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ABSTRACT
Stochastic, or non-pitched, sounds fill our real world environment.  Humans almost continuously hear stochastic sounds such
as wind, rain, motor sounds, and different types of impact sounds.  Because of their prevalence in real-world environments, it
is important to include these types of sounds for realistic virtual environment simulations.  This paper describes a synthesis
approach that uses wavelets for modeling stochastic-based sounds.  Parameterizations of the wavelet models yield a variety
of related sounds from a small set of models.  The result is dynamic sound models that can change according to changes in
the virtual environment.  This paper contains a description of the sound synthesis process, several developed models, and the
on-going perceptual experiments for validating the sound synthesis veracity.  The developed models and results demonstrate
proof of the concept and illustrate the potential of this approach.
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INTRODUCTION
This paper describes a sound synthesis approach to modeling stochastic-based environmental sounds for immersive
environments. Stochastic sounds can be divided into two basic classes: continuous sounds, such as motors, fans, wind, rain,
scraping and sliding sounds, and impulsive sounds, such as a door knock, gun firing, glass breaking and cigarette lighter.  All
of these sounds are primarily non-pitched and consist mainly of stochastic noise. Because of their prevalence in the real
world, including stochastic sounds in a virtual experience is important for obtaining realistic virtual environments.

Most current virtual reality (VR) systems utilize pre-digitized sounds rather than synthesized sounds. Pre-digitized sounds are
static and do not change in response to user actions or to changes within a virtual environment.

Often times, obtaining an application specific sound sequence is difficult and requires sophisticated sound editing hardware
and software [6].  Creating an acoustically rich virtual environment requires thousands of sounds and variations of those
sounds.  Obtaining this very large digitized sound library is impractical. The alternative to using pre-digitized sound is to use
sound synthesis.  Although sound synthesis may be preferred, there are essentially no virtual sound systems available today
which provide flexible, real-time sound synthesis tools for the virtual world builder.  The approach described in this paper is
a first step towards filling this void.

The use of pre-digitized sound provides high fidelity, static sounds.  In contrast, the sound synthesis approach can yield
perceptually convincing sounds and provide flexibility through model parameterization.  By manipulating the model
parameters, a variety of related, but perceptually different sounds are generated.   These sounds group into what are called
"clusters" of perceptually related sounds.  Ballas investigated perceptual clustering of everyday sounds in [1].  He defined
perceptual clusters as sounds that are often confused with each other.  In our research, we investigate the potential for
obtaining clusters of perceptually convincing sounds by adjusting the sound model parameters.

The synthesis method described in this paper uses wavelets for modeling stochastic-based sounds.  Parameterization of the
wavelet models yields a variety of related sounds from a small set of models.  The result is dynamic sound models that allow
the sound synthesis to change according to changes in the virtual environment. We describe the on-going perceptual
experiments used to validate the veracity (perceptual accuracy or precision) of the sound synthesis.  Preliminary experimental
results indicate that the synthesized sounds are perceptually convincing to human listeners. Finally, we describe several



different parameterized stochastic sound models developed to demonstrate the functionality and potential of this sound
synthesis approach.

RELATED WORK
Some related work in synthesizing real-world sounds using dynamic, parameterized models exists in the literature.  Gaver, in
developing a sound interface for human-computer interaction, proposed some physical-like models for real-world sounds [4].
Gaver implemented parameterized models for impact, scrapping, breaking and bouncing sounds.  The synthesis algorithms
succeeded in creating parameterized sounds in real-time, however, the results were somewhat "cartoon-like" and required
training to interpret.  Doel and Pai proposed a general framework for producing impact sounds in [13].  Their approach uses
physical modeling of the vibration dynamics of physical bodies.  The models were parameterized based on the material and
object shape, and the collision force and location.  Prototype sound simulations also produced somewhat cartoon-like impact
sounds. Smith used a “digital waveguide” method for developing physical models of string, wind and brass instruments [12].
This method yields excellent quality music synthesis and some high-end synthesizer keyboards are based on this technology.

One main difference between these methods and the one presented here is the emphasis on the importance of modeling the
stochastic sound components.  Serra shows that incorporating stochastic components in a sound model result in sound
simulations with more realism [10].  The method presented here is likely to be successful in synthesizing pitched sounds as
well as stochastic-based sounds.

OBJECTIVES
The overall goal of this research is to develop methods for synthesizing perceptually compelling sounds for use in immersive
environments. The aim is to provide an approach for creating flexible sound models that yield a variety of sounds and
increase the overall richness and realism of an immersive experience.

One specific goal of this research is to create perceptually convincing sounds rather  than physically precise ones.  The first
motivation for this approach is to obtain models that produce many perceptually different sounds rather than producing only
one sound very accurately.  This idea stems from the potential for cross-identification between perceptually close sounds.
For example, the sound of a drawer closing may be identified as a hammer striking a block of wood, and the sound of water
dripping may be identified as a clock ticking.  With the visual context provided by a virtual environment, cross-identification
of sounds may be more prevalent.  The second motivation is to reduce the computational complexity required for the
synthesis.  Creating physically accurate simulations of complex sounds is compute intensive.  It is anticipated that
synthesizing perceptually convincing sounds will be less compute intensive because evaluation of complex physics equations
are not required.

Parameterization of the sound model is a major strength of the approach presented here.  There are two reasons for choosing
this approach.  First, parameterization provides the possibility of obtaining a variety of sounds from a single model.  For
example, one parameterized rain model might generate the sound of light rain, medium rain, heavy rain and even a waterfall
sound for example.  The second reason is to create dynamic sound models.  Manipulating the sound model parameters in
real-time can yield a dynamically changing sound.  With the rain model example, changing the parameters as the virtual
simulation evolves allows the rain sound to progressively increase in intensity as the graphics simulation shows increasing
and darkening clouds.  Overall, model parameterization provides flexibility such that a variety of dynamic sounds result from
a small model set.

RESEARCH APPROACH
The sound synthesis method described here uses wavelets for modeling stochastic-based sounds [7].  Wavelets were chosen
over the more standard Fourier transform because Fourier methods do not adequately model the time varying nature of real-
world signals.  Windowed Fourier transforms capture the frequency information for different sections of time, but the
resolution is limited and fixed by the choice of window size.  Wavelet analysis provides a time-based windowing technique
with variable-sized windows.  Wavelets examine the high-frequency content of a signal with a narrow time-window and the
low-frequency content with a wide time-window.  Fast wavelet algorithms provide the potential for synthesizing wavelet-
modeled sounds in real-time.  The fast wavelet algorithms are comparable in terms of compute time to the Fast Fourier
Transform algorithms according to Ogden [9].

Development of a wavelet sound model is accomplished through a four-phase process: analysis phase, parameterization
phase, synthesis phase and validation phase as shown in Figure 1.



Phase 1: Analysis Phase
The analysis phase begins with a digitized sound sample.  Detailed examination of the digitized sound determines the best
wavelet shape for the signal decomposition.  For the parameterized models presented here, wavelet function (ψ) and
corresponding scaling function (φ) selection was from the standard Daubechies family of wavelets [3]. The original digitized
sound is decomposed using the discrete wavelet transform (DWT) which employs a set of filtering and decimation (or down
sampling) operations to obtain two sets of coefficients which completely describe the original sound.  Refer to [2], [3] or [9]
for a description of the wavelet decomposition process. Using the wavelet decomposition coefficients, a model of the original
digitized sound is constructed.  The original sound is exactly reconstructable from the model.  Thus, as with the FFT, no
information is lost through the wavelet decomposition process.

Phase 2: Parameterization Phase
The second phase of the process is parameterization.  The wavelet decomposition coefficients are the source of the
parameters for the sound synthesis model.  Manipulating the model parameters yields a variety of sounds related to the
original digitized sound. Essentially unlimited control in amplitude, time and frequency are available; however, the
parameters are not directly related to the physical characteristics of the sound source, as is the case with other parametric
approaches ([13] for example). Determining the sound model parameterization is largely an iterative process.  For example,
increasing the low-frequency content of a model results in the perception of a larger sound source having generated the
sound.  By manipulating the low frequency and high frequency parameters of an engine model turns the sound of a standard
sized car engine into the sound of a large truck or a small toy car respectively.  Scaling function parameter manipulations can
shift the sound in frequency.  Manipulations of this type can change the sound of a brook to the sound of a large, slow
moving river, or to the sound of a rapidly moving stream.  More sophisticated parameter manipulations create perceptually
convincing sounds that are beyond the scope of the original sound.  For example, manipulating the parameters of a rainstorm
can result in the sound of applause or a machine room. Model parameter manipulation translates into a new set of wavelet
coefficients.

Manipulation of the sound model parameters can be represented in a perceptual sound space.  Figure 2 depicts an idealized
example of a synthesized sound space.  The center of each fuzzy circle represents the original digitized sound from which the
model was developed.  Parameter manipulation extends the sound perception into many dimensions.  It is feasible to move
from one type of sound source to another by changing the parameter settings as indicated in Figure 2 by the overlapping
sound spheres.  For example, manipulating the rain model parameters creates a sound that includes the sound of light rain,
medium rain, a heavy, rapid rainfall, a small waterfall, and some motor sounds.



Phase 3: Synthesis Phase
The synthesis phase employs the Inverse Discrete Wavelet Transform (IDWT). The modified parameter coefficients are the
inputs to the IDWT.  The IDWT consists of up-sampling the modified coefficients (inserting zeroes) and filtering using
appropriate reconstruction filters.  The scale function and wavelet type used during decomposition determines the choice of
reconstruction filters. The set of decomposition filters together with the associated reconstruction filters form a system of
quadrature mirror filters.  Refer to [2], [3] or [9] for a detailed description of the wavelet reconstruction process.  The output
of this phase is a synthesized sound for use in VR applications and validation experiments.

Phase 4: Validation Phase
Validation is the final phase of the sound synthesis process. Because the goal is to create perceptually convincing sounds,
performing a rigorous mathematical proof is not feasible to validate the success of the sound synthesis.  Instead, three
psychoacoustic experiments are planned to validate the sound synthesis veracity.

The first experiment illuminates the sound space and possible sound clustering.  The self-similarity technique from
psychophysics is used to accomplish this.  Self-similarity experiments are used to understand the interrelationships among the
important concepts in a knowledge area [5]. In this experiment, subjects rate the similarity between two synthesized sounds
on a 5-point rating scale.  Every possible combination of sound pairs is presented in random order.  The similarity rating data
is analyzed with two different methods.  The first method derives a graph representing the rating data using the Pathfinder
scaling algorithm [5].  The second method uses multidimensional scaling (MDS) which results in a mapping of the
synthesized sounds onto a multidimensional perceptual space [11].  Examination of these analysis results provides a better
understanding of the perceptual sound clustering occurring through parameter manipulation.

The second experiment examines the perceptual identification of the synthesized sounds.  Subjects listen to synthesized
sounds and enter an identification description.  Identification phrases include a noun and descriptive adjectives.  Subjects are
asked to think of the sound source when formulating the descriptions.  There is no time limit and subjects are permitted to
replay the sounds.  Response times are measured so that uncertainty values can be calculated.  This is a free form
identification experiment similar to that run by Ballas [1] and Mynatt [8].

The third experiment measures the perceptual sound veracity.  Phrases obtained from the second experiment are paired with
synthesized sounds.  The phrases provide a perceptual context for the sounds.  Subjects are asked to rate how well the phrases
match the sounds they hear.  Ratings are on a 5-point scale, with 1 = no match and 5 = perfect match.  Both digitized and
synthesized sounds are included in the experiment.  Examining the digitized sound ratings provides a standard to which the
synthesized sound ratings can be compared. In this way, evaluation of sound veracity within a verbal context is obtained.

These experiments are on going. Examination of perceptual experiment results indicates whether design iteration is
necessary.  Iteration of the process refines the synthesis model to obtain the desired perceptual characteristics.  Reanalysis of
the model involves iterating through the process starting either with phase 1 (and a new wavelet analysis) or phase 2.  The
result is a parameterized sound model capable of producing a variety of perceptually convincing sounds.



SOUND SYNTHESIS MODELS
Several parameterized sound models have been developed using this four-phase process to demonstrate the validity of the
approach.   Many more models and parameter manipulations are possible for both stochastic and pitched sounds.  Below is a
description of the continuous and impulse-based stochastic sound models developed.

Continuous stochastic models
Continuous stochastic sound models consist primarily of non-pitched sound and do not have a finite duration.  To
demonstrate the potential of the wavelet synthesis approach, four continuous stochastic models have been developed and are
described below.

Rain
This model is parameterized to simulate light rain, medium rain and progressing to heavy rain.  The perception of increasing
wind accompanies the sound of increasing rain to convey the sense of a large rainstorm.  Other perceptually grouped sounds
that might emerge from this model are bacon-frying, machine room sounds, a waterfall, a large fire, and applause.

Car Engine
This model simulates the sound of a car engine idling with parameter adjustments for different sized cars, different type of
engines and different RPMS.  Adjusting one set of parameters results in synthesis of a large diesel truck, a standard truck, a
mid-sized car, a small car and a toy car.   Work is in progress to parameterize the model for increasing the RPMS for the
same sized car engine.  Further parameterizations may include engine load, or different engine types (e.g. lawn mower or
blender).

Electric Motor
This model simulates the sound of different sizes and RPMs for electric motors used in small, hand held equipment such as
drills, electric screwdrivers, vacuum cleaners, electric yard equipment. Different perceptually grouped sounds include the
natural sounds of a bee buzzing and a small bird's wings flapping.  Other sounds identified during perceptual experiments for
this sound model are electric razor, static on a television, and a welding machine.

Brook
This model simulates the sound of a babbling brook with parameter adjustments for stream activity level (calm to raging).
Additional parameter adjustments vary the stream size from a very wide stream to a narrow stream.  With these controls, the
sound of a babbling brook is converted into the sound of a wide, calm, deep river and further converted into the sound of a
waterfall.  Other parameter adjustments yield the perception of a heavy rainstorm, water from faucet, water running into a
bathtub, and a printing press as evidenced by preliminary perceptual experiments.

Other models under development include wind sounds, fan sounds, and ocean sounds.

Impulse-based stochastic models
Impulse-based stochastic sound models are non-pitched and have a finite duration.  Often distinct impact sounds are evident.
Three example models of this type which have been developed are described below.

Footsteps
This model simulates the sound of footsteps on gravel.  Parameter manipulations result in the perception that the footsteps are
on different material types such as dirt, leaves, a hard concrete floor or a wood floor. Further parameter adjustments yield the
perception of different weights of the person walking.  Perceptually grouped sounds identified during preliminary perceptual
experiments are chewing, crumbling paper, crushing a can, stomping of horse hooves, lighting a gas grill, and gunfire.

Glass Breaking
This model simulates the sound of breaking glass with parameter adjustments for the glass thickness (or density), the surface
hardness on which the glass is breaking, and the force with which the glass is thrown.  Exercising this sound synthesis model
can result in the sound of dropping a thick glass on a wood floor or a throwing a fine piece of crystal against a concrete floor.

Shuffling a Deck of Cards
This model simulates the sound of a deck of cards being shuffled.  Perceptually grouped sounds identified during preliminary
perceptual experiments include: wind hitting a loose object, breaking of spaghetti noodles, wings flapping, paper burning,
and a motorcycle starting up.

Other models under development include various explosions and impact sounds.

FUTURE EXTENSIONS
One future extension will be to merge several different models into one generalized model.  For example, merging the
electric and car motor models may yield a general motor model.  This is desirable because end users would have a variety of
engine sounds, engine loads, RPMs, etc. all from one model.  Another example would be a general running water model that
could provide synthesis of rain, brook, rivers, waterfalls, water from faucets, and more.



Real-time sound synthesis is possible for the approach described within this paper.  Completing the analysis and
parameterization phases in non-real time produces the parameterized model.  The parameter manipulation and synthesis
phases can be computed in real-time in parallel with graphical and environmental VR simulations.  Real-time
implementations of wavelet transforms are becoming available on today's digital signal processing platforms and on Intel's
MMX platform.  A dedicated sound server may be necessary to perform the inverse wavelet transform and parameter
manipulations in real-time.  This server could also perform the 3-D sound localization. To further enhance the real-time
performance, it may be possible to compress wavelet coefficients thereby reducing the number of coefficients and synthesis
time without compromising the perceptual sound synthesis quality.

Implementing a real-time sound synthesis system makes integration into a VR system possible.  A cost-effective approach for
integrating into a VR system is to choose a combination of pre-digitized sound (for static sound sources) and sound synthesis
(for dynamic sound sources). Changes to the dynamic sound environment within the VR simulation would result in parameter
setting updates on the sound server.  The sound server would update the sound synthesis and localize the sound in the
environment.  The interface to the sound server must be useable so that developers need not become sound experts in order to
utilize sound in their virtual worlds.

CONCLUSIONS
We have described a four-phase development process for a new stochastic sound synthesis approach. The iterative nature of
the process allows continuous model refinement according to perceptual sound quality results.  The analysis and synthesis
phases utilize the discrete wavelet transform and the inverse discrete wavelet transform respectively.  The parameterization
phase creates dynamic, flexible sound models which, when exercised, are capable of producing sounds with a variety of
perceptual qualities.  We describe the on-going perceptual validation experiments designed to elucidate the sound clustering
and rate the sound synthesis veracity.  Several different continuous and non-continuous stochastic-based sound models have
been developed using this method including models for: rain, car engine, electric motor, brook, glass breaking, shuffling
cards and footstep sounds.  These models provide evidence of the validity and potential of this approach.  Several steps are
required before these sound synthesis models are available to end users, including further model development, real-time
implementation, development of an intuitive user interface, and integration with virtual reality simulation systems.
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