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This paper presents several classes of control laws for steering an agent, that is, an

aerial or marine vehicle, in the presence of a both temporally and spatially varying drift

field induced by local winds/currents. The navigation problem is addressed assuming

various information patterns about the drift field in the vicinity of the agent. In par-

ticular, three cases are considered, namely when the agent has complete information

about the local drift, when the drift field is partially known, and when the drift field is

completely unknown. By first establishing a duality between the navigation problem

and a special class of problems of pursuit of a maneuvering target, several navigation

schemes are presented, which are appropriately tailored to the fidelity of the informa-

tion about the local drift available to the agent. The proposed navigation laws are dual

to well-known pursuit strategies, such as pure pursuit, parallel guidance/navigation,

line-of-sight guidance, motion camouflage, and pursuit with neutralization. Simulation

results are presented to illustrate the theoretical developments.
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Nomenclature

x = position vector of the agent, m

xP = position vector of the pursuer, m

xT = position vector of the maneuvering target, m

u = forward velocity vector of the agent, m/s

uP = velocity vector of the pursuer, m/s

w = known component of the drift field, m/s

∆w = unknown component of the drift field, m/s

ū = maximum forward speed of the agent, m/s

w̄ = upper bound on the norm of w, m/s

∆w̄ = upper bound on the norm of ∆w, m/s

LoS = line-of-sight (the ray from the agent’s position to its destination)

ℓLS = the ray defined by the line-of-sight (LoS)

λ = angle of the line-of-sight measured with respect to a fixed reference axis, rad

e
1
x

= unit vector parallel to the line-of-sight

e
2
x

= unit vector perpendicular to the line-of-sight

Tf = arrival time, s

ε = tolerance of miss-target error, m

R
2 = set of two-dimensional real vectors

C1 = set of continuously differentiable functions

LC = set of Lipschitz continuous functions

I. Introduction

This paper deals with the problem of characterizing navigation laws for steering an agent in the

presence of a both spatially and temporally varying drift field induced by local winds or currents.

The problem is a variation of the classical Zermelo’s Navigation Problem [1] (ZNP for short), which

seeks a navigation law to steer an agent with single integrator kinematics to a prescribed destination

in the presence of drift in minimum time. In contrast to the solution of the classical ZNP, which

yields non-causal/anticipative controllers that require, in general, global and perfect knowledge of

the drift field, the objective of this work is to characterize instead causal/non-anticipative steering

laws that require only partial and local knowledge of the drift field; consequently, these navigation
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laws are robust to uncertainties arising from incomplete information about the local drift field

dynamics.

Semi-analytical and numerical solutions to the ZNP have been recently reported in [2–8]. In all

these references, it is assumed that the agent has a priori, perfect and global information about the

drift field. In this work, the navigation problem is addressed in the more realistic case when the

information about the drift available to the agent is limited, and possibly uncertain. In particular,

three cases are considered: (a) the agent has perfect and reliable knowledge of the local drift; (b)

the knowledge of the local drift field is imperfect; and (c) the local drift field is completely unknown.

With the proposed navigation schemes, useful insights can be gleaned for a large spectrum of appli-

cations, ranging from path planning, vehicle routing, to motion coordination for, say, environmental

monitoring or surveillance and reconnaissance missions in the presence of drift, thus extending the

available results in the literature, which typically deal with cases when the drift is either a priori

known or completely ignored [3, 5, 8–13].

The main contribution of this work is the characterization of feedback navigation laws that are

tailored to the fidelity of the information about the local drift available to the agent. The design

of these feedback navigation laws is based on the duality between the navigation problem and a

special class of pursuit problems of a maneuvering target. This duality was originally demonstrated

for special cases of the drift vector field, namely, when the drift is constant, when it varies uniformly

with time, and when it is a time-varying affine field [6, 14–17], and it is established for general, both

temporally and spatially varying, drift fields in this work. After having elucidated the connection

between the navigation and the pursuit problems, several navigation laws that are dual to some well-

known pursuit strategies are presented. First, two classes of navigation laws that require perfect,

but only local, information about the drift field are introduced. The navigation laws of the first class

constraint the agent to move along the line-of-sight (LoS), that is, the direction defined from the

agent’s position to its destination (LoS navigation), whereas the second navigation law is the dual to

a well-known pursuit strategy, namely LoS or three-point guidance [18]. Feedback navigation laws

that are robust to model uncertainties induced by the incomplete information about the drift field in

the vicinity of the agent are subsequently presented. Finally, the navigation problem in the presence

of a completely unknown drift field is addressed by employing a feedback navigation law that steers

the agent’s forward velocity so that it always point towards its destination. This navigation law is

the dual to the well-known pure pursuit strategy, also known as hound-hare pursuit [18] or direct-
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bearing pursuit [19]. For each of the proposed navigation laws, a set of sufficient conditions for the

convergence of the agent to its destination in finite time are presented. These conditions highlight an

important distinction between the problems of pursuit and navigation, namely that the navigation

problem may be feasible for cases when its equivalent pursuit problem is not feasible. This situation

occurs as a result of the different underlying assumptions in the formulation of the two problems. In

particular, in the navigation problem, the notional opponent of the agent, whose evading strategy is

induced by the local drift field, does not necessarily act as an adversarial, non-cooperative opponent,

as it is the case in the classical pursuit problem. In addition, the optimality (or near optimality)

of the proposed navigation schemes is highlighted by elucidating their interpretation as gradient

descent control laws derived from heuristics of the time-to-come function taking into account the

information about the local drift available to the agent. Besides the novel contribution of this work

regarding the characterization of causal/non-anticipative feedback navigation laws in the presence

of an uncertain drift field, this paper also has a pedagogical value stemming from useful insights

gained by reinterpreting and reevaluating known pursuit strategies from an information-centric

perspective.

The rest of the paper is organized as follows. Section II discusses the formulation of the naviga-

tion problem in the presence of a both time and spatially varying drift field. Section III introduces

navigation laws that require perfect knowledge of the local drift. The problem of navigation with

imperfect or complete lack of information about the local drift is discussed and analyzed in Sec-

tions IV and V, respectively. Section VI highlights the interpretation of the presented navigation

laws as gradient descent laws in terms of appropriate performance indices. Simulation results are

presented in Section VII. Finally, Section VIII concludes the paper with a summary of remarks.

II. Formulation of the Navigation Problem

Consider an agent whose kinematics are described by

ẋ = u+ w(x) + ∆w(t, x), x(0) = x0, (1)

where x := [x, y]T ∈ R
2 and x0 := [x0, y0]

T ∈ R
2 denote the position vector of the agent at

time t and t = 0, respectively, and u is the control input (velocity vector) of the agent. It is

assumed that u ∈ U , where U consists of all piece-wise continuous functions taking values in the set

U = {u ∈ R
2 : |u| ≤ ū}, where ū is a positive constant (maximum allowable forward speed), and

| · | denotes the standard Euclidean vector norm. Furthermore, w(x) +∆w(t, x) is the drift induced
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by the winds/currents in the vicinity of the agent. In particular, w(x) denotes the component of

the local drift that is perfectly known to the agent, and which is assumed to be at least C1 in the

domain of interest. The term ∆w(t, x) denotes the unknown component of the drift and is assumed

to be a piece-wise continuous function of time t, and C1 with respect to the agent’s position x.

Furthermore, it is assumed that there exist w̄ > 0 and ∆w̄ > 0 such that

|w(x)| ≤ w̄, |∆w(t, x)| ≤ ∆w̄, for all t ≥ 0 and x ∈ R
2. (2)

A. Formulation of the Minimum-Time Navigation Problem

First, the classical Zermelo Navigation Problem (ZNP) [1] is revisited. The ZNP deals with

the characterization of a navigation law to steer an agent, whose kinematics are described by Equa-

tion (1), to a prescribed destination in minimum time, in the special case when the drift is perfectly

known, that is, when ∆w(t, x) ≡ 0 (deterministic minimum-time problem).

Problem 1 (ZNP). Let the system described by Equation (1) with ∆w(t, x) ≡ 0. Determine a

control input u∗ ∈ U such that

i) The trajectory x∗ : [0, Tf ] 7→ R
2 generated by the control u∗ satisfies the boundary conditions

x∗(0) = x0, x∗(Tf) = 0. (3)

ii) The control u∗ minimizes, along the trajectory x∗, the cost functional J(u) := Tf , where

0 ≤ Tf < ∞ is the free final time.

It can be shown that the control law that solves Problem 1 has necessarily the following structure:

u∗ = ū [cos θ∗, sin θ∗]
T, (4)

where θ∗ satisfies the following differential equation, known as the navigation formula (for more

details, see, for example, [20, 21])

θ̇∗ = νx(x∗) sin
2 θ∗ − µy(x∗) cos

2 θ∗ + (µx(x∗)− νy(x∗)) cos θ∗ sin θ∗, (5)

where w := [µ, ν]T and µx := ∂µ/∂x, µy := ∂µ/∂y, νx := ∂ν/∂x, and νy := ∂ν/∂y. It follows that

the candidate optimal control u∗ is determined up to a single parameter, namely θ̄ = θ∗(0) ∈ [0, 2π),

from Equations (4)-(5); the optimal control is consequently written as u∗(t; θ̄). One immediately

observes that a candidate optimal control of the ZNP depends explicitly on the current position
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vector x∗, as well as both the drift w and its Jacobian matrix ∂w/∂x, through the navigation formula

(5). Therefore, the ZNP cannot be solved in practice, unless the agent has a priori perfect and global

knowledge of the drift vector field w(x), in which case the ZNP can be addressed as a standard,

deterministic two-point boundary value minimum-time problem. The objective of this work is to

derive feedback navigation laws that require information about the drift field only in the vicinity of

the agent, and which are completely independent of the Jacobian of the drift field (navigation with

local information).

B. Formulation of the Navigation Problem with Local Information

Next, the problem of characterizing feedback navigation laws for different information patterns

regarding the drift in the vicinity of the agent is considered. To this end, let the kinematics of

the agent be described by Equation (1) as before, but with the distinctive difference that u(x)

is a state feedback control law. In particular, it is assumed that u ∈ Uf , where Uf := {f ∈

LC(R2\{0}) : f(x) ∈ U, for all x 6= 0}, and where LC(R2\{0}) denotes the set of all locally

Lipschitz continuous functions on R
2\{0}. Different information patterns regarding the drift in the

vicinity of the agent are considered, namely,

i) the drift is perfectly known only in the vicinity of the agent, that is, w(x) 6≡ 0, and ∆w(t, x) ≡ 0,

ii) the drift is not known perfectly, that is, w(x) 6≡ 0, and ∆w(t, x) 6≡ 0,

iii) the drift is completely unknown, that is, w(x) ≡ 0, and ∆w(t, x) 6≡ 0.

Next, the navigation problem, when the drift field is only locally known, is formulated.

Problem 2. Let the system described by Equation (1), where, at every instant of time t, only the

local drift field w(x) is known. Given ε > 0, determine a control input u ∈ Uf such that the trajectory

x : [0, Tf ] 7→ R
2 generated by the control u satisfies, for every |x0| > ε, the boundary conditions

x(0) = x0, |x(Tf)| ≤ ε, (6)

for some 0 ≤ Tf < ∞.

One of the differences between Problem 1 and Problem 2 is that in the formulation of the latter,

the requirement that the agent should exactly reach its destination in minimum time has been

relaxed. Instead, in Problem 2, and in order to account for the possibility of imperfect knowledge

of the local drift field, it is only required that the agent reaches a ball of radius ε centered at
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x = 0 in finite time. Furthermore, the control law that solves Problem 2 has been restricted to the

class of (time invariant) state feedback control laws, which satisfy standard regularity properties

guaranteeing that the mathematical model of the closed-loop system is well posed.

C. The Navigation Problem as a Problem of Pursuit of a Maneuvering Target

Next, the interpretation of the navigation Problem 2 as a problem of pursuit of a maneuvering

target is discussed. To this end, consider a pursuer and a moving target whose kinematics are

described by the following set of equations

ẋP = uP(xP , xT ), xP(0) = x0, (7)

ẋT = −w(xP , xT )−∆w(t, xP , xT ), xT (0) = 0, (8)

where xP := [xP , yP ]
T ∈ R

2, and xT := [xT , yT ]
T ∈ R

2 are the position vectors of the pursuer

and the moving target at time t, respectively. In addition, uP ∈ UP,f , where UP,f := {f ∈

LC(R4\M) : f(x) ∈ U, for all x /∈ M}, and M = {(xP , xT ) ∈ R
4 : xP = xT }. Furthermore,

−w(xP , xT )−∆w(t, xP , xT ) is the target’s velocity, where w(xP , xT ) (the known component of the

instantaneous target’s velocity) and ∆w(t, xP , xT ) (the unknown component of the instantaneous

target’s velocity) satisfy the same regularity conditions as in the formulation of the ZNP. Next, a

problem of pursuit of a maneuvering target, which, as it is shown later, turns out to be equivalent

to Problem 2, is presented.

Problem 3. Let the kinematics of a pursuer and a moving target be described by Equations (7) and

(8), respectively, and assume that, at each instant of time, the pursuer has only knowledge of −w(x).

Given ε > 0, find a control law uP ∈ UP,f , such that the trajectories xP(·;uP) and xT (·;−w −∆w)

generated by uP and −w −∆w, respectively, satisfy, for all |x0| > ε, the boundary conditions

xP(0) = x0, xT (0) = 0, |xP(Tf ;uP)− xT (Tf ;−w −∆w)| ≤ ε, (9)

for some 0 ≤ Tf < ∞.

Let one consider the special case when uP(xP , xT ) = uP(xP − xT ), w(xP , xT ) = w(xP − xT ),

∆w(t, xP , xT ) = ∆w(t, xP − xT ). By taking x = xP − xT and u = uP , it is easy to see that

ẋ = uP(xP − xT ) + w(xP − xT ) + ∆w(t, xP − xT )

= u(x) + w(x) + ∆w(t, x). (10)
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Furthermore, x(0) = xP(0) − xT (0) = x0, and |x(Tf)| = |xP(Tf ;uP) − xT (Tf ;−w − ∆w)| ≤ ε.

Therefore, a navigation law u that solves Problem 2 is also a pursuit law uP that solves Problem 3,

and vice versa. This correspondence between Problem 2 and Problem 3 is an illustration of the

duality between the navigation problem and the problem of pursuit of a maneuvering target, in the

special case when both the motions of the pursuer and the target are described by single integrator

kinematics, and, in addition, their strategies are functions of their relative positions with respect

to each other. By making use of this duality between the navigation and the pursuit problems,

navigation laws that are dual to well-known pursuit strategies are proposed in the next section.

Furthermore, the equivalence of some intuitive solutions to the navigation problem with standard

pursuit strategies is established.

III. Navigation with Perfect Local Drift Information

First, a class of feedback laws solving Problem 2, when the agent has perfect knowledge of the

local drift, that is, when ∆w(t, x) ≡ 0, is considered. Before proceeding with the presentation of

this class of navigation laws, a few geometric concepts that shall be extensively used throughout

this paper are introduced. In particular, it is assumed that a moving frame (e1
x
, e2

x
) is attached to

the current position of the agent x, where e
1
x
:= −x/|x|, and e

2
x
:= Se

1
x
, for all x ∈ R

2\{0}, and where

S :=
[
0 −1

1 0

]
. Note that e1

x
is the unit vector parallel to the direction towards its destination (origin)

as observed by the agent, whereas e2
x

is the unit vector perpendicular to e
1
x
. The ray emanating from

the agent’s current position parallel to e
1
x

is henceforth referred to as the line-of-sight (LoS), and it

will be denoted by ℓLS(x) := {z ∈ R
2 : z = ρx, ρ ∈ [0, 1]}. After some algebraic manipulations, one

can show that

ė
1

x
= −〈ẋ, e2

x
〉

|x| e
2

x
, ė

2

x
=

〈ẋ, e2
x
〉

|x| e
1

x
. (11)

Furthermore, let λ denote the angle of the LoS measured with respect to some fixed reference

direction, as illustrated in Fig. 1. It follows readily from (11) that the rate of change of λ is given

by

λ̇(x) = −〈ẋ, e2
x
〉

|x| . (12)

The following identity will be useful in the subsequent discussion,

2|x| d
dt

|x| = d

dt
|x|2 =

d

dt
〈x, x〉 = 2〈ẋ, x〉, (13)
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which implies that

d

dt
|x| = 〈ẋ, x〉

|x| = −〈ẋ, e1
x
〉, for all x ∈ R

2\{0}. (14)

0

x

e
1
xe

2
x

i
1
x

i
2
x

ℓLS(x)

λ

Fig. 1 Global and local frames of reference.

A. Line-of-Sight Feedback Navigation Laws

In this section, a class of feedback navigation laws that steer the agent to its destination such

that the agent remains at all times on ℓLS(x0) is presented. In particular, two different navigation

laws, which constraint the agent to travel along the LoS by canceling the component of the drift

perpendicular to e
1
x0

, are considered.

The first navigation law steers the agent towards its destination while the latter maintains,

at all times, maximum forward speed ū as it travels along ℓLS(x0). The situation is illustrated in

Fig. 2(a). This navigation law will be henceforth referred to as the optimal line-of-sight (OLoS)

navigation, since among all navigation laws that steer the agent along the original LoS, it is the

one that point-wise maximizes the speed along the ensuing path. The analytic expression of this

feedback law is given by

uOLS(x) = uOLS,1(x)e
1

x0
+ uOLS,2(x)e

2

x0
,

uOLS,1(x) :=
√
ū2 − 〈w(x), e2

x0
〉2, uOLS,2(x) := −〈w(x), e2

x0
〉. (15)

The following proposition provides sufficient conditions for the feasibility of the navigation law (15).

Proposition 1. Let ε > 0 and ∆w(t, x) ≡ 0. Then, for all |x0| > ε, the navigation law (15) will

drive the system (1) to the set {x : |x| ≤ ε} in finite time, provided there exist w̄1 > 0 and w̄2 > 0
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such that

|〈w(x), e1
x0
〉| ≤ w̄1 <

√
ū2 − w̄2

2
, (16)

|〈w(x), e2
x0
〉| ≤ w̄2 < ū, (17)

for all x ∈ ℓLS(x0). Finally, the time of travel satisfies the upper bound

Tf ≤
|x0| − ε√

ū2 − w̄2
2
− w̄1

< ∞. (18)

Proof. Note that (17) guarantees that uOLS,1(x) is well defined along ℓLS(x0). Furthermore, in view

of (17), it follows that

uOLS,1(x) =
√

ū2 − 〈w(x), e2
x0
〉 ≥

√
ū2 − w̄2

2
. (19)

In addition, it follows readily, after plugging (15) in (1), and in light of (16) and (19), that

d

dt
|x| = −〈ẋ, e1

x0
〉 = −〈uOLS(x) + w(x), e1

x0
〉

= −uOLS,1(x)− 〈w(x), e1
x0
〉

≤ −
√
ū2 − w̄2

2
+ w̄1. (20)

Note that (16) implies that the right-hand-side of (20) is strictly negative, and thus, the navigation

law (15) will drive the system (1) to the set {x : |x| ≤ ε} in finite time, for all |x0| > ε. Furthermore,

(18) follows after integrating both sides of (20).

Note that Proposition 1 implies that the navigation law (15) solves Problem 2, provided the drift

component perpendicular to e
1
x0

can be canceled by the agent’s control actions, and furthermore, the

projection of the drift on −e
1
x0

(opposite of the LoS direction) never dominates the forward speed of

the agent. The reader should notice here that conditions (16)-(17) may hold even if |w(x)| > ū, for

some x ∈ ℓLS(x0). Thus, the standard assumption, which is typically made in problems of pursuit

of a maneuvering target, where the pursuer is assumed to have a speed advantage over the target,

has been relaxed. Note that if the target is faster than the pursuer, then the former can always

escape capture by simply traveling along the original LoS direction with its maximum speed. In the

problem of navigation, the assumptions for the feasibility of the navigation law (15) can be relaxed

given that the notional maneuvering target, whose velocity is −w(x), may not necessarily act as an

adversarial, non-cooperative opponent, in contrast to the classical pursuit problem.
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Next, a second navigation law that will enforce motion of the agent along ℓLS(x0) is introduced.

The expression of this control law is given by

uNLS(x) := uNLS,1(x)e
1

x0
+ uNLS,2(x)e

2

x0
,

uNLS,1(x) := ū− |w(x)| − 〈w(x), e1
x0
〉, uNLS,2(x) := −〈w(x), e2

x0
〉. (21)

The interpretation of navigation law (21) is as follows: The agent first completely “cancels” the effect

of the drift, and subsequently allocates the remaining control authority along the original LoS. The

navigation law (21) may be particularly useful during the last phase of the navigation process and,

in particular, as the agent approaches its final destination. Note that the navigation law (21) can

also be written as follows

uNLS(x) = −w(x) + (ū− |w(x)|)e1
x0
. (22)

The situation is illustrated in Figure 2(b). One important observation here is that |uNLS(x)| 6≡ ū,

for all x ∈ ℓLS(x0), that is, the agent may not necessarily maintain maximum forward speed along

its ensuing path. This may be useful when the agent is approaching a landing/docking point

(rendezvous problem), where a “smooth” final approach is more important than a fast one. Note,

furthermore, that |uNLS(x)| = ū only if w(x) = −|w(x)|e1
x0

, in which case, the navigation laws (15)

and (21) turn out to be exactly the same.

The following proposition provides a sufficient condition for the feasibility of the navigation

law (21).

Proposition 2. Let ε > 0 and ∆w(t, x) ≡ 0. Then, for all |x0| > ε, the navigation law (21) will

drive the system (1) to the set {x : |x| ≤ ε} in finite time, provided there exists w̄ > 0 such that

|w(x)| ≤ w̄ < ū, for all x ∈ ℓLS(x0). (23)

Finally, the time of travel satisfies the upper bound

Tf ≤
|x0| − ε

ū− w̄
< ∞. (24)

Proof. Note that (23) implies that the component of the drift w(x) can be canceled by the agent’s

forward velocity. In addition, by plugging (21) in (1), and by virtue of (23), it follows readily that

d

dt
|x| = −〈ẋ, e1

x0
〉 = −〈uNLS(x) + w(x), e1

x0
〉

= −〈(ū− |w(x)|)e1
x0
, e1

x0
〉

≤ −(ū− w̄). (25)
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The rest of the proof is similar to the proof of Proposition 1, and it is thus omitted.

One of the main drawbacks of the feedback law (21), compared to (15), is that for its application

it is necessary that the control authority of the agent always dominates the drift as the agent

moves along the original LoS. Note that (23) is more restrictive than conditions (16)-(17). Another

restriction of the navigation law (21) has to do with the fact that, as it has already been mentioned,

when the agent is driven by this law, it may not maintain constant forward speed along its ensuing

path. This may be an undesirable situation for several applications, say, fixed-wing UAVs, where

the forward speed of the aircraft must remain, at all times, above stall speed. On the other hand,

as it has already been mentioned, the navigation law (21) may be more practical than (15), when,

for example, a smooth final approach is more preferable than a quick one.

It is interesting to note that the control law (21) corresponds to a pursuit strategy known as

“pursuit with neutralization” [15]. With this strategy, the pursuer first neutralizes the action of its

opponent (maneuvering target) and, subsequently, uses the remaining control authority (provided

the pursuer has a speed advantage over its opponent) to diminish their relative distance.

B. Three-Point Navigation and LoS Guidance

Next, a navigation scheme that, in contrast to the navigation laws (15) and (21), does not require

the forward velocity of the agent to dominate the component of the drift perpendicular to the LoS

direction is presented. The proposed navigation is derived from a well-known pursuit strategy,

namely the LoS or three-point guidance law [18]. It turns out that this pursuit strategy enforces the

geometric constraint of motion camouflage with respect to a fixed point [22, 23], which stipulates,

in turn, that the position vector of the pursuer with respect to the reference point x0 is, at all times,

parallel to the position vector of the target with respect to the pursuer. Equivalently, the pursuer

always lies on the line segment defined by the target’s current position and the reference point x0.

It is worth-mentioning that the term “motion camouflage” was first coined by Srinivasan and Davey

to describe an effective deception strategy adopted by various animal and insect species, where a

pursuer (the shadower) conceals its apparent motion from an evader (the shadowee) by emulating

the optical flow produced by a stationary point [22]. By eliminating any motion parallax, the

pursuer’s motion reduces the ability of the evader to accurately obtain depth information regarding

its actual relative distance from the pursuer [22]. Depending on whether the distance of the fixed

reference point from the pursuer is finite or infinite, one refers to “motion camouflage with respect
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x0

w(x)

uOLS(x)

ẋ

e
1
x0

e
2
x0

xf

x

(a) Optimal LOS navigation.

x0

w(x)

−w(x)

uNLS(x)
ẋ

e
1
x0

e
2
x0

xf

(b) LOS navigation with drift neutralization.

Fig. 2 Motion along the LOS direction is achieved when the agent’s forward velocity can

cancel the drift component perpendicular to the LoS direction.

to a fixed point” and to “motion camouflage with respect to a point at infinity,” respectively. While

in the former case the pursuer’s strategy is to match the angular velocity of its motion with that of

the target, in the latter, the pursuer’s line-of-sight has a fixed direction in space.

Note that the LoS guidance law is a pursuit strategy that entails two LoS directions, namely, the

direction from x0 to xP , and the direction from xP to xT . Alternatively, the same pursuit strategy

involves three points of interest, namely x0, xP and xT , which must remain collinear at all times.

13



The situation is illustrated in Figure 3.

In this section, the applicability of the LoS guidance law to the navigation problem, when the

drift field is only partially known, is examined. To this end, let λP and λT denote, respectively,

the angular positions of the pursuer and the target from x0 with respect to some fixed reference

direction, at time t. With the aid of Fig. 3, one can observe that the motion camouflage condition

implies that λ̇P = λ̇T . Thus, the components of the velocity of both the target and the pursuer

perpendicular to e
1
x

(or e
1
xP

) satisfy

〈uP , e
2
x
〉

|xP − x0|
= −〈w(xP − xT ), e

2
x
〉

|xT − x0|
= −〈w(x), e2

x
〉

|xT − x0|
= − 〈w(x), e2

x
〉

|xP − x0|+ |x| , (26)

in light of the identity

|xT − x0| = |xT − xP |+ |xP − x0| = |x|+ |xP − x0|, (27)

which follows, in turn, from the collinearity of x0, xP and xT . Therefore,

〈uP , e
2

x
〉 = − |xP − x0|

|xP − x0|+ |x| 〈w(x), e
2

x
〉, (28)

and the expression of the pursuit strategy uP for LoS guidance is given by

uP(x, xP) := uP,1(x, xP)e
1

x
+ uP,2(x, xP)e

2

x
,

uP,1(x, xP) :=
√

ū2 − u2

P,2(x, xP), uP,2(x, xP) := − |xP − x0|
|xP − x0|+ |x| 〈w(x), e

2

x
〉. (29)

Note that the pursuit strategy (29) depends explicitly on both x and xP . Therefore, the control

law (29) cannot be used directly as a navigation law for the system (1), since it depends on xP , in

addition to the current location of the agent x. Before applying the control law (29) to the navigation

problem, the kinematic model described by Equation (1) needs to be dynamically extended to the

following kinematic model

ẋ = uTPN(x, xP) + w(x), x(0) = x0, (30)

ẋP = uTPN(x, xP), xP(0) = x0, (31)

where uTPN(x, xP) := uP(x, xP). The control law uTPN is henceforth referred to as the three-point

navigation law.

One noteworthy observation for the three-point navigation law uTPN is that the component

of uP perpendicular to the LoS direction never dominates the component of the drift along the

same direction, as it follows readily from (29). Consequently, the agent driven by (29) does not

14



travel along the LoS. This fact may incur some loss of performance, in terms of minimizing the

arrival time, when compared with (15) (see also the discussion on Section VI regarding the local

optimality of (15)). On the other hand, the applicability of the control law (29) may not be limited

to navigation problems where the control authority of the agent can cancel the term 〈w(x), e2
x
〉. This

is in contrast to the navigation laws (15) and (21), which cannot guarantee convergence of the agent

to its destination in the case when the component of the drift along e
2
x0

is stronger than the control

authority of the agent. Another advantage of the navigation law (29), compared to (15) and (21),

is its robustness in the presence of unknown drift. This is demonstrated in Section IVB.

xT (0)

xT (t1)

xT (t2)

xP(0) = x0

xP(t1)

xP(t2)

λ(0)

λ(t1)

λ(t2)
|x(t2)|

|xP(t2)− x0|

Fig. 3 LoS or three-point guidance is synonymous to motion camouflage with respect to a

fixed point. At all times, the rate of change of the angular positions of both the pursuer

and the target from point x0 and with respect to some fixed reference direction is exactly the

same.

Proposition 3. Let ε > 0 and ∆w(t, x) ≡ 0. Then, for all |x0| > ε, the navigation law (29) will

drive the system (1) to the set {x : |x| ≤ ε} in finite time, provided there exist w̄1 > 0 and w̄2 > 0

such that

|〈w(x), e1
x
〉| ≤ w̄1 <

√
ū2 − w̄2

2
, (32)

|〈w(x), e2
x
〉| ≤ w̄2, (33)
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for all x ∈ R
2\{0}. Furthermore, the time of travel satisfies the upper bound

Tf ≤
|x0| − ε√

ū2 − w̄2
2
− w̄1

< ∞. (34)

Proof. It follows from (33) that

|uP,2(x, xP)| =
|xP − x0|

|xP − x0|+ |x| |〈w(x), e
2

x
〉| ≤ |〈wT (x), e

2

x
〉| ≤ w̄2, (35)

which implies, in turn, that uP,1(x, xP) =
√
ū2 − u2

P,2(x, xP) ≥
√

ū2 − w̄2
2
, for all (x, xP) ∈

R
4\{0, x0}. Furthermore, it follows that

d

dt
|x| = −〈ẋ, e1

x
〉 = −〈uTPN(x) + w(x), e1

x
〉

= −uP,1(xP , x)− 〈w(x), e1
x
〉

≤ −
√

ū2 − w̄2
2
+ w̄1. (36)

The rest of the proof follows similarly to the proof of Proposition 1, and thus it is omitted.

C. Navigation with Local Drift Information and Pursuit with Motion Camouflage

A common theme in both the navigation laws (15) and (21) is that when the agent is driven by

either of these two control laws, its direction of motion is constant and parallel to e
1
x0

(the original

LoS direction). The interpretation of the previous observation, within the context of the problem

of pursuit of a maneuvering target, is that the relative position vector of the pursuer from the

target remains, at all times, parallel to a constant vector, namely e
1
x0

. Equivalently, the relative

angular position of the target from the pursuer, and vice versa, is constant. Therefore, both the

pursuit strategies uP(x) = uOLS(x) and uP(x) = uNLS(x) satisfy the so-called requirement for motion

camouflage with respect to a point at infinity [22], also known in the field of missile guidance as

the condition for parallel guidance/navigation [18]. Note that motion camouflage with respect to

a point at infinity results in a navigation strategy where the original LoS direction remains always

fixed.

Another way to reach the same conclusion, is by showing that when the pursuer is driven by

either the control law (15) or (21), the LoS angle λ remains constant during the course of the pursuit.

In particular, in light of (12),

λ̇ = −〈ẋP − ẋT , e
2
x
〉

|xP − xT |
= −〈ẋ,Se1

x
〉

|x| . (37)

It is easy to show that when the pursuer is driven by either the control law (15) or (21), the vector

ẋ = ẋP − ẋT remains parallel to e
1
x
≡ e

1
x0

. Consequently, the inner product in the numerator of
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(37) is zero, given that S is a skew symmetric matrix, and thus λ is constant at all times. Note

that when the agent is steered by either the LoS navigation law (15) or (21), it will remain on the

original LoS during its course to its destination, and thus the points x, x0, and the origin x = 0

will always be collinear. Thus, both of the navigation laws (15) and (21) satisfy the condition for

motion camouflage with respect to a fixed point, namely x0, rather than the condition for motion

camouflage with respect to a point at infinity, which is satisfied, when (15) or (21) are used as

pursuit strategies.

The three-point navigation law is derived directly from the pursuit strategy (29), which satisfies,

by construction, the geometric condition for motion camouflage with respect to a fixed point, namely

x0. Note that the geometric condition for motion camouflage with respect to neither a fixed point

(that is, collinearity of x0, x and the origin) nor a point at infinity (that is, λ̇ = 0) are necessarily

satisfied when the control (29) is used as a navigation law.

xT (0)

xT (t1)

xT (t2)

xP(0) = x0

xP(t1)

xP(t2)

λ

λ

λ

Fig. 4 Motion camouflage with respect to a point at infinity is synonymous to parallel guid-

ance/navigation, where the LoS angle between the pursuer and the target, when measured

with respect to some fixed reference direction, remains constant at all times. Equivalently, the

components of the velocities of the pursuer and the target perpendicular to the LoS direction

remain the same at every instant of time.
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IV. Navigation with Imperfect Information

In this section, feedback navigation laws for the case when the information about the local drift

field available to the agent is imperfect are presented. The proposed navigation laws are derived

from the control laws presented in Section III, after the necessary modifications reflecting the lack

of complete knowledge of the drift field have been carried out. Specifically, note that the control

laws (15) and (21) depend on the initial LoS direction e
1
x0

and its normal direction e
2
x0

, and both

of them remain constant throughout. By updating the initial LoS direction with the most current

LoS direction e
1
x

and its corresponding normal direction by e
2
x
, the control law can use the most up-

to-date information of its relative position to its destination. In other words, the drift components

along the current LoS direction and its perpendicular entail enough information about the prevailing

wind/current field so that the controller can compensate its effect on the ensuing path of the agent.

A. Robust LoS Navigation Laws with Imperfect Local Information of the Drift

One important remark from the discussion in Section III is that for the implementation of

both the navigation laws (15) and (21), the agent must have perfect knowledge of the local drift

at every instant of time. If, however, the local drift is not known perfectly, that is, ∆w(t, x) 6≡ 0,

then the navigation laws (15) and (21) will not successfully cancel the component of the drift

perpendicular to the LoS direction. Consequently, the agent may fail to reach its destination. To

alleviate this deficiency, two variations of the navigation laws (15) and (21), which are robust to

model uncertainties induced by the incomplete knowledge of the local drift field, are introduced.

The adopted approach is based on the observation that, in contrast to the pursuit problem,

where motion camouflage is often used to introduce the element of deception, the enforcement of

the geometric condition for motion camouflage in the navigation problem has no apparent practi-

cal value. Therefore, one can relax the motion camouflage requirement and consider instead the

following modification of the navigation law (15)

u⋆
OLS(x) = u⋆

OLS,1(x)e
1

x
+ u⋆

OLS,2(x)e
2

x
,

u⋆
OLS,1(x) =

√
ū2 − 〈w(x), e2

x
〉2, u⋆

OLS,2(x) = −〈w(x), e2
x
〉. (38)

Note that the navigation laws (15) and (38) are almost identical modulo the replacement of e
1
x0

and e
2
x0

by e
1
x

and e
2
x
, respectively, which is induced, in turn, by the relaxation of the geometric

constraint of motion camouflage. As shown below, the navigation law (38) is more robust than

the original navigation law (15) in the presence of unknown drift. The performance of (38), in
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terms of minimizing the arrival time, is still, however, compromised by the existence of an unknown

drift. In particular, in the presence of a nonzero component of the unknown drift along e
2
x
, the

inertial velocity of the agent will not point towards the agent’s destination, as it is the case with the

navigation law (15), when the local drift is perfectly known. Therefore, there exists an offset error

between the direction of the inertial velocity of the agent and the current LoS, which incurs some

loss of performance (see also the discussion on Section VI regarding the interpretation of the LoS as

the direction that maximizes the rate of decrease of the distance of the agent from its destination).

The situation is illustrated in Fig. 5.

The following proposition furnishes sufficient conditions for the feasibility of the navigation law

(38).

Proposition 4. Let ε > 0. Then, for all |x0| > ε, the navigation law (38) will drive the system (1)

to the set {x ∈ R
2 : |x| ≤ ε} in finite time, provided there exist w̄1 > 0 and w̄2 > 0 such that

|〈w(x) + ∆w(t, x), e1
x
〉| ≤ w̄1 <

√
ū2 − w̄2

2
, (39)

|〈w(x), e2
x
〉| ≤ w̄2 < ū, (40)

for all x ∈ R
2\{0}. Furthermore, the arrival time satisfies the upper bound

Tf ≤
|x0| − ε√

ū2 − w̄2
2
− w̄1

< ∞. (41)

Proof. The proof follows similarly to the proof of Proposition 1, and thus it is omitted.

Similarly, one can consider a variation of the navigation law (21), whose expression is given by

u⋆
NLS(x) := u⋆

NLS,1(x)e
1

x
+ u⋆

NLS,2(x)e
2

x
,

u⋆
NLS,1(x) := ū− |w(x)| − 〈w(x), e1

x
〉, u⋆

NLS,2(x) := −〈w(x), e2
x
〉. (42)

The following proposition presents sufficient conditions for the feasibility of the navigation law (42).

Proposition 5. Let ε > 0. Then, for all |x0| > ε, the navigation law (42) will drive the system (1)

to the set {x ∈ R
2 : |x| ≤ ε} in finite time provided there exist w̄ > 0 and ∆w̄1 > 0 such that

|w(x)| ≤ w̄ < ū, (43)

|〈∆w(t, x), e1
x
〉| ≤ ∆w̄1 < ū− w̄, (44)

for all t ≥ 0 and x ∈ R
2\{0}. Furthermore, the time Tf satisfies the upper bound

Tf ≤
|x0| − ε

ū− w̄ −∆w̄1

< ∞. (45)
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x

x0

w(x) + ∆w(t, x)

u⋆

OLS(x)

ẋ
e
1
xe

2
x

xf

e
1
x0e

2
x0

Fig. 5 Robust LoS navigation. The direction of motion of the agent does not always align

with the current LoS owing to the presence of the unknown drift component ∆w.

Proof. The proof follows similarly to the proof of Proposition 2, and thus it is omitted.

If one uses the navigation laws (38) or (42) as pursuit strategies for Problem 3, then the condition

for motion camouflage with respect to a point at infinity will not be satisfied. This comes as a

consequence of the fact that any discrepancies between the actual and the known drift would result

in a non-zero λ̇, in general. In particular, it can easily be shown that

λ̇ = −〈∆w(t, x), e2
x
〉

|x| . (46)

Since λ̇ is not zero for ∆w(t, x) 6= 0, the constant LoS angle requirement (the condition for motion

camouflage with respect to a point at infinity) is not satisfied. Another important observation

from Equation (46) is that as |x| → 0, λ̇ grows unbounded, which implies, in turn, that the normal

acceleration of the agent along its ensuing path grows unbounded as well; this is an undesirable, from

the application point of view, situation. The following proposition furnishes a sufficient condition

for λ̇ to remain bounded at all times.

Proposition 6. Let ε > 0, and let all assumptions of Propositions 4 and 5 hold. Furthermore,

assume that there exists ∆w̄ > 0 such that

|∆w(t, x)| ≤ ∆w̄, for all t ≥ 0 and x ∈ R
2. (47)
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If ∆w(t, x) = O(|x|), as |x| → 0, uniformly for all t ≥ 0, then λ̇ remains bounded for all t ∈ [0, Tf ]

and for all |x0| > ε.

Proof. By hypothesis, there exists k(ε) > 0 such that |∆w(t, x)| ≤ k(ε)|x|, for all t ≥ 0 and |x| ≤ ε.

Furthermore, by virtue of the Cauchy-Schwartz inequality, it follows that

|〈∆w(t, x), e2
x
〉|

|x| ≤ |∆w(t, x)|
|x| ≤ ∆w̄

ε
, for all t ≥ 0 and x ∈ {y ∈ R

2 : |y| > ε}. (48)

In light of (46) and (48), it follows that

|λ̇| = |〈∆w(t, x), e2
x
〉|

|x| ≤ max{k(ε),∆w̄/ε} < ∞, for all t ≥ 0 and x ∈ R
2\{0}, (49)

and thus completing the proof.

B. Robust Three-Point Navigation

In case the local drift is not perfectly known, that is, when ∆w(t, x) 6≡ 0, the pursuit strategy (29)

will not satisfy the condition for motion camouflage with respect to a fixed point, that is, the points

xP , xT and x0 may not be collinear at all times. Since the enforcement of the motion camouflage

condition has no apparent practical value for the navigation problem, one can proceed with the

design of a navigation law, at the geometric level, by relaxing the motion camouflage constraint.

In particular, it is assumed that the condition for motion camouflage is satisfied with respect to

a moving point, denoted henceforth by x
⋆
0(t), rather than with respect to the fixed point x0. This

variation of the navigation law (29) is denoted by u⋆
TPN

.

Let the moving reference point x
⋆
0(t) be defined, for all t ≥ 0, by the following set of equations

|xP(t)− x
⋆
0(t)| = |xP(t)− x0|, (50)

〈xP(t)− x
⋆
0(t), e

1

x
〉 = |xP(t)− x

⋆
0(t)|. (51)

It follows readily from (51) that xP(t), x
⋆
0(t) and xT (t) are collinear for all t ≥ 0, and, furthermore,

|xT (t)− x
⋆
0(t)| = |xP(t)− x

⋆
0(t)|+ |xT (t)− xP(t)|. (52)

The situation is illustrated in Fig. 6. It follows readily that, at each time t ≥ 0, the moving reference

point x
⋆
0(t) belongs to the intersection of a circle centered at x0 with radius |xP(t) − x0| with the

line defined by xT (t) and xP(t). As it shall be explained later, the exact location of x⋆0(t) will not

affect the analytic expression of the navigation law. Indeed, in light of (52), it follows that

〈u⋆
TPN

(x, xP), e
2
x
〉

|xP − x
⋆
0
| = −〈w(x), e2

x
〉

|xT − x
⋆
0
| = − 〈w(x), e2

x
〉

|xP − x
⋆
0
|+ |x| . (53)
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Finally, since by construction |xP(t)− x
⋆
0(t)| ≡ |xP(t)− x0|, for all t ≥ 0, it follows that

〈u⋆
TPN

(x, xP), e
2
x
〉

|xP − x
⋆
0
| =

〈u⋆
TPN

(x, xP), e
2
x
〉

|xP − x0|
= − 〈w(x), e2

x
〉

|xP − x0|+ |x| . (54)

Therefore, one can easily conclude from (54) that u⋆
P = uP , or, equivalently,

u⋆
TPN(x, xP) = uTPN(x, xP). (55)

Thus, the analytic expressions of the three-point-navigation law derived after relaxing the motion

camouflage constraint and the original three-point-navigation law (29) are exactly the same. On

the grounds of the previous observation, one concludes that the navigation law (29) is robust to

model uncertainties of the local drift. The following proposition follows readily from the previous

discussion.

Proposition 7. Let ε > 0. Then, for all |x0| > ε, the navigation law (29) will drive the system (1)

to the set {x : |x| ≤ ε} in finite time, provided there exist w̄1 > 0 and w̄2 > 0 such that

|〈w(x) + ∆w(t, x), e1
x0
〉| ≤ w̄1 <

√
ū2 − w̄2

2
, (56)

|〈w(x), e2
x
〉| ≤ w̄2, (57)

for all t ≥ 0 and x ∈ R
2\{0}. Finally, the time of travel satisfies the upper bound

Tf ≤
|x0| − ε√

ū2 − w̄2
2
− w̄1

< ∞. (58)

V. Navigation in Unknown Drift

In this section, the problem of steering the agent in the presence of a completely unknown drift

field, that is, when w(x) ≡ 0 and ∆w(t, x) 6≡ 0, is considered.

A. Direct-Bearing Navigation

The feedback navigation law

uPP(x) = ūe1
x

(59)

steers the agent’s forward velocity to always point towards its destination. It is worth-mentioning

that due to the absence of any knowledge about the local drift at x, the navigation law (59) steers

the inertial velocity of the agent so that it points towards a direction different than the LoS. This

fact may incur some loss of performance, in terms of minimizing the arrival time, when compared
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xT (0)

xT (t)

xP(0) = x0

x
⋆

0(t)

xP(t)

λ(0) λ(t)

λ⋆(t)

|xP(t)− x
⋆

0(t)|

|xP(t)− x0|

Fig. 6 Three-point guidance or motion camouflage with respect to a moving point x
⋆

0 rather

than x0. The condition for motion camouflage with respect to the fixed point x0 is violated

when λ(t) 6= λ⋆(t).

with, for example, the navigation law (15) (see also the discussion on Section VI). The situation is

illustrated in Figure 7. On the other hand, one of the main advantages of the navigation law (59) is

that it is completely independent of the drift ∆w(t, x), and thus, it is robust to model uncertainties

induced by the local drift. The navigation law (59) is the dual to the well-known pure pursuit

or hound-hare pursuit strategy [18], where the pursuer’s velocity vector always points towards the

current position of the target. The following proposition provides a sufficient condition for the

feasibility of the navigation law (59).

Proposition 8. Let ε > 0 and w(x) ≡ 0. Then, for all |x0| > ε, the navigation law (59) will drive

the system (1) to the set {x ∈ R
2 : |x| ≤ ε} in finite time, provided there exists ∆w̄1 > 0 such that

|〈∆w(t, x), e1
x
〉| ≤ ∆w̄1 < ū, for all t ≥ 0 and x ∈ R

2. (60)

Furthermore, the arrival time satisfies the upper bound

Tf ≤
|x0| − ε

ū−∆w̄1

< ∞. (61)
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Fig. 7 Direct-bearing navigation. The forward velocity of the agent is aligned with the LoS

direction at every instant in time.

Proof. It follows readily that

d

dt
|x| = −〈ẋ, e1

x
〉 = −〈uPP(x) + ∆w(t, x), e1

x
〉

= −ū− 〈∆w(t, x), e1
x
〉

≤ −ū+∆w̄1. (62)

The rest of the proof follows similar to the proof of Proposition 1, and thus it is omitted.

Table 1 summarizes the navigation control laws developed in terms of the corresponding infor-

mation pattern of the local drift field. It is important to remind the reader the duality between these

navigation control laws and the corresponding pursuit strategies, as indicated in the last column of

Table 1.

VI. Gradient Descent Laws for Navigation in a Flow Field with Limited Information

In this section, the proposed navigation laws are reinterpreted as gradient descent laws in terms

of different performance indices. In particular, it is shown that when the agent is driven by the

presented navigation laws, the direction of either the agent’s forward or inertial velocity is parallel

to the opposite of the gradient of various performance indices; consequently, the velocity vectors

point towards the direction of the maximum rate of decrease of the performance indices. To simplify
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Navigation Law Expression
Information

Pattern
Pursuit Strategy

uOLS(x)
√

ū2 − 〈w(x), e2x0〉
2e

1
x0

− 〈w(x), e2x0〉e
2
x0

w(x) 6≡ 0,
Parallel Guidance

∆w(t, x) ≡ 0

uNLS(x) (ū− |w(x)| − 〈w(x), e1x0〉)e
1
x0

− 〈w(x), e2x0〉e
2
x0

w(x) 6≡ 0,
Pursuit with Neutralization

∆w(t, x) ≡ 0

uTPN(x, xP)

√

ū2 − u2

TPN,2
(x, xP)e

1
x + uTPN,2(x, xP)e

2
x , w(x) 6≡ 0,

LoS Guidance
uTPN,2(x, xP) = −

|xP − x0|

|xP − x0|+ |x|
〈w(x), e2x 〉 ∆w(t, x) ≡ 0

u⋆

OLS(x)
√

ū2 − 〈w(x), e2x 〉2e
1
x − 〈w(x), e2x 〉e

2
x

w(x) 6≡ 0,
Parallel Guidance⋆

∆w(t, x) 6≡ 0

u⋆

NLS(x) (ū− |w(x)| − 〈w(x), e1x 〉)e
1
x − 〈w(x), e2x 〉e

2
x

w(x) 6≡ 0,
Pursuit with Neutralization⋆

∆w(t, x) 6≡ 0

u⋆

TPN(x, xP)

√

ū2 − u2

TPN,2
(x, xP)e

1
x + uTPN,2(x, xP)e

2
x , w(x) 6≡ 0,

LoS Guidance⋆

uTPN,2(x, xP) = −
|xP − x0|

|xP − x0|+ |x|
〈w(x), e2x 〉 ∆w(t, x) 6≡ 0

uPP(x) ūe1x

w(x) ≡ 0,
Pure Pursuit

∆w(t, x) 6≡ 0

Table 1 Proposed navigation laws for different information patterns.

the presentation, it is henceforth assumed that

|w(x) + ∆w(t, x)| < ū, for all t ≥ 0 and x ∈ R
2. (63)

First, it is shown that the navigation law (38) is a (pseudo-)gradient descent law in terms of an

estimate of the time required for the agent to reach its destination (time-to-come). In particular, a

simple estimate of the time-to-come, which is henceforth denoted by T̃ (x), is given by

T̃ (x) :=

√
〈x, w(x)〉2 + (ū2 − |w(x)|2)|x|2

ū2 − |w(x)|2 − 〈x, w(x)〉
ū2 − |w(x)|2 . (64)

Note that T̃ (x) is the minimum time required for the agent located at x, at time t = τ , to reach the

origin, assuming that the drift will remain constant and equal to w(x), for all t ≥ τ .

Let ∇T̃ (x) denote the gradient of T̃ (x), which is, in general, a function of x, w(x) and ∂w/∂x.

Because, by hypothesis, the Jacobian ∂w/∂x is unknown to the agent, a pseudo-gradient operator

acting on T̃ (x), denoted by ∇̃T̃ (x), where ∇̃T̃ (x) := ∇T̃ (x)
∣∣
∂w

∂x
=0

, is introduced instead. It is

straightforward to show that the (pseudo-)gradient descent control law

uPGDN(x) := −ū
∇̃T̃ (x)

|∇̃T̃ (x)|
(65)
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satisfies uPGDN(x) = u⋆
OLS

(x), for all x ∈ R
2\{0}. This facts highlights the local optimality of the

navigation law (38), in terms of minimizing the arrival time.

Next, it is shown that the LoS navigation law (38) can also be interpreted as a quickest descent

control law [24] in terms of the Euclidean distance of the agent from its destination. In other words,

when the agent is driven by the law (38), then the rate of decrease of the agent’s distance from its

destination is locally maximized. In particular, the time derivative of V (x) = |x| evaluated along the

trajectories of the system (1), after closing the loop with u(x) = u⋆
OLS

(x), is point-wise minimized.

Proposition 9. The navigation law u⋆
OLS

(x) is the quickest descent law for the system (1) with

respect to the descent function V (x) = |x|.

Proof. Let u(x) ∈ Uf . The time derivative of V (x) evaluated along the trajectories of system (1),

after closing the loop, is given by

d

dt
V (x) = ∇V (x)ẋ = −〈u(x) + w(x) + ∆w(t, x), e1

x
〉, (66)

where the identity ∇V (x) = x/|x| = −e
1
x

has been used. It follows readily that the quickest descent

control u(x) satisfies

u(x) + w(x) = max
|u|≤ū

〈u(x) + w(x), e1
x
〉 e1

x
. (67)

Equation (67) implies that 〈u(x) +w(x), e2
x
〉 = 0 and |u(x)| = ū. Therefore, 〈u(x), e2

x
〉 = −〈w(x), e2

x
〉,

which implies, in turn, that 〈u(x), e1
x
〉 =

√
ū2 − 〈w(x), e2

x
〉2. Therefore, it follows that u(x) =

u⋆
OLS

(x), for all x ∈ R
2\{0}, thus completing the proof.

Finally, the direct-bearing navigation law (59) can also be viewed as a gradient descent control

law. In particular, it is easy to show that

uPP(x) ≡ −ū
∇V (x)

|∇V (x)| , (68)

where V (x) := |x|. Note that V (x) is a reasonable heuristic function in terms of the time-to-come

for the navigation problem in a completely unknown drift field (this follows readily by setting

w(x) ≡ 0 in Equation (64)). An interesting question is when, and under which conditions, the direct

bearing navigation law (59) is a minimum-time control law for Problem 2. The following proposition

addresses the previous questions.

Proposition 10. Let ε > 0. The navigation law (59) is a minimum-time control law of the ZNP

provided there exists a Lipschitz continuous function f : [ε,∞) 7→ R such that 〈w(x), e1
x
〉 = f(|x|).
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Furthermore, the system (1) will converge to the set {x : |x| ≤ ε} in finite time, for all |x0| > ε, if

and only if f(z) < ūz, for all ε ≤ z ≤ |x0|. In addition, the final arrival time is given by

Tf =

∫ |x0|

ε

z dz

ūz − f(z)
. (69)

Proof. The reader can refer to [17].

Proposition 10 highlights a rather surprising result, namely, that although the measurement of

the local drift w(x) does not appear at all in the expression of the navigation law (59), in contrast to

all the other navigation laws presented in this paper, which explicitly account for the local drift, the

direct bearing navigation law (59) can be the minimum-time navigation law for some drift fields.

VII. Simulation Results

In this section, simulation results that illustrate the previous developments are presented. The

drift field is assumed to be expressed as the vector sum of a uniform flow component and the local

flow induced by a finite number of distinct, nonlinear flow singularities [25]. In particular, it is

assumed that the known part of the drift w(x) can be modeled as follows

w(x) = w0 +

ns∑

i=1

α−1

i (|x− xsi |)Ai(x− xsi), (70)

where ns is the number of flow singularities, xsi is the location of the ith flow singularity, αi :

[0,∞) 7→ R is a continuous function, which may vanish only at x = xsi , and Ai is a 2 × 2 matrix,

whose structure captures the local characteristics of the ith flow singularity [26]. Note that the

flow model given in Equation (70) extends the model adopted in [26] to account for multiple flow

singularities located at distinct positions.

The following problem data were used in the numerical simulations: ū = 1, ns = 2, A1 = S,

A2 =
[
2 −1

1 0

]
, xs1 = [5, 0]T, xs2 = [−6, − 4]T, w0 = [0, 0]T, α1(|x − xs1 |) = |A1(x− xs1)|/0.3, and

α2(|x − xs2 |) = |A2(x − xs2)|/0.4. Furthermore, it is assumed that the unknown part of the drift

field is given by ∆w(t, x) =
√
3|x|/6[0.3(1− cos(t/π)), − 0.25]T.

Figure 8 illustrates the trajectories of the agent, when the latter is steered by the minimum-

time control law of the ZNP (Fig. 8(a)), the robust optimal LoS navigation law (38) (Fig. 8(b)), the

three-point navigation law (29) (Fig. 8(c)), and the direct-bearing navigation law (59) (Fig. 8(d)).

For the computation of the minimum-time paths, GPOPS [27], which is an open source software for

numerical optimal control, has been used. One can observe from Figs. 8(b)-8(d) that, despite the
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presence of the unknown part ∆w(t, x) of the local drift field, the agent driven by the robust optimal

LoS, the three-point and the direct-bearing navigation laws successfully reaches its destination.

Furthermore, it is observed that the geometry of the ensuing paths of the agent, when the agent is

far away from its destination and it is driven by the navigation laws (29) and (59), exhibit notable

similarities, as is illustrated in Figs. 8(c)-8(d). The ensuing paths of the agent are also similar

when the agent is close to its destination and is driven by the navigation laws (38) and (29), as is

illustrated in Figs. 8(b)-8(c). The last two observations are justified by the fact that the navigation

law (29) becomes approximately equal to (59), for large |x| (in light of (28), the component of (29)

along e
2
x

becomes approximately equal to zero as |x| → ∞), whereas it approximates (38), for |x|

sufficiently small (in light of (28), the component of (29) along e
2
x

becomes approximately equal to

−〈w(x), e2
x
〉 as |x| → 0).

VIII. Conclusions

This paper presents several classes of navigation laws for steering an agent in the presence of a

both temporally and spatially varying drift field, by investigating the navigation problem for different

information patterns about the drift field. The analysis, which is based on the duality between the

navigation problem and a special class of problems of pursuit of a maneuvering target, brings to

light some interesting findings related to the effectiveness of the proposed navigation laws in terms

of coping with model uncertainties of the drift field dynamics, as well as in terms of minimizing the

arrival time. In particular, it was shown that the effectiveness of the line-of-sight navigation law,

which is the dual to the parallel guidance law, in terms of steering the agent to its destination, is

impaired by the incomplete knowledge of the local drift field. A robust modification of the line-of-

sight navigation law, which was derived by employing simple geometric arguments, was subsequently

proposed. In contrast to the line-of-sight navigation law, the three-point navigation law, may

successfully steer the agent to its destination in the presence of unknown drift. Furthermore, it

was shown that the direct-bearing navigation law, which is the dual to the pure pursuit strategy,

furnishes a straightforward solution to the navigation problem in a completely unknown drift field.

One important observation is that all of the proposed navigation laws that account for the unknown

component of the drift reduce to the direct-bearing navigation law in the limiting case when the

known component of the drift vanishes.

The analysis of the planar navigation problem presented in this work can be easily extended
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(a) Minimum-time navigation in a perfectly known

drift field.
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(b) Robust, optimal LOS navigation with imperfect

knowledge of the local drift.
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(c) Three-point navigation with imperfect

knowledge of the local drift.
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(d) Direct-bearing navigation in an unknown drift

field.

Fig. 8 Trajectories of an agent towards the origin driven by the robust optimal LoS, the

three-point and the direct-bearing navigation laws.

to the three-dimensional navigation problem, given that the adopted approach was based on tools

from vector analysis.

Future work includes the use of the proposed navigation laws for the design of novel protocols for

motion coordination, and dynamic routing problems for groups of agents traveling in the presence

of an uncertain drift field.
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