
0;}:35:21 DCA PAD AMENDMENT - PROJECT HEADER INFORMATION

Project #: C-43-613 Cost share #:
Center # : 10/24-6-R6887-0A1 Center shr #:

Rev #: 5
DCA file #:

05/19/92

Active

Work type : RES
Contract#: STD. AGREEMENT
Prime #:

Subprojects ? : N
Main project #:

Project unit:
Project director(s):

PUTNAM W 0 III

SRC

~ COMPUTING

Mod #: LTR DTD 5/13/92 Document AGR

Unit code: 02.010.307

(404)894-5551

Contract entity: GTRC

CI="DA: N/A
PE #: N/A

Sponsor/division names: BELLSOUTH ENTERPRISES
Sponsor/division codes: 251

I
I 004

Award period: 900102 to 920630 (performance) 920630 (reports)

Sponsor amount
Contract value
Funded

Cost sharing amount

New this change
0.00
0.00

Does subcontracting plan apply ?__; N

Title: MULTI-MEDIA ELECTRONIC MAIL

Total to date
74,160.00
74,160.00

0.00

PROJECT ADMINISTRATION DATA

DCA contact: Don S. Hasty 894-4820

Sponsor technical contact

NEIL WALKER
(404)249-4518

·-

BELLSOUTH ENTERPRISES, INC.
1100 PEACHTREE ST., NE, ROOM 11C02
ATLANTA, GA 30309-4599

Security class (U,C,S, TS) : U
Defense priority rating
Equipment title vests with:

Administrative comments -

~ N/A
Sponsor X

Sponsor issuing office

NEIL WALKER
(404)249-4518

BELLSOUTH ENTERPRISES, INC.
1100 PEACHTREE ST., NE, ROOM 11C02
ATLANTA, GA 30309-4599

ONR resident rep. is ACO. (Y /N):
N/A supplemental shee t

GIT

7 SPONSOR LTR DTD ?113/92 AUTHORIZES _A 3>MONTHS NO-COST EXTENSION, AS
IN OUR LTR DTD 4/30/92.

GEORGIA j iNSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 07/07/92

Project No. C-43-613 __________________ _ Center No. 10/24-6-R6887-0A1

Project Director PUTNAM W 0 III School/Lab SRC __ ~~-------

Sponsor BELLSOUTH ENTERPRISES/

Contract/Grant No. STD. AGREEMENT _______________ __ Contract Entity GTRC

Prime Contract No.

itle MULTI-MEDIA ELECTRONIC MAIL __ __

Effective Completion Date 920630 (Performance) 920630 (Reports)

Closeout Actions Required:

Final Invoice or Copy of Final Invoice
.Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
Other

V/N

y

N
y

N
N
N

Date
Submitted

· Comments ___ ___

Subproject Under Main Project No.

Continues Project No.

Distribution Required:
· .. -,

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Managment
Research Security Services
Repo ts Coordinate~ COCA)
GTRC
Project File
Other

y
y
y
y
y

N
y
y
y

N --
N

Mutimedia Electronic Mail
Final Report

Wzlliam 0. Putnam
Keith Edwards
Tom Rodriguez

Georgia Institute of Technology
College of Computing

Software Research Center
Atlanta GA 30332-0280

Georgia Institute of Technology Project C-43-613

Abstract

Electronic mail systems capable of transmitting compositions consisting of various unconventional media (such
as voice, video, and images) have attracted a substantial amount of interest in recent years. The Montage multi
media electronic mail system, along with its model for multimedia documents, was developed to explore the is
sues involved in multimedia electronic communication The system is built on top of the MIT X Window System
and standard mail transport protocols for flexibility and portability. It supports electronic mail message composed
of an arbitrary mixture of text, still graphics, digital sound, voicemail, and motion video, and is extensible at run
time to allow user to add support for new media types. This document presents a summary of the development
of Montage and a description of the prototype system.

This work was sponsored by BellSouth Enterprises, Inc.
and by a grant from the Advanced Technology Development Center of the State of Georgia.

Copyright © 1992 Georgia Institute of Technology

Mutimedia Electronic Mail
Final Report

William 0. Putnam
Keith Edwards
Tom Rodriguez

Georgia Institute of Technology
College of Computing

Software Research Center
Al/anta GA 30332-0280

This work was sponsored by BellSouth Enterprises, Inc.
and by a grant from the Advanced Technology Development Center of the State of Georgia.

Copyright © 1992 Georgia Institute of Technology

Abstract
Electronic mail systems capable of transmitting compositions consisting of various unconven
tional media (such as voice, video, and images) have attracted a substantial amount of interest
in recent years. The Montage multimedia electronic mail system, along with its model for
multimedia documents, was developed to explore the issues involved in multimedia electron
ic communication The system is built on top of the MIT X Window System and standard mail
transport protocols for flexibility and portability. It supports electronic mail message com
posed of an arbitrary mixture of text, still graphics, digital sound, voicemail, and motion vid
eo, and is extensible at runtime to allow user to add support for new media types. This docu
ment presents a summary of the development of Montage and a description of the prototype
system.

Introduction
The Software Research Center (SRC) at the Georgia Institute of Technology is conducting
ongoing research into the integration of multi-media applications and tools into workstation
environments. This project involved the design and construction of a multi-media electronic
mail handling system. Whereas current electronic mail systems can generally only handle sim
ple text messages, we have built a system called Montage which is capable of sending andre
ceiving "documents" of complex media types, such as audio and video.

Our broad goal has been to produce a prototype Multi-Media Workstation. This workstation
will be representative of the small systems of the nineties: harnessing large amounts of pro
cessing power, able to deal with media other than traditional text, and possessing vast storage
capabilities. We believe that the ability to process what are by today's standards unusual me
dia types will be integral to future machines.

This Multi-Media Workstation rnust be able to integrate and synthesize multi-media inputs
from many sources in as smooth and seamless a fashion as conventional machines manipulate
text today. Toward this end, we have made use of accepted standards wherever possible. All

- 1-

of our applications and tools function under the X Window System. X has widespread accep
tance and is able to function with the high level of network connectivity that is required by
demanding applications. X also provides the advantages of portability (to different hardware
platforms and operating systems) and scalability (to new and more powerful technologies as
they become available). The use of X insures that our research investment will not be wasted
as new machines appear on the market.

Electronic mail systems have redefined the ways in which many groups communicate. From
small work groups to large corporations, electronic mail is fast becoming an indispensable
method of interpersonal communication. Early electronic mail systems were limited to the
transmission of simple textual data only. More recently, electronic mail systems capable of
transmitting compositions consisting of various "unconventional" media (such as voice, vid
eo, and images) have attracted a substantial amount of interest.

Sending text via electronic mail systems is one of the most important uses of traditional net
worked workstations. Systems of the nineties, however, should be more flexible in the types
of data they can transmit. Thus, our first application for the Multimedia Workstation was a
complex electronic mail system, capable of transmitting, receiving, and viewing multimedia
documents.

Project Summary
During the term of the project we have developed a mul timcilla*~~ Q1ail-is,tem which
allows the creation and distribution of documents containing·~,-papqicS, ana-dia,itally re
corded sound. The system is called Montage, and it runs on Unl£ ·workstations under the in
dustry standard X Window Syste1n.

The development of Montage took place in two stages. From January, 1990 through June
1991 we designed the message architecture and built the initial prototype using X and the
HP widget set. A paper on the Montage message architecture was presented at the IEEE Tri-
comm 1991 conference, and is included here as Appendix 2. .-

In the Winter of 1991 we applied for a Research Commercialization Grant from the Ad
vanced Technology Development Center to support further work on Montage. We received
a $25,000 grant from ATDC and matching funds from BellSouth Enterprises in July 1991.

From July 1991 through June 1992 we reworked the prototype system, porting it to the Motif
graphical user interface and widget set and adding many usability features, including support
for many more media types, customization and configuration panels, mail folders, and func
tions such as Reply and Forward which had been omitted in the original prototype.

The advanced prototype is described by a paper and a draft user guide which are included
here as Appendices 3 and 4.

In April1992 the advanced prototype was completed. It was demonstrated at the ICA Confer
ence as part of the BellSouth SMDS Showcase.

Montage Description
Montage is a prototype multimedia electronic mail system for Unix workstations. It is similar
to the NeXT mail system but is built on top of the X window system, so it is more portable.
Montage supports text, graphics in a variety of formats, digital audio and voice, and data from
commercial applications such as spreadsheets and word processors. Users can configure
Montage to support whatever data types and applications they have available.

-2-

Montage messages have a primary component, which can be plain text or a mixture of text
and graphics, and any number of attachments or annotations to the primary component. The
attachments, which may be of any media type, are represented by icons located along the right
margin of the message body and are tied to a particular location in the message. While the
prototype system does not yet implement use of dynamic media such as motion video or audio
as the primary message body, they can be used as attachments, and the Montage architecture
does support their use in the message body in the future.

Montage uses standard Unix mail transport mechanisms (sendmail and SMTP) and can ship
messages transparently across heterogeneous networks. The Montage software is required
only at the sending and receiving ends, not by intervening gateway systems.

The prototype system runs on Sun SPARCstations and makes use of the embedded ND con
verter for voice input and audio playback. That is the only part of the system that is Sun-spe
cific.

Most current multimedia electronic mail systems impose several substantial limitations on
their users. Perhaps chief among the problems of current systems is their lack of extensibility.
Usually these systems have compiled into them a predefined set of media types which the
mailer can compose, transmit, and view. The mailer itself has, in essence, its own built-in
spreadsheet, audio recorder, text processor, and drawing package (plus whatever other media
types the mail system may support). These systems suffer from two major problems: users
cannot use the tools which are familiar to them to compose and view messages, and the mail
system cannot easily support new data formats and applications.

Montage takes a different approach to electronic mail. In Montage, there is no built-in sup
port for various media. Instead, all media handling is externalized from the mail system.
Montage messages consist of multiple components, each of which has a "tag" associated with
it. A tag is simply an ASCII string which users have agreed to associate with a certain type
of medium. Montage itself associates no meanings with tags; instead tags are used to index
into a user-defined database which maps tags to external handlers. These handlers are com
plete, stand-alone programs which "know" how to edit and view the given medium.

In this way, Montage overcomes many of the problems associated with other multimedia elec
tronic mail systems: users may use the tools which they are most familiar with to compose
and view messages, and the system may be easily extended by users at runtime to support new
media types. No recompilation is necessary.

In addition to its powerful extension features, Montage also makes use of a two-level mes
sage presentation format. Montage messages consist of a main body (which may itself consist
of components of various media types) and various annotations to the main body (which
themselves may be of any media type). Annotations are analogous to margin notes on a writ
ten document. They allow users to exchange compound documents with various attachments
which can provide extra information about some main body component. Annotations are
represented as icons in the margin of the main message body. The data in the annotation
is not presented until it is requested by the reader of the message.

In summary, Montage provides a powerful, extensible system for exchanging compound doc
uments. These documents themselves are composed into a two-level presentation format.
Montage runs under the Motif look-and-feel on any X Window-capable workstation. Cur
rently supported media include standard text, several image formats (including PostScript),
Group-3 FAX, and audio.

-3-

Montage Features

Montage offers the following features:

Plain or formatted text messages.

Still images in several formats, including scanned images, computer generated graphics, line
art, clip art, bitmaps, postscript, and still frames from video.

Digital video attachments from pre-recorded clips at speeds up to 30 frames per second
(monochrome).

Sound attachments or annotations embedded in messages (recorded in real-time or from
a stored digital recording) along with text and graphics.

In addition to all types of data files, executable programs can be mailed as attachments.

Easy extensibility to support full-motion video, high quality audio, commercial document
preparation system formats, and other media types not currently supported.

Configuration panels for customization and media configuration.

Motif graphical user interface on top of the industry standard X Window System,

Modular design and adherence to open systems technologies and standards for maximum
portability.

Use of X resources to link with commercial word processing, graphics, database, spread
sheet, and desktop publishing packages.

Does not require any extra hardware (audio or video boards) beyond the basic workstation.

Uses standard Unix mail protocol (SMTP): compatible with all existing Unix Email trans
mission systems.

The current version of Montage runs on Sun SPARCstation workstations under X Version
11 Release 4 or Release 5.

Montage Documentation

Montage is described and documented in two research reports and a draft user manual. These
reports are provided as Appendices 2, 3, and 4. Copies of the reports are included on the
source code tape in the Papers directory in FrameMaker, PostScript, and ASCII formats.

An example Montage message is included in Appendix 1. It is a one page description of Mon
tage demonstrating usage of text and graphics in several formats. The message was composed
using FrameMaker and several image editing tools. It is included in the Montage demo mes~
sage set on the distribution tape, along with several other sample messages and a variety of
sample media clips and files.

To view the demo messages, start Montage as directed by the README file in the "ica" direc
tory and look in the "new demos" folder. A copy of the Montage poster message is in the
file "ica/MMMail/poster".

Montage Distribution Tape

The Montage source code, documentation, executable programs, and data files are contained
on a 1/4 inch cartridge tape included with this report. The tape was made on a Sun SPARCsta
tion with the command:

cd montage; tar cvf /dev/rstO .
which created a tape archive of the montage project directory and its contents. The tape can

-4-

be loaded with the command:
mkdir montage; cd montage; tar xvf /dev/rstO

which will create a directory called "montage" and copy into it the archive from the tape.

After loading the tape, the montage directory will contain the following directories and files:

./README A file describing the Montage distribution directory .

./bak Snapshots of various older versions of Montage .

./bin Latest binary versions of Montage and associated programs .

.fica Montage distribution used at the ICA conference demo .

./ideas Directory for TODO lists and other ideas .

./images Some ima~es which may be used by Montage messages
(bball.ras IS the image in the startup window) .

./papers Some papers and documentation for the system .

./src Montage source code.

Other README files describe the contents of the "src" (source) and "papers" (documenta
tion) directories.

The directory "ica" contains a demo installation of Montage used at the BellSouth SMDS
Showcase at the May 1992 ICA Conference. All programs and data files needed to run Mon
tage are present in that directory. See the README file for installation and startup instruc
tions.

All programs have been compiled to execute on a Sun SPARCstation under SunOS 4.1 and
X11R4 using the OSF Motif 1.1 distribution. You will need the X11R4 or X11R5 distribution
and the OSF Motif distribution to compile Montage.

Licensing

In return for sponsorship of the Montage development, Bell South Enterprises has a non-ex
clusive, non-transferrable, royalty-free right-to-use license for the Montage system. Fur
ther, BellSouth Enterprises will receive 50% of any non-educational royalties generated by
licensing of Montage by the Georgia Tech Research Corporation (GTRC).

GTRC is currently in negotiations with Secure Ware, Inc., who wish to license Montage for
further development, productization, and distribution.

Areas for Further Work

At this stage Montage is considered to be an advanced prototype. Before it can be used as
a commercial quality email system the following should be considered:

Further testing and debugging will be needed to make it more robust and less prone to crash.

Some buttons and menu functions are un-implemented and should be completed or re
moved.

Support for multiple browser windows should be added.

Several Motif bugs in release 1.1 should be fixed by rebuilding with the latest Motif release.

Motion Video Support could be extended to support live recording and to allow video in the
primary message component.

Fax support could easily be added using the media configuration panel if a commercial fax
modem package were obtained.

-5-

Appendix 1

Example Message: Montage Multimedia Electronic Mail Poster

This poster is an example of a Montage multimedia message, combining text and graphics
in several formats.

-6-

ontage
Multimedia Electronic Mail

Georgia Tech Multimedia Computing Group

Montage is an extensible multimedia electronic mail
system which supports the composition, transmis
sion, and viewing of documents consisting of arbi
trary media, including even executable programs
and commercial file data.

. ... nCiqe

~ (F~}S.. ,-... ·. 1~

,~~J~·~·~

Montage messages also support easy interactive
message annotation in any medium including audio,
video, and text.

Montage runs under OSF/Motif on Unix worksta
tions and is compatible with SMTP mail agents .

......
•••·••••~---~••.,.~• • •••"-.,.••••n• • •_,.,. .. n ,.__
i'•
1:...
!=:

.----t!Sillt,...

.. :·: :.: :.-.,-~_;_ t[:=~·.:: .. :. :.:·;:·.: .~·.--:.·: .::.:~: :c:.::;:.::..:.-;:·;;:::.-;.:·.:-.:.:·::.: .: .!:~~
..l ... liiiii -· J<t. _ .. ._ _

Montage Features:

• Easy runtime extensibility by end-users to any
media, including commercial file formats.

• Supports "mark-up" or annotation of mes
sages in any medium.

• Will work with any SMTP mail transport
agents; independent of transport-level proto
cols.

• Built-in support for GIF, XBM, XPM, Macpaint,
Group-3 FAX, JPEG, and other image for
mats.

• Uses the OSF/Motif interface on Unix worksta
tions; fully X11 compatible.

For more information, contact the Georgia Tech Multimedia Computing Group.
Email: montage-info@ mu ltlmedia.cc.gatech.edu

Bill Putnam
College of Computing
Georgia Tech
Atlanta, GA 30332-Q280
(404) 894-5551

Keith Edwards
CoJiege of Computing
Georgia Tech
Atlanta, GA 30332-Q280
(404) 894-6266

II

Ill
18)

II
1!1

Appendix 2

The Design and Implementation of the MONTAGE Multimedia Mail System

This paper was presented at IEEE Tri-Comm 1991, and describes the Montage message ar
chitecture and the first generation prototype.

-7-

The Design and Implementation of the MONTAGE
.Multimedia Mail System

W. Keith Edwards

Georgia Institute of Technology
Software Engineering Research Center

Multimedia Computing Group
Atlanta, GA 30332-0280

keith @cc .gatech.edu

ABSTRACT
Electronic mail systems capable of transnuttmg
compositions consisting of various unconventional
media (such as voice, video, and images) have
attracted a substantial amount of interest in recent
years. It is important that mailers capable of deliver
ing such documents present them in an organized
fashion. We present the Montage multimedia
electronic mail system, along with its model for
multimedia documents. Montage makes use of a
simpler fonnat than more generalized hypermedia
systems. It is our belief that the Montage model is
more effective than general hypertext for the task of
creating user-to-user messages. Furthermore, Mon
tage is designed to be runtime extensible to new
media types by its users. Thus the system does not
have to know ahead of time all the possible media
users may want to send. The system is built on top of
existing mail transport protocols for flexibility and
portability. We discuss the design of the mailer along
with experiences gained from its implementation.
The user interface to the system is also presented.

KEYWORDS
Multimedia mail, electronic mail, compound docu
ments.

INTRODUCllON
mon•tage man-'tiizh, n.

1 the production of a rapid succession of
images in a motion picture to illustrate an
association of ideas

2a a literary, mlisical, or anistic composite
of juxtaposed more or less heterogeneous
ele~nts

lb a composite picture made by combining
several separate pictures

3 a heterogeneous mixture

Webster's Ninth New Collegiate Dictionary
Copyright © 1989

In the past decade, the proliferation of fast, inexpen
sive, networked computer workstations has produced
an explosion in the use of electronic mail . Electronic
mail systems have traditionally been limited to the
transmission of pure textual information only.

As computer workstations increase in power, and as
the use of windowing interfaces becomes more
widespread and standardized, it becomes apparent
that capabilities now exist for the transmission and
reception of complex multimedia documents consist
ing of voice, images, video, and other media types in
addition to plain text.

The chief advantage of such a system is the increased
communication bandwidth between the users of the
system. A multimedia mail system should allow
people to communicate as freely and without restric
tion as conventional ''paper'' mail systems do. In
current paper mail systems, users can seal most

anything within an envelope and expect prompt
delivery. Electronic multimedia mail systems should
allow similar flexibility.

Furthermore, to be useful for the widest range of
people, attention should be paid to current standards
for electronic mail transport. It should be possible to
build multimedia mail systems on top of existing
lower-level mail transport protocols and thereby use
existing mail routing software for transport. Further
more, the system should allow users to send plain
''flat text'' mail messages to users who do not have
multimedia capabilities.

We present an experimental multimedia electronic
mail system, called Montage, which has been
developed at the Georgia Institute of Technology's
Software Engineering Research Center. We believe
that this system provides a flexible and convenient
means to send and receive complex multimedia
documents. This system is built strictly on top of
existing lower-level mail routing protocols and thus
should work on most systems which support the Unix
operating system, X Windows, and Simple Mail
Transport Protocol (SMTP) mail transfer systems.

WHY MULTIMEDIA MAIL?
Traditional electronic mail systems have been limited
to sending only textual data. While text-based store
and forward communication systems are useful, the
old adage that "a picture is worth a thousand words"
is often true. For example, it is nearly impossible to
concisely describe a complex architectural drawing
by writing a textual description of it. Many ap
plications involve the use of graphical infonnation
and it is extremely inconvenient to transport this
information using existing electronic mail systems.

Furthermore, the mode of information delivery most
familiar to humans is direct voice communication.
The work of Rohr [Rohr 86] indicates that some
concepts are inherently graphical while others are
inherently verbal. Other research indicates that in
many applications, concepts are understood better
when presented in a "mixed media" mode
[Guastella 89].

While computer-based electronic mail systems enjoy
many benefits over paper mail, they continue to lag
behind in many respects. With paper mail systems,
users can post basically any type of document which
can be printed on paper. This includes images and
formatted text, all possibly with annotations marked
on the document.

With a more flexible electronic mail system it should
be possible to combine the benefits of both systems:

the convenience and speed of existing computer
systems with the flexibility of paper mail systems.
Furthermore, it should be possible to use the dynamic
aspects of computing technology to open up mail
systems to media which have previously gone unused
in a store and forward environment, such as audio
and video.

DESIGN
Our design for the Montage system was influenced
by several desired goals. Foremost, we wanted to
create a mail system which implements our model of
multimedia messages. Secondly, to be widely used,
the system had to be built on top of existing proto
cols and standards where ever possible. Finally, to
meet unforeseen needs, the system had to be exten
sible by end users.

Requirement a
Our design was constrained by several factors.
First, we wanted to distinguish between multimedia
messages and more complex general multimedia
''documents.'' Montage is not a hypermedia
system. Section 4, A Model for Multimedia Mes
sages , ellaborates on this.

With this design decision, we were able to greatly
simplify implementation. Montage messagl:s
proceed along one basic stream of control, unlike
hypermedia messages which have a potentially large
number of paths through the infonnation.

Another design constraint was that the system should
function cleanly over existing low-level transport
mechanisms. We do not require that Montage must
deliver its messages over TCPIIP connections. Since
mail messages may be transferred between several
intervening machines which may or may not run
Montage, the messages should look for all intents
like ordinary Simple Mail Transport Protocol
(SMTP) [Crocker 82][Stallings 87] messages.
Montage does not rely on any protocols higher than
SMTP for transport.

Fmally, we deemed that the system must be as
extensible as possible. Since we cannot anticipate the
needs of all users, we must provide a mechanism to
dynamically add support for new media types,
without tbe need to alter and recompile Montage.

Platform
We chose our platform based on availability and ·
portability. While the Montage mail format may be
implemented on a variety of platforms, including
PCs and Macintosbes, our prototype implementation
is for Unix workstations running the X Window

System. This platform ensures a reasonably high
degree of portability for the system.

The interprocess communication abilities of Unix
and the high level of flexibility in X also greatly
simplify the implementation of some parts of
Montage, as we shall see.

Specifically, our implementation of Montage was
done on a Sun SPARCstation-1/GX machine running
SunOS 4.0.3 and XllR4. The interface was built
using Hewlett-Packard's widget set for X Windows.
Audio support is native on the SPARCstation, video
support is provided by a RasterOps video frame
buffer board.

The hardware dependent parts of the Montage
implementation (audio and video) are localized to
simplify the porting process. It should be possible to
run Montage on any Unix-based platform with X
support. The audio and video functionality can be
ported if necessary, but Montage will function
perfectly well without audio and video support. In
other words, Montage will function as a formatted
text and image mailer if these facilities are not
present.

Extensl blllty
It is impossible to know a priori all the things users
may want to mail with a multimedia mail system.
Almost by definition, multimedia mail systems
should be able to send and receive a wide array of
media.

Therefore, it was a primary goal that Montage be
highly extensible by its end users. Montage allows
users to modify the behavior of the program at
runtime, without the need to recompile the system.
Support may be added for new media types and new
message transport techniques.

The facilities available for user extensibility will be
addressed in following sections.

A MODEL FOR MULTlMEDIA MESSAGES
It is our belief that unlike more general purpose
multi- or hypermedia documents, mail messages
typically tend to be short and attempt to convey one
central idea from the author. This belief has driven
our design for the Montage message format.

Hypermedia documents tend to present the user with
a large body of information in various media. The
user then "navigates" through the document along a
path that be or sbe chooses. Hypennedia systems
generally tend to be quite interactive--the user is
presented with almost all relevant information about

a topic and then browses the document to find
interesting infonnation [Nielsen 90].

Contrast this model to a typical mail message in
which the author is generally trying to convey some
small number of central tenets. Unlike more general
hypennedia documents, mail tends to be less interac
tive. The author has an idea to present and in some
sense defines the reader's path through the message
at composition time.

We believe that by limiting the generality of our
message format we can achieve greater levels of
usability, simplicity (for both the users and the
implementors), and understandability of messages.

Still, however, since various media will be combined
within a single message there must be some way to
navigate through the packaged information. We have
taken a simple approach to this task without having
to resort to the less-constrained approach of a full
blown hypermedia system.

In Montage, all media are one of two classes: static
or dynamic. The defining characteristic of a
dynamic medium is that the information presented
changes with time. Static media do not have this
temporal component. Examples of dynamic media
include video and audio clips. Examples of static
media include simple text, formatted (rich) text, and
still images.

Obviously it is of great interest to be able to combine
various media freely within a single message. The
differing characteristics of our two media classes
make this packaging difficult. It is natural to think of
a message window containing text and image data
freely interspersed. Similarly it is natural to think of
video and sound data being played at the same time.
This mixing of media is common and is something
users are used to experiencing on a day-by-day basis.

But does it make sense to combine static and
dynamic media? Consider a message containing
only text. When the message is opened a window
appears that contains the text of the message. Now
consider a message containing only voice. When the
message is opened the voice clip is replayed. But
what about a message containing both voice and
text? ~ · · ~vei.ce as soon as
the text wiildow is opeoedi What about video and
text? Does one open two windows, one for the text
and one for the video? How does the user know
which window to focus attention on? What if the
moving video is placed within the text window? The
video would become unviewable if the text were
scrolled.

In both of these circumstances the mode of interac
tion would become one where the user's attention is
focused on one media while the other is ignored.
Some means must be provided to let users control the
playback of the dynamic media so that they can
decide when to focus attention on the various media.
In addition, in our example above where video is
presented in one window and text is presented in
another, the user has no idea which contains the
"central" part of the message. In other words, the
user does not know which component of the message
to focus on fJISt.

Research supports the idea that users' interactions
with multimedia systems tend to be largely
"media-modal." That is, they segregate the infor
mation presented to them based on the medium of
interaction [Laurel 90].

Primary Media Classes
To overcome these difficulties, Montage introduces
the concept of a primary media class. Each message
in Montage has a primary media class. This class is
either static or dynamic. The primary media class is
the type of the media presenting the "main thrust"
of the communication from author to reader. Various
media with the same media class (either static _or
dynamic) as the primary media class may be ain
bined freely. For example, if a message's primary
media class is dynamic, the author may freely
intersperse audio and video in a message.

All of the components of the primary media class
which compose the principal part of the message are
collectively called the primary component.

The primary component is presented to the user in a
single windi .;m.J¥ w· ::.~s mechanisms
for controlling die· presentation -of the primary
component contained therein (in the case of dynamic
media, the controls may be buttons for play, pause,
fast forward, and reverse; in the case of static media
the controls may be scrollban to view various parts
of the message).

We use the concept of the primary component to
project a single "path" through the message, much
as in existing mail systems. The primary media and
primary component concepts also serves to give the
author a means for expressing the central ideas in a
message.

If Montage were restricted to using only media with
types the same as the primary class, the system
would not be very flexible. There is an obvious need
for the incorporation of any type of media wi ~in a
message, regardless of the primary media class.

As we shall see, the Montage model allows the use of
any arbitrary media in the fonn of attachments.

Attachments
To augment the power of the system, Montage also
makes use of anac~nts. Attachments may be
placed on any message of a given primary media
class. Attachments themselves are basically
submessages and may be of any media type, regard
less of primary media class.

Attachments may be considered to be ''margin
notes" that are not central to the message but still
convey useful information. Since they are not
presented to the user immediately when the window
is opened they are, in some sense, secondary in
importance to the information contained in the
primary component.

Attachments give us a way to convey additional
information while retaining our easy-to-play back,
easy-to-understand main message thread. Without
attachments, messages would degenerate to a
conglomeration of mixed media within a single
window which would in many cases be unmanage
able.

In Montage, attachments are presented along side the
primary component window in the form of icons.
The image of the icon represents the type of media in
the attachment. Furthermore, attachment icons are
''conne~~-- locadon in the primary
component of the message. A use. ·of attachments
may be to provide annotation or supplementary
information to the information contained in the
primary component.

In the case of static primary media, attachments are
connected to a certain physical point in the
message. Thus, a voice attachment may be con
nected to a particular line number in a text message.
In the case of dynamic media, attachments are con
nected to a certain time range in the primary
message. Thus, as the dynamic message ''plays
back," the various attachments are presented to the
user during the time they are relevant. These attach
ments may be selected as they appear to give
additional information provided by the author.

Consider two examples of the use of primary media
and annotations to construct a message. A
geographically distributed group may be col
laborating on a document. The primary component
may be the document in question. Attached to this at
various points may be audio annotations requesting
changes, image data to be considered for review
(image data may also appear within the document

itselOt and video message clips to the various
members of the group.

As another example t consider a researcher mailing a
video of a presentation to a colleague. 1be primary
media class here is dynamic. and the primary
component of the message contains the video and
associated audio of the talk. Attached to this at
appropriate points are textual and audio annotations
(the playback of the presentation may be stopped at
any point to review the annotations), image data of
the slides used in the presentation, text of papers,
program source. and so fonh.

Summary at Model
To summarize t the Montage model projects a single
pa~h of message traversal. This primary path is
reflected in the primary component of the message.
The primary component may contain mixed media,
but the media it contains must be either all static or
all dynamic to focus reader attention.

Additional information may be placed in a message
in the form of attachments. An attachment is a piece
of annotational information which is secondary to
the primary flow through the message. Attachments
are not restricted to being of the same class as the
primary component.

IMPLEMENTAnON NOTES
We have nearly finished a prototype implementation
of Montage. This section covers the details of our
implementation, including our assumptions and
design decisions. the format Montage uses for mes
sage interchange. and the user interface to the
system.

Overview
It was our desire that Montage be as flexible as pos
sible in the types of media it can use. Therefore, we
were determined to provide support even for media
with very high bandwidth requirements. although the
actual use of such media may be awkward on today' s
hardware because of pragmatic constraints.

Montage provides full support for interchange of
text, still images. audio. and video. Local area
networks commonly found today. such as Ethernet,
have bandwidth in the 10 Mbps range. Even with
Ethernet, applications will almost never see the full
theoretical bandwidth available in the system.

The bandwidth provided by such a network is suf
ficient for text and small image interchange, work
able for audio and large image interchange, and
unwieldy for video interchange. Nevertheless,

network speed and capacity will improve, so it is
important to lay a software groundwork for applica
tions which can make use of these faster networks .

Fortunately, the batch-processing style of mail makes
full utilization of network resources less important.
Whereas a real-time video conferencing system
would require a guaranteed portion of the com
munication bandwidth to function, mail systems can
be much less picky. As long as the message arrives
in what the user perceives to be a "reasonable"
amount of time the system is meeting its goals.

Montage relies on the underlying mail transport
agents for actual mail delivery across the network.
So as newer mail delivery agents that can efficiently
transport large message across a network become
available, Montage will be able to make use of these
systems.

Interchange Format
While Montage mail headers conform to the SMrP
standard, Montage makes use of a custom format for
the bodies of electronic mail messages. This fonnat
was created because we felt that existing standards
were either inflexible in the types of media they
allow, or were too unconstrained to present media in
an understandable format appropriate for mail mes
sages.

1be limitations of existing mail transport agents
require that the contents of Montage mail message
consist entirely of printable ASCII characters.
Although there are some experimental binary mail
transport agents, far and away the largest number of
mailers available on Unix platfonns only support
ASCD transfer.

Because of this restriction, we are forced to encode
the bodies of Montage messages into ASCII. Our
reference implementation uses the standard Unix
uuencode program to accomplish this. The ASCII
encoded tile's size is expanded by 35% after this
encoding process. To compensate for this, the mes
sage body is first compressed before it is mapped
into ASCII.

But what is actually contained in this message body?
In Montage, tbe message body actually consists of
several discrete units. called chapters. When mail is
received by Montage, the body is separated from the
header. it is converted to binary from its ASCII
format, uncompressed, and then broken down into its
components. In our implementation, each of these
chapters is stored as a separate ftle. There is one
special chapter, called the table of contents t which
contains information on the layout of the entire mes-

sage. The table of contents references and connects
all other chapters in the message.

Our first implementation uses existing Unix tools in
an effort to rapidly produce an operational version of
Montage. We use the tar Unix archive program to
combine the various chapter files upon message
creation, and to break out the chapters upon message
receipt.

Montage adds one line to the SMTP mail message
header which specifies the version number for the
encoding scheme. Since the above method is only
one of many possible encodings, future Montage
mailers will be able to detennine the encoding
method by the version number in the header. Note
that this is the only addition we need to make to the
header to be able to send multimedia messages.

X.400
In 1984, CCI1T released a set of standards for
electronic mail systems. These standards do not deal
with the user interfaces of mail systems, but rather
they specify the services available for sending mes
sages across the network.

The X.400 model defines two agents that make up an
electronic mail system: the User Agent (UA) and the
Message Transfer Agent (MTA). The UA provides
the user interface for the system and may interact
with other UAs. UAs hand messages off to MTAs for
transport. X.400 specifies the interactions between
U As and MTAs, but does not specify the interactions
between UAs and the users [Cunningham
84][Cunningham 85].

Montage implements a subset of X.400. Montage
provides most of the header fields which are used in
communication between UAs and MTAs, but does
not provide the inter-UA communication facilities.

It should again be noted that Montage is largely
independent of any underlying mail transport agent.
The system can be configured to use an administra
tor-defined mail agent. On our prototype system this
is the Unix sendmail program. While we have not
tried using a full X.400 mail transport agent with
Montage we believe that it should function properly.

Chapters
As stated before, a message body consists of one or
more message chapters along with a table of
contents. lbe table of contents specifies the rela
tions between the various chapters (relative place
ment within a message, chapter format, etc.)

Each chapter contains a "section" of the message.

Each chapter is represented in one medium. The
type of this medium must be specified in the table of
contents so that the recipient mailer will know how
to "play back" the chapter.

A chapter is basically a single file containing a single
message component. Chapters may contain either
part of the primary component, an attachment, or the
table of contents.

Note that the principle component of the message
may be composed of many chapters, as long as the
media in those chapters is of the same class as the
primary media class (either static or dynamic).
Thus, it is possible to have text interspersed with
images in the primary component of the message.

Montage treats each chapter as raw data. That is, it
associates no real semantic information with each
chapter. Instead, the chapter data is handed to a
playback module, or handler, which may be internal
or external to Montage. The handler which is
invoked on a particular chapter depends on the media
type of the chapter. These handlers are specified by
the users of the system, and Montage provides a
mechanism for users lO specify external programs
which they can use to play back and record message
chapters.

Media types are identified to Montage by tags which
are associated with each chapter via the table of
contents. Montage does not predefine any tags and
indeed does not even associate any meaning with
tags. Tags are defined by the users of the system.
When a chapter is encountered the catalog of tags is
searched and the user-specified handler (which may
be an external program) is invoked on the chapter.
The mappings from tags to handlers may be
completely specified by users in a per-user database
(with "sensible" defaults provided in a system-wide
database).

Thus Montage is completely runtime extensible by
the user in the media domain.

This ability provides Montage with a great deal of its
flexibility. Users can choose their favorite tool for
"recording" text (i.e., they can use their choice of
editors (or word processors or spreadsheets) to enter
text into the mail system). Similarly, they can use
their choice of tools for viewing received audio and
video chapters. Montage provides some simple
means for playing and recording certain simple
media. But because the system is not limited to those
media which have built-in handlers, users can
automatically add support for new media by specify
ing external programs to be used for media playback
and recording. Additionally, this mechanism allows

a great deal of user customizability and suppon for
individual user preferences, by allowing users to use
their choice of mechanisms for playback and record
ing of media.

Table of Contents
The table of contents (or TOC) is a special chapter
that specifies the relations of the other chapters to
one another. The format of the TOC is relatively
simple, reflecting our simple model of mail usage.

We have chosen a line-oriented ASCII format for the
table of contents. Since most TOCs will be relatively
small, we felt that the space savings accomplished by
encoding the information in a machine readable
format would not be as imponant as the simplicity
and ease of debugging provided by a human-readable
format.

Each TOC must have at least 3 records. Each record
gives some piece of information and each appears on
a separate line. 'The required records are:

1. TOCVersion The version identifier
for the TOC fonnat.
2. Clas• The class of the primary message
component, either static or dynamic.
3. Primary The name and type of the
message chapter containing a part of the
primary component of the message.

In addition to these required records, there are
several optional records:

I. Attachment 1be name, tag, and posi
tion of an attachment. Position is given as a
line number in the primary component if the
message is static. or as a time offset in the
primary component if the message is
dynamic.
2. Au thor 1be mail address and
(optional) name of the sender.
3. CreationDate 1be date the TOC
was created.
4. Subject 1be subject of the message.
5. ID A unique identifier for the message
on the machine it was created.
6. COIIIIDent Signifies that the rest of the
line is to be treated as a comment
(ignored). This is primarily used as a
debugging tool.

Since it is possible to combine several chapters
within the primary section of the message (as long as
these media are either all static or all dynamic), there
may be several Primary fields in the TOC. ·These
chapters will be presented sequentially to the user.

Additionally. some media (for example, a proprietary
format for a general purpose multimedia document)
may mix static and dynamic media within a single
window. even though this mixing is something that
"native" Montage does not allow. In such a case,
the media in question may reference files which it
expects to contain the various media components it
needs. 'These external files may be bundled together
with the rest of a Montage message, and are referred
to as "subchapters" since they are not used directly
by Montage itself, but rather by one of the media that
Montage is dealing with. The media which uses
these external files must be responsible for managing
them. Subchapters are not specified in the TOC
since individual applications, rather than Montage
itself, deal with them.

Here is a sample table of contents for a Montage
message. This message consists of a simple text
primary component, with three attachments, a ~-law
sound clip (with tag "CODEC88"), another simple
text segment (with tag "SimpText"), and an X
Bitmap image (tag "XBM").

Author: Keith Edwards <keith@cc>
CreationDate: 18 Oct 90 10:18:52 PDT
Subject: Notes from the meeting
ID: 2848.AA08665
'!OCVersion: 1. 0
Class: static
Primary: txt.2848.txt sim;roext
Attachment: snd.2848.snd CODEC88 27
Attachment: txt.2848.txt Si~xt 30
Attachment: xbm.2848.xbm XBM 49

Interface
We built the interface for our implementation on top
of the X Window System. We perceived two primary
reasons for using X. Most imponantly. X is accepted
as a standard throughout the workstation environ
ment we were targeting as our audience. A primary
reason for this acceptance is the portability of X and
applications developed for X. As a result of this
portability, the interface portions of Montage should
recompile cleanly on any workstation which supports
X Windows.

Secondly, X provides cenain general mechanisms for
user customization at runtime. We were able to
make use of these mechanisms to create a highly
coofigurable mail system--not only is the interface of
Montage coofigurable, but the actual types of media
the system can handle can be changed at runtime. It
would have been possible to get this degree of
configurability without using X, but we were able to
prototype the system much more rapidly by using the
facilities already available to X applications.

Our front end is built using a set of user interface
objects (widgets in the X parlance) provided by the
Hewlett-Packard company. We choose the HP widget
set based on its perceived completeness and orthogo
nality. A secondary consideration was that the HP
widget set is freely available, unlike some widget
libraries (such as Motif and OpenLook) which are
available only to sites which pay a licensing fee.

Montage makes use of a multiple-window interface.
The ftrst thing a Montage user sees is the Control
Palette. The Control Palette presents the user with a
group of on-screen ''buttons'' representing the major
options available in the system. The primary options
available from the Control Palette are

• New Mail check in any newly received mail
into the Montage system. New mail must be
''checked in'' before it can be read.

• Info presents the user with a ''pop-up''
window, giving infonnation about the program's
origin.

• Messages presents the user with a scrollable
list of messages. Users may then view,
forward, save, or delete these messages.

• Compose is an interface to message creation.
Facilities are provided for composition in
several media types. Support for new media
types may be added dynamically.

• Iconify reduces all the Montage windows to a
single small window. This is convenient for
when the user is not working with the system at
the moment.

• Prererences brings up a panel which allows
the user to customize his or her default prefer
ences.

• Quit quits the system.

We will now go into some detail on the mechanics of
the Montage interface.

Checking In New Mail Clicking the New Mail
button causes any mail in the user's mail to be
"checked in" to Montage. Whenever new mail is
checked in, the system reads in all new messages
from the user's mail spool file. As the messages are
read in, the headers are parsed and a mail cache file
is built in the user's home directory. The cache file
contains important header infonnation such as the
message sender and subject, and the number and
format of any attachments. 1be system also calcu
lates the byte offset of the start of the actual message
body so that the message data can be separated. from
the header. After the cache file is updated, the

individual messages are stored in a subdirectory of
the user's directory, on a one-message-per-me basis.
1be system spool file is then removed to free up
system disk resources.

Users are notified when new mail arrives by the
playback of a sound file. Users may also enable an
automatic mail check-in function via the preferences
panel (see Prererences, below).

Basic Message Control The most commonly used
Control Panel items are Messages and Compose.
These two items give the interface to message
creation, viewing, deletion, and most other common
functions.

When the user clicks the Messages button to view
the list of current messages, the system scans the
mail cache file to retrieve the header information.
This keeps Montage from having to open, scan, and
parse all the message files individually. A new
window is opened and the user is presented with a
scrollable list of the current messages.

From the Messages window (see Figure 1) users have
the option to view messages, save messages to a
file, delete messages, or reply to or forward
messages. All actions on messages are accomplished

· by highlighting the desired message or messages, and
then clicking the button to perform some action on
those messages. Since viewing is perhaps the most
common operation, users may view messages by
double clicking on the message.

Figure 1: The Message Window

Saving a message brings up a window which prompts

for the ftlename in which to save the message. Cur
rently 1 messages are saved in their native, bundled
format. We will be adding support for saving
individual message components.

Replying to a message puts the user into the Com
pose window (to be discussed shortly). When
replying, the user is not restricted to using the same
primary media class as the original message.

Forwarding simply allows the message to be resent to
a new destination.

Message Viewing When a message is viewed, the
View window (Figure 2) appears on the user's
display. The message is automatically unpacked and
the primary component of the message is presented
in the main portion of the window. Any attachments
are displayed along the side of the window and are
represented by icons which depict the types of the
attachments. There is a single scrollbar attached to
the primary window and attachment list.

D
HM It tOM Ill(

From:
CC:

~

Tllfl lhO~ lie lUll MgMnl OM In the •. ~~~--
Herw It IM Z. Thlt tNuld lie 1M ..c:OIMI prtMry
II tttoul4 _. tile ftrlt prllllfY.
keiU'I

Figure 2: The View Window

What is actually displayed in the primary component
window depends on the media themselves.
Typically, static media will be presented in a scroll
ing window. The handling of dynamic media is more
complex, however. Users have control over sound
via a control panel much resembling a tapedeck.
Video messages are controlled by via a window with
a set of controls much like a video cassette recorder.
As the dynamic media are played I any attachments
scroll by the user to the side of the control panel. If
desired, users may stop playback and view attach
ments relevant to the portion of the primary

component they are viewing.

The View window also gives users options to delete,
save, forward, and reply to messages. These func
tions work the same as those presented in the
Messages window.

Composing New Messages Clicking the Com
pose button brings up the Compose window, which
is an interface to message creation (see Figure 3) .
Users fill in the necessary components of the mes
sage header (recipient, subject line. and any carbon
copies) by typing in the appropriate fields .

CC:

Subject

Figure 3: The Compose Window

The main ponion of the Compose window is taken
up by a region where the primary component is cre
ated. Users may type into this window directly, or
they may import files of various types via the Import
button.

The Import button brings up a window which allows
users to insert external files as either attachments or
as parts of the primary component. The user must
specify the type of the inclusion so that Montage
may build the table of contents for the message cor
reedy.

Because of the ability to type directly into the
Compou window's primary component area, the
input of text is simple. However, it is desirable to be
able to record other media as easily as text. It is often
cumbersome to have to use tools external to Montage
to record some message component into a flle and
then import the file into a message. Thus the View

window provides a menu for Compose Tools. These
tools allow users to incorporate media into messages
almost as easily as text.

For example, Montage supports a sound recording
tool from the Compose Thols menu. This tool
(resembling a tapedeck, see Figure 4) allows users to
record and edit sound clips. A similar video tool
allows the recording and editing of video messages.
Users may configure Montage to add new items and
actions to the tools menu.

Users click the Send button to pass the message on to
the mail transport agent. The View window contains
buttons to close the window, and save the message to
a file.

Flit N.-. L~====T==~I SpeiUt' Stltetlon

Record Ltvtl !<}' I it .lnlemll

PIIV Ltvel l<f I it ¢ .Cemll

Figure 4: A Sound Tool

Hiding Montage Montage uses a multiple-window
interface. Each window in the system may be shrunk
or "iconified" individually.

It may be desirable at times to iconify all the
windows of the application at once to effectively
hide the application. This may be accomplished by
the lconify button on the Control Palette. This
button reduces all the Montage windows to a single
small window. Any windows which have been
iconified individually are "joined" into the Montage
icon. All windows will be returned to their original
states when the icon is clicked.

User Preferences Montage supports
user-configurable preferences via the Preferences
button. This button brings up a control panel which
allows users to select and modify a variety of system
parameters, including changing tbe speakers to
which audio output will be routed, setting audio play
and record levels, setting whether or not message
headers will be displayed, and so on.

PERFORMANCE
Overall mail system perfonnance depends on many
variables: the underlying network used for mail
transport, the size of the messages, and even the
habits of the users (some users may want to send

only sound clips while others may be content to send
simple text most of the time).

Designers of mail systems must be concerned with
two aspects of performance: mail delivery latency
and message size. Mail delivery latency is the actual
time required for transmission of a typical message
across the network. Message size is the amount of
physical storage required to actually store the mail
message.

1be delivery latency is dependent on the speed of the
underlying network which is in tum dependent on
the mail delivery agent chosen for message transport.
Since Montage is usable with any
RFC-822-compliaol mail transport agent, we are not
directly concerned with netwolk latency and perfor
mance may be charactefized .. by one metric: message
size. In most cases ~ size will be proportional
to delivery latency fcii. .. _Jiven network and transport
agent, so messagtf size iS an effective measure of
performance.

Sending a message via Montage will add somewhat
to the "native" size of the infonnation being
transmitted. Essentially the native size of a Montage
message is the sum of the sizes of the attachments,
along with the primary message component and the
message header. When the message is sent, a table
of contents is added. Furthermore, aJI of the message
body undergoes a packaging process which adds
some to the size of the message.

Our goal is to minimize the increase in size by (1)
optimizing the packaging process for size, and (2)
making the table of contents as small as possible.
We will address each of these issues in tum.

The packaging process basically consists of
"bundling" the various message components into
one file. To minimize the size of the resulting file, it
is compressed using adaptive Lempel-Ziv coding
[Welch 84] as implemented by the Unix compress
program). The amount of compression obtained by
using this algorithm depends on the size of the input
and the distribution of common substrings.
lYPically, for English text, the compression will be
in the range of 50% to 60%. Some files, such as
IJ-law sound files, are already encoded and cannot be
compressed further.

Since the result of this compression is a binary file, it
must be mapped into ASCII characters for transmis
sion via RFC-822 mailers. This mapping process
expands tbe file's size by 35% (3 bytes become 4,
plus some control information is added). Thus, for
fairly long text messages, Montage can achieve mes
sage sizes smaller than those for messages containing

the same, but unencoded text (original message size
x .55 x 1.35 = .74 of the original message size).

Of course added to any encoded message is a table of
contents. This table of contents specifies the
"layout" of the message. Our format for the table of
contents is ASCII-based. We deliberately chose this
format for simplicity in implementation and to ease
debugging. Usually the table of contents for a given
message will be very small.

The minimum size for a table of contents is
variable. Since the table of contents contains entries
for things such as sender name and subject there is
no fixed minimum size. But in general, a simple
table of contents will be on the order of 300 bytes.
Each attachment will add something on the order of
60 bytes for information regarding attachment type
and placement. So we see that the contribution of
the table of contents to the size of the total message
is negligible.

STATUS
The design and a first-pass implementation of
Montage have been completed. Currently the system
allows static primary media, and attachments of
either text, audio, or several image fonnats. Facili
ties have been completed to allow easy composition
of messages by typing or importing text, importing
images, and recording sound via a simple sound
editor mechanism.

Work is progressing on the addition of full dynamic
primary media capabilities . We hope to soon have
store-and-forward video transmission along with
synchronized sound output.

Montage is currently running as a complete
functional mail system which can serve as a replace
ment for existing Unix mail systems. That is,
Montage may already be used to replace users' text
mail composition and reading programs; the remain
ing work lies in the area of suppon for additional
media.

CONCWSIONS, CAVEATS, FUnJRE DIRECTIONS
Our work on Montage was based on a· set of as
sumptions which we believe greatly enhanced the
usability of the system, as well as simplified the
implementation. The initial response within the local
research community at the Software Engineering
Research Center and outside sponsors bas been
favorable.

In the near future, we plan to polish the implementa
tion of the system to the point where we have a
robust, workable mail system wbicb may then· be

integrated into an actual work environment. Further
work will be done on enhancing the video capabili
ties of the system and integrating the mailer with
existing tools and media.

Much work still needs to be done on increasing the
usability of the user interface. An online, context
sensitive help system is also needed.

We feel that Montage represents a flexible. workable
system for the exchange of multimedia documents
while presenting a friendly, intuitive interface to
users.

ACKNO~DGEMENTS
1be research and development of this system were
supponed by a grant from Bell South Corporation.

REFERENCES
Crocker, David H. [1982] Standard for the Format of
ARPA Internet Text Messages, Internet Request For
Comment (RFC) 822, August 13, 1982.

Cunningham, I. [1984] Electronic Mail Standards to
Get Rubber-Stamped and Go Worldwide. Data
Communications, May 1984.

Cunningham, I., and I. Kerr. [1985] New Electronic
Mail Standards. Telecommunications, July 1985.

Guastello, S., M. Traut. and G. Korienek. [1989]
~rbal ~rsus Pictorial Representations of Objects in
a Human-Computer Interface. In International
Journal of Man-Machine Studies, July 1989, Vol. 31,
No. 1, pp. 99-120.

Laurel, Bre~ Tim Oren, and Abbe Don. [1990]
Issues in Multimedia Interface Design: Media
Integration and Interface Agents. In ACM SIGCH/
Proceedings. 1990. (Seattle, Washington April
1-5). pp. 133-139.

Nielsen, Jakob [1990] Hypertext and Hypermedia.
Academic Press Inc., San Diego, CA, 1990.

Rohr, G. [1986] Using Visual Concepts. Visual
Languages, S. Chang, T. Ichikawa, and P.
Ligomenides, eds., Plenum Press, New York, 1986,
pp. 325-348.

Stallings, W. [1987] Handbook of Computer
Communications Standards, Volume 3: Department
of DeftnM (DoD) Protocol Standards. New York:
Macmillan, 1987.

Welch. 'Jerry A. [1984] A Technique for High
Performance Data Compression. IEEE Computer,
vol. 17, no. 6 (June 1984), pp. 8-19.

Appendix 3

Montage: An X-Based Multimedia Mail System

This paper describes the current generation advanced prototype Montage system.

-8-

Montage: An X-Based
Multimedia Mail System

W. Keith Edwards

Multimedia Computing Group, GVU Center
Georgia Tech

Atlanta, GA 30332-0280
keith Occ.gatech.edu

1.0 Abstract

This paper describes an extensible multimedia electronic
mail system called Montage which is based on the X Win
dow System. Montage supports the composition, transmis
sion, and viewing of structured documents consisting of
virtually any type of medium. Further, users can at runtime
extend the system easily to support new document types,
including text, images, audio, video, executable programs,
and commercial file formats.

2.0 Introduction: Why Multimedia Mail?

In the past decade, the proliferation of fast, inexpensive,
networked computer workstations has produced an explo
sion in the use of electronic mail. Electronic mail systems
have traditionally been limited to the transmission of sim
ple textual information.

More recently however, as computer workstations have
increased dramatically in power and as the use of window
ing interfaces becomes more widespread and standardized,
the capabilities have emerged for the composition, trans
mission, and reception of complex multimedia electronic
mail messages consisting of voice, imaged, video, and
other media (in addition to plain text of course).

The chief advantage of a multimedia electronic mail sys
tem is the increased bandwidth between the users of the
system. Research indicates that some concepts may be
most appropriately expressed in certain media. [7, 8, 1 0] A
good multimedia mail system should allow people to com
municate with one another as freely and without restriction
as conventional "paper" mail systems do. With paper mail,
users can compose documents, jot notes onto them, and
then seal them along with any other enclosures into an
envelope and expect prompt delivery. Multimedia mail
systems would offer similar flexibility.

Furthermore, since the most basic goal of any electronic
mail system is to expedite and enhance the communication
between people, care should be taken to conform to mail
transport standards. An electronic mail system which does
not intemperate with a broad range of systems denies its
users communication with those systems.

This paper presents a multimedia electronic mail system
called Montage which has been developed at the Georgia
Tech Multimedia Computing Group (a part of the Graph
ics, Visualization, and Usability Center under the direction
of Dr. James Foley) [6]. We believe that this system pro
vides a flexible and convenient means to send and receive
complex multimedia documents. This system is built
strictly on top of lower-level mail transport standard and

1 of 8

Design Goals and History

thus should be portable to and interoperate with many sys
tems. Our current implementation is on the Unix operating
system and X 11, specifically Motif 1.1.

3.0 Design Goals and History

When work was started on this project late in 1990 [5], we
began with several principles that we hoped would lead to
a powerful and flexible system. This section describes our
three major design goals.

3.1 Extensibility

First, and perhaps most importantly, we wanted to build a
system that would not be a "closed box." That is, we
wanted a system which could be easily extended by its
users at runtime to support arbitrary media. Too many
email systems support only a restricted range of media.
However complex these media may be, there is still no
provision for extending the system.

At the time we began our work, there were several multi
media mail systems already available for Unix systems,
the best-known of these being BBN Slate, the Andrew
Message System, and NeXTmail. Each of these suffers
from its own set of problems. For example, the BBN Slate
system provides users with a number of tools for compos
ing complex mail messages. BBN Slate messages can
even contain spreadsheet data, but users are restricted to
working with the built-in, integrated Slate spreadsheet
rather than the tools there are most used to.

Another system, the CMU Andrew Message System, was
built using the Andrew tools provided by CMU [1]. This
mail system can send any type of construction which can
be expressed by the objects in the Andrew environment.
Thus, the system is extensible but it can not intemperate
well with systems not built with Andrew.

A third system, NeXTmail, bundled with all NeXT com
puters, could compose and send fairly complex documents
consisting of fonnatted (rich) text, images, sounds, and
typed files. There were (and are) a number of problems
with the NeXT mail system though. First, the system is
built to a large extent on primitives provided by the Next
Step environment which are not likely to be found on
other systems. Second, the specification for the mail

2 of 8

encoding format (specifically the header lines used and
required by the system) is not publicly available.

3.2 Mail Transport Protocols

In addition to our goal of extensibility, we wanted to con
struct a system which was built on top of existing stan
dards. For our platform, this meant the Simple Mail
Transport Protocol (SMTP) as a base [4, 11]. SMTP is
widespread among the Unix community. As long as our
mailer spoke SMTP its messages would be transmittable
by the large number of mail transport agents in the world
that speak SMTP.

One of the limitations of SMTP is that it only supports the
transfer of non-binary data. Thus, Montage must perform a
"packing" and "unpacking" process to convert the mes
sage body data to a form which can be transmitted via
SMTP.

We will discuss our approaches to the problems of mail
transport protocols and packing fonnats shortly.

3.3 Message Presentation Format

A third requirement of our system was that it should
present its messages in an intuitive and easy-to-understand
fonnat. It was our belief that, unlike more general hyper
media documents, mail messages are typically generated
by their authors to convey some small number of impor
tant ideas or data. Thus, whereas hypennedia documents
which are reader-driven[9], mail messages are typically
author-driven. We reasoned that a hypertext-like presenta
tion format may not be the most useful or intuitive for a
mail system.

While we did not want our messages to be full-blown
hypermedia documents, we did acknowledge that there
was a need for some interactiveness within a message.
One common example of this may be a document which is
being distributed for review by a number of commentors
or coauthors. One would like to be able to view the origi
nal document as well as selectively viewing annotations
by the various reviewers. We felt that some degree of
interactivity would empower the mail system and its users.

As we shall discuss later, we feel that the restriction
against generalized hypertext has had a simplifying effect
on the design and implementation of the mail system. We

Montage: An X-Based Multimedia Mall System

A Model for Multimedia Messages

also feel that the interactiveness provides a great deal of
the system's power.

The next three sections address our solutions to these goals
as they are currently embodied in Montage.

4.0 A Model for Multimedia Messages

We mentioned that one of our design goals was to develop
a presentation format for multimedia messages that was
(1) somewhat more restricted than hypermedia systems to
facilitate the type of communication common in electronic
mail, and (2) allowed some degree of interactivity, espe
cially in support of annotations.

Our model for multimedia mail messages essentially con
sists of two parts. First, all messages consist of a main
body (called the primary pan). The primary part consists
of any number of components (called chapters) which
may themselves be of any media type. All of the chapters
of the primary part appear in linear order, just like a single
paper document. Montage presents the primary part in a
scollable window.

In addition to the primary part, a Montage message may
also have zero or more attachments. Attachments are anal
ogous to margin notes or "Post-It" notes in a paper docu- · ·
ment. They allow the author to attach supplemental
information which refers to or supports the original docu
ment. In Montage, attachments appear as small icons on
the border of the primary part. The image in the icon
denotes the type of medium in the attachment; the attach
ment is activated or opened by clicking on it with the
mouse. At composition time the author chooses the spatial
location of the attachment so that, for example, comments
to a document can be located across from the portion of
the document they refer to. As the main body of the mes
sage is scrolled, the attachments scroll so that they keep
their relative position to the part of the main body they
refer to. Just like chapters in the primary part, attachments
can be of any media type. Figure I shows a sample Mon
tage mail message in the system mail viewer. The text and
graphics compose the primary part of the message. The
small phonograph icon denotes an audio attachment which
is spatially located across from the charts.

There are a great number of uses for this scheme of attach
ments to messages. One of the canonical examples which

Montage: An X-Based Multimedia Mall System

~~~ -~~_j ~_j ~ COtiiPOt~ 
.~~~ ....... 1 .~~~~ ...... 1 .~.'-~-~ ...... J -~~~-~~-~.J .~ ...... ! 

FI'OIII: Ulfl (llll\' ec!WWIII) 
. ' ~·-.. . . ;,_. .... ,: .. ·.·n . ..;,..,....,.;. .. : 

To: !1*' 
Su~ect f~i;~~-~~·~ ~·:.:~~~:~:~.~:v ~:~ ~·~.~ ~~~~~~~~~·;;~·~·~~~- :·; 

Cc: ! __ .... 
iuM. 
..,... - the ul• fl.,_ • ' w ..,_..uc~ 
_. ttw Net ~. If ..,au c:auld ~ 
• look a u.. .-.1 IlK 1111*. t.o • I'd 
..,-.c;l.te It, 

FIGURE 1. An example Montage message 

we have already referred to is coauthoring and comment
ing of written documents. In Montage, a document could 
be exchanged in mail as the primary part of a message. 
Various authors can then attach comments, rewrites, 
graphics, audio annotations, or even video clips to the doc
ument at appropriate points. Research supports the fact 
that some types of revisions are most appropriate in non
textual media [9]. 

Also, since attachments provide a means of having an 
active message which can interact with the user, several 
uses for this model which are not based on simply annota
tion of documents come to mind. For example, a mail 
message may contain a large number of spreadsheets, say, 
one for every operating month of a company's history. The 
recipient of this mail message may not want to view data 
from every month, so the preferred format may be a mes
sage with an attachment for every spreadsheet which may 
then be opened at the reader's discretion. 

Another example may be an attachment which consists of 
a shell script to upgrade some software package on the 
user's machine. The main body may have the message 
"Click here to upgrade to release 2.0." Across from that is 
the attachment which will perform the upgrade when 

3of8 



Extensibility and Conflgurablllty 

clicked. (We are ignoring the security problems involved 
in sending actual executable programs through the mail for 
now. Obviously you would not want to execute a program 
sent to you through the mail unless you trusted the source 
of the message and could verify that indeed the message 
had come from that source). 

The important thing is that the author has the choice at 
composition time to decide on the layout of the message. 
We feel that this format gives us a substantial amount of 
power in a relatively easy to express (and implement) 
fashion. 

5.0 Extensibility and Configurability 

IdeaiJy, a multimedia mail system should be able to trans
port virtually any medium. This includes not only text and 
graphics, but also various dynamic media (such as audio, 
video, animation, and even executable programs), and var
ious commercial file formats (used by spreadsheets, desk
top publishing packages, and so on). 

Obviously it is not feasible for the builders of the mail sys
tem to have to compile support for these media into the 
mailer itself. This requires a great deal of work on the part 
of the system builders to maintain support for all of these 
various formats, and also means that if the system builders 
don't choose to support a given format, the users of that 
format will be out of luck. Further, the mail system is 
always a "step behind" the rest of the applications world: 
the mail system builders are continually playing "catch 
up" to build in support for new formats as they become 
available. 

Perhaps the best solution to the extensibility problem is to 
have a computing environment in which applications can 
communicate with one another, and application objects 
can be shared among and embedded in different applica
tions. Some strongly object-oriented environments 
(NeXTstep comes to mind) do support this type of behav
ior, but it is not available yet in the X world 

Since this solution wasn't available to us, we had to take 
another approach to solving the extensibility problem. Our 
solution is to externalize as much of the work of interpret
ing and handling the various media outside the mail sys-

4 of 8 

tern as possible. We use external programs (called 
handlers) that "understand" the various media to display 
and edit them. In the Montage model, the mailer itself is 
very simple; it is basically just a framework which has the 
responsibility of parsing the mail messages, providing the 
basic mailer functionality (folders, aliases, and so on), 
invoking the external handlers, and creating a nice presen
tation for the overall message. The work of understanding 
what a particular medium "means" and then doing the 
right thing with it is solely the responsibility of the exter
nal handlers. 

Media types are identified by tags which are simple ASCII 
strings that are sent along with the message components 
when it is transmitted (see the section Transport Protocols 
and Packing Formats). Montage itself associates no mean
ing with the media tags; instead it decides which handler 
to invoke on a particular component by looking up its tag 
in a per-user database which maps tags to handler pro
grams chosen by the user. 

This design has several benefits. First, users can make use 
of the applications most familiar to them to view and edit 
message components. Vi and Emacs users will be able to 
choose their favorite editor to compose text components. 
Secondly, if a work group begins to use a new application 
for its work, it is easy to enable support for the new appli
cation's data format by simply assigning it a tag and put
ting an entry in the database that specifies the program the 
be run when a message component with this tag is encoun
tered. 

Because of the presentation format we are using 
(described in the previous section), message components 
belonging to the primary part of the message are presented 
"in-line" (that is, they visually and structurally fonn a sin
gle document, rather than being presented in different win
dows), while attachment components are presented out
side the main body of the message in their own windows 
when they are activated. 

The different requirements of displaying message compo
nents in-line and outside of the main flow of the document 
require us to have the notion of several classes of handlers. 
The basic handlers are: 

• Editor The program which will be invoked when the 
user wishes to compose a message component of a 
given type. 

Montage: An X·Based Multimedia Mall System 



Transport Protocols and Packing Formats 

• Renderer The program which will be invoked when a 
message component needs to be displayed in-line to a 
message. 

• Viewer The program which will be invoked when a 
message component needs to be displayed outside of a 
document. 

The editor and viewer handlers operate as expected. They 
are the normal applications found on a system which are 
used to display and edit application-specific data (such as 
Lotus 1-2-3 or FrameMaker or a paint program). These 
applications, by default, create their own windows as chil
dren of the X root window. Thus, when invoked by Mon
tage they will start up and appear as top-level windows 
"outside" the message itself. Thus, the viewer handler is 
the program which will be invoked whenever an attach
ment is opened. 

But what about message components which should be dis
played in the main body of the message? By default, most 
any applications will create their own top-level windows 
when they start up. We need to be able to display message 
data inside the main body of the message as well as in sep
arate windows. Our solution to this is the notion of render
ers. Renderers are programs which know how to draw (or 
"render") the media type inside the main body of the mes
sage. 

Since this is a rather unusual requirement, most systems 
will not have renderers already on them waiting to be used 
(as is the case with viewers and editors, which are conven
tional off-the-shelf applications). We are working to build 
several renderers for common formats, and hope that if 
Montage ever reaches some degree of popularity there will 
be no shortage of publicly-available renderers. 

The mechanics of how a renderer performs its job, that is, 
how it draws inside the main body of the mail message, 
are somewhat difficult. We have investigated two possible 
solutions. In the first potential solution, the renderer draws 
the medium into a pixmap and then returns the identifier of 
the pixmap to Montage which determines the geometry of 
the pixmap and copies it into the message display area. 
This effectively disallows any type of dynamic medium in 
which the contents of the displayed are subject to change. 

In the second solution, which is the one we are currently 
working with, Montage launches renderers with a com
mand line argument which is the window ID into which 

Montage: An X-Based Multimedia Mall System 

the renderer should draw. This allows fully dynamic 
media, but has several drawbacks. One is that the renderer 
must continue running as long as the message is displayed 
even if it is rendering a static medium. This is so that it can 
handle exposures in the window. Another drawback is that 
most existing widgets don't perfonn well when their win
dows are resized from some external controlling process. 
We are investigating writing a new widget which exhibits 
the proper behavior. 

Note that if the X Toolkit provided support for forcing an 
application's top-level window to be specified on the com
mand line or via some other mechanism, then we could 
actually embed running applications in the mail message 
itself. Unfortunately no X toolkit that we are familiar with 
provide.s this capability. 

While the invocation of an external program for every type 
of media provides a great deal of flexibility, it is not the 
most efficient way to work with very common media 
which will be used on a day-to-day basis. For this reason, 
Montage has a few very simple handlers built in to it. 
Users can specify ''PrimaryTextRenderer" in the configu
ration database to tell Montage that a tag represents simple 
text and that the system should use its own internal text 
renderer to display it. There is also a "PrimarylmageRen
derer" built-in handler that can understand and display a 
good number of image fonnats internally (including Sun 
raster images, PBM, PPM, PGM, Gif, Faces, XWD, 
Group 3 FAX, MacPaint, XPM, XBM and a few others). 
Similarly, there is a "PrimaryTextEditor" which tells the 
system to use its built-in-line text editor so that users will 
not have to open another window to simply compose a text 
message. 

These built-in handlers provide a certain common ground 
of media types that Montage can handler "out of the box" 
without requiring any sort of external mechanisms. Essen
tially they are an escape hatch around the requirement that 
users must have external handlers for all the media types 
that they wish to mail or view. 

6.0 Transport Protocols and Packing 
Formats 

As we mentioned, at the time we began work on Montage 
there were widely accepted standards for multipart multi
media mail transport. We knew that we must base our 

5 of8 



Implementation Notes and Status 

system on SMTP to allow interoperation with the 
majority of existing Unix mail agents, but beyond that 
there were few accepted standards. The current imple
mentation of Montage uses a message transport format 
developed in-house to support our model of multimedia 
mail messages. In the past year, however, a format called 
MIME [2] (Multipurpose Internet Mail Extensions) has 
gained considerable acceptance and generated quite a bit 
of interest. We shall describe each of these formats in 
turn. 

The MIME format is quite similar in many regards to the 
current Montage format and so we plan to convert the 
system over to MIME in the near future. 

6.1 Current Format 

To support the message format we wanted, we developed 
our own transport format based on SMTP. In this format, 
each individual message component was compressed, 
bundled, and converted to ASCII (since SMTP doesn't 
support binary message transmission). The conversion of 
the individual message components into a single transmit
table block of data is called packing. This block of data 
then was transmitted as the body of a message, with the 
appropriate SMTP headers placed on the front of the 
message. Along with the message components them
selves we transmit a Table of Contents (or TOC) which 
describes how to unpack the message body into its indi
vidual components, and the relationship of those 
components to one another. 

In the current implementation of Montage, the TOC is a 
simple ASCII file which has a single line per component, 
and specifies the component name, whether it is a 
primary or attachment component, the relative position of 
the component in the mail message, the medium type, 
and compression type. The system packs and unpacks 
messages transparently to the user. 

6.2 MIME 

In many regards the MIME format is quite similar to the 
current Montage format and, since it will be supported on 
many more platforms than the current Montage format, 
we plan to convert the system to MIME in the near future. 

MIME provides support for multipart messages in which 
each part contains the data for that part and specifies the 
type and encoding format for the data. The information in 
the MIME subparts is sufficient to allow for unencoding 

6 of 8 

and decompressing Montage components, but there is no 
provision in MIME to specify any type of structural infor
mation about messages, such as component layout. 
Therefore we will transmit the Montage TOC as a sepa
rate MIME subpart so that Montage mailers can display 
the messages with all their structural connections, while 
other MIME-compliant mailers will display Montage 
messages in a linear layout. 

7.0 Implementation Notes and Status 

The current version of Montage is implemented using 
X 11 R4 and Motif 1.1. The code is approximately 40,000 
lines of ANSI C. 

This project was begun in late 1990 and resulted in a pro
totype implementation (based on the HP Widget Set) that 
demonstrated the basic concepts of the system (extensibil
ity, external handlers, and so on) but was somewhat lack
ing in the features necessary to convince users to use the 
system on a day to day basis. In September of 1990 we 
began a reimplementation of the system based on Motif 
1.1 and added a number of useful features. 

Most of the features found in Montage are, of course, 
those found in any conventional non-multimedia mail sys
tem, such as folders, support for aliases, saving messages, 
replying to messages, and so on. 

There are several other features specific to Montage have 
were incorporated into the Motif version though. Perhaps 
most important is the on-line configuration system. The 
prototype version of Montage used the X Resource Data
base to define media tags and map them to handlers. We 
wanted to separate the configuration of the system into 
appearance customizations (which would be handled by 
the X Resource Database mechanisms) and the more Mon
tage-specific tag/handler mappings. One of the primary 
reasons for this was that we wanted users to be able to 
establish new mappings between tags and handlers with
out having to modify their X resource defaults. 

Thus, we defined a format for Montage configuration files 
that contains information about tag-handler mappings. 
One side benefit of this choice is that we can provide a 
function in Montage to automatically rewrite the configu
ration file; this would have been awkward had we coolin-

Montage: An X-Based Multimedia Mail System 



Conclusions, caveats, and Future Directions 

·· •:,, .......... .. .. . ..... ~ 
~=.. ~~ 
: !111::~·-•.._.•_•,...le!tle .. iillilll-........ - .. 1 I 
:::: ... ::::::::::: : .;: -.... :;;:: ::::::::: : ... :; , :, :: :, ::, :.·: .. :: :.: : ..... :::.:: __ ,_i:Y 
: ~IIG_~~-~ . ... . •........ ..... . . . . 

................... ~ ....... ..... .... ... ! 

Icon 

View 

Edil 

Print 

CanwttTa 

Fl.., 

..... .O.tM.~ .. ........ .... .. 

l.~~~~_., · . : 

[~ ... ~· 
!~...-. ;, 

I I 
I I 
I I 
I I 
I I 

: ................ ~.~~~ .... ........... ! .......... ....... ~~~ ................ ; .. .............. ~~~ ............. ..! 

FIGURE 2. The Media Configuration Panel 

ued to use the X Resource Database because rewriting 
resource files would have lost any comments contained in 
the files (and thus customizing Montage would have 
erased comments on other applications' defaults). 

Figure2 shows a Montage configuration panel for chang
ing tag-handler mappings. Clicking the Accept button 
changed the preferences for the current session only. 
Clicking Save causes Montage to rewrite its own configu
ration file. These configuration files are, by the way, sim
ple ASCII files and are very human-readable. The 
automatic configuration mechanisms simply provide an 
easy-to-use tool for customization by novice users. 

In addition to the basic handlers mentioned earlier (editor, 
viewer, and renderer), Montage also keeps some other 
information in its configuration database on a per-tag 
basis. These include: 

• Compressor Denotes the type of compression used on 
the tag in question (for example, I.ZW for text compo
nents, JPEG for images). 

• Icon The file to use for the icon image when a medium 
of the specified tag is used as an attachment. 

• Printer A handler for printing the specified medium. 

Montage: An X-Based Multimedia Mall System 

• Filter A handler for filtering the medium into text for 
display on a dumb terminal. 

• ConvertTo The name of a tag to try to convert this 
medium into whenever it is encountered. 

• Converter A handler which is used to perform the 
conversion to the new media type. 

This information allows users to change the behavior of 
Montage in a number of ways. 1be method of compres
sion can be changed to suit the particular medium being 
sent, icons can be chosen on a per-medium basis, handlers 
can be specified for printing and filtering, and so on. 

A note on the converter mechanisms. Some media which 
are received may not be in a format which the reader can 
view. The converter mechanisms provides a means for 
Montage to automatically perform type conversions to a 
new medium which can be viewed (that is, for which a 
renderer or viewer is defined). Converters can be chained 
to any arbitrary level, and Montage can detect and break 
cycles in the converter graph. 

8.0 Conclusions, Caveats, and Future 
Directions 

We feel that the current implementation of Montage serves 
to illustrate some useful concepts that. are important for 
generalizable, flexible electronic mail systems. We view 
the current system as an "advanced prototype;" that is, the 
system implements a number of nice features but it is not 
commercial-quality software. 

Currently, Georgia Tech is involved with licensing negoti
ations with several companies which wish to take Montage 
and turn it into a commercializable product. These compa
nies are interested in adding features (such as security) 
which we are ill-equipped to do because of time and 
money constraints. Nevertheless, we would like to see 
Montage released into the community as freely distribut
able software even if the negotiations succeed. 

In the area of future directions, we have several goals for 
Montage. The most important goal is support for the 
MIME standard for Internet multipart mail messages. We 
are also interested in exploring the domain of dynamic 
mail messages to a greater degree. In the current system, 
attachments are spatially collocated with the primary com
ponents they reference. We are interested in possibly 

7of8 



Acknowledgments 

exploring a time-based connection in which the main mes
sage body would be a dynamic component, such as video, 
and the attachments would be tied to a certain time point 
in the video and would scroll by at appropriate times. 

While the concept of renderers provides a powerful exten
sibility mechanism, the current implementation leaves 
much to be desired, both in terms of flexibility and ease 
of implementation. We would like to experiment with 
more complex Montage-to-renderer protocols, perhaps 
using some son of RPC-based mechanism. This would 
provide a greater degree of renderer control from within 
Montage (to suppon, for example, VCR-style controls on 
a video component). 

We are also interested in the use of extension languages 
which could be bundled with Montage to give it even 
greater power. Such a system would allow high-level 
interpretted components to be sent as message compo
nents. 

9.0 Acknowledgments 

Thanks to our sponsors for this work, BellSouth and the 
Georgia Tech Advanced Technology Development Center. 
This work would not have been possible without their gen
erous support. 

I would also like to thank Tom Rodriguez and Jens Kilian 
for the significant amounts of time and energy they have 
devoted to the development of this system. 

1 0.0 References 

[I] Nathaniel Borenstein. A Multimedia Message System 
for Andrew, in Proceedings of USENIX Winter Con
ference, February 1988. 

[2] Nathaniel Borenstein, and Ned Freed. MIME: Mecha
nisms for Specifying and Describing the Format of 
Internet Message Bodies, Internet Draft. 

[3] Barbara Chalfonte, Robert Fish, and Robert Kraut. 
Expressive Richness: A Comparison of Speech and 
Text as Media for Revision, in Proceedings of ACM 
SIGCHI Conference, 1991. 

[4] David Crocker. Standard for the Format of ARPA 
Internet Text Messages, Internet Request for Com
ment (RFC) 822, August 13, 1982. 

8 of 8 

[5] Keith Edwards, The Design and Implementation of 
the Montage Multimedia Mail System, Technical 
Report GIT -SERC-90/04, April, 1990. 

[6] Keith Edwards, The Design and Implementation of 
the Montage Multimedia Mail System, in Proceed
ings of IEEE Conference on Communication Soft
ware (TriComm), April 1991. 

[7] S. Guastello, M. Traut, and G. Korienek. Verbal Ver
sus Pictorial Representations of Objects in a Human
Computer Interface, in International Journal of Man
Machine Studies, July 1989. 

[8] Brenda Laurel, Tim Oren, and Abbe Don. Issues in 
Multimedia Interface Design: Media Integration and 
Interface Agents, in ACM S/GCH/ Proceedings, 
1990. 

[9] Jakob Nielsen. Hypertext and Hypermedia, Academic 
Press Inc., 1990 

[10] G. Rohr. Using Visual Concepts, in Visual Lan
guages, S. Chang, T. Ichikaw~ and P. Ligomenides, 
eds., Plenum Press, 1986. 

[11] W. Stallings. Handbook of Computer Communica
tions Standards, Volume 3: Department of Defense 
(DoD) Protocol Standards. Macmillan, 1987. 

Montage: An X-Based Multimedia Mall System 



Appendix 4 

Montage Beta Release User's Guide 

This document is the draft Montage user's guide. It is not yet complete, but does describe 
the basics of Montage configuration. 

-9-



March 10, 1992 

Montage 
Beta-Release 
User's Guide 

W. Keith Edwards 

Multimedia Computing Group, GVU Center 
College of Computing 
Georgia Institute of Technology 
801 Atlantic Drive 
Atlanta, GA 30332-0280 

This guide should provide information on installing and using the beta release of the 
Montage multimedia electronic mail system. The Montage release is currently in beta 
testing which means that you may find some bugs. This document contains instructions 
on reporting bugs to the Montage development group. Please note that this beta release 
is an opportunity for us to learn from you; any comments, suggestions, or gripes which 
you may have which would help us improve this software would be most helpful. 

General requests for information should be directed to the electron'ic mail address 
montage-info@multimedia. cc. gatech. edu. See the section Reporting 
Bugs and Suggestions for information on how to pass other infonnation on to the Mon
tage development team. 

Before you start using Montage be sure to check the section Caveats and Future Direc
tions for details on known bugs and parts of Montage which are not yet implemented. 

Introduction 

Montage is a multimedia electronic mail system which allows the composition, trans
mission, and reception of complex compound documents consisting of text, graphics, 
executable programs, and even audio and video clips (on workstations which support 
these media). 

Understanding the differences between Montage and some other electronic mail sys
tems may help you to use and understand the system better. This section describes some 
of the design philosophy behind Montage and highlights some of the more important 
features. 

1 



2 

Introduction 

Message Format 

Several characteristics distinguish Montage from other multimedia electronic mail sys
tems. First, Montage uses a fairly rigorous document fonnat Montage messages consist 
of a "main body" which may itself be made up of several components of various media 
types, and zero or more "attachments." Attachments allow Montage users to annotate 
documents which are exchanged in electronic mail. They are much like Postlt notes or 
margin notes on a physical paper document, and allow users to exchange, say, a report 
in progress and comment on it without changing the underlying document itself. In this 
case, the report would be the main body of the message, and users could annotate it with 
attachments of various media types (including textual rewrites of paragraphs, audio 
annotations, supporting charts and graphs, and so on). 

We have tried to emulate paper documents in this aspect of Montage. Rather than allow
ing an arbitrarily complex hypermedia document which may be difficult to compose and 
interpret, Montage restricts messages somewhat to (hopefully) achieve greater simplic
ity for both the author and the reader of the message. 

Extensibility 

A second characteristic of Montage which distinguishes it from other systems is its 
extensibility. One of the primary motivating goals of Montage was to produce a system 
which wasn't a "closed box." Many other electronic mail systems on the market restrict 
the types of media which you can ttansmit Some of the more complex of these systems 
allow you to send, for example, spreadsheet data. The catch is that the data is the fonnat 
supported by the spreadsheet built in internally to the mail system; often you cannot use 
your favorite word processors, spreadsheets, and other tools in conjunction with your 
mail system. 

Montage overcomes this limitation by allowing complete runtime extensibility by end 
users. Users can compose and view message components in virtually any medium, as 
long as they have a program on their system which "understands" that medium inter
nally. Adding support for new media is as easy as popping up a configuration panel on 
Montage and specifying some parameters for the system to use in dealing with the new 
medium. 

Montage accomplishes this by basically externalizing all medium-specific handling out 
of the mail system. The base mailer itself is very simple and only provides the funda
mental support for packaging, unpackaging, viewing, composing, and organizing mail 
messages. A Montage mail message is transmitted as a group of "components" along 
with a "table of contents" which tells Montage the types of the components and their 
relation to one another in the message. Montage itself associates no meaning with the 
type infonnation in the table of contents. Instead, the type is used as a key into a user
definable database which maps media types to external programs, or "handlers," which 
"know" how to interpret the medium in question. In this way, Montage can support new 
document fonnats, data types, and even executable programs without having to be 
recompiled to "build in" support for the new medium. 

Beta-Release 



Installation 

Transport Independence 

A third interesting characteristic of Montage is that it is built on top of existing mail 
transport agents, which are themselves fairly high level. In this way, Montage is largely 
transport-protocol independent This beta release of Montage functions over existing 
Unix mail transport (SMTP) links, which means that to the underlying mail transport 
system. Montage messages "look" just like normal Unix text messages. This allows 
Montage messages to be transmitted by a wide variety of systems and networks. This 
network transparency also means that when sending a message from host A to host B. 
only A and B need to have the Montage software present to interpret the message; to 
any intervening hosts the message simply appears to be a standard mail message and is 
thus transmitted through untouched~ 

Installation 

To be included 

Configuration 

Since one of the main goals of Montage was configurability, care must be taken to 
ensure that lh~ system is correctly configured when installed. Configuration is con
trolled by several factors at runtime: 

• Environment Variables 

• Configuration File(s) 

• Resource Database 

Montage uses several environment variables to control relatively simple personal con
figuration options: location of the config file, alternative mail spool files, and so on. The 
Configuration file itself controls how Montage maps media types to handler programs. 
The Configuration file is the "heart" of Montage's extensibility since it is in this file that 
support for new media can be enabled. The Resource Database is a standard X Wmdows 
application defaults file which governs the appearance characteristics of Montag~: color 
of windows, fonts, and so on. 

This section provides information on how to configure Montage for your system. 

Environment Variables 

Montage makes use of a number of environment variables to bootstrap the rest of the 
configuration process. These environment variables are explained below. Each of these 
variables affects the behavior of Montage on a per-user basis. Thus, if you want any of 
these variables to take a value other than they're default, you must set them either at the 
command line or in the login initialization script for the particular shell you are using. 

To set an environment variable in csh, do 

Beta-Release 3 



TABLE 1. 

4 

Configuration 

% setenv ENV_VAR_NAME new_value 

To set an environment variable in ksh or sh, do 

$ ENV_VAR_NAME=new_value; export ENV_VAR_NAME 

The environment variables used by Montage are described in Table 1. 

Montage Environment Variables 

NAME DEFAULT 

MONTAGERC SHOME/ .montagerc 

MMMAILDIR SHOME/MMMail 

SPOOLDIR /usr/spooVmail/usemame 

DESCRIPTION 

Specifies the location of the user's configura
tion file. 

Specifies where Montage will store mail which 
the user has "checked in." 

Specifies where Montage will look foi incom
ing mail. 

Most users will not need to set these environment variables to anything other than their 
default Note that at the current time, Montage does not support a system-wide configu
ration file. Thus, each user must either have a personal configuration file in his or her 
home directory, or must set the MONTAGERC variable to point to a centrally-stored 
configuration file. 

You may wish to set the SPOOLDIR variable to someplace else to avoid interfering 
with your normal mail processing (that is, so that Montage will not check in your "real" 
mail...remember that this is Beta-release software!) 

Configuration File 

The Montage configuration file maintains user preferences and the mapping between 
media and compression types and programs that "understand" how to handle these 
types. This information is stored in a configuration file so that it is saved between invo
cations of Montage. 

Future versions of the software will support a centralized system-wide configuration file 
which will be set up by a system administrator for a particular site. Users will then be 
able to keep their own personal configuration files that override and augment settings in 
the system-wide configuration file. The current version of Montage does not support this 
however, only one configuration file can be read in at start-up. Thus, it is probably best 
if each user keeps a personalized version of the configuration file in his or her home 
directory. 

The configuration file is an ASCII text file which has three sections: a preferences set
ting section, a compressor declaration section, and a medium declaration section. The 
preferences section saves user preferences between runs of Montage. The compressor 
and medium declaration sections establish the mapping between type names and han
dlers. 

Beta-Release 



Using Montage 

The exact format of the configuration file is beyond the scope of this document. and in 
fact, users should hopefully never have to modify the configuration file "by hand." 
Rather, Montage provides some fairly sophisticated tools for manipulating and automat
ically generating the configuration file via the Preferences menu on the Montage 
browser window (see the section Using Montage). Users may alter and add to their per
sonal configuration files and Montage will automatically rewrite the file itself, without 
the user ever having to invoke a text editor on the file. 

If Montage ever becomes hopelessly confused however, you can edit the configuration 
file by hand. Its syntax is fairly regular and hopefully self-explanatory. 

Resource Database 

Since Montage is based on the X Window System and, in particular, Motif 1.1, the stan
dard X configuration system can be used to modify the appearance and (to a lesser 
degree) the behavior of Montage. A full explanation of the X Resource Database mech
anisms is beyond the scope of this document If you are familiar with resource databases 
you are welcome to experiment with new settings in the Montage resource file. If not, 
you may want to just leave this file alone. 

The Montage resource file which comes with the distribution is called Montage.ad (the 
"ad" is for application defaults). If you want this resource file to be used system-wide 
you can install it in your Xll app-defaults directory (probably in /usr/lib/Xll/app
defaults or /usr/local/lib/X 11/app-defaults). If you don't do this, you will probably want 
to either append the file to your .Xdefaults file or use xrdb to load the file "by hand" 
from the command line (see the manual page for xrdb for details on doing this). 

Using Montage 

To be included 

Tips for Beta Testers 

To be included 

Caveats and Future Directions 

Since this software is in Beta release there are obviously problems with it (otherwise we 
would be in final release!) This section should give you some idea of things in Montage 
that are either not implemented or are known not to work. Also we will go into some of 
the future directions for this project. 

Beta-Release 5 



6 

Caveats and Future Directions 

Implementation Holes 
There are several "features, in Montage which, while they may appear on menu items, 
do not work yet Please be aware of these so that you don't inadvertently lose a mail 
message by selecting a feature which is not implemented! 

File Menu 
The New Browser and Read MBox File menu items are not implemented. 

Folder Menu 
The Rename Folder and Write MBox File menu items are not implemented yet. 

Message Menu 
The Print and Write MBox File menu items are not yet implemented. 

Preferences Menu 
The Address Book and Iconify menu items are not implemented yet 

Help Menu 
No online help is currently available. 

Configuration Options 
The Unknownlcon, Show Headers, LogFolder, LogOutput, and EncryptOutput configu
ration options are not implemented (thus changing these options in the configuration file 
or via the Options panel will have no effect). 

Preferences Panels {Media, Compressors, and Options) 
The behavior of the Option Menus on these panels is not completely finished. The 
menus can be used to set preferences but will not change in response t~ user input in 
other areas of the panels. 

The File Selector popups in the Options Panel don't work yet 

Known Bugs 
This list is only the bugs known since we began our official bug list There are probably 
many more not on this list. Please submit a bug report if you find any others. 

• If the UseTrashcan option is enabled but the trashcan folder doesn't exist, Montage 
crashes whenever a message is deleted. The "correct, behavior should be to create 
the trashcan folder if it doesn't exist 

• If two messages with the same name (message number) are deleted from two differ
ent folders, then the first message with that name in the trashcan gets overwritten. 
Message numbers in the trashcan should have their own ordering and behave just 
like other folders. 

Future Goals 
Obviously, we hope to gain many ideas for future directions from you, our beta testers. 
There are some fairly short-term goals we have in mind for the system however. Please 

Beta-Release 



.. Reporting Bugs and Suggestions 

let us know how important these goals are to you to help us gauge where to expend our 
resources. 

• MIME support. The current implementation of Montage uses a non-standard mes
sage transpon format which is not readable by other multimedia mail systems. The 
reason for this is that at the time work on Montage was started there were not 
accepted standard for the transmission of complex multipart messages. Recently 
however, a proposed standard called MIME (Multipurpose Internet Mail Extension)
has emerged. We have been in contact with the developer of MIME and plan to sup
pon it in a near-future release of Montage. This would allow interoperability with 
any MIME-based mailers (including the Andrew Message System). 

• FAX!felepbony support. The primary goal of Montage is to support and enhance 
the effectiveness of asynchronous communication (as opposed to realtime communi
cation, such as a face-to-face meeting or telephone communication). To further Lhis 
end, we are looking at adding FAX 1/0 and telephone answering capabilities to 
Montage (with additional hardware suppon of course). This would allow you to 
examine your incoming faxes and phone messages in the same "mail box" in which 
you receive your other electronic communication. The system would also allow fax
ing of outgoing Montage messages to people who don't have access to a Montage
compatible electronic mail system. 

• Address books. Since the goal of Montage is to suppon interpersonal communica
tion as flexibly as possible, an "Address Book" mechanism that maintains user pref
erences about mail recipients may make electronic communication more powerful. 
In addition to providing basic mail alias capabilities, Address Books would keep 
user profile information, such as preferred mail reader programs, media types that 
users may not have access to, and so on. The Address Book would allow you to cus
tomize Montage so that outgoing mail to a user would be automatically convened 
into the most appropriate format for that user. Of course, the Address Book could 
also manage other information, such as phone numbers and addresses, which could 
be used by a fax subsystem. 

• Features, features, features. Montage is fairly weak compared to most electronic 
mail systems in the day-to-day features count This is because we have been devot
ing most of our time to building the framework of the system. There is probably an 
endless list of helpful features which could be added into the system. Send us your 
list of suggestions. 

Reporting Bugs and Suggestions 

Electronic communication is the best way to reach us to report bugs and suggestions. 
Please send any bug repons or suggestions that you may have to the electronic mail 
address montage-bugs@multimedia. cc. gatech. edu (Montage-format mail 
neither required nor desired for bug repons). 

Any requrests for basic information should be directed to the electronic mail address 
montage-info@multimedia.cc.gatech.edu. 

If you simply want to contact the development team, you can reach all of us at the 
address montage-builders@multimedia. cc. gatech. edu. 

Beta-Release 7 



8 

Reporting Bugs and Suggestions 

As a last reso~ you can send us physical mail at the following address: 

Beta-Release 

Montage Project 
c/o Keith Edwards 
Multimedia Computing Group, GVU Center 
College of Computing 
Georgia Tech 
Atlanta, GA 30332-0280 


