practices
might be improved, including through the additional use of tool support and selec-
tive use of active guidance under specific conditions. By instantiating and using the
proposed inspection model, software development organisations can engineer optimally
cost effective inspection strategies.

Acknowledgements

In the course of this work, I am fortunate to have been surrounded by colleagues, friends
and family who have all, one way or another, helped me through.

I must of course thank my supervisors — Brian, Nihal, Mike and Jim — who have each
played a valuable role in steering me towards the finish. Brian initially encouraged
me to sign on to the PhD journey. I had no idea what to expect, but the prospect
of research held a strange and mysterious appeal. Everyone else thought I was stark
raving mad. In large part they were (and are) correct, but then what is life without a
bit of raving insanity?

Brian and I had somewhat different modes of operation. My approach to research was
to treat the thesis itself not just as an output but as a non-volatile storage device. I
would generally articulate my ideas as precisely as I could on paper (or in LATEX) and
then promptly forget either the fine details or the overall rationale. After all, they’d
been safely written down rather than left to the whims of my volatile grey matter.
My brain was more of an indexing system than a repository of knowledge. Meanwhile,
Brian’s approach to supervision was to constantly challenge me to defend these ideas.
This of course is a perfectly valid and helpful thing for a supervisor to be doing, but
was not facilitated by my having forgotten what said ideas actually were.

My family has been quietly patient and supportive throughout, despite some initial
worries that I’d be liable for many tens of thousands of dollars in fees (which thankfully
was not the case).

My dear Elaine has given me her love and companionship, and has stood by me in the
face of delays and uncertainties. She herself has worked exceptionally hard throughout
her life, and through inspiration and support she helped me over the last few hurdles.

I greatly value the assistance and friendship of Dave M — the only other strictly
software engineering postgraduate student with whom I had regular contact. I couldn’t
have asked for a more generous, hard working colleague.

vi

That said, I would not diminish the importance of my other fellow postgraduate stu-
dents and researchers in the Computing and Maths departments. In no particular order,
Steve, Saha, Monica, Alex, Graeme, Tiffany, Siewfang and many more all brought hu-
mour and humanity to the research environment. I’ve learnt a great deal from them, in
spite of the gap between their research topics and mine. Patrick’s informal and unpaid
maths seminar series inspired sections of my research.

Finally, I am grateful to all the anonymous participants in my various empirical in-
vestigations for taking the time (sometimes for no direct compensation at all) to help
me in my efforts. My research would have been exceedingly difficult in the absence of
willing volunteers, for whom the principal motivation was the advancement of science
and research.

Contents

Glossary xix

1 Introduction 1

1.1 Research Questions . 2

1.2 Contribution . 3

1.2.1 Identifying Industry Practices . 3

1.2.2 Comprehension Challenges . 4

1.2.3 Active Guidance Effects . 5

1.3 Ethical Research Conduct . 6

1.4 Outline . 7

2 Software Inspection Background 9

2.1 Inspection . 10

2.2 Reading Techniques . 12

2.2.1 Checklists . 12

2.2.2 Scenarios . 13

2.2.3 Prioritisation . 18

2.2.4 Abstraction . 19

2.3 Software Comprehension . 20

2.3.1 Macro-strategies . 21

2.3.2 Micro-strategies . 22

2.3.3 Delocalised Plans . 24

2.3.4 Knowledge and Experience . 24

2.3.5 Cognitive Support . 26

2.4 Inspection Theory . 27

2.4.1 Metrics . 28

2.4.2 Taxonomies . 32

2.4.3 Models . 33

2.4.4 Ethical Application . 34

2.5 Summary . 36

viii Contents

3 Methodological Background 37

3.1 Subject Experience . 37

3.2 Qualitative Analysis . 38

3.2.1 Protocol Analysis . 38

3.2.2 Coding . 39

3.3 Quantitative Analysis and Modelling . 40

3.3.1 Log-linear and Logistic Models 40

3.3.2 Survival Analysis . 42

3.3.3 Bayesian Networks . 43

3.4 Application . 44

4 Prevalent Inspection Practices 47

4.1 Survey Process . 48

4.1.1 Online Questionnaire . 48

4.1.2 Preliminary Survey . 49

4.1.3 Selection and Recruitment of Respondents 49

4.1.4 Classification Scheme . 50

4.2 Focus of Analysis . 51

4.3 Surveyed Organisations . 56

4.4 Results . 58

4.4.1 Overall Peer Review Characteristics 59

4.4.2 Development Phases . 61

4.4.3 Artefacts . 63

4.4.4 Artefact Usage . 66

4.4.5 Peer Review Usage . 66

4.4.6 Tool Support . 70

4.5 Discussion . 71

4.5.1 Overall Peer Review Practice . 71

4.5.2 Tools and Techniques . 72

4.5.3 Artefact Standardisation . 73

4.6 Summary . 74

5 Comprehension and Artefact Interrelationships 75

5.1 Methodology . 76

5.1.1 Participants . 76

5.1.2 Materials . 76

5.1.3 Procedure . 77

5.1.4 Coding Scheme . 77

5.1.5 Model Solution . 78

5.2 Results . 84

5.2.1 Techniques Used . 84

Contents ix

5.2.2 Solutions . 84

5.3 Analysis . 87

5.3.1 Transition-Fragment Mapping . 87

5.3.2 The One-To-One Misconception 88

5.4 Discussion . 89

5.5 Summary . 90

6 Comprehension and Scenarios 91

6.1 Methodology . 92

6.1.1 Participants . 93

6.1.2 Materials . 93

6.1.3 Procedure . 93

6.1.4 Input Data Analysis . 96

6.1.5 Protocol Analysis . 98

6.2 Results . 101

6.2.1 Input Data . 101

6.2.2 Verbal Data . 104

6.3 Discussion . 106

6.3.1 Misdirection . 106

6.3.2 Guidance . 107

6.3.3 Cognitive Variation . 108

6.4 Summary . 108

7 Active Guidance and Defect Detection 111

7.1 Methodology . 113

7.1.1 Prior Exposure to a Relevant Defect Type 116

7.1.2 Presence of a Checklist . 116

7.1.3 Detection Probability . 117

7.1.4 Detection Time . 118

7.2 Participants . 119

7.3 Threats to Validity . 120

7.4 Results . 121

7.4.1 Detection Probability . 122

7.4.2 Detection Time . 124

7.4.3 Perception . 127

7.5 Discussion . 128

7.5.1 Checklists . 128

7.5.2 Prior Exposure . 128

7.5.3 Snippets . 129

7.5.4 Perception . 129

7.6 Summary . 130

x Contents

8 Inspection Modelling 133

8.1 Framework Concepts . 134
8.1.1 Entities . 134
8.1.2 Dependencies . 138
8.1.3 Markers . 140
8.1.4 Phase Structure . 141
8.1.5 Hierarchy and Propagation . 142
8.1.6 Inspection Strategies . 145

8.2 Model . 145
8.2.1 Metamodel Entities . 148
8.2.2 Metamodel Dependencies . 150
8.2.3 Metamodel Markers . 151
8.2.4 Compact Bayesian Network Notation 152
8.2.5 Comprehension Modelling . 153
8.2.6 Verification Process Modelling 156

8.3 Simulation . 159
8.3.1 Analytical Intractability . 160
8.3.2 Evaluation Methodology . 161
8.3.3 Cost Effectiveness Distribution 162
8.3.4 Inspection Strategy Performance 164
8.3.5 Sensitivity Analysis . 167

8.4 Discussion . 174
8.4.1 Inspection Strategy Comparison 174
8.4.2 Delocalisation . 177
8.4.3 Team and System Size . 177
8.4.4 Interactions . 178
8.4.5 Defect Detection Dependence . 179

8.5 Summary . 180

9 Conclusion 183

9.1 Findings . 183
9.1.1 Current Industry Practice . 184
9.1.2 Comprehension and Delocalisation 184
9.1.3 Active Guidance Effects . 185
9.1.4 Resolving Uncertainties . 187

9.2 Recommendations . 188
9.3 Extensions . 191

9.3.1 Data Collection . 191
9.3.2 Hierarchy and Propagation . 192
9.3.3 Markers . 192
9.3.4 Comprehension . 193

Contents xi

9.3.5 Verification . 193
9.3.6 Incomparable Costs . 194

9.4 Summary . 195

Appendices 197

A Industry Survey — Materials 197

B Statechart Study — Materials and Raw Results 199

B.1 Forms and Sheets . 199
B.2 Source Code . 199
B.3 Raw Results . 206

C Scenario Study — Materials 209

C.1 Forms and Sheets . 209
C.2 Source Code . 209

C.2.1 AudioPlayer.java . 209
C.2.2 PlayList.java . 214
C.2.3 Player.java . 216
C.2.4 Programme.java . 219
C.2.5 RandomProgramme.java . 220
C.2.6 Track.java . 221
C.2.7 UserInterface.java . 223
C.2.8 WAVTrack.java . 228

D Checklist Experiment — Materials 231

D.1 Forms and Sheets . 231
D.2 Training Snippets . 231

D.2.1 Gravity . 235
D.2.2 BMI . 237

D.3 Test Snippets . 239
D.3.1 SlushFund . 239
D.3.2 TreeNode . 242
D.3.3 AddressSearch . 242
D.3.4 WeaponSelector . 245

E Inspection Modelling — Equations and Inputs 247

E.1 Metamodel . 247
E.1.1 Entities . 247
E.1.2 Dependencies . 250
E.1.3 Markers . 250

E.2 Scenario Model . 251
E.2.1 Defect propagation — Gjδ . 251

xii Contents

E.2.2 Defect existence — Djδ . 251
E.2.3 K-instance comprehension (inc. defect detection) — Mjiκ 253
E.2.4 Locality searching — Sjiλ . 253
E.2.5 Active and passive guidance — AMjiκ, BMjiκ, ASjiλ, BSjiλ 254
E.2.6 Operational failures — Fjδ . 254
E.2.7 Test failure — Tjδ . 254
E.2.8 Failure investigation — Vjδ . 254
E.2.9 Defect rework — Rjδ . 255
E.2.10 Cost of searching — CSjiλ . 255
E.2.11 Cost of providing passive comprehension guidance — CBMjκ . . . 255
E.2.12 Cost of providing passive search guidance — CBSjλ 255
E.2.13 Cost of operational failure — CFjδ 255
E.2.14 Cost of failure investigation — CVjδ 256
E.2.15 Cost of defect rework — CRjδ . 256

E.3 Simulation Inputs . 256

Bibliography 269

List of Figures

2.1 A requirements checklist, suggested by Ebenau and Strauss (1994). . . . 12

2.2 A reading scenario showing active guidance, developed by Porter et al.
(1995). 14

2.3 An example of the abstraction layers that a comprehension macro-strategy
might seek to connect in a mental model. 22

2.4 Part of the Bayesian inspection model proposed by Wu et al. (2005). . . 34

3.1 An example Bayesian network. 44

4.1 The subset of survey questions relevant to software peer review. 52

4.2 Software types. 56

4.3 Software use/distribution models. 57

4.4 Typical number of concurrent software projects. 57

4.5 Development and maintenance team sizes. 58

4.6 Frequency of peer review activities. 59

4.7 Inspections/reviews for a typical artefact. 59

4.8 Length of peer review activities. 60

4.9 Cost effectiveness of peer review activities compared to testing. 60

4.10 Inspection techniques. 61

4.11 The proportion of respondents who listed different phases. 62

4.12 Mean derived estimates for effort spent in different phases. 62

4.13 Distribution of derived effort estimates for different phases. 63

4.14 Regularly used languages. 64

4.15 Regularly used diagram types. 65

4.16 Regularly used textual artefacts. 65

4.17 The use of formatting/layout and creation/derivation standards for com-
mon artefact types. 67

4.18 Artefact prevalence — the mean proportion of the project (by workload)
during which each common type of artefact is used (i.e. developed or
referred to). 68

4.19 Artefact diversity — the mean number of different types of artefacts used
in each development phase. 68

xiv List of Figures

4.20 The use of several artefacts in combination in some phase. (Here, “For-
mal Spec” also includes general requirements documents.) 69

4.21 Reviews-by-artefact — the number of surveyed organisations that review
each common type of artefact, as a proportion of organisations that use
them. 69

4.22 Reviews-by-phase — the mean proportion of artefact types reviewed in
each development phase. 70

4.23 Source code creation tools. 70

4.24 Diagram creation tools. (CASE tools included Rational Rose, Sparx
Enterprise Architect, Sybase PowerDesigner and Metastorm Provision.) 71

5.1 The UML statechart for the Download class. 76

5.2 Fragment A:constructor . 78

5.3 Fragment B:startDownload. 79

5.4 Fragment C:stopDownload. 79

5.5 The first half of the run() method, showing fragments D:run-init,
E:loop and F:download. 80

5.6 The second half of the run() method, showing fragments G:timeout and
H:finish. 81

5.7 Fragment I:accessors — consisting of the calcSpeed(), getSpeed()
and getPercentDone() methods. 82

5.8 Fragment J:hasFinished. 82

5.9 Fragment K:isDownloading. 82

5.10 The numbers of participants who identified particular fragments for each
transition. 85

6.1 The UML sequence diagram shown to participants. 94

6.2 An excerpt of a participant’s verbal protocol at one solution index, show-
ing the periods of time spent focused on different artefacts and the codes
assigned. 100

6.3 Overlap in participants’ verbal references. 104

6.4 The proximity of verbal references to the model solution, for each issue
raised. 105

7.1 Participants who detected the primary defect for each treatment combi-
nation. 122

7.2 Participants who detected the auxiliary defect for each treatment com-
bination. 122

7.3 Participants who detected each of the eight actual defects. 123

7.4 The probability of detecting the primary defect within a given time, for
each treatment combination. 125

List of Figures xv

7.5 The probability of detecting the auxiliary defect within a given time, for
each treatment combination. 126

8.1 Taxonomy of entities. 135

8.2 An example of a dependence structure. 139

8.3 An example of marker assignment. 141

8.4 An example of an entity hierarchy. 143

8.5 An example of entity and dependency propagation. 144

8.6 Defect-to-defect propagation. 149

8.7 Decision tree for determining whether marker ψ is assigned to entity ε

(i.e. the value of XKjεψ). 152

8.8 The inspection process, represented as a compact Bayesian network. . . 155

8.9 The software verification process, represented as a compact Bayesian
network. 157

8.10 Convergence of simulated cost effectiveness, for the ad hoc and checklist
strategies. 162

8.11 Distribution of ad hoc and checklist cost effectiveness (based on 10,000
simulation runs). 163

8.12 Joint probability distribution for ad hoc and checklist cost effectiveness
(based on 10,000 simulation runs). 163

8.13 Simulated cost breakdown for different inspection strategies (based on
10,000 simulation runs). 164

8.14 Simulated cost effectiveness for different inspection strategies (based on
10,000 simulation runs). 165

8.15 Percentage of defects found through inspection in each phase, using each
inspection strategy (based on 10,000 simulation runs). 166

8.16 Simulated costs for different numbers of inspectors, using the ad hoc
strategy (based on 1,000 simulation runs). 168

8.17 Effects of system size on cost effectiveness, for different inspection strate-
gies (based on 1,000 simulation runs for each size coefficient). 169

8.18 Effects of varying the baseline log odds of comprehension and searching,
for different inspection strategies (based on 1,000 simulation runs for
each odds value). 170

8.19 Results of varying the active guidance effect, for different inspection
strategies (based on 1,000 simulation runs for each effect size). 172

8.20 Results of varying the active guidance level effect, for different inspection
strategies (based on 1,000 simulation runs for each effect size). 173

8.21 Results of varying the inverse dependency effect; the effect of not fulfilling
a given comprehension or locality dependency on the odds of compre-
hension (based on 1,000 simulation runs for each effect size). 175

xvi List of Figures

A.1 Background information provided to potential industry survey respon-
dents. 198

A.2 Introductory information provided to potential industry survey respon-
dents. 198

B.1 The consent form signed by participants in the statechart study. 200
B.2 The overview/information sheet given to participants in the statechart

study. 201
B.3 The instructions given to participants in the statechart study. 202
B.4 The questionnaire completed by participants in the statechart study, in

addition to the main task. 203

C.1 The consent form signed by participants in the scenario study. 210
C.2 The information sheet given to participants in the scenario study. 211
C.3 The first, demographic questionnaire filled out by participants in the

scenario study. 212
C.4 The second, opinion questionnaire filled out by participants in the sce-

nario study. 213

D.1 The consent form signed by participants in the checklist experiment. . . 232
D.2 The information/instruction sheet shown to participants in the checklist

experiment (via a web-based interface).) 232
D.3 The questionnaire filled out by participants in the checklist experiment. 233
D.4 The specification for the Gravity training snippet. 234
D.5 The specification for the BMI training snippet. 237
D.6 The specification for the SlushFund test snippet. 240
D.7 The SlushFund defect checklist, shown to half the participants. 240
D.8 The specification for the TreeNode test snippet. 241
D.9 The TreeNode defect checklist, shown to half the participants. 241
D.10 The specification for the AddressSearch test snippet. 243
D.11 The AddressSearch defect checklist, shown to half the participants. . . . 243
D.12 The specification for the WeaponSelector test snippet. 244
D.13 The WeaponSelector defect checklist, shown to half the participants. . . 245

List of Tables

1.1 Outline of the remaining chapters. 7

2.1 Experiments assessing Checklist-Based Reading (CBR). 13
2.2 Experiments assessing Defect-Based Reading (DBR). 16
2.3 Experiments assessing Perspective-Based Reading (PBR). 16
2.4 Experiments assessing miscellaneous scenario-based reading techniques. 16
2.5 Experiments assessing Usage-Based Reading (UBR). 18
2.6 Experiments assessing miscellaneous prioritisation-based reading tech-

niques. 19
2.7 Experiments assessing abstraction-based reading techniques. 20

3.1 Applicability of experimental and theoretical issues/methods in this thesis. 45

4.1 The exact wording of the options for the inspection techniques question. 51

5.1 The model solution mapping between state transitions and code fragments. 83
5.2 The percentage of participants who indicated each possible mapping be-

tween transitions and fragments. 86

6.1 An excerpt of the input updates recorded for participant 8. 95
6.2 Example reconstruction of a sequence of input updates. 96
6.3 Example normalisation of input updates. 97
6.4 Overall characteristics of each participant’s solution. 101
6.5 Overall scale and effect of the comprehension issues identified. 101

7.1 A summary of the four snippets inspected by participants. 114
7.2 The procedure for determining the treatment combination at each snippet.114
7.3 A summary of the two training snippets used to give participants prior

exposure to two particular defect types. 115
7.4 The coding scheme used to categorise defect descriptions. 117
7.5 P-values testing the proportional hazards assumption for required defect

detection time. 120
7.6 A broad summary of the significant effects found in the experimental data.121
7.7 P-values for defect detection probability. 123

xviii List of Tables

7.8 P-values for defect detection time. 124

8.1 Entity types used in previous chapters. 137
8.2 Summary of connections between entities. 143
8.3 Inspection strategies used for model evaluation. 161
8.4 Overlap between defects detected by two inspectors, as used in the

capture-recapture defect estimation technique. 180

9.1 Recommendations and their most direct supporting discussion/analysis
in this thesis. 189

B.1 Participants’ coded responses. 207

D.1 The Gravity defect descriptions (two of which were shown to each par-
ticipant after inspection). 234

D.2 The BMI defect descriptions (two of which were shown to each partici-
pant after inspection). 237

D.3 The SlushFund defect descriptions (shown to participants after inspection).239
D.4 The TreeNode defect descriptions (shown to participants after inspection).241
D.5 The AddressSearch defect descriptions (shown to participants after in-

spection). 243
D.6 The WeaponSelector defect descriptions (shown to participants after in-

spection). 245

E.1 Symbols for entities, entity types and their sets and identifying charac-
teristics. 248

E.2 Intermediate entity sets used to build the metamodel structure. 248
E.3 Metamodel variates. 249
E.4 Principal variables used in the scenario model, as shown in figures 8.8

and 8.9. 251
E.5 Random variates and parameters used in comprehension modelling. . . . 252
E.6 Random variates and parameters used in verification process modelling. 253
E.7 Metamodel inputs. 257
E.8 Comprehension modelling inputs. 258
E.9 Verification process modelling inputs. 258
E.10 Scenario cost inputs. 259

Glossary

active guidance

Any instance in which the inspector is instructed to find a particular type of
information (including a defect), or to search a particular artefact or part thereof.
(See Chapter 2, Section 2.2.2.)

artefact

“A physical piece of information that is used or produced by a software develop-
ment process” (Object Management Group, 2003). These typically include (but
are not limited to) requirements documents, design diagrams and source code.

artefact diversity

The number of different types of artefacts used in a given phase. (See Chapter 4,
Section 4.2.)

artefact prevalence

The average proportion of a project (by workload) in which a given artefact is
used. (See Chapter 4, Section 4.2.)

auxiliary defect

In the checklist experiment, a defect to which the checklist or inspector expertise
does not apply, in contrast to a primary defect. (See Chapter 7, Section 7.1.)

Bayesian network (BN)

A graph representing the dependency structure between a series of random vari-
ables. (See Chapter 3, Section 3.3.3.)

binding code

A code fragment that helps implement a state transition by directing the flow of
control between decision code, mutation code and/or other binding code. (See
Chapter 5, Section 5.1.5.)

checklist

Any list of questions directing inspectors to search for particular defect types.
(See Chapter 2, Section 2.2.1.)

xx Glossary

coding

In the context of empirical data collection, the act of manually categorising free-
form text (or any other non-numeric, non-categorical data) according to a particu-
lar scheme, to facilitate either qualitative or quantitative analysis. (See Chapter 3,
Section 3.2.2.)

coding scheme

The method and categories used to perform coding of empirical data.

cognitive support

Any inspection aid(s) intended to improve the effectiveness and/or efficiency of
the comprehension process.

Cohen’s kappa

A measure of inter-coder agreement, used to ensure the reliability of the coding
process (for empirical data collection).

compact Bayesian network (CBN)

A graph representing a set of possible Bayesian networks having particular cat-
egories of random variables, with particular constraints on the dependencies oc-
curring between them. (See Chapter 8, Section 8.2.4.)

comprehension

The act (by a software developer) of acquiring information about the structure
and purpose of parts of a software system by reading and traversing the artefacts
that describe it.

comprehension dependency

A dependency between two k-instances, such that the comprehension of one im-
proves the probability of comprehending the other. (See Chapter 8, Section 8.1.2.)

comprehension model

Part of the scenario model (within the overall inspection model) describing the
comprehension process within an inspection. (See Chapter 8, Section 8.1.2.)

cost effectiveness

Any of several measures of inspection performance derived from both (a) the
costs associated with inspection, and (b) hypothetical costs potentially incurred
without inspection. (See Chapter 2, Section 2.4.1.)

Cox proportional hazards model

In survival analysis, a model indicating the multiplicative effects of a series of
factors on an unspecified hazard function. (See Chapter 3, Section 3.3.2.)

Glossary xxi

decision code

A code fragment that determines whether a state transition will take place im-
mediately. (See Chapter 5, Section 5.1.5.)

decision dependency

A dependency between a locality and a k-instance, such that comprehension of
the k-instance improves the probability of searching the locality. (See Chapter 8,
Section 8.1.2.)

decision time

In the scenario study, the time spent contemplating whether a particular line of
source code takes part in the use case scenario.

defect

“An instance in which a requirement is not satisfied” (Fagan, 1986). (A “re-
quirement” here can be broadly interpreted as any ultimately-necessary quality
or feature of the system or its artefacts, whether explicitly stated or implied. A
requirements document itself may contain defects.)

defect type

Any category under which a defect might be classified, under a given classification
scheme.

delocalised plan

An instance in which conceptually related information is distributed among mul-
tiple artefacts, or different parts thereof. (See Chapter 2, Section 2.3.3.)

entity

A k-instance or locality; one of the units into which the framework breaks down
a system. (See Chapter 8, Section 8.1.1.)

entity type

A knowledge type or locality type; any category under which an entity might be
classified. (See Chapter 8, Section 8.1.1.)

experience

The length of time spent working as a software developer, and the types of work
undertaken.

expertise

The combined knowledge and skill set of a software developer/inspector, acquired
through education, training and experience.

xxii Glossary

failure

An instance in which a given system does not perform as required, due to the
presence of one or more defects.

hazard function

In survival analysis, a function µ(t) of time, proportional to the probability that
some event occurs in a small window of time around t, given that it has not
occurred before t (Harrell, 2001).

hierarchy

In the theoretical framework, the notion that some entities are subordinate to
other entities within the same phase. (See Chapter 8, Section 8.1.5.)

inspection

Any of several structured peer review processes whose principal goal is the de-
tection of defects in software artefacts. (Other terms, particularly “reviews”, are
also sometimes used in reference to such activities. See Chapter 2, Section 2.1.)

inspection performance

The relative level of success of an inspection, as measured by any of several
metrics.

inspection strategy

Any overall strategy for the use of peer reviews in a software project, including
the selection of appropriate reading techniques and the broader structure of the
peer review process. (See Chapter 8, Section 8.1.6.)

k-instance

A knowledge instance (piece of knowledge) embedded within the artefacts de-
scribing a system; possibly a defect. (See Chapter 8, Section 8.1.1.)

knowledge type

Any category under which a k-instance might be classified; possibly a defect type.
(See Chapter 8, Section 8.1.1.)

locality

A physical location within the artefacts describing the system; a type of entity.
(See Chapter 8, Section 8.1.1.)

Glossary xxiii

locality dependency

A dependency between a k-instance and a locality, such that searching the local-
ity improves the probability of comprehending the k-instance. (See Chapter 8,
Section 8.1.2.)

locality type

A type of artefact or structural component thereof; any category under which a
locality might be classified. (See Chapter 8, Section 8.1.1.)

log odds

The log of the odds ratio; a way of expressing probability (particularly in logistic
models) using the entire set of real numbers, rather than just the range [0, 1].

The log odds of some event E is defined as logit(E) = log
(

P(E)
1− P(E)

)
, where

P(E) is the probability of E.

log-linear model

A model in which a series of factors have a multiplicative (rather than additive)
effect on the response variable. (See Chapter 3, Section 3.3.1.)

logistic model

A model in which a series of factors determine the log odds (and hence probability)
of a binary response variable being 1. (See Chapter 3, Section 3.3.1.)

macro-strategy

The starting point and overall direction of the comprehension process and the
nature of the mental model it constructs. (As with micro-strategy, this is a
broader interpretation of the term than was originally used by Soloway et al.
(1988).)

marker

A flag attached to an entity declaring it to have a particular property (such
as complexity or importance), independent of its type. (See Chapter 8, Sec-
tion 8.1.3.)

mental model

The mental representation of a piece of software, constructed internally by an
inspector (or maintainer, etc.) when reading the software.

metamodel

Part of the inspection model describing the system structure in terms of enti-
ties and dependencies, on which the scenario model is based. (See Chapter 8,
Section 8.2.1.)

xxiv Glossary

micro-strategy

The manner by which individual, discrete pieces of knowledge are acquired within
the comprehension process. (As with macro-strategy, this is a broader interpre-
tation of the term than was originally used by Soloway et al. (1988).)

mutation code

A code fragment that alters the necessary state variables, as required in the
transition from one state to another. (See Chapter 5, Section 5.1.5.)

passive guidance

Any form of cognitive support that is purely passive, providing additional infor-
mation or visualisations of the system, but not specific hints on how to traverse
it. (See Chapter 8, Section 8.1.6.)

peer review

Any formal or informal activity in which software artefacts are reviewed by at
least one software developer, other than the original author, for the purposes of
quality assurance and defect detection.

phase

In the theoretical framework, any of several arbitrary (and possibly uneven) time
units into which a project’s timeline can be broken down (see Chapter 8, Sec-
tion 8.1.4).

phase group

In the industry survey, one of six aggregated sets of the various software devel-
opment phases listed by respondents.

plan

A form of knowledge, acquired by software developers through experience, rep-
resenting a generic solution to a commonly-occurring situation. (See Chapter 2,
Section 2.3.2.)

point of interest

In the scenario study, a point in a participant’s working at which the participant
makes an error, changes their mind and/or takes longer than normal to make a
decision. (See Chapter 6, Section 6.1.4.)

primary defect

In the checklist experiment, a defect to which the checklist or inspector experience
directly applies, in contrast to an auxiliary defect. (See Chapter 7, Section 7.1.)

Glossary xxv

prioritisation

The ordering of parts or aspects of a system by importance (according to some
criteria), so that the most important parts/aspects are inspected first. (See Chap-
ter 2, Section 2.2.3.)

propagation

The generation (and multiplication) of entities in one phase from those that ex-
isted in the previous phase. (See Chapter 8, Section 8.1.5.)

protocol analysis

A qualitative data collection and analysis technique, whereby subjects verbalise
their thoughts (i.e. think aloud) while performing a given task. These verbalisa-
tions are then transcribed and coded. (See Chapter 3, Section 3.2.1.)

proximity code

In the scenario study, one of a set of codes assigned to verbal references, broadly
indicating the proximity of the reference to the current point in the model solu-
tion.

reading technique

Any technique intended to assist peer review, usually involving the provision of
active guidance (e.g. a scenario), but also (conceivably) passive guidance. (See
Chapter 2, Section 2.2.)

reference model

An instantiation of the generic inspection model, designed to be specific to a
particular, commonly-occurring software development scenario.

reviews-by-artefact

The proportion of organisations using a given artefact that review it. (See Chap-
ter 4, Section 4.2.)

reviews-by-phase

The proportion of artefacts used in a given phase that are reviewed. (See Chap-
ter 4, Section 4.2.)

scenario

A list of instructions (more detailed than a checklist) specifying how inspectors
should traverse the artefacts under inspection and what types of information
should be sought out. Scenarios form the basis for a number of reading techniques.
(See Chapter 2, Section 2.2.2.)

xxvi Glossary

scenario model

Part of the inspection model concerned with the mechanics of inspection and the
propagation of defects, comprising the comprehension and verification models and
founded on the metamodel. (See Chapter 8, Section 8.2.)

separation of concerns

The notion of having inspectors focus on different parts or aspects of the software
under inspection, with the intention of reducing overlap in the types of defects
detected. (See Chapter 2, Section 2.2.2.)

solution index

In the scenario study, an integer index representing a point in the model solution,
to which one or more parts of each participant’s own solution have been mapped.
(See Chapter 6, Section 6.1.4.)

survival analysis

A type of statistical analysis concerned with modelling the time at which some
event occurs, given data in which the event is not always observed to occur. (See
Chapter 3, Section 3.3.2.)

testing

Any defect detection activity that involves running (or simulating) the software
or parts thereof to compare its actual behaviour to the expected behaviour.

verification model

Part of the scenario model (within the overall inspection model) describing the
interactions and consequences of various defect detection activities taking place
across project phases. (See Chapter 8, Section 8.1.2.)

Chapter 1

Introduction

“Baldrick, that is by far and away without a shadow of doubt the worst and most
contemptible plan in the history of the universe.”

— Blackadder the Third

The software engineering industry encompasses a diversity of people, methods and tools.
This places a responsibility on researchers to consider a broad range of circumstances
in which new software development technologies may be used. A given technology
can only be successful to the extent that it is applicable to, and compatible with, the
processes and environments used by software development organisations.

Software peer reviews are a widely used and widely varying defect detection approach
employed by organisations with different development methodologies, during differ-
ent project phases for different artefacts (Brykczynski, 1999, Harjumaa et al., 2005,
Hedberg and Iisakka, 2006, Rigby et al., 2008). Software inspection is a formalised
peer review process applicable to any software artefact, including requirements spec-
ifications, design diagrams and source code (Fagan, 1976). Failure to detect defects,
and quality deficiencies generally, can be costly. Defects left undetected can be many
times more expensive to fix in later stages of a software project (Boehm and Basili,
2001). Defects that survive until release or deployment may result in substantial costs
to users, including lost productivity, data loss, security vulnerabilities or even physical
harm (Leveson, 1986, National Institute of Standards and Technology, 2002).

Though testing is also essential for defect detection, inspection is typically regarded
as the cheaper of the two complementary approaches (Ackerman et al., 1989, Basili,
1997). Early design artefacts containing only an imprecise sketch of the envisioned
system cannot be subject to comprehensive testing, if any testing at all, because by

2 Chapter 1. Introduction

definition the logic has not yet been fully specified. By contrast, inspection can be
applied in any phase to any artefact; the system need not be complete or executable.

To inspect a set of artefacts effectively, an inspector must be able to understand them.
The difficulty of understanding software depends on the nature of the artefacts, and
in particular upon the complexity of the relationships within and between them. De-
localised plans occur where related information is dispersed across different artefacts,
or across parts of an artefact. To piece together this information, the inspector must
actively seek it out from its various sources (Soloway et al., 1988). Approaches exist for
addressing delocalisation. For instance, an inspector can be encouraged or prompted
to switch between related artefacts (Kim et al., 2000), or might be presented with an
elaborated or alternate artefact, possibly tool-generated, that expresses some of the
information in a localised form (Storey et al., 1997).

Such approaches are sometimes manifested in inspection reading techniques (Dunsmore
et al., 2003). Controlled experiments have demonstrated that different reading tech-
niques can have a significant and substantial effect on inspection efficacy and effi-
ciency (Porter et al., 1995, Thelin et al., 2003). However, the inspection research
community currently lacks a cohesive theory with which such techniques may be sup-
ported (Porter and Votta, 1997, Jeffery and Scott, 2002, Hannay et al., 2007). As
a result, experimentation in this area has been based on isolated, ad hoc hypotheses.
With the factors influencing them not well articulated, replications of these experiments
often fail to reproduce the same results, for unidentifiable reasons (Regnell et al., 2000).

Reading techniques and other aids designed to address delocalised plans may not have
a universally positive effect on inspections. In the design or selection of an inspection
strategy, the general goal is to maximise the number of defects found and their impor-
tance (i.e. the potential cost if left undetected) given limited resources. Therefore, the
challenge is not merely one of improving comprehension, but of balancing the benefits
of comprehension with the costs of achieving it. However, there is not yet a theoretical
basis upon which such tradeoffs can be made, nor are the factors involved well defined.
Given an arbitrary set of circumstances, it is not clear how best to adapt an inspection
strategy.

1.1 Research Questions

The following overarching research question is posed in response to the lack of consen-
sus opinion on the use of software inspections: How can the uncertainties of software
inspection be resolved, in order to make recommendations of best practice?

1.2. Contribution 3

This broad objective is broken down into three sub-questions as follows:

1. What are the prevalent inspection practices, and in what contexts do they occur?

2. What are the challenges inherent in comprehending a system under inspection?

3. To what extent does active guidance support defect detection, and what are the
effects on overall cost effectiveness?

1.2 Contribution

This thesis answers the preceding research questions and contributes to software en-
gineering research through four inspection-related empirical studies and a proposed
theoretical model of the inspection process.

1.2.1 Identifying Industry Practices

Research question 1: What are the prevalent inspection practices, and in what con-
texts do they occur?

The first study was a survey of the peer-review practices at 31 software development
organisations across Australia. The survey sought to determine the types of artefacts
actually used in industry, the extent and circumstances of their use, and the potential
for inspection strategies to reduce costs. The survey results indicate that:

• software peer review occurs across a broad range of domains, phases and artefact
types;

• most organisations appear to realise the benefits of peer review, though few to
none have quantitative data to support this view;

• a substantial proportion of total project workload is typically expended in test-
ing/QA, support and maintenance phases, suggesting that opportunities exist for
detecting defects earlier through inspection;

• the simultaneous use of multiple, varying artefact types is common;

• as a project progresses from the requirements phase to development, the number
of distinct artefact types in use more than doubles;

4 Chapter 1. Introduction

• about half of surveyed organisations develop standardised requirements docu-
ments;

• checklists and use case scenarios are each used by less than half, but nonetheless
a sizeable minority, of surveyed organisations in their peer-review activities; and

• visualisation tools are used by roughly a quarter of surveyed organisations.

The survey identified commonly-used notations that can serve as a focus for future
inspection research and data collection.

1.2.2 Comprehension Challenges

Research question 2: What are the challenges inherent in comprehending a system
under inspection?

To answer the second question, two more studies were undertaken to examine qualita-
tively the effects and challenges of complex artefact interrelationships. In the statechart
study, 28 participants were asked to map the transitions of a UML statechart to cor-
responding segments of source code. Participants reported large numbers of both false
positive and false negatives, and incorrectly identified one-to-one mappings.

The scenario study explores comprehension challenges encountered in scenario-based
reading techniques. Here, ten participants were asked to trace the events depicted in a
UML sequence diagram through corresponding Java source code. Tracing use case sce-
nario events through other artefacts is a task essential to Usage-Based Reading (Thelin
et al., 2003) and another similar technique (Dunsmore et al., 2003), though the ac-
tual instructions and artefacts vary. Participants were also asked to verbalise their
thoughts, and their actions were recorded by software. Together, these were used as
a fine-grained indicator of the line of code under consideration at any given time. A
range of comprehension issues were identified, arising in particular from delocalisation
within the source code. Moreover, participants showed awareness of and consideration
for markedly different parts of the system, despite the rigid and relatively unambiguous
nature of the task.

The results of the statechart and scenario studies illustrate the difficulty of establishing
complex artefact interrelationships, even when programmers are explicitly asked to find
them. This suggests that cognitive support has a substantial role to play in improving
comprehension and thus inspection performance. However, the inspector variability

1.2. Contribution 5

noted in the scenario study suggests that inspection strategies in general should take
account of the expertise of individual inspectors.

1.2.3 Active Guidance Effects

Research question 3: To what extent does active guidance support defect detection,
and what are the effects on overall cost effectiveness?

To help answer the final question, the checklist experiment examined inspection check-
lists, inspector expertise and their interactions. The experiment involved 42 partici-
pants, each of whom were asked to find defects in several code snippets in a two-factor
cross-over experimental design. The experiment sought to determine the effects of
checklists and prior exposure to specific defect types on the probability and time of
individual defect detection. Checklists and prior exposure were designed to assist the
detection of some seeded defects but not others. The results show that checklists has a
significant positive effect on the probability of defect detection, provided the defect is
covered by the checklist. Conversely, there were significant negative effects if the defect
was not covered. Prior exposure had suggestive but non-significant effects.

The checklist experimental results indicate that the comparative effectiveness of differ-
ent reading techniques depends on both the system under inspection and the inspectors
themselves. Instructions to the inspector (including checklist questions) can help im-
prove defect detection, but may also hinder it under certain circumstances. That is,
the choice of reading technique should be motivated by different factors; there is no
singular best choice. Then, by what criteria should a reading technique be selected?

Further, the statechart and scenario studies suggest that cognitive support may improve
comprehension in the case of artefact interrelationships. Would this have a net benefit,
when combined with checklists or scenario-style reading techniques?

These studies and the questions they raise, along with the second initial research ques-
tion, motivate the development of inspection theory — a theoretical basis for under-
standing software inspection, as previously called for in the published literature (Jeffery
and Scott, 2002, Hannay et al., 2007). In order to provide a basis for the development,
refinement and selection of appropriate reading techniques, inspection theory should
incorporate and articulate the following elements:

• the composition of reading techniques, so that different techniques can be distin-
guished in a non-arbitrary fashion;

6 Chapter 1. Introduction

• the mechanics of the comprehension process, including the effects of reading tech-
nique instructions and cognitive support;

• system composition and variability;

• inspector variability; and

• inspection-related costs, to provide a measure by which all inspection strategies
can be compared.

This thesis proposes a theoretical framework and model fulfilling these requirements.
A software simulator of the model was constructed and run to compare inspection
strategies and explore the model’s behaviour with respect to the comprehension process.

The model parameters were based on estimates, but the simulation results broadly agree
with the empirical studies. From simulation results, checklist-based reading appears
generally more effective than ad hoc, but potentially less effective under particular
conditions. System size and inspector characteristics did alter the optimal choice of
inspection strategy. Finally, the combination of active guidance and cognitive support
appeared to be the most resilient of any strategy to a high delocalisation effect (that
is, when comprehension and defect detection is highly dependent on understanding
interrelationships), though it was not generally the optimal strategy.

The framework and model apply in principle to any software development situation.
This flexibility does not arise from the revelation of fundamental laws of software en-
gineering, but from abstraction and descriptive consistency. Nevertheless, the model
is both predictive and explanatory, able to compare inspection strategies by modelling
their actual effects on inspector behaviour and the wider development process.

1.3 Ethical Research Conduct

The empirical studies discussed in this thesis were approved by the Curtin University
Human Research Ethics Committee. All studies had the following characteristics:

• They were minimal risk, in the sense that participation carried no risks greater
than those encountered in everyday life.

• Participation was entirely voluntary. Where students were invited to participate,
it was explained to them that their choice would have no effect on their ability

1.4. Outline 7

Table 1.1: Outline of the remaining chapters.

Chapter Description Research question

2 Reviews previous inspection-related research, illustrating
the need and basis for the development of inspection theory.

—

3 Reviews some of the empirical and statistical methods used
in this thesis.

—

4 Presents the industry survey, to determine how inspections
are used in industry.

1 (Prevalent
inspection practices)

5 Examines artefact interrelationships via the statechart
study.

6 Examines comprehension issues resulting from use case
traversal in the scenario study.

2 (Comprehension
challenges)

7 Details the checklist experiment, examining the effects of
checklists and expertise on individual defect detection.

8 Articulates the theoretical framework, model and simula-
tion results thus obtained.

3 (Active guidance
effects)

9 Discusses the overall research findings and makes recom-
mendations of best practice.

1–3

to succeed in their courses. It was further explained to all participants that they
could withdraw at any time without explanation or adverse consequences.

In two of four empirical investigations, no data identifying the individuals involved was
collected or stored. In the two remaining investigations, participants’ contact details
were collected to facilitate possible follow-up questions. These were kept confidential.

The information sheets given to participants/respondents in the different studies are
shown in the appendices related to those studies:

• Appendix A (for the industry survey);
• Appendix B, Section B.1 (for the statechart study);
• Appendix C, Section C.1 (for the scenario study); and
• Appendix D, Section D.1 (for the checklist experiment).

1.4 Outline

The remainder of this thesis is organised as shown in Table 1.1.

Chapters 2 and 3 introduce prior inspection-related research and methodological con-
cepts. Chapters 4–7 discuss the four studies forming the empirical component of this
research, while Chapter 8 presents the theoretical contribution — the inspection frame-
work and model. (Chapters 4–8 are each supplemented by an appendix in A–E.)

8 Chapter 1. Introduction

Chapter 9 concludes by drawing together the findings of previous chapters and making
recommendations with respect to the use of visualisation tools, active guidance and the
proposed inspection model.

Chapter 2

Software Inspection Background

“You’ve burnt the life’s work of England’s foremost man of letters?”
“Yup. You did say burn any old rubbish.”

— Blackadder the Third

Software inspection is a formal process for detecting and reworking defects, applicable
to any software artefact (Fagan, 1976, 1986). Industrial experience has long suggested
that defects occurring early in a software project, if left undetected, can be many times
more costly to repair later (Boehm and Basili, 2001). Inspection seeks to detect defects
early, when they are more easily rectified.

Inspection-related research has focused on reading techniques as a means of achieving
still greater defect detection. Numerous techniques have been suggested for guiding
inspectors towards particular types of defects, and/or lending assistance in their de-
tection. However, empirical studies of these techniques generally have not reported
consistent results. This suggests that more complex factors govern inspection per-
formance. Given this, by what means can we predict whether and to what extent a
particular technique will lead to the successful detection of important defects?

Theories of software comprehension exist that explain qualitatively the process of un-
derstanding software. This is necessary for inspection just as it is for software mainte-
nance. Such qualitative theories posit factors that may help or hinder the development
of a programmers’ mental model of the software, and by implication an inspector’s
ability to detect defects. With some exceptions, these theories have not been taken
into account in the construction or evaluation of reading techniques. Unfortunately,
they do not provide a means to predict inspection performance.

10 Chapter 2. Software Inspection Background

This chapter introduces software inspection, discussing developments in reading tech-
nique research, outlining concepts in software comprehension and describing the build-
ing blocks of software inspection theory.

2.1 Inspection

Software verification relies on two broad, complementary defect detection approaches:
peer review and testing. Peer review entails a manual search through an artefact or set
of artefacts for defects (or general quality deficiencies). This must be conducted by at
least one person not responsible for having created the artefacts.

Though peer review cannot replace testing, it nonetheless has several important ad-
vantages:

• Peer review can more easily find defects whose effects are difficult to reproduce in
a testing environment (Ackerman et al., 1989). Some defects result in frequent or
obvious failures, while others may cause failures only on rare occasions under a
complex set of conditions. Peer review seeks out defects directly without relying
on observing their resulting failures.

• Peer review can find issues that do not directly result in failure at all, but may
present problems for maintenance (Siy and Votta, 2001). (For the purposes of
this thesis, such issues are also considered to be defects.)

• Testing finds defects largely on a one-by-one basis (because each test only has
two outcomes: pass or fail), whereas any number of defects can be detected by a
single peer review (Sommerville, 2001).

• Peer review can help detect defects in untestable artefacts — those that cannot
(easily) be executed, such as requirements documents and design diagrams. The
early detection of defects is important, because the cost of correcting defective
requirements or design can multiply many times if left until the development
phase or later (Boehm and Basili, 2001).

Software inspection is a formalised peer review process, proposed by Fagan (1976, 1986).
The process relies on a team of inspectors, each participant having a defined role, and
comprises six stages:

1. Planning, where inspectors, times and meeting places are arranged and the arte-
facts themselves are confirmed to be ready for inspection;

2.1. Inspection 11

2. Overview, where the inspectors are assigned specific roles and meet to confer on
the artefacts to be inspected;

3. Preparation, where inspectors separately read and familiarise themselves with the
artefacts;

4. Inspection, where the inspectors meet as a group to find and record defects;
5. Rework, where the recorded defects are resolved; and
6. Follow-up, where the rework effort is reviewed, and a decision made as to whether

another inspection should be scheduled (based on the amount of rework done).

The overview stage may be omitted if inspectors are already sufficiently well-informed
of the artefacts to be inspected.

Fagan advises that most defects are found in the main inspection meeting, which is
thus essential to the process. Votta (1993) argues otherwise; that such meetings con-
sume considerable resources, while most defects are actually detected in the prepara-
tion phase. Thus, the defects detected in inspection meetings often do not justify the
cost of the meetings. Porter and Johnson (1997) find that individual inspection finds
substantially more defects than group-based inspection, but also generates more false
positives. Laitenberger and DeBaud (2000) conduct a literature survey, reporting a
range of opinion weighted towards the position that defect detection is principally an
individual activity.

More recent studies have also recommended against inspection meetings, finding that
they can actually reduce the number of defects detected (Bianchi et al., 2001, Halling
and Biffl, 2002). Although meetings can result in additional defects being detected,
they can also result in defects being lost, where the inspection team as a whole rejects
defects found by individual inspectors.

As well as non-meeting-based inspections, several other variants of the inspection pro-
cess have been proposed:

• Active Design Reviews, which seeks to make optimal use of inspector capabilities,
distinguishing between the expertise of different inspectors and arranging for them
to be more pro-actively involved (Parnas and Weiss, 1985);
• N-Fold Inspections, wherein several inspection teams operate in parallel, in order

to improve overall defect detection (Martin and Tsai, 1990); and
• Phased Inspections, which divide an inspection into a sequence of mini-inspections

— phases — each of which examines a different aspect of the system (Knight and
Myers, 1993).

12 Chapter 2. Software Inspection Background

• Have all materials required for a requirements inspection been received?

• Are all materials in the proper physical format?

• Have all requirements standards been followed?

• Is the requirements document complete, i.e., does it implement all of the known customer
needs?

• Does the human interface follow project standards?

• Has all the infrastructure been specified, i.e., backup, recovery, checkpoints, etc.?

• Are the error messages unique and meaningful?

• Have all reliability and performance objectives been listed?

• Have all security considerations been listed?

• Do the requirements consider all existing constraints?

• Do the requirements provide an adequate base for design?

• Are the requirements complete, correct, and unambiguous?

Figure 2.1: A requirements checklist, suggested by Ebenau and Strauss (1994).

2.2 Reading Techniques

The importance of the individual preparation stage of inspection has prompted the
development of numerous reading techniques, designed to enhance inspectors’ ability to
detect defects. Reading techniques seek to focus inspectors’ attention on specific parts
or aspects of the software. To do so, they can employ several mechanisms, and appeal
to different rationales. Unaided peer review — the absence of a reading technique —
is simply ad hoc reading.

No definitive taxonomy of reading techniques exists, and this section does not propose
one. Rather, it describes the development of the concepts on which published reading
techniques are based.

2.2.1 Checklists

Checklists were proposed by Fagan as part of the original software inspection process.
They have been a frequently recommended inspection aid, intended to focus attention
on well-defined defect types (Ackerman et al., 1989, Gilb and Graham, 1993, Ebenau
and Strauss, 1994). Since the development of other reading techniques, the use of
checklists is now referred to as Checklist-Based Reading (CBR).

There are no universal rules on what checklists may contain, but generally they comprise

2.2. Reading Techniques 13

Table 2.1: Experiments assessing Checklist-Based Reading (CBR).

Experiment Environment Subjects Artefacts
Outperforms

ad hoc

Porter et al. (1995) Academic 48 Requirements No
Porter and Votta (1998) Industrial 18 Requirements No
Wohlin et al. (2002) Industrial 203a Req. & code Yes
Hatton (2008) Industrial 238 Code No
Akinola and Osofisan (2009) Academic 20 Code No

a Acquired by aggregating previously-collected data; this figure is the sum of the number of
inspectors in each data set.

a concise list of relatively straightforward but specific questions. Each question typically
identifies a type of defect that may occur in the material under inspection (though
some questions may also check that process requirements have been satisfied). As an
example, Figure 2.1 shows the requirements document checklist suggested by Ebenau
and Strauss (1994).

The frequent use and recommendation of CBR relies on an assumption that it out-
performs ad hoc reading (with respect to defects detected, for instance). However, as
shown in Table 2.1, experimental evidence supporting this assumption is limited.

Nevertheless, the failure of controlled experiments to show support for CBR may re-
sult from confounding factors. Anecdotal experience suggests that checklist effective-
ness depends on their construction: size, relevance and specificity (Brykczynski, 1999).
Checklists should generally not exceed one page, and should not contain overly-vague
questions. In particular, checklists should be continually updated to maintain their
relevance to the system under development (Gilb and Graham, 1993, Chernak, 1996).

Fagan (2002) no longer recommends the use of checklists, explaining that many check-
list items represent relatively straightforward defect types. These can be detected
by compilers and other automatic or semi-automatic verification tools (Cooper et al.,
2004).

2.2.2 Scenarios

Reading scenarios provide more fine-grained guidance than do checklists (Porter et al.,
1995). A scenario in itself is a set of instructions designed to focus the inspector’s
attention on specific types of information in the artefacts under inspection. This serves
two purposes:

14 Chapter 2. Software Inspection Background

A. Data Type Consistency Scenario

1. Identify all data objects mentioned in the overview (e.g., hardware component, applica-
tion variable, abbreviated term or function):

(a) Are all data objects mentioned in the overview listed in the external interface
section?

2. For each data object appearing in the external interface section determine the following
information:

• Object name:
• Class: (e.g., input port, output port, application variable, abbreviated term, func-

tion)
• Data type: (e.g., integer, time, Boolean, enumeration)
• Acceptable values: Are there any constraints, ranges, limits for the values of this

object?
• Failure value: Does the object have a special failure value?
• Units or rates:
• Initial value:

(a) Is the object’s specification consistent with its description in the overview?

(b) If object represents a physical quantity, are its units properly specified?

(c) If the object’s value is computed, can that computation generate a non-acceptable
value?

3. For each functional requirement identify all data object references:

(a) Do all data object references obey formatting conventions?

(b) Are all data objects referenced in this requirement listed in the input or output
sections?

(c) Can any data object use be inconsistent with the data object’s type, acceptable
values, failure value, etc.?

(d) Can any data object definition be inconsistent with the data object’s type, accept-
able values, failure value, etc.?

Figure 2.2: A reading scenario showing active guidance, developed by Porter et al. (1995).
This is one of the three Defect-Based Reading (DBR) scenarios.

• active guidance, intended to improve individual inspector performance; and

• separation of concerns, intended to reduce overlap between the defects found by
different inspectors, thus improving overall inspection team performance.

Active guidance is inherent in the use of reading scenarios, to varying extents. Through
instructions to the inspector, it seeks to modify the inspector’s approach to the task,
by directing him/her to locate particular pieces of information or focus on particular
parts of the system. Active guidance is sometimes contrasted against checklists (Denger
et al., 2004), though both exist on the same spectrum. Checklists themselves might
be considered a weak form of active guidance, while scenarios provide much more
comprehensive forms.

2.2. Reading Techniques 15

Figure 2.2 shows an example of a reading scenario proposed by Porter et al. (1995),
which necessarily entails active guidance. As shown, the inspector is given explicit in-
structions to identify data objects, functional requirements and associated information.
The scenario also poses checklist-style questions based on this information.

Separation of concerns requires that different inspectors follow different scenarios. It
relies on the existence of at least some minimal level of active guidance. Scenarios
typically direct inspectors to examine different parts or aspects of the system. Where
this successfully results in inspectors finding different defects, the overall performance
of the inspection team will improve.

Techniques that use scenarios are given the umbrella term Scenario-Based Reading
(SBR), of which there are several proposed variants. Basili et al. (1996) argue that
reading techniques should be tailorable, and should vary based on the context. However,
most research has focused on a relatively small set of named techniques.

Defect-Based Reading (DBR) is the original scenario-based technique proposed by
Porter et al. (1995), part of which was shown in Figure 2.2. In DBR, scenarios are
designed to guide inspectors in the detection of specific defect types, by asking them to
locate and list certain pieces of information in which defects may be evident. Separation
of concerns is achieved by dividing the defect types between different inspectors.

Perspective-Based Reading (PBR) was proposed by Basili et al. (1996). Here, separa-
tion of concerns is achieved by having inspectors examine artefacts from the perspective
of different stakeholders; e.g. the user, developer and tester. Inspectors are each asked
to create an artefact that would place them in the position of a particular stakeholder.
As Basili et al. suggest, the user perspective might entail creation of a user’s manual,
the developer perspective a high level design, and the tester perspective a set of test
cases.

However, Laitenberger and Atkinson (1999) argue that the development of artefacts,
particularly those that would normally be developed anyway, is not the domain of soft-
ware inspection. They suggest that such development occurring within an inspection
would be either redundant or an inappropriate usurpation of developers’ responsibili-
ties. Instead, Laitenberger and Atkinson propose that the requisite perspective-specific
artefacts be created before the inspection, by those who would normally be required to
do so.

Most experimental evidence relating to SBR concerns DBR and PBR. However, the
evidence does not uniformly support these techniques over CBR or ad hoc reading.
Tables 2.2 and 2.3 record a number of experiments conducted thus far to compare

16 Chapter 2. Software Inspection Background

Table 2.2: Experiments assessing Defect-Based Reading (DBR).

Experiment Environment Subjects Artefacts
Outperforms

Ad hoc CBR

Porter et al. (1995) Academic 48 Req. Yes Yes
Fusaro et al. (1997) Academic 30 Req. No No
Miller et al. (1998) Academic 50 Req. — Sometimesa

Sandahl et al. (1998) Academic 24 Req. — No
Porter and Votta (1998) Industrial 18 Req. Yes Yes
a DBR outperformed CBR for one out of two systems inspected.

Table 2.3: Experiments assessing Perspective-Based Reading (PBR).

Experiment Environment Subjects Artefacts
Outperforms

Ad hoc CBR

Basili et al. (1996) Industrial 23 Req. Yes —
Ciolkowski et al. (1997) Academic 51 Req. Yes —
Shull (1998) Academic 66 Req. No —
Lanubile and Visaggio (2000) Academic 223 Req. No No
Laitenberger et al. (2001) Industrial 60 Code — Yes
Sabaliauskaite et al. (2002) Academic 59 Design — No
He and Carver (2006) Academic 12 Req. — Yes
Maldonado et al. (2006) Academic 18 Req. — No

Table 2.4: Experiments assessing miscellaneous scenario-based reading techniques.

Experiment Environ. Subjects Artefacts Technique
Outperforms

Ad hoc CBR

Cheng and Jeffery (1996) Acad. 53 Req. FPS No —
Biffl (2000) Acad. 169 Req. Hybrida — Partiallyb

Halling et al. (2001) Acad. 346 Req. Hybrid — No
Dunsmore et al. (2003) Acad. 69 Code Use case — No
McMeekin et al. (2009) Mixedc 62 Code Use case — No
a A combination of PBR and OORT.
b Outperformed CBR for critical defects only.
c Included 36 students and 26 industry professionals.

2.2. Reading Techniques 17

the performance of DBR and PBR to their simpler alternatives. Overall, the results
appear inconclusive. Ciolkowski (2009) conducted a meta-analysis of the PBR studies,
finding that PBR is significantly more effective than ad hoc reading on requirements
documents, but significantly less effective than CBR. For design and code artefacts,
PBR appeared to outperform CBR. Ciolkowski expresses concern over researcher bias
evident in the results.

Other studies have examined active guidance and separation of concerns in isolation.
Sørumg̊ard (1997) modified PBR to include additional active guidance, testing the
modified version against the original and finding that it lowered inspection performance.
Denger et al. (2004) also examined active guidance in PBR, by implementing separation
of concerns in CBR; that is, by assigning different checklists to different inspectors.
They tested PBR against their “focused” CBR and found no significant difference, a
result supported by replication (Lanubile et al., 2004). Further, Regnell et al. (2000)
reported no significant difference in the defects found by the three PBR scenarios,
indicating that separation of concerns had no effect. Collectively, these studies would
again suggest that PBR is no more effective than CBR. However, since some of the
studies listed in Table 2.3 find otherwise, no conclusive statement can be made.

Further proposed scenario-based techniques have not been as widely discussed or eval-
uated. These include:

• Function Point Scenarios (FPS), wherein the division of inspector responsibilities
is broadly based on the five data and transaction functions defined by function
point analysis — internal/external files, external inputs, external outputs and
external queries (Cheng and Jeffery, 1996);

• the Object Oriented Reading Techniques (OORTs), previously called Traceability-
Based Reading (TBR) — a set of seven scenarios designed to find defects by cross
referencing object oriented design artefacts, especially UML diagrams (Travassos
et al., 1999, 2000);

• a hybrid of PBR and OORT, constructed by Biffl (2000) for the purpose of eval-
uating scenarios generally; and

• the use case technique developed by Dunsmore et al. (2003), wherein inspectors
trace the events of use case scenarios through source code.

The use case technique was not presented by Dunsmore et al. as a type of SBR. Use
case scenarios are quite distinct from reading scenarios, and the use case technique does
not facilitate separation of concerns. However, the definition of a reading scenario is
broad, and might be understood as any detailed set of reading instructions.

18 Chapter 2. Software Inspection Background

Table 2.5: Experiments assessing Usage-Based Reading (UBR).

Experiment Environment Subjects Artefacts
Outperforms CBR

For critical
defects

For all
defects

Thelin et al. (2003) Academic 23 Design Yes No
Thelin et al. (2004) Academic 62 Design Yes Yes
Winkler et al. (2004) Academic 131 Design Yes Yes
Winkler et al. (2005) Academic 127 Design Yes No
McMeekin et al. (2009) Mixeda 62 Code — No
a Included 36 students and 26 industry professionals.

Table 2.4 shows the studies examining these techniques. The evidence does not gener-
ally appear to endorse their effectiveness.

2.2.3 Prioritisation

More recent reading techniques have employed prioritisation as a means of improving
inspection performance. Thelin et al. (2003) proposes Usage-Based Reading (UBR),
similar in principle to the use-case technique independently proposed by Dunsmore
et al. (2003). However, UBR requires use-case scenarios to be inspected in order of
importance from the user’s perspective. The intention is not to find more defects
overall, but to find more critical defects.

Experimental results thus far consistently show that UBR outperforms CBR in finding
critical defects, as shown in Table 2.5. Some replications have also shown that UBR
outperforms CBR for overall defect detection. With the exception of McMeekin et al.
(2009), these experiments have also consistently used the same set of artefacts.

Other prioritisation-based techniques have also been proposed, but fewer studies have
examined them. These include:

• individual-ranked UBR (UBR-ir) — a variant of UBR in which prioritisation of
use case scenarios is conducted by inspectors themselves, rather than by experts
prior to the inspection (Winkler et al., 2004);

• tailored checklists (CBR-tc), wherein inspectors prioritise requirements and sys-
tem functions and track them through the artefacts under inspection (Winkler
et al., 2005) (presented as an extension to CBR, but arguably classified as a
scenario-based technique, owing to its use of active guidance);

2.2. Reading Techniques 19

Table 2.6: Experiments assessing miscellaneous prioritisation-based reading techniques. (All
experiments were conducted in an academic environment.)

Experiment Subjects Artefacts Technique
Outperforms CBR

Outperforms
UBRaCritical

defects
All

defects

Winkler et al. (2004) 131 Design UBR-ir Yes No No
Winkler et al. (2005) 127 Design CBR-tc Yes Yes No
Bernárdez et al.
(2004)

146 Req. MBR — Yes —

Lee and Boehm
(2005)

28 Req. VBR Yes No —

Petersen et al. (2008) 23 Design TC-UBR — — No
a Overall and/or for critical defects.

• Metric-Based Reading (MBR), in which certain metrics correlated to defect prone-
ness are used to determine where to focus inspector attention (Bernárdez et al.,
2004);

• Value-Based Review (VBR) — another variant of CBR, wherein artefacts are in-
spected in order of priority, and potential issues within each artefact are examined
in order of criticality (Lee and Boehm, 2005); and

• time-controlled UBR (TC-UBR) — another variant of UBR in which inspectors
are given a limited time to cover each use case scenario (Petersen et al., 2008).

As illustrated above, prioritisation may be achieved in several ways, and be based on
different criteria. UBR uses importance to the user as a criterion for prioritisation,
MBR uses defect proneness, and VBR involves negotiation between stakeholders.

Table 2.6 lists studies assessing these other prioritisation-based techniques. The ev-
idence suggests that they also generally outperform CBR, either in the detection of
critical defects or overall defect detection. There is currently no evidence that they
outperform UBR itself, though MBR, VBR and UBR have not yet been tested against
one another.

2.2.4 Abstraction

Few published reading techniques explicitly seek to support the comprehension process
itself. Yet, comprehension must (almost self-evidently) precede defect detection.

20 Chapter 2. Software Inspection Background

Table 2.7: Experiments assessing abstraction-based reading techniques.

Experiment Environment Subjects Artefacts Technique
Outperforms

CBR

Dunsmore et al. (2003) Academic 69 Code Abstraction No
Abdelnabi et al. (2004) Academic 84 Code

[
Abstraction Yes

FBR Yesa

a FBR also outperformed the abstraction-driven technique.

Dunsmore et al. (2003) propose an abstraction-driven technique to assist the compre-
hension process in support of defect detection. This requires the inspector to read
artefacts systematically, creating abstract descriptions for methods and classes in the
process. Artefact interrelationships are followed as they are encountered.

Functionality-Based Reading (FBR) also seeks to assist comprehension, particularly
regarding object-oriented frameworks (Abdelnabi et al., 2004). FBR provides function-
ality rules containing a high level, abstract description of the system, developed prior
to the inspection.

Table 2.7 shows the experimental evidence for the abstraction technique and FBR.
Given the inconsistency of experimental outcomes for other reading techniques, such a
small collection of results should be treated with caution.

2.3 Software Comprehension

Comprehension is essential to any form of peer review. A substantial proportion of an
inspector’s time may be devoted to understanding aspects of the system not explicitly
documented (Letovsky et al., 1987). Yet, reading technique research has generally paid
little attention to the process of understanding software. There is little comprehension-
theoretic basis for many reading techniques, especially for checklist questions and active
guidance.

Software comprehension research itself has predominantly focused on software mainte-
nance as its principal application. However, comprehension underlies peer review just
as it does maintenance (Dunsmore et al., 2000).

A variety of different software comprehension models have been proposed, many with
overlapping elements. Soloway et al. (1988) distinguish between two such models by
referring to macro-strategies and micro-strategies. However, the meaning of these two

2.3. Software Comprehension 21

terms is expanded in this section to capture a broader set of the software comprehension
literature. Thus, a macro-strategy represents the starting point and overall direction
of the comprehension process, and the nature of the inspector’s mental model — the
mental representation of the system. A micro-strategy represents the manner by which
individual, discrete pieces of knowledge are added to the mental model. Macro- and
micro-strategies operate in conjunction, and some comprehension models describe both.

2.3.1 Macro-strategies

The comprehension process was described by Brooks (1983) as one of “constructing
mappings from a problem domain, possibly through several intermediate domains, into
the programming domain”. Shneiderman and Mayer (1979) too assert that compre-
hension lies in building a “multileveled internal semantic structure to represent the
program”. Inspection should ideally be based on a thorough understanding of the sys-
tem. In the requirements and design phases this is not necessarily possible, because
much of the system does not yet exist. Nevertheless, a thorough inspection requires an
understanding of the system at all available levels of abstraction.

Littman et al. (1986) distinguish between systematic and as-needed strategies. In a
systematic strategy, every aspect of the program is understood in a systematic fashion.
By contrast, an as-needed strategy requires that judgement be used to determine what
parts or aspects of the system are of interest. As-needed strategies are inherently error-
prone, since readers construct an incomplete mental model. However, for non-trivial
systems a systematic strategy is not generally practical. Hence, these two strategies
serve more as an illustration of the difficulties inherent in comprehension rather than
as a taxonomy of different approaches.

In other cases, comprehension strategies for understanding multiple levels of abstrac-
tion are divided into bottom-up and top-down varieties, illustrated briefly in Figure 2.3.
Shneiderman and Mayer suggest a bottom-up model whereby the reader mentally com-
bines units of semantic structure into larger units, eventually determining the function-
ality of the whole system. Pennington (1987) proposes a bottom-up model in which
two mental representations of the system are constructed. The program model is built
first and consists of the low and high level structure of a system. The situation or
domain model is built later and captures the system’s behaviour and functionality in
terms of real-world entities — a level of abstraction above the program model.

Top-down comprehension is advocated by Brooks, who argued that bottom-up mod-
els are “only a degenerate special case of a more powerful process.” Brooks proposed

22 Chapter 2. Software Inspection Background

Implementation syntax

Implementation semantic structure

Detailed design

Abstract design

Architecture

Requirements

Bottom-up
comprehension

Top-down
comprehension

Opportunistic
comprehension

Figure 2.3: An example of the abstraction layers that a comprehension macro-strategy might
seek to connect in a mental model.

that comprehension begins with a hypothesis about the system’s overall purpose, and
proceeds with the reader developing and validating successively more fine-grained hy-
potheses.

Other researchers have suggested that comprehension is more accurately reflected by
an amalgam of top-down and bottom-up models. Linger et al. (1979) argue that “read-
ing can seldom be strictly top down or bottom up. In reading the best-documented
programs, one needs an occasional foray into details. . . And in reading a totally mys-
terious program, it is useful to back out of details periodically in order to form overall
hypotheses or guesses that can help fit the details together more easily.” The inte-
grated metamodel describes the comprehension process in terms of top-down, program
and situation models, all adding to and drawing from a common knowledge base (von
Mayrhauser and Vans, 1995).

2.3.2 Micro-strategies

Micro-strategies represent a more fundamental level of the comprehension process.

Miller (1956) introduced the notion of chunking, whereby discrete chunks of information
are mentally combined to form larger chunks. A very small limit exists on the number
of chunks able to be stored simultaneously in short term memory, but the amount of
information within each chunk is not limited in the same manner. Shneiderman and

2.3. Software Comprehension 23

Mayer use chunking to explain the bottom-up comprehension process. They argue that
programmers do not read and store the individual symbols that comprise a piece of
source code, but rather aggregate statements in the source code to form broader ideas
about what the software does.

The top-down model proposed by Brooks (1983) entails the acquisition of knowledge
through the iterative refinement of hypotheses — assertions regarding the system at
some level of abstraction. For each hypothesis, the reader endeavours to find informa-
tion with which it can be tested, and if confirmed then broken down into more detailed
hypotheses. According to Brooks, hypotheses themselves are comparable to schemas, a
concept taken from cognitive science. The development of hypotheses may be catalysed
by beacons — parts of the system that are instantly recognisable and generally indicate
the use of a particular well-known pattern or algorithm. In particular, beacons may
include meaningful identifiers used in source code (Gellenbeck and Cook, 1991). In an
experiment, Kim et al. (2000) observed the formation and refinement of hypotheses
during comprehension of UML diagrams.

Soloway and Ehrlich (1984) proposed that readers use plans and discourse rules to
understand the system. Plans represent well-known approaches to solving specific types
of problems, whether trivial or complex. Both authors and readers of source code (or
other artefacts) possess plan knowledge, built up from software development experience,
which allows them to write or comprehend a software system. Soloway and Ehrlich also
claim a correspondence between plans and schemas, implying a relationship between
plans and hypotheses. Plans are used by the original developer to construct the system,
while hypotheses arise in attempting to understand the developer’s intent. Discourse
rules are conventions that, when adhered to by the author, allow the reader to easily
recognise plans within the system. As such, they share a similar role to beacons.

Letovsky (1986) constructed a more elaborate model in which readers undergo a se-
ries of inquiry episodes, consisting of a question, one or more conjectures and a search
for evidence, any of which may be omitted. Questions arise due to particular uncer-
tainties on the part of the reader. The reader may seek the mechanism by which the
system accomplishes a particular task, the purpose of a particular part of the system,
which of two competing explanations is accurate, or a resolution to apparently con-
flicting information. Conjectures represent plausible answers to the questions readers
ask themselves, and are comparable to hypotheses. The reasoning process connecting
questions to conjectures may rely on the application of plans, inferences from discourse
rules, or a mental simulation of the system’s behaviour. The reader assigns each con-
jecture a degree of certainty, based on the amount of evidence found so far to support
it.

24 Chapter 2. Software Inspection Background

Inquiry episodes facilitate both bottom-up and top-down macro-strategies, or rather a
combination thereof. Letovsky asserts that “the human understander is best viewed
as an opportunistic processor capable of exploiting both bottom-up and top-down cues
as they become available.” The exploitation of top-down cues is more feasible when a
system is well documented, and when the reader’s experience encompasses many of the
plans used by the author.

2.3.3 Delocalised Plans

Letovsky and Soloway (1986) observed that inquiry episodes occur frequently as a result
of delocalised plans — plans whose implementation occurs across physically separated
parts of a system. A reader must seek out these components in order to understand the
plan. However, often the reader does not realise that delocalised plans exist. Chunking
too may be affected by delocalised plans; Shneiderman and Mayer assert that chunking
is more effective in the absence of goto statements.

In the experiment by Kim et al. (2000), participants were presented with one of two sets
of diagrams, both with the same informational content. However, one set was designed
to allow readers to more easily draw connections between diagrams. The use of this set
indeed facilitated more switching between related diagrams, and led to greater numbers
of hypotheses being formed and refined. Likewise, Hungerford et al. (2004) found that
inspectors who exhibited a rapid switching behaviour between different design diagrams
were able to detect more defects than those who concentrated on one artefact at a time.

Rist (1996) argues that plans and objects are orthogonal. That is, in an object-oriented
(OO) context, plans are generally distributed among many objects. Thus, OO results in
a proliferation of delocalised plans. Delocalised plans in OO were a central motivation
behind the development by Dunsmore et al. (2003) of the use-case and abstraction-
driven reading techniques. Both of these were designed to encourage inspectors to
resolve and understand artefact interrelationships when encountered. Though not pre-
sented as such, OORT too might be seen as an attempt to address delocalisation, since
it focuses on design artefact interrelationships.

2.3.4 Knowledge and Experience

Software comprehension research generally indicates that the choice of comprehension
strategy depends on experience. Wiedenbeck (1986) found that experienced readers
were able to recall beacons more reliably than other parts of the program, whereas

2.3. Software Comprehension 25

inexperienced readers could not. Similarly, Rist (1986) found that the use of plans
increases with experience, and decreases with difficulty. Burkhardt et al. (1998) report
that experts preferentially employ top-down strategies, while novices work bottom-up.
Expertise has been identified as a principal driver of inspection performance (Sauer
et al., 2000, McMeekin et al., 2009)

Given such experience-related effects, experienced inspectors would arguably be better
able to recognise and understand delocalised plans. The experiment of Hungerford et al.
(2004) demonstrates that some inspectors are indeed able to employ better strategies
for coping with delocalisation than others.

The level of experience of participants in empirical studies is sometimes raised as an
issue affecting their generalisability (Sjøberg et al., 2005). It is assumed that experience
is positively correlated to defect detection effectiveness. However, interactions between
experience and reading techniques are also of interest. Höst et al. (2005) argue that
replications of controlled experiments in software engineering often fail in part because
participant experience is not adequately described or controlled. They propose that ex-
perimental participants be classified by experience: (a) those with more than two years
industrial experience, (b) those with three months to two years, and (for those with
less than three months experience) (c) undergraduate students, (d) graduate students
and (e) academics.

However, such broad experience categories may not capture the underlying factors driv-
ing comprehension. Experience is merely a proxy for expertise, which itself is a complex,
multifaceted concept, not a simple categorical or numerical variable (Berlin, 1993). Ex-
pertise depends on knowledge acquired through experience, but not all knowledge is
equal, nor all experience.

If some inspectors are better able to deal with delocalisation than others, then the
pervasive use of OO may widen the gap between expert and non-expert inspectors.
This would suggest that different inspection strategies are needed for different levels of
expertise. Indeed, reading techniques do not appear equally beneficial to all levels of
experience (Shull, 1998, cited in Regnell et al. 2000). However, if expertise is multi-
dimensional, then these strategies must be manifold. An inspector may be an expert
with respect to certain types of delocalised plans, but a novice with respect to others.
Hence, making an informed decision to use one strategy over another must be based
on a complex set of factors.

26 Chapter 2. Software Inspection Background

2.3.5 Cognitive Support

Cognitive support promises to help address the effects of delocalisation. Several differ-
ent approaches have been proposed.

Soloway et al. (1988) suggest the insertion of documentation at strategic points in an
artefact, where delocalisation is manifested. At such points, a complete understanding
of a given piece of source code would otherwise require the reader to venture into other
parts of the code, possibly without any obvious cue.

Other authors argue for tool support, and propose criteria and mechanisms by which
this might be achieved. Storey et al. (1997, 1999) suggest a hierarchical set of goals for
cognitive support tools. These are centred around systematic support for all compre-
hension macro-strategies (top-down, bottom-up and opportunistic), and also emphasise
support for navigating between artefacts.

Walenstein (2002, 2003) describes three mechanisms by which tools might provide cog-
nitive support:

• redistribution, where mental representations of the system are made physical,
redistributing the programmer’s cognitive load;
• perceptual substitution, where one physical representation is replaced by another,

informationally-equivalent one that is more easily or quickly digested; and
• ends-means reification, where the process of comprehension itself is made physical.

Kim et al. (2000) combined two elements of cognitive support as a treatment in their
experiment, resulting in improved comprehension. The first is a form of perceptual sub-
stitution — an object message diagram was selected over an informationally-equivalent
event-trace diagram (the latter being given to the control group). The object message
diagram shared the physical layout of the class diagram, making the two easier to un-
derstand in combination. Second, the treatment group was provided with a context
diagram, a form of redistribution. This did not add any new information, but provided
a representation that participants may otherwise have had to construct mentally.

Cognitive support and reading techniques are directed at very similar problems, though
cognitive support is more closely tied to theories of software comprehension. Nonethe-
less, other alternate annotations or visualisations may directly support reading tech-
niques.

Walkinshaw et al. (2005) use dependence graphs to effectively highlight parts of a sys-

2.4. Inspection Theory 27

tem related to a particular use case scenario. Similarly, Egyed (2003) uses execution
of a system to observe, record and reconstruct the mapping between code and a par-
ticular test scenario. Such approaches might be used to assist UBR and its variants,
or the tester perspective of PBR. PBR is also supported holistically, across the whole
inspection process, through a tool developed by Chan et al. (2005).

Opportunities to support CBR are numerous. Some relatively straightforward defect
types can be detected algorithmically (Lu et al., 2005, Moha et al., 2006), and in
these specific cases tool support can almost entirely supplant the human comprehension
process. Where tools are unable to answer checklist questions themselves, they may
still provide metrics or other information with which an answer is more easily reached
(Belli and Crişan, 1996, Anderson et al., 2003, Cooper et al., 2006).

2.4 Inspection Theory

Though approaches for addressing delocalised plans are well-established, they do not
generally address the multifaceted nature of inspector expertise, or of system complex-
ity. Moreover, they do not consider all the potential impacts on inspection outcomes.
The ability to develop, refine or select an appropriate inspection strategy depends on
being able to predict resulting inspection performance.

Thus far, no broad consensus has emerged regarding which reading techniques are
the most effective. Though a number of ideas (e.g. active guidance, separation of
concerns and prioritisation) have been proposed for improving inspection performance,
the software engineering research community has not been able to convincingly argue
for any one technique. Such ambiguity hinders widespread use of these techniques, or
even the ideas on which they are based.

Jeffery and Scott (2002) argue that the apparent contradictions in empirical reading
technique research have resulted from a lack of inspection theory. While the ratio-
nales for many of the features of reading techniques have been well articulated, their
formation has been guided more by intuition rather than a cohesive theory. Hannay
et al. (2007) report from a survey of empirical software engineering papers that “theory-
driven investigations and theory building are rare in empirical software engineering”.
Without a common underlying framework, experimental results are often difficult to
adequately explain or reconcile with those of other experiments.

Moreover, while qualitative theories of software comprehension are relatively well-
established, predictive, quantitative theory is not. Quantitative inspection theory would

28 Chapter 2. Software Inspection Background

allow predictions to be made of inspection performance, and thus would provide a more
objective basis for the use of a given inspection strategy.

Such a theory requires a metric — a numerical foundation on which a model can be
constructed (for the purpose of comparing inspection strategies). Further, it requires a
vocabulary with which to express multidimensional expertise and system complexity.
Thus, this section describes some of the concepts that might form the basis of inspection
theory.

2.4.1 Metrics

Most experiments assessing scenario-based reading techniques use the following metrics
to assess effects on inspection performance:

• effectiveness — the number of defects detected (Dunsmore et al., 2003);
• efficiency — the number of defects detected per unit of time (Biffl, 2000);
• detection rate — the proportion of defects detected (i.e. effectiveness divided by

the total number of defects) (Porter et al., 1995);
• inspection effort — the time taken to perform the inspection (Biffl, 2000).

Detection rate relies on knowledge of the total number of defects, which can be esti-
mated using a capture-recapture approach (Briand et al., 2000). If the sets of defects
found by two different inspectors — A and B — are assumed to be independent, then
the proportion of all defects found by A is approximately equal to the proportion of
B’s defects found by A:

nA

nT
≈ nA∪B

nB

⇒ nT ≈
nA · nB

nA∪B

(2.1)

where nT is the total number of defects;
nA is the number of defects found by inspector A;
nB is the number of defects found by inspector B; and
nA∪B is the number of defects found by both inspectors.

Thus, detection rate and similar metrics are easily measured and understood. Effec-
tiveness or detection rate offer the most direct measures of inspection performance.
However, their use as such assumes that all defects are equally important. In fact,
defects can vary considerably in severity, from those resulting in aesthetic annoyances
to those potentially endangering human life.

2.4. Inspection Theory 29

The prioritisation-based reading techniques discussed in Section 2.2.3 are based on a
recognition of varying defect severity. To assess UBR, Thelin et al. (2003) used a differ-
ent suite of metrics, based on dividing defects into different categories of importance.
Here, the use of an alternate performance metric is essential for demonstrating the
value of the reading technique. UBR’s effect on overall efficacy is ambiguous, but its
effect on critical defect detection is clearly positive.

Similarly, Lee and Boehm (2005) used a metric reflecting VBR’s dual prioritisation
scheme:

Impact =
∑

Artefact priority× Issue criticality (2.2)

Each detected defect has a value for both artefact priority and issue criticality. In their
experiment Lee and Boehm allow the values 1 (“low”), 2 (“medium”) or 3 (“high”)
for each of the two factors, but note that in practice these values would be determined
by experts. The metric reflects the cost saved by the inspection, but without a scale.
Unlike the critical defect efficacy and efficiency metrics used by Thelin et al., the impact
metric does not ignore low or medium priority/criticality defects. However, the cost of
the inspection itself is not taken into account.

Ultimately, prioritisation arises from a desire to minimise costs. For this purpose,
the most useful measures of inspection performance are those that take into account
all inspection-related costs, expressed in units of time, effort or currency. The major
(though not sole) economic consequence of defect detection lies in lower costs associ-
ated with fixing defects later in the project. However, a single absolute cost value by
itself, even if inclusive of all inspection-related costs, is still not a reliable indicator
of inspection performance because it cannot be compared to other cost values aris-
ing in different circumstances. Measures of inspection performance must also consider
hypothetical costs potentially incurred if the inspection had not taken place.

Collofello and Woodfield (1989) propose a cost effectiveness metric, based on the real
cost of inspection and the hypothetical cost without inspection:

CEC =
Future costs avoided

Inspection cost incurred
(2.3)

CEC is similar in principle to the efficiency metric. The number of defects detected is
a rough indicator of future costs avoided, and here the latter is used in place of the
former. However, approximations notwithstanding, efficiency remains unsuitable as a
measure of inspection performance, and CEC likewise. Both metrics reflect the costs
avoided per unit of inspection time, rather than the proportion of the total costs that
could have been avoided. They do not penalise inspections for finding fewer defects,

30 Chapter 2. Software Inspection Background

provided they also consume proportionally fewer resources.

For example, an inspection consuming one hour and finding ten defects (or saving
ten cost units later in the project) is more efficient than one lasting two hours and
finding fifteen. Moreover, efficiency remains constant irrespective of the actual number
of defects, whether there be fifteen or a hundred.

Thus, Kusumoto et al. (1991) introduce a different cost effectiveness metric, incorpo-
rating the total potential cost incurred without inspection:

CEK =
Net costs avoided

Total hypothetical cost without inspection

=
Future (testing) costs avoided− Inspection cost incurred

Future (testing) costs avoided + Future (testing) costs incurred

=
No. defects detected× (Testing cost per defect− Inspection cost per defect)

Total no. defects× Testing cost per defect

= Detection rate× Testing cost per defect− Inspection cost per defect
Testing cost per defect

= d · cT − cI

cT

(2.4)

CEK is essentially a scaled version of the detection rate metric d. Whereas d is the
proportion of defects found through inspection, CEK is the proportion of defect-related
costs avoided through inspection. Any positive value would indicate that inspections
are reducing costs associated with defects. Values approaching one would indicate that
these costs are being almost eliminated. Negative values are also theoretically possible,
and would indicate that inspections are actually counterproductive. CEK is a measure
of inspection performance whose meaning does not vary from inspection to inspection.
Its values can be compared across inspections, projects and organisations.

Freimut et al. (2005) introduce a further cost effectiveness metric, keeping the form of
CEK but refining its definition in several respects. Freimut et al. distinguish between
inspection and rework costs (cI and cR). They also allow for any number of defect
detection activities throughout the project, rather than the fixed set of three that
Kusumoto et al. assume (design review, code review and testing).

2.4. Inspection Theory 31

Importantly, CEK implicitly assumes that each defect missed by an inspection results
in one defect being found in testing. In fact, a single defect missed by inspection may
result in multiple defects occurring in the next phase. Some of these may be detected
and reworked in subsequent verification activities, or propagate further still.

Thus, Freimut et al. define cost effectiveness for each of multiple verification activities
in a project as follows:

CEF(j) = dj ·
cMj − cRj − cIj

cMj
(2.5a)

where j identifies a particular verification activity or phase, between 1 and J ;
dj is the detection rate in phase j;
cMj is the cost of missing a defect in phase j;
cRj is the cost of reworking a defect in phase j; and
cIj is the per-defect inspection cost in phase j.

The cost cMj comprises rework costs incurred later in the project, and can be calculated
as follows:

cMj =
J∑

k=j+1

cRk · dk ·
k∏

`=j+1

(1− d`) · g`

 (2.5b)

where g` is the propagation factor; the number of defects in phase `+1 resulting from
each unreworked defect in phase `.

Freimut et al. suggest that the terms in equations 2.5a and 2.5b can be obtained
using a combination of project data and expert opinion, but caution that for estimated
quantities there must be mechanisms in place to identify and mitigate bias.

CEK and CEF establish the form of a suitable inspection performance metric, but
make several assumptions. First, they assume that inspection costs are incurred on
a per-defect basis, manifested in the cI term. This is not true. Inspection costs are
incurred in the search for defects in general, not for each defect individually. Overall,
the relationship between the number of defects detected and the effort expended cannot
be linear, because there are only a limited number of defects to be found. Actual effort
is expended by reading artefacts, forming hypotheses, conducting inquiry episodes,
reconstructing plans, etc. as described in Section 2.3.2. A single hypothesis or plan
may underlie the detection of multiple defects, or none at all.

Two other process-related assumptions are made: that all detected defects are re-
worked, and that all costs are borne by the developers themselves (in inspection, test-

32 Chapter 2. Software Inspection Background

ing or rework). However, even after a defect has been found, it may be considered of
insufficient importance to warrant rework, given budget or time constraints (Hewett
and Kijsanayothin, 2009). Even if rework is attempted, it will not necessarily succeed
(Fagan, 1976, Levendel, 1990). Further, some defects are found by users (Jones, 1996)
and can result in substantial costs incurred by external parties (National Institute of
Standards and Technology, 2002). The UBR and VBR techniques are intended to find
the most important defects from the user’s perspective. Their rationale would vanish
if users did not incur defect-related costs.

Finally, CEK and CEF incorporate the detection rate d in their definition, and thus
assume that all defects are equal. As a result, they lack the expressiveness needed to
model the effects on cost effectiveness of different inspectors, systems and inspection
strategies.

2.4.2 Taxonomies

Cost effectiveness can form the basis of a quantitative model of software inspection.
However, to predict the cost effectiveness of a given inspection strategy, it must first
be possible to express that strategy in the language of the model.

Classifying defects by severity, as done by Biffl (2000) or Thelin et al. (2003), would
partially address the lack of expressiveness in the cost effectiveness metrics of Kusumoto
et al. and Freimut et al.. That is, the calculation could be broken into components,
each dealing with a different severity level. However, this would not necessarily allow for
any interesting queries; clearly an inspection strategy favouring the detection of more
high-severity defects is preferable. The problem lies in determining how to engineer
such a strategy.

Malik et al. (2004) propose a set of criteria intended to allow a theoretical comparison
of reading techniques. Their approach categorises techniques by sets of predetermined
attributes, describing broad characteristics of reading techniques. This represents an
attempt to break down reading techniques into their component parts — a necessary
function of inspection theory. However, it does not delve far enough into the processes
underlying reading techniques to allow for quantitative predictions. Little is said of the
mechanism by which attributes are assigned to techniques, or how the particular set of
attributes discussed was determined.

Defect classification schemes are another taxonomic approach; one that describes the
beginnings of a vocabulary for inspection theory. They connect reading techniques to

2.4. Inspection Theory 33

quantitative data that might be used to predict cost effectiveness. Chernak (1996)
argues for checklist creation and improvement based on statistical occurrence of defect
types. Each checklist item can be mapped to a particular defect type, which had a
particular probability of occurrence. Similarly, Sullivan and Chilarege (1991) observe
differences in the consequences of different defect types in an operational setting. The
generic value-based checklist proposed by Lee and Boehm (2005) (as part of VBR)
has its items prioritised by criticality, designed to favour more important defect types.
Expert estimation (Freimut et al., 2005) might be used to quantify the costs thereof.

However, this still leaves the comprehension process itself. Ultimately, the cost effec-
tiveness of an inspection strategy cannot usefully be modelled without incorporating
elements of software comprehension theories.

2.4.3 Models

The Constructive Cost Model (COCOMO) is a long-standing, quantitative, predic-
tive model of software size, development time and effort (Boehm et al., 2000). Both
COCOMO 81 and COCOMO II estimate effort using the following equation:

Effort = Coefficient×

[∏
i

Cost driver i

]
× SizeExponent (2.6)

The exponent and cost drivers comprise various factors affecting the difficulty of the
project. The size is expressed in lines of code, and is itself estimated by means of
further equations. The coefficient is present for calibration purposes.

With sufficiently precise calibration, COCOMO may be relatively accurate. However,
Equation 2.6 gives little insight into the mechanisms by which development takes place
and costs are incurred. The cost drivers are opaque factors, derived from empirical data
but not amenable to further theoretical analysis. While it has predictive power in the
right circumstances, COCOMO has little explanatory power. Its intended application
lies in estimating project characteristics, not in comparing different approaches.

More closely related to inspection theory, Cockram (2001) and Wu et al. (2005) model
software inspection itself with Bayesian networks. Figure 2.4 shows part of the model
proposed by Wu et al.. Here, inspection effectiveness is determined by system size and
complexity, the quality of the process and the remaining defects, and some of these in
turn are determined by other variables, and so on.

34 Chapter 2. Software Inspection Background

Effectiveness

Product
complexity

Quality of
process

Quality of
preparation

Quality of
error logging

Product size

Remaining
faults

Software
maturity

Figure 2.4: Part of the Bayesian inspection model proposed by Wu et al. (2005).

However, like COCOMO, these models do not embody the mechanics of inspection,
but are simply an expression of how overall factors affect the overall outcome. Like the
notions of experience and expertise described earlier, many of the variables shown in
Figure 2.4 are aggregated, simplified forms of complex, multifaceted concepts. As such,
they have limited capacity to uncover or explain phenomena that are not already well
understood.

Inspection strategies can be complex, comprising many parts that cannot necessarily
be represented simply as a list of factors. Even where the inspection strategy is kept
constant, contradictory results from previous studies shown in Section 2.2 hint at in-
teraction effects. For instance, active guidance and cognitive support cannot simply
be COCOMO-style cost drivers, because they may have different effects depending on
when and where they are applied.

Inspection theory must be both predictive and descriptive in order for inspection strate-
gies to be compared. An inspection model must incorporate the mechanisms of peer
review — the comprehension process, as influenced by the inspectors, the artefacts and
the reading technique — not just the outcomes thereof.

2.4.4 Ethical Application

Inspection theory might be constructed such that the cost effectiveness of an inspec-
tion can be accurately and precisely predicted, based on the underlying mechanics of

2.4. Inspection Theory 35

comprehension and software development.

However, in reducing inspection performance to a single cost effectiveness value, an
inspection model might raise ethical issues related to its application. Such a model
would assume that all costs potentially incurred are quantifiable and have largely in-
terchangeable units, ultimately expressed in monetary terms.

Some domains involve potential costs to users or other external parties that are not
easily reducible to a monetary form. Examples of such costs include:

• physical injury or death, particularly in safety-critical domains (Leveson and
Turner, 1993);

• corruption of democratic processes, in situations where software facilitates voting
or performs vote counting (Feldman et al., 2007);

• loss of essential services or infrastructure, in situations where software helps co-
ordinate or control such services or infrastructure;

• security leaks, in situations where software handles sensitive government or cor-
porate information;

• loss of freedom or reputation, such as where software is used to identify or track
people potentially involved in unlawful activity;

• personal data loss, where photos, videos, documents, etc. have intellectual or
sentimental value;

• loss of privacy, in situations where software handles confidential personal infor-
mation; and

• exposure to inappropriate material in filtering applications (for whatever defini-
tion of “inappropriate” the reader may envisage, if any).

The costs listed above are not numerically comparable to each other or to time or
monetary costs incurred through inspection, defect correction, etc. For legal purposes,
many of the above costs may be assigned monetary values, though ethically they are
not exchangeable.

As a matter of principle, software engineers should consider all costs that might arise
from software development, monetary or otherwise. A model that reduces inspection
performance to a single numerical value cannot directly incorporate non-monetary costs.
Therefore, where such costs arise, such a model should not be relied upon to provide a
definitive recommendation for the appropriate inspection strategy.

36 Chapter 2. Software Inspection Background

2.5 Summary

Software inspection is an effective means of defect detection. Various reading tech-
niques have been proposed to improve its effectiveness, but the results of controlled
experiments comparing them have often been inconsistent. This may result from a lack
of consideration for the comprehension process, and for comprehension issues arising
from factors associated with the inspectors themselves and the artefacts under inspec-
tion. Elements of inspection theory exist, but have not yet been assembled into a
working model of software inspection, by which different inspection strategies might be
compared theoretically.

In this thesis, Chapter 4 examines prevalent software inspection practices through an
industry survey. The statechart and scenario studies (described in Chapters 5 and
6) then seek to uncover and understand specific comprehension issues in an inspection
context, particularly those related to delocalised plans. Chapter 7 presents the checklist
experiment, which examines active guidance more closely, by controlling inspector-
and system-related factors, and examines potential interactions between checklists and
inspector expertise.

Based on the findings of these chapters and the discussion in Section 2.4, a theoretical
framework and predictive, descriptive model of software inspection are proposed in
Chapter 8.

The next chapter undertakes a review of methodological concepts, techniques and issues
underlying this empirical and theoretical work.

.

Chapter 3

Methodological Background

“We do nothing until our heads have actually been cut off.”
“And then we spring into action?”

— Blackadder the Third

This chapter reviews some of the empirical and theoretical methods employed in this
thesis. Software engineering research has used both qualitative and quantitative meth-
ods in the analysis of empirical data, often adapted from other disciplines.

This chapter does not describe the detailed methodology of the work supporting this
thesis. Rather, it introduces the methods in a general sense, in as much detail as neces-
sary, such that their rationales and practicalities can be understood. (The adaptations
of these methods to the research supporting this thesis are discussed in subsequent
chapters.)

3.1 Subject Experience

In conducting empirical studies of programming or inspection behaviour, the use of
human subjects is essential. The use of students as subjects in such studies is common-
place (Sjøberg et al., 2005), but has raised questions regarding experimental realism —
the extent to which experimental conditions mirror industrial practice (Curtis, 1986,
Sjøberg et al., 2002). At stake is whether results from empirical studies involving
students can be generalised.

The effects of experience and expertise were discussed in Chapter 2, Section 2.3.4. Ex-

38 Chapter 3. Methodological Background

pertise has an important effect on inspection and comprehension performance. How-
ever, this difference may be largely quantitative, rather than qualitative. Even though
expertise is in essence qualitative, Gugerty and Olson (1986) report that novice pro-
grammers do not exhibit qualitatively different comprehension strategies from experts.
Rather, they are simply less efficient (as a result of choosing inferior initial hypothe-
ses). Thus, in qualitative investigations that seek to explore the existence of certain
cognitive phenomena, the use of students rather than professionals may have relatively
minor implications. Caution should be exercised in making generalised conclusions,
just as in any qualitative study.

Tichy (2000) further argues that the use of student subjects can be valid if the re-
sults show (or fail to show) a trend attributable to a particular factor. The trend for
professionals may generally be equal in direction, if not equal in magnitude. In some
respects, differences between final-year students and professionals can be small (Höst
et al., 2000). However, there is evidence of interactions between expertise and reading
techniques (Shull, 1998, cited in Regnell et al. 2000), so some caution must be exercised
in drawing conclusions.

Also resulting from the multi-faceted nature of expertise (as discussed in Section 2.3.4),
the use of nominally professional subjects is itself no guarantee of generalisability, be-
cause expertise has many forms.

3.2 Qualitative Analysis

Qualitative analysis is used to deal with categorical or unstructured data, often for
the purpose of theory generation (Seaman, 1999). This section does not undertake a
comprehensive treatment of qualitative methods, but describes two techniques used in
this thesis: protocol analysis and coding.

3.2.1 Protocol Analysis

Protocol analysis is a qualitative data collection and analysis method, providing insight
into subjects’ mental processes as they perform a predetermined task (Ericsson and
Simon, 1993). A large part of the software comprehension research thus far has relied
on protocol analysis; e.g. Letovsky (1986), Littman et al. (1986), Kim et al. (2000),
Hungerford et al. (2004) and McMeekin et al. (2008).

3.2. Qualitative Analysis 39

To collect data for protocol analysis, subjects are asked to think aloud as they undertake
the task. They are instructed to say out loud everything that comes to mind. They are
helped in doing so in two ways. First, subjects are given prior training tasks to famil-
iarise them with the act of thinking aloud. For instance, they might each be asked to
perform a non-trivial multiplication in their head, while voicing their working. Second,
an interviewer prompts them to keep talking if they fall silent. As subjects undertake
the task assigned, their verbalisations are recorded. These are later transcribed, and
the transcription segmented into utterances.

Ericsson and Simon describe three levels of verbalisation, where subjects are asked to:

1. vocalise thoughts already mentally encoded in spoken language;
2. vocalise all existing thoughts, translating them to spoken language if necessary;

or
3. explicitly describe their own thought processes.

Ericsson and Simon argue that the first two forms do not materially alter subjects’ cog-
nitive processes (though the second entails some additional translation overhead). The
third form requires subjects to vocalise additional information not normally present.
While the extra information sought might be useful, obtaining it causes subjects to alter
their thought processes. Thus, this form does not produce an accurate reconstruction
of the approach to the task ordinarily taken.

The second form is preferred, because it elicits the most information with minimal
interference. However, results obtained from it do not generally represent a complete
reconstruction of subjects’ thoughts.

3.2.2 Coding

In qualitative data analysis, coding is the process of categorising data, whether from
subjects’ verbal utterances or another source. Coding is done by means of a coding
scheme — a set of rules for transforming unstructured data supplied by the user into a
discrete set of codes, or categories. The coded data may then participate in quantitative
analysis Seaman (1999). Often the coding scheme is developed after the data has been
informally examined, in order to maximise the amount of useful information captured
for qualitative analysis.

Coding involves a degree of interpretation on the part of the coder. In cases of high
subjectivity, this may present a threat to validity. To address such threats, the data

40 Chapter 3. Methodological Background

may be coded (or partially coded) again by a second, independent coder. Cohen’s
Kappa statistic (El Emam and Wieczorek, 1998) measures the degree of agreement
between coders, and thus provides an indication of the reliability of the coded data. If
the two coders assign precisely the same categories to the data, kappa is one. If the
level of agreement is that expected purely by chance, kappa is zero. Values between
zero and one demonstrate varying levels of agreement beyond chance. (Kappa can be
negative if the level of agreement is less than expected by chance; e.g. if the coders
were to disagree on everything.)

El Emam and Wieczorek suggest several thresholds as a guide to the interpretation
of kappa. In particular, values above 0.78 indicate “excellent” agreement, and values
above 0.62 indicate “good” agreement.

3.3 Quantitative Analysis and Modelling

3.3.1 Log-linear and Logistic Models

The construction of a mathematical model may be warranted either for predictive
purposes or to test hypotheses. In either case, an equation is obtained that expresses
a dependent variable in terms of a series of factors.

A linear model is a relatively simple case with the form:

E(Y | X) = β ·X = β0 + β1X1 + . . .+ βnXn (3.1)

This expresses the expected value (E) of Y , given a vector of n factors X, in terms of
those factors. Here:

• Y is the response (dependent) variable;
• β0 is the intercept — the expected value of Y when all the factors are zero;
• β1 to βn are the regression coefficients — the effect of each factor on Y ;
• X1 to Xn are the factors (independent variables) themselves; and
• the dot product β·X is shorthand for the equation. (The intercept β0 is multiplied

by X0, but the latter is defined to be 1 and so omitted.)

The factors may be binary, integer or continuous variables. They may not (directly)
be categorical variables, whose values have no particular ordering, or ordinal variables,
whose values are ordered but not arranged in consistent, definable increments. To

3.3. Quantitative Analysis and Modelling 41

represent the effect of a categorical variable with m possible values, it must be divided
into m− 1 mutually exclusive binary variables. (One of the m values does not require
a binary variable of its own, because it is implied when the other binary variables are
all zero.)

Interaction effects can be represented by setting one factor to be the product of two or
more others. For instance:

E(Y | X) = β0 + β1X1 + β2X2 + β3X1X2 (3.2)

For modelling the outcome of a repeated-measures experimental design, an extra random
effect term can be added:

E(Yi | X) = β ·X + γi (3.3)

Here, γi indicates an additional effect associated with the ith group of observations. The
actual effect is not interesting in itself, but its inclusion helps minimise experimental
error. The response variable Yi is also given in terms of the observation group i.

Linear models are by their nature additive; each factor adds to (or subtracts from) the
response variable. In some cases this is not desirable, in which case a link function can
be used to alter the relationship between the response variable and the factors:

E(Y | X) = f(β ·X) (3.4)

Equation 3.4 represents a generalised linear model. Here, Y is not (necessarily) a linear
function of X as before, but is nonetheless a linear function of f(X).

A log-linear model is a type of generalised linear model used when the factors must
have a multiplicative rather than additive effect:

E(Y | X) = exp(β ·X)

= exp(β0)× exp(β1X1)× . . .× exp(βnXn)
(3.5)

Here, Y is prohibited from being negative (unlike in an ordinary linear model).

A logistic model is another type of generalised linear model, used when the response
variable is binary. In such situations, the probability that Y = 1 is modelled rather
than the expected value of Y . Ordinary linear models are generally inappropriate here;

42 Chapter 3. Methodological Background

probability is constrained to the range [0, 1] while the response variable of a linear
model is not. A linear model may predict values less than 0 or greater than 1 for a
given set of inputs.

Logistic models use the logistic function logit−1 (the inverse of the logit function)
to transform the unconstrained β · X, representing the log odds of Y = 1, into a
constrained probability value, guaranteeing valid probabilities for any combination of
factors. Probability approaches zero as the log odds approaches −∞, and one as the
log odds approaches +∞. A probability of 0.5 is equivalent to a log odds value of zero.

The logistic model is defined as follows:

P(Y = 1 | X) = logit−1(β ·X)

=
1

1 + exp(−β ·X)

(3.6)

3.3.2 Survival Analysis

Survival analysis is a statistical technique used to model the time until some particular
event occurs, used where the event may or may not actually occur within the window
of observation. Where the event is not observed, the time is said to be censored, and
the end of the period of observation is recorded instead as the censored time. Often the
event under consideration is the death of a person or other organism, or the failure of
a piece of mechanical equipment. A censored observation is therefore one in which the
person or organism remains alive at the end of the period of observation, or where the
equipment has not yet failed.

Censored observations cannot generally be treated as missing data, because they con-
tain information, particularly if the censored times are large. Censored times represent
lower bounds on the actual survival times. A linear model derived only from known
survival times may substantially underestimate the actual time. For example, consider
a survival time data set in which half the times range from 0 to 100 (in arbitrary units),
and the remaining half are censored at time 100. The median of the entire data set will
be about 100, but the median of the known survival times may be considerably lower.

In survival models, the response is typically the hazard function function µ(t)1. This is
specific to the data set, and is proportional to the probability of some event occurring
in a short window of time around t, given that it has not occurred before t. The hazard

1Traditionally the symbol λ is used to represent the hazard function, but λ is used for other purposes
in this thesis.

3.3. Quantitative Analysis and Modelling 43

function can be derived analytically from the event’s cumulative probability function.
Each factor in the model influences the hazard function.

Several types of survival models can be constructed, depending on the assumed be-
haviour of the hazard function. The Cox proportional hazards model is often used
where the effects of one or more factors are of interest, but the shape of the hazard
function itself is not (Hougaard, 2000, Harrell, 2001). Such models can be constructed
without knowing the underlying hazard function, and are therefore expressed in terms
of an arbitrary base hazard function µ0(t):

µ(t | X) = µ0(t) exp(β ·X) (3.7)

As in log-linear models, the exponential function in Equation 3.7 gives each factor a
multiplicative rather than an additive effect. This is an explicit assumption in the Cox
proportional hazards model — the factors must have a proportional (multiplicative)
effect on the hazard. However, a Cox proportional hazards model does not require an
intercept term, because it expresses a relative effect.

A Cox proportional hazards model can also be stratified, wherein the base hazard
function is allowed to vary between different groups of observations. A conditional
logistic model, mathematically related to a stratified Cox model, can also be used to
describe a stratified set of observations where the response variable is binary (Collett,
2003, Therneau and Lumley, 2008).

3.3.3 Bayesian Networks

A Bayesian network is an acyclic, directed graph comprising variables connected by
arcs representing their dependencies (Koller and Friedman, 2009). Bayesian networks
can provide an overview in situations where complex dependency structures arise.

Both random and deterministic variables may appear in a Bayesian network. Deter-
ministic variables are precisely determined by their parents (i.e. nodes connected via
incoming edges). Random variables are described by a probability distribution and are
merely influenced by their parents. The direction of an edge reflects the direction of a
causal relationship between two variables (i.e. which “causes” the other).

Figure 3.1 shows an example of a Bayesian network. Here, several variables serve to
determine the extent of plant growth, as shown by the arrows. Rain influences the

44 Chapter 3. Methodological Background

PlantGrowth

WaterAppliedSunlight

Rain Sprinklers

Figure 3.1: An example Bayesian network.

amount of sunlight and water applied. The sprinklers also influence the amount of
water applied. Sunlight and water then influence plant growth.

The graph itself only specifies which variables influence one another, not precisely how
they do so. For instance, rain diminishes the amount of sunlight, but increases the
amount of water, but this cannot be represented in Figure 3.1.

A Bayesian network can be used as a reference in the construction of more precise
models for each variable. For instance, a generalised linear model might be used to
describe plant growth, as follows:

E(PlantGrowth | Sunlight = s,WaterApplied = w) = f(β0 + β1s+ β2w+ β3sw) (3.8)

Equation 3.8 expresses the conditional expected plant growth given the amount of sun-
light and water. Given those values, plant growth is independent of rain and sprinklers,
and so the model does not need to refer to them. Sunlight and water applied could
themselves be modelled in a similar fashion.

3.4 Application

Table 3.1 shows how the issues and methods described in this chapter apply in subse-
quent chapters.

Coding is used in different forms in all four empirical studies discussed in this thesis
(in chapters 4, 5, 6 and 7).

3.4. Application 45

Table 3.1: Applicability of experimental and theoretical issues/methods in this thesis.

Chapter 4
(industry
survey)

Chapter 5
(statechart

study)

Chapter 6
(scenario

study)

Chapter 7
(checklists

experiment)

Chapter 8
(inspection

theory)

Student subjects — Yes Partially Yes —
Protocol analysis — — Yes — —
Coding Yes Yes Yes Yes —
Log-linear modelling — — — — Yes
Logistic modelling — — — Yes Yes
Survival modelling — — — Yes —
Bayesian networks — — — — Yes

The model proposed in Chapter 8, Section 8.2 is partially described by a Compact
Bayesian Network (CBN) notation. CBN itself is a proposed extension to the standard
BN notation, and as such is described in Section 8.2.4 rather than in this chapter.

46 Chapter 3. Methodological Background

Chapter 4

Prevalent Inspection Practices

“We’re for the compulsory serving of asparagus at breakfast, free corsets for the
under-fives and the abolition of slavery.”

— Blackadder the Third

This chapter describes an industry survey conducted to identify common peer review
practices, and the circumstances of their use or potential use (as per the first research
question posed in Chapter 1). Results from this survey help frame and inform the
approaches taken in subsequent chapters. The survey also finds direct opportunities to
improve software peer review practice (and particularly inspection practice) so as to
reduce overall costs.

Current inspection literature (as discussed in Chapter 2, sections 2.2 and 2.3.5) dis-
cusses numerous techniques for improving software comprehension and defect detection,
focusing on more important defects or otherwise managing inspection resources for the
benefit of software quality. It is not clear which of these methods, if any, are actually
being adopted by industry. Any disparities that do exist may indicate missed oppor-
tunities to properly adapt new techniques to real world situations, or to communicate
their effectiveness to industry.

Further, feedback from industry sources is essential to maintaining the relevance of
software engineering research. For instance, there is comparatively little value in devel-
oping a reading technique to detect defects in artefacts that are hardly ever used. The
principles behind a technique may be obscured if the context for which it was envisaged
does not appear relevant.

To these ends, the survey asked questions relating to the frequency, length and cost

48 Chapter 4. Prevalent Inspection Practices

effectiveness of peer review activities, reading techniques used, phases of development
and effort expended therein, artefacts used and reviewed, standardisation of those arte-
facts and the tools used in their creation. Such information broadly illustrates the use
of peer reviews, and by implication whether they are being used appropriately. The
applicability of reading techniques to industry can thus be inferred based on their ap-
plicability to certain types of artefacts and artefact properties. These artefact types,
properties and combinations thereof also suggest how software inspection reference
models might be instantiated, such that they are widely-representative of real-world
software development.

4.1 Survey Process

4.1.1 Online Questionnaire

The survey utilised an online questionnaire. This diminished the potential for data
entry errors, but also provided other important advantages:

• Providing a URL to potential respondents is logistically easier than sending them
a printed questionnaire, or requiring that they print it themselves, and then
collecting it afterwards. This is true regardless of the method of recruitment. In-
ternet access is a virtual certainty for software engineering industry professionals.

• An electronic questionnaire allows for multiple-choice answers to be dynamically
generated based on responses to other questions. For example, respondents are
asked to indicate which artefacts are used in which phases of development, based
on sets of artefacts and phases identified in previous questions. Mapping one to
the other is relatively straightforward if the possible answers have been generated
automatically, but may be tedious and confusing if done on paper.

• Similarly, a question can be “disabled” if it is irrelevant given previous responses.
This helps reduce potential confusion.

The questionnaire was principally multiple-choice, and for many questions respondents
were able to select multiple answers. For some questions they were asked to provide (if
necessary) a comma-separated list of answers. No question (except the final “general
comments” question) asked for free-form discussion. However, respondents were given
the opportunity to provide free-form comments through pop-up input fields marked
“Comment on this question”.

4.1. Survey Process 49

The questionnaire asked for “one person (or more) within your organisation, depart-
ment or team” to complete the questions, and that this person be “well-informed of
the software development activities therein”. Further, respondents were encouraged to
say “what actually happens in your organisation/department/team, not just what is
written down”.

4.1.2 Preliminary Survey

Several industry professionals were asked to provide preliminary feedback on the ini-
tial questionnaire, to assess the relevance of the questions and appropriateness of the
provided multiple-choice answers.

In response to this feedback, some additional multiple-choice answers were added to
the questionnaire. Also, an allowance was made for optional, open-ended comments to
be provided for any given question.

4.1.3 Selection and Recruitment of Respondents

Software engineering organisations were selected from the online membership list of
the Australian Information Industry Association (AIIA)1. The website of each member
organisation was consulted to determine whether they plausibly developed software, in
which case their contact details were recorded.

Initially, organisations were contacted by email. An invitation to participate in the
survey was sent to 250 email addresses. However, where multiple email addresses were
available for the same organisation, sometimes all of them were used. This may have
contributed to potential respondents regarding the mail-out as spam. This initial mail-
out received 13 responses.

A second mail-out was conducted using organisations’ street or postal addresses. This
used a list of 217 addresses, produced by adding or removing organisations depending
on the availability of their physical addresses compared to email addresses and whether
they had already responded. Only one letter was sent to each organisation, and each
envelope contained a piece of confectionery intended to compensate respondents for
their time. The second mail-out received 18 responses, including two from organisations
not directly contacted. (10 envelopes were returned due to the intended recipient having
left the address, or for other, unspecified reasons.)

1http://aiia.com.au

50 Chapter 4. Prevalent Inspection Practices

Thus, the survey collected data from 31 organisations.

4.1.4 Classification Scheme

Responses were stored initially in a flat-file format, which included verbatim all input
given by respondents. This data was classified in a semi-automatic process that entailed
entry into a database. The classification scheme was not a broad specification for
classifying arbitrary responses in the vein of traditional coding schemes, but rather a
precise mapping of raw input values to classifications. Classification was conducted by
a script utilising this mapping.

The development of such a scheme overlapped with the coding process itself, since
human judgement was required to update the mapping to accommodate new data.
This approach is advantageous for the following reasons:

• two identical responses are automatically given the same classification;
• two equivalent responses will be documented beside each other, and so are unlikely

to be classified differently; and
• the classification scheme can be freely modified even after responses have been

classified, without needing to manually re-code data.

Many questions on the questionnaire allowed respondents to enter additional answers
not accounted for among the multiple-choice options given. For questions where this
was not allowed, the mapping was trivial.

In three cases, there was a preliminary, manual component to the coding process. Each
of these is discussed below.

1. One respondent did not select an option for the question “On average, how often
are inspections, reviews or walkthroughs carried out?” As a result, the question-
naire disallowed answers to all other peer review related questions. After an email
exchange, the respondent submitted a second response, containing answers to the
peer review questions. These were manually merged into the original response.

2. In response to the question “Which of the artefacts are subject to regular in-
spection/review/walkthrough?” one respondent disregarded the multiple-choice
options and wrote “all” in the free-form comment section. The response file was
edited to remove the comment and add a “yes” answer for each artefact.

3. The automated script was unable to process one comment due to formatting

4.2. Focus of Analysis 51

Table 4.1: The exact wording of the options for the inspection techniques question (i.e.
“For the artefacts under inspection in a typical inspection/review/walkthrough process, in-
spectors:”).

Technique Description (Inspectors. . .)

Checklists “. . . consult a checklist of potential defects”.
Use case scenarios “. . . traverse the artefacts according to use case scenarios”.
Verification tool(s) “. . . use a software tool to automatically check for certain types of de-

fects”.
Artefact
cross-referencing

“. . . frequently reference other documents / diagrams / code not under
inspection”.

Different perspectives “. . . are each asked to examine the artefacts from different perspectives”.
Visualisation tool(s) “. . . use a software tool to visualise or highlight aspects of the artefacts”.
Artefact re-creation “. . . actively create other documents / diagrams / code”.
Detailed procedure “. . . follow a detailed procedure (other than simply a checklist)”.
Abstraction “. . . actively re-create or reverse engineer abstract descriptions”.

limitations. The comment was manually re-formatted.

4.2 Focus of Analysis

The survey encompassed a wide range of software engineering topics. The focus of this
chapter is on analysis of the subset of survey questions that help determine how peer
reviews are used in industry, and how their use might be improved. Those questions
are listed in Figure 4.1.

Answers to questions regarding peer review frequency, length and the number of times
an artefact is reviewed help illustrate the extent to which reviews are being conducted.
Respondents reported the relative efficacy of peer reviews compared to testing, effec-
tively giving a measure of the importance of peer reviews to surveyed organisations.
As shown in Table 4.1, respondents were also asked about the current use of reading
techniques and tools in peer reviews. This indicates what peer review mechanisms are
being successfully applied, and by implication where further research could be directed.

Questions related to the use of specific programming languages, diagrammatic notations
and textual artefacts help determine which of the existing reading techniques, if applied,
might be able to improve peer review efficacy across a large range of organisations.
Respondents were asked which of these artefacts were subject to review, indicating
where opportunities for different/additional peer reviews may lie. Questions concerning
the use of development tools — particularly IDEs and CASE tools — help illustrate
the environments in which particular peer review mechanisms can operate.

52 Chapter 4. Prevalent Inspection Practices

Contextual Questions
• What domain(s) does your organisation / department / team develop software for?
• What type(s) of software are typically produced?
• How is your software typically used or supplied?
• At any one time, how many distinct, significant software projects are typically undertaken

by your organisation/department/team?
• How many people are assigned to a typical software project?
• How many people are assigned to maintain a typical software system?

Inspection Characteristics
• On average, how often are inspections, reviews or walkthroughs carried out?
• On average, how many times is an individual artefact subjected to an inspec-

tion/review/walkthrough?
• On average, how long does each inspection/review/walkthrough take?
• Compared to testing, how cost-effective are the inspections/reviews/walkthroughs con-

ducted within your organisation/department/team?)
• The answer above is based on: . . . Respondents select “Informal observation / experi-

ence”, “Formal quantitative analysis” or “Not applicable”.
• For the artefacts under inspection in a typical inspection/review/walkthrough process,

inspectors: . . . Respondents select one or more review techniques.
• What development methods(s) are typically used? Respondents select one or more

options, one of which is “Formal Software Inspection (with defined roles and stages)”.
Development Phases
• List each of the distinct phases (if any) that software projects typically go through.
• How much effort does each phase of a typical project demand, as a percentage of total

project workload?
Artefacts
• What programming language(s) are regularly used?
• What diagrammatic notation(s) are regularly used to model software?
• What textual artefact(s) are used to describe software?
• Which of the artefacts are subject to regular inspection/review/walkthrough?
• Are specific standards set for each artefact? For each artefact, respondents select “stan-

dard formatting/layout”, “standard creation/derivation process”, both or neither.
• Which artefacts are actively developed OR referred to at each phase of a typical software

project?
Tool Support
• What tool(s) are typically used to create source code?
• What tool(s) are typically used to create software diagrams?

Figure 4.1: The subset of survey questions relevant to software peer review.

4.2. Focus of Analysis 53

Though the raw tallies of responses for many questions are directly of interest, some
additional derived metrics also serve to illustrate how reviews are or could be applied
to different phases and different artefacts. Such quantities include:

• the average estimated effort spent in a given phase of a project;
• the average proportion of a project (by workload) in which a given artefact is

used — artefact prevalence;
• the number of different types of artefacts used in a given phase — artefact diver-

sity ;
• the most commonly-used combinations of artefact types; and
• the proportion of artefacts used in a given phase that are reviewed — reviews-by-

phase.

For each phase, respondents indicated one of several set ranges of values (e.g. 20–30%,
40–60%, etc.). To determine average effort for a given phase, each range first had to be
resolved into a scalar estimate. For each response, estimates were chosen from within
each range such that their sum was 100%. If `r and hr are vectors of equal length
representing the lower and upper bounds on effort for each phase, for response r, then
the vector of effort estimates fr can be calculated as follows:

mr =
100−

∑
`r∑

hr −
∑
`r

fr = `r +mr (hr − `r) (4.1)

The variable mi represents the proportion of each range that must be added to each
lower bound, in order for the sum of the estimates to equal 100%. For example,
respondent r might list three phases, with the associated effort ranges 10–20%, 20–30%
and 60–80%. Thus, `r = (10, 20, 60) and ur = (20, 30, 80). By the above equations,
mr = 0.25 and so fr = (12.5, 22.5, 65). The effort estimates are therefore 12.5%, 22.5%
and 65% of project workload, for the three phases, which add up to 100% and all lie
within their respective ranges. Even if the sum of the lower bounds exceeds 100% or
the sum of the upper bounds falls short of 100%, estimates can still be derived, outside
but in the vicinity of the given ranges.

Since respondents listed their own phases, some of which were more fine-grained than
others, these had to be aggregated before any averaging could be done. Six phase
groups were chosen to represent the most commonly-appearing phases:

54 Chapter 4. Prevalent Inspection Practices

1. analysis/requirements (representing any analysis, requirements, quotation and
planning phases);

2. architecture/design;
3. development;
4. testing/QA (representing any QA, inspection, test planning, unit testing, inte-

gration testing, system testing, acceptance testing or generic testing phases);
5. delivery; and
6. support/maintenance.

Where several of a respondent’s listed phases fell under a given heading, the relevant
effort estimates were added.

These effort estimates are prone to being slightly inflated. The inflation arises where
respondents omit one phase but include its associated activities in another phase. This
is mitigated by aggregating phases. However, for instance, it still means that some
amount of the average development effort is probably testing effort, because respondents
who omit testing as a phase likely include testing in their estimates for development.
This amount is not subtracted from average testing effort because the latter is derived
only from respondents who do list one or more testing phases. The magnitude of this
inflationary effect is discussed in Section 4.4.2.

Artefact prevalence combines the effort estimates with each respondent’s indication of
which artefacts are used or referred to in each phase. Based on the set of artefacts and
phases a respondent listed, the online questionnaire asked respondents to match one to
the other. The result is a binary vector ura for each respondent r and artefact type a,
containing a value for each phase. A value of one indicates that the given artefact is
relevant in the given phase, while zero indicates otherwise.

To calculate artefact prevalence, the effort estimates for each phase in which a given
artefact is used are added, yielding the proportion of the project during which the
artefact is of interest. In the context of the previous example (where respondent r’s
effort estimates are 12.5%, 22.5% and 65% for three different phases), an artefact used
in the first two phases would have a prevalence of 12.5% + 22.5% = 35%. That is, 35%
of project workload is potentially related to that artefact. Another artefact used in the
last two phases would have a prevalence of 87.5%.

These values are then averaged across all applicable responses. This is reflected in the
following equation, where n = 31 is the total number of respondents and na is the
number of respondents who listed artefact a:

4.2. Focus of Analysis 55

Prevalence(a) =
1
na

n∑
r=1

ura · fr (4.2)

No aggregation of phases is necessary for ura here, because the phases are removed by
the dot product before the results for different responses are averaged. However, aggre-
gation of phases is required for artefact diversity, artefact combinations and reviews-
by-phase. Therefore, u′ra is defined to be a fixed-size version of ura, in which phases
have been aggregated into the six phase groups.

Artefact diversity is obtained by summing values in u′ra, and then averaging over the
responses. First, the number of artefacts used in phase j, according to respondent r,
is calculated as follows:

yrj =
∑
a

uraj

If nj represents the number of respondents who listed phase j, then the average number
of artefacts used in each phase (artefact diversity) is:

Diversity(j) =
1
nj

n∑
r=1

yrj (4.3)

Artefact diversity and reviews-by-phase must be calculated on a phase-by-phase basis
because, even once phases are aggregated, different phase groups vary substantially in
the number of responses to which they apply. Dividing the sum by the total number of
responses n rather than nj would produce underestimates for the less common phases.

Artefact combinations are obtained by first taking the list of artefacts used in each phase
in each response. For each such list, every possible x-way combination of those artefacts
is generated, for x > 1. For each response, the union of these sets of combinations is
then taken, so that each surveyed organisation has a single list of artefact combinations.
Thus, artefact combinations are not merely a statement that particular sets of artefacts
are used by the same organisation — artefacts in combination must also be used in the
same development phase. The number of responses in which each artefact combination
appears is counted. If an x-way combination is a subset of an (x+ 1)-way combination
and both are equally common, the x-way combination is ignored.

Reviews-by-phase relies on whether a surveyed organisation conducts peer reviews for

56 Chapter 4. Prevalent Inspection Practices

3D/graphical apps
Embedded control

Miscellanous
Libraries

Embedded apps
Networking apps

Desktop GUI apps
Web apps

Proportion of responses (%)

0 20 40 60 80

3
3

10
13

19
52

58
77

Figure 4.2: Software types.

a given artefact. The latter information (reviews-by-artefact) is represented by the
binary variable vra for each respondent. The average proportion of artefacts reviewed
in phase j can be calculated as follows:

Reviews-by-phase(j) =
1
nj

n∑
r=1

uraj · vra
yrj

(4.4)

4.3 Surveyed Organisations

As a result of the two mail outs, 31 responses were received from organisations around
Australia. These responses were intended to represent a broad and unbiased sample
of software organisations. Any substantial biases should be determinable from the
responses to the first six questions listed in Figure 4.1. This section describes the
overall characteristics of the surveyed organisations, so that the results and discussion
that follow can be interpreted accordingly.

26% of respondents said they were not restricted to any particular domain, though
some of these did also indicate specific domains. The same number indicated they
were involved in developing software for business or a generic business-related concern
(payrolls, finance, e-commerce or enterprise). 19% developed software for government
or the public sector. Other domains given by multiple respondents included accounting,
banking, healthcare, insurance, media and telecommunications. Domains listed by only
one respondent included automotive, aviation, distribution, education, environment,
gaming, IT, manufacturing, mining, printing, retail, security and transport.

Figure 4.2 shows the proportion of organisations that develop each of a list of software

4.3. Surveyed Organisations 57

Freeware
Supporting a free service

Part of an off-the-shelf system
In-house use

Supporting a paid service
Off-the-shelf

Customised versions
Contracted

Proportion of responses (%)

0 10 20 30 40 50 60

3
6

13
26

35
52
52

55

Figure 4.3: Software use/distribution models.

>50
20–50
10–20

6–10
3–5

2
1

Proportion of responses (%)

0 10 20 30 40

3
3

6
26

39
16

3

P
ro

je
ct

s

Figure 4.4: Typical number of concurrent software projects.

types. Three quarters of all respondents develop web applications, compared to about
half who develop desktop GUI applications and networking applications.

Figure 4.3 shows the relevance of a fixed set of use/distribution models to respondents.
For most respondents, two or more options were applicable. About half the surveyed
organisations develop software for a given external organisation as per a contract, while
half supply customised versions to different organisations, and half develop stand-alone
off-the-shelf software packages. Very few respondents indicated distribution free-of-
charge to the general public, or in support of a free service.

About a third of respondents said their software supports a paid service. This may
include a diverse range of services, from network-based services to support/maintenance
contracts.

As Figure 4.4 shows, most respondents reported 2–10 concurrent software projects,
though a few had considerably more. As shown in Figure 4.5, most also reported devel-
opment team sizes of 2–10 people, with the majority reporting 2–5 people. Maintenance

58 Chapter 4. Prevalent Inspection Practices

>20

11–20

6–10

2–5

1

Proportion of responses (%)

0 20 40 60 80

4
3

4
6

4
23

71
61

18
6

T
ea

m
si

ze

Development
Maintenance

Figure 4.5: Development and maintenance team sizes.

team sizes were mostly 2–5 people, with some consisting of a single person. No data
was collected on staff numbers, because this can be ambiguous where organisations are
not primarily focused on software development.

No data was collected on the individuals actually filling out the questionnaire (other
than their contact details, in confidence).

4.4 Results

Most of the figures referenced in this section show data on the proportion of respon-
dents who gave particular answers. Where aggregate categories are shown (such as
“others”), the values are not generally the sum of all aggregated answers, because a
given respondent may select multiple answers.

Comments made by respondents are also described here. For each question, only a small
minority of respondents (if any) provided a comment. Thus, this is a fundamentally
qualitative aspect of the survey, and the number of comments making a given argument
or reflecting a given point of view has no particular meaning. These comments provide
insight into more subtle aspects of the issues covered by the questionnaire.

4.4. Results 59

Never
<1 per month

Monthly
Every 2–4 weeks

Fortnightly
Every 1–2 weeks

Weekly
1–2 per week
>2 per week

Proportion of responses (%)

0 5 10 15 20 25 30

13
0

7
7

3
17

7
13

27

Figure 4.6: Frequency of peer review activities.

>20
10–20

5–10
2–5
1–2

1
Maybe 1

Proportion of applicable responses (%)

0 5 10 15 20 25 30 35

5
5
5

27
32

14
14

N
o.

in
sp

ec
ti

on
s

Figure 4.7: Inspections/reviews for a typical artefact.

4.4.1 Overall Peer Review Characteristics

39% of respondents said their organisation conducts formal Software Inspection, with
defined roles and stages. However, peer review activities in general are more widespread.

Figure 4.6 shows the frequency of peer review activities. Two thirds of respondents said
they conduct inspections, reviews or walkthroughs more than once per fortnight. 40%
said these occur more than once per week. Several respondents commented that peer
reviews are done after a task has been completed, and so their frequency depends on
the project. One remarked that “everyone agrees [peer reviews] should be more regular
but deadlines interfere”. Answers to this question were used to determine the number
of respondents who perform some kind of peer review. For the other questions reported
in this subsection, the percentages shown are of respondents who perform peer reviews,
not the total number of respondents.

As shown in Figure 4.7, a majority of respondents said that artefacts are typically

60 Chapter 4. Prevalent Inspection Practices

>4 hours
2–4 hours
1–2 hours

30–60 mins
15–30 mins
<15 mins

Proportion of applicable responses (%)

0 5 10 15 20 25 30 35

0
4

21
25

33
4

Figure 4.8: Length of peer review activities.

Unknown
More cost effective

About the same
Less cost effective

Proportion of applicable responses (%)

0 10 20 30 40

25
38

33
4

Figure 4.9: Cost effectiveness of peer review activities compared to testing.

inspected 1–5 times. One commented that this depends on the artefact. Another
commented that “Once is usually enough, but if more is required then we take stock
and ask ourselves why!”

The lengths of peer review activities is shown in Figure 4.8. For most respondents, peer
review length lies between 15 minutes and two hours. Two thirds of respondents said
that inspections, reviews or walkthroughs lasted less than an hour. Three respondents
said that the length depends on the artefact. One commented that inspection consumes
about half the original coding time, when all components of the inspection process are
included.

Figure 4.9 shows the relative efficacy of peer review activities compared to testing, as
reported by respondents. A quarter indicated that it was not known which is more
effective. Of the rest, half said inspections were more effective, and half said they
were about the same. One indicated they were less effective. When asked whether
their responses were based on informal observation/experience or formal quantitative
analysis, all respondents indicated the former (where applicable).

One respondent questioned the meaningfulness of a comparison of peer review and
testing, given that they are done at different stages of a project. Another pointed
out that “Neither inspections nor testing will cover everything, and while often there

4.4. Results 61

Abstract descriptions
Detailed procedure

Artefact re-creation
Visualisation tool(s)

Different perspectives
Artefact cross-referencing

Verification tool(s)
Use case scenarios

Checklists

Proportion of applicable responses (%)

0 10 20 30 40 50

4
12
12

27
27
27

31
38

42

Figure 4.10: Inspection techniques.

is a considerable overlap, both are required.” A third commented that testing does
not facilitate learning as easily as peer review. Finally, one respondent remarked that
high-level walkthroughs done after analysis are essential as a means of agreeing on
and checking design, but that code walkthroughs — while a good idea — do not have
the same level of importance, and there is generally less pressure from management to
conduct them.

Respondents’ use of a range of peer review techniques is shown in Figure 4.10. The exact
wording of the options as shown to respondents is given in Table 4.1. Most techniques
were used by a substantial minority of respondents. Checklists were used by just under
half of all those who performed peer reviews, while traversal of use case scenarios was
done by almost the same number. One respondent remarked that different strategies
are applicable to different artefacts; that in their case a code review done at each check-
in takes one person ten minutes while reviews of higher-level documentation are aimed
at achieving consensus between different stakeholders.

4.4.2 Development Phases

10% of respondents did not list any specific set of phases through which software
projects progress. Those who did listed up to 11 distinct phases. Examples of the
phases given, after categorisation but before phase aggregation, are as follows:

• requirements → development (the simplest case);
• analysis → requirements → design → development → testing → delivery; and
• requirements→ prototyping→ quotation→ architecture/design→ development
→ unit testing → QA → documentation → acceptance testing → delivery →

62 Chapter 4. Prevalent Inspection Practices

Marketing
Requirements/Design
Development/Testing

Documentation
Prototyping

Support/Maintenance
Delivery

Testing/QA
Architecture/Design

Development
Analysis/Requirements

Proportion of responses (%)

0 20 40 60 80 100

3
3

6
10
10

42
55

65
68

81
81

Figure 4.11: The proportion of respondents who listed different phases. The top six bars
represent the aggregated phase groups, while the others represent phases not included in any
phase group.

Support/Maintenance
Delivery

Testing/QA
Development

Architecture/Design
Analysis/Requirements

Proportion of total project workload (%)

0 10 20 30 40

23
7

14
35

12
10

Figure 4.12: Mean derived estimates for effort spent in different phases.

support/maintenance (the most complex case).

The absence of certain phases (such as testing) from a list does not necessarily indicate
that activities associated with those phases are not performed. Those activities may
instead fall under more broadly-defined phases.

As shown in Figure 4.11, there is a substantial gap between the least common phase
group (support/maintenance) and the most common non-included phases (prototyp-
ing and documentation). Phase groups cover all phases listed by more than 10% of
respondents.

Figure 4.12 shows the mean effort estimates for different phase groups, while Figure 4.13
shows their distribution. The inflationary effect discussed in Section 4.2 can explain
why the sum of the mean effort estimates is greater than 100%.

4.4. Results 63

Support/Maintenance
Delivery

Testing/QA
Development

Architecture/Design
Analysis/Requirements

0 20 40 60 80

Proportion of total project workload (%)

Figure 4.13: Distribution of derived effort estimates for different phases.

To examine the potential size of this inflationary effect, it is assumed that any respon-
dent who listed the development phase but not a testing/QA phase instead included
testing effort under development. There were six such respondents — 24% of all those
who listed the development phase. If it is further assumed that those surveyed organi-
sations undertake the average level of testing (14% of the project workload), then the
development effort shown in Figure 4.12 may be inflated by 3% of the project workload
(0.24×0.14). This is not a meaningful figure, given that respondents chose from ranges
of values spanning 5%, 10% or 20% of project workload.

The effect is difficult to examine in terms of other phases, because equivalent assump-
tions cannot necessarily be made. Where the architecture/design phase is omitted, it
is not certain whether design is included in the analysis/requirements or development
phases, or is not done in any meaningful sense at all. Where the support/maintenance
phase is omitted, this may be because it is not considered part of the same project.

Effort expended in development is substantially greater than in other phases, though
it does not amount to a majority of total workload. About a quarter of project work-
load is spent in maintenance, while about half that again is consumed in each of the
analysis/requirements, architecture/design and testing/QA phases. Delivery accounts
for a relatively small but non-trivial amount of project workload.

4.4.3 Artefacts

The programming languages used by surveyed organisations are shown in Figure 4.14.
Of all languages, SQL and JavaScript were used by the highest proportion of respon-
dents, suggesting extensive development of web-based and/or database-driven applica-
tions. Java and C# had substantially more widespread use than C and C++, which
themselves had only slightly higher use than the set of scripting languages commonly
associated with web development on open-source platforms — Perl, PHP, Python and

64 Chapter 4. Prevalent Inspection Practices

Perl/PHP/Python/Ruby
C/C++

Java/C#

Others
PowerScript

Ruby
Cobol

Python
Delphi/Pascal

PHP
Visual Basic

Perl
C

C++
C#

Java
JavaScript

SQL

Proportion of responses (%)

0 20 40 60 80

35
42

48

19
6

10
10

13
19
19

26
29
29

32
45

48
65

77

Figure 4.14: Regularly used languages.

Ruby. Languages reported by only one respondent included Common Lisp, Objective
C and Progress. One organisation also used a custom-designed language.

Figure 4.15 shows the proportion of surveyed organisations that use different diagram-
matic notations. The extensive use of entity relationship diagrams (ERDs) is commen-
surate with the use of SQL. Flow charts were used by as many surveyed organisations
as UML class diagrams (slightly less than half), though conceivably not to represent the
software itself. One respondent commented that flow charts are not actually used for
development, but for “explaining procedures to users”. Use of specific UML notations
other than the class diagram was relatively low. Only about a quarter of surveyed or-
ganisations used UML use case or sequence diagrams, while other UML diagram types
were less prominent still. This compared to the use of data flow diagrams (DFDs)
by 35% of surveyed organisations. Two respondents indicated that their organisations
were open-minded about the types of diagrams or the level of detail needed.

The use of specific types of textual documents is illustrated in Figure 4.16. About three
quarters of surveyed organisations construct a formal specification/requirements doc-
ument. The majority construct use case scenarios (which are not necessarily separate
from the specification).

4.4. Results 65

UML Diagrams
Non-UML Diagrams

Others
UML Package Diagrams
UML Activity Diagrams

State Transition Diagrams
UML Object Diagrams

UML Sequence Diagrams
UML Use Case Diagrams

Data Flow Diagrams
Flow Charts

UML Class Diagrams
Entity Relationship Diagrams

Proportion of responses (%)

0 20 40 60 80 100

52
81

6
6
6

16
16

23
26

35
45
45

74

Figure 4.15: Regularly used diagram types.

Others
CRC Cards

User Stories
Textual Design Documents

Use Case Scenarios
Formal Spec/Requirements

Proportion of responses (%)

0 20 40 60 80

10
6

35
35

61
77

Figure 4.16: Regularly used textual artefacts.

66 Chapter 4. Prevalent Inspection Practices

Those languages, diagram notations and other documents used by at least 25% of
surveyed organisations will be referred to as common artefact types. Metrics associated
with the less common varieties are less reliable due to the small sample size.

Standardisation of artefact formatting/layout and creation/derivation is shown in Fig-
ure 4.17. For almost all artefact types, formatting/layout standards were more common
than creation/derivation standards; in many cases twice as common.

4.4.4 Artefact Usage

Artefact prevalence is shown in Figure 4.18. About half the common artefact types fall
within 40–47% of project workload. Artefacts associated with analysis and requirements
make up the top three, while C code is the least prevalent type of artefact.

Figure 4.19 shows artefact diversity, which ranges from an average of 2.7 different
artefact types in analysis/requirements up to 7.2 in development.

Combinations of artefacts used in some development phase are shown in Figure 4.20.
In total there were 4,890 distinct artefact combinations (excluding subsets as discussed
in Section 4.2), but this defies meaningful analysis. Therefore, only those combinations
reported in at least 25% of responses are shown, and all of these are 2-way, 3-way or
4-way combinations. From the 20 artefact combinations shown, 15 involve the formal
specification or requirements document, while 9 involve entity relationship diagrams
and 8 involve SQL. All the combinations shown are combinations of these three artefact
types plus at most one other.

4.4.5 Peer Review Usage

The level of reviewing undertaken for each type of artefact is shown in Figure 4.21.
The level of reviewing varies widely across different programming languages and differ-
ent diagrammatic notations. Just over half of surveyed organisations that use formal
specifications/requirements documents review them.

Figure 4.22 shows the proportion of artefacts reviewed in each phase. The analy-
sis/requirements, architecture/design, development and testing/QA phases are all ap-
proximately equal in this respect. The delivery phase has a substantially higher pro-
portion of reviewed artefacts, while a much smaller proportion are reviewed in sup-
port/maintenance.

4.4. Results 67

Data Flow Diagrams

User Stories

Use Case Scenarios

Flow Charts

UML Class Diagrams

Entity Relationship Diagrams

JavaScript

UML Use Case Diagrams

SQL

Perl

C

Textual Design Documents

Visual Basic

C++

Formal Spec/Requirements

Java

C#

Proportion of applicable responses (%)

0 10 20 30 40 50 60 70

18
9

0
18

11
26

14
29

14
29

17
35

25
35

25
38

21
42

22
44

11
44

27
45

38
50

20
50

25
54

47
60

43
64

Formatting/layout standards
Creation/derivation standards

Figure 4.17: The use of formatting/layout and creation/derivation standards for common
artefact types.

68 Chapter 4. Prevalent Inspection Practices

C
Perl

Visual Basic
Data Flow Diagrams

C#
C++

Textual Design Documents
Entity Relationship Diagrams

JavaScript
UML Class Diagrams

UML Use Case Diagrams
SQL

Flow Charts
Java

Use Case Scenarios
Formal Spec/Requirements

User Stories

Mean proportion of project workload (%)

0 10 20 30 40 50 60 70

24
29

34
37

40
41
41

43
43
44
45
45

47
55

58
68
68

Figure 4.18: Artefact prevalence — the mean proportion of the project (by workload) during
which each common type of artefact is used (i.e. developed or referred to).

Support/Maintenance
Delivery

Testing/QA
Development

Architecture/Design
Analysis/Requirements

Different types of artefacts used

0 2 4 6 8

5.7
3.8

5.1
7.2

5.7
2.7

Figure 4.19: Artefact diversity — the mean number of different types of artefacts used in
each development phase.

4.4. Results 69

Flow Charts, Formal Spec
ERD, Flow Charts

Formal Spec, User Stories
SQL, UML Class Diagrams, ERD, Formal Spec

SQL, Formal Spec, Use Case Scenarios
C#, SQL, Formal Spec

Java, ERD
Java, SQL

JavaScript, SQL, ERD, Formal Spec
ERD, Formal Spec, Use Case Scenarios

UML Class Diagrams, Formal Spec
UML Class Diagrams, ERD

C#, Formal Spec
JavaScript, ERD

Java, Formal Spec
SQL, ERD, Formal Spec

JavaScript, SQL, Formal Spec
ERD, Formal Spec

Formal Spec, Use Case Scenarios
SQL, Formal Spec

Proportion of responses (%)

0 10 20 30 40 50 60

26
26
26
26
26
26
26
26

29
29
29
29
29

32
32

39
39

45
45

52

Figure 4.20: The use of several artefacts in combination in some phase. (Here, “Formal
Spec” also includes general requirements documents.)

Flow Charts
Perl

C
Entity Relationship Diagrams

User Stories
UML Use Case Diagrams

Data Flow Diagrams
Textual Design Documents

C++
UML Class Diagrams

Use Case Scenarios
JavaScript

Formal Spec/Requirements
SQL
C#

Java
Visual Basic

Proportion of applicable responses (%)

0 20 40 60 80

29
33
33
35

36
38

45
45

50
50

53
55

58
58

64
73

75

Figure 4.21: Reviews-by-artefact — the number of surveyed organisations that review each
common type of artefact, as a proportion of organisations that use them.

70 Chapter 4. Prevalent Inspection Practices

Support/Maintenance
Delivery

Testing/QA
Development

Architecture/Design
Analysis/Requirements

Mean proportion of artefact types reviewed (%)

0 20 40 60 80 100

30
88

62
58
59

55

Figure 4.22: Reviews-by-phase — the mean proportion of artefact types reviewed in each
development phase.

IDE (any)

Others
Sybase PowerBuilder

Custom tool
NetBeans

Eclipse
Text editor (any)
MS Visual Studio

Proportion of responses (%)

0 20 40 60 80 100

87

13
6

10
13

35
55
55

Figure 4.23: Source code creation tools.

4.4.6 Tool Support

Figure 4.23 shows the tools used in the construction of source code. Predominantly
these are IDEs and text editors, IDEs being almost ubiquitous. Tools reported by only
one respondent included Borland Delphi, IntelliJ IDEA, Microsoft SQL Server Man-
agement Studio and xdoclet. A small number of respondents reported using multiple
IDEs — three listed both Microsoft Visual Studio and Eclipse, while two listed both
NetBeans and Eclipse.

Tools used in the construction of software diagrams are shown in Figure 4.24. Notably,
CASE tool usage is much less pervasive than drawing tools and non-computerised
diagrams. Here, tools reported by only one respondent included Metastorm Provision,
Dia, Microsoft SQL Server Management Studio, Microsoft Word and OpenOffice.

4.5. Discussion 71

CASE tool (any)
Drawing tool (any)

Others
Sybase PowerDesigner

Sparx Enterprise Architect
Rational Rose

MS Visio
Whiteboard, paper, etc.

Proportion of responses (%)

0 10 20 30 40 50 60 70

35
68

16
6
6

19
68
68

Figure 4.24: Diagram creation tools. (CASE tools included Rational Rose, Sparx Enterprise
Architect, Sybase PowerDesigner and Metastorm Provision.)

4.5 Discussion

The organisations participating in this survey included a large number that develop
web-based and/or database-driven applications. Correspondingly, the most widely-
used languages were JavaScript and SQL, and the most widely used diagrammatic
notation was the entity relationship diagram (used by three quarters of respondents).
It is not certain that this reflects the broader software development industry. However,
absent any identifiable cause for bias in the selection of respondents, the respondents’
organisations must at least represent a large segment of the industry.

4.5.1 Overall Peer Review Practice

From the peer review information outlined in Section 4.4.1, most organisations appear
to understand the benefits of software peer reviews, even if they do not have quantitative
data to support them. Most undertake peer review activities of some kind, and there is
evidence in Figure 4.10 that elements of reading techniques proposed in the academic
literature (outlined in Chapter 2, Section 2.2) are being implemented.

Most respondents’ peer reviews were under the two-hour time limit recommended by
Fagan (1976) for formal Software Inspection. Many respondents reported that less
than half an hour is spent in peer reviews, raising the question of whether reviews of
such short durations can be effective. Almost all respondents were positive or neutral
about the effectiveness of peer reviews compared to testing. However, the absence of
formal quantitative analysis suggests that little emphasis is being placed on objectively
verifying peer review efficacy. There may be little motivation for an organisation to
alter the peer review process without an objective evaluation of existing techniques as

72 Chapter 4. Prevalent Inspection Practices

used within the organisation. If so, this would represent a barrier to the adoption of
new reading techniques.

The results presented in the previous section suggests that there are opportunities to
improve peer review practices, with respect to comprehension, reading techniques and
the overall peer review strategy. The effort associated with the testing/QA, delivery
and support/maintenance phases is about 44% of total project workload, which occurs
after the phases in which the software is actually built. Reworking defects found in
these phases may contribute substantially to this figure. If those same defects had
been discovered nearer the point of origin (i.e. in the analysis/requirements, architec-
ture/design or development phases), much of this rework effort might be saved.

About 60% of artefact types are being reviewed in the analysis/requirements, archi-
tecture/design and development phases, much fewer than are reviewed in the delivery
phase. A higher review rate in earlier phases is certainly possible, and this would
increase the number of defects detected. However, effective peer reviews of a given
artefact type depends on the properties of the notation itself, not just on the motiva-
tion of the organisation. This is reflected in Figure 4.21, which shows widely differing
review rates for different types of artefacts. The availability of an appropriate reading
technique is likely a factor influencing the propensity of organisations to review a given
type of artefact.

4.5.2 Tools and Techniques

From Figure 4.10, the most prevalent techniques remain checklist-based ones, though
they still account for less than half of all respondents. By contrast, traversing an
artefact according to use case scenarios (one of the main principles of Usage-Based
Reading — UBR) has gained almost the same level of support, despite it being a much
more recent proposal in the academic literature. This may simply reflect use cases
being a readily used and useful inspection aid. More comprehensive forms of active
guidance, such as entailed by variants of Scenario Based Reading (SBR), appear to
have very little support, and abstraction-based techniques still less.

Only a quarter of respondents indicated that artefact cross-referencing takes place.
With artefact diversity reaching 7.2 distinct artefact types on average in the devel-
opment phase, this is likely indicative of the difficulty of cross referencing more than
the lack of opportunities for it. The same number of respondents indicated use of vi-
sualisation tools that might help to facilitate artefact cross referencing and generally
help address delocalisation. With a higher utilisation of such tools, it is reasonable

4.5. Discussion 73

to suppose that artefact cross referencing would also be more prevalent. Certain de-
fects, in the form of inconsistencies between multiple artefacts, are unlikely to be found
otherwise.

Similarly under-utilised were verification tools, used in only a third of cases, despite
Fagan (2002) recommending against checklists due to the existence of such tools.

4.5.3 Artefact Standardisation

Most reading techniques could be applied to code, given its high level of standardisation.
However, code in many languages is already relatively well-reviewed, notable exceptions
being C and Perl code. Other artefacts where reviews are lacking include flow charts,
entity relationship diagrams, user stories and use case diagrams, and to a somewhat
lesser extent data flow diagrams and textual design documents. These include a range
of high-level artefact types, most of which are not well-standardised. Techniques most
suited to reviewing relatively unstandardised artefacts (such as flow charts, use case
scenarios, user stories and data flow diagrams, as shown in Figure 4.17) are likely to
include those employing minimal active guidance.

Survey results indicate that about half of software development organisations adhere to
standardised requirements documents. However, other than checklists, relatively few or-
ganisations utilise active guidance activities. As discussed above, checklists themselves
were used by less than half of the organisations surveyed. From this, two inferences are
possible:

• that requirements documents are not sufficiently standardised, possibly hindering
more extensive use of checklists; and

• that more comprehensive forms of active guidance (for instance, various forms
of Scenario Based Reading) are under-utilised, not taking advantage of existing
standardisation of requirements documents.

The use of agile methods may limit the level of standardisation that can effectively
be implemented. However, many high-level artefacts also tend to be used towards the
beginning of a project, where the types of artefacts (and hence types of knowledge)
present are relatively constrained. This in itself supports the case for active guidance
when inspecting such artefacts.

74 Chapter 4. Prevalent Inspection Practices

4.6 Summary

This chapter has discussed the methodology, results and analysis of an industry sur-
vey. Software development organisations around Australia provided survey responses
indicating the use of different artefacts and practices, particularly in the context of
software peer review.

The aggregated results indicate that peer reviews are widely used, but that opportuni-
ties exist for improvement, with respect to:

• objective evaluating of peer review using quantitative data;
• reducing costs incurred in later project phases through additional peer review;

and
• reviewing additional types of artefacts, particularly early in a project and also

where standardisation occurs.

The survey found that checklists and use case traversal were two commonly used inspec-
tion techniques. Chapters 6 and 7 discuss empirical studies related to these techniques.

The survey also found that multiple artefact types are generally used in almost every
phase of software development. An average of 7.2 distinct documents, notations or
languages were being used in the main development phase itself. Such artefact diver-
sity emphasises the importance of understanding artefact interrelationships and thus
addressing delocalisation. Relatively limited use is made of visualisation tools, meaning
that artefact interrelationships must often be understood by inspectors without sup-
port. The next chapter examines artefact interrelationships more closely, to investigate
how inspectors identify them.

Chapter 5

Comprehension and Artefact

Interrelationships

“There’s Grand Duchess Sophia of Turin — we’ll never get her to marry him.”
“Why not?”
“Because she’s met him.”

— Blackadder the Third

Delocalisation is a challenge facing software comprehension, and thus inspection. If
inspectors do not attempt to understand relationships between different artefacts and
parts thereof, then defects pertaining to such relationships will not be detected. How-
ever, while some artefact interrelationships are straightforward and unambiguous —
especially those between artefacts of the same type — others are not so. Even if the
internal semantics of two different artefacts are simple and well-understood, their in-
terrelationships may be complex.

This chapter partially addresses the second research question from Chapter 1: What
are the challenges inherent in comprehending a system under inspection?

To help provide an answer, this chapter presents a qualitative, empirical analysis of
the difficulties encountered in identifying artefact interrelationships. In this case, the
artefacts chosen are UML statecharts and Java source code. Participants were asked
to identify sections of source code that implemented transitions in the statechart. The
study did not involve an inspection per se, but rather an exercise in comprehension.
Participants were not asked to find defects, and none were seeded. The study sought
to observe the identification of artefact interrelationships — an essential component of
multiple-artefact inspections.

76 Chapter 5. Comprehension and Artefact Interrelationships

AwaitingData

Finished

Stopped

data
received

5
stopDownload()

2

after(60 secs)3

startDownload()1

when(download
finished)

4

object destroyed
6

object
destroyed

7

Figure 5.1: The UML statechart for the Download class.

Participants’ efforts were compared against a model solution, derived systematically
by expert agreement. Despite the relative simplicity and small scale of the artefacts in
question, none of the twenty-eight participants could identify all the code that could
reasonably be said to implement each statechart transition.

5.1 Methodology

5.1.1 Participants

Participants in the study included 28 third- and fourth-year students. The student
were enrolled in undergraduate programs in software engineering, computer science or
information technology at Curtin University of Technology. All had previously com-
pleted a UML design subject. All participants were volunteers, and were offered no
incentives other than experience gained.

5.1.2 Materials

Participants were given an instruction sheet along with a UML statechart and the Java
source code for a single class. They had not previously seen any of these materials. The
class under inspection was a simple URL downloader, designed to download a given file
in a new thread and respond to requests to stop and restart the download.

Figure 5.1 shows the UML statechart presented to participants. The numbered anno-

5.1. Methodology 77

tations were used in the study and will be used in this chapter to refer to specific state
transitions. An unnumbered, initial transition exists to “AwaitingData” state, but this
was not considered in the exercise. The Java source code implementing the statechart
is listed in full in Appendix B, Section B.2 and consists of a single class containing
seventy-one lines of code (excluding blank lines, comments and brace-only lines).

The instruction sheet (also shown in Appendix B, Section B.1) provided some docu-
mentation for the source code, including a description of the algorithm and the purpose
of the three most important methods (run(), startDownload() and stopDownload()).
This included a brief discussion of threading, as used (minimally) in the system.

5.1.3 Procedure

Three sessions were organised over four weeks. Each participant attended one session
only. Besides the descriptions on the instruction sheet, no training was provided for
the task.

The instruction sheet (shown in Appendix B, Section B.1) asked participants to “de-
termine which sections of the source code implement each state transition in the state-
chart”, and also provided background information intended to assist in understanding
the source code. Some participants had queries about the exact meaning of the word
“implement”. This issue is discussed in Section 5.1.5. No time limits were imposed on
participants.

After matching sections of the code to the state transitions, participants were asked to
complete a questionnaire gauging their perceived understanding of the task. All but
two also agreed to a recorded interview, which attempted to establish what techniques
participants had used.

5.1.4 Coding Scheme

Participants usually chose to mark a source code printout to indicate which parts of
the code they thought implemented each state transition. In a few cases participants
stated this mapping elsewhere. These responses were classified by the area of code
they appeared in or referred to. In total, fourteen classifications were used, as shown
in figures 5.2 to 5.9. Only code constituting method definitions was considered. Par-
ticipants were not asked to consider the initial unnumbered transition, so this has been
disregarded.

78 Chapter 5. Comprehension and Artefact Interrelationships

/**
* Creates a new Download object. The download is automatically started in
* a new thread.
*/

public Download(URL url, String file) throws IOException
{

this.url = url;
this.file = file;
startDownload();

}

Figure 5.2: Fragment A:constructor — the constructor for the Download class.
A′:const-return denotes the point in the method just prior to the closing brace.

Of the fourteen classifications, A to K represent non-overlapping fragments of code. The
remaining three classifications were used to more precisely account for certain special
cases. A′ and H′ represent the end points of A and H, where participants indicated that
a state transition would occur immediately before a closing brace. H1 refers to the first
line of H, since a number of participants specifically indicated this line rather than the
whole of H.

Often participants did not indicate the exact extent of code fragments to which they
were referring. Some occasionally indicated only part of the code to which a classifica-
tion was attached. In both these cases (except in the case of H1, as explained above),
the closest classification was used. A few participants also indicated a fragment encom-
passing multiple classifications, in which case all relevant classifications were used.

5.1.5 Model Solution

To decide whether a given code fragment actually does implement a state transition,
the following principle is used. A code fragment implements part of a transition if,
when in the originating state:

1. the transition conceptually occurs at the same time as the fragment’s execution;
2. the transition never occurs if the fragment is not executed; and
3. either —

(a) the transition always occurs when the fragment is executed, or
(b) the fragment itself decides whether the transition will occur.

Based on this, a given fragment of source code can play any of three roles in the
implementation of a state transition:

5.1. Methodology 79

/** Starts or restarts the download. */
public void startDownload() throws IOException
{

if(stopped)
{

URLConnection connection = url.openConnection();
connection.connect();
inputStream = connection.getInputStream();
outputStream = new FileOutputStream(file);

size = connection.getContentLength();
startTime = System.currentTimeMillis();
stopped = false;

// Create a new thread for the download to run in.
// This will call the run() method.
new Thread(this).start();

}
}

Figure 5.3: Fragment B:startDownload.

/** Stops the download, assuming it has been started. */
public void stopDownload()
{

stopped = true;
}

Figure 5.4: Fragment C:stopDownload.

80 Chapter 5. Comprehension and Artefact Interrelationships

/**
* Downloads from the URL supplied to the constructor. The method shouldn’t
* be called directly. It is started indirectly by the startDownload()
* method.
*/

public void run()
{

D:run-init
byte[] buffer = new byte[READ_SIZE];
boolean timeout = false;

try
{

long waitStartTime = System.currentTimeMillis();

E:loop
while((downloadedSize < size) &&

!timeout &&
!stopped)

{

F:download
int bytesAvailable = inputStream.available();

if(bytesAvailable >= READ_SIZE)
{

// We’ve retrieved enough data to fill the buffer. Write
// it to disk and reset the timeout counter.
inputStream.read(buffer);
outputStream.write(buffer);
downloadedSize += READ_SIZE;
waitStartTime = System.currentTimeMillis();

}
else if(bytesAvailable > 0)
{

// Some data was retrieved. Write it to disk and reset
// the timeout counter.
inputStream.read(buffer, 0, bytesAvailable);
outputStream.write(buffer, 0, bytesAvailable);
downloadedSize += bytesAvailable;
waitStartTime = System.currentTimeMillis();

}

Figure 5.5: The first half of the run() method, showing fragments D:run-init, E:loop
and F:download.

5.1. Methodology 81

else
{

// No data retrieved. Sleep for a small interval to avoid
// wasting CPU time. Check for a timeout.

G:timeout
Thread.sleep(CHECK_INTERVAL);
if(System.currentTimeMillis() >

waitStartTime + TIMEOUT)
{

timeout = true;
}

}
calcSpeed();

}

H:finish
stopDownload();
inputStream.close();
outputStream.close();

}
catch(Exception e)
{
}

}

Figure 5.6: The second half of the run() method, showing fragments G:timeout and
H:finish. H′:run-return denotes the end point of H:finish, just before the closing
brace of either the while loop or the whole method. H1:finish-stop denotes the first line
of H:finish — the stopDownload() method call.

82 Chapter 5. Comprehension and Artefact Interrelationships

/**
* Called by the run() method to calculate the mean transfer rate (bytes
* per second) of the download so far.
*/

private void calcSpeed()
{

long time = System.currentTimeMillis() - startTime;
if(time > 0)
{

speed = ((double)downloadedSize / (double)time) * 1000.0;
}

}

/**
* Returns the last calculated transfer rate (bytes per second) of the
* download, or 0 if no calculation has yet been made.
*/

public double getSpeed()
{

return speed;
}

/** Returns the download progress as a percentage. */
public double getPercentDone()
{

return ((double)downloadedSize / (double)size) * 100.0;
}

Figure 5.7: Fragment I:accessors — consisting of the calcSpeed(), getSpeed() and
getPercentDone() methods.

/** Returns true iff the download has finished. */
public boolean hasFinished()
{

return downloadedSize >= size;
}

Figure 5.8: Fragment J:hasFinished.

/** Returns true iff the download is in progress. */
public boolean isDownloading()
{

return downloadedSize < size && !stopped;
}

Figure 5.9: Fragment K:isDownloading.

5.1. Methodology 83

Table 5.1: The model solution mapping between state transitions and code fragments,
showing the nature of a fragment’s involvement in a transition. Fragments that do not
implement any transition are omitted. Transitions 6 and 7 are omitted because no fragment
implements them.

Fragment
Transition

1:start 2:stop 3:timeout 4:finish 5:rcv

B:startDownload decision/
mutation

— — — —

C:stopDownload — mutation mutation — —
E:loop — binding binding decision —
F:download — — — — decision/

mutation
G:timeout — — decision — —
H:finish — mutation mutation mutation —

• decision code determines whether a transition will take place immediately (i.e. at
the time of execution), having a definite “yes” or “no” outcome;
• mutation code establishes the conditions required by the new state; and
• binding code directs the flow of control between other code fragments involved in

the transition.

None of these components is itself necessarily atomic. Each may be further divided
into non-contiguous code fragments depending upon how the source code is structured.
In some places, one code fragment may also (at least partially) implement multiple
transitions.

Although frameworks for statechart-source code relationships have been proposed, it
is not clear that any are widely used or recognised. Neither the Unified Modelling
Language itself nor the Java language specification provide any guidance on how this
should be done. In sufficiently different situations, such as involving actions, history
states or other statechart mechanisms, it would be necessary to introduce different
types of relationships. Nevertheless, for situations similar to that in the study, these
three roles provide a suitable basis for understanding these artefact interrelationships.

The model solution itself was arrived at by agreement between two experts having
independently applied the above taxonomy to the set of code fragments. Table 5.1
lists the code fragments comprising the model solution, and the roles they play in
implementing each of the state transitions. Transitions 1:start and 5:rcv have a one-
to-one mapping with the source code. Transitions 2:stop, 3:timeout and 4:finish

involve multiple, overlapping code fragments. Transitions 6:dst and 7:dst are not
explicitly located in the code.

84 Chapter 5. Comprehension and Artefact Interrelationships

5.2 Results

5.2.1 Techniques Used

The interview process attempted to gain insight into the techniques used by partici-
pants. Some recurring patterns were found.

According to the interviews, many participants almost immediately identified map-
pings for transitions 1:start and 2:stop. This probably occurred because the names
given on the statechart matched names occurring in the source code (startDownload()
and stopDownload()). Several carried that idea too far, identifying the fragment
J:hasFinished for transition 4:finish and K:isDownloading for 5:rcv.

Another common technique involved finding assignment statements or conditions that
participants could see were connected with the statechart logic. Transition 2:stop, in
which the download is halted by a call from another class, was often identified by the
statement stopped = true. Transition 3:timeout, in which the download is halted
after sixty seconds of not receiving any data, was similarly identified by the state-
ment timeout = true. Some participants also indicated that statements incrementing
the downloadSize variable implemented transition 4:finish, in which the download
finishes.

At least two participants noted that comments were useful for identifying state transi-
tions. Three described how they identified transition 3:timeout by its use of the con-
stant TIMEOUT, whose value matched that on the statechart. One mentioned searching
for a loop structure representing transition 5:rcv, a self-transition in which the “Await-
ingData” state is reset through receipt of data.

5.2.2 Solutions

Participants’ answers to the exercise, coded as described in Section 5.1.4, are presented
in Table 5.2. A transition-centric view of the results is also given in Figure 5.10.

Most participants gave their answers by writing the transition numbers on the source
code printout. However, a few did not do this. In particular, participant 15 marked
the source code by destination state rather than state transition. Two of the states
in the statechart have multiple incoming transitions, so this created ambiguity. Also,
participant 20 did not provide any answers at all, evidently due to a misunderstanding

5.2. Results 85

K:isDownloading
H′:run-return

H:finish
C:stopDownload
B:startDownload
A′:const-return

H′:run-return
H:finish

A′:const-return

K:isDownloading
I:accessors

G:timeout
F:download

E:loop
D:run-init

A:constructor

J:hasFinished
H1:finish-stop

H:finish
G:timeout

F:download
E:loop

H:finish
G:timeout

E:loop
C:stopDownload

H1:finish-stop
H:finish
E:loop

C:stopDownload

B:startDownload
A:constructor

Number of participants

0 5 10 15 20 25 30

1
6

7
1
1
1

6
11

1

4
2

1
20

2
1
1

8
1

4
1

6
8

4
26

2
0

5
2
2

23

22
7

Transition
7:dst

Transition
6:dst

Transition
5:rcv

Transition
4:finish

Transition
3:timeout

Transition
2:stop

Transition
1:start

Model solution mapping
Incorrect mapping

Figure 5.10: The numbers of participants who identified particular fragments for each tran-
sition. Dark bars represent transition-fragment mappings that appear in the model solution.
Light bars represent mappings that do not appear in the model solution.

86 Chapter 5. Comprehension and Artefact Interrelationships

Table 5.2: A matrix of possible mappings between fragments (rows) and transitions
(columns). Each cell represents a single possible mapping, and contains the proportion
of participants who identified that mapping. Colours are used to indicate the extent of
agreement/disagreement with the model solution.

Fragment
Transition

1:start 2:stop 3:timeout 4:finish 5:rcv 6:dst 7:dst

A:constructor 26 0 0 0 3 0 0
A′:const-return 0 0 0 0 0 3 3
B:startDownload 84 0 0 0 0 0 3
C:stopDownload 0 88 0 0 0 0 3
D:run-init 0 0 0 0 3 0 0
E:loop 0 7 7 30 7 0 0
F:download 0 0 0 23 76 0 0
G:timeout 0 0 100 3 3 0 0
H:finish 0 7 15 15 0 42 26
H′:run-return 0 0 0 0 0 23 23
H1:finish-stop 0 19 0 3 0 0 0
I:accessors 0 0 0 0 7 0 0
J:hasFinished 0 0 0 30 0 0 0
K:isDownloading 0 0 0 0 15 0 3

100 Model solution mapping, commonly found.

7 Model solution mapping, not commonly found.

42 Incorrect mapping.

(having indicated that no major difficulties were encountered). These two participants
have therefore been excluded from the figures discussed below and the analysis in the
following section.

Near-consensus was reached among the twenty-six remaining participants that:

• fragment B:startDownload implements transition 1:start;

• fragment C:stopDownload implements transition 2:stop;

• fragment F:download implements transition 5:rcv — the code for reading and
processing downloaded data implements the self-transition to/from the “Await-
ingData” state; and

• fragment G:timeout implements transition 3:timeout — the code for check-
ing whether a timeout has occurred implements the timed transition from the
“AwaitingData” state to the “Stopped” state.

About half the participants also believed that transitions 6:dst and 7:dst to the end
state would take place at either H or H′, at or immediately after the clean-up code
following the while loop.

5.3. Analysis 87

There was no strong agreement on the location of transition 4:finish, when the down-
load finishes. Suggested fragments included the while loop test condition (fragment
E:loop), the data reading and processing code (fragment F:download), the clean-up
code (fragment H:finish) and the hasFinished() method (fragment J:hasFinished).
Five participants omitted transition 4:finish altogether, which suggests it was inher-
ently more difficult to identify than the others.

5.3 Analysis

5.3.1 Transition-Fragment Mapping

The techniques used by participants to map state transitions to source code led to
solutions that were often readily justifiable, but sometimes questionable.

Suggestive method names allowed participants to quickly identify the startDownload()
and stopDownload() methods and state transitions. These methods must be called as
part of those transitions. However, the hasFinished() and isDownloading() methods
(fragments J:hasFinished and K:isDownloading) are accessors intended solely for
external use. They are not used by any other code within the class, even though
several participants stated that one was, and two claimed that one or the other should
have been used. Transitions 4:finish and 5:rcv could therefore take place without
them.

Several participants identified call sites for the startDownload() and stopDownload()

methods (fragments A:constructor and H1:finish-stop) for transition 1:start and
2:stop. Although these methods must be called in order for the transitions to take
place, the reverse is not necessarily true. The object would not be in the correct state
in A or H1 for either transition to be triggered.

Mixed success occurred where transitions were identified by variable assignment. The
variable stopped indicates whether the system is currently in the “Stopped” state,
and so code that assigns it true (while in another state) must change the state. The
variable timeout only temporarily stores state information — the “AwaitingData” state
is reflected in the execution of the while loop. Nevertheless, the statement timeout =

true has the effect of terminating the loop, and so therefore must also change the state.
By contrast, the modification of the downloadSize variable in fragment F:download

only sometimes results in the loop being terminated.

88 Chapter 5. Comprehension and Artefact Interrelationships

For each of the three outward transitions from the “AwaitingData” state (2:stop,
3:timeout and 4:finish), relatively few participants identified the while loop test
condition (fragment E:loop) or the clean-up code (fragment H:finish). The former
decides whether the loop will exit, so it plays a role in all three state transitions.
Fragment H:finish helps establish the conditions for the new states, so it too is involved
in the transition.

Though many participants associated the clean-up code (fragments H:finish and
H′:run-return) with the two end state transitions (6:dst and 7:dst), this idea faces
two problems. First, at that point the object is only just exiting the “AwaitingData”
state, from which there is no transition to the end state. Second, if the end state is
regarded as the object’s destruction, then in Java no code is required to implement
those transitions; at least, not within the class itself. (In a garbage-collected environ-
ment, an object’s destruction is caused by the removal of external references to it, and
it would be unusual for the object in question to trigger this itself. The only conven-
tional contribution a Java object makes to its own destruction is through overriding
the finalize() method, which has not been done in this case.)

It is not clear if any obvious beacons were involved in the mapping of transition 5:rcv to
fragment F:download. Certainly this fragment is responsible for reading and processing
downloaded data, and the transition’s label is “data received”.

5.3.2 The One-To-One Misconception

For the most part, participants identified a one-to-one mapping between the state chart
and the source code. They rarely found more than one code fragment for each transi-
tion, or more than one transition for a given code fragment. Many-to-many mappings
do arise, however, where several transitions leading to the same or similar states share
a common set of statements. This would result in a code fragment shared between the
transitions, with control constructs separating the remainder of the transitions’ code.

For each of transitions 2:stop and 3:timeout, one of the correct code fragments was
found by most participants (and was easily identifiable using the techniques in Sec-
tion 5.2.1), while the others went largely unnoticed. No participants identified all the
correct fragments for either transition. For transition 4:finish, only eleven partici-
pants found either of the correct code fragments, C:stopDownload and F:download.
Only participant 24 found both.

In total, eighteen participants identified code fragments that they thought implemented

5.4. Discussion 89

two or more transitions. However, many of these were for transitions 6:dst and 7:dst,
which share an obvious commonality (both destroy the object and both are triggered
in similar circumstances — when no downloading is taking place). Excluding these
transitions, the number of participants falls to seven. Only three participants identified
one or more of the fragments (C:stopDownload, E:loop and H:finish) that really did
implement multiple transitions. Of these, only participant 24 successfully matched all
the relevant transitions to any of the fragments.

Participants typically appeared to adhere to the preconception that each state transi-
tion is implemented by a single, unique fragment of code. While the ad hoc techniques
they used are clearly capable of identifying some of the simpler and more obvious re-
lationships between statecharts and source code, they suffer both in that they do not
account for many-to-many relationships, and often identify the wrong code.

5.4 Discussion

By providing for different roles for different fragments, the logic underlying the model
solution (discussed in Section 5.1.5) makes it clear that multiple fragments might im-
plement a single transition. This breaks the illusion of a one-to-one mapping and
thus makes the reverse proposition, that fragments can implement multiple transitions,
similarly apparent. Moreover, three specific aspects of the transition will be under
scrutiny, rather than just a vague correspondence to source code. Thus, the principles
from which the model solution is derived could behave as a checklist for comprehension,
similar to the use of active guidance in Scenario-Based Reading (SBR). Though SBR
studies overall appear inconclusive (as shown in Chapter 2, Section 2.2.2), this study
demonstrates a situation in which guidance is needed.

This particular statechart-source code mapping strategy is not necessarily authoritative.
Indeed, the widespread adoption of an authoritative means of mapping one to the
other is impractical. However, this method serves as a basis for assessing relationships
between the two types of artefacts.

The disparities between participants’ answers and the model solution suggests that
the identification of artefact interrelationships is a non-trivial exercise and requires a
more systematic approach. For software inspectors examining multiple artefacts there
is no universal notion of correctness regarding artefact interrelationships. There must
nonetheless be a common understanding of these interrelationships, at least within the
context of individual organisations and software projects. Were the source code to
represent a defective implementation of the statechart, the detection of defects would

90 Chapter 5. Comprehension and Artefact Interrelationships

necessary entail the identification of mappings from one artefact to the other.

In a real inspection, however, artefact interrelationships need not be explicitly identi-
fied one-by-one by inspectors in the manner performed in the study; doing so would
likely introduce unnecessary overhead. Nonetheless, inspectors must have the ability
to quickly traverse artefact interrelationships where needed. Where the complexity or
unfamiliarity of these interrelationships poses a problem, the principles governing them
should be used to design reading techniques and forms of cognitive support to assist
inspectors. These should allow and encourage inspectors to draw information from
multiple artefacts without devoting substantial effort to understanding the interrela-
tionships themselves.

5.5 Summary

The statechart study described in this chapter serves to demonstrate the difficulty of
identifying artefact interrelationships, even where the artefacts in question are relatively
simple. In this study, participants were observed to adopt an overly-simplified view of
artefact interrelationships, as evidenced by common behaviours, including:

• the assumption of a one-to-one mapping between statechart transitions and source
code fragments; and
• the reliance on naming conventions to identify mappings.

These might be considered novice mistakes. However, as discussed in Chapter 2, Sec-
tion 2.3.4, even experts can behave as novices given a sufficiently complex or unfamiliar
set of artefacts. Variability among inspectors will mean that, in a given situation, some
will generally overcome obstacles posed by delocalisation, while others may not. Pro-
viding guidance to inspectors may be a burden when it is unnecessary, but if it can be
given only where needed then a more favourable inspection outcome is likely.

The previous studies highlighted in Chapter 2, Section 2.2 support a debate within the
research community — first over whether reading techniques are useful, and second over
which ones might be the most effective. This study supports the necessity of reading
techniques and reading technique research. Being a qualitative study, the results might
not be reproduced in quite the same way in different circumstances. Nevertheless,
this study illustrates some basic comprehension issues that can arise, and which can
be overcome with some form of guidance. Identifying when such guidance should be
given, and what form it should take, are examined in subsequent chapters.

Chapter 6

Comprehension and Scenarios

“Doing what we’ve done eighteen times before is exactly the last thing they’ll expect
us to do this time.”

— Blackadder Goes Forth

Software comprehension has not been widely explored in the presence of a reading tech-
nique. While the preceding chapter establishes the need for guidance in some cases, this
chapter explores comprehension challenges that arise despite it. This further addresses
the second, software comprehension-related research question posed in Chapter 1: What
are the challenges inherent in comprehending a system under inspection?

The research presented in this chapter has previously been published (by the author of
this thesis) as an individual component of the larger work (Cooper et al., 2007).

Usage-Based Reading (UBR), proposed and examined by Thelin et al. (2003), is used
here as a representative of active-guidance techniques. The scenario study described
in this chapter re-examines qualitatively the central task entailed by UBR, and by the
similar use-case technique of Dunsmore et al. (2003): that of tracing the events of a use
case scenario through another artefact. The survey discussed in Chapter 4 found that
such traversal of use case scenarios is a relatively common practice in industry. UBR
is also chosen for its relative prominence in academic literature — the technique is the
most recent to have been examined by multiple experimental replications.

UBR has consistently outperformed Checklist-Based Reading (CBR) with respect to
critical defect detection. However, with respect to overall defect detection, it exhibits
similarly inconsistent performance to active guidance techniques in general. As with
such techniques, UBR relies on inspectors following a relatively rigid pattern of inspec-

92 Chapter 6. Comprehension and Scenarios

tion. Such a requirement seems at odds with theories of software comprehension, which
suggest that comprehension strategies are employed on an opportunistic basis (Linger
et al., 1979, Letovsky, 1986, von Mayrhauser and Vans, 1995). Moreover, although
UBR requires inspectors to match inspection artefacts against use case scenarios, little
is known of how this matching is or should be done. Theoretical concerns regarding this
have been expressed, and solutions including tool support and the insertion of visual
cues into artefacts have been proposed (Kim et al., 2000, Walkinshaw et al., 2005).
Several variations of UBR have been proposed and tested, but the effects of this form
of active guidance on the comprehension process have not been qualitatively examined
in detail.

The scenario and statechart studies share a common purpose in their exploration of
artefact interrelationships. However, the scenario study seeks to investigate the process
of comprehension, rather than just its outcome. Ten participants were asked to follow a
use case scenario, represented by a UML sequence diagram, through Java source code.
These are not the types of artefacts employed in the original and replicated studies of
UBR, nor does this task represent the entire task undertaken in UBR. Nevertheless,
this represents an application of a key UBR principle, and serves to isolate part of
the technique for observational purposes. Given one use case scenario and a small
system of 193 executable lines of code, participants were asked to identify those lines
executed in the scenario, and the order thereof. Participants were also asked to think
aloud during the exercise, and data collected automatically through an online interface
allowed further reconstruction of participants’ actions.

Several issues affecting participants’ ability to locate the correct lines were identified
from data collected. Data generated from the think aloud process indicate digressions
from the scenario and large variations in participants’ comprehension approaches.

6.1 Methodology

The scenario study examined participants’ behaviour as they completed an inspection-
related task. Two data collection approaches were employed: (a) the automatic record-
ing of events from an online interface, and (b) thinking aloud. These methods produced
distinct but related sets of results.

Data collected through the online interface facilitated analysis of the actual steps par-
ticipants took towards completing the task, as discussed in Section 6.1.4. The use of
protocol analysis described in Section 6.1.5 relied on this data, but also provided insight
into how comprehension of the system proceeded.

6.1. Methodology 93

6.1.1 Participants

Ten participants were involved: five industry professionals, three university-employed
graduates and two undergraduate students. The latter two groups had enrolled at or
graduated from Curtin University of Technology. Industry experience ranged from zero
to five years of professional practice. No incentives were offered to participants other
than experience gained.

6.1.2 Materials

The system under inspection was a simple Java-based audio player controlled from a
command-line interface. One use case scenario was presented in the form of a UML
sequence diagram, shown in Figure 6.1.

Excluding comments, blank lines and brace only lines, the source code consisted of 330
lines of code in seven files. However, to avoid confusion regarding what constituted a
line of code, only executable statements and field initialisers were numbered. In this
scheme, there were 193 numbered lines of code. The source code and other artefacts
presented to participants are shown in Appendix C. Participants had not previously
seen any of the artefacts presented.

6.1.3 Procedure

Each participant completed an inspection-related activity individually in the presence
of a researcher. Participants were asked to list, in order of execution, each line of
code that is or might be executed in the scenario. Such an instruction imposes a rigid
ordering on the exercise, because one line’s participation in the scenario cannot be
determined until all previous lines in the scenario have been found.

The task was undertaken through an online interface. Participants added entries, each
consisting of a class name and line number or range, to an input box for lines of
code they determined should be executed. The times at which the input box was
modified were recorded automatically in a database. No time limits were imposed on
participants.

Table 6.1 shows an example of the data collected in this way (the importance of which
is discussed further in Section 6.2). Participants were asked to enter lines in a given

94 Chapter 6. Comprehension and Scenarios

User

: UserInterface : Player : RandomProgramme : PlayList : Track

next track

If track count
has changed

For each
track

nextTrack()
hasNextTrack()

getTrackCount()

getNextTrack()
getTrackCount()

getTrackCount()

getTrack()

getInputStream()

getCurrentTrack()

getFilename()

true

isPlaying()

orderTracks()

play()

getFilename()

Figure 6.1: The UML sequence diagram shown to participants, representing the scenario in
which the next track option is chosen while tracks are being played in a random order. The
shading emphasises nesting levels.

6.1. Methodology 95

Table 6.1: An excerpt of the input updates recorded for participant 8. Each row represents
one update. Times of the updates are relative to the start of the exercise. For brevity,
unchanging parts are marked with ellipses (“. . . ”).

Time Delta time Full-text input update Commentary

18:40 — UserInterface.java 5-19
UserInterface.java 18-19
UserInterface.java 22,27,31-32
Player.java 27
Programme.java 3
Playlist.java 15
Player.java 28,35-38,28-29,30?,31-32,

20:59 2:19 . . .
Player.java 28,35-38,28-29,30?,31-32
Programme.java

Addition of
Programme.java.

21:08 0:09 . . .
Player.java 28,35-38,28-29,30?,31-32
Programme.java 5,6

Addition of line numbers
for Programme.java.

25:20 4:12 . . .
Player.java 28,35-38,28-29,30?,31-32
RandomProgramme.java 5,6

Replacement of
Programme with
RandomProgramme.

25:25 0:05 . . .
Player.java 28,35-38,28-29,30?,31-32
RandomProgramme.java

Deletion of original line
numbers.

25:35 0:10 . . .
Player.java 28,35-38,28-29,30?,31-32
RandomProgramme.java 8

Addition of new line
number.

format, though the format of the actual input data varied. A parser was developed
to convert each input update into a list of class/line-number pairs. The parser used a
manually-constructed look-up table to (a) resolve misspellings and general variations
in the input format, and (b) help it recognise and ignore partially-complete entries.
(Participants were also asked to add question marks and asterisks to indicate where
execution of a line was conditional or repeated, respectively, though this information
was not eventually needed for the analysis described in the next section.)

The use of an online interface conceivably affected participants’ performance, by draw-
ing cognitive resources away from the task at hand. This may have lessened the effective
expertise participants could bring to bear, but it does not diminish the qualitative re-
sults of the investigation.

During the exercise, participants were asked to think aloud and were prompted to “keep
talking” if silent for more than 30 seconds. They were each given two short training
tasks to familiarise them with this process.

96 Chapter 6. Comprehension and Scenarios

Table 6.2: Example reconstruction of a sequence of four input updates. The final re-
constructed input list resembles the last full-text update, but with decision times and line
deletions shown.

(a) Full-text updates

Time
(secs)

Delta time
(secs)

Full input
text

3 3 line 3

17 14
line 3

line 5

21 4

line 3

line 4
line 5

line 3

26 5

line 3

line 10
line 5
line 3

(b) Reconstructed inputs

Decision
time (secs)

Updated
input text

3 line 3

4 + 5 line 4
(deleted)

5 line 10

14 line 5

4 line 3

Audio recordings were made independently of the online interface. These were synchro-
nised with the data captured through the online interface by comparing mouse clicks
in the former to mouse events recorded in the latter. This synchronisation allowed the
protocol analysis process to use contextual information from the input data.

6.1.4 Input Data Analysis

Once translated into a common format, participants’ input updates were then used
to reconstruct a single solution incorporating all line additions and deletions, in the
intended order of execution (using an edit distance algorithm). The reconstructed
list also included the decision time for each line — the total time spent immediately
prior to adding and/or deleting it. The decision time is assumed to be largely spent
determining whether the line takes part in the scenario, and thus broadly indicative of
the comprehension effort required.

Table 6.2 gives an example of this input reconstruction process. Here, line 3 was added
in the first update, line 5 in the second, line 4 and line 3 in the third and line

10 in the fourth, in which line 4 was also deleted. The reconstructed list is built up
in the course of examining successive full-text input updates. The arrows in Table 6.2
represent insertions into the reconstructed list, performed as each new line is added.
At each stage, the edit distance algorithm compares the incomplete reconstructed list

6.1. Methodology 97

Table 6.3: Example normalisation of input updates. Here, the model solution consists of
“line 3”, “line 10” and “line 5”, in that order. The participant’s reconstructed inputs (from
Figure 6.2) are slightly different. The model solution and reconstructed inputs are combined,
line by line, to generate the normalised solution.

(a) Model solution

Solution
index

Solution
text

0 line 3
1 line 10
2 line 5

(b) Reconstructed inputs

Decision
time (secs)

Input text

3 line 3

9 line 4 (deleted)

5 line 10

14 line 5

4 line 3

(c) Normalised solution

Solution
index

Input solution
Flagged
(point of
interest)

0 line 3 —

1 line 4 (deleted)
changed

line 10

2 line 5
high

decision
time

3 line 3 erroneous

(the participant’s solution so far) with the next full-text input update. From this, the
algorithm determines which lines are added or deleted and where they should appear
in the list. From the example in Table 6.2, line 4 is the third line to be added,
but appears second in the reconstructed list because it was inserted before line 5.
Where the same line was listed at multiple points in the solution, the reconstructed list
preserves these separate instances in their intended order of execution.

The reconstructed lists were then normalised by comparing them to a model solution,
line by line. The model solution itself was constructed by having two experts indepen-
dently create lists of the lines executed, and then agree on a single solution. Table 6.3
demonstrates the normalisation process. The final, normalised solution reflects the
reconstructed input list, but with the addition of solution indices, which provide a
mapping to the model solution.

In each normalised solution, points of interest were designated where lines had one or
more of the following characteristics:

• The line deviated from the model solution. Several small deviations were dis-
counted as trivial, where it was plausible that a participant did nonetheless un-

98 Chapter 6. Comprehension and Scenarios

derstand the path of execution. These included some instances of line duplication
(as shown at the top of the first row in Table 6.1), two adjacent lines listed in
reverse order, or a missing method call before the correctly-listed contents of that
method.

• The line was associated with a high decision time, relative to other times for the
same participant. High decision times were considered to be those more than 0.5
standard deviations above the mean decision time for a given participant.

• The line had been deleted (and possibly later re-listed).

Table 6.3 gives an example for each of the above. At solution index 1, line 4 is
flagged as having changed, due to being deleted. At solution index 2, line 5 is flagged
as having a high decision time — 14, where the mean is 7 and the standard deviation
2.3 (14 > 7 + (0.5× 2.3)). At solution index 3, line 3 is flagged as erroneous because
it does not appear in the model solution at that point.

6.1.5 Protocol Analysis

Participants’ verbal protocols were used to determine:

• the variability in the comprehension process, as exhibited by different partici-
pants; and

• the extent to which participants were able to concentrate on each step of the use
case scenario in turn.

Variability was determined by observing the overlap between participants’ verbalised
thoughts at any given solution index. The extent of digression is determined by observ-
ing the proximity of participants’ verbalised thoughts to the line additions or deletions
at each input update.

Both these indicators rely on the verbal data being coded. Specifically, codes consisted
of references to specific points or constructs in the artefacts: methods, method calls,
constructors, fields or variables in the source code; and messages, objects and either of
the two shaded control-flow constructs in the sequence diagram. Examples of references
include:

• Player.nextTrack(), indicating the nextTrack() method in the Player class;

6.1. Methodology 99

• Player.nextTrack():programme.hasNextTrack(), indicating a call site of the
method hasNextTrack() accessed through the programme variable within the
nextTrack() method; and

• SD:nextTrack(), indicating the nextTrack() message as shown in the sequence
diagram.

The relative simplicity of the coding scheme allowed coding to be done directly from
the audio recordings, without the need for transcription or segmentation. However, an
excerpt of one transcript is presented in Figure 6.2 for illustration purposes.

To map references to solution indices, the coding process was conducted on a solution
index by solution index basis. The period(s) of time spent by each participant at each
solution index, as captured by the online interface, were used to determine where to
listen in the audio recordings.

Participants often omitted one or more of the first components in each reference, and
contextual information had to be relied upon to resolve any ambiguity. Such contextual
information included the artefact currently or previously focused on and the method
currently being inspected. The former was recorded by the online interface, and the
latter inferred from the current or previous solution index.

Although no duplicate references existed at each index, it was possible for some ref-
erences to be counted for more than one solution index in cases where a single input
update added or deleted more than one line. This also occurred where a reference was
made at the same time as an input update, and so was counted for both that update
and the next one. This duplication is not problematic, however, because no cumulative
analysis is done on the references.

A second coding scheme was then superimposed on the first to give an indication of
the relevance of each reference to its solution index. A reference to a field, variable,
method or message appearing at the current line was labelled cl. Failing this, if it
appeared on the previous or next line of either the model solution or the source code,
it would be labelled pl. The label cm was otherwise given for references to or within
the same method, or pm for references to or within the previous or next method in
the model solution, on a line-by-line basis. Similarly, cc was given for references to
or within the current class, or pc for those to or within the previous or next class in
the model solution. If no other categories were applicable, a reference was considered
unrelated and labelled u.

100 Chapter 6. Comprehension and Scenarios

25:55

25:50

25:45

25:40

25:35

25:30

25:25

25:20

25:15

25:10

25:05

25:00

24:55

24:50

24:45

24:40

Protocol Focused
artefact

Codes

and then it’ll return a track

back to... where’s my
sequence diagram?

get track... um

get track count... if track
count has changed

...where’s that

um, playlist...

not here...

um, get track count...
programme

programme... 5 and 6?

nup, back even more, not
the programme, so... player

32 player line 32... if was

playing... uh...

current track... track...
that’d

be line 33 of player

player 33... that’s

Artefacts

Sequence diagram
PlayList.java
Player.java
Programme.java

PlayList.getTrack(int):tracks [u]

SD:getTrack() [pm]

SD:getTrackCount() [pm]

SD:‘‘if track count has changed’’ [pm]

Player.nextTrack():wasPlaying [cl]

Player.nextTrack():currentTrack [pl]

Figure 6.2: An excerpt of a participant’s verbal protocol at one solution index, showing
the periods of time spent focused on different artefacts and the codes assigned. The gaps
between the artefacts indicate where the participant had focused instead on the reporting
form.

6.2. Results 101

Table 6.4: Overall characteristics of each participant’s solution.

Participant
Total
time

Mean
decision

time

Model
solution
coverage

Line
mismatches

1 54 min 35 sec 42% 74%
2 35 min 28 sec 85% 37%
3 55 min 45 sec 33% 83%
4 35 min 44 sec 63% 25%
5 32 min 43 sec 62% 20%
6 43 min 32 sec 73% 27%
7 42 min 38 sec 67% 55%
8 46 min 37 sec 85% 54%
9 39 min 36 sec 63% 46%
10 28 min 37 sec 40% 64%

mean 41 min 39 sec 61% 48%

Table 6.5: Overall scale and effect of the comprehension issues identified.

Issue
Points of
interest

Affected
participants
(out of 10)

Mean
decision

time

Scenario start misidentification 13 10 204 sec
Accidental omission 24 9 33 sec
Polymorphism 8 7 120 sec
Method misidentification 8 6 37 sec
Context switching 23 10 98 sec
Condition evaluation 28 9 76 sec

Each reference received one of the above proximity codes depending on its proximity
to the current solution index line of code. These codes were assigned by comparing
each reference to the current solution index in the model solution and selecting the first
applicable code in order.

6.2 Results

6.2.1 Input Data

An overview of the characteristics of each participant’s solution is given in Table 6.4.
Considerable variation exists in both model solution coverage (33–85%), and the pro-
portion of line mismatches (20–83%). Model solution coverage indicates the proportion
of the lines of the model solution that also appear in each participant’s solution. Line

102 Chapter 6. Comprehension and Scenarios

mismatches indicate the proportion of the lines in each participant’s solution absent
from the model solution.

On average, 41 minutes were spent by each participant on the task. This is high, given
that a real inspection is recommended to last for no more than two hours (Fagan, 1976)
and would involve several use case scenarios. However, the requirement for participants
to explicitly note each line of code would have added to the time spent.

By comparing points of interest derived from each participant’s solution, six common
issues were identified. (In some cases, as a result of an earlier omission, participants did
not have a chance to confront parts of the source code in which certain issues commonly
arose.) These issues are summarised in Table 6.5.

• Scenario start misidentification. No participant’s solution began at exactly the
point defined by the model solution. Four listed lines occurring prior to this point,
and six omitted at least some subsequent to it. Anecdotal evidence from one
participant suggests that there may have been confusion over the term “command-
line based” as given in the instructions. The term referred to the fact that the
system instituted its own command-line, not that it operated necessarily from an
existing command-line. A consequence of the latter interpretation may have been
that the initial construction sequence of the system was assumed to be part of the
scenario, as indicated by five participants, whereas in fact the sequence diagram
made no mention of it.

• Accidental omission. Method omissions, where participants listed method calls
but not the corresponding method contents, were a common occurrence, ac-
counting for 14 points of interest. In another instance in the system, the Java
Arrays.sort() method is called with a customised Comparator object, a result
of which is that in the scenario the object’s compare() method is called from a
standard Java class. No participants identified this method. Three more points
of interest were attributable to the omission of the last one or two statements in
a method.

• Polymorphism. At the method call programme.getNextTrack(), seven partici-
pants initially indicated that the getNextTrack() method of the Programme class
was executed. The sequence diagram, however, specifies that the call is actually
made to an instance of the subclass RandomProgramme. Five participants eventu-
ally realised this (perhaps because many of the messages on the sequence diagram
were passed only from the subclass’s method).

The challenge posed to participants by polymorphism is evident in the raw in-
put data in Table 6.1. In the third input update (at 21:08), participant 8

6.2. Results 103

has incorrectly listed lines 5 and 6 of Programme.java, which represent the
getNextTrack() method. This begins to change in the fourth update (at 25:20),
more than 4 minutes later. After a few more seconds (at 25:35), line 8 of
RandomProgramme.java is correctly listed. Although the lines ultimately identi-
fied by the participant were correct, the high decision time involved and the fact
that lines were deleted identified this instance as a point of interest.

• Method misidentification. In two cases of method overloading, six points of inter-
est were the result of participants indicating the wrong method. One more point
of interest arose from a participant listing the getNextTrack() method in place
of hasNextTrack(). Another occurred where one accessor method was listed in
place of another that, as an implementation detail, happened to return the same
value.

• Context switching. High decision times were recorded in nineteen instances where
method calls took place, and in four cases after methods returned. This can be
attributed to the time and effort associated with locating a line not adjacent to
the previous line, often in another class. Seven of the nineteen high decision times
associated with method calls were for the first method call.

• Condition evaluation. Seven points of interest resulted from participants incor-
rectly evaluating if statement conditions (though four were likely the result of a
previous error of the same kind). These were either false negatives or false posi-
tives. A further ten high decision times were recorded for the first line inside an
if statement. Similar evaluation is required to determine whether an exception is
thrown at a given point in the scenario. None were included in the model solution,
but 11 points of interest resulted from participants listing them. These all reflect
the difficulty of manually evaluating dynamic conditions in a static context.

Determining whether a boolean condition is satisfied or if an exception occurs, in
the context of a specific use case scenario, requires the consideration of various
constraints imposed by the scenario and the source code. For example, if a
message represented on the sequence diagram corresponds to a method call inside
an if statement, the if condition must be true in that scenario. Likewise, if
throwing an exception would prevent one or more messages from being passed, it
cannot occur within the scenario.

In addition to the above issues, a small number of other points of interest remain
unclassified. These include four instances where both branches of an if statement
were listed, two where no logic appeared to connect one listed line to the previous line,
and one where a high decision time was recorded for no apparent reason.

104 Chapter 6. Comprehension and Scenarios

10 (all participants)
9
8
7
6
5
4
3
2

1 (no overlap)

Proportion of references (%)

0 10 20 30 40

1.3
3.3

2.0
3.9

7.8
10.5

6.5
9.8

16.3
38.6

P
ar

ti
ci

p
an

t
ov

er
la

p

Figure 6.3: Overlap in participants’ verbal references. Each bar represents the proportion of
all references that were uttered at some point by a particular number of participants. 38.6%
of references were uttered by only one participant (any participant), while only 1.3% were
made by all participants.

6.2.2 Verbal Data

The two types of coded data described in Section 6.1.5 were first analysed at the solution
index level.

For each reference made at each solution index, the number of participants to whom
the reference was attributed was counted. Figure 6.3 shows the results. This is an
indicator of participant variability. If the participants were identical in their thought
processes, then each reference would have been made by all participants. In fact, each
distinct reference was made by relatively few participants. Half of all references were
made by only one or two participants. About 80% of the references were made by half
or fewer participants. This indicates that there is some common ground within subsets
of participants, but substantial variation in the thought processes employed overall.

The proximity codes, assigned to each reference as an indication of relevance, were
further categorised according to the issues identified in Section 6.2.1. For each issue,
the number of references that fell into each proximity category were averaged over
all participants for all relevant solution indices. This data is presented in Figure 6.4.
References made in the absence of identifiable issues were generally very close to the
current line. Unrelated references were proportionally more numerous in cases involving
scenario start misidentification, accidental omissions, context switching and condition
evaluation. Moreover, the number of references overall was higher where issues were
identified.

6.2. Results 105

Condition evaluation

Context switching

Method misidentification

Polymorphism

Accidental omission

Scenario start

None

Mean no. objects identified

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.37
0.26

0.48
0.59

0.89
0.30

0.44

0.61
0.78

0.74
0.65

0.30
1.70

1.00

0.00
0.12
0.12

0.25
0.00

1.12
0.25

0.25
0.38

0.25
0.50

0.25
1.50

0.38

0.18
0.36

0.27
0.55

0.91
0.05

0.23

3.08
2.00

1.08
0.92

0.69
0.46

0.23

0.02
0.03

0.11
0.06
0.13

0.55
0.32

Is
su

es

Current line
Adjacent line
Current method
Adjacent method
Current class
Adjacent class
Unrelated

Figure 6.4: The proximity of verbal references to the model solution, for each issue raised
(i.e. the mean number of references in each proximity category for each issue).

106 Chapter 6. Comprehension and Scenarios

6.3 Discussion

The model solution coverage for participants in the scenario study, as given in Table 6.4,
points to an important problem. Coverage of inspection artefacts — the proportion
of an artefact actually subject to human inspection — in UBR is known to be less
than 100%, since the available set of use case scenarios is itself unlikely to correspond
exactly to all the source code. Dunsmore et al. (2003) cited anecdotal concerns from
participants in their study to this effect. However, much of the source code that is
modelled in a use case scenario is also liable to be effectively left out of a UBR inspec-
tion. Participants in the study only identified between 33% and 85% of the relevant
code.

The effects of these omissions may be mitigated by involving multiple inspectors, as
originally envisaged by Fagan (1976). Although doing so remains a good idea, this is
not a perfect solution because the issues encountered by one inspector could apply to
others as well.

6.3.1 Misdirection

Many of the issues discovered were not manifested randomly, but occurred at spe-
cific points in the use case scenario. For instance, seven out of ten participants in
the study encountered difficulty with the same instance of polymorphism. Hence, in
UBR inspections polymorphism may well go unnoticed or be misunderstood by several
different inspectors, and thus large amounts of relevant code could escape inspection
altogether. Such follow-on effects exist for almost all comprehension issues, suggesting
the existence of chains of comprehension dependencies. Large parts of the overall com-
prehension effort may fail or be misdirected due to comprehension errors made in a few
key places.

The misdirection of the comprehension process is evident in the proportion of line
mismatches shown in Table 6.4. Inspectors need not be completely accurate in their
analysis of the path of execution; small deviations to examine the effects of exception
handling may help rather than hinder inspection performance. However, large devi-
ations will defeat the purpose of UBR, which relies on being able to target specific,
high-priority use cases. In the study, on average almost half the lines inspected by
participants were deviations from the scenario. The coded verbal data presented in
Figure 6.4 does indicate that small digressions from the current point in the scenario
occurred even when no identifiable issues arose. When issues did arise, participants
digressed further from the scenario, despite the fact that many errors were themselves

6.3. Discussion 107

in close proximity to the model solution.

Dunsmore et al. express their concern that “more participants using this technique
deviated from the recommended application”. The risk is that too much time will
be spent inspecting non-critical aspects of the software, to the exclusion of its most
important functionality. In addition, although switching between artefacts contributes
to understanding a software system (Kim et al., 2000, Hungerford et al., 2004), more
time spent switching contexts (or resolving other comprehension issues) represents more
time likely not spent inspecting anything at all.

6.3.2 Guidance

The challenge for inspection strategies is to identify the specific points at which com-
prehension issues occur and provide the appropriate level of guidance. They must help
ensure that comprehension dependencies are satisfied. In this study, the issues arising
may have been mitigated by the presence of additional active guidance or cognitive
support targeting problematic constructs.

For instance, such active guidance may include specific instructions to:

• identify method calls, determine whether the method in question is overridden,
and thus determine which method implementation is actually executed;

• identify sequence diagram constraints, working backwards from message passing
to determine what boolean conditions must be true; and

• verify that all messages encountered on the sequence diagram were also encoun-
tered in the source code.

Regarding cognitive support, visual cues could be inserted into artefacts (temporarily,
prior to inspection) to highlight the beginning of a scenario, method call sites, called
methods themselves, method scopes and where conditional blocks of code (if, switch
and catch blocks) are or might be executed. The last may otherwise be inferred anyway
where method calls take place. If UBR inspections are to be carried out using a software
tool directly, hyperlinks connecting each call site to the set of methods potentially called
in the scenario (in polymorphic cases there will be more than one) could be used to
further reduce context switching time. These would address the issues described in the
previous section.

Deriving the visual cues themselves would require an approach such as that detailed by

108 Chapter 6. Comprehension and Scenarios

Walkinshaw et al. (2005). Their dependence graph technique could largely automate
the identification of source code corresponding to a use case scenario. With such sup-
port, inspectors would be able to focus their attention to a greater extent on finding
defects rather than determining (and often failing to determine) the path of execution.
Moreover, inspectors would be free to make digressions as they see fit, while being
consciously aware that they are digressions rather than direct examinations of the rel-
evant use case scenario. In combination with the use of visual cues, therefore, such
tool support would provide a powerful means to overcome many of the comprehension
issues identified in this study. By bridging the gap between source code and use case
scenarios, it could also help to ensure that scenarios (in task notation or UML) are
kept up to date when the system is modified, and hence could make UBR applicable
in situations where it would not otherwise have been.

6.3.3 Cognitive Variation

However, a related problem lies in the provision of too much guidance, particularly
active guidance. The pervasive use of active guidance imposes a rigid procedure for
traversing artefacts. In light of the variability in participants’ verbal references pre-
sented in Figure 6.3, it is questionable whether following such a singular, rigid procedure
reliably leads to a high level of understanding. Each inspector may have a subtly or
markedly different approach to understanding a system, and these different approaches
may not always benefit uniformly from the same forms of guidance, especially when a
particularly detailed level of guidance is given.

In particular, if the reading technique tries to force the inspector into an unfamiliar
approach to understanding the system, then either (a) the inspector will not be as
effective as when using a more familiar approach, or (b) the inspector will ignore the
reading technique and revert to that preferred approach. Neither outcome is beneficial,
and in the second case the technique loses its effectiveness as a means to target specific,
high-priority aspects of the system. As well as providing sufficient guidance, reading
techniques must refrain from providing extraneous guidance.

6.4 Summary

This chapter has examined comprehension challenges arising in the presence of a reading
technique — specifically, use case traversal, as employed in UBR. These challenges
included misidentification of the start of the scenario, accidental omission of method

6.4. Summary 109

calls, polymorphism, misidentification of called methods, the effort associated with
context switching and the difficulty of evaluating dynamic boolean conditions in a
static context.

Many of these issues represent unfulfilled comprehension dependencies, where a link in
the chain of comprehension is missing, resulting in code being omitted from inspection.
Several would also result in additional code being unnecessarily inspected. The error-
proneness of identifying the correct method calls and the additional effort associated
with context switching highlight the challenges posed by delocalisation. Not only is it
difficult to traverse delocalised plans, but even their existence sometimes goes unno-
ticed. The overall coverage of relevant code by participants was relatively low, in some
cases less than 50%. At the same time, on average half the code actually examined was
not immediately relevant to the scenario.

These concerns might conceivably be mitigated with an additional level of active guid-
ance, but this would also further constrict the comprehension process. The utilisation
of cognitive support may help address such challenges without impinging on inspectors’
freedom to apply their own comprehension approaches. This freedom may be an im-
portant aspect of an effective inspection, given that inspectors exhibited great variation
in their approaches. This variation may reflect a need by different inspectors to have
access to different types of information in order to effectively understand the system.

The results shown here should not be seen as a rebuttal to those presented in Chapter 5.
Rather, the statechart and scenario studies together suggest that opportunities for im-
proved inspection performance exist in a variety of situations, and that comprehension
issues are complex and not generally solvable through the näıve application of a single
inspection strategy.

This complexity suggests a need for quantitative investigation, both empirical and
theoretical, of the fine-grained effects of guidance and inspector expertise. This is
undertaken in subsequent chapters.

110 Chapter 6. Comprehension and Scenarios

Chapter 7

Active Guidance and Defect

Detection

“I don’t like them doctors. If they start poking around inside me. . . ”
“Baldrick, why would anyone wish to poke around inside you?”
“They might find me interesting.”

— Blackadder Goes Forth

This chapter examines the fine-grained effects of active guidance and inspector exper-
tise on defect detection. Previous chapters demonstrate that comprehension issues can
arise with and without active guidance. However, there does not yet exist a compre-
hensive explanation of precisely when active guidance should be expected to improve
inspection performance, and why it has led to the contradictory outcomes reported in
past experiments (as discussed in Chapter 2, Section 2.2).

Thus, this chapter helps to answer the third research question from Chapter 1: To what
extent does active guidance support defect detection, and what are the effects on overall
cost effectiveness?

Porter and Votta (1997) observe that “we have yet to identify the fundamental drivers
of inspection costs and benefits”, and treating techniques as black boxes will not yield
insights into why one does or does not work in particular situations. Many inspection
experiments use defect counts — the number of defects detected by a given inspector —
as the principal metric by which reading techniques are compared. The characteristics
of the defects themselves, and in particular the types of defects detected, are rarely
reported. Rather, the defects and inspectors involved are assumed to be representative
of a relatively homogeneous population of defects and inspectors seen throughout the

112 Chapter 7. Active Guidance and Defect Detection

industry. However, such homogeneity is highly doubtful, and representativeness is hard
to verify.

Analysis of the overall defect count metric is not generalisable if factors vary between
defects, and yet the reading technique itself is such a factor. Reading techniques gen-
erally operate by focusing the inspector’s attention on defects that are more likely to
occur. They do not impart expertise such that any inspector will be equally better
able to detect any type of defect. Only a few techniques attempt to assist overall
comprehension, and such assistance is not yet convincingly effective (Dunsmore et al.,
2003).

Treating experience as a single numerical or categorical indicator suffers the same
problem. Plan knowledge, which explains the role of experience in software compre-
hension (Soloway and Ehrlich, 1984), is specific to patterns and constructs previously
encountered by the inspector. Two inspectors with the same number of years of ex-
perience may nevertheless not have the same kind of expertise, resulting in different
inspection outcomes. The qualitative aspects of experience may be important in deter-
mining inspection performance in a given situation.

Neither checklists nor expertise are opaque concepts. Both can be broken down by
defect type. A useful checklist does not (and cannot) cover all defect types — to do
so would make it either too long, too vague or both. Therefore, it is always possible
that defects not covered by the checklist will exist in the system. Expertise is not
constrained in the same way, but inspection must nevertheless accommodate the types
and levels of expertise at hand.

The checklist experiment described in this chapter examined both checklists and prior
exposure to particular defect types on a defect-by-defect basis. The immediate goal of
the experiment was to determine the effects of relevant and irrelevant checklist questions
and specialised experience on the time and probability of individual defect detection.
The experiment is designed to contribute to the construction of inspection theory, and
also to provide experience with which future studies might be designed, such that their
results can also assist theory generation.

Checklists were chosen as the focus of experimentation because they represent a par-
ticularly simple and prevalent (as shown in Chapter 4) form of active guidance.

Understanding factors, like active guidance, that vary between defects would allow soft-
ware developers to more easily implement effective reading strategies based on the cir-
cumstances of a given software project. Different projects and different inspectors would
most likely benefit from different reading techniques, or at least variations thereof. For

7.1. Methodology 113

any given reading technique variant, it will be possible to contrive a situation where it
helps detect more defects. Conversely, where the types of defects the technique focuses
on are not prevalent in a system, it may actually hinder inspectors.

7.1 Methodology

The experiment was of a two-factor crossover (repeated-measures) design. The inde-
pendent, within-subject variables were:

• I1, indicating whether the inspector was previously exposed to relevant defect
types;
• A, indicating the presence of a checklist containing a relevant item; and
• H, the code snippet under inspection.

I and A were the treatment variables, each being either 1 or 0 (true or false). Partici-
pants were asked to inspect four mini-systems, one to test each treatment combination.
H is analogous to a period effect, except categorical rather than ordinal.

The artefacts to be inspected each consisted of a small amount of Java code accompa-
nied by a natural language specification. These snippets were largely developed around
the defects to be seeded in them. This allowed for a variety of different defect types,
while not depending on large and complex systems to provide opportunities for such
defects to arise. Such a dependence would have greatly added to the inspection time
required, and so made a repeated-measures experimental design impractical.

Participants were told that a defect represented a deviation of the code from the speci-
fication. The code itself contained no syntax errors and was known to compile and run
(although additional classes and methods not shown to participants were required for
execution).

Participants were made aware that exactly two defects had been seeded in each snippet,
and they were instructed to find both. They were not made aware that the two defects
had different roles in the experiment: primary and auxiliary. Primary defects were
those designed to be found with the assistance of a checklist and prior exposure to
similar defects, where as auxiliary defects were not. Auxiliary defects were not covered
by any checklist, nor were participants presented with similar defects beforehand. These
defects were intended to capture the effects of checklists and prior exposure on the defect

1The symbols used in this chapter may appear non-intuitive, but were chosen for consistency with
the inspection model introduced in the next chapter.

114 Chapter 7. Active Guidance and Defect Detection

Table 7.1: A summary of the four snippets inspected by participants.

Snippet Size a Primary defect Auxiliary defect

1. SlushFund — determines how
to distribute a slush fund.

179 words,
15 LOC

Precision is lost due
to integer division.

The output format
does not match the
specification.

2. TreeNode — outputs a tree
structure in XML.

148 words,
12 LOC

Special characters
are not escaped in
the XML output.

The case insensitivity
requirement was not
implemented.

3. AddressSearch — searches an
address book.

85 words,
14 LOC

A check for null
fields is missing.

The search algorithm
does not match
entries properly.

4. WeaponSelector — manages
a set of weapons in first-person
shooter game.

182 words,
14 LOC

Attempts to add a
weapon will overwrite
the last weapon.

No bounds checking
is done when
selecting a weapon.

a LOC excludes blank lines, comments and brace-only lines. “Words” refers to the specification of each
snippet.

Table 7.2: The procedure for determining the treatment combination (i.e. the values of I
and A) at each snippet, based on sequentially-assigned participant IDs.

Steps Example (given ID i = 5)

1. The two snippets for which I = 1 are chosen from
the list [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)],
based on the result of (i div 4) mod 6 ∈ [0, 5].

(5 div 4) mod 6 = 1, so the chosen
pair will be (1, 3) — SlushFund and
AddressSearch.

2. The inverse pair are the snippets for which I = 0. The inverse pair is (2, 4) —
TreeNode and WeaponSelector.

3. The result of i mod 2 determines which of the two
I = 1 snippets will have a checklist displayed (i.e.
where A = 1).

5 mod 2 = 1, so AddressSearch will
have a checklist.

4. The result of (i div 2) mod 2 determines which of
the two I = 0 snippets will have a checklist.

(5 div 2) mod 2 = 0, so TreeNode
will have a checklist.

7.1. Methodology 115

Table 7.3: A summary of the two training snippets used to give participants prior exposure
to two particular defect types.

Snippet Size a Defects b

1. Gravity — calculates
acceleration due to
gravity for a set of
physical objects,
outputting the results in
an HTML table.

175
words,
24–32
LOC

1. Precision is lost in the calculation due to integer
division.
2. Special characters are not escaped in the HTML output.
3. A check for null object labels is missing.
4. Attempts to add a new physical object actually
overwrite the last object.

2. BMI — determines
the Body Mass Index of
a set of people in a
database, given their
location.

114
words,
17–19
LOC

1. Converting heights from centimetres to metres uses
integer division.
2. Special characters are not escaped when constructing
the database query string.
3. A check for null values returned from the database
interface is missing.
4. Each successive BMI value calculated overwrites the
last.

a LOC excludes blank lines, comments and brace-only lines. The actual value depends on the variant.
b Across all variants. Each variant has two of the four defects.

types they omit. The relative difficulty of finding primary defects compared to auxiliary
defects is unimportant, and any difference in difficulty was unintentional. The snippets
and the defects therein are summarised in Table 7.1.

The order in which the snippets were encountered by participants was fixed, but dif-
ferent participants received the treatment combinations in different orders. Given four
treatment combinations, 24 (4!) orderings were possible. These were assigned to partic-
ipants based on sequential participant IDs. Thus, the first 24 participants were assigned
all 24 permutations, after which the permutations were repeated. This process is illus-
trated in Table 7.2.

The choice of only one primary and auxiliary defect per snippet was made for practical
reasons. The design could have been extended to accommodate more than one of each,
but there was no specific need to do so. The repeated measures design already separates
the defect effects from the treatment effects.

The experiment measured four dependent variables:

• M1 and M2 — binary indicators of whether the primary and auxiliary defects
were detected; and
• C1 and C2 — the time (cost) taken to detect the primary and auxiliary defects.

The remainder of this section discusses the independent and dependent variables, and
the elements of the experiment that support them.

116 Chapter 7. Active Guidance and Defect Detection

7.1.1 Prior Exposure to a Relevant Defect Type

Participants were given experience by means of two additional training snippets, en-
countered prior to the four testing snippets. The instructions to participants for the
training snippets were identical to the testing snippets. The training snippets are sum-
marised in Table 7.3, and were each seeded with analogues of all four primary defects.
However, each participant was shown a variant that included only two defects. Six
variants of each training snippet were needed to account for the different treatment
orderings. Participants received no training for any of the auxiliary defects.

The nature of the training snippets was not made known to participants before or during
the exercise. Had they known, they may have made an additional effort (consciously
or otherwise) to become familiar with the defect types therein, over and above what
would normally occur.

The seeded defects were revealed to participants after completion of each inspection.
A short explanation of each defect was given and relevant parts of the code and spec-
ification were highlighted. This helped ensure that participants were actually exposed
to the intended defect types during training, even if the defects were not found. The
defects in each testing snippet were also revealed in this manner, though purely for the
benefit of the participants themselves.

7.1.2 Presence of a Checklist

A simple two-item checklist was developed for each of the four testing snippets (shown
in Appendix D, figures D.7, D.9, D.11 and D.13). Participants were shown two of the
four checklists, in accordance with their assigned treatment permutation. One checklist
was shown for a snippet where the participant had received training for the primary
defect, and one where they had not.

The first item on each checklist was designed to be relevant for the type of code under
inspection, but was not related to any actual defect. The second item related directly to
the primary defect. None of the checklist items were repeated between checklists. Some
risk existed of participants anticipating the pattern of useful and unuseful checklist
items, but their exposure to only two checklists did not provide much opportunity for
any potential suspicion to turn into laziness.

7.1. Methodology 117

Table 7.4: The coding scheme used to categorise defect descriptions.

Code assigned Meaning

Primary The description correctly identifies the primary defect.
Auxiliary The description correctly identifies the auxiliary defect.
Both The description correctly identifies both primary and auxiliary defects.
False positive The description does not identify either the primary or auxiliary defects.
Ambiguous The description plausibly refers to the primary or auxiliary defect, but insufficient

information was supplied to convincingly identify it.
Repeated The description refers to the same defect (primary or auxiliary) as the other

description. This is applicable only to the second description supplied by a
participant for a given snippet.

Blank No description was entered.

7.1.3 Detection Probability

For each snippet, participants were provided with two spaces in which to write descrip-
tions of the defects they found. Each defect description was coded according to the
scheme outlined in Table 7.4. Codes “primary”, “auxiliary” and “both” were applied
whenever participants demonstrated some level of understanding of the primary and/or
auxiliary defect’s faulty logic, even if they misunderstood the actual effect. The “re-
peated” code was not applied by a human coder, but rather automatically determined
by a script based on the initial coding. The “blank” code was likewise automatically
assigned. Ultimately, the codes “false positive”, “ambiguous” and “repeated” were not
treated differently in the analysis.

The defect descriptions for each snippet were presented to the coder in a random order,
with no indication of the participant responsible, the associated treatment combination
or the other defect description generated in the same inspection.

The dependent variables M1 and M2 were either 1 or 0 for each inspection. M1 = 1
if and only if one of the defect descriptions for an inspection was coded “primary” or
“both”. M2 = 1 if and only if one code was “auxiliary” or “both”.

To formally assess the effects of checklists and prior exposure, conditional logistic mod-
els were constructed for both primary and auxiliary defect detection. (Logistic regres-
sion was discussed in Chapter 3, Section 3.3.) Model simplification (Crawley, 2002)
was used to determine the significant terms.

The model terms (before simplification) are as follows:

XAIH = (A, I,A× I,H2, H3, H4) (7.1)

118 Chapter 7. Active Guidance and Defect Detection

These include the checklist (A) and prior exposure (I) factors, a checklist-exposure
interaction term (A× I) and three mutually exclusive variables indicating the snippet
under inspection (H2, H3 and H4; the first snippet being a reference point for the
others). The participant ID (i) identifies a group of observations, to which a random
effects term ζδi can be assigned. Thus, the model is formally expressed as:

P(Mδi = 1 | XAIH) = logit−1(αδXAIH + ζδi) (7.2)

The response term P(Mδi = 1 | XAIH) is the probability that participant i detects a
primary defect (δ = 1) or an auxiliary defect (δ = 2), given the vector of factors XAIH.
αδ is a vector of regression coefficients, estimated using the R statistical package (R
Development Core Team, 2009), which indicate the effect of each factor.

7.1.4 Detection Time

The efficient, precise and unobtrusive measurement of detection time for individual de-
fects required that the experiment be conducted through a graphical interface. A web-
based system displayed the Java code and specifications, and provided fields into which
participants typed the defect descriptions. This experimental infrastructure recorded
millisecond timestamps (relative to the beginning of the inspection) for each keystroke
entered. These timestamps along with the defect descriptions were stored in a database.

The detection time for a given defect was considered to be the median of the keystroke
timestamps. The median was chosen to help guard against keystrokes being entered
before a defect was properly identified (e.g. as a test of the interface, or an aborted
attempt to describe a defect), or afterwards to tidy up the spelling or grammar. The
timestamp of the first or last keystroke, and to a lesser extent the mean timestamp,
would have been sensitive to such events.

Alternatively, detection time could have been recorded by the participants themselves,
rather than through an online interface. However, prior experience suggested that this
may have resulted in substantial amounts of missing data, and a (perhaps subtle) effect
on the comprehension process cannot be ruled out.

Survival analysis was used to examine the time required to detect a defect; specifically,
Cox proportional-hazards models (discussed in Chapter 3, Section 3.3.2). Where par-
ticipants did not detect the defect, the required detection time was effectively censored
at the time of the last defect description entered. That is, the actual time required to
detect the defect was known only to be greater than the length of the inspection.

7.2. Participants 119

Effects in a survival model are expressed in terms of the hazard function, which is
the instantaneous probability of the event (defect detection in this case) occurring
immediately after t given that it did not occur before t. An increase in the “hazard”
implies a decrease in the required detection time, and vice versa. Cox models make
no assumptions about the nature of the hazard function itself, but do assume that
factors have a multiplicative effect on it, independent of t (the proportional-hazards
assumption).

The model is formally expressed as:

µδi(t | XAIH) = µδi0(t) exp(βdXAIH) (7.3)

The response term µδi(t | XAIH) indicates the “hazard” at time t of participant i
detecting a primary defect (δ = 1) or an auxiliary defect (δ = 2), given XAIH as defined
in Equation 7.1. µδi0(t) is the base hazard function when all independent variables are
zero (and is neither assumed nor estimated). βδ is a vector of regression coefficients.

Linear regression would have been inappropriate here due to the censoring described
above. Cases where the defect was not detected could not easily be treated as missing
data, because the underlying cause of defect detection is probably closely related to the
required detection time.

7.2 Participants

The experiment involved 42 participants, recruited from among students undertaking
(or having recently completed) computing-related degrees at Curtin University of Tech-
nology. Participation was strictly voluntary, chocolate being an incentive and means
of compensation. One participant was excluded from analysis due to technical issues
experienced during the exercise. Four (10%) of the included participants were in their
first year of study, while 15 (37%) were in their second year, 14 (34%) in their third
and the remaining eight (20%) had graduated, some of whom were undertaking further
study.

Other background information collected from participants included their prior expe-
rience (if any) and their rough level of exposure to software inspections. Of the 41
participants, 36 (88%) indicated that they had not worked before as a software devel-
oper. The other five participants (12%) claimed between six months and three years
experience.

120 Chapter 7. Active Guidance and Defect Detection

Table 7.5: P-values testing the proportional hazards assumption for required defect detection
time.

Primary Auxiliary

Checklist (A) 0.855 0.326
Prior exposure (I) 0.990 0.659
Interaction (A× I) 0.203 0.477
Snippet 2 vs 1 (H2) 0.849 0.675
Snippet 3 vs 1 (H3) 0.715 0.598
Snippet 4 vs 1 (H4) 0.721 0.546
global 0.896 0.835

Six participants (15%) indicated that they had participated in a software inspection or
review. Nine (22%) said they had studied software inspections/reviews. Twenty-five
(61%) said they had read and understood real-world source code not written by them.
These options were not mutually exclusive.

7.3 Threats to Validity

Potential threats to the experiment’s internal validity included the correctness of the
proportional-hazards assumption and the reliability of the coding scheme. There was
no evidence of a violation of the proportional-hazards assumption, p-values for which
are shown in Table 7.5.

The coding scheme in Table 7.4 was tested for reliability by having a second expert
categorise 11 (approximately one quarter) of the defect descriptions for each snippet,
through the same process outlined in Section 7.1.3. The interrater agreement statistic
Kappa was calculated to be 0.736. However, since the classifications “false positive”
and “ambiguous” are not treated differently in the analysis, disagreements involving
these two categories are not of interest. Merging them yielded a Kappa value of 0.784,
which is slightly above the threshold for “excellent agreement” (0.78) (El Emam and
Wieczorek, 1998).

Inspector variability was not considered a threat to interval validity due to the repeated
measures design. In general, differences between inspectors’ approaches to the reading
task are great, and can overwhelm differences between reading techniques (Uwano
et al., 2006). In particular, differences among participants in this experiment was
considerable, as shown in the previous section. However, repeated measure designs
allow treatment effects to be analysed independently of such participant variability. The
participant ID served as a stratification variable in the logistic and Cox proportional-
hazards models.

7.4. Results 121

Table 7.6: A broad summary of the significant effects found in the experimental data.

Detection probability Detection time

Primary
defects

Auxiliary
defects

Primary
defects

Auxiliary
defects

Checklist (A) positive negative no negative
Prior exposure (I) no no no no
Interaction (A× I) no no no no
Snippet (H) a yes yes yes yes

a Snippet effects are not “positive” or “negative” since there is no meaningful
reference point.

Although the use of an electronic interface may impede anyone used to working with
paper-based artefacts, this was not considered a problem. Any such effect is merely
a component of the random participant effect, dealt with by the repeated-measures
design.

Threats to the external validity of the experiment include the size of the snippets
under inspection, the number of defects in each snippet, the size of the checklists and
the experience of inspectors. Each of these could itself be an important factor in
determining inspection performance. The artefacts were all very small (as shown in
Table 7.1), there were only two defects in each, there were only two items on each
checklist, and the inspectors were all students.

Interactions between such factors and the experimental treatments are not inconceiv-
able. However, there is no obvious reason to expect fundamentally different results had
the artefacts been larger, the number of defects higher or the number of checklist items
greater. Scope exists for exploring any such effects in future studies. The interaction
between the reading technique and inspector experience is in part what this experiment
is intended to find, by pairing checklists with prior exposure to specific defect types.

7.4 Results

The results of the experiment are broadly summarised in Table 7.6. The following
subsections give descriptive and statistical accounts of the data, and detail participants’
own perception of their activities.

122 Chapter 7. Active Guidance and Defect Detection

Checklist (A = 1)

Ad hoc (A = 0)

Participants who detected the defect

0 5 10 15 20 25

23

19

17

13

With prior exposure (I = 1)

Without prior exposure (I = 0)

With prior exposure (I = 1)

Without prior exposure (I = 0)

Figure 7.1: Participants who detected the primary defect for each treatment combination.

Checklist (A = 1)

Ad hoc (A = 0)

Participants who detected the defect

0 5 10 15 20 25 30

18

22

29

24

With prior exposure (I = 1)

Without prior exposure (I = 0)

With prior exposure (I = 1)

Without prior exposure (I = 0)

Figure 7.2: Participants who detected the auxiliary defect for each treatment combination.

7.4.1 Detection Probability

On average, participants detected 4.02 out of 8 defects in the four testing snippets,
consisting of 1.76 out of 4 primary defects and 2.27 out of 4 auxiliary defects (with
rounding).

Figure 7.1 shows how detection of primary defects varied according to the checklist and
prior exposure factors. At first glance, there are positive effects for both checklists and
prior exposure, with the checklist effect outweighing the prior exposure effect. There
is no apparent interaction here between the two factors.

Figure 7.2 shows the detection of auxiliary defects. The smaller disparity between the
two black (I = 0) bars than between the grey (I = 1) bars suggests that here there
is interaction between checklists and prior exposure. The main effect of checklists is
negative, whereas the effect of prior exposure appears to be masked by the interaction.

7.4. Results 123

4. WeaponSelector

3. AddressSearch

2. TreeNode

1. SlushFund

Participants who detected the defect

0 10 20 30 40

33

13

19

10

12

26

29

23

Bounds checking

Overwritten values

Search algorithm

Null values

Case insensitivity

Special characters

Output format

Integer division

Primary defects
Auxiliary defects

Figure 7.3: Participants who detected each of the eight actual defects.

Table 7.7: P-values for defect detection probability.

Primary Auxiliary

Checklist (A) 0.010 ∗ 0.008 ∗

Prior exposure (I) 0.287 0.544
Interaction (A× I) 0.788 0.176
Snippet (H) < 0.001 ∗ < 0.001 ∗

∗ Significant effects (p < 0.05).

In the presence of a checklist, prior exposure appears to have a negative effect, but in
the absence of a checklist the effect seems to be positive.

Figure 7.3 suggests that defect detection is also affected by the defect itself and the
snippet under inspection. Later snippets did not exhibit any higher defect detection
rates than earlier snippets. The effect of any accumulated experience with the overall
process, if it exists, was obscured by the effects of individual snippets and individual
defects. Comparing primary and auxiliary defects must be done with caution, since
in three quarters of cases the detection of primary defects was assisted by checklists
and/or prior exposure.

Table 7.7 gives the significance levels of the A, I and H terms and the A×I interaction
term. At the 5% level the checklist and snippet effects were significant for both primary
and auxiliary defects. There were no significant prior exposure or checklist-exposure
interaction effects.

124 Chapter 7. Active Guidance and Defect Detection

Table 7.8: P-values for defect detection time.

Primary Auxiliary

Checklist (A) 0.163 0.014 ∗

Prior exposure (I) 0.180 0.713
Interaction (A× I) 0.490 0.867
Snippet (H) 0.007 ∗ < 0.001 ∗

∗ Significant effects (p < 0.05).

The checklist effect on the log odds of primary defect detection lies in the range 1.1593–
3.874, with 95% confidence. This effect is multiplicative, meaning that the presence of
a relevant checklist item increased the log odds of detection by between 16% and 287%.
For auxiliary defects the 95% confidence interval is 0.2314–0.841. Thus, the presence
of a checklist without a relevant item reduced the log odds by between 16% and 87%.

7.4.2 Detection Time

Figures 7.4 and 7.5 show the probability according to the data of a defect being detected
at each point in time. A separate line is shown for each treatment combination. The
detection rates appear to be approximately linear until about six minutes into the
inspection, at which point they begin to plateau.

Up until about four minutes into the inspection, there is little difference between the
effect of a checklist and the effect of prior exposure on primary defect detection proba-
bility. Both effects appear to be positive, and in combination they are no more effective
than each by itself. After about four minutes, the checklist effect becomes greater than
the prior exposure effect, and eventually the combination of checklist and prior exposure
appears to outperform each by itself.

A negative checklist effect on auxiliary detection probability is evident graphically
after about three minutes. By contrast, the effect of prior exposure does not appear to
manifest itself until after about six minutes. The effect is positive when no checklist
is present, in spite of the prior exposure being related to a different kind of defect.
However, when a checklist is present the effect is negative.

Table 7.8 gives the significance levels of the terms. At the 5% level the snippet ef-
fects were significant for both primary and auxiliary defects, but the checklist effect
was significant only for auxiliary defects. There were no significant prior exposure or
interaction effects.

7.4. Results 125

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Time (minutes)

P
ri

m
ar

y
d

ef
ec

t
d

et
ec

ti
on

pr
ob

ab
ili

ty

Neither (A = 0, I = 0)
Checklist only (A = 1, I = 0)
Prior exposure only (A = 0, I = 1)
Both (A = 1, I = 1)

Figure 7.4: The probability of detecting the primary defect within a given time, for each
treatment combination.

126 Chapter 7. Active Guidance and Defect Detection

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

Time (minutes)

A
u

xi
lia

ry
d

ef
ec

t
d

et
ec

ti
on

pr
ob

ab
ili

ty

Neither (A = 0, I = 0)
Checklist only (A = 1, I = 0)
Prior exposure only (A = 0, I = 1)
Both (A = 1, I = 1)

Figure 7.5: The probability of detecting the auxiliary defect within a given time, for each
treatment combination.

7.4. Results 127

The checklist effect on the hazard function for auxiliary defect detection time is in the
range 0.405–0.916 (multiplicative), with 95% confidence. Thus, checklists reduce the
“hazard” and increase the required detection time for auxiliary defects.

7.4.3 Perception

Participants were asked several questions related to the experimental factors, by means
of a short questionnaire filled out after completion of the exercise. A small number
of responses to these questions were not readily classifiable (e.g. because two or more
multiple-choice boxes had been ticked).

Twenty-seven participants (66%) considered the checklists to have assisted them. How-
ever, eight (20%) indicated that it made no difference, and five (12%) reported a nega-
tive effect. Thirty-five (85%) participants felt that their prior exposure to certain defect
types (via the training exercises) helped, while six (15%) said it made no difference.
For prior exposure, the prospect of a negative response was not considered plausible,
and so no such options were provided on the questionnaire.

Participants reported varying degrees of checklist use. Twenty-three (56%) reported
checking each item carefully but not relying exclusively on the checklist, while two more
(5%) reported using the checklist exclusively. Eleven (27%) indicated that they at least
looked over the checklist, and five (12%) said they ignored it. All of the twenty-seven
participants who said the checklist helped used it to some extent. Of the Thirteen who
said it did not help, five ignored it, two looked over it, and six checked it carefully.

Only eleven participants (27%) reported that in general they found defects as a result of
the checklist. The rest indicated that they found defects before, during or after checklist
consultation, but not as a result. This is somewhat at odds with the perceived effect of
the checklists. Of the twenty-seven participants who said the checklist helped, only ten
reported generally finding defects as a result of consulting it. Another ten said they
generally found defects during checklist consultation.

128 Chapter 7. Active Guidance and Defect Detection

7.5 Discussion

7.5.1 Checklists

The effects of the checklists on defect detection probability can be explained by inspec-
tors’ attention being re-focused on particular defect types. Attention is drawn towards
defects covered by the checklist, and drawn away from defects not covered. It might be
expected that detection time would be similarly affected. However, the checklists did
not reduce the time required to detect defects covered by the checklist, even though
they increased the time for non-covered defects.

These results suggest that the overall checklist effect examined in many reading tech-
nique experiments is really the aggregate effect resulting from the particular defects
seeded and the checklist questions chosen. In an industry context, if many of the types
of defects likely to arise can be predicted in advance, based on historical data or expert
opinion, it should be possible to construct a relatively effective checklist. Conversely, if
relatively few defect types can be predicted, a checklist may reduce inspection efficacy.
Decisions to use checklists should take into consideration the number of actual defects
likely to be covered by the checklist, as far as this can be estimated.

7.5.2 Prior Exposure

Intuitively, prior exposure should have improved the detection time and probability
of primary defects. It is not clear what effects, if any, should have been expected for
auxiliary defects. Like checklists, prior exposure may also result in a form of cognitive
resource allocation, or it may increase the overall cognitive resources available for the
task, and thus have a negligible impact on unfamiliar defects.

However, none of the prior exposure effects were significant, perhaps because the two
training snippets involved insufficient exposure to similar defects. If the non-significant
positive effect on primary defects is real, it can be attributed non-controversially to
improved plan knowledge. If the effects observed on auxiliary defects are real, they
might require a deeper psychological explanation. It is not obvious why prior exposure
to one type of defect should improve the prospects of detecting unrelated defects, or
why this effect should only occur in the absence of a checklist. Future research may
employ a greater level of training, and thus explore the nature of any such effects.

However, the evidence is suggestive (if not confirmatory) of a much more narrowed focus

7.5. Discussion 129

resulting from the combination of checklist and prior exposure. This may be a further
warning against the use of active guidance for inspectors with matching expertise. That
is, any active guidance given should complement the inspector’s expertise, not coincide
with it.

The lack of any significant main prior exposure effect should not be taken as a sign
that experience generally does not matter. Experience in this experiment was attained
through short training activities, not through months or years of exposure to certain
programming constructs.

7.5.3 Snippets

The snippet had a significant effect in all cases. These effects might result from the
defects within each snippet as much as the nature of the code itself, since each snip-
pet had different defects. Nevertheless, the effects found demonstrate that inspection
performance depends very much on the artefacts being inspected.

7.5.4 Perception

The perceptions held by a majority of participants concerning the experimental factors
were incongruous with the results. Most participants indicated that checklists and prior
exposure helped. However, if the results from primary and auxiliary defect detection
are combined, both factors had very little net effect. The positive perception of the
two factors may arise because defect detection is an entirely conscious activity; by
its nature, inspectors see directly the factors leading to it, and are blind to factors
inhibiting it.

This illustrates the pitfalls of using anecdotal evidence to support particular inspection
strategies. An individual cannot be expected to objectively assess the utility of a
checklist (or other inspection strategy) because he/she has no immediate reference
point. In any given inspection, an individual cannot know what defects would have
been detected if a different strategy had been used.

The results also demonstrate that inspection strategies can have important effects on
an inspection that are not reflected in the simple defect count metric.

130 Chapter 7. Active Guidance and Defect Detection

7.6 Summary

The checklist experiment described in this chapter examined the effects of checklists
and specific inspector experience on individual defect detection.

Overall, the results support the utility of checklist questions in some situations, where
defect types are easily predictable. By extension, this suggests that active guidance in
general should be effective where the underlying concepts and structures in a system are
relatively well-known. This is evident in the statechart and scenario studies described
in chapters 5 and 6, where unambiguous but relatively complex model solutions could
be derived. Conversely, in situations where the defect types are wholly unpredictable,
checklists may hinder inspection performance. Similarly, active guidance in general
should be avoided where the notations and structure of a system do not follow well-
established conventions.

This parallels the argument made in Chapter 6 that active guidance may not be effective
if it conflicts with an inspector’s preferred comprehension strategy. Underlying both
points is the notion that active guidance must be relevant. It must target the links
within the comprehension dependency chain — the pieces of knowledge most likely
to lead to a level of understanding sufficient for defect detection. Defect types or
programmatic constructs that lie outside this chain, either because they do not exist
in the system, or because they are not particularly useful for a given inspector, should
not be the subject of active guidance. The argument is not merely that such active
guidance would be superfluous, but that it would actually be a hindrance to effective
comprehension and defect detection.

The results also raise the issues of inspector variability and system variability, the first of
which was reported in Chapter 6. This experiment used a crossover design to reduce the
influence of individual participants on the results, but artificially re-created variability
in inspector expertise in order to examine its consequences. Inspector expertise did not
have a statistically significant effect, but the results are nonetheless suggestive of an
interaction with the presence of a checklist. The system itself did emerge as a significant
factor determining defect detection probability and time.

There are few techniques in software engineering that are unquestionably appropriate
in all situations. Rather than providing software engineers with results that suggest
simply that a technique can be effective, it would be more valuable to articulate the
circumstances in which it is likely to be effective.

It should be possible to appeal to theory to predict inspection efficacy, with some

7.6. Summary 131

margin of error, given information on the nature of the system, the probable types of
defects therein, the inspectors and the reading technique. The results presented here do
not definitively resolve the uncertainty surrounding reading techniques. For instance,
they do not explain why Hatton (2008) found no improvement using a checklist, even
though all the seeded defects were in some fashion covered by it. Hatton speculates
that the wording of the checklist, or other such subtle characteristics, may have an
effect. Further research should examine the potential effects of such factors along with
checklist size, system size and the number of defects on inspection performance.

The next chapter proposes a theoretical framework and model of the inspection pro-
cess, taking into account fine-grained effects associated with active guidance, individual
inspectors and system composition.

132 Chapter 7. Active Guidance and Defect Detection

Chapter 8

Inspection Modelling

“Well, my cousin Bert Baldrick. . . says he heard that all portraits look the same
these days, since they are painted to a romantic ideal, rather than as a true depic-
tion of the idiosyncratic facial qualities of the person in question.”
“Your cousin Bert obviously has a larger vocabulary than you do, Baldrick.”

— Blackadder the Third

The empirical investigations described in the preceding chapters lead to the following
observation: that the mechanics of software inspection are as complex and multifaceted
as the systems under inspection and the people who inspect them. Given this reality,
it is implausible that a single inspection strategy could outperform all others in all
circumstances. However, rather than leaving the choice of inspection strategy to chance
and intuition, the results presented thus far give some insight into how inspection theory
might be developed.

This chapter describes an approach to modelling software inspection. First, a theo-
retical framework is defined, giving an abstract, qualitative description of the software
development process. The framework incorporates a set of concepts applicable across
all software development processes and methodologies. Such generality is achieved
through abstraction. Based on the framework, a model of software inspection and the
broader software verification process is defined. The model’s outputs are the costs asso-
ciated with software inspection strategies (measured in units of time and/or currency)
and a normalised, unitless measure of cost effectiveness.

The model is implemented using a Monte Carlo simulator, by which selected inspection
strategies are compared. A sensitivity analysis is also conducted on selected model
parameters to explore the behaviour of the model.

134 Chapter 8. Inspection Modelling

The simulation results principally address the third research question from Chapter 1
concerning active guidance (in combination with the checklist experiment). However,
in some respects they also provide further insight into the second question concerning
comprehension.

The model is proposed, in part, as a formalised, generalised explanation for the obser-
vations noted in preceding chapters. In particular, it seeks to address the problem of
reading technique selection. However, the model is also intended to have explanatory
power as well as predictive power. Its component parts are intended to reflect the
mechanics of software development, not merely to serve as a black box.

This chapter is organised as follows. Section 8.1 presents the theoretical framework on
which the model is based. Section 8.2 articulates the logic of the model itself. Sec-
tion 8.3 describes the implementation of the model and the simulation results obtained.
Finally, Section 8.4 discusses these results in the broader context of this thesis and the
published literature.

8.1 Framework Concepts

The framework is a set of concepts and structures intended to support a model of
inspection cost effectiveness.

8.1.1 Entities

Central to the framework are entities, which provide a fine-grained, abstract repre-
sentation of a software system. Entities come in two broad varieties: localities and
k-instances (knowledge instances). A more detailed taxonomy of entities is shown in
Figure 8.1.

Localities are the physical components of the artefacts describing the software, and as
such are immediately visible. K-instances form a higher-level semantic representation,
requiring some level of comprehension (or at least identification). By contrast, localities
are simply searched (i.e. scanned, looked over, etc.) rather than understood; they are
merely the syntactic components of software artefacts. The framework views defects in
a system as being k-instances. Though unintentional, defects are nevertheless distinct
aspects of the software that require human cognition to deal with.

8.1. Framework Concepts 135

Entities

K-instances

Defects

Non-defects

Plans/
patterns

Purposes/
intentions

Embedded
information

References

Other
knowledge

Localities

SRS
components

UML
elements

Code
structures

Other
artefact

components

Figure 8.1: Taxonomy of entities. The bold categories are those with special meaning in the
model. The “other” categories are included to show the open-ended nature of the taxonomy.

Localities may include sections of requirements documents, elements of UML diagrams,
code structures, or any other physical artefact components, or entire artefacts. For
example, a sequence diagram, the specification of a functional requirement, and a
while loop might all be considered localities. They are locations in the system (or
rather, its artefacts) open to direct human observation.

K-instances can be further grouped into defects, plans and patterns, purposes and
intentions, embedded information and references. Plans (as discussed in Chapter 2,
Section 2.3.2) and patterns are abstract knowledge structures, acquired by program-
mers through experience, that represent re-usable solutions to particular software de-
velopment problems. Purposes and intentions are the conscious decisions of software
developers; i.e. developers’ notions of what the subcomponents of the system are
supposed to accomplish and why. Embedded information refers to any information
expressed literally, such as in comments, annotations and identifiers. References are
atomic occurrences of a particular name or identifier.

The above locality and k-instance subcategories are discussed simply to illustrate the
nature of localities and k-instances, and may not be exhaustive. The model based on
this framework only distinguishes between localities, defects and non-defect k-instances.

136 Chapter 8. Inspection Modelling

However, entities are also subject to a more comprehensive classification scheme, one
that the framework itself does not specify. Rather, this is left as a separate task to
be undertaken at the time the framework is utilised in a practical setting (e.g. in the
development or evaluation of a particular inspection strategy), and depends on the
software development environment. However, there are several desirable properties for
a classification scheme:

• Predictive power. For modelling purposes, the classification scheme should iden-
tify entity types that differ substantially with respect to measurable quantities.
Such quantities may include, for instance, the time taken to inspect a locality,
the probability of finding/understanding a k-instance or the cost of repairing a
defect. If a given classification scheme is a good predictor of various quantities
that take part in a model, then its use will improve the model’s precision.

• Detectability. The goal of the framework is to support the development and evalu-
ation of reading techniques. Entity types form a vocabulary for the representation
of reading techniques. In essence, a reading technique is a series of instructions
telling the inspector where to look and what to look for. However, it is possible
to devise entity types that do describe a system (and have predictive power) but
which the inspector cannot usefully be instructed to find.

For example, this occurs in the following näıve instruction:

Find defects most likely to result in a high failure rate.

Such defects are important, and should be found as a matter of priority. The high
failure rate characteristic can be a classification criterion. However, a high failure
rate is not a basis for defect detection during inspection, because such information
is not easily obtained by an inspector. In attempting to follow the instruction,
the inspector is unlikely to be any more effective. Since reading techniques cannot
usefully incorporate such instructions, entity types within the framework should
be detectable.

• Granularity. Classification schemes may have varying levels of granularity. A
coarse-grained scheme with only a few categories will be simpler. However, cer-
tain reading techniques may be effectively unrepresentable if there are insuffi-
cient entity types. For instance, the difference between the scenario-based and
checklist-based techniques is largely one of detail. Without appropriately fine-
grained entity types, these two approaches may become indistinguishable, defeat-
ing the purpose of the framework.

The studies described in previous chapters implicitly use entities in their methodology
and analysis. These are shown in Table 8.1.

8.1. Framework Concepts 137

Table 8.1: Entity types used in previous chapters.

Study Locality types Knowledge types

Statechart study (Chapter 5) • statechart
• source code fragment

• state
• transition
• label
• decision
• mutation
• binding

Scenario study (Chapter 6) • sequence diagram
• class
• method
• line

• boolean condition
• scenario participation
• method reference
• method call
• constructor reference
• field
• variable
• message
• object
• sequence diagram flow control

Checklist experiment (Chapter 7) • specification
• source code

• integer division defect
• output format defect
• special character defect
• case insensitivity defect
• null value defect
• search algorithm defect
• overwritten values defect
• bounds checking defect

138 Chapter 8. Inspection Modelling

8.1.2 Dependencies

Entities are related through a network of directional dependencies, as suggested in
previous chapters. These are as follows:

• A comprehension dependency between two k-instances means that the comprehen-
sion of one relies on (or is assisted by) the comprehension of the other. References
should have no comprehension dependencies, being atomic and easily identifiable.
It is unlikely that any k-instance would depend on a defect, except conceivably an-
other more complex defect. Plans, patterns, purposes and intentions, meanwhile,
might depend on each other and have other k-instances depend on them.

• A locality dependency exists between a k-instance and a locality, where compre-
hension of the k-instance depends on (or is assisted by) searching the locality.
This would typically mean that the k-instance derives from information physi-
cally located within the locality.

• A decision dependency occurs where the act of searching a locality is made
more likely by having first comprehended a particular k-instance. That is, the
k-instance provides some indication of where the inspector’s efforts should be
directed.

Figure 8.2 shows an example of a dependence structure between entities. Here, the
f1 and f2 localities represent the source code for two functions. The k-instances pur-

pose of f1 and purpose of f2 represent the high-level semantics of these functions. The
k-instance call to f2 represents the call from f1 to f2. Names are given to these entities
only for the purpose of discussion.

The dependencies between these entities can be explained as follows:

• The purpose of f1 k-instance has comprehension dependencies on call to f2 and
purpose of f2. Broadly, in order to understand the purpose of function f1, it is
necessary to understand its actual contents (in this case, identifying the call to
f2) and also the purpose of f2.

• The purpose of f1 k-instance also has a locality dependency on f1, meaning that
the inspector must observe the source code for f1 in order to understand its
purpose. Similarly, purpose of f2 has a locality dependency on f2.

• The call to f2 k-instance has a locality dependency on f1 because it is physically
located in the f1 function.

8.1. Framework Concepts 139

void f1() {
int x;
// ...
x = f2();
// ...

}

int f2() {
// ...

}

Function locality (“f1”)

FunctionCall
k-instance

(“call to f2”)

Function locality (“f2”)

FunctionPurpose
k-instance

(“purpose of f1”)

FunctionPurpose
k-instance

(“purpose of f2”)

comprehension
dependency

locality
dependency

comprehension
dependency

locality
dependency

decision
dependency

locality
dependency

Figure 8.2: An example of a dependence structure representing a snippet of source code,
where function f1 calls function f2. The classification scheme comprises the “Function”
locality type (yellow/orange) and the “FunctionCall” and “FunctionPurpose” knowledge types
(red).

• The f2 function has a decision dependency on call to f2. The identification by the
inspector of call to f2 increases the probability that the inspector will examine
the f2 locality.

Some restrictions exist on dependencies between entities. In particular, localities can-
not depend directly on other localities, and cycles are prohibited (so as to simplify the
model). There are likely to be additional constraints imposed on the dependency struc-
ture by the entity types involved. In the example shown in Figure 8.2, a FunctionCall
k-instance would probably not depend on a FunctionPurpose k-instance (even if cycles
could be resolved); knowing a function’s purpose is unlikely to improve the inspector’s
ability to identify function calls.

The studies presented in previous chapters also imply dependencies between entity types
identified therein. For example, in statechart study described in Chapter 5, each state
and transition have a locality dependency on the statechart because they are physically
located within it. The decision, mutation and binding roles have locality dependencies
on source code fragments for the same reason. The decision and mutation roles also
have comprehension dependencies on states and transitions; the latter are required to
understand the former. Finally, an instance of binding has a comprehension dependency
on decisions and mutations (and potentially other bindings as well); binding code by

140 Chapter 8. Inspection Modelling

definition connects other code fragments. Such a formalised dependency structure is
not strictly necessary to understand the statechart study itself, but may be useful in
illustrating how dependencies arise.

In the scenario study described in Chapter 6, the various types of references each
have dependencies on the localities in which they occur. For instance, field references
depend on classes, variables depend on methods and messages depend on the sequence
diagram. Scenario participation (i.e. whether a line is executed in the given use case
scenario) depends on the line in question, any relevant boolean conditions and whether
the previous line participated in the scenario. Decision dependencies also exist here;
class and method localities depend on method call k-instances, in a similar fashion to
the example in Figure 8.2. This may not be an exhaustive list of all the dependencies
arising in the study.

Finally, in the checklist experiment described in Chapter 7, a simpler dependency
structure arises. The experiment utilised eight defect types, most of which depended on
both the specification given and the source code snippet. This simple structure largely
reflects the quantitative nature of the experimental analysis rather than the underlying
comprehension process. Had more knowledge types been identified and examined within
the experiment, a richer variety of dependencies may have been apparent.

8.1.3 Markers

Markers are an extension to entity classification. They are assigned to individual en-
tities to indicate properties that are not part of the classification scheme (particularly
due to the detectability requirement). Markers may represent importance, complexity
or other visible characteristics that influence activities undertaken in the development
process.

As with the classification scheme, the set of possible markers is not supplied by the
framework itself. There may be several distinct markers representing different measures
of importance, and several indicating different types of complexity. Other, unrelated
markers are also possible.

Whereas entity types are exclusive (an entity has exactly one type), markers are inde-
pendent of one another. Each entity may be assigned any subset of markers, including
none.

Localities have markers explicitly assigned to them, whereas k-instances are implicitly

8.1. Framework Concepts 141

UseCaseScenario locality
{complex}

UseCaseScenario locality
{important}

UseCaseScenario locality
{}

UseCaseScenario locality
{complex, important}

Omission defect (k-instance)
{complex, important}

Ambiguity defect (k-instance)
{}

Ambiguity defect (k-instance)
{complex, important}

Omission defect (k-instance)
{complex}

Figure 8.3: An example of marker assignment. Use case scenarios are directly assigned
a combination of the markers “complex” and/or “important”. Defects, being k-instances,
inherit these markers from the relevant use case scenarios.

assigned the markers of their dependencies. Thus, if a class locality has an importance
or complexity marker assigned to it, any defects occurring within that class (thereby
being dependent on it) will also have the same marker.

Some locality types may have a greater propensity for certain properties than others.
For instance, specific functional requirements are more likely to have critical importance
or contain complex logic than the overview section of the requirements document.

Figure 8.3 shows an example of marker assignment to use cases scenarios and defects.
Here, use case scenario localities are each explicitly assigned a set of markers, which
are inherited by the related defect entities. That is, a defect inside a particular use
case scenario is complex/important if (and only if) that use case scenario itself is
complex/important.

8.1.4 Phase Structure

The framework views a software project as being divided into discrete time units of ar-
bitrary and variable length, which for convenience are called phases. These may or may
not map onto the conventional software lifecycle phases, and a given phase may or may
not be qualitatively different from the previous phase. In a project undertaken using
agile methods, iterations may be considered phases for the purpose of the framework.

142 Chapter 8. Inspection Modelling

Each phase contains a set of entities and dependencies, based on those that existed in
the previous phase. Each phase includes a subset of the following activities:

• development (whether requirements gathering, design or coding);
• inspection/review;
• testing;
• operational use; and/or
• defect correction.

By allowing any combination of these activities to take place in any phase, the frame-
work can apply to projects that use either waterfall-style or agile methods. In the latter
case, iterations may be considered phases, with testing and operational use conducted
virtually throughout the project.

8.1.5 Hierarchy and Propagation

The framework considers two situations in which entities and dependencies can arise.

Hierarchy occurs when one entity is subordinate to and cannot exist without another
(within the same phase). For instance, a parameter is subordinate to and cannot exist
without a method, and likewise for a method and its containing class. In this case, a tree
structure arises in which parameters are children of methods and methods are children
of classes. This does not imply any form of causal relationship; merely a structural one.
Hierarchy does not necessarily reflect the process of designing or implementing classes
and methods (or any other entity types), but simply the outcome of that process.

Propagation occurs when an entity in one phase leads to one or more entities in the
next phase. For instance, a functional requirement may result in (i.e. propagate to)
a number of different classes, and/or a number of different methods. (Propagation is
restricted to one-to-many relationships to simplify the model.)

Hierarchy and propagation links may occur between entities of any type. The resulting
structures are distinct from the dependency structure, but impose further constraints
on where dependencies may occur. Table 8.2 summarises the types of connections
occurring between entities — the three types of dependence along with hierarchy and
propagation. Hierarchy and propagation show how a system is structured and how that
structure evolves over time, whereas dependencies determine how it is understood.

In general, an entity can depend on any other entity within the hierarchy. However, in

8.1. Framework Concepts 143

Table 8.2: Summary of connections between entities.

Connection type Parenta Childa Across
phasesb

Multiple
parentsc

Modelling
purpose

Comprehension dependency k-instance k-instance no yes inspection
Locality dependency locality k-instance no yes inspection
Decision dependency k-instance locality no yes inspection
Hierarchy link entity entity no no system structure
Propagation link entity entity yes no system structure
a Dependencies are restricted to particular classes of entity.
b Only propagation links may occur between entities in different phases.
c Hierarchy and propagation links form tree structures, whereas dependencies do not (necessarily).

Dependency

Hierarchy link

Class

State

State

Transition

Transition

Class State
illegal dependency

Figure 8.4: An example of an entity hierarchy. In this example, states are children of classes,
and transitions are children of states. A transition can depend only on states within the same
class.

144 Chapter 8. Inspection Modelling

Dependency

Propagation link

Requirements phase

Coding phase

FunctionalRequirement

locality

SystemMode

k-instance

InvariantViolation

defect
(k-instance)

Method

MethodMethod

propagated
locality

Assignment

Assignment

InvalidState

UnhandledError

propagated
dependencies

illegal dependency

Figure 8.5: An example of entity and dependency propagation. A propagated dependency
can only occur between two propagated entities if a corresponding dependency existed in the
previous phase.

8.2. Model 145

some situations, dependencies may be restricted to entities within the same subtree. In
Figure 8.4, Transition entities have dependencies on State entities, but only on states
within the same class (i.e. those descended from the same Class entity).

Figure 8.5 shows an example of propagation. For propagated entities, dependencies
can only exist where corresponding dependencies existed in the previous phase. In the
example, the UnhandledError defect cannot depend directly on a Method k-instance,
because the InvariantViolation defect did not depend on a FunctionalRequirement local-
ity. Even where this condition is satisfied, the framework does not mandate that a
dependency must exist.

8.1.6 Inspection Strategies

The framework views reading techniques as being part of a larger inspection strategy
that encompasses all inspectors across all phases of a software project.

Inspection strategies specify the number of inspectors to use in each phase, and what
forms of guidance are provided. In each phase, for each inspector, for each entity,
an inspection strategy may provide active and/or passive guidance. Active guidance
entails an instruction asking the inspector to search the locality or find the k-instance
in question. Passive guidance occurs when an alternate representation of the entity is
provided in a form more easily digested by the inspector.

Passive guidance may imply the use of visualisation tools, or else some preliminary man-
ual effort undertaken to provide inspectors with supporting material. Defects cannot
have passive guidance, because that would require that they be known in advance.

8.2 Model

A fine-grained model of inspection cost effectiveness is proposed, based on the frame-
work concepts discussed in the previous section.

Inspection cost effectiveness can be thought of as a comparison between the costs
arising in two scenarios: where a particular inspection strategy is used, and where no
inspections are used. (This also raises the prospect of relative cost effectiveness, which
would involve a comparison between two or more different inspection strategies, but
this is not explored here.)

146 Chapter 8. Inspection Modelling

Based on the formulae proposed by Kusumoto et al. (1991) and Freimut et al. (2005)
(discussed in Chapter 2, Section 2.4.1), the following equation gives the overall notion
of cost effectiveness:

CE =
Net costs avoided

Cost without inspection

=
Cost without inspection− Cost with inspection

Cost without inspection

= 1− Cost with inspection
Cost without inspection

The model described here diverges from those of Kusumoto et al. (1991) and Freimut
et al. (2005) in the introduction of a variable representing the inspection strategy (and
subcomponents thereof, as described in Section 8.2.5). In a deterministic world, the
total cost with/without inspection could be defined as a function of the inspection
strategy z, as follows:

CE(z) = 1− TC(z)
TC(z0)

(8.1)

where CE(z) is the cost effectiveness of inspection strategy z;
TC(z) is the total cost (in units of currency, time or effort) of z; and
TC(z0) is the total cost of the null inspection strategy z0, representing the
absence of inspections.

In this scheme, z precisely determines the total cost, and hence the cost effectiveness.
In reality, cost and cost effectiveness are also affected by random factors beyond the
control of the inspection strategy. Thus, instead of representing total cost (TC) as
a function of z, it can be represented as a random variable depending on Z. Cost
effectiveness (CE) is then also a random variable, and can expressed using conditional
probability notation as follows:

E(CE | Z = z) = 1− E(TC | Z = z)
E(TC | Z = z0)

(8.2)

8.2. Model 147

where E(CE | Z = z) is the expected cost effectiveness, given inspection strategy z;
E(TC | Z = z) is the expected total cost arising from inspection strategy z;
and
E(TC | Z = z0) is the expected total cost arising from the null inspection
strategy z0.

Assuming that costs are not negative, cost effectiveness theoretically lies in the range
(−∞, 1]. However, a value of 1 is unrealistic, because it would indicate that the inspec-
tion strategy completely eliminates all defect-related costs with no effort expended.
Negative cost effectiveness is possible, and would mean that the inspection strategy
generates greater costs than it saves. The cost effectiveness of the null strategy is zero,
by definition.

Total cost is the sum of the various inspection-related costs resulting from:

• searching a locality (essentially the cost of performing the inspection itself);
• providing passive guidance;
• operational failures of the software;
• investigating failures to determine the underlying defect; and
• reworking a defect.

These cost terms are formalised as a set of random variables, which in turn depend on
other variables, detailed further in sections 8.2.5 and 8.2.6. However, these variables
exist in the context of a system of entities and dependencies, which must themselves
be established beforehand. Thus, the model has two components:

• The metamodel describes the system of entities and dependencies, and their prop-
agation across all project phases. For each phase, it also establishes the set of
potential inspectors and the system’s operational runtime.

• Each of two scenarios describe the consequences of an inspection strategy, ulti-
mately on the various costs, within the context of the metamodel. Both inspection
strategies are therefore evaluated using the same defects, k-instances, localities,
inspectors and other facets of the software process.

For convenience, the scenario model is further divided into two parts, one dealing
with inspection itself and the second modelling the wider software verification
process.

In principle, if the two inspection strategies both happen to result in the same defect
being detected, the consequences following from this (including whether the defect is

148 Chapter 8. Inspection Modelling

reworked, and the number of other defects that result from it in the next phase) should
be the same.

8.2.1 Metamodel Entities

Based on the entity classification scheme, the model introduces E — the set of all entity
types. This has subsets EL, EK and ED, representing the set of all locality, k-instance
and defect types. Entity types are considered to be atomic values.

An entity itself is defined mathematically as a tuple of four values, using the notation
ε(e,η,h,ε′). Without parentheses, ε may represent any arbitrary entity. The parenthesised
values serve to identify the entity, as follows:

• e (also written τ(ε)) is the entity type of ε;

• ε′ (also π(ε)) is the originating or superordinate entity by which the existence of
ε is implied (through hierarchy or propagation), or 0 if ε is an initial entity;

• h ∈ {0, G, H} (also H(ε)) indicates that ε has been propagated from a previous
phase (G), is implied as part of the entity hierarchy (H) or neither (0); and

• η is an arbitrary index.

These details do not encode all the real-world characteristics of an entity, but are
sufficient to define entities as mathematical objects. Other entity characteristics are
represented by a variety of random variables.

Each entity can imply the existence of some number of other entities of each type,
both in the current phase (through hierarchy) and in the subsequent phase (through
propagation). QGj(ε) is the set of entities propagated directly from entity ε to phase
j. QHj(ε) is the set of entities directly subordinate to ε within phase j. These are
each defined by discrete random variables, giving the number of entities of each type
implied by an entity of type τ(ε). The set of initial entities (Q0) is also defined by
a discrete random variable for each entity type. All other entities in the system are
implied (directly or indirectly) by those in Q0, through recursive applications of QG and
QH. This is defined formally in Appendix E, Section E.1.1, and the random variables
defined in Table E.3.

The symbol ε is used frequently in the metamodel because there is no need to distinguish
between k-instances (except defects) and localities. In the scenario model, defects, k-

8.2. Model 149

Phase j

Phase j + 1, if
rework attempted

Phase j + 1, if
left unreworked

δoriginal

δn . . . δ2 δ1 δC δ′C δ′1 δ′2 . . . δ′m

carryover
defects

Figure 8.6: Defect-to-defect propagation. A defect in phase j results in two alternate sets
of defects in phase j + 1. Both sets form part of the defect pool.

instances more broadly and localities each have particular roles and accordingly are
given separate symbols: δ for defects, κ for k-instances and λ for localities.

However, the metamodel makes a special concession to defect propagation. As a result,
defects require further parameters. The construction δ(e,η,h,ε′,w,y) represents a defect δ
with additional characteristics as follows:

• w ∈ {0, 1} (also W (δ)) indicates whether δ is the result of an attempt to rework
a defect in the previous phase; and

• y ∈ {0, 1} (also Y (δ)) indicates whether δ has been carried over from the previous
phase (i.e. rework was either not attempted, or not successful).

If the defect was not propagated (i.e. h 6= G), both w and y are 0.

For each phase, the metamodel considers a pool of potential defects, only some of which
exist in a given scenario. By contrast, all other entities are common to both scenarios.
Two types of propagation are considered: non-defect-to-entity, and defect-to-defect.
Non-defect entities can propagate to any type of entity, including defects. Defects
themselves can only propagate to other defects. This restriction ensures that an entity
common to both scenarios cannot arise from a defect specific to only one scenario.

Figure 8.6 briefly illustrates defect propagation. Propagated defects may result from
either rework effort, or the absence of rework effort. At the same time, they may also
be carryover defects from the previous phase, or new defects introduced as a result of

150 Chapter 8. Inspection Modelling

the original. A carryover defect is considered a distinct object from the original defect
for modelling purposes, even though it represents the same defect.

For each defect in the preceding phase, the defect pool in the current phase consists of:

• exactly one carryover defect (i.e. the original defect itself) resulting from not
attempting rework;
• zero or one carryover defects resulting from a failed rework attempt; and
• any number of other defects (not the original), resulting from either reworking or

not reworking the original.

Each scenario considers only some of these propagated defects, depending on which
were reworked in the previous phase. However, defects propagated from non-defect
entities, defects derived hierarchically and initial defects are present in all scenarios.

The metamodel (rather than each scenario model) determines whether a hypothetical
rework attempt will succeed. The inspection strategy is assumed to have no effect on
this. Non-defect entities may also be carried over from one phase to the next, though
the model has no need to distinguish between these and new, introduced entities.

8.2.2 Metamodel Dependencies

Having established (probabilistically) the set of entities in a given phase, the metamodel
then specifies what dependencies may exist between them. To avoid introducing de-
pendency cycles, each entity is assigned a dependence complexity number. Dependence
complexity has no scale, but broadly represents the potential for an entity to depend
on other entities. Each entity may only depend on other entities with lower dependence
complexity. Such values are given by the continuous random variable Θe, each entity
type e having a different distribution.

Just as entities themselves occur in three ways — initially, hierarchically or via prop-
agation — so do dependencies. (Dependency construction is formally defined in Ap-
pendix E, Section E.1.2.)

Initial dependencies occur between initial entities; each entity depending on a random
number of other entities of each type. P00(ε) is the set of initial dependencies. Here, a
matrix of random variables specifies the number of dependencies each entity type will
have on each other entity type. The actual dependencies are also chosen at random,
with uniform probability.

8.2. Model 151

Dependencies can also occur within branches of the entity hierarchy. A context entity
defines the branch of the hierarchy in which such a dependency occurs. Thus, the array
of random variables here has three dimensions: the dependent entity type, the target
entity type, and the context entity type. The dependent and target entities must occur
within a single branch defined by the context entity. However, there may be several
such context entities, each with its own enclosed set of dependencies. PHj(ε) gives the
total set of hierarchical dependencies for ε.

Finally, dependencies can also be propagated. A propagated dependency may only
occur (with some non-zero probability) between two entities if a corresponding depen-
dency existed between the two original entities in the previous phase. The model uses
a matrix of binary random variables, each indicating whether or not a propagated de-
pendency exists between one entity type and another, where applicable. PGj(ε) gives
the total set of propagated dependencies for ε.

The set of all entities upon which ε depends is Pj(ε), taken from P00(ε), PHj(ε) and/or
PGj(ε) as appropriate. This is disaggregated into subsets representing the three types
of dependence:

• PMj(κ) represents the comprehension dependencies of k-instance κ;
• PLj(κ) represents the locality dependencies of k-instance κ; and
• PDj(λ) represents the decision dependencies of locality λ.

8.2.3 Metamodel Markers

Markers are represented by the symbol ψ, and the set of all markers by Ψ. The
assignment of a marker ψ to entity ε in phase j is represented by the binary variable
XKjεψ. The means by which markers are assigned depends on the entity.

The logic of marker assignment has several cases, illustrated in Figure 8.7. Markers
are assigned probabilistically to initial or hierarchically-occurring localities, based on
a binary random variable for each combination of locality type and marker. By con-
trast, propagated localities have the same markers as their counterparts in the previous
phase. A k-instance is assigned a marker if the same marker is assigned to any of its
dependencies, or to the entity from which it propagated (if applicable). (The formal
definition of marker assignment occurs in Appendix E, Section E.1.3).

Almost all of the variables in the scenario model depend on XKjεψ. Thus, markers have
the capacity to influence almost any aspect of the scenario.

152 Chapter 8. Inspection Modelling

Is ε a k-instance
or a locality?

Is ψ assigned to
any of ε’s

dependencies?

XKjεψ = 1

yes

Has ε been
propagated?

Same as
originating entity

(XKjπ(ε)ψ)

yes

XKjεψ = 0

no

no

k-instance

Has ε been
propagated?

Same as
originating entity

(XKjπ(ε)ψ)

yes

Random variable
(Ωτ(ε)ψ)

no

locality

Figure 8.7: Decision tree for determining whether marker ψ is assigned to entity ε (i.e. the
value of XKjεψ).

8.2.4 Compact Bayesian Network Notation

The metamodel and scenario models differ in the notations needed to describe them.
The metamodel concerns sets of entities, whereas the scenario model concerns events
and activities associated with those entities. The latter is more amenable to being
described by a Bayesian Network (BN), as explained in Chapter 3, Section 3.3.3.

However, the actual number of random variables in the scenario is determined prob-
abilistically by the metamodel, and some of their relationships are similarly random.
This arrangement is not easily represented in a conventional BN, with one node for each
variable. However, it can be represented in a compact form, the notation for which is
described here.

Compact Bayesian Network (CBN) notation is a means of generalising a set of BNs.
Each CBN represents multiple possible BNs in a compact form. In principle, with
additional information, any given CBN can be redrawn as an ordinary BN (though
in practice the resulting network might be unreadable). CBN notation is similar in
principle to plate notation.

8.2. Model 153

In a CBN, variables with similar meaning and behaviour are grouped into arrays called
variable sets. Each node in the graph represents a variable set. Each variable set is
indexed by zero or more subscripts, different variable sets potentially having different
sets of indices. Member variables are identified by their subscript values.

A variable set is distinct from a vector- or matrix-valued variable, because each of its
member variables may have different dependency relationships. However, the existence
of these relationships must follow a definable rule.

An arc between two variable sets represents a set of statistical dependencies between
the member variables. The individual relationships thus implied are as follows:

1. If two connected variable sets have no common subscripts, then statistical depen-
dencies occur between all pairings of their member variables (i.e. the Cartesian
product).

2. If two connected variable sets share one or more common subscripts, statistical
dependencies only occur between pairings where the common subscripts match.

3. Notwithstanding the above, two member variables may need to satisfy additional
arbitrary predicates before one can depend on the other. These predicates are
shown explicitly along the arc.

Compact Bayesian networks can contain cycles, as long as there are predicates in place
to prevent cycles among the member variables.

The following sections demonstrate the use of CBN notation.

8.2.5 Comprehension Modelling

The scenario model considers the inspection process to consist of a series of searching
and comprehension events. For a given phase j and a given inspector i, each of the
localities may or may not be searched, and each of the k-instances may or may not
be comprehended. This is expressed by binary random variable sets Sjiλ and Mjiκ.
Comprehension, locality and decision dependencies manifest as relationships between
these variables.

Searching and comprehension are affected by guidance, and by an active guidance
level, which is defined as the overall number of k-instances or localities for which active

154 Chapter 8. Inspection Modelling

guidance is given (for an individual inspector). Both forms of guidance are presumed
to have a positive effect on the log odds of searching and comprehension. Active
guidance level is presumed to have a small negative effect, but one that can mount
up as the level increases. The intention here is twofold: to model inspectors shifting
their attention away from those entities not covered by active guidance, and to capture
overhead associated with following instructions rather than intuition. Thus, it is not a
foregone conclusion that more active guidance yields lower costs. Meanwhile, passive
guidance has a more direct counterbalancing mechanism. The use of passive guidance
for a given entity (for at least one inspector) incurs a cost associated with the necessary
preparation effort.

Dependencies also play a role in determining searching and comprehension log odds.
The log odds of searching a locality are increased if any decision dependency k-instances
have been comprehended. By contrast, the log odds of comprehending a k-instance are
reduced if any comprehension and locality dependencies have not been found. Such
inverse effects are used in the latter case because comprehension and locality depen-
dencies reflect requirements that should be met, rather than opportunities that may
arise.

The log odds of searching are also affected by markers, with each marker having a dif-
ferent (either positive or negative) effect on the log odds. Searching a particular locality
is a deliberate action of the inspector, potentially motivated by certain properties of
that locality, represented by markers. Comprehension is not similarly affected because
it is essentially involuntary, or at least not amenable to such precise decision making.

Formally, Sjiλ and Mjiκ are defined using logistic model equations, shown in Ap-
pendix E, sections E.2.3 and E.2.4. (Logistic model equations in general are discussed
in Chapter 3, Section 3.3.1.) These begin with a term for the baseline log odds of
searching or comprehension, and contain additional effect coefficients for active guid-
ance, passive guidance, active guidance level, dependencies and markers as described
above. The baseline log odds and all of the effect coefficients are selected from random
variables. Their values are fixed for a given inspector and vary between inspectors.
This helps to model inspector variability.

A compact Bayesian network for comprehension is shown in Figure 8.8. The guid-
ance variables influencing Sjiλ and Mjiκ are ultimately determined by the inspection
strategy. The inspection strategy itself (Z) formally comprises three components:

• the number of inspectors to be used in each phase (the vector ZI, or ZIj for a
single phase j);
• the provision of comprehension guidance (the function ZM); and

8.2. Model 155

Mjiκ/κ′

k-instance κ
comprehended

({0, 1})

Sjiλ

locality λ
searched
({0, 1})

Djδ

defect existence
({0, 1})

CSjiλ

search cost (R+)

AMjiκ, BMjiκ

active/passive
comprehension

guidance
({0, 1}2)

ASjiλ, BSjiλ

active/passive
search guidance

({0, 1}2)

Z

inspection
strategy

LAMji

active
comprehension
guidance level

(N)

LASji

active search
guidance level

(N)

CBMjκ

passive
comprehension
guidance cost

(R+)

CBSjλ

passive search
guidance cost

(R+)

XKjεψ

marker
assignment

({0, 1})

locality
dependence:
λ ∈ PLj(κ)

decision dependence:
κ ∈ PDj(λ)

comprehension
dependence:
κ′ ∈ PMj(κ)

κ = δ ∈ ED

ε = λ ∈ EL

ε = κ ∈ EK

.

. . .

Figure 8.8: The inspection process, represented as a compact Bayesian network. Each
variable set is annotated with a brief description and the set of possible values. Ellipses
indicate where this diagram overlaps with and joins onto Figure 8.9. The Djδ and Mjiκ

variable sets form part of the overlap.

156 Chapter 8. Inspection Modelling

• the provision of search guidance (function ZS).

Thus, Z = (ZI, ZM, ZS). The functions ZM and ZS map phase j, inspector i, entity type
τ(ε) and the set of applicable markers represented as binary vector XKjε to indicators
of active and passive guidance:

(AMjiκ, BMjiκ) = ZM [j, i, τ(κ),XKjκ] (8.3a)

(ASjiλ, BSjiλ) = ZS [j, i, τ(λ),XKjλ] (8.3b)

Thus, inspection strategy and marker assignment (XK) jointly determine active/passive
comprehension guidance (AM and BM) and active/passive search guidance (AS and BS).
In turn, the active guidance variables directly determine the active guidance levels (LAM

and LBM). The Z, A, B and L variables are not random but deterministic.

The passive guidance variables affect the passive guidance provision costs (CBM and
CBS). These costs along with the cost of searching (CS) are determined by log-linear
equations, where the baseline/intercept term is a random variable. These are shown
in Appendix E, sections E.2.10, E.2.11 and E.2.12. Log-linear (rather than linear)
equations are used here because the factors affecting costs — the effects of any markers
assigned to the entity in question — are more likely to be multiplicative than additive;
i.e. a percentage increase/decrease rather than an absolute increase/decrease.

8.2.6 Verification Process Modelling

The wider verification process concerns the detection and rework of defects, leaving
aside non-defect entities. Three activities/events may lead to the discovery of a defect:
inspection, test failure and operational failure. All three means of detection lead to the
possibility of reworking the defect. For test and operational failure, the failure must be
investigated before any corrective action can be taken. Whether the defect is reworked
determines its propagation (or lack thereof) to the next phase, where there are further
opportunities for inspection, test failure and operational failure, and so on. Figure 8.9
shows a compact Bayesian network representation of the verification process, as it exists
in the model.

The detection of defect δ through inspection is represented by binary random variable
Mjiδ, as described in the previous section. Thus, detecting a defect is a specific case
of comprehending a k-instance. The same defect may be detected by any number of
the inspectors involved in phase j; having multiple inspectors detect a defect makes no

8.2. Model 157

Gj′δ′

defect
propagated

({0, 1})

Djδ

defect exists
({0, 1})

Uj

operational
runtime (R+)

XKjδψ

marker
assignment

({0, 1})

Tjδ

test failed
({0, 1})

Mjiδ

defect δ
detected via
inspection

({0, 1})

Fjδ

number of
operational
failures (N)

Vjδ

failure
investigated

({0, 1})

Rjδ

defect
reworked
({0, 1})

CFjδ

cost of
operational

failures (R+)

CVjδ

cost of failure
investigation (R+)

CRjδ

cost of defect
rework (R+)

1 ≤ i ≤ ZIj

1 ≤ i ≤ ZIj

. .
.

. .
.

j′ = j + 1
δ = π(δ′)

j′ = j
δ′ = δ

j′ = j + 1
δ = π(δ′)

Figure 8.9: The software verification process, represented as a compact Bayesian network.
Each variable set is annotated with its function and range of values. Ellipses indicate where
this diagram overlaps with and joins onto Figure 8.8. The Djδ and Mjiκ variable sets form
part of the overlap.

158 Chapter 8. Inspection Modelling

difference to the log odds of rework. In some phases (and in the scenario for the null
strategy), there may be no inspectors at all, in which case there are no Mjiδ variables
present.

Defects may also be detected through failures of the system, either in controlled condi-
tions or in operational use. Each operational failure incurs a direct cost, whereas test
failures do not. The model assumes that the same testing cost would be incurred irre-
spective of the defects in the system, making testing cost irrelevant in a comparison of
inspection strategies. Hence, the model merely considers whether a test failure occurs
(Tjδ ∈ {0, 1}), while considering the number of operational failures (Fjδ ∈ N). The cost
of operational failures for defect δ is CFjδ.

Further, if either Tjδ or Fjδ is non-zero, an investigation into the failure(s) may proceed.
Vjδ records whether an investigation takes place. If so, an investigation cost (CVjδ) is
incurred. The model assumes that any investigation effort successfully locates the
defect.

Operational failures can only occur on carry-over defects. The model assumes that the
version of the system being put into operational use does include new defects introduced
in the current development phase, but only those present in the previous phase. That
is, the sequence of events unfolds as follows:

• defects found in the previous phase are reworked (or rather rework is attempted);
• the system is released for operational use; and then
• further development is conducted in the current phase, which may lead to defects

not present in the released version.

Further, test failures, operational failures and resulting investigations are not considered
in the initial phase. Ultimately, the purpose of the model is to assess the effects of
different inspection strategies, and at this point the inspection strategies have not yet
had any effect.

Finally, the binary variable Rjδ records whether an attempt is made to rework defect
δ. A rework attempt can only be made if the defect has been detected, either through
inspection or failure/investigation. The success of any rework attempt is determined
by the metamodel. Regardless of its success, a rework attempt incurs a rework cost
(CRjδ).

The variables discussed above all depend on defect δ actually existing within the sce-
nario in question. This is indicated by the binary variable Djδ. Djδ = 1 in two cases:

8.3. Simulation 159

• defect δ is an initial defect, or arose in the current phase from the entity hierarchy
(i.e. H(δ) ∈ {0, H}); or

• defect δ propagated from one (π(δ)) that also existed in the current scenario (i.e.
D(j−1)π(δ) = 1), and either:

– a rework attempt was made on π(δ) and δ is the result of rework, or
– π(δ) was not reworked and δ is not the result of rework.

(This second condition is represented by the binary variable Gjδ.)

If Djδ = 0, then by definition Mjiδ = Tjδ = Fjδ = Vjδ = Rjδ = 0, and also D(j+1)δ′ = 0
(for any defect δ′ propagated from δ).

Test failure (Tjδ), investigation (Vjδ) and rework (Rjδ) are conditionally described by
logistic equations (shown in Appendix E, sections E.2.7, E.2.8 and E.2.9). Logistic
equations are used because these variables are binary. By contrast, the number of
operational failures (Fjδ) along with the costs of operational failure (CFjδ), investigation
(CVjδ) and rework (CRjδ) are described by log-linear equations (shown in Appendix E,
sections E.2.6, E.2.13, E.2.14 and E.2.15).

To calculate the total cost for a scenario, the various cost terms are summed across all
phases, all inspectors and all applicable entities:

TC =
J−1∑
j=0

∑
δ∈ED

(CFjδ + CVjδ + CRjδ) +

ZIj−1∑
i=0

∑
κ∈EK

CBMjiκ +
∑
λ∈EL

(CBSjiλ + CSjiλ)

 (8.4)

This would allow a cost effectiveness value to be calculated as per Equation 8.1. How-
ever, Equation 8.2 requires a value for E(TC | Z), based on the probability distribution
of TC given Z.

8.3 Simulation

The model was implemented in software as a Monte Carlo simulator (Rubinstein, 1981).
That is, random samples are taken for each random variable, and the resulting cost
effectiveness is calculated. This is repeated many times to find an approximation for
the cost effectiveness.

160 Chapter 8. Inspection Modelling

As implied by Equation 8.2, cost effectiveness requires the total inspection-related costs
to be calculated twice; once for the strategy in question and once for the null strategy.
However, it would make little sense for the entire set of variables to be sampled twice,
because the metamodel variables are unaffected by the inspection strategy. Conceptu-
ally, the two strategies must be applied to the same system in the same circumstances,
or else the resulting value of cost effectiveness would be meaningless. A valid approxi-
mation could still be achieved, but would require many more simulation runs.

The same principle applies when multiple inspection strategies are to be compared
in terms of cost effectiveness. To this end, each run of the simulation produces one
metamodel and multiple scenario models, one for each of several inspection strategies
to be compared (including the null strategy). Multiple cost effectiveness values are
computed, one for each non-null strategy in each run.

8.3.1 Analytical Intractability

In principle, the cost effectiveness distribution for a given inspection strategy could
instead be derived analytically from Bayesian methods. However, in doing so, every
combination of values for the various random variables must be considered. There is
little scope for simplifying the calculation without approximation, and the number of
random variables is more than sufficient to render this approach intractable.

To illustrate the problem informally, consider a single hypothetical development phase
in which there are 20 defects, 30 other k-instances, 10 localities and 3 inspectors. The
model contains binary random variables representing the comprehension of each k-
instance by each inspector, and the searching of each locality by each inspector. There
are 50 × 3 comprehension variables alone, and 10 × 3 searching variables. This pro-
duces 2150+30 combinations of values, with each combination contributing to a different
outcome. Taking into account several other types of binary variables — test failure,
investigation and rework (one of each for each defect) — the number of combinations
expands to 2150+30+20+20+20. Further, consider that the number of entities in each
phase is not actually fixed at all, but rather is itself random. Each possible entity
tally yields an entirely new set of comprehension, search, test failure, investigation and
rework variables. Finally, consider that this merely represents a subset of variables in
a single phase, while a comparable (or even larger) number of variables may exist in
other phases.

There is little scope for considering variables in isolation (i.e. taking common factors
out of the joint probability distribution) because most variables share common de-

8.3. Simulation 161

Table 8.3: Inspection strategies used for model evaluation.

Inspection
strategy

Inspectors Description Guidance (type and scope)

Null 0 No inspections n/a
Ad hoc 1 No reading technique or

cognitive support
None

Checklist 1 Checklist-Based Reading (CBR) Active, for defects only
Scenario 1 Scenario-Based Reading (SBR) Active, for all entities
Mixed 1 SBR in the initial phase, CBR

in subsequent phases
Active, for all entities in the
initial phase, but for defects
only in subsequent phases

Passive-
guided

1 Cognitive support with no
reading technique

Passive, for all entities except
defects

Maximal 1 Cognitive support mixed with
SBR

Active for defects, passive for
other k-instances, both active
and passive for localities

Focused 1 Prioritisation-based reading
technique

Active, for defects and localities
marked “important” only

Dual ad hoc 2 Two-inspector ad hoc None
Dual passive-
guided

2 Two-inspector passive-guided Passive, for all entities except
defects

Divided re-
sponsibilities

2 Two-inspector CBR, but with
separation of concerns based on
defect type

Active, for defects only;
different defect types for each
inspector

pendencies. In particular, many variables depend on defect existence (D) and marker
assignment (XK).

A Monte Carlo simulator was developed in response to the intractability of an analytic
solution.

8.3.2 Evaluation Methodology

Evaluation of the simulation (and hence the model), involves comparing inspection
strategies and performing a sensitivity analysis. The inspection strategies chosen are
listed in Table 8.3, along with their definition within the model. The goal is to examine
the model’s behaviour and assess the plausibility of the results.

The simulation was run using synthetic data. Model inputs — consisting principally
of parameters for the various probability distributions — were conceived artificially, so
as to represent a small spectrum of plausible software projects. The results necessarily
reflect the choices made in the construction of these inputs. Thus, caution must be
exercised when interpreting simulation output.

162 Chapter 8. Inspection Modelling

1 10 100 1000 10000

0.0

0.1

0.2

0.3

0.4

0.5

Simulation runs

M
ea

n
co

st
eff

ec
ti

ve
n

es
s

Ad hoc
Checklist

Figure 8.10: Convergence of simulated cost effectiveness, for the ad hoc and checklist
strategies. The number of simulation runs is represented on a logarithmic scale.

Several datasets were generated to explore different aspects of the model’s behaviour.
One main dataset was used to compare inspection strategies and examine the probabil-
ity distribution of cost effectiveness. The main dataset was derived from ten thousand
simulation runs. Figure 8.10 shows how simulated cost effectiveness converges as the
number of simulation runs increases. Other specialised datasets, each based on one
thousand simulation runs, were used to perform sensitivity analysis; to examine the
effects of selected model parameters, and the interaction of these parameters with the
inspection strategy.

Analysis of simulation outputs was conducted using the R statistical package (R De-
velopment Core Team, 2009).

8.3.3 Cost Effectiveness Distribution

Figures 8.11 and 8.12 show probability density functions for ad hoc and checklist cost
effectiveness. Figure 8.11 presents the marginal distributions, while Figure 8.12 plots
the joint distribution. The latter is made possible by the simulator’s simultaneous
evaluation of different inspection strategies in the same context. The axes represent
cost effectiveness achieved under two alternate, parallel scenarios, while the shading
and contour lines indicate the height of the probability density curve.

The marginal probably density functions appear almost triangular, with sharp peaks.

8.3. Simulation 163

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cost effectiveness

P
ro

b
ab

ili
ty

d
en

si
ty

Ad hoc
Checklist

Figure 8.11: Distribution of ad hoc and checklist cost effectiveness (based on 10,000 sim-
ulation runs). The curves were derived from kernel density estimation using the R density
function (where the bandwidth was calculated using the dpik function).

0

1

2

3

4

5

6

7

P
ro

b
ab

ili
ty

d
en

si
ty

-0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4
5

6

Ad hoc cost effectiveness

C
h

ec
kl

is
t

co
st

eff
ec

ti
ve

n
es

s

Figure 8.12: Joint probability distribution for ad hoc and checklist cost effectiveness (based
on 10,000 simulation runs). This was derived from kernel density estimation using the R
bkde2D function (where the bandwidth was calculated using the dpik function).

164 Chapter 8. Inspection Modelling

Divided responsibilities
Dual passive-guided

Dual ad hoc
Focused
Maximal

Passive-guided
Mixed

Scenario
Checklist

Ad hoc
Null

Total cost (arbitrary scale)

0 2000 4000 6000 8000

3185
3648

3559
3206

3452
4388

3261
3963

3504
4295

5862

In
sp

ec
ti

on
st

ra
te

gy

Cost components

Inspection
Passive guidance
Operational failures
Investigation
Rework

Figure 8.13: Simulated cost breakdown for different inspection strategies (based on 10,000
simulation runs).

The checklist distribution has a higher mean and somewhat higher variance than ad hoc.
A relatively high overlap exists between the two distributions, reflecting the uncertainty
in the model parameters.

The contour graph’s elongation along the diagonal shows that ad hoc and checklist
cost effectiveness are correlated, but not perfectly. This is expected; each pair of cost
effectiveness values is derived from the same metamodel (i.e. the same software system)
but a different scenario.

8.3.4 Inspection Strategy Performance

The inspection strategies can be compared statistically and graphically.

First, a repeated-measures ANOVA reveals that costs among different strategies do
vary (p = 2.2 × 10−16). Tukey’s Honest Significant Difference (R Development Core
Team, 2009) is then used to compare costs for each pair of strategies. There are 55
pairwise comparisons in total. All but one of these were statistically significant, each
with p < 0.001. No significant difference was found between the focused and divided
responsibilities strategies, where p = 0.817.

Figures 8.13, 8.14 and 8.15 compare the various inspection strategies graphically using
three different measures of performance.

8.3. Simulation 165

Divided responsibilities
Dual passive-guided

Dual ad hoc
Focused
Maximal

Passive-guided
Mixed

Scenario
Checklist

Ad hoc
Null

Cost effectiveness

0.0 0.1 0.2 0.3 0.4 0.5

0.43
0.32

0.36
0.43

0.37
0.20

0.42
0.30

0.38
0.24

0.00 (by definition)
In

sp
ec

ti
on

st
ra

te
gy

Figure 8.14: Simulated cost effectiveness for different inspection strategies (based on 10,000
simulation runs).

Figure 8.13 shows the total costs for the different strategies, broken down by source.
The two major cost sources are operational failure and defect rework. All strategies
show marked improvement over the absence of inspections, owing principally to a drop
in operational failure cost, though investigation and rework costs are also reduced.

Figure 8.14 presents the strategies’ overall cost effectiveness. This is shown to demon-
strate the cost effectiveness metric, and is simply a normalised, inverted form of the cost
data in Figure 8.13. By definition, those strategies with the lowest costs in Figure 8.13
have the highest cost effectiveness in Figure 8.14, and vice versa. Also by definition, the
null strategy has zero cost effectiveness. In this case, all other strategies show positive
cost effectiveness, meaning improvement over the null strategy. Unlike raw cost, cost
effectiveness cannot be broken down into components.

Figure 8.15 shows the proportion of defects detected using each inspection strategy, in
each phase. This hides the flow-on effects of defect detection from one phase to the
next, thus allowing comparisons between strategies for specific phases.

Scenarios are shown to have lower overall cost effectiveness than checklists. Both check-
lists and scenarios have relatively high detection rates in the initial phase. However,
in later phases, scenarios suffer from the worst performance of any nontrivial strategy.
Checklists themselves also perform no better, or even worse than ad hoc in the latter
phases.

The passive-guided strategy fails even to outperform ad hoc, in both the one- and two-
inspector cases. In both cases, an improvement in operational failure cost is balanced by

166 Chapter 8. Inspection Modelling

Divided responsibilities

Dual passive-guided

Dual ad hoc

Focused

Maximal

Passive-guided

Mixed

Scenario

Checklist

Ad hoc

Null

Defects found through inspection (%)

0 20 40 60 80 100

73.9
79.7

65.6

88.7
84.6

57.6

80.1
78.0

41.1

42.8
52.2

47.3

46.2
65.3

73.9

67.5
62.7

35.5

31.8
54.0

65.6

9.5
16.7

65.5

30.4
52.8

55.3

56.7
54.7

23.9

0.0
0.0
0.0

In
sp

ec
ti

on
st

ra
te

gy

Phase

0
1
2

Figure 8.15: Percentage of defects found through inspection in each phase, using each
inspection strategy (based on 10,000 simulation runs).

8.3. Simulation 167

the cost of providing passive guidance. (Some of these provision costs may be mitigated
through the use of automated visualisation tools, in which case the passive-guided and
maximal strategies would be more cost-effective.)

The mixed and maximal strategies demonstrate that combinations of different inspec-
tion techniques may outperform each technique by itself. The mixed strategy combines
scenarios and checklists in different phases, and is more cost effective than either by
itself. Maximal combines scenarios and passive guidance, and again outperforms both.
The focused strategy is another refinement of scenarios, prioritising entities in the sys-
tem by importance and thus also improving performance.

The two-inspector strategies each show somewhat improved performance over their one-
inspector counterparts, mitigated by the increased cost of inspection. The dual passive
guidance strategy improves on the single-inspector version, in part because passive
guidance is effectively cost free for the second inspector. By contrast, the divided re-
sponsibilities strategy makes only marginal improvements over a single-inspector check-
list.

8.3.5 Sensitivity Analysis

Sensitivity analysis is conducted by controlling selected model parameters, particularly
those that may interact with the inspection strategy. Most such parameters deal with
aspects of comprehension. Each parameter is examined separately, in turn. For each
parameter, several values are chosen and the simulation run one thousand times for
each value.

(The number of inspectors is an exception to this. This parameter is part of the
inspection strategy. By assigning each value to a different scenario, the simulator can
consider multiple values in a single run.)

These parameters were each assigned probability distributions in order to generate
the main dataset. In this sensitivity analysis, the chosen values for a given parame-
ter replace its probability distribution. Thus, the parameter ceases to be a random,
uncontrolled variable and instead becomes an independent variable. In each case, all
parameters not under analysis retain their original distributions.

In effect, this analysis examines how the construction of the model inputs affect the
inspection strategy comparison. Thus, a broader picture of the model’s behaviour is
presented.

168 Chapter 8. Inspection Modelling

10
9
8
7
6
5
4
3
2
1
0

Total cost (arbitrary scale)

0 1000 2000 3000 4000 5000 6000

3363
3255

3181
3077

3027
2997
3023

3209
3550

4309
5926

N
u

m
b

er
of

in
sp

ec
to

rs

Cost components

Inspection
Operational failures
Investigation
Rework

Figure 8.16: Simulated costs for different numbers of inspectors, using the ad hoc strategy
(based on 1,000 simulation runs).

Figure 8.16 shows the total cost and cost breakdown using the ad hoc strategy with dif-
ferent numbers of inspectors. The cost of operational failure, investigation and rework
all diminish as more inspectors are added, but at a decreasing rate. Meanwhile, the
inspection cost increases linearly with the number of inspectors. Initially, the added
inspection cost is small compared to the cost savings from other sources, but eventu-
ally the cost of adding an inspector outweighs the benefits. The optimal number of
inspectors is highly dependent on the search costs for the various locality types. The
chosen model parameters result in the optimal number of inspectors being five, though
this is only marginally better than four.

Figure 8.17 shows the effects of system size on cost effectiveness. Size is represented
by a coefficient that determines the number of initial entities (while keeping fixed the
ratio of entities of different types). A size-1 system is defined to contain, initially:

• two data objects;
• three functional requirements; and
• one external interface.

A size-2 system contains twice this many initial entities in the same proportions, a
size-3 system three times as many, and so on. Only the initial entities are explicitly
specified; entities in subsequent phases are determined probabilistically. This scheme
is used in lieu of traditional size metrics (e.g. lines of code or function points), which
cannot easily be derived from the model inputs chosen.

Generally, inspection appears to be less cost effective on small systems. Here, active

8.3. Simulation 169

0 2 4 6 8 10

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

System size coefficient

C
os

t
eff

ec
ti

ve
n

es
s

Ad hoc
Checklist
Scenario
Mixed
Passive-guided
Maximal
Focused
Dual ad hoc
Dual passive-guided
Divided responsibilities

Figure 8.17: Effects of system size on cost effectiveness, for different inspection strategies
(based on 1,000 simulation runs for each size coefficient).

170 Chapter 8. Inspection Modelling

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Baseline comprehension/search probability

C
os

t
eff

ec
ti

ve
n

es
s

Ad hoc
Checklist
Scenario
Mixed
Passive-guided
Maximal
Focused
Dual ad hoc
Dual passive-guided
Divided responsibilities

Figure 8.18: Effects of varying the baseline log odds of comprehension and searching, for
different inspection strategies (based on 1,000 simulation runs for each odds value between
-3 and 3, in increments of 0.5). For clarity, the log odds are transformed here to probabilities.

guidance strategies mostly outperform the others. For a size coefficient of one, the
purely passive-guided strategies are even counterproductive.

As the system size increases, cost effectiveness increases for all strategies, up to a point
(where the size coefficient is three). After that point, strategies that rely on active
guidance begin to see a steady decrease in cost effectiveness, whereas other strategies
merely plateau.

For a size coefficient of ten, the checklist, scenario and mixed strategies perform no
better, or even worse, than at one. The scenario strategy loses its entire advantage
over ad hoc. Here, the focused and divided responsibilities strategies still outperform
all others, despite slowly becoming less effective.

Figure 8.18 shows the effects of varying the baseline log odds of comprehension and
searching. In effect, these parameters are a measure of inspector experience. Higher
log odds would naturally represent a higher experience level, and for the purposes of

8.3. Simulation 171

this discussion, log odds and experience are used interchangeably.

All strategies exhibit an upwards trend in performance across experience levels, but
their relative performance also changes. Some strategies see a slight upwards or down-
wards bulge in their cost effectiveness.

The ad hoc, dual ad hoc and some active guidance strategies (checklist, focused, mixed
and divided) exhibit similar performance at both low and high experience levels, but
vary more widely for intermediate experience. Mixed, focused and divided responsibil-
ities are generally the best performing strategies across all experience levels.

The maximal strategy is relatively high-performing between probabilities of 0.2 and
0.6, but begins lower and plateaus at higher probabilities. The dual passive-guided
strategy has a similar curve, bulging upwards, a behaviour not seen in either of two
related strategies — dual ad hoc and single-inspector passive-guided. The latter is
generally the worst performing strategy, only briefly surpassing ad hoc and scenario.

The scenario strategy begins level with ad hoc, and is more effective up until proba-
bilities around 0.7. However, it never ranks better than sixth among all ten chosen
strategies, for any level of experience. At high probabilities, scenarios become an en-
cumbrance, and the least effective strategy. This contrasts with the mixed strategy,
which uses scenarios in the first phase and is consistently the best or second best per-
forming strategy.

Figures 8.19 and 8.20 show the impacts of varying the active guidance effect and active
guidance level effect. Predictably, varying either effect greatly alters the performance
of strategies using active guidance, while having no impact on other strategies. The
performance of the active guidance strategies relative to each other does not change
substantially. With the active guidance effect at zero, the level effect ensures that the
active guidance strategies generally perform much worse than ad hoc (though they are
not actually counterproductive). When set to 4, the level effect is drowned out and
these strategies instead outperform all others.

Of note is the divided responsibilities strategy (i.e. two inspectors using different check-
lists). It outperforms other active guidance strategies when the active guidance effect is
zero because it uses two inspectors. However, when the effect is positive, the additional
inspector has no noticeable benefit.

Without the level effect (i.e. when set to zero), the scenario and mixed strategies are
the equal best-performing. With the level effect set to −0.1, these same strategies
are the equal worst, even marginally counterproductive. However, mixed outperforms

172 Chapter 8. Inspection Modelling

Divided responsibilities

Focused

Maximal

Mixed

Scenario

Checklist

Dual passive-guided

Dual ad hoc

Passive-guided

Ad hoc

Cost effectiveness

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.54
0.44

0.28

0.57
0.44

0.15

0.50
0.38

0.10

0.59
0.44

0.09

0.46
0.32

0.06

0.57
0.39

0.13

0.31
0.33

0.32

0.35
0.37

0.36

0.20
0.22

0.21

0.23
0.25

0.24

In
sp

ec
ti

on
st

ra
te

gy

Active guidance effect

0 2 4

Figure 8.19: Results of varying the active guidance effect, for different inspection strategies
(based on 1,000 simulation runs for each effect size). The strategies are grouped into non-
active guided (the top four) and active guided (the bottom six).

8.3. Simulation 173

Divided responsibilities

Focused

Maximal

Mixed

Scenario

Checklist

Dual passive-guided

Dual ad hoc

Passive-guided

Ad hoc

Cost effectiveness

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.48
0.43

0.15

0.48
0.43

0.10

0.45
0.38

0.05

0.53
0.43

-0.01

0.53
0.28

0.00

0.49
0.39

0.06

0.33
0.32
0.33

0.36
0.36
0.36

0.21
0.21
0.21

0.24
0.23
0.24

In
sp

ec
ti

on
st

ra
te

gy

Active guidance level effect

-0.1 -0.01 0

Figure 8.20: Results of varying the active guidance level effect, for different inspection
strategies (based on 1,000 simulation runs for each effect size). The strategies are grouped
into non-active guided (the top four) and active guided (the bottom six).

174 Chapter 8. Inspection Modelling

scenario when the level effect is −0.01. The focused and divided responsibilities strate-
gies employ relatively little active guidance and outperform the other active guidance
strategies under a highly negative level effect. However, their performance relative to
ad hoc under these conditions is still poor.

Figure 8.21 shows the impact of varying the inverse dependency effects. These are the
effects on the comprehension log odds when a comprehension or locality dependency
has not been fulfilled. A highly-negative effect means that dependencies are especially
important, while a zero effect would make them irrelevant. (A positive effect would defy
basic assumptions about cognition, implying that ignorance assists comprehension.)

This effect is a rough measure of the importance of delocalisation. Strategies that main-
tain their performance despite a highly-negative effect are those that successfully ad-
dress delocalisation, by helping inspectors to search the right locations and acquire pre-
requisite knowledge. Strategies involving passive guidance (including passive-guided,
maximal and dual passive-guided) are more successful in this respect than other strate-
gies, suffering only a minor drop in cost effectiveness. However, despite the passive-
guided strategy’s relatively stable cost effectiveness, it still fails to outperform ad hoc.

Of the remaining strategies, scenarios appear to be the least affected. By contrast,
checklist-based strategies (checklist, focused and divided responsibilities) appear most
vulnerable to highly negative dependency effects, with their cost effectiveness reduced
by more than half.

8.4 Discussion

8.4.1 Inspection Strategy Comparison

The preceding section reports on differences in simulated cost effectiveness of different
inspection strategies. Comparing these results to those obtained empirically presents a
challenge, because:

• cost effectiveness has not often been used as a means of comparing reading tech-
niques or broader inspection strategies; and

• from empirical data, there is no clear consensus on which strategies are more
effective.

8.4. Discussion 175

Dual passive-guided

Maximal

Passive-guided

Divided responsibilities

Dual ad hoc

Focused

Mixed

Scenario

Checklist

Ad hoc

Cost effectiveness

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.34
0.32

0.26

0.38
0.37

0.33

0.22
0.21

0.15

0.51
0.42

0.19

0.44
0.36

0.24

0.51
0.43

0.24

0.47
0.43

0.29

0.33
0.31

0.20

0.49
0.38

0.17

0.31
0.24

0.15

In
sp

ec
ti

on
st

ra
te

gy

Inverse dependency effect

-10 -1 0

Figure 8.21: Results of varying the inverse dependency effect; the effect of not fulfilling a
given comprehension or locality dependency on the odds of comprehension (based on 1,000
simulation runs for each effect size). The strategies are grouped into non-passive guided (the
top seven) and passive guided (the bottom three).

176 Chapter 8. Inspection Modelling

Many of the strategies examined in Section 8.3 have not been empirically investigated,
though the results for the ad hoc, checklist, scenario and focused strategies have some
basis for comparison.

The simulation results generally show checklists to be more cost effective than ad hoc.
Checklists are supported by a large body of anecdotal evidence (Brykczynski, 1999), but
the simulation does not specifically support the findings of past controlled experiments,
which have shown that checklists have little or no effect (Porter et al., 1995, Porter
and Votta, 1998, Hatton, 2008, Akinola and Osofisan, 2009). However, the results in
Section 8.3.5 show that checklists can also be less cost effective than ad hoc (or only
marginally more cost effective) under a variety of conditions. This is in line with results
from the checklist experiment discussed in Chapter 7, where checklists were shown to
have varying effects on defect detection.

With respect to the scenario strategy, the simulation results can be compared to the
meta-analysis conducted by Ciolkowski (2009). Based on a range of prior controlled
experiments, Ciolkowski reported that perspective-based reading (a scenario technique)
was significantly more effective than ad hoc, but significantly less effective than check-
lists in requirements inspections. The simulator can reproduce a similar result in terms
of overall cost effectiveness, for the chosen model parameters. For defect detection
in the requirements phase, the simulation data shows that scenarios help detect more
defects than either ad hoc and checklists. Several controlled experiments have also
produced this result, but others have not.

Simulation results for the focused strategy show it to be among the most cost effec-
tive. This strategy most closely reflects reading techniques that involve prioritisation,
including usage-based reading (Thelin et al., 2003), metric-based reading (Bernárdez
et al., 2004) and value-based review (Lee and Boehm, 2005). All three techniques have
been found to outperform checklists, for various measures of performance — overall
defect detection, critical defect detection or the sum of detected defect importance.

Theoretically, the model suggests that the success of active guidance strategies should
depend on there being a relatively constrained set of defect types and other knowledge
present in the artefacts under inspection. The model posits that the negative active
guidance level effect occurs across the entire comprehension process, but is overridden
by a stronger positive effect in instances where specific guidance applies. As more
guidance is given, the applicability of the positive effect increases, but so does the
magnitude of the negative effect. Where the types of knowledge are limited, a small
set of guiding instructions can be applicable to a large proportion of the knowledge
contained in the system.

8.4. Discussion 177

8.4.2 Delocalisation

Much of the discussion of delocalised plans in the academic literature has focused on
cognitive support (passive guidance) as a means to address the resulting comprehension
challenges, as discussed in Chapter 2, Section 2.3.5. However, the inspection techniques
examined by Dunsmore et al. (2003) represent an attempt to apply active guidance to
the problem as well.

From the simulation results, the maximal strategy (a combination of active and passive
guidance) appears to outperform the checklist, scenario and passive-guided strategies,
and is resilient to delocalisation. As Figure 8.21 shows, maximal is the best-performing
strategy under a highly negative dependency effect. Such effects make plain the case
for guidance, whether active or passive, as noted in Chapter 5. In particular, this
strengthens the argument made in Chapter 6 that both active and passive guidance (or
cognitive support) should be considered when developing a reading technique.

The passive-guided, maximal and dual passive-guided strategies are handicapped in the
simulation by their reliance on the manual provision of passive guidance. With tool
support, these costs may be substantially reduced and the cost effectiveness of these
strategies correspondingly increased.

8.4.3 Team and System Size

As shown in Figure 8.16 in Section 8.3.5, the lowest costs (and thus the highest cost
effectiveness) are achieved for an inspection team containing four or five inspectors,
with the fifth inspector having marginal net benefit. This compares to the findings
of Weller (1993), who reported that four-person teams exhibit substantially improved
performance over three-person teams. Ebenau and Strauss (1994) recommend between
three and seven inspectors, preferring lower numbers. Fagan (1976) stated that the
inspection team should generally not exceed four inspectors without good cause.

The model does not directly consider the size of the subset of material actually in-
spected in any single inspection. However, the trend in cost effectiveness over systems
of increasing size can be compared to trends reported in existing literature. Porter
et al. (1998) model a positive but diminishing trend in defect detection as the system
size increases, which they model logarithmically, and explain to be a result of there
being more defects in larger systems. Raz and Yaung (1997) also report a positive,
logarithmic trend, but rather in the probability of missing a defect during inspection
as system size increases.

178 Chapter 8. Inspection Modelling

Therefore, if both the defects detected and defects missed increase logarithmically, the
cost effectiveness should remain roughly stationary. Figure 8.17 generally supports
this, though it also shows an initial rapid rise in cost effectiveness. The ad hoc or
passive-guided strategies do appear to converge at fixed cost effectiveness values. The
active-guidance strategies (e.g. checklist, scenarios, etc.) exhibit a decline in cost
effectiveness that may be attributed to an increasing active guidance level effect.

8.4.4 Interactions

The decline in the cost effectiveness of the active guidance strategies for larger systems
represents one of the interaction effects apparent from simulation results. Figure 8.18 in
Section 8.3.5 also shows that inspector experience interacts with the inspection strategy.
Thus, the optimal choice of strategy depends on the context.

This is demonstrated somewhat in the results presented in Chapter 7, which show a
potential (though non-significant) interaction effect between experience and checklists
on the probability of auxiliary defect detection. There, the addition of experience had
opposing effects depending on the presence of a checklist. Generic experience, even if
unrelated to a given defect, appeared to improve the log odds of defect detection, but
only in the absence of a checklist. In the presence of a checklist, unrelated experience
appeared to hinder defect detection. No interaction was observed with respect to
primary defects — those matching items on the checklist, or previous experience —
but primary and auxiliary defects must be taken in combination. The magnitude of
the interaction effect may depend on the relative number of primary and auxiliary
defects in the system. The findings of Biffl (2000) also generally support this for the
case of scenarios and checklists, where the effect of inspector capability depends on the
reading technique.

Such interactions are further implicitly supported by the failure generally of controlled
experiments and replications to consistently reproduce the same results, as shown in
Chapter 2, Section 2.2. Moreover, experiments involving industry professionals show
somewhat different results from those conducted in an academic environment. Of the
four controlled industrial experiments listed in Section 2.2, three found that scenario-
based techniques outperform checklists or ad hoc. Only four of fourteen academic
experiments yielded similar results. If the experimental context (industrial vs academic)
is treated as an indicator of experience, then empirical data weakly suggests that the
performance of scenarios relative to other strategies is greater for high experience levels.

Unfortunately, the simulation results across different experience levels do not at any

8.4. Discussion 179

point show scenarios outperforming checklists. However, scenario performance rela-
tive to ad hoc does improve with experience, up to a baseline comprehension/search
probability of 50%. It is conceivable, though purely speculative, that a “high level”
of experience corresponds to only a 50% probability of comprehending any given k-
instance. (If so, inspection strategy comparisons at higher probability levels would be
relevant only for unusually-high levels of experience.)

The bulge observed in Figure 8.18 warrants a tentative explanation. Several inspection
strategies exhibit very similar cost effectiveness at both low and high probabilities, but
vary more widely for probabilities around 50%. This might be explained in terms of
guidance opportunity. At the extreme ends of the experience spectrum, the question of
whether the inspector will find a given k-instance is virtually decided even before the
inspection strategy is contemplated. A baseline probability of 50% represents the point
of least certainty regarding the outcome of comprehension, and therefore the point at
which guidance will be most influential.

Figure 8.15 in Section 8.3.4 also illustrates the interaction between strategy and phase.
Several strategies have widely-varying defect detection counts across different phases.
Some perform better in the requirements phase, while others perform better in later
phases. The dual passive-guided strategy consistently outperforms dual ad hoc in terms
of defects detected, but nevertheless has a lower cost effectiveness. Similarly, maximal
detects a greater proportion of defects than mixed in all phases, and yet it too is actually
less cost effective.

8.4.5 Defect Detection Dependence

The simulation results also provide an opportunity to examine the independence as-
sumption in capture-recapture approaches to defect estimation, discussed in Chapter 2,
Section 2.4.1. The total number of defects present in a system can be estimated from the
overlap between defects detected by multiple inspectors, assuming that the detection
of defects occurs independently.

In general, two inspectors will not detect the same number of defects. However, the
chosen model inputs characterise all inspectors using the same set of probability distri-
butions. Hence, across many simulation runs, the first and second inspectors will have
nearly identical defect detection counts for any given scenario.

The actual overlap and expected overlap given the independence assumption can both
be calculated from the simulation results shown in Table 8.4; in particular, from the

180 Chapter 8. Inspection Modelling

Table 8.4: Overlap between defects detected by two inspectors, as used in the capture-
recapture defect estimation technique.

Phase Detection proportion Overlap proportion

Ad hoc Dual ad hoc Actual Expected Difference

0 0.239 0.411 0.067 0.057 +0.010
1 0.547 0.780 0.314 0.299 +0.015
2 0.567 0.801 0.333 0.321 +0.011

proportion of defects detected by ad hoc and the proportion detected by dual ad hoc.
Thus:

Actual overlap proportion = (2×Ad hoc proportion)−Dual ad hoc proportion

Expected overlap proportion = (Ad hoc proportion)2

The results of applying this formula are summarised in Table 8.4. The actual overlap is
consistently greater than the expected overlap. As a result, applying the independence
assumption will underestimate the total number of defects, a finding previously reported
by Briand et al. (2000).

8.5 Summary

This chapter proposes a theoretical framework and model of the software inspection
process — a theoretical basis upon which reading techniques, and inspection strategies
more widely, may be chosen, developed and refined. It incorporates, formalises and
extends the notion of comprehension dependencies, initially discussed in Chapter 6.
It includes fine-grained, extensible mechanisms to represent the focus of reading tech-
niques. It also includes an active guidance level effect, designed to model the negative
effects on comprehension of misdirected active guidance, noted in Chapter 7.

Based on its inputs, the model reports projected costs and the normalised cost effec-
tiveness for any set of inspection strategies under examination.

Simulation results support the following analysis from empirical studies described in
previous chapters:

• that checklists can be either more or less effective than ad hoc, as discussed in
Chapter 7;

8.5. Summary 181

• that a combination of active and passive guidance is most effective at satisfying
entity dependencies and countering delocalisation (as proposed in Chapter 6);
and

• that the system and the inspector both interact with the inspection strategy, as
broadly indicated by the checklist experiment discussed in Chapter 7.

The model illustrates how apparently-contradictory results from studies such as those
summarised in Chapter 2, Section 2.2 can be reconciled. Though probably too late
to gather additional, fine-grained information on the expertise of subjects from past
studies, future studies should take account of possible interactions between the system,
inspector expertise and inspection outcomes. Moreover, to build confidence in the
meaningfulness of their results, they should express any inspection performance effects
in terms of cost effectiveness rather than defect counts.

182 Chapter 8. Inspection Modelling

Chapter 9

Conclusion

“If I have two beans and then I add two more beans, what do I have?”
“Umm. . . a very small casserole?”

— Blackadder II

The findings presented in this thesis impact in several ways upon our understanding of
the mechanics of software inspection. The points raised illustrate hitherto unaddressed
problems regarding delocalisation, inspector and system variability and the use of active
guidance.

The introduction of an extensible, theoretical approach to understanding software in-
spection should lead to reduced inspection- and defect-related costs. By instantiating
organisation-specific inspection models, or by using or refining reference models, organ-
isations will be able to develop, select or refine more appropriate, and thus more cost
effective, inspection strategies. These would make better use of inspectors’ expertise
and better reflect development practices in use.

This chapter details the findings of the research discussed in preceding chapters, makes
recommendations based on these findings and discusses possible extensions to the in-
spection model.

9.1 Findings

The research presented in this thesis has sought to answer three research questions,
listed in Chapter 1, Section 1.1. Those questions are answered here.

184 Chapter 9. Conclusion

9.1.1 Current Industry Practice

Research question 1: What are the prevalent inspection practices, and in what con-
texts do they occur?

The industry survey discussed in Chapter 4 found a diversity of practices in real-world
software development, particularly with respect to:

• the domains in which organisations operate;
• the types of development phases employed in a project;
• the proportion of project workload spent in each phase; and
• the types of artefacts in use.

The use of peer review in general is widespread, though Section 4.5.1 discusses broad
opportunities for improvements. On average, 44% of total project effort is expended
in testing or maintenance phases, coming after the software is actually built. This is
suggestive of the presence of defects having a high rework cost, having escaped detection
early in a project. Substantial numbers of respondents did not review requirements
specifications or other related artefacts used early in a project. More frequent, longer
and/or more formal inspections, along with quantitative analysis of their performance,
may help reduce workload later in a project.

Survey results identified both checklists and use case traversal as relatively common
inspection techniques (though neither was used by a majority of organisations). Other
techniques enjoyed less support. (Subsequent chapters — specifically chapters 6 and 7
— discussed the empirical investigation of use case traversal and checklists. Hence, the
results of these studies have relatively wide applicability.)

9.1.2 Comprehension and Delocalisation

Research question 2: What are the challenges inherent in comprehending a system
under inspection?

The statechart study presented in Chapter 5 shows that inspectors can easily miss or
over-simplify complex artefact interrelationships; concentrating on obvious connections
while neglecting more subtle ones. Participants demonstrated logical but often shal-
low approaches, including the use of simple names as a basis for mapping one artefact
to the other. Many participants identified a one-to-one mapping, without apparently
considering plausible many-to-many relationships. This can be contrasted against the

9.1. Findings 185

model solution, based on a deep and systematic understanding of the artefact inter-
relationships. Despite the relatively small scale of the system, it is apparent that
participants had difficulty in identifying these interrelationships. Thus, the statechart
study demonstrates why guidance is sometimes needed in inspection.

The scenario study discussed in Chapter 6 adds to the list of comprehension issues,
identifying several distinct challenges for inspectors attempting to trace a use case sce-
nario through source code. Some of these include context switching between artefacts,
missing method calls and misidentifying method calls due to polymorphism. The ef-
fects of such issues can include omission of large amounts of relevant source code from
inspection. Overall, coverage of the relevant source code can be low.

Further, individual inspectors’ approaches to the task presented were highly varied,
despite the exercise requiring all participants to examine and mark the same code in
the same way. This raises the question of whether this procedural approach can work
equally well for all inspectors. A single fixed set of instructions to inspectors may not
uniformly benefit all inspectors.

As indicated by survey results, the simultaneous use of multiple notations in software
projects (artefact diversity) is also commonplace. This is most prevalent in the main
development phase. The proportion of total project workload expended in testing, qual-
ity assurance and maintenance suggests that scope exists for improving comprehension
and hence inspection performance earlier in a project.

Cognitive support has long been suggested in response to difficulties arising from de-
localised plans, which themselves are made more prevalent by the use of object orien-
tation. Simulation results show that inspection strategies using cognitive support are
more resistant to the effects of delocalisation than other strategies. Survey results also
show that visualisation tools are used by roughly a quarter of software development
organisations, leaving inspectors in most organisations without this form of cognitive
support.

9.1.3 Active Guidance Effects

Research question 3: To what extent does active guidance support defect detection,
and what are the effects on overall cost effectiveness?

In contrast to several prior experiments discussed in Chapter 2, Section 2.2.1, the
checklist experiment presented in Chapter 7 shows that checklists can improve defect

186 Chapter 9. Conclusion

detection over ad hoc reading.

This successful empirical demonstration of checklist utility does not directly contradict
previous results. Rather, it comes as a result of measuring checklist effects at a more
fine-grained scale — that of individual defects. At this level, both positive and negative
effects were observed, depending on whether the defect in question was covered by the
checklist. Extrapolating to overall inspection performance, this means that checklists
can either help or hinder inspection performance depending on the prescience of their
construction — their coverage of actual defects in the software.

This conclusion can be generalised if two tenets of the theoretical framework are held
to be true:

• that defect detection is a special case of comprehension; and
• that checklist questions are a special case of active guidance.

Thus, the success of any active guidance-based inspection strategy is closely tied to the
ability to predict the types of defects and other knowledge likely to occur in a software
system. The simulation results illustrate how active guidance strategies can be less
effective in some situations.

For defects specifically, active guidance may be a victim of its own success. Checklists
are (or at least should be) based on historical defect data, under the assumption that
present defects are likely to be representative of past defects. The extent to which this
assumption holds determines, in large part, the extent to which checklists are a useful
defect detection tool. However, in the broader context of software development, having
defect types reoccur is fundamentally undesirable. Inspector expertise and development
practices may change (intentionally or not) in response to past defects, particularly
those of greatest concern, specifically in order to avoid them reoccurring. This will
alter the types of defects likely to be introduced in the future, and thus undermine —
to some extent — the case for checklists.

For non-defect knowledge, the model implies that active guidance is more successful
where there are fewer knowledge types, where a set of instructions given to inspectors
can cover a greater proportion of the knowledge in the artefacts under inspection.
The survey presented in Chapter 4 shows that fewer artefact types are used towards
the beginning of a project, with the number of distinct notations more than doubling
as the project progresses from analysis/requirements to development. Reflecting this,
simulation results from Chapter 8 show that active guidance strategies are generally
more effective earlier in a project.

9.1. Findings 187

Standardisation also contributes to the predictability of defects and other knowledge
occurring in a system. Thus, where artefacts are standardised, active guidance is likely
to be more applicable. In the case of formal requirements specifications, based on
survey results from Chapter 4, there is room for both:

• increased use of active guidance, taking advantage of existing standardisation;
and
• increased standardisation, leading to further opportunities for the use of active

guidance.

The experiment discussed in Chapter 7 also appeared to show that the negative effect
on defect detection (but not the positive effect) was amplified by experience. This
interaction effect was suggestive but not statistically significant. If real, it indicates
that the risks of misusing active guidance increase across experience levels. A similar
effect was observed in simulation results (Chapter 8, Section 8.3.5), where the heavy use
of active guidance led to poor inspection results for experienced inspectors (compared
to ad hoc reading).

Simulation results too show that active guidance becomes less effective as system size
increases. Experimental results show that the qualitative nature of the system is also
an important determining factor in inspection performance.

The prioritisation concept initially discussed in Chapter 2, Section 2.2.3 is supported by
simulation results, which show that the prioritised (“focused”) strategy is consistently
one of the most cost effective. This comes despite having lower defect detection rates
than other strategies.

9.1.4 Resolving Uncertainties

The overarching research question framing this thesis has been:

How can the uncertainties of software inspection be resolved, in order to
make recommendations of best practice?

Such uncertainties have concerned existing real-world inspection practices, the compre-
hension challenges arising from inspection and the relative merits of different reading
techniques. In particular, as discussed in Chapter 2, Section 2.2, experimental replica-
tions of different reading techniques have produced inconsistent results that have not

188 Chapter 9. Conclusion

been easily reconcilable.

The purpose of inspection theory, and in particular the model presented in Chapter 8,
is to address these uncertainties and reconcile the inconsistencies. The model seeks
to describe the effects and interactions within inspection in the language of formal
mathematics, so as to encapsulate our understanding of inspection and explore its
consequences.

The simulation results thus obtained are broadly consistent with findings previously
published in the academic literature. The model, as instantiated, indicates that:

• the optimal inspection team size is about four or five inspectors (Fagan, 1976,
Weller, 1993, Ebenau and Strauss, 1994);
• for non-active guidance strategies, cost effectiveness converges as system size in-

creases, with the increased detection rate (Porter et al., 1998) being counterbal-
anced by an increased miss rate (Raz and Yaung, 1997);
• prioritisation-based techniques are generally more cost effective (Thelin et al.,

2003, 2004, Winkler et al., 2004, 2005, Bernárdez et al., 2004, Lee and Boehm,
2005); and
• in capture-recapture approaches to defect estimation, the independence assump-

tion results in an underestimate of the number of defects left undetected (Briand
et al., 2000).

Where inconsistent results appear in the published literature, particularly with respect
to reading techniques, the model broadly reproduces these different outcomes under
certain conditions. As discussed in the previous section, active guidance can either
help or hinder inspection performance, depending on the extent of its provision, the
predictability of defects and other knowledge in the system, the project phase and
inspector experience.

Thus, this research has sufficiently resolved inspection uncertainties to allow a number
of statements of best practice to be made.

9.2 Recommendations

In helping to resolve inspection uncertainty, the findings discussed in the previous
section suggest a number of beneficial inspection practices. Table 9.1 indicates the
discussions in preceding chapters that support these recommendations.

9.2. Recommendations 189

Table 9.1: Recommendations and their most direct supporting discussion/analysis in this
thesis.

Recommendation Supporting discussion
(section numbers)

1. Use active guidance only where it can be made materially relevant. 5.4, 6.3.3, 7.5.1,
8.4.4

1a. Use active guidance in early phases. 4.5.3, 8.3.4
1b. Use active guidance for standardised artefacts. 4.5.3, 7.5.1
1c. Standardise artefacts, where possible. 4.5.3
2. Use active guidance complementing inspector expertise. 6.3.3, 7.5.2, 8.4.4
3. Use prioritisation. 8.4.1
4. Use visualisation tools. 4.5.2, 6.3.2, 8.4.2
5. Combine the use of active and passive guidance. 6.3.2, 8.4.2
6. Instantiate and use the model. Chapter 8
6a. Collect inspection-related data, where possible. 4.5.1, 7.5.3, 8.4.4
6b. Distrust anecdotal accounts of inspection performance. 7.5.4

1. Use active guidance only where it can be made materially relevant. Active guid-
ance must reflect the actual composition, characteristics and quality issues in the
artefacts under inspection. If such information cannot be predicted or obtained
with reasonable accuracy, then the provision of active guidance is likely to be
counterproductive. However, where properly used, active guidance does improve
inspection performance. This leads to the following sub-recommendations:

(a) Use active guidance in early phases. Active guidance can more easily be
targeted at specific artefact characteristics and quality issues when there is
less overall complexity; e.g. when there are fewer artefact types. This is the
case in early stages of a project, as shown in chapters 4 and 8.

(b) Use active guidance for standardised artefacts. Active guidance can also be
more successfully employed in artefacts adhering to well-defined standards.

(c) Standardise artefacts, where possible. If there is further scope for standar-
dising some types of artefacts without sacrificing flexibility, doing so would
improve the applicability and effectiveness of checklists or other active guid-
ance techniques.

2. Use active guidance complementing inspector expertise. Active guidance should
not coincide with an inspector’s expertise, but rather should reflect concepts and
issues that may help to extend it. Results from Chapter 7 suggest that active
guidance coinciding with expertise narrows the inspector’s focus. Simulation
results from Chapter 8 show that active guidance is generally less effective for
more highly-experienced inspectors.

3. Use prioritisation. The simulation results showed that the prioritised (focused)
inspection strategy, using active guidance to target high-cost defects, was more

190 Chapter 9. Conclusion

cost effective than non-prioritised variants. This suggests that, where active guid-
ance can be used, a prioritisation scheme of some sort should be implemented.

4. Use visualisation tools. The simulation results further showed that passive-guided
strategies (implementing cognitive support) were more resilient to delocalisation
than other strategies. Therefore, theoretically, an increased use of appropriate
software visualisation tools should help address some of the comprehension issues
arising from delocalisation, including the issues identified in the scenario study in
Chapter 6.

5. Combine the use of active and passive guidance. Respecting the above recom-
mendations and following from the simulation results discussed in Chapter 8, the
simultaneous use of both active guidance and visualisation tools may lead to a
better inspection outcome than either approach by itself.

6. Instantiate and use the model. The above recommendations notwithstanding,
inspection strategies are best compared within an organisational context. By
using historical data and/or expert estimation to instantiate or contextualise the
model, project leaders can evaluate inspection strategies based on the unique
characteristics of the people, software and development practices involved. This
leads to two further sub-recommendations:

(a) Collect inspection-related data, where possible. The existence of historical
data underlies effective decision making with respect to inspection strategies,
particularly given the extent to which inspectors, systems and organisations
differ.

(b) Distrust anecdotal accounts of inspection performance. Questionnaire data
from Chapter 7 suggest that inspectors are not generally in a position to
objectively evaluate inspection performance based solely on their experience.
An essential component of cost effectiveness is the hypothetical cost incurred
without inspection; this cannot be known without some level of quantitative
analysis.

Software development organisations might be convinced to begin collecting more quan-
titative data if such collection ultimately leads to reduced costs. With data to populate
the model, accurate predictions can be made of inspection cost effectiveness. This is
comparable to recalibration in COCOMO II (Boehm et al., 2000), wherein organisa-
tions adapt the model to their own historical data and expert estimates. Here, the
generic inspection model itself provides a template for such data collection.

A series of reference models might also be developed to fulfil the same function, but
outside of any one organisation. These reference models would also be instantia-

9.3. Extensions 191

tions of the generic inspection model. Rather than being organisation-specific, they
would be developed to model commonly-occurring software development scenarios. Or-
ganisations lacking the resources to collect historical data or expert estimates could
use the closest-matching reference model instead, possibly refining it with whatever
organisation-specific data may be available.

9.3 Extensions

The framework, model and simulation provide a theory of software inspection, to char-
acterise and predict outcomes of particular approaches. A number of opportunities
exist for further refinement and investigation of the model, as discussed in this section.
The suggested modifications would help better reflect aspects of the software develop-
ment process, leading to a better understanding of that process and a more accurate
model.

9.3.1 Data Collection

One of the model’s functions is as a reference for the types of empirical data that might
be collected in future work, so as to better predict inspection outcomes. Though many
model inputs are demonstrably system-, person- or organisation-specific, it is conceiv-
able that some effects are consistent across a broad range of software development
practices. Future research should seek to identify any such constants; this would lessen
the data collection task faced by each individual organisation.

The model also currently includes more inputs than the principle of parsimony (or
Occam’s Razor) might suggest. It is possible that some of the aforementioned constants
might be zero. That is, they may be dispensed with entirely if future experiments fail
to find statistically significant effects. For the time being, these effects are postulated
anyway so as to explore the scope of what might significantly affect inspection cost-
effectiveness.

The repeated instantiation of the model in a research setting would help to explore and
refine fundamental effects and relationships in a way not easily achieved by individual
organisations.

192 Chapter 9. Conclusion

9.3.2 Hierarchy and Propagation

The model regards hierarchy and propagation as one-to-many relationships. That is,
a given entity may owe its existence to at most one other entity, through one of these
two mechanisms. However, software development reality is somewhat more complex.
A class may not result from any single functional requirement or data object in the
requirements document, but rather from a combination of requirements entities.

An extension to the model might therefore introduce many-to-many hierarchy and
propagation relationships, where a given entity owes its existence to a group of entities.
Moreover, this group of entities might occur in both the current and previous phases;
that is, a single entity may arise via a combination of hierarchy and propagation.

9.3.3 Markers

In the current model, marker assignment (XK) is a binary variable. Each marker is
either present or absent. However, more information than this is often available. For
instance, Thelin et al. (2003) and Lee and Boehm (2005) each use three different levels
of criticality to classify potential or actual defects. Complexity might be measured on
an even finer scale, using metrics like cyclomatic complexity (McCabe, 1976).

The model might be augmented to allow for such multi-valued marker assignment.
Unfortunately, multi-valued markers break orthogonality. In the current model, an
entity can be important, complex, neither or both (or some similar combination of
other markers). However, an entity cannot simultaneously be both somewhat and very
important. The levels of a multi-valued marker would be mutually exclusive, and thus
not independent.

This creates a problem in combination with the many-to-many hierarchy/propagation
relationships discussed above. Markers propagate along with entities. If markers orig-
inate from multiple sources, then some may conflict. For example, if entity A is very
important, entity B is somewhat important, and entity C results from both A and B,
then what level of importance should be assigned to C?

Such questions do not arise in the current model (due to binary markers and one-to-
many propagation), but may arise in future extensions of it.

9.3. Extensions 193

9.3.4 Comprehension

Several extensions to the model’s view of comprehension are possible.

The framework excludes locality-to-locality dependencies, but this restriction is ar-
guably artificial. Such structural dependencies may represent the occurrence of one
locality within another, such as a method within a class. If a class is searched, the log
odds of searching any given method within that class increase. Structural dependencies
would exist alongside comprehension, locality and decision dependencies.

As specified in the model, the passive guidance concept may be an oversimplification of
a more complex set of cognitive support mechanisms. For any given entity, there may
actually be several conceivable forms of passive guidance, some being more effective
and/or costly than others. For instance, Walenstein (2002) describes three general
forms of cognitive support. Some of these may be more naturally modelled by special
entities representing the annotations or alternate visualisations constructed.

The active guidance level effect may also be more complex than specified in the model.
Conceptually, the effect includes both the cognitive overhead of following instructions
and the withdrawal of attention from those entities not mentioned. This may vary
between entities. Moreover, for defects, the effect may relate more to the number of
defect types receiving active guidance (i.e. the number of checklist questions) than the
number of actual defects present.

A more extensive change to the model might consider the passing of time within an
inspection, to more naturally represent the inspection process. The current model
considers time only in the sense of development phases. In a temporal model of the
inspection process, localities would be searched over distinct periods of time, and k-
instances would be comprehended at specific points in time. These events would be
influenced only by what has happened previously. Inspector fatigue could then be
modelled as a factor determining the effectiveness of comprehension.

9.3.5 Verification

The model is principally concerned with evaluating the inspection process. As a result,
other activities like development, testing and operational use are not modelled in depth.
However, all play a role in determining inspection cost effectiveness, and so future
extensions to the model might take a more detailed approach.

194 Chapter 9. Conclusion

In particular, the following should be considered for inclusion:

• general quality issues that impact on development and maintenance costs (e.g. the
use of anti-patterns or poorly formatted code), not just defects causing operational
failures;

• modelling of operational failures, taking into account steps taken by users to work
around defects and/or mitigate their effects;

• modelling of the formal inspection process, including the effects of meetings and
the potential for re-inspection;

• modelling of defect detection during development, not just in designated verifica-
tion activities; and

• modelling of the costs and probabilities of release delays and project abandonment
due to defects and quality issues.

9.3.6 Incomparable Costs

As discussed in Section 2.4.4, some of the costs arising from software defects may not
be expressible in units of time, effort or currency. Such costs (such as human injury,
loss of privacy, etc.) are not currently taken into consideration by the model, which
assumes that all costs are expressed in interchangeable units.

Nevertheless, these costs can in principle be modelled, as long as no attempt is made to
exchange one type of cost for another. The current model predicts a single scalar cost
value for each inspection strategy. An extended model might instead consider a cost
vector for each strategy, where each vector element represents a qualitatively different
type of cost. For example, a cost vector might contain financial and human injury
costs. The extended model could provide separate estimates of these costs.

For a single inspection strategy, this information should be used to inform stakeholders
of any risks posed by the software. Judgements as to the acceptability of these risks
should be left to the relevant stakeholders.

In some cases, even when dealing with incomparable costs, such a model may still be
able to deliver an unambiguous judgement as to which of two inspection strategies is
preferable (i.e. less costly). When comparing two strategies, each pair of corresponding
costs would be examined. If all costs for one strategy were lower than those for the other

9.4. Summary 195

strategy, the former could be chosen without posing any ethical dilemma (assuming the
absolute costs are acceptable, as above).

Otherwise, a human decision would be required (e.g. if one strategy achieved lower
financial costs while the other achieved lower human injury costs). In this case, the
projected costs should inform a consensus decision involving all affected stakeholders,
who must agree on an acceptable trade-off.

9.4 Summary

This chapter has tied together the discussion of four empirical studies and a theoretical
inspection model. In answering the research questions posed in Chapter 1, several
recommendations of best practice have been made. These are centred around the use
of active guidance and cognitive support, and provide more fine-grained, nuanced advice
on the use of reading techniques than previously available. Opportunities exist to refine
the inspection model and thus extend our understanding of software inspection.

Ultimately, this thesis demonstrates that there is no single best inspection strategy.
Nonetheless, there is a logic underlying the relative performance of different strate-
gies. The research presented here represents an argument for inspection theory and
an articulation of its underlying logic, from the details of comprehension to the scope
of an entire software project. The model is predictive and explanatory, yet through
abstraction can apply to a broad range of artefact types and development methodolo-
gies. By instantiating and using the proposed model, software engineers will be able to
develop, refine or select an appropriate inspection strategy based on the circumstances
of a project.

196 Chapter 9. Conclusion

Appendix A

Industry Survey — Materials

This appendix contains information supplementing Chapter 4.

Figures A.1 and A.2 show the background and introductory information presented to
potential industry survey respondents.

198 Appendix A. Industry Survey — Materials

This survey is being conducted by two PhD students within the Department of Computing at
Curtin University of Technology:

• David McMeekin is examining how inspections affect program comprehension within the
software development lifecycle.

• David Cooper is investigating how knowledge of software artefact interrelationships can
assist the software inspection process.

Both are working under the supervision of Dr Brian von Konsky.

Approval has been granted for this research by the Curtin University Human Research Ethics
Committee. The approval numbers are ‘PHD JG 002/2006’ and ‘PHD JG 005/2006’. If
needed, verification of approval can be obtained either by writing to the Curtin University
Human Research Ethics Committee, c/- Office of Research and Development, Curtin University
of Technology, GPO Box U1987, Perth, 6845 or by telephoning 9266 2784.

Figure A.1: Background information provided to potential industry survey respondents.

The purposes of this survey are:

• to determine the prevalence in the software engineering industry of a range of notations,
methods, techniques and tools, and

• to understand the factors that influence their use.

The researchers ask that one person (or more) within your organisation, department or team
complete this questionnaire. This person should be well-informed of the software development
activities therein. All responses will be greatly appreciated. If you need clarification on some
questions, please email David Cooper at david.cooper@postgrad.curtin.edu.au.

Survey results will be published in conference paper(s) or journal article(s). However, no
information identifying you or your organisation, department or team will be published.

Your organisation’s name:
(and department/team name if applicable)

A contact email address:
(You may be contacted to clarify your responses if needed.)

Please note:

• We’re interested in what actually happens in your organisation/department/team, not
just what is written down (unless otherwise stated).

• In some cases none of the provided checkboxes may be relevant, in which case you should
simply leave them unselected.

• Many questions have an “Other(s)” option, and all have a “Comment on this question”
option. Please make use of these where appropriate.

Figure A.2: Introductory information provided to potential industry survey respondents.

Appendix B

Statechart Study — Materials

and Raw Results

The material shown here complements the description and analysis given in Chapter 5.

B.1 Forms and Sheets

Figures B.1, B.2, B.3 and B.4 show the information sheet, consent form, instructions
and questionnaire given to participants.

B.2 Source Code

The following is the complete Java source code for the Download class used in the
statechart study. (Most of this code is also shown in figures 5.2 to 5.9 in Chapter 5.)

import java.io.*;

import java.net.*;

public class Download implements Runnable

{

private static final int READ_SIZE = 1024; // bytes

private static final long TIMEOUT = 60000; // milliseconds

private static final long CHECK_INTERVAL = 250; // milliseconds

private URL url;

private String file;

200 Appendix B. Statechart Study — Materials and Raw Results

Figure B.1: The consent form signed by participants in the statechart study.

private InputStream inputStream;

private OutputStream outputStream;

private long startTime;

private long downloadedSize = 0;

private long size;

private boolean stopped = true;

private double speed = 0.0;

/**

* Creates a new Download object. The download is automatically started in

* a new thread.

*/

public Download(URL url, String file) throws IOException

{

this.url = url;

this.file = file;

startDownload();

}

/** Starts or restarts the download. */

private void startDownload() throws IOException

B.2. Source Code 201

Figure B.2: The overview/information sheet given to participants in the statechart study.

202 Appendix B. Statechart Study — Materials and Raw Results

Figure B.3: The instructions given to participants in the statechart study.

B.2. Source Code 203

Figure B.4: The questionnaire completed by participants in the statechart study, in addition
to the main task.

204 Appendix B. Statechart Study — Materials and Raw Results

{

if(stopped)

{

URLConnection connection = url.openConnection();

connection.connect();

inputStream = connection.getInputStream();

outputStream = new FileOutputStream(file);

size = connection.getContentLength();

startTime = System.currentTimeMillis();

// Create a new thread for the download to run in. This will call

// the run() method.

new Thread(this).start();

}

}

/** Stops the download, assuming it has been started. */

private void stopDownload()

{

stopped = true;

}

/**

* Downloads from the URL supplied to the constructor. The method

* shouldn’t be called directly. It is started indirectly by the

* startDownload() method.

*/

public void run()

{

byte[] buffer = new byte[READ_SIZE];

boolean timeout = false;

stopped = false;

try

{

while((downloadedSize < size) &&

!timeout &&

!stopped)

{

int bytesAvailable = inputStream.available();

if(bytesAvailable >= READ_SIZE)

{

// We’ve retrieved enough data to fill the buffer. Write

B.2. Source Code 205

// it to disk and reset the timeout counter.

inputStream.read(buffer);

outputStream.write(buffer);

downloadedSize += READ_SIZE;

waitStartTime = System.currentTimeMillis();

}

else if(bytesAvailable > 0)

{

// Some data was retrieved. Write it to disk and reset the

// timeout counter.

inputStream.read(buffer, 0, bytesAvailable);

outputStream.write(buffer, 0, bytesAvailable);

downloadedSize += bytesAvailable;

waitStartTime = System.currentTimeMillis();

}

else

{

// No data retrieved. Sleep for a small interval to avoid

// wasting CPU time. Check for a timeout.

sleep(CHECK_INTERVAL);

if(System.currentTimeMillis > waitStartTime + TIMEOUT)

{

timeout = true;

}

}

calcSpeed();

}

}

catch(IOException e)

{

}

stopped = true;

inputStream.close();

outputStream.close();

}

/**

* Called by the run() method to calculate the mean transfer rate (bytes

* per second) of the download so far.

*/

private void calcSpeed()

{

long time = System.currentTimeMillis() - startTime;

if(time > 0)

{

206 Appendix B. Statechart Study — Materials and Raw Results

speed = ((double)downloadedSize / (double)time) * 1000.0;

}

}

/**

* Returns the last calculated transfer rate (bytes per second) of the

* download, or 0 if no calculation has yet been made.

*/

public double getSpeed()

{

return speed;

}

/** Returns the download progress as a percentage. */

private double getPercentDone()

{

return ((double)downloadedSize / (double)size) * 100.0;

}

/** Returns true iff the download has finished. */

public boolean hasFinished()

{

return downloadedSize >= size;

}

/** Returns true iff the download is in progress. */

public boolean isDownloading()

{

return downloadedSize < size && !stopped;

}

}

B.3 Raw Results

Table B.1 contains the complete set of coded mappings between the statechart and
source code, for each participant.

B.3. Raw Results 207

Table B.1: Participants’ coded responses. State transition markings in the source code were
classified according to the fourteen categories, shown in columns. Question marks indicate
ambiguity.

ID
Code fragments

A A′ B C D E F G H H′ H1 I J K

1 1 2 5 3 6, 7 4
2 1 1 2 5 5 3, 5 6, 7
3 1 2 4 5 3 6, 7
4 1, 5 2 3 6 2 5 4 7
5 1 2 4 4 3
6 1 2 4 3 6, 7
7 1 2 5 3 4
8 1 2 4 4, 5 3, 4 6, 7
9 1 2 4 5 3 6, 7

10 1 2 5 5 3 5 4 5
11 1 7 2 5 3 6 4
12 1 2 5 3 6 4
13 1 1 2 3 6, 7 5
14 1 5 3 2
15 1? 1? 2, 3? 5? 3? 2, 3? 4 5?
16 1 1 2 3 2 4 5
17 1 2 4 5 3 6, 7 2
18 1 2 5 3 6, 7
19 1 1 2, 7 5 3 4, 6
20
21 1 2 4 5 3 6, 7
22 1 2 4, 5 3 2
23 1 2 3 5 3 6, 7 4
24 2, 3, 4 5 3 2, 3, 4 6, 7
25 1 2 4 4, 5 3 3 4
26 1 2 5 3 3 2 4 5
27 1 2 5 4 3 3, 4, 6, 7
28 6, 7 1 2 5 3

208 Appendix B. Statechart Study — Materials and Raw Results

Appendix C

Scenario Study — Materials

This appendix complements the description and analysis given in Chapter 6.

C.1 Forms and Sheets

Figures C.1 and C.2 show the consent form and information sheet given to participants.
Figures C.3 and C.4 show offline reproductions of the two web-based questionnaires
completed by participants.

C.2 Source Code

This section lists the source code used in the scenarios study. Some minor spacing and
line break modifications have been made.

C.2.1 AudioPlayer.java

AudioPlayer.java was used to test the system under inspection, but was not shown
to participants in the study.

package audioplayer;

public class AudioPlayer

{

public static void main(String[] args)

210 Appendix C. Scenario Study — Materials

Figure C.1: The consent form signed by participants in the scenario study.

C.2. Source Code 211

Figure C.2: The information sheet given to participants in the scenario study.

212 Appendix C. Scenario Study — Materials

1. Do you have, or are you currently studying for, a computing degree from Curtin
University?

yes, currently enrolled yes, graduated no

Degree:
Computer Science Information Technology Software Engineering
other:

Year of commencement:

Current year level:
1st year 2nd year 3rd year honours or 4th year

2. Do you have, or are you currently studying for, a computing degree from another
institution?

yes, currently enrolled yes, graduated no

Institution:

Has your course of study covered Java?
yes, in depth yes, somewhat not at all, or not to any significant extent

Has your course of study covered UML?
yes, in depth yes, somewhat not at all, or not to any significant extent

3. Have you worked in the software industry?
yes, currently employed yes, previously employed no

Years of experience:

Figure C.3: The first, demographic questionnaire filled out by participants in the scenario
study. (The actual questionnaire used a web-based interface. This is a reproduction of the
questions therein.)

C.2. Source Code 213

1. Rate your understanding:
very good fairly good fairly low very low

(a) instructions
(b) sequence diagram
(c) source code

2. Did you have difficulty keeping track of all the different classes?
it was reasonably easy it was reasonably difficult I was completely lost

3. If the task had been done on paper rather than electronically, would you have
found it easier or harder?

much easier somewhat easier about the same somewhat harder
much harder

Why?

4. Were you comfortable with the think aloud process?
yes somewhat not at all

5. If you had been asked to type your thoughts at the keyboard rather than speak
them out loud, would you have found it easier or harder?

much easier somewhat easier about the same somewhat harder
much harder

6. Any comments on the think aloud process?

7. Was it easy or hard to locate an area of source code that roughly corresponded
to the sequence diagram?

easy moderately difficult very difficult
Why?

8. Was it easy or hard to determine whether a given line of code should be marked?
easy moderately difficult very difficult

Why?

9. Was it easy or hard to determine the order in which lines of code were executed?
easy moderately difficult very difficult

Why?

10. Apart from anything already mentioned, did you encounter any ambiguities any-
where in the task?

11. Do you believe your participation has benefitted you?
not really yes

In what way(s)?

12. General comments:

Figure C.4: The second, opinion questionnaire filled out by participants in the scenario study.
(The actual questionnaire used a web-based interface, like the first. This is a reproduction
of the questions therein.)

214 Appendix C. Scenario Study — Materials

{

new UserInterface().menu();

}

}

C.2.2 PlayList.java

package audioplayer;

import java.io.*;

import java.util.*;

public class PlayList

{

private List tracks;

public PlayList()

{

tracks = new ArrayList();

}

public PlayList(String filename) throws IOException

{

BufferedReader reader =

new BufferedReader(new FileReader(filename));

tracks = new ArrayList();

String trackFile = reader.readLine();

while(trackFile != null)

{

try

{

tracks.add(Track.loadTrack(trackFile));

}

catch(TrackException e)

{ // Track couldn’t be loaded - ignore it.

}

trackFile = reader.readLine();

}

}

public void save(String filename) throws IOException

{

C.2. Source Code 215

PrintWriter writer = new PrintWriter(new FileWriter(filename));

int size = tracks.size();

for(int i = 0; i < size; i++)

{

writer.println(((Track)tracks.get(i)).getFilename());

}

writer.close();

}

public int getTrack(Track track)

{

return tracks.indexOf(track);

}

public Track getTrack(int trackNum) throws IndexOutOfBoundsException

{

return (Track)tracks.get(trackNum);

}

public int getTrackCount()

{

return tracks.size();

}

public void addTrack(Track newTrack)

{

if(!tracks.contains(newTrack))

{

tracks.add(newTrack);

}

}

public void removeTrack(Track track) throws PlayListException

{

if(!tracks.remove(track))

{

throw new PlayListException("No such track: \"" + track + "\"");

}

}

public void removeTrack(int track) throws IndexOutOfBoundsException

{

tracks.remove(track);

}

}

216 Appendix C. Scenario Study — Materials

class PlayListException extends Exception

{

public PlayListException(String msg)

{

super(msg);

}

}

C.2.3 Player.java

package audioplayer;

import java.io.*;

import java.util.*;

import javax.sound.sampled.*;

public class Player

{

private Programme programme = null;

private Track currentTrack = null;

private Clip clip = null;

public void setProgramme(Programme programme)

{

this.programme = programme;

}

public void play() throws PlayerException, TrackException

{

if (currentTrack == null)

{

nextTrack();

}

play(currentTrack);

}

public void play(Track track) throws PlayerException, TrackException

{

if(clip == null)

{

try

{

AudioInputStream input = track.getInputStream();

C.2. Source Code 217

DataLine.Info info =

new DataLine.Info(Clip.class, input.getFormat());

clip = (Clip)AudioSystem.getLine(info);

clip.open(input);

}

catch(Exception e)

{

throw new PlayerException("Could not access sound device");

}

}

clip.start();

}

public void pause()

{

if(clip != null)

{

clip.stop();

}

}

public void rewind()

{

if(clip != null)

{

clip.setFramePosition(0);

}

}

public void previousTrack() throws PlayerException, TrackException

{

if(programme.hasPreviousTrack())

{

boolean wasPlaying = isPlaying();

if(wasPlaying)

{

clip.stop();

}

clip = null;

currentTrack = programme.getPreviousTrack();

if(wasPlaying)

{

play();

218 Appendix C. Scenario Study — Materials

}

}

}

public void nextTrack() throws PlayerException, TrackException

{

if(programme.hasNextTrack())

{

boolean wasPlaying = isPlaying();

if(wasPlaying)

{

clip.stop();

}

clip = null;

currentTrack = programme.getNextTrack();

if(wasPlaying)

{

play();

}

}

}

public boolean isPlaying()

{

boolean active = false;

if(clip != null)

{

active = clip.isActive();

}

return active;

}

public Track getCurrentTrack()

{

return currentTrack;

}

}

class PlayerException extends Exception

{

public PlayerException(String msg)

{

super(msg);

}

C.2. Source Code 219

}

C.2.4 Programme.java

package audioplayer;

public class Programme

{

protected PlayList playList;

protected int currentTrack;

public Programme(PlayList playList)

{

this.playList = playList;

currentTrack = 0;

}

public boolean hasNextTrack()

{

return currentTrack < playList.getTrackCount() - 1;

}

public boolean hasPreviousTrack()

{

return currentTrack > 0;

}

public Track getNextTrack()

{

currentTrack++;

return playList.getTrack(currentTrack - 1);

}

public Track getPreviousTrack()

{

currentTrack--;

return playList.getTrack(currentTrack);

}

}

220 Appendix C. Scenario Study — Materials

C.2.5 RandomProgramme.java

package audioplayer;

import java.util.*;

public class RandomProgramme extends Programme

{

private Track[] tracks;

public RandomProgramme(PlayList playList)

{

super(playList);

orderTracks();

}

private void orderTracks()

{

currentTrack = 0;

tracks = new Track[playList.getTrackCount()];

for(int t = 0; t < tracks.length; t++)

{

tracks[t] = playList.getTrack(t);

}

Arrays.sort(tracks, new Randomiser());

}

public Track getNextTrack()

{

if(tracks.length != playList.getTrackCount())

{

orderTracks();

}

currentTrack++;

return tracks[currentTrack - 1];

}

public Track getPreviousTrack()

{

if(tracks.length != playList.getTrackCount())

{

orderTracks();

}

C.2. Source Code 221

currentTrack--;

return tracks[currentTrack];

}

}

class Randomiser implements Comparator

{

private Random randomNumGen = new Random();

public int compare(Object o1, Object o2)

{

return randomNumGen.nextInt(3) - 1;

}

}

C.2.6 Track.java

package audioplayer;

import java.lang.reflect.*;

import java.util.*;

import javax.sound.sampled.*;

/**

* Represents an abstract audio track. Subclasses of this class implement

* functionality for reading and decoding audio files of a specific format.

*/

public abstract class Track

{

/**

* Instantiates the appropriate subclass (i.e. WAVTrack, MP3Track, etc.)

* for the specified audio file.

*/

public static Track loadTrack(String filename) throws TrackException

{

int extensionIndex = filename.lastIndexOf(’.’);

if(extensionIndex == -1)

{

throw new TrackException("Unknown format");

}

String format =

filename.substring(extensionIndex + 1).toUpperCase();

Track newTrack;

222 Appendix C. Scenario Study — Materials

if(format.equals("wav"))

{

newTrack = new WAVTrack(filename);

}

else

{

throw new TrackException("Unsupported format");

}

return newTrack;

}

private String filename;

public Track(String filename)

{

this.filename = filename;

}

public String getFilename()

{

return filename;

}

/** Two tracks are equal if their filenames match. */

public boolean equals(Object obj)

{

boolean result = false;

if(obj instanceof Track)

{

result = ((Track)obj).filename.equals(filename);

}

return result;

}

public String toString()

{

return filename;

}

/** Returns a stream from which uncompressed audio data can be read. */

public abstract AudioInputStream getInputStream() throws TrackException;

}

class TrackException extends Exception

C.2. Source Code 223

{

public TrackException(String msg)

{

super(msg);

}

}

C.2.7 UserInterface.java

package audioplayer;

import java.io.*;

public class UserInterface

{

private static final String PLAY = "y";

private static final String PAUSE = "p";

private static final String STOP = "s";

private static final String NEXT_TRACK = "n";

private static final String PREVIOUS_TRACK = "r";

private static final String RANDOM_ORDER = "a";

private static final String NEW_PLAYLIST = "np";

private static final String LOAD_PLAYLIST = "lp";

private static final String SAVE_PLAYLIST = "sp";

private static final String DISPLAY_PLAYLIST = "d";

private static final String ADD_TO_PLAYLIST = "ap";

private static final String REMOVE_FROM_PLAYLIST = "rp";

private static final String EXIT = "x";

private Player player;

private PlayList playList;

private Programme programme;

public UserInterface()

{

playList = new PlayList();

programme = new Programme(playList);

player = new Player();

player.setProgramme(programme);

}

public void menu()

{

BufferedReader console =

224 Appendix C. Scenario Study — Materials

new BufferedReader(new InputStreamReader(System.in));

boolean done = false;

while(!done)

{

String command;

System.out.println("Choose an option:");

System.out.println("(" +

PLAY + ") play, (" +

PAUSE + ") pause, (" +

STOP + ") stop");

System.out.println("(" +

NEXT_TRACK + ") next track, (" +

PREVIOUS_TRACK + ") previous track, (" +

RANDOM_ORDER + ") toggle random track order");

System.out.println("(" +

NEW_PLAYLIST + ") new playlist, (" +

LOAD_PLAYLIST + ") load playlist, (" +

SAVE_PLAYLIST + ") save playlist");

System.out.println("(" +

ADD_TO_PLAYLIST + ") add to playlist, (" +

REMOVE_FROM_PLAYLIST + ") delete from playlist, (" +

DISPLAY_PLAYLIST + ") display playlist");

System.out.println("(" + EXIT + ") exit");

System.out.print(">> ");

try

{

command = console.readLine();

if(command == null)

{

done = true;

}

else

{

command = command.toLowerCase();

if(command.equals(PLAY))

{

player.play();

System.out.println("Playing " +

player.getCurrentTrack().getFilename());

}

else if(command.equals(PAUSE))

{

C.2. Source Code 225

if(player.isPlaying())

{

System.out.println("Paused");

player.pause();

}

else

{

player.play();

}

}

else if(command.equals(STOP))

{

System.out.println("Stopped");

player.pause();

player.rewind();

}

else if(command.equals(NEXT_TRACK))

{

player.nextTrack();

System.out.println("Playing " +

player.getCurrentTrack().getFilename());

}

else if(command.equals(PREVIOUS_TRACK))

{

player.previousTrack();

System.out.println("Playing " +

player.getCurrentTrack().getFilename());

}

else if(command.equals(RANDOM_ORDER))

{

toggleRandomOrder();

}

else if(command.equals(NEW_PLAYLIST))

{

newPlayList(null);

}

else if(command.equals(LOAD_PLAYLIST))

{

newPlayList(getFilename(console));

displayPlayList();

}

else if(command.equals(SAVE_PLAYLIST))

{

savePlayList(getFilename(console));

}

else if(command.equals(ADD_TO_PLAYLIST))

226 Appendix C. Scenario Study — Materials

{

playList.addTrack(

Track.loadTrack(getFilename(console)));

}

else if(command.equals(REMOVE_FROM_PLAYLIST))

{

displayPlayList();

removeFromPlayList(console);

}

else if(command.equals(DISPLAY_PLAYLIST))

{

displayPlayList();

}

else if(command.equals(EXIT))

{

done = true;

}

else

{

System.out.println("Unknown command");

}

}

}

catch(IOException e)

{

done = true;

}

catch(PlayerException e)

{

System.out.println(e.getMessage());

}

catch(TrackException e)

{

System.out.println(e.getMessage());

}

System.out.println();

}

}

private void toggleRandomOrder()

{

if(programme instanceof RandomProgramme)

{

System.out.println("Using sequential programme");

programme = new Programme(playList);

C.2. Source Code 227

}

else

{

System.out.println("Using random programme");

programme = new RandomProgramme(playList);

}

player.setProgramme(programme);

}

private void displayPlayList()

{

int size = playList.getTrackCount();

System.out.println("Play list:");

for(int i = 0; i < size; i++)

{

System.out.println(i + ": " + playList.getTrack(i).getFilename());

}

}

private void removeFromPlayList(BufferedReader console) throws IOException

{

System.out.println();

System.out.print("Enter number of track to remove: ");

try

{

playList.removeTrack(Integer.parseInt(console.readLine()));

}

catch(NumberFormatException e)

{

System.out.println("Not a valid track number");

}

catch(IndexOutOfBoundsException e)

{

System.out.println("No such track");

}

}

private void newPlayList(String filename)

{

player.pause();

try

{

if(filename == null)

{

playList = new PlayList();

228 Appendix C. Scenario Study — Materials

}

else

{

playList = new PlayList(filename);

}

programme = new Programme(playList);

player.setProgramme(programme);

}

catch(IOException e)

{

System.out.println("Could not load play list: " + e.getMessage());

}

}

private void savePlayList(String filename)

{

try

{

playList.save(filename);

}

catch(IOException e)

{

System.out.println("Could not save play list: " + e.getMessage());

}

}

private String getFilename(BufferedReader console) throws IOException

{

System.out.println();

System.out.print("Enter filename: ");

return console.readLine();

}

}

C.2.8 WAVTrack.java

package audioplayer;

import java.io.*;

import javax.sound.sampled.*;

/**

* An audio track in WAVE format.

C.2. Source Code 229

*/

public class WAVTrack extends Track

{

public WAVTrack(String filename)

{

super(filename);

}

/** Returns a stream from which uncompressed audio data can be read. */

public AudioInputStream getInputStream() throws TrackException

{

String filename = getFilename();

try

{

return AudioSystem.getAudioInputStream(new File(filename));

}

catch(UnsupportedAudioFileException e)

{

throw new TrackException("Unsupported format");

}

catch(IOException e)

{

throw new TrackException("Could not read " + filename);

}

}

}

230 Appendix C. Scenario Study — Materials

Appendix D

Checklist Experiment —

Materials

This appendix complements the description and analysis given in Chapter 7.

D.1 Forms and Sheets

Figure D.1 shows the consent form signed by participants. Figure D.2 shows the in-
formation/instruction sheet presented to participants before the exercise. Figure D.3
shows the questionnaire filled out by particiants afterwards.

D.2 Training Snippets

This section contains the code and associated materials used in training. Each of the
two training systems has four potential defects, of which only two were seen by each
participant. Thus, both the defective and corrected code are shown.

The highlighting reproduced here was shown to participants upon completion of each
inspection activity.

232 Appendix D. Checklist Experiment — Materials

Figure D.1: The consent form signed by participants in the checklist experiment.

Instructions to participants

Note: you must read and sign the Consent Form before you participate in this study.

• You will be presented with six mini-systems, one after another, each with its own spec-
ification. Each system is written in Java and contains exactly two defects. (For our
purposes, a defect is any deviation from the specification.)

• Find both defects in each mini-system and concisely describe what is wrong. You don’t
need to fix them.

• Whether you need to read all the material is up to you.

• You may be provided with a defect checklist for some or all of the mini-systems. If so,
make use of it.

• Don’t worry if you can’t find one or both defects. Just move on to the next system.

Figure D.2: The information/instruction sheet shown to participants in the checklist exper-
iment (via a web-based interface).)

D.2. Training Snippets 233

Prior Knowledge and Experience

Please indicate the computing-related degree you’re studying for, or already have.
Computer Science Information Technology Software Engineering None

Other computing-related degree:

At what stage of the degree are you currently at?
1st year 2nd year 3rd year Honours, 4th year or graduated

Have you worked as a software developer before, and if so for how long?
no
yes, for years

Which of the following have you done before? (tick as many as appropriate)
Participated in a software inspection/review
Studied software inspections/reviews
Read and understood real-world source code not written by you

Your Opinion

Did the checklist generally make the task easier or harder?
Much harder
Somewhat harder
No difference
Somewhat easier
Much easier

How did you use the checklist?
I basically ignored it
I looked over it
I checked each item carefully, but didn’t rely on it to find all the defects
I used it exclusively

You generally found defects...
Before consulting the checklist
As a result of consulting the checklist
While consulting the checklist (but not as a result)
After consulting the checklist (but not as a result)

You may have noticed that some defects in different snippets were very similar. Did
your familiarity with those types of defects make the task any easier?

No Somewhat easier Much easier

Figure D.3: The questionnaire filled out by participants in the checklist experiment.

234 Appendix D. Checklist Experiment — Materials

This is the specification for a Java class.

The class must calculate acceleration due to the Earth’s gravity. The acceleration (“a”) of an
object when falling towards the Earth (ignoring friction) depends on three values:

• the object’s distance from the centre of the Earth (“r”),
• the Earth’s mass (“M”), and
• the gravitational constant (“G”).

To calculate acceleration, the formula is: a = GM/r2. Since M and G do not change, they
can be dealt with together as a single value: 398600441800000m3s−2.

The class must have methods to (a) store the distances of several objects above the Earth’s
surface, and (b) return an HTML table containing the results of the calculations. For each
object, the table returned should contain a row showing the name of each object (or an empty
cell if the name is null), its distance and its precise acceleration due to the Earth’s gravity.
If the characters “&”, “<” and/or “>” occur in an object’s name, they must be removed or
replaced (or else the HTML string would be invalid).

Figure D.4: The specification for the Gravity training snippet.

Table D.1: The Gravity defect descriptions (two of which were shown to each participant
after inspection).

Label Description

Integer division defect In the method calculateAccel(), EARTH MASS TIMES G and
distance are both integers. The division is therefore integer di-
vision, and so the resulting value is imprecise.

Special characters defect In the method getHtml(), no attempt is made to replace the char-
acters &, < and > in labels[i] with their proper HTML represen-
tations: &, < and >. If any of the labels contain such
characters, the HTML returned will be invalid.

Null values defect In the method getHtml(), labels.get(i) might be null, in which
case errors arise. When added to a string with the + operator, null
is converted to the string “null”, not the empty string “”. If used to
call a method, it results in a NullPointerException.

Overwritten values defect In the method addReading(), the supplied values incorrectly over-
write the previous values, rather than being appended to the end of
the three Vectors.

D.2. Training Snippets 235

D.2.1 Gravity

Figure D.4 shows the specification for the Gravity training system, and Table D.1 shows
the defect descriptions. The source code is as follows:

import java.util.*;

public class Gravity

{
Integer division defect

public static final long EARTH_MASS_TIMES_G = 398600441800000l;

// metres^3 seconds^-2

Corrected code
public static final double EARTH_MASS_TIMES_G = 398600441800000.0;

// metres^3 seconds^-2

public static final long EARTH_RADIUS = 6372797; // metres

private Vector labels = new Vector();

private Vector distances = new Vector();

private Vector accelerations = new Vector();

public Gravity() {}

public void addReading(String label, long distance)

{
Overwritten values defect

int index = this.labels.size() - 1;

labels.set(index, label);

// Distances and accelerations must be wrapped inside a ’Long’

// object, because primitive types cannot be stored in a Vector.

distances.set(index, new Long(distance));

accelerations.set(index, new Double(calculateAccel(distance)));

Corrected code
labels.add(label);

// Distances and accelerations must be wrapped inside a "Long"

// object, because primitive types cannot be stored in a Vector.

distances.add(new Long(distance));

accelerations.add(new Double(calculateAccel(distance)));

}

/**

236 Appendix D. Checklist Experiment — Materials

* Calculates and returns an object’s acceleration due to gravity, given

* its distance above the Earth’s surface.

*/

private static double calculateAccel(highlightif(d1, long) distance)

{
distance += EARTH_RADIUS;

Integer division defect
return EARTH_MASS_TIMES_G / (distance * distance);

Corrected code
return EARTH_MASS_TIMES_G / (double)(distance * distance);

}

public String getHtml()

{
// HTML for the table headings.

String html =

"<table><tr><th></th><th>Distance (m)</th>" +

"<th>Acceleration (m/s^2)</th></tr>";

for(int i = 0; i < labels.size(); i++)

{
Null values defect

(Missing code.)

Corrected code
String label = (String)labels.get(i);

if(label == null)

{
label = "";

}

Special characters defect
(Missing code.)

Corrected code
// Replace all special HTML characters (&, < and >) in the label.

label = label

.replaceAll("&", "&")

.replaceAll("<", "<")

.replaceAll(">", ">");

// One table row for each object.

html += "<tr><td>" +

label + "</td><td>" +

distances.get(i) + " m</td><td>" +

accelerations.get(i) + "</td></tr>";

}

D.2. Training Snippets 237

This is the specification for a single Java method.

The method must calculate Body Mass Index (BMI), correct to at least one decimal place,
for people in a specified country. BMI can be determined from a person’s weight (“w”) in
kilograms and height (“h”) in metres, according to the following formula: bmi = w/h2.

Weight and height records must be retrieved from a database using SQL. Heights are stored
in centimetres, and so must be converted. For security reasons any data supplied in the SQL
query should be escaped.

The calculated list of values must be returned. If no records are available for the specified
country, an empty list should be returned.

Figure D.5: The specification for the BMI training snippet.

Table D.2: The BMI defect descriptions (two of which were shown to each participant after
inspection).

Label Description

Integer division defect To convert height from centimetres to metres, it is divided by 100.
Unfortunately this is an integer division, where (for example) 180 /
100 == 1. As a result the calculation will assume that most people
are only a metre tall and will thus grossly overestimate their BMI.
The value is converted to a double, but only after the error has
occurred.

Special characters defect When country is embedded in the SQL query, no special charac-
ters are escaped. A malicious user could construct a country string
containing such characters, allowing them to execute any SQL com-
mands and possibly destroy the entire database (“SQL injection”).

Null values defect The Database.query() method will return null if no records were
found. However, the calculateBmi() method does not check for
such values. If query() returned null, calculateBmi() would
throw a NullPointerException.

Overwritten values defect Each successive BMI value calculated overwrites the last value in
bmiVector rather than being added to the end. This will produce an
exception for the first value every time, since bmiVector is initially
empty.

return html + "</table>";

}
}

D.2.2 BMI

Figure D.5 shows the specification for the BMI training system, and Table D.2 shows
the defect descriptions. The source code is as follows:

public Vector calculateBmi(Database db, String country)

{
String[][] records;

238 Appendix D. Checklist Experiment — Materials

Vector bmiVector = new Vector();

// A null value for country

if(country == null)

{
country = "Australia";

}

// Retrieve all relevant records from the database.

records = db.query(

"SELECT weight, height FROM people WHERE country = ’" +

Special characters defect
country + "’");

Corrected code
db.escape(country) + "’");

Null values defect
(Missing code.)

Corrected code
if(records == null)

{
records = new String[0][];

}

for(int i = 0; i < records.length; i++)

{
// Each record consists of two integers (represented as Strings) for

// weight (in kg) and height (in cm). Height must be converted to

// metres, as a double. BMI can then be calculated.

int weight = Integer.parseInt(records[[i][0]]);

Integer division defect
double height = Integer.parseInt(records[i][1]) / 100;

Corrected code
double height = (double)Integer.parseInt(records[i][1]) / 100.0;

double bmi = (double)weight / (height * height);

// Add the BMI value to the return vector.

Overwritten values defect
bmiVector.set(bmiVector.size() - 1, new Double(bmi));

Corrected code
bmiVector.add(new Double(bmi));

}

D.3. Test Snippets 239

Table D.3: The SlushFund defect descriptions (shown to participants after inspection).

Label Description

Integer division defect The calculation of the distribution amount for each person involves an
integer division rather than floating-point division. As a result, most
people are likely to be underpaid by varying amounts.

Output format defect Although the specification requires the output to be of the form “[name]:
[amount]”, the code actually outputs “[amount]: [name]”.

return bmiVector;

}

// ---

abstract class Database

{
/**

* Perform an SQL query on the database. If no records are available as a

* result of the query, this method will return null. Otherwise, it will

* return a matrix of Strings. Each row in the matrix will be a record,

* and each column will be a field.

*/

public abstract String[][] query(String sql);

/**

* Returns an escaped version of a string, which can be safely embedded

* in an SQL query.

*/

public abstract String escape(String data);

}

D.3 Test Snippets

This section contains the code and associated materials used to generate experimental
data. Here, the same defects are seen by all participants.

D.3.1 SlushFund

Figure D.6 shows the specification for the SlushFund testing system, Figure D.7 shows
the defect checklist, and Table D.3 shows the defect descriptions. The source code is
as follows:

240 Appendix D. Checklist Experiment — Materials

This is the specification for a single Java method.

The method must determine how to distribute a slush fund among a group of people of varying
importance. Each person must receive money in proportion to their importance (e.g. if person
A is twice as important as person B, person A should receive twice the money). All the money
must be used up.

Therefore, the relative proportion of the money each person gets (between 0 and 1) is equal to
their importance divided by the sum of the importance values for all the people. Multiplying the
result by the total amount in the fund yields the actual amount of money the person receives.

The amount of money in the fund and the list of people are both pre-initialised by another
method (which is outside the scope of this specification).

The method must output the results to a given file, with one line for each person. Each line
should be in the form “name: amount”, where name is the person’s name and amount is precise
amount of money that person receives.

Figure D.6: The specification for the SlushFund test snippet.

• When a file is written to, is it closed afterwards?
• For division where precision is required, are integers first type-cast to floats or doubles?

Figure D.7: The SlushFund defect checklist, shown to half the participants.

private int amount;

private Person[] people;

public void outputSlushFund(String filename) throws IOException

{
PrintWriter writer = new PrintWriter(new FileWriter(filename));

// Calculate the total ’importance’

int totalImportance = 0;

for(int i = 0; i < people.length; i++)

{
totalImportance += people[i].getImportance();

}

// Each person’s share of the money is calculated in accordance with

// their importance.

for(int i = 0; i < people.length; i++)

{
Integer division defect

double distribution =

people[i].getImportance() / totalImportance * amount;

Output format defect
writer.println(distribution + ": " + people[i].getName());

}

D.3. Test Snippets 241

This is the specification for an additional feature of an existing class: TreeNode. TreeNode
represents one node of a generic n-ary tree structure. It contains a label (a string), a value (an
arbitrary object) and an array of child nodes.

It is now required that TreeNode be able to return an XML representation of itself. This
should be of the form “<node value="value">child nodes</node>”. Value is the string
representation of the node’s value object, and child nodes are the XML representations of the
node’s children. Any special characters in value (including quotes, ampersands and greater-
than/less-than characters) must be replaced by their XML representations.

However, the output must be conditional upon the node’s label matching a given string, case
insensitive. If it does not, the empty string must be returned instead. Likewise, if any child
node’s label does not match, that child node must be omitted from the output.

Figure D.8: The specification for the TreeNode test snippet.

• Where recursion occurs, is there a mechanism to avoid infinite recursion?
• When generating strings in a particular language, are all special characters (e.g. quotes,

depending on the language) removed or escaped?

Figure D.9: The TreeNode defect checklist, shown to half the participants.

writer.close();

}

// ---

abstract class Person

{
public abstract String getName();

public abstract int getImportance();

}

Table D.4: The TreeNode defect descriptions (shown to participants after inspection).

Label Description

Special characters defect Where value.toString() is embedded in the XML string, the code
does not replace any special characters (&, < or >) that may happen
to be in the value’s string representation. Consequently, if these
characters are present they will render the XML invalid.

Case insensitivity defect The specification requires that string matching be case-insensitive,
but this requirement is not implemented by the method. For example,
a node with the label “Apple” will incorrectly be omitted when the
method is called with the label “apple”.

242 Appendix D. Checklist Experiment — Materials

D.3.2 TreeNode

Figure D.8 shows the specification for the TreeNode testing system, Figure D.9 shows
the defect checklist, and Table D.4 shows the defect descriptions. The source code is
as follows:

public class TreeNode

{
private String label;

private Object value;

private TreeNode[] children;

// ...

public String toXml(String label)

{
String xml = "";

// Only generate XML if this node’s label matches the specified one.

Case insensitivity defect
if(this.label.equals(label))

{

Special characters defect
xml = "<node value=\"" + value.toString() + "\">\n";

for(int i = 0; i < children.length; i++)

{

// Recurse to generate XML for child nodes.

xml += children[i].toXml(label);

}

xml += "</node>\n";

}

return xml;

}

}

D.3.3 AddressSearch

Figure D.10 shows the specification for the AddressSearch testing system, Figure D.11
shows the checklist, and Table D.5 shows the defect descriptions. The source code is
as follows:

D.3. Test Snippets 243

This is the specification for a single Java method.

The method must implement a search feature for an address book application. The address
book’s design allows a flexible number of fields in each entry. Each field has a name (e.g.
“name”, “phone”, “email”, etc.) and a value, both strings.

The method will be supplied with a search string and a list of fields. It must find and return all
entries that contain at least one of the specified fields that exactly matches the search string.

Figure D.10: The specification for the AddressSearch test snippet.

• Are the return types for methods appropriate given the requirements?
• Where null is an acceptable (useful/meaningful) value for a variable, is there a check

to ensure that variable.method() (or similar) is not called when the variable is null?

Figure D.11: The AddressSearch defect checklist, shown to half the participants.

private Vector addressBook;

/**

* Searches the address book for a given search string and returns a Vector

* of all matching entries.

*/

private Vector search(String searchString, String[] fieldNames)

{
Vector result = new Vector();

for(int entryNum = 0; entryNum < addressBook.size(); entryNum++)

{
Entry entry = (Entry)(addressBook.get(entryNum));

Search algorithm defect
boolean matched = true;

// For each entry in the address book, test each field to see if it

// matches the search string.

for(int f = 0; f < fieldNames.length; f++)

{
Null values defect

if(!entry.getField(fieldNames[f]).equals(searchString))

Table D.5: The AddressSearch defect descriptions (shown to participants after inspection).

Label Description

Null values defect No check is made to ensure a field is non-null before trying to com-
pare it to the search string. The search() method will throw a
NullPointerException if any entry in the address book does not
contain one of the specified fields.

Search algorithm defect The algorithm requires every field in an entry to match the search
string, if that entry is to be included in the results. This violates the
specification, which states that at least one field must match.

244 Appendix D. Checklist Experiment — Materials

This is the specification for two methods in a Java class.

The class is part of a 3D, first-person shooter game, in which the player takes the role of a hero
who must complete a mission with a variety of hand-held weaponry. The class itself handles
the acquisition and selection of the player’s weapons. The player can acquire new weapons
within the game, and can have one weapon “selected” (ready for use) at any given time. The
class must contain methods to allow a weapon to be acquired, and to allow the next weapon
to be selected.

A weapon can only be acquired if the player does not already have it. When any new weapon
is acquired, it must be automatically selected.

A player’s available weapons should be arranged in a list. The “select next weapon” option
must move the selection to the next weapon in the list, or to the first weapon if the last is
selected. However, weapons with no ammunition left must be automatically skipped. If no
weapons are left with ammunition, the option should not have any effect.

Figure D.12: The specification for the WeaponSelector test snippet.

Search algorithm defect
{

matched = false;

}

}

// If the field matches, add it to the results list.

if(matched)

{
result.add(entry);

}
}

return result;

}

// ---

abstract class Entry

{
/**

* Retrieves a specified field from the address book entry. If the entry

* does not contain the specified field, null is returned instead.

*/

public abstract String getField(String fieldName);

}

D.3. Test Snippets 245

• For loops, is the appropriate construct (i.e. for, while or do. . . while) used?
• When a data structure (e.g. a Vector) is being manipulated, is the appropriate operation

being performed?

Figure D.13: The WeaponSelector defect checklist, shown to half the participants.

Table D.6: The WeaponSelector defect descriptions (shown to participants after inspection).

Label Description

Overwritten values defect The addWeapon() method overwrites the last element in weapons
with newWeapon, rather than appending it to the end.

Bounds checking defect The selectNextWeapon() method allows currentWeapon to run
off the end of the weapons list, causing an exception to be thrown.

D.3.4 WeaponSelector

Figure D.12 shows the specification for the WeaponSelector testing system, Figure D.13
shows the checklist, and Table D.6 shows the defect descriptions. The source code is
as follows:

import java.util.*;

public class WeaponSelector

{
private Vector weapons = new Vector();

private int currentWeapon = 0;

// ...

/** Adds a new weapon and selects it. */

public void addWeapon(Weapon newWeapon)

{
if(!weapons.contains(newWeapon))

{
Overwritten values defect

weapons.set(weapons.size() - 1, newWeapon);

currentWeapon = weapons.size() - 1;

}
}

/** Selects the next available weapon that has ammunition. */

public void selectNextWeapon()

{
Bounds checking defect

do

{

246 Appendix D. Checklist Experiment — Materials

currentWeapon++;

}
while(!((Weapon) weapons.get(currentWeapon)).hasAmmunition());

}
}

// ---

abstract class Weapon

{
public abstract boolean hasAmmunition();

}

Appendix E

Inspection Modelling —

Equations and Inputs

This appendix contains the formal set of equations comprising the inspection model
described in Chapter 8. The set of model inputs used in evaluating the model is also
given.

E.1 Metamodel

E.1.1 Entities

Q0 =
{
ε(e,η,0,0) : e ∈ E , 1 ≤ η ≤ γ0e

}
(E.1)

QHj(ε) =

∅ if τ(ε) ∈ ED{
ε′(e,η,H,ε) : e ∈ E , 1 ≤ η ≤ γ(ε)

Hjeτ(ε)

}
otherwise

(E.2)

QGj(ε) =


∅ if j = 0

QGEj(ε) if j ≥ 1, τ(ε) ∈ ED

QGDj(ε) if j ≥ 1, τ(ε) /∈ ED

(E.3)

248 Appendix E. Inspection Modelling — Equations and Inputs

Table E.1: Symbols for entities, entity types and their sets and identifying characteristics.

Symbol Description

e An entity type.
ε An entity.
λ A locality.
κ A k-instance.
δ A defect.
ψ A marker.
j A development phase (N).
E The set of all entity types.
ED, EK, EL The set of defect types, k-instance types and locality types.
Ψ The set of markers.
J The number of development phases.

ε(e,η,h,ε
′) An entity construction; the η’th entity of type e derived via method h

from entity ε′.

δ(e,η,h,ε
′,w,y) A defect construction; the η’th defect of type e derived via method h

from entity ε′ having rework status w and carryover status y.
η An arbitrary index
e = τ(ε) The type of entity ε.
e′ = π(ε) The originating entity from which ε was derived, or 0 if ε is an initial

entity.
h = H(ε) ∈ {0, G, H} The method by which ε was derived; 0 indicating an initial entity, G

indicating propagation and H indicating hierarchy.
w = W (δ) The rework status of defect δ; 1 iff δ resulted from rework.
y = Y (δ) The carryover status of defect δ; 1 iff δ is a carryover defect.
Ej The set of entities in phase j.
ELj The set of localities in phase j.
EKj The set of k-instances in phase j.
EDj The set of (potential) defects in phase j.
Pj(ε) The dependencies of entity ε.
PMj(κ) The comprehension dependencies of k-instance κ.
PLj(κ) The locality dependencies of k-instance κ.
PDj(λ) The decision dependencies of locality λ.
XKjεψ Indicates whether marker ψ is assigned to entity ε in phase j.

Table E.2: Intermediate entity sets used to build the metamodel structure.

Symbol Description

Q0 The set of initial entities.
QHj(ε) The set of entities in phase j hierarchically derived from ε, directly.
QGEj(ε) The set of entities in phase j propagated from non-defect entity ε.
QGDj(ε) The set of entities in phase j propagated from defect δ.
QGj(ε) The total set of entities in phase j propagated from ε.
NHj(ε) The set of entities in phase j hierarchically derived from ε, directly or indirectly.
NGj The set of entities in phase j resulting from propagation, or the initial entities.
P0(ε) The initial dependencies of ε, if applicable.
PGj(ε) The dependencies of ε resulting from propagation.
PHj(ε) The number of initial and hierarchically-derived dependencies of ε.

E.1. Metamodel 249

Table E.3: Metamodel variates.

Variate Variable Description

γ0e Γ0e The number of initial entities of type e.

γ
(ε)
Hjeτ(ε) ΓHjeτ(ε) The number of entities of type e hierarchically derived from ε in

phase j.

γ
(ε)
GEjeτ(ε) ΓGEjeτ(ε) The number of entities of type e in phase j propagating from

non-defect entity ε.

γ
(δ)
GDjeτ(δ)w ΓGDjeτ(δ)w The number of defects of type e in phase j with rework status w

propagating from defect δ.

σ
(δ)
jτ(δ) Σjτ(δ) Indicates whether an attempt to rework δ in phase j will fail.

ξ
(ε)
0τ(ε)e Ξ0τ(ε)e The number of initial dependencies ε has on type-e entities.

ξ
(ε)
Gjτ(ε)τ(ε′) ΞGjτ(ε)τ(ε′) Indicates whether ε has a propagated dependency on ε′, given

that one can exist.

ξ
(ε,ε′′)
Hτ(ε)eτ(ε′′) ΞHτ(ε)eτ(ε′′) The number of localised/hierarchical dependencies ε has on type-

e entities within the context of ε′′.
select[n, S](ε) select[n, S] A randomly-chosen size-n subset of the set S associated with

entity ε, chosen with uniform probability.

θ
(ε)
τ(ε) Θτ(ε) The dependence complexity of entity ε.

ω
(λ)
τ(λ)ψ Ωτ(λ)ψ Indicates whether non-propagated locality λ is assigned marker

ψ.

QGEj(ε) =
{
ε′(e,η,G,ε) : e ∈ E , 1 ≤ η ≤ γ(ε)

GEjeτ(ε)

}
j ≥ 1, τ(ε) /∈ ED

(E.4)

QGDj(δ) =
{
δ′(e,η,G,δ,w,0) : e ∈ ED, w ∈ {0, 1}, 1 ≤ η ≤ γ(δ)

GDjeτ(δ)w

}
∪
{
δ′(τ(δ),0,G,δ,w,1) : w ≤ σ(δ)

jτ(δ)

}
j ≥ 1, τ(δ) ∈ ED

(E.5)

NHj(ε) = {ε} ∪
⋃

ε′∈QHj(ε)

NHj(ε′) (E.6)

NGj =


Q0 if j = 0⋃
ε∈Ej−1

QG(j−1)(ε) if j ≥ 1 (E.7)

Ej =
⋃

ε∈NGj

NHj(ε) (E.8)

250 Appendix E. Inspection Modelling — Equations and Inputs

EDj = {δ ∈ Ej : τ(δ) ∈ ED} (E.9)

EKj = {κ ∈ Ej : τ(κ) ∈ EK} (E.10)

ELj = {λ ∈ Ej : τ(λ) ∈ EL} (E.11)

E.1.2 Dependencies

P00(ε) =
⋃
e∈E

select
[
ξ

(ε)
0τ(ε)e,

{
ε′ : τ(ε′) = e, θ

(ε)
τ(ε) > θ

(ε′)
τ(ε′)

}](ε)
(E.12)

PGj(ε) =
{
ε′ : π(ε′) ∈ Pj−1 [π(ε)] , ξ(ε)

Gjτ(ε)τ(ε′) = 1
}

(E.13)

PHj(ε) =
⋃

{ε′′ : ε∈NHj(ε′′)}

⋃
e∈E

(E.14)

select
[
ξ

(ε,ε′′)
Hτ(ε)eτ(ε′′),

{
ε′ ∈ NHj(ε′′) : τ(ε′) = e, θ

(ε)
τ(ε) > θ

(ε′)
τ(ε′)

}](ε)
(E.15)

Pj(ε) =


P0(ε) ∪ PH0(ε) if H(ε) = 0

PGj(ε) if H(ε) = G

PHj(ε) if H(ε) = H

(E.16)

PMj(κ) =
{
κ′ ∈ Pj(κ) : τ(κ′) ∈ EK

}
(E.17)

PLj(κ) = {λ ∈ Pj(κ) : τ(λ) ∈ EL} (E.18)

PDj(λ) = {κ ∈ Pj(λ) : τ(κ) ∈ EK} (E.19)

E.1.3 Markers

XKjλψ =


XK(j−1)εψ if ∃ε : λ ∈ QG(j−1)(ε)

ω
(λ)
τ(λ)ψ otherwise

(E.20)

XKjκψ =

1 if ∃ε : XKjεψ = 1 ∧
[
ε ∈ Pj(κ) ∨ κ ∈ QG(j−1)(ε)

]
0 otherwise

(E.21)

E.2. Scenario Model 251

Table E.4: Principal variables used in the scenario model, as shown in figures 8.8 and 8.9.

Symbol Description

i An inspector index (N).
Djδ Indicates whether defect δ exists in phase j in this scenario.
Mjiκ Indicates whether inspector i comprehends k-instance κ in the phase j inspection.
Sjiλ Indicates whether inspector i searches locality λ in the phase j inspection.
AMjiκ Indicates whether active guidance is provided to inspector i for k-instance κ in phase

j.
BMjiκ Indicates whether passive guidance is provided to inspector i for k-instance κ in phase

j.
LMji The comprehension active guidance level for inspector i in phase j.
AMjiλ Indicates whether active guidance is provided to inspector i for locality λ in phase j.
BMjiλ Indicates whether passive guidance is provided to inspector i for locality λ in phase j.
LMji The search active guidance level for inspector i in phase j.
Z The inspection strategy.
Gjδ Indicates whether defect δ propagated from the previous phase, in this scenario.
Fjδ The number of operational failures in phase j resulting from defect δ.
Tjδ Indicates whether a test failure occurs in phase j as a result of defect δ.
Vjδ Indicates whether an investigation into defect δ is conducted in phase j.
Rjδ Indicates whether defect δ is reworked in phase j.
CSjiλ The cost of inspector i searching locality λ in phase j.
CBMjκ The cost of providing passive guidance for k-instance κ in phase j.
CBSjλ The cost of providing passive guidance for locality λ in phase j.
CFjδ The cost of operational failures resulting from defect δ in phase j.
CVjδ The cost of investigating defect δ in phase j.
CRjδ The cost of reworking defect δ in phase j.

E.2 Scenario Model

E.2.1 Defect propagation — Gjδ

Gjδ =

1 if Djπ(δ) = 1 and Rjπ(δ) = W (δ)

0 otherwise
(E.22)

E.2.2 Defect existence — Djδ

Djδ =

1 if Gjδ = 1 or H(δ) ∈ {0, H}

0 otherwise
(E.23)

252 Appendix E. Inspection Modelling — Equations and Inputs

Table E.5: Random variates and parameters used in comprehension modelling.

Variate Variable Description

Comprehension

φ
(i)
Mτ(κ) ΦMτ(κ) Baseline odds of inspector i comprehensing k-instance κ.

φ
(i)
MA ΦMA Comprehension active guidance effect for inspector i.

φ
(i)
MB ΦMB Comprehension passive guidance effect for inspector i.

φ
(i)
ML ΦML Comprehension active guidance level effect for inspector i.

φ
(i)
MMτ(κ)τ(κ′) ΦMMτ(κ)τ(κ′) Inverse comprehension dependency effect for inspector i, for

where κ depends on κ′.

φ
(i)
MSτ(κ)τ(λ) ΦMSτ(κ)τ(λ) Inverse locality dependency effect for inspector i, for where κ

depends on λ.
Search

φ
(i)
Sτ(λ) ΦSτ(λ) Baseline odds of inspector i searching locality λ.

φ
(i)
SA ΦSA Search active guidance effect for inspector i.

φ
(i)
SB ΦSB Search passive guidance effect for inspector i.

φ
(i)
SL ΦSL Search active guidance level effect for inspector i.

φ
(i)
SMτ(λ)τ(κ) ΦMMτ(λ)τ(κ) Decision dependency effect for inspector i, for where λ depends

on κ.

k
(i)
Sψ KSψ Effect of marker ψ on search odds for inspector i.

Costs

φ
(λ)
CSτ(λ) ΦCSτ(λ) Log-linear baseline cost of searching locality λ.

φ
(i)
CSIτ(λ) ΦCSIτ(λ) Log-linear effect of inspector i on locality λ search costs.

φ
(κ)
CBMτ(κ) ΦCBMjτ(κ) Log-linear baseline cost of passive guidance provision for k-

instance κ.

φ
(λ)
CBSτ(λ) ΦCBSjτ(λ) Log-linear baseline cost of passive guidance provision for locality

λ.
kCSψ — Log-linear effect of marker ψ on search costs.
kCBMψ — Log-linear effect of marker ψ on comprehension passive guidance

provision costs.
kCBSψ — Log-linear effect of marker ψ on search passive guidance provision

costs.

E.2. Scenario Model 253

Table E.6: Random variates and parameters used in verification process modelling.

Variate Variable Description

Process
uj Uj The total operational runtime in phase j.

φ
(δ)
Fjτ(δ) ΦFjτ(δ) Log-linear baseline of operational failures resulting from defect δ.

φTjτ(δ) — Baseline test failure odds for defect δ.
φVjτ(δ) — Baseline odds of investigating defect δ.
φRjτ(δ) — Baseline odds of reworking defect δ.
φVF — Effect of the number of operational failures on investigation odds.
kFψ — Log-linear effect of marker ψ on operational failures.
kTψ — Effect of marker ψ on test failure odds.
kVψ — Effect of marker ψ on investigation odds.
kRψ — Effect of marker ψ on rework odds.

Costs

φ
(δ)
CFτ(δ) ΦCFτ(δ) Log-linear baseline cost of operational failures resulting from defect δ.

φ
(δ)
CVτ(δ) ΦCVτ(δ) Log-linear baseline cost of investigating defect δ.

φ
(δ)
CRτ(δ) ΦCRτ(δ) Log-linear baseline cost of attempting to rework defect δ.

kCFψ — Log-linear effect of marker ψ on operational failure cost.
kCVψ — Log-linear effect of marker ψ on investigation cost.
kCRψ — Log-linear effect of marker ψ on rework cost.

E.2.3 K-instance comprehension (inc. defect detection) — Mjiκ

P(Mjiκ = 1|AMjiκ, BMjiκ, LMji, {Mjiκ′}κ′∈PMj(κ), {Sjiλ}λ∈PLj(κ)) =

logit−1

[
φ

(i)
Mτ(κ) + φ

(i)
MA ·AMjiκ + φ

(i)
MB ·BMjiκ + φ

(i)
ML · LMji +

+
∑

κ′∈PMj(κ)

φ
(i)
MMτ(κ)τ(κ′) · (1−Mjiκ′) +

∑
λ∈PLj(κ)

φ
(i)
MSτ(κ)τ(λ) · (1− Sjiλ)

]
(E.24)

E.2.4 Locality searching — Sjiλ

P(Sjiλ = 1|ASjiλ, BSjiλ, LSji, {Mjiκ}κ∈PDj(λ),XKjλ) = logit−1

[
φ

(i)
Sτ(λ) +

+φ
(i)
SA ·AMjiκ+φ

(i)
SB ·BMjiκ+φ

(i)
SL ·LMji+

∑
κ∈PDj(λ)

φ
(i)
SMτ(λ)τ(κ) ·Mjiκ+

∑
ψ∈Ψ

k
(i)
Sψ ·XKjλψ

]
(E.25)

where XKjλ ≡ {XKjλψ}ψ∈Ψ.

254 Appendix E. Inspection Modelling — Equations and Inputs

E.2.5 Active and passive guidance — AMjiκ, BMjiκ, ASjiλ, BSjiλ

(AMjiκ, BMjiκ) = ZM [j, i, τ(κ), {ψ ∈ Ψ : XKjκψ = 1}] (E.26)

(ASjiλ, BSjiλ) = ZS [j, i, τ(λ), {ψ ∈ Ψ : XKjλψ = 1}] (E.27)

E.2.6 Operational failures — Fjδ

Fjδ =


0 if Djδ = 0 or Y (δ) = 0

round

Uj · exp

φ(δ)
Fjτ(δ) +

∑
ψ∈Ψ

kFψ ·XKjδψ

 otherwise

(E.28)

E.2.7 Test failure — Tjδ

P(Tjδ = 1|Djδ,XKjδ) =


0 if Djδ = 0

logit−1

φTjτ(δ) +
∑
ψ∈Ψ

kTψ ·XKjδψ

 otherwise
(E.29)

E.2.8 Failure investigation — Vjδ

P(Vjδ = 1|Fjδ, Tjδ,XKjδ) =
0 if Fjδ + Tjδ = 0

logit−1

φVjτ(δ) + φVF · Fjδ +
∑
ψ∈Ψ

kVψ ·XKjδψ

 otherwise
(E.30)

E.2. Scenario Model 255

E.2.9 Defect rework — Rjδ

P(Rjδ|{Mjiδ}1≤i≤ZIj
, Vjδ,XKjδ) =

0 if Vjδ +
ZIj∑
i=1

Mjiδ = 0

logit−1

φRjτ(δ) +
∑
ψ∈Ψ

kRψ ·XKjδψ

 otherwise

(E.31)

E.2.10 Cost of searching — CSjiλ

CSjiλ =


0 if Sjiλ = 0

exp

φ(λ)
CSτ(λ) + φ

(i)
CSIτ(λ) +

∑
ψ∈Ψ

kCSψ ·XKjλψ

 otherwise
(E.32)

E.2.11 Cost of providing passive comprehension guidance — CBMjκ

CBMjκ =


0 if

ZIj∑
i=1

BMjiκ = 0

exp

φ(κ)
CBMτ(κ) +

∑
ψ∈Ψ

kCBMψ ·XKjκψ

 otherwise

(E.33)

E.2.12 Cost of providing passive search guidance — CBSjλ

CBSjλ =


0 if

ZIj∑
i=1

BSjiλ = 0

exp

φ(λ)
CBSτ(λ) +

∑
ψ∈Ψ

kCMSψ ·XKjλψ

 otherwise

(E.34)

E.2.13 Cost of operational failure — CFjδ

CFjδ =
Fjδ∑
η=1

exp

φ(η)
CFjτ(δ) +

∑
ψ∈Ψ

kCFψ ·XKjδψ

 (E.35)

256 Appendix E. Inspection Modelling — Equations and Inputs

where φ(η)
CFjτ(δ) ∼ ΦCFjτ(δ), 1 ≤ η ≤ Fjδ.

E.2.14 Cost of failure investigation — CVjδ

CVjδ =


0 if Vjδ = 0

exp

φ(δ)
CVjτ(δ) +

∑
ψ∈Ψ

kCVψ ·XKjδψ

 otherwise
(E.36)

E.2.15 Cost of defect rework — CRjδ

CRjδ =


0 if Rjδ = 0

exp

φ(δ)
CRjτ(δ) +

∑
ψ∈Ψ

kCRψ ·XKjδψ

 otherwise
(E.37)

E.3 Simulation Inputs

This section contains the model context file synthetic.py used to obtain simulation
results. Tables E.7, E.8, E.9 and E.10 briefly describe the simulation inputs and show
their correspondence to symbols used in the model.

-*- coding: iso-8859-1 -*-

dtypes = [’req_omission’, ’req_commission’, ’spec_mismatch’, ’incorrect_logic’]

ktypes = [’data_obj’, ’func_goal’, ’method_logic’, ’state’]

ltypes = [’func_req’, ’ext_interface’, ’model’, ’view’, ’controller’]

markers = [’important’, ’complex’]

phases = 3 # Requirements, coding and release

dep_complexity_pdf = { # [ETYPE], PDF

’req_omission’: Gaussian(100.0, 25.0),

’req_commission’: Gaussian(100.0, 25.0),

’spec_mismatch’: Gaussian(100.0, 25.0),

’incorrect_logic’: Gaussian(100.0, 25.0),

’data_obj’: Gaussian(40.0, 5.0),

’func_goal’: Gaussian(60.0, 5.0),

’method_logic’: Gaussian(50.0, 20.0),

E.3. Simulation Inputs 257

Table E.7: Metamodel inputs.

Input Description (including simulation input name)

ED dtypes: The set of defect types.
EK − ED ktypes: The set of non-defect k-instance types.
EL ltypes: The set of locality types.
Ψ markers: The set of markers.
J phases: The number of development phases.
Γ0e base entity count pmf: Distribution of the number of initial type-e entities.
Ξ0ee′ base dep pmf: Distribution of the number of initial dependencies that type-e entities

have on type-e′ entities.
Θe dep complexity pdf: Distribution of dependence complexity for type-e entities.
Ωeψ marker prob: Probability of non-propagated type-e localities having marker ψ.
ΓHjee′ entity generation pmf: Distribution of the number of type e entities hierarchically

derived from type-e′ entities in phase j.
ΞHee′e′′ dep generation pmf: Distribution of the number of localised dependencies that

type-e entities have on type-e′ entities in the context of a type-e′′ entity.
ΓGDjee′0 unreworked defect propagation pmf: Distribution of the number of type-e defects

in phase j propagating from a type-e′ defect when the latter is left unreworked.
ΓGDjee′1 reworked defect propagation pmf: Distribution of the number of type-e defects

in phase j propagating from a type-e′ defect when rework has been attempted.
Σje rework failure prob: Probability of failure in attempting to rework a type-e defect

in phase j.
ΓGEjee′ entity propagation pmf: Distribution of the number of type-e entities in phase j

propagating from a non-defect, type-e′ entity.
ΞGjee′ dep propagation prob: Probability of a type-e entity having a propagated depen-

dency on a type-e′ entity, given that one is possible.

’state’: Gaussian(70.0, 10.0),

’func_req’: Gaussian(20.0, 5.0),

’ext_interface’: Gaussian(20.0, 5.0),

’model’: None, # Propagated rather than generated

’view’: None,

’controller’: None,

}

base_entity_count_pmf = { # [ETYPE], PMF

’data_obj’: PoissonPMF(10),

’func_req’: PoissonPMF(15),

’ext_interface’: PoissonPMF(5),

}

base_dep_pmf = { # [ETYPE, ETYPE], PMF, zeroPMF

(’data_obj’, ’func_req’): PoissonPMF(5),

(’data_obj’, ’ext_interface’): PoissonPMF(2),

(’req_omission’, ’data_obj’): PoissonPMF(1),

(’req_commission’, ’data_obj’): PoissonPMF(1),

258 Appendix E. Inspection Modelling — Equations and Inputs

Table E.8: Comprehension modelling inputs.

Input Description (including simulation input name)

ΦMe comprh intercept pdf: Distribution of inspectors’ baseline comprehension odds for
type-e k-instances.

ΦMA comprh aguidance effect pdf: Distribution of inspectors’ comprehension active
guidance effects.

ΦMB comprh pguidance effect pdf: Distribution of inspectors’ comprehension passive
guidance effects.

ΦML comprh aguidance level effect pdf: Distribution of inspectors’ comprehension ac-
tive guidance level effects.

ΦMMee′ comprh deps inv effect pdf: Distribution of inspectors’ inverse comprehension de-
pendency effects, for where type-e k-instances depend on type-e′ k-instances.

ΦMSee′ locality deps inv effect pdf: Distribution of inspectors’ inverse locality dependency
effects, for where type-e k-instances depend on type-e′ localities.

ΦSe search intercept pdf: Distribution of inspectors’ baseline search odds for type-e lo-
calities.

ΦSA search aguidance effect pdf: Distribution of inspectors’ search active guidance ef-
fects.

ΦSB search pguidance effect pdf: Distribution of inspectors’ search passive guidance ef-
fects.

ΦSL search aguidance level effect pdf: Distribution of inspectors’ search active guid-
ance level effects.

ΦMMee′ decision deps effect pdf: Distribution of inspectors’ decision dependency effects, for
where type-e localities depend on type-e′ k-instances.

KSψ search marker effect pdf: Distribution of inspectors’ marker ψ effects on search
odds.

Table E.9: Verification process modelling inputs.

Input Description (including simulation input name)

Uj runtime pdf: Distribution of operational runtime in phase j.
ΦFje op failure intercept pdf: Distribution of log-linear baseline operational failures result-

ing from type-e defects in phase j.
φTje test failure intercept: Baseline odds of test failure for type-e defects in phase j.
φVje investigation intercept: Baseline odds of investigating type-e defects in phase j.
φRje rework intercept: Baseline odds of reworking type-e defects in phase j.
φVF investigation op failure effect: Effect of the number of operational failures on inves-

tigation odds.
kFψ op failure marker effect: Log-linear effect of marker ψ on operational failures.
kTψ test failure marker effect: Effect of marker ψ on test failure odds.
kVψ investigation marker effect: Effect of marker ψ on investigation odds.
kRψ rework marker effect: Effect of marker ψ on rework odds.

E.3. Simulation Inputs 259

Table E.10: Scenario cost inputs.

Input Description (including simulation input name)

ΦCSe search cost intercept pdf: Distribution of baseline search costs for type-e localities.
ΦCSIe search cost inspector effect pdf: Distribution of inspector effects on search costs

for type-e localities.
ΦCBMje comprh pguidance cost intercept pdf: Distribution of baseline comprehension pas-

sive guidance provision costs for type-e k-instances.
ΦCBSje search pguidance cost intercept pdf: Distribution of baseline search passive guid-

ance provision costs for type-e localities.
kCSψ search cost marker effect: Log-linear effect of marker ψ on search costs.
kCBMψ comprh pguidance cost marker effect: Log-linear effect of marker ψ on compre-

hension passive guidance provision costs.
kCBSψ search pguidance cost marker effect: Log-linear effect of marker ψ on search pas-

sive guidance provision costs.
ΦCFe op failure cost intercept pdf: Distribution of log-linear baseline operational failure

costs resulting from type-e defects.
ΦCVe investigation cost intercept pdf: Distribution of log-linear baseline investigation

costs for type-e defects.
ΦCRe rework cost intercept pdf: Distribution of log-linear baseline rework costs for type-e

defects.
kCFψ op failure cost marker effect: Log-linear effect of marker ψ on operational failure

cost.
kCVψ investigation cost marker effect: Log-linear effect of marker ψ on investigation

cost.
kCRψ rework cost marker effect: Log-linear effect of marker ψ on rework cost.

(’req_omission’, ’func_goal’): PoissonPMF(1),

(’req_commission’, ’func_goal’): PoissonPMF(1),

}

marker_prob = { # [LTYPE, MARKER], BinaryPMF, zeroPMF

(’func_req’, ’important’): BinaryPMF(0.3),

(’func_req’, ’complex’): BinaryPMF(0.2),

(’ext_interface’, ’complex’): BinaryPMF(0.2),

}

Entity generation & localised dependency insertion

entity_generation_pmf = { # [PHASE, ETYPE, ETYPE], PMF, zeroPMF

(0, ’func_goal’, ’func_req’): DeltaPMF(1),

(0, ’req_omission’, ’func_req’): PoissonPMF(0.5),

(0, ’req_commission’, ’func_req’): PoissonPMF(0.5),

(0, ’req_omission’, ’ext_interface’): PoissonPMF(0.25),

(0, ’req_commission’, ’ext_interface’): PoissonPMF(0.25),

Phase 1 (coding) generation

(1, ’method_logic’, ’model’): PoissonPMF(10),

(1, ’state’, ’model’): PoissonPMF(2),

(1, ’method_logic’, ’view’): PoissonPMF(15),

260 Appendix E. Inspection Modelling — Equations and Inputs

(1, ’state’, ’view’): PoissonPMF(3),

(1, ’method_logic’, ’controller’): PoissonPMF(5),

(1, ’state’, ’controller’): PoissonPMF(1),

(1, ’spec_mismatch’, ’method_logic’): PoissonPMF(0.1),

(1, ’spec_mismatch’, ’state’): PoissonPMF(0.2),

(1, ’incorrect_logic’, ’method_logic’): PoissonPMF(0.2),

(1, ’incorrect_logic’, ’state’): PoissonPMF(0.3),

No generation occurs in the release phase; all entities are propagated

from coding.

}

dep_generation_pmf = { # [PHASE, ETYPE, ETYPE, ETYPE], PMF, zeroPMF

(0, ’func_goal’, ’func_req’, ’func_req’): DeltaPMF(1),

(0, ’req_omission’, ’func_req’, ’func_req’): DeltaPMF(1),

(0, ’req_commission’, ’func_req’, ’func_req’): DeltaPMF(1),

(0, ’req_omission’, ’ext_interface’, ’ext_interface’): DeltaPMF(1),

(0, ’req_commission’, ’ext_interface’, ’ext_interface’): DeltaPMF(1),

Phase 1 (coding) generation

(1, ’method_logic’, ’model’, ’model’): DeltaPMF(1),

(1, ’method_logic’, ’view’, ’view’): DeltaPMF(1),

(1, ’method_logic’, ’controller’, ’controller’): DeltaPMF(1),

(1, ’state’, ’model’, ’model’): DeltaPMF(1),

(1, ’state’, ’view’, ’view’): DeltaPMF(1),

(1, ’state’, ’controller’, ’controller’): DeltaPMF(1),

(1, ’state’, ’method_logic’, ’model’): PoissonPMF(3),

(1, ’state’, ’method_logic’, ’view’): PoissonPMF(3),

(1, ’state’, ’method_logic’, ’controller’): PoissonPMF(3),

(1, ’spec_mismatch’, ’method_logic’, ’method_logic’): DeltaPMF(1),

(1, ’spec_mismatch’, ’state’, ’state’): DeltaPMF(1),

(1, ’incorrect_logic’, ’method_logic’, ’method_logic’): DeltaPMF(1),

(1, ’incorrect_logic’, ’state’, ’state’): DeltaPMF(1),

No generation occurs in the release phase; all entities are propagated

from coding.

}

Entity propagation

reworked_defect_propagation_pmf = { # [PHASE1, DTYPE, DTYPE], PMF, zeroPMF

(1, ’incorrect_logic’, ’req_omission’): PoissonPMF(0.5),

(1, ’incorrect_logic’, ’req_commission’): PoissonPMF(0.5),

(2, ’incorrect_logic’, ’req_omission’): PoissonPMF(1),

(2, ’incorrect_logic’, ’req_commission’): PoissonPMF(1),

(2, ’incorrect_logic’, ’spec_mismatch’): PoissonPMF(0.5),

(2, ’incorrect_logic’, ’incorrect_logic’): PoissonPMF(0.5),

E.3. Simulation Inputs 261

}

unreworked_defect_propagation_pmf = { # [PHASE1, DTYPE, DTYPE], PMF, zeroPMF

(1, ’incorrect_logic’, ’req_omission’): PoissonPMF(2),

(1, ’incorrect_logic’, ’req_commission’): PoissonPMF(4),

(2, ’incorrect_logic’, ’req_omission’): PoissonPMF(2),

(2, ’incorrect_logic’, ’req_commission’): PoissonPMF(4),

(2, ’incorrect_logic’, ’spec_mismatch’): PoissonPMF(4),

(2, ’incorrect_logic’, ’incorrect_logic’): PoissonPMF(2),

}

rework_failure_prob = { # [PHASE, DTYPE], BinaryPMF)

The spec_mismatch and incorrect_logic defects cannot occur in the

requirements phase.

(1, ’req_omission’): BinaryPMF(0.4),

(1, ’req_commission’): BinaryPMF(0.2),

(1, ’spec_mismatch’): None,

(1, ’incorrect_logic’): None,

(2, ’req_omission’): BinaryPMF(0.4),

(2, ’req_commission’): BinaryPMF(0.2),

(2, ’spec_mismatch’): BinaryPMF(0.2),

(2, ’incorrect_logic’): BinaryPMF(0.2),

}

entity_propagation_pmf = { # [PHASE1, ETYPE, ETYPE], PMF, zeroPMF

(1, ’model’, ’data_obj’): PoissonPMF(1),

(1, ’view’, ’ext_interface’): PoissonPMF(1),

(1, ’controller’, ’func_req’): PoissonPMF(1),

(1, ’method_logic’, ’func_req’): PoissonPMF(5),

(2, ’model’, ’model’): ListPMF([0.0, 0.8, 0.2]),

(2, ’view’, ’view’): ListPMF([0.0, 0.6, 0.4]),

(2, ’controller’, ’controller’): ListPMF([0.0, 0.8, 0.2]),

(2, ’method_logic’, ’method_logic’): ListPMF([0.0, 0.8, 0.2]),

(2, ’state’, ’state’): ListPMF([0.0, 0.8, 0.2]),

}

dep_propagation_prob = { # [PHASE1, ETYPE, ETYPE], BinaryPMF, zeroPMF

(1, ’model’, ’method_logic’): BinaryPMF(0.5),

(2, ’model’, ’method_logic’): BinaryPMF(1.0),

(1, ’method_logic’, ’model’): BinaryPMF(0.5),

(1, ’method_logic’, ’view’): BinaryPMF(0.5),

(1, ’method_logic’, ’controller’): BinaryPMF(0.5),

(1, ’state’, ’model’): BinaryPMF(0.5),

(1, ’state’, ’view’): BinaryPMF(0.5),

262 Appendix E. Inspection Modelling — Equations and Inputs

(1, ’state’, ’controller’): BinaryPMF(0.5),

(1, ’state’, ’method_logic’): BinaryPMF(0.5),

(1, ’spec_mismatch’, ’method_logic’): BinaryPMF(0.5),

(1, ’spec_mismatch’, ’state’): BinaryPMF(0.5),

(1, ’incorrect_logic’, ’method_logic’): BinaryPMF(0.5),

(1, ’incorrect_logic’, ’state’): BinaryPMF(0.5),

(1, ’req_omission’, ’method_logic’): BinaryPMF(0.5),

(1, ’req_omission’, ’controller’): BinaryPMF(0.5),

(1, ’req_omission’, ’view’): BinaryPMF(0.5),

(1, ’req_commission’, ’method_logic’): BinaryPMF(0.5),

(1, ’req_commission’, ’controller’): BinaryPMF(0.5),

(1, ’req_commission’, ’view’): BinaryPMF(0.5),

(2, ’method_logic’, ’model’): BinaryPMF(1.0),

(2, ’method_logic’, ’view’): BinaryPMF(1.0),

(2, ’method_logic’, ’controller’): BinaryPMF(1.0),

(2, ’state’, ’model’): BinaryPMF(1.0),

(2, ’state’, ’view’): BinaryPMF(1.0),

(2, ’state’, ’controller’): BinaryPMF(1.0),

(2, ’state’, ’method_logic’): BinaryPMF(1.0),

(2, ’spec_mismatch’, ’method_logic’): BinaryPMF(1.0),

(2, ’spec_mismatch’, ’state’): BinaryPMF(1.0),

(2, ’incorrect_logic’, ’method_logic’): BinaryPMF(1.0),

(2, ’incorrect_logic’, ’state’): BinaryPMF(1.0),

(2, ’req_omission’, ’method_logic’): BinaryPMF(0.5),

(2, ’req_omission’, ’controller’): BinaryPMF(0.5),

(2, ’req_omission’, ’view’): BinaryPMF(0.5),

(2, ’req_commission’, ’method_logic’): BinaryPMF(0.5),

(2, ’req_commission’, ’controller’): BinaryPMF(0.5),

(2, ’req_commission’, ’view’): BinaryPMF(0.5),

}

comprh_intercept_pdf = { # [KTYPE], PDF

’req_omission’: Gaussian(-1.0, 0.5), # P ~= 0.3

’req_commission’: Gaussian(0.0, 0.5), # P ~= 0.5

’spec_mismatch’: Gaussian(0.0, 0.5), # P ~= 0.5

’incorrect_logic’: Gaussian(1.0, 0.5), # P ~= 0.7

’data_obj’: Gaussian(1.5, 0.5), # P ~= 0.8

’func_goal’: Gaussian(1.5, 0.5), # P ~= 0.8

’method_logic’: Gaussian(1.0, 0.5), # P ~= 0.7

’state’: Gaussian(0.0, 0.5), # P ~= 0.5

}

comprh_aguidance_effect_pdf = Gaussian(2.0, 0.5) # PDF

comprh_pguidance_effect_pdf = Gaussian(3.0, 1.0) # PDF

comprh_aguidance_level_effect_pdf = Gaussian(-0.01, 0.005) # PDF

E.3. Simulation Inputs 263

search_intercept_pdf = { # [LTYPE], PDF

’func_req’: Gaussian(0.5, 0.5),

’ext_interface’: Gaussian(0.5, 0.5),

’model’: Gaussian(0.0, 0.5),

’view’: Gaussian(-0.5, 0.5),

’controller’: Gaussian(0.5, 0.5),

}

search_aguidance_effect_pdf = Gaussian(2.0, 0.5) # PDF

search_pguidance_effect_pdf = Gaussian(1.5, 0.3) # PDF

search_aguidance_level_effect_pdf = Gaussian(-0.01, 0.005) # PDF

search_marker_effect_pdf = { # [MARKER], PDF, 0.0

’important’: Gaussian(0.5, 0.1),

’complex’: Gaussian(-0.5, 0.1),

}

search_cost_intercept_pdf = { # [LTYPE], PDF

’func_req’: Triangular(0.5, 4.0, 1.5, log),

’ext_interface’: Triangular(0.5, 3.0, 1.5, log),

’model’: Triangular(0.5, 2.0, 1.0, log),

’view’: Triangular(1.0, 4.0, 1.5, log),

’controller’: Triangular(1.0, 5.0, 2.5, log),

}

search_cost_inspector_effect_pdf = { # [LTYPE], PDF

’func_req’: Gaussian(1.0, 0.5, log),

’ext_interface’: Gaussian(1.0, 0.5, log),

’model’: Gaussian(1.0, 0.2, log),

’view’: Gaussian(1.0, 0.5, log),

’controller’: Gaussian(1.0, 1.0, log),

}

search_cost_marker_effect = { # [MARKER], float, 0.0

’important’: log(1.0),

’complex’: log(10.0),

}

comprh_deps_inv_effect_pdf = { # [KTYPE, KTYPE], PDF, zeroPDF

(’req_omission’, ’data_obj’): Gaussian(-1.0, 0.2),

(’req_omission’, ’func_goal’): Gaussian(-1.0, 0.2),

(’req_commission’, ’data_obj’): Gaussian(-1.0, 0.2),

(’req_commission’, ’func_goal’): Gaussian(-1.0, 0.2),

(’spec_mismatch’, ’method_logic’): Gaussian(-1.0, 0.2),

(’spec_mismatch’, ’state’): Gaussian(-1.0, 0.2),

264 Appendix E. Inspection Modelling — Equations and Inputs

(’incorrect_logic’, ’method_logic’): Gaussian(-1.0, 0.2),

(’incorrect_logic’, ’state’): Gaussian(-1.0, 0.2),

(’data_obj’, ’func_goal’): Gaussian(-1.0, 0.2),

(’state’, ’method_logic’): Gaussian(-1.0, 0.2),

}

locality_deps_inv_effect_pdf = { # [KTYPE, LTYPE], PDF, zeroPDF

(’req_omission’, ’func_req’): Gaussian(-1.0, 0.2),

(’req_omission’, ’ext_interface’): Gaussian(-1.0, 0.2),

(’req_commission’, ’func_req’): Gaussian(-1.0, 0.2),

(’req_commission’, ’ext_interface’): Gaussian(-1.0, 0.2),

#(’spec_mismatch’, ’’):

#(’incorrect_logic’, ’’):

(’data_obj’, ’ext_interface’): Gaussian(-1.0, 0.2),

(’func_goal’, ’func_req’): Gaussian(-1.0, 0.2),

(’method_logic’, ’model’): Gaussian(-1.0, 0.2),

(’method_logic’, ’view’): Gaussian(-1.0, 0.2),

(’method_logic’, ’controller’): Gaussian(-1.0, 0.2),

(’state’, ’model’): Gaussian(-1.0, 0.2),

(’state’, ’view’): Gaussian(-1.0, 0.2),

(’state’, ’controller’): Gaussian(-1.0, 0.2),

}

decision_deps_effect_pdf = { # [LTYPE, KTYPE], PDF, zeroPDF

#’func_req’

#’ext_interface’

(’model’, ’method_logic’): Gaussian(0.5, 0.1),

#’view’

#’controller’

}

test_failure_intercept = { # [PHASE1, DTYPE], float

(1, ’req_omission’): -4.0,

(1, ’req_commission’): -4.0,

(1, ’spec_mismatch’): -2.0,

(1, ’incorrect_logic’): 1.0,

(2, ’req_omission’): -2.0,

(2, ’req_commission’): -2.0,

(2, ’spec_mismatch’): -1.0,

(2, ’incorrect_logic’): 1.0,

}

test_failure_marker_effect = { # [MARKER], float, 0.0

’important’: 1.0,

’complex’: -0.5,

E.3. Simulation Inputs 265

}

op_failure_intercept_pdf = { # [PHASE1, DTYPE], PDF

(1, ’req_omission’): Triangular(0.001, 0.1, 0.025, log),

(1, ’req_commission’): Triangular(0.001, 0.1, 0.025, log),

(1, ’spec_mismatch’): None,

(1, ’incorrect_logic’): None,

(2, ’req_omission’): Triangular(0.001, 0.1, 0.025, log),

(2, ’req_commission’): Triangular(0.001, 0.1, 0.025, log),

(2, ’spec_mismatch’): Triangular(0.0002, 0.05, 0.010, log),

(2, ’incorrect_logic’): Triangular(0.0001, 0.1, 0.010, log),

}

op_failure_marker_effect = { # [MARKER], float, 0.0

’important’: 2.0,

’complex’: -0.5,

}

op_failure_cost_intercept_pdf = { # [PHASE1, DTYPE], PDF

(1, ’req_omission’): Triangular(0.05, 1.5, 0.30, log),

(1, ’req_commission’): Triangular(0.05, 1.5, 0.30, log),

(1, ’spec_mismatch’): None,

(1, ’incorrect_logic’): None,

(2, ’req_omission’): Triangular(0.05, 1.5, 0.30, log),

(2, ’req_commission’): Triangular(0.05, 1.5, 0.30, log),

(2, ’spec_mismatch’): Triangular(0.01, 1.0, 0.20, log),

(2, ’incorrect_logic’): Triangular(0.01, 1.0, 0.10, log),

}

runtime_pdf = { # [PHASE1], PDF, 0.0

1: DeltaPDF(0.0),

2: Triangular(100.0, 1000.0, 300.0),

}

op_failure_cost_marker_effect = { # [MARKER], float, 0.0

’important’: 3.0,

’complex’: 0.5,

}

investigation_intercept = { # [PHASE1, DTYPE], float

(1, ’req_omission’): 2.0,

(1, ’req_commission’): 2.0,

(1, ’spec_mismatch’): 2.0,

(1, ’incorrect_logic’): 1.0,

(2, ’req_omission’): 2.0,

266 Appendix E. Inspection Modelling — Equations and Inputs

(2, ’req_commission’): 2.0,

(2, ’spec_mismatch’): 2.0,

(2, ’incorrect_logic’): 1.0,

}

investigation_marker_effect = { # [MARKER], float, 0.0

’important’: 1.0,

’complex’: -1.0,

}

investigation_op_failure_effect = 0.05 # float

investigation_cost_intercept_pdf = { # [PHASE1, DTYPE], PDF

(1, ’req_omission’): Triangular(0.05, 5.0, 1.00, log),

(1, ’req_commission’): Triangular(0.05, 5.0, 1.00, log),

(1, ’spec_mismatch’): Triangular(0.50, 10.0, 2.00, log),

(1, ’incorrect_logic’): Triangular(0.05, 25.0, 2.00, log),

(2, ’req_omission’): Triangular(0.05, 5.0, 1.00, log),

(2, ’req_commission’): Triangular(0.05, 5.0, 1.00, log),

(2, ’spec_mismatch’): Triangular(0.50, 10.0, 2.00, log),

(2, ’incorrect_logic’): Triangular(0.05, 25.0, 2.00, log),

}

investigation_cost_marker_effect = { # [MARKER], float, 0.0

’important’: log(1.0),

’complex’: log(0.5),

}

rework_intercept = { # [PHASE, DTYPE], float

(0, ’req_omission’): 4.0,

(0, ’req_commission’): 4.0,

(0, ’spec_mismatch’): None,

(0, ’incorrect_logic’): None,

(1, ’req_omission’): 3.0,

(1, ’req_commission’): 3.0,

(1, ’spec_mismatch’): 3.0,

(1, ’incorrect_logic’): 2.0,

(2, ’req_omission’): 1.0,

(2, ’req_commission’): 1.0,

(2, ’spec_mismatch’): 2.0,

(2, ’incorrect_logic’): 2.0,

}

rework_marker_effect = { # [MARKER], float, 0.0

’important’: 2.0,

’complex’: -1.0,

E.3. Simulation Inputs 267

}

rework_cost_intercept_pdf = { # [PHASE, DTYPE], PDF

(0, ’req_omission’): Triangular(0.1, 10.0, 2.0, log),

(0, ’req_commission’): Triangular(0.1, 10.0, 2.0, log),

(0, ’spec_mismatch’): None,

(0, ’incorrect_logic’): None,

(1, ’req_omission’): Triangular(1.0, 100.0, 20.0, log),

(1, ’req_commission’): Triangular(1.0, 100.0, 20.0, log),

(1, ’spec_mismatch’): Triangular(0.5, 50.0, 10.0, log),

(1, ’incorrect_logic’): Triangular(0.1, 10.0, 2.0, log),

(2, ’req_omission’): Triangular(2.0, 200.0, 40.0, log),

(2, ’req_commission’): Triangular(2.0, 200.0, 40.0, log),

(2, ’spec_mismatch’): Triangular(1.0, 100.0, 20.0, log),

(2, ’incorrect_logic’): Triangular(0.2, 20.0, 4.0, log),

}

rework_cost_marker_effect = { # [MARKER], float, 0.0

’important’: log(2.0),

’complex’: log(2.0),

}

comprh_pguidance_cost_intercept_pdf = { # [KTYPE], PDF

’data_obj’: Triangular(0.05, 1.0, 0.2, log),

’func_goal’: Triangular(0.05, 2.5, 0.5, log),

’method_logic’: Triangular(0.05, 2.5, 0.5, log),

’state’: Triangular(0.05, 2.5, 0.5, log),

}

comprh_pguidance_cost_marker_effect = { # [MARKER], float, 0.0

’important’: log(1.0),

’complex’: log(5.0),

}

search_pguidance_cost_intercept_pdf = { # [LTYPE], PDF

’func_req’: Triangular(0.4, 4.0, 1.0, log),

’ext_interface’: Triangular(0.4, 4.0, 1.0, log),

’model’: Triangular(0.1, 0.5, 0.2, log),

’view’: Triangular(0.2, 1.0, 0.4, log),

’controller’: Triangular(0.2, 1.0, 0.4, log),

}

search_pguidance_cost_marker_effect = { # [MARKER], float, 0.0

’important’: log(1.0),

’complex’: log(5.0),

}

268 Appendix E. Inspection Modelling — Equations and Inputs

Bibliography

Abdelnabi, Z., G. Cantone, M. Ciolkowski, and D. Rombach (2004, Aug). Comparing
code reading techniques applied to object-oriented software frameworks with regard
to effectiveness and defect detection rate. In Proc. of the 3rd International Symposium
on Empirical Software Engineering (ISESE’04), pp. 239–248.

Ackerman, A. F., L. S. Buchwald, and F. H. Lewski (1989). Software inspections: An
effective verification process. IEEE Software 6 (3), 31–36.

Akinola, O. S. and A. O. Osofisan (2009). An empirical comparative study of checklist-
based and ad hoc code reading techniques in a distributed groupware environment.
5 (1), 25–35.

Anderson, P., T. Reps, and T. Teitelbaum (2003, Aug). Design and implementation
of a fine-grained software inspection tool. IEEE Transactions on Software Engineer-
ing 29 (8), 721–733.

Basili, V. R. (1997). Evolving and packaging reading technologies. Journal of Systems
and Software 38 (1), 3–12.

Basili, V. R., S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sørumg̊ard, and
M. V. Zelkowitz (1996). The empirical investigation of perspective-based reading.
Empirical Software Engineering 1 (2), 133–164.

Belli, F. and R. Crişan (1996). Towards automation of checklist-based code-reviews.
In Proc. of the 7th International Symposium on Software Reliability Engineering
(ISSRE’96), pp. 24–33.

Berlin, L. M. (1993). Beyond program understanding: A look at programming expertise
in industry. In Proc. of the 5th Workshop on Empirical Studies of Programmers, pp.
6–25.

Bernárdez, B., M. Genero, A. Durán, and M. Toro (2004, Sep). A controlled experiment
for evaluating a metric-based reading technique for requirements inspection. In Proc.
of the 10th International Symposium on Software Metrics (METRICS’04), pp. 257–
268.

270 Bibliography

Bianchi, A., F. Lanubile, and G. Visaggio (2001, Apr). A controlled experiment to
assess the effectiveness of inspection meetings. In Proc. of the 7th International
Symposium on Software Metrics (METRICS 2001), pp. 42–50.

Biffl, S. (2000, Dec). Analysis of the impact of reading technique and inspector capabil-
ity on individual inspection performance. In Proc. of the 7th Asia-Pacific Software
Engineering Conference (APSEC 2000), pp. 136–145.

Boehm, B. and V. R. Basili (2001). Software defect reduction top 10 list. IEEE
Computer 34 (1), 135–137.

Boehm, B. W., C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz,
R. Madachy, D. Reifer, and B. Steece (2000). Software Cost Estimation With CO-
COMO II. Prentice Hall.

Briand, L. C., K. El Emam, B. G. Freimut, and O. Laitenberger (2000, Jun). A
comprehensive evaluation of capture-recapture models for estimating software defect
content. IEEE Transactions on Software Engineering 26 (6), 518–540.

Brooks, R. E. (1983, Jun). Towards a theory of the comprehension of computer pro-
grams. International Journal of Man-Machine Studies 18 (6), 543–554.

Brykczynski, B. (1999, Jan). A survey of software inspection checklists. ACM SIGSOFT
Software Engineering Notes (1), 82–89.

Burkhardt, J.-M., F. Détinne, and S. Wiedenbeck (1998, Jun). The effect of object-
oriented programming expertise in several dimensions of comprehension strategies.
In Proc. of the 6th International Workshop on Program Comprehension (IWPC’98),
pp. 82–89.

Chan, L., K. Jiang, and S. Karunasekera (2005). A tool to support perspective based
approach to software code inspection. In Proc. of the 2005 Australian Software
Engineering Conference (ASWEC’05), pp. 110–117.

Cheng, B. and R. Jeffery (1996). Comparing inspection strategies for software require-
ments specifications. In Proc. of the 1996 Australian Software Engineering Confer-
ence (ASWEC’96), pp. 203–211.

Chernak, Y. (1996, Dec). A statistical approach to the inspection checklist formal
synthesis and improvement. IEEE Transactions on Software Engineering 22 (12).

Ciolkowski, M. (2009). What do we know about perspective-based reading? An
approach for quantitative aggregation in software engineering. In Proc. of the
3rd International Symposium on Empirical Software Engineering and Measurement
(ESEM’09), Washington, DC, USA, pp. 133–144. IEEE Computer Society.

Bibliography 271

Ciolkowski, M., C. Differding, O. Laitenberger, and J. Münch (1997). Empirical in-
vestigation of perspective-based reading: A replicated experiment. Technical Report
97-13, International Software Engineering Research Network (ISERN).

Cockram, T. (2001, Jan). Gaining confidence in software inspection using a Bayesian
belief model. Software Quality Journal 9 (1), 31–42.

Collett, D. (2003). Modelling Binary Data (Second ed.). Texts in Statistical Science.
Chapman & Hall/CRC.

Collofello, J. S. and S. N. Woodfield (1989, Mar). Evaluating the effectiveness of
reliability-assurance techniques. Journal of Systems and Software 9 (3), 191–195.

Cooper, D. J. A., M. W. Chan, M. Harding, G. Mehra, P. Woodward, B. R. von
Konsky, and M. C. Robey (2006, Apr). Using dependence graphs to assist manual
and automated object oriented software inspections. In Proc. of the 2006 Australian
Software Engineering Conference (ASWEC’06), pp. 262–269.

Cooper, D. J. A., B. Khoo, B. R. von Konsky, and M. C. Robey (2004, Jan). Java im-
plementation verification using reverse engineering. In Proc. of the 27th Australasian
Computer Science Conference (ACSC’04), pp. 203–211.

Cooper, D. J. A., B. R. von Konsky, M. C. Robey, and D. A. McMeekin (2007, Apr).
Obstacles to comprehension in usage based reading. In Proc. of the 2007 Australian
Software Engineering Conference (ASWEC’07), pp. 233–244.

Crawley, M. J. (2002). Statistical Computing: An Introduction to Data Analysis using
S-Plus. Wiley Publishing.

Curtis, B. (1986). By the way, did anyone study any real programmers? In Proc. of
the 1st Workshop on Empirical Studies of Programmers, pp. 256–262.

Denger, C., M. Ciolkowski, and F. Lanubile (2004, Aug). Investigating the active guid-
ance factor in reading techniques for defect detection. In Proc. of the 3rd International
Symposium on Empirical Software Engineering (ISESE’04), pp. 219–228.

Dunsmore, A., M. Roper, and M. Wood (2000). Object-oriented inspection in the
face of delocalisation. In Proc. of the 22nd International Conference on Software
Engineering (ICSE 2000), pp. 467–476. ACM Press.

Dunsmore, A., M. Roper, and M. Wood (2003, Sep). The development and evaluation
of three diverse techniques for object-oriented code inspection. IEEE Transactions
on Software Engineering 29 (8), 677–686.

Ebenau, R. G. and S. H. Strauss (1994). Software Inspection Process. Systems Design
& Implementation Series. McGraw-Hill.

272 Bibliography

Egyed, A. (2003, Feb). A scenario-driven approach to trace dependency analysis. IEEE
Transactions on Software Engineering 29 (2), 116–132.

El Emam, K. and I. Wieczorek (1998, Nov). The repeatability of code defect classifi-
cations. In Proc. of the 9th International Symposium on Software Reliability Engi-
neering (ISSRE’98), pp. 322–333.

Ericsson, K. A. and H. A. Simon (1993). Protocol Analysis: Verbal Reports as Data
(Revised ed.). Massachusetts Institute of Technology.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program devel-
opment. IBM Systems Journal 15 (1), 182–211.

Fagan, M. E. (1986, Jul). Advances in software inspections. IEEE Transactions on
Software Engineering 12 (7), 744–751.

Fagan, M. E. (2002). Software Pioneers: Contributions to Software Engineering, Chap-
ter A History of Software Inspections, pp. 563–573. Springer-Verlag.

Feldman, A. J., J. A. Halderman, and E. W. Felten (2007). Security analysis of the
Diebold AccuVote-TS voting machine. In Proc. of the 2nd USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT’07).

Freimut, B., L. C. Briand, and F. Vollei (2005, Dec). Determining inspection cost-
effectiveness by combining project data and expert opinion. IEEE Transactions on
Software Engineering 31 (12), 1074–1092.

Fusaro, P., F. Lanubile, and G. Visaggio (1997). A replicated experiment to assess
requirements inspection techniques. Empirical Software Engineering 2 (1), 39–57.

Gellenbeck, E. M. and C. R. Cook (1991). An investigation of procedure and variable
names as beacons during program comprehension. In Proc. of the 4th Workshop on
Empirical Studies of Programmers, pp. 65–81.

Gilb, T. and D. Graham (1993). Software Inspection. Addison-Wesley.

Gugerty, L. and G. M. Olson (1986). Comprehension differences in debugging by skilled
and novice programmers. In Proc. of the 1st Workshop on Empirical Studies of
Programmers, pp. 13–27.

Halling, M. and S. Biffl (2002, Oct). Investigating the influence of software inspec-
tion process parameters on inspection meeting performance. In IEE Proceedings —
Software, Volume 149, pp. 115–121.

Halling, M., S. Biffl, T. Grechenig, and M. Köhle (2001, Sep). Using reading techniques
to focus inspection performance. In Proc. of the 27th EUROMICRO Conference
(EUROMICRO’01), pp. 248–257.

Bibliography 273

Hannay, J. E., D. I. K. Sjøberg, and T. Dyb̊a (2007, Feb). A systematic review of
theory use in software engineering experiments. IEEE Transactions on Software
Engineering 33 (2), 87–107.

Harjumaa, L., I. Tervonen, and A. Huttunen (2005, Sep). Peer reviews in real life —
motivators and demotivators. In Proc. of the 5th International Conference on Quality
Software (QSIC’05), pp. 29–36.

Harrell, Jr., F. E. (2001). Regression Modeling Strategies: With Applications to Linear
Models, Logistic Regression, and Survival Analysis. Springer-Verlag.

Hatton, L. (2008, Jul-Aug). Testing the value of checklists in code inspections. IEEE
Software 25 (4), 82–88.

He, L. and J. Carver (2006, Sep). PBR vs. checklist: A replication in the n-fold in-
spection context. In Proc. of the 5th International Symposium on Empirical Software
Engineering (ISESE’06), pp. 95–104.

Hedberg, H. and J. Iisakka (2006, Oct). Technical reviews in agile development: Case
Mobile-DTM. In Proc. of the 6th International Conference on Quality Software
(QSIC’06), pp. 347–353.

Hewett, R. and P. Kijsanayothin (2009, Apr). On modeling software defect repair time.
Empirical Software Engineering 14, 165–186.

Höst, M., B. Regnell, and C. Wohlin (2000, Nov). Using students as subjects —
a comparative study of students and professionals in lead-time impact assessment.
Empirical Software Engineering 5 (3), 201–214.

Höst, M., C. Wohlin, and T. Thelin (2005). Experimental context classification: Incen-
tives and experience of subjects. In Proc. of the 27th International Conference on
Software Engineering (ICSE’05), pp. 470–478.

Hougaard, P. (2000). Analysis of Multivariate Survival Data. Statistics for Biology and
Health. Springer-Verlag.

Hungerford, B. C., A. R. Hevner, and R. W. Collins (2004, Feb). Reviewing software
diagrams: A cognitive study. IEEE Transactions on Software Engineering 30 (2),
82–96.

Jeffery, R. and L. Scott (2002). Has twenty-five years of empirical software engineering
made a difference? In Proc. of the 9th Asia-Pacific Software Engineering Conference
(APSEC’02), pp. 539–546.

Jones, C. (1996, Apr). Software defect-removal efficiency. IEEE Computer 29 (4),
94–95.

274 Bibliography

Kim, J., J. Hahn, and H. Hahn (2000, Sep). How do we understand a system with
(so) many diagrams? Cognitive integration processes in diagrammatic reasoning.
Information Systems Research 11 (3), 284–303.

Knight, J. C. and E. A. Myers (1993, Nov). An improved inspection technique. Com-
munications of the ACM 36 (11), 51–61.

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and
Techniques. Massachusetts Institute of Technology.

Kusumoto, S., K. ichi Matsumoto, T. Kikuno, and K. Torii (1991, Sep). Experimental
evaluation of the cost effectiveness of software reviews. In Proc. of the 15th In-
ternational Computer Software and Applications Conference (COMPSAC’91), pp.
424–429.

Laitenberger, O. and C. Atkinson (1999, May). Generalizing perspective-based inspec-
tion to handle object-oriented development artifacts. In Proc. of the 21st Interna-
tional Conference on Software Engineering (ICSE’99), pp. 494–503.

Laitenberger, O. and J.-M. DeBaud (2000, Jan). An encompassing life cycle centric
survey of software inspection. 50 (1), 5–31.

Laitenberger, O., K. El Emam, and T. G. Harbich (2001, May). An internally replicated
quasi-experimental comparison of checklist and perspective-based reading of code
documents. IEEE Transactions on Software Engineering 27 (5).

Lanubile, F., T. Mallardo, F. Calefato, C. Denger, and M. Ciolkowski (2004, Sep).
Assessing the impact of active guidance for defect detection: A replicated experiment.
In Proc. of the 10th International Symposium on Software Metrics (METRICS’04),
pp. 269–278.

Lanubile, F. and G. Visaggio (2000). Evaluating defect detection techniques for software
requirements inspections. Technical Report 00-08, International Software Engineer-
ing Research Network (ISERN).

Lee, K. and B. Boehm (2005, Nov). Empirical results from an experiment on value-
based review (VBR). In Proc. of the 4th International Symposium on Empirical
Software Engineering (ISESE’05), pp. 3–12.

Letovsky, S. (1986). Cognitive processes in program comprehension. In Proc. of the 1st
Workshop on Empirical Studies of Programmers, pp. 58–79.

Letovsky, S., J. Pinto, R. Lampert, and E. Soloway (1987). A cognitive analysis of a
code inspection. In Proc. of the 2nd Workshop on Empirical Studies of Programmers,
pp. 231–247.

Bibliography 275

Letovsky, S. and E. Soloway (1986, May). Delocalized plans and program comprehen-
sion. IEEE Software 3 (3), 41–49.

Levendel, Y. (1990, Feb). Reliability analysis of large software systems: Defect data
modeling. IEEE Transactions on Software Engineering 16 (2), 141–152.

Leveson, N. G. (1986). Software safety: why, what, and how. ACM Computing Sur-
veys 18 (2), 125–163.

Leveson, N. G. and C. S. Turner (1993). An investigation of the Therac-25 accidents.
IEEE Computer 26 (7), 18–41.

Linger, R. C., H. D. Mills, and B. I. Witt (1979). Structured Programming: Theory
and Practice. The Systems Programming Series. Addison-Wesley.

Littman, D. C., J. Pinto, S. Letovsky, and E. Soloway (1986). Mental models and
software maintenance. In Proc. of the 1st Workshop on Empirical Studies of Pro-
grammers, pp. 80–98.

Lu, S., Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou (2005, Jun). BugBench: A
benchmark for evaluating bug detection tools. In Proc. of the 2005 Workshop on the
Evaluation of Software Defect Detection Tools.

Maldonado, J. C., J. Carver, F. Shull, S. Fabbri, E. Dória, L. Martimiano, M. Men-
donça, and V. Basili (2006, Mar). Perspective-based reading: A replicated experiment
focused on individual reviewer effectiveness. Empirical Software Engineering 11 (1),
119–142.

Malik, M. M., M. I. Ullah, M. Jaffar-Ur-Rehman, and H. B. Asghar (2004, Dec). An
attribute-based comparison of software design inspection techniques. In Proc. of the
8th International Multitopic Conference (INMIC 2006), pp. 409–416.

Martin, J. and W. T. Tsai (1990, Feb). N-fold inspection: A requirements analysis
technique. Communications of the ACM 33 (2), 225–232.

McCabe, T. J. (1976, Dec). A complexity measure. IEEE Transactions on Software
Engineering 2 (4), 308–320.

McMeekin, D. A., B. R. von Konsky, E. Chang, and D. J. A. Cooper (2008). Checklist
inspections and modifications: Applying bloom’s taxonomy to categorise developer
comprehension. In Proc. of the 16th International Conference on Program Compre-
hension (ICPC’08), pp. 224–229.

McMeekin, D. A., B. R. von Konsky, M. C. Robey, and D. J. A. Cooper (2009, Apr).
The significance of participant experience when evaluating software inspection tech-
niques. In Proc. of the 20th Australian Software Engineering Conference (ASWEC
2009), pp. 200–209.

276 Bibliography

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological Review 61, 81–97.

Miller, J., M. Wood, and M. Roper (1998). Further experiences with scenarios and
checklists. Empirical Software Engineering 3 (1), 37–64.

Moha, N., Y.-G. Guéhéneuc, and P. Leduc (2006, Sep). Automatic generation of de-
tection algorithms for design defects. In Proc. of the 21st International Conference
on Automated Software Engineering (ASE’06), pp. 297–300.

National Institute of Standards and Technology (2002, May). The Economic Impacts
of Inadequate Infrastructure for Software Testing. Planning Report 02-3.

Object Management Group (2003, Mar). Unified Modelling Language, v1.5. Object
Management Group.

Parnas, D. L. and D. M. Weiss (1985). Active design reviews: Principles and practices.
In Proc. of the 8th International Conference on Software Engineering (ICSE’85), pp.
132–136.

Pennington, N. (1987). Comprehension strategies in programming. In Proc. of the 2nd
Workshop on Empirical Studies of Programmers, pp. 100–113.

Petersen, K., K. Rönkkö, and C. Wohlin (2008, Oct). The impact of time con-
trolled reading on software inspection effectiveness and efficiency. In Proc. of the
2nd International Symposium on Empirical Software Engineering and Measurement
(ESEM’08), pp. 139–148.

Porter, A., H. Siy, A. Mockus, and L. Votta (1998, Jan). Understanding the sources of
variation in software inspections. ACM Transactions on Software Engineering and
Methodology 7 (1), 41–79.

Porter, A. A. and P. M. Johnson (1997, Mar). Assessing software review meetings:
Results of a comparative analysis of two experimental studies. IEEE Transactions
on Software Engineering 23 (3), 129–145.

Porter, A. A. and L. G. Votta (1997, Nov-Dec). What makes inspections work? IEEE
Software 14 (6), 99–102.

Porter, A. A. and L. G. Votta (1998, Dec). Comparing detection methods for soft-
ware requirements inspections: A replication using professional subjects. Empirical
Software Engineering 3 (4).

Porter, A. A., L. G. Votta, and V. R. Basili (1995, Jun). Comparing detection methods
for software requirements inspections: A replicated experiment. IEEE Transactions
on Software Engineering 21 (6), 563–575.

Bibliography 277

R Development Core Team (2009). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-
900051-07-0.

Raz, T. and A. T. Yaung (1997, Apr). Factors affecting design inspection effectiveness
in software development. Journal of Information and Software Technology 29 (4),
297–305.

Regnell, B., P. Runeson, and T. Thelin (2000, Dec). Are the perspectives really differ-
ent? — Further experimentation on scenario-based reading of requirements. Empir-
ical Software Engineering 5 (4), 331–356.

Rigby, P. C., D. M. German, and M.-A. D. Storey (2008, May). Open source software
peer review practices: A case study of the apache server. In Proc. of the 30th
International Conference on Software Engineering (ICSE’08), pp. 541–550.

Rist, R. S. (1986). Plans in programming: Definition, demonstration and development.
In Proc. of the 1st Workshop on Empirical Studies of Programmers, pp. 28–47.

Rist, R. S. (1996). System structure and design. In Proc. of the 6th Workshop on
Empirical Studies of Programmers, pp. 163–194.

Rubinstein, R. Y. (1981). Simulation and The Monte Carlo Method. John Wiley &
Sons.

Sabaliauskaite, G., F. Matsukawa, S. Kusumoto, and K. Inoue (2002). An experimental
comparison of checklist-based reading and perspective-based reading for uml design
document inspection. In Proc. of the 1st International Symposium on Empirical
Software Engineering (ISESE’02), pp. 148–157.

Sandahl, K., O. Blomkvist, J. Karlsson, C. Krysander, M. Lindvall, and N. Ohlsson
(1998). An extended replication of an experiment for assessing methods for software
requirements inspections. Empirical Software Engineering 3 (4), 327–354.

Sauer, C., R. Jeffery, L. Land, and P. Yetton (2000, Jan). The effectiveness of software
development technical reviews: A behaviorally motivated program of research. IEEE
Transactions on Software Engineering 26 (1), 1–14.

Seaman, C. B. (1999, Jul-Aug). Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering 25 (4), 557–572.

Shneiderman, B. and R. Mayer (1979, Jun). Syntactic/semantic interactions in pro-
grammer behavior: A model and experimental results. International Journal of
Computer and Information Sciences 8 (3), 219–238.

278 Bibliography

Shull, F. (1998). Developing Techniques for Using Software Documents: A Series of
Empirical Studies. Ph. D. thesis, Computer Science Department, University of Mary-
land, USA.

Siy, H. and L. Votta (2001). Does the modern code inspection have value? In Proc.
of the 17th International Conference on Software Maintenance (ICSM 2001), pp.
281–289.

Sjøberg, D. I. K., B. Anda, E. Arisholm, T. Dyb̊a, M. Jørgensen, A. Karahasanovic,
E. F. Koren, and M. Vokác (2002). Conducting realistic experiments in software
engineering. In Proc. of the 1st International Symposium on Empirical Software
Engineering (ISESE’02), pp. 17–26.

Sjøberg, D. I. K., J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanović, N.-K.
Liborg, and A. C. Rekdal (2005, Sep). A survey of controlled experiments in software
engineering. IEEE Transactions on Software Engineering 31 (9), 733–753.

Soloway, E. and K. Ehrlich (1984, Sep). Empirical studies of programming knowledge.
IEEE Transactions on Software Engineering 10 (5), 595–609.

Soloway, E., J. Pinto, S. Letovsky, D. Littman, and R. Lampert (1988, Nov). De-
signing documentation to compensate for delocalized plans. Communications of the
ACM 31 (11), 1259–1267.

Sommerville, I. (2001). Software Engineering (Sixth ed.). Addison-Wesley.

Sørumg̊ard, S. (1997, Feb). Verification of Process Conformance in Empirical Studies
of Software Development. Ph. D. thesis, Department of Computer and Information
Science, Norwegian University of Science and Technology.

Storey, M.-A. D., F. D. Fracchia, and H. A. Müller (1997, Mar). Cognitive design
elements to support the construction of a mental model during software visualization.
In Proc. of the 5th International Workshop on Program Comprehension (IWPC’97),
pp. 17–28.

Storey, M.-A. D., F. D. Fracchia, and H. A. Müller (1999). Cognitive design elements
to support the construction of a mental model during software exploration. Journal
of Systems and Software 44 (3), 171–185.

Sullivan, M. and R. Chilarege (1991, Jun). Software defects and their impact on sys-
tem availability — a study of field failures in operating systems. In Proc. of the
21st(FTCS-21), pp. 2–9.

Thelin, T., C. Andersson, P. Runeson, and N. Dzamashvili-Fogelström (2004, Sep). A
replicated experiment of usage-based and checklist-based reading. In Proc. of the
10th International Symposium on Software Metrics (METRICS’04), pp. 246–256.

Bibliography 279

Thelin, T., P. Runeson, and C. Wohlin (2003, Sep). An experimental comparison of
usage-based and checklist-based reading. IEEE Transactions on Software Engineer-
ing 29 (8), 687–704.

Therneau, T. and T. Lumley (2008). survival: Survival analysis, including penalised
likelihood. R package version 2.34-1.

Tichy, W. F. (2000, Dec). Hints for reviewing empirical work in software engineering.
Empirical Software Engineering 5 (4), 309–312.

Travassos, G. H., F. Shull, and J. Carver (2000). A family of reading techniques for
OO design inspections. In Proc. of the 7th Software Quality Workshop (WQS’2000),
14th Brazilian Symposium on Software Engineering (SBES’2000), pp. 225–237.

Travassos, G. H., F. Shull, M. Fredericks, and V. R. Basili (1999, Oct). Detecting defects
in object oriented designs: Using reading techniques to increase software quality.
In Proc. of the 14th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’99), pp. 47–56.

Uwano, H., M. Nakamura, A. Monden, and K. Matsumoto (2006, Mar). Analyzing
individual performance of source code review using reviewers’ eye movement. In Proc.
of the 2006 Symposium on Eye Tracking Research and Applications (ETRA’06), pp.
133–140.

von Mayrhauser, A. and A. M. Vans (1995, Aug). Program comprehension during
software maintenance and evolution. IEEE Computer 28 (8), 44–55.

Votta, L. G. (1993). Does every inspection need a meeting? In Proc. of the 1st ACM
SIGSOFT Symposium on Foundations of Software Engineering (SIGSOFT’93), pp.
107–114.

Walenstein, A. (2002, Jun). Theory-based analysis of cognitive support in software
comprehension tools. In Proc. of the 10th International Workshop on Program Com-
prehension (IWPC’02), pp. 75–84.

Walenstein, A. (2003, May). Observing and measuring cognitive support: Steps to-
ward systematic tool evaluation and engineering. In Proc. of the 11th International
Workshop on Program Comprehension (IWPC’03), pp. 185–194.

Walkinshaw, N., M. Roper, and M. Wood (2005, May). Understanding object-oriented
source code from the behavioural perspective. In Proc. of the 13th International
Workshop on Program Comprehension (IWPC’05), pp. 215–224.

Weller, E. F. (1993, Sep). Lessons from three years of inspection data. IEEE Soft-
ware 10 (5), 38–45.

280 Bibliography

Wiedenbeck, S. (1986, Dec). Beacons in computer program comprehension. Interna-
tional Journal of Man-Machine Studies 25 (6), 697–709.

Winkler, D., S. Biffl, and B. Thurnher (2005). Investigating the impact of active
guidance on design inspection. In Proc. of the 6th(PROFES 2005), pp. 458–473.

Winkler, D., M. Halling, and S. Biffl (2004, Sep). Investigating the effect of expert rank-
ing of use cases for design inspection. In Proc. of the 30th EUROMICRO Conference
(EUROMICRO’04), pp. 362–371.

Wohlin, C., A. Aurum, H. Petersson, F. Shull, and M. Ciolkowski (2002, Aug). Software
inspection benchmarking — a qualitative and quantitative comparative opportunity.
In Proc. of the 8th International Symposium on Software Metrics (METRICS’02),
pp. 118–127.

Wu, Y. P., Q. P. Hu, K. L. Poh, S. H. Ng, and M. Xie (2005, Dec). Bayesian networks
modeling for software inspection effectiveness. In Proc. of the 11th Pacific Rim
International Symposium on Dependable Computing (PDRC 2005).

Copyright Material

Every reasonable effort has been made to acknowledge the owners of copyright mate-
rial. I would be pleased to hear from any copyright owner who has been omitted or
incorrectly acknowledged.

	Glossary
	1 Introduction
	1.1 Research Questions
	1.2 Contribution
	1.2.1 Identifying Industry Practices
	1.2.2 Comprehension Challenges
	1.2.3 Active Guidance Effects

	1.3 Ethical Research Conduct
	1.4 Outline

	2 Software Inspection Background
	2.1 Inspection
	2.2 Reading Techniques
	2.2.1 Checklists
	2.2.2 Scenarios
	2.2.3 Prioritisation
	2.2.4 Abstraction

	2.3 Software Comprehension
	2.3.1 Macro-strategies
	2.3.2 Micro-strategies
	2.3.3 Delocalised Plans
	2.3.4 Knowledge and Experience
	2.3.5 Cognitive Support

	2.4 Inspection Theory
	2.4.1 Metrics
	2.4.2 Taxonomies
	2.4.3 Models
	2.4.4 Ethical Application

	2.5 Summary

	3 Methodological Background
	3.1 Subject Experience
	3.2 Qualitative Analysis
	3.2.1 Protocol Analysis
	3.2.2 Coding

	3.3 Quantitative Analysis and Modelling
	3.3.1 Log-linear and Logistic Models
	3.3.2 Survival Analysis
	3.3.3 Bayesian Networks

	3.4 Application

	4 Prevalent Inspection Practices
	4.1 Survey Process
	4.1.1 Online Questionnaire
	4.1.2 Preliminary Survey
	4.1.3 Selection and Recruitment of Respondents
	4.1.4 Classification Scheme

	4.2 Focus of Analysis
	4.3 Surveyed Organisations
	4.4 Results
	4.4.1 Overall Peer Review Characteristics
	4.4.2 Development Phases
	4.4.3 Artefacts
	4.4.4 Artefact Usage
	4.4.5 Peer Review Usage
	4.4.6 Tool Support

	4.5 Discussion
	4.5.1 Overall Peer Review Practice
	4.5.2 Tools and Techniques
	4.5.3 Artefact Standardisation

	4.6 Summary

	5 Comprehension and Artefact Interrelationships
	5.1 Methodology
	5.1.1 Participants
	5.1.2 Materials
	5.1.3 Procedure
	5.1.4 Coding Scheme
	5.1.5 Model Solution

	5.2 Results
	5.2.1 Techniques Used
	5.2.2 Solutions

	5.3 Analysis
	5.3.1 Transition-Fragment Mapping
	5.3.2 The One-To-One Misconception

	5.4 Discussion
	5.5 Summary

	6 Comprehension and Scenarios
	6.1 Methodology
	6.1.1 Participants
	6.1.2 Materials
	6.1.3 Procedure
	6.1.4 Input Data Analysis
	6.1.5 Protocol Analysis

	6.2 Results
	6.2.1 Input Data
	6.2.2 Verbal Data

	6.3 Discussion
	6.3.1 Misdirection
	6.3.2 Guidance
	6.3.3 Cognitive Variation

	6.4 Summary

	7 Active Guidance and Defect Detection
	7.1 Methodology
	7.1.1 Prior Exposure to a Relevant Defect Type
	7.1.2 Presence of a Checklist
	7.1.3 Detection Probability
	7.1.4 Detection Time

	7.2 Participants
	7.3 Threats to Validity
	7.4 Results
	7.4.1 Detection Probability
	7.4.2 Detection Time
	7.4.3 Perception

	7.5 Discussion
	7.5.1 Checklists
	7.5.2 Prior Exposure
	7.5.3 Snippets
	7.5.4 Perception

	7.6 Summary

	8 Inspection Modelling
	8.1 Framework Concepts
	8.1.1 Entities
	8.1.2 Dependencies
	8.1.3 Markers
	8.1.4 Phase Structure
	8.1.5 Hierarchy and Propagation
	8.1.6 Inspection Strategies

	8.2 Model
	8.2.1 Metamodel Entities
	8.2.2 Metamodel Dependencies
	8.2.3 Metamodel Markers
	8.2.4 Compact Bayesian Network Notation
	8.2.5 Comprehension Modelling
	8.2.6 Verification Process Modelling

	8.3 Simulation
	8.3.1 Analytical Intractability
	8.3.2 Evaluation Methodology
	8.3.3 Cost Effectiveness Distribution
	8.3.4 Inspection Strategy Performance
	8.3.5 Sensitivity Analysis

	8.4 Discussion
	8.4.1 Inspection Strategy Comparison
	8.4.2 Delocalisation
	8.4.3 Team and System Size
	8.4.4 Interactions
	8.4.5 Defect Detection Dependence

	8.5 Summary

	9 Conclusion
	9.1 Findings
	9.1.1 Current Industry Practice
	9.1.2 Comprehension and Delocalisation
	9.1.3 Active Guidance Effects
	9.1.4 Resolving Uncertainties

	9.2 Recommendations
	9.3 Extensions
	9.3.1 Data Collection
	9.3.2 Hierarchy and Propagation
	9.3.3 Markers
	9.3.4 Comprehension
	9.3.5 Verification
	9.3.6 Incomparable Costs

	9.4 Summary

	Appendices
	A Industry Survey --- Materials
	B Statechart Study --- Materials and Raw Results
	B.1 Forms and Sheets
	B.2 Source Code
	B.3 Raw Results

	C Scenario Study --- Materials
	C.1 Forms and Sheets
	C.2 Source Code
	C.2.1 AudioPlayer.java
	C.2.2 PlayList.java
	C.2.3 Player.java
	C.2.4 Programme.java
	C.2.5 RandomProgramme.java
	C.2.6 Track.java
	C.2.7 UserInterface.java
	C.2.8 WAVTrack.java

	D Checklist Experiment --- Materials
	D.1 Forms and Sheets
	D.2 Training Snippets
	D.2.1 Gravity
	D.2.2 BMI

	D.3 Test Snippets
	D.3.1 SlushFund
	D.3.2 TreeNode
	D.3.3 AddressSearch
	D.3.4 WeaponSelector

	E Inspection Modelling --- Equations and Inputs
	E.1 Metamodel
	E.1.1 Entities
	E.1.2 Dependencies
	E.1.3 Markers

	E.2 Scenario Model
	E.2.1 Defect propagation --- Gj
	E.2.2 Defect existence --- Dj
	E.2.3 K-instance comprehension (inc. defect detection) --- Mji
	E.2.4 Locality searching --- Sji
	E.2.5 Active and passive guidance --- AMji, BMji, ASji, BSji
	E.2.6 Operational failures --- Fj
	E.2.7 Test failure --- Tj
	E.2.8 Failure investigation --- Vj
	E.2.9 Defect rework --- Rj
	E.2.10 Cost of searching --- CSji
	E.2.11 Cost of providing passive comprehension guidance --- CBMj
	E.2.12 Cost of providing passive search guidance --- CBSj
	E.2.13 Cost of operational failure --- CFj
	E.2.14 Cost of failure investigation --- CVj
	E.2.15 Cost of defect rework --- CRj

	E.3 Simulation Inputs

	Bibliography

