
BROWeb: An Interactive Collaborative
Auditory Environment on the World
Wide Web

Eric Metois, MIT Media Laboratory
Maribeth Back, Xerox PARC

Abstract: We describe an infrastructure for a real-time shared
auditory environment on the World Wide Web (WWW). The
system consists of the BROWeb "star-shaped" Web server and the
StarClient Java class and interface. The BROWeb server is
designed to facilitate implementation of Java applets wherein users
see and hear each other's activity. Developed as an interactive
music system for public performance, BROWeb is robust enough
to support hundreds of users in a demanding application.

We also discuss design issues regarding the actual experiences that
a Java applet overlying this infrastructure can deliver. We created,
for instance, a privileged user--a "director"--who can make
decisions affecting the overall system's performance and also the
data streams from other users. As for the sound source of the actual
experience, we present two alternatives that we have tested: local
sounds that download when the experience begins and streamed
audio (RealAudio, Xing, or other network broadcasting tool).

Description of the Infrastructure
For this project, we envisioned a set of collaborative instruments
that provide sonic experience on the WWW. Our goal was to allow
a rich variety of local musical play for the individual at any Web
station, while allowing the resulting data to be gathered and
redirected by a privileged user (the "director") from a central site.

In this structure, the director's data redistribution can affect the
BROWeb user sites as well as control external sound or visual
events at the central site.

The system was designed originally to support an interactive music
system on the Web in conjunction with the Brain Opera, an
electronic interactive opera by Tod Machover (1996). Individual
users/players interact with applets designed as instruments or
games and connected to an instance of our BROWeb server. Also
one of the server's clients, The Brain Opera's performance system
stands for the "director" of our virtual community.

Constraints
The major problems with Web-based interactive music are lag and
scheduling problems because the limited bandwidth restricts
packet-based data delivery and sonic quality. A Java applet allows
use of only a small amount of sonic material, and that little is poor
quality: Java currently supports only 8-bit mulaw audio files and
very limited handling.

These constraints affected our project in the following ways:

Limited download time
To avoid lag, we vowed to constrain our download time
within 100K. Because downloading samples means
establishing a new connection for each sound file (which
often costs more time than the actual downloading), we
limited both the number and file size of samples.

Limited real-time bandwidth

Responsiveness often is the key to an interactive
installation's success. To achieve this, we kept the data that
flows back and forth at very low bandwidth (less than one
kByte/second).

Unreliable UI (user interface) timing of events prohibited literal
mapping.

Underpinning Features

Server Architecture

A central "star-shaped" server is responsible for handling all the
interactive connections between web clients and the primary
performance system, which is another web client. This program
monitors connected clients and dispatches any message that one
client sends to the rest of the appropriate community (or group).
Groups or user communities can vary in size, and size should be set
on the server-side. A group size might be limited to ten, including
the primary performance director and the individual local user.

Sound Source

The bandwidth constraints of responsive interactions require that
the exchanged messages be very small and low bandwidth (point-
and-click level). This requirement prohibits sending actual sound
samples in real-time. We thus studied two alternatives. One
alternative was to force all sound files to reside locally on the client
machine, which means that all sonic material should be
downloaded by the Java applet at the beginning of the experience.
The other alternative was to use an audio web-broadcasting tool to
stream the sonic result of the collaborative experience back to the
users. A combination of the two is possible, depending on the
actual design and implementation of a specific platform's audio
driver. To support as many platforms as possible, however, we
considered these two alternatives exclusively.

Timing and scheduling

Using local sound files as our sonic material required that each
client schedule the local sound output. This timing is crucial to

music and sounds in general. To overcome the jerky timing of
network communication, we used a system design that exchanges
information on the net as "time-free." Once the information is
exchanged, the system reconstructs the actual timing on each client
via some simple but effective scheduling. We have built a simple
scheduler in Java that performs this task for BROWeb applications
that use local files. Using audio streaming, moreover, increases the
need for time-free interaction; audio broadcasting utilities can
introduce dramatic delays ranging from 5 to 10 seconds.

High-Level Features

Director Experience

For a BROWeb design to create an experience similar to a
"director" or a "conductor," its instruments must offer the director
levels of control different from the individual users. In one design,
users place sound events using their local Web instruments, while
the director governs the particular set of sounds, modifies tempos,
and chooses types of pattern formation (Yu, 1996).

Musical Community Experience

For the users, a sense of musical community develops. Not only
can a user hear the output of other users, but graphics and sounds
are designed to humanize the output, to indicate that the humans
are the ultimate source of the music. Limiting user groups to
manageable proportions (ten or fewer) fosters this sense of
personal contact; a player develops some sense of other players'
styles.

Technical Description

Server Side (Written in C)

A user group in the system is linked to a specific experience. For
instance, each interactive web game/instrument (Java applet) has
its own group that is distinct from the "director's" group. This
notion of "user group" is associated with the actual port on which
this communication occurs. The group structure is scaleable: a
single instance of the server deals with a single group. Many
instances of that same program running on the same machine, each
listening to a different port (and therefore dealing with a different
group or community), can occur. The server, therefore, must
handle any type of message.

Client ID

Each web client receives a unique ID number. This ID is assigned
automatically on the server side. The ID #0 is reserved for the
server so that it can occasionally send personalized messages or
general announcements. When a new client connects, the first
message it receives contains his or her assigned ID.

Messages

From the server's point of view, a message is a string of ASCII
characters terminated by the '\n' character. Incoming messages
from the clients are multiplexed and redistributed to all the clients,
which also means that each client's own messages are echoed to
itself. From the client point of view, the first token of that string
stands for the ID of the sender: 35 this is a message\n (i.e.,
client #35 sent "this is a message") As another example, the first
message that a new client will receive after connecting to the server
will resemble 0 WELCOME 78\n (i.e., the new client was assigned ID
#78).

Java Side (Java Class and Interface)

To connect a Java applet to one of our servers and to enable
communication between the applet and the server's clients, we
wrote a very general Java class with an appropriate interface
(interface in the Java sense, not the user sense). This class
addresses the low-level communication layer, including fetching its
client ID from the server, and runs on its own thread on the client
side.

Implementation Summary
BROWeb's infrastructure was developed and tested at the Media
Lab's Hyperinstruments group in spring of 1996. The first test
consisted of a MUD-type simplistic 3-D environment where Web
clients, represented as stick figures, can move around and see each
other (available at http://w.media.mit.edu/~metois/MyJava/). Once
stable, this infrastructure was released internally to the Brain Opera
team and led to various game and instrument applications (some
are available from the Brain Opera's Web site at
http://brainop.media.mit.edu/ (Machover, 1996).

The Brain Opera itself premiered in July 1996 in New York City at
the Lincoln Center Festival. As planned, its performance system
had a Web outlet which allowed remote clients to interact in real-
time with some sections of the piece. Although the original design
used local sound files, the Brain Opera ultimately employed audio
streaming (using the Xing audio netcasting software from
Streamworks) We decided that audio streaming had potential to
provide a richer sound stream than a limited collection of local
sound files. With the same web implementation, the Brain Opera
performed in Linz, Austria at Ars Electronica in September 1996.

Design Choices for the Musical Engine
The choice between local sound files or audio streaming obviously
will influence the design of an appropriate musical engine. In the
case of audio streaming, the musical engine resides on a single and
centralized platform and can mobilize a large amount of CPU and
sonic material. Audio streaming has its drawbacks, however: delay

(and hence a lack of responsiveness) and the dedication of a
centralized system for the sound engine. Using local sound files, on
the other hand, leads to better responsiveness and employs less
centralized resources. The drawback of local sound files is that
they require duplication of the musical engine on each client
machine in Java, which limits the complexity of the engine to the
lowest common denominator of client platforms.

After assessing these approaches, we conclude that both are worthy
of BROWeb. The choice of an audio source and a design for the
music engine, therefore, is determined by the context of the desired
experience. As the system already has much CPU dedicated to it
locally, audio streaming better serves an interaction with a
composed performance such as the Brain Opera. A more
"democratic" (in the sense of "less pre-composed") musical
experience, could employ local sound files effectively.

Local Sound Source

To develop an original design that could lead towards a multi-user
"jamming" experience, we chose "spinning disks" as an analogy for
the suggested musical engine. At any time, each disk is associated
with a small set of sounds (e.g. five) and an appropriate
representation of a score. The spinning represents time; a full
revolution is essentially a loop of the associated scores. Each disk,
with its own tempo and memory, schedules its score. The memory
of the disk determines the life span of any of its sonic events.

The users can place objects on any of these disks, adding sonic
events (one of the sounds in the current set) into the appropriate
score. Every user receives the outcome of the other users'
interactions so that everybody within that user group will hear and
shape the same sonic experience.

Although in the example that we show the actual interface on the
player side reflects literally the mechanism of the musical engine
(spinning disks), its nature could be completely different. Graphics
can be any shape that adequately communicates the system's
parameters to the user.

Audio Streaming: The Brain Opera

The Brain Opera's performance system is a very complicated
structure comprising five computers and a battery of sound
modules. Within this system, the Brain Opera team integrated a
musical engine that is based on work by John Yu (1996). This
engine turns 16 parameters into an appropriate MIDI stream.
Ranging from "scales" to "activity" and "rhythm styles," these
parameters can be constrained locally to conform to the rest of the
performance. The infrastructure described in this paper was used to
collect parameter settings from remote users. The Java applet that
is downloaded on the client side, therefore, is a directly shared
interface to this musical engine, where various clients can compete
to tune the desired musical outcome (Palette instrument, 1996).
Representing remote clients as small circles that bump into each
other, each client's interface illustrates the musical competition
(Figure 1).

Figure 1: The Brain Opera's Web instrument. The 16
parameters on the sides of the square are mapped to

appropriate controls over the music engine. The circles in the
middle and their behavior reflect the behavior of the remote

community.

Future Work
In future work, we plan to investigate client-side synthesis
controllers such as Java MIDI for better sound and more versatile
parameters. As the Brain Opera tour continues into 1998, we will
adjust the system's design to accommodate new Java audio
capabilities. We anticipate the use of the BROWeb system in
various applications, including auditory display and graphical
MOOs. BROWeb also will aid further investigations of the usage
and systemic implications of net broadcasting and multicasting
both audio and video within Java applets.

References
Machover, Tod. (1996). "The Brain Opera and Active Music." In
Ars Electronica 96, Memesis, The Future of Evolution. (p. 300).
New York: SpringerWien. Available at
http://brainop.media.mit.edu/

Metois, Eric. (1996). WebStar Server and StarClient Java class and
interface. Group report. Cambridge, MA: MIT Media Lab.

Palette instrument. (1996). Available at
http://brainop.media.mit.edu/online/net-music/net-instrument/net-
instrument.html

Yu, Chong (John). (1996). Computer generated music composition.
Master's thesis. Cambridge, MA: MIT, EECS. Available at
http://www.geocities.com/Hollywood/Hills/1197/thesis.html

Author Information

Eric Metois
MIT Media Laboratory
20 Ames St.
Cambridge, MA 02139
(617) 253-9488 Fax: (617) 258-7168

http://physics.www.media.mit.edu/~metois/
E-mail: metois@media.mit.edu

Maribeth Back
Xerox PARC, 3333 E15-488
Coyote Hill Rd.
Palo Alto, CA 94304
(415) 812-4409 Fax: (415) 812-4471
http://brainop.media.mit.edu/~mbb/
E-mail: mbb@media.mit.edu

