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Abstract— This paper develops a robust controller for au-
tonomous underwater vehicles with bounded time delays, so
that the AUVs form and keep a desired formation shape and
track a desired trajectory. We use a six-degree-of-freedom
dynamic model for each AUV to describe its motions in the
three-dimensional space. We design an orientation controller
based on feedback linearization, so that the orientation of
each AUV converges to its desired value. We derive formation
dynamics of AUVs and decouple the dynamics into a formation
shape and a formation center, using the Jacobi transform. We
treat couplings in the formation dynamics as perturbations and
design a robust formation-keeping controller to tolerate both
the perturbations and the time delays. We demonstrate the
effectiveness of our controller in simulations.

I. INTRODUCTION

Formation control of autonomous underwater vehicles
(AUVs)( [1]-[9]) is challenging due to the complex dynamics
and communication constraints among AUVs. An AUV has
complex dynamics which cannot be easily simplified in
formation control design. In addition, underwater commu-
nication and positioning, which rely heavily on acoustic
systems, are plagued with limited communication bandwidth,
intermittent failures, latency and multi-path effects. There-
fore, time delays in communication among AUVs should be
considered for formation controller design. References [6],
[8], [10], [11] considered the complex dynamics of an
AUV and developed various control strategies for multi-AUV
systems, without considering communication time delays.
To integrate communication and control, [12] proposed a
discrete-time Kuramoto model over one-to-all and all-to-
all logical graphs and analyzed its stability for a collection
of identical planar unit-speed vehicles described by a two-
dimensional Frenet-Serret motion model. Using Lyapunov
theory and a switching communication topology, [13] de-
veloped a coordinated path-following controller to deal with
communication failures between AUVs. Reference [14] pro-
posed a path-following control strategy to coordinate a group
of surface vessels, which moves only in the horizontal plane.
Graph theory was used in [15] and resulted in a cooperative
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control law which was proved robust to small communication
delays. In our previous paper [16], we studied formation
dynamics for a group of AUVs in a horizontal plane. Using
Jacobi coordinates, we expressed the formation dynamics
as a deformable body and designed H.. full state feedback
controllers, assuming the time delays negligible.

The main contribution of this paper is that we extended
the Jacobi transform approach from the two-dimensional
horizontal plane to the three-dimensional space and used it to
analyze the formation dynamics for a group of six-degree-
of-freedom (6DOF) AUVs with time delays. According to
the formation dynamics we derived, we designed a robust
controller to achieve both path following and formation
keeping. Our method splits the orientation subsystem of
each AUV from the formation system, so both orientation
and formation subsystems can be controlled separately. Our
method also decouples the formation shape and the formation
center, therefore, they can be controlled separately, too.
The robust formation controller we designed stabilizes the
formation system with a bounded time delay.

The rest of this paper is organized as follows. Section II
reviews a 6DOF dynamic model of a single AUV and
decouples it into a translational and a rotational part. An
orientation controller is designed based on feedback lin-
earization according to the rotational dynamics. In section III,
applying the translational dynamics of each AUV, we derive
the formation dynamics of AUVs in the three-dimensional
space through Jacobi transform, propose a feedback de-
coupling for the formation dynamics, and design a robust
formation controller to stabilize the formation system with
perturbations and time delays. We give simulation results in
Section IV and the conclusion in Section V.

II. DYNAMICS AND ORIENTATION CONTROL OF
A SINGLE AUV

A. Dynamic Model of A Single AUV

We assume that every AUV in the formation system is
fully actuated, homogeneous, and neutrally buoyant, so the
center of buoyancy coincides with the center of gravity.
We set the origin of the body-fixed frame at the center
of buoyancy and assume that the hydrodynamic forces and
moments are linear. 1] = [x,y,z]” denotes the AUV position
in the earth-fixed frame. 1, = [¢,0, w]” denotes the Euler-
angle vector for roll, pith, and yaw in earth-fixed frame.
vi = [u,v,w]T denotes the body-fixed linear velocity for
surge, sway, and heave. v, = [p,q,7]7 denotes the body-fixed
angular velocity for roll, pith, and yaw. Then the dynamics



of each AUV can be expressed as follows [17], [18]:

m =Ji(m)vi, (D
M = J2(m2)Vva, 2
MVv+C(v)v+D(v)v=r1, 3)
where v = [v[ VI]T, and 7= [ 7] <l ]T is the con-

trol inputs vector where TIT is the controlling force vec-
tor and 7 the controlling moment vector. In this model,
Jifm) 0

0 h(m)
matrix from the body-fixed frame to the earth-fixed frame.

The matrices M and D in this model are inertia and damping
matrices, defined as

is the coordinate-transform (Jacobian)

M = diag{m — Zy,m—%;,m— 25,11, I }, 4)
D(V) = _diag{%7%’agW7%7%qvm}- (5)

where, 2:,%, 2.1 1, X202, 2 T p My, and Ny are
model parameters.

The matrix C(v) represents the Coriolis and centripetal
term, which contains the rigid-body Coriolis and centripetal
term Cgp(v) and the hydrodynamic added Coriolis and
centripetal term Cs(V), i.e.,

C(v) = Crg(v) +Ca(v), (6)
where
0 0 0 0 mw  —my |
0 0 0 —mw 0 mu
0 0 0 my  —mu 0
Cra(V) = 0 mw —mv| 0 Lr —Lq |’
—mw 0 mu | —Lr 0 L.p
mv —mu 0 Lyq L.p 0
w
Ca(v) =
0 0 0 0 Zw =%y
0 0 0 —Zww 0 Zau
0 0 0 4 —Zu 0 8)
0 Zow =%y 0 —Mir M
—-Zw 0 Zau | Nir 0 —Jpp
Py —Zuu 0 —Myq Ky 0

Note that the Crp(Vv) and C4(V) satisfy the following prop-
erty:

Crp(V)V = Cgrp(V)vV,

Ci(v)v=Ca(v)v. )
where,
0 —mr  mgq 0 0 0 ]
mr 0 —mq | O 0 0
, —mq mp 0 0 0 0
Cras (V) 0 mw —mv| 0 Lr —Lq |’
—mw 0 mu | —Lr O Lp
my —mu O Lg Lp 0 |
10)

Ca(v) =

0 Xr —Zywq 0 0 0
—Zar 0 Z 0 0 0
Zi —%p 0 0 0 0
0 Zow =%y 0 —Mir Mg
—Zw 0 Zau Nir 0 —pp
sy —Zau 0 —Myq  Hpp 0
(11)
Now we can rewrite term C(v)v+D(V)Vv in (3) as
C(v)v+D(v)v = Chg(v)v +Ch(V)v + D(v)v
C11(V2) ‘ 0 '
= v=C(v)v. 12
Coi(v1) | C2(v2) v) 12)
where
—-Zu —mr+%r  mq— 2q
C11(V2) = mr— Zur —%, —mp + fpr ,
—mq+ Zuq  mp—%p -2y
(13)
0 mw+ 2w —mv+ %y
Ci(v) = | —mw— 2w 0 mu— Zuu |,
my — %y —mu+ Zu 0
(:14)
-, Lr—Ar  —Lg+.#q
Cn(v) = | —Lr+Air —g///q pr—%p
| Lq—Ayq —Lp+Hpp -]
(15)

Therefore, (3) can be decomposed in the following two
equations:

Mvi +Cii(v2)Vv1 = 11, (16)

My vy +Cor (Vi) V1 +Ca(V2) V2 = 12, 17
where

M, = diag{m — Ziy,m—%,,m— 2},

M, = diag{Ix,Isz}. (18)

Note that dynamics of an AUV can be fully described by
(1), (2), (16) and (17). Eq.(1) and (16) describe the trans-
lational dynamics and (2) and (17) describe the orientation
dynamics for a single AUV.

B. Orientation Dynamics And Control
Rewrite (17) as

Vo= M, 'Co(v2)Va+ My 't — M5 'O (Vi) v, (19)

and make the following invertible transformation for 7,

S :MEI‘L'Z —M{1C21 (vi)vi, (20

then we get

Vo= —M;'Con(v2)va+, (21)

where Cy1 (V1) and Cy(v2) are given in (14) and (15).
Define error vectors Ey, = N2 — Mo and Ey, = V) — Vyq,
where 1,4 and V;4 are desired orientation angle and angular
speed, respectively, and assume 1,4 =0 and V,; =0, which
means that the desired orientation angle and angular speed



are constant. By rewriting (2) and (21), we get the following
state equation for Ey, and Ey,:

(22)

En, = J2(En, +Ma) [Ev, + Vad]
Ey, = —M; ' Cyy(Ey, + V24)[Ev, + Vaa] + 6.

Now define the following diffeomorphism to achieve input-
output linearization,

22 =21 = J2(En, +M24)[Ev, + Vad),
then the orientation dynamics become
i1=22
2 =J(z1 +N2a) {—leczz (15 (21 +M2a)22) (24)

dJy (21 +Maa)

71 _
[y (21 + Maa)z2] o

22+6|.

Choose the control law as

6 =M;"'Co(J5 " (21 +Maa)z2) U5 ' (21 + M2a)22)]
dJy N (z1 +Maa)
L7

then the orientation subsystem becomes

2+ 2+ )z +kez],  (25)

(26)

0 1
ki ko
Hurwitz will stabilize the orientation system, therefore £y, =

71 — 0 as t — oo, which implies that the orientation converges
to the desired value.

=22
2 =kiz1 +koza.

The state feedback gains k; and k that make

III. AUV FORMATION DYNAMICS AND CONTROL
A. Translational Dynamics of A Single AUV
From (1), we get v, :Jfl(nz)m and then
=y )i = ) () (). @)
Substitute v; :Jfl(nz)m and (27) into (16), we obtain
il = G(m2, v2) +H(m2) 71, (28)

where

G(M2,v2) = Ji(m)Jy (M) = Ji ()M Cri(va)J7 ! (1)

and
H(mp) = J(m)M; "

Now (28) describes the complete translational dynamics of
each AUV. We use it to derive the formation dynamics of
AUVs.

B. Formation Dynamics of AUVs

We consider a formation of N AUVs moving in the three-
dimensional space. Let 7} = [x;,;,2]7 denote the position of
the i-th AUV, where i = 1,2, ..., N, then the Jacobi vectors are
defined by a linear transform Q that produces the following
equation [16], [19]:

ol .03 s pr gt ) =), (D). (a)T", 29)

where p;, j=1,2,...,N—1, are N—1 independent Jacobi
vectors describing the geometric formation shape and g, is
the formation center defined by g. = %Z?/ﬁ 7n;. The linear
transform Q is guaranteed to exist [19]. Our goal is to design
a formation control to guarantee

Pj = PjasPj = Pjdrqge — Gedrde — Ged; (30)

where pj4 is the desired value of the j-th Jacobi vector and
qcq 1s the desired trajectory of the formation center.

Take second-order derivatives on both sides of (29), we
get

1, p7 sy dic )" = QI0DT, @), )T B
Plug (28) into (31), and define state vector
x=[p{,....p5_1.4!]", (32)

we obtain the formation dynamics as follows:

X =A(m3), va)X +T(ma)U, (33)
where
A(lm), [v3)) = ecQ™!, (34)
G =diag{Gi(n;,v),....Gn(17, V) }, (35)
[([n3]) = Qdiag{H(n),....H(n)}, (36)
U= ()" G 37)

C. Decoupling of the Formation Dynamics

We have shown that the formation dynamics are described
by (33), in which matrix A is a nonlinear function of
Disqi,ti, 0:,6;, and y;, for i =1,2,--- ,N. We decompose A
into the following two parts:

A([ns], [va)) = A +Aa([m3), [VA)),

where A, = Ay is a constant diagonal matrix and A, is
viewed as a perturbation. We will find a A such that the H.,
norm of A, is bounded and minimized.

Note that the perturbation term A, is caused by asymme-
tries of an AUV. For an AUV with three planes of symmetry,
Zi =% =25 and Z, =%, = Z,,, which will make G
a constant diagonal matrix, and then A = A, = %%131\;,
therefore, Ay = O3y, i.e., the perturbation term vanishes.

For a generic AUV, we select

(38)

u %, Zy )
m— 2y m—% m— 2"
then the H. norm of A, is minimized. Define o2 =

lmax(AgAA), then from (34) and (35) and all entries of G,
we can see that o is a function of p;, ¢;, r;, and sine and

A = min(

(39)



cosine functions of 6;, ¢;, and y;. Because p;, g;, and r; are
bounded as the vehicle can not steer infinitely fast, and sine
and cosine functions are also bounded, we get ¢ < oo.

D. Stability Analysis of Time-delay Formation System
Define Z = X and plug (38) into (33), we get
X(t)=Z(t)
{ 2(1) = MZ+Aa(m3): Vi) Z +T([m3])U

Define error vectors X, =X — X, and Z, = Z — Z;, where X,
and Z; are desired values, and a perturbation term W = ApZ,,

(40)

we get 6 o
X (1) =Z.(1),
{ Ze(t) = A3 Z (1) + W (1) + (), 41)
where
w(t) = T(MADU (1) + A5, Za + An (0], Vi) Za — 2o (42)

is the control we need to design, which will be a function of
error vectors X, and Z,. To compute X, and Z,, position
and velocity information of all AUVs are needed. As it
takes time for the controller to get these information through
communication links, the control effort is actually computed
based on delayed information, i.e., u(¢) is a function of
X.(t —h) and Z.(t —h). Here h is a time delay satisfying
0 <h<h* and h =0, where h* is the finite upper bound of
the time delay.
We rewrite (41) as
{ X (1) = AX (1) + DW (1) + By (1)

Z.(1) = LX (1), | )

where

X=[x0 2 ) A=| g 4 | =rxa-n,

D=8B,=[0 1" F=[K ki ],L=[0 1],

Theorem 1: Suppose the time delay 4 satisfies 0 < h < h*
and /i = 0. The full formation system (43) is delay-dependent
stable and ||Tz,w|| < ¥, where y >0,

If there exists a positive symmetry matrix ¥ = Y7 > 0 and
scalars € > 0,& > 0, & > 0 satisfying h*ez — y2 < 0 and the
following linear matrix inequality(LMI):

@ YAT  yF'BI yLT
AY  —ggl 0 U 4
1
ByFY 0 —p=l 0
LY 0 0 ~I
where ® = (A + BhF)Y +YA+BF) + k(g7 + &5 +

& )ByFF B + - DD".
Proof 1: Define P = Y- I then P=PT >0asY=YT >0.
Define the following Lyapunov-Krasovskii functional:

0 t o
ViR ()] = X7 (1) PR (1) + /7 h /He &1 (X7 (s)ATAX (5)|d5d0
+ "I &[X" (s)F" Bl B,FX (s)]|dsd®

—hJt—h+6
0

+ / h /, 'M83[WT(S)DTDW(S)]dsde,

Take derivative of V;[X(¢)] and use the following matrix-type
inequality [20],

25+ 20y <exlz +e7'2ls,, 45)

where X; and X, are real constant matrices of compatible
dimensions and € > 0 is a scalar, we get
Vi[X (1)) <xT(t)[P(A+ByF) + (A+ByF) P+ h*e AT A+
h* e FTBIB,F +h*(e; ' +¢& ' +¢& " \PB,FF B PIX (1)
+WT (@)D" PX (1) +XT (t1)PDW (t) + h*rsWT (1)DT DW (¢)
(46)

(0] +
X, W.1),

We define Hamiltonian as H(X,W,t) = Vi
ZI(6)Z.(t) — y*WT (t)DT DW (¢). Plug (46) into H(X
we get

H(X,W,t) <XT(t)®:X (1) + W' (t)DT PW (1)
+XT(t)PDW (t) + h*esWT (1)D' DW (1)
—PWT(t)D"DW (1)

=hi (1)¥; (P (1)

where hi(t) = [ XT(t) WT(1) ]", ® = P(A+ ByF) +
(A+ByF)'P+h*e\ATA+h*e;FTBIByF +h* (e + &' +
& )PB,FFTBIP+LTL, and

(oo} PD

\PI(P): DTP (h*83*')/2)DTD

(@7)

We know that the system is robustly stable with a distur-
bance attenuation y if H(X,W,) < 0, which is equivalent to
W;i(P) <0, and then equivalent to the following algebraic
Riccati inequality(ARI), if h*e3 — ¥ <0,

P(A+ByF)+ (A+B,F)'P+h*e,ATA
+h* e F BIByF +h*(e; ' +& ' +¢& " \PB,FFTBL P

+LTL+ PDDTP <0 (48)

VP —hres
Note that DT D = I, we premultiply and postmultiply (48) by
P and get the following equivalent equation:

(A+ByF)Y +Y(A+B,F)" +h*e;YATAY

+ 1 eYFTBIByFY +h* (e ' +& ' + & ")B,FF'B]

1
+YL'LY + yiDDT <0, (49)

2 _h*gs

According to the Schur Complement, the ARI in (49) is
equivalent to the following LMI.

®  YAT YF'Bl yLT
AY  —@el 0 O o 0
1
ByFY 0 —p=l 0
Ly 0 0 ~1
where & = (A + Bh Y+ YA+BF) +h* (e +& ' +

& )B,FFTB! + > hx DDT <0. O

Given this theorem we should notice that the matrix
inequality is not linear and can not be easily converted to a
LMI due to the term that contains FFT in ®. This difficulty



is caused by the time delay 4*. Such that we cann’t solve the
matrix inequality (50) for F' and Y simultaneously. We show
how to determine the F' by two steps in the next section.

E. Robust Formation Controller Design

We design a state feedback pu(r) = Ko X, (t —h) + K1 Z(r —
h), such that the system described by (41) is stabilized. First,
we design Kj such that u'(r) = K1Z,(r — h) stabilize the
following velocity subsystem:

Zo(t) = Ay Zo(t) +W(t) + 1 (1).

Remark 1: Given ||Aa|l < 0 < oo, according to the Small
Gain Theorem [21], system (51) with perturbation W = ApZ,
is well-posed and internally stable for all Ay € RH. with
lAall < 1/7 if and only if || Tz,w|| < ¥, Where ¥ > 0, and
T7,w is the closed-loop transfer matrix from W to Z,.

Theorem 2: Suppose the time delay & satisfies 0 < h < h*
and h=0. Let Py = P! >0 and P, < 0 be solutions of the
following LMI:

ATPL+PA,+Q+1 P P

61V

P = Pl —0 0 |<o0. (52
P 0 —yI
The control law u'(t) = K1Z.(t — h), where
K =P 'P, <0, (53)

robustly stabilizes the formation velocity subsystem (51), i.e.,
1 Tzw | < 7, where y < 1/[|A4].

Proof 2: Let the output of system (51) to be Z,. We define
a Lyapunov-Krasovskii functional as

t
RlZ0] =2 OPZ()+ | Zo (90Ze(s)ds,  (54)
P
where P, = PIT >0, Q=0T >0, and a Hamiltonian function
as
H(Z,,W,t) = V| Zo(1)] + Z1 (1) —PWIOW(r), (55)

then we can get derivative of the Lyapunov-Krasovskii
functional V;[Z,(t)] as

Va[Z(1)] = 2! (1) [AL P+ PLAy + Q)Z. (1)

+Z (t —h)K] PiZ(t) + Z (t)PL K\ Zo(t — )

—ZI(t —h)QZ,(t —h) +WT ()P Z,(t) + ZL (1) PW (1).
Therefore, by plugging V»[Z,(t)] into the Hamiltonian func-
tion in (55), we get

H(Ze,W,t) = Z; (1AL P+ PiAy + QIZ(1)
+ 27 (t — KT P Z,(t) + ZT (t)P K1 Z,(t — h)
—Z] (t = h)QZ(t — >+WT<>PIZ<>
(
(t

+ZL (OPW (1) + 2 (1)Z:() = PWT ()W
=15 (1)¥iha(t), (56)
where hp(1) = | ZI(t) ZI(t—h) W'(r) }T and
A£P1+P1A/1+Q+[ P K, P
P = kTP, -0 0 57)
P] 0 _yzl

Let P, =P >0, ,=PK; <0 (i.e.k; =P, 'P) and Q =
QT > 0 are feasible solutions for ¥} < 0, then H(Z,,W,t) <
0. Hamiltonian principle suggests that H(Z,,W,t) < 0 and
|Tz,w | < 7, where ¥ < 1/||Aa|, are equivalent. O

Now the velocity subsystem with perturbations is robustly
stable under control u’(r) = K, Z, (¢ — h) for arbitrary bounded
delay. Fixing K, we design K, such that u(t) = K1 Z,(t —
h)+K>X,(t — h) stabilizes the perturbed time-delay formation
system (41). According to the theorem 1, we choose K; as a
negative definite symmetric matrix and then check whether
we can find Y, €, &, and &3 from (50). Since F is known, the
inequality (50) becomes linear and it can be easily solved by
Matlab LMI Toolbox.

IV. SIMULATION

We carry out simulations for a group of six AUVs, use
the AUV parameters provided in [18], and set the time step
for simulation as 0.01s.

m = 200kg, Z; = —70,%, = —100, %,, = —50, 2, = —62.5,
Yy = —170, % = =50, %, = —0.8,.#, = 0.9, 4, = —0.4
Hy = —200,.4; = —350,.4; = —500,1, = 203Nms?,
I, = 587Nms?, I, = 687Nms>.

(58)

The simulation is to show six AUVs tracking a sinusoidal
line and keeping a polygon shape. Initial AUV positions
and linear velocities are randomly generated in the fol-
lowing interval: x € (—10m,10m), y € (—10m,10m), z €
(30m,50m) and u,v,w € (—5m/s,5m/s). Euler angles and
angular speeds initialized at zeros. The desired formation
center trajectory is (5¢,0,40 + 5sinf). Jacobi vectors are
defined as p1 = 75 (p2—p1). p2= 5 (p s pe)ps = 75 (ps—
P6)-Pa = 5(pa+p3—p1—p2), and ps = 3(p1+p2+p3+
pa—2ps—2pg). The des1red values are p; — [0,15,0]",0, —
[0,—15,0]",p3 — [0,0,20]7 p4 — [0,0,—15]7, and ps —
[0,0,0]7. The time delay is assumed to be & = 0.5s. Figure 1
shows that the six AUVs move along the desired trajectory
and converge to the desired polygon shape. Figure 2,3, and
4 illustrate that linear velocities u,v,w of the six AUVs all
converge to their desired values seperately.

Y(m) -20 150 X(m)

Fig. 1. Trajectory and formation of six AUVs (h = 0.5s).

V. CONCLUSIONS

This paper presented a robust formation controller design
method for an AUV group with time delays. We studied
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Fig. 2. Surge velocities of six AUVs (h = 0.5s).
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Fig. 3. Sway velocities of six AUVs (h = 0.5s).

the 6DOF motion model for a single AUV, split the ori-
entation system from the collected dynamics, and designed
the orientation controller based on feedback linearization.
Using Jacobi transform, we derived the formation dynamics
of AUVs, and decoupled the dynamics into a formation
shape and a formation center. The robust formation controller
tolerates perturbations and time delays, and guarantees that
the AUVs achieve trajectory tracking and formation keeping
simultaneously. Future work will include collision avoid-
ance, obstacle avoidance, and extension of this centralized
approach to a distributed approach.
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