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Abstract— We develop a plume tracking algorithm for a
swarm of mobile sensing agents in turbulent flow. Inspired
by blue crabs, we propose a stochastic model for plume
spikes based on the Poisson counting process, which captures
the turbulent characteristic of plumes. We then propose an
approach to estimate the parameters of the spike model, and
transform the turbulent plume field detected by sensing agents
into a smoother scalar field that shares the same source with
the plume field. This transformation allows us to design path
planning algorithms for mobile sensing agents in the smoother
field instead of in the turbulent plume field. Inspired by the
source seeking behaviors of fish schools, we design a velocity
controller for each mobile agent by decomposing the velocities
into two perpendicular parts: the forward velocity incorporates
feedback from the estimated spike parameters, and the side
velocity keeps the swarm together. The combined velocity is then
used to plan the path for each agent in the swarm. Theoretical
justifications are provided for convergence of the agent group
to the plume source. The algorithms are also demonstrated
through simulations.

I. INTRODUCTION

Localizing gas/odor sources are of great importance in
various scenarios such as finding the leaks of poisonous
chemicals, searching for survivors after a disaster, and de-
tecting fire in its early stage. To detect and track chemical
sources in an unknown environment, mobile sensing agents
are deployed in the field, and various approaches have been
developed such as building a map of the flow field [1]–[4],
gradient-based [5]–[9] and gradient-free algorithms [10].

The fluid flow environment, in which a chemical source
is present, varies depending on different Reynolds numbers.
Low values of Reynolds numbers indicate smooth varia-
tions in chemical concentration, which imply well-defined
gradients of the chemical concentration. At medium to
high Reynolds values, chemical dispersion is dominated by
turbulent mixing, which produces poorly defined and time-
varying gradients [11]–[13]. The turbulent flow fluctuation
at large Reynolds number brings difficulties in designing
control strategies for mobile sensing agents because it is
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impossible to use analytical methods or simple numerical
simulations to predict the characteristics of odorant plumes
[11]. To successfully navigate mobile sensing agents, various
algorithms have been developed inspired by biology such as
E. coli [6], [10], beetles [10], blue crab [14], [15], silkworm
moth [7], [16]–[18], and bees [19].

Inspired by behaviors of blue crabs, Webster et al. [15]
develop and implement a plume tracking algorithm in a
controlled turbulent flow environment. They develop a sig-
nal processing strategy that is able to replicate behavioral
responses of blue crabs tracking a chemical stimuli. To
answer the challenge that the characteristics of the turbulent
flow is difficult to measure, they install sensor arrays on
an experimental vehicle to detect plume spikes and estimate
frequencies of the detected plume spikes. The spike infor-
mation is then processed by the tracking system to guide the
upstream and cross-stream motions of the vehicle so that it
can move towards and declare the plume source.

Inspired by their results, we investigate the plume tracking
problem in turbulent fluid fields using mobile sensing agents.
The goal is to control a swarm of mobile sensing agents to
detect and track a plume source from initial locations that
are downstream to the source. We investigate the mechanism
of the turbulent flow field and propose a stochastic model-
ing method for plume spikes using Poisson processes that
describes the characteristics of chemical plumes. We define
Poisson counters to indicate the detection of a spike, the
duration of which is implied by the rates of the Poisson
counters.

For the plume tracking system, we design velocity controls
for an N-agent group to move towards a plume source. A
novel design of our strategy is that instead of letting the
agent group locate a plume source in a turbulent fluid field,
we transform the detected turbulent flow field into a smooth
scalar field, the gradient of which is well-defined, so that we
can design control laws for the agent group in the smooth
field. Inspired by recently observed fish behaviors [20] and
our previous work on non-gradient source-seeking algorithms
[21], we decompose the velocities of each agent into two
parts: One part maintains the constant distance among agents,
and the other part, which is proportional to the estimated
duration of spikes, controls the entire group to move towards
the plume source. We prove that, under the control laws, the
moving direction of the agent group converges to the gradient
direction of the smooth field. The computed velocities are
then used by each agent to plan its path forward, which leads
the group to the plume source in the turbulent flow.

The rest of the paper is organized as follows. Section



Fig. 1. Flow visualization of the chemical plume in a controlled
turbulent flow.The view is from above, with the flow moving from
left to right.

II introduces the modeling of chemical plume spikes us-
ing Poisson counters. Section III discusses methods for
estimating spike parameters. Section IV presents control
strategies for controlling two mobile robots to track a plume
and the corresponding path planning algorithm. Section V
demonstrates simulations results of the proposed algorithm.
Section VI presents concluding remarks.

II. PROBLEM FORMULATION

We assume a plume is generated from a single source
releasing chemicals into a turbulent flow field. A swarm of
mobile sensors are deployed into the fluid. Each platform
is able to measure the level of chemical concentration at its
current location and move freely in the fluid, overcoming the
flow. The research goal of this paper is to develop a source
seeking algorithm to enable the swarm to move to the source
from initial locations that are downstream to the source,
where plume can be measured. This problem is challenging
since the chemical concentration within a plume created by
a turbulent flow has very high spatial and temporal variation
(see Fig. 1), therefore existing gradient based methods for
smooth fields do not apply.

In [15], based on experimental data collected from plumes
in turbulent field, it is shown that sensors distributed across
the body of a crab are able to detect spikes in the chemical
concentration. The magnitude and duration of detected spikes
may have been utilized by the crab to direct its motion to-
wards the chemical source. An algorithm has been proposed
to control an experimental platform equipped with three
sensors to emulate this source seeking behavior of a crab.
High rate of successful source seeking behaviors have been
observed from the experiments. However, the mechanism
behind such success have not been revealed in [15], which
prevents its application to a swarm of mobile sensors.

III. MODELING AND DETECTING SPIKES

Based on the experimental data in [22], we learn that
when a mobile sensor moves in a chemical plume at constant
speed, the measurement of concentration along its trajectory
will display spikes as shown in Fig. 2. A spike can then
be detected by comparing the measurement with a given
threshold. The occurrences of spikes display a random na-
ture. Another important observation is that as the sensor gets
close to the plume source, the average frequency of spike
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Fig. 2. Concentration measured along the trajectory of a moving
sensor in a turbulent chemical plume.

arrival decreases in applying a constant threshold [22], and
intuitively the duration of each spike becomes longer.

We now introduce a stochastic model to describe the
random occurrences of spikes along the trajectory. First, we
define the spike indicator as s = {s1,s2}, where s1,s2 ∈ Z.
When s = s1, there is no spike at the current position of
the mobile sensor, and s = s2 indicates otherwise. The spike
indicator s satisfies a stochastic differential equation driven
by Poisson counters as below:

ds = (s1− s)dN12 +(s2− s)dN21, (1)

where dN12 is the Poisson jump process that triggers the state
s to jump from s1 to s2, and dN21 is the Poisson jump process
that triggers the state s to jump from s2 to s1. Along the
trajectory, a state jump from s2 to s1 indicates the beginning
of a spike and a jump from s1 back to s2 indicates the ending
of a spike. These transitions happen randomly as Poisson
processes. The rates of the jump process dN12 is λ12 and the
rates of dN21 is λ21, these rates determine how frequently
state transitions happens. Therefore, λ12 and λ21 affect the
duration of a spike as well as the averaged frequency of the
occurrences of the random spikes.

Suppose a mobile sensor can detect spikes using the
thresholding method, then the rates λ12 and λ21 can be in-
ferred from the beginning and ending of consecutive spikes.
Consider the current time as t, and suppose j-th spikes have
been detected along the trajectory of the mobile sensor. Let
us denote by Tj and T ′j the beginning and ending time of the
j-th spike, respectively. We will use the timings for spikes
j−1 and j to estimate the rate of state transition as

λ̂12(t) =
1

Tj−T ′j−1

λ̂21(t) =
1

T ′j −Tj
.

(2)

Equations (1) and (2) models the timing of spikes. Next,
we consider the noises or imperfections in the sensor that
cause variations in the measurements of the concentration.
These variations will cause inaccuracy in determining the
timing of the state transitions. Therefore the λ̂12(t) and λ̂21(t)
in Eq. (2) are noisy estimates for the true values of the rates.
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Fig. 3. Simulated timing of spikes modeled by the stochastic
Poisson processes. s1 = −1, s2 = 1, and σ = 0.08. The dotted
blue line indicates the true value of the state s without noise. The
added Gaussian noise severely corrupted the state s, and will cause
significant uncertainties in the timing estimates.

To model the effect of sensor noises on the transition timing,
we assume s is also corrupted by zero mean, Gaussian noises
with variance σ . Fig. 3 illustrates a case when s1 = −1,
s2 = 1, and σ = 0.08.

We will later design controllers based on the noisy esti-
mates of the rates λ̂12(t) and λ̂21(t). However, to evaluate the
performance of our controller design, we provide a ground
truth for λ12 and λ21 that matches the results in [22]. Let
r ∈R3 be the current location of the sensor in the field. And
suppose the chemical source is located at position r0. Let the
distance between the sensor and the source be dp = ‖r0−r‖,
We assume that λ12 is a monotonically increasing function
of the the distance dp, and λ21 is inverse proportional to the
distance, e.g.,

λ12 = kλ

1
g(dp)

λ21 = k′
λ

g(dp),

(3)

in which kλ and k′
λ

are constants chosen by design. A simple
choice of g(·) is to let g(dp) = dp.

Define a function

f (dp) =
λ12 +λ21

λ12
=

k′
λ

kλ

g(dp)
2 +1, (4)

which is a smooth function of distance dp. Since the source
is located at dp = 0, where the function f (dp) has a unique
minimum value 1, the problem of finding the plume source in
the turbulent field is now equivalent to finding the minimum
point in the smooth field f (dp). The only challenge here is
that the function f (dp) has to be estimated from the sensor
measurements. Using the estimates λ̂12(t) and λ̂21(t), the
mobile sensor can compute a noisy estimate of f (dp) as

f̂ (dp) =
λ̂12 + λ̂21

λ̂12
. (5)

Therefore, through stochastic modeling, we have converted
a source seeking problem within a turbulent field into a

Fig. 4. Decomposition of the velocities of the agents in a N-agent group.

minimum seeking problem in a smooth field corrupted by
non-Gaussian noises.

IV. PLUME TRACKING CONTROL

In this section, we design control strategies for a swarm of
mobile sensing agents to locate a plume source based on the
estimated plume spike parameters. Our strategy is inspired
by recent observations of fish behaviors that fish speeds up
when the light intensity increases, and slows down when the
light intensity decreases so that the fish school is able to
converge to the darkest area in a light field [20].

Suppose N sensing agents are deployed in a plume. Let
ri represent the position of the i-th agent and rc represent
the center of the group. Then, we derive rc = 1

N ∑
N
i=1 ri.

As introduced previously, for i = 1,2, ...,N, let dp,i be the
distance between the plume source and the i-th sensing agent.
Without loss of generality, let us assume the plume source
is located at position r0 = (0,0). Therefore, dp,i = ‖ri‖.

A. Determining Velocities of the Agents

Define the inertial frame as XI and YI . Arbitrarily select a
baseline q as an unit vector that forms an angle θ with the
inertial frame XI . Define q⊥ to be the vector perpendicular to
q that forms a right handed frame with q. q and q⊥ intersects
at rc. As illustrated in Fig. 4, for each agent, we decompose
its velocity into two parts [21]: v⊥i , which is perpendicular to
q, and v//i , which is aligned with q and maintains formation.

Then, vi = v⊥i + v//i . For v⊥i = v⊥i

(
−sinθ

cosθ

)
, we design

v⊥i , i = 1,2, as

v⊥i = K f̂ (dp,i)+C, (6)

where K and C are constants selected by design.
Along direction q, let r//i be the projection of location ri

onto vector q, as illustrated in Fig. 4. For agent i, we define
set Ni to contain the closest agents to agent i to the right and
to the left along direction q. For example, as shown in Fig.
4, N1 = {2}, Ni = {i−1, i+1}, i 6= 1,N, and NN = {N−1}.
The goal is to design v//i so that the relative distance from
r//i to r//j , i 6= j, converges to a constant a0

i j. Furthermore,

we require that v//c = 1
N ∑

N
i=1 v//i = 0. Therefore, for v//i =

v//i

(
cosθ

sinθ

)
, we design v//i as

v//i = kp ∑
j∈Ni

((r j− ri) ·q−a0
j,i), (7)



where a0
i, j = −a0

j,i. We can prove that, under the formation
control law (7), the relative distance between every two
agents converges to a constant [21]. Given v⊥i and v//i , each
agent now has its velocity given by

vi = (K f̂ (dp,i)+C)

(
−sinθ

cosθ

)
+ kp ∑

j∈Ni

((r j− ri) ·q−a0
j,i)

(
cosθ

sinθ

)
, (8)

and v//c = 1
N ∑

N
i=1 v//i = 0, we obtain the velocity of the

formation center as

vc = (
1
N

K
N

∑
i=1

f̂ (dp,i)+C)

(
−sinθ

cosθ

)
. (9)

If we arbitrarily choose the baseline q =
ri−r j
‖ri−r j‖ , in which

i 6= j, then the angular velocity of the group can be calculated
as

θ̇ = ω =
v⊥i − v⊥j
‖ ri− r j ‖

=
K

‖ ri− r j ‖
( f̂ (dp,i)− f̂ (dp, j)). (10)

Since the noise in the estimation of f̂ (dp,i) is unstruc-
tured and complex, we use f̂ (dp,i) = f (dp,i) to analyze the
convergence of the moving direction of the group to gradi-
ent directions. If we use Taylor expansion to approximate
f (dp,i), we have

f (dp,i) = f (dp,c)+∇ f (dp,c) · (ri− rc)+H.O.T, (11)

where dp,c is the distance from the formation center to the
plume source, ∇ f (dp,c) is the gradient of f (dp,c) at dp,c,
and H.O.T represents higher order terms in the above Taylor
expansion. Denote the angle between the gradient direction
∇ f (dp,c) and the inertial frame XI as α ∈ [−π,π]. Then, we
derive from Equation (10) that

θ̇ ∼=
K

‖ ri− r j ‖
(∇ f (dp,c) · (ri− r j)) = K(∇ f (dp,c) ·q)

= K ‖ ∇ f (dp,c) ‖ (
∇ f (dp,c)

‖ ∇ f (dp,c) ‖
·q)

=−K ‖ ∇ f (dp,c) ‖ sin(θ −α− π

2
). (12)

Choose the state to be θ −α , then we obtain

θ̇ − α̇ =−K ‖ ∇ f (dp,c) ‖ sin(θ −α− π

2
)− α̇. (13)

When ‖ ∇ f (dp,c) ‖6= 0, the above system has a stable
equilibrium θ −α = π

2 and an unstable equilibrium θ −α =
−π

2 . Given the above system, we introduce the following
proposition stating that the agent group will move towards
the plume source.

Proposition 4.1: If the gradient direction α is constant,
that is, α̇ = 0, then, as t → ∞, limt→∞θ(t) = α + π

2 . If the
rate of change α̇ 6= 0 is considered as an input to the system
(13), then θ −α = π

2 is an equilibrium of (13) that is input-
to-state stable (ISS).

Proof:

If α̇ = 0, we choose a Lyapunov candidate function as

V =− ln(cos(
θ −α− π

2
2

)). (14)

We calculate

V̇ = tan(
θ −α− π

2
2

)(θ̇ − α̇)

=−2K ‖ ∇ f (dp,c) ‖ sin2(
θ −α− π

2
2

)− tan(
θ −α− π

2
2

)α̇

=−2K(1− ε) ‖ ∇ f (dp,c) ‖ sin2(
θ −α− π

2
2

)

−2Kε ‖ ∇ f (dp,c) ‖ sin2(
θ −α− π

2
2

)− tan(
θ −α− π

2
2

)α̇

≤−2K(1− ε) ‖ ∇ f (dp,c) ‖ sin2(
θ −α− π

2
2

), (15)

when |α̇| ≤ Kε ‖∇ f (dp,c) ‖ |sin(θ −α− π

2 )| and 0 < ε < 1.
Therefore, according to Theorem 4.19 in [23], if α̇ is con-
sidered as the input, the system (13) is input-to-state stable
(ISS). If the input α̇ = 0, θ converges to the equilibrium
point α + π

2 . If the rate of change α̇ is bounded, then at
the steady state, the deviation |(θ−α− π

2 )| is also bounded.
Therefore, as t → ∞, limt→∞θ(t) = α + π

2 , which indicates
that the agent group will move towards the minimum of field
f (dp,c).

B. Path Planning

Proposition 4.1 indicates that, if we use Eq. (8) as feedback
control for the velocities of the agents in continuous time,
the moving direction of the agent group will converge
to the gradient direction of field f (dp). However, in our
simulation, we do not control the velocities of the agents
in continuous time. We discretize the system and use the
designed velocities for the path planning of the agent group.
Denote ri,k as the position of the i-th sensing agent at time
instant tk. We propose the following path-planning algorithm.

Algorithm 1: Repeat the the following steps for i =
1,2, ...,N. At location ri,k, the i-th sensing agent

1) takes measurements of the turbulent field values for a
finite time T , called the ”waiting time”.

2) estimates λ̂12 and λ̂21 based on the measurements,
estimates f̂ (dp) based on Eq. (5), and using Eq. (8)
determines the velocity vi,k, which generates a planned
trajectory.

3) moves forward along the trajectory over a finite motion
horizon time τ so that ri,k+1 = ri,k + τvi,k.

Let k = k+ 1 and repeat the above steps until the function
f̂ (dp,i) estimated by an agent is sufficiently close to 1,
indicating the vicinity of the source.

We will show in the simulation section that by using the
speed control of (6) and (7) and the path planning algorithm
1, a two-agent group is able to move towards the plume
source while maintaining a constant formation.



Distance from the source, [cm] 

Fr
eq

ue
nc

y,
 [H

z]
 

Fig. 5. Frequency of concentration spikes [Hz] as a function of
distance from the source.

Fig. 6. An estimated field of f (dp) when the waiting time T =
{10,100} s. The plume source is located at (0,0). The rates λ ’s are
estimated using Eq. (2) for each time step, and then averaged over
the period of waiting time.

V. SIMULATION RESULTS

The simulation is setup by first generating a simulated two
dimensional turbulent plume field that matches experimental
data. The ground truth kλ and k′

λ
parameters for the spikes

in such a field are selected from Fig. 5 from [22]. In the
figure, three spike samples are measured at each of five lo-
cations with different distances to the source. Since all three
measurements taken at distance 150 cm have the frequency
of 4 Hz, we choose the reference frequency fr = 4 Hz and
reference distance dr = 150 cm. Then, we let kλ = frdr and
k′

λ
= fr

dr
. These parameters then determine the rates for spikes

λ12 and λ21 used in our simulation.
At each location in the plume field, we simulate a train

of spikes using the stochastic model in Eq. (1). We allow
a sensing agent at its current location to measure this train
for the waiting time T as described in Algorithm 1. Then,
a noisy estimate of the field f (dp) will be generated by the
agent. Fig. 6 plots this noisy estimate over the entire field
for T = {10,100} s. When T = 100 s, we can see that the
field is close to a smooth field, but with smaller waiting time
T , we can observe that the field becomes more noisy.

We simulate two mobile sensing agents in the simulated

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8

−1

−0.5

0

0.5

1

Spike Measurement from Agent 1

Time (s)

S
p

ik
e 

In
d

ic
at

o
r 

E
st

im
at

e

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8

−1

−0.5

0

0.5

1

Spike Measurement from Agent 2

Time (s)

S
p

ik
e 

In
d

ic
at

o
r 

E
st

im
at

e

Fig. 7. Example of spikes estimated by mobile sensing agents from
plume measurements with s1 =−1 and s2 = 1.
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Fig. 8. The trajectory of the center of two mobile sensing agents
in a plume tracking simulation. The plume source is located at
(0,0) and the agents are deployed at (150,−35) and (150,−25).
The waiting time T = 100 s at each position and the agents move
forward for τ = 1 s after the velocities are determined.

turbulent fluid field. The simulated agents are initially de-
ployed at (150,−35) and (150,−25), and the two agents
will keep a distance |a0| = 10 cm. To enable the agents to
find the plume source in the field, Algorithm 1 is applied.
The agents will wait and estimate the averaged plume field
for the waiting time T , then make a move for τ = 1 s. Each
agent does not need the entire field information to navigate.
Instead, they require the spike parameters λ̂12, λ̂21 only
at their current positions to compute f̂ (dp,i) and vi in the
algorithm, which takes very small computational cost and
hence enables real-time implementation. For the controller
parameters in Eq. (8), we set K = 3, C =−3, and kp = 1.

Results of the algorithm 1 are illustrated by Figures 7 and
8. During the waiting time, agents measure plume intensities
and detect spikes as in Fig. 7. After estimating λ̂12 and
λ̂21 using Eq. (2), the agents compute the velocities and
move forward for τ = 1 s. Fig. 8 shows the trajectory (the
green line) of the center of the two agents towards the
source. The ending positions of the two agents are marked
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Fig. 9. Trajectory comparison of the center of two mobile sensing
agents under six different choices of the waiting time T . Each group
of agents shows different trajectories. It can be observed that longer
waiting time creates shorter trajectories.

by a blue square and a blue circle, respectively. The relative
displacement between the two agents is plotted as the black
line connecting the two ending positions. We see that the
relative distance between the agents is maintained till the
end.

We have performed multiple simulations with different
values of the waiting time T . Figure 9 shows trajectories
under six values of T : 5 s, 10 s, 20 s, 50 s 100 s, and 200
s. The figure suggests that smaller waiting time generates
longer trajectories. We have also observed that for smaller
waiting time, the trajectories differ from trial to trial and
may even not converge to the plume source. This fact
is mainly because the accuracy of the estimates for the
rates of spikes increases when the length of waiting time
increases. However, longer waiting time implies much slower
convergence rate to the source. Blue crabs are able to track
roughly 2 m in 30 s or less [15], and our best performance
from the trials is 150 cm in 105.90 s when waiting time
is small (T = 15 s). We see there is still large room for
improvement in our algorithm.

VI. CONCLUDING REMARKS

In this paper, we develop a plume tracking algorithm for
a swarm of mobile sensing agents in turbulent plume fields.
Our plume sensing strategy is inspired by blue crabs. We
propose a stochastic method to model plume spikes detected
by mobile sensing agents and estimate the rate parameters
of the spikes. Then, we are able to transform the measured
spike fields into a smooth scalar field. Our control and path
planning strategy is inspired by the source seeking behaviors
of fish schools. We develop a simple velocity control for
the agents to achieve source seeking and also maintain the
swarm. We prove the convergence of the moving direction of
the agent group towards the plume source in the transformed
field. Simulation results have demonstrated the effectiveness
of the proposed path planning algorithm that combines the
two bio-inspired strategies for sensing and navigation in a
turbulent plume field.
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