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What does the future bring?

A look at Technologies for Commercial Aircraft in the years 2035-2050
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OUTLINE

« Demographics and Economics

 The future...What does the customer want?
 The propulsion world going forward

« Airplane Aerodynamics

e Structures, Materials, and Manufacturing

« What does it all mean?

« The challenges and opportunities
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Demography

source: UN/ESA World Population Prospects

Populations

Now up to 2100: 10 billions
Europe decreasing after 2020
North America still growing
Asia decreasing after 2050
Africa towards1/3 of the world!
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The Relative Weight of Different Zones is of
Importance for the Traffic
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Geographical Demand

Source: Airbus GMF

Europe
CIS
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2,950

Aircraft Middle
ast

North America

5,900
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9,160

Africa Aircraft

Latin America

80% of the international demand over the next 20 years will be within
Asia-Pacific, North America and Europe
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Estimated Fleet Evolution by Aircraft Category

Total number of aircraft doubling between 2010 and 2050

2010: 20331 aircraft 2050: 40593 aircraft

SRTP: short range turboprops — SRTF: short range turbofans — MR: medium range LC:
long range — VLA: very large aircraft
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The Future... What Priorities?

What does the customer want?

Speed?

Noise?

Fuel Burn?

Low Cost?

Environment... CO,, NO,, etc?

A delicate balance as we move forward
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Competitive Busmess Environment

Customer Value
% e Revenue

Business Case
» Development Cost

* Manufacturing Cost - Payload
: = - Range
* Revenue Stream i$ 3 ,
g e i . e Cost of Ownership

- Unit Price PR 2 S N Firlhics

- Sales Volume w -htj - Fuel Burn

- Spares - Maintenance Cost
Aircraft Requirements e e Regulatory Requirements
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» Passengers T g it » Safety

» Cruise Speed & Insertion e Noise
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» Balanced Field Length
e Power & Bleed Off-takes |
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Propulsion Challenge

Industry Revenue/Profits
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Source: A4A Quarterly Cost Index, US Airlines

Regulatory Challenges

= CAEP/6 2008 / 2013
= CAEP/8 2014 /2018
= EU Carbon Trading 2012

= |CAO CO, Standard TBD

= FARStage5 2020

USD/USG

Historical Fuel Prices

>15% Growth Rate

e

1977 1981 1986 1990 1994 1935 2003 2008 2012

Sources: Air Transport Association, International Air Transport Association

Make airlines more profitable in an increasingly difficult environment

@ imagination at work
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The History

Flight Safety
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imagination ot work
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Historical Fuel Burn Improvements

Fuel Efficiency
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Fuel consumption . . .
Addressing every aspect - sfc

Fuel mileage =V * L/D SFC =~ Yo Vo

Core FPR
sfc . . . primary propulsion attribute

» Thermal efficiency - High OPR / high temp
— Diminishing returns, but not at entitlement
— Need cooled-cooling air or materials, or . . .
— Component efficiencies and loss minimization
* Propulsive & Transfer efficiency - Low FPR, large fans & enablers
— Unducted fans, propellers
* Or, new cycles

— Adaptive or Non-Brayton cycles
— Pulse detonation. constant volume

/@V D overat * G UmmiﬂmqaﬂmeHV
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Efficiency Trends with Core and Propulsor Improvements

» Propulsion system improvements require advances in both propulsor and
core technologies

Core Thermal Efficiency (n,)
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Variation in Core Power with Turbine Inlet Temperature

Hydrocarbon
Stoichiometric
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Fuel consumption projections
A step-change is coming soon
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New Engine Architectures and New Challenges

o Geared Turbofan (P&W)

« Small, high density engine core—required to achieve higher fan bypass
ratio without significantly increasing fan diameter

« Aerodynamic performance—larger fan diameter means larger nacelle and
higher drag

« Installation—increasingly larger diameter engines means limited application
for current, low wing aircraft designs

e Open Rotor (GE)

* Noise—rotor blade noise radiates unobstructed to the environment, well
above current aircraft noise regulation limits

« Installation—very large blade diameters mean significant aircraft installation
problems, perhaps requiring all new aircraft design

* Power —slow, counter-rotating rotors requires novel turbine power
distribution designs to optimize turbomachinery efficiency
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Pratt & Whitney Geared TurboFan (GTF)

Low-Emissions Combustor

Low PR Fan
Low Tip Speed
BPR~9-12

Fan Drive Gear System
5 Planets
Gear Ratio~ 3

High-Speed Low Spool
Compact LPC, LPT

Fundamental Aeronautics Program
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PW Geared V.S. LEAPX Fuel Burn Evaluation

T, ~—} Engine SFC: 0.3% Propulsion
Geared turbo fan: 81" dia. SR Systems .5%
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Direct-drive turbofan: 78" dia.

Architectures Within 1% Fuel Burn
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Open Rotor Technology has potential for significant
performance improvement, but with noise goal challenges

15 Advanced Turbofan
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Leveraging the NASA/GE UDF Experience and UHB Partnership

Approach/Takeoff in Glenn 915" Wind Tunnel

— ] —4 ’ul:.
e = =

Climb/Cruise in Glenn 8'x6" Wind Tunnel

Installation Effects

Counter-rotation Blade Profiles

+ Extensive 1980s collaborative testing experience of counter-rotation, open rotor
concepts by NASA and GE, resulting in substantial experimental database to
guide new activity

+ Improved Computational Aeroacoustics developed by NASA/GE/Universities to
evaluate new open rotor concepts

* Improved design and system analysis tools to screen potential candidates and
minimize scale model test configurations

+ Utilize proven NASA test facilities, improved diagnostic testing techniques and
existing scale model test articles

* Build on GE expertise in composite construction and advanced core technology
to achieve full Open Rotor potential
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Opportunities for the Future

ReifE = ( Vo ) . (£) - T (win.itiai)
SFC D W inat

N+1

s
v

Highly Loaded
Compressors

High OPR Low
Emissions
Combustors

Adaptive cycles

Constant Volume
Combustion

Hybrid Electric
Propulsion

- Low Loss

Inlets

+ Variable Low
Loss Exhausts

+ Distributed
Power
Transmission
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* Very High BPR
Turbofans

+ Ultra High BPR
Turbofans

* Open Rotors

* Distributed
Propulsion

« Wake Ingestion

Wf—uel

payload + WBnlpty

* Novel Alloys /
MMC's

* Non-metallics

+ Advanced Engine
Architectures

imagination at work
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Advanced Concept Design and Challenges
for Future Commercial Aircraft Propulsion
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2030 - 2050 Propulsion System Vision

Non-Brayton Cycle Propulsion
(Fuel Cells) Turboelectric

Distributed
Propulsion*

e — —
Distributed :

Propulsion
(Gear Driven) NASA N3-X

Battery Electric Thrust
Augmentation

Brayton Cycle Propulsion
(Turbo Gas Generators)

*Key Technologies to Bridge The Gaps

@ High OPR Cores
Electrical Systems (Fuel Cells, Batteries, Motors)

Superconductivity / Cryo Systems

© o

Timeframe 2050

. : 20
imagination at work Advanced Concept Design and Challenges
for Future Commercial Aircraft Propulsion
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Distributed ~ REECEEES
Propulsion Options

layer ingestion capabilities

NASA N3-X Concep' \

Boeing/NASA N2B

ASA Concept

+  |wo or more gas generators
NASA Concept - Multiple distributed open rotor

o fans for each generator s
imagination at work Advanced Concept Design and Challenges
for Future Commercial Aircraft Propulsion

11 October 2013
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Now driving to Bypass
Ratios of 20+

Highly loaded front block .
TECH 56 six stage
Compressor Compressor

Minimizing the core size
Hot section materials
1500°F HP Compressor

3000°F HP Turbine -
blades/vanes
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High Efficiency High OPR Gas Generators

« Ceramic Matrix /

Composites

* NextGen disk material _'
 Tip/End Wall \
Aerodynamics

e Turbine Clearance
Controls

e Low NOx Combustors
e Core Noise

Advanced fuel stage
injector concepts
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High Bypass Installations
e Slim Line Nacelles

» Adaptive Lightweight Fan Blade

” ’ = -
ames 5

boundary-layer ingesting concepts

thrust vectoring

e Distortion Tolerant Fans —

* Multi-Degree of Freedom Acoustic
Liners

* Low Jet Flap Acoustic Interactions

!

Link \“ﬂ z
\‘ r__t:i

Flap fiting

: C/) 'ﬂfm-&_.

FLEXSEL
Assembly

—

o\

distortion tolerance

adaptive fan blades
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Airplane Aerodynamic Improvements

e Laminar flow nacelles passive/active
* Laminar flow on wings advanced aerodynamics
e Low friction paint coating

e Improved aero-transonic
design

« Wingtip technology
* Variable camber
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Airplane Aerodynamic Improvements

« Adaptive compliant
trailing edge

« Active stability
control

 Increased wing
span

e Enhanced Vertical
Tall
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Structure, Materials, and Manufacturing
|

= = . ;
~wav=ml conventional and unconventional

 All composite aircraft
 Integrated structural

health monitoring NN
« Advanced 1 TN ‘
manufacturing ‘Ll Nl
technology Am B T

metallic & composites
tailored load path design/build
tailored materials
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Energy Transfer Options for Powering Remote

Fans

ﬁ Kilowatts

Cooled Generator | ﬂ’

& Converter Systems

Shafting/Gearing Horsepower Electrical Power to Motors

Benefits .

Drawbacks B

Lower FPR for a given packaging + Lower FPR for a given packaging

constraint constraint
High temperature gas contained + Fan functionality after failure of
to core stream one generator

*+ High temperature gas contained
to core stream

+ Offers most flexibility in fan
placement and number of fans

Distance is restricted between * Need for development of
gas generator and fans superconductivity technologies
Limited to ~3 fans

imagination at work

Each Transfer Technology has Pros/Cons =
Depending on Specific Application GE Aviation
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- Light, Efficient Components Must Be
Cryogenic or Superconducting

B Technical challenges are
soluble and being pursued:

Superconducting transmission lines
between generators and motors
Utilities & Air Force are working this

' Superconducting motors
drive propulsive fan array

o Yo Jm

o-| H—
r — L I:ll .

| o f'm ln'm I-:u. I__‘-. P-.
¥ '

= , Cryogenic Inverter for
Turbine englne driven T ; 7 variable speed fans
superconducting generator/motors 4 Weight % SOA & ~1/10% SOA loss
1/10™ SOA weight & b f Phase 2 SBIR @ MTECH Labs
low AC losses In-House Cryo-inverter Tests
NRA Advanced Magnet Lab

Total electric system

o Distribute ~50 MW in a stable
cryoge:]uc components & responsive grid
- Shasg e ssfgﬁéfﬁ:k 1. || RTAPS Contract @ Liberty Works
e e » || In-House Subscale System Model
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What does it all mean?

Projections for Single Aisle Aircraft
Baseline A320-200

Fuel Burn Improvements 2035+

Aerodynamics 14%

Engine 23%
Structures 8%
45%

Noise: Will meet Stage 4 with 70dB margin
NOX: Will meet Cap 6 with 80% margin
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What does it all mean?

Projections for Twin Aisle Aircraft
Baseline B777-200 ER

Fuel Burn Improvements 2035+

Aerodynamics 15%

Engine 17%
Structures 11%
43%

Noise: Will meet Stage 4 with 70dB margin
NOX: Will meet Cap 6 with 80% margin
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What does it all mean?

Projections for Regional Jets
Baseline Embraer EI90AR

Fuel Burn Improvements 2035+

Aerodynamics 12%

Engine 28%
Structures 5%
45%

Noise: Will meet Stage 4 with 70dB margin
NOX: Will meet Cap 6 with 80% margin
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Looking Forward...The Challenges and Opportunities

 The market is global and is growing

dThis is good...big markets
dMore players want to play

dThey bring technology competition...which is good

dThey bring financial competition...which is not necessarily good
dGovernments play a role

United States Air Force, Navy and Army Research Labs—sitill
strong on the military side

ANASA going down significantly

European Union—strong and growing with the Clean Sky
Program

JOthers
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Next Gen portfolio
Military/ Commercial Technology Synergies

AATE

(Advanced Affordable
Turbine Engine)

Customer

US Army *

25% better SFC
65% 4+ hp/wt

3D aero,
materials

Attack/utility
Helicopters

Program goals

Technologies

Segments

Blackhawk

FATE

(Future Affordable
Turbine Engine)

US Army *

35% better SFC

80% 4 hp/wt

3D aero,
efficiency
Heavy lift
Helicopters
~

-

- y F
NextGen heavy lift

ADVENT

(Adaptive Versatile
Engine Technology)

-

(@) us Navy/
~—"US Air Force

20-200+% better SFC

Variable cycle,
3D aero, FLADE™

Combat aircraft

6™ Generation

HEETE

(Highly Efficient, Embedded
Turbine Engine)

oo __"_"._'\—_
i f_.:._-_:ﬁ B

s

o

US Air Force

35% better SFC

3D aero,
efficiency
Tanker/Transport
W 1
KC-135
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Technology Demonstrator Programs
Strong History Leading to Commercial Benefits Today and Beyond

Versatile Affordable Advanced Turbine
Engine (VAATE) programs leveraged
SOA commercial compression
technology

NASA E3 program enabled latest
| generation of large GE engines
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Looking Forward—Challenges and Opportunities (cont.)

** There will be a stronger need for partnerships
“*Between Companies
“*Between Industry and Universities
*Will have to work smarter
“*Rely on component tests as opposed to demonstrators

“*Technology roadmaps will be essential to success in a very
competitive world...competitive in terms of technology opportunities
as well as funding streams

**The opportunity for our young engineers are immense as new
Innovative products will be needed and will flourish in this industry
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Thank you for your time!

Dr. M.J. Benzakein

Director, Propulsion and Power Center
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