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cluster is 20 Å in diameter with the cluster separation distance

measured between the two closest atoms of each particle. . . . . . 94

4.4 The interaction energy of two hydrogenated 20 Å silicon clusters,
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outer buffer region. a) Convergence in the total energy of the ZIF-

100 structure as the subsystem size is increased. The total energy

converges quickly, with full convergence considered with a 9.0 Å
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Abstract

First principles calculations can be a computationally intensive task when study-

ing large systems. Linear-scaling methods must be employed to find the electronic

structure of systems consisting of thousands of atoms and greater. The goal of

this thesis is to combine the linear-scaling divide-and-conquer (D&C) method

with the linear-scaling capabilities of the SIESTA (Spanish Initiative for Elec-

tronic Simulations with Thousands of Atoms) density functional theory (DFT)

methodology and present this union as a viable approach to large-scale first prin-

ciples calculations. In particular, the density matrix version of the D&C method

is implemented into the SIESTA package. This implementation can accommo-

date high quality calculations consisting of atom numbers in the tens of thousands

using moderate computing resources. Low quality calculations have been tested

up to half million atoms using reasonably sized computing resources. The D&C

method is extended to better handle atomic dynamics simulations. First, by

alleviating issues caused by discontinuities in the potential energy surface, with

the application of a switching function on the Hamiltonian and overlap matrices.

This allows for a smooth potential energy surface to be generated. The switching

function has the additional benefit of accelerating the self-consistent field (SCF)

process. Secondly, the D&C frozen density matrix (FDM) is modified to allow

for improved charge transfer between the active and constrained regions of the

system. This modification is found to reduce both the number of SCF iterations

required for self-consistency and the number of relaxation steps in a local geom-

etry optimisation. The D&C paradigm is applied to the real-time approach of

time-dependent density functional theory (TDDFT). The method is tested on a

linear alkane molecule with varying levels of success. Divergences in the induced

dipole moment occur when the external excitation field is aligned parallel to the

axis of the molecule. The method succeeds in producing accurate dipole moments

when the external field is aligned perpendicular to the molecule. Various tech-

niques are tested to improve the proposed method. Finally, the performance and

effectiveness of the current D&C implementation is evaluated by studying three

current systems. The first two systems consist of two different DNA sequences

and the last system is the large ZIF-100 zeolitic imidazolate framework (ZIF).

xxv



The gods confound the man who first found out

How to distinguish hours!

Confound him, too,

Who in this place set up a sun-dial,

To cut and hack my days so wretchedly

Into small portions.

- Titus Maccius Plautus

1
Introduction

Finding exact analytical solutions to quantum mechanical (QM) equations is dif-

ficult due to the many-body problem. The quantum mechanical problem is gen-

erally solved using numerical methods, such as wavefunction-based post-Hartree-

Fock methods [13] or DFT methods [14, 15]. Post-Hartree-Fock methods can be

limited to systems consisting of a few atoms (for full configuration interaction),

up to approximately hundred atoms (for second-order Møller-Plesset perturba-

tion theory). A standard implementation of DFT can accommodate hundreds

of atomsa. Computational scientists studying systems of interest are limited to

small systems and with the advent of fields such as nanotechnology, it is not pos-

sible to study the larger systems found in these fields. Efficient methods must be

found and employed to handle larger systems and then possibly large-scale first

principles based predictions (the holy grail of any computational scientist) can

be made in a routine fashion.

The reason for the above size limitation is due to the inherent scaling of the

methods. The scaling refers to a theoretical measure of the execution of the

method, in terms of either the computation time or the required memory. Using

Big-O notation (also known as Landau notation [16]), in terms of the system

size, N , DFT methods typically scale up to O (N4) for the calculation time and

O (N2) for the memory. With special techniques, such as density fitting [17], the

calculation time scaling is reduced to O (N3), where the scaling is dominated by

aSome implementations can handle up to a thousand atoms with generous computing re-
sources.
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Figure 1.1: A comparison between cubic-scaling and linear-scaling with re-
source usage (either computation time or memory usage). With a gradient of
200 in this case, the cross-over point occurs at a system size of approximately
14 arb. units.

matrix diagonalisation. What is ideal is to have an algorithm that scales in a

linear fashion, O (N) (order-N), in both computational time and memory. This

will allow first principles calculations of much larger systems than are currently

feasible with standard algorithms.

The impact of scaling is shown in Figure 1.1 for a hypothetical example. The

figure shows a comparison between an arbitrary cubic-scaling method and an

arbitrary linear-scaling method in terms of resource usage. One can see that as the

system size increases, the cubic-scaling method quickly becomes computationally

demanding. While on the other hand, the linear-scaling method can easily handle

much larger systems. With cubic-scaling, as the system size doubles, the resource

usage will increase by a factor of 8.

For a small system size, it is actually more efficient to use the cubic-scaling

method. The point at which it becomes beneficial to use the linear-scaling al-

gorithm is called the cross-over point. In the example shown in Figure 1.1, this

occurs at a system size of approximately 14 arb. units. The applicability of the

linear-scaling method is largely determined by the cross-over point. Reduction

of the cross-over point is desirable and is accomplished by reducing the gradi-

ent. The gradient of the linear-scaling method corresponds to what is termed

the prefactor, where R = c1N , R being the resource usage, c1 is the prefactor

2
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and N is the measure of the system size. Actually, all methods have a prefactor,

where for higher-order scaling, R = cmN
m, m being the order of the scaling. In

summary, linear-scaling methods should have a small prefactor in order to reduce

the cross-over point.

1.1 Principle of Locality

The concept of locality within quantum mechanics can be used to derive linear-

scaling methods for many-atom systems. Locality within quantum mechanics, in

respect to this study, refers to an object or property being strongly influenced by

its immediate surroundings and only weakly influenced by factors some distance

away. An example, to highlight the locality principle, can be found with a system

consisting of highly localised sigma bonds, in that the properties of the bond are

strongly determined only by its neighbouring atoms.

Locality was qualitatively defined by Walter Kohn [18] as the concept of

“near-sightedness” of electrons in many-body systems. The concept proposes

that locality exists for properties, such as the electron charge densityb, and that

the dependence of the surrounding environment (e.g. external potential) at a

particular point of interest of the property is significant only at nearby points.

The dependence is reduced the further one is from the point of interest. In fact,

changes in the surrounding environment beyond a certain radius have severely

limited influence at the point of interest.

Because the dependence rapidly decays to zero as a function of the radius,

the computational effort needs only be concerned with the local surrounding en-

vironment. The global problem of considering the complete system is avoided.

This forms the basis of the majority of order-N methods [19]. Generally, within

most linear-scaling methods, atom-centred localisation regions are assembled to

represent the local properties of the atom. Regardless of the method, the com-

putational effort is concentrated on each localisation region separately, then by

combining the information gained from each localisation region a solution to the

global problem can be found.

bThe electron charge density refers to the probability of the finding an electron at a particular
point in space. See section 2.2 for details.
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1.2 Present Study

The work presented in this thesis concentrates on the density matrix version of

the D&C linear-scaling method [20–22] and its application to the ground and

excited states in the framework of (TD)DFT. The D&C method was one of the

first proposed linear-scaling techniques for density-based quantum mechanical

methods, relying on the locality found in the electron charge density [18] for

its scaling. In D&C, the locality is represented by localisation regions termed

subsystems. By calculating the density matrix of each individual subsystem and

then combining the subsystem density matrices to form the complete density

matrix, the global problem of finding a solution is avoided. The main advantage

of the technique is that it is applicable to all system types, where as other linear-

scaling methods are generally difficult to apply to systems with a small or non-

existent band-gap. This is not say that the D&C method does not have issues

with systems that have small or non-existent band-gaps. The decay length of

the locality dependence, mentioned in section 1.1, will increase as the band-gap

decreases, which in turn will increase the size of the localisation regions needed to

represent the required interactions. The requirement of large localisation regions

amount to large prefactors.

The D&C method has been relatively neglected until recently [23] within

the condensed matter physics field, though in the past it has found significant

use within the quantum chemistry community, who have concentrated on semi-

empirical QM methods for biological systems [24–27]. The post-Hartree-Fock

community have also shown interest in the method recently [28–31].

For this thesis, it is proposed that a highly efficient and parallel order-N code

can be achieved by using the D&C method in conjunction with the numerical

atomic basis set of the DFT SIESTA methodology. The aim here is to have the

ability to handle systems with the number of atoms in the tens of thousands

with modest computing resources and in the hundred of thousands with larger

computing capacity. This is achieved in ground state calculations and with fur-

ther development for the time-dependent case, where a new method based on

the D&C method is proposed that will be able to handle atom numbers in the
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thousands. A brief summary of the work done in each chapter follows.

In chapter 2, the background theory required for the understanding of the

subsequent chapters is presented. The quantum many-body problem is posed

in the time-dependent and stationary formulations, with the description of some

standard approximations that help reduce the complexity. The proofs and deriva-

tions of DFT and TDDFT are shown. The linear combination of atomic or-

bitals (LCAO) basis set computational interpretation of DFT and TDDFT are

explained with an emphasis on the SIESTA methodology. The formulation of

the linear-scaling Kim-Mauri-Galli (KMG) energy functional orbital minimisa-

tion [32] method is also presented.

Chapter 3 describes the parallel implementation of the D&C method into the

SIESTA package. The linear-scaling ability of the implementation is presented

for insulating, semi-conducting and near-metallic systems. The total energy con-

vergence with respect to basis set size and subsystem size is investigated. Com-

parisons with the KMG method are also included. The parallel scaling of the

implementation is tested on bulk silicon. First steps towards a new linear-scaling

method are also made here, where the D&C method is used to seed the KMG-

based orbital minimisation method. The hybrid method should have a lower

prefactor than both the D&C method and the KMG method.

Extensions to the standard D&C method in regards to molecular dynam-

ics (MD) simulations and local geometry optimisations are examined in chapter

4. Specifically, the D&C method produces energy discontinuities in the potential

energy surface as atoms enter or leave subsystems. To alleviate the possible prob-

lems the discontinuities can pose to dynamics simulations, a switching function

is applied to the boundary of the subsystems to taper any interactions between

atoms at the boundary and the rest of the atoms in the subsystem. This has

the effect of smoothing the energy discontinuity. An outer buffer region [25] is

also applied and, when used in conjunction with the switching function, produces

very smooth energy surfaces. A desirable side effect of the tapering is that the

number of SCF iterations to reach self-consistency is reduced. The second part of

this chapter looks at the FDM [27,33] version of the D&C method. In particular,

it is proposed that the use of multiple regions (instead of just a frozen and ac-
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tive region) allows for faster SCF convergence and faster geometry optimisation

convergence. The FDM method is also implemented to work in parallel.

Application of the D&C method to the TDDFT formulation is shown in chap-

ter 5. The formulation of electron dynamics is shown and the real-time propa-

gation method [34] is described. The D&C TDDFT (DCTDDFT) formulation

is also presented. The DCTDDFT method is tested on a linear alkane molecule,

with results suggesting that either the subsystem boundaries or the stability of

the method is the cause of the eventual divergence of the dipole moment. The

investigation into its causes should allow for future solutions. The method is

expected to be able to handle the same system size of atoms as the ground state

calculation, though, due to its non-linear memory scaling, only thousands of

atoms are possible at this stage.

Chapter 6 highlights both the capabilities and limitations of the present D&C

implementation. Three systems are examined using the D&C implementation.

The first system considered is λ-DNA [1], where the effectiveness of the tapering

mechanism is investigated. A comparison with a second DNA system is made

against published results of Otsuka et al [35], who used the density matrix minimi-

sation (DMM) [36] linear-scaling technique implemented in CONQUEST [37–39].

A comparison of the electronic structure for wet and dry DNA structures is also

made. The full power of the D&C implementation is utilised for the third sys-

tem under investigation, where the electronic structure of the large 13,584-atom

ZIF-100 [40] structure is found using only comparatively moderate computing

resources.

Finally, conclusions are drawn for the work presented in this thesis. Possible

future improvements to the current D&C implementation, as well as suggestions

for future developments are discussed.
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2
Background Theory

The dynamics of quantum systems are governed by the Schrödinger equation.

The mechanics of the quantum particles are coupled with each other leading to

difficulties in finding analytical solutions. Generally this is referred to as the

many-body problem, as found in many other fields of the physical sciences. DFT

and TDDFT are methods with which to overcome the many-body problem. They

replace the many-body wavefunction solutions of the Schrödinger equation with

the electron density, that depends on only three spatial coordinates plus a spin

coordinate. This chapter introduces the methods and key concepts of (TD)DFT

and is the basis for any other theories and methods presented in this thesisa.

2.1 Introduction

The dynamics of quantum systems is governed by the evolution of the Schrödinger

equation
�

�

�

�2.1 in time. This initial-valued, first order in time partial differential

equation describes the propagation of a wavefunction solution, also referred to

as a quantum state. The Schrödinger equation describes the behaviour of most

subatomic particles, where this study is predominantly concerned with the motion

and properties of electrons. The following is the general formulation of the time-

aThe theory and methods described in this chapter provide general background knowledge
for the understanding of the current thesis, and of any theory, presented in later chapters. It
is by no means complete; for a detailed description refer to references [41–43].
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2.1. INTRODUCTION

dependent Schrödinger equation;

i
∂Ψ(x, t)

∂t
= ĤΨ(x, t)

�

�

�

�2.1

where atomic units (~ = me = e = 1) have been used and will be continued to

be used in the rest of this work. The wavefunction solution, Ψ, is a function of

variables x = {r1, r2, . . . , rN ,R1,R2, . . . ,RM} as the coordinates of N electrons

and M nuclei. The coordinates comprise of spatial coordinates ri for electrons

and RI for the nuclei. Spin coordinates have been excluded for brevity. The

Hamiltonian operator Ĥ is expanded as;

Ĥ = T̂ + T̂N + V̂
�

�

�

�2.2

which consists of the electron kinetic energy operator, T̂ , the nuclear kinetic

energy operator, T̂N , and the potential, V̂ , felt by each particle. The electron

kinetic energy is defined as;

T̂ = −1
2

N∑

i=1

∇2
i

�

�

�

�2.3

and the nuclei kinetic energy as;

T̂N = −1
2

M∑

I=1

1

MI
∇2

I

�

�

�

�2.4

where MI is the mass of nucleus I relative to the mass of an electron. The

potential V̂ contains the Coulomb interaction with other particles within the

system and from any external potentials (e.g. applied electric field), defined as:

V̂ = V̂ee + V̂N e + V̂NN + V̂ext
�

�

�

�2.5

The components of V̂ are defined as the following; the electron-electron repulsion

operator;

V̂ee =

N∑

i=1

N∑

j>i

1

|ri − rj |
�

�

�

�2.6

8



2.1. INTRODUCTION

the electron-nucleus attraction operator;

V̂N e =

N∑

i=1

M∑

I=1

− ZI

|ri −RI |
�

�

�

�2.7

and the internuclear repulsion operator:

V̂NN =
M∑

I=1

M∑

J>I

ZIZJ

|RI −RJ |
�

�

�

�2.8

The external potential operator, V̂ext, describes any potentials sourced outside

the system and can be time-dependent. The variables ZI and ZJ are the positive

charges of nuclei I and J , respectively.

The Schrödinger equation
�

�

�

�2.1 describes the dynamics of wavefunctions during

a period of time, although it is not always necessary to take into consideration

time-dependent processes. A time-independent, stationary Schrödinger equation

can also be derived and is stated as:

ĤΨ(x) = EΨ(x)
�

�

�

�2.9

The time-dependence has been removed and the Schrödinger equation has become

an eigenvalue equation. The set of eigenvalues, E = {e1, e2, . . . , ek}, represent
the energy level values of the system corresponding to the set of eigenfunctions,

Ψ = {Ψ1,Ψ2, . . . ,Ψk}, where k is the number of eigenstatesb. This equation

describes all ground state properties of the system. It also describes excited state

properties, although extracting the excited state properties from the ground state

Schrödinger equation is difficult and mostly unknown. The Hamiltonians for

various systems differ only by the number of particles and the external potential;

all other components of the Hamiltonian are independent of the system of interest.

The wavefunction, Ψ, characterises the behaviour of all atomic particles. Ψ

must be well behaved everywhere, obeying any boundary conditions imposed on
�

�

�

�2.1 or
�

�

�

�2.9 . The Born interpretation of the wavefunction is considered to be that

the probability, P (r, t), of finding the particle at time, t, in a volume element,

bIn principle, within the continuum limit, there are an infinite number of states.

9



2.1. INTRODUCTION

drk, located at point, r, is given by the equation;

P (r, t) = C|Ψ(r, t)|2drk
�

�

�

�2.10

where C is a normalisation constant. The probability of finding a particle any-

where in space at time, t, is equal to unity (i.e. P = 1):

∫
|Ψ(r, t)|2 drk = 1

C

�

�

�

�2.11

All integrals are assumed to be evaluated over all space unless stated otherwise.

Within operator theory in quantum mechanics, when the set of quantum states is

complete and orthonormal then the eigenfunctions, Ψi, in accordance with
�

�

�

�2.10 ,

can be shown to obey;

∫
Ψ∗

iΨj dr
k = 〈Ψi|Ψj〉 = δij

�

�

�

�2.12

where Dirac notation is introduced and Ψ∗
i is the complex conjugate of Ψi. The

expectation valuec of an observable is the Hermitian linear operator for the ob-

servable, O, defined as the operator, Ô, operating on a normalised eigenstate,

Ψ:

〈Ô〉 = 〈Ψ|Ô|Ψ〉
�

�

�

�2.13

=

∫
Ψ∗ÔΨdr

�

�

�

�2.14

If Ψ is not normalised then the above equation becomes:

〈Ô〉 = 〈Ψ|Ô|Ψ〉〈Ψ|Ψ〉
�

�

�

�2.15

Finding solutions to either the stationary, or particularly the time-dependent,

Schrödinger equation is not a trivial task, due to the many-body problem, found

in many varying fields of the physical sciences. To solve these non-trivial, many-

body systems, approximations need to be made and the Schrödinger equation

cExpectation values are the predicted mean value that correspond to measurements made
in experiments, which are statistical in nature.
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2.1. INTRODUCTION

solved in a numerical fashion. The following sections describe certain approxi-

mations and strategies to overcome the many-body problem, thereby providing

solutions to the Schrödinger equation.

2.1.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation [44, 45] takes advantage of the fact that

the electrons orbiting nuclei move at much greater velocities than the nuclei due

to their smaller mass. At the time-scale of electron motion the nuclei can be

treated as stationary, where the contribution to the Hamiltonian is considered as

an effective potential, vnuc(r), felt by the electrons. This uncoupling of nuclear

and electron motion serves as an effective and often accurate method in reduc-

ing the number of particles in the Schrödinger equation and hence reducing the

complexity and the time required to solve the system. This makes the problem

separable, allowing the wavefunction to be written as:

Ψ = ΨelectronicΨnuclear

�

�

�

�2.16

The new Hamiltonian
�

�

�

�2.17 describing the motion of only the electrons is known

as the electronic Hamiltonian, Ĥel;

Ĥel = −1
2

N∑

i=1

∇2
i +

N∑

i=1

N∑

j>i

1

|ri − rj |
+

N∑

i=1

vnuc(ri)
�

�

�

�2.17

= T̂ + V̂ee + V̂N e

�

�

�

�2.18

where the external potential due to the field of the nuclei is given by;

vnuc(r) = −
M∑

I=1

ZI

|r−RI |
�

�

�

�2.19

ĤelΨel = EelΨel

�

�

�

�2.20

and the total energy defined as;

Etotal = Eel + Enuc

�

�

�

�2.21

11



2.1. INTRODUCTION

where Enuc is the constant internuclear repulsion energy:

Enuc =

M∑

I=1

M∑

J>1

ZIZJ

|RI −RJ |
�

�

�

�2.22

From now on only the electronic problem is considered and the subscript ’el’ is

dropped:

Ĥ ≡ Ĥel

�

�

�

�2.23

In order to solve the Schrödinger equation for an arbitrary system the Hamilto-

niand shown in equation
�

�

�

�2.17 must be computed for the particular system. The

difficult task is then to find a suitable wavefunction solution. As stated before,

there exists only a few trivial known solutions. To overcome this problem, the

variational principle can be used to systematically find the wavefunction of the

ground state.

2.1.2 Variational principle

The variational principlee states that the energy, Etrial, given by the expectation

value of the Hamiltonian operator when calculated using a trial wavefunction,

Ψtrial, will always be an upper bound to the true ground state energy, E0, given

by the true ground state wavefunction, Ψ0. Here the expectation value of the

energy is given by;

E[Ψtrial] =
〈Ψtrial|Ĥ|Ψtrial〉
〈Ψtrial|Ψtrial〉

�

�

�

�2.24

and the variational principle states that:

〈Ψtrial|Ĥ|Ψtrial〉
〈Ψtrial|Ψtrial〉

= Etrial >= E0

�

�

�

�2.25

In theory, the ground state wavefunction can be found using the variational prin-

ciple, although in practice searching through all possible wavefunctions is near

dThis Hamiltonian is the starting point for a majority of first principles methods and will
be used as the starting point for the theorems of DFT.

eThe variational principle will be used with the proofs associated with the Hohenberg-Kohn
theorems.
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2.2. DENSITY FUNCTIONAL THEORY

impossible; thus the search is limited to a small subset of possible wavefunctions.

The space of the possible wavefunctions can be spanned by a finite basis set that

restricts the search for the ground state to a finite number.

2.2 Density Functional Theory

DFT is a method used to determine the electronic structure of quantum systems.

The main premise of the method is to replace the 4N -dimensional wavefunction

solution (spin coordinates included) to the Schrödinger equation with the elec-

tronic charge density which is dependent on only three spatial coordinates and a

spin coordinate. In principle, the theory leads to exact results although in prac-

tice approximations are made for certain quantum aspects of the system. Even

with approximations, DFT provides acceptably accurate results for large systems

which other ab initio methods find computationally intractable.

Early attempts at using the electron density to describe the kinetic energy

of a system were made in 1927 by Thomas and Fermi [46, 47]. Using the elec-

tron density gave way to the popular orbital formulations of the Hartree-Fock

method and its many derivatives (post-Hartree-Fock methods) [13]. It took 37

years, after Thomas and Fermi, for Hohenberg and Kohn in 1964 [48] to produce

the theorems of DFT that placed the use of the electron density on a firm the-

oretical foundation. A year later Kohn and Sham [15] formulated a version of

the Hohenberg-Kohn theorems that allowed the direct ground state calculation

of many systems within a one-particle framework that provided an expression for

the kinetic energy term. It is the Kohn-Sham equations that are the foundation

for all DFT work in this study.

The electron density, ρ, is defined as the number of electrons per unit volume

for a given state. In terms of the normalised wavefunction, Ψ, it is stated as;

ρ(x) = N

∫
· · ·
∫
|Ψ(x,x2, . . . ,xN)|2 dx2 ... dxN

�

�

�

�2.26

integrating to the number of electrons, N , (spin coordinates removed for brevity):

∫
ρ(r) dr = N

�

�

�

�2.27
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2.2. DENSITY FUNCTIONAL THEORY

In the above case for ρ, the set of variables, xN , are 4N dimensional where there

are 3N spatial coordinates and N coordinates to describe the spin of the electron.

Within the context of DFT, the external potential, vext, combines interactions

with the nucleus and any potentials from outside the system. The expectation

value of vext can be written in terms of ρ:

〈V̂ext〉 = 〈Ψ|
N∑

i=1

vext(ri)|Ψ〉

=

∫
Ψ∗

(
N∑

i=1

vext(ri)

)
ΨdxN

=
N∑

i=1

∫
Ψ∗vext(ri)Ψ dxN

=

N∑

i=1

∫
1

N
ρ(ri)vext(ri) dri

=

∫
ρ(r)vext(r) dr

�

�

�

�2.28

The expressions for the 〈T̂ 〉 and 〈V̂ee〉 cannot be written in this manner.

2.2.1 Hohenberg-Kohn Theorems

The first Hohenberg-Kohn theorem [48] shows that the density, ρ(r), of a nonde-

generate ground state uniquely determines the external potential, vext, to within

an additive constant. The universality of the kinetic and electron-electron repul-

sion operators in the Hamiltonian defines a mapping vext
map−−→ ρ(r). To complete

the mapping an inverse map ρ(r)
map−−→ vext can be proven by the technique of

reductio ad absurdum. This is done by showing that two external potentials, vext

and v′ext, that give rise to the same nondegenerate ground state electron density,

ρ0(r), will differ by more than a constant and not lead to the same ground state

wavefunction, Ψ0. The two external potentials, vext and v
′
ext, are associated with

the Hamiltonians, Ĥ and Ĥ ′, respectively. The ground state wavefunctions, Ψ0

and Ψ′
0, and energies, E0 and E ′

0, for the two external potentials are found by

14



2.2. DENSITY FUNCTIONAL THEORY

solving the ground state Schrödinger equation:

Ĥ |Ψ0〉 = E0 |Ψ0〉
�

�

�

�2.29

Ĥ ′ |Ψ′
0〉 = E ′

0 |Ψ′
0〉

�

�

�

�2.30

Using the variational principle (see section 2.1.2) and
�

�

�

�2.28 leads to:

E0 ≤ 〈Ψ′
0|Ĥ|Ψ′

0〉
= 〈Ψ′

0|Ĥ ′|Ψ′
0〉+ 〈Ψ′

0|Ĥ − Ĥ ′|Ψ′
0〉

= E ′
0 + 〈Ψ′

0|V̂ext − V̂ ′
ext|Ψ′

0〉

= E ′
0 +

∫
ρ0(r) [vext(r)− v′ext(r)] dr

�

�

�

�2.31

Similarly, by interchanging primed and unprimed quantities leads to:

E ′
0 ≤ 〈Ψ0|Ĥ ′|Ψ0〉

= E0 +

∫
ρ0(r) [v

′
ext(r)− vext(r)] dr

= E0 −
∫
ρ0(r) [vext(r)− v′ext(r)] dr

�

�

�

�2.32

Adding the energies from
�

�

�

�2.31 and
�

�

�

�2.32 leads to;

E0 + E ′
0 ≤ E0 + E ′

0

�

�

�

�2.33

where this can only be true if Ψ0 = Ψ′
0. This creates a contradiction in that the

Hamiltonians associated with the wavefunctions differ by more than a constant

and cannot possibly be equal. Hence, there cannot exist two different external

potentials corresponding to the same nondegenerate ground state electron density,

completing the one-to-one mapping between vext, Ψ0 and ρ(r).

The ground state density now uniquely defines the external potential and the

ground state wavefunction. A universal functional can now be written in terms

of the density:

F [ρ0(r)] = 〈Ψ|T̂ + V̂ee|Ψ〉
�

�

�

�2.34
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2.2. DENSITY FUNCTIONAL THEORY

This functional is independent of the external potential and hence is valid for

any external potential with any number of electrons (
�

�

�

�2.27 fixes the number of

electrons). The total ground state energy functional can now be written in terms

of F [ρ0(r)]:

E0[ρ0(r)] = 〈Ψ0[ρ0(r)]|Ĥ|Ψ0[ρ0(r)]〉 =
∫
ρ0(r)vext(r) dr+ F [ρ0(r)]

�

�

�

�2.35

If the explicit form of
�

�

�

�2.35 was known then this functional could be used for any

system.

The second Hohenberg-Kohn theorem states that the exact ground state elec-

tron density in a given external potential minimises the energy functional
�

�

�

�2.35 ,

that is;

Ev
0 = min

ρ0(r)

{∫
ρ0(r)vext(r) dr+ F [ρ0(r)]

}
�

�

�

�2.36

where Ev
0 is the ground state energy in a given external potential, vext. To prove

this, Hohenberg and Kohn used the variational principle again. Defining two

ground state densities such that ρ′0(r) 6= ρ0(r), corresponding to two external

potentials v′(r) 6= v(r), with Hamiltonians, Ĥ and Ĥ ′, and their corresponding

ground state energies, E0 and E ′
0, then via the variational principle:

Ev
0 [ρ

′
0(r)] = 〈Ψ′|Ĥ|Ψ′〉

≥ 〈Ψ|Ĥ|Ψ〉
= Ev

0 [ρ0(r)]

= E0

�

�

�

�2.37

Although the Hohenberg-Kohn theorems provide an exact framework for the cal-

culation of any quantum system, the unknown exact form of the universal func-

tional, F [ρ0(r)], requires the use of approximations to find appropriate solutions.

2.2.2 Kohn-Sham Formalism

The Hohenberg-Kohn theorems simplify the calculation of the ground state elec-

tronic structure of a many-body system by using the electron density instead of
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2.2. DENSITY FUNCTIONAL THEORY

the many-body wavefunction. They do not, however, provide a method of ap-

plying the theorems in practice where the form of the functional F is unknown.

A practical framework to approximate the energy functional was proposed by

Kohn and Sham [15] reintroducing the use of orbitals into DFT. They created

a fictitious system of non-interacting electrons moving in an effective external

potential, vs(r), which reproduces the same ground state density as in the corre-

sponding interacting system. The first Hohenberg-Kohn theorem guarantees the

uniqueness of vs(r). The primary achievement of the Kohn-Sham formalism is the

calculation of the kinetic energy, which is made possible in the Kohn-Sham one-

electron framework. This is accomplished through the use of Slater determinants,

which are defined below.

Slater determinants are the simplest possible wavefunctions that can repre-

sent non-interacting electrons and also obey the antisymmetry requirement due

to the Pauli principle. The determinants are composed of one electron wavefunc-

tions typically known as orbitals and are used in the Kohn-Sham formalism. An

example of a normalised Slater determinant for N non-interacting electrons can

be written as:

ΨS(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) . . . ψN (x1)

ψ1(x2) ψ2(x2) . . . ψN (x2)
...

...
. . .

...

ψ1(xN ) ψ2(xN ) . . . ψN (xN)

∣∣∣∣∣∣∣∣∣∣∣

.
�

�

�

�2.38

The electron density is defined as:

ρ(r) =

N∑

i=1

|ψi(r)|2
�

�

�

�2.39

Now the representation of the fictitious non-interacting electron system is defined,

the next step is find a way to calculate the kinetic energy term.

The kinetic energy functional is separated into a classical and non-classical

part. The classical part is a major contribution to the total system energy and

can be calculated exactly. The non-classical part has to be approximated as no

exact forms are currently known. The separation of the kinetic energy functional
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is defined as;

T [ρ] = 〈Ψ|
N∑

i=1

−1
2
∇2

i |Ψ〉

≡ T̃ [ρ] + 〈ΨS|
N∑

i=1

−1
2
∇2

i |ΨS〉

= T̃ [ρ] +
N∑

i=1

〈ψi(r)| −
1

2
∇2|ψi(r)〉

≡ T̃ [ρ] + TS[ρ]
�

�

�

�2.40

where TS is the classical kinetic energy of an non-interacting electron and T̃ is

the non-classical part of the kinetic energy (usually termed as the kinetic energy

“correction” term). Now that the kinetic energy is defined, the energy functional,

Ev
0 , is redefined as;

Ev
0 [ρ] = T [ρ] + EH [ρ] + Vext[ρ] + Enc[ρ]

�

�

�

�2.41

EH [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′| dr dr
′

�

�

�

�2.42

Vext[ρ] =

∫
ρ(r)vext(r) dr

�

�

�

�2.43

Enc[ρ] = Ex[ρ] + Ec[ρ]
�

�

�

�2.44

where again T is the kinetic energy functional and Vext the potential energy due to

the electron - nuclei interaction and any other external field. The electron-electron

interaction energy is also divided in two parts. The first part is the classically de-

fined Coulomb contribution called the Hartree energy, EH ; the second part, Enc,

contains the non-classical many-body contributions. The non-classical contribu-

tions are further divided into the exchange energy, Ex, and correlation energy,

Ec. The exchange energy is due to the antisymmetric properties of fermions and

arises due to the Pauli exclusion principle. The correlation energy encompasses

all many-body effects due to the instantaneous Coulomb repulsion not considered

in EH and Ex and all non-classical effects not considered in the kinetic energy

functional, T [ρ]. There is a non-physical self-interaction contribution in EH that

Enc has to account for. This form of the energy functional allows for the explicit
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expressions for the classic Coulomb and external potential energies, although

the exact form for the kinetic energy and non-classical energy functional are not

known. The Kohn-Sham formalism provides a good first approximation to these

unknown functionals as it produces desirable kinetic energies.

Creating a new functional;

EXC[ρ] = T̃ [ρ] + Enc[ρ]
�

�

�

�2.45

where T̃ is absorbed into the non-classical functional, Enc[ρ]. Now all non-classical

many-body contributions that cannot be calculated explicitly are accounted for

in the exchange-correlation (XC) energy, EXC[ρ], producing a new total energy

functional:

Ev[ρ] = − 1

2

N∑

i=1

〈ψi(r)|∇2|ψi(r)〉+
1

2

∫∫
ρ(r)ρ(r′)

|r− r′| dr dr′

+

∫
ρ(r)vext(r) dr+ EXC[ρ]

�

�

�

�2.46

The XC potential, VXC, is defined as functional derivative of the XC energy with

respect to the electron density:

VXC(r) ≡
δEXC

δρ

�

�

�

�2.47

The final Kohn-Sham equations can be written now as;

(
−1
2
∇2 + Veff(r)

)
ψi(r) = εi ψi(r)

�

�

�

�2.48

where an effective one-particle potential has been defined:

Veff(r) ≡ vext(r) + VH(r) + VXC(r)

VH(r) ≡
∫

ρ(r′)

|r− r′| dr
′

�

�

�

�2.49

Using f̂KS =
(
−1

2
∇2 + Veff(r)

)
the Kohn-Sham equations can be neatly written

19



2.2. DENSITY FUNCTIONAL THEORY

in their final canonical form as:

f̂KSψi(r) = εiψi(r)
�

�

�

�2.50

This eigenvalue equation is solved self-consistently in an effective one-particle field

(SCF). The fictitious non-interacting Kohn-Sham orbital solutions, ψi, produce

the same density as the real interacting system and hence find the same total

energy. The only approximation is the form of the XC potential VXC(r).

2.2.2.1 Exchange-Correlation Approximations

There are many approximations to the XC potential with the simplest being the

local density approximation (LDA) [15], which is based on the uniform electron

gas model. Here the XC potential is equal to the XC of the uniform electron gas

with constant density. The approximation is local in that the XC potential at

a specific point in the density equals the XC of the uniform electron gas at its

corresponding point in the uniform electron gas density, defined as;

ELDA
XC [ρ(r)] =

∫
ρ(r) εLDA

XC [ρ(r)] dr
�

�

�

�2.51

where εLDA
XC is the XC energy per particle in the uniform electron gas and can be

separated into components for the exchange energy, εLDA
X , and correlation energy,

εLDA
C . An exact expression for εLDA

X is defined by Dirac [49] as:

εLDA
x [ρ(r)] = −3

4

(
3ρ(r)

π

) 1

3 �

�

�

�2.52

The correlation term, εLDA
C , does not have an exact expression, thus what is

generally used is an interpolation or parameterisation of highly accurate quantum

Monte Carlo simulations of a homogeneous electron gas performed by Ceperley

and Alder [50]. Researchers, such as Perdew and Wang [51], Perdew and Zunger

[52], and Vosko, Wilk and Nusair [53] have published popular parameterised forms

of εLDA
C .

The success of the LDA is predominantly due to the cancellation of exchange

and correlation errors; where the exchange energy is underestimated and the
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correlation energy is overestimated. Despite the cancellation of errors, the LDA

is still an approximation which can produce large errors for certain system types.

Improvements or alternatives to the LDA are necessary.

The generalized gradient approximation (GGA), which is based on the slowly

varying electron gas expansion, is an improvement on the LDA. In this case the

gradient of the density is also considered at each point in space. Generally the

form of the GGA is defined as:

EGGA
XC [ρα, ρβ ,∇ρα,∇ρβ] =

∫
ρ(r)εGGA

XC (ρα, ρβ,∇ρα,∇ρβ)dr
�

�

�

�2.53

Here the spin density is considered, where ρα is the majority spin and ρβ is the

minority spin. Although, the formal derivation of DFT does not depend on the

spin of the electrons, in practice these XC potential approximations are improved

when they become functionals of the spin density, especially in cases with odd

number of electrons or the treatment of multiplet states. As with the LDA there

are several parameterisations available to use. The work in this thesis uses the

parameterisation of Perdew, Burke and Ernzerhof (PBE) [54]. In general, these

approximations are quite simple and in the majority of cases produce reasonable

results.

The next level of approximation above the GGA functional is the meta-GGA

(mGGA) functional [55, 56]. These functionals are an extension and improve-

ment to the GGA functional in which the non-interacting kinetic energy density

(Laplacian) enters the equation. Earlier mGGA functionals were partially empiri-

cal based [57–59], although Tao et al have formulated a non-empirical version [60]

valid for periodic and molecular systems. Their version is a very important step

towards a general density functional. The primary form of the meta-GGA func-

tional is defined as;

EmGGA
XC [ρα, ρβ ,∇ρα,∇ρβ, ταs , τβs ] =

∫
ρ(r)εmGGA

XC (ρα, ρβ,∇ρα,∇ρβ, ταs , τβs )dr
�

�

�

�2.54

where τs is the one-electron kinetic energy density (spin-independent), defined
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as;

τsj =
1

2

occ∑

i

|∇φij(r)|2
�

�

�

�2.55

in the space of occupied Kohn-Sham orbitals, φij(r). Tao et al [60] refers to this

functional as the third rung of the “Jacob’s ladder”of XC functional approxima-

tions. Where the first rung is found by removing τs and ∇ρ producing the LDA

functional, and the second rung is found by removing only τs to produce the GGA

functional.

Another type of XC functional comes in the form of hybrid functionals. These

functionals take advantage of the exact exchange energy produced from Hartree-

Fock calculations by combining it with an LDA or GGA functional. Due to

the exchange energy being much larger than the correlation energy, the exact

exchange can lead to more accurate results than just LDA or GGA functionals.

Early attempts produced unphysical XC holes resulting in poor performance.

Modern hybrid functionals use certain amounts of exact exchange in mixtures

with the exchange and correlation energies of the LDA or GGA functionals. The

weighting of the exact exchange allows for a systematic cancellation of error. For

example, because Hartree-Fock typically overestimates band gaps by 200% and

the LDA typically underestimates band gaps by 50%, the weighting can take

account of this to produce accurate band gaps. Currently, the most popular of

these hybrid functionals is B3LYP [61–64].

Finally, a short mention of orbital-dependent based XC functionals [65] is ap-

propriate. The potentials corresponding to the orbital-dependent XC energies,

such as the exact exchange energy, are constructed with the optimised effective

potential (OEP) [66] or the much simpler, but highly accurate, Krieger-Li-Iafrate

(KLI) scheme [67]. The constructed XC potentials are self-interaction free, have

the correct long-range -1/r asymptotic behaviour for finite systems and generally

produce higher-quality eigenvalues and orbitals. The LDA and GGA potentials

exhibit a much faster decaying long-range behaviour, that leads to the underes-

timation of the band gap and lower quality orbitals due to the fictitious electron

interacting with itself; where on the other hand the orbital dependent schemes

produce high-quality band structures [65].
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2.3. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

2.3 Time-Dependent Density Functional Theory

TDDFT extends the ground state (stationary) DFT method where calculations

of time-dependent and excited state phenomena are made possiblef. Just as

the Hohenberg-Kohn theorems, section 2.2.1, establish a one-to-one mapping

between the external potential, Vext, and the electron density, ρ(r), the Runge-

Gross theorem [72] provides a comparable mapping when the external potential

and electron density are time-dependent.

According to Runge and Gross there is an unique one-to-one mapping between

the time-dependent external potential, Vext(r, t), and the time-dependent electron

density, ρ(r, t), for a given initial state. The Runge-Gross theorem states that two

densities, ρ(r, t) and ρ′(r, t), evolving from the same initial state, Ψ0(t = t0 = 0),

under the influence of two separate potentials, vext(r, t) and v
′
ext(r, t), will differ

over time if the potentials differ by more than a purely time-dependent function

(with the condition that both vext(r, t) and v
′
ext(r, t) are Taylor expandable about

the initial time, t0):

∆vext(r, t) = vext(r, t)− v′ext(r, t) 6= c(t)
�

�

�

�2.56

Proving this theorem involves showing that the mapping vext(r, t)
map−−→ Ψ(r, t)

map−−→ ρ(r, t) is invertible, of course up to the purely time-dependent function, c(t).

The time-dependent function appears as a phase factor in the wavefunctions as

Ψ(r, t) = e−ic(t)φ(r, t). The phase factor cancels out in the evaluation of the

expectation value, allowing the expectation value to be a functional of the density.

The first part of the proof shows that the current densities, j(r, t) and j′(r, t),

which are also equal at t0, differ infinitesimally later than t0. The current density

is given by;

j (r, t) = N

∫
d3r2 . . .

∫
d3rNℑ{ψ(r, r2, . . . , rN , t)∇ψ∗(r, r2, . . . , rN , t)}

�

�

�

�2.57

where ℑ signifies the imaginary part. Using the following formulation of the

fFor recent reviews on TDDFT see Marques et al [43], Gross et al [68], van Leeuwen [69],
Burke et al [70] and Elliot et al [71].
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density matrix operator;

ρ̂(r) =
N∑

j=1

δ(r− rj)
�

�

�

�2.58

the current density
�

�

�

�2.57 is equivalent to;

j (r, t) = 〈Ψ(r, t)| ĵ(r)|Ψ(r, t)〉
�

�

�

�2.59

where the current density operator, ĵ(r), is defined as:

ĵ(r) =
1

2i

N∑

j=1

(∇rj δ (r− rj) + δ (r− rj)∇rj)
�

�

�

�2.60

By examining the equation of motion of the difference of the two current densities;

i
∂

∂t
[ j(r, t)− j′(r, t)]t=0 = iρ(r, t0)∇ [vext(r, t0)− v′ext(r, t0)]

�

�

�

�2.61

one can see that if at the initial time the two potentials differ by more than just

a constant, then the first derivatives of the current will also differ. Differences

in the first derivatives will produce differences in the currents, j(r, t) 6= j′(r, t),

thus proving that the external potential has a one-to-one correspondence, and is

a functional of the current density.

The second part of the proof requires the same to be said for the densities.

Using continuity;
∂ρ(r, t)

∂t
= −∇ · j (r, t)

�

�

�

�2.62

an equation of motion is defined by taking the gradient of
�

�

�

�2.61 ;

∂2

∂t2
[ρ(r, t)− ρ′(r, t)]t=0 = ∇ · (ρ(r, t0)∇ [vext(r, t0)− v′ext(r, t0)])

�

�

�

�2.63

where, similar to the current densities, the densities ρ(r, t) and ρ′(r, t) will differ

infinitesimally later than t0. This proves the mapping vext(r, t)
map−−→ Ψ(r, t)

map−−→
ρ(r, t) is invertible and that the external potential is a functional of the density

and the initial wavefunction, Vext [ρ,Ψ0] (r, t).
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2.3.1 Time-dependent Kohn-Sham Equations

The same non-interacting electron system used in the ground state Kohn-Sham

formalism can also be used in the context of TDDFT. Here the time-dependent

Kohn-Sham equations take on the following form;

i
∂Φks

∂t
= ĤksΦks

�

�

�

�2.64

where Φks are the Kohn-Sham orbitals and Ĥks is the time-dependent Kohn-Sham

Hamiltonian. This Hamiltonian is described as follows;

Ĥks = −
1

2
∇2 + Vext(r, t) +

∫
ρ(r′, t)

|r− r′|dr
′ + Vxc [ρ] (r, t)

�

�

�

�2.65

where the first term on the right describes the majority of the kinetic energy,

the second term is the external potential, the third term is the Coulombic re-

pulsion felt between the electrons and the last term is the time-dependent XC

functional. The time-dependent XC functional is much more complex than the

ground state version. For low lying states and small external perturbations, the

time-dependent XC functional can be replaced with the ground state XC func-

tional. This is termed as the adiabatic approximation;

Vxc [ρ] (r, t) ≃
δELDA

xc [ρt]

δρt(r)
= V LDA

xc [ρt] (r)
�

�

�

�2.66

where ρt is the instantaneous density. The time-dependent density is defined as;

ρ(r, t) =
∑

i,j

ρij(t)φi(r)φj(r)
�

�

�

�2.67

where the time-dependent density matrix ρij(t) is defined as:

ρij(t) =
occ∑

m

Cmi(t)Cmj(t)
�

�

�

�2.68

There are a variety of methods by which to solve
�

�

�

�2.64 . The approach taken for

this study evolves the Kohn-Sham eigenfunctions, Φks, in real time [34]. This
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method is described in detail in section 5.3. The complete knowledge of Vext(r, t)

and Vxc [ρ] (r, t) implies solutions of all time-dependent Coulomb interacting sys-

tems.

2.4 Computational Implementation

Finding solutions to the Kohn-Sham equations
�

�

�

�2.50 would be more appropriate

to be solved on a computer if the components of the equations were formulated

in an algebraic form. This can be accomplished by expanding the Kohn-Sham

orbitals in a set of basis functions. A feature of DFT is that the Kohn-Sham equa-

tions are expressible in a wide variety of basis functions, such as planewaves [73],

Gaussians [74], wavelets [75], grids [76], B-splines [77], psincs [78], and numerical

orbitals [79]. In this present thesis the SIESTA package [2] is used for the con-

struction of the Hamiltonian, bringing with it a focus on the use of real-space

localised pseudo-atomic orbital methods (PAOs), while recognising this is just one

of many possible approaches. To put the use of PAOs in context, a quick overview

of planewave and atomic orbital (Gaussians) approaches are summarisedg.

In the planewave approach [73] the Kohn-Sham orbitals are expanded out

with a planewave basis, that is the planewaves extend throughout space. They are

suited for the calculation of systems in condensed phases, whereby the planewaves

automatically obey Bloch’s theorem. Advantageous features of the planewave

approach include the use of fast Fourier transform techniques, basis set indepen-

dence on atomic positions and, most importantly, the systematic control of the

convergence of the basis set. Planewaves become disadvantageous when repre-

senting inner-shell states and finite systems, where for the rapidly varying inner-

shell states, a large number of planewaves are required to describe those states.

For finite systems the extra expense of using planewaves to represent the vacuum

within the supercell can be large. Generally, a large number of planewaves are

required to represent the Kohn-Sham orbitals, which can make this approach

computationally expensive.

gA concise review of planewave, atomic orbital and real-space techniques can be found in
the review article by Beck [80].
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On the other hand, the atom-centred atomic orbitals of Gaussian functions

and Slater-type orbitals are ideal for finite systems [13,81]. Atomic orbital func-

tions are more representative of Kohn-Sham orbitals (within atoms only) as they

are based on chemically intuitive reasoning. The multicenter integrals in the

Kohn-Sham Hamiltonian can be analytically solved using Gaussians, while Slater-

type orbitals have to solve many of these integrals numerically. Gaussians come

with a price, in that they do not correctly describe the behaviour of the orbitals

close to and far away from the nucleus, which in turn requires a larger number of

basis functions to accurately describe the states. The Slater-type orbitals do not

suffer from this problem. Atomic orbital-based approaches suffer from basis-set

superposition error (BSSE), especially when investigating the interaction energies

from a chemical reaction. The BSSE can be alleviated with the counterpoise cor-

rection due to Boys and Bernadi [82]. Using non-orthogonal basis functions also

leads to linear dependence issues with large basis set sizes. These issues, unlike

the planewave approach, inhibit a systematic way of obtaining convergenceh by

increasing the number of basis functions i.e. basis set limit.

The number of basis functions in the atomic orbital approach can be still quite

large and the computational scaling high. To reduce the cost of using atomic or-

bitals, PAOs [3–5,84] can be used, which are purely numerical functions and have

arbitrary shape. The shape of the basis function can be chosen as to more accu-

rately represent the actual system wavefunctions. By doing this, the expansion

of the wavefunctions can be accomplished with a smaller basis set. SIESTA in-

corporates the use of PAOs in its methodology [2]. The shape of the PAOs used

in SIESTA are physically intuitive as they are derived from the solutions of an

atom in a spherical potential [2,4,5]. The strict confinement (localisation) of the

PAOs [3] lead to linear-scaling in computational work and storage, allowing this

approach to be used on large systems. The SIESTA methodology is explained in

section 2.4.3, but first, a reformulation of the Kohn-Sham equations in a basis

set of a linear combination of atomic orbitals (LCAO) is presented.

hWell-tempered basis sets [83], with their large-exponent Gaussians and diffuse orbitals, are
designed for more exact excitation energies for finite systems and can in theory be made to
converge in a systematic way.
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2.4.1 Linear Combination of Atomic Orbitals

The Kohn-Sham equations can be formulated to use a LCAO approach (see [42]

for a simple, general overview). First, a Kohn-Sham orbital, Φi(r), is expanded

as a LCAO by;

ψi(r) =
L∑

µ=1

cµiφµ(r)
�

�

�

�2.69

where there are L basis functions, φµ(r). By substituting
�

�

�

�2.69 into the canon-

ical Kohn-Sham equations
�

�

�

�2.50 , multiplying both sides with an arbitrary basis

function, φν(r), and then integrating both sides leads to:

L∑

µ=1

cµi

∫
φν(r)f̂

KSφµ(r)dr = εi

L∑

µ=1

cµi

∫
φν(r)φµ(r)dr

�

�

�

�2.70

The sums have been left out of the integrals for the purpose of defining the

Hamiltonian and overlap matrices:

Hνµ =

∫
φν(r)f̂

KSφµ(r)dr
�

�

�

�2.71

Sνµ =

∫
φν(r)φµ(r)dr

�

�

�

�2.72

This matrix representation of the Kohn-Sham equations is particularly useful

for implementation on computers. The Hamiltonian matrix is a real symmetric

(Hermitian) matrix. The overlap matrix describes the amount of overlap between

the basis functions. For an orthonormal basis set the overlap matrix becomes the

identity matrix. Using the Hamiltonian and overlap matrices,
�

�

�

�2.70 becomes:

L∑

µ=1

cµiHνµ = εi

L∑

µ=1

cµiSνµ

�

�

�

�2.73
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For all states, i, and basis functions, µ, the coefficients, cµi, can be represented

in matrix form;

C =




c11 c12 · · · c1L

c21 c22 · · · c2L
...

...
. . .

...

cL1 cL2 · · · cLL




�

�

�

�2.74

along with a diagonal matrix for the energy eigenvalues, εi:

ε =




ε1 0 · · · 0

0 ε2 · · · 0
...

...
. . .

...

0 0 · · · εL



≡




ε1

ε2
. . .

εL




�

�

�

�2.75

Using all the above mentioned matrices and
�

�

�

�2.73 , a set of linear equations in

matrix form can be defined as:

(H − εS)C = 0
�

�

�

�2.76

There are two primary aspects relating to finding solutions to
�

�

�

�2.76 . The first

aspect is the construction of the matrices, H and S. The construction of the

matrices is defined by the type of basis functions. As mentioned in the intro-

duction chapter (see section 1.1), this process is made to scale in a linear-scaling

fashion in SIESTA through the strict confinement of PAOs. The second aspect

is to solve for C and ε, which currently in SIESTA, is possible through two sep-

arate methods. The first method, is standard matrix diagonalisation, which can

only be used for small-to-moderately sized systems due to the O (N3) computa-

tional scaling and O (N2) memory scaling. The second method involves using a

linear-scaling method based on minimising an energy functional.

2.4.2 Locality for Linear-Scaling

Order-N methods [19] are generally devised based on the decay properties of

either the density matrix or the localised Wannier-type function [85–87] repre-
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sentation of the density matrix. Localised Wannier functions are a transformation

of extended Bloch eigenfunctions from crystalline periodic solids. Typically, any

legitimate, localised wave function that can be used to represent the density ma-

trix is referred to as a Wannier-type function. The interaction between any two

elements of the density matrix is known to decay exponentially for insulators and

algebraically for the metals [19].

By invoking the concept of “near-sightedness” [18], the density matrix can be

partitioned into localisation regions. The range of the Wannier-type states will

be dependent on the decay properties of the system. For example, Wannier-type

states with longer tails will be required to capture the behaviour at a surface of

a system with a small or non-existent band-gap.

Solutions to the localisation regions do not depend on the global solution, and

thus can be solved separately and combined to form the global solution in a linear-

scaling fashion. Even though, the “near-sightedness” principle decouples the very

small interactions between distant particles, there still exits an interaction, which

by employing localisation regions is in fact an approximation. This leads to the

accuracy of the final global solution being dependent on the size of the localisation

regions. Obviously, the accuracy is also tied to the decay properties of the density

matrix, with smaller localisation regions being required for insulating systems and

larger regions for more metallic systems. Eliminating the interaction information

outside a given localisation region enables the storage of the density matrix in a

linear scaling fashion, as only non-zero terms (the actual interaction terms) need

to be stored.

The next section details the adaption of the Kohn-Sham formalism to form

the SIESTA methodology which allows a fast computational implementation and

solution of the Kohn-Sham equations.

2.4.3 SIESTA Methodology

The SIESTA code [2–6] is a self-consistent DFT package that has been developed

primarily to handle systems with large numbers of atoms. All components within

SIESTA are designed to scale linearly in computing time and memory usage

except for the case of the direct diagonalisation path, where the computational
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time scales as O (N3) and memory usage as O (N2). It is this package that is

used for all upcoming DFT calculations and as a base framework for any methods

implemented in this work. The following formalism is a summary of the SIESTA

methodology described by Soler et al [2].

The SIESTA methodology mainly deals with the definition and assembly of

the Hamiltonian. The SIESTA Hamiltonian is designed to be assembled and

stored in a linear-scaling fashion. There are two aspects to the Hamiltonian

which will be covered here. The first is the use of a pseudopotential to remove

any core electrons from the Hamiltonian which are considered not to be involved

in chemical activity. This is another level of approximation, similar to the Born-

Oppenheimer approximation (section 2.1.1), that will speed up the calculations

and allow for a smooth charge density near the core of the atom. The second

aspect is the type of basis function used to represent the orbitals. The type will

determine the quality and scaling behaviour in the construction of the Hamil-

tonian. Solutions to the Kohn-Sham equations within SIESTA are found either

using standard matrix diagonalisation methods or the linear-scaling energy func-

tional minimisation method. The solution methods will be dealt with in section

2.4.3.1 and later chapters.

SIESTA uses norm-conserving pseudopotentials [88] originally in a semi-local

form where each angular momentum, l, has a different radial potential, Vl(r). The

pseudopotential will need to perform well in different environments and due to

using norm-conserving pseudopotentials, each angular momentum channel will

see a different potential. This leads to dividing the pseudopotential into local

(long-range) and semi-local (short-range) components, which in turn makes the

pseudopotential easier to handle. The local component is chosen as to have

correct asymptotic (i.e. Coulombic) behaviour and the semi-local component is

projected out onto each angular momentum channel from the pseudo wavefunc-

tions, to handle the angular momentum dependent potentials. With this in mind,

the semi-local form allows for a different pseudopotential for each angular mo-

mentum channel. The pseudopotentials can be generated to take into account

scalar relativistic effects [89,90] and typically use the Troullier-Martins construc-

tion scheme [91]. The semi-local form is transformed to a fully nonlocal form by
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the method proposed by Kleinman and Bylander (KB) [92];

V̂ PS = Vlocal(r) + V̂ KB
�

�

�

�2.77

V̂ KB =

lKB
max∑

l=0

l∑

m=−l

NKB
l∑

n=1

|χKB
lmn〉 vKB

ln 〈χKB
lmn|

�

�

�

�2.78

vKB
ln = 〈φln|δVl(r)|φln〉

�

�

�

�2.79

where r = |r|. Vlocal(r) is the local part of the pseudopotential and has an arbi-

trary form with the condition that it must connect with the semi-local potential,

Vl(r), where it becomes equal to the all-electron potential beyond a specified

pseudopotential core radius, rcore:

δVl(r) = Vl(r)− Vlocal(r)
�

�

�

�2.80

This means that δVl(r) is equal to zero for r > rcore. Finally, the KB projectors

χKB
lmn(r) are defined as;

χKB
lmn(r) = χKB

ln (r)Ylm(r̂)
�

�

�

�2.81

where χKB
ln (r) are the KB projection functions (that are also zero for r > rcore),

Ylm is a spherical harmonic and r̂ = r/r (unit vector). The eigenstates, φln,

are found by solving for the eigenfunctions of the semi-local pseudopotential

with an all-electron Schrödinger equation which are then transformed using the

orthogonalisation scheme proposed by Blöchl [93].

Solving the Kohn-Sham equations
�

�

�

�2.50 can be made more tractable to be

solved on a computer by expanding out the eigenfunctions, Ψ, with a set of

basis functions. In the case of SIESTA, the expansion is a linear combination of

(pseudo) atomic orbitals. The numerical pseudo atomic orbitals (PAOs) have the

form;

φIlmn(r) = φIln(rI)Ylm(r̂I)
�

�

�

�2.82

where for atom, I, located at RI with rI = r−RI the basis orbitals are a product

of a numerical radial function, φIln(rI), and a spherical harmonic, Ylm(r̂).

The orbitals are strictly confined to a cutoff radius, rcl , where φIlmn(r) = 0
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when r > rcl . By setting the orbital values to zero beyond a confinement radius

creates sparsity in the Hamiltonian and overlap matrices. This sparsity is a prop-

erty which is crucial for the linear-scaling construction and storage of the Hamil-

tonian matrix, as well as other matrices dependent on the PAOs. More specifically

the number of operations required for a particular orbital in the construction of

the Hamiltonian matrix remains constant as the system size is increased unless

orbitals are added within the vicinity, (rcl ), of the orbital in question.

Generally there will be a number of orbitals (representing the principal quan-

tum number), n, with an arbitrarily large number of angular momenta, l, and

(2l+1) magnetic quantum numbers, m. The multiple-ζ basis sizes used in quan-

tum chemistry are created by using multiple orbitals with the same angular mo-

mentum dependence but with different radial dependence. The radial functions

are defined by a cubic spline interpolation from values calculated on a logarithmic

radial grid where the size and shape of the radial functions is arbitrary. SIESTA

does provide default procedures to create these functions explained below.

For the generation of a single-ζ (SZ) basis set SIESTA uses the method of

Sankey and Niklewski [84, 94]. Here the angular momentum dependent eigen-

functions, φIlmn(r), of a pseudo atom in a spherical box potential including the

atomic pseudopotential, Vl(r) (radial potential), are used as the basis orbitals.

The eigenfunctions are found by solving the following equation for an energy,

ǫl + δǫl, chosen so the first node occurs at a cut-off, rcl :

(
− 1

2r

d2

dr2
r +

l(l + 1)

2r2
+ Vl(r)

)
φIlmn(r) = (ǫl + δǫl)φIlmn(r)

�

�

�

�2.83

It is desirable for the effects of the orbital confinement to be similar for each of

the orbitals. To accomplish this, a common energy shift, δǫ, is used rather than

a common confinement radius. The strictly localised orbitals found from the

above-mentioned approach are confined by an infinite potential. This approach

generates orbitals with a discontinuous derivative at the cut-off, rcl . Using smaller

cut-off distances the discontinuity will become larger. The discontinuity can have

an effect on the calculation of the forces and stresses. Use of a soft-confinement

potential [3] for the pseudo atom Hamiltonian
�

�

�

�2.83 will remove the discontinuity.

The soft-confinement potential is zero in the core region, with no discontinuous
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derivatives and diverges at rcl for strict confinement.

For the generation of multiple-ζ basis sets a split-valence method [5, 95]

adapted to numerical PAOs [4] is used. In the standard split-valence scheme

the higher-ζ orbitals are generated by splitting the slowest decaying Gaussian or-

bital from the combination of primitive Gaussian functions. Control of the orbital

confinement through the common energy shift is not possible with a Gaussian

orbital. Hence, numerical orbitals are preferred rather than Gaussian functions

in SIESTA’s split-valence scheme [2–4]. The numerical orbital reproduces the tail

of the first-ζ numerical orbital, φ1ζ
l (r), at a given split radius, rsl , and changes to

a polynomial inside the radius that smoothly goes to the origin, namely;

φ2ζ
l (r) =





rl(al − blr2) if r < rsl

φ1ζ
l (r) if r ≥ rsl

�

�

�

�2.84

where φ2ζ
l (r) is the second-ζ orbital and the coefficients, al and bl, ensure conti-

nuity and a continuous derivative at rsl . Optimisation of rsl is achieved via fixing

the norm of φ1ζ
l (r) beyond rsl . This fixed amount of norm is termed the split

norm and is usually set at 0.15 for most systems [4]. To reduce the number of

Hamiltonian elements and still keep variational freedom, the second-ζ orbital is

subtracted from the first-ζ orbital, which ensures that the new orbital is zero

beyond rsl . The newly found orbital, still in the same Hilbert space as the first-

ζ orbital, is renormalised to take into the account the loss of norm beyond rsl .

Higher ζ orbitals can be generated by repeating the procedure at higher shells.

For a higher quality result polarisation orbitals are also included. Polarisation

orbitals are used to describe the deformation produced by bond formation. PAOs

with a higher angular momentum, l+1 (or higher l for extra orbitals), can be used

as the polarisation orbitals. However, these types of orbitals do not perform well

as they are typically too extended and can even be unbound for large l. SIESTA

creates polarisation orbitals by using a first-order perturbation calculation of an

orbital with a small applied electric field [2,4]. They have the same cut-off radius

as the orbitals from which they are constructed.

With the inclusion of the KB pseudopotentials the Kohn-Sham SIESTA Hamil-
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tonian can be written as;

Ĥ = T̂ +
∑

I

V local
I (r) +

∑

I

V̂ KB
I + V H(r) + Vxc(r)

�

�

�

�2.85

where T̂ is the kinetic energy operator, V H(r) and V xc(r) are the total Hartree

and XC potentials and V local
I (r) and V̂ KB

I (r, r′) and the local and non-local (KB)

parts of the pseudopotential of the atom I.

Screening with a potential, V atom
I , created from an atomic electron density,

ρatomI , can eliminate the long-range aspects of V local
I (r). The atomic densities are

assembled by appropriately populating the set of valence basis functions with

single atom charges. The new screened neutral-atom (NA) potential, V NA
I =

V local
I +V atom

I , has its long-range interactions removed and due to the confinement

of the atomic orbitals, V NA
I is also zero beyond rcl . Defining δρ(r) as the difference

between the self-consistent electron density, ρ(r), and the sum of atomic densities,

ρatom =
∑

I ρ
atom
I , and δV H(r) as the electrostatic potential generated by δρ(r)

the final SIESTA Hamiltonian [2] can be written as:

Ĥ = T̂ +
∑

I

V̂ KB
I +

∑

I

V NA
I (r) + δV H(r) + V xc(r)

�

�

�

�2.86

When constructing the above Hamiltonian, the first term is a two-centre integral

which can be evaluated as a convolution. The term is transformed into Fourier

space which is then treated as a simple product and tabulated as a function of

interatomic distance. The second term is treated in a similar fashion as the first

term, additionally with the local part of the pseudopotential, Vlocal(r), found in

V̂ KB
I , integrated on a grid as it depends on the position of the atom with the

pseudopotential as well. All other terms are calculated on a three-dimensional

real-space integration grid. As mentioned earlier for complete details of the inte-

gration methods and for other details pertaining to SIESTA see references [2,4,5].

Solutions to the SIESTA Kohn-Sham equations can be found through either

conventional matrix diagonalisation methods or via an energy functional minimi-

sation approach. A summary of the energy functional minimisation method, as

used in later chapters of this thesis, is provided in the following section.
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2.4.3.1 Energy Functional Minimisation

The basis of energy functional minimisation methods is to reformulate the Kohn-

Sham equations into a functional of an energy (e.g band structure or total energy).

Use of the energy functional provides an avenue for the Kohn-Sham system to

be solved in order-N, when the energy functional uses localised Wannier-type

states. The energy functional is then minimised with respect to variations of

the wavefunctions expanded in the LCAO basis, using a common optimisation

technique such as the conjugate-gradient minimisation (CG) algorithm [96]. Cur-

rently within the SIESTA package there are two different energy functionals im-

plemented. The first is a functional from Ordejón et al [6, 97, 98] which uses a

fixed number of occupied states equal to the number of electron pairs. This func-

tional has been found to have a large number of local minima [98, 99] leading to

issues with the minimisation process (this does not occur with extended Bloch-

like states). The second functional within SIESTA overcomes this problem. This

functional by KMG [32] directly finds the ground state configuration when using

localised wavefunctions, avoiding the multiple minima problem by using a larger

number of states than electron pairs. Other advantages of the KMG functional

are the decrease in the error of the estimate of the ground state energy, Eo, and

improvement of the conservation of energy within MD [32]. Only the KMG func-

tional is considered in this thesis due to the above mentioned issues with the

Ordejón et al functional.

The derivation of the KMG functional [32] begins by starting with the en-

ergy functional defined by Mauri and Galli [99]. For an N -electron system, this

functional depends on N/2 occupied orbitals. The Mauri and Galli functional is

then generalised to account for an arbitrary number, M , of orbitals. There are

no restrictions on M and in practice M is larger than the number of occupied

states. The KMG functional is defined as;

E[{φ}, η,M ] = 2

M∑

ij=1

Qij〈φj|Ĥ − η|φi〉+ ηN
�

�

�

�2.87

where {φ} is a set of M overlapping orbitals, η is a parameter representing the

chemical potential of the electrons, Ĥ is the Hamiltonian, and Q is an efficiently
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calculated truncated series expansion of the inverse of the overlap matrix S;

Q = S−1 = [I− (I− S)]−1 ≈
k∑

n=0

(I− S)n
�

�

�

�2.88

where the overlap matrix is defined as Sij = 〈φi|φj〉 and I is the identity matrix.

Q is used instead of S−1 because the explicit calculation of the S−1 occurs in

O (N3); conversely Q can be readily calculated in order-N when S is sparse. One

other reason is that orbitals with a vanishing norm, 〈φi|φi〉 → 0, produce a non-

zero contribution to the energy, since the eigenvalues of S−1 go to infinity [32].

Mauri et al [100] showed that an expansion to an odd number has the property

of having a global minimum at a stable point. Hence, to guarantee finding a

valid solution via standard minimisation techniques, an odd number expansion is

required. What is chosen in practice is to use a first order expansion, as higher

order expansions will lead to less sparse matrices which will produce higher scaling

in the number of matrix operations. In the first order, k = 1, Q becomes:

Q = 2I− S
�

�

�

�2.89

Using Q, the electron density is defined as:

ρ(r) = 2
M∑

ij=1

〈φj|r〉〈r|φi〉Qij

�

�

�

�2.90

Equation
�

�

�

�2.87 can now be defined in terms of a density matrix,

σ̂ [{φ}] =
∑M

ij=1 |φi〉Qij 〈φj| (in the notation of [32]):

E[{φ}, η,M ] = 2Tr
[(
Ĥ − η

)
σ̂
]
+ ηN

�

�

�

�2.91

Minimising the energy functional
�

�

�

�2.91 with respect to the variation of the wave-

functions, and for a given η, will produce the orthonormal Kohn-Sham solution.

The minimisation itself is unconstrained as there is not requirement of orthonor-

mality of the wavefunctions. Instead, the energy functional itself will penalise any

nonorthogonality and the final solutions will become orthonormalised. Issues can
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arise with the electron number not being conserved. Within a few iterations

the wave functions will become more orthonormal, which in turn stabilises the

process.

In its original form the KMG functional is not solved in a linear-scaling fash-

ion; the method achieves linear-scaling by using localised Wannier-like states.

The Wannier-like states are constrained to an atom-centred spherical localisa-

tion region, where each Wannier-like state only interacts with its neighbouring

Wannier-like states up to a specified radius. By using localised states, the deter-

mination of any one state only depends on the states surrounding environment

and not the complete system. Obviously, larger localisation regions will increase

the accuracy of the calculation and also the prefactor. Each atom, I, is assigned

a number of Wannier-type states, NWS:

NWS = int (ZI/2 + 1)
�

�

�
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When doubly occupied, the total number of states can accommodate two extra

electrons. These states can be partially filled allowing the excess state to be empty

during the minimisation process. The accuracy of the calculation is controlled by

the localisation region size of the Wannier-like states. For unconstrained states,

the Kohn-Sham ground state energy is also the minimum of the KMG functional.

By constraining the wavefunctions via localisation, the final energy will be higher

than the unconstrained case, due to the orthogonality not being exact.

The major problem with this method is that an a priori knowledge of the

chemical potential (i.e. Fermi level) is required. This introduces difficulties in

estimating the chemical potential, where an educated guess will have to be made.

For insulating and semiconducting systems the chemical potential can be located

anywhere within the band gap. Although, even if the chemical potential is spec-

ified correctly at the beginning of the SCF calculation, due to the consequences

of the mixing of the density matrices between SCF cycles the band gap of the

system will shift. In some cases the shifting of the band gap will be large enough

to cause the specified chemical potential to be invalid, causing the SCF calcu-

lation to diverge. These instabilities limit the use of this method to insulating

and wide band gap semiconductors. Systems with small band gaps or no band
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gaps (e.g. metals) will not work without an iterative refinement of η. The lack

of k-point sampling hinders the use of the method for metals (and other periodic

structures), where large supercells are required to capture the behaviour of the

material at the gamma point. The decay length of metals is also much larger than

finite band gap materials, requiring the use of larger localisation regions which

in turn increase the prefactor of the method. Linear-scaling techniques requiring

no a priori knowledge of any property are desirable.

2.5 Concluding Remarks

The theory of (TD)DFT and the SIESTA methodology has been presented within

this chapter in a concise manner. Details on different basis set expansions show

that PAOs are indeed an efficient choice compared to other atomic orbitals and

planewaves. A linear-scaling energy functional method based on the KMG band

structure energy [32] is presented. The SIESTA methodology is expanded upon

in the next chapter, where details of a linear-scaling divide-and-conquer (D&C)

implementation are provided for the solution of the Kohn-Sham equations. The

D&C method is shown to complement the linear-scaling aspects of the SIESTA

Hamiltonian assembly and the localised nature of PAOs.
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divide et impera.

- An ancient Roman

3
Divide-and-Conquer

Electronic Structure Theory

The linear-scaling density matrix D&C method has been implemented within the

SIESTA package. When the D&C method is coupled with SIESTA’s linear com-

bination of pseudo numerical atomic orbitals, the results suggest that the D&C

method can prove to be a very efficient first principles quantum mechanical method.

The implementation is tested on a range of systems with varying band gaps, with

comparisons being presented to the Kim-Mauri-Galli (KMG) energy functional

minimisation method. The performance of the parallel computation is investi-

gated. A first attempt at combining the D&C method with the KMG energy func-

tional minimisation method to produce a more efficient linear-scaling method is

shown.

3.1 Introduction

Electronic structure calculations, based on first principles quantum mechanics,

provide reliable physical and chemical descriptions of atomistic, molecular and

crystalline systems. However, practical calculations are often limited to fairly

small systems (< 500 atoms) due to both theoretical difficulties and limitations in

available computational resources. The theoretical difficulties arise from the high

order, O(N3) and greater, scaling which is inherit within all ab initio quantum

mechanical methods in the absence of approximations, where N is a measure
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3.1. INTRODUCTION

of the system size and usually most critically depends on the number of basis

functions. To date, DFT [15] has proven to be a reliable and efficient choice in

the study of medium-sized quantum systems. Only approximations, such as the

Born-Oppenheimer approximation and the XC functional in Kohn-Sham theory,

lead to deviation from a numerically converged calculation of the ground state

Schrödinger equation, however, often the accuracy of the calculated physical and

chemical properties is sufficient for practical use. It is desirable to be able extend

DFT to calculate the properties of very large systems. The work presented in

this chapter will allow the electronic structure of systems consisting of tens of

thousands atoms to be calculated using DFT.

Solution of the Kohn-Sham equations
�

�

�

�2.50 consists of two key steps - the as-

sembly of the Hamiltonian and the determination of the orthogonal Kohn-Sham

eigenstates. In the worst case scenario, construction of the DFT Hamiltonian

matrix can scale as O(N4) due to the Coulomb term, though the use of density

fitting [17] in an auxiliary basis can reduce this to O(N3). Diagonalisation of the

Hamiltonian matrix will similarly scale as O(N3). Thus the assembly and diago-

nalisation of the Hamiltonian matrix are considered to be the major bottlenecks

of any conventional implementation. Although DFT is considered relatively effi-

cient it is still computationally prohibitive for the study of systems consisting of

atom numbers in the thousands and greater. To overcome this barrier, techniques

have been developed and employed to reduce the scaling of the computational

cost to the linear regime, O(N). In the same way, memory usage must also scale

linearly, instead of as O(N2), in order to avoid another potential bottleneck.

Enforcing locality in all phases of the calculation is the key strategy to achiev-

ing complete linear-scaling. Using basis functions that are strictly local in real

space allows the assembly of the Hamiltonian to be accomplished in a linear-

scaling fashion. Even with localised basis functions, the long-range Coulomb

energy term requires special consideration where it can be made to scale linearly

by employing techniques such as fast multipole methods [101], or full multigrid

methods [102]. The Hamiltonian matrix and the overlap matrix become sparse

in a set of strictly localised basis functions, which allows the memory to scale

linearly too when using sparse matrix techniques. In the present thesis, focus is
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placed on the SIESTA methodology [2] to define the Hamiltonian and overlap

matrices. Here norm-conserving pseudopotentials [88] are used to replace the

core electrons and nuclei with a non-local potential, while the valence states are

expanded in a set of PAOs [94]. A similar approach with the use of the PAOs

can be found within the PLATO code [103]. Recapping section 2.4.3, the PAOs

are the numerical solutions to the atomic pseudized problem, represented as a

tabulation on a radial grid and multiplied by the appropriate spherical harmonic.

The basis functions are made to be strictly confined by solving the atomic prob-

lem within a confining potential that becomes instantaneously or asymptotically

infinite at a given radius [3]. By localising the basis functions, an approximation

is made within the basis set, differing from methods where the Hamiltonian is

directly made sparse through thresholding of integrals involving infinitely ranged

basis functions [104].

With the assembly of the Hamiltonian computed in linear-scaling time and

memory, the second key step of diagonalisation of the Hamiltonian matrix will

have to be performed in a linear-scaling fashion. It is necessary to replace the

standard cubic-scaling matrix diagonalisation with an approach to obtaining the

self-consistent density that enforces localised solutions without explicit calcula-

tion of all Kohn-Sham states. This exploits the fact that the density is known to

decay exponentially in materials with a band gap, while metals exhibit an alge-

braic power-law decay [19]. One of the first linear-scaling methods to be proposed

in this context for DFT was the D&C approach, proposed by Yang in 1991 [21,22]

and then subsequently reformulated for use within the density matrix framework

in 1995 [20]. This method reduces the O(N3) scaling inherit with the diagonali-

sation of the Hamiltonian matrix to the linear-scaling regime by using partition

functions to subdivide the electron density of the complete system. Each subsys-

tem is then solved separately and the electron charge density of each subsystem

is found. The sum of the corresponding contributions from all subsystems is used

to obtain the total electron density and the energy of the system. This is possible

due to the fact that the electron density is a local property within DFT.

Following the proposal of the D&C approach, there was extensive interest in
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other linear-scaling approaches within the fielda. This included methods based on

functional orbital minimisation with respect to localised Kohn-Sham states [100],

while avoiding explicit orthogonalisation, and techniques that operate directly

on the density matrix with sparsity imposed [105–107], namely density matrix

minimisation (DMM). Codes which employ DMM include ONETEP [78] and

CONQUEST [37–39]. Another linear-scaling code is OPENMX [108] which uses

either a linear-scaling Krylov-subspace method [109] or the D&C method with

the SIESTA PAO basis set.

Although being one of the earliest so-called order-N methods, D&C has been

relatively neglected until recently [23] within the condensed matter physics field,

though it has found significant use within the quantum chemistry community

due to the greater focus on localised basis sets and semi-empirical QM meth-

ods [24–26]. A few researchers have extended the D&C method to handle large-

scale MD simulations using the FDM approach [27, 33] and to solid state sys-

tems [110, 111]. An implementation of a FDM method can found in section 4.2.

Warschkow implemented a version to work with discrete variational DFT [112].

Pan et al [113] have also extended implementation to work in parallel. Another

early implementation can be found in the DeFT software package implemented

by Shaw and St-Amant [114]. Recently, the group of Vashishta and Shimojo

used their hierarchical real-space D&C scheme [23] for large scale MD simula-

tions [115–119], validating the use of D&C for possible calculations up to millions

of atoms. Another recent investigation of the D&C method was made by Zhao et

al [120], where they altered the standard method by using so-called positive and

negative fragments instead of spatial partition functions, which when combined

in a specific way can cancel out artificial boundary effects. In parallel to the

first principles community, there is a large push to use the D&C method by the

Hartree-Fock and post-Hartree-Fock community [28–31,121–126].

The relative simplicity and robust nature of D&C with respect to the size

and position of the band gap, combined with the successful implementations of

various groups, suggests a reevaluation of the method is merited.

What is proposed for this study, is combining the fast Hamiltonian assem-

aFor a more in depth analysis of the field please refer to the thorough review on the matter
written by Goedecker [19] and for a review of the CONQUEST code see Bowler et al [38].
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bly provided by the SIESTA package, through the use of localised PAOs, with

an efficient, parallel implementation of the D&C method. This chapter con-

tains a thorough explanation of the D&C method and the details of the cur-

rent implementation. Tests are carried out on an insulating, semi-conducting

and (near)metallic system, where comparisons to the KMG orbital minimisation

method are made. The parallelisation scheme is tested along with a first attempt

at combining the D&C method with the KMG orbital minimisation method [32].

3.2 Divide-and-Conquer Overview

The D&C scheme is related to the principle that the electronic structure for a

particular region of a quantum system, to a good approximation, only depends

significantly on the external potential due to nearby atoms, while those further

away are rapidly screened with increasing distance. This principle was formalised

and coined “near-sightedness” by Kohn [18]. The D&C method, first proposed

by Yang [21, 22], was arguably the first practical linear-scaling scheme for first

principles methods and while it precedes the work of Kohn, it builds on the prior

knowledge of localisation through construction of Wannier functions [127, 128].

The D&C method involves dividing a system into a set of smaller overlapping

subsystems. The speedup in calculation time occurs because each subsystem is

solved separately with a cost that no longer depends on the size of the global

problem. The individual subsystems are coupled to each other by a common

Fermi level allowing electrons to flow until equilibrium is achieved. The electronic

information obtained for each subsystem is then combined in a specific way so as

to provide an approximation to the global (complete system) density matrix.

The present implementation treats each subsystem as consisting of a core

region that is surrounded by a buffer region, as per the original work of Yang

[21]. The atom(s) found in the core region are those whose localised electronic

states are to be determined, while the atoms within the buffer region are required

to correctly describe the electronic states of the core atoms within the local

subsystem. Figure 3.1 shows an example of a possible subsystem that could

be used for a graphene sheet. The atoms within the inner ring (red ring) are
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Figure 3.1: Core and buffer regions within D&C for an infinite graphene
sheet. In this case the core region is indicated with the inner red circle. The
buffer region, indicated with the outer orange ring, can be increased in size
to provide a more accurate calculation.

designated as the core region while the atoms in between the inner and first

outer ring (orange ring) are designated as the buffer region. By increasing the

radius of the buffer region (the outermost ring) a more accurate computation

is achieved at the cost of computational time. For the purposes of the present

chapter, the majority of the calculations will focus on the situation where the

core region holds one atom, while the buffer region can include as many atoms as

required. Each atom in the system will become a core atom of a single subsystem.

The size of the buffer region depends on the decay length (between any elements

in the density matrix) within the material of interest and controls the degree

of deviation from the unconfined Kohn-Sham solutions. Within the SIESTA

methodology, an initial guideline as to the radius needed is given by the distance

at which the Hamiltonian matrix elements go exactly to zerob. However, the

buffer size may need to exceed this distance since the density matrix will usually

decay at a slower rate than the Hamiltonian. Despite this, it is found that using

smaller buffer radii than the Hamiltonian cut-off can also produce reasonable

qualitative results for certain systems, as will be shown in section 3.6.1.

bThis distance will always be greater than the equivalent distance for the overlap matrix as a
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(a) (b) (c)

Figure 3.2: Different types of subsystems. a) Subsystem with a single core
atom. b) Subsystem with the core atoms as a functional group of the system.
c) Subsystem merging the hydrogen atom with the heavier carbon atom for
this particular system.

Although, the present focus is on the situation where there is a subsystem

centred on each individual atom, this need not be the case. For example, where

atoms are closely linked, such as in a functional group or small covalent molecule,

this entity could be treated with a single subsystem. Figure 3.2 shows possible

choices one can make for the number of core atoms within a subsystem. The

benefit of this is that the computational cost is lowered by a factor related to the

number of core atoms per subsystem. In the limit where serial diagonalisation

dominates, the cost will be reduced by the third power of the number of atoms

combined per core (assuming all have the same number of basis functions per

atom). The disadvantage is that in a system with an evolving geometric structure

there is greater risk of discontinuities in the potential energy surface should a

functional group dissociate and the subsystems are dynamically updated. If the

membership of the subsystems remains fixed then the quality of the electronic

structure would be a non-uniform function of the nuclear configuration. Section

4.1 details the implementation of a switching function applied to each subsystem

Hamiltonian that smooths the interactions between atoms in the central region of

the subsystem and atoms near the boundary of the subsystem. The application

of the switching function tends to reduce the effects of the energy discontinuities.

Having a subsystem centred on each atom represents the conservative option that

minimises such errors, at an increased computational cost.

consequence of the matrix elements arising from the non-local projectors of the pseudopotential.
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3.3 Divide-and-Conquer Formulation

The original D&C formulation [21, 22] uses the electron density as the basic

variable. With the electron density defined as;

ρ(r) = 2

N/2∑

m

ψ∗
m(r)ψm(r)

�

�

�

�3.1

where m is summed over occupied states, N/2 (accounting for spin). The premise

of the D&C method is to forego calculating the density from all N/2 orbital

solutions, ψm(r), of the Kohn-Sham equations
�

�

�

�2.50 . Instead, the electron density

is computed directly from a local approximation.

Beginning with a reformulation of
�

�

�

�3.1 ;

ρ(r) = 2〈r|η(ǫF − Ĥ)|r〉
�

�

�

�3.2

where η(x) is the Heaviside step function (η(x) = 1 for x > 0, η(x) = 0 for x ≤
0), Ĥ is the Kohn-Sham Hamiltonian and ǫF is the Fermi level. Through the use

of a smooth and normalised partition;

∑

α

Pα(r) = 1
�

�

�

�3.3

the system is physically divided into overlapping subsystems, α. The partition

weight functions, Pα(r), are large in the subspace of α and have small values in

locations far from α [21]. Summing up all subsystem contributions, the global

density can be constructed as;

ρ(r) = 2
∑

α

Pα(r)〈r|η(ǫF − Ĥ)|r〉 =
∑

α

ρα(r)
�

�

�

�3.4

where the subsystem density matrix is ρα(r) = Pα(r)ρ(r). The following local

approximation is now introduced for ρα(r);

ρ̃α(r) = 2Pα(r)〈r|fβ(ǫF − Ĥα)|r〉
�

�

�

�3.5
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where fβ is the Fermi function (fβ = [1 + exp(−βx)]−1) approximating an occu-

pation number, β is the inverse electronic temperature (β = 1/kBT , where kB is

the Boltzmann constant and T is the temperature), ǫF is the Fermi level common

to all subsystems and Ĥα is the local approximation to the Kohn-Sham Hamil-

tonian for subsystem α. An expression for the direct calculation of the global

density (from
�

�

�

�3.5 ) is given by:

ρ̃α(r) = 2Pα(r)
∑

m

fβ(ǫF − ǫαm)|ψα
m(r)|2

�

�

�
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The eigenfunctions, ψα
m, are obtained within the LCAO expansion;

ψα
m(r) =

∑

j

Cα
jmφ

α
j (r)

�

�

�

�3.7

and are the solutions to the following generalised eigenvalue equation:

(Hα − ǫαmSα)Cα
m = 0

�

�

�

�3.8

The subsystem Hamiltonian is defined asHα
ij = 〈φα

i |Ĥ|φα
j 〉, the subsystem overlap

matrix is defined as Sα
ij = 〈φα

i |φα
j 〉 and the subsystem coefficient matrix is defined

as Cα
m. The Fermi level, ǫF , is determined by the electron density normalisation

condition:

N =

∫
ρ(r)dr = 2

∑

α

∑

m

fβ(ǫF − ǫαm)〈ψα
m|Pα(r)|ψα

m〉
�

�

�

�3.9

The D&C method can also be formulated using the density matrix [20]. With

this version, the expensive integral calculations associated with the partition

functions are avoided. The density matrix version is much more efficient. It is also

applicable to other ab initio methods, such as the Hartree-Fock and semiempirical

methods. The density matrix version is used in this thesis and its formulation

follows.
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3.4 Density Matrix Divide-and-Conquer Formulation

The formulation described here is based on the density matrix version of the

D&C method [20]. Here, the density matrix is the primary entity in the formu-

lation; the focus of D&C is to estimate the global density matrix from the sum

of contributions from all subsystem density matrices.

Within D&C, the global density matrix is divided up into individual subsys-

tem density-matrices weighted by a normalised partition function;

∑

α

Pα
ij = 1

�

�

�

�3.10

where α is the subsystem index, i and j are orbital indices. The partition function,

Pα
ij is defined by a Mulliken-type [129] weight matrix (suitable for subsystems

consisting of one core atom):

Pα
ij =





1 if i ∈ α and j ∈ α

1/2 if i ∈ α and j 6∈ α

0 if i 6∈ α and j 6∈ α

�

�

�

�3.11

Defining the Kohn-Sham electron density;

ρ(r, r′) = 2

N/2∑

m

ψm(r)ψm(r
′) =

∑

ij

ρijφi(r)φj(r
′)

�

�

�

�3.12

where electron density is defined in the space of the Kohn-Sham orbitals, {ψm(r)}.
The density matrix, ρij , is defined in the atomic orbital space, {φi(r)}, and is

given by the linear coefficients, {Cim}, as follows:

ρij = 2

N/2∑

m

CimCjm

�

�

�

�3.13

The density matrix can be divided into subsystem contributions. The density ma-

trix is then a sum of contributions from all subsystems, weighted by the partition
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(a) (b)

Figure 3.3: The localisation of the density matrix specific to a subsystem.
a) The subsystem density matrix. b) Subsystem density matrix elements
contributing to the global density matrix. The partition function reduces the
full subsystem density matrix to a cross-shaped arrangement of the elements.
c-c represents the core-core orbital elements with a partition function weight
of 1 (background shaded in blue). c-b represents the core-buffer orbital
elements with a partition function weight of 0.5. b-b represents the buffer-
buffer orbital elements with a partition function weight of 0. Because the
matrix elements of the b-b section don’t contribute to the global density
matrix they are not drawn in.

matrix:

ρij ≡
∑

α

Pα
ijρij =

∑

α

ραij
�

�

�

�3.14

The local nature of the density matrix allows each subsystem density matrix

contribution to be approximated by;

ραij = 2Pα
ij

∑

m

fβ(ǫF − ǫαm)Cα
imC

α
jm

�

�

�

�3.15

where fβ is the Fermi function (fβ = [1 + exp(−βx)]−1) approximating an occu-

pation number, β is the inverse electronic temperature (β = 1/kBT , where kB is

the Boltzmann constant and T is the temperature), ǫF is the Fermi level common

to all subsystems and ǫαm is the orbital energy of the m th state in subsystem α.

The Fermi level needs to be found iteratively. This is achieved by using

the midway energy between the maximum eigenvalue and minimum eigenvalue

found from all subsystems as the initial guess. This Fermi level then is iteratively

changed until it is narrowed down to a specified tolerance in the number of
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electrons i.e. the Fermi level is determined by the normalisation of the correct

number of electrons, N , given by:

N =
∑

ij

ρijSij =
∑

ij

(
2
∑

α

Pα
ij

∑

m

fβ(ǫF − ǫαm)× Cα
imC

α
jm

)
Sij

�

�

�

�3.16

An example of subsystem density matrix in shown in Figure 3.3. The figure

shows all the elements in the subsystem density matrix and also only the elements

which will contribute to the global density matrix according to
�

�

�

�3.11 .

3.4.1 Density of States

As reported by Lee and Yang [130], the density of states (DOS) can be found

using the D&C method by recognising that the DOS and is given by;

DOS =
dN

dǫ

�

�

�

�3.17

where N is the number of electrons and ǫ is the eigenstate energy. Using
�

�

�

�3.16 ,

equation
�

�

�

�3.17 is expanded out as:

dN

dǫ
=
∑

ij

(
2
∑

α

Pα
ij

∑

m

f
′

β(ǫF − ǫαm)× Cα
imC

α
jm

)
Sij

�

�

�

�3.18

The derivative of the Fermi function, f
′

β, is found by the chain rule:

f
′

β(ǫ) =
βe−βǫ

(1 + e−βǫ)2
�

�

�

�3.19

The role of the Fermi function derivative is to extract out the eigenvalues from the

possible spectrum. In practice, the Fermi function derivative is approximated by

a Gaussian, eliminating any problems with states above the Fermi level in regards

to the denominator. The β variable determines the width of the Gaussian, where

the higher the value, the narrower the peak.
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3.5 Implementation

In the present thesis the density matrix D&C scheme is combined with the

SIESTA methodology [2] for the linear-scaling construction of the Hamiltonian

and overlap matrices. Given the use of localised PAOs as basis functions within

the SIESTA methodology, this is a natural combination to achieve full linear-

scaling for large systems with relatively modest resources. The following sections

contain a description of the key aspects of the present methodology.

3.5.1 Algorithm

Before explaining the algorithm of the current D&C implementation, it is worth-

while to describe the sparse memory model and the parallelisation scheme within

the standard SIESTA package. Both features of SIESTA will be used within the

D&C implementation.

Sparse arrays are arrays where the majority of the elements have a value of

zero. The storage of the sparse arrays can be accomplished in order-N scaling with

sparse-matrix memory models. Within the SIESTA methodology the overlap

matrix, Hamiltonian matrix, and the density matrix are all sparse due to the

strict confinement imposed on the PAOs. A naive approach would be to store

these matrices in a 2-dimensional array, which would scale as O (N2), where N is

the number of orbitals, and any operations are performed in non-linear scaling.

Using sparse-matrix techniques the storage and certain matrix operations can be

accomplished in order-N scaling. The sparse-matrix format employed in SIESTA

stores all non-zero elements of the sparse matrix in a 1-dimensional array, A. An

integer array, numA, of size N , stores the number of non-zero elements of each

row. An integer array, listAptr, of size N , stores the pointers to the start of each

row in a 1-D packed array of non-zero values within A. The last integer array,

listA, has the same size as A and stores the index pointers to each column. An

example that prints each element of A is shown using pseudocode in Algorithm

1.

There are two parallelisation schemes within SIESTA. The first handles the

distribution of dense matrices when conventional diagonalisation routines are
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Algorithm 1 Print each element of sparse matrix, A

for io = 1 to N do
for j = 1 to numA(io) do
ind← listAptr(io) + j
jo← listA(ind)
print Element (jo, io)→ A(ind)

end for
end for

needed. Specifically, a block-cyclic orbital decomposition (either 1-D or 2-D)

scheme is used to enable compatibility with the ScaLAPACK [131] parallel eigen-

solvers. When the order-N orbital minimisation approach in SIESTA is used, a

uniform grid spatial decomposition algorithm is used to distribute the atoms

amongst the compute nodes. The domain decomposition algorithm divides the

unit cell into right-angled sections of side lengths as close to being equal while

remaining commensurate with the lattice vectors. It then allocates each section

with a non-zero atom count to a node. The allocation is conducted in a way so as

to try to achieve a balanced number of atoms per node. This process could be fur-

ther refined by accounting for the neighbour density in order to achieve improved

load balancing. The contributions to the Hamiltonian, overlap and density ma-

trices from each atom are then stored on the corresponding compute nodes. In

short, each compute node will be responsible for a subset of orbitals localised

in a region of space and all the corresponding electronic information pertaining

to those orbitals. Each node then generates the elements of the Hamiltonian

and overlap matrices that it is uniquely responsible for. The spatial decompo-

sition algorithm is used as the preferred parallelisation scheme with the D&C

implementation.

The general overview of the D&C implementation within the SIESTA code

is shown in a flowchart in Figure 3.4. The flowchart has been appropriately

marked to indicate which parts of the code involve the original SIESTA routines

(solid box), parallel communication (dashed box) and the present D&C module

(dotted line). The algorithm begins by reading the spatial locations of all atoms

and options to perform the DFT run. Once the atom specifics have been read

into SIESTA it will distribute the atom information across the compute nodes
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according to the domain decomposition algorithm.

The D&C section of the code then begins from this point. If it is the first

SCF cycle, the system will be divided into subsystems. This entails creating

a list structure to store the orbital information for each subsystem with distin-

guishing lists for the core and buffer atoms. If running in parallel, the matrix

elements belonging to buffer orbitals that reside on other compute nodes need to

be communicated to the nodes with ownership of subsystems requiring that data.

Because of the spatial locality of the domain decomposition, the number of com-

pute nodes to be communicated with should remain constant or decrease as the

system size increases, according to whether the number of processors employed

scales with the system size or remains fixed, respectively.

The solution for the global density matrix proceeds by first solving the gen-

eralised eigenvalue problem for each subsystem, calculating the partition weights

(equation
�

�

�

�3.11 ) and other values that will benefit from caching. Once the eigen-

values of all subsystems are known, the Fermi level is found by iterative variation

until equation 3.16 is satisfied to within a specified tolerance (e.g. 1x10−10). Hav-

ing determined the Fermi level, the global density matrix is found by calculating

the density matrices for each subsystem and then combining the contributions

multiplied by the previously calculated partition weights.

3.5.2 Memory Considerations

When using D&C for large systems, the amount of memory used by the process

must be manageable and scale linearly with system size. For D&C to be practical

for very large systems only the information that is absolutely required should be

stored. A large part of the task is already accomplished within SIESTA since

all matrices that represent orbital based information (such as the Hamiltonian,

overlap and density matrices) are stored in a sparse matrix representation as a 1-

D array of non-zero valued elements. Because of the strict spatial locality of basis

functions, the sparsity patterns for the Hamiltonian and overlap matrix are known

a priori and fixed for any given nuclear configuration, while the density matrix

is assumed to adopt the same sparsity pattern as the Hamiltonian. This use of

sparse arrays ensures that the SIESTA methodology, by default, is linear-scaling
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Figure 3.4: Schematic outlining the major implementation sections and
process flow for the implementation of D&C within the SIESTA code. The
original SIESTA routines are represented with solid boxes, the newly imple-
mented D&C modules are shown in boxes with dotted lines and any parallel
communication modules are shown in boxes with dashed lines.

in memory usage, except when diagonalisation is employed. Here dense matrix

algebra is used locally for compatibility with standard eigensolution routines.

Diagonalisation is typically used in cases where the system size is below the

cross-over point at which linear-scaling becomes advantageous.

The D&C implementation, as has been described in section 3.5.1, can con-

sume large amounts of memory for large systems. This is due to the fact that

each subsystem must store 2-dimensional arrays for the subsystem Hamiltonian

matrix, the subsystem overlap matrix, the subsystem eigenvector solutions and

the subsystem density matrix. However, the subsystem Hamiltonian and overlap
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matrices are not in use by the time it comes to constructing the density matrix,

reducing the peak memory use. In the algorithm where the computational effort

is minimised, the eigenstates of all subsystems must be stored simultaneously

since they cannot be used in the construction of the local density matrix until

the global Fermi level is known. When the number of subsystems is large and the

subsystem sizes are considerable this can lead to a prohibitive amount of memory

usage.

To overcome this issue, an alternate algorithm has been implemented that

counters this problem, if so desired. It is accomplished by using a single alloca-

tion of memory for each matrix (Hamiltonian, overlap, eigenvectors and density

matrix) that is large enough to store the information for the largest subsystem.

That is, instead of storing matrices for each subsystem, only one set of matrices

are stored and reused for each subsystem. This reduces the memory usage from
∑Np

i (NH
orb)

2+(NS
orb)

2+(N eig
orb)

2 to (NH
maxorb)

2+(NS
maxorb)

2+(N eig
maxorb)

2, where Np is

the number of subsystems, NH
orb is the number of orbitals (basis functions) in the

subsystem Hamiltonian matrix, NS
orb is the number of orbitals in the subsystem

overlap matrix, the N eig
orb is the number of orbitals in the calculated subsystem

eigenvectors; the subscript maxorb denotes the use of the maximum number of

orbitals found within any of the subsystems. Using this memory conserving op-

tion leads to the memory usage scaling in a sub-linear fashion, but does increase

the computing time required for each SCF iteration, since the subsystem Hamil-

tonian and overlap matrices will need to be diagonalised twice (the first time just

requiring determination of the eigenvalues) if no caching of eigenvectors for later

use can be performed. Depending on whether the calculation time is dominated

by the diagonalisation step, this can have a significant influence on the time re-

quired for the SCF cycle. On average there is 50% increase in computing time

and the worst case scenario will yield a doubling of the prefactor.

If memory usage is the key bottleneck, then it can be reduced to the abso-

lute minimum required by computing all eigenvalues for the subsystems on the

fly as required. Given that the eigenvalues are needed at each iteration of the

Fermi level solution, this likely to make this algorithm uncompetitive as it would

increase the prefactor by at least an order of magnitude, if not more. Memory
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reduction can also be achieved by grouping atoms together to form subsystems

(i.e. multiple core atoms per subsystem), since this reduces the total number

of eigenstates to be stored by eliminating some duplication. An alternative and

more viable approach would be to spread the information relating to each sub-

system across many compute nodes (i.e. the diagonalisation of the subsystem

Hamiltonian will occur on more than one compute node). This will help rectify

the problem of memory usage on a symmetric multiprocessor machine, where

each compute node has access to only a specific amount of memory.

3.5.3 Parallelisation

The parallel version makes use of the load balancing scheme included within the

SIESTA package for the KMG order-N method, namely a domain decomposition

algorithm to distribute the atoms amongst the compute nodes.

Because of the use of spatial locality during the parallel construction and

solution for each subsystem, the only global communication occurs during the

determination of the Fermi level. Here the eigenvalues and weights are stored

on the node responsible for that particular subsystem. For every trial value of

the chemical potential, the occupancy of each subsystem must be determined

and a global summation performed to determine the total number of electrons

before iteratively refining the Fermi level. Once the Fermi level is converged then

each subsystem density matrix is calculated. The overall density matrix is then

constructed through local communication between neighbouring nodes.

By taking advantage of symmetric multiprocessor machines, the diagonali-

sation of the subsystem Hamiltonians can be distributed across many compute

nodes with the use of block-cyclic orbital decomposition for each subsystem. This

approach will drastically reduce the prefactor of the D&C method and allow for

calculations of very large systems, as has been accomplished in [23]. The mem-

ory required for the storage of a subsystem is distributed amongst many compute

nodes reducing the overall memory per compute node.
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3.6 Results

Calculations have been performed on a range of different systems in order to

examine the performance of the present combination of the D&C implementa-

tion with the SIESTA methodology. The examples chosen include insulating,

semi-conducting and near-metallic systems in order to demonstrate the varied

application of D&C. The specific test cases are a linear alkane chain, CnH2n+2,

for the insulating system, previously studied by Warschkow et al [112] using their

D&C implementation, bulk silicon for the semi-conducting system, and a single

walled (5,5) armchair carbon nanotube for the near-metallic system. The linear-

scaling and the rate of convergence of the total energy to the Kohn-Sham energy

when increasing the subsystem radius are studied. By increasing the subsystem

radius, this implies increasing the number of buffer atoms in the buffer region.

This is reported as an increase in the buffer region radius surrounding the core

atom (subsystem centre). As with all tests in this study, each subsystem contains

a single core atom surrounded by a buffer region. With this type of partitioning

the number of subsystems equals the number of atoms within the system.

The scaling of the calculation time is shown by plots of the time required to

complete the first SCF cycle and the section of the first SCF cycle only relevant to

the D&C module. The first SCF cycle incorporates the building of the Hamilto-

nian and overlap matrices (handled by the SIESTA code) and the diagonalisation

and building of the global density matrix (handled by the D&C module). For

comparison, the performance of the KMG order-N solver already implemented

within SIESTA is examined for the polymer and bulk silicon. Due to the inherent

difficulties of achieving convergence when working at fixed chemical potential, the

KMG algorithm was not examined for the near-metallic nanotube.

Calculations for semi-conducting bulk silicon were performed using the mem-

ory conservation scheme, as described in section 3.5.2. The remaining calculations

were performed using the algorithm in which the eigenvectors for each subsystem

are stored during the computation of the Fermi level.

Calculations were performed on a 32 processor SGI Altix machine (1.5 GHz)

with 64 GB of RAM. All calculations were run on a single processor, except
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those in Section 3.6.4 where the parallel performance of the code for a bulk

silicon system consisting of 21,952 atoms is examined.

The systems used in the following calculations are all periodic either in 1-

dimension or 3-dimensions. Order-N methods are designed to work with large

systems. In supercell calculations the Order-N method will find the eigensolutions

explicitly at the gamma point. Hence, when working with periodic systems it is

important the supercell be large enough to effectively sample all the required

k-points in the Brillouin zone. The size of the subsystems will play a factor when

the subsystem size is larger than the supercell, in that the k-point sampling will

improve as the subsystem size increases. One way to improve the sampling would

be to use a partition function that is geared towards the periodic nature of the

system, as found by Zhu et al [110].

3.6.1 Insulating System

The example of an insulating system studied here is the 1-D periodic linear alkane

chain, CnH2n+2, where the number of formula units per unit cell, n, has been var-

ied. This system should provide a favourable case for all linear-scaling methods as

a closed-shell, wide gap, material with low dimensionality. The calculations were

carried out using a 150 Rydberg cut-off for the real-space integration grid used

to represent the density, an energy shift of 0.02 Rydberg for the PAO orbital con-

finement, and a density matrix convergence criteria of 1x10−4 for self-consistency.

The Perdew-Burke-Ernzerhof (PBE) [54] form of the GGA was used for the XC

functional.

The dependence of the D&C method on the basis set and the buffer region

size is examined for various length alkane chains in Table 3.1. The table shows

the energy difference per atom between the D&C calculated total energy and

the conventional SIESTA calculated total energy, (Edc−Esiesta)/n, computed by

diagonalisation. The errors found for all basis sets and buffer region sizes are

relatively small. Given that the numbers quoted are the absolute differences in

energy, any relative energies would exhibit even smaller discrepancies. Further-

more, even for the smallest buffer region size any error is likely to be small at the

level of the accuracy of DFT. As the quality of the basis set is improved from
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Table 3.1: Energy differences per formula unit (eV) between diagonalisation
and D&C as a function of buffer region size and basis set for the CnH2n+2

alkane chain.

Number Buffer Basis Set
of Atoms Region

(Å) SZa SZPb DZc DZPd

192 5.0 4.285E-03 2.705E-03 -1.661E-02 4.170E-03
7.5 6.0765E-04 3.164E-04 -9.237E-04 8.031E-05
10.0 -7.074E-07 6.057E-06 -4.656E-05 4.705E-05

384 5.0 4.288E-03 2.705E-03 -1.661E-02 4.167E-03
7.5 6.076E-04 3.164E-04 -9.237E-04 8.030E-05
10.0 -7.075E-07 6.063E-06 -4.656E-05 4.705E-05

768 5.0 4.286E-03 2.705E-03 -1.661E-02 5.258E-03
7.5 6.074E-04 3.164E-04 -9.151E-04 1.026E-04
10.0 -7.075E-07 6.061E-06 -4.656E-05 4.705E-05

a Single-zeta. b Single-zeta + polarisation. c Double-zeta. d Double-zeta +
polarisation.

SZ to DZ, the discrepancy in the energy increases, while inclusion of polarisation

functions actually leads to a reduction in error, at least for smaller buffer regions.

While such variations will be sensitive to the details of the construction of the ba-

sis functions, such as the split-norm for radial degrees of freedom, the important

conclusion is that there is unlikely to be a strong influence on the convergence

behaviour of the D&C method.

As is to be expected, the errors decrease in size as the buffer region radius

is increased. Table 3.1 shows that even a small buffer region radius of 5.0 Å is

adequate for this system, regardless of basis set size, even though the buffer region

is smaller than the maximum interaction range in the Hamiltonian of 7.3030

Å (for SZ) to 7.4416 Å (for DZP). The 0.2619 Å difference in the Hamiltonian

interaction range is due to the extra KB projectors generated for the DZP basis

set. The largest new KB projector for the DZP basis set has a radius of 1.1435 Å,

which is 0.1310 Å larger than the largest KB projector found with the SZ basis

set. When considering the Hamiltonian interaction range, the diameter is used

so this value is doubled to give the difference in the ranges for both basis sets.

The errors in the calculated forces are shown in Table 3.2. The errors in the
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Table 3.2: Force differences per formula unit (eV/Å) between diagonal-
isation and D&C as a function of buffer region size and basis set for the
CnH2n+2 alkane chain.

Number Buffer Basis Set
of Atoms Region

(Å) SZa SZPb DZc DZPd

192 5.0 4.62E-02 -7.97E-03 -8.15E-02 -1.03E-01
7.5 -1.24E-03 -1.77E-03 2.20E-03 -4.74E-03
10.0 3.50E-05 5.00E-05 6.10E-05 -9.91E-04

384 5.0 4.67E-02 -8.00E-03 -8.15E-02 -1.03E-01
7.5 -1.24E-03 -1.77E-03 2.20E-03 -4.74E-03
10.0 3.50E-05 5.00E-05 6.10E-05 -9.91E-04

768 5.0 4.65E-02 -7.92E-03 -8.15E-02 -1.02E-01
7.5 -2.62E-03 -1.59E-03 2.02E-03 -4.73E-03
10.0 3.50E-05 5.00E-05 6.10E-05 -9.91E-04

a Single-zeta. b Single-zeta + polarisation. c Double-zeta. d Double-zeta +
polarisation.

forces are larger than the total energy errors. As with the total energy errors,

the errors in the force decrease as the buffer region is increased. The size of the

errors for the 10.0 Å buffer region indicate that MD simulations are a possibility

with the D&C scheme, as long as the buffer region is an adequate size. For

geometry optimisation calculations, the error in the forces is expected to increase

the number of steps required for convergence. With this in mind, and convergence

criteria that is typically set at a maximum of 0.04 eV/Å, the error in the forces

has to be reduced for efficiently found and accurate geometries. For the linear-

alkane chain a buffer region of 7.5 Å is required for all basis set sizes, to efficiently

be able to optimise the geometry at a 0.04eV/Å tolerance.

For comparison to the present D&C results, calculations were performed on

this model system using the KMG order-N functional. The same localisation

radius has been applied to the Wannier functions within the KMG approach as

for the subsystem radius in the D&C technique. Consequently, both methods are

attempting to find localised solutions with the same confinement constraint. The

methods differ though in that the KMG approach contains a further approxima-

tion in that inverse of the overlap matrix is represented by a series expansion,
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Figure 3.5: Comparisons of the errors per atom (eV) in the total energy
between the D&C method and the KMG method for the CnH2n+2 alkane
chain with buffer radii. The D&C method exhibits a constant error as a
function of the system size, while for the KMG method, the error becomes
constant as the system size is increased. a) 5.0 Å buffer radius (subsystem
for D&C and Wannier function radius for KMG). b) 7.5 Å buffer radius. c)
10.0 Å buffer radius.
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Figure 3.6: The CPU time scaling as a function of the number of atoms
per supercell for a linear alkane chain, CnH2n+2. a) The D&C contribution
to the first SCF iteration. b) A comparison between the KMG method and
the D&C method for a buffer radius of 10.0 Å. The KMG method’s first
SCF and average SCF iteration calculation times are shown.

usually truncated at first order. The errors in the total energy relative to full diag-

onalisation are shown as their logarithms in Figure 3.5 for both KMG and D&C.

For D&C the order of magnitude of the error is relatively constant as a function

of increasing system size, while that for KMG decreases. This behaviour is likely

to be, at least in part, a consequence of the increased sparsity of the overlap ma-

trix leading to the additional approximation within the KMG scheme improving.

Interestingly, for the smaller radii of confinement for the eigenstates the KMG

yields a lower error in the total energy than the D&C scheme, which is somewhat

unexpected, though the situation reverses for a radius of 10.0 Å. The error in

the 10.0 Å KMG SZP calculation is larger than the error for the 7.5 Å KMG SZP

calculation. This can be explained due to an oscillatory behaviour of the total

energy convergence as the localisation region is increased.

The scaling of the calculation time of SZ basis set calculations for increasing

supercell dimensions of the CnH2n+2 alkane chain is shown in Figure 3.6(a). The

graph shows the timing contribution of the D&C module section to the first SCF

cycle. The graph clearly exhibits linear-scaling of the calculation time as the

system size is increased for all buffer region sizes (i.e. the diagonalisation of the

Hamiltonian matrix and the assembly of the global density matrix are all linear-
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scaling processes). Although not shown here, the scaling is found to be linear

regardless of basis set size, as expected. It is also possible to analyse the prefactor

associated with the buffer region radius for this simple case. For radii of 5.0 Å, 7.5

Å, and 10.0 Å, the number of orbitals within the subsystem centred on a carbon

atom is 42, 66 and 90, respectively, for a single-zeta basis set. When the slopes of

the lines in Figure 3.6 are compared against these numbers, it appears that the

prefactor scales approximately as the second power of the number of orbitals in

the subsystem, as opposed to the theoretical maximum of a cubic scaling. Figure

3.6(b) shows a comparison of calculation time with the KMG order-N method. A

direct comparison is not appropriate in this case as the KMG method generally

has differing times for each SCF iteration, due to the CG minimisation process

involved in the method (see section 2.4.3.1). As the LWFs are transformed to the

form of the final states at each SCF iteration, it requires less computational effort

for the minimisation process. In general, the first few SCF iterations take the

longest time and as the calculation progresses through the SCF steps the number

of iterations in the CG optimisation decreases. Figure 3.6(b) displays the timings

for the contribution to the KMG order-N method for the first SCF iteration and

the average time for all SCF iterations compared with the calculation time for

the D&C section of the first SCF cycle. The prefactor of the first SCF time for

KMG is much larger than the prefactor of the D&C method for the average SCF

timec. The average SCF times of both methods are more in line with each other;

where the higher number of SCF iterations required (in this case) for the KMG

method and the fact that each SCF iteration takes less time has reduced the

gradient of the average SCF time.

3.6.2 Semiconducting System

Bulk silicon has been chosen as the test case for the semiconducting system,

having been previously widely studied using linear-scaling methods. The calcu-

lation was performed using a 40 Rydberg cut-off for the real space integration

grid used to represent the density, an energy shift of 0.01 Rydberg for the PAO

cThis comparison is possible as the first SCF time should be very close to the average SCF
time, due to the constant SCF times for the D&C method
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Table 3.3: Energy differences (eV/atom) between D&C and diagonalisation
for a bulk silicon supercell consisting of 512 atoms as a function of buffer
radius and basis set size.

Number Buffer Basis Set
of Atoms Region

(Å) SZa SZPb DZc DZPd

512 6.0 -4.879E-02 9.306E-03 5.570E-02 -7.512E-02
7.0 1.751E-02 -9.124E-03 9.001E-02 -2.960E-02
8.0 1.320E-02 -4.685E-03 3.115E-02 -1.346E-01

a Single-zeta. b Single-zeta + polarisation. c Double-zeta. d Double-zeta +
polarisation.

orbital confinement, and a density matrix convergence criteria of 1x10−3. The

maximum interaction range within the Hamiltonian matrix is 9.3843 Å for both

the SZ and DZP basis sets. Again the PBE functional was used for the XC

energy and potential. As in the insulating case, the energy difference per atom

between the D&C total energy and that obtained via full system diagonalisation

is calculated, see Table 3.3, as a function of basis set and buffer region size for a

supercell consisting of 512 atoms.

As before, a small dependence was found on the basis set used and that by

increasing the subsystem size (i.e. the buffer region) the error in the total energy

is reduced, with one exception discussed below. Due to the smaller band gap and

higher dimensionality of this system, the errors in the total energy (for a given

subsystem size) are larger than in the insulating polymer case. Consequently,

larger buffer regions are required to capture the decay length of the eigenfunctions

accurately. However, the use of subsystems shorter than the interaction range

of the Hamiltonian is still acceptable for at least qualitative results. Because

the sparsity pattern of the density matrix in SIESTA is determined by that of

the Hamiltonian, the computational penalty for using a large buffer radius only

becomes particularly pronounced once the Hamiltonian interaction length scale

is exceeded.

There is one discrepancy in the results; for the 8.0 Å buffer region size and

DZP basis set the error in the total energy, -1.34620E-01 eV, is larger than errors

found for decreasing buffer region sizes. In changing the radius from 7 to 8 Å two
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Figure 3.7: The CPU time scaling of a series of varying sized bulk silicon
supercells. The contribution of the D&C section of the code to the first SCF
iteration is shown.

extra shells of silicon atoms are included within the buffer region, comprising 28

atoms, as opposed to a single shell for the first transition. This demonstrates that

the convergence with respect to buffer region is not guaranteed to be smooth and

fluctuations are likely to be particularly pronounced when all atoms are symmetry

equivalent due to the extent of mixing in the bands on the system.

The scaling performance of this system (with increasing atom numbers) is

shown in Figure 3.7. The graph shows the calculation time for the D&C section

of the first SCF cycle. The calculations examine the scaling from 512 atoms to

8,000 atoms using the SZ basis set. For the 6.0 Å buffer region size, linear-scaling

is evident with increasing system size. The 7.0 Å buffer region size calculations

show linear-scaling beyond 4,096 atoms, but deviate below this. This behaviour

is even more evident with the 8.0 Å buffer region size calculations, where there

is approximately O(N3) scaling for the system sizes examined up to 4,096 atoms

and near linear-scaling for larger supercells. There is a discrepancy between 6,400

atoms and 8,000 atoms which is not currently resolved. It is assumed that it was

due to hardware issues and not the D&C method itself, as there is no indication

from the other results that linear-scaling should not occur. The absence of linear-

scaling for small system sizes is due to the larger buffer region radii being greater

than half the supercell length, based on a lattice constant of 5.43 Å for a single
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unit cell of silicon. Within this regime, each subsystem includes nearly all the

atoms of the supercell and so the cubic scaling of the diagonalisation for the

subsystems dominates. Once the unit cell length becomes greater than the buffer

region diameter there is a progressive transition to the expected linear-scaling

until the crossover point is reached at which D&C becomes more efficient.

3.6.3 Near-Metallic System

This last test case was chosen to demonstrate the applicability of the D&C

method for (near)metals. A near-metallic (5,5) armchair single walled carbon

nanotube (SWNT) is chosen for this purpose. The calculations were performed

using the PBE functional with a 100 Rydberg cut-off for the density integration

mesh, 0.02 Rydberg for the PAO energy shift and a density matrix convergence

criteria of 1x10−4. The resulting interaction ranges within the Hamiltonian vary

from 7.3030 Å for the SZ basis set to 7.4416 Å for the DZP basis set. Once again,

the difference in the interaction range is due to the extra KB projectors.

As in the previous two cases, calculations are performed of the variation of

the error in the total energy with respect to different basis sets and buffer region

sizes. The test system consisted of a 1,000 atoms within the one-dimensional

supercell. The results are summarised in Table 3.4. The trends in the total

energy with subsystem radius are less well defined for the present system, as

would be expected due to the longer decay length. For the DZ and DZP basis

sets the error does consistently decrease with increasing radius, though slowly,

while for the SZ basis set the absolute magnitude decreases, but with the sign

oscillating. For the SZP there is no apparent convergence within the range of radii

examined and a more extensive exploration of larger radii is required. Despite

the lack of a clear and rapid decay in error with radius, the magnitude of the

difference from the full diagonalisation results, per atom, is comparable to that

of thermal energy at ambient conditions and so higher levels of convergence may

not be required for all calculations.

The error in the total energy increases as the basis set size becomes larger

for any given subsystem radius. In regards to the basis set size, as the basis

set size increases (improves), the band gap will generally decrease. The decrease
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Table 3.4: Energy difference (eV/atom) between D&C and diagonalisation
as a function of buffer region radius and basis set quality for a single walled
(5,5) near-metallic carbon nanotube.

Number Buffer Basis Set
of Atoms Region

(Å) SZa SZPb DZc DZPd

1000 5.1121 1.194E-02 1.100E-03 -3.409E-02 -7.250E-02
5.8424 -8.730E-03 -3.894E-03 -2.499E-02 -3.111E-02
7.3030 2.272E-03 -1.335E-03 -1.315E-02 -1.225E-02

a Single-zeta. b Single-zeta + polarisation. c Double-zeta. d Double-zeta +
polarisation.

in the size of the band gap is due to the bands becoming broader as the basis

set improves, and hence the states tend to be delocalised. Yang et al [132] has

found, for the case of a SWNT and a SWNT doped with adsorbed titanium

chains, that the states near the Fermi level are more delocalised than states

deeper in the valence band. The delocalised states near the Fermi level require

larger subsystem sizes as the the basis set improves.

Figure 3.8 shows the scaling of the calculation times of the D&C section

which contributes to the first SCF cycle with increasing system size. The SZ

basis set was used for all the timing calculations. For all buffer region sizes the

scaling is indeed found to be linear. To reduce the error in the total energy larger

buffer region sizes are required. The timing results show that by increasing the

buffer region slightly, as shown by the transition from a radius of 5.8 Å to 7.3 Å,

this will increase the prefactor considerably. This requirement of a larger buffer

region will inhibit the use of the D&C method for small metallic systems. The

so-called crossover point, where it is computational beneficial to use the D&C

method rather than conventional techniques, is pushed out to larger problems,

which makes the use of the D&C method really only applicable to fairly large

near-metallic systems. Using different partition schemes that produce smaller

numbers of subsystems can help reduce the prefactor. Currently, there is a serial

version of a partitioning scheme that allows for non-overlapping core regions with

multiple atoms. This type of partitioning reduces the number of subsystems, but

also increases the subsystem sizes. There should be a cross-over point when this
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Figure 3.8: The CPU time scaling of a series of varying length (5,5) single
walled carbon nanotube with a SZ basis set. The contribution of the D&C
section implemented within the code to the first SCF iteration is shown.

type of partitioning is compared to the standard single core atom partitioning

scheme. Further work is required to extend this to work in a parallel scheme.

3.6.4 Parallelisation

The parallel performance of the D&C implementation was tested on the bulk

silicon system for a supercell containing 21,902 atoms. Using a SZ basis set, 40

Rydberg mesh cut-off for the integration grid, a PAO energy shift of 0.02 Rydberg

and a buffer region radius of 6.08 Å, the test examined the parallel performance

in going from 1 to 32 processors.

All calculations were executed using the memory conservation option (see

section 3.5.2). Figure 3.9 shows that the speedup gained from using larger num-

bers of processors is nearly perfect relative to the calculation time for a single

processor. For 32 processors, the speed up of 31.78 times is very close to the

ideal value of 32. This indicates that the computational effort is indeed domi-

nated by the diagonalisation of the subsystems, which is embarrassingly parallel,

while the computation of the Fermi level and build of the Hamiltonian matrices,

where communication is required, represents a small overhead. Similar results

were obtained by Pan et al [113] with their parallel implementation of the D&C

method.
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Figure 3.9: Parallel performance of the D&C implementation when study-
ing a bulk silicon supercell containing 21,952 atoms with a SZ basis set.
Shown here is the speedup when increasing the number of processors rela-
tive to a single processor calculation.

It should be noted that for this specific case the load balancing is perfect,

i.e. in all cases each compute node has an equal number of subsystems of equal

size due to the high symmetry of the problem. This is an important factor in

contributing to the near perfect speedup. However, perfect load balancing will not

always occur in practice with the present scheme for systems with inhomogeneous

density or atom type distributions. Further refinement of the implementation is

required to handle cases when the current distribution scheme does not perform

well. The use of octrees [133, 134] or kd-trees [135–137], instead of a uniform

grid, to distribute the atoms can improve the load-balancing; where the octree

or Kd-tree can be balanced with knowledge of the size of the subsystems.

3.7 Hybrid Divide and Conquer - Orbital Minimisa-

tion Method

For all the benefits of ease of use, stability and no prior knowledge requirement of

the chemical potential, the D&C method suffers from the problem of duplication

of effort. That is, any given matrix element will be part of the Hamiltonian of

multiple localised states, leading to the generation of many similar eigenstates
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from different subsystems. The overlap of the subsystems leads to replication that

increases the prefactor of the method and in turn, the cross-over point. On the

contrary, orbital minimisation linear-scaling methods eliminate the duplication

of effort present in the D&C method. In the current implementation of the

SIESTA package, the KMG functional
�

�

�

�2.91 [32] is the energy functional generally

employed to determine the electronic states in a linear-scaling fashion. The KMG

method is subject to difficulties of its own. Because the algorithm works at a

constant chemical potential, rather than fixed number of electrons, it is necessary

to a priori specify the Fermi level to lie within the band gap. If this is not the

case, then the method diverges. For wide gap insulators this is rarely an issue

since there is considerable margin for error when guessing the chemical potential

to use, whereas for a semiconductor or small gap system it becomes a matter of

trial and error. To complicate things further, the Fermi level is a function of the

density matrix and therefore will change during the SCF iterations, leading to

the potential need to adjust the chemical potential at each cycle during the early

stages of SCF convergence.

For all the issues inherent with orbital minimisation methods, they do have

one important benefit, in that the computational cost of the minimisation process

lessens as the SCF procedure heads towards convergence. The calculation time to

complete the minimisation within the first few SCF iterations is typically much

greater than in the later stages. The D&C method, on the other hand, has a

constant SCF calculation time. It would be beneficial to forego the unstable and

lengthy early stages of the KMG method with an alternate faster and more stable

method, but then take advantage of the final faster stages within the functional

minimisation method. What is proposed here is to use the D&C method, with

its constant SCF calculation time for the initial calculation method that will seed

the KMG method with a Fermi level, density matrix and initial LWFs.

The proposed method is possible due to the localisation region scheme shared

by both methods. The D&C subsystems correlate to the localisation regions used

to describe the LWFs of the KMG method. The D&C subsystem eigensolutions

are localised within the subsystem boundaries, making them a possible candidate

to be transformed into a LWF. By supplying a Fermi level and a set of LWFs that
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correspond to the supplied density matrix it is expected that the KMG method

will be close to functional convergence and hence, the final SCF iterations using

the KMGmethod will be faster than a D&C SCF iteration, reducing the prefactor

of both methods. Unfortunately, the hybrid method (D&C-KMG), does not fulfil

this aim and the following work is considered a first attempt at such a method.

Further work is required to improve the method.

3.7.1 Divide and Conquer Seeding

The general procedure followed by the D&C-KMG method is to run a D&C

calculation until the Fermi level is stable. For typical systems, this generally

occurs between 2-6 SCF iterations. Once the Fermi level is stable, the information

gained by the D&C is used to seed the KMG method in the next SCF iteration.

For each atom the KMG method creates NWS (from
�

�

�

�2.92 ) LWFs, where the

number is dependent on the atomic species. The Mulliken-type partitioning used

by the D&C implementation generally has ≥ NWS eigensolutions for each atom

centred subsystem. Here, the first NWS subsystem eigensolutions are used to

create the LWFs. For large basis set sizes, the number of subsystem states will

always be larger than the required number of LWFs. It is not necessary to use

the first NWS eigenstates of the D&C subsystem, as it might be beneficial to

use some linear combination or to specifically use the polarisation orbitals. Even

though the KMG functional itself does not require orthonormal LWFsd, an option

to further orthonormalise the D&C subsystem eigensolutions using the modified

Gram-Schmidt orthogonalisation algorithm [138] has been implemented to see if

there is an improvement with the KMG minimisation process.

The modified Gram-Schmidt orthogonalisation process takes a set of k vec-

tors, S = {v1,v2 . . .vk}, and transforms them into an orthogonal set, S′ =

{u1,u2 . . .uk}, that spans the same k-dimensional subset of the inner product

dThe KMG functional penalises non-orthogonality, whereby the minimised states will even-
tually be orthogonalised.
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space of S. The orthogonal vectors are found as follows;

u
(1)
k = vk − proju1

(vk),

u
(2)
k = u

(1)
k − proju2

(u
(1)
k ),

...

u
(k−2)
k = u

(k−3)
k − proj

uk−2
(u

(k−3)
k ),

u
(k−1)
k = u

(k−2)
k − projuk−1

(u
(k−2)
k )

uk = u
(k−1)
k − proj

uk
(u

(k−1)
k )

where the projection operator, proj
u
, is defined as:

proju(v) =
〈v|u〉
〈u|u〉u

Unfortunately, the hybrid method (D&C-KMG), does not successfully function

as intended and the following work is considered a first attempt at such a method.

Further work is required to improve the method.

3.7.2 Results

Calculations have been performed in order to examine the performance of the

present implementation of the D&C-KMG method. All calculations were per-

formed using a single processor of a Intel Centrino 2 duo core system (2.0 GHz)

with 2 GB of RAM. The code was compiled with no compiler optimisations to

ensure that any timing information is purely based on the actual implementation

of the method.

Firstly, the convergence behaviour of the D&C and KMG method is examined

for a CO2 molecule. This will give an indication of convergence issues that will

play a part in determining the efficiency of the hybrid method. Table 3.5 shows

a summary of the number of SCF iterations required for the CO2 density matrix

to converge to a tolerance of 1x10−4 for varying configurations based on the real-

space integration grid fineness, Broyden mixing weight and initial Fermi level

specification for the KMG method. For both the KMG and D&C method the
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Table 3.5: CO2 molecule self-consistency dependence on initial Fermi level,
mixing weight and integration grid resolution. The number of SCF cycles
required for convergence is shown for the KMG method and D&C method.
The KMG method seems to be sensitive to these conditions. The D&C
method has a constant convergence rate. It must be noted that for larger
systems the results will tend to vary, generally with larger numbers of SCF
iterations.

Broyden KMG Method with Initial Fermi Level D&C
Mixing Weight

-3 eV -4 eV -5 eV -6 eV -7 eV -8 eV

350 Rydberg Integration Grid
0.1 58 79 23 21 14 16 10
0.15 16 36 38 24 24 42 10
0.2 16 33 62 10 13 11 10

500 Rydberg Integration Grid
0.1 DNCa 23 18 81 16 32 10
0.15 28 38 21 20 51 55 10
0.2 16 27 11 10 12 11 10

a DNC - did not converge.

localisation regions encompass the complete system.

In this case, the D&C method converges in 10 SCF iterations for all mixing

weights and integration grids. Hence, there isn’t a dependence on the quality of

the calculation. This is not necessarily true for larger systems, as the quality of

the calculation and the mixing weight will play a large role in the convergence rate.

On the other hand, even for this small system, the KMG method is dependent on

the mixing weight and the fineness of the integration grid. With the integration

computed on a real-space grid, the symmetry of the system is broken. This in

turn breaks symmetry in the orbital solutions and hence the density, leading to

issues with SCF convergence. The issues manifest primarily as oscillations in the

density during the mixing process, that in turn make it difficult to converge the

density. The initial Fermi level guess also plays a role in the SCF convergence.

Even though all initial Fermi levels are within the “band gap” of the system, there

are only a few cases for when convergence is reached in 10 steps. For a Fermi level

of -3 eV and a 500 Rydberg integration grid the KMG method failed to converge.
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It must be noted, that high SCF iterations occur because of oscillations in the

SCF procedure when near convergence. That is, the convergence behaviour is

regular until near self-consistency, when the oscillations occur. For larger systems

the convergence rate of the KMG method will play a major role in lowering the

prefactor of the complete calculation time.

The convergence behaviour of the KMG and the D&C-KMG method for the

CO2 molecule with a 500 Rydberg integration grid is shown in Table 3.6. The

KMG calculations are run with the Broyden mixing scheme at a mixing weight

of 0.2 with an inclusion of a linear-mixing kick at every 6th SCF iteration for

different initial Fermi levels. The linear-mixing kick was found to help with

SCF convergence with both methods, especially for the KMG method which

has much lower SCF iterations than without the linear-mixing kick (except for

the KMG case at a -4 eV Fermi level). For the D&C-KMG method there are

three separate calculations for a mixing weight of 0.2 and varying initial Fermi

levels. The transition from the D&C method to the KMG method occurs on the

6th SCF iteration. The first set of D&C-KMG based calculations use only the

calculated density matrix to seed the KMG method (labelled SDM), the second

set uses the density matrix and the subsystem eigenfunction coefficients to seed

the KMG method (labelled SLWF) and the third set of calculations uses the

density matrix and orthonormalised subsystem eigenfunction coefficients to seed

the KMG method (labelled SOLWF).

The number of SCF iterations for the D&C-KMG cases is generally lower than

the KMG based method, with the smallest number of iterations occurring at 11

steps. The number of CG iterations required to minimise the KMG functional for

the first two SCF steps, when the KMG method is running, will indicate if the

seeding of the D&C KS orbitals benefit the KMG method. The best case is shown

for the -7 eV Fermi level run where the KMG method requires 67 CG iterations.

The SDM case requires only 33 iterations, the SLWF case requires 26 iterations

and the SOLWF case requires 27 iterations. There is a similar decrease in the

number of CG iterations for the second SCF step as well. For these settings, the

seeding of the KMG method from the D&C method is proven to be beneficial

in reducing the computational cost of the KMG method. In all other cases with
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Table 3.6: Self-consistent field convergence of the CO2 molecule. The
number of SCF cycles required for convergence is shown for the standard
KMG method and the hybrid D&C-KMG method with a localisation region
and subsystem radius of 3.0 Å. The calculations are run at varying initial
Fermi levels. The transition from the D&C method to the KMG method
(for the D&C-KMG method) occurs on the sixth SCF iteration. Refer to
text for meanings of the different schemes.

Scheme SCF Mixing Initial Fermi Level (eV)
Transition Kick

-3 -4 -5 -6 -7 -8 -7.8326a

Number of SCF iterations
KMG - 6 14 DNCb 14 13 18 18 18

SDM 6 6 11 11 17 11 15 11 DNC
SLWF 6 6 11 20 21 15 16 DNC 16
SOLWF 6 6 11 DNC DNC 16 16 16 16

Number of CG iterations - 1st SCF iteration after transition
KMG - 6 21 >1000 44 37 67 34 14

SDM 6 6 58 37 33 34 33 54 CGDc

SLWF 6 6 106 39 28 30 26 CGD 25
SOLWF 6 6 102 37 33 37 27 40 36

Number of CG iterations - 2nd SCF iteration after transition
KMG - 6 16 14 15 17 41 13 9

KMG - 6 7 7 6 7 10 6 CGD
SLWF 6 6 7 12 18 12 14 CGD 13
SOLWF 6 6 7 12 12 12 12 14 11

Total Calculation Time (s)
KMG - 6 156 DNC 156 151 195 194 197

SDM 6 6 126 128 184 128 209 136 DNC
SLWF 6 6 133 213 226 165 174 DNC 174
SOLWF 6 6 126 DNC DNC 174 174 176 174

a The Fermi level found by the D&C method and used to seed the KMG based
orbital minimisation method. b DNC - Did not converge. c CGD - Conjugate-
gradients minimisation process diverged.

76



3.7. HYBRID DIVIDE AND CONQUER - ORBITAL MINIMISATION METHOD

varying Fermi levels there are similar trends, expect for the case of the -3 eV

Fermi level. Here, the number of CG iterations is actually much higher than

the KMG method at 58 iterations for the SDM case, 106 iterations for both the

SWLF and SOLWF cases compared to the 21 iterations of the KMG case.

The D&C-KMG method is now tested on a 98-atom linear-alkane chain with

an integration grid of 150 Rydberg, using a SZ basis set with 0.02 Rydberg en-

ergy shift. The convergence of standard diagonalisation and the D&C method

are shown in Table 3.7. For this larger system, the D&C method also exhibits the

oscillatory behaviour in the SCF procedure as did the KMG method for the CO2

molecule. To overcome the oscillatory behaviour, a linear-mixing kick is intro-

duced into the SCF process. Where for every specified number of SCF iterations

linear-mixing is performed instead of Broyden mixing. The standard diagonal-

isation converges in 7 SCF iterations for all mixing weights. For a subsystem

radius of 7.5 Å the D&C method converges in 9 or 8 iterations depending on the

mixing weight, this is reduced to 7 iterations when a linear-mixing kick on the

sixth SCF iteration is applied. For the larger 10 Å subsystem radius, the con-

vergence occurs at 7 iterations, the same as the standard diagonalisation. This

is expected because as the subsystem radius is increased, the approximation in

the D&C method is reduced. The total calculation time, total energy and the

maximum constrained force are also listed for reference.

For the same 98-atom linear-alkane chain system as above, the next set of

calculations as shown in Table 3.8 are carried out using the KMG and D&C-

KMG methods, using a LWF localisation region and subsystem radius of 7.5 Å.

The KMG calculations are run with the Broyden mixing scheme at a mixing

weight of 0.2 and with a linear-mixing kick at every 4th SCF iteration for dif-

ferent initial Fermi levels. For the D&C-KMG method there are three separate

calculations for each mixing weight and initial Fermi level. The transition from

the D&C method to the KMG method occurs on the 4th SCF iteration. The

first set of D&C-KMG based calculations use only the calculated density matrix

to seed the KMG method (SDM), the second set uses the density matrix and the

subsystem eigenfunction coefficients to seed the KMG method (SLWF) and the

third set of calculations uses the density matrix and orthonormalised subsystem
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Table 3.7: Self-consistent field convergence of the 98-atom linear-alkane
chain system. The number of SCF cycles required for convergence is shown
for standard diagonalisation and the D&C method with a subsystem radius
of 7.5 Å and 10.0 Å. A linear-mixing kick has been introduced to help with
convergence. The total energy is included for reference.

Mixing Mixing SCF Total Total
Weight Kick Iterations Time (s) Energy (eV)

Conventional diagonalisation
0.1 - 7 286 -5951.9807
0.15 - 7 282 -5951.9808
0.2 - 7 286 -5951.9799

D&C with 7.5 Å subsystem radius
0.1 - 9 351 -5951.9493
0.15 - 9 350 -5951.9496
0.2 - 8 316 -5951.9494

0.1 6 9 351 -5951.9497
0.15 6 9 351 -5951.9498
0.2 6 7 284 -5951.9482
D&C with 10 Å subsystem radius

0.1 - 7 301 -5951.9948
0.15 - 7 300 -5951.9949
0.2 - 7 302 -5951.9949

78



3.7. HYBRID DIVIDE AND CONQUER - ORBITAL MINIMISATION METHOD

eigenfunction coefficients to seed the KMG method (SOLWF).

The KMG based methods all converge in 7 SCF iterations, except for the case

with an initial Fermi level of -4 eV, which converges in 11 iterations. The linear-

mixing kick at the fourth iteration helps quicken the convergence. The number

of CG optimisation steps for the first SCF iteration after the transition ranges

from 109 steps to 126 steps. The number of CG optimisations for the second

SCF iteration after the transition ranges from 12 to 13 steps. For the D&C-

KMG method to be successful, it must have approximately the same number of

the SCF iterations and the number of CG steps must be lower than the KMG

method. For the SDM case, the initial LWFs coefficients are randomly chosen.

Hence, only the initial Hamiltonian is close to convergence.

For the initial Fermi levels of -5 eV, -6 eV and the D&C found Fermi level

of -7.858 eV convergence occurs at 7 SCF iterations. The number of CG steps

for the first and second transitioned SCF iteration are slightly lower than the

KMG method, hence the total calculation time is slightly lower, for example the

-6 eV Fermi level run finished in 313 secs while the KMG method for the same

Fermi level finished in 318 secs. The D&C-KMG method in this case is faster

than the KMG method. However, it is still slower than the 284 secs using the

D&C method with a linear-mixing kick at the sixth SCF iteration. The reason

is due to the number of CG steps in the first SCF iteration after the transition.

The number of CG iterations has to be reduced to improve upon the D&C-KMG

method efficiency.

The next set (SLWF) of calculations uses the density matrix and the D&C

subsystem eigensolutions to seed the KMG functional. In this case the number

of CG iterations increased dramatically, just below three times on average, ac-

companied with a large increase in the total calculation time. The reason for the

increase in CG steps is not fully understood. When compared to using random

LWF coefficients, as in the case of the SDM calculations, the CG minimisation

for the D&C subsystem eigensolution based LWFs would be expected occur much

more quickly as the LWFs should resemble the final states more accurately. Try-

ing to overcome this problem, the D&C subsystem eigensolutions are further

orthonormalised and shown in the set of SOLWF calculations. Unfortunately,
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Table 3.8: Self-consistent field convergence of the 98-atom linear-alkane
chain system. The number of SCF cycles required for convergence is shown
for the standard KMG method and the hybrid D&C-KMG method with a
localisation region and subsystem radius of 7.5 Å. The calculations are run
at varying initial Fermi levels. The transition from the D&C method to
the KMG method (for the D&C-KMG method) occurs on the fourth SCF
iteration. Refer to text for meanings of the different schemes.

Scheme SCF Mixing Initial Fermi Level (eV)
Transition Kick

-3 -4 -5 -6 -7 -8 -7.8580a

Number of SCF iterations
KMG - 4 7 11 7 7 7 7 7

SDM 4 4 15 15 7 7 15 19 7
SLWF 4 4 15 15 15 7 15 15 15
SOLWF 4 4 15 15 15 7 7 15 15

Number of CG iterations - 1st SCF iteration after transition
KMG - 4 119 118 116 110 109 126 115

SDM 4 4 120 123 121 108 110 138 127
SLWF 4 4 304 304 304 302 304 306 305
SOLWF 4 4 304 304 304 302 302 305 302

Number of CG iterations - 2nd SCF iteration after transition
KMG - 4 13 13 13 12 12 12 12

SDM 4 4 5 5 4 4 4 4 4
SLWF 4 4 5 4 4 4 4 4 4
SOLWF 4 4 5 5 4 3 3 4 4

Total Calculation Time (s)
KMG - 4 331 442 323 318 318 339 317

SDM 4 4 566 561 319 313 556 683 319
SLWF- 4 4 615 616 617 375 619 618 610
SOLWF 4 4 614 621 616 375 373 615 624

a The Fermi level found by the D&C method and used to seed the KMG based
orbital minimisation method.
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the orthonormalisation process produced similar results to the SLWF set, not

improving the situation.

The next step is to try the same set of calculations with the transition from the

D&C method to the KMG method occurring at a point closer to self-consistency.

In this case, the transition occurs on the sixth SCF iteration. Table 3.9 shows a

summary of the results. The linear-mixing kick is also moved to the sixth SCF

iteration. Findings show that applying the linear-mixing kick at the same time

of the transition helps with convergence. The KMG calculations all converged

in 8 SCF iterations, while 11 iterations is the lowest number of iterations for

the D&C-KMG method. Prolonging the transition between the two methods

did not greatly effect the number of CG steps in the first SCF iteration after

the transition. This suggests that even though the seeded density matrix assists

with the convergence, the seeded LWFs are the factor that hinder the process.

Surprisingly, the CG minimisation in the second transitioned SCF iteration for

all D&C-KMG calculations completed in 1 step, as the density matrix was not

close to convergence.

Because delaying the transition did not improve the CG minimisation process,

the next set of calculations are set back to a transition at the fourth SCF iteration

with the linear-mixing kick also set back to the fourth SCF iteration. In this case,

the D&C subsystem radius and KMG LWF localisation region is set to 10 Å to

see if a more accurate calculation assists the method. For the SDM cases, the

number of SCF iterations ranged from 7 to 15 iterations and once again the

number of CG minimisation steps in the first transitioned SCF iteration is still

comparable to the KMG method. For the SLWF and SOWLF cases the there is

a similar pattern when compared to the calculations with a localisation region of

7.5 Å. Even though the number of SCF iterations can be kept low, the number

of CG steps in the first SCF iteration after the transition is comparable to the

number of the CG steps with the standard KMG method. For an initial Fermi

level of -8.0 eV the SLWF and SOLWF calculations failed to converge since the

CG minimisation diverged in the second SCF iteration after the transition.

In summary, the primary issue for all sets of calculations is that the number

of CG steps for the first SCF iteration after the transition from the D&C method
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Table 3.9: Same as Table 3.8 using a 7.5 Å D&C subsystem radius and
KMG localisation region. The difference this time is the transition from the
D&C method to the KMG method (for the D&C-KMG method) occurs on
the sixth SCF iteration.

Scheme SCF Mixing Initial Fermi Level (eV)
Transition Kick

-3 -4 -5 -6 -7 -8 -7.7764a

Number of SCF iterations
KMG - 6 8 8 8 8 8 8 9

SDM 6 6 16 16 29 16 27 13 13
SLW 6 6 14 11 29 29 11 11 15
SOLWF 6 6 13 11 29 23 21 11 15

Number of CG iterations - 1st SCF iteration after transition
KMG - 6 119 118 116 110 109 126 114

SDM 6 6 120 123 121 108 110 139 127
SLWF 6 6 304 304 302 302 304 306 302
SOLWF 6 6 304 304 302 302 302 306 302

Number of CG iterations - 2nd SCF iteration after transition
KMG - 6 13 13 13 12 12 12 12

SDM 6 6 1 1 1 1 1 1 1
SLWF 6 6 1 1 1 1 1 1 1
SOLWF 6 6 1 1 1 1 1 1 1

Total Calculation Time (s)
KMG - 6 355 355 353 347 347 353 377

SDM 6 6 600 595 979 590 922 506 505
SLWF 6 6 591 516 1116 1043 515 497 692
SOLWF 6 6 163 143 319 260 240 142 182

a The Fermi level found by the D&C method and used to seed the KMG based
orbital minimisation method.
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Table 3.10: Same as Table 3.8 except with a 10.0 Å D&C subsystem radius
and KMG localisation region. The transition from the D&C method to
the KMG method (for the D&C-KMG method) occurs on the fourth SCF
iteration.

Scheme SCF Mixing Initial Fermi Level (eV)
Transition Kick

-3 -4 -5 -6 -7 -8 -7.5084a

Number of SCF iterations
KMG - 4 11 7 7 11 7 7 7

SDM 4 4 15 7 7 7 7 11 7
SLWF 4 4 11 15 7 7 7 DNCb 7
SOLWF 4 4 11 15 15 15 7 DNC 7

Number of CG iterations - 1st SCF iteration after transition
KMG - 4 67 64 59 57 56 75 61

SDM 4 4 67 62 58 56 59 105 66
SLWF 4 4 302 302 302 302 302 312 302
SOLWF 4 4 302 302 302 302 302 309 297

Number of CG iterations - 2nd SCF iteration after transition
KMG - 4 13 13 12 12 12 12 12

SDM 4 4 1 4 4 4 4 15 4
SLWF 4 4 1 1 3 3 3 CGDc 3
SOLWF 4 4 1 1 1 1 3 CGD 4

Total Calculation Time (s)
KMG - 4 443 315 315 433 313 317 313

SDM 4 4 563 320 314 314 315 464 318
SLWF 4 4 574 671 424 429 428 DNC 428
SOLWF 4 4 548 668 675 670 439 DNC 432

a The Fermi level found by the D&C method and used to seed the KMG based
orbital minimisation method. b DNC - Did not converge. c CGD - Conjugate-
gradients minimisation process diverged.
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to the KMG method is either comparable or much larger (depending on if the

LWF coefficients are seeded from the D&C method) than the number of CG

steps required for the standard KMG method. This particular issue has been

shown in all sets of calculations and is the primary cause of the failure of the

method. Possible steps that can be taken to reduce the time spent in the CG

minimisation are as follows. The form of the seeded LWFs can be made to be

more representative of a Wannier-type function with transformation procedures,

such as orbital localisation techniques [139–143]. The final suggestion involves

modifying the KMG band structure energy functional to accommodate the D&C

seeded LWFs. Because the KMG functional naturally transforms any LWF form

into the final states, transforming the seeded LWFs becomes more of a viable

option.

3.8 Concluding Remarks

This implementation successfully combined the density matrix D&C scheme with

the SIESTA methodology for computing the Hamiltonian and overlap matrices.

The implementation exhibits linear-scaling within the D&C scheme, provided

the dimensions of the physical system exceed those of the allowed range for the

localised states. The applicability to a variety of systems with varying band

gaps has been demonstrated, including a near-metallic carbon nanotube. This

scheme will allow practical electronic structure calculations of very large systems,

consisting of thousands to tens of thousands of atoms, with relatively modest

computational resources. While the results of the D&C scheme are comparable

to those currently obtained with the Kim-Mauri-Galli algorithm in SIESTA, the

robustness of the approach leads to it being advantageous for systems with small

band gaps, and therefore a valuable alternative approach to achieving linear-

scaling within the SIESTA methodology. When executed in parallel for large

systems the D&C approach exhibits near perfect speedup, providing there is

appropriate load balancing.
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No need to ask.

He’s a smooth operator.

- Sade 4
Divide-and-Conquer Dynamics

As shown in the previous chapter, the D&C linear-scaling method is very efficient

and effective at calculating the energetics and forces of large quantum systems.

A study involving the dynamics of atoms with regard to the D&C method follows.

Firstly, it is shown that discontinuities in the potential energy surface occur when

atoms enter or leave a subsystem. A method to alleviate this problem by smooth-

ing(tapering) the interactions between all atoms in the subsystem and with atoms

near the boundary of the subsystem is investigated. The use of an auxiliary outer

buffer region coupled with the tapering method is also investigated. The second

part of the chapter investigates the Frozen Density Matrix (FDM) method de-

veloped by Lee & Yang for the D&C method. The D&C FDM method improves

the efficiency of the D&C method in MD simulations. The premise of the FDM

method is to only calculate portions of the density matrix from the subsystem

eigenvectors in areas which are deemed interesting at each molecular dynamics

(MD) step. The rest of the density matrix is calculated from eigenvectors cached

from a previous MD step. In this way only a relatively few subsystems are diago-

nalised while the rest are already stored in memory, reducing the calculation time

per MD step. The standard FDM method is enhanced to handle multiple regions

instead of only the dynamic and frozen regions. All methods are implemented

within the current D&C implementation
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4.1 Combating Energy Discontinuities

When a system is solved in a particular way, as in the D&C method, that provides

an alternate and somewhat easier avenue for finding a solution, an approximation

is generally made. As with all approximations, there is an inherent error in the

accuracy of the results that usually cannot be avoided, though the error can be

reduced. With the D&C method a common indicator of the level of approxima-

tion is the difference found in the total energy of the Kohn-Sham system when

compared to conventional diagonalisation techniques. A simple way to reduce

this error is to increase the size of the subsystems used to partition the system,

although, as shown in 3.6, an increase in the prefactor of the method also occurs.

This in turn increases the cross-over point at which the D&C method becomes

beneficial to use in terms of the computational time required for a given level of

accuracy. Generally, the size of the subsystem will be of the order of twice the

largest orbital radius found in the system, or more commonly, the largest inter-

action length between any two elements in the subsystem Hamiltonian matrix.

Regardless of the size of the subsystem, unless the subsystems encapsulate the

complete system, there will always be an approximation to the total energy with

the D&C method.

Within a simulation where atomic positions are altered, whether it be an MD

simulation or a geometry optimisation, the D&C approximation provides another

source of error related to the total energy that must be addressed. Illustrated in

Figure 4.1, this error comes in the form of discontinuities in the potential energy

surface as atoms enter and/or leave subsystems. In this scenario, the total energy

of a water dimer is plotted as the distance separating the monomers is varied.

Comparing the smooth and continuous energy landscape of the conventional di-

agonalisation method found in SIESTA (thick black line) to the discontinuities

found in the D&C runs (dotted line and lines with symbols) it is easy to foresee

the build up of possible errors in a dynamics simulation.

SIESTA, using localised PAOs, requires the consideration of the overlap of

orbitals as an important aspect of this error. The error will be most prominent

when the core atom orbitals couple with buffer atom orbitals near the boundary of
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Figure 4.1: Energy curves of a water dimer, calculated by varying the
distance between the two water monomers. Conventional diagonalisation
and the D&C method with a variety of subsystem sizes are used to solve for
the total energy. Discontinuities caused by the D&C method are shown to
occur as the atom membership of the subsystems changes as the distance
between the water monomers is decreased.

the subsystem. The size of the discontinuity will be proportional to the strength

of the orbital coupling. The increase or decrease in energy as atoms enter or

leave a subsystem is also proportional to the number of atoms already within the

subsystem relative to the number of atoms entering or leaving the subsystem.

The larger the number of atoms within a subsystem, the larger the number of

atoms that must change subsystem memberships to produce a change in energy

which is fractionally different from the trend. Typically, the number of atoms

entering or leaving a subsystem will be much smaller than the number of atoms

within the subsystem, which can lead to small changes in energy. Regardless of

the size of the changes in energy, these must be handled correctly to produce

smooth energy landscapes.

A closer look at Figure 4.1 shows that as the subsystem size is reduced, the

energy discontinuities become larger. Starting with a subsystem radius of 5 Å (red

dashed line), it is more or less the same result as the conventional diagonalisation

(thick black line) found in SIESTA. There is a slight difference in the energy

between a monomer separation of 5 Å to 3.25 Å, where the number of buffer atoms
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Table 4.1: Listing of the number of buffer atoms found within three subsys-
tems of one of the water monomers as the monomer separation is varied. The
case of a subsystem with radius of 3.5 Å is shown. The monomer separation
is segmented into regions labelled alpha-numerically as shown in Figure 4.1.
Changes in the number of buffer atoms in all subsystems correspond to an
energy discontinuity. The regions have been chosen specifically to highlight
the energy discontinuities.

Subsystem Core Number of buffer atoms in region
Atom

A1 - A2 B1 - B2 C1 - C2 D1 - D2 E1 - E2 F1 - F2

O 2 3 3 4 5 5
H1 2 2 3 3 4 5
H2 2 2 3 3 4 5

within the subsystems varies between four and five, with a small discontinuity

at 3.25 Å. Once the monomer separation reaches 3 Å each subsystem holds five

buffer atoms, which is the maximum number of buffer atoms for this system.

In the limit of each subsystem containing the maximum number of buffer atoms,

the D&C method is equivalent to the conventional diagonalisation method. For a

subsystem radius of 4.75 Å (blue line + squares) and 4.25 Å (orange line + circles)

the discontinuities are larger than the 5 Å subsystem case. The discontinuities in

the energy curve are detrimental to any dynamics simulation based on sampling

a potential energy surface. An extreme case is shown with a subsystem radius of

3.5 Å (green line + diamonds) where there are many large discontinuities. The

data for the 3.5 Å subsystem radius is marked with labels that indicate different

monomer separation ranges. Within these ranges the number of buffer atoms in

all subsystems remains relatively constant. A change in the number of the buffer

atoms can result in a discontinuity. The number of buffer atoms within these

ranges for a single water monomer are listed in Table 4.1.

The discontinuities in the total energy suggest the use of a large subsystem is

necessary. However, this option will not always be available due to constraints on

resources. Large subsystems will certainly not be desirable for quick qualitative

simulations. When this is the case, a procedure to alleviate the discontinuities

is needed. What is opted for here is to use a switching function which will
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taper(smooth) the interactions of all atoms in a subsystem, dependent on the

radial distance of the atom from the centre of the subsystem. Interactions will

slowly be introduced or diminished near the boundary of the subsystem depending

on whether an atom is entering or leaving the subsystem. As the tapering is

always applied, the tracking of subsystem atom memberships between dynamics

steps is not required.

The use of switching functions to taper interactions between particles is found

within potentials using in MD simulations, in particular for non-bonded, long-

range electrostatic interactions [144–151]. Switching functions are also found in

various implementations and derivations of the more complex many-body conduc-

tor like-screening model (COSMO) [152], implemented in quantum and molecular

mechanical codes. Senn et al [153] used a product of switching functions in their

modification of the COSMO scheme within ab initio molecular dynamics. Sim-

ilarly Delley [154] used switching functions in his periodic version of COSMO,

while Gale and Rohl used a product of switching functions in a derivative of

COSMO called COSMIC [155], which also deals with periodic systems within

their molecular mechanics code GULP [7]. No work was found in the literature

regarding the smoothing of interactions in the D&C method, though there is

related work with the use of a double buffer partitioning scheme to help with

SCF convergence, developed by Dixon and Merz Jr. [25] in their semi-empirical

D&C implementation [24]. Dixon and Merz Jr. favour the use of an outer buffer

region (surrounding the first buffer region) to dampen any interactions with core

atoms and buffer atoms near the boundary of the subsystem, which they call edge

contributions. The outer buffer region is used when diagonalising the subsystem

Hamiltonian, though the calculated eigenvectors from the outer buffer region do

not contribute to the global density matrix. While Dixon and Merz Jr. devel-

oped this technique to help with the SCF convergence rate, the technique can be

considered equally valid within the context of the work done here.

It is also expected that the SCF convergence rate will be improved upon with

the use of the switching function, as the coupling between the core and buffer

orbitals at the boundary is damped in an analogous fashion to when using an

outer buffer region. In regards to the SCF convergence, Akama et al [156] kept the
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number of SCF iterations low, as well as the error in the total energy, by reducing

the electronic temperature during the D&C SCF process. That particular group

also developed a D&C DIIS method [28] to help with SCF convergence. For

systems that are difficult to converge Shaw et al [114] recommend turning off

DIIS to help reach self-consistency when near convergence. In general, it has

been found that a very low mixing weight can help with convergence for systems

that prove to be difficult to converge. Use of a low mixing weight is not specific

to the D&C method. The group of Vashishta and Shimojo used a multi-level

embedding scheme within their hierarchical real-space D&C implementation [23]

for MD simulations [115–119]. They also use two buffer regions that are embedded

in a global Kohn-Sham self-consistent field.

The outer buffer scheme has also been implemented within the current D&C

SIESTA implementation. Tests on the the outer buffer region and combining the

switching function with the outer buffer region are presented in section 4.1.3.

4.1.1 Formalism

The switching function is applied to both the subsystem Hamiltonian and overlap

matrices. The function smoothly changes from 1 to 0 within a specified range.

A cosine-based switching function is used here, and defined as follows:

Θ(r) =





1 if r ≤ rmin

0 if r ≥ rmax

1
2

(
1 + cos

(
π(r−rmin)
rmax−rmin

))
if rmin < r < rmax

�

�

�

�4.1

The constants rmin and rmax define the range in which the function smoothly

goes from 1 to 0 and the variable, r, is the distance at which it is to be evaluated.

The switching function is then applied to each subsystem Hamiltonian;

Hα
ij = Hα

ijΘ(ri)Θ(rj)
�

�

�

�4.2
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where Hα
ij is the Hamiltonian element belonging to a subsystem, α, with corre-

sponding basis functions, i and j. Similarly for the subsystem overlap matrixa;

Sα
ij =





Sα
ij if i = j

Sα
ijΘ(ri)Θ(rj) if i 6= j

�

�

�

�4.3

where in this case only the off-diagonal matrix elements are effected, as the diago-

nal elements must remain equal to 1. This is to avoid numerical instability issues

when the taper function approaches zero. When this occurs, the on-diagonal el-

ements of overlap matrix, S, will go to zero and the matrix can become singular

as its determinant will tend to zero. A singular S matrix will cause numerical

issues in the evaluation of S−1 due to singularities.

It must be noted that any number of switching functions can be used to taper

the interactions, provided that the function goes smoothly to zero. In practice,

only the core - buffer and buffer - buffer orbital interactions are considered. The

core - core interactions typically occur far from the subsystem boundary.

4.1.2 Water Dimer

The switching function is now applied to the water dimer example considered

previously, see Figure 4.1. A comparison of a variety of tapering parameters is

carried out for the 4.75 Å and 3.5 Å subsystem radii data sets, shown in Figure

4.2. The results are presented for the case where the minimum taper radius, rmin,

is varied and the maximum taper radius, rmax, is set to the subsystem radius (i.e.

the switching function will go to zero at the subsystem boundary).

The calculations were carried out using a 350 Rydberg cut-off for the real-

space integration grid used to represent the density, a DZP basis set on all atoms

with an energy shift of 0.005 Rydberg for the PAO orbital confinement and

with a density matrix convergence criteria of 1x10−4 for self-consistency. The

PBE [54] form of the GGA was used for the XC functional. Norm-conserving

Troullier-Martins pseudopotentials [88, 91] in the Kleinman-Bylander factorised

form [89, 90] were used. The employed pseudopotential reference configurations

aNote that no weighting of the density matrix is performed.
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(a) (b)

Figure 4.2: The effects of applying a switching function to smooth the
discontinuities in the total energy curve for the water dimer system. a)
subsystem size of 4.75 Å. b) subsystem size of 3.5 Å.

were 2s22p43d04f 0 and 1s12p03d04f 0 for O and H, respectively. The cut-off radii

for all angular momentum channels, s, p, d and f , were specified as follows; for

O, 1.14a0 and for H, 1.25a0.

The energy curve for a subsystem radius of 4.75 Å has a single steep change in

the total energy at a monomer separation between 2.8 Å and 3.25 Å. It is unclear

if this change in energy is actually a discontinuity or just a steep but smooth

change; in either case the tapering mechanism is applicable. Figure 4.2(a) shows

the effects of the tapering.

The first set of data uses a taper region of 0.5 Å (pink line + squares), where

rmin is set to 4.25 Å. In this case, the energy value at a monomer separation of

2.8 Å is slightly reduced due to the tapering, although the change energy has not

been eliminated. Overall, the form of energy curve deviates from the energy curve

calculated from the standard D&C calculation (blue line + empty circles) and

the standard diagonalisation (black line). A larger taper radius of 1.0 Å (green

line + circles), where rmin is set to 3.75 Å, is also shown. Here the change in

energy of the standard D&C calculation is slightly smoothed, although the form

of the energy curve deviates greatly from both standard D&C and diagonalisation

curves.

Shown in Figure 4.2(b), the second energy curve with a subsystem radius of

3.5 Å (blue line + empty circles) has many discontinuities in its energy landscape.

The application of the switching function with a tapering region of 0.5 Å (pink
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line + squares) does little to smooth the curve. A larger taper region of 1.0 Å

(green line + circles) does smooth the curve. However, the form of the curve

deviates from the standard diagonalisation (black line) curve and has a large

difference in the minimum energy.

The ineffective nature of the switching function, when applied in this case, is

due to the small number of atoms and relatively large changes in energy. The

next section will deal with a system with a larger atom count and proportionally

smaller discontinuities.

4.1.3 Interaction Between Two Silicon Clusters

The switching function was able to produce relatively smooth energy curves for

the water dimer case, though the proportionally large changes in the energy

made it difficult to demonstrate any elimination of discontinuities and the result-

ing form of the curves were vastly changed. In this section, the elimination of

discontinuities resulting in a smooth and continuous energy landscape is shown

for a larger system of two interacting hydrogenated 20 Å silicon clusters, shown

in Figure 4.3. More precisely, the interaction energy of two 20 Å clusters is inves-

tigated as the distance between them is varied. The separation of the clusters is

measured between the closest two atoms of each cluster. Only the second cluster

is moved in the super cell, while the first cluster is kept at the same position. The

tapering mechanism is applied to standard D&C and D&C which incorporates

an outer buffer region in its partitioning scheme.

The outer buffer partitioning scheme [25] was originally developed to help ac-

celerate SCF convergence rates. It is used here first to determine if the partition-

ing scheme can also smooth an energy landscape. Secondly, it is also examined if

the use of a switching function within the outer buffer region offers any benefits

when compared with using just a taper region. Finally, it is anticipated that the

tapering will also accelerate the SCF convergence rate, as the tapering effectively

dampens subsystem boundary contributions (called edge contributions by Dixon

and Merz Jr. [25]) in an analogous fashion to the outer buffer partition scheme.

A comparison between the tapered and outer buffer region scheme is made in this

respect.
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Figure 4.3: Rendering of the two hydrogenated silicon cluster system. Each
cluster is 20 Å in diameter with the cluster separation distance measured
between the two closest atoms of each particle.

The calculations were carried out using a 500 Rydberg cut-off for the real-

space integration grid used to represent the density. A very fine grid was required

to reduce the egg-box effectb when using real-space methods. A SZ basis set was

used on all atoms with an energy shift of 0.02 Rydberg for the PAO orbital

confinement and with a density matrix convergence criteria of 1x10−5 for self-

consistency. Self-consistency is also reached when the total energy is within a

tolerance of 1x10−5 eV. The PBE [54] form of the GGA was used for the XC

functional. Norm-conserving Troullier-Martins pseudopotentials [88, 91] in the

Kleinman-Bylander factorised form [89, 90] were used. The employed pseudopo-

tential reference configurations were 3s23p23d04f 0 and 1s12p03d04f 0 for Si and

H, respectively. The cut-off radii for each angular momentum channel, s, p, d

and f , were specified as follows; for Si, 1.89a0 and for H, 1.25a0 for all channels.

The interaction energy at a specific cluster separation, r, was calculated using

EInt(r) = E1,2−(E1+E2(r)); where E1,2 is total energy of the two cluster system,

E1 is the total energy of the first isolated cluster and E2(r) is the total energy of

the second isolated cluster located at a monomer separation of r. (E1 + E2(r))

is used instead of just 2E1 as to remove the egg-box effect when positioning the

second cluster.

bThe egg-box effect describes the oscillation in the total energy due the integration grid
breaking translational symmetry. The total energy oscillates with the grid periodicity and is
likened to the shape of an egg-box. It is clearly noticeable as atoms move around within the
simulation cell.
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Figure 4.4: The interaction energy of two hydrogenated 20 Å silicon
clusters, using standard diagonalisation and the D&C method. The D&C
method based curves are discontinuous. i) Standard diagonalisation ii) Stan-
dard D&C using a 7.5 Å subsystem iii) D&C using a 6.5 Å subsystem plus
a 1.0 Å outer buffer region.

Figure 4.4 shows the interaction energy of the dimer using the D&C method

with a subsystem radius of 7.5 Å (pink line + squares) and a subsystem radius

of 6.5 Å including a 1.0 Å outer buffer region (blue line + diamonds). These

curves are compared to the interaction energy curve generated from standard

diagonalisation (black line + circles). Both the standard D&C and D&C with an

outer buffer region produce curves with discontinuities. In regards to this system,

the outer buffer region did not eliminate any discontinuities.

4.1.3.1 Tapering Mechanism

The switching function is now used to smooth the interaction energy curves of

both standard D&C and D&C including an outer buffer region. Six sets of cal-

culations are investigated with varying taper region sizes (for both schemes). All

taper regions go to zero at the subsystem boundary (the boundary of the outer

buffer region, when this scheme is employed). The taper region sizes range from

0.5 Å to 1.75 Å.

The interaction energy curves for when the tapering mechanism is applied are

shown in Figure 4.5. The tapered curves for the standard D&C (pink line + filled

squares) and the tapered curves for D&C including an outer buffer region (blue
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The interaction energy of two hydrogenated silicon clusters
when the tapering mechanism is applied. The taper region size varies for
each plot. The tapering mechanism is applied for both standard D&C and
D&C outer buffer schemes with taper sizes of a) 0.5 Å, b) 0.75 Å, c) 1.0 Å,
d) 1.25 Å, e) 1.5 Å and f) 1.75 Å.
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line + filled diamonds) are compared to the ideal case of standard diagonalisation

(black line + filled circles).

A taper region of 0.5Å has little effect on the energy curves, in that the en-

ergy curve is still discontinuous (see Figure 4.5(a)). Increasing the taper region

to 0.75Å produces curves that are still discontinuous, although there are now re-

gions in the curve that are becoming smoother (see Figure 4.5(b)). For example,

between a monomer separation of 2.75Å and 4.25Å for the standard D&C curve

and between 4.25Å and 5.25Å for the D&C plus outer buffer region curve. It

is obvious that the taper regions are too narrow for the taper mechanism to be

effective. With a 1.0Å taper region, the taper mechanism produces a smooth and

continuous energy curve for the standard D&C calculation (see Figure 4.5(c)).

The D&C with outer buffer region curve is mostly smooth with a few disconti-

nuities. In this regime the taper mechanism is working as expected. Increasing

the taper region size up to 1.25Å (see Figure 4.5(d)) produces a smoother curve,

and in this instance the D&C with outer buffer scheme also produces a relatively

smooth curve, albeit more noisy than the standard tapered D&C curve. For this

particular system, a taper region of 1.25Å seems to produce the most desirable

results. This result also confirms the effectiveness and applicability of the pro-

posed tapering mechanism. It was found that further increases to the size of

the taper region produced discontinuities in the energy once again, as shown in

Figures 4.5(e) and 4.5(f). Possible reasons as to why this has occurred will be

investigated in section 4.1.3.3.

The tapered interaction energy does not go to zero as the clusters are sepa-

rated. The standard D&C interaction energy (see Figure 4.4) also does not seem

to go to zero. It is expected that the interaction energy would go to zero when

the clusters are far enough apart that the D&C subsystems from one cluster do

not overlap with the other cluster. To help understand why this occurs it will be

worthwhile to examine the individual contributions to the interaction energy.

Table 4.2 lists a summary of the relative contributions to the interaction en-

ergy for the two cluster configuration that has the clusters separated the furthest

apart at 9.3559 Å. At this separation distance the subsystems of one cluster do

not overlap with the other cluster. Except for the long-range Coulomb potential
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Table 4.2: Energies (eV) of the two cluster and single cluster hydrogenated
silicon systems relative to the energy calculated using standard diagonalisa-
tion. The second cluster is located at separation distance of 9.3559 Å.

System D&C Taper Region

7.5 Å 0.5 Å 0.75 Å 1.0 Å 1.25 Å

1st Cluster 3.4303 3.3470 4.7125 2.8399 -1.8082
2nd Cluster 3.4312 3.3470 4.7123 2.8399 -1.8082

Difference 0.0009 0.0000 -0.0002 0.0000 0.0000

Combined Two Clusters 6.8628 6.6968 9.4249 5.6925 -3.4382
1st + 2nd Clusters 6.8615 6.6940 9.4248 5.6797 -3.6164

Difference 0.0013 0.0028 0.0002 0.0128 0.1782

the system should be treated as two non-interacting clusters within D&C. The

top of the table shows the total energies of the single clusters relative to the

total energy calculated using standard diagonalisation. The standard D&C and

Tapered D&C energies are basically equivalent for each cluster, as can be seen

by the energy difference.

The bottom half of Table 4.2 lists the relative total energies of the combined

two cluster system and the summation of the single cluster systems. The differ-

ence between these energies is equivalent to the interaction energy and at a cluster

separation of 9.3559 Å the energies should tend towards zero (see the standard

diagonalisation curve in Figure 4.4). As can been seen from Table 4.2 there are

non-zero differences for all schemes.

It is expected that the summation of the relative two isolated cluster total

energies be close or equal to the relative combined two cluster total energy. For

the 1.25 Å taper region case, the sum of the relative isolated cluster energies gives

−3.6164 eV while the relative combined two cluster energy is −3.4382 eV which

is a difference (interaction energy) of 0.1782 eV. Currently, it is unclear why

the D&C method with the tapering mechanism sees an isolated cluster system

different to a system consisting of two isolated clusters. Care must be taken when
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considering these energies.

4.1.3.2 SCF Convergence

The outer buffer region scheme of Dixon and Merz Jr. [25] was devised to reduce

the number of SCF iterations required for convergence when using the D&C

method. Akama et al [28, 156] have also devised schemes to keep the number of

SCF iterations low. It is anticipated that the tapering mechanism will also help

accelerate the SCF convergence rate.

The buffer orbitals closest to the subsystem boundary are the least well de-

scribed orbitals within the subsystem, due to those buffer orbitals’ environment

not being sufficiently represented. The contributions to the global density ma-

trix from the boundary buffer orbitals can lead to small variations in the global

density. The density may then oscillate about the ground state configuration as

the SCF procedure heads towards self-consistency. This oscillation, when near

convergence, can be the main cause of large SCF iteration counts with the D&C

method. The tapering mechanism is a scheme that is proposed to reduce (elimi-

nate) the oscillations and produce low SCF iterations counts.

The number of SCF iterations required to reach self-consistency for each of

the silicon cluster curves is shown in Figure 4.6 with Figure 4.6(a) containing the

plots for the standard D&C scheme and Figure 4.6(b) containing the plots for the

D&C with outer buffer scheme. The standard diagonalisation (black line + filled

circles) has a steady convergence rate at 27 iterations for each cluster separation

distance. On the other hand, the iteration count of the standard D&C method

oscillates about ≈ 40 steps. For the two silicon cluster system, there seems to be

no clear benefit of including an outer buffer region with the number of the SCF

iterations oscillating about ≈ 45 iterations.

For the taper regions which produce smooth energy curves, the number of SCF

iterations is greatly reduced and remains steady. The iteration count remains high

and oscillates for cases when the energy curves are not smooth. For example, the

1.25Å taper region calculation (dark green line + empty circles in both figures)

has a low and constant SCF iteration count. When the 1.25Å taper region is

coupled with the outer buffer region, the number of SCF iterations required for
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(a) (b)

Figure 4.6: The number of SCF iterations required for self-consistency in
the density for standard D&C, D&C plus an outer buffer and with the ta-
pering mechanism applied to both schemes for the interacting silicon cluster
calculations. For curves which are smooth the number of SCF iterations is
also smooth and low in count. a) Tapering mechanism applied to standard
D&C b) Tapering mechanism applied to D&C with the outer buffer scheme.

each cluster separation is a constant 24 iterations; surprisingly, the approximate

D&C method requires less iterations than the standard diagonalisation method.

The tapering mechanism has been found to require less SCF iterations than the

standard D&C method (and including an outer buffer region) when the taper

mechanism produces smooth energy curves.

4.1.3.3 Tapering Mechanism Issues

The reason for the reintroduction of discontinuities for taper regions larger than

1.25 Å is unclear. To help understand why this occurs, a gradual increase of

the taper region from 1.25 Å to 1.4 Å is made, as shown in Figure 4.7(a). The

curves between and including taper regions 1.25 Å to 1.375 Å are fairly smooth,

although after a cluster separation of 3.5 Å there are variations in the energy. It

is expected that these curves will have the same form as the 1.25 Å taper region

curve. These variations could be leading up to the discontinuities found in the

1.4 Å taper region curve. As the taper region increases, the energy curves become
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(a) (b)

Figure 4.7: Investigations into the reintroduction of discontinuities for
taper regions greater than 1.25 Å. a) A gradual increase in the taper region
from 1.25 Å to 1.4 Å. b) The energy curves produced with the tapering
mechanism for a single subsystem as the separation of the two silicon clusters
is varied.

less smooth and their form differs more from the curve of the 1.25 Å taper region,

albeit the change in form from a taper region of 1.375 Å to 1.4 Å is more drastic

than the others. The 1.4 Å taper region could also be interpreted as a threshold

at which the discontinuities are reintroduced. This could mean that there could

be fundamental problems with the tapering mechanism itself.

To determine if the tapering mechanism has fundamental problems with the

current D&C implementation, the effects of the tapering mechanism on the energy

of a single subsystem is shown in Figure 4.7(b). The subsystem consists of a

silicon core atom near the edge of the first cluster. This particular subsystem

has many atom membership changes and is a good indicator to demonstrate the

effectiveness of the tapering mechanism. As the total energy is a weighted sum

of the subsystem energies, the form of the subsystem energy is representative of

the interaction energy curves. If there are discontinuities found in the subsystem

energy after the application of the tapering mechanism, then there will definitely

be a fundamental problem with the mechanism.

The standard D&C curve (black line + circles) has discontinuities, as ex-

pected; however, the shape and form of the curve is not representative of the

interaction energy curves of Figure 4.5. All other curves have the taper mech-

anism applied to this system using taper regions between 1.0 Å to 1.5 Å. The
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energy curves for all taper regions are smooth and have the form of the curve

in Figure 4.5(d). Even the 1.5Å taper region produces a smooth curve in the

subsystem energy, where the interaction energy curve is discontinuous in this

range.

The smooth subsystem energy curves suggest that the tapering mechanism

does successfully taper the energy of the subsystem. As the total energy is the

weighted sum of the subsystem energies, it would be expected that the total en-

ergy (and any derived energy) would also be smooth. There must be another

factor that is causing the reintroduction of the discontinuities for taper regions

larger than 1.25 Å. One proposed reason could be due to charge fluctuations

between subsystems, which could be handled by using the so-called positive and

negative fragments partitioning scheme by Zhao et al [120]. They typically pas-

sivate each subsystem, which turns the subsystem into an insulator and then

combines the subsystems in a way so as to a cancel out artificial boundary ef-

fects.

4.1.4 Concluding Remarks

It has been shown that discontinuities in the potential energy surface occur when

atoms enter or leave a subsystem during atomic displacement. To produce smooth

energy surfaces, a switching function has been applied to each subsystem Hamil-

tonian and overlap matrix to taper the interactions between the core atoms and

buffer atoms near the boundary of the subsystem. There were issues with the

reintroduction of the discontinuities for large taper regions which requires further

work to discover the reason behind this behaviour. The application of the switch-

ing function has also been shown to reduce the number of the SCF iterations for

cases when the taper produces smooth energy curves.

Finally, a new method is proposed that is an alternative to the tapering mech-

anism. A potential is added to each subsystem that is the sum of the background

charge found surrounding the subsystem. The addition of the potential to each

subsystem will be equivalent to using larger subsystems (i.e. indirectly expand-

ing the subsystem boundary), hence reducing the boundary effects on the orbitals

central to the subsystem. The potential can be calculated using the particle mesh
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Ewald method [157] (or one of its many improvements [158]) or more appropri-

ately the fast multipole method [101, 159]. This proposed method can smooth

the energy landscape and also improve the accuracy of the D&C method at the

expense of larger computational cost than the tapering mechanism. This new

method will be investigated in the near future.

4.2 Frozen Density Matrix Approach

The decrease in computational effort with the use of the D&C method is sig-

nificant when compared to conventional DFT diagonalisation methods for large

systems. The D&C method breaks the O (N3) bottleneck of conventional diago-

nalisation and is proven to be an accurate method for electronic structure prob-

lems. However, when considering dynamics simulations of large systems where

thousands of dynamics steps could be required to reach the desired outcome, the

relatively short time required to converge a D&C SCF calculation can still be

prohibitive. It is then crucial that the computational cost for each dynamics step

be as small as possible.

Fortunately a large majority of dynamics simulations are only concerned with

a certain aspect of a system i.e. a region of interest (active region). Local

geometry optimisations are a primary example of this, as one would do so with

the active region of a protein. There are a large variety of simulations where there

can be deemed an active region to be studied via a dynamical simulation. With

these types of problems, it makes sense to apply a high quality, fully quantum

calculation in the active region and approximate the rest of the system with a

faster, preferably quantum based, method.

One common approach is to use a QM level of theory in the active region and

to use a molecular mechanical (MM) approach for the rest of the system [160–169].

The hybrid QM/MM strategy has been successful, but has some shortcomings.

Important physical processes and phenomena, like charge transfer between the

QM and MM regions, are difficult to approximate using MM techniques. Link

atoms [163,170] are a necessity to represent the QM - MM boundary accurately,

and this requires extra input from the user. Some atoms in the MM formalism
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do not possess a charge, which makes it difficult for these atoms to interact

with the QM handled region. In some situations, the only difference between

MM atoms sharing the same charge is in the van der Waal’s potential. Primarily

these are difficulties in linking a classical atomic theory with a quantum electronic

theory [171, 172]. One last issue is the parameterisation of the MM atoms and

the link atoms being an undesirable extra level of complication in the calculation

setup stage. The drawbacks with the use of MM to accurately represent the

physics and interact correctly with the QM region hinders the use of this method.

What is needed is a method based on first principles, where the physical processes

and phenomena are inherently incorporated into the theory and the input from

the user is limited, especially in the sense of parameterising interactions.

One strategy to overcome the above problem is to use the D&C method with

the frozen density matrix (FDM) approach [173–175]. In the FDM method, the

electron density of the active region is calculated with a high update frequency

(generally every dynamics step) while the density of the rest of the system is in

essence frozen [176], where the density for the frozen region is calculated from

eigenstates cached from previous dynamics steps. New eigenstates for the frozen

region are calculated at a much lower frequency than for the active region. This

saves on the computational cost per dynamics step. Lee and Wang were the

first to adapt the FDM approach to work with their D&C method [27]. Using

the D&C subsystems allows for an easy implementation of the FDM method,

where by each subsystem is designated to either be an active or frozen region.

Ermolaeva et al [33] have also developed a FDM method in their semi-empirical

based D&C implementation and were able to achieve large gains in computational

speed for MD simulations. Not much work has gone on to further the work on

D&C FDM, probably due to the large cost in memory required for the technique.

The eigenstates of each frozen subsystem must be stored for the calculation of

the global density matrix at each dynamics step. Nevertheless, as computing

resources expand over time the D&C FDM method will be begin to play a major

role in large-scale dynamical simulations.

The following outlines the implementation of a FDM method within the

present D&C implementation. The implementation extends the ideas of Lee
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and Yang by allowing each subsystem to have its own update rate for making

a new contribution to the global density matrix. In effect, the use of multiple

regions with varying density matrix update rates is possible. This will allow for

a more effective charge transfer between the active dynamical region and the rest

of the system. The consequences of working with a more accurate density is that

the number of SCF iterations at every dynamics step is reduced and there could

be a reduction in the number of relaxation steps in a local geometry relaxation

calculation. Ermolaeva et al [33] proposed a similar scheme in which the update

rates were a function of distance from the active region. The difference between

the current scheme and the scheme from Ermolaeva et al is one of implemen-

tation. The current scheme allows for finer control of the update rates and can

allow for systems with multiple active or even semi-active regions.

The present implementation supports parallel computation. The method is

tested on a linear alkane chain, CnH2n+2, consisting of 194 atoms. A local ge-

ometry optimisation is performed on one end of the polymer and the results are

compared with standard SIESTA and the present D&C implementation.

4.2.1 Implementation

Standard D&C FDM implementations keep the non-active region of the density

matrix frozen between consecutive dynamics steps and allow the active region

of the density matrix to spatially evolve. This results in the reduction of the

number of computed eigensolutions at every SCF iteration. Each subsystem is

assigned to either region, where the subsystems in the active region will usually

make a new contribution to the density matrix at each dynamics step while the

subsystems in the frozen region will make a new contribution to the density

matrix at a much lower rate (e.g every 30 dynamics steps). At each SCF step

the Fermi energy is computed, using
�

�

�

�3.16 , from the newly calculated subsystem

eigenstates in the active region and the stored subsystem eigenstates from the

frozen region. This requires storage of the frozen subsystem eigenvectors and

eigenvalues. The dense eigenvector solution coefficients can not be stored in a

sparse matrix representation; hence there is a large requirement for memory. The

present implementation follows the standard scheme with one difference, in that
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Figure 4.8: A multi-region representation of the present frozen density
matrix scheme. The numbers indicate the density matrix update frequency
for the subsystems in the region to make a new contribution to the density
matrix.

the two regions are generalised to possibly many regions.

The current FDM scheme generalises the designation of the active and frozen

regions by allowing each subsystem to update its own density matrix contribution

at an assigned frequency. In effect, each subsystem is decoupled from belonging

to either just an active or frozen region, allowing the designation of many regions

with different density matrix update frequencies. One can imagine using many

regions with decreasing update frequencies for regions further away from a region

of interest (there may be more than one active region). This would allow for

more effective density flow between an active region and the rest of the system.

An example of the FDM scheme is shown in Figure 4.8 where an active region

is located at the top left hand corner. The numbers represent the number of

dynamics steps after which the particular region will add its new contribution

to the density matrix. Regions close to the area deemed interesting have a high

update rate, while regions further away from the active region (top-left corner)

do not need to make a new contribution to the density matrix so regularly.

The specification of the update rates are either explicitly defined or taken

from the constrained atom specification. Within the SIESTA code, the con-

strained atom specification defines all atoms which remain stationary during a

dynamical simulation. If the frequencies are defined based on the constrained

atom specification then there can be only two update frequencies. One frequency
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for the active region (the unconstrained atoms), which will generally be updated

at each dynamics step, and one frequency for the frozen region (the constrained

atoms) updated at a user defined frequency. An option to automatically update

the subsystems depending on if they are currently interacting with any active

subsystems is also available. This option allows users to only specify the region

that is part of the dynamics and not the surrounding environment, thus reduc-

ing the complexity of the setup stage. At the first SCF cycle of each dynamics

step the eigensolutions of all subsystems are computed. This is to update the

eigenstate data of each active subsystem in case the atom membership of the

subsystems have changed during the dynamics move. Ideally, only the active

subsystems and subsystems interacting with active subsystems should be con-

sidered as this would slightly decrease the total calculation time. When using

the manual specification of the subsystem density matrix update rates there is

no dependence on (un)constrained atoms and update frequencies. It is advisable

that atoms which are unconstrained should update the density matrix at each

dynamics step, but for all other atoms there are no predetermined requirements

and should be defined so that the electron density can easily flow across the active

and non-active boundary. Finally, an option to recalculate all eigensolutions for

all subsystems at a specified SCF step is made available. This option will allow

for a better convergence rate if issues arise with converging the SCF density for

a given atomic configuration.

4.2.2 Memory Considerations

Storage of the subsystem eigenvectors and eigenvalues limit the use of the D&C

FDM method to only moderately sized systems. An attempt to overcome the

memory problem by using a different D&C FDM scheme has been implemented.

The new scheme keeps the Fermi level constant throughout the calculation. This

scheme does not require the storage of the frozen eigenstates. The global density

matrix is calculated by summing the previously calculated non-active region only

of the global density matrix with new contributions to the density matrix coming

from the active region. Due to the constant Fermi level, there is always a constant

orbital occupation within the non-active region. Only the sparse density matrix
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from the previous SCF step is required to be stored.

The above scheme failed to converge during the SCF process. The issue is

with the flow of electron density between subsystems, especially between the

active and frozen regions, is severely limited when using a constant Fermi energy.

Electron density will be built up or depleted near the boundary of the active and

frozen regions creating unphysical densities, eventually leading to failure in the

convergence. Calculating a new Fermi level by solving for the complete global

density matrix once every specified number of SCF cycles would allow charge

to flow between the active and frozen parts of the density. However, allowing a

complete recalculation of the density matrix is still not enough to alleviate the

convergence problem.

Another proposed scheme to help reduce the memory cost involves storing the

subsystem eigenvectors and eigenvalues onto disk and then accessing them when

required. Using this scheme the number of subsystems loaded into memory can

be set at runtime. This is yet to be tested and validated, where the efficiency of

reading the data from disk will be hardware dependent i.e. the competitiveness

of this method is in question. Finally, an alternative scheme would be to use a

partitioning scheme in which there are many core atoms. In this type of parti-

tioning scheme the duplication of buffer atoms in adjacent subsystems is reduced

leading to less memory usage.

4.2.3 Results

The accuracy and performance of the D&C FDM implementation when perform-

ing a local geometry optimisation is investigated. The local geometry optimisa-

tion is of 10 atoms at one end of a 194-atom linear alkane molecule. Comparisons

to standard SIESTA diagonalisation and the present D&C implementation are

made.

All following calculations were carried out using a 350 Rydberg cut-off for

the real-space integration grid used to represent the density, a DZP basis set on

all atoms with an energy shift of 0.01 Rydberg for the PAO orbital confinement

and with a density matrix convergence criteria of 1x10−4 for self-consistency.

An electronic temperature of 100 K was used. The PBE [54] form of the GGA
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4.2. FROZEN DENSITY MATRIX APPROACH

was used for the XC functional. Norm-conserving Troullier-Martins pseudopo-

tentials [88, 91] in the Kleinman-Bylander factorised form [89, 90] were used.

The employed pseudopotential reference configurations were 2s22p23d04f 0 and

1s12p03d04f 0 for C and H, respectively. The cut-off radii for each angular mo-

mentum channel, s, p, d and f , were specified as follows; for C, 1.33a0 for all

channels; and for H, 1.25a0 for all channels. Calculations were performed in par-

allel using 4 processors of a 11900-processor SUN Constellation machine (2.93GHz

Intel Nehalem cpus).

The system used in the local geometry optimisation is first set up. A relax-

ation of the complete linear alkane molecule is performed, where the atoms were

allowed to relax to a convergence criteria of 0.01 eV/Å. Then using the stan-

dard Verlet MD simulation, the atomic positions of the first 10 atoms at one end

of the molecule were allowed to evolve for a duration of 13 fs using a timestep

of 0.1 fs at an initial temperature of 5,000 K. The high temperature introduced

random velocities for each of the 10 atoms, sampled from a Maxwell-Boltzmann

distribution with the corresponding temperature. A short timestep was used to

ensure that the atom trajectories were stable especially at such a high tempera-

ture. The resultant atomic configuration (of the 10 atoms) strayed greatly from

their relaxed positions; with a maximum force of 15.39 eV/Å. It is from this

configuration that the local geometry optimisations will take place.

The local geometry optimisation is performed on the 10 atoms that were al-

lowed to evolve during the above mentioned MD simulation. A comparison of five

sets of relaxations are carried out, where summaries of the results are shown in

Tables 4.3 and 4.4. The first calculation uses the standard SIESTA diagonalisa-

tion method (labelled Diagon), the second uses the present D&C implementation

with a subsystem radius of 7.5Å (labelled D&C). The last three calculations use

the D&C FDM implementation, as detailed earlier, all using a subsystem radius

of 7.5Å. The first of the D&C FDM (labelled FDMA) calculations incorporates

two regionsc, where the first region encompasses the 10 unconstrained atoms and

updates its contribution to the density matrix at each relaxation step. The sec-

cA reminder that the notion of a region does not technically exist in this implementation;
only density matrix update rates for individual subsystems are understood. It is the grouping
of subsystems with a common density matrix update rate which designates a region.
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Table 4.3: The performance of the FDM D&C method compared with
standard SIESTA diagonalisation and the present standard D&C implemen-
tation.

Scheme Number of Average Diagonalisation
Relaxation Steps Time (secs)

Diagon 60 1.27
D&C 64 2.10
FDMA 224 1.01
FDMB 124 1.03
FDMC 62 0.97

ond region encompasses all the constrained atoms and updates the density matrix

at every 8 dynamics steps. The second set of D&C FDM calculations (labelled

FDMB) takes advantage of the different density matrix update rates available to

each subsystem by allocating three update regions. The first region encompasses

the 10 unconstrained atoms and updates its density matrix at every relaxation

step. The next 10 atoms along the alkane molecule make up the second region,

where updates to the density matrix are made at every 4 steps. The rest of the

other atoms make up the final region and the density matrix update rate for this

region occurs at every eight relaxation steps.d It is advisable that the update

rates for the regions be a factor of the second lowest rate (4 in this case) so

that a full system update to the density matrix is possible at some stage during

the relaxation. The final D&C FDM calculation (labelled FDMC) uses the same

allocation of density matrix update rates as does FDMB with the application of

the tapering mechanism, as detailed in section 4.1, to provide a faster SCF con-

vergence rate. The tapering range is set between 6.5Å and 7.5Å (the subsystem

boundary).

Table 4.3 lists a summary of the performance of all schemes. The number of

relaxation steps indicates the number of steps required for the relaxation process

to complete. As expected, the Diagon scheme has the lowest number of steps at

60 followed closely by the D&C method at 64 steps. The D&C FDM scheme,

dDue to the fact the partitioning scheme is the one used by Yang et al [20] where each atom
is the core of a subsystem, the allocation of atoms to so-called regions is in fact the allocation
of subsystems to regions.
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FDMA, has the highest number of relaxation steps at 224. The basic FDM

scheme needed 3.5 times the number of relaxation steps than the standard D&C

method. Even for this simple system the FDM method requires a large number

of steps to converge, emphasising the fact that improvements to the method are

needed. The multi-region scheme, FDMB, improves on the performance of FDMA

with 124 steps, nearly half the number of steps. The use of multiple update rates

leads to a faster path to convergence in the relaxation process, providing evidence

that such a scheme is worthwhile. This indicates that larger approximations will

decrease the geometry convergence rate. Where the FDMB scheme is less of an

approximation than FDMA, and where the D&C FDM methods are a greater

approximation than the Diagon and D&C methods. FDMC has the least amount

of relaxation steps of the D&C FDM schemes at a count of 62 (comparable to the

Diagon and D&C runs). This is what is expected when tapering the interactions

within each subsystem, as this not only smooths the potential energy surface but

also accelerates the SCF process.

The average time required to calculate the eigensolutions is also shown in

Table 4.3. The Diagon scheme diagonalises the Hamiltonian in 1.27 secs on

average. The standard D&C method runs in the longest time at an average

of 2.10 secs. The reason why the D&C method is not faster than the Diagon

method is because the size of this system is below the cross-over point where

it becomes beneficial to use the D&C method. For a larger alkane chain the

D&C method will be faster than the Diagon method. All D&C FDM schemes

operate in a shorter time than the D&C schemes, at ≈ 1.00 secs. The use of

extra regions has not increased the calculation in this case. It is expected that

for larger systems that the proposed FDM scheme will take longer to process than

the standard FDM, due to the extra subsystem diagonalisations required at each

SCF step. The D&C FDM schemes, as expected, perform more efficiently that

the standard D&C scheme and Diagon scheme. The minimum time to assemble

the Hamiltonian and overlap matrices was found to be 31.29 secs. The FDM

method does offer such a larger performance increase over the standard D&C

method for this alkane system. The most important finding for the proposed

scheme is the reduction in the number of relaxation steps.
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(a) (b)

Figure 4.9: The number of SCF iterations per relaxation step required for
the 194-atom linear alkane chain geometry optimisation. a) the first 64 SCF
iterations b) a close up view of the first 32 SCF iterations.

The number of SCF iterations per relaxation step is also another important

factor to consider, as it is desirable to keep the SCF iterations to a minimum.

Using the FDM approximation should also increase the number of SCF iterations

due to the limited charge transfer between subsystems. The use of the standard

D&C FDM scheme does not always accurately represent the electron density.

With charge depletion and build up near the boundary between the active and

frozen regions, the electron density might be slightly unphysical. This will com-

plicate the SCF convergence, increasing the number required iterations. The use

of the proposed D&C FDM scheme, with individual subsystem density matrix

update rates, should help alleviate unphysical densities by allowing more frequent

charge transfer between regions and help keep the SCF iteration count low.

Figure 4.9 shows the first 64 SCF iteration counts for each scheme. The av-

erage number of SCF iterations for FDMA (blue line + diamonds) is comparable

to the average number of SCF iterations for FDMB (orange line + empty cir-

cles). In this case the use of extra regions has not improved upon the standard

FDM scheme. This isn’t indicative of the proposed scheme not being effective,

as it already has been shown that the proposed scheme improved on the relax-

ation process. In both D&C FDM cases, for relaxation steps before every 8th

relaxation step, the number of SCF iterations increases (non-equilibrium atomic

configurations also contribute to the fluctuations). On relaxation step number 8,

there is a complete global density matrix calculation for both schemes. Electron
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(a) (b)

Figure 4.10: The charge of the active region calculated using a Mulliken
population analysis a) for the first 64 relaxation steps with b) a close up
view of a).

density is allowed to flow across the active-frozen region boundary, reducing and

steadying the number of SCF iterations for the subsequent relaxation steps. For

FDMC (green line + empty squares), the tapering mechanism reduces the num-

ber of SCF iterations at all steps and is comparable to the Diagon scheme. It

too also has a rise in the SCF count before every 8th relaxation step, although it

is smaller than for the other FDM schemes. In between the peaks, the tapered

FDM scheme has a near constant SCF iteration count, which even the Diagon

scheme does not have. The tapering mechanism has helped with accelerating the

relaxation process and the SCF process.

It has been found that the proposed scheme has improved upon the standard

FDM scheme in terms of performance. To prove that the benefits were due to

an improvement in charge transfer between the active region and frozen regions,

the charge of the active region (the 10 unconstrained atoms) is plotted at each

relaxation step for the first 64 steps in Figure 4.10(a). The charge of the active

region was calculated using Mulliken population analysis [177]. All schemes follow

the trend set by the Diagon scheme. The differences in the schemes are more easily

discerned when examining the close up view shown in Figure 4.10(b). With

the FDMA scheme, large quantities of charge are transferred back and forth

between the active and frozen regions at each relaxation step. This translates

to unphysical charge at the boundary of the active and frozen regions. This

is a major contributor to the lengthy relaxation process of the standard FDM
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Figure 4.11: Local geometry optimisation of 194-atom linear alkane chain.
The first 10 atoms from the labelled end are the only atoms allowed to relax.
The labelled atoms are the atoms that are reported in the bond properties
section. The green atoms are carbon and the grey atoms are hydrogen.

scheme. The proposed FDM scheme produces a more smooth and realistic charge

transfer process. Using the proposed scheme, FDMB, with multiple regions, the

charge flow between relaxation steps is smoother than FDMA. There is a definite

improvement with using multiple regions, which in turn accelerates the relaxation

process. The smoothest charge transfer occurs with the tapered FDM scheme,

FDMC . In fact, there is little or no charge transfer between relaxation steps 26

and 62. This illustrates the effectiveness of the tapering mechanism in eliminating

spurious charge build up or depletion at the subsystem boundaries. It is not

surprising that the average number of SCF iterations and the relaxation step

count was the lowest out of all FDM schemes present here.

A summary of the bond properties of the FDM method is shown in Table

4.4. The results show the bond lengths and bond angles of the first 4 atoms

located in the active region (refer to Figure 4.11 for the atom labelling scheme).

All bond lengths produced by the D&C schemes were more or less equal to the

bond lengths produced by the Diagon scheme. Larger differences are found in

the bond angles. FDMB and FDMC improves upon the standard FDM scheme,

FDMA , and even the D&C scheme for the H1-C1-H1 and H1-C1-H3 angles. The

FDMB has larger deviations for the H2-C2-H3 and H1-C1-C2 bonds compared

to the FDMA and D&C schemes. The tapered FDMC improves upon the FDMB

scheme, but is still not as precise as the FDMA or D&C schemes.

The cause of the small differences in the bond angles for the D&C and FDM
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Table 4.4: Comparison of geometries of the 194 atom CnH2n+2 alkane
chain. The D&C and D&C FDM schemes are relative to the Diagon scheme.

Bond lengths between active atoms (Å)
Atom 1 Atom 2 Diagon D&C FDMA FDMB FDMC

C1 H1 1.106 0.000 0.000 0.000 0.000
C1 H2 1.108 0.001 0.001 0.000 0.001
C1 H3 1.107 0.000 0.000 0.000 0.000
C1 C2 1.540 0.000 0.000 0.000 0.000

Bond angles between active atoms (degrees)
Atom 1 Atom 2 Atom 3 Diagon D&C FDMA FDMB FDMC

H1 C1 H2 107.708 0.014 0.050 0.003 0.010
H1 C1 H3 107.701 0.017 0.054 -0.005 -0.010
H2 C1 H3 107.485 -0.008 -0.030 -0.029 -0.024
H1 C1 C2 111.585 0.029 0.066 0.142 0.091

methods needs to be determined. The difference could arise due to the error in

the D&C and FDM approximations or the bond angles could all be equally valid

differences within the specified force tolerance of 0.01 eV/Å. To determine the

cause, single-point standard diagonalisation calculations of the D&C and FDM

optimised geometries were carried out. Table 4.5 shows the maximum constrained

forces of the single-point calculations. The D&C and FDMA geometries are found

to be converged with a maximum constrained force equal to or below the force

tolerance of 0.01 eV/Å. The FDMB and FDMC geometries are found to be slightly

above the force tolerance. As there are no considerable differences in the bond

lengths and angles and that the maximum constrained forces of the optimised

FDM geometries are below or close to the specified force tolerance, it is concluded

that the differences in the optimised geometries are primarily due to scatter

associated with the magnitude of the force convergence criterion. The error

associated with the D&C and FDM approximations is found not to be significant.

Further verification is given by a D&C single-point calculation using the Diagon

optimised geometry. The D&C method produced a maximum constrained force

tolerance of 0.009 eV/Å, which is a converged geometry. As this is below the

specified force tolerance, the error within the D&C method approximation is not
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Table 4.5: Comparison of the maximum forces (eV/Å) of the 194 atom
CnH2n+2 alkane chain. The forces at the D&C and FDM optimised geome-
tries were calculated using standard diagonalisation.

Diagon D&C FDMA FDMB FDMC

0.009 0.010 0.008 0.013 0.014

significant in this simulation. This result is also applicable to the FDM schemes

because the first relaxation step of the FDM scheme is equivalent to D&C.

4.3 Concluding Remarks

The standard D&C FDM method has been generalised by allowing each subsys-

tem to have its own density matrix update rate. In effect, the designation of

more than just the active and frozen regions is possible. This scheme can de-

crease the number of SCF iterations and relaxations steps during a simulation by

allowing more effective electron density flow between active and non-active re-

gions. Application of the tapering mechanism accelerated the SCF convergence

and relaxation convergence with comparable accuracy with the FDM scheme.

The issue with large memory requirements is still present, limiting this scheme

to moderately sized systems.
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5
Real-Time Divide-and-Conquer

Time-Dependent Density Functional

Theory

TDDFT has become a promising technique for the calculation of excited state

properties of finite systems. Polarisability, hyperpolarisabilities, Raman intensi-

ties and other response properties can be obtained within the TDDFT formalism.

The majority of TDDFT implementations, and in particular the real-time prop-

agation method [34], can formally scale from O(N3) upwards, where N is some

measure of the system size. The non-linear scaling is computationally prohibitive

for the calculation of large systems, thus it is desirable to obtain a linear-scaling

method for TDDFT calculations. The following work takes advantage of the lo-

cality inferred by the D&C method to solve the time-dependent KS equations in

a linear-scaling fashion. The current state of the method produces divergences

in the dipole moment, caused by anomalous subsystem boundary effects. Further

work is required to eliminate the divergence.

5.1 Introduction

There has been a significant effort devoted to the development of order-N methods

for ground state calculations. On the other hand, linear-scaling methods for the

computation of response properties has attracted less attention. In this chapter
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a new method is proposed to solve the time-dependent KS equations in real-time

using a D&C paradigm. Currently the method works to some extent and with

further developments based on the findings of this thesis it is anticipated the

method will execute successfully.

With all physically intuitive linear-scaling methods, the one common aspect

amongst these methods is to invoke the “near-sightedness” [18] principle. In

the case of DFT, locality within the ground-state density is observed. That

is, the density at a particular point does not greatly depend on the density at

another other point some distance away. As found by the work of Chen and

Mukamel [178], this principle also applies to the time-dependent density. Chen

and Mukamel found locality within the first order induced density, δρ; more

specifically the off-diagonal elements in δρij go to zero as the distance between

the orbitals, i and j, increases for a π-conjugated polyene system. They also

discovered that higher-orders of the induced densitya have greater electronic co-

herence, which in turn make it more difficult to invoke any sense of locality.

The group of Liang, Yam, Yokojima and Chen have taken advantage of the lo-

cality of the first order induced density matrix to derive a linear-scaling technique

which they have termed the Localised Density Matrix (LDM) method [179–182]

and additionally for non-orthogonal basis sets have derived the Generalised LDM

method [183]. They have also been able to apply the LDM method to non-linear

response properties [184]. The premise of the LDM method lies with formulating

the time-dependent KS equations directly in terms of the density, specifically the

time-dependent KS equations are transformed into the von Neumann equation

(analogous to the Liouville equation). Directly applying sparsity to the density

matrix by setting to zero off-diagonal elements beyond a specified length, the

main LDM equation can be propagated in a linear-scaling fashion.

The group of Niklasson, Weber and Challacombe derived a linear-scaling

method based on an orbital-free quantum perturbation theory of the density ma-

trix [185]. A generalised version utilising a perturbation-dependent non-orthogonal

basis [186] was also developed. The group was able to calculate the static electric

polarisability of a series of water clusters in a linear-scaling fashion [187]. These

aFor this thesis, interest is only concerned with the first order response of the system.
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methods are similar to the DMM methods [37, 38, 105–107] where the perturba-

tion theory is based on the purification of a perturbed Hamiltonian. Kussmann

and Ochsenfeld [188] present an alternative approach which allows for determin-

ing the response to a dynamic perturbation. They use a density matrix based

reformulation and directly solve for the transition density matrices.

Linear-scaling fragment molecular orbital calculations have also been devised

by Mochizuki and Ishikawa et al [189, 190]. A similar method to the fragment

molecular orbital scheme was devised by Coriani et al [191]. Another known

linear-scaling method is by Walker et al [192], which is a linear-scaling perturba-

tion theory in the formalism of Casida’s linear-response theory [193, 194].

At the time of writing this thesis, only one D&C based method is available for

time-dependent quantum systems, namely time-dependent Hartree-Fock. Touma

et al [195], calculate the frequency-dependent polarisability from the coupled-

perturbed Hartree-Fock equation using the D&C paradigm. Their implementa-

tion does not scale linearly due to the construction of the Hamiltonian, although

they mention that the construction can also be made to scale linearly. Their

method can also be used with TDDFT formalism with necessary adjustments to

handle the XC potential.

In this thesis, the approach taken is to solve the time-dependent KS equations

in real-time using the D&C paradigm. This type of linear-scaling method has not

been attempted, although similarities exist between the real-time LDM method

in regards to localisation regions. Because this method is not based on quantum

perturbation theory, it will allow the extraction of both linear and non-linear

response properties more easily. The simultaneous calculation of the response

to all frequencies is also available, which is not possible with the frequency-

dependent perturbation theorems. A D&C approach will also allow the calcu-

lation of dynamic polarisabilities in regard to the electronic excitations of the

complete system, where the fragment molecular orbital methods can only handle

each subsystem separately. Fragment molecular orbital methods differ from the

D&C method in that individual fragments are not coupled with each other, as

the subsystems in D&C method are. The perturbation of an individual fragment

is only possible with fragment molecular orbital methods. The success of the
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LDM method and the D&C time-dependent Hartree-Fock method provides some

justification that this method should also be successful.

Within the real-time TDDFT method there are certain aspects which can be

made to scale linearly without applying the D&C paradigm. In particular, com-

puting the inverse of the overlap matrix is a common operation which can be made

to scale linearly [196, 197]. The use of non-D&C linear-scaling techniques might

not justify the need for a D&C approach. However, these techniques can only

be applied to certain approaches and aspects (specifically different propagators,

see section 5.2.3) within the real-time method. When considering all approaches

within the real-time method and considering that, more than likely, the matrices

in question will be dense, a D&C approach becomes a viable option to produce a

truly linear-scaling computation. When not considering linear-scaling methods,

the dense matrices become an issue with matrix-vector and matrix-matrix mul-

tiplications. However, it is yet to be determined if the D&C method can provide

a good approximation to these operations.

The following sections outline the details of the dynamics of electrons. The

proposed DCTDDFT method will be described followed by the implementation

details. The method is only partially successful, with attempts at eliminating pos-

sible subsystem boundary effects and the investigation of stability in the method

being performed. The optical response is found and compared to the standard

TDDFT method. Finally, a 2-dimensional partitioning scheme is proposed to

alleviate the divergence in the dipole moment.

5.2 Electron Dynamics

The time evolution of a physical system is governed by the time-dependent

Schrödinger equation, shown in
�

�

�

�5.2 . Finding a solution to this equation de-

pends primarily on whether the Hamiltonian depends explicitly on time or not.

For Hamiltonians which do not depend explicitly on time, the system is said to

be conservative and obeys the conservation of energy law. The path to a solution

in this case is simpler than those of the time-dependent Hamiltonian. The fol-

lowing formulation derives the dynamics for both types of Hamiltonians within
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the Schrödinger pictureb.

5.2.1 Time-Independent Hamiltonians

When the physical system is conservative, and hence the Hamiltonian does not

depend explicitly on time, the time evolution of the system can be found from

the following.

Starting with the expectation value of any observable, Â, given by:

〈Â(t)〉 ≡ 〈ψ(t)|Â|ψ(t)〉 =
∫
ψ∗(r, t)Âψ(r, t)dr

�

�

�

�5.1

The eigenstate, |ψ(t)〉, can be found by solving the time-dependent Schrödinger

equation:

i
∂Ψ(r, t)

∂t
= ĤΨ(r, t)

�

�

�

�5.2

Solutions of equation
�

�

�

�5.2 may be represented by the eigensolutions of the time-

independent Schrödinger equation:

Ĥ |φi〉 = Ei |φi〉
�

�

�

�5.3

The eigenvectors, |φi〉, and eigenvalues, Ei, form a complete orthonormal basis

set in Hilbert space:

〈φi|φj〉 =

∫
φ∗
i (x)φj(x)dx

�

�

�

�5.4

= δij
�

�

�

�5.5

Expanding the eigenvectors, |ψ(t)〉, in the set of basis functions, |φi〉, leads to:

|ψ(t)〉 =
∑

i

|φi〉 〈φi|ψ(t)〉
�

�

�

�5.6

Equation
�

�

�

�5.6 is then substituted into
�

�

�

�5.2 and multiplying by 〈φi| from the left

bThe methodology used here is based primarily on the methodology presented by Mukamel
[198], secondly on the work of Castro and Marques [199, 200] and thirdly on the work of
Tsolakidis, Sánchez-Portal and Martin [201].
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leads to the following equation;

d

dt
〈φi|ψ(t)〉 = −iEi〈φi|ψ(t)〉

�

�

�

�5.7

the solution to this equation is;

〈φi|ψ(t)〉 = exp [−i(t− t0)Ei] 〈φi|ψ(t0)〉
�

�

�

�5.8

where 〈φi|ψ(t0)〉 are the initial coefficients of the eigenfunction, which are known

from the ground state solution. Multiplying by
∑

i |φi〉, equation
�

�

�

�5.8 becomes:

|ψ(t)〉 =
∑

i

exp [−i(t− t0)Ei] |φi〉 〈φi|ψ(t0)〉
�

�

�

�5.9

Equation
�

�

�

�5.9 evolves the quantum state |ψ(t0)〉 to a state |ψ(t)〉 within the

specific representation of eigenstates, Ei, of the Hamiltonian, Ĥ. As the initial

conditions are varied, the Schrödinger equation must be re-solved. A more gen-

eral time evolution scheme can be acquired by introducing the time evolution

operator, Û(t, t0). The purpose of the time evolution operator is to transform

the eigenstate at time, t0, to an eigenstate at time, t, without having to solve the

Schrödinger equation whenever the initial conditions are varied; it is defined as:

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉
�

�

�

�5.10

Comparing
�

�

�

�5.9 and
�

�

�

�5.10 a definition of the time evolution operator can be found:

Û(t, t0) =
∑

i

|φi〉 exp [−i(t− t0)Ei] 〈φi|
�

�

�

�5.11

Equation
�

�

�

�5.11 is in a representation consisting of the spectrum of eigenvalues of

the Hamiltonian, Ĥ . This representation is only useful for systems in which the

eigenvalues are known. Ideally, one would prefer eigenvalues from analytic solu-

tions. Unfortunately these are limited to a small selection of systems. Therefore,

it would be beneficial to recast the evolution operator in terms of a more general

form. By formulating the evolution operator in terms of the Hamiltonian, Ĥ, a
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more flexible evolution operator can be used to act on more complex systems,

namely:

Û(t, t0) =
∑

i

|φi〉 exp
[
−i(t− t0)Ĥ

]
〈φi|

�

�

�

�5.12

5.2.2 Time-Dependent Hamiltonians

The preceding formulation applies only to time-independent Hamiltonians. This

is only applicable if all the degrees of freedom are included within the Hamilto-

nian e.g. including the radiation field degrees of freedom as well as the material

systems’ degrees of freedom in the Hamiltonian. This situation is not always the

case and it is more useful to replace some degrees of freedom with the addition

of external forces into the Hamiltonian. When this happens, the Hamiltonian

becomes time-dependent and a more complex approach to evolving the system is

required.

Within the the context of TDDFT, the time-dependent KS Hamiltonian,
�

�

�

�2.65 , is used as the Hamiltonian in the following formulation.

The first step is to substitute
�

�

�

�5.10 into
�

�

�

�5.2 :

∂

∂t
U(t, t0) |ψ(t0)〉 = −iĤ(t)Û(t, t0) |ψ(t0)〉

�

�

�

�5.13

This equation holds for any initial vector, |ψ(t0)〉, resulting in:

∂

∂t
U(t, t0) = −iĤ(t)Û(t, t0)

�

�

�

�5.14

Recasting
�

�

�

�5.14 into integral form by integrating both sides in the interval from

t0 to t and using Û(t0, t0) = 1, results in:

Û(t, t0) = 1− i
∫ t

t0

Ĥ(τ)U(τ, t0)dτ
�

�

�

�5.15

One can solve
�

�

�

�5.15 by iteratively substituting it into itself, forming a Dyson
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series:

Û(t, t0) = 1 +
∞∑

n=1

(−i)n
∫ t

t0

dτn

∫ tn

t0

dτn−1 . . .

∫ t2

t0

dτ1Ĥ(τn)Ĥ(τn−1) . . . Ĥ(τ1)

�

�

�

�5.16

Introducing the Dyson time-ordering operator, T̂ ;

T̂ Â(t1)B̂(t2) =




Â(t1)B̂(t2) if t1 < t2

B̂(t2)Â(t1) if t1 > t2

�

�

�

�5.17

and operating on
�

�

�

�5.16 , the series takes on the form [199, 200]:

Û(t, t0) = 1 +

∞∑

n=1

(−i)n
n!

∫ t

t0

dτn

∫ t

t0

dτn−1 . . .

∫ t

t0

dτ1T̂
[
Ĥ(τn)Ĥ(τn−1) . . . Ĥ(τ1)

]

�

�

�

�5.18

This new series resembles an exponential and due to this, it is recast in a simplified

form, defining the time-ordered exponential:

Û(t, t0) = T̂ exp
[
−i
∫ t

t0

Ĥ(τ)dτ

]
�

�

�

�5.19

The time-ordered exponential is only a cleaner and abbreviated form of
�

�

�

�5.18 .

The difficult task of calculating the complete series, order by order, is still re-

quired. Of course exact calculations are intractable, requiring the use of certain

approximations.

5.2.3 Time Evolution Operator

There are certain properties that any worthwhile approximation to the time evo-

lution operator must adhere to and preserve. The first property states that for a

Hermitian Hamiltonian, the time evolution operator is unitary, that is:

Û †(t +∆t, t) = Û−1(t+∆t, t)
�

�

�

�5.20

This property assures that the norm of the probability of the eigenstate is con-

served. More precisely, as the eigenstate evolves, the probability amplitude of
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the eigenstate remains equal to unity, maintaining conservation of energy within

the system. The second property is time-reversal symmetry, as this is indicative

of the stability and accuracy of the approximation:

Û(t+∆t, t) = Û−1(t, t +∆t)
�

�

�

�5.21

The final property breaks up the time evolution operator into smaller pieces

providing an avenue for the actual calculation of the wavefunction evolution.

Using the following sequence of time, with a timestep of ∆t;

Ω∆t [t0, t] = {t0, tk+1 = tk +∆t, (k = 0, 1, 2, . . . , n) , tn = t}
�

�

�

�5.22

within the time interval, [t0, t], the time evolution operator can be split into

smaller time intervals:

Û(t, t0) = Û(t, tn)Û(tn, tn−1) . . . Û(t1, t0)
�

�

�

�5.23

Any approximation to the time evolution operator must strive to fulfil and

maintain these properties throughout the evolution. The approximate time evolu-

tion operator used in this thesis is known as the Crank-Nicholson (CN) [202,203]

propagator [200]:

ÛCN(t +∆t, t) =
1− i

2
∆tĤ(t+∆t/2)

1 + i
2
∆tĤ(t+∆t/2)

�

�

�

�5.24

The stability of the solution can be increased by including more terms in the

expansion of the propagator. The third-order CN propagator [201] is defined as:

Û3rd

CN(t+∆t, t) =
1− i∆t

2
Ĥ(t + ∆t

2
)− 1

2
(∆t

2
Ĥ(t + ∆t

2
))2 + i

6
(∆t

2
Ĥ(t + ∆t

2
))3

1 + i∆t
2
Ĥ(t+ ∆t

2
)− 1

2
(∆t

2
Ĥ(t+ ∆t

2
))2 − i

6
(∆t

2
Ĥ(t + ∆t

2
))3

�

�

�

�5.25

It is an implicit method and belongs to the family of classical propagators. For

time-independent Hamiltonians it is unitary, preserves time-reversal symmetry

and exactly conserves energy. Stability of the propagator occurs for cases when

∆t∆Emax ≪ 1, where Emax is the range of the eigenvalue spectrum of the cor-
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responding Hamiltonian. The propagator has a scaling of O(N3), predominately

due to the matrix inversion.

The actual propagation of the eigenstates is achieved using the real-time ap-

proach developed by Yabana and Bertsch [34], that allows the calculation of

response of the system for all frequencies.

5.3 Real-Time Propagation

The real-time propagation method is a physically intuitive way to solve the time-

dependent KS equations. It works by perturbing the ground-state with an ex-

ternal potential, Ĥext = E · r, and then explicitly follows the evolution of the

system by solving the time-dependent KS equations in real-time. That is, the

eigenstates are evolved in time (using a propagator that adheres to the prop-

erties mentioned earlier), a new density matrix is constructed from the newly

propagated eigenfunctions, which in turn is used to create a new corresponding

Hamiltonian. Using the new Hamiltonian, the eigenfunctions are propagated to

a future time and the whole process is repeated. Once the propagation of the

eigenstates is complete, the induced density, δρ(r, t), and the induced dipole mo-

ment, D(t), are found. By taking the Fourier transform of D(t), the response

of the system can be calculated for all frequencies simultaneously, provided the

propagation time can account for all frequencies i.e. to retrieve longer wave-

lengths, longer propagation times are required. The maximum frequency, ωmax,

attainable using this method is determined by the timestep, ∆t, not being larger

than ≈ 1/ωmax.

The induced density can only directly provide so much information about

the final state. Linear response theory is required to extract the appropriate

properties. One of the most important properties to examine is the polarisability.

It is a response function that describes the distortion of the electron cloud due

to an applied external electric field and provides a direct correlation between the

response of the electrons and optical properties. The frequency-dependent linear
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polarisability, α(ω), is defined as;

α(ω) =
e2ℏ

m

∫ ∞

0

S(ω′)dω′

ω′2 − ω2

�

�

�

�5.26

where e is the electric charge, ℏ is the reduced Planck constant, m is the mass

of the electron and S(ω) is the dipole strength function, The dipole strength

function is defined as;

S(ω) =
2m

πe2ℏ
ωIm {α(ω)}

�

�

�

�5.27

and is normalised to the number of electrons, Ne, according to the sum rule,
∫∞

0
dE S = Ne. Because S(ω) is proportional to the photoabsorption cross-

section, σ(ω), a direct comparison with experiment is possible, defined as;

σ(ω) =
2π

c
ωIm {α(ω)}

�

�

�

�5.28

with c being the speed of light. To calculate σ(ω), at every time step the induced

dipole moment, D(t), is calculated by summing over the occupied orbitals:

D(t) =
occ∑

i=1

〈ψi(t)|r|ψi(t)〉
�

�

�

�5.29

Then by taking the Fourier transform of D(t);

D(ω) =

∫
dt eiωt−δt D(t)

�

�

�

�5.30

with δ being a damping factor to introduce peak broadening of the imaginary

part of the response, D(ω) can be used with the linear polarisability given by

D(ω) = α(ω)E(ω) (where E is the electric field), leading to the final relationship;

Im {α(ω)} = ω
Re {D(ω)}

E

�

�

�

�5.31

Once the frequency-dependent polarisability tensor is calculated, the calculation

is repeated with the electric field aligned to different axes. The average linear
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polarisability is then given by:

〈α(ω)〉 = 1

3
Tr {αij(ω)}

�

�

�

�5.32

5.3.1 Real-Time Propagation in SIESTA

The real-time method implementation within SIESTA [201] follows the approach

described in section 5.3. The only slight modifications come from employing

an atomic orbital expansion, which in turn transforms the time-dependent KS

equations into the following form;

i
∂C

∂t
= S−1ĤC

�

�

�

�5.33

where C are the coefficients of the orbitals and S is the overlap matrix. Using

the expansion of the inverse of the overlap matrix [100];

S−1 = [I− (I− S)]−1 ≈
k∑

n=0

(I− S)n
�

�

�

�5.34

where in the first-order, (k = 1);

S ≈ 2I− S
�

�

�

�5.35

the CN propagator then takes the form:

ÛCN (t+∆t, t) =
S − i

2
∆tĤ(t +∆t/2)

S + i
2
∆tĤ(t+∆t/2)

�

�

�

�5.36

5.4 Real-Time Divide-and-Conquer TDDFT

The proposed real-time D&C TDDFT (DCTDDFT) method uses the real-time

method of Yabana and Bertsch [34], where instead of propagating the complete

set of eigenfunctions, the system is partitioned into overlapping subsystems and

the eigenfunctions of each subsystem are separately propagated. The electronic

information obtained for each subsystem is then combined in a specific way as
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to provide an approximation to the global density matrix at each propagation

step. The speedup in calculation time occurs because each subsystem is solved

separately with a cost that no longer depends on the size of the global problem.

The individual subsystems are coupled to each other by a common Fermi level set

at time t0. It is currently unknown if there are any time-dependent constraints

when considering the system to be at equilibrium with respect to the chemical

potential at all times, when there is also a time-dependent contribution to con-

sider. It will be shown that the method works under certain conditions and that

the method does not diverge immediately for conditions when it fails, indicating

that the method partially works.

Within DCTDDFT the global time-dependent density matrix is divided up

into individual subsystem density-matrices weighted by a normalised partition

function; ∑

α

Pα
ij = 1,

�

�

�

�5.37

where α is the subsystem index, and where i and j are orbital indices. The

partition function, Pα
ij, is defined by a Mulliken-type [129] weight matrix (suitable

for subsystems consisting of one core atom):

Pα
ij =





1 if i ∈ α and j ∈ α

1/2 if i ∈ α and j 6∈ α

0 if i 6∈ α and j 6∈ α

�

�

�

�5.38

Defining the time-dependent Kohn-Sham electron density;

ρ(r, r′, t) = 2

N/2∑

m

ψm(r, t)ψm(r
′, t) =

∑

ij

ρij(t)φi(r)φj(r
′)

�

�

�

�5.39

where the electron density is defined in the space of the Kohn-Sham orbitals,

{ψm(r, t)}. The density matrix, ρij(t), is defined in the atomic orbital space,

{φi(r)}, and is given by the linear coefficients, {Cim(t)}, as follows:

ρij(t) = 2

N/2∑

m

Cim(t)Cjm(t)
�

�

�

�5.40
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The density matrix can be divided into subsystem contributions. The density ma-

trix is then a sum of contributions from all subsystems, weighted by the partition

matrix:

ρij(t) ≡
∑

α

Pα
ijρij(t) =

∑

α

ραij(t)
�

�

�

�5.41

The local nature of the density matrix allows each subsystem density matrix

contribution to be approximated by;

ραij(t) = 2Pα
ij

∑

m

fβ(ǫF − ǫαm)Cα
im(t)C

α
jm(t)

�

�

�

�5.42

where fβ is the Fermi function approximating an occupation number, β is the in-

verse electronic temperature, ǫF is the Fermi level common to all subsystems and

ǫm is the orbital energy. The approximate occupation number, fβ, is calculated

once at t0 and kept constant throughout the propagation.

Propagation of the subsystem eigenfunction coefficients is accomplished by

using the subsystem CN propagator, Ûα
CN ;

Ûα
CN(t +∆t, t) =

Sα − i
2
∆tĤα(t+∆t/2)

Sα + i
2
∆tĤα(t+∆t/2)

�

�

�

�5.43

where Ĥα is the subsystem Hamiltonian and Sα is the subsystem overlap matrix.

5.4.1 Implementation Details

The real-time DCTDDFT method is implemented to work in conjunction with

the SIESTA package. The linear-scaling assembly of the Hamiltonian and overlap

matrices are handled by SIESTA. Partitioning and communication of the subsys-

tem data is readily handled by the ground state D&C code, see chapter 3. The

DCTTDFT code is based on the original SIESTA TDDFT code of Tsolakidis et

al [201]. The optical response code was provided by Dr. Daniel Sánchez-Portal.
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5.4.2 Algorithm

The general overview of the DCTDDFT implementation within the SIESTA code

is represented in a flowchart shown in Figure 5.1. The flowchart has been appro-

priately marked to indicate which parts of the code involve the original SIESTA

routines (solid box), parallel communication (dotted box) and the present DCT-

DDFT module (dashed box). The algorithm begins by reading the spatial loca-

tions of all atoms and options to perform the DFT run. Once the atom specifics

have been read into SIESTA it will distribute the atom information across the

compute nodes according to a domain decomposition algorithm. In short, each

compute node will be responsible for a subset of orbitals localised in a region

of space and all the corresponding electronic information pertaining to those or-

bitals. Each node then generates the elements of the Hamiltonian and overlap

matrices that it is uniquely responsible for. The Hamiltonian includes a per-

turbation from a static homogeneous electric field. The ground state density

matrix is then calculated using the D&C method, as described in section 3.4.

The DCTDDFT section of the code then begins from this point.

Before the first propagation step, the system will be divided into subsystems,

α. This entails creating a data structure to store the orbital information for

each subsystem with lists distinguishing the core and buffer atoms. If running

in parallel, the matrix elements belonging to core or buffer orbitals that reside

on other compute nodes need to be communicated to the nodes with ownership

of subsystems requiring that data. Because of the spatial locality of the domain

decomposition, the number of compute nodes that communicate with each other

should remain constant or decrease as the system size increases, according to

whether the number of processors employed scales with the system size or remains

fixed, respectively.

Once all the non-local data has been transmitted, the initial eigenfunction

coefficients of each subsystem are calculated. These subsystem eigenfunction

coefficients are then stored in a data structure separate from the D&C data

structures. It should be noted that only the occupied eigenfunctions are cached

and propagated. The subsystem Hamiltonians are also stored, as they will be

used in the next cycle to extrapolate a Hamiltonian at a future time.
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Figure 5.1: Schematic outlining the major implementation sections and
process flow for the implementation of DCTDDFT within the SIESTA code.
The original SIESTA routines are represented with solid boxes, the newly
implemented DCTDDFT modules are shown in boxes with dashed lines and
any parallel communication modules are shown in boxes with dotted lines.

The external field is switched off, which sets the electrons in motion as they

oscillate about their equilibrium state. The propagation cycles begin at this

stage. The number of propagation steps and the duration of each step, ∆t, is

specified by the user and will be specific to the type of system. In general,

∆t will be small (≤ 0.002fs) when using the DCTDDFT method so as to ensure

stability of the propagator. The propagation algorithm evolves the eigenfunctions

of each subsystem individually, reducing the memory footprint of the propagation

algorithm.

For each propagation cycle a new global Hamiltonian is calculated, the in-
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duced dipole moment for the current time is calculated and then each subsystem

eigenfunction is propagated to a future time using the CN propagator. The newly

evolved coefficients replace the previous coefficients and the subsystem Hamilto-

nian is cached for the next propagation step. These steps occur for each subsys-

tem. A new density matrix is assembled from the propagated eigenfunctions in a

similar fashion to assembling the ground state density matrix, with appropriate

partition weights for the core and buffer orbitals. The subsystem Hamiltonian

from the previous step is used in an extrapolation with the current subsystem

Hamiltonian, to determine Ĥ(t + ∆t/2) as used by the CN propagator. For a

more accurate result, a more advanced predictor-corrector scheme can be used,

although, in theory this is not necessary as using a smaller time step can produce

accurate results.

Once the propagation is completed, the induced time-dependent dipole mo-

ment is used to calculate the optical response, allowing a direct comparison with

experiment.

5.4.3 Memory Considerations

Each subsystem stores the dense 2-dimensional subsystem eigenfunction coeffi-

cients and the previous 2-dimensional subsystem Hamiltonian matrix. The scal-

ing of the memory is then approximately
∑Nα

i [(Nα
m)

2 + (Nα
mN

α
occ)], where Nα is

the number of subsystems, Nα
m is the total number of orbitals in the subsystem

(subsystem Hamiltonian storage) and Nα
occ is the number of occupied orbitals

(subsystem eigenfunction coefficients storage). Generally, for most common sys-

tems, Nα
occ is approximately half of Nα

m. For a linear molecule, such as the alkane

molecule studied in section 5.5, the scaling does not cause difficulties. For larger

systems the memory scaling will inhibit the use of this method, although modern

computer architectures are equipped with large amounts of memory. With hard-

ware increases in the future, the method can easily be applicable to very large

systems.

There are ways to reduce the memory scaling. The first step is to reduce

the number of subsystems, Nα, by using multiple core atoms within each sub-

system, instead of Mulliken-type single core atom per subsystem partitioning.
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Depending on the system in question, the calculation time will also be signifi-

cantly reduced. By decreasing Nα, N
α
m will increase, although this increase is a

smaller factor than the factor Nα for very large systems. The second step is to

reduce the scaling of the Nα2

m factor. As stated earlier, this factor is due to the

storing of the subsystem Hamiltonian matrix used with the extrapolation scheme

found within the propagation scheme. Taking advantage of the sparsity of the

Hamiltonian, this matrix can be represented in sparse matrix form and hence

reduce to linear scaling, in the limit of large subsystems. The final term in the

scaling (Nα
mN

α
occ) is not altered as this represents the scaling due to the storage

of the eigenfunction coefficients. Incorporating these memory saving steps would

not drastically change the computing load and in most cases the reduction of

subsystems by using multi-core subsystems will decrease the computational cost

required to propagate each quantum state.

5.4.4 Parallelisation

The parallelisation of the real-time DCTDDFT implementation uses the same

paradigm as the ground state D&C implementation. As with the D&C imple-

mentation, the domain decomposition load balancing scheme included within the

SIESTA package, specifically designed for the KMG order-N method, is used

to distribute the atoms amongst the compute nodes. The contributions to the

Hamiltonian, overlap and density matrices from each atom are then stored on

the corresponding compute nodes. With this scheme the only global communi-

cation occurs when constructing the density matrix; see section 3.5.3 for more

information.

5.5 Results

The insulating 1D linear alkane molecule (CnH2n+2) is a favourable case for

ground state linear-scaling methods as a closed-shell, wide gap material with

low dimensionality, which should translate to the dynamic case. The first set

of results uses a 26-atom molecule while the rest of the results use a 194-atom

molecule.
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Calculations were performed in parallel using 8 cpus for the DCTDDFT sim-

ulations and on a single cpu for the conventional TDDFT simulationsc. The

machines used were a 32 processor SGI Altix machine (1.6 GHz) with 64 GB

of RAM and a 1472-processor SUN Constellation (2.93GHz Intel Nehalem cpus)

machine. The calculations were carried out using a 150 Ry cut-off for the real-

space integration grid used to represent the density, an energy shift of 0.02 Ry

for the PAO orbital confinement and a density matrix convergence criteria of 1

x 10−4 for self-consistency. The PBE [54] form of the GGA was used for the XC

functional in the adiabatic approximation. A SZ basis setd is used in all sets

of calculations. Norm-conserving Troullier-Martins pseudopotentials [88, 91] in

the Kleinman-Bylander factorised form [89, 90] were used. The choice of using a

low quality basis set might not provide an accurate representation of the alkane

molecule, though it does allow for relatively fast simulations. The eigenstates

were propagated for 10 fs with a time step of 0.002 fs and an initial external

electric field perturbation of 0.1 V/Å.

The first task is to verify that the DCTDDFT method works as intended, in

particular concerning the application of the partition function
�

�

�

�5.38 to a time-

dependent density matrix. This is achieved by running a calculation for a 26-

atom linear alkane molecule. The external electric field is orientated along the

direction of the molecule (x-axis). The x-axis component of the dipole moments of

the conventional TDDFT (black line) and the DCTDDFT method (blue line) are

plotted in Figure 5.2. Each subsystem of the DCTDDFT method encapsulates

the complete system, which in this limit, the method should be equal to the

conventional method. The dipole moments of both methods are equal, which

validates that the proposed method is conceptually correct in terms of using a

partition function to assemble the global density matrix.

cConventional TDDFT calculations were achieved by creating a single subsystem consisting
of only core atoms which encapsulated the complete system.

dAlthough using such a small basis set will not produce accurate results for the system in
question, the aim of the following work is to assess the performance of the DCTDDFT method
and not produce chemically accurate results.
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Figure 5.2: The induced dipole moment for a 26-atom linear alkane
molecule, using standard TDDFT propagation (black line) and DCTDDFT
propagation (blue line). Each DCTDDFT subsystem encapsulates the com-
plete system. The dipole moments are equal to each other at all times.
Thus, providing evidence that the DCTDDFT method is equivalent to the
standard method in this limit.

5.5.1 Polarisation Direction

An investigation is performed on a larger 194-atom linear alkane molecule. The

orientation of the external electric field is aligned normal to the alkane molecule

along the y-axis. Here, the electrons are expected to stay close to their ground

state equilibrium positions, as charge can not flow easily in a direction normal

to the molecule. If the DCTDDFT method can not handle this scenario then

the method might not handle the more common scenario when the electrons

flow along the molecule. Figure 5.3 shows the dipole moment along the y-axis

for a 25 Å subsystem (blue line), 25 Å subsystem plus a 5 Å outer buffer region

(pink line) and 25 Å subsystem with a 25 Å outer buffer region (green line). The

DCTDDFT results are compared with the standard TDDFT (black line) dipole

moment. The use of large subsystems is to ensure that the method works as

intended and that the accuracy is not questioned. The 25 Å subsystem corre-

sponds to the converged localisation region sizes of ≈ 25 Å when using the LDM

method [179–182] for this system. All DCTDDFT cases show good convergence

with the conventional case. The 25 Å subsystem and 25 Å plus 5 Å subsystems

have a slightly larger magnitude after 4 fs, although they are still in phase with
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(a) (b)

Figure 5.3: A comparison of dipole moments calculated from conventional
TDDFT and DCTDDFT for a 194-atom linear alkane molecule with the ex-
ternal electric field perturbation applied perpendicular to the linear molecule.
a) A complete view of the time-dependent dipole moment. b) A close up view
of the time-dependent dipole moment when slight differences occur between
the methods.

the conventional case. The 25 Å plus 5 Å subsystem case has a slight difference

(resembling a beat) at ≈ 9.3 fs compared to the conventional case. The 25 Å plus

25 Å subsystem is equivalent to the conventional case. In this case, when the elec-

trons are more confined, the DCTDDFT method works as intended, producing

accurate dipole moments.

As the propagation proceeds to long time lengths, longer wavelengths of den-

sity fluctuations can be accurately extracted from the real-time method. It is

unclear the effect of the partitioning will have on density fluctuations with wave-

lengths greater than the subsystem size. The small differences in the dipole

moment found after 4 fs are most likely due to the approximation made in repre-

senting long wavelength fluctuations across subsystem borders with the partition

function
�

�

�

�3.11 .

These are promising results for the DCTDDFT method. The following inves-

tigations are based on the electric field being aligned parallel to the molecule. In

this case, the DCTDDFTmethod is tested when electrons flow along the molecule

and across subsystem boundaries.
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5.5.2 Subsystem Size Dependence

The next set of results looks at the dipole moments of the 194-atom linear alkane

molecule for varying subsystem radii, with the external field oriented along the

direction of the molecule in the x-axis. All following plots of the dipole moment

will only be concerned with the x-component, unless otherwise specified. Figure

5.4 shows the results for subsystem radii ranging from 10 Å to 20 Å. The plots

in the right column are close up views of the plots in the left column. The same

format is followed for subsystem radii ranging from 25 Å to 35 Å in Figure 5.5

and for the 50 Å subsystem radius shown in Figure 5.6. The plots indicate

that the dipole moment of the DCTDDFT method is approximately equal to the

conventionally found dipole moment up until some time in the propagation when

the dipole moment diverges. The specific time the divergence occurs is dependent

on the size of the subsystem, with larger subsystems diverging at later times. For

instance, a subsystem with radius 15 Å diverges at ≈ 1.3 fs while a subsystem

with radius 30 Å diverges at ≈ 2.7 fs. It is expected that the localisation region

in the time-dependent density would be larger than the ground state density [178],

though the method still diverges even for a very large subsystem radius of 50 Å,

at a time of ≈ 4.5 fs.

The divergence obviously limits the use of this method. Realistically, only

the dipole moment up to the point of the divergence can be used. In most

cases this is a short period, which in effect will reduce the resolution of the

optical response calculations. Long propagation times are required to be able to

extract the majority of the frequency response. The current results suggest that

a very large subsystem radius is required to be able to propagate the system for

a sufficient enough time, which is not desirable or more likely not possible.

There are a couple of points to be taken from these results. The first is the

magnitude of the divergent peaks begin relatively small then generally increases in

size during the propagation. This seems to be indicative of an unphysical density

(and not obeying the conservation of energy), either caused by anomalous effects

with the subsystem boundary or stability issues with the method. This knowledge

can direct the effort of finding a possible solution. The second point is to do

with the convergence of the dipole moment as the subsystem size is increased.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: The induced dipole moments of a 194-atom linear alkane
molecule using the DCTTDFT method with various subsystem sizes (blue
lines) compared to the standard TDDFT method (black line). Figure a)
uses a 10.0 Å subsystem, Figure c) uses a larger 15.0 Å subsystem and fi-
nally Figure e) uses a 20.0 Å subsystem. Figures b), d) and f) show a close
up view of a), c) and e), respectively. The point in time of the divergence of
the DCTDDFT method increases as the subsystem radius is increased.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: The induced dipole moments of a 194-atom linear alkane
molecule using the DCTTDFT method with various subsystem sizes (blue
lines) compared to the standard TDDFT method (black line). Figure a) uses
a 25.0 Å subsystem. Larger subsystems are also shown with Figure c) using
a 30.0 Å subsystem and Figure e) using a 35.0 Å subsystem. Figures b),
d) and f) show a close up view of a), c) and e), respectively. The point in
time of the divergence of the DCTDDFT method increases as the subsys-
tem radius is increased. All subsystem radii above 25.0 Å can be considered
equivalent up to ≈ 2.5 fs, indicating that convergence in the locality aspect
of the method is reached with a subsystem radius of 25.0 Å and that the
divergence is caused by other factors.
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(a) (b)

Figure 5.6: The induced dipole moments of a 194-atom linear alkane
molecule using the DCTTDFT method with a 50 Å subsystem radius (blue
line) compared to the standard TDDFT method (black line). a) the full time
evolution. b) close up view, up to 6 fs.

Disregarding the diverged sections of the dipole moment, the DCTDDFT method

for this particular system converges, with respect to the dipole moment, at a

subsystem radius of ≈ 25 Å. That is, for subsystem radii greater than 25 Å,

the dipole moments are considered equal, up to the point the 25 Å subsystem

calculation diverges (i.e. no improvements to the accuracy of the method are

made with increasing the subsystem radius above 25.0 Å). For instance, the

50 Å results are equal to the 25 Å results up to a time of ≈ 2.5 fs. Hence, if the

method worked for all times, then a subsystem radius of 25 Å would be sufficient

for converged (in the dipole moment) results. For converged results, the size

of the subsystems are consistent with findings of the localisation regions in the

LDM method [179–182], for similar linear alkane molecules. This validates the

fact that the method converges at a subsystem radius of 25.0 Å and that any

divergences at a later time are caused by other factors. Larger subsystems are

required than in the ground state case, due to the longer coherence lengths in

the excited case. Large subsystems increase the memory usage and the prefactor

of the method. Reductions in the prefactor and memory usage can be made

with using subsystems with non-overlapping multi-atom core regions. This type

of partitioning reduces the overlap in the buffer regions between neighbouring

subsystems.

Before continuing to try to find the cause of the divergence, it is important to
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Figure 5.7: The approximate time required for DCTDDFT method to di-
verge for increasing subsystem sizes. The near-linear relationship can be
interpreted as the time required for the subsystem density interacting with
the subsystem border to contribute to the global density and cause the di-
vergence in the dipole moment.

understand the relationship between the time for the dipole moment to diverge

and the subsystem size. This relationship is found to be nearly linear, as shown

in Figure 5.7, and is a strong indication that the divergence in the dipole moment

is caused by the subsystem boundary. It can be considered that as the subsystem

eigenfunction coefficients evolve in time, there can be errors caused by subsystem

boundary effects (as in the ground-state case). These errors will take a finite

time, dependent directly on the size of the subsystem, to reach the core of the

subsystem where the largest contributions to the global density is made. Once

these errors reach the core, the density will become unphysical and cause the

dipole moment to diverge.

In the following, an investigation of the stability of the CN propagator and the

DCTDDFT method takes place to rule out any possible links to this aspect of the

method. Subsequently, the effects of the subsystem boundary on the propagation

is investigated as the probable source of error.

5.5.3 Stability

The first aspect of the method to check regarding the source of error in the dipole

moment is the stability of the DCTDDFT method and the CN propagator. In
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(a) (b)

Figure 5.8: Stability of the DCTDDFT method and the CN propagator. a)
Highly converged ground state density matrix propagation. b) Propagation
with a low strength external field.

the following section different facets of the propagation are investigated.

The first investigation checks the effect of contributions from virtual orbitals

on the ground state density during a propagation. A less converged ground state

density will have contributions from partially occupied states above the Fermi

level at a finite temperature. These contributions might play a significant part

in the propagation, leading to a different final state. Shown in Figure 5.8(a), the

propagation begins from a highly converged ground state density (blue line), in

this case with a density matrix convergence criteria of 1 x 10−6 compared to the

standard 1 x 10−4 (black line). The highly converged density based dipole moment

(blue line) is equivalent to the less converged density based dipole moment (black

line). Hence, at a convergence tolerance of 1 x 10−4, the density is considered to

be converged and does not effect the outcome of the propagation.

The second investigation looks into the effect of the strength of the external

electric field. The stability of the DCTDDFT might be strongly dependent on

the electric field strength. Shown in Figure 5.8(b), the strength of the field

is reduced from 0.1V/Å (black line) to 0.001V/Å (blue line) for a subsystem

radius of 25 Å. The low-field dipole moments are scaled to match the larger field

results. There are no changes in the shape and form of the low-field moment.

Hence, the propagation is stable with an electric field strength of 0.1V/Å.

The next investigation checks the stability of the DCTDDFT when no exter-

nal field is applied. Shown in Figure 5.9(a), the dipole moment of a conventional
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(a) (b)

(c) (d)

Figure 5.9: Further stability checks of the DCTDDFT method and the CN
propagator. The induced dipole moment when no external field is applied
is shown in a) with a finite temperature of 100 K, and in c) at zero Kelvin.
The total energy when no external field is applied is shown in b) with a finite
temperature of 100 K, and in d) at zero Kelvin.

TDDFT calculation (black line) is compared with the dipole moment of the DCT-

DDFT method using a subsystem radius of 25 Å (blue line) and 50 Å (pink line),

when no external field is applied. The conventional calculation oscillates, with a

square waveform, about zero due to the finite electronic temperature. Because

the maximum amplitude is small at 0.001713 a.u, the dipole moment amplitude

can be effectively regarded as zero. The 25 Å subsystem case follows closely the

conventional calculation up until ≈ 2.5 fs, where larger sinusoidal oscillations be-

gin. These oscillations enlarge during the evolution. The oscillations occurs at

the point in time the dipole moment diverges for the 25 Å subsystem case when

an external field has been applied. The fact the error increases as time increases

correlates to the behaviour of the divergences seen in Figures 5.4, 5.5 and 5.6.

144



5.5. RESULTS

(a) (b)

Figure 5.10: Stability of the DCTDDFT method using the third order CN
propagator. a) The higher-order propagator is unstable when no external
electric field is present. b) The dipole moment diverges with the higher-
order propagator.

However, the 50 Å subsystem results are slightly different; there are changes in

the square waveform oscillations at ≈ 4.5 fs, corresponding to the time when the

dipole moment diverges when an external field has been applied, though the si-

nusoidal oscillations begin at ≈ 5.5 fs. The total energy during the propagation

is also shown in Figure 5.9(b), indicating that the total energy is not conserved.

This is a clear indication that the subsystem eigenfunctions are not orthonor-

malised and there exists an unphysical instantaneous density. The times at which

the total energy begins to oscillate match up precisely to the times the dipole

moments diverge for both subsystem sizes.

Running the same calculations at zero Kelvin temperature does not produce

the oscillations as did the propagations with a finite electronic temperature, see

Figures 5.9(c) and 5.9(d). This clearly indicates that the oscillations were not

generated by instabilities in the method but are an indication that the conser-

vation of energy has been violated. This is easily explained when considering

subsystem boundary effects and the finite electronic temperature. The temper-

ature introduces momentum into the electrons which when they interact with

subsystem boundaries, cause the same divergences as seen when an external field

is applied.

Further tests are carried out to completely rule out any intrinsic instability as

a probable cause of the dipole moment divergence. An increase in stability can be
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(a) (b)

Figure 5.11: The stability of the CN propagator within the DCTDDFT
method is tested by propagating forward in time for set a period then back-
wards in time. The CN propagator is found to be stable even when there
is divergence in the dipole moment. a) 1.5 fs propagation time with no
divergence. b) 5 fs propagation time including divergence.

achieved with a higher-order expansion of the CN propagator. Shown in Figure

5.10(a), the third-order CN propagator is used with no applied external electric

field for a 25 Å subsystem radius calculation. Figure 5.10(b) shows the evolu-

tion of the dipole moment for the third-order CN propagator. This higher-order

propagator also exhibits divergences during the propagation. Hence, proving that

either the first-order CN propagator is stable or that both propagators are un-

stable. A comparison with another propagator will have to be examined in the

future to prove that the DCTDDFT method is stable. A high-order Magnus

expansion based propagator [200] could be used for this purpose.

Other issues could be due to the propagation itself, where a predictor-corrector

method might be suitable in this situation. A calculation with a very short

timestep at 0.0002 fs was performed that produced the same dipole moment as

the longer timestep at 0.002 fs, suggesting that a predictor-corrector method

might not have a positive effect.

The final check of the stability investigates the time-reversal symmetry prop-

erty of the CN propagator. Shown in Figure 5.11(a), is the plot of the dipole

moment when propagating for 1.5 fs forward in time and then back in time to 0

fs using a 35 Å subsystem. At 1.5 fs there is no divergence and the DCTDDFT

method obeys the time-reversal symmetry property. When propagating up to 5
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fs, shown in Figure 5.11(b), divergences occur, however, the time-reversal symme-

try property is still not broken. Another indicator that the DCTDDFT method

and the CN propagator are stable.

All investigations into the stability of the DCTDDFT method and the CN

propagator have shown that the method is stable and that no fundamental prob-

lems exist with the propagation. In the following section, the subsystem boundary

effects are investigated.

5.5.4 Subsystem Boundary Effects

After ruling out any instability issues with the method, the effect of the subsys-

tem boundary on the dipole moment is investigated. It was pointed out by Dr.

Daniel Sánchez-Portal [204] that the density could be reflecting off the subsystem

boundaries back into the core of the subsystem. There is a high probability that

this is occurring, though difficult to prove. Regardless, for the time being it is

assumed that reflections off the subsystem boundaries occur.

The reflections are not the only reason for concern. Another possible issue

with the subsystem boundary is the indirect influence of the density near the

boundary on the density central to the subsystem. For example, the density at

the boundary of the subsystem can become polarised, due to a lack of formal

mixing of the eigenfunctions with a confining potential, which will influence the

density central to the subsystem. This effect may be alleviated by using the

D&C method proposed by Zhao et al [120], where they altered the standard

D&C method by using so-called positive and negative fragments instead of spa-

tial partition functions, which when combined in a specific way can cancel out

artificial boundary effects and probably any spurious polarisation moments. In

this thesis other approaches have been considered.

If it is assumed the divergence is caused by anomalous boundary effects, the

first attempt to alleviate these effects is to use a subsystem outer buffer region.

As with the ground state case, the outer buffer region is used to propagate the

subsystem eigenfunctions, although, when constructing the instantaneous density

matrix, those contributions from the outer buffer region are not included. The

purpose of this will be to reduce any boundary effects. Figure 5.12 shows the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: The induced dipole moments of a 194-atom linear alkane
molecule using the DCTTDFT method with various subsystem sizes in-
cluding outer buffer regions (blue lines) compared to the standard TDDFT
method (black line). The dipole moment of a particular complete subsystem
size (including outer buffer region) is equivalent to the dipole moment of
a standard subsystem at the same complete size. Any proposed boundary
effects on the dipole moment persist.
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Figure 5.13: Congruence in the dipole moment is demonstrated with a
comparison between a 25 Å subsystem with an outer buffer region of 25 Å
and a 50 Å subsystem. The dipole moments are shown to be equal.

dipole moments of all previously considered subsystem radii with the addition

of a 5 Å outer buffer region. What is found is that the size of the complete

subsystem (including the outer buffer region) is equivalent to using a standard

subsystem of the same size. For example, a subsystem with a 25 Å radius plus

a 5 Å outer buffer region produces the same dipole moment as a 30 Å standard

subsystem. It seems that the outer buffer region only prolongs the divergence

(i.e. the boundary effects persist).

The congruence of the dipole moment for a subsystem with an outer buffer

region and a standard subsystem at the equivalent size is shown in Figure 5.13.

The dipole moment is plotted for a subsystem radius of 25 Å with an outer buffer

region of 25 Å (black line), in effect producing a 50 Å subsystem. This is plotted

against the dipole moment from a standard 50 Å subsystem (blue line). The

dipole moments are equal at all times. Unfortunately even with the use of an

outer buffer region of 25 Å the proposed boundary effects still exist after a time of

≈ 4.5 fs, that is when the dipole moment of the standard 50 Å subsystem diverges.

For the above cases, the subsystem outer buffer region has no effect on alleviating

any errors caused by the proposed anomalous effects of the subsystem boundary.

The application of a switching function to taper the boundary of the subsystem

Hamiltonian, as in section 4.1, is now employed as another possible remedy to

the dipole moment divergence. By tapering the interactions, it is possible the
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(a) (b)

Figure 5.14: An attempt to alleviate the proposed boundary effects on the
dipole moment with the use of a switching function to taper the subsystem
Hamiltonian interactions at the boundary. The dipole moment divergence
persists. a) 2 Å taper region starting from 1 Å before the subsystem bound-
ary. b) 2.5 Å taper region starting from 0.5 Å before the subsystem boundary.

boundary effects will be reduced. However, this is also not the case, with the

dipole moments shown in Figure 5.14 for a subsystem radius of 35 Å. Figure

5.14(a) has a 1 Å taper region that goes to zero at the subsystem boundary. The

divergence still exists, with an additional problem with the evolution operator

not being unitary, seen as shifts in the dipole moment from the oscillations about

zero. Because the total energy of the system is fluctuating, the eigenfunctions

will not be normalised, resulting in an unphysical density. The amplitude of

the oscillations with the tapered run are also larger than the standard D&C

calculation. Shown in Figure 5.14(b), a larger 5 Å taper region is used inside a 5 Å

outer buffer region. The larger region also has failed to alleviate the divergence.

The amplitude of the oscillations are also larger than the standard case.

A similar technique as the tapering mechanism is attempted by applying a

masking function [205–207] to each subsystem. The masking function dampens

the eigenstate amplitude for only the basis functions in the proximity of the

boundary. The masking function is used by real-space TDDFT methods to stop

any wavefunction reflections off the boundary of the grid and back into the simu-

lation space. It is anticipated that the masking function will have a similar effect

on the subsystem boundary as on the boundary of a real-space grid. The masking

function is applied to each subsystem eigenfunction, after each propagation step
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(a) (b)

Figure 5.15: An attempt to alleviate the proposed boundary effects on
the dipole moment with the use of a masking function on the subsystem
eigenfunctions in close proximity to the subsystem boundary. a) 5 Å mask
region starting from 5 Å before the subsystem boundary (outer buffer region
inclusive). b) 1.0 Å taper region starting from 1.0 Å before the subsystem
boundary (outer buffer inclusive).

and before the construction of the density matrix, namely;

φα
i,mask = φα

i M(r)
�

�

�

�5.44

where φα
i is the eigenfunction, i, of subsystem α. The masking function used by

Burnus et al [208] for their time-dependent electron localisation function work is

used here, defined as;

M(r) =





0, r > rmax

f(r), rab < |r| < rmax

1, r < rab

�

�

�

�5.45

where rmax is the extent of the masking region and rmax − rab is the width of the

masking region. f(r) is a smooth function defined as:

f(r) =

[
cos

(
π(r − rab)

2(rmax − rab)

)] 1

4 �

�

�

�5.46

The masking function is applied to a 25 Å subsystem with a 25 Å outer buffer
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region using different sized masking regions, as shown in Figure 5.15. Similar to

the tapered Hamiltonian case, the modification of the eigenfunction coefficients

after they have been propagated, changes the norm of the eigenfunctions and

hence the conservation of energy is violated. All the different masking regions

exhibit this behaviour, with the dipole moment either increasing or decreasing

to large and unrealistic values. The first masking function uses a masking re-

gion size of 5 Å located at a distance of 45 Å from the centre of the subsystem,

shown in Figure 5.15(a). This masking region produces large deviations of the

dipole moment, indicative of an unrealistic density. Figure 5.15(b) uses a mask-

ing region of 1 Å. Even with only a small amount of subsystem eigenfunctions

actually affected by the masking function, the eigenfunctions will eventually not

be normalised.

As an alternative to a masking function, a complex absorbing potential [209–

212] can be added to each subsystem Hamiltonian to absorb the eigenfunctions

at the subsystem boundary. The potential can be turned on very slowly which

can possibly remedy the above mention eigenfunction normalisation issue. The

complex absorbing potential can also be made to cater for a small range of oscil-

latory wavelengths where as the masking function is applied to all wavelengths.

Coupled with using a monochromatic laser pulse as the excitation source the ab-

sorbing potential could help reduce the eigenfunction normalisation issue. This

potential has not been implemented and is a possible avenue to explore in the

future.

The final attempt to solve the dipole moment divergence problem is shown in

Figure 5.16. In this case, orbitals within a certain distance from the subsystem

boundary are kept frozen during the propagation for a 35 Å subsystem. That is,

those particular orbitals were not allowed to evolve and remained with constant

coefficient values throughout the propagation. Only orbitals close to the core of

the subsystem are allowed to evolve. Figure 5.16(a) has a frozen region of 5 Å

and Figure 5.16(a) has a frozen region of 10 Å. In both cases, the frozen orbital

regions produced divergences at an earlier time than the standard DCTDDFT

method. The frozen regions acted as new boundaries, in effect reducing the size

of the subsystem. The amplitude of the divergences are also much larger than
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(a) (b)

Figure 5.16: The dipole moments generated by not propagating orbitals
within a certain distance from the 35 Å subsystem boundary. Divergences in
the dipole moment still occur. a). 5 Å frozen orbital region. b) 10 Å frozen
orbital region.

those found using the standard DCTDDFT method.

All attempts at alleviating the boundary effects that were proposed to be the

cause of the dipole moment divergence have failed. This suggests that either

the method parameters need to be optimised or that the anomalous subsystem

boundary effects will always occur and that other means must be used to avoid

these effects. Other approaches to the DCTDDFTmethod need to be investigated

e.g. different partition functions. Constraints on the time-dependence also needs

investigation.

5.5.5 Computational Scaling

The computational scaling of the real-time DCTDDFT method for the 194-atom

linear alkane molecule (using the same settings as for all previous calculations) is

shown in Figure 5.17. The required time for a single propagation of the eigenfunc-

tions is shown for the conventional TDDFT case (black line + circles) and for the

DCTDDFT cases with a 10 Å subsystem (blue line + squares) and a 25 Å sub-

system (pink line + diamonds). The standard TDDFT method exhibits O (N3)

scaling while the DCTDDFT method is shown to be linear-scaling. The prefactor

for the 25 Å subsystem is larger than the 10 Å subsystem. The cross-over point

for the 25 Å subsystem occurs at about 950 atoms. For this 1-dimensional case
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(a) (b)

Figure 5.17: The time required for a single propagation of the eigenfunc-
tions of a 194-atom linear alkane molecule using standard TDDFT and DCT-
DDFT. The standard calculation scales as O

(
N3
)
while the DCTDDFT

method is shown to scale linearly. The cross-over point for the 25 Å subsys-
tem occurs at about 950 atoms using SZ basis set. a) shows the complete
plot. b) close up view to highlight the cross-over point.

the prefactor is not so great as to be the cause of large computation times. In

this case, there is a clear advantage of using DCTDDFT rather than standard

TDDFT when comparing calculation times only. For 3-dimensional dense sys-

tems the prefactor might be a factor when considering the time required for the

calculation, causing the cross-over point to be pushed out to much larger atom

numbers.

5.5.6 Optical Response

The optical response of the method is now examined. It is accepted that the

dipole moment diverges, so what is done here is to calculate the imaginary polar-

isability for each subsystem size by only considering the dipole moment up to the

point of the divergence, shown in Figures 5.18 and 5.19. Figure 5.18(a) shows the

limitations in the resolution of the frequency response as the propagation time is

decreased from 10 fs to 5 fs for the conventional TDDFT case. Although all the

peaks are still present, they are less defined in the 5 fs case. For the DCTDDFT

cases, because the longest valid propagation time occurred for the 50 Å subsystem

case at ≈ 4.5 fs, the optical response will be compared to the 5 fs optical response

of the conventional TDDFT case.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: The optical response for subsystem sizes from 10 Å up to
30 Å. Only the dipole moment up to the point of divergence is used in the
calculation.
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(a) (b)

Figure 5.19: The optical response for subsystem sizes of 35 Å and 50 Å.

For small subsystem radii, the resolution of the optical response is low. There

is a single peak at ≈ 15 eV with a long extended tail towards higher energy. The

long tail eventually forms into a shoulder peak at ≈ 22 eV for subsystem radii

greater than 25 Å. The 50 Å subsystem has the longest propagation time and

hence the highest resolution, producing all four peaks of the conventional TDDFT

case. The peaks in this case are at slightly shifted frequencies and the intensities

are not exact, though this is still a comparable result for the approximations

being made.

It is worth emphasising that the length of the propagation determines the res-

olution of the optical response. As was found earlier, convergence in the dipole

moment is achieved with a 25 Å subsystem, which means that if the 25 Å subsys-

tem calculation were to propagate successfully up to 5 fs then it would produce

comparable results as the 50 Å subsystem, with a large reduction in the prefactor.

5.6 2-dimensional Partitioning

The divergence in the dipole moment due to subsystem boundary effects is at-

tempted to be remedied by using a 2-dimensional partitioning scheme. A 2-

dimensional partitioning scheme is a scheme with subsystems that are infinite in

size (or periodic) in one dimension, while the other dimensions are finite in size,

as in the normal scheme. In essence, the 2-dimensional partition can be thought

of as cylindrical in shape. This type of partitioning will not be strictly linear-
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(a) (b)

Figure 5.20: Ball and stick representation of the complete BNNT structure
and a single multiple core subsystem. a) Unit cell of 19.5Å (10,10) BNNT
structure used in the DCTDDFT 2-dimensional partition propagations. b)
a subsystem with multiple core atoms along the length-wise axis of the nan-
otube. The core atoms are within the shaded area. The subsystem has no
boundaries along this axis, as it encapsulates the complete length of the
nanotube.

scaling, although it will in most cases reduce the scaling significantly. Cases for

which linear-scaling occurs will be systems that grow in directions orthogonal to

the direction of the infinite dimension. This type of partitioning is thought to

alleviate any anomalous subsystem boundary effects with electron charge density

flowing parallel with the dimension, as there is no boundary. Any electron flow

crossing the subsystem boundaries of the other dimensions will still be subject

to subsystem boundary effects. Typically, the direction of the infinite dimension

will be aligned parallel to the external electric field.

Testing of the 2-dimensional partitioning scheme is carried out on a ≈ 19.5Å

(principal axis) boron-nitride nanotube (BNNT) with (10,10) chirality, see Figure

5.21(a). This insulating system has a structure that is well suited to the cylindri-

cal shape of the subsystems used in the 2-dimensional partitioning scheme. For

the BNNT, the infinite dimension of the subsystem is directed along the length-

wise axis of the molecule. Instead of having a single core atom, in this case, there

are multiple atoms in the core region, see Figure 5.20(b). Having multiple core
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(a) (b)

(c) (d)

Figure 5.21: The dipole moment and optical response of the ≈ 19.5Å (prin-
cipal axis) (10,10) BNNT structure using standard TDDFT and the D&C
method employing a 2-dimensional partitioning scheme with multi-core atom
subsystems. a) induced dipole moment up to 10 fs. b) imaginary polaris-
ability using 5 fs of induced dipole moment data. c) imaginary polarisability
using 10 fs of induced dipole moment data. d) close up view of c).

atoms reduces overlap amongst neighbouring subsystems, which in turn, speeds

up the calculation.

The calculations were carried out using a 100 Ry cut-off for the real-space

integration grid used to represent the density, an energy shift of 0.02 Ry for

the PAO orbital confinement and a density matrix convergence criteria of 1 x

10−4 for self-consistency. The PBE [54] form of the GGA was used for the XC

functional in the adiabatic approximation. A SZ basis set is used in all sets

of calculations. Norm-conserving Troullier-Martins pseudopotentials [88, 91] in

the Kleinman-Bylander factorised form [89, 90] were used. The eigenstates were

propagated for 10 fs with a time step of 0.002 fs and an initial external electric

field perturbation of 0.1 V/Å aligned along the length-wise axis of the nanotube.
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Figure 5.21(a) shows the induced dipole moment for the BNNT system for

both standard TDDFT (black line) and the 2-D partition DCTDDFT method

(blue line) with a buffer radius of 8.0 Å. Unfortunately, the 2-dimensional parti-

tioning does not stop the dipole moment from diverging. The divergence is not

as pronounced as found in the previous sections with the standard partitioning

for the polymer system. The major peaks of the DCTDDFT method remain in

phase at the beginning and end of the propagation with that found with standard

TDDFT propagation. There is also noise in the DCTDDFT case, which will add

peaks to the optical response.

The optical response is shown in Figure 5.21(b), for a propagation of 5 fs, and

Figure 5.21(c), for a propagation of 10 fs. A close up view of 5.21(c) is shown in

Figure 5.21(d). For the 5 fs propagation, the DCTDDFT imaginary polarisability

is equal to the standard TDDFT imaginary polarisability up to ≈ 16 eV, after

which the major peak at ≈ 17 eV is found with DCTDDFT. The small peak at

≈ 12.5 eV is even found with the DCTDDFT method. At the higher energies,

the DCTDDFT introduces large noise spikes which do not exist for the standard

TDDFT propagation. These are due to the extra features found in the dipole

moment. The DCTDDFT imaginary polarisability is relatively smooth, due to

the short propagation time. With a 10 fs propagation, the DCTDDFT imaginary

polarisability still has all the major peaks at the correct energies, although there

are many smaller peaks which do not exist in the standard propagation. The

majority of the extra peaks match up with the shoulder peaks found with the

standard propagation.

The 2-dimensional partitioning still produced divergence in the dipole mo-

ment, although, the divergence was not as great as found with standard D&C

partitioning. The DCTDDFT dipole moment remained relatively in phase with

the standard TDDFT dipole moment. This fact, along with the success of the

DCTDDFT with the alkane molecule with external fields aligned normal to the

molecule (which in this case, is equivalent to the 2-dimensional partitioning

scheme), suggests that further improvements to the 2-dimensional partitioning

scheme are worthwhile.
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5.7 Concluding Remarks

A real-time TDDFT method using the D&C paradigm has been proposed in this

chapter. The method was tested on a linear alkane molecule and produced accu-

rate dipole moments for the situation when the electric field was aligned normal

to the principal axis of the molecule. However, divergence in the dipole moment

occurred for the case where the electric field was aligned parallel to the principal

axis of the alkane molecule. The point in time of the divergence is related to

the subsystem size, where larger subsystems diverge at longer times. The ef-

fects of the subsystem boundary on the divergence were investigated. Attempts

to eliminate subsystem boundary effects using outer buffer regions, Hamiltonian

tapering, masking functions and a 2-dimensional partitioning scheme were not

successful. The stability of the method was demonstrated by not applying an ex-

ternal field and showing that the dipole moment and total energy do not diverge.

The stability of the method was further reinforced by showing that the DCT-

DDFT CN propagator maintained the time-reversal symmetry property of stable

propagators. The optical response was calculated and produced fairly reasonable

results when compared to standard the TDDFT method, despite the issues with

the dipole moment. The actual cause of the dipole moment divergence is found

to be most probably related to subsystem boundary effects.

Further investigations are required into improving the method. One improve-

ment is the determination and handling of any time-dependent constraints within

the method, as it is unclear if the partition function and the subsystem propa-

gation should explicitly handle any time constraints. Application of a complex

absorbing potential [209–212] to each subsystem needs to be investigated. Fi-

nally, instead of exciting all frequencies at once with the external electric field,

using a monochromatic laser field to excite a single frequency might be more

effective when applying any of the previous measures (and proposed measures)

to counter the subsystem boundary effects. For example, with a monochromatic

laser field perturbation, the wavefunction masking function and complex absorb-

ing potential can be optimised to operate more effectively at the single excitation

frequency.
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6
Divide and Conquer Applications

The performance and capabilities of the current D&C method implementation are

investigated in this chapter. Two different deoxyribonucleic acid (DNA) are first

considered. The effects and performance of the tapering mechanism on λ-DNA [1]

is investigated. Then a comparison is made of the energy convergence of a 1WQZ

DNA structure [35] with the DMM method. Furthermore, the electronic structure

of 1WQZ is examined. Finally, the electronic structure of a zeolitic imidazolate

framework (ZIF) crystal, ZIF-100 [40], is found.

6.1 Deoxyribonucleic acid

The applicability of the D&C method for two different strands of DNA is in-

vestigated in this section. The first is a periodic dry λ-DNA system, previously

studied by de Pablo et al [1]. The convergence of the total energy with respect

to increasing subsystem sizes is investigated when the tapering mechanism is ap-

plied. Acceleration of the SCF convergence rate is also examined. The second

DNA strand is the 1WQZ (Protein Data Bank Id) structure. For this system,

convergence in the Harris functional energy [213,214] found by the D&C method

is compared to results published by Otsuka et al [35], who have used the DMM

method [36] within the CONQUEST code [37–39]. The computational resources

required to run the convergence are investigated, along with a comparison of the

electronic structure of hydrated and dehydrated 1WQZ DNA. In particular, a

comparison of the partial atomic charges are is made. This information will be
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Figure 6.1: Schematic stick representation of the 715-atom dry λ-DNA unit
cell. The cell repeats along the vertical axis. Atoms are coloured according
to the following scheme; Hydrogen - white, oxygen - red, carbon - green,
nitrogen - blue and phosphorus - brown.

particular useful in the setup of the electrostatic interactions within force fields

used in MD simulations.

6.1.1 λ-DNA

The dehydrated λ-DNA system was previously examined in a study by de Pablo

et al [1]. They used this structure to demonstrate computationally an absence of

conductivity in dry λ-DNA (experimental verification was also given in the same

work). This study was the first to apply a first principles linear-scaling technique

to the study of DNA. The linear-scaling method de Pablo et al used was the KMG

functional minimisation method [32] implemented in SIESTA [2]. Although this

DNA strand only has 715 atoms, which is now well within the domain of standard

diagonalisation techniques with the use of appropriate computing resources, it is

a DNA system known to converge. Hence it should represent a robust test case

to examine in this thesis. The unit cell of the DNA strand repeats along the axis

of the strand, as shown in Figure 6.1.

It has been shown that discontinuities can occur in the energy surface when

subsystem atom memberships are altered (section 4.1). A method to attempt to
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alleviate the sudden changes in energy by applying a switching function to taper

interactions in the Hamiltonian was proposed. The performance of the tapering

mechanism is investigated on the larger λ-DNA system by testing the convergence

of the total energy with respect to the subsystem size. The SCF convergence rate

when the tapering mechanism is applied is also investigated.

Calculations were performed in parallel using 24 processors of a 11,900 proces-

sor SUN Constellation computer (2.93GHz Intel Nehalem cpus). All calculations

were performed using the memory conservation scheme, as described in section

3.5.2, which on average will increase the computational time by 50 %. The calcu-

lations were carried out using a 150 Rydberg cut-off for the real-space integration

grid used to represent the density, a DZP basis set on all atoms with an energy

shift of 100 meV for the PAO orbital confinement, and a density matrix con-

vergence criteria of 1x10−4 for self-consistency. The PBE [54] form of the GGA

was used for the XC functional. Norm-conserving Troullier-Martins pseudopo-

tentials [88,91] in the Kleinman-Bylander factorised form [89,90] were used. The

study done by de Pablo et al [1] used a DZ basis set on all atoms except phos-

phorus and for atoms involved in hydrogen bridges, where a DZP basis set is

used. For the DZ basis set atoms the orbital radii were manually set as follows;

H states at 4.2 Bohr; C states at 4.1 Bohr; N states at 3.6 Bohr; and O states at

3.2 Bohr. Within the DZP basis set used by de Pablo et al the non-polarisation

functions are larger and were set as follows; H states at 5.5 Bohr; N states at 4.6

Bohr; and O states at 4.2 Bohr.

6.1.1.1 Results

Six sets of calculations are performed for each subsystem size on the optimised λ-

DNA geometry from de Pablo [1], shown in Figure 6.2. The first set is a standard

D&C calculation, while the rest of the calculations use the tapering mechanism

with varying taper regions. The taper regions range from 1.0 Å up to 2.0 Å in

0.25 Å increments. The energy curve for the standard D&C calculation between a

subsystem radius of 8.0 Å and 11.0 Å is smooth. The discontinuity in the energy

occurs at a subsystem radius 7.0 Å. The standard D&C energy converges to the

energy found via standard diagonalisation (dashed line), at −121821.7687 eV,
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Figure 6.2: A comparison of standard D&C and D&C with the application
of the tapering mechanism for the total energy convergence with respect
to increasing subsystem size for the λ-DNA system. The dashed line at
−121821.7687 eV is the total energy found using standard diagonalisation
techniques.

quite rapidly. Convergence can be considered to have occurred with a subsystem

radius of 9.0 Å with a error in the energy of −6.4meV. A 7.0 Å subsystem has

an error of −388.5meV which amounts to only −0.54meV/Atom.

For all taper regions, the taper mechanism tends to reduce the total energy

relative to the standard D&C calculation. For subsystems greater than and

including 7.0 Å this implies the energy will converge at a slower rate. The trend

indicates that larger taper regions produce lower energies and hence will converge

at a slower rate. The 1.0 Å taper region is the only taper region to produce a

systematically increasing curve. All other taper regions only slightly lowered the

energy. However, it can be argued that the energy for the 1.0 Å taper region at

a subsystem radius of 6.0 Å is too low and is in fact still a discontinuity. This

does not signify that the taper mechanism has not functioned as intended. It

more than likely has to do with the type of simulation performed here. The

D&C SCF procedure does not necessarily converge to the correct energy with

increasing subsystem size in a systematic fashion and will typically converge in

an oscillatory fashion.

Table 6.1 shows a comparison of the absolute errors per atom between the

KMG functional [32] work of de Pablo et al [1] with the standard D&C work

of this thesis. de Pablo et al claim to use a LWF localisation region between
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Table 6.1: Comparison of the absolute error per atom (meV) between the
de Pablo et al work [1] using the KMG functional minimisation method and
the standard D&C method for the λ-DNA system.

KMG D&C

4− 5 Å 5 Å 6 Å 7 Å 8 Å 9 Å 10 Å 11 Å

5.0 1.87 0.23 0.54 0.15 0.01 0.04 0.03

4.0− 5.0 Å. The exact localisation region size is unclear. An extra D&C method

calculation at a subsystem radii of 5.0 Å was carried out to ensure a fairer compar-

ison. A 4.0 Å D&C calculation was also carried out, although failed to converge.

All D&C subsystem sizes were found to produce smaller errors than the KMG

method. The closest comparison that can be made is with the 5.0 Å subsys-

tem with an error 1.87meV/Atom being much smaller than the KMG error of

5.0meV/Atom

The SCF iteration counts for the above calculations are shown in Figure 6.3.

The Broyden mixing scheme was employed with a weight of 0.05 for all sets of

calculations. A low mixing weight is required due to convergence issues when

using larger mixing weights with small subsystem sizes. To determine if the

tapering mechanism helps accelerates SCF convergence all things must be equal

i.e. the mixing weight could not be modified during the self-consistency process

to help with convergence.

The assistance of the tapering mechanism on the self-consistency rate is ev-

ident for the λ-DNA case. The largest difference in the SCF iterations occurs

with a subsystem radius of 6.0 Å, where the standard D&C calculation took 210

iterations to converge, while only 48, 51, 35, 32 and 28 iterations were required

for the taper regions from 1.0 Å up to 2.0 Å. For this subsystem size, as the taper

regions grew in size, the number of SCF iterations reduced. For a 7.0 Å subsys-

tem, only taper regions 1.25 Å to 1.75 Å had lower SCF iteration counts than the

40 iterations required for the standard D&C case. The taper mechanism pro-

duced lower counts for the 8.0 Å subsystem for all taper regions. Subsystems at

9.0 Å and larger converged at similar rates regardless if the tapering mechanism

was applied. With such large subsystems, the subsystem will capture most of the
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Figure 6.3: The SCF iteration counts for the total energy convergence
calculations on the λ-DNA system. The tapering mechanism is found to
reduce the number of iterations for small subsystem sizes.

information of interacting orbitals and should converge at a similar and constant

rate to standard diagonalisation, which in this case requires 20 iterations.

The de Pablo et al [1] relaxation calculation ran with an average of 7 SCF iter-

ations per relaxation step using the KMG functional minimisation method, which

seems much lower than the SCF counts reported in thesis using the D&C method.

This does not necessarily highlight any deficiencies with the D&C method, as the

optimised geometry is the one found using the KMG method and a low mixing

weight is used in this thesis. In addition, the average number of SCF iterations

can not really be compared to the SCF counts reported in this thesis as the

SCF procedure during a geometry relaxation starts using a density matrix from

a previous relaxation step (i.e. closer to convergence), while the SCF procedure

from a single-point calculation starts from isolated atomic densities (i.e. far from

convergence).

The taper mechanism has been found to slightly lower the total energy in

the convergence tests of the λ-DNA system, with only the 1.0 Å taper region

producing a systematically converged curve over the whole range. The biggest

benefit of the tapering mechanism is the acceleration of the SCF process for small

subsystem sizes. The tapering mechanism can be of great benefit in accelerating

the convergence process, which for large systems is greatly beneficial.
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6.1.2 1WQZ DNA Structure

Recently, the CONQUEST code [37–39] has introduced the option to use the

SIESTA PAOs [2, 5, 84, 215] for its basis set functions, offering a unique oppor-

tunity to compare two different linear-scaling methods which use the same basis

set functions and are also implemented in different codes. This makes possible

a comparison between the DMM implementation [36] of CONQUEST with the

current D&C implementation in SIESTA. Using the 1WQZ DNA structure from

the work of Otsuka et al [35]a, the convergence of the CONQUEST Harris en-

ergy functional [39] using a SZ basis set is compared with the convergence of the

SIESTA Harris energy functional [2,213,214], as the subsystem size is increased.

In addition, the average calculation time of the SCF iterations for each of the

convergence runs is reported. The electronic structure of hydrated and dehy-

drated 1WQZ DNA is investigated using a high quality calculation with a DZP

basis set, where partial atomic charges are calculated and compared. The work

presented in this section extends the previous study by Otsuka et al [35].

The atomic structure of the 1WQZ DNA system is shown in Figure 6.4, con-

sisting of a total of 3,439 atoms. Specifically, it contains 634 DNA atoms where

the B-DNA decamer 5’-d(CCATTAATGG)2-3’ is used. The DNA molecule is hy-

drated with 932 water molecules and 9 Mg counter-ions are included for charge

neutrality. The original 2.9 Å-resolution x-ray diffraction data set included a few

deuterium atoms. These have been replaced with normal hydrogen atoms, as

there is only interest in the electronic structure. The unit cell dimensions are

39.74 Å by 31.03 Å by 27.09 Å. This is a reasonably large system, which requires

the use of a linear-scaling method.

Currently the non-self-consistent Harris energy functional implemented within

SIESTA [2] only functions within the LDA using the Perdew-Zunger parameter-

isation [52]. Because GGA potentials are used here, the Harris energy is taken

from the zeroth SCF iteration before any density matrix mixing can occur i.e.

self-consistent Harris energy functional. This is possible because the first ap-

aThe structure and calculation details were graciously made available by Dr. Tsuyoshi
Miyazaki and Dr. Takao Otsuka, who have optimised the structure with the Amber9 package
[216].
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Figure 6.4: Schematic stick representation of the 3,439-atom wet 1WQZ
(Protein Data Bank Id) DNA unit cell. The unit cell dimensions are 39.74
Å by 31.03 Å by 27.09 Å. Hydrogen - white, oxygen - red, carbon - green,
nitrogen - blue and phosphorus - brown.

proximation to the density just consists of the atomic densities, precisely what is

required for the Harris energy functional.

Calculations were performed in parallel using either 32 processors (for the

hydrated 1WQZ structure) or 24 processors (for the dry 1WQZ structure) of a

11900-processor SUN Constellation (2.93GHz Intel Nehalem cpus), using 3 GB

or less of RAM per CPU for all calculations. Calculations were performed using

the memory conservation scheme, as described in section 3.5.2, which on average

will increase the computational time by 50 %. The calculations were carried out

using a 400 Rydberg cut-off for the real-space integration grid used to represent

the density, a density matrix convergence criteria of 1x10−4 for self-consistency,

an energy shift of 100 meV for the PAO orbital confinement for all basis sets.

The Harris functional energy calculations use both SZ and DZP basis sets for

the different simulations, while the high-quality electronic structure calculations

use a DZP basis set on all atoms. The PBE [54] form of the GGA was used for

the XC functional. Norm-conserving Troullier-Martins pseudopotentials [88, 91]

in the Kleinman-Bylander factorised form [89, 90] were used. The SZ basis set

and all other settings are consistent with the settings used by Otsuka et al [35].
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6.1.2.1 Results

The convergence of the Harris functional energies with respect to the subsys-

tem size for both the hydrated and dehydrated 1WQZ DNA systems are shown

in Figure 6.5. The calculations are run using a SZ basis set and a DZP basis

set. The error in the energy for all plots is taken to be relative to the energy

found using standard diagonalisation (as indicated by the dashed lines). Stan-

dard diagonalisation calculations could not be run on the hydrated system using

a DZP due to the larger number of basis functions used for the system. The

energy for the hydrated SZ 1WQZ system (Figure 6.5(a)) converges systemati-

cally and resembles the energy curve reported by Otsuka et al [35]. The energy

converges quickly, with an error of 0.015396 eV for the 8.0 Å subsystem down to

an error of 0.000052 eV for the 12.0 Å subsystem. Even a 6.0 Å subsystem can

produce accurate results with an error of 0.390052 eV, which amounts to only

0.000113 eV/Atom. The energy for the hydrated DZP system (Figure 6.5(b)) is

only calculated up to a subsystem radius of 8.0 Å. For larger subsystems the

memory requirements per compute node are found to be greater than the avail-

able 3 GB per compute node. Using high quality settings with large basis sets

requires large amounts of memory for each compute node. A new memory model

needs to be implemented to handle these situations. In short, the subsystem

data needs to be stored on multiple compute nodes as this will allow for larger

subsystems (see section 3.5.2).

The energy convergence for the dehydrated SZ system (Figure 6.5(c)) con-

verges quickly and systematically for subsystem sizes 7.0 Å and larger. It is

unclear if the low energy found at a subsystem radius of 6.0 Å is a discontinuity

or if it is due to oscillatory behaviour. For well converged energies, the errors

range from 0.015835eV for 8.0 Å subsystem calculations down to 0.000273 eV

for 12.0 Å subsystem calculations. These errors are comparable to the errors

found with the hydrated SZ system. The energy for the dehydrated DZP system

(Figure 6.5(d)) converges in a systematic fashion, although the energy converges

from lower energies. The convergence is found to be slower than the SZ results

reported here, especially for subsystems 7.0 Å and below. For subsystems above

7.0 Å the convergence rate is faster, although still slower than the SZ dehydrated
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(a) (b)

(c) (d)

Figure 6.5: Convergence in the Harris functional energy of the 1WQZ DNA
structure as the subsystem size is increased. The energy is considered to be
converged at a subsystem radius of 8 Å. The dashed lines indicates the energy
found using standard diagonalisation. A small subsystem radius can be used
for qualitative data due to the small energy error. a) Hydrated system (3439
atoms) with SZ basis set b) and DZP basis set. The Dehydrated system (634
atoms) with a SZ basis set d) and a DZP basis set.

system. The error for the 8.0 Å subsystem is found to be −0.106747 eV which

is roughly an order of magnitude greater than the SZ dehydrated system result.

The error for a 12.0 Å subsystem is −0.000398 eV, which is well within typical

energy convergence criteria used in the SCF process.

Comparisons with the energy curves found by Otsuka et al [35] can be made

firstly by examining the energy range in which the curves reside. Only SZ results

can be used as Otsuka et al have only reported results with this basis set. For

the Otsuka et al hydrated curve, the energy range between a cut-off distanceb

bThe spatial cut-off distance in DMM refers to the threshold distance that sets elements
in the density matrix, as proposed by Li, Nunes and Vanderbilt [105], to zero for distances
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from 7 Å to 12 Å for the hydrated system is −541, 533.6 eV to −541, 534.1 eV.
For equivalent subsystem sizes, the DMM energy range is larger than the energy

range found with the D&C method at −541, 693.55 eV to −541, 693.65 eV. For

the dehydrated system, the Otsuka et al energy range is between −107, 258.9 eV
to −107, 259.2 eV and for the work presented here it is between −107, 950.0 eV to

−107, 950.5 eV. The similar energy values are due to the use of the same SIESTA

PAO basis set functions by both codes. Since the PAOs and pseudopotentials are

equivalent, the main difference in the energy ranges will be due to the difference

in numerical integration techniques.

The Otsuka et al [35] hydrated energy curve converges from a maximum

difference of ≈ 0.45 eV at a cut-off of ≈ 7.4 Å to the fully converged energy at a

cut-off distance of 13.23 Å. The rate of convergence of the D&C method is faster

in this case; for a subsystem radius of 7 Å the energies fully converge from an

energy difference of −0.06 eV. Due to the faster convergence rate of the D&C

method, the size of the DMM cut-off distance is larger than the D&C subsystem

radius for converged values. In this regard, Otsuka et al report a cut-off distance

of 10 Å is large enough for quantitative results using the DMM method, while

it is found here that a subsystem radius between 7-8 Å is required for the D&C

method. The D&C method is found to converge to the real energy at a faster

rate than the DMM method.

The average time to complete an SCF cycle for the energy convergence runs

is shown in Figure 6.6(a). The time takes into consideration the assembly of the

Hamiltonian and the diagonalisation of the Hamiltonian using the D&C method.

The average time required to communicate data amongst the compute nodes is

shown in Figure 6.6(b).

With moderate computing resources, the D&C implementation is found to

be very efficient for both the hydrated and dehydrated 1WQZ DNA systems.

A converged subsystem radius of 8 Å for the hydrated SZ system takes only an

average of 1.3mins to complete an SCF cycle using 32 cpus. The hydrated DZP

system requires on average 36.77mins with an 8 Å subsystem. For the dehydrated

greater than the cut-off distance. This introduces sparsity and allows the minimisation method
to scale linearly. The cut-off distance is considered as a localisation region and is analogous to
the localisation regions of the D&C method i.e. the subsystems.

171



6.1. DEOXYRIBONUCLEIC ACID

Table 6.2: The distribution of atoms amongst the compute nodes for the
hydrated and dehydrated 1WQZ DNA structures. The hydrated system
uses 32 cpus, while the dehydrated system uses 24 cpus. The dehydrated
system is poorly load balanced which in turn increases the time required to
communicate data amongst the compute nodes.

Hydrated system - 3439 atoms Dehydrated system- 634 atoms

Compute Node Atom Count Compute Node Atom Count

0 89 0 30
1 94 1 29
2 99 2 17
3 94 3 17
4 101 4 39
5 94 5 33
6 89 6 13
7 107 7 29
8 105 8 40
9 97 9 26
10 97 10 21
11 125 11 34
12 122 12 26
13 101 13 43
14 110 14 3
15 126 15 29
16 99 16 35
17 99 17 5
18 99 18 29
19 110 19 18
20 110 20 24
21 90 21 33
22 94 22 5
23 110 23 56
24 114
25 112
26 115
27 136
28 130
29 119
30 118
31 134
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(a) (b)

Figure 6.6: The a) average SCF time and b) average time spent communi-
cating data amongst compute nodes for both dry and hydrated 1WQZ DNA
systems with increasing subsystem size.

SZ system, a converged subsystem radius of 9 Å completes an SCF cycle in an

average time of 0.85mins using 24 cpus, while the DZP system requires an average

of 10.6 Å. For each subsystem size, the calculation time required for dehydrated

DZP system is larger than the hydrated SZ system, even though the hydrated SZ

system has an extra 2805 atoms and an extra 1045 orbitals. This is due to the

poor load-balancing of the dehydrated system data across the 24 cpus. Table 6.2

is a listing of the distribution of the atoms across the cpus. The hydrated system

has relatively equal number of atoms on each cpu, while the dehydrated system

is clearly poorly load-balanced, with some cpus having as low as 3 atoms on a

single cpu, conversely, the largest number of atoms on a cpu is 56. Typically,

this means that a small number of cpus are doing the majority of the work,

while the rest are idling. The average data communication times during each

SCF cycle also reflect the poor load-balancing, as shown in Figure 6.6(b). The

smaller dehydrated DZP system spends more time on average communicating

data between the compute nodes, than the other systems except for the hydrated

DZP system. The CONQUEST times are not available at the time of writing the

thesis. It would be interesting to compare the different codes as the prefactor of

the DMM method should be less than the D&C method. This makes for a better

comparison between the localisation regions of both linear-scaling methods.

The electronic structure of the hydrated and dehydrated 1WQZ DNA systems

is now examined using a larger DZP basis set. Based of the SZ and DZP energy
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Figure 6.7: The total DOS of the dehydrated and hydrated 1WQZ DNA
data structure. The band gap of the dehydrated system is ≈ 2.13 eV and
the band gap of the hydrated system is ≈ 1.5 eV.

convergence calculations, a 8 Å subsystem is used for both sets of calculations.

It is also the largest subsystem size that can fit into the available memory with

a DZP basis set. The total DOS of the hydrated and dehydrated systems is

shown in Figure 6.7. The detailed landscape of the dry system is broadened with

the inclusion of water molecules, producing three major peaks in the occupied

space. The valence band states are shifted towards lower energies in the hydrated

system. The band gap of the dehydrated system is ≈ 2.13 eV, while the band gap

of the hydrated system is ≈ 1.5 eV. The peak near the band-edge of the hydrated

system now has a small tail which reduces the band gap of this system. This is

a reduction of 0.63 eV, which is smaller, although comparable to difference found

by Kratochvilova et al [217] at 0.79 eV for a smaller DNA strand consisting of

5 base pairs, 5-d(TCGGA)-3, and solvated with only 110 water molecules. To

determine which states are responsible for the reduction in the band gap the

PDOS is analysed. Shown in Figure 6.8, the PDOS indicates that the carbon

2s and 2p states have the largest contribution to the valence band edge of the

hydrated system, followed by the nitrogen 2s and 2p states and the hydrogen
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Figure 6.8: The normalised PDOS located about the band gap for both
the hydrated and dry 1WQZ DNA systems. The shaded area indicates the
band gap for the dry DNA system. The hydrated DNA system reduces the
size of the band gap predominantly due to the carbon states, with smaller
contributions from the hydrogen and nitrogen states.
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1s states. These states are shifted towards higher energies in the valence band,

while they are shifted towards lower energies in the conduction band. Conversely,

the hydrated oxygen and phosphorus states are shifted towards lower energies in

both bands. The p states have the largest contributions in the conduction band

in both systems.

The partial atomic charges of the dehydrated and hydrated 1WQZ DNA sys-

tems are now compared, using the Mulliken population analysis method [177] to

calculate the charges. The atomic charges can be used in the electrostatic energy

of MD force fields [218]. Mulliken population analysis has been successfully used

in the study of DNA [219,220]. Others have examined Mulliken charges in similar

applications, such as Bende et al [221] who have used Mulliken population analy-

sis to calculate the charge transfer between the DNA phosphate group and lysine

(and arginine) side chains of histone proteins in water. Using the D&C method

allows for large realistic DNA systems to be modelled, which can produce charges

more appropriate to the system under investigation in the MD simulation.

The nucleotides, phosphate groups and the 2-deoxyribose molecules found

within the DNA molecule are shown in Figure 6.9. The atoms are labelled for

reference when listing the partial atomic charges. The labelling is arranged in a

clockwise fashion for all molecules. The 5’ end of the DNA strand has a terminal

phosphate group and the 3’ end a terminal hydroxyl group. Conventionally, the

direction along the backbone starting from the 5’ end to the 3’ end is called

downstream, conversely, the upstream direction is from the 3’ end to the 5’ end.

The partial atomic charges for the hydrated 1WQZ DNA molecule can be

found in the following tables. The partial charges for each individual atom

are listed for the nucleotides, while for the phosphate groups and 2-deoxyribose

molecules the average partial charges of each atom are listed. The values in

the parenthesis are the partial charges of the hydrated molecule relative to the

partial charges of the dehydrated molecule. For example, the cytosine N1 atom

located at base 1 (Table 6.3) has a partial atomic charge of 0.438 a.u., which is

−0.017 a.u. more negatively charged than the equivalent atom in the dehydrated

system. The total partial charges for each molecule are also listed.

Each class of molecule within the dehydrated system is found to participate
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Labelling of atoms within the nucleotides and the backbone
of the 1WQZ DNA structure. The numbering scheme works in a clockwise
fashion. The molecules are orientated so that left of the image is the 5’ end
and right of the image is the 3’ end. a) cytosine b) guanine c) adenine d)
thymine e) phosphate group f) 2-deoxyribose.
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in charge transfer when the system becomes hydrated, as can be seen from the

total charge differences. The cytosine nucleotides (Table 6.3), the thymine nu-

cleotides (Table 6.3) and the 2-deoxyribose molecules (Table 6.8) have the least

amount of charge transfer. The hydrated cytosine nucleotides are found to be

more negatively charged while the thymine nucleotides and the 2-deoxyribose

molecules are slightly more positively charged than their equivalent dehydrated

molecules. The hydrated cytosines are generally more positively charged than

their dehydrated counterparts, conversely the majority of the thymines and the

2-deoxyribose molecules are slightly more negatively charged. The largest charge

transfers occur with the phosphate groups, the guanine nucleotides and the ade-

nine nucleotides. These molecules are all typically found to be more negatively

charged than their equivalent dehydrated molecules.

To clarify that the difference in charge between the dehydrated and hydrated

DNA systems is due to charge transfer from the water molecules and not just an

rearrangement of charge, the total charge of the DNA molecules is calculated.

The dehydrated DNA molecule is found to be only slightly positively charged at

0.167 a.u., while the hydrated DNA molecule has a total charge of −5.357 a.u. A
charge transfer of 5.357 a.u. has occurred from the solvent to the DNA molecule.

The phosphate groups are found to be the predominant molecule in which the

charge is transferred from the solvent. For each phosphate group there is a

charge transfer of 0.166 a.u. on average for downstream phosphate groups and

0.189 a.u. on average for upstream phosphate groups. Because there are a total

of 18 phosphate groups in the backbone of 1WQZ DNA this amounts to 3.201 a.u.

of the total charge transfer that has occurred.

6.1.3 Concluding Remarks

Comparison with the energy curve of Otsuka et al [35], shows that for the con-

vergence in energy, a smaller localisation region is required in the D&C method

than the DMM method, and that convergence occurs at a faster rate with the

D&C method. The calculation times for converged subsystem radii have been

found to be very efficient on modest computing resources. These calculations all

ran below using 3 GB per CPU RAM. High quality calculations were used to
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Table 6.3: The Mulliken partial atomic charges (a.u.) of the cytosine
nucleotides in the hydrated 1WQZ DNA system. The values in parentheses
are the charge transfer of the hydrated DNA relative to dehydrated DNA.
The bases are numbered starting from the 5’ end downstream to the 3’ end
using the numbering scheme shown in Figure 6.9(a).

Atom Base 1 Base 2 Base 9 Base 10

N1 0.438 (-0.017) 0.480 (-0.017) 0.462 (-0.012) 0.492 (-0.015)
C1 -0.090 (0.003) -0.128 (0.000) -0.141 (-0.019) -0.113 (0.005)
H1 0.059 (0.014) 0.069 (0.012) 0.059 (-0.002) 0.062 (0.012)
C2 -0.025 (0.005) -0.041 (-0.011) -0.051 (-0.006) -0.043 (-0.020)
H2 0.016 (0.006) 0.007 (0.008) 0.012 (0.001) 0.027 (0.022)
C3 -0.248 (0.015) -0.294 (0.005) -0.261 (-0.012) -0.191 (0.018)
N2 0.289 (0.012) 0.321 (0.021) 0.300 (0.012) 0.278 (-0.005)
H3 0.029 (0.003) 0.016 (-0.003) 0.012 (-0.013) 0.014 (-0.014)
H4 0.014 (-0.017) -0.006 (-0.009) 0.003 (-0.011) 0.039 (0.019)
N3 0.282 (-0.026) 0.297 (0.003) 0.273 (0.001) 0.208 (-0.004)
C4 -0.558 (0.007) -0.464 (0.020) -0.511 (-0.017) -0.519 (0.011)
O1 -0.032 (0.000) -0.055 (0.005) -0.028 (0.024) -0.040 (0.022)

Total 0.174 (0.005) 0.202 (0.034) 0.129 (-0.054) 0.214 (0.051)
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Table 6.4: The Mulliken partial atomic charges (a.u.) of the guanine nu-
cleotides in the hydrated 1WQZ DNA system. The values in parentheses are
the charge transfer of the hydrated DNA relative to dehydrated DNA. The
bases are numbered starting from the 5’ end downstream to the 3’ end using
the numbering scheme shown in Figure 6.9(b).

Atom Base 1 Base 2 Base 9 Base 10

N1 0.484 (-0.004) 0.512 (-0.001) 0.530 (-0.002) 0.492 (-0.006)
C1 -0.332 (-0.014) -0.401 (-0.028) -0.355 (-0.030) -0.348 (-0.044)
H1 0.064 (-0.007) 0.073 (0.010) 0.076 (0.011) 0.062 (-0.007)
N2 0.148 (-0.037) 0.199 (0.019) 0.081 (-0.039) 0.199 (0.045)
C2 -0.140 (-0.025) -0.076 (-0.049) -0.058 (-0.028) -0.119 (-0.040)
C3 -0.283 (0.004) -0.231 (0.005) -0.275 (-0.017) -0.344 (-0.009)
O1 -0.053 (-0.035) -0.132 (-0.046) -0.027 (0.004) -0.012 (-0.027)
N3 0.408 (0.006) 0.393 (0.010) 0.404 (-0.003) 0.434 (-0.001)
H2 -0.008 (-0.002) -0.015 (0.004) -0.015 (0.001) -0.028 (0.002)
C4 -0.390 (-0.014) -0.399 (-0.006) -0.467 (-0.021) -0.446 (-0.011)
N4 0.270 (-0.007) 0.271 (-0.026) 0.295 (-0.018) 0.293 (-0.031)
H3 0.031 (-0.004) 0.025 (-0.007) 0.015 (-0.028) 0.021 (-0.011)
H4 0.012 (-0.004) 0.006 (0.000) 0.004 (-0.021) 0.011 (-0.015)
N5 0.169 (-0.026) 0.210 (0.029) 0.171 (-0.035) 0.164 (-0.027)
C5 -0.251 (-0.006) -0.280 (-0.007) -0.306 (-0.022) -0.249 (-0.001)

Total 0.129 (-0.175) 0.155 (-0.093) 0.073 (-0.248) 0.130 (-0.183)
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Table 6.5: The Mulliken partial atomic charges (a.u.) of the adenine nu-
cleotides in the hydrated 1WQZ DNA system. The values in parentheses are
the charge transfer of the hydrated DNA relative to dehydrated DNA. The
bases are numbered starting from the 5’ end downstream to the 3’ end using
the numbering scheme shown in Figure 6.9(c).

Atom Base 3 Base 4 Base 5

N1 0.436 (-0.006) 0.497 (0.000) 0.499 (-0.006)
C1 -0.323 (-0.037) -0.315 (-0.023) -0.357 (-0.022)
H1 0.078 (-0.002) 0.061 (-0.012) 0.088 (-0.003)
N2 0.171 (0.053) 0.139 (0.023) 0.172 (0.032)
C2 -0.117 (-0.008) -0.129 (-0.021) -0.127 (-0.022)
C3 -0.244 (-0.013) -0.263 (-0.014) -0.235 (-0.005)
N3 0.197 (-0.017) 0.258 (-0.035) 0.237 (-0.024)
H2 0.005 (-0.015) 0.019 (-0.011) 0.013 (-0.013)
H3 0.005 (-0.007) 0.019 (0.002) 0.004 (-0.002)
N4 0.310 (-0.004) 0.204 (-0.014) 0.253 (-0.001)
C4 -0.299 (-0.012) -0.342 (-0.046) -0.317 (-0.037)
H4 0.052 (0.000) 0.082 (0.019) 0.067 (0.008)
N5 0.178 (0.014) 0.173 (-0.006) 0.170 (-0.008)
C5 -0.266 (-0.005) -0.265 (-0.014) -0.247 (-0.024)

Total 0.183 (-0.059) 0.138 (-0.152) 0.220 (-0.127)

Base 6 Base 7 Base 8

N1 0.477 (0.006) 0.524 (0.003) 0.499 (-0.004)
C1 -0.256 (-0.017) -0.321 (-0.006) -0.345 (-0.010)
H1 0.075 (0.004) 0.075 (0.009) 0.073 (0.002)
N2 0.093 (-0.023) 0.124 (0.034) 0.155 (0.023)
C2 -0.103 (-0.004) -0.097 (-0.005) -0.109 (-0.001)
C3 -0.294 (-0.014) -0.227 (-0.014) -0.317 (-0.025)
N3 0.279 (-0.022) 0.281 (-0.004) 0.258 (-0.026)
H2 0.006 (-0.020) 0.018 (-0.006) 0.006 (-0.006)
H3 0.007 (-0.024) 0.017 (-0.012) 0.001 (-0.005)
N4 0.247 (0.000) 0.227 (-0.010) 0.236 (0.005)
C4 -0.330 (-0.021) -0.347 (-0.018) -0.340 (-0.016)
H4 0.066 (0.008) 0.058 (-0.001) 0.057 (0.009)
N5 0.207 (-0.003) 0.170 (0.006) 0.183 (0.015)
C5 -0.287 (-0.028) -0.264 (-0.006) -0.268 (-0.005)

Total 0.187 (-0.158) 0.238 (-0.030) 0.089 (-0.044)
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Table 6.6: The Mulliken partial atomic charges (a.u.) of the thymine
nucleotides in the hydrated 1WQZ DNA system. The values in parentheses
are the charge transfer of the hydrated DNA relative to dehydrated DNA.
The bases are numbered starting from the 5’ end downstream to the 3’ end
using the numbering scheme shown in Figure 6.9(d).

Atom Base 3 Base 4 Base 5

N1 0.414 (-0.013) 0.491 (-0.009) 0.492 (-0.014)
C1 -0.198 (-0.014) -0.188 (-0.008) -0.201 (-0.006)
H1 0.064 (-0.002) 0.073 (0.001) 0.053 (-0.008)
C2 0.140 (-0.010) 0.149 (-0.012) 0.135 (0.003)
C3 -0.124 (-0.026) -0.113 (-0.015) -0.120 (-0.013)
H2 0.038 (0.018) 0.017 (0.003) 0.033 (-0.003)
H3 0.029 (0.000) 0.014 (-0.013) 0.030 (0.000)
H4 0.015 (-0.025) 0.030 (-0.001) 0.016 (0.004)
C4 -0.238 (0.005) -0.284 (-0.004) -0.299 (0.003)
O1 -0.062 (0.008) -0.053 (0.019) -0.051 (-0.003)
N2 0.407 (0.013) 0.444 (0.004) 0.421 (0.005)
H5 -0.011 (0.004) -0.008 (-0.002) -0.031 (0.004)
C5 -0.430 (0.011) -0.416 (-0.013) -0.399 (-0.015)
O2 -0.010 (0.016) -0.090 (0.011) -0.043 (0.015)

Total 0.034 (-0.015) 0.066 (-0.039) 0.036 (-0.028)

Base 6 Base 7 Base 8

N1 0.472 (-0.001) 0.418 (0.001) 0.471 (-0.005)
C1 -0.190 (0.005) -0.147 (0.007) -0.195 (-0.007)
H1 0.074 (0.016) 0.070 (0.002) 0.065 (-0.004)
C2 0.138 (0.000) 0.102 (-0.009) 0.142 (-0.008)
C3 -0.122 (-0.021) -0.134 (-0.034) -0.118 (-0.018)
H2 0.057 (0.034) 0.050 (0.008) 0.017 (-0.015)
H3 0.024 (-0.008) 0.046 (0.004) 0.030 (0.001)
H4 0.020 (-0.007) 0.027 (0.005) 0.032 (0.007)
C4 -0.347 (0.017) -0.331 (0.011) -0.288 (0.000)
O1 -0.022 (0.007) -0.040 (0.019) -0.030 (0.006)
N2 0.487 (0.003) 0.501 (0.003) 0.472 (0.011)
H5 -0.007 (0.001) -0.010 (0.002) 0.002 (0.000)
C5 -0.454 (-0.008) -0.458 (-0.010) -0.456 (0.004)
O2 -0.007 (0.013) -0.008 (0.022) -0.015 (0.006)

Total 0.123 (0.051) 0.086 (0.031) 0.129 (-0.022)
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Table 6.7: The average Mulliken partial atomic charges (a.u.) of the phos-
phate groups found in the backbone. The values in parentheses are the
average charge transfer of the hydrated DNA relative to dehydrated DNA.
The average charges are grouped by the two backbones of the DNA. The
atoms are numbered using the numbering scheme shown in Figure 6.9(e)

Atom Downstream Upstream

O1 0.005 (-0.019) 0.033 (-0.013)
P1 -0.291 (-0.033) -0.326 (0.036)
O2 -0.186 (-0.096) -0.162 (-0.089)
O3 -0.156 (-0.065) -0.194 (-0.110)
O4 0.034 (-0.020) 0.044 (-0.014)

Total -0.593 (-0.166) -0.605 (-0.189)

Table 6.8: The average Mulliken partial atomic charges (a.u.) of the 2-
deoxyribose molecules found in the backbone. The values in parentheses
are the average charge transfer of the hydrated DNA relative to dehydrated
DNA. The average charges are grouped by the two backbones of the DNA.
The atoms are numbered using the numbering scheme shown in Figure 6.9(f)

Atom Downstream Upstream

C1 -0.066 (-0.017) -0.059 (-0.022)
H1 0.050 (0.006) 0.050 (0.003)
H2 0.066 (-0.003) 0.066 (-0.006)
C2 0.018 (-0.005) 0.003 (-0.006)
H3 0.051 (0.008) 0.049 (0.007)
O1 -0.012 (-0.007) 0.003 (-0.005)
C3 -0.146 (-0.009) -0.146 (-0.013)
H4 0.074 (0.012) 0.072 (0.008)
C4 0.025 (-0.020) 0.018 (-0.018)
H5 0.052 (-0.004) 0.058 (0.002)
C5 -0.035 (-0.007) -0.032 (-0.008)
H6 0.030 (0.002) 0.035 (0.005)
H7 0.034 (0.003) 0.031 (0.002)

Total 0.140 (-0.040) 0.147 (-0.050)
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compare the electronic structures of the hydrated and dehydrated systems. The

hydrated system reduces the band-gap of the dry system. Charge transfer from

the water solvent molecules to the phosphate groups in the DNA backbone alters

the partial atomic charges of the nucleotides, in particular for the guanine and

adenine nucleotides. For the studied DNA systems, the D&C method proves to

be a very efficient method.

6.2 Zeolitic Imidazolate Framework - ZIF100

In this final section, the ability of the current D&C implementation is tested on

a very large system that is well suited to the method. The system under study

belongs to a recent class of materials named zeolitic imidazolate frameworks (ZIF)

[222]. ZIFs are porous crystalline materials that resemble natural aluminosilicate

zeolites with their cage-like structure. The tetrahedrally coordinated silicon found

in the zeolite is replaced by a transition metal, in this case zinc, and the oxygen

bridges are replaced by imidazolate links, in this case 5-chlorobenzimidazolate

(cbIM), see Figure 6.10(a). The links and the metals determine the ZIFs resulting

structure. By substituting linkers, different ZIF topologies can be found and

predicted [223, 224], similar to metal-organic framework (MOF) materials [225–

227].

The particular ZIF crystal examined in this section is named ZIF-100, first

synthesised by Wang et al [40]. The ZIF-100 cubic unit cell is very large con-

taining 13,584 atoms with a lattice constant of 71.9797 Å. The porous structure

and local nature of the chemistry of this system is ideally suited for the D&C

method.

ZIFs were created for the purpose of selectively capturing specific molecules

[228] from a mixture of different gases. The ZIF-100 crystal can selectively cap-

ture carbon dioxide from several different gas mixtures and is capable of storing

large quantities of the gas at standard room temperature and pressure. Wang

et al [40] report that one litre of ZIF-100 material can store up to 28.1 litres of

carbon dioxide at 273 K and 15.9 litres at 298 K. Wang et al showed this by

measuring the adsorption isotherms of various gases, including carbon dioxide,
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methane, carbon monoxide and nitrogen. They found the ZIF-100 structure to

have a high storage capacity and a partiality to carbon dioxide. The selective

absorption characteristics of ZIFs and their sponge-like behaviour can be used in

the absorption of green house gases from industrial gas emission streams. leading

to a reduction of the uptake of green house gases into the atmosphere. Though

it does not provide a full solution to the problem, it can help reduce the impact

of current fossil fuel burning technologies on the environment.

There have been numerous studies involving MOFs [229–231] and in particular

their hydrogen adsorption properties using DFT [232–234] and MD [235–237]

simulations. Computational studies on various ZIFs have also been performed

[238–240]. The most interesting are the investigations of the ZIF-68, ZIF-69

and ZIF-70 structures [241–243], where the partial charges on the atoms were

calculated using DFT and then used to set up electrostatic interactions within

force fields, such as the Universal Force Field (UFF) [244]. These MD simulations

are used to investigate adsorption properties of various gases, with the atomic

partial charges derived from either the full unit cell of the ZIF or a small fragment

moiety. There have been no first principles studies involving ZIF-100 due to its

large size and the computational demands of standard diagonalisation techniques.

A linear-scaling method, such as D&C, is required for this task and is used in the

following work.

Due to its capabilities, the ZIF-100 structure is potentially a very important

material. Studies on the electronic properties are necessary to better understand

these capabilities and to highlight possible improvements. In this thesis, the

electronic structure of the full unit cell of the ZIF-100 is found using the current

D&C implementation. The full unit cell is compared with a fully optimised

cluster fragment moiety of the complete unit cell and a single cbIM molecule.

Comparing the cluster to the full unit cell will help determine if fast cluster

calculations can be used to represent the complete system. The findings from the

electronic structure calculations of the full unit cell of ZIF-100 can be used to

parameterise potentials within MD simulations, as this has not been previously

been achieved.

Firstly, the convergence of the total energy with respect to the subsystem size
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is investigated using a low quality calculation. Knowledge of the required size of

the subsystem for a low quality calculation can provide an estimate when consid-

ering high-quality calculations. The reason for not using high-quality calculations

in the convergence test is due to the large amounts of memory required for large

subsystem sizes. A reasonably sized subsystem needs to be chosen that will pro-

vide accurate results and be able to reside in the available memory. The partial

atomic charges, using Mulliken population analysis [177], of the full ZIF-100 unit

cell are found and compared to the partial charges of the small fragment moiety

and the cbIM molecule. The charge densities and the (P)DOS are also found for

the ZIF-100 structure and are compared to those of the small fragment moiety.

6.2.1 Geometry Disorder

Crystallographic data for the ZIF-100 unit cell, as determined via X-ray diffrac-

tion, can be found in the Cambridge Crystallographic Data Centre (CCDC) with

the deposition code, 668215. The atomic positions as they stand within the

CCDC database exhibit various amounts of disorder. Before any simulations can

be performed the disorder within the structure must be removed. The following

is a brief account of the clean up procedures performed on the ZIF-100 structure.

Before any disorder can be removed, the geometric structure of the cbIM

molecule needs to be found to determine optimal bond lengths and angles be-

tween certain atoms. A DFT geometry optimisation of a single cbIM molecule

terminated with hydrogens was performed to find the optimal bond lengths and

bond angles between the carbon, chlorine, nitrogen and hydrogen atoms (Fig-

ure 6.10(a)). Employing the SIESTA [2–6] method, the calculations were per-

formed using the PBE [54] parameterisation of the GGA XC and norm-conserving

Troullier-Martins pseudopotentials [88, 91] in the Kleinman-Bylander factorised

form [89,90]. The employed pseudopotential reference valence configurations were

3s23p63d104f 0, 2s22p23d04f 0, 2s22p33d04f 0, 3s23p53d04f 0 and 1s12p03d04f 0 for

Zn, C, N, Cl and H, respectively. The cut-off radii for each angular momentum

channel, s, p, d and f , were specified as follows; for Zn, 0.80a0, 1.15a0, 0.80a0 and

2.14a0; for C, 1.19a0 (all channels); for N, 1.14a0 (all channels); for Cl, 1.66a0,

1.66a0, 1.88a0, 1.88a0; and for H, 1.25a0 (all channels). A DZP basis set on all
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(a) (b)

Figure 6.10: Fragment components of the ZIF-100 structure. Hydrogen
atoms are white, carbon atoms are green, nitrogen atoms are blue, chlo-
rine atoms are purple and zinc atoms are orange. a) Hydrogenated cbIM
molecule used in the clean up procedure of the disordered ZIF-100 unit cell.
b) Tetra-Zn-cbIM - A small fragment moiety of ZIF-100. Consists of four
hydrogenated cbIM molecules tetrahedrally bound to a central zinc atom.
The atom labelling is used for the partial atomic charges.

atoms with an orbital confinement energy of 0.005 Ry was used in the present cal-

culation. The cut-off energy for the real-space integration grid was set to 350 Ry

and where self-consistency was achieved a tolerance of 1x10−5 in the density ma-

trix convergence criteria was used. The forces on the atoms were calculated and

were allowed to relax using the CG minimisation technique until their residual

forces had converged to less than 0.02 eV Å
−1
.

The average carbon-hydrogen bond length was found to be 1.100 Å and the

carbon-carbon-hydrogen bond angle on average was 120.0◦. The carbon-chlorine

bond length was found to be 1.732 Å. Now that the structural properties of

the free standing cbIM molecule are known, disorder within the ZIF-100 X-ray-

diffraction structure data can now be fixed according to these properties.
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The solvent water molecules in this case do not contribute to the stability

of the ZIF-100 structure and are removed. Through visual examination of the

asymmetric unit, two whole cbIM molecules were found to exhibit disorder, where

for each cbIM molecule another overlapping cbIM molecule was found. One of

the cbIM molecules had to be removed; the choice was determined by which of

the overlapping molecules was the least skewed i.e. the isolated cbIM molecule

is planar. The positions of the uppermost carbon-hydrogen atoms on one of

the cbIM molecules that was not removed were incorrect, found by comparing

with the other cbIM molecules in the asymmetric unit cell. The position of

these nitrogen-carbon-hydrogen atoms were corrected to the bond angle of 120◦

and the carbon-hydrogen bond length set to 1.100 Å. Again, in the asymmetric

unit cell, a single chlorine atom was found unbonded to its closest carbon atom.

The chlorine atom was moved and placed in the plane of the cbIM molecule at a

distance of 1.732 Å (as found in the cbIM geometry optimisation) from the closest

carbon atom. On the majority of the cbIM molecules there exists two bonded

chlorine atoms instead of one. The chlorine atoms have a 50% occupancy which

allows an easy conversion to hydrogen, where a choice is made to convert one of

the chlorine atoms to hydrogen and shorten the bond length to 1.100 Å.

All the disorder discernible from the asymmetric unit cell has been found

and corrected. The full unit cell must be constructed to remove the remaining

disorder. Constructing the full unit cell from the asymmetric unit cell produces

more chlorine atoms in place of a hydrogen atom. A python script was written

to substitute every other chlorine atom, with a 50% occupancy, with a hydrogen

and the bond length is appropriately shortened to 1.100 Å. There remains two

sources of disorder still left in the full unit cell. One is chlorine-chlorine bonded

atoms and the other is when no chlorine atoms are found on the cbIM molecules.

Once again a python script was used to find when these conditions occur and

substitute the particular atom with either a chlorine or a hydrogen.

Once all the disorder has been removed, the positions of the hydrogens needed

to be optimised. This was done using the molecular mechanics program, GULP

[7]. The positions of all non-hydrogen atoms are fixed while the hydrogen atoms

are constrained by potentials that limit the bond length, the bond angle of the
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Figure 6.11: The 13,584 atom unit cell of cubic ZIF-100 shown in the
(001̄) plane. The portals into the hollow centre of the structure are easily
discernible. Hydrogen atoms are white, carbon atoms are green, nitrogen
atoms are blue (represented as tetrahedrons), zinc atoms are orange (repre-
sented as tetrahedrons) and chlorine atoms are purple.

carbon-carbon-hydrogen atoms and potentials to keep the hydrogen atom in the

plane of the cbIM molecule. The bond length is governed by a harmonic potential

with a force constant set to 100.0 eVÅ
−2
, the bond angle is governed by the

three body harmonic potential with a force constant of 100.0 eV rad−2 and the

torsional constraint is governed by the out of plane potential with a force constant

of 100.0 eVÅ
−2
.

The final clean structure can now be used in any forthcoming calculations.

Figure 6.11 shows a visualisation of the unit cell of cubic ZIF-100 shown in the

(001̄) plane as used in the following electronic structure calculations.
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6.2.2 Results

There have been two primary investigations performed on ZIF-100. The first

investigation looks into the convergence of the total energy with respect to the

subsystem radius (including an outer buffer region of 1.0 Å) using a SZ basis set

on all atoms with an orbital confinement of 0.01 Ry and a 450 Ry integration

grid. The calculation time of the first SCF cycle is also shown for the convergence

test. The ZIF-100 is the largest structure reported in this thesisc, and with the

current D&C memory model (see section 3.5.2) it was difficult to complete the

convergence tests using a larger basis set.

The second investigation is a comparison of the electronic structure of the

complete ZIF-100 unit cell with the electronic structure of a small cluster fragment

moiety and the cbIM molecule. Aspects of the electronic structure that are

compared are the (P)DOS, the partial atomic Mulliken charges and the charge

density. These results can be used to set up force fields in a molecular mechanics

simulation. A DZP basis set is used in this case, with an orbital confinement of

0.01 Ry on a 450 Ry integration grid. The radius of the standard subsystem was

set to 7.337 Å which is 80% of the maximum Hamiltonian interaction length.

For both of the above investigations the same pseudopotential configuration

as the previous cbIM calculation is employed. The calculations were performed

in parallel using 64 processors of a 1472-processor SUN Constellation (2.93GHz

Intel Nehalem cpus) using up to 3 GB of RAM per CPU for all calculations.

6.2.2.1 Energy Convergence

Convergence of the total energy (including the energy error per atom) with re-

spect to subsystem size is shown in Figure 6.12(a). Each subsystem has an extra

1.0 Å outer buffer region included. The error per atom is calculated relative

to the total energy obtained with a subsystem radius of 10.0 Å. The energy

differences are found to be small, with accurate results obtained at an error of

−0.00005 eV/atom, using a subsystem radius of 7.0 Å. Even for a 5.0 Å subsystem

radius, the error is small at 0.00036 eV/atom. The plot suggests a 9.0 Å subsys-

cThe current D&C implementation has achieved a single SCF calculation of a 512,000-atom
bulk silicon unit cell, with a SZ basis set, using 256 cpus.
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(a) (b)

Figure 6.12: Subsystem size dependent computation details of the ZIF-100
structure, using a SZ basis set on 64 cpus. Each subsystem has a 1.0 Å outer
buffer region. a) Convergence in the total energy of the ZIF-100 structure as
the subsystem size is increased. The total energy converges quickly, with full
convergence considered with a 9.0 Å subsystem radius. b) The calculation
time of the first SCF iteration for each subsystem size. Efficient calculations
are possible with all subsystem sizes, with the SZ basis set.

tem with an error of 0.000008 eV/atom is required for effective full convergence

in the total energy.

The calculation time of the first SCF iteration is shown in Figure 6.12(b) for

each subsystem size. The times range from 4.4 mins for the 5.0 Å subsystem up

to 14.9 mins for the 10.0 Å subsystem. Calculations run with a 7.0 Å subsystem

will produce accurate results, which has a first SCF iteration calculation time

of only 5.2 mins with the SZ basis set. The first SCF iteration completes in

the longest time compared with subsequent SCF iterations, hence, the average

SCF time will be lower. An improvement on the times can be achieved through

better load-balancing of the atoms on the compute nodes. It is expected with

near-perfect load-balancing (which is quite achievable in this case), a reduction

of 50% in calculation time is possible. Regardless, the D&C method is found to

be very efficient for this system, as is expected due to the porous nature of the

materiald.

dThe D&C method works efficiently with porous materials because neighbouring atoms are
sparsely located for any particular subsystem. The subsystems will tend to have a smaller
number of basis functions for any given subsystem size, resulting in a smaller subsystem mem-
ory footprint and faster subsystem diagonalisation times. The duplication of effort caused by
overlapping subsystems is also reduced. Conversely, dense systems with the same volume as
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6.2.2.2 Electronic Structure

The electronic structure of the complete ZIF-100 unit cell is compared to the

electronic structure of a small ZIF-100 fragment moiety and the cbIM molecule.

These results can be used in the setting up of force fields in molecular mechanics

simulations. Determination of the (P)DOS, the partial atomic charges (via a

Mulliken population analysis [177]), and the charge density is achieved using the

same parameters as the SZ basis set calculations, except with a larger DZP basis

set. It was found that a subsystem radius of 7.337 Å is close to the largest

subsystem that would fit the program into the available memory of 3 GB per cpu

when using 64 cpus. This subsystem radius amounts to 80% of the maximum

interaction length within the Hamiltonian, at 9.1713 Å. The employed subsystem

size is in the range of converged results according to the SZ calculations, with an

error per atom of ≈ 0.00005eV. Also, due to the porous nature of the material, it

is expected that any chemistry will be primarily governed by local effects which

would not require such large subsystems. Finally, the average time per SCF

computation was found to be approximately 30 mins.

Using larger subsystem radii would require more cpus to be able to access

more memory on the symmetric multiprocessor machine. Only a certain amount

of extra cpus can be used before higher scaling occurs due to poor load balancing.

More than likely, there will be a point where the data will not be able to reside

in the available memory on each compute node, regardless of the combined total

memory. In this case, a new memory model will have to be used that distributes

the subsystem data amongst many compute nodes; refer to section 3.5.2e.

The large size of the ZIF-100 structure lends itself to long computational

times, even when using order-N methods. It would be worthwhile to investigate

if using a small moiety of the structure is representative of the complete struc-

ture, within any particular simulation of localised properties. To this end, the

electronic structure of the complete ZIF-100 structure is compared to a small

fragment moiety, as shown in Figure 6.10(b). The moiety consists of four hy-

the porous system and the same subsystem size will have a larger amount of duplication, a
larger subsystem memory footprint and longer subsystem diagonalisation times.

eThis option has not been implemented at the time of running the calculations, and is a
feature that may be investigated in the future.

192



6.2. ZEOLITIC IMIDAZOLATE FRAMEWORK - ZIF100

drogenated cbIM molecules that are tetrahedrally bound to a central zinc atom.

The moiety will be referenced as Tetra-Zn-cbIM from this point on. The DOS

for the ZIF-100 and along with the PDOS for the Tetra-Zn-cbIM structures are

shown in Figure 6.13. The ZIF-100 structure is found to be semi-conducting

with a band-gap of ≈ 1.4 eV. DFT typically underestimates band-gaps and is

expected that the actual band-gap will be larger. Due to finite-size effects and

confinement, the tetra-Zn-cbIM fragment moiety has a larger band-gap of 3.3 eV.

Most features found in the ZIF-100 DOS are found in the Tetra-Zn-cbIM DOS.

The carbon states contribute to the majority of the DOS. The major peaks of the

both sets (ZIF-100 and Tetra-Zn-cbIM) are aligned for states in the conduction

band, while for states in the valence band, the Tetra-Zn-cbIM DOS is slightly

shifted towards lower energies. The shift is the cause of the larger band-gap for

the tetra-cbIM structure.

The PDOS of Tetra-Zn-cbIM is plotted below the DOS in Figure 6.13. The

PDOS of the ZIF-100 structure is not available, as the current D&C PDOS

algorithm cannot run within the available memory. The PDOS shows that the

carbon 2p and nitrogen 2p states near the band edges are hybridised. The chlorine

3p state has a peak near the valence band edge as well. As the total DOS of the

ZIF-100 structure is similar to Tetra-Zn-cbIM, it is expected that the PDOS will

also be similar.

Most force fields within molecular mechanics use partial atomic charges to

define the electrostatic contributions to the potential [218]. The partial charges

can be populated from the results of first principles calculations. The partial

atomic charges for the ZIF-100 structure have not been found before, due to

its large size, and are provided here for the first time. Mulliken population

analysis [177] is used to calculate the partial atomic charges in this thesis. Liu

et al [241] successfully used Mulliken charges for their UFF forcefields of ZIF-

68 and ZIF-69, producing accurate carbon dioxide adsorption isotherms. The

comparison of the partial charges will be the best indicator of the representability

of the Tetra-Zn-cbIM moiety. Table 6.9 lists the partial atomic charges for the

cbIM molecule, and a single cbIM molecule plus a zinc atom from the Tetra-

Zn-cbIM moiety and the ZIF-100 structure. Averaged charges for each atom are
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Figure 6.13: The DOS for the ZIF-100 structure and Tetra-Zn-cbIM moiety
are shown in the top panel. The size of the ZIF-100 band-gap is ≈ 1.4 eV,
while the tetra-Zn-cbIM band-gap is 3.3 eV. The lower panels show the
PDOS for Tetra-Zn-cbIM, where the carbon 2p and nitrogen 2p states near
the band edges are hybridised.
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Table 6.9: TheMulliken partial atomic charges (in units of a.u.) of the cbIM
molecule, the Tetra-Zn-cbIM moiety and the ZIF-100 structure. The atoms
are numbered according to the numbering scheme shown in Figure 6.10(b).
The average charges for a particular atom are shown in parentheses.

Atom cbIM Tetra-Zn-cbIM ZIF-100

N1 0.351 0.114 (0.128) 0.154 (0.165)
N2 0.354 0.350 (0.358) 0.148 (0.170)
C1 -0.082 -0.106 (-0.094) -0.114
C2 -0.066 -0.045 (-0.050) -0.021
C3 -0.052 -0.045 (-0.043) -0.041
C4 0.030 0.031 (0.033) 0.036 (0.032)
C5 -0.102 -0.093 (-0.081) -0.058
C6 -0.077 -0.079 (-0.080) -0.076
C7 -0.307 -0.289 (-0.286) -0.286
H1 -0.029 -0.020 (-0.015) -0.011
H2 -0.020 -0.012 (-0.011) -0.030
H3 -0.032 -0.026 (-0.023) -0.023
H4 0.001 0.017 (0.020) 0.030
Cl1 -0.020 -0.010 (-0.010) 0.030 (0.032)
Zn1 — 0.505 0.476 (0.481)

also listed. Refer to Figure 6.10(b) for a the numbering scheme used to label the

individual atoms. The are only small differences in the charges between the

three structures, with a few exceptions. For example, because the N1 atom is

bonded to the Zn1 atom in the Tetra-Zn-cbIM and ZIF-100 structures, while it

is bonded to a hydrogen in the cbIM molecule, there will greater charge transfer

to the zinc atom and hence a difference in the charges. In cbIM, the nitrogen

atom attracts more charge from the lighter hydrogen and hence has more charge

than the N1 atom in Tetra-Zn-cbIM and ZIF-100. The Tetra-Zn-cbIM N1 atom

has a charge of 0.114 a.u. which is less than the ZIF-100 N1 atom at 0.154 a.u..

The greater charge on the ZIF-100 N1 atom is due to a greater charge transfer

from the Zn1 atom, which is reflected in the lower charge of 0.476 a.u. than in the

Tetra-Zn-cbIM (0.505 a.u.). This difference has to be due to the cluster nature

of the moiety, as there is no additional charge available from the boundary of

the cluster and that long-range potentials help stabilise the greater charge as
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(a) (b)

Figure 6.14: Charge density plots of a) an opening into the centre of
the ZIF100 structure and b) the Tetra-Zn-cbIM moiety. The red isosurface
centred at the nitrogen and zinc atoms has a value of 0.4 electrons/bohr3.
The highest density concentration can be found very close to origin of the
zinc atoms at 2.1 electrons/bohr3. The contour plot shows that the rest of
atoms have low density, where the scale range is from 0.0 electrons/bohr3

(blue) to 0.15 electrons/bohr3 (white) to 0.3 electrons/bohr3 (light red). a)
ZIF-100 b) Tetra-Zn-cbIM

in periodic ZIF-100. The Cl1 atom charge is negative on the Tetra-Zn-cbIM

moiety while it is positive on the ZIF-100 structure, albeit, the difference is only

0.004 a.u.. It must be noted that the approximation inherent within the D&C

method will also contribute to the small differences in the charges. Even though

there are some differences between the ZIF-100 and Tetra-Zn-cbIM partial atomic

charges, the Tetra-Zn-cbIM charges are reasonably close to claim that the moiety

is representative of the full periodic system in terms of the atomic charges.

Finally, the electron charge density of the ZIF-100 structure is compared with

the charge density of the Tetra-Zn-cbIM moiety. Plots of the charge densities are

shown in Figure 6.14. Both structures exhibit similar densities, providing more

evidence that the Tetra-Zn-cbIM moiety is representative of the ZIF-100 struc-

ture. For both structures, the zinc atoms have the largest amount of electron
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density at ≥ 2.1 electrons/bohr3. The nitrogen atoms have a density concentra-

tion up to 0.4 electrons/bohr3 and with the chlorine and hydrogen atoms up to

0.3 electrons/bohr3.

6.2.3 Concluding Remarks

The successful determination of the electronic structure of the clean ZIF-100

structure using the D&C implementation has been accomplished. The conver-

gence behaviour of the system relative the size of the subsystems has been found,

indicating that a subsystem as small as 7.0 Å can be used for quantitative results.

The electronic structure of the ZIF-100 using a large basis and high-quality set-

tings was found. A 7.337 Å subsystem radius was used, as this was the largest

radius that could fit into the available memory. The structure was found to be

semi-conducting with a band-gap of ≈ 1.4 eV. The electronic structure of small

fragment moiety was found and compared to the ZIF-100 structure. It was found

that the moiety possessed similar properties and can be considered representa-

tive of the ZIF-100 structure when considering local properties. Further studies

are required to determine the bonding nature of electrophilic carbon dioxide and

ZIF-100. Adsorption isotherms also need to be computed and compared with

experimental results [40].
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7
Conclusions

The primary aim of this thesis was to investigate first principles linear-scaling

methods [19] in the ground and excited states. This was successfully achieved

for the ground state by combining the density matrix D&C method [20–22] with

the linear-scaling assembly of the Hamiltonian and overlap matrices within the

SIESTA DFT code [2–6]. The implementation successfully scaled linearly with

respect to increasing system size. The applicability to a variety of systems with

decreasing band gaps has been demonstrated. The current parallel implemen-

tation allows for electronic structure calculations of large systems consisting of

thousands to tens of thousands of atoms with relatively modest computational re-

sources. The electronic structure of systems consisting of hundreds of thousands is

expected to be possible with the current implementation and with adequate com-

pute resources. When executed in parallel, the D&C approach exhibits near per-

fect speedup providing the data distribution is well balanced. The performance

of the parallel communication framework needs further examination with larger

numbers of compute nodes, in a similar fashion to Bowler and Miyazaki [245] with

the CONQUEST code [38]. The findings of the D&C method have been found

to be comparable to the KMG functional minimisation method [32] in SIESTA.

The standard D&C implementation is found to be robust and efficient.

Extensions to the standard density matrix D&C method that improve molec-

ular dynamics and geometry optimisations were proposed and implemented. The

first extension was shown to lessen the effects of discontinuities in the poten-

tial energy surface that occur when atoms enter or leave a subsystem. Here, a

198



switching function [144–151] is applied to each subsystem Hamiltonian and over-

lap matrix to taper the interactions between the core atoms and buffer atoms

near the boundary of the subsystem. The tapering mechanism was applied to

the calculation of the interaction energy between two hydrogenated 20.0 Å silicon

clusters. The interaction energy curve calculated from standard D&C was dis-

continuous throughout the range of cluster separation distances. The application

of the taper mechanism successfully produced continuous smooth energy curves

for taper regions up to 1.25 Å. Larger taper regions reintroduced discontinuities.

The tapering mechanism was compared with the outer buffer scheme of Dixon

and Merz Jr. [25] and was found to produce smoother results. An added and

equally important benefit of the tapering mechanism is the acceleration of the

SCF process for small to medium sized subsystems, when the taper mechanism

produces smooth energy curves. The cause of the reintroduction of the discon-

tinuities using larger taper regions needs further investigation, although work

carried out in this thesis suggests that the issue is caused by the SCF process

finding different ground state densities for different taper regions.

A new method is proposed to produce continuous energy landscapes within

the D&C method. Here, a potential is added to each subsystem that is the sum

of the background charge found surrounding the subsystem. The addition of

the potential to each subsystem is thought to indirectly expand the subsystem

boundary, hence reducing the boundary effects on the orbitals central to the sub-

system. The potential will be able to be calculated using the particle mesh Ewald

method [157] (or one of its many improvements [158]) or more appropriately the

fast multipole method [101,159]. It is proposed that this method will smooth the

energy landscape and also improve the precision of the D&C method at the ex-

pense of larger computational cost than the tapering mechanism. The proposed

method will be investigated in the near future.

The second extension generalised the standard D&C FDM method [27,33] by

allowing each subsystem to have its own density matrix update rate. In effect,

the designation of more than just the active and frozen regions is possible. This

accelerates the SCF process and decreases the number of relaxation steps (in a

local geometry optimisation) by allowing more effective electron density flow be-
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tween active and non-active regions. In fact, there can be many designated active

regions with the proposed scheme. This was demonstrated with a local geome-

try optimisation of 10 atoms at one end of a 194-atom linear alkane molecule.

The charge transfer between the active region and the frozen region was found

to be smoother with the scheme proposed in this thesis. Applying the taper-

ing mechanism produced an even smoother flow of charge between the regions.

The proposed scheme reduced the number of relaxation steps when compared to

the standard FDM scheme. The issue with large memory requirements is still

present, limiting this scheme to moderately sized systems.

A proposed scheme to help reduce the memory cost involves storing the sub-

system eigenvectors and eigenvalues onto disk and then accessing them when

required. Using this scheme the number of subsystems loaded into memory can

be set at runtime. The efficiency of reading the data from disk is hardware depen-

dent resulting in the competitiveness of this method may be put into question.

Of course using partitioning schemes that allow many subsystem core atoms will

reduce the duplication of effort of storing the same eigenstates, which in turn

reduces the memory cost.

The D&C paradigm was then applied to real-time TDDFT [34, 72] to create

a linear-scaling method for excited states (DCTDDFT). The method produced

accurate dipole moments for a linear alkane molecule when the external electric

perturbation was aligned normal to the principal axis of the molecule. However,

divergence in the dipole moment occurred for the case when the electric field

was aligned parallel to the principal axis. The effect of the subsystem boundary

on the propagating density was found to be cause of the divergence. Attempts

to eliminate subsystem boundary effects using outer buffer regions, Hamiltonian

tapering, selective local orbital propagation and wavefunction masking functions

were found not be effective. The optical response was calculated, despite the

issues with the dipole moment, and produced fairly reasonable results when com-

pared to standard TDDFT; that is the major peaks of the spectrum were found.

The success of the method for electric field polarisations normal to the alkane

molecule suggests that, in the future, the method may be made to work for par-

tition schemes that produce subsystems which are infinitely sized in the direction
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parallel to the external field, but partitioned orthogonal to this.

Further investigations are required into improving the DCTDDFT method,

as follows:

• The determination and handling of any time-dependent constraints within

the method, as it is unclear if the partition function and the subsystem

propagation should explicitly handle any time constraints.

• Application of a complex absorbing potential [209–212] to each subsystem

as an alternative to the tapering and masking functions.

• Instead of exciting all frequencies at once with the external electric field,

a monochromatic laser field can be used to excite a single frequency. This

might make any of the previous measures (and proposed measures) to

counter the subsystem boundary effects more effective. For example, with

a monochromatic laser field perturbation, the wavefunction masking func-

tion and complex absorbing potential can be optimised to operate more

effectively at the single excitation frequency.

Although not an improvement to the DCTDDFT, other methodologies to

apply the D&C paradigm need to be investigated, such as the coupled-perturbed

Kohn Sham scheme [246, 247], similar to the work of Touma et al [195] who

applied D&C to the coupled-perturbed Hartree-Fock method [248, 249].

The final work performed in this thesis highlights both the capabilities and

limitations of the present D&C implementation by studying three large systems.

The first of these systems is a 715-atom dehydrated λ-DNA structure, which was

previously studied by de Pablo et al [1]. The tapering mechanism is applied to

this system and the convergence of the total energy with respect to subsystem size

was examined. The D&C method was found to converge rapidly with increasing

subsystem size and to be very efficient. The tapering mechanism was found to

accelerate the SCF convergence process for subsystems less than 9.0 Å in radius.

A comparison with a second DNA system is made with the published results

of Otsuka et al [35], who used the density matrix minimisation (DMM) [36]

linear-scaling technique implemented in CONQUEST [37–39]. The D&C method

was found to converge to Kohn-Sham energies at a faster rate than the DMM
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method. A comparison of the electronic structure for hydrated and dehydrated

DNA structures is also made. It was found that the hydrated DNA structure

reduced the band gap of the dry system by 0.63 eV. The atomic partial charges

for all atoms is found for both hydrated and dehydrated systems. A charge

transfer of 3.2 e− from the solvent to the DNA molecule is found to occur.

For the final system, the electronic structure of the large 13,584-atom ZIF-100

[40] structure is found using only comparatively moderate computing resources.

A 7.337 Å subsystem radius was found to be the largest radius that could fit

into the available memory per compute node. The electronic structure of a small

fragment was found and compared to the ZIF-100 structure. It was found that

the fragment possessed similar properties and can be considered representative

of the ZIF-100 structure when considering local properties. Further studies are

required to determine the bonding nature of electrophilic carbon dioxide and

ZIF-100. Adsorption isotherms also need to be computed and compared with

experimental results [40].

The D&C method was found to be very efficient and precise for the above

mentioned systems. The one problem encountered for all systems was the limita-

tions of the available memory on each compute node. High quality calculations

with large subsystems require large amounts of memory on each compute node.

To overcome this issue, a new memory model is proposed in which the Hamil-

tonian, overlap and eigenstate data for each subsystem is distributed over many

compute nodes. By spreading the data across the many compute nodes increases

the amount of memory available to each subsystem. Another important addi-

tion required for the current D&C implementation is the ability to have multiple

core atoms within each subsystem. By allowing this, duplication of eigenstates

within adjacent subsystems is reduced leading to large reductions in memory cost

as well as computational cost. Currently, the D&C implementation can handle

multiple core atom subsystems when running in serial; this needs to extended to

the parallel case where the true benefits of the method are shown.
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A.1 Peer reviewed journal article

• “First principles calculations using density matrix divide-and-conquer within

the SIESTA methodology”, B. O. Cankurtaran, J. D. Gale and M. J. Ford,

Journal of Physics - Condensed Matter 20, 294208 (2008).

A.2 Oral presentation

• “First principles electronic structure calculations of large nanostructures”,

B. O. Cankurtaran, J. D. Gale and M. J. Ford, Australian Institute of

Physics Congress (AIP), December 2008, Adelaide, Australia.

A.3 Poster presentations

• “First principles calculations of very large nanostructures”, B. O. Cankur-

taran, J. D. Gale and M. J. Ford, The World Association of Theoretical and

Computational Chemists (WATOC), September 2008, Sydney, Australia.

• “Divide-and-Conquer Density Functional Theory within SIESTA”, B. O.

Cankurtaran, J. D. Gale and M. J. Ford, International Conference on

Nanoscience and Nanotechnology (ICONN), February 2008, Melbourne,

Australia.
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