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Abstract:
Inspired by behaviors of fish groups seeking darker (shaded) regions in environments with
complex lighting variations, we develop distributed source-seeking algorithms for a group of
sensing agents with no explicit gradient estimation. We choose a baseline for agent groups and
decompose the velocity of each agent into two parts. The first part, which is perpendicular to
the baseline, is chosen to be proportional to the measurements, agreeing with observations from
fish groups. The second part, which is parallel to the baseline, can be designed to control the
relative distances among the agents. This decomposition is leveraged to implement formation-
maintaining strategies and source seeking behaviors for the entire group. We prove that the
moving direction of a group will converge towards the gradient direction while the formation is
maintained.

Keywords: Cooperative sensing, Cooperative control, Source-seeking.

1. INTRODUCTION

Autonomous sensing agents that are capable of localizing
sources are of great importance in various scenarios such
as locating chemical spills, searching for survivors after
a disaster, and detecting fire in its early stage. Various
studies have developed source-seeking algorithms, many of
which are inspired by behaviors of different animal species.
For example, Keller et al. (2003) introduced gradient-
free source-seeking algorithms inspired by blue crabs, and
Russella et al. (2003) and Pyk et al. (2006) presented ap-
proaches inspired by the silkworm moth. These algorithms
mainly focus on source-seeking using one agent.

Collective behaviors have been observed in a broad range
of species. As addressed in Clark (1986), because of the ef-
fectiveness and robustness, collective behaviors are proved
to be beneficial to other members in the group and prof-
itable for the survival of the entire group. Therefore,
researchers in engineering have been studying collective
behaviors of animal groups and gaining inspirations and
insights for controlling multi-robot systems. Bachmayer
and Leonard (2002), Cortes (2007), and Wu and Zhang
(2012) introduced collective gradient estimating and track-
ing algorithms in distributed scalar fields, Farrell et al.
(2003), Liu and Passino (2004), Russell (2004), and Tor-
ney et al. (2010) presented plume-tracing algorithms in
turbulent flow, and Zhang and Leonard (2010) and Wu
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and Zhang (2011) discussed level curve tracking in two-
and three-dimensional spaces.

Couzin’s group Berdahl et al. (2012) observed that fish
groups are able to perform gradient tracking to locate
darker (shaded) regions in complex light environments
even if the field is time-varying. However, it is conjectured
that each fish in a group have very poor or no gradient
estimates. They principally measure the intensities of the
light field and respond to the positions of other fish within
their view. Based on the measurements, a fish in a group
speeds up when the light intensity at its current position
is relatively high and slows down as the light intensity
decreases. In this way, the group is capable of aligning
its trajectory with gradient directions and moves towards
the shade as described in Berdahl et al. (2012). Once the
group reaches the shade, the forward motion of the group
becomes circular, in which some fish in the group reverse
their directions of movement. The group circles around the
shade until the position of the shade changes. Then, the
group resumes the forward motion.

These data inspire us to investigate source-seeking for
a group of sensing agents in a distributed fashion with
no explicit gradient estimation. We consider a group of
sensing agents that track gradients to seek a local mini-
mum of a field. We choose a baseline for the group and
decompose the velocities of the agents in the group into
two parts, which decouples the control laws for the motion
and for the formation. One part of the velocity, which
is perpendicular to the baseline, is chosen to be propor-
tional to the measurements. When the measurement of an
agent increases, this velocity increases, and when the mea-
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surement decreases, this velocity decreases. If the agents
seek a local maximum instead of minimum, this velocity
can simply be reversed. We prove the convergence of the
moving direction of the group towards gradient directions,
which agrees with the numerical and analytical results
presented in Berdahl et al. (2012). The other part of the
velocity, which is parallel to the baseline, can be designed
to control the relative distances among the agents. We
propose formation-maintaining strategies for a group of
more than two agents remaining in a desired formation,
which may be verified by future biological experiments,
and prove the convergence of the formation control laws
using shape variables as described in Zhang (2010).

Our results reveal a strong connection with the well-known
Braitenberg-style differential drive vehicles as introduced
in Braitenberg (1984), which have similar properties in
that the movement of a wheel is directly controlled by the
measurement of the sensor connected to it. Braitenberg-
style source-seeking algorithms have been proposed in s-
tudies as Kazadi et al. (2000) and Lilienthal and Duckett
(2004). However, these algorithms are developed for one
agent. The approaches we develop are for multi-agent
systems. Our results suggest that by knowing only mea-
surement information and the relative distances to other
agents, a group of agents tend to behave like a Braitenberg-
style vehicle.

The rest of the paper is organized as follows. Section 2
introduces the problem formulation. Section 3 presents
source-seeking control for two-agent groups. Section 3
discusses different formation-maintaining strategies for
N-agent groups. Section 5 introduces the experimental
results, and Section 6 provides the conclusions.

2. PROBLEM FORMULATION

Consider a group of N sensing agents that are seeking
a minimum of an unknown scalar field z(r), in which
r ∈ R2 denotes a location in the field. Let ri represent
the position and vi represent the velocity of the ith agent.
Suppose the motion of each agent in the group satisfies
ṙi = vi, i = 1, · · · , N . Denote the position and velocity
of the group center as rc and vc, respectively. Then, we

derive rc = 1
N

∑N
i=1 ri, and vc = 1

N

∑N
i=1 vi.

Suppose the field value satisfies zmin≤z(r)≤zmax, in which
zmin ≥ 0. The gradient of the field at location r is denoted
as ∇z(r). Along their trajectories, the sensing agents
take measurements of the field, which can be written as
y(ri) = z(ri) + v(ri), i = 1, · · · , N , in which v(ri) is the
noise term that may come from measuring process or the
field. If we consider only linear approximation of the field,
then, we derive

z(ri) = z(rc) +∇z(rc) · (ri − rc) +H.O.T, (1)

where H.O.T represent higher order terms in the above
Taylor expansion. In addition to the measurements, we
assume that the agents have knowledge of their relative
positions to neighboring agents.

The problem is to design controls for the velocities of
the agents so that the group can move close to a local
minimum in the field without explicit gradient estimation
while maintaining a desired formation. More specifically,

the goal is to design vi so that: (1) vc

‖vc‖ ·
∇z(rc)
‖∇z(rc)‖ converges

to −1, but without gradient estimation, and (2) the
relative displacement between agents ri − rj , where j 6= i,
converges to a desired vector. Note that the first goal is
invalid when ‖ ∇z(rc) ‖= 0, which indicates a singular
point or saddle point in the field. In this paper, we consider
fields with no saddle points, and we will control the agents
to switch to circular motion once they approach a singular
point.

3. CONTROL OF TWO-AGENT GROUPS

We start with N = 2. We control the two agents to
converge asymptotically to a constant formation with
distance a between each other in steady state. Therefore,
they can be considered as a rigid body with the center
of mass being at rc. Define the inertial frame as XI and
YI . Let q = r2 − r1, and define q⊥ to be the vector
perpendicular to q that forms a right handed frame with
q. q and q⊥ intersects at rc. Set the origin of the rigid
body frame at rc, and select XB and YB to be aligned
with q and q⊥. Denote the angle between XB and XI

as θ ∈ [−π, π]. Then, we obtain a rigid body rotation

matrix g =

(
cos θ − sin θ
sin θ cos θ

)
, and the angular velocity

Ω =

(
0 −ω
ω 0

)
. For each agent, we decompose its velocity

into two parts: v⊥i , which is perpendicular to q and

proportional to the measurements y(ri), and v
//
i , which is

aligned with q and maintains formation. Then, vi = v⊥i +

v
//
i . We will design v⊥i and v

//
i separately.

Fig. 1 illustrates the desired motion of the two-agent
group. The two agents move in the same direction when
they are seeking a source, as shown in Fig. 1 (a). At this
stage, the group is performing forward motion. Once the
group approaches a local minimum of the field, one of
the agents reverse its moving direction. Then, the group
performs circular motion around the source, as shown in
Fig. 1 (b).

Fig. 1. Desired motion of the two-agent group when
seeking a source. (a) Forward motion. (b) Circular
motion.

Let φi, i = 1, 2, be the angles between velocity v⊥i and
XI . We can write the perpendicular velocities as v⊥i =

v⊥i

(
cosφi
sinφi

)
, where v⊥i is the magnitude of v⊥i . Similarly,

v
//
i = v

//
i

(
cos θ
sin θ

)
. If the agents are performing forward

motion, then, φ1 = φ2 = θ+π
2 . If the agents are performing
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circular motion, then, φ1 = θ+ 3π
2 and φ2 = θ+ π

2 . Inspired
by the behaviors of fish groups, we design

v⊥i = ky(ri) + C, i = 1, 2, (2)

where k and C are constants selected by design. In the

direction that is aligned with q, we design v
//
i , i = 1, 2, as

v
//
1 = kp((r2 − r1) · q− a), (3)

v
//
2 = −kp((r2 − r1) · q− a). (4)

Define s = (r2 − r1) · q. Based on Equations (3) and

(4), we calculate that ṡ = 2(v
//
2 − v

//
1 ) = −4kp(s − a),

where s = a is an asymptotically stable equilibrium.
Therefore, the two agents will converge to a constant
formation with a distance a between each other. Once v⊥i
and v

//
i are determined, the velocities of the ith agent can

be calculated as vi = v⊥i + v
//
i , which produces

vi = (ky(ri)+C)

(
cosφ1
sinφ1

)
−kp((ri−rj) ·q−a)

(
cos θ
sin θ

)
,

(5)
where j = 1 or 2, and j 6= i.

3.1 Forward Motion

We first discuss the forward motion of the group and prove
that the first goal, the convergence of the moving direc-
tion of the group towards the gradient direction, can be
achieved. In this case, φ1 = φ2 = θ+ π

2 are always satisfied,
as illustrated in Fig. 1 (a). In this section, we investigate
the situation in which noise in the measurements can be
ignored, that is, v(r) = 0. We will discuss the situation
that the measurements are noisy in Section 3.3.

If there is no noise, the velocity of the formation center
can be written as

vc = (
1

2
k(z(r1) + z(r2)) + C)

(
− sin θ
cos θ

)
. (6)

The angular velocity of the formation is θ̇ = ω =
v⊥2 −v

⊥
1

‖q‖ = k(z(r2)−z(r1))
‖q‖ . Denote the angle between the

gradient direction ∇z(rc) and the inertial frame XI as
α ∈ [−π, π]. From the linear approximation of the field,
we derive

θ̇ ∼=
k

‖ q ‖
(∇z(rc) · (r2 − r1)) =

k

‖ q ‖
(∇z(rc) · q)

= k ‖ ∇z(rc) ‖ (
∇z(rc)
‖ ∇z(rc) ‖

· q

‖ q ‖
)

= −k ‖ ∇z(rc) ‖ sin(θ − α− π

2
). (7)

Choose the state to be θ − α, then we obtain

θ̇ − α̇ = −k ‖ ∇z(rc) ‖ sin(θ − α− π

2
)− α̇. (8)

When ‖ ∇z(rc) ‖6= 0, the above system has a stable
equilibrium θ − α = π

2 and an unstable equilibrium θ −
α = −π2 . Given the above system, we have the following
proposition.

Proposition 1. If the gradient direction α is constant, that
is, α̇ = 0, then, as t→∞, limt→∞θ(t) = α+ π

2 . If the rate
of change α̇ 6= 0 is considered as an input to the system
(8), then θ − α = π

2 is an equilibrium of (8) that is input-
to-state stable (ISS).

Proof. If α̇ = 0, we choose a Lyapunov candidate function
as

V = − ln(cos(
θ − α− π

2

2
)). (9)

We calculate

V̇ = tan(
θ − α− π

2

2
)(θ̇ − α̇)

= −2k ‖ ∇z(rc) ‖ sin2(
θ − α− π

2

2
)− tan(

θ − α− π
2

2
)α̇

= −2k(1− ε) ‖ ∇z(rc) ‖ sin2(
θ − α− π

2

2
)

− 2kε ‖ ∇z(rc) ‖ sin2(
θ − α− π

2

2
)− tan(

θ − α− π
2

2
)α̇

≤ −2k(1− ε) ‖ ∇z(rc) ‖ sin2(
θ − α− π

2

2
), (10)

when |α̇| ≤ kε ‖ ∇z(rc) ‖ | sin(θ − α − π
2 )| and 0 < ε < 1.

Therefore, according to Theorem 4.19 in Khalil (2001), if
α̇ is considered as the input, the system (8) is input-to-
state stable (ISS). If the input α̇ = 0, θ converges to the
equilibrium point α+ π

2 . If the rate of change α̇ is bounded,
then at the steady state, the deviation |(θ−α− π

2 )| is also
bounded.

Proposition 1 indicates that vc

‖vc‖ ·
∇z(rc)
‖∇z(rc)‖ = cos(θ+ π

2−α)

converges to −1 as t→∞. The convergence of the moving
direction of the group verifies the observations that fish
groups are able to align their averaged motion with the
gradient direction.

3.2 Circular Motion

When the two-agent group moves close to a local minimum
of the field, it switches from forward motion to circular
motion. The switching condition can be ‖ v⊥i ‖< ε1, in
which ε1 is a positive constant. That is, when any agent
senses that the forward speed is less than the threshold
ε1, it changes its moving direction. We will show that the
circular motion can only be maintained around a point
where ‖ ∇z(rc) ‖= 0.

In this case, the angles satisfy φ1 = θ+ 3π
2 and φ2 = θ+ π

2 .
Then, we calculate

vc =
1

2
(v1 + v2) (11)

=
1

2
k(z(r1) + C)

(
sin θ
− cos θ

)
+

1

2
k(z(r2) + C)

(
− sin θ
cos θ

)
=

1

2
k(∇z(rc) · q)

(
− sin θ
cos θ

)
=

1

2
k ‖ q ‖‖ ∇z(rc) ‖ cos(θ − α)

(
− sin θ
cos θ

)
. (12)

The angular velocity satisfies

ω =
v⊥2 + v⊥1
‖ q ‖

=
k(z(r2) + z(r1)) + 2C)

‖ q ‖
. (13)

If vc = 0, we must have ‖ ∇z(rc) ‖= 0 or cos(θ − α) = 0.
Consider cos(θ−α) = 0, which indicates θ = α± π

2 . Since
ω 6= 0 if C 6= 0, this case will not occur since θ = α + π

2
cannot always be satisfied. Therefore, vc = 0 only when
‖ ∇z(rc) ‖= 0. This shows that circular motion can only
sustain around a singular point.
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3.3 Noisy Measurements

Usually, noise exists in the field or in the measuring
process, which leads to uncertainties in the estimation of
moving directions. If we consider y(r) = z(r) + v(r), in
which v(r) 6= 0 represents the noise, then, Equations (6)
and (7) become vc = ( 1

2k(z(r1) + z(r2) + v(r1) + v(r2))) +

C)

(
− sin θ
cos θ

)
, and θ̇ = k

‖q‖ (∇z(rc) · q + v(r2)− v(r1)).

Assume that v(r) is zero mean Gaussian noise with vari-
ance σ2. To show the convergence of the moving direction
of the group, we examine the expected value and variance
of angle θ, which satisfies dθ

dt = ω. We have

dθ =− k ‖ ∇z(rc) ‖ sin(θ − α− π

2
)dt

+
kσ

‖ q ‖
(d(v(r2))− d(v(r1))), (14)

which yields dE(θ)
dt = −k ‖ ∇z(rc) ‖ E(sin(θ − α− π

2 )),

where the expectation E is taken with respect to the noise
term. Let e = θ−α− π

2 and θ0 = α+ π
2 . Assume e is small.

Then, from Taylor expansion sin e = e− e3

3! + e5

5! + · · · , we
obtain

dE(e)

dt
= −k ‖ ∇z(rc) ‖ E(e), (15)

which indicates that E(e) = 0 is a stable equilibrium.
Therefore, as t → ∞, E(θ) = α + π

2 , which proves the
convergence of the expectation of the moving direction.
Now, let’s calculate the variance of θ. Define ψ(e) = e2.
Since we have

de = −k ‖ ∇z(rc) ‖ edt+
kσ

‖ q ‖
(d(v(r2))−d(v(r1))), (16)

then, according to Ito’s differentiation rule, we derive

de2 = 2ede+ 2(
kσ

‖ q ‖
)2dt

= −2k ‖ ∇z(rc) ‖ e2dt+ 2(
kσ

‖ q ‖
)2dt

+
2ekσ

‖ q ‖
(d(v(r2))− d(v(r1))), (17)

which yields

dE(e2)

dt
= −2k ‖ ∇z(rc) ‖ E(e2) + 2(

kσ

‖ q ‖
)2. (18)

As t → ∞, E(e2) → 2( kσ‖q‖ )
2. Therefore, the variance

of θ is
√
2kσ
‖q‖ , which indicates that as measurement noise

increases, the variance of θ increases, and as the distance
between the two agents ‖ q ‖ increases, the variance of θ
decreases.

4. GENERALIZATION TO N-AGENT GROUPS

We consider a group of N agents in the field seeking a
local minimum. Arbitrarily select q as an unit vector that
forms an angle θ with the inertial frame XI . As illustrated
in Fig. 2, we also decompose the velocities of the agents

into two parts: v⊥i , which is perpendicular to q and v
//
i ,

which is aligned with q. v⊥i and v
//
i can be designed in

different ways. In this section, we discuss different designs
for the formation control, and show the convergence of
group motion towards the gradient direction.

Fig. 2. Decomposition of the velocities of the agents in a
N-agent group.

4.1 Non-rigid Body Motion

We first design velocities of the agents so that the agents
maintain only the relative positions to other agents in
direction q. In this case, we keep v⊥i the same as in the

two-agent case, which is v⊥i = (kz(ri)+C)

(
− sin θ
cos θ

)
, i =

1, · · · , N . Note that under this design, the relative posi-
tions among agents may change in direction q⊥, which is
perpendicular to q.

Along direction q, let r
//
i be the projection of location ri

onto vector q, as illustrated in Fig. 2. For agent i, we define
set Ni to contain the closest agents to agent i to the right
and to the left along direction q. For example, as shown in
Fig. 2, N1 = {2}, Ni = {i− 1, i+ 1}, i 6= 1, N , and NN =

{N − 1}. The goal is to design v
//
i so that the relative

distance from r
//
i to r

//
j , i 6= j, converges to a constant

a0ij . Furthermore, we require that v
//
c = 1

N

∑N
i=1 v

//
i = 0.

Therefore, we design v
//
i as

v
//
i = kp

∑
j∈Ni

((rj − ri) · q− a0j,i), (19)

where a0i,j = −a0j,i. To prove the convergence of the control
(19), we define shape variables si = (ri+1−ri) ·q, in which
i = 1, · · · , N − 1. Then, for i 6= 1, N , we derive

ṡi = (ṙi+1 − ṙi) · q = v
//
i+1 − v

//
i = kp(si−1 − a0i,i−1)

− 2kp(si − a0i+1,i) + kp(si+1 − a0i+2,i+1). (20)

For i = 1, we have

ṡ1 = −2kp(s1 − a02,1) + kp(s2 − a03,2), (21)

and for i = N , we have

ṡN = kp(sN−2 − a0N−1,N−2)− 2kp(sN−1 − a0N,N−1). (22)

Denote s = ( s1, s2, · · · , sN−1 )
T

and

a0 =
(
a02,1, a

0
3,2, · · · , a0N,N−1, a0N,N−1

)T
. Then, from E-

quations (21), (20), and (22), we obtain

ṡ = kpA(s− a0), (23)

where A =


−2 1 0 . . . 0
1 −2 1 . . . 0

0
. . .

...
... 1 −2 1
0 . . . 0 1 −2

. The eigenvalues of

A are λi = −2 + 2 cos( iπN ) < 0 for i = 1, · · · , N − 1.
Therefore, system (23) is asymptotically stable. The shape
variable s converges to a0 as t→∞. Then, the formation
is stabilized.
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Since each agent now has its velocity given by vi =

(kz(ri)+C)

(
− sin θ
cos θ

)
+kp

∑
j∈Ni

((rj−ri)·q−a0j,i)
(

cos θ
sin θ

)
,

and v
//
c = 1

N

∑N
i=1 v

//
i = 0, we obtain the velocity of the

formation center as vc = ( 1
N k
∑N
i=1 z(ri) +C)

(
− sin θ
cos θ

)
.

4.2 Motion Under a Rigid Formation Controller

We can also design a rigid formation controller, which
controls the relative distances of the agents in direction q⊥.
For this purpose, we replace the constant C in Equation
(5) by a feedback control term.

Let r⊥i , i = 1, · · · , N be the projections of locations ri onto
vector q⊥. Fig. 3 illustrates the case that N = 3, in which
q⊥ is chosen to start from location r3. Denote the desired
distance between agent i and agent j in direction q⊥ as
b0i,j , in which b0i,j = −b0j,i. Let N⊥i be the neighboring set

of agent i along direction q⊥. Then we design

v⊥i = kz(ri) + kd
∑
j∈N⊥

i

((rj − ri) · q⊥ − b0j,i), (24)

where i = 1, · · · , N . Define shape variables s⊥i = (ri+1 −
ri) · q⊥. Denote s⊥ =

(
s⊥1 , s

⊥
2 , · · · , s⊥N−1

)T
and b0 =(

b02,1, b
0
3,2, · · · , b0N,N−1, b0N,N−1

)T
. Let z be a column

vector with the ith entry being [z(ri+1) − z(ri)]. Then,
similar to the non-rigid body case, we obtain

ṡ⊥ = kpA(s⊥ − b0) + kz. (25)

Starting from t = 0, the solution of the above system is

s⊥(t) = ekpAt(s⊥(0)−b0)+b0+
∫ t
0
kekpA(t−τ)z(τ)dτ . Since

zmin≤z(r)≤zmax, z is bounded. Therefore, the solution
satisfies ‖ s⊥(t) − b0 ‖≤ eλkpt ‖ s⊥(0) − b0 ‖ +k ‖ z(τ) ‖
|
∫ t
0
eλkp(t−τ)dτ | ≤ eλkpt ‖ s⊥(0) − b0 ‖ + k

|λ| sup0≤τ≤t ‖
z(τ) ‖, in which λ is the maximum eigenvalue of matrix
A. Therefore, the system (25) is input-to-state stable
(ISS)(Khalil (2001)), which implies that for any bounded
z, the shape variable s⊥ will be bounded, and if the input
z converges to zero as t → 0, s⊥ − b0 will converge to 0.

For v
//
i , we design it to be the same form as in Equation

(19). Then, we calculate vc = 1
N k
∑N
i=1 z(ri)

(
− sin θ
cos θ

)
,

in which the velocities that control the formation cancel
out.

We observe an interesting fact that from the ISS property
of system (25), even though a rigid formation controller
is used, the agents may not stay in a rigid formation due
to the nonzero term z, which seems to coincide with real
life observations that fish don’t tend to maintain a rigid
formation. This insight may hint further investigations.

4.3 Rotation of the Group

To calculate the angular velocity of the group, we consider

only the motion of the vector q. Given two locations r
//
i

and r
//
j along q, then, in the non-rigid body case, we derive

ω = −k ‖ ∇z(rc) ‖ sin(θ−α− π
2 ), the convergence of which

has been proven in Proposition 1. Therefore, the moving

Fig. 3. Decomposition of the velocities of the three-agent
group.

direction of the group converges to the gradient direction.
In rigid body motion, the angular velocity is obtained by

θ̇ − α̇ = −k ‖ ∇z(rc) ‖ sin(θ − α− π

2
)

+
kd
‖ q ‖

( ∑
l∈N⊥

i

((rl − ri) · q⊥ − b0l,i)

−
∑
l∈N⊥

j

((rl − rj) · q⊥ − b0l,j)
)
− α̇, (26)

Since the second term of system (26) is bounded, then
similar to Proposition 1, we can also prove that system
(26) is input-to-state stable. Therefore, the formation may
not align exactly with the gradient direction, but will
nonetheless able to move in a direction to decrease their
measurements.

5. SIMULATION AND EXPERIMENTAL RESULTS

We implement the source-seeking algorithm in a mobile-
robot test-bed developed in our lab. The test-bed consists
of a standard 40W incandescent light bulb that generates
a light field and several Khepera III robots. We use IR
sensors mounted on the robots to measure the ambient
light intensity. The higher the light intensity is, the lower
the sensor reading is. Therefore, seeking the maximum of
the light field corresponds to finding the minimum of the
measured field.

We deploy two Khepera III robots that perform light
source-seeking in the field. The velocities of the robots
are determined by Equation (5), and are translated into
step sizes in the experiment, Once one robot detects that
‖ v⊥i ‖< ε1, it changes direction so that the two-agent
group starts circular motion. Fig. 4 shows the snapshots
of two agents moving towards the light source, and Fig.
5 demonstrates the trajectories of the two robots. The
two figures shows that the two robots maintain a desired
distance and converge to the light source.

In addition to the experiments, we also simulate eight
agents in a scalar field seeking a minimum of the field. Fig.
6 demonstrates the trajectories of the eight agents in non-
rigid body motion, in which blue dots are the positions of
the agents. The formation is plotted every 30 steps. Since
the agents control only the relative distances from other
agents along direction q, which corresponds to the yellow
vector in the figure, they do not maintain a solid formation.
As suggested by the figure, since the velocities of the agents
depend on the measurements of the field, when the field
value is high, the agents move faster, resulting in a larger
step size. Fig. 7 illustrates the relative distances between
neighboring agents in direction q as the agent group moves
in the field, which shows the convergence of the relative
distances to constant values.
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Fig. 4. Trajectories of two agents seeking a light source.

Fig. 5. Trajectories of two agents seeking a light source.

Fig. 6. Trajectories of an eight-agent group seeking a
minimum in a field performing non-rigid body motion.

Fig. 7. Relative distances between neighboring agents in
direction q.

6. CONCLUSIONS

Inspired by the behaviors of fish groups, we develop source-
seeking algorithms for a group of sensing agents with no
explicit gradient estimation. By decomposing the velocity
of each agent into two parts and designing each part as
feedback control, we control the moving direction of the
group to converge to gradient directions while formation
is maintained. Our results show that a group of sensing
agents are able to emulate the source seeking behaviors of
a fish group.
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