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SUMMARY

We present tools for a network topology based characterization of hetero-

geneity in multiagent systems, thereby providing a framework for the analysis and

design of heterogeneous multiagent networks from a network structure view-point.

In heterogeneous networks, agents with a diverse set of resources coordinate with

each other. Coordination among different agents and the structure of the underlying

network topology have significant impacts on the overall behavior and functionality

of the system. Using constructs from graph theory, a qualitative as well as a quan-

titative analysis is performed to examine an inter-relationship between the network

topology and the distribution of agents with various capabilities in heterogeneous

networks. Our goal is to allow agents maximally exploit heterogeneous resources

available within the network through local interactions, thus exploring a promise het-

erogeneous networks hold to accomplish complicated tasks by leveraging upon the

assorted capabilities of agents. For a reliable operations of such systems, the issue

of security against intrusions and malicious agents is also addressed. We provide a

scheme to secure a network against a sequence of intruder attacks through a set of

heterogeneous guards. Moreover, robustness of networked systems against noise cor-

ruption and structural changes in the underlying network topology is also examined.

xv



CHAPTER I

BACKGROUND AND INTRODUCTION

1.1 Heterogeneous Multiagent Systems

A network of agents, in which individuals with a diverse set of resources or capabili-

ties interact and coordinate with each other to accomplish various tasks, constitutes

a heterogeneous multiagent network. In recent years, heterogeneity has emerged as

an important aspect of multiagent and cooperative networks. Agents with assorted

capabilities and properties, when integrated together in the framework of a hetero-

geneous network, become specialized to achieve sub-goals efficiently. For instance, it

is shown in [1] that the reliability and lifetime of a sensor network can be increased

by introducing nodes in the network that are different in terms of power consump-

tion and communication capabilities. In [2], it is shown that heterogeneity can be

exploited to reduce the number of sensors required in a sensor network without com-

promising on the coverage and the broadcast reach of the network. Heterogeneity

among agents is explored to make a decentralized system more stable and efficient

in [3]. Several other applications of such heterogeneous systems have been studied

in various domains, including multirobot systems (e.g., [4, 5]), and wireless sensor

networks (e.g., [6]), to name a few.

Advantages of having multiple capabilities and resources through heterogeneous

agents come at a cost of added complexity within a system that can be traced back to

one of the following categories: (a) problem formulation and description in terms of

heterogeneous components, (b) inter-communication and inter-operation capabilities

among different agents, (c) inter-connection topology of a system, and (d) overall

efficiency and performance of the system. All of these issues are inter-related, and
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influence each other as shown in Fig 1.1.

Heterogeneous

Agents

Interconnection or

Network Topology

Problem Formulation

Heterogeneous

Multiagent Systems

Communication

Protocols

Performance and Efficiency Measures

Figure 1.1: Components of a typical heterogeneous multiagent system.

One of the challenges in heterogeneous networks is to optimally distribute agents

having different capabilities and resources. A part of the challenge is to articulate the

notion of heterogeneity in order to guide the analysis and design of heterogeneous net-

works in a systematic way. Heterogeneity in cooperative networks can be understood

along a number of dimensions. We can broadly classify the studies in this area into

two categories; one that quantify heterogeneity from agents’ perspectives including

functional or behavioral dissimilarities among individual agents (e.g., [7, 8, 9]), and

the relative number of non-homogeneous agents (e.g., [10, 11, 12]); the second cate-

gory measures heterogeneity in terms of the underlying graph structure of the network

with an aim to quantify the degree distribution among the nodes while treating all

the nodes similar1 (e.g.,[13, 14]).

The quantitative aspect of heterogeneity in the context of classification of agents

deals with the relative number of agents of different types that exist within a system.

A number of measures have been proposed to quantify this aspect. In economics,

1i.e., there is no distinction among the nodes to account for their functional or behavioral
differences

2



some popular measures to quantify the differences among population include, range

ratio, McLoone index, Atkinson index, coefficient of variation, Gini coefficient, and

Theil index (e.g., see [10, 11]). Each of these indices has its own merits and demerits

based on specific circumstances. These measures are significant towards analyzing the

effectiveness of various economic policies. In ecological and biological systems, pop-

ular diversity measures include, species richness, functional group richness, evenness,

Shannon index, Simpson index, Gini-Simpson index, and Berger-Parker index (e.g.,

[8, 15, 16]). All of these measures quantify in some way the number of different species

represented in a collection of individuals. These metrics are effectively used to exam-

ine the effects of biodiversity on ecosystem functioning and services (e.g., [15, 17]).

Similarly, heterogeneity in social networks has been exploited through various indices

including Herfindahl index and other entropy based diversification measures (e.g.,

[18]). It is to be mentioned here that in all these metrics, the notion of heterogeneity

in a network is quantified in terms of the relative number of various types of agents,

species, or populations. The functional differences among individuals in a system are

not accounted for.

To measure the qualitative differences among various classes of individuals within

a system, several other measures have been proposed and analyzed. These mea-

sures quantify the functional or behavioral heterogeneity among agents, i.e., how are

individuals different from each other? In ecological research, functional diversity ac-

counts for the range of things various organisms and species can do in communities

and ecosystems. Based on the choice of functional traits with which individuals can

be distinguished (e.g., variation in the functional characters, the complexity of food

webs, interaction with their environment and with each other, utilization of resources,

taxonomy etc.), various indices of functional diversity have been developed to study

and predict the impact of species on ecosystem and vice versa. These indices can

be broadly classified into the three categories namely, functional richness, functional
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evenness, and functional divergence (e.g., see [8]). These measures incorporate the

effect of complementarity and redundancy of co-occurring species to analyze the re-

liability of ecosystem processes [29].

Rao’s quadratic entropy [7, 30] (along with its variants) is also a popular and

widely used measure to quantify the degree of difference among individuals of different

species [9, 31]. The idea is to calculate the expected distance among any two randomly

selected individuals, where the distance function can be defined in many different

ways considering one or more characters of species (e.g., [16]). Other dissimilarity

measures include Hendrickson and Ehrlich index [34], which is a non-biased version of

Rao’s diversity coefficient; Warwick and Clarke index [35]; Gower similarity coefficient

[36]; and other taxonomic diversity measures [37, 38], in which innovations are made

by introducing differences between species. Several information theoretic measures,

based on Shannon entropy, have also been studied to quantify diversity and the degree

of difference among species (e.g., see [39, 40]).

From the perspective of the underlying graph structure of the network, degree dis-

tribution among the nodes within the network has been the central theme to quantify

network heterogeneity. Degree of a node v in a network is the number of nodes that

are directly connected or adjacent to v. If nk is the number of nodes having a degree

k, then the probability of randomly selecting a node with a degree k is Pk =
nk

n
, where

n is the total number of nodes. Degree distribution is the probability distribution

of these degrees over the whole network, and is a significant characteristic of many

network models such as scale free networks (having a degree distribution of power

law form), and the small world models (having an exponential degree distribution).

Many real world networks do not exhibit a well defined degree distributions such as

exponential or power law. Thus, various indices have been proposed to quantify the

heterogeneity of such networks in terms of the degree distribution. Some of the ex-

amples include degree variance, Collatz and Sinogowitz irregularity index, Albertson
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index, and Estrada index (e.g., see [33, 13, 14]. Entropy based heterogeneity measures

to quantify the degree inequality in graphs have also been proposed (e.g., see [32]).

It is to be mentioned here that all these measures aim to quantify the structure of

the network through the distribution of node degrees while treating all the nodes as

similar, i.e., there is no distinction among the nodes that accounts for their functional

or behavioral differences.

Similarly, the issue of heterogeneity in multirobot systems has been addressed

under various contexts. In [4], a distributed and behavior-based architecture is pro-

posed for heterogeneous multirobot networks, where the architecture allowed robots

to continually change their capabilities and update their performance for the com-

pletion of assigned tasks. In [12], the concept of hierarchic social entropy, which is

an application of Shanon’s information entropy, is introduced to quantify diversity

in a robot team, and at the same time measure behavioral differences among robots.

A dynamic role assignment based approach to distributed coordination in heteroge-

neous multirobot systems is presented in [41]. The approach relies on the broadcast

of utility functions, which define the capability of every robot to perform a task. The

significance of heterogeneity in the control systems of robots is highlighted in [42], in

which a team of robots is allowed to co-evolve their controllers for solving tasks with

various difficulty levels. In [43], a computational framework is presented to model

heterogeneous agents as well as the environment in which they are situated. Several

other studies have also explored heterogeneity in multirobot systems at behavioral

(e.g., [44, 45]) as well as hardware level (e.g., [46]).

Despite their merits, all these studies address one of the two attributes of cooper-

ative networks at a time, either agents’ classification or the topological properties of

the underlying graph structure. However, to obtain a holistic view of heterogeneity in

networks in which agents with a diverse set of capabilities coordinate with each other,
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a unified framework that incorporates agents’ classification as well as network topol-

ogy is needed. Similarly, in the context of resource allocation, coordination among

agents of various types and the structure of the underlying network has a profound

impact on the overall behavior and functionality of the system. In this work, we

focus on the issue of exploiting a connection between the structure of the informa-

tion exchange network and the diverse set of resources contained by agents within a

network. We approach this issue by developing an inter-connection topology frame-

work for heterogeneous multiagent systems with an aim to explore heterogeneity of

its elements in a constructive way [20, 21, 27]. Various aspects of heterogeneity in

multiagent networks are summarized in Fig. 1.2

Heterogeneity in Multiagent Systems

Classification of Agents Network Topology

Qualitative
Aspect

How agents are
“different”?
(functional,
behavioral

differences etc.)

Quantitative
Aspect

Relative
number of
agents of

various types.

Degree
Distributions

Distribution of
node degrees

over the
network

Modelling
Analysis
Applications
Impact on the over-
all behavior

Interactions among
different types of agents

Figure 1.2: Various aspects of heterogeneity in multiagent systems.

1.2 Domination in Graphs

Several concepts from domination theory in graphs are employed in this work to

formalize and study network topology based heterogeneity in cooperative networks.

Domination in graphs is an extensively studied domain in graph theory. As the

concepts of domination, covering, and centrality in graphs are largely inter-related, a

number of variants of the concept of domination in graphs have been developed. The
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basic object in a graph domination is a dominating set.

Definition 1.2.1 In a graph G(V,E) with a vertex set V and an edge set E, a

dominating set is a subset S of vertices such that every vertex in G is either in S or

adjacent to S. The minimum number of vertices in any dominating set of a graph is

the domination number of the graph.

As an example, consider a graph G(V,E), in which each vertex represents a city

and an edge between two vertices indicates transmission between cities because of a

transmission tower that is located on one of the cities. The goal is to find the minimum

number of transmitting towers so that every city either has a transmission tower, or

is in the range of at least one transmission tower. The minimum number of required

towers is equal to the domination number of the corresponding graph, and the towers

need to be located on the vertices in the dominating set. Fundamental concepts

related to the notion of domination along with various applications are detailed in

[47].

The notion of domination in graphs finds a number of applications in many dif-

ferent fields, including design of efficient algorithms for routing in ad hoc wireless

networks (e.g., [50]), coverage optimization in sensor networks (e.g., [51]), energy

conservation in sensor networks (e.g., [52, 53]), facility location problems in opera-

tions research (e.g., [54]), and information propagation in social networks (e.g., [57]),

to name a few. As a result of the wide applicability of domination related concepts

in various fields, multitude of variants of domination have been introduced by adding

various constraints and restrictions on the dominating set. Examples of domination

in graphs include, conected domination, in which all the vertices in a dominating set

must induce a connected sub-graph; k-distance domination, in which every vertex in

a graph must lie within a distance k ≥ 0 of some vertex within a dominating set;

multiple domination, in which every vertex in a graph must be dominated by at least
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k vertices in a dominating set for some k ≥ 1; and many more (e.g., [47, 48, 49]).

The basic idea among all these variants remains the same, i.e., to figure out a subset

of vertices within a graph that dominates the whole vertex set in a specified way.

We can broadly classify research in the field of domination in graphs into one of the

categories shown in Fig. 1.3.

Domination Theory

in Graphs

Models of Domination
(Variations, Generalisations, Extensions)

Theoretical

Results
Algorithms Applications

Topology

Design

Figure 1.3: Areas of research in the field of domination in graphs.

Results regarding theoretical aspects include, bounds on the domination number,

extending and generalizing various notions of domination, developing new mathemat-

ical techniques, and analysis of various domination related parameters. The problem

of determining the domination number of a graph is known to be NP-complete for

an arbitrary graph [58], which suggests a need for a thorough study and discussion

of the complexity issues and algorithmic aspects of domination in graphs. All these

studies make it possible to employ various domination related concepts for the anal-

ysis and design of network topologies that are optimal in some sense for a wide range

of applications.

Another related notion of significant interest is the maximum number of disjoint

dominating sets in a graph, referred to as the domatic number [59].

Definition 1.2.2 A domatic partition of a graph G(V,E) is a partition of V into

disjoint sets, V1, V2, · · · , Vk, such that each Vi is a dominating set. The domatic

number is the maximum size of a domatic partition.
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The concept of domatic partition is particularly useful in situations, in which

multiple facilities should be assigned to nodes in a manner that allows every node to

find all different types of facilities in its closed neighborhood. For example, let there

be a group of villages connected with each other through a network of roads. Every

village can be accommodated with a single facility from a set of facilities, say F =

{f1, f2, · · · , fk}. The objective is to distribute these facilities such that every villager

can find all of these facilities without travelling any farther from its neighbor village.

The maximum number of facilities that can be accommodated within this network is

equal to the domatic number of the underlying graph. Therefore, a domatic number

determines the capacity of a network to accomodate different types of resources in such

problems. The domatic partition problem is one of the classic NP-hard problems [60].

The domatic number for various graph families have been studied, including regular

graphs [61], interval graphs [62], circular arc graphs [63], strongly chordal graphs [64],

and others (e.g., see [65]).

As the types of resources, which are assigned to various nodes within a network,

exceed the domatic number of the network, there will always be a node missing at least

one resource type in its closed neighborhood. To deal with such situations, multiple

types of resources are assigned to a node. For instance, s different types of resources

can be assigned to a vertex instead of only one. Under such an arrangement, ks types

of resources can be assigned to a network with a domatic number of k. However, it is

shown in [66] that it may be possible to incorporate more than ks types of resources

in a network whose underlying graph has a domatic number of k. Thus, the ability

of a network to accommodate heterogeneous entities may improve significantly with

the leverage of assigning multiple resources to nodes.

In this work, we make use of these domination related concepts to model network

topology based heterogeneity in multiagent systems. In addition to the existence of

various types of agents, interactions and coordination among agents will be crucial in
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characterizing and exploiting heterogeneity in our model.

1.3 Exploiting Heterogeneity in Multiagent Systems

In a heterogeneous multi agent system, an agent locally performs some task by inter-

acting with its neighbors. In terms of the network topology based heterogeneity, the

extent and efficacy of the task depends on the number of heterogeneous components

involved in the task, that is to say how many different types of agents are present in

the neighborhood of an agent. In a network with r different types of agents, if an

agent v can interact with all r types in its closed neighborhood, heterogeneity of the

task performed by v will be maximal because v can exploit all r different functional-

ities available in its closed neighborhood. For the same reason, heterogeneity of the

task by an agent u, which has only one type of node available in its closed neighbor-

hood, will be minimum. If all of the nodes in a network are capable of performing a

maximally heterogeneous task, i.e., every node in a network has all r types of nodes

in its closed neighborhood, then the network will be completely heterogeneous with

r types of resources or capabilities [21].

1.3.1 Energy Efficient Heterogeneous WSANs

Wireless sensor and actor networks (WSANs) provide an effective solution to the

distributed sensing and response related problems. In such networks, information

gathered by the sensing nodes is made available to the actor nodes through a wireless

medium that utilize this information to make decisions and act upon the environ-

ment. A wide variety of applications of WSANs have been reported in environmental

monitoring, surveillance frameworks, attack detection, and manufacturing automa-

tion systems to name a few (e.g., [69, 70]).

Heterogeneity emerges as an important property of WSANs, in which sensors with

a varying set of sensing and transmission capabilities are deployed within some field of

interest. For instance, for the purpose of environment modeling, a set of temperature,
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air flow, and pressure sensors may be deployed in the field to observe various aspects of

the climate. Moreover, an actor present in the field may not have access to all sorts of

measurements by the sensors. Thus, actors rely on coordination and communication

with each other to acquire complete information under the automated architecture

of WSANs [69]. At the same time, managing the activity of sensor nodes through

efficient activity scheduling mechanisms is imperative for a longer lifetime of the

sensor network as they have limited power resources.

In this work, we address the issue of energy-efficient information gathering in

heterogeneous WSANs. A scheme is proposed in which actors utilize coordination

among themselves, and heterogeneity among sensors to deactivate a large portion of

originally deployed sensors of various types to preserve sensors’ power resources [25].

Under the initial deployment of sensors, if an actor v receives a particular type of

data either directly from a sensor, or by interacting with a neighbor actor, then as a

result of our scheme, v continues to receive same data but with only a small subset

of activated sensors. We formulate this problem in graph-theoretic terms, thereby

providing solutions using graph-coloring and graph-domination related concepts.

1.3.2 Efficient Complete Coverage Through Heterogeneous Disks

Coverage problems constitute an important class of problems in the domain of mul-

tiagent and multirobot systems. The primary objective is to deploy and distribute

agents with sensing capabilities to completely monitor a domain under consideration

while satisfying certain constraints and criteria. Coverage problem can find its roots

in computational geometry (e.g., [67, 68]). One of the primary problems there is

related to circle covering2; what is the most efficient way to place circular disks of

same radii to completely cover a region? The solution is provided in [67] stating

that the most efficient way that minimizes the overlap among disks is to place disks

2A circle covering is a configuration of overlapping circles with given radii to completely cover
some domain
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in an equilateral triangle lattice. In multiagent and sensor networks, circular disks

correspond to the sensing footprints of sensing nodes and minimizing overlap means

that power is consumed efficiently for the sensing operation.

In this work, we examine if efficiency of the circle coverings can be further increased

by using heterogeneous circular disks, i.e., disks with different radii. In fact, it is

shown that for complete coverage, configurations of heterogeneous disks exhibit better

efficiency as compared to the homogeneous case [28].

1.4 Eternal Security in Graphs

Security and protection against malicious agents and external intrusions is often re-

quired for a reliable operation of a network. Anomalous behavior of an individual

agent may result into an abnormal or inconsistent behavior of the overall system. This

situation demands a proper surveillance of the system as well as an efficient response

mechanism to counter any anomalies within the network. Problems related to search

and secure scenarios have been studied in the literature for various domains, includ-

ing computer networks, information systems, multi agent and multirobot systems, to

name a few. Under various settings, the objective remains the same, i.e., to detect an

external intrusion or an internal abnormality among agents, and effectively respond to

these anomalies. A number of schemes and strategies have been reported to address

these issues for various distributed and cooperative networks. These schemes include

cooperative minimum time surveillance algorithms [71], communication and connec-

tivity constrained surveillance problems (e.g., [72, 73]), distributed detection schemes

for observing abnormalities within agents (e.g., [74, 75]), the number of guards re-

quired for monitoring all agents (e.g., [76]), cooperative path planning for security

applications [77], and pursuit-evasion problems for security applications under various

constraints (e.g., [78, 79, 80]).

Since a multiagent network is often modeled by a graph, the idea of network
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protection against malicious agents can be associated to the notion of security in

graphs in some way. A graph-theoretic interpretation of search and secure problems,

initially addressed in [81], has been extensively studied in the literature (e.g., see

[82, 83]). In this proposal, we employ tools from domination theory in graphs along

with the notion of heterogenous guards to secure a network of agents against an infinite

sequence of intruder attacks. The concept of eternal security in graphs, introduced in

[84], is a variant of domination in graphs. It addresses the problem of making all the

nodes in a graph secure against an infinite sequence of intruder attacks by a certain

minimum number of guards, which are located on the vertices of a graph. An intruder

attack on a node (or a vertex) refers to any malicious activity on that node. A guard

is an agent that can detect and respond to an intruder attack within its range by

moving from one node to another along the edges of a graph. If these guards are

located in a graph in such a way that every node lies within a range of at least one

guard, the graph is secured against an intruder attack on any of its nodes. We may

call this location of guards as a secure configuration. The movement of a guard from

one node to another to neutralize a threat may disturb this secure configuration, and

leave a subset of nodes un-secured since these nodes may not lie in the range of any

guard in the updated configuration.

As an example of eternal security, consider a graph shown in Fig 1.4(a), in which

two guards g1 and g2 are securing the vertices of the graph where each guard can

detect and respond to an attack on an adjacent vertex only. In the case of an attack

on a vertex indicated by an arrow, guard g1 moves towards it, which results in an un-

secure configuration since the circled vertices have no guard in their neighborhoods.

In this example, the problem is that the number of guards is not sufficient. In Fig

1.4(b), there are three guards g1, g2, and g3. Each guard is capable of detecting and

responding to an attack on an adjacent vertex. However, after two intruder attacks,

the configuration of the guards is unable to secure all the vertices. Though the
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number of guards is sufficient in this case, the strategy for the movement of guards

to counter intruder attacks is not appropriate. In Fig 1.4(c), the number of guards

is still three but the movement strategy of guards to counter intruder attacks is such

that the resulting configuration is always secure, i.e., for every vertex there always

exists a guard to secure it. This makes the graph eternally secure against a sequence

of intruder attacks.

· · ·

(a) (b)

(c)

g1

g2

g1

g2

g1 g2 g2 g2g1 g1

g3 g3 g3

g1 g2 g1 g2

g3

g3 g3 g3
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Figure 1.4: (a) Two guards are not sufficient to eternally secure a graph. (b) The
movement of guards result into an unsecured configuration after two intruder attacks.
(c) The graph is eternally secured by three guards.

The idea behind eternal security is to secure vertices against an arbitrary sequence

of attacks. The objective is to determine the number of guards for given ranges, de-

ploy them within a graph, and outline a strategy for guards such that they always

maintain a secure configuration even after their displacement among various nodes.

These issues are highlighted in Fig. 1.5. Various results regarding the number of

guards required for the eternal security of graphs have been reported in the liter-

ature. In [56], number of guards required for the eternal security is related to the

domination number in graph, whereas in [85, 86], bounds on the number of guards are

provided in terms of the independence number of a graph. The relationship between

the vertex cover number and the number of guards is explored in [87]. In all these
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results, a guard can detect and respond to an intruder attack at a vertex that lies in

the immediate neighborhood of the guard, i.e., adjacent to the guard. At the same

time, all these studies focus on the number of guards required for the eternal secu-

rity without providing strategies for the movement of guards in the case of intruder

attacks. However, sole knowledge of sufficient number of guards is not enough for

the eternal security. The location of guards and their right moves is also crucial for

securing graph nodes against a sequence of intruder attacks. Moreover, a generic case

of guards with non-homogeneous ranges also needs to be investigated.

Securing Multiagent Networks -

A Graph Theoretic Model

Domination in Graphs

Eternal security in Graphs

Deployment of

Guards

Number of

Heterogeneous Guards

Movement Strategy

of Guards

Figure 1.5: The problem of securing a network against a sequence of intruder attacks
can be solved using the notion of eternal security in graphs.

Heterogeneous guards are particularly useful when security requirements vary for

various nodes. As an example, consider a network that needs to be secured against

a possible sequence of external attacks on its nodes. Furthermore, assume that there

are certain nodes that are more sensitive or critical than the others, and require

an immediate consideration in case of an attack. Thus, a secure configuration of

guards is needed at all times with an added constraint that the distance between

the critical nodes and the guards should be lesser than a certain value, say r1 path

lengths, whereas the distance between the guards and the remaining (non-critical)

nodes can be relatively large, say r2 ≥ r1. In this scenario, eternal security of a graph
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through a set of guards having different ranges (r1 and r2) can be more effective and

useful as compared to the security of a graph through a set of homogeneous guards.

Furthermore, the energy consumption of guards varies with their ranges (e.g. a guard

with a longer range consumes more energy), so an energy-efficient security solution

is also possible when guards with different ranges are deployed within the system.

In this work, we study the issue of eternal security in graphs in a systematic way by

connecting together all of its major components, including number of guards, deploy-

ment of guards, and their movement strategy in case of an attack [22]. An algorithm,

specifying an appropriate placement as well as movement strategies for guards in case

of intruder attacks, is also presented. Eternal security in graphs through heteroge-

neous guards, which may have different ranges from each other, is also investigated.

1.5 Robustness Issue in Networked Systems

The issue of making networks reliable and resilient is one of the integral matters of

the network design process. In Section 1.4, we discussed one aspect of this broader

issue of reliability in networks in terms of securing a multiagent network against

intruder attacks and malicious agents. Another dimension of reliability and consistent

performance is the robustness of networked systems against noise corruption and to

the structural changes in an underlying network topology. Robustness in networked

systems can be further studied from two different perspectives. Firstly, how well a

system behaves in the presence of noise, i.e. robustness against noise or functional

robustness, and secondly what is the effect of change in network topology (due to

edge or node failures) on the performance of such systems, i.e., structural robustness.

Both of these aspects have been studied in the literature and various indices have

been proposed to measure them. Edge (vertex) connectivity, algebraic connectivity

as introduced in [88], betweenness [89], information centrality, toughness and other

spectral measures (e.g., see [97]) are some of the parameters that have been used to
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quantify structural robustness in graph structures. Robustness of networks, in which

agents implement consensus protocols in the presence of noise, has been addressed

by providing various distributed algorithms and schemes to minimize corruption of

noise in such systems [95, 96, 93, 91]. Most of the studies on structural robustness

and robustness against noise seem to be independent of each other, focusing on either

one of the aspects. Here, we show that both of these robustness view-points are in

fact, related to each other and therefore, can be measured simultaneously by a same

parameter.

In [94], Kirchhoff index of a graph is introduced through the notion of effective

graph resistance. The idea is to obtain an electrical network from a graph by replacing

each edge with a unit resistance. The total electrical resistance between any two

nodes in such a network is the effective resistance between the corresponding vertices

of a graph. The sum of all pair-wise effective resistances between vertices is the

Kirchhoff index, Kf , or the effective resistance of a graph. A network of agents can

be modeled by an undirected graph, in which vertices represent agents and edges

are the information exchange links among agents. Recently, it is shown in [91] that

functional robustness of systems, in which agents update their states by a linear

consensus protocol in the presence of additive white noise, can be measured by the

Kirchhoff index of the underlying graph of the network. On the other hand, in [90]

it is demonstrated that the effect of edge failures on the overall connectivity of a

graph can be quantified by the effective graph resistance, which is equivalent to the

Kirchhoff index of the graph (as shown in [94]). Thus, both aspects of robustness can

be specified by an exactly same graph invariant.

In this work, we further explore this relationship between structural robustness

and functional robustness (robustness due to noise) in multiagent systems through

the Kirchhoff index of the underlying network topology. We investigate the role of

various network topologies on the robustness property of these systems. A systematic
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way to construct robust network structures is then provided. In particular, we define a

graph process to obtain maximally robust graph structures at each step of the process

by an optimal addition edges. Moreover, a relationship between the symmetry of a

network structure and its robustness is also discussed [23].

1.6 Organization

All of the issues and problems introduced in this chapter are investigated in de-

tail in upcoming chapters. Heterogeneity related matters in multiagent systems are

addressed in Chapters 2, 3, and 4, whereas security and robustness for reliable func-

tioning of networks is the main focus of Chapters 5 and 6. In Chapter 2, a network

topology based design of heterogeneous networks is presented using graph-theoretic

concepts. The related results are published in [20, 21, 26, 27]. The framework devel-

oped is then utilized in Chapter 3 to design an energy efficient data collection scheme

in heterogeneous wireless and sensor networks [25]. The value of heterogeneity among

agents is explored in Chapter 4 to obtain efficient solutions to the complete coverage

problem in multiagent and multirobot systems. The results are documented in [28].

Security of multiagent networks from a sequence of external intrusions is addressed in

Chapter 5, and the related results are published in [22]. The notions of structural and

functional robustness, and inter-relationship among them are elaborated in Chapter

6, and results are published in [21].
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CHAPTER II

NETWORK TOPOLOGY FOR THE DESIGN OF

HETEROGENEOUS NETWORKS

Heterogeneity has emerged as an important aspect of multiagent systems, in which

agents with different capabilities and resources interact with each other to perform

various complex tasks. In this chapter, we aim to provide a framework for a net-

work topology based characterization of heterogeneity in multiagent and cooperative

networks that also incorporates distinctions among agents of various types. Coor-

dination and interactions among agents are modeled using constructs from graph

theory. A graph coloring problem is then formulated to examine an inter-relationship

between the network topology and distribution of agents with assorted capabilities in

heterogeneous networks. As a result, we will be able to answer how agents with differ-

ent resources can be distributed within a network to maximally exploit the available

resources through local interactions.

2.1 Graph Coloring Based Model of Heterogeneous Net-
works

Graph-theoretic tools are frequently applied to model and analyze various cooperative

networks including sensor networks, multi-agent and multi-robot networks. A network

is modeled by a graph G(V,E) in which the vertex set V represents agents and the

edges in the edge set E correspond to interactions among agents. In the case of

heterogeneous networks, in which agents may be different from each other in terms of

their resources or capabilities (for instance, sensing, actuation, dynamics, capabilities,

resources, hardware, or software etc.), heterogeneity can be modeled by associating

a unique color (or label) with each resource type available in the network. Next, all
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of the vertices in an underlying graph of the network are assigned colors (or labels)

in accordance with the resources contained by the corresponding agents. A vertex

may have multiple labels if the corresponding agent has multiple types of resources.

In such heterogeneous networks, agents interact and utilize each others’ resources to

accomplish various tasks. The availability of resources of different types in the local

neighborhood of an agent determines the agent’s overall capability to perform various

tasks. The inter-relationship between the network topology and the distribution of

agents with various types of resources can be studied through the graph coloring

formulation in which vertices are assigned labels in accordance with the resources

contained by the agents.

Throughout, a graph G(V,E) with a vertex set V and an edge set E, is a simple

undirected graph. An edge between nodes vi and vj is denoted by vi ∼ vj . The open

neighborhood of a vertex v ∈ V (G), denoted by N (v), is the set of vertices adjacent

to v. Its closed neighborhood, denoted by N [v], is N (v) ∪ {v}. The degree of a

vertex v, deg(v), is the cardinality of N (v). The minimum degree of a graph, δ(G),

is min{deg(v) | v ∈ V } and the maximum degree of a graph, ∆(G), is max{deg(v) |

v ∈ V }. We will use the terms color and label interchangeably.

Let r = {1, 2, · · · , r} be a set of labels that represents r different types of resources

(or capabilities) available within a heterogeneous network. Furthermore, the vertices

are assigned labels according to the map,

f : V −→ 2r

2r is the set of all subsets of r. f(v) is a subset of resources contained by agent

v, which interacts and utilizes the resources of its neighbors to perform some task.

Thus, heterogeneity of an agent v within the network depends on the resources (or

capabilities) contained by v and its neighbors and can be defined as

H(v) =
⋃

u∈N [v]

f(u) (1)
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Moreover, an agent is maximally heterogeneous within the network whenever

H(v) = r, as v can exploit all different functionalities and resources available within

the network by interacting with its neighbors. Thus, from the network topological

view-point, we define a completely heterogeneous graph as

Definition 2.1.1 A graph G(V,E) in which every v ∈ V is assigned a subset of labels

f(v) from the set r = {1, 2, · · · , r}, is completely heterogeneous with r labels if

H(v) = r, ∀v ∈ V

Agents, which are the individual components in a heterogeneous network, coop-

erate and complement each others’ expertise and resources, thus allowing the overall

system to exhibit significantly greater functionalities. In a completely heterogeneous

network as defined in Definition 2.1.1, every agent is capable of exploiting a complete

set of resources and functionalities available within the network to perform various

tasks by working in conjunction with its neighbors.

2.1.1 Examples

Consider an industrial location where some manufacturing process depends on en-

vironmental conditions, including temperature (t), light (`), humidity (h), and air

pressure (p). A specific environmental condition, say ω(t, `, h, p), which depends on

all of the above parameters, is needed to be maintained to get a desired yield. Sensors

for each of the above parameters t, l, h and p are mounted at various data collection

points, which are inter-connected with each other and exchange data. The environ-

mental condition ω(t, `, h, p) is computed at every such data collection point. The

distribution of sensors with assorted sensing capabilities constitutes a heterogeneous

network. It is further assumed that owing to some constraints (e.g., hardware, power,

economical etc.), only a subset of sensors can be mounted at each data collection

point. Since all four parameters are needed for the computation of ω(t, `, h, p), sen-

sors need to be distributed in such a way that all of the four types of sensors are
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available in the closed neighborhood of every data collection point. In other words,

underlying graph of the network needs to be completely heterogeneous with the set

of labels {t, l, h, p} as shown in Fig. 2.1.

t, ` h t, p

t, h

t, h `

p `, h

t, p

t, ` h t, p

t, h

t, h `

p `, h

t

G1 G2

Figure 2.1: G1 is a completely heterogeneous graph with four labels. The labeling
set is {t, h, l, p}. G2 is not completely heterogeneous as label p is missing from the
closed neighborhoods of circled nodes.

As another example, consider a society of some ‘species’, in which each member

of the society has been assigned a specific role. Some members are food providers,

some are shelter providers, while others hold the task of providing security to the

members they interact with. In such a society, every member depends on other

members to ensure the availability of all the facilities. For instance, a food providing

member must interact with a shelter provider and a security provider for shelter and

security respectively. This kind of cooperation constitutes a heterogeneous network,

in which availability of all the resources to each member of the society is possible if

the underlying graph of the network is completely heterogeneous with three distinct

labels.

2.1.2 Major Issues Related to the Notion of Completely Heterogeneous

Graph

The notion of completely heterogeneous graph has three major aspects in the context

of heterogeneous cooperative networks. First, given a colored graph, how can we

analyze the distribution of colors to nodes, i.e., determine in a systematic way which
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nodes are missing colors in their closed neighborhoods? what is the most deficient

color in the network? which edges or nodes are relatively more ‘crucial’ or signifi-

cant? This analysis will provide a way to transform a given coloring of a graph to

a completely heterogeneous one through simple graph operations, such as adding or

removing certain edges.

Second, given a coloring set r, and a constraint on the maximum number of colors

each node can have, is it possible to color nodes to get a completely heterogeneous

graph? For instance, in Fig. 2.2, it is impossible to color G1 to get a completely

heterogeneous graph with five colors if each node is allowed to have at most two

colors. This issue is significant in characterizing network topologies in the sense

that it deals with the overall capability of the network to incorporate heterogeneous

resources.

Third, once we know that a labeling scheme exists to make a graph completely

heterogeneous with a certain number of labels and constraint on the number of labels

each node can have, how can we assign colors to nodes to achieve such a labeling

scheme? An example is illustrated in Fig. 2.2.

24

12

35

15

34 23

15

v1

v2

v3

v4

v5

v6

v7

12

35 24

15 15

34 35

v2 v5

v4 v7v1
v3 v6

12

35 24

15 15

34 23

v2 v5

v4 v7v1
v3 v6

G1 G2 G3

Figure 2.2: G1 can not be made completely heterogeneous with five labels by assign-
ing a maximum of two distinct labels to each node. Although it is possible to assign
two colors to each vertex in G2 and obtain a completely heterogeneous graph with
five colors, v6 is missing label 2 in its closed neighborhood under the given labeling.
In G3, each vertex has a complete set of five labels in its closed neighborhood.
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2.2 Distribution of Heterogeneous Agents within a Network

In this section, we analyze distribution of resources or capabilities in heterogeneous

cooperative networks using the model introduced in Section 2.1. Various tasks per-

formed by individual agents in such networks depend on the resources available lo-

cally to the agents. Thus, information regarding the missing resources in the closed

neighborhoods of agents along with the interactions needed to make these resources

available to agents is crucial. We address these issues in this section.

Given a graph with n nodes, in which each node vi is assigned a subset of labels

f(vi) from the set of labels r = {1, 2, · · · , r}. We define a color matrix, denoted by

C, as a binary matrix with dimensions n× r as follows:

Cij =







1 if j ∈ f(vi), where f(vi) ⊆ r

0 otherwise.
(2)

In (2), f(vi) indicates the colors (labels) assigned to the vertex vi. The column

index of C indicates the color (label), thus Cij = 1 means that the color j has been

assigned to the vertex vi.

Using the color matrix C, and the adjacency matrix A of the graph, we define

another integer matrix of dimensions n × r, named as the color distribution matrix

as follows:

Φ = AC, (3)

where A = (A+ I). Here, I is the identity matrix of dimensions n× n.

The color distribution matrix gives information regarding the distribution of vari-

ous colors within the network. In fact, it tells us about the exact number of different

colors available in the closed neighborhood of any node.

Lemma 2.2.1 Φij is the number of nodes with the color j in the closed neighborhood

of node vi.
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Proof. Entries in the ith row of matrix A, denoted by Ai, are 1 only for the vertices

in N [vi], and 0 otherwise. Entries in the jth column of C, denoted by Cj, are 1

only for the vertices with the color j, and 0 otherwise. Thus, AiCj is the number of

vertices that have color j in the closed neighborhood of vertex vi.

The color distribution matrix turns out to be a useful object in characterizing

the distribution of colors to the vertices within a graph. For instance, it allows us

to determine extra edges required to transform a given labeling of a graph into a

completely heterogeneous one. In fact, Φij = 0 means that vi is missing color j in its

closed neighborhood. Thus, an extra edge is needed to connect vi to some vu with

a color j. Upper and lower bounds on the number of extra edges required to get a

completely heterogeneous graph with r labels from a given coloring of G are presented

in the following result.

Theorem 2.2.1 Let s be the maximum number of labels assigned to any vertex in

a graph G. The number of extra edges E , needed to get a completely heterogeneous

graph with r labels from a given coloring of G is

⌈
z(Φ)

2s

⌉

≤ E ≤ z(Φ), (4)

where z(Φ) is the number of 0’s in the color distribution matrix Φ, for the given

coloring.

Proof. Let vi ∼ vj be an extra edge connecting vertex vi with colors κ1, κ2, · · · , κs,

to vertex vj with colors τ1, τ2, · · · , τs. Since every vertex can have at most s distinct

colors, vi ∼ vj can add at most s missing colors in N [vi] and also at most s missing

colors in N [vj]. This is possible whenever vi is missing colors τ1, τ2, · · · , τs in N [vi]

given by Φiτ = 0, ∀τ ∈ {τ1, · · · , τs}, and vj is missing κ1, κ2, · · · , κs in N [vj ], given

by Φjκ, ∀κ ∈ {κ1, · · · , κs}. In this case, vi ∼ vj edge will change 2s zero entries in

the Φ matrix to ones. In any other case, i.e., vi has at least one of the τ1, τ2, · · · , τs
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colors in its closed neighborhood or vj has at least one of the κ1, κ2, · · · , κs colors in

N [vj], the number of zeros in Φ that will be converted to 1 will be less than 2s. Thus,
⌈
z(Φ)
2s

⌉

≤ E .

The upper bound is straight forward as Φiτ = 0 means that vi is missing the color

τ in N [vi], and the color τ can always be made available in N [vi] through the addition

of a single edge vi ∼ vj , where vj is any vertex with the color τ .

As an illustration, consider G shown in Fig. 5.4. Every node has at most two

labels from the set of five labels, given by {1, 2, 3, 4, 5}. The corresponding C and Φ

matrices are,

C =
















1 0 1 0 0

0 0 0 1 1

0 1 0 0 1

1 1 0 0 0

0 0 1 1 0
















, Φ =
















1 1 1 1 2

2 2 1 1 2

1 1 2 2 2

1 1 0 1 1

0 1 1 1 1
















.

Since Φ43 = Φ51 = 0, v4 is missing label 3 in N [v4] and v5 is missing label 1 in its

closed neighborhood. By adding E number of edges, where 1 ≤ E ≤ 2 (by Theorem

2.2.1), we can transform G into a completely heterogeneous graph. Note that by

adding a single edge, v4 ∼ v5, we get a completely heterogeneous graph with five

labels.

2.2.1 Redundant Edges

In dynamic networks, edges may be lost. These edge deletions may take away certain

resources from the neighborhood of an agent. Thus, we need to characterize edges

whose deletion is not critical in the sense that their removal will preserve the number

of resources available in the neighborhood of any agent. Let us define the deficiency

of a node v as the number of colors from the coloring set {1, 2, · · · , r} that are missing

in N [vi]. Similarly, deficiency of a network is the sum of all the node deficiencies.
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v1

v2 v3

v4 v5

(a) (b)

1, 3

4, 5 2, 5

1, 2 3, 4

(c)

1, 3

4, 5 2, 5

1, 2 3, 4

G

Figure 2.3: (a) A graph G has five vertices. (b) Two distinct labels are assigned to
each vertex of G from the labeling set, {1, 2, · · · , 5}. (c) As label 3 is missing from
N [v4], and label 1 is missing from N [v5], v4 ∼ v5 edge is needed to make G completely
heterogeneous with five labels.

Based on this notion, we define a redundant edge to be the one whose deletion does

not increase the deficiency of the network.

Φij = 1 means that vi has only one neighbor with the color j. Thus, an edge

between vi and that j colored node is not redundant. Similarly, Φij > 1 implies that

vi has multiple nodes with the color j in N [vi]. As a result, there may be a redundant

edge between vi and some of its neighbors.

Theorem 2.2.2 Let vi be a node with colors κ1, κ2, · · · , κs, and vj be its neighbor with

colors τ1, τ2, · · · , τs. An edge vi ∼ vj is redundant if and only if Φiτ1 ,Φiτ2 , · · · ,Φiτs,

and Φjκ1 ,Φjκ2, · · · ,Φjκs
are all greater than 1 at the same time.

Proof. (⇒) Let vi ∼ vj be a redundant edge. Then, by definition, it means

that vi has at least two neighbors for each of the colors τ1, τ2, · · · , τs in N [vi], i.e.,

Φiτ1 ,Φiτ2 , · · · ,Φiτs are all greater than 1. Similarly, for vj , the redundancy of a

vi ∼ vj edge implies that for each of the colors, κ1, κ2, · · · , κs, vertex vj has at least

two neighbors in N [vj], implying that Φjκ1,Φjκ2, · · · ,Φjκs
are all greater than 1.

(⇐) Assume vi ∼ vj is not redundant, then at least one of the following is true.

(a) there exists a τ ∈ {τ1, τ2, · · · , τs}, such that vi has only vj as a τ colored

vertex in N [vi], i.e., Φiτ = 1 for some τ ∈ {τ1, τ2, · · · , τs}. (b) there exists a κ ∈

{κ1, κ2, · · · , κs}, such that vj has only vi as a κ colored vertex in N [vj], i.e., Φjκ = 1
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for some κ ∈ {κ1, κ2, · · · , κs}.

In both cases, Φiτ1 ,Φiτ2 , · · · ,Φiτs and Φjκ1 ,Φjκ2, · · · ,Φjκs
, are not all greater than

1 simultaneously, proving the required result.

As an example, consider the graph in Fig. 2.4. Note that v2 has labels 4, and 5,

while v3 has labels 2, and 5. In the color distribution matrix, Φ22,Φ25,Φ34, and Φ35

are all greater than 1. By Lemma 2.2.2, v2 ∼ v3 edge is redundant and its deletion is

not increasing the deficiency of any node in the network.

v1

v2 v3

v4 v5

(a) (b)

1, 3

4, 5 2, 5

1, 2 3, 4

(c)

1, 3

4, 5 2, 5

1, 2 3, 4

Figure 2.4: All the vertices in the graph are assigned two distinct labels from the
set, {1, 2, · · · , 5}. v2 ∼ v3 edge is redundant. Removing this edge will not increase
the deficiency of any node.

2.2.2 Most Deficient Color in the Network

The most deficient color in the network is the one that is missing from the closed

neighborhood of maximum number of vertices in G. The jth column of Φ tells about

the availability of the color j in the closed neighborhood of all the vertices in G. By

Lemma 2.2.1, Φij = 0 means vi does not have a color j in N [vi]. Thus, the column

index of Φ with the maximum number of zeros will be the most deficient color in the

given labeling of G.

2.2.3 Effect of Node Deletion on the Labeling of Vertices

The deletion of a vertex from a graph may increase the deficiency of the remaining

vertices. If vertex vi with color κ is the only vertex with the color κ in the closed

neighborhood of vertex vj, deleting vi will make vj deficient in κ. However, if vj
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has more than one vertices with the color κ in N [vj], which is indicated by Φjκ ≥

2, removal of vi will not increase the deficiency of vj for the color κ. Using this

observation, we write a matrix U , in which Uij is the number of vertices that will

become deficient in color j upon the deletion of vertex vi from the graph G. If C is

the color matrix, and Φ be the color distribution matrix, then

Uiκ =






|{vj : vj ∈ N (vi), and Φjκ ≥ 2}| , if Ciκ = 1

0 otherwise.

U is an integer matrix with dimensions n × r, where n is the total number of

vertices in G, and r is the total number of colors in the labeling of G. The ith row

sum of U indicates the increase in the deficiency of the network as a result of the

deletion of vi. If we define a critical node as the one whose removal from the network

maximizes the increase in the deficiency of the remaining network, then the row index

of U corresponding to the maximum row sum indicates the most critical vertex.

As an example, consider G shown in Fig. 2.5. The U matrix for G is,

U =
















1 0 1 0 0

0 0 0 2 1

0 2 0 0 1

0 0 0 0 0

0 0 0 0 0
















.

U13 = 1, indicates that a single vertex will become deficient in color ‘3’ upon the

removal of v1 from G. Note that both v2 and v3 are critical vertices here as both

second and third rows have a maximum row sum.
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v1

v2 v3

v4 v5

(a) (b)

1, 3

4, 5 2, 5

1, 2 3, 4

(c)

4, 5 2, 5

1, 2 3, 4

Deficient

in color ‘1’

Deficient

in color ‘3’

G

Figure 2.5: A graphG along with the labeling of its vertices from the set {1, 2, · · · , 5}.
Removal of v1 makes v2 deficient in color 3, while making v3 deficient in color 1. Thus,
deletion of v1 will increase the deficiency of the network by two, which is also indicated
by the row sum of the first row of U .

2.3 Heterogeneity in Terms of the Maximum Number of
Resources Available Within the Network

One of the primary characteristics of heterogeneous cooperative network is the maxi-

mum number of resources’ types that can be incorporated within the system under the

constraint that every node v can find every resource type in N [v]. In other words,

if r different types of resources are available within the network and each agent is

equipped with at most s of these resources, then the maximum value of r, denoted by

r∗, such that the the underlying graph of the network can be made completely hetero-

geneous with r∗ labels is a crucial attribute of heterogeneous cooperative networks.

In fact, in a completely heterogeneous network with r∗ different types of resources,

every agent finds all r∗ types of resources in its closed neighborhood to accomplish

various tasks. Thus, a higher value of r∗ implies that more types of resources can

be made available to the agents in a completely heterogeneous network. As a result,

agents can perform tasks of higher complexity. It is to be noted that for a given graph

G and a bound on the number of resources an agent can have, i.e., | f(v) |≤ s, if

r > r∗, then it is impossible to distribute resources among nodes to get a completely

heterogeneous graph with r labels. We utilize the notion of domination in graphs to

address this issue. A dominating set is a fundamental object in the field of domination
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in graphs.

As defined in Section 1.2, a set D is a dominating set if for each v ∈ V , either

v ∈ D, or v is adjacent to some u ∈ D. It is to be noted that if D is a dominating

set, then
⋃

u∈D
N [u] = V . A graph can have multiple disjoint1 dominating sets. A

related and important concept is that of the domatic number, which is the maximum

number of disjoint dominating sets in a graph. Thus, if Di is a dominating set of a

graph G and all the vertices in Di are assigned a label i, i.e., f(u) = i, ∀u ∈ Di, then,

i ∈ H(v), ∀v ∈ V . In other words, label i is available in the closed neighborhood of

every vertex in G. Furthermore, if the domatic number of a graph G is γ and every

vertex is assigned a single label, then by the definition of the domatic number, G can

be completely heterogeneous with at most γ labels, i.e., r∗ = γ.

The notion of so-called (r, s)-configuration [66] defined below is also helpful in this

context.

Definition 2.3.1 Let r = {1, 2, · · · , r} be a set of labels (colors). A function

f : V −→ [r]s,

where [r]s is a collection of all s-subsets of r, is called an (r, s)-configuration of a

graph G, whenever
⋃

u∈N [v]

f(u) = r, ∀v ∈ V .

Thus, the maximum value of r in an (r, 1)-configuration of a graph is the domatic

number of the graph. Moreover, if γ is the domatic number of the graph, it is obvious

that for s > 1, there always exist an (r, s)-configuration for r = sγ, i.e., each vertex in

the graph can always be labeled with at most s colors such that the overall graph is

completely heterogeneous with sγ labels. However, there are graphs for which (r, s)-

configurations exist for r > sγ. For example, cycle graphs Cn, in which n is not a

multiple of 3, have a domatic number of 2, but (5, 2)-configurations of such graphs

exist [66]. We present a sufficient condition for a graph to have an (r, s)-configuration

1i.e., intersection of distinct dominating sets is empty.
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with r = sγ + b s
2
c. A labeling scheme to obtain such a configuration can also be

derived using this condition.

We begin by defining some terms that will be used to prove Theorem 2.3.1, which

is the main result of this section.

Definition 2.3.2 (Minimal Partition of G): Let G be a graph with domatic number

γ, and vertex set V . A minimal partition of G, denoted by Π, is a partitioning of V

into γ + 1 disjoint sets such that,

Π = D1 ∪D2 ∪ · · ·Dγ ∪ VΠ, (5)

where Di is a minimal dominating set, ∀i ∈ {1, 2, · · · , γ}, and VΠ = V − (∪γi=1Di)

is the set of vertices that are not included in any minimal dominating set Di.

We term VΠ in (5) as the set of non-critical vertices with respect to the minimal

partition Π, and we note that VΠ ∩ (∪γi=1Di) = ∅.

At the same time, consider a minimal partition of G, denoted by Π, and let Dγ+1

be a dominating set such that VΠ ⊆ Dγ+1. Since dom(G) = γ, and VΠ is not a

dominating set, we have

Dγ+1 = VΠ ∪ IΠ,

where IΠ ⊂ (∪γi=1Di). We call a set IΠ with the smallest cardinality, a set of common

vertices with respect to a minimal partition Π.

The notions of minimal partition Π, set of non-critical vertices with respect to Π,

and set of common vertices with respect Π are shown in Fig. 2.6.

Theorem 2.3.1 Let G be a graph with domatic number γ. Let Π be a minimal

partition of G and IΠ be a set of common vertices with respect to Π. If there exists

another minimal partition of G, say Π̃ 6= Π, such that IΠ ⊆ VΠ̃, in which VΠ̃ is the

set of non-critical vertices with respect to Π̃, then G has an (r, s)-configuration with

r = sγ +
⌊
s
2

⌋
.
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v2

v1

v3

v4

v5

v6

v7

v8
IΠ = {v8}

Figure 2.6: A cycle graph, C8 having a domatic number γ = 2. A minimal partition
Π = D1 ∪ D2 ∪ VΠ, where D1 = {v1, v4, v7}, and D2 = {v2, v5, v8}, are minimal
dominating sets, and VΠ = {v3, v6} is the set of non-critical vertices with respect to
Π. We can take another dominating set D3 as D3 = VΠ ∪ IΠ, where IΠ = {v8} is a
set of common vertices with respect to a minimal partition Π.

Proof. Let Π =
γ⋃

i=1

Di∪VΠ, in which VΠ is the set of non-critical vertices with respect

to the minimal partition Π. Let Dγ+1 be a dominating set with Dγ+1 = VΠ ∪ IΠ, in

which IΠ is a set of common vertices with respect to Π. Assign
⌊
s
2

⌋
distinct labels

to all the vertices in a dominating set Di, for every i ∈ {1, 2, · · · , γ + 1}2. Under

this labelling scheme, the vertices in IΠ will have
(
2
⌊
s
2

⌋)
distinct labels as they are

included in two different dominating sets, including Dγ+1 and some other Di for

i ∈ {1, 2, · · · , γ}. Note that the vertices in IΠ are the only ones with
(
2
⌊
s
2

⌋)
labels,

and every v ∈ V has the set of
⌊
s
2

⌋
(γ + 1) labels in its closed neighborhood.

Consider another minimal partition of G, Π̃ =
γ⋃

i=1

Si∪VΠ̃, with VΠ̃ being the set of

non-critical vertices with respect to Π̃, and each Si being a minimal dominating set.

Let Π̃ be such that IΠ ⊆ VΠ̃. It means that every vertex in V − VΠ̃ has
⌊
s
2

⌋
labels.

Since Si ⊆ (V − VΠ̃) for any i ∈ {1, 2, · · · , γ}, every vertex v ∈ Si has
⌊
s
2

⌋
labels.

For every Si, assign
⌈
s
2

⌉
more unique labels to each vertex in Si. Since each Si is a

dominating set, every v ∈ V has a set of
⌈
s
2

⌉
γ unique labels in N [v]. Noting that

⌊
s
2

⌋
(γ + 1) unique labels are already available in the closed neighborhood of every

vertex, we get that all the vertices in V have now
⌊
s
2

⌋
(γ + 1) +

⌈
s
2

⌉
γ = sγ +

⌊
s
2

⌋

distinct labels in their closed neighborhoods. Since each vertex is assigned at most s

2
⌊
s
2

⌋
labels assigned to the vertices of Di are different from the ones assigned to the vertices in

Dj where i 6= j.
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distinct labels, we have an (r, s)-configuration of G with r = sγ +
⌊
s
2

⌋
.

As an example, consider a (5, 2)-configuration of C8. Domatic number of C8 is 2,

i.e., γ = 2. We consider two minimal partitions of C8, denoted by Π and Π̃, where Π

is shown in Fig. 2.6. For Π̃, we take Π̃ = S1 ∪ S2 ∪ VΠ̃, as shown in Fig. 2.7. Since

IΠ ⊆ VΠ̃, (5, 2)-configuration exists for C8.

v2

v1

v3

v4

v5

v6

v7

v8

1, 4

2, 3

1, 5

3, 4

2, 5

1, 4

3

2, 5

Figure 2.7: (a) Π̃ = S1∪S2∪VΠ̃, in which S1 = {v1, v4, v6}, and S2 = {v2, v5, v7} are
disjoint minimal dominating sets, and VΠ̃ = {v3, v8} is the set of non-critical vertices
with respect to Π̃. (b) A (5, 2)-configuration of C8.

2.3.1 Assignment of Miltiple Resources in R-Disk Proximity Graphs

The R-disk proximity graph model is frequently employed to model inter-connections

among nodes in multiagent networks. In such a model, a disk of radius R, which

represents the interaction range of a node, is associated with every node v that lies

at the center of the disk. A node forms an edge with other nodes if and only if they

exist within the R radius disk of the node. Applications of such a model include ad

hoc communication networks, wireless sensor networks (e.g., see [98]), multiagent and

multirobot systems (see e.g., [99]), and other broadcast networks with a limited range

transmitters and receivers, to name a few.

Analysis of (r, s)-configurations of R-disk proximity graphs is of significance, par-

ticularly in the context of heterogeneous multiagent systems. In this section, we show

that for a given s, R-disk graphs always have an (r, s)-configuration for r =
⌊
5s
2

⌋
under

some mild conditions. It is assumed that the agents equipped with multiple capabil-

ities or resources are lying in a plane, and interactions among them are modeled by

the R-disk proximity graph.
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We start by translating the geometric property of such graphs into a graph-

theoretic one by first defining the following special graphs. A graph G is a complete

bi-partite graph if there exists a partition of its vertex set, V = X ∪ Y , such that

an edge u ∼ v exists whenever u ∈ X and v ∈ Y . If |X| = x and |Y | = y, then a

complete bi-partite graph is denoted by Kx,y. Examples of complete bi-partite graphs

are shown in Fig. 2.8. We also define a double cycle graph, denoted by C4 •C4, as the

one obtained by identifying a vertex of C4 with a vertex of another C4, as shown in

Fig. 2.8. Furthermore,a graph G is said to be an H-free graph, if H is not an induced

sub-graph of G.

K1,6 K2,3C4 • C4

Figure 2.8: The double cycle graph, C4 • C4, obtained by identifying a vertex of C4

with a vertex of another C4, and complete bi-partite graphs, K1,6, and K2,3.

It is shown in [100] that K2,3 cannot be an R-disk graph. In the following Lemma,

it is shown that R-disk graphs are always K1,6-free.

Lemma 2.3.1 An R-disk proximity graph is K1,6 free.

Proof. Let G(V,E) be an R-disk proximity graph. Let v ∈ V , such that N (v) =

{v1, v2, · · · , vp}, where p ≥ 6. We define θ(vivvj ) to be the angle v makes with vi and

vj . If ‖vi, vj‖ is the euclidean distance between vi and vj, then it is easy to see that

‖vi, vj‖ > R, whenever θ(vivvj ) > 60o. Thus, vi, vj ∈ N (v) are non-adjacent if and

only if θ(vivvj ) > 60o. To have K1,6 as an induced sub-graph of G, there must be a

subset, Ñ (v) ⊆ N (v) with | Ñ (v) |= q ≥ 6, such that θ(xivxj) > 60o, ∀xi, xj ∈ Ñ (v).

This will give

q−1
∑

i=1

θxivx(i+1)
+ θxqvx1 > 360o, which is not possible. Thus, an R-disk

graph is K1,6-free.
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Since every R-disk graph is K1,6-free, so now we can focus on the results regarding

(r, s)-configurations of K1,6-free graph to study the resource assignment problem in

R-disk graphs. An important result regarding (r, s)-configurations of K1,6-free graphs

is stated below [26].

Theorem 2.3.2 For any positive integer s, a connected K1,6-free graph G with a

minimum degree of at least two has an (r, s)-configuration with r =
⌊
5s
2

⌋
whenever G

is not isomorphic to C4, C7, K2,3, or C4 • C4.

Proof. See Appendix A

Now, using Theorem 2.3.2, Lemma 2.3.1, and the fact that an R-disk graph can

never have a component isomorphic to K2,3 graph, we get the following result regard-

ing (r, s)-configurations of R-disk graphs.

Theorem 2.3.3 For any positive integer s, an R-disk proximity graph G with a min-

imum degree of at least 2 has an (r, s)-configuration with r =
⌊
5s
2

⌋
whenever G has

no component isomorphic to C4, C7, or C4 • C4.

Example:

Consider a group of robots deployed in a certain region D ⊂ R
2 for the purpose of

environment modeling of the location. The robots interact and exchange information

with each other, and this interaction is modeled by an R − disk proximity graph

model in which every robot v coordinates (form an edge in the underlying graph of

the network) with all robots that lie within a (euclidean) distance R from v.

For the purpose of environment modeling of D, we consider five different envi-

ronment parameters including temperature, relative humidity, air pressure, light, and

soil texture that are observed through various types of sensors. Each robot performs

some spatio-temporal data processing using the data of the five environmental param-

eters obtained from the sensors that are mounted on robots. If each sensor observes

a specific environmental parameter, five different types of sensors are needed.
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One possible course of action is to install all five sensors on each robot so that

robots can collect information of all parameters for further processing by themselves.

However, this might not be a feasible approach for one or more of the following

reasons: first a large amount of power supplies will be needed to keep all five sensors

operational, and power is always a limiting factor for a continuous operation of such

networks over an extended period of time; second a large number of sensors of each

type will be required which may not be cost effective; third mounting all sensors on a

single robot may not be feasible from hardware view-point in certain cases. Another

approach is to install a subset of sensors on each robot and utilize the fact that

robots exchange information with each other. But, this approach requires sensors to

be distributed among robots in such a way that each robot can obtain the data of

the missing parameters from its neighbor robots. In other words, sensors missing on

a robot are installed on the neighbor robots. This set-up requires a much smaller

number of sensors of each type for the overall operation of the system, thus, reducing

the overall energy consumption. For instance, if each robot is allowed to have at most

two of the five sensors’ types, then sensors need to be installed in such a way that

each robot can find a complete set of five distinct sensors in its closed neighborhood.

However, it is possible if and only if the underlying R-dsik graph of the robot network

has a (5, 2)-configuration. It is shown in Theorem 2.3.3 that every R-disk graph has

a (5, 2)-configuration under some conditions. Thus, it is possible to make a robot

network completely heterogeneous with five labels under the restriction that each

robot can have at most two labels. An example is illustrated in Fig. 2.9.

2.3.2 Assignment of Miltiple Resources in Cycle Graphs

Here, we analyze the maximum number of resources that can be made available in the

closed neighborhood of a node in a cycle graph under the constraint on the maximum

number of resources contained by a node itself. In other words, for a given s, what

37



2, 4

1, 3

2, 4

3, 5
1, 4

2, 5

1, 3

4, 5

1, 3

Figure 2.9: A group of robots connected via R-disk proximity graph model. Each
robot is assigned two labels from the set {1, 2, 3, 4, 5} in such a way that a complete
set of five labels is available in the closed neighborhood of every node.

is the maximum r (i.e., r∗) possible in an (r, s)-configuration of a cycle graph. From

Theorem 2.3.2, r∗ is at least
⌊
5s
2

⌋
. Can we do better than that? The answer is yes.

Theorem 2.3.4 Let Cn be a cycle graph with n = 3m+ x vertices, where m is any

positive integer and x ∈ {0, 1, 2}. For a given positive integer s, the maximum value

of r in an (r, s)-configuration of Cn is

rmax =







3s if n = 3m

3s− 1 if n = 3m+ 2, s ≤ (m+ 1)

3s− 2 if n = 3m+ 1, m+1
2

< s ≤ (m+ 1)

Proof. Let Cn be a cycle graph with n vertices. We assume that the vertices in cycle

Cn are arranged in the order v1, v2, · · · , vn, and vertices vn and v1 are connected by

an edge. Further, we consider three cases of cycle graphs based on n.

Case 1 [n = 3m]: m is any positive integer. The domatic number of such a cycle

graph is 3, i.e., there are three disjoint dominating sets. Pick a dominating set and

assign s distinct labels to all of its vertices. Repeat the same for the other two

dominating sets to get a (3s, s)-configuration.

Case 2 [n = 3m+ 2]: We observe that 3m+2 vertices can accommodate s(3m+2)

labels altogether. The size of any dominating set is at least m+1, which implies that
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each label must be assigned to at least (m+1) vertices. Thus, an (r, s)-configuration

is possible for r that is at most
⌊
s(3m+2)
m+1

⌋

.

⌊
s(3m+ 2)

m+ 1

⌋

=

⌊

2s +
sm

m+ 1

⌋

= 2s +

⌊
sm

m+ 1

⌋

Using Hermite’s identity, we get

2s +

⌊
sm

m+ 1

⌋

= 2s +
s−1∑

k=1

⌊
m

m+ 1
+

k

s

⌋

⌊
m

m+1
+ k

s

⌋
= 1 whenever k ≥ s

m+1
, which is true for every k ≥ 1 under our

assumption of s ≤ m+ 1. Thus, we get

2s +
s−1∑

k=1

⌊
m

m+ 1
+

k

s

⌋

= 2s + (s− 1) = 3s − 1

To obtain a (3s − 1, s) configuration of C3m+2, consider the table shown in Fig.

2.10, and assign each vertex vi a set of labels in the corresponding column of the

table. Note that there are exactly s number of labels in each column3. Moreover,

union of labels of any three consecutive columns is the set {1, 2, · · · , 3s− 1}. Thus,

for a given s ≤ m+ 1, we get an (r, s)-configuration for r = 3s− 1.

Case 3 [n = 3m+ 1]: In this case, 3m + 1 vertices can pack s(3m + 1) labels

altogether. In any dominating set, there will be at least (m+ 1) vertices. Therefore,

at least (m+1) vertices should contain any single label to have an (r, s)-configuration.

This implies that rmax ≤
⌊
s(3m+1)
m+1

⌋

.

⌊
s(3m+ 1)

m+ 1

⌋

=

⌊

s +
2sm

m+ 1

⌋

= s +

⌊
2sm

m+ 1

⌋

= s +
2s−1∑

k=0

⌊
m

m+ 1
+

k

2s

⌋

The term
⌊

m
m+1

+ k
2s

⌋
= 1, when m+1

2
< s ≤ (m+ 1), and k ≥ 2. Thus,

s +

2s−1∑

k=0

⌊
m

m+ 1
+

k

2s

⌋

= s + 2s − 2 = 3s − 2

3There is exactly one label in each of the s rows of every column except for the columns v(3i+2), i ∈
{1, 2, · · · ,m}. In each of the column v3i+2, i ∈ {1, 2, · · · ,m}, there is only one row that contains
two labels. However, the sth row in all such columns is empty. Thus, every column v(3i+2), i ∈
{1, 2, · · · ,m} also has exactly s number of labels.
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A labeling scheme to obtain an (r, s)-configuration of C3m+1 with
m+1
2

< s ≤ (m+

1) and r = 3s− 2 is given the table in Fig. 2.11. Every vertex vi is assigned labels in

the vi column. Each column has s labels, and union of labels in any three consecutive

columns is the set {1, 2, · · · , 3s− 2}, thus an (r, s)-configuration is obtained with the

desired s and r.

1 2 31 2 3 1 2 31 2 3 1 2, 3· · ·

4 5 6 · · ·4 5 6 4 5 6 4 5, 6 4 5 6

7 8 9 7 8 9 · · · 7 8, 9 7 8 9 7 8 9

(3s− 4)(3s− 5) (3s− 3) (3s− 5)
(3s− 4)

(3s− 3)
(3s− 5) (3s− 4) (3s− 3) (3s− 5) (3s− 4) (3s− 3) (3s− 5) (3s− 4) (3s− 3),

(3s− 2) (3s− 1) (3s− 2) (3s− 1) × (3s− 2) (3s− 1) × (3s− 2) (3s− 1) × (3s− 2) (3s− 1) ×

v1 v2 v3 v4 v5 v6 v
3m − 5

v
3m − 4

v
3m − 3

v
3m − 2

v
3m − 1

v
3m

v
3m + 1

v
3m + 2

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

row1
st

row2
nd

row3
rd

row(s− 1)st

rows
th

· · ·

Figure 2.10: Labeling scheme for an (r, s)-configuration of C3m+2 for r = 3s− 1.

1 2 31, 3 2 3 1 2 31 2 3 1, 2· · ·

4 5 6 · · ·4 5 6 4 5 6 4, 5 4, 6 5 6

7 8 9 7 8 9 · · · 7, 8 7, 9 8 9 7 8 9

(3s− 4)(3s− 5) (3s− 3)
(3s− 5) (3s− 5)

(3s− 3)
(3s− 4) (3s− 3) (3s− 5) (3s− 4) (3s− 3) (3s− 5) (3s− 4) (3s− 3),

(3s− 2) × (3s− 2) × (3s− 2) × (3s− 2)

v1 v2 v3 v4 v5 v6 v
3m − 5

v
3m − 4

v
3m − 3

v
3m − 2

v
3m − 1

v
3m

v
3m + 1

· · ·

· · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

row1
st

row2
nd

row3
rd

row(s− 1)st

rows
th

· · ·

6

(3s− 4)

,

× × ×(3s− 2)× ×

Figure 2.11: Labeling scheme for an (r, s)-configuration of C3m+1 for r = 3s− 2.

Examples illustrating the labeling schemes described above are shown in Fig. 2.12

for C10 and C11.

2.4 Discussion and Generalizations

In Section 2.1, we introduced the notion of a completely heterogeneous graph with

a set of r unique labels as the one in which every node finds a complete set of r

labels in its closed neighborhood. There might be situations in which a complete
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1, 2, 6, 9

3, 5, 8, 10
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v4

v5
v6

v7

v8
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v10
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1, 4, 7, 11

1, 4, 7, 10

3, 4, 7, 10

2, 5, 6, 9

1, 4, 8, 11
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2, 5, 8, 9
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v3
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v5
v6

v7
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v9
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v11

C10
C11

Figure 2.12: (4, 11)-configuration and (4, 10)-configuration of C11 and C10 respec-
tively.

set of resources might not be required in the closed neighborhood of all nodes. This

motivates to further extend the notion of a completely heterogeneous graph towards

more general scenarios. For instance, the notion of neighborhood can be extended

to the k-neighborhood. If the distance between nodes v and u, denoted by d(u, v), is

the length of the shortest path in a graph G, then the open k-neighborhood of node

v is the set Nk(v) = {u ∈ V : d(u, v) ≤ k}. Likewise, the closed k-neighborhood

of v is Nk[v] = Nk(v) ∪ v. We can define a completely k-heterogeneous graph with r

labels as the one in which every vertex finds a complete set of r labels in its closed

k-neighborhood. The concept of completely k-heterogeneous graph with r labels is

particularly useful in the situations where r is quite large, i.e., a large number of

different types of resources exist within the network, and it might not be possible

to ensure the availability of all the resources in the closed neighborhood of every

node. In such situations, one can aim to distribute resources among the nodes to get

a completely k-heterogeneous graph with r labels for a smaller value of k to ensure

that each node finds all r resources within a small distance k from it.

Since the color distribution matrix, Φ, has been a fundamental object for the

analysis in Section 2.2, we can define the k-color distribution matrix as follows for

the case of completely k-heterogeneous graphs.
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Φ(k) = AkC

where Ak = Ak + I and C is a color matrix. Ak is an n× n matrix whose ijth entry

is 1 whenever d(vi, vj) ≤ k and i 6= j.

It is to be observed that ijth entry of the Φ(k) matrix is the number of vertices with

a color j in the closed k-neighborhood of vi. Thus, we can use the same approach

as in Section 2.2 to analyze the distribution of labels when using the notion of k-

neighborhood for some k > 1.
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CHAPTER III

EXPLOITING HETEROGENEITY IN WIRELESS

SENSOR & ACTOR NETWORKS

In Chapter 2, a network topology based characterization of heterogeneity in mul-

tiagent systems is presented. The underlying objective is to maximally utilize the

available resources within the network through local interactions. In this chapter,

the issue of energy-efficient data collection in heterogeneous wireless sensor and ac-

tor networks (WSANs) is addressed using the methods introduced in Chapter 2.

Heterogeneous WSANs provide effective solutions to several distributed sensing and

response related problems. In such networks, managing the activity of sensor nodes

through efficient activity scheduling mechanisms is imperative for a longer lifetime

of the network because of the limited power resources. We demonstrate that using

our framework, interactions between actors, and heterogeneity among sensors can be

utilized to design an energy-efficient scheduling scheme while ensuring that even after

the deactivation of a certain number of sensors, actors continue to obtain the same

information as they were acquiring when all sensors were on.

The components in WSANs are categorized into two major classes: sensors and

actors. Sensors provide a distributed sensing infrastructure, and are typically inexpen-

sive, low-power devices with limited computational and communication capabilities

[69]. Owing to these properties, sensors are generally deployed in greater numbers.

Actors, on the other hand are more sophisticated and resource-rich nodes with longer

battery life, higher processing skills, and transmission powers. They are capable

of processing data obtained from the sensors, and then taking appropriate actions.

Robots and unmanned ground or aerial vehicles are examples of actors. Typically it
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is assumed that the number of actors in a network is much smaller than the sensors

[70].

The rest of the chapter is organized as follows: Section 3.1 provides a description of

the heterogeneous wireless and actor network along with the objective of our scheme;

in Section 3.2, a graph-theoretic formulation of the problem is provided; an energy-

efficient scheduling scheme for a longer lifetime of the WSAN is presented in Section

3.3; analysis of the random distribution of sensor and actor nodes is performed in

Section 3.4 along with an illustration of the scheme in Section 3.5.

3.1 System Description

Let there be r different types of sensors. Sensors of each type are deployed at random

in some domain A ⊂ R
2 such that the location of each sensor is independent of other

sensors’ locations. Such a deployment of sensors can be modeled as a stationary

Poisson point process with constant intensity1 [108]. All of the sensors have footprints

of the form of closed balls of some radii that depend on the types of sensors. Let us

say that each sensor belongs to one of the types in the set r = {1, 2, · · · , r}, then

the deployment of sensors of each type can be modeled by a stationary Poisson point

process with intensity λi where i ∈ r. Further, we use the following notations:

r : total number of sensor types.

λi : expected number of sensors of type i per unit area mo-

deled as a stationary Poisson point process.

∆i : radius of the footprint of a sensor of type i.

αi : area of the sensor footprint of type i (αi = π∆2
i ).

Meanwhile, actors (robots), which are the resourceful nodes within the network

and are capable of performing different tasks after receiving data from various sensors,

1Expected number of sensors in a unit area.
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are also distributed at random and independent of other actors’ locations. Thus,

actors can also be modeled by a stationary Poisson point process with intensity ρ.

As in the automated architecture of WSANs, actors coordinate with each other by

communicating and exchanging information. An actor interacts with all other actors

lying within the distance ∆a from it. This gives an interaction network that can be

modeled by R-disk proximity graphs, in which R = ∆a. We will use the following

notation throughout this chapter.

ρ : expected number of actors per unit area.

∆a : communication range of an actor

(radius of the footprint of an actor).

αa : area of the actor’s foot print (αa = π∆2
a).

As mentioned earlier, typically the number of actors is much smaller than the

number of sensors, thus, ρ < λi, ∀i ∈ r. Moreover, actors have higher transmission

ranges, i.e., ∆a is usually higher than ∆i. A sensor which is in an active mode

(on state) transmits its data to actors lying within its footprint. Sensors do not

communicate with each other, whereas actors transmit and receive information from

other actors as well as sensors. Every actor performs tasks that require data from

every sensor type, i.e., an actor needs to have information of all r sensing parameters.

We consider that the spatial gradients of the sensing parameters observed by sensors

are not too large within the field of observation, i.e., there are no abrupt variations

in the sensing parameters throughout the field of interest. Therefore, an actor can

receive information regarding the ith (i ∈ r) sensing parameter either directly from the

sensor if there exits a sensor of type i within ∆i distance from the actor, or through

one of the neighboring actors which is directly receiving data from a sensor of type i.

Under this set-up, the probability of an actor to receive information regarding all

different sensing parameters in r, either directly from sensors, or through adjacent

actors depends on various factors including λi and ∆i. Thus, for each i ∈ r, increasing
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λi (number of sensors of type i) and ∆i (transmission range of a sensor of type i),

will increase the number of actors receiving information of all r different sensing

parameters, but only at an additional cost. However, it is observed that owing to the

random deployment of sensors with λi intensities, there exist redundancy within the

network in the sense that a lot more sensors are on than required. We can get rid of

this redundancy by turning off the redundant sensors for an energy-efficient operation

of the system.

Thus, our objective is to develop a systematic scheme to turn off the maximal

number of redundant sensors of all types in a distributed manner while ensuring the

following: if an actor v, or one of its neighbor actors (actors directly connected to v)

are lying within the footprint of a sensor of type i in the initial deployment (when all

sensors are on), then the same should be true even when the redundant sensors are

turned off.

3.2 A Graph-Theoretic Model

The problem under consideration can be investigated in graph-theoretic terms. The

network of actors (robots) can be modeled by a graph G(V,E), in which the vertex

set V represent actors and the edges in the edge set E correspond to interactions

among them. Heterogeneity that exists within the system in the form of sensors of

various types can be modeled using the graph coloring notion introduced in Section

2.1.

Here, vertices in the graph (representing an actor network) are colored in accor-

dance to the types of sensors directly transmitting data to the corresponding actors.

Since r different types of sensors are available within the system, the coloring set is

r = {1, 2, · · · , r}. Vertices in the graph G are then assigned labels according to the

following labeling function:

f : V −→ 2r
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where 2r is the set of all subsets of r.

If there exists at least one sensor of type i ∈ r within a distance ∆i from an actor

v, then the corresponding vertex in G will be assigned the label (color) i. Thus,

f(v) =







i ∈ r | at least one sensor of type i exists

within ∆i distance from v.







(6)

An actor receiving data directly from a sensor of type i exchanges it with the

neighboring actors as actors are interacting and exchanging information with each

other. Further, we define H(v) ⊆ r as the set of colors that a vertex v can find in its

closed neighborhood, i.e.,

H(v) =
⋃

u∈N [v]

f(u)

Vertices in the graph G are actors and are labeled in accordance with the types of

sensors that directly transmit data to actors. For instance, actor u lies within the

footprints of sensors of type 1 and 2, the corresponding vertex u in G is assigned

labels 1 and 2, i.e., f(u) = {1, 2}. Also, u is directly connected to v and x which have

labels 3 and 2 respectively, thus, H(u) = r = {1, 2, 3}.

?

?

?

u

x

v

y

1, 2

2, 3

3

1

G

vu

x y

: sensor type 2?

: sensor type 1 : sensor type 3

Figure 3.1: Three different types of sensors are distributed. The vertices in the graph
G (representing an actor network) are assigned colors (labels) from the set r = {1, 2, 3}
in accordance with the sensor types directly available to the corresponding actors.
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3.2.1 Objective

Sensors of each type i ∈ r are distributed at random and independent of each other

with intensity λi. Thus, colors (labels) assigned to vertices in the above graph-

theoretic model directly depend on the distribution of sensors. We call the labeling

of vertices in G due to the initial random deployment of sensors as Lini(G). Under

the labeling Lini(G), a vertex v in G is assigned labels fini(v), and Hini(v) is the

set of labels available in the closed neighborhood of v. Thus, our goal is to develop

a systematic scheme to obtain a new labeling of G, i.e., Lnew(G) from Lini(G) by

getting rid of some of the labels (redundant labels) assigned to the vertices while

ensuring that under this new labeling (which is derived from Lini(G)), every vertex

finds exactly the same set of labels in its closed neighborhood as in Lini(G). More

precisely, for every vertex v in G, we want to find fnew(v) ⊆ fini(v) in a distributed

manner such that Hnew(v) = Hini(v). In a special case where Hini = r, we get a

completely heterogeneous graph. Since labels assigned to vertices directly correspond

to the sensors transmitting data to the actors, getting rid of the labels mean that the

corresponding sensors can be turned off leading towards an energy-efficient operation

of the wireless sensor and actor network.

3.3 Energy-Efficient Data Collection Scheme

In this section, we present a scheme to turn off redundant sensors for energy efficiency.

Our proposed scheme utilizes both randomness in the deployment of sensors of various

types within the region A ⊂ R
2, and coordination among actors to determine and

resolve the redundancy existing within the sensor network. Every sensor is considered

to have two modes, active (on) mode and de-active (off) mode. A sensor transmits

its data to the actors lying within sensor’s footprint only in the active mode. Our

scheme consists of the following rounds:
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3.3.1 Randomization

Sensors of each type i ∈ r are deployed randomly and independently of each other

with intensity λ′
i. At time t = 0, each sensor enters into the active mode with some

probability p > 0. Thus, the effective intensity of sensors of type i will be λi = pλ′
i. In

order to keep the expected on time same for all sensors during the overall lifetime of

the network, this step is repeated after some fixed interval tδ.
2 Sensors that become

active as a result of this step start transmitting their data to the actors lying within

the footprints of these sensors. Every actor v maintains a list of the types of sensors

that are directly transmitting data to the actor, i.e., f(v) as defined in (6).

3.3.2 Determination of Redundant Sensors

Once f(v) is determined by every actor v, the next key step is the exchange of f(v) by

every v with its neighbors to determine the existence of redundant sensors within the

footprint of an actor. Once determined, these redundant sensors will be de-activated

through a de-activating message by the actor to the sensors. The graph-theoretic

model of the system introduced in Section 3.2 will be used here for the purpose of

determining redundant sensors. Every vertex in a graphGmodeling the actor network

is assigned labels f(v).

Our goal is to obtain for every v ∈ V , a subset s(v) ⊆ f(v) with the minimum

cardinality such that
⋃

u∈N [v]

s(u) = H(v). We deal with this problem individually for

each i ∈ r. Let Vi be the set of vertices having label i, i.e.,

Vi = {v ∈ V : i ∈ f(v)}

Also, let Ṽi be the set of vertices that have at least one vertex with a label i in their

closed neighborhoods, i.e.,

Ṽi = {v ∈ V : i ∈ H(v)}

2i.e., after every tδ interval, a sensor enters into an active mode with some probability p.
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It is to be noted that Ṽi =
⋃

v∈Vi

N [v]. Thus, for the label i, we need to find a subset

Si ⊆ Vi with the minimum cardinality such that
⋃

s∈Si

N [s] = Ṽi.

In a special case when every vertex is assigned the label i, i.e., Vi = V , this

problem becomes a dominating set problem. For our case, when Vi may not be equal

to V , we define the restricted dominating set as

Definition 3.3.1 (Restricted Dominating Set) Let Vi ⊆ V , a subset Si ⊆ Vi is a

restricted dominating set with respect to Vi whenever
⋃

s∈Si

N [s] =
⋃

v∈Vi

N [v].

An example is shown in Fig. 3.2.

v1

v2

v3

v4

(a) (b)

Figure 3.2: (a) The circled vertices form a dominating set of the graph. (b) If
V1 = {v1, v2, v3, v4}, then a restricted dominating set with respect to V1 consist of the
circled vertices, i.e., S1 = {v1, v2, v4}.

Computation of a Restricted Dominating Set Si:

The problem of finding a minimum dominating set is NP-hard (e.g., [60]) leading

to the fact that finding a minimum restricted dominating set is also NP-hard. Thus,

finding efficient algorithms for the approximate solutions has been an active area of

research. The simplest approach is the greedy approach in which a vertex covering the

maximum number of uncovered vertices is added into a dominating set at each step

[109]. The greedy algorithm achieves an approximation ratio of lnΛ in O(n) time,

where Λ and n are the maximum degree3 and total number of vertices in the graph

respectively [109]. A distributed version of the greedy algorithm is presented in [110],

[111]. Interestingly, it is shown in [60] that unless P≈NP, the lnΛ-approximation

ratio of the simple greedy approach is optimal (upto lower order terms). Therefore,

3degree of a vertex v is the cardinality of N (v).
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the problem of finding a small restricted dominating set with respect to Vi ⊆ V

can be solved using the simplest distributed greedy approach. Below, we present a

distributed greedy algorithm adapted from [110] for finding a restricted dominating

set with respect to Vi. Unlike [110], in which every v ∈ V executes a greedy routine,

here the algorithm is executed only by the vertices in Vi.

Let us define a dominated node as the one whose closed neighborhood contains at

least one vertex form the restricted dominating set. A vertex is said to be undominated

if it is not a dominated one. Also let U(v) = number of undominated nodes in N [v].

Algorithm I: Restricting Dominating Set w.r.t Vi ⊆ V

1 : v ∈ Vi

2 : While U(v) > 0 do

3 : if U(v) is largest among the vertices in Vi that

are at a distance of at most 2 from v (ties are

resolved by ID’s) then

4 : v joins a restricted dominating set Si

5 : end if

6 : end while

In the case of Vi = V , Algorithm I becomes the original distributed greedy algo-

rithm given in [110] where it is shown that the algorithm returns a dominating set of

size that is at most (ln Λ + 2) of the optimal in O(n) time. Thus, using the similar

approach as in [110], we get the following:

Proposition 1 For a given Vi ⊆ V , if S∗ is a minimum restricted dominating set

with respect to Vi, then Algorithm I returns a restricted dominating set with respect
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to Vi of size at most (ln Λ+ 2) · |S∗| in O(n) time. Here, Λ is the maximum degree of

a graph.

Redundant Sensors:

For our original problem, a restricted dominating set with respect to Vi is com-

puted by the actor network for each sensor type i ∈ r. Thus, a subset of labels

s(v) ⊆ f(v) is determined for each v ∈ V , meaning that the vertices can get rid of

some of the labels initially assigned to them while preserving the required condition

⋃

u∈N [v]

s(u) =
⋃

u∈N [v]

f(u), ∀v ∈ V . The assignment of label i to a vertex v represented

that the corresponding actor v lies in the footprint of a sensor(s) of type i . Thus, if

i /∈ s(v), then the sensor(s) of type i is redundant for the actor v, and deactivation of

the sensor(s) will not affect the data collection by the actor v. This leads us to the

next step in our scheme.

3.3.3 Deactivation of Redundant Sensors

Si is the set of restricted dominating actors with respect to Vi as computed in Section

3.3.2. Thus, every v ∈ Si needs to have a sensor of type i transmitting data to v

directly, i.e., v should be lying in the footprint of an active sensor of type i. In fact,

actors in Si are the only ones that need to receive data directly from a sensor of type

i. Moreover, it is sufficient for v ∈ Si to receive data from only one such sensor.

Thus, every v ∈ Si broadcasts a deactivating message to all the i-type sensors in v’s

footprint except for a single sensor (of type i) which receives an activating signal from

v. The sensor receiving an activating message can be the one that is nearest to v. On

the other hand, every u ∈ (V − Si) also broadcasts a deactivating signal to all the

sensors of type i in u’s footprint as u does not need to receive directly from an i type

sensor. Sensors not receiving any of the activating or deactivating signal are the ones

that do not lie within any actor’s footprint, and are deactivated eventually. Also, an

activating signal has a greater priority, thus, a sensor receiving an activating as well
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as a deactivating message will become activated. This procedure will be performed

for each type (i ∈ r) of sensors.

After a fixed interval tδ, all three steps (randomization, determination of redun-

dant sensors, and deactivation of redundant sensors) are repeated. An example of

the scheme is discussed in Section 3.5.

3.4 Analysis of the Random Distribution of Sensors

In WSANs, one way to characterize a random deployment of sensors of various types

with λi intensities is to determine the number of actors that receive all types of

data either directly from sensors, or by interacting with other actors. An exceeding

percentage of such actors is highly desirable as it will imply an extended data access to

the actors. In order to estimate this number, we proceed by introducing the following

terms:

Definition 3.4.1 In a colored graph G with r = {1, 2, · · · , r} colors, A vertex v is

said to be completely colored whenever

H(v) = r

In other words, a vertex v is completely colored whenever it can find every color in

the coloring set r in its closed neighborhood. Similarly, in terms of the actor network,

we say that an actor v is completely covered whenever H(v) = r

We are interested in finding the probability of a vertex v being completely colored

under the system model described in Section 3.1. It is to be recalled that the de-

ployment of sensors of type i is modeled as a stationary spatial Poisson point process

with constant intensity λi. The probability of having k sensors in an area A is then

given by (e.g., [108]).

Pk =
(λiA)

ke−λiA

k!
(7)
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Theorem 3.4.1 For an actor v in the wireless sensor and actor network described

in Section 3.1, the probability of the existence of an actor u ∈ N [v] such that u lies

in the footprint of at least one sensor of type i for a given i ∈ r is

P (i ∈ H(v)) = 1− e−[λiαi+ραa(1−e−λiαi)] (8)

where λi and αi are the intensity and the area of the footprint of sensor of type i

respectively, whereas ρ and αa are the intensity and the area of the footprint of actor

respectively.

Proof.

P (i ∈ H(v)) = 1 − P (i /∈ H(v))

P (i /∈ H(v)) = P (i /∈ f(v)) ·
∏

u∈N (v)

P (i /∈ f(u)) (9)

Here, P (i /∈ f(v)) is the probability that the label i is not assigned to the actor

v. After inserting k = 0 and A = αi in (7), we get P (i /∈ f(v)) = e−λiαi.

Similarly,
∏

u∈N (v)

P (i /∈ f(u)) in (9) is the probability that none of the actors in

the open neighborhood of v are assigned label i. We utilize (7) and standard results

from stochastic geometry [108] to get

∏

u∈N (v)

P (i /∈ f(u)) =
∞∑

n=0

P (| N (v) |= n) · [P (i /∈ f(u))]n

=

∞∑

n=0

(ραa)
n e(−ραa)

n!
(e−λiαi)n

= (e−ραa)(eραae
−λiαi )

Inserting these values in (9) gives the following after some simplification.

P (i /∈ H(v)) = e−[λiai+ρa′(1−e−λiai)]

Thus,

P (i ∈ H(v)) = 1− e−[λiαi+ραa(1−e−λiαi)]
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Using the fact that the sensors of each type are deployed independent of each

other, and therefore, colors are assigned to the vertices in a graph representing an

actor network independent of each other, we deduce the following useful result.

Corollary 3.4.1 The probability of an actor v to be completely covered in the wireless

sensor and actor network described in Section 3.1 is

P (H(v) = r) =

|r|
∏

i=1

P (i ∈ H(v)))

=

|r|
∏

i=1

[

1− e−[λiai+ρa′(1−e−λiai)]
]

(10)

We observe that under the random distribution of sensors, P (H(v) = r) can be

improved by increasing λi and ∆i for each i ∈ r. However, increasing λi means

increasing the number of sensors of type i, which is costly. Likewise, a higher ∆i

means sensors need to transmit farther requiring extra power. Thus, we aim to achieve

a higher P (H(v) = r) in an economical way (i.e., by keeping the number of active

sensors low as well as smaller ∆i). In fact, the energy-efficient data collection scheme

described in Section 3.3 achieves this goal. The underlying objective is to determine

all such sensors that are redundant in the sense that their deactivation will not affect

the availability of data to the actors, and then eventually turn them off. Let X be the

set of completely covered actors as a result of the random deployment of sensors of

type i, ∀i ∈ r. Using Proposition 1, we deduce that if S∗
i is the minimum number of

sensors of type i that need to be activated to ensure that each actor inX is completely

covered, then using simple distributed greedy algorithm (Algorithm I), our scheme

makes every actor in X completely covered by activating at most (ln Λ + 2) · |S∗
i |

sensors of type i which is significantly smaller than the original number of deployed

sensors of type i.
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3.5 Example

Here, we present an example to illustrate the scheme discussed in Section 3.3. Con-

sider a region with an area A in which sensors of three different types are distributed

at random and independent of each other. Every sensor belongs to one of the types

in r = {1, 2, 3}. The distribution of sensors of each type i ∈ r is modeled as a Poisson

point process with intensity λi. The radius of the footprint of a sensor of type i is

∆i. For our example,

λ′
1 = 3 ∆1 = 0.4

λ′
2 = 4 ∆2 = 0.3

λ′
3 = 3 ∆3 = 0.5

The actors are also distributed at random and independent of each other with intensity

ρ = 1.5. Every actor has a footprint of radius ∆a = 1. An actor v interacts with all

the actors lying within v’s footprint. A graph representing interactions among actors

along with the distribution of sensors is shown in Fig. 3.3.

In the randomization phase, a sensor of type i becomes activated with a probability

pi. Thus, the expected number of sensors of type i per unit area becomes λi = piλ
′
i.

Here, p1 = 0.6, p2 = 0.4, and p3 = 0.5, therefore,

λ1 = 1.8, λ2 = 1.6, λ3 = 1.5

The activated sensors after the randomization phase are shown in Fig. 3.3(b).

Next step is the determination of redundant sensors that can be deactivated by

the actors without compromising the fact that if an actor v or one of its neighbors

u ∈ N (v) lies within the footprint of a sensor of type i (i.e., v or some u ∈ N (v) is

directly receiving data from a sensor of a type i) after the randomization phase, then

v or some u ∈ N (v) must lie within the footprint of some sensor of type i even after

the deactivation of redundant sensors.

As discussed in Section 3.3.2, redundant sensors can be determined by solving a

restricted dominating set problem in the actor network. The process of determining
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the redundant sensors of type 1 is shown in Fig. 3.4. The procedure is exactly same

for the rest of the types of sensors. Let V1 be the set of actors which lie within the

footprint of at least one sensor of type 1 as shown in Fig. 3.4(a). The corresponding

vertices in the graph modeling the actor network are assigned color (label) 1 as indi-

cated by the colored vertices in Fig. 3.4(b). A restricted dominating set with respect

to V1 is then computed, as shown in Fig. 3.4(c). Finally, an actor corresponding to

the vertex in the restricted dominating set with respect to V1 activates a single sensor

of type 1 within its footprint. All other sensors of this type are then deactivated, as

shown in Fig. 3.4(d), leading to an energy-efficient data collection scheme.

The activated sensors of types 1, 2, and 3 after the execution of all three phases,

i.e., randomization, redundant sensors determination, and deactivation of redundant

sensors, are shown in Fig. 3.5. We considered an area of A = 25 (unit length)2 for

this example. The number of active sensors after different phases is given in Table 1.

Table 1: Number of active sensors after various phases.
initially after after the deactivation
deployed randomization of redundant sensors

Type 1 69 47 12
Type 2 104 35 10
Type 3 64 36 11

For a given ∆i where i ∈ {1, 2, 3}, and λ1 = 1.8, λ2 = 1.6, and λ3 = 1.5, the

probability of an actor v being completely covered is 0.854 as computed from (10),

i.e., P (H(v) = {1, 2, 3}) = 0.854. There are 40 actors in total, out of which 36 (90%)

are completely covered. Recall that if an actor v is completely covered actor, then

for each i ∈ r, there exists an actor u ∈ N [v] such that u lies within the footprint

of at least one sensor of type i. Also note that for each sensor type in this example,

more than two-third of the sensors that were active after the randomization phase

are deactivated in the final step.
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Figure 3.3: (a) Sensors of three types 1, 2, and 3 (represented as �, ?, and 3 re-
spectively) are distributed at random along with an actor network represented by a
graph. (b) Activated sensors after the randomization step are shown.
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Figure 3.4: In (a) sensors of type 1 that are activated after the randomization are
shown along with their foot prints. Actors lying within the footprints directly receive
data from sensors, and are included in the set V1. Vertices corresponding to these
actors are colored in the graph of the actor network in (b). Thus, V1 is the set of
colored vertices in (b). In (c), a restricted dominating set of vertices with respect to
V1 is shown in the form of colored vertices. Each actor corresponding to a vertex in
the restricted dominating with respect to V1 activates a single sensor of type 1 within
its footprint as shown in (d).
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Figure 3.5: Sensors of each type 1,2, and 3 that are activated as a result of the
energy-efficient scheme. All the redundant sensors (which were active initially) are
deactivated here.
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CHAPTER IV

HETEROGENEITY FOR EFFICIENT COMPLETE

COVERAGE

In Chapters 2 and 3, we explored the promise heterogeneous networks hold for ac-

complishing complicated tasks by leveraging upon the assorted capabilities of agents.

In this chapter, we exploit heterogeneity among agents for the complete coverage

problem. The objective is to deploy sensors with circular sensing areas to completely

cover a domain, i.e., every point in the domain should be covered by at least one

sensor. Sensors can be arranged in many different ways to achieve complete coverage.

However, we aim for configurations of sensors that provide an efficient solution to the

problem. The most efficient configuration of sensors to completely cover a domain

is known for the homogeneous case, i.e., when all sensors have exactly same sensing

area. But, we show here that it is possible to further improve the efficiency of coverage

by using sensors with different sensing areas.

Moreover, in the case of mobile agents, once a desired configuration is achieved,

we aim to ensure that the configuration of agents, defined by the inter-agent dis-

tances, is not disturbed when agents move. In other words, agents move as a cohesive

unit while maintaining the configuration and ensuring complete coverage. This de-

mands distinctive coordination and information exchange among agents. We utilize

constructs from graph theory and formation control to model this coordination. A

comparison of formation costs of homogeneous and heterogeneous configurations is

also performed. Thus, we have two major objectives here,

(1) construct and analyze configurations of agents with circular sensing areas

of two different radii that can provide complete coverage with improved coverage
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efficiencies as compared to the case when sensing areas of all agents have same radii.

(2) determine coordination framework among agents so that they retain their

formation in a particular configuration while they exhibit movements.

This chapter is organized as follows: a formal description of the efficiency of cov-

erage in terms of the coverage density and sensing cost is given in Section 4.1. In Sec-

tion 4.2, configurations of circular disks with same and different radii are illustrated.

Coverage densities and sensing costs are computed for heterogeneous configurations

alongside a comparison with the homogeneous case in Section 4.3. In Sections 4.4

and 4.5, formation cost is introduced and formation graphs corresponding to different

configurations are obtained.

4.1 Efficiency of Coverage

It is already mentioned that our objective is to completely cover a region, i.e., there

should be no holes present. Sensors with given sensing footprints can be arranged in

many different ways to achieve this objective. However, the efficiency of the coverage

will vary for different configurations in terms of the power consumed to completely

cover a given domain. A circle covering is a configuration of overlapping circles with

given radii to completely cover some domain in R
d (d = 2 in our case).

In order to quantify the efficiency of circle covering, a commonly used metric is

the covering density, denoted by ρ. It measures how efficiently circular disks are

arranged to cover the given domain. The notion of crystallographic unit [115] of the

circle covering is needed to define ρ. A crystallographic unit of the covering is a

parallelogram containing the minimum repeatable elements of a circle covering.

Definition 4.1.1 (Covering Density) The covering density of a circle covering, de-

noted by ρ, is the ratio of the area of the crystallographic unit to the area of circular

disks covering the crystallographic unit.

Let c be the crystallographic unit of a circle covering and A(c) be the area of c,
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then

ρ =
A(c)

k∑

i=1

xi (πδ2i )

(11)

k is the number of circular disks that are covering c. xi is the fraction of the area of

the circular disk of radius δi covering a certain portion of c. An example is shown in

Fig. 4.1.

A circle covering with a higher ρ is more efficient. It means that the overlap

among the circular disks is smaller and the areas of disks are being utilized efficiently

to cover the region.

δ

b

1 2

34

60

Figure 4.1: Four disks of equal radii are taking part in covering a crystallographic
unit of area

√
3
2
b2. The areas of circular discs 1, 2, 3, and 4 covering a portion of

crystallographic unit are πδ2

3
, πδ2

6
, πδ2

3
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respectively. ρ =

√
3b2

2πδ2

In practical scenarios, these circular disks may correspond to sensing footprints

of the sensors deployed within some region. Overall energy consumed by sensors for

sensing operations is directly dependent on the area of footprints. In fact, in a sensor

range model based on RF-power density function for an isotropic antenna, power

consumed is directly proportional to the area of the sensor footprint given by π(δi)
2

where δi is the radius of the footprint (e.g., [112, 113]). Thus, a sensing cost (in

terms of the power consumption) can be associated with a sensor that is proportional

to the square of the radius of the footprint of the sensor. To efficiently utilize the

energy resources, sensors should be deployed to maximally utilize the area of circular

footprints. Therefore, we associate a sensing cost with a configuration of a group of
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agents covering a region through a circle covering.

Definition 4.1.2 (Sensing Cost) Let there be n agents with each agent having a

sensing footprint of a circular shape with a radius δi, i ∈ {1, 2, · · · , n}. We define the

overall sensing cost of the system as,

J =

n∑

i=1

(δi)
2 (12)

Like the density, J is also a measure of the efficiency of the circle covering from the

energy consumption perspective. If τ1 and τ2 are two configurations with exactly

same number of nodes and covering the same region such that Jτ1 < Jτ2, then τ1 is

indeed a better choice from the sensing cost view point. A large amount of overlap

among circles in a circle covering results into an increase in the sensing cost.

Covering density and Sensing cost, both will be used to compute the efficiency of

circle coverings presented in the subsequent sections.

4.2 Agent Configurations for Circle Covering

Circle coverings can be achieved through circular disks all having same radii (homo-

geneous configurations), or through circular disks with different radii (heterogeneous

configurations). In this section, we present details of homogeneous configuration and

propose two heterogeneous configurations of agents to completely cover a region.

4.2.1 Homogeneous Configuration

Let there be a group of agents each having a sensing footprint of radius δ. We want

to arrange them within a region to obtain a circle covering of the region with the

minimum density. It is shown in [67] that the optimal way to achieve this is to place

agents on an equilateral triangle lattice as shown in Fig. 4.2. The lines connecting

agents whose sensing footprints intersect form an equilateral triangle with the length

of each side being equal to
√
3δ. Moreover, the density of the covering, denoted by
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ρh, is
√
27

2π
which is the best possible1. We call this configuration as the homogeneous

configuration as every agent has a sensing footprint of exactly same radius δ. If there

are n agents, the sensing cost of the homogeneous configuration will be Jh = nδ2.

√

3δ

√

3δ

√

3δ

Figure 4.2: Circle covering through circular disks of same radii. The shaded region
is a crystallographic unit.

4.2.2 Heterogeneous Configurations

Using heterogeneous disks (in terms of the radii) for the purpose of circle covering may

further improve the efficiency of covering. Thus, we present two heterogeneous con-

figurations here. It will be shown in the next section that they are indeed better than

the homogeneous case from the covering density and the sensing cost perspectives.

4.2.2.1 Configuration 1 (Γ1)

Let there be two types of agents with respect to the radius of the sensing footprint.

The first type has footprints of radius δ1, whereas second type of agents have δ2 < δ1

as the radius of their sensing footprints. These two types of agents are placed on

a grid network alternatively as shown in Fig. 4.3. If the length of the side of each

square in the grid is a, then Γ1 configuration results into a circle covering of the region

1It is assumed that the area being monitored is much larger than the sensing print of an individual
agent.
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if δ1 and δ2 satisfies the following:

δ1 = ε1a,
1√
2
≤ ε1 ≤ 1

δ2 = 1√
2

(

a−
√

2δ21 − a2
)

A crystallographic unit of the circle covering as a result of Γ1 is shown in Fig. 4.3.

Thus, the density of the covering, denoted by ρ1 is

ρ1 =
(crystallographic unit area)

π(δ21 + δ22)
=

2a2

π(δ21 + δ22)
(13)

a
√

2

δ1

x

δ2

x =

√

δ2
1
−

a2

2

δ2 =
a
√

2
− x

a

a

Figure 4.3: Heterogeneous configuration 1 in which the shaded parallelogram is a
crystallographic unit of the covering. For a given δ1, the appropriate value of δ2 is
also computed.

4.2.2.2 Configuration 2 (Γ2)

As in the case of Γ1, we consider two types of agents; one with sensing footprints of

radius δ1, and the other having radius δ2, where δ2 < δ1. These agents are placed

on an equilateral triangle lattice as shown in Fig. 4.4. Let b be the length of the

side of the unit equilateral triangle in the network, then δ1 and δ2 need to satisfy

the following conditions in order to obtain a circle covering from this configuration of

agents as illustrated in Fig. 4.4.
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δ1 = ε2b,
√
3
2
≤ ε2 ≤ 1

δ2 = 1
2

[

b−
√

4δ21 − 3b2
]

The density of Γ2, denoted by ρ2, can be obtained by computing the area of the

crystallographic unit of the covering (as shown in Fig. 4.4). It should be noted that

the area of circles covering a crystallographic unit is equal to the sum of the area of

a circle with δ1 radius and areas of two circles with δ2 radius.

ρ2 =
(crystallographic unit area)

π(δ21 + 2δ22)
=

3
√
3

2
b2

π(δ21 + 2δ22)
(14)

b
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3

2
b

δ1

x
δ2

x =

√

δ2
1
−

3

4
b2

δ2 =
b

2
− x

b

Figure 4.4: Heterogeneous Configuration 2. A crystallographic unit is a shaded
parallelogram. A relationship between δ1 and δ2 to obtain a circle covering is also
shown.

4.3 Comparison of Homogeneous and Heterogeneous Con-
figurations

In this section, we compute and compare coverage densities and sensing costs of con-

figurations introduced in Section 4.2, thereby establishing that heterogeneous config-

urations can outperform homogeneous configuration.
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4.3.1 Comparison of Coverage Densities

The maximum coverage density for homogeneous case is ρh =
√
27
2π

. The covering den-

sities for heterogeneous configurations 1 and 2 are given in (13) and (14) respectively.

ρ1 and ρ2 both depend on δ1 and δ2. Also, δ2 can be computed once an appropriate

δ1 is selected. δ1 = ε1a for the heterogeneous configuration 1, whereas δ1 = ε2b for the

heterogeneous configuration 2. Valid ranges for ε1 and ε2 are given in Section 4.2.2.

Thus, if we define radii ratio of disks as α = δ2/δ1, then the covering density directly

depends on α. Note that α = 1 for the homogeneous case.

If we plot covering densities of homogeneous as well as heterogeneous configura-

tions with respect to α, we get the plots shown in Fig. 4.5. It can be seen that for quite

a good range of α, heterogeneous configurations have better covering densities than

the homogeneous case specially when α is smaller. The maximum covering density

obtained with the heterogeneous configuration 1 is 0.849 with α = 0.447. Similarly,

maximum density for heterogeneous configuration 2 is obtained when α = 0.18 and

it is 0.902, which is significantly higher than the homogeneous case.
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Figure 4.5: Plots of covering densities of different configurations as a function of α.
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4.3.2 Comparison of Sensing Costs

Now, we compare homogeneous configuration with heterogeneous configurations using

sensing cost metric defined in (12).

In homogeneous configuration, nodes are placed in an equilateral triangle network.

Let τ be an m × n equilateral triangle network2 in which b is the distance between

two adjacent nodes. The area covered by the network is given by

Aτ = 2(n− 1)(m− 1)

√
3

4
b2 (15)

In heterogeneous configuration 1, nodes are placed in a grid network. Consider

an m× n square grid network in which the distance between any two adjacent nodes

is a, then the area of the grid is

Ag = (n− 1)(m− 1)a2 (16)

Since we want to compare the sensing cost of homogeneous configuration with that

of the heterogeneous configuration 1, we need a grid network with the same number of

nodes and area as the triangular network τ . Thus, for an equilateral triangle network

with a given b, we obtain an equivalent grid network with a by equating (15) and

(16).

a =

(
3

4

) 1
4

b (17)

Now, we compute the sensing cost of homogeneous configuration of nodes, denoted

by Jh, in which nodes with sensing footprints of radii δ = b√
3
are placed on the vertices

of an m× n triangle network τ to obtain a circle covering of an area Aτ .

2nodes are arranged in an equilateral triangle network in such a way that there are m rows of
nodes with n nodes in each row.
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Jh =
mn∑

i=1

(
b√
3

)2

=
mnb2

3
(18)

Next, nodes with sensing footprints of radii δ1 = ε1a, and δ2 =
1√
2

(

a−
√

2δ21 − a2
)

,

where ε1 ∈
[

1√
2

1
]

and a is given by (17), are placed in the heterogeneous configu-

ration 1 to obtain a circle covering of an area Ag (= Aτ ). The sensing cost of such a

configuration is 3

J1(ε1) =
mn

2

[
(δ1)

2 + (δ2)
2
]

=
mn

2
a2
[

2ε21 −
√

2ε21 − 1

]

=

√
3

4
mnb2

[

2ε21 −
√

2ε21 − 1

]

(19)

In fact, J1(ε1) < Jh when 0.751 ≤ ε1 ≤ 0.84. The minimum J1 is obtained for ε∗1 =

0.7906. Moreover, for δ1 = ε∗1a, we get α = 0.447 which is the radii ratio that gives

the maximum covering density for the heterogeneous configuration 1. Computing the

ratio of J1(ε
∗
1) to Jh gives,

J1(ε
∗
1)

Jh

=
9
√
3

16
< 1 (20)

Thus, heterogeneous configuration 1 can be more economical than the homogeneous

configuration from a sensing cost perspective.

Similarly, a comparison between homogeneous and heterogeneous configuration

2 can be performed by placing nodes with sensing footprints of radii δ1 = ε2b and

δ2 = 1
2

[

b−
√

4δ21 − 3b2
]

on the vertices of an m × n equilateral triangle network to

get a circle covering. Here, ε2 ∈
[√

3
2

1
]

. The sensing cost of this configuration of

nodes is

3In heterogeneous configuration 2, there are twice as many circles with δ2 radius as compared to
circles with δ1 radius as long as both π(δ1)

2 and π(δ2)
2 are significantly smaller than Ag.
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J2(ε2) =mn

[(
1

3

)

δ21 +

(
2

3

)

δ22

]

=
mnb2

3

[

3ε22 − 1 −
√

4ε22 − 3

] (21)

For 0.882 ≤ ε2 < 1, J2(ε2) < Jh. In fact, J2 is minimum at ε∗2 = 0.928. Maximum

covering density for heterogeneous configuration 2 is also achieved when δ1 = ε∗2b.

Computing the ratio of J2(ε
∗
2) to Jh gives,

J2(ε
∗
2)

Jh

=
11

12
< 1 (22)

Thus, heterogeneous configuration 2 is more efficient than the homogeneous one

if an appropriate value of ε2 is chosen.

Proposition 2 It is possible to have a lower sensing cost and a higher covering effi-

ciency for the circle coverings obtained through heterogeneous configurations 1 and 2

as compared to the homogeneous configuration. In fact,

J1(ε1) < Jh, ρ1 > ρh, for 0.751 ≤ ε1 ≤ 0.84

J2(ε2) < Jh, ρ2 > ρh, for 0.882 ≤ ε2 ≤ 1

Moreover,

J2(ε
∗
2) < J1(ε

∗
1) < Jh (23)

where ε∗1 = 0.7906 and ε∗2 = 0.928.

4.4 Persistent Formations of Agents

In this section, we address the second part of our main problem, i.e., to obtain co-

ordination frameworks that will allow nodes to maintain a desired configuration (ho-

mogeneous or heterogeneous ones) even when nodes execute movements, and analyze
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the cost associated with those frameworks. This issue of maintaining specific node

configurations under motions is directly related to the notion of formation control.

In order to maintain the overall formation of a network of agents, agents implement

local control laws taking into account the relative position of their neighbors while

ensuring that the inter-agent distances are held constant while they are moving.

Graph-theoretic tools have been effectively employed to obtain formation control

architectures in which maintaining a subset of inter-agent distances ensure that the

overall formation is maintained. The notion of graph rigidity has been a key object

in this regard. If a shape of a formation of a group of n agents is defined by inter-

agent distances, D = {dij ∈ R+ | i, j = 1, 2, · · · , n, i 6= j}, then roughly speaking a

rigid graph G(V,E) will ensure that maintaining inter-agent distances only among the

adjacent nodes in G will preserve all the distance constraints in D. For precise defini-

tions and results regarding algebraic and combinatorial characterizations of rigidity,

see [116, 118] and the references therein for details.

In order to maintain distance dij, nodes i and j implement formation control laws

that require them to sense the relative positions of each other. In an undirected case

(rigid graph), the task of maintaining dij is executed by both nodes i and j. However,

it is possible to assign this task to only one of the nodes [117], thus making an edge

between i and j a directed one. In this situation, only one of the two nodes needs

to sense the relative position of the other node. Therefore, for the formation control

purposes, it is possible to obtain a directed graph in which a directed edge from node

i to j would mean that i needs to sense the relative position of j and is responsible to

satisfy the distance constraint dij. Such a directed graph is known as the persistent

graph. It is to be mentioned that assigning appropriate directions to undirected edges

in a rigid graph to obtain a directed persistent graph is not a straight-forward task

and requires an in-depth understanding of the problem (e.g., see [116, 117, 118] for

details).
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An agent measures relative positions of a subset of other agents (defined by the

persistent graph) for the formation control purpose. Power is consumed to accomplish

this task. More power is required if neighboring agents are farther away from the

agent. In fact, if agent i has a distance constraint of ∆i where ∆i is the longest

distance between agent i and its farthest out-going neighbor, then power consumed

by i is directly proportional to (∆i)
2 [112]. Thus, we define formation cost as follows:

Definition 4.4.1 (Formation Cost) Let G be a directed graph with n vertices and ∆i

be the length of the longest out-going edge from vertex vi, then the formation cost is

defined as

F =
n∑

i=1

(∆i)
2 (24)

Now, we find persistent formation graphs with the minimum formation costs for

the homogeneous configuration as well as the heterogeneous configurations and then

compare their formation costs.

4.4.1 Comparison of Formation Costs

Since homogeneous and heterogeneous configuration 2, both correspond to the ar-

rangement of nodes in an equilateral triangle lattice, persistent formation graph for

both configurations will be same. Thus, formation cost will also be same in both cases.

In an undirected graph corresponding to an equilateral triangle lattice (as shown in

Figs. 4.2 and 4.4), every edge is of same length, say b. It is known that such a graph

is rigid (e.g., [120]). Thus, there exists a minimally rigid4 subgraph of an equilateral

triangle graph in which every edge is of the same length. It is shown in [118] that it

is always possible to assign directions to edges in a minimally rigid graph to obtain a

directed minimally persistent graph. Thus, we get a minimally persistent graph for

an equilateral triangle formation in which the length of the longest out-going edge

4A rigid graph is called as minimaly rigid if the removal of any edge makes it non-rigid.
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from any node will be same, i.e., ∆i = b, ∀ i. Thus, for an n× n equilateral triangle

lattice, formation costs for homogeneous and heterogeneous configuration 2 is,

Fh = F2 = (nb)2 (25)

In order to find the formation cost of the heterogeneous configuration 1, first we

need to find a persistent graph with the minimum formation cost for a grid formation.

The construction of such a graph for an n × n grid in which the length of the side

of each square in the grid is a is given in Section 4.5. It is shown that there will

be (n − 1) nodes with
√
2a as the length of the longest out-going edge from them,

whereas rest of the (n2 − (n− 1)) nodes will have a as ∆i. Thus, the formation cost

for such a graph will be,

F1 = (n− 1)(
√
2a)2 + (n2 − n+ 1)a2

= a2(n2 + n− 1)

(26)

In order to compare F1 with Fh, we replace a in (26) with b in (17) to get

F1 =

√
3

2
b2(n2 + n− 1) (27)

Using (25) and (27), we get the following:

Proposition 3 Let Fh, F1, and F2 be the formation costs of persistent formation

graphs corresponding to homogeneous and heterogeneous configurations 1, and 2 re-

spectively. In the case of n2 nodes arranged in the form of an n× n grid (equilateral

triangular grid or square grid),

F2 = Fh, and

F1 < Fh whenever (n− 1) <
(

2−
√
3√

3

)

n2

It is to be mentioned here that for an m × n grid, where m 6= n, F2 = Fh still

holds, and the condition to have F1 < Fh can be obtained using a similar approach.
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4.5 Minimally Persistent Graph for a Grid Formation

A grid graph shown in Fig. 4.6(a) is not rigid. It can be made rigid by adding

diagonal edges, sometimes called as braces, to the squares in the grid as shown in

Fig. 4.6(b). In order to determine the braces that will make a grid minimally rigid,

a brace graph is defined (e.g., see [119]). For an n × n grid, a brace graph is a bi-

partite graph with (n − 1) vertices in each of the two partitions of the bi-partite

graph. Vertices in one partition, denoted by {r1, · · · , r(n−1)} correspond to the rows

of the grid, while vertices corresponding to the columns of the grid are denoted by

{c1, · · · , c(n−1} and are included in the second partition of the brace graph. In the

brace graph, ri is connected to cj whenever a brace (diagonal edge) exists in the ith

row and the jth column of the grid. An example is shown in Fig. 4.6(c). An important

result regarding the minimal rigidity of grid graphs is

Theorem 4.5.1 [119] A grid is minimally rigid whenever the corresponding brace

graph is a tree.

The above theorem implies that (2n − 3) braces need to be added in an n × n

grid to make it minimally rigid. The brace graph solves the minimal rigidity problem

for undirected grid graphs, but we aim to construct a directed grid graph that is

persistent with the minimal formation cost. As mentioned earlier, it is always possible

to assign directions to the edges in a minimally rigid graph to obtain a directed

minimally persistent graph. Moreover, the following result will be used to obtain

such an assignment of direction to the edges.

Theorem 4.5.2 [117] A graph is minimally persistent whenever it is minimally rigid

and every vertex has an out-degree5 of at most two.

5Out-degree of a vertex v, denoted by d+(v) is the number of out-going edges from v.
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Figure 4.6: (a) A non-rigid grid graph. (b) Braces are added to the grid graph. (c)
The corresponding brace graph.

Thus, we need to assign directions to the edges in an undirected grid graph with

braces such that the out-degree of any vertex is at most 2, i.e., d+(v) ≤ 2. Moreover,

there will always be 2(n − 1) vertices that have a brace as an out-going and/or in-

coming edge. Since every brace is an edge with the longest length in the grid graph

with braces, we want to minimize the number of nodes that have an out-going brace

to minimize the formation cost in (24). Now, under any assignment of directions to

edges, there will always be at least (n−1) nodes that have an out-going brace. Thus,

our objective is to obtain a directed graph from an undirected grid graph with braces

such that

(i) d+(v) ≤ 2, and

(ii) the number of vertices to have braces as out-going edges is (n− 1).

We provide such a construction of a directed grid graph below.

4.5.1 Construction of Minimally Persistent Grid Graphs

(1) From an n × n undirected grid graph, get a directed graph by assigning all the

horizontal edges a direction from left to right and all vertical edges a direction from

upwards to downwards. Note that all of the vertices have an out-degree of 2 except

(2n− 1) boundary nodes which are denoted by kj, j ∈ {1, 2, · · · , (2n− 1)} as shown

in Fig. 4.7(a).

(2) Add braces such that the braces and their end vertices, denoted by b1, b2, · · · , b2(n−1),
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constitute a path graph as shown in Fig. 4.7(b). (The corresponding brace graph is

also a path graph.)

(3) Assign directions to the braces such that braces from the vertices b2i i ∈

{1, 2, · · · , n − 1} are directed outwards. An example is shown in Fig. 4.7(c). Note

that d+(v) = 4, ∀v ∈ {b2, b4, · · · , b2(n−1)}. But, we want every vertex to have a

maximum out-degree of 2.

(4) For every b2i, i ∈ {1, 2, · · · , (n−1)}, find two disjoint directed paths (which is

always possible) from b2i to two distinct kj’s, j ∈ {1, 2, · · · , 2n−1}, where kj is a node

with an out-degree strictly less than 2. If b2i = kj for some j ∈ {1, 2, · · · , (2n− 1)},

then only one directed path is needed from b2i.

(5) Reverse the directions of all the edges included in the paths obtained in step

(4).

An illustration of the above scheme is given in Fig. 4.7. The scheme gives a

directed graph in which d+(v) ≤ 2, ∀ v and only (n − 1) vertices have out-going

braces which is the best possible in terms of minimizing the number of vertices that

have braces as out-going edges. Thus, we get the following:

Proposition 4 The scheme presented in Section 4.5.1 gives a minimally persistent

graph with the minimum formation cost for the formation of nodes in an n×n square

grid.

In this chapter, we examined the complete coverage problem for mobile agents

with circular sensing areas. It is shown that more efficient solutions can be obtained

through networks of heterogeneous agents as compared to the homogeneous one. In

particular, configurations of agents with two different radii are examined that exhibit

higher coverage densities and lower sensing costs than the configuration of agents

having same radii. In the case of heterogeneous configuration 1, best results are

obtained when sensing areas of one type of agents are approximately half (0.447)
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Figure 4.7: (a) Step 1 - assignment of directions to the edges of grid graph. (b) Step
2 - addition of braces. (c) Steps 3 & 4 - assignment of directions to the braces and
obtaining disjoint directed paths (d) Step 5 - reversal of the directions of the edges
in the directed paths obtained in step 4.

of the size of others, whereas in heterogeneous configuration 2, optimum coverage

density and sensing cost are obtained when the size of one disk is approximately

one-fifth (0.18) of the size of the other. Moreover, coordination frameworks, which

are necessary to ensure the formation of agents in desired configurations while agents

move, are also analyzed.
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CHAPTER V

SECURING A NETWORK AGAINST A SEQUENCE OF

INTRUDER ATTACKS

So far, we have focused on exploiting underlying network topologies to allow agents

maximally utilize resources available within networks through local interactions. The

issue of making networks reliable and resilient is another integral matter of the net-

work design process, and is closely related to the design of underlying graph structures

of networks. In Chapters 5 and 6, we investigate role of network topologies for re-

liable operations of networks in terms of securing networks from external intrusions

and characterizing robustness properties of networks.

We start with the topic of securing a network of agents against a sequence of

intruder attacks through heterogeneous guards in this chapter. A network of agents

is represented by a graph G, in which the vertex set V represents agents, and the

edge set E corresponds to interactions among agents. A set of guards, where each

guard is capable of detecting and responding to an intruder attack within a certain

distance, is distributed across the network. We require the graph to be secured in the

sense that each intruder attack can be responded to sufficiently fast by some guard,

and all the vertices in the graph remain secure even after the movement of a guard

to an attacked vertex. All the components of this problem, including the number of

guards required, the deployment of guards among various nodes, and the movement

strategies for guards to counter intruder attacks, are addressed here.

We begin by introducing various terms that will be used throughout this section.

An edge between vertices u and v is denoted by u ∼ v. A set I ⊂ V (G) is an

independent set of a graph if no two vertices in I are adjacent in G. The independence
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number, ι(G), is the cardinality of a largest independent set. A complete subgraph

is induced by the vertices in a set W ⊆ V whenever u ∼ v ∈ E for all u, v ∈ W . A

subset of vertices inducing a complete subgraph is referred to as a clique. A clique

that can not be extended by including one or more adjacent vertices is a maximal

clique. In other words, a maximal clique is a clique that is not contained in a larger

clique in the graph. Finding all maximal cliques in a graph is known as a maximal

clique decomposition of a graph. The distance between two vertices u and v in G,

denoted by d(u, v)G, is the length of the shortest path between u and v in G. Path

length is the number of edges in a path. A path length of r is sometimes referred

to as an r-hop. The diameter of a graph, diam(G), is max d(u, v)G, ∀u, v ∈ G.

The rth power of a graph G, denoted by Gr, is a graph with V (Gr) = V (G), and

u ∼ v ∈ E(Gr), whenever d(u, v)G ≤ r.

5.1 Problem formulation

In this section, we formulate the problem of securing a network against a sequence of

intruder attacks through heterogeneous guards. Let a network of agents interacting

with each other be represented by a graph G. Let S be a set of guards, in which

every guard si ∈ S is located on some vertex of G. Every guard has a sensing and

response range ri, such that a guard with a range ri can detect and respond to an

intruder attack on a vertex that is at most ri hops away from it by marching towards

the attacked vertex. The vertex at which a guard si is present at time k is described

by the map f as

f : (S, k) → V. (28)

We use fk(si) to denote the vertex where guard si is located at time instant k.

The notation fk(S) will be used to denote the set of vertices in G where the guards

in S are present at time k, i.e., fk(S) = {fk(si) | si ∈ S}.

We say that a vertex v is secured at time k if it lies within a range of at least one
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guard at time instant k, i.e.,

∃si : d(fk(si), v)G ≤ ri (29)

If (29) is true for all the vertices in G, then G is secured against intruders at time

k, and we say that fk(S) is a secure configuration of guards at time k.

In the case of an intruder attack at some vertex u ∈ V , a guard si securing u

will move from fk(si) to u along the edges of a graph to counter an intruder. This

results into a new configuration of guards at time k + 1, which is given by fk+1(S).

If fk+1(S) is also a secure configuration, then the graph remains secure against an

intruder attack.

Definition 5.1.1 Let us assume that a secure configuration of guards at time k,

fk(S), results into another secure configuration, fk+1(S), at time instant k + 1. The

new configuration fk+1(S) is due to the movement of a guard si ∈ S from a vertex

fk(si) to a vertex fk+1(si). If this is true for all k, we say that a graph is eternally

secure.

Here we are assuming that at any time instant, there can be an intruder attack

only at a single vertex, and only one guard moves to counter this intruder attack. In

other words, we are assuming that | fk+1(S) − fk(S) |≤ 1. Therefore, the objective

is to investigate the following problem,

How can a graph be eternally secured against a sequence of intruder attacks using

a set of guards S, where guards in S may have different ranges from each other?

Major aspects related to the notion of eternal security in graphs are as follows:

(a) Number of guards required along with their ranges to eternally secure a graph.

(b) Locations of guards on the vertices of a graph, i.e., a secure configuration of

guards in a graph.

(c) A strategy for moving guards to counter intruder attacks so that a secure

configuration of guards is always maintained.
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All of these issues are addressed in the next sections. We present an algorithm

that determines a secure configuration for a given a set of guards, and also provides

a strategy to maintain a secure configuration in case a guard moves to counter an

intruder attack. We also analyze the number of guards required for the eternal security

of a graph and how these numbers vary with the ranges of the guards. This analysis

allows us to characterize various graph topologies that can be eternally secured with

a given number of guards and ranges.

5.2 Eternal Security Through Heterogeneous Guards

In this section, we present a scheme to distribute a given number guards with various

ranges among the vertices of a graph to make the graph eternally secure. Let S =

[s1, s2, · · · , sσ] be a vector of given guards, and r = [r1, r2, · · · , rσ] be a vector of

their ranges, in which ri is the range of guard si. We begin with the following simple

observation.

Lemma 5.2.1 A single guard with a range r makes a graph G with a diameter d

eternally secure if and only if r ≥ d.

The above observation provides a systematic way of distributing guards in S with

their corresponding ranges in r to make a graph eternally secure. Our approach is

to partition a graph into clusters, and assign a single guard to each cluster. Every

guard is then responsible for the security of the nodes in its cluster. The clusters are

formed in such a way that the distance between any two nodes of the same cluster

is not greater than the range of the guard assigned to the cluster, i.e., d(u, v)G ≤ ri,

where u and v are the vertices of the same cluster Ci, and ri is the range of the guard

si assigned to Ci. Since the distance between any two nodes in Ci is not greater than

ri, guard si is sufficient for the eternal security of all the nodes in Ci by Lemma 5.2.1.

A block diagram of the scheme is shown in Fig. 5.1.
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Assign a guard si
with a range ri to

a cluster Ci

A guard si is responsible
for the eternal securitry

of the nodes in its
cluster only.

Partition a graph G into
clusters, Ci, s.t.

d(u, v)G ≤ ri

u, v ∈ Ci

Figure 5.1: A scheme for eternally securing a graph by making clusters.

As an example, consider a graph shown in Fig. 5.2. Let there be three guards,

s1, s2, and s3, with ranges 1, 2, and 3 respectively. The vertices of G are partitioned

into three clusters namely C1, C2, and C3. Meanwhile, guards s1, s2, and s3 are

assigned to clusters C1, C2, and C3 respectively. It is to be noted that for any cluster

Ci, d(u, v)G ≤ ri, ∀u, v ∈ Ci. Therefore, a guard si can always detect and respond to

an intruder attack on some vertex in Ci.

C1

C3 C2

s1

s3

s2

Figure 5.2: An example illustrating the partitioning of graph vertices into clusters
for eternal security. Guards s1, s2, and s3, with ranges 1, 2, and 3 respectively are
assigned to clusters C1, C2, and C3.

In a secure configuration of guards within a graph, a node may be secured by

more than one guard. In the case of an intruder attack on a node, a response by one

of the guards may result into another secure configuration, whereas a response by

some other guard may produce a non-secure configuration of guards as shown in Fig.

5.3. Thus, for the eternal security, it is crucial to determine a right guard to counter

an attack. The clustering approach is particularly useful for that matter as a guard

responds to an attack on a vertex in its cluster only. As a result, a secure configuration

of guards is always maintained. For a given number of guards and ranges, an effective

partitioning of graph vertices into clusters is not a straightforward task. This is the
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next topic of our discussion.

s1

s2

s1 moves

s2 moves

un-secure configuration

secure configuration

s1

s1

s2

s1

s2

s2

(a) (b)

v

Figure 5.3: (a) Guards s1 and s2 are in a secure configuration and both have a range
1. Let there be an attack on a vertex v. Since d(s1, v)G = d(s2, v)G = 1, both guards
can counter an attack on v. However, the movement of guard s1 to v results into
an un-secure configuration as the circled nodes are not secured by any guard. On
the other hand, the movement of s2 to counter an attack on v produces a secure
configuration. (b) The vertices are partitioned into two clusters, each having a single
guard. Each guard is responsible for the security of the vertices in its cluster only.

5.3 Decomposing a Graph into Clusters

The notion of graph power is useful for the decomposition of a graph into clusters for

the eternal security of its nodes.

Proposition 5 A graph G is eternally secured by a single guard with a range r if

and only if the corresponding Gr is eternally secured by a guard with a range 1.

Proof. Let G be a graph with a diameter d, and eternally secured by a single guard

with a range r. By Lemma 5.2.1, r ≥ d, implying that Gr is a complete graph. Since

the distance between any two nodes in a complete graph is 1, a single guard with a

range 1 is sufficient to eternally secure a graph.

Furthermore, assume Gr to be eternally secured with a single guard of range 1.

u ∼ v ∈ E(Gr) implies that d(u, v)G ≤ r, for any u, v ∈ V . Thus, a single guard with

a range r eternally secures all the vertices in G.
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Since a guard with a range r can eternally secure all the vertices in G that lie

within a distance r from each other, a guard with a range r can eternally secure all

the vertices that induce a complete sub-graph in Gr. Thus, for a guard with a range

r, a cluster with the maximum number of vertices can be obtained by selecting all the

vertices in a maximum clique, which is obtained by maximal clique decomposition of

Gr. As a result, all the vertices in the maximum clique of Gr can be eternally secured

by a guard with a range r. Similarly, for another guard with a range ri, corresponding

cluster can be obtained by repeating the same procedure, i.e., obtaining a maximal

clique decomposition of Gri and then selecting a clique with the maximum number

of vertices that are not yet eternally secured. This scheme leads us to the algorithm

in Section 5.3.1 for obtaining the clusters corresponding to the guards with the given

ranges. Before presenting the main algorithm, we define the following routines that

will be used in the algorithm.

Max Clique(H)

This subroutine takes the adjacency matrix of a graph H with n vertices as an input,

and performs a maximal clique decomposition of H , returning a matrix M ∈ R
n×m

with only 0, or 1 entries. Here, m is the total number of maximal cliques. The

columns of M contain maximal cliques in such a way that the non-zero entries in

the jth column of M indicates vertex indices that constitute the jth maximal clique.

Maximal clique decomposition is a well known combinatorial optimization problem.

Bron-Kerbosch algorithm [102] is a well known and widely used algorithm for finding

maximal cliques in an undirected graph.

Set Cover(βi,M)

The purpose of this subroutine is to select βi number of subsets from a given set

of subsets in such a way that the cardinality of the union of these βi subsets is

maximized. In terms of the matrix input, this subroutine takes a 0-1 matrix M and a

positive integer βi, and returns the indices of βi number columns so that performing
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the OR operation on these columns result into a vector with the maximum number

of 1 entries. Set cover problem is a classical and one of the fundamental problems in

combinatorics and computer science. A detailed treatment on this topic is provided

in [103] along with a number of references.

5.3.1 Main Algorithm

In this sub-section, we present the main algorithm for partitioning a graph into clus-

ters for the eternal security of a graph through a given set of guards along with their

ranges. Let α be a vector containing the ranges of guards in a descending order, i.e.,

the ith element of α, denoted by αi, is the i
th largest range by any guard. Let β be an

array where the ith element, denoted by βi, is the number of guards with the range

αi. For example, α = [4, 2, 1], and β = [1, 3, 2] indicates that a graph has a single

guard with a range 4, three guards with a range 2, and two guards having a range

1. Note that α1 will be the maximum range by any guard. Furthermore, let Vcov

be the set of vertices that are included in some cluster Ci,j, where Ci,j is a cluster

corresponding to the jth guard with a range i. For instance, if there are three guards

each having a range 2, the corresponding clusters will be C2,1, C2,2 and C2,3.

As an illustration of Algorithm I, consider a network shown in Fig. 5.4. Let us

assume that three guards s1, s2, and s3 with ranges 1, 1, and 3 respectively need to

be distributed among the nodes to make the network eternally secure. The objective

is to find an initial secure configuration of guards, as well as devise a strategy for

the movement of guards so that the guards always maintain a secure configuration.

Both of these goals can be achieved by decomposing the graph into clusters, and

assigning an appropriate guard to each of the clusters. Using Algorithm I, we begin

by arranging the ranges of guards in an array in a descending order, α = [3 , 1]. An

array containing the number of guards corresponding to each range in α is β = [1, 2].
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Algorithm I: Decomposing a graph into clusters for the eternal security

Input: G, α, β.
Output: Clusters Ci,j containing vertices secured by the jth guard with a range i.
Initialization: i = 1, Vcov = ∅.
while i < length of α

M ←Max Clique(G(αi))

M̃ ← M\Vcov (Deleting the rows in M corresponding to the vertices that are
already included in some cluster).

c← Set Cover(βi, M̃)
for j = 1 to βi do

Ci,j ← Set of uncovered vertices determined by the non-zero indices in the
cthj column of M

Vcov ← Vcov ∪ Ci,j

end for

i← i+ 1
end while

Since α1 = 3, G3 is computed. Maximal clique decomposition of G3 using Bron-

Kerbosch algorithm gives

Max Clique(G3) = M =









































1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 0 1 0
1 0 1 0 1
0 0 0 1 0
0 1 0 1 0
0 0 0 0 1
0 0 1 0 1









































.

v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12

Since there is a single guard with a range 3, a clique containing the maximum num-

ber of un-secured nodes is selected, and the cluster of nodes for guard s3 is obtained.

All of the nodes are un-secured in the beginning, so the cluster is composed of vertices

in a maximum clique in M . As all cliques are maximum here, clique corresponding to

the first column (c = 1) is picked containing the vertices in {v1, v2, · · · , v8}. Thus, s3
eternally secures the vertices in cluster C3,1 = {v1, v2, · · · , v8}. This changes Vcov from
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an empty set to Vcov = {v1, v2, · · · , v8}. The range of next guard is 1, so maximal

clique decomposition of G is obtained as

Max Clique(G) = M =









































1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1









































.

v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12

Since vertices in Vcov are already secured, a matrix M̃ containing only the un-

secured vertices is obtained by deleting the corresponding rows in M .

M̃ =









0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1









M =









































1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1









































−→

Two columns jointly covering the maximum number of vertices will be selected

as there are two guards with a range 1 (β2 = 2). Thus, Set Cover(2, M̃) returns

c = [14, 15]. Therefore, the clusters corresponding to the two guards with a range 1

are C1,1 = {v9, v10} and C1,2 = {v11, v12}.

Remarks: In our cluster decomposition, for any two vertices u, v ∈ Ci, we have

d(u, v)G ≤ ri, in which ri is the range of the guard assigned to the cluster Ci. Note

that the distance considered here is the distance between the vertices in G, that is

d(u, v)G, rather than the distance between the vertices in the sub-graph induced by

the cluster Ci, that is d(u, v)Ci
. Since d(u, v)G ≤ d(u, v)Ci

, a guard with a range less

than the diameter of the sub-graph induced by the vertices in Ci may be sufficient
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C3,1

C1,1 C1,2

s3

s1

s2

v2

v1

v3

v4 v5 v6

v7 v8

v9

v10

v11

v12

Figure 5.4: A network with twelve nodes. C1,1 cluster contains the first guard with
range 1, while C1,2 contains guard s2, which is the second guard with range 1. The
guard with range 3 is s3, which secures all the vertices in cluster C3,1.

for the eternal security of all the nodes in Ci as shown in the example of Fig. 5.5.

This makes our approach better than the one in which a graph is simply divided

into induced sub-graphs and for every induced sub-graph, there exists a guard with

a range greater than or equal to the diameter of the induced sub-graph.

v1 v2

v4

v3

v5v12

v7

v6

v8

v9

v10

v11

C1

C2

(a) (b)

Figure 5.5: Two guards, each having a range 2, are available for the eternal security
of a given network. In (b), a cluster decomposition using Algorithm I is shown. Since
d(v2, v6)G = 2, both v2 and v6 are included in the same cluster C2 in spite of the fact
that d(v2, v6)C2 = 3. Moreover, there is no way to divide the graph into two induced
sub-graphs in such a way that each sub-graph has a diameter of at most 2. However,
it is possible to have two clusters so that the distance between any two nodes of the
same cluster is at most 2 as shown in (b).

5.4 Average Distance Moved by a Guard to Counter an

Intruder Attack

For the eternal security of a graph, guards with various ranges are located on the

vertices of a graph. In the case of an intruder attack on some vertex, these guards
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move along the edges of a graph through a path of vertices, covering a certain path

length. The vertices of a graph are divided into clusters, C1, C2, · · · , Cσ, where σ is

the total number of guards. All the vertices in a cluster Ci are secured by a single

guard with a range ri, where ri ≥ max
u,v,∈Ci

d(u, v)G. Since the maximum distance

between any two nodes varies from cluster to cluster, the path lengths covered by

guards to counter attacks also vary. Average distance a guard moves to eternally

secure a graph may become a significant design parameter for various applications.

Thus, we provide an analysis of the average distance moved by a guard to eternally

secure a graph by the cluster decomposition. We assume that the probability of a

vertex being attacked by an intruder is same for all the vertices of a graph.

Proposition 6 Let G be a graph whose vertices are decomposed into ` clusters, de-

noted by C1, · · · , C`, such that
⋃̀

i=1

Ci = V (G). For every cluster Ci, let there be a

guard si that eternally secures all of the vertices in Ci only. If τ is the average dis-

tance (path length) moved by a guard to counter an intruder attack on some vertex

v ∈ V (G), then

τ =
1

n

[
∑̀

i=1

1

(ni − 1)

∑

u,v∈Ci

dG(u, v)

]

, (30)

where ni is the number of vertices in the cluster Ci, and n is the total number of

vertices in G.

Proof. Let v ∈ Ci, then the average distance between v and some other u ∈ Ci in G

is defined as,

ρ(v) =
1

ni − 1

∑

u∈Ci

d(u, v)G

The average distance between the vertices in Ci, denoted by ρ(Ci), is the average

value of the distances between all pairs of vertices in Ci, i.e.,
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ρ(Ci) =
1

ni

∑

v∈Ci

ρ(v)

=
1

ni(ni − 1)

∑

u,v∈Ci

d(u, v)G.

(31)

This is the average distance a guard si moves in a cluster Ci to counter an intruder

attack on some v ∈ Ci. Since there are ` clusters with various number of vertices

and guards with various ranges, the average distance a guard moves in response to

an attack is the weighted average of ρ(Ci) given as

τ =
1

n

∑̀

i=1

niρ(Ci). (32)

Inserting ρ(Ci) from (31) into (32), we get the desired result,

τ =
1

n

∑̀

i=1

1

(ni − 1)

∑

u,v∈Ci

d(u, v)G.

For the network in Fig. 5.4, average path length covered by a guard to counter

an intruder attack is 1.523.

5.5 A Discrete Event System Model

The phenomenon of eternal security of a graph involves an attack on a vertex that

causes the movement of a guard to the attacked vertex. Since a guard is always

located on some vertex in a graph, the state of a guard (defined as the location of a

guard on a vertex) can always be described by a discrete set, i.e., vertex set of the

graph. Intruder attack on a vertex is a discrete event as it takes place at some discrete

point in time causing a transition in the state of a guard. Thus, the formalism of

discrete event systems can be used to model the eternal security in graphs through a

set of heterogeneous guards.
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A discrete event system is frequently represented by an automaton (e.g., [104]),

which can be written as

G = (X,E, f,Γ, x0, Xm),

where

X is the set of states,

E is the set of events,

f : X × E → X is the transition function,

Γ : X → 2E is the active event function, i.e, Γ(x) ⊆ E is the set of events

for which f(x, e) is defined,

x0 is the initial state, and

Xm ⊆ X is the set of marked states.

For our problem of eternal security, we define an atomic discrete event system

from which the overall system will be derived. In fact, the atomic system is defined

for a single guard si with range ri ≥ 1, and sub-graph G(i) with vertex set V(i) in such

a way that d(u, v) ≤ ri, ∀ u, v ∈ V(i). The state of the atomic discrete event system

is the location of the guard on some vertex vj ∈ V(i). An event ek is defined as an

intruder attack on a vertex vk ∈ V(i). Automaton for this system is given by

G(i) =
(
V(i), E(i), f(i),Γ(i)

)
, (33)

where

V(i) is the vertex set of G(i), and

E(i) = {ek : vk ∈ V(i)}. Here ek is the intruder attack on vertex vk.

f(i) : V(i) × E(i) → V(i) is the transition function, where f(i)(vj, ek) = vk, i.e., in

case of

an attack on a vertex vk, guard gi lying on a vertex vj will move to vertex vk.

Γ(vj) = E(i), ∀vj ∈ V(i).
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States are marked when it is desired to give them a special meaning. For instance,

these states may be the ones that are reached after a certain sequence of events. Since

there are no marked states for our system, we can ignore them in our model.

Furthermore, consider a graph G having a vertex set V . Instead of having a single

guard, let there be σ guards, s1, s2, · · · , sσ having ranges r1, r2, · · · , rσ respectively.

The goal is to make G eternally secure, and obtain a corresponding discrete event

system model. We use the same approach as in Section 5.2, i.e., to decompose a

graph into clusters and make each guard responsible for the eternal security of the

vertices in its cluster only. The discrete event system corresponding to each guard

si, and its cluster can be described in a similar way as in (33). Since there are σ

guards, there will be σ such systems, each having its own state space, V(i). Note

that
σ⋃

i=1

V(i) = V , and V(i) ∩ V(j) = ∅, ∀i 6= j. The discrete event system G, which

corresponds to the overall graph G with guards s1, s2, · · · , sσ, can be described by the

parallel compositions of automata G(i), ∀i ∈ {1, 2, · · · , σ}. The parallel composition

of two atomic automata G(1), and G(2) is defined here as1

G(1) ‖ G(2) :=
(
V(1) × V(2), E(1) × E(2), f, Γ1‖2, (x0,1, x0,2)

)
, (34)

where

f((vi, vj), e) :=







(
f(1)(vi, e), vj

)
if e ∈ Γ(1)(vi)

(
vi, f(2)(vj, e)

)
if e ∈ Γ(2)(vj),

and Γ1‖2 = Γ(1)(vi) ∪ Γ(2)(vj).

Using the associativity property of parallel compositions of automata [104], the re-

quired discrete time system for the eternal security of graphGwith guards s1, s2, · · · , sσ
is given by

1Here we are making use of the fact that there are no common events between automata G(1),
and G(2), i.e., E(1) ∩ E(2) = ∅. This is true as V(1) ∩ V(2) = ∅.
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G = G(1) ‖ G(2) ‖ · · · G(σ). (35)

It is to be mentioned here that the state space V(i) of an automaton G(i) corre-

sponds to the vertices that need to be secured by the guard si with range ri, and can

be obtained by the cluster decomposition method outlined in Section 5.3.

As an example, consider a graph G shown in Fig. 5.6(a). The graph has two

guards s1 and s2 with ranges 2 and 1 respectively. The vertex set of G is decomposed

into two clusters V(1) = {v1, v2, v3, v4} and V(2) = {v5, v6}. Guard s1 is responsible

for the eternal security of the vertices in V(1), whereas s2 secures the vertices in V(2).

The discrete event system corresponding to s1 and V(1) is given by an automaton

G(1) =
(
V(1), E(1), f(1),Γ(1)

)
in which E(1) = {e1, e2, e3, e4} is an event set, and ei ∈ E(1)

means that there is an attack on vertex vi. The state transition function is given

by f(1)(vi, ej) = vj , which means that guard s1 moves from its current location at

vertex vi to vertex vj in case of an attack at vj. Similarly, discrete event system

corresponding to guard s2 is represented by G(2) =
(
V(2), E(2), f(2),Γ(2)

)
. The state

transition diagrams for both G(1), and G(2) are shown in Fig. 5.6.

Using the formulation in (34), discrete event system G, which corresponds to the

overall graph G, is obtained by the parallel combination of G(1) and G(2). Fig. 5.7

shows the state transition diagram of G.

5.6 Eternal Security Through Homogeneous Guards

Eternal security in graphs through homogeneous guards2 can be achieved by adapting

the same approach, i.e., partitioning of graph vertices into clusters and assigning a

guard to each cluster. For k number of guards, where each guard has a range m,

clusters can be obtained by the steps as follows:

a) Take the rth power of a given graph, Gr.

2Homogeneous guards are the ones that have a same range r ≥ 1.
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Figure 5.6: (a) A graph G containing two guards s1, and s2. (b) The state transition
diagram of G(1). (c) The state transition diagram of G(2).

b) Obtain a maximal clique decomposition of Gr. Let there be m maximal cliques.

c) Pick k maximal cliques that jointly cover the maximum number of vertices in

the graph.

d) Each maximal clique is a cluster. Assign a single guard to the vertices in a

cluster.

The issue of minimum number of guards required to eternally secure a graph

needs to be addressed. In this section, we provide tight bounds on the minimum

number of guards required to eternally secure a graph when all guards have a same

range r ≥ 1. We begin by defining the eternal security number of a graph with

homogeneous guards.

Definition 5.6.1 The eternal security number of a graph G, denoted by σr(G), is

the minimum number of guards required to eternally secure a graph G when all the

guards have a same range r.

In [84], fundamental lower and upper bounds are presented for the eternal security
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Figure 5.7: The state transition diagram of G = G(1) ‖ G(2).

number of a graph for r = 1 (i.e., when all the guards can detect and respond

to an attack on their immediate neighbors only). The bounds relate σ1(G) to the

independence number ι(G), and the clique cover number θ(G) of a graph G. Clique

cover number is the minimum number of cliques needed to cover all the vertices of G.

Theorem 5.6.1 [84] For any graph G,

ι(G) ≤ σ1(G) ≤ θ(G). (36)

Many nice results are available regarding ι(G) and θ(G) that can be directly used

for computing σ1(G). In a similar way, relating σr(G) (for r > 1) to σ1(G) is useful.
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Lemma 5.6.1 For a graph G,

σr(G) = σ1(G
r). (37)

Proof. Let G be eternally secured with x number of guards, where each guard has

a range r, so that for any time instant k and vertex v ∈ V , there exists a guard s

such that d(fk(s), v)G ≤ r. By the definition of graph power Gr, d(fk(s), v)G ≤ r ⇔

d(fk(s), v)Gr ≤ 1.3 Thus, the same number of guards x, where each guard has a range

1, can eternally secure Gr, i.e., σ1(G
r) = x.

By a similar argument it can be shown that (σ1(G
r) = x) ⇒ (σr(G) = x), which

gives the required relation.

A general form of (37) is expressed in the following result.

Theorem 5.6.2 For any graph G, and positive integers m and n,

σm(G
n) = σn(G

m). (38)

Proof. Let Gn = Y , and Gm = Z. Using (37), σm(Y ) = σ1(Y
m) = σ1(G

mn). The

right side of (38) is σn(Z) = σ1(Z
n) = σ1(G

mn), giving the required result.

Furthermore, we utilize the notion of domination in graphs for finding sharp

bounds on the eternal security number of graphs. The concept of domination in

graphs is closely related to the idea of eternal security. An r-distance dominating set,

or simply an r-dominating set of a graph, denoted by X(r) ∈ V (G), is a subset of ver-

tices such that for each v ∈ V (G), either v ∈ X(r), or v is at most r distant from some

vertex in X(r). The cardinality of a minimum r-dominating set is the r-domination

number of a graph, denoted by γ(r)(G). We use the notation Nr(v) to denote the open

r-neighborhood of a vertex v, i.e., Nr(v) = {u ∈ V (G) | d(u, v)G ≤ r}. Similarly, the

closed r-neighborhood of a vertex v, denoted by Nr[v], is Nr(v) ∪ {v}.

3fk(s) is the vertex, where guard s is located at time k.
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Theorem 5.6.3 For any graph G,

σ2r(G) ≤ γ(r)(G), (39)

where γ(r) is the r-domination number of G.

Proof. Let X(r) = {x1, x2, · · · , xγ(r)} be a minimum r-dominating set of G. Let Gxi

be a sub-graph induced by the vertices in Nr[xi]. By the definition of an r-dominating

set, d(v, xi)Gxi
≤ r, ∀v ∈ Nr[xi]. Thus, for any y, z ∈ Nr[xi], d(y, z)Gxi

≤ 2r, implying

that diam(Gxi
) ≤ 2r. By Lemma 5.2.1, σ

(2r)
1 (Gxi

) = 1. This is true for each xi ∈ X(r).

Since
⋃

xi∈X(k)

Gxi
⊆ G, we get σ2r(G) ≤ γ(r).

For r = 1, we have σ2(G) ≤ γ(G), where γ(G) is a 1-domination number (or

simply a domination number) of a graph. An example illustrating the above proof

for r = 1 is shown in the Fig. 5.8. It is to be mentioned here that the bound in (39)

is tight. For example, consider the graph in Fig. 5.8, where σ2(G) = γ(G) = 2.

Gx1
Gx2

x1 x2

G

Figure 5.8: X = {x1, x2} is a dominating set of a given graph G. For each xi ∈ X ,
there exits a sub-graph Gxi

with diam(Gxi
) = 2, so σ2(Gxi

) = 1. At the same time,
Gx1 ∪Gx2 ⊆ G, so σ2(G) ≤ [σ2(Gx1) + σ2(Gx2)] = 2.

Connected Domination Number and σr(G)

We also relate σr(G) to a widely studied notion of connected domination in graphs.

For a connected graph, a connected dominating set, Xc, is a dominating set in which

the vertices in Xc induce a connected subgraph. The connected domination number,

denoted by γc, is the cardinality of a minimum connected dominating set.

Theorem 5.6.4 Let G be a connected graph, and Gc be a sub-graph induced by the

vertices in a minimum connected dominating set of G. If Gc is eternally secured by
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a certain number of guards each having a range r, then G is eternally secured by the

same number of guards each having a range r + 2.

Proof. Let Xc be a minimum connected dominating set, and Gc be a sub-graph

induced by the vertices in Xc. Let Gc be eternally secured by σ number of guards,

where each guard has a range r. It means that for any time instant k and x ∈ Xc,

there exists a guard s such that d(fk(s), x)Gc
≤ r, in which fk(s) is the vertex where

a guard s is located at time k.

If x ∈ Xc, then d(u, v)G ≤ 2, ∀u, v ∈ N [x]. It implies that there always a guard s

such that d(fk(s), u)G ≤ r + 2, ∀u ∈ N [x]. Since every vertex in G lies in the closed

neighborhood of some vertex in Xc, all vertices in G are eternally secured by the σ

number guards, where each guard has range r + 2.

5.7 Eternal Security Number for Some Classes of Graphs

In this section, we give explicit expressions and bounds for σr(G) for different classes

of graphs. We start with a path graph.

Theorem 5.7.1 Let Pn be a path graph with n vertices, then

σr(Pn) =

⌈
n

r + 1

⌉

.

Proof. The chromatic number4 of the rth power of a path graph with n vertices is

r + 1, i.e., χ(P r
n) = r + 1 [105]. Moreover, ι(G) ≥ n

χ(G)
, in which ι(G) and χ(G) are

the independence number and the chromatic number of a graph G respectively [105].

Thus, we get ι(P r
n) ≥ n

r+1
, and (36) implies that σ1(P

r
n) ≥ d n

r+1
e. At the same time,

every (r + 1) consecutive vertices in P r
n induce a complete sub-graph. Thus, we get

d n
r+1
e cliques, implying that σ1(P

r
n) ≤ d n

r+1
e. Observing that σ1(P

r
n) = σr(Pn), we

get the desired result.

4The chromatic number of a graph G, denoted by χ(G), is the smallest number of colors needed
to color the vertices so that no two adjacent vertices share the same color.
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Eternal security number of a cycle graph is of particular interest. Consider a

closed boundary of some region, where the boundary has n potential attack points

that need to be secured with a certain number of guards. For a given sensing and

response range of guards, the eternal security number σr(Cn) gives the minimum

number of guards needed to secure a region. At the same time, for a given number

of guards, we can determine the minimum range each guard should have to eternally

secure a graph.

Theorem 5.7.2 Let Cn be a cycle graph with n nodes, then
⌊

n

r + 1

⌋

≤ σr(Cn) ≤
⌈

n

r + 1

⌉

.

Proof. From [106], we know that ι(Cr
n) = b n

r+1
c. Using this result along with (36)

and (37), we get σr(Cn) ≥ b n
r+1
c. Moreover, assume that vertices of Cn are labelled

consecutively {1, 2, · · · , n}. Consider a partition P of V (Cr
n) as

P = {{1, · · · , r + 1}, {r + 2, r + 3, · · · , 2(r + 1)}, · · · , {x, x+ 1, · · · , n}} ,

where x =
[(
d n
r+1
e − 1

)
(r + 1) + 1

]
. Note that all the vertices in each subset of P

are adjacent to each other in Cr
n. Thus, the vertices in each subset of P induce a

clique in Cr
n. The cardinality of P is d n

r+1
e. This gives the clique cover number of Cr

n

as θ(Cr
n) = d n

r+1
e. Using (36), we directly imply that σr(Cn) ≤ d n

r+1
e.

Following result is a direct consequence of Theorem 5.7.2.

Corollary 5.7.1 Every hamiltonian graph5 has

σr(G) ≤
⌈

n

r + 1

⌉

.

Another useful result regarding 2-connected graphs6 directly follows from Theorem

5.7.2, and Corollary 5.7.1.

5A hamiltonian cycle in a graph G is a cycle that passes through each vertex exactly once. A

graph containing such a cycle is a hamiltonian graph.
6A graph is 2-connected if there does not exist a single vertex whose removal disconnects the

graph.
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Corollary 5.7.2 For r ≥ 2, every 2-connected graph has

σr(G) ≤
⌈

n

r + 1

⌉

.

Proof. If G is 2-connected, then G2 is hamiltonian [107]. The required result is then

directly implied from Corollary 5.7.1.

Definition 5.7.1 (Cartesian Product of Graphs): The Cartesian product of graphs

G and H, denoted by G2H, is a graph such that

(a) the vertex set of (G2H) is the Cartesian product V (G)× V (H).

(b) any two vertices (u, u′) and (v, v′) are adjacent in G2H if and only if u = v,

and u′ is adjacent to v′ in H; or u′ = v′, and u is adjacent to v in G.

Cartesian product of graphs is useful in representing the network topologies that

appear in numerous practical scenarios, including grid graph, which is a Cartesian

product of two path graphs Pn2Pm; and prism graph, which is a Cartesian product

of a cycle and a path graph Cn2Pm. These graph structures are useful in designing

secure systems as they provide various levels of security in a systematic way. For

example, consider a C62P4 shown in Fig. 5.9. The region enclosed by the innermost

circle is protected by four circles, which may correspond to four levels (or layers) of

security.

We prove the following lemma that will be used later.

Lemma 5.7.1

σr(Pn2P2) ≤
⌈n

r

⌉

.

Proof. Let the vertices of Pn be labelled consecutively as {1, 2, · · · , n}, and vertices

of P2 be labelled as {1′, 2′}. The vertex set of Pn2P2 can be written as

V (Pn2P2) = {(1, 1′), (2, 1′), · · · , (n, 1′), (1, 2′), (2, 2′), · · · , (n, 2′)}.
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Let us do the partion of V (Pn2P2) as

P ={{(1, 1′), · · · , (r, 1′), (1, 2′), · · · , (r, 2′)},

{(r + 1, 1′), · · · , (2r, 1′), (r + 1, 2′), · · · , (2r, 2′)},

· · · , {(x, 1′), (x+ 1, 1′), · · · , (n− 1, 1′), (n, 1′),

(x, 2′), (x+ 1, 2′), · · · , (n− 1, 2′), (n, 2′)}},

where x =
(
dn
r
e − 1

)
(r) + 1.

Note that the vertices in each subset of P induce a complete sub-graph in (Pn2P2)
r.

Also the cardinality of P is dn
r
e. Thus, θ((Pn2P2)

r) ≤ dn
r
e, and therefore, σr(Pn2P2) ≤

dn
r
e.

Lemma 5.7.1 is useful for obtaining bounds on σr of prism (Cn2Pm), and grid

graphs (Pn2Pm), as these graphs can be decomposed into connected components,

where each component is a (Pn2P2).

Theorem 5.7.3 For an even n,

σr(Cn2Pm) ≤
n

2

⌈m

r

⌉

. (40)

Proof. Let the consecutive vertices of Cn be labelled as {1, 2, · · · , n}, and the con-

secutive vertices of Pn as {1′, · · · , m′}. The vertex set of Cn2Pn can be written

as

V (Cn2Pm) ={(1, 1′), (2, 1′), · · · , (n, 1′),

(1, 2′), (2, 2′) · · · , (n, 2′),

· · · , (1, m′), (2, m′), · · · , (n,m′)}.

Let us do the partition of V (Cn2Pm) as

P ={{(1, 1′), · · · , (1, m′), (2, 1′), · · · (2, m′)}

{(3, 1′), · · · , (3, m′), (4, 1′), · · · (4, m′)}

· · · , {(n− 1, 1′), · · · , (n− 1, m′), (n, 1′), · · · , (n,m′)}}.
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Each subset in P induces a Pm2P2. The cardinality of P is n/2. Using Lemma 5.7.1,

we get σr(Cn2Pm) ≤ n
2

⌈
m
r

⌉
.

An example in Fig. 5.9 illustrates the above proof.

(a) (b)

Figure 5.9: (a) A graph (C62P4). (b) There are three copies of sub-graph (P42P2)
in (C62P4). Since two guards, where each guard has range 2, are sufficient for the
eternal security of (P42P2), we get σ2(C62P4) ≤ 6.

If n is an odd number in (Cn2Pm), we can always decompose (Cn2Pm) into

(Cn−12Pm), and Cn, such that is ((Cn−12Pm) ∪ Cn) ⊂ (Cn2Pm) . Using Theorem

5.7.3, σr(Cn−12Pm) ≤
(
n−1
2

) ⌈
m
r

⌉
, and from Theorem 5.7.2, σr ≤

⌈
n

r+1

⌉
. Thus, for an

odd n,

σr(Cn2Pm) ≤
(
n− 1

2

)⌈m

r

⌉

+

⌈
n

r + 1

⌉

. (41)

The bound in Theorem 5.7.3 is tight. For example, consider (C42P3), which has

a diameter 4. Using Lemma 5.2.1, σ3(C42P3) is at least 2, which is the same value

as obtained from (40).

Theorem 5.7.4 For an even n, a grid graph (Pn2Pm) has

σr(Pn2Pm) ≤
n

2

⌈m

r

⌉

.

Proof. The proof is exactly same as that of Theorem 5.7.3 as Pn2Pm can be decom-

posed into n
2
vertex disjoint copies of P22Pm.
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When n is odd, we can decompose (Pn2Pm) into (Pn−12Pm), and Pn, such that

((Pn−12Pm) ∪ Pn) ⊂ (Pn2Pm). Using Theorem 5.7.4, and Theorem 5.7.1, we get

σr(Pn2Pm) ≤
(
n− 1

2

)⌈m

r

⌉

+

⌈
n

r + 1

⌉

. (42)

In this chapter, we investigated the problem of securing a network of agents against

a sequence of intruder attacks by modeling the network as a graph. A certain number

of guards, which are capable of detecting and responding to an attack within a certain

distance, were deployed throughout the network. The location of guards, and their

movement strategies were developed to eternally secure a graph in the sense that in

case of an attack on some vertex, there always existed a guard to counter the attack

by moving towards the attacked vertex. We extended the idea of eternal security in

graphs by incorporating the notion of heterogeneous guards. It is shown that the

problem of eternal security in graphs can be resolved efficiently by decomposing a

graph into clusters, and assigning a single guard to each cluster. We addressed all

aspects of the problem, including number of guards required, location of guards within

a graph, and movement strategies of guards to counter any intruder attack. A discrete

event system model of the eternal security in graphs is also presented to approach this

issue from a system theoretic view-point. Various bounds on the number of guards

required to eternally secure a graph are provided for different classes of graphs. The

framework provided can be used to analyze as well as design secure network topologies

for various applications.

104



CHAPTER VI

ROBUST GRAPH TOPOLOGIES FOR NETWORKS

Robustness of networked systems against noise corruption and structural changes in

an underlying network topology is a critical issue for a reliable performance. In this

chapter, we investigate this issue of robustness in networked systems both from struc-

tural and functional viewpoints. Structural robustness deals with effects of changes

in a graph structure due to link or edge failures, whereas functional robustness ad-

dresses how well a system behaves in the presence of noise. We discuss that both of

these aspects are very much inter-related, and can be measured through a common

graph invariant. A graph process is introduced, in which edges are added to a graph

in a step-wise manner to maximize robustness. Moreover, a relationship between the

symmetry of an underlying network structure and robustness is also discussed.

6.1 Robustness Issues in Networked Systems

In distributed systems, agents exchange information with each other through local

interactions. These interactions in turn define an information exchange network that

can be modeled by a graph. For example, in agreement and consensus related prob-

lems, agents are required to agree on a common value (that may be a sensor mea-

surement) by implementing a linear consensus protocol. In fact, connectivity of the

underlying graph structure is a necessary requirement for the consensus protocol to

work. Moreover, structure of the underlying network affects various properties of the

system including convergence rates, connectivity of the network under edge (inter-

connection among agents) or vertex (agent) failures. A highly connected network is

obviously less affected by an edge or vertex failures and is therefore, more robust to

these deletions. Thus, structure of the inter-connection infrastructure plays a key role
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in understanding the effects of edge or vertex failures.

Another aspect of robustness comes into play when we also consider agents’ dy-

namics in such systems. Agents compute states (that may be their positions or

any other measurements) and eventually exchange them with others through some

medium that may be noisy. This noise plays an important role in determining the

overall functionality of the system. It has been observed that some network topolo-

gies are least affected by the incorporation of noise when agents are performing linear

consensus, while others are affected to a larger extent (see [92] for example). The

network structures minimally affected by noise are obviously more robust. This leads

us towards the study of two aspects of robustness in multiagent systems, in which

agents implement consensus protocols.

(a) Structural Robustness: It is the ability of the network to maintain its original

structure and connectedness among vertices in the underlying graph under edge or

vertex failures.

(b) Functional Robustness: It measures how well a system behaves in the presence

of noise that corrupts measurements or an information exchange among agents.

The above mentioned robustness views seem to have a different focus, where (a)

is related purely to a property of the underlying graph structure while (b) deals with

the effect of noise on measurements and states of the agents. We show here that both

these robustness views are in fact, related to each other and can be measured by the

same parameter.

6.1.1 Structural Robustness vs. Functional Robustness

There may exist multiple paths between two nodes in a given graph of a network. A

large number of unique paths between two nodes implies that these nodes are highly

interconnected with each other. Thus, their connectivity with each other will not be

effected to a large extent by an edge failure, indicating a robust connection between
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these nodes. The number of unique paths between any two nodes, therefore, hints

upon the quantitative aspect of structural robustness in a network.

It is not only the number of unique paths, but also the quality of paths that is

crucial to the robustness against edge failures. A path of shorter length between

two nodes is preferred over a longer one as it corresponds to an increased level of

connectedness between these nodes due to a lesser delay. Also, shorter length paths

between nodes result in short random walks that are less affected by the node or edge

failures as shown in [121].

Thus, the structural robustness should incorporate both the quantitative as well

as the qualitative effect of edge removals on the overall connectivity of the network.

As it is shown in [90], the notion of effective resistance between two nodes takes into

account both of these aspects, i.e., the number of paths between two nodes and the

length of these paths. Effective resistance between nodes decreases with an increase

in the number of paths between nodes. Moreover, effective resistance between nodes

is smaller if the length of the paths between them is shorter. This provides a nice

way to quantify the structural robustness in networks.

The effective resistance, ri,j, between vertices i and j in an un-weighted graph G is

defined as the effective electrical resistance between points i and j when a resistor of

unit resistance is placed along every edge and a potential difference is applied between

i and j as illustrated in the Fig. 6.2. Consider a network in the Fig. 6.2. There are

three unique paths between 1 and 2, namely x = [1 → 2], y = [1 → 3 → 4 → 2]

and z = [1 → 3 → 5 → 7 → 8 → 9 → 6 → 4 → 2]. Each of these paths adds

to the robustness of connection between nodes 1 and 2. Since path z is the longest

one, it offers least contribution towards the robustness of inter-connection between

nodes 1 and 2. This is also indicated by only a slight increase in the r1,2 value in Fig.

6.2(c), where the loss of an edge 5 ∼ 7 results in the loss of z path between 1 and 2.

Similarly, when a path y is lost, r1,2 is increased in greater amount as y path has a

107



smaller length than z. When a shortest (most crucial) path, x, is lost, the greatest

increase in r1,2 is observed.
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Figure 6.1: (a) A graph with eight nodes. (b) Each edge is replaced by a unit
resistance and effective resistance between nodes 1 and 2 is calculated. In (c), (d)
and (e), various edges are lost resulting in a loss of path between nodes 1 and 2.
A corresponding increase in r1,2 is also shown. Note that a smaller r1,2 indicates a
robust inter-connection between nodes 1 and 2.

Thus, the structural robustness of the overall network can be measured by the

sum of the effective resistances over all pairs of nodes in the underlying graph, which

is the so called Kirchhoff index, Kf , of the graph.

Kf (G) =

n∑

i=1

n∑

j>i

ri,j (43)

where n is the number of vertices in G, and ri,j is an effective resistance between
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nodes i and j.

A smaller value of Kf , indicates that a network is structurally more robust. It is

also interesting to see that addition of an edge strictly decreases the value of Kf in

a graph (shown in [90]), thus, increasing robustness. This also supports our intuition

as addition of an edge always results in an extra path between a pair of nodes.

For the case of network robustness against noisy measurements, i.e. functional

robustness, we consider a multiagent system with agents implementing a linear con-

sensus protocol. Linear consensus dynamics have been extensively studied in the

domain of network control systems due to its wide variety of applications including

formation control, distributed control mechanisms, sensor networks and cooperative

decision making to name a few (see [114]). Simple consensus dynamics of such a

system can be given as,

ẋ(t) = −Lx(t) (44)

where L is a laplacian matrix of an underlying graph and x is a corresponding state

vector of the agents. In steady state, agents reach an agreement over a common state

x̄(t). But for practical systems, agents’ states are affected by a noise term. Thus,

ẋ(t) = −Lx(t) + ξ(t) (45)

ξ(t) is zero-mean mutually white stochastic process. It is known (e.g., see [91] and [95])

that in the presence of this noise term, agents’ states do not converge at a common

value but will remain in motion about x̄(t). In [91], robustness of a system in (45)

under noisy consensus dynamics is then defined in terms of the expected dispersion

of the system from consensus. A nice result reported there relates this robustness due

to noisy consensus under the above settings to the Kirchhoff index of the undirected

graph structure of the underlying network. It is shown that a network with a greater

Kirchhoff index has a greater dispersion from consensus due to noise and is therefore,

less robust. Similarly, a smaller value of Kf indicates that the expected dispersion of
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the system in (45) due to noise is not significant, thus, indicating a greater robustness

of network against noise.

In the light of the above discussion, it can be stated that seemingly different

notions of structural robustness and functional robustness, are in fact, very inter-

related. Both of them depend on the structure of an underlying network and can be

measured by a same graph invariant known as the Kirchhoff index.

Networked

Systems

Interconnections
(Graph Structure)

Agents’ Dynamics

(Noisy Consensus)

Structural

Robustness Robustness

Effective Graph Resistance

(Kirchhoff Index, Kf )

Functional

Figure 6.2: Structural robustness and functional robustness (robustness against
noise) can both be quantified by Kirchhoff index.

6.2 Kirchhoff Indices of Some Graphs

As discussed, Kirchhoff index can measure both structural and functional robustness

in multiagent systems. This provides us a way to develop a systematic scheme for

designing optimal network topologies to maximize their robustness properties. In

this section, we find Kirchhoff indices of various graph structures and also present

optimal1 addition of edges for some specific graphs. These results will be used in

Section 6.3, in which a graph process is introduced in which edges are added to an

1in the sense of minimizing the Kirchhoff index, Kf .
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existing graph using greedy approach to minimize the Kirchhoff index. At first, some

graph terminologies are introduced.

A Star Graph, Sm, is a tree with m vertices where m − 1 vertices have a degree

1 and they all are connected to a single central vertex that has a degree m − 1. A

Fan Graph, Fm is obtained by connecting all the vertices in a path graph, Pm+1, to

a single vertex as shown in the Fig. 6.3.

Let G1 and G2 be two graphs, then G1•G2 denotes a graph obtained by identifying

u ∈ G1 with a vertex v ∈ G2. An example is shown in Fig. 6.3. Moreover, if v ∈ G1,

then (G1)
k denotes a graph obtained by identifying k copies of G1 through the vertex

v, e.g., (G1)
3 = G1 • (G1 •G1).

We also refer to Fi as an i-petal, and (Fi)
k as a petal graph containing k number

of i-petals. An example is illustrated in the Fig. 6.3.

F1 F2 F1 • F2

u v

(F1)
4

Figure 6.3: Fan graphs F1 and F2. Note that F2 is obtained by connecting all the
vertices of a path graph with three nodes, P3, to a common node v. F1•F2 is obtained
by identifying u and v vertices in F1 and F2 respectively. A petal graph, (F1)

4, with
four 1-petals is also shown.

Lemma 6.2.1 The Kirchhoff index of G = (F1)
k is

Kf((F1)
k) =

2

3
k(4k − 1) (46)

Proof. There are 2k + 1 vertices in (F1)
k. We label its vertices as {1, 2, · · · , 2k, α},

where α is the central vertex with a maximum degree as shown in the Fig. 6.4. Note
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that if i is odd, ri,i+1 = 2/3 and ri,j = 4/3 for every j > i+ 1. For even i, ri,j = 4/3

for every j > i. Thus, for a fixed i,

∑

i<j

ri,j =







4
3
(2k − i) i is even

2
3
+ 4

3
(2k − i− 1) i is odd

Also, for every i ∈ {1, 2, · · · , 2k}, we have ri,α = 2/3. Thus, Kirchhoff index of

(F1)
k can be written as,

Kf((F1)
k) =

∑

i

ri,α +
∑

i,j>i

ri,j

After inserting the values and simplification we get,

Kf((F1)
k) =

2

3
(2k) +

[
8

3
k(k − 1) +

2

3
k

]

=
2

3
k(4k − 1) (47)

1

2

4

3

5

6

2k − 1

2k

α

α

i i+ 1

11

1

21

i

α

2

3

i

α

(a) (b)

Figure 6.4: (a) Labeling of (F1)
k. (b) ri,α = 2/3.

A graph structure of the form (F1)
k • Sm, obtained by identifying a petal graph

(F1)
k, and a star graph Sm through their central vertices, is used in the Section 6.3 for

defining a graph process where edges are added to maximize robustness. Following

lemma computes the Kf for such a graph.

Lemma 6.2.2 Let G = (F1)
k • Sm be a graph with 2k +m vertices. Then,

Kf(G) = (m− 1)2 +
2

3
k(5m+ 4k − 6) (48)
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Proof. Kirchhoff index of a given G can be written as,

Kf (G) = Kf ((F1)
k) +Kf (Sm) +

∑

i∈Sm,j∈(F1)k

ri,j (49)

Let α be the central vertex of given G, (i.e., α is the vertex with a degree 2k +m).

Noting that ri,α = 1, where i is any of the non-central vertex of Sm. Also, rj,α = 2/3,

where j is any of the non-central vertex of (F1)
k. Thus, ri,j = 5/3, where i ∈ Sm

and j ∈ (F1)
k. This gives

∑

i∈Sm,j∈(F1)k
ri,j = (m − 1)

[
5
3
(2k)

]
. Also, we know that

Kf(Sm) = (m− 1)2 (see [90] as an example). Using these results along with (46), we

get,

Kf (G) =
2

3
k(4k − 1) + (m− 1)2 + (m− 1)

[
5

3
(2k)

]

= (m− 1)2 +
2

3
k(5m+ 4k − 6)

We have also computed Kf for the following special graph structure that will be

used later.

Lemma 6.2.3 Let G = (F1)
k • Sm. Then the Kirchhoff index of G′ = G • F2 is

Kf (G
′) = (m− 1)2 +

19

4
m− 3

4
+

2k

3

(

5m+ 4k +
21

4

)

(50)

Proof. Let us label the vertices in G′ as shown in the Fig. 6.5. Here, α is the central

vertex. The Kirchhoff index of G′ can be written as,

Kf(G
′) = Kf(G) +Kf (F2) +

∑

i∈F2,j∈G
ri,j

Firstly we will find
∑

i∈F2,j∈G
ri,j. Since, ra,α = rc,α, so, ra,j = rc,j, where j is some

vertex in G. Thus, we can write

∑

i∈F2,j∈G
ri,j =

∑

j∈G
ra,j +

∑

j∈G
rb,j +

∑

j∈G
rc,j

=2
∑

j∈G
ra,j +

∑

j∈G
rb,j

(51)
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Note that ra,j = ra,α + rα,j, where j ∈ G, and ra,α = 5/8. Also, if j has a degree

1, then rα,j = 1 and if j has degree 2, rα,j = 2/3. This gives,

ra,j =







13/8 j ∈ G and degree of j = 1

31/24 j ∈ G and degree of j = 2

Similarly, we have rb,α = 1/2. Thus, we get,

rb,j =







3/2 j ∈ G and degree of j = 1

7/6 j ∈ G and degree of j = 2

Since, G has (m − 1) vertices with degree 1 and 2k vertices with degree 2, thus

inserting the ra,j and rb,j in (51), we get

∑

i∈F3,j∈G
ri,j =

19

4
m+

15

2
k − 19

4
(52)

Now, using (48), (52) and Kf (F2) = 4, we get,

Kf (G • F2) = (m− 1)2 +
19

4
m− 3

4
+

2k

3

(

5m+ 4k +
21

4

)

a
b

c

α

G = (F1)
k
• Sm G = F2

a

b
c

α

G
′ = G • F2

Figure 6.5: Labeling of G′ = G • F2, where G = (F1)
k • Sm. It is to be noted here

that in case of F2, ra,α = rc,α = ra,b = rb,c = 5/8, rb,α = 1/2, and ra,c = 1.
Summing them all gives, Kf (F2) = 4.

Using exactly the same procedure in Lemma 6.2.3, we can prove the following

result.

114



Lemma 6.2.4 Let G = (F1)
k • Sm. Then the Kirchhoff index of G′ = G • F3 is

Kf (G
′) = (m− 1)2 +

130

21
m+

16

21
+

2k

3

(

5m+ 4k +
60

7

)

(53)

Proof. Let us label the vertices in G′ as shown in the Fig. 6.6. Here, α is the central

vertex. The Kirchhoff index of G′ can be written as,

Kf(G
′) = Kf(G) +Kf (F3) +

∑

i∈F3,j∈G
ri,j

Firstly we will find
∑

i∈F3,j∈G
ri,j. Note that,

∑

i∈F3,j∈G
ri,j =

∑

j∈G
ra,j +

∑

j∈G
rb,j +

∑

j∈G
rc,j +

∑

j∈G
rd,j

=2
∑

j∈G
ra,j + 2

∑

j∈G
rb,j

(54)

since, ra,j = rd,j and rb,j = rc,j. Note that ra,j = ra,α + rα,j, where j ∈ G, and

ra,α = 13/21. Also, if j has a degree 1, then rα,j = 1 and if j has degree 2, rα,j = 2/3.

This gives,

ra,j =







34/21 j ∈ G and degree of j = 1

24/21 j ∈ G and degree of j = 2

Similarly, we have rb,α = 10/21. Thus, we get,

rb,j =







31/21 j ∈ G and degree of j = 1

27/21 j ∈ G and degree of j = 2

Since, G has (m − 1) vertices with degree 1 and 2k vertices with degree 2, thus

inserting the ra,j and rb,j in (54), we get

∑

i∈F3,j∈G
ri,j =

130

21
m+

204

21
k − 130

21
(55)

Now, using (48), (55) and Kf (F3) = 146/21, we get,
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Kf (G • F3) = (m− 1)2 +
130

21
m+

16

21
+

2k

3

(

5m+ 4k +
60

7

)

a

b c

α

G = (F1)
k
• Sm

G = F3

a

b c

α

G
′ = G • F3

d

d

Figure 6.6: Labeling of G′ = G•F3, where G = (F1)
k •Sm. Here, Kf(F3) = 146/21.

Using these results, we can figure out the best way to add an edge in a graph

G = (F1)
k •Sm, that will be required to optimally add edges in a graph in a step-wise

manner.

Theorem 6.2.1 Let G = (F1)
k • Sm where m > 1, and H be a graph obtained from

G by adding a single edge. Among all such H, (F1)
k+1 • Sm−2 has a minimum value

of Kirchhoff index.

Proof. Let H be a graph obtained by adding an edge u ∼ v between any two non-

adjacent vertices in G = (F1)
k • Sm. Then H is isomorphic to one of the following

graphs,

(1) (F1)
k+1 • Sm−2

(2) F2 • ((F1)
k−1 • Sm−1)

(3) F3 • ((F1)
k−2 • Sm)

This is true as there are only three ways of adding an edge in a given G. An edge

can be added between u and v in G where u and v are of degree 1 as shown in the

Fig. 6.7(b). This results in H = (F1)
k+1 • Sm−2. When u has a degree 1 and v has
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degree 2 (equivalently v has degree 1 and u has a degree 2) in an added edge u ∼ v,

we get H = F2 • ((F1)
k−1 • Sm−1). This is shown in the Fig. 6.7(c). When both the

end vertices of an edge added to G are of degree 2, we get H = F3 • ((F1)
k−2 • Sm),

shown in the Fig. 6.7(d).

(a) (b) (c) (d)

(F1)
k • Sm (F1)

k+1 • Sm−2 F2 • ((F1)
k−1 • Sm−1) F3 • ((F1)

k−2 • Sm)

Figure 6.7: (a) (F1)
k • Sm. Adding an edge to (a) will result into one of the graphs

shown in (b), (c) or (d).

Now let H1 = (F1)
k+1•Sm−2, H2 = F2 •((F1)

k−1•Sm−1) and H3 = F3•((F1)
k−2•

Sm). Each of these H1, H2 and H3 have same number of edges and are obtained by

adding a single edge in G.

Now using (48) and (53), we calculate Kf (H3)−Kf(H1) as,

Kf (H3)−Kf (H1) =
4

21
(2k +m) > 0 (56)

Similary using (48) and (50),

Kf (H2)−Kf (H1) =
1

12
(2k +m) > 0 (57)

From (56) and (57), we have the following order

Kf(H1) < Kf(H2) < Kf (H3)

which proves the desired result.

Similarly, we can determine the best way to add an edge in a graph (F1)
k•(F3)

` to

minimize the Kirchhoff index. This is crucial for defining a graph process to optimally
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add edges in a step-wise manner as discussed in the Section 6.3. The proof of the

following theorem is given in the Appendix B.

Theorem 6.2.2 Let k > 1 and G = (F1)
k • (F3)

`. Let H be a graph obtained from G

by adding a single edge. Among all such H, (F1)
k−2 • (F3)

`+1 has a minimum value

of Kirchhoff index.

Proof. See B.

6.3 Graph Process for Step-wise Optimal Addition of Edges

Addition of an edge in a graph always decreases its Kf (as shown in [90]) and hence,

increases robustness. But, addition of a certain missing edge may result in a greater

decrease in Kf as compared to another edge. Thus, analysis regarding optimal addi-

tion of edges to minimize the Kirchhoff index is of great significance. As it is discussed

in [90], the question of determining an optimal edge to add to a graph in order to

minimize its Kf is still open. In this section, we provide a systematic way to obtain

robust network topologies by optimally adding edges to existing graph structures.

We start with a set of nodes without any edge between them, and successively add

edges (one at at time), to maximally increase robustness. A notion of Kirchhoff graph

process is introduced to characterize such a scheme.

Definition 6.3.1 (Kirchhoff Graph Process): A Kirchhoff graph process, G, on n

vertices is a sequence of graphs, in which G1 is an edgeless graph on n vertices, and

Gi+1 is obtained by adding a single edge to Gi such that Gi+1 has a minimum value of

Kirchhoff index over all possible choices of (Gi+ e), where (Gi+ e) is a graph obtained

by adding a single edge to Gi.

6.3.1 Kirchhoff Graph Process from G1 to Gn

Note that the number of edges in Gi is i − 1. Since there are n nodes, so the graph

will remain disconnected till n − 1 step. We know that a graph with n nodes and
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n− 1 edges with a minimum Kf is a star graph, Sn (e.g., see [92]). So, from i = 1 to

i = n, edges will be added so as to get Gn = Sn. Thus,

Gi = Si ∪ K̄n−i i ∈ {1, 2, · · · , n} (58)

where, K̄n−i is an edgeless graph with n− i nodes.

6.3.2 Kirchhoff Graph Process from Gn+1 to Gn+bn−1
2

c

Adding an edge to a star graph, Sn always results in a F1 •Sn−2 graph. Thus, Gn+1 =

F1•Sn−2. The optimal way to add an edge in subsequent steps is to connect two non-

adjacent vertices having a degree 1 as shown in Fig. 6.8(b). In fact, Theorem 6.2.1

and Lemma 6.2.2 provides the optimal way to add an edge in (Fk
1 ) •Sm. Using these

results, we get instances of the Kirchhoff graph process Gi for i ∈ {n+ 1, · · · , bn−1
2
c}

as,

Gn+i = (F1)
i • Sn−2i i ∈ {1, 2, · · · , bn− 1

2
c} (59)

For a simpler case, let n be an odd number. Then, for i =
(
n−1
2

)
, Gn+i is a petal

graph, (F1)
n−1
2 • S1 = (F1)

n−1
2 .

6.3.3 Adding edges to a Petal Graph

Adding an edge to a petal graph of the form (F1)
k, always results in a graph (F1)

k−2•

F3. Thus, in a Kirchhoff graph process,

Gi = (F1)
(n−1

2
−2) • F3 i = n +

n− 1

2
+ 1 (60)

Moreover, as shown in Theorem 6.2.2, if a graph is of the form (F1)
k • (F3)

`,

then the optimal addition of an edge minimizing the Kirchhoff index yields a graph

(F1)
k−2 • (F3)

`+1. This results provides a way of adding edges to instances of a graph

process Gi for i > n +
(
n−1
2

)
. An example is also shown in the Fig. 6.8(c). Further

analysis of this process shows that edges are being added in a specific pattern. From a

star graph at Gn = Sn, edges are added to increase the number of 1-petals (i.e., F1) in
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(a)

(b)

(c)

S9

(F1)
4

W9

Figure 6.8: A Kirchhoff graph process for n = 9 nodes.

the intermediate steps of the Kirchhoff graph process until a petal graph is obtained,

in which every petal is a 1-petal. Similarly, from a 1-petal graph at Gn+n−1
2

= (F1)
n−1
2 ,

edges are added to increase the number of 3-petals (i.e. F3) by connecting two 1-

petals. This continues till a petal graph is obtained, in which every petal is a 3-petal.

In the next steps, edges are added to 3-petal graph such that at each step two 3-petals

are combined to get a 7-petal. This continues until a wheel graph Wn is obtained at

the 2n− 1 step of the Kirchhoff graph process, that is,

G2n−1 =Wn (61)

It is to be noted here that at each step of the Kirchhoff graph process, an edge is

added optimally to maximize the robustness property of the graph. An example for

n = 9 vertices is shown in the Fig. 6.8.
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6.3.4 Step-wise Optimal Graph vs. Globally Optimal Graph

Consider a graph with n vertices for some odd integer n, containing (n− 1) +
(
n−1
2

)

edges, and obtained through a Kirchhoff graph process. From (59), we know that it is

a graph of the form (F1)
n−1
2 . Its Kirchhoff index can be computed using Lemma 6.2.1

for any n. A gear graph2 with n verices and (F1)
n−1
2 has same number of vertices and

edges. It is observed that for a number of values of n, a gear graph with n vertices

has a smaller Kf than (F1)
n−1
2 . This implies that although (F1)

n−1
2 is obtained by

optimally adding edges in a step-wise manner, still it is not a graph with a minimum

Kf for a given number of nodes and edges.

n = 9 n = 11

(a) (b)

(F1)
4Gear Graph (F1)

5Gear Graph

Figure 6.9: (a) A gear graph with 9 nodes and a petal graph, (F1)
4. (b) A gear

graph with 11 nodes and (F1)
5. In both cases, gear graph has a smaller Kf .

A comparison of Kf values for a gear graph and a petal graph with the same

number of nodes and edges is shown in the Table 6.3.4. Thus, optimal step-wise

addition of edges does not necessarily give a globally optimum graph, i.e. a graph

with a minimum Kf for a given number of nodes and edges. We can state it as a

following Proposition.

Proposition 7 A graph G with E number of edges, obtained through a Kirchhoff

graph process by optimally adding a single edge at each step of the process to minimize

2A gear graph with 2m + 1 vertices is obtained from a wheel graph Wm, by adding a vertex
between each pair of adjacent vertices on the outer cycle of Wm (see Fig. 6.9).
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Kf , does not necessarily give a globally optimum graph with the minimum Kf among

all graphs with n nodes and E edges.

Table 2: Comparison ofKf of gear graph and (F1)
k with the same number of vertices,

and edges.
No. of Vertices Kf(Gear graph) Kf ((F1)

n−1
2 )

9 34.5 40
11 57.11 63.33
13 85.67 92
15 120.08 136
17 160.31 165.33
19 206.32 210

6.3.5 Effect of Vertex Removal on the Kirchhoff Index of a Graph

It is known that removal of an edge strictly increases the Kirchhoff index of a graph,

thereby making it less robust (see [90]). It is interesting to see the effect of a vertex

removal on the robustness properties of the resulting graph. Unlike edge removal, a

vertex removal does not always increase Kf , but may also result in the decrease of

Kf . This is demonstrated in the two examples shown in the Fig. 6.10 and Fig. 6.11.

Kf (G1) = 11.1091 Kf (G2) = 6.9524 Kf (G3) = 14.6667

v1

v2

G1 G2 G3

Figure 6.10: Deletion of vertex v1 from the graph G1 results in the graph G2. Note
that G2 has a smaller Kf . On the other hand, removing vertex v2 from G1 results
into G3 that has a higher Kf than G1, and therefore less robust than G1.

It can be shown that removing a vertex of degree 1 from a graph results in a graph

that has a smaller Kf compared to the original graph. A very useful definition of
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Kf (G1) = 19.0528

v2

G1

v1

Kf (G2) = 13.1885

v2

G2

v1

Kf (G3) = 20.7568

v2

G3

v1

Figure 6.11: Removing v1 from G1 results into a more robust graph G2 while removal
of a vertex v2 results into G3 that has a higher Kf than G1.

Kf(G) has been provided in [94], in which Kf is defined in terms of the eigen values

of the Laplacian matrix of a graph.

Theorem 6.3.1 ([94]) Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0 be the eigen values of the

Laplacian matrix of a graph G with n vertices, then,

Kf(G) = n

(
n−1∑

i=1

1

λi

)

(62)

Another useful result relating the Laplacian eigen values of G with the eigen values

of the Laplacian matrix of (G− v), where (G− v) is a graph obtained by deleting a

vertex v from G, is provided in [122].

Theorem 6.3.2 ([122]) Let G be a graph of order n and H = G − v, where v is a

vertex of G of degree r. If λ1 ≥ λ2 · · · ≥ λn = 0 and θ1 ≥ θ2 · · · ≥ θn−1 = 0, are the

eigen values of L(G) and L(H) respectively, then,

λi ≥ θi ≥ λi+r (63)

for each i = 1, 2, · · · , n− 1, where λi = 0 for i ≥ n+ 1.

Using (62) and (63), it can be shown that,

Lemma 6.3.1 Let v be a vertex of degree 1 in G, then,

Kf (G− v) < Kf(G) (64)
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Proof. Let G be a graph of order n and H = G − v, where v is a vertex of G of

degree 1. Also λ1 ≥ λ2 · · · ≥ λn = 0 and θ1 ≥ θ2 · · · ≥ θn−1 = 0, be the eigen values

of L(G) and L(H) respectively, then, using (63),

λ1 ≥ θ1 ≥ λ2 ≥ θ2 · · · ≥ λn−2 ≥ θn−2 ≥ λn−1

or,

1

λ1
≤ 1

θ1
≤ 1

λ2
≤ 1

θ2
· · · ≤ 1

λn−2
≤ 1

θn−2
≤ 1

λn−1

This gives us,
n−2∑

i=1

1

θi
≤

n−1∑

i=2

1

λi

<

n−1∑

i=1

1

λi

Using (62), we get our desired result, Kf(G− v) < Kf (G).

Similarly, using (62) and (63), we can provide a sufficient condition for Kf (G −

v) < Kf (G), where v is a vertex of degree r.

Lemma 6.3.2 Let G be a graph with a vertex v of degree r. If,

r∑

i=1

1

λi

>

n−2∑

i=n−r

1

θi
(65)

then,

Kf(G− v) < Kf (G)

Proof. Using (63),

n−r−1∑

i=1

1/θi ≤
n−1∑

i=r+1

1/λi

Adding

n−2∑

i=n−r

1/θi on both sides,

n−2∑

i=1

1/θi ≤
n−1∑

i=r+1

1/λi +

n−2∑

i=n−r

1/θi

Using (62), we get,
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Kf(G− v)

n− 1
≤

n−1∑

i=1

1/λi −
r∑

i=1

1/λi +
n−2∑

i=n−r

1/θi =
Kf(G)

n
−
[

r∑

i=1

1/λi −
n−2∑

i=n−r

1/θi

]

Thus, we get,

Kf (G−v)

n(n−1)
< 1

n(n−1)

(

Kf(G)− n

[
r∑

i=1

1/λi −
n−2∑

i=n−r

1/θi

])

Kf(G− v) < Kf(G) − n

[
r∑

i=1

1/λi −
n−2∑

i=n−r

1/θi

]

From here, if we have,

r∑

i=1

1/λi >

n−2∑

i=n−r

1/θi

then, Kf (G− v) < Kf (G), which is the required result.

An example demonstrating Lemma 6.3.1 is shown in the Fig. 6.12.

G1

λ1 = λ2 = λ3 = 6
λ4 = 5
λ5 = 3

G2

θ1 = θ2 = θ3 = θ4 = 5
θ5 = 0

λ5 = 0

Kf (G2) = 4Kf (G1) = 6.2

v v

Figure 6.12: A graph G1 has Kf (G1) = 6.2. Deleting a vertex v having a degree 3

results into a new graph G2. Since,
3∑

i=1

1/λi = 0.5 and
4∑

i=3

1/θi = 0.4, so the condition

in (65) is satisfied and so Kf (G2) < Kf (G1), which is also verified by Kf (G2) = 4.

6.4 Symmetry of Networks and Robustness

Symmetric network topologies are more robust and have a smaller Kirchhoff index

(for example, see [90] and [97]). In fact, for a given number of nodes and diameter,
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a special graph known as a clique chain (see [90]), which is a symmetric structure,

has the minimum value of effective resistance and therefore, maximum robustness.

Similarly for a given number of nodes, a complete graph which is also symmetric, has

the maximum robustness. A relationship between symmetry and robustness can also

be seen in the Kirchhoff graph process discussed in Section 6.3. At each step of the

process, edges are added so as to preserve the symmetry of the overall graph. Thus,

symmetry of a graph has a far reaching impact on its robustness properties.

Here, we show an optimal (in the sense of minimizing the Kf) way to attach a

path graph to an arbitrary graph G. Again it is observed that symmetry of a graph

plays an important role in minimizing Kf . Let G be any graph with j number of

nodes, where j > 1. A vine graph is obtained from a graph G by attaching two

separate paths with i and p number of nodes to G through two of its nodes. Let a

path Pi be connected to G through node 1 and a path Pp through node j of G. A

vine graph, denoted by G{i,p} is shown in the Fig. 6.13 (a). In a vine graph, paths of

i and p nodes may be connected to G through the same vertex, as shown in the Fig.

6.13 (b). In [92], it is shown that if paths Pi and Pp, where 1 ≤ i ≤ p, are connected

to a tree graph, denoted by T , through the same vertex, then,

Kf

(
T{i,p}

)
< Kf

(
T{i−1,p+1}

)
(66)

Here, we generalize this result and show that (66) holds even if trees are replaced

with any other graphs. In fact, we provide a necessary and sufficient condition for

Kf

(
G{i,p}

)
< Kf

(
G{i−1,p+1}

)
to be true even when paths with i and p number of

nodes are connected to G through two different vertices, say 1 and j respectively.

Theorem 6.4.1 Let G be a graph with j > 1 nodes. Let a path Pi be connected to

G through a node, say 1, of G. Another path, Pp be connected to G through a node,

say j, of G, to get a vine graph G{i,p}, where, 1 ≤ i ≤ p. Then

Kf

(
G{i,p}

)
< Kf

(
G{i−1,p+1}

)
(67)
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whenever

(p+ 1− i)(j − 1− r1,j) >

j
∑

s=1

r1,s −
j
∑

s=1

rs,j (68)

Proof . Without loss of generality, let us label the vertices in G{i,p} as shown in Fig.

6.13. Then, we can write the Kf of G{i,p} as follows,

Kf(G{i,p}) =
∑

1≤s<t≤(j+i+p)

rs,t

=

j∑

s=1

j∑

t>s

rs,t +

j∑

s=1

(j+i+p)
∑

t=(j+1)

rs,t

︸ ︷︷ ︸

A

+

(j+i+p)
∑

s=(j+1)

(j+i+p)
∑

t>s

rs,t

︸ ︷︷ ︸

B

(69)

Computing the A term in (69).

A =

j
∑

s=1

(j+i+p)
∑

t=(j+1)

rs,t

=

(j+i+p)
∑

t=(j+1)

r1,t +

(j+i+p)
∑

t=(j+1)

r2,t + · · ·
(j+i+p)
∑

t=(j+1)

rj,t

= [(1 + 2 + · · ·+ i) + p(r1,j) + (1 + 2 + · · ·+ p)] + [ir1,2 + (1 + 2 + · · ·+ i) + pr2,j

+ (1 + 2 + · · ·+ p)] + · · · + [ir1,j + (1 + 2 + · · ·+ i) + (1 + 2 + · · ·+ p)]

After simplification we get,

A =
ij

2
(1 + i) +

jp

2
(1 + p) + p

j
∑

s=1

rs,j + i

j
∑

s=1

r1,s (70)

Now, to find the B term in (69), we proceed as follows,

B =

(j+i+p)
∑

s=(j+1)

(j+i+p)
∑

t>s

rs,t

=

(j+i)
∑

s=(j+1)

(j+i)
∑

t>s

rs,t +

(j+i+p)
∑

s=(j+i+1)

(j+i+p)
∑

t>s

rs,t +

(j+i)
∑

s=(j+1)

(j+i+p)
∑

j+i+1

rs,t

(71)

Note that the first two terms in (71) correspond to the Kirchhoff index of paths

with i and p number of nodes respectively. So, we can write (71) as,
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B = Kf (Pi) + Kf (Pp) +

(j+i)
∑

s=(j+1)

(j+i+p)
∑

j+i+1

rs,t (72)

Now, we evaluate the last term in (72) as,

(j+i)
∑

s=(j+1)

(j+i+p)
∑

j+i+1

rs,t = [p(i+ r1,j) + (1 + · · ·+ p)] + [p((i− 1) + r1,j) + (1 + · · ·+ p)] +

· · · + [p(1 + r1,j) + (1 + · · ·+ p)]

= i
(p

2
(p+ 1)

)

+ ipr1,j + p(1 + · · ·+ i)

=
ip

2
[i+ p + 2r1,j + 2]

(73)

Kirchhoff Index of a path graph with x number of nodes can be easily calculated

as,

Kf(Px) =
1

6
(x− 1)(x)(x+ 1) (74)

Inserting (73) and (74) into (72) gives,

B =
i

6
(i− 1)(i+ 1) +

p

6
(p− 1)(p+ 1) +

ip

2
(i+ p+ 2r1,j + 2)

=
1

6

[
i(i2 − 1) + p(p2 − 1)

]
+

ip

2
(i+ p+ 2r1,j + 2)

(75)

Now inserting A from (70) and B from (75) in (69) gives Kf (G{i,p}) as,

Kf (G{i,p}) =
j
∑

s=1

j
∑

t>s

rs,t +
ij

2
(1 + i) +

jp

2
(1 + p) + p

j
∑

s=1

rs,j + i

j
∑

s=1

r1,s

+
1

6

[
i(i2 − 1) + p(p2 − 1)

]
+

ip

2
(i+ p+ 2r1,j + 2)

(76)

As in (69), we can write Kf(G{i−1,p+1}) as follows,
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Kf(G{i−1,p+1}) =
∑

1≤s<t≤(j+i+p)

rs,t

=

j
∑

s=1

j
∑

t>s

rs,t +

j
∑

s=1

(j+i+p)
∑

t=(j+1)

rs,t

︸ ︷︷ ︸

A′

+

(j+i+p)
∑

s=(j+1)

(j+i+p)
∑

t>s

rs,t

︸ ︷︷ ︸

B′

(77)

Here, we need to calculate the corresponding A′ and B′ terms. Using exactly the

same procedure as for A and B, we get A′ and B′ as follows,

A′ =
ij

2
(i− 1) +

j

2
(p+ 1)(p+ 2) + (p+ 1)

j
∑

s=1

rs,j + (i− 1)

j
∑

s=1

r1,s (78)

B′ =
1

6

[
i(i2 − 3i+ 2) + p(p2 + 3p+ 2)

]
+

1

2
(i− 1)(p+ 1) (p+ i+ 2 + 2r1,j) (79)

Inserting (78) and (79), in (77) gives Kf (G{i−1,p+1}),

Kf (G{i−1,p+1}) =
j
∑

s=1

j
∑

t>s

rs,t +
ij

2
(i− 1) +

j

2
(p+ 1)(p+ 2) + (p+ 1)

j
∑

s=1

rs,j

+ (i− 1)

j
∑

s=1

r1,s +
1

6

[
i(i2 − 3i+ 2) + p(p2 + 3p+ 2)

]

+
1

2
(i− 1)(p+ 1) (p+ i+ 2 + 2r1,j)

(80)

Now, subtracting (76) from (80), and simplifying gives us the following,

Kf(G{i−1,p+1})−Kf (G{i,p}) =
j
∑

s=1

rs,j −
j
∑

s=1

r1,s

+ (p+ 1− i)(j − 1− r1,j)

(81)

The required result directly follows from (81).
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G

1 j· · · · · ·

(j + i)(j + 1) (j + i+ 1) (j + i+ p)

︷ ︸︸ ︷ ︷ ︸︸ ︷
i p

(a)

(b)

G

1

· · · · · ·

(j + i)(j + 1) (j + i+ 1) (j + i+ p)
︸ ︷︷ ︸ ︸ ︷︷ ︸

i p

Figure 6.13: (a) Paths Pi and Pp are connected to G through vertices 1 and j
respectively. In (b), both paths Pi and Pp are connected through the same vertex, 1.

A special case of the above theorem is when Pi and Pp are connected to G through

the same vertex, say 1 (as shown in the Fig. 6.13(b)). The condition in (68) is always

satisfied as long as 1 ≤ i ≤ p. This is true as 1 and j in (68) correspond to the same

vertex here and so,
j∑

s=1

r1,s =
j∑

s=1

rs,j. Thus, we get the following result,

Theorem 6.4.2 Let G be a graph with at least two vertices. Let two paths with i and

p number of vertices respectively, are connected to G through the same vertex of G to

get G{i,p}. Then,

Kf (G{i,p}) < Kf (G{i−1,p+1}) (82)

Here, 1 ≤ i ≤ p.

Proof. We can use the condition (67) in Theorem 6.4.1. Here, paths with i and

p number of vertices are connected to G through the same vertex, say 1 (see Fig.

6.13(b)). Then, vertices labeled 1 and j in the condition (67) are same, thus, r1,x =

rj,x, for any vertex x. Thus, (67) becomes,

(p+ 1− i)(j − 1− r1,j) >

j
∑

s=1

r1,s −
j
∑

s=1

rs,j

(p+ 1− i)(j − 1) > 0

(83)
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It is to be noted that j here is the number of vertices in G, and under our assumption

j ≥ 2, thus (83) is always satisfied. Using Theorem 6.4.1, we get the required result

directly.

6.5 Discussion

It is to be mentioned here that the symmetry of underlying graph structure also plays

an important role in determining some other properties of networked systems with

agents implementing a linear consensus protocol. One such noticeable property is

the controllability of such systems under a leader-follower setting, in which external

inputs are injected through so called leader nodes. Structures that are symmetric

about a leader exhibit poor controllability properties (see [114]). For example, a

complete graph (most robust network for a given number of nodes) is least control-

lable. Thus, we can say that from a network topology perspective, controllability and

robustness properties are in conflict with each other. Improving one by reconfiguring

the underlying graph structure may deteriorate the other one. A precise relationship

between these two properties in terms of the graph structure is an interesting research

direction.

Several measures have been proposed to measure the robustness of network struc-

ture against link failures and edge removals. In all those propositions, the guiding

principle is to design a metric that quantifies well-connectedness of the network at

various levels. The notions of Kirchhoff index and effective resistances among nodes

have been useful in this context in the sense that many of the other network robust-

ness measures can be written in the form of Kirchhoff index and effective resistances.

As an example, the number of spanning trees in the underlying graph of the network,

denoted by τ(G), is sometimes used to measure the network robustness and ability

to remain connected in the case of link failures [126]. τ(G) and the Kirchhoff index

Kf(G) are closely related to each other. In fact, if xn + cn−1x
n−1 + · · ·+ c2x

2 + c1x
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is a characteristic polynomial of the Laplcaian matrix of G, then

Kf(G) =
| c2 |
τ(G)

This is true because of the following: if λ1 ≥ λ2 ≥ · · · > λn = 0 are the eigen

values of the Laplacian matrix of G, then
n−1∑

i=1

1
λi

= |c2|
|c1| as shown in [123]. Using (62),

Kf(G) = n
n−1∑

i=1

1
λi
. Moreover, τ(G) = |c1|

n
by the matrix-tree theorem [123]. Thus,

Kf(G) = n |c2|
|c1| =

|c2|
τ(G)

.

Similarly, other metrics that quantify significance of links on the overall connectiv-

ity and reliability of networks such as information centrality, betweenness centrality,

and node vulnerability etc., can be written in terms of the Kirchhoff index and effec-

tive resistances (e.g., see [124, 125, 126]).
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CHAPTER VII

CONCLUSIONS

This dissertation presented graph theoretic methods to analyze and explore the role of

network topologies in networked systems when agents with a diverse set of resources

and capabilities interact with each other to accomplish various tasks.

In Chapter 2, we studied heterogeneity in multiagent systems from a network

topology view-point. The notion of (r, s)-configuration of a graph was used to char-

acterize the distribution of agents with multiple capabilities (or resources). In such a

distribution, every agent could find all types of resources available in the network in

its closed neighborhood. The role of individual agents and interactions among them

in attaining (r, s)-configurations was also examined. The study not only analysed the

role of network topology in the context of heterogeneous multiagent systems, but also

provided ways to design network structures, in which agents equipped with various

resources coordinate and compliment each others capabilities to accomplish complex

tasks.

The issue of energy-efficient data collection in heterogeneous wireless sensor and

actor networks was addressed in Chapter 3. Using the framework introduced in

Chapter 2, redundancy among sensors of various types, which were distributed at

random with certain intensities, was explored. Sensors that were redundant in the

sense that their deactivation did not affect the availability of data to the actors

were determined and eventually turned off to save energy. Simulations performed

showed that typically more than two-third of the sensors could be deactivated without

compromising availability of data to the actors through our scheme.
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Further, we explored the value of heterogeneity for the complete coverage prob-

lem for mobile agents with circular sensing areas in Chapter 4. It was shown that

in terms of the coverage densities and sensing costs metrics, more efficient solutions

can be obtained through networks of heterogeneous agents as compared to the ho-

mogeneous ones. In particular, configurations of agents with two different radii were

examined that exhibited higher coverage densities and lower sensing costs than the

configuration of agents having same radii. Moreover, we also analyzed coordination

frameworks required to ensure that formations of agents in a particular configurations

were maintained when agents exhibited movements.

In Chapters 5 and 6, role of network topologies for reliable functioning of multia-

gent systems was considered. In particular, the issue of securing a multiagent system

against a sequence intruder attacks was investigated in Chapter 5 using constructs

from graph theory. Special agents known as guards, where each guard could detect

and respond to an intruder attack within some range, were distributed among vertices

of a graph. Deployment of guards ensured that every vertex was situated within a

range of at least one guard at all times. Moreover, coverage property was maintained

and the graph remained secured even after the movement of a guard from a vertex

to another. All components of the problem, including number of guards required,

deployment of guards among various nodes, and movement strategies for guards to

counter intruder attacks, were probed. For the sake of generality, guards were allowed

to have different ranges from each other. Bounds on the number of guards required

for the eternal security of various classes of graphs were also presented.

Robustness in multiagent systems, both from functional and structural perspec-

tives, was studied in Chapter 6. Inter-relationship between structural and func-

tional robustness was explored for networks implementing linear consensus dynamics,

thereby proposing Kirchhoff index as a metric to quantify network robustness. Using

Kirchhoff index, a systematic way to build robust network topologies was presented.
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APPENDIX A

PROOF OF THEOREM 2.3.2

In order to prove Theorem 2.3.2, it is sufficient to prove that if G is a connected graph

of minimum degree at least two with no induced subgraph isomorphic to K1,6, and G

is not isomorphic to C4, C7, C4 • C4 or K2,3, then G has a (5, 2)-configuration.

This is true because of the following:

if s = even: let s = 2s′. Obtain a (5, 2)-configuration of G. Repeat this process

s′ number of times while assigning distinct labels to vertices in each step. At the

end of s′ steps, at most 2s′ labels are assigned to every v, i.e., |f(v)|≤ 2s′ = s, and

5s′ = 5s
2
distinct labels are available in the closed neighborhood of every v. Thus, a

(5s
2
, s)-configuration of G is obtained.

if s = odd: let s − 1 = 2s′, then (5(s−1)
2

, s − 1)-configuration can be obtained as

above. Moreover, using the fact that every connected graph has a domination number

of at least 2, it is possible to assign a single label to each vertex such that every vertex

has at least two distinct labels in its closed neighborhood. Thus, for a given positive

odd integer s, an (r, s)-configuration is possible with r = 5(s−1)
2

+ 2 = 5s
2
− 1

2
=
⌊
5s
2

⌋
.

Thus, we conclude that proving Theorem 2.3.2 is equivalent of proving the follow-

ing result.

Theorem A.0.1 If G is a connected graph of minimum degree at least two with no

induced subgraph isomorphic to K1,6, and G is not isomorphic to C4, C7, C4 • C4 or

K2,3, then G has a (5, 2)-configuration.

However, several preliminary results are required to prove Theorem A.0.1. We

state and prove them in Section A.1. But, first we introduce some notations that will

be used.
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For the sake of brevity, let us define a configuration of a graph to mean a (5, 2)-

configuration. Thus, the conclusion of Theorem A.0.1 is equivalent of saying that

G has a configuration. Moreover, we say that a graph is configurable if it admits a

configuration. An (α, β)-star is a graph obtained by identifying one end of each of α

number of paths of length one and β number of paths of length two as shown in Fig.

A.1. Note that an (α, 0)-star is isomorphic to K1,α. We denote by [5]2 the set of all

two-element subsets of {1, 2, 3, 4, 5}. If G is a graph, f : V (G)→ [5]2, and v ∈ V (G),

then we say that v is satisfied with respect to f if
⋃

u∈N [v] f(u) = {1, 2, 3, 4, 5}. When

there is no danger of confusion, the reference to f will be omitted. The degree of a

vertex v in a graph G is denoted by degG(v)

Figure A.1: The (3, 2)-star graph.

A.1 Preliminary Lemmas

Lemma A.1.1 Let v1v2v3v4 be a path of length three, and f : {v1, v4} → [5]2 with

f(v1) ∩ f(v4) is nonempty. If a, b ∈ {1, 2, 3, 4, 5} \ f(v1), then f can be extended to

{v1, v2, v3, v4} in such a way that v2 and v3 are satisfied and f(v2) = {a, b}.

Proof. Without loss of generality, f(v1) = {1, 2}, 1 ∈ f(v4), and f(v2) = {a, b} =

{3, 4}. Then setting f(v3) = {2, 5} completes the proof.

Lemma A.1.2 Let H and S be disjoint subgraphs of a graph G, and let α, β ≥ 0 be

integers such that either α+3β ≤ 9 or (α, β) = (1, 3). Let H be configurable and let S

be either a path of length at least two or an (α, β)-star. If every vertex of S of degree
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one is adjacent to some vertex of H, then the subgraph of G induced by V (H)∪V (S)

is configurable.

Proof. Let f be a configuration on H . First, suppose that S = v1v2...vk is a path of

length at least two (so k ≥ 3), and that the ends of S are adjacent to vertices x, y of

H . Note that x and y may be the same vertex. There are three cases depending on

the cardinality of f(x)∩f(y) and three cases depending on the residue of k modulo 3.

Without loss of generality we may assume that f(x) = f(y) = {1, 2}, or f(x) = {1, 2}

and f(y) = {1, 3}, or f(x) = {1, 2} and f(y) = {3, 4}. Then f can be extended to

V (H)∪V (S) according to the following table, where t runs from 1 through bk/3c−1.

k (mod 3) f(x) f(v3t+1) f(v3t+2) f(v3t+3) f(vk−1) f(vk) f(y)

0 {1, 2} {1,3} {4,5} {2,3} x x {1,2}

0 {1, 2} {3,4} {1,5} {2,4} x x {1,3}

0 {1, 2} {3,4} {1,5} {1,2} x x {3,4}

1 {1, 2} {3,4} {1,5} {2,5} x {3,4} {1,2}

1 {1, 2} {3,4} {1,5} {2,5} x {3,4} {1,3}

1 {1, 2} {3,5} {1,4} {1,2} x {3,5} {3,4}

2 {1, 2} {3,4} {1,5} {1,2} {3,4} {1,5} {1,2}

2 {1, 2} {3,4} {2,5} {1,2} {3,4} {2,5} {1,3}

2 {1, 2} {3,4} {1,5} {2,4} {1,3} {2,5} {3,4}

Now we assume that S is a (α, β)-star, where α + β ≥ 3, α+ 3β ≤ 9, or (α, β) =

(1, 3). Let V (S) = {w, xi, yj, zj : 1 ≤ i ≤ α, 1 ≤ j ≤ β}, E(S) = {wxi, wyj, yjzj : 1 ≤

i ≤ α, 1 ≤ j ≤ β}, and xi is adjacent to ui, where ui is in H , for all 1 ≤ i ≤ α, and

zj is adjacent to vj , where vj is in H , for all 1 ≤ i ≤ β.

We say that ui forbids the set f(ui) and that vj forbids the three 2-element subsets

of [5]− f(vj). We claim that there is an element of [5]2 that is not forbidden by any
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ui or vj . Indeed, this is clear if α + 3β ≤ 9. But if β = 3, then the vertices v1, v2, v3

collectively forbid at most eight sets, and hence the claim holds even when α = 1 and

β = 3. We define f(w) to be an element of [5]2 that is not forbidden by any ui or vj .

Furthermore, if β = 0 and |⋃α
i=1 f(ui)| ≤ 3, then we choose f(w) disjoint from every

f(ui).

If β ≥ 1, then we choose f(xi), f(yj) and f(zj) for i = 1, 2, . . . , α and j =

1, 2, . . . , β − 1 in such a way that the vertices xi, yj, zj are satisfied. Then w sees

at least three values under f since any neighbor of w already assigned a value does

not have the exact same assignment as w. So by Lemma A.1.1 applied to the path

wyβzβvβ we can assign f(yβ) and f(zβ) in such a way that yβ, zβ and w are satisfied.

This completes the case β ≥ 1.

So we may assume β = 0. We assign f(xi) for i = 1, 2, . . . , α such that xi is

satisfied, f(xi) ∩ f(w) = ∅, and, if possible, not all f(xi) are the same. Then w is

satisfied, unless the sets f(xi) are all equal, and so from the symmetry we may assume

that f(w) = {1, 2} and f(xi) = {3, 4} for all i = 1, 2, . . . , α. But then the choice of

f(xi) implies that f(ui) ⊆ {1, 2, 5}, contrary to the choice of f(w).

Lemma A.1.3 Let G be a graph, and let P = xv1v2v3y be a path in G.

Proof. Let f be a configuration on H . We shall extend f to V (G). If f(x) = f(y),

say f(x) = {1, 2}, then H \ xy is also configurable, so we can extend f to V (G)

by Lemma A.1.2. So we may assume that f(x) 6= f(y); that is, |f(x) ∪ f(y)| ≥ 3.

Define g : V (G) → [5]2 by g(v1) = f(y), g(v3) = f(x), let g(v2) be a 2-element

subset of [5]2 containing {1, 2, 3, 4, 5} \ (f(x) ∪ f(y)), and let g(v) = f(v) for all

v ∈ V (G) \ {v1, v2, v3}. It is clear that g is a configuration on G.

Lemma A.1.4 Let H be C4, C7 or a configurable graph, and let u0 be a vertex of

H. Let G be a graph, where V (G) = V (H) ∪ {ui, wj : 1 ≤ i ≤ k, 1 ≤ j ≤ m} and
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E(G) = E(H) ∪ {uiui+1, ukw1, wjwj+1, wmw1 : 0 ≤ i ≤ k − 1, 1 ≤ j ≤ m − 1} for

some nonnegative integer k and integer m with m ≥ 3. Then G is configurable.

Proof. By Lemma A.1.3 we may assume that k = 0, 1 or 2. Let C be the cycle

w1w2...wmw1. Since H is C4, C7 or a configurable graph, we may satisfy every vertex

of H except possibly u0 and u0 is missing at most 2 colors. So we may assume

f(u0) = {1, 2} and that u0 is missing 3 and 4. Similarly we may choose f on C in

such a way every vertex of C except possibly w1 is satisfied, and that w1 is missing

at most 2 colors.

If k = 0 we choose f on C so that f(w1) = {3, 4} and the colors missing at w1 are

1 and 2.

If k = 1, we choose f on C so that f(w1) = {2, 5} and the colors missing at w1

are 3 and 4. We set f(u1) = {3, 4}.

Finally, if k = 2, we choose f on C so that f(w1) = {2, 3} and the colors missing

at w1 are 1 and 5. We set f(u1) = {3, 4} and f(u2) = {1, 5}.

Lemma A.1.5 Let H be a configurable graph, and let f be a configuration on G. If

G is obtained from H by either

• adding a vertex v and two edges vx and vy to H, where x, y are vertices of H

and f(x) 6= f(y), or

• adding two vertices u, v and three edges xu, uv, vy to H, where x, y are vertices

of H and f(x) ∩ f(y) 6= ∅,

then f can be extended to G.

Proof.

This is easy to verify.

A graph G is said to be obtained from a graph H by attaching a path P if

V (G) = V (H) ∪ V (P ) and E(G) = E(H) ∪ E(P ) ∪ {v1x, vky}, where v1 and vk are
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the ends of P , and x, y are distinct vertices of H . A graph G is said to be obtained

from a graph H by adding a path P if G is obtained from the disjoint union of H and

P by identifying one end of P and x and identifying the other end of P and y, where

x and y are distinct vertices of H .

Lemma A.1.6 Let C be a cycle of length of five or six. If G is obtained from C by

attaching a path of length two or three between two non-adjacent vertices in C, then

G is configurable.

Proof.

Let C = v1v2...vkv1, and P be the path in G \ C where the end of P is adjacent

to vertices u, v of C in G. If C is C5, then we define a function f : V (C) →

[5]2 by f(vi) = {i, i + 3} for each i = 1, 2, 3, 4, 5, where the addition is modulo

five. If C is C6, then define f(v1) = {1, 3}, f(v2) = {2, 4}, f(v3) = {1, 5}, f(v4) =

{2, 3}, f(v5) = {1, 4}, f(v6) = {2, 5}. So f(x) 6= f(y) for all distinct vertices x, y in

C, and f(x) ∩ f(y) 6= ∅ for all non-adjacent two vertices x, y in C. Hence, f can be

extended to G by Lemma A.1.5 since P is a path of length two or three.

Lemma A.1.7 Let x, y be vertices of a configurable graph H, let C = v1v2...v5v1

be a cycle of length five, and let P = u1u2...up and Q = w1w2...wq be paths, where

p, q ∈ {1, 2}. If G is the graph with V (G) = V (H) ∪ V (C) ∪ V (P ) ∪ V (Q) and

E(G) = E(H)∪E(C)∪E(P )∪E(Q)∪{xu1, upv1, yw1, wqv3}, then G is configurable.

Proof.

Let f be a configuration on H . We shall extend f to G. If f(x)∩f(y) is nonempty,

say 1 ∈ f(x)∩f(y), then let a, b are two distinct numbers in {1, 2, 3, 4, 5}\(f(x)∪f(y)),

and define f(v1) = {1, a} and f(v3) = {1, b}. If f(x) is disjoint from f(y), say

f(x) = {1, 2} and f(y) = {3, 4}, then define f(v1) = {1, 3} and f(v3) = {1, 4}. By

Lemma A.1.1 and Lemma A.1.5, there is a way to define f on V (P )∪V (Q)∪{v2, v4, v5}

such that f is a configuration on G.
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Lemma A.1.8 Let G be a graph obtained by attaching a path P = v1v2...vk to a

cycle C with v1 adjacent to x and vk adjacent to y, for some vertices x, y in C, where

k ≥ 3. If G is not isomorphic to C4 • C4, then G is configurable.

Proof. If x is adjacent to y in C, then G is a cycle with a chord. So G is configurable

when the cycle has length not four or seven. It is easy to check that G is configurable

when the cycle has length four, and G is also configurable when the cycle has length

seven by Lemma A.1.6. So we may assume that x is not adjacent to y in C. In other

words, either x equals y, or x and y are non-adjacent.

If the length of C is not 4 or 7, then this lemma follows directly from Lemma

A.1.2. So we may assume that the length of C = u1u2...u|C|u1 is four or seven. Also,

we may assume that 3 ≤ k ≤ 5 by Lemma A.1.3. Without loss of generality, we

assume that x = u1.

Case 1: C = C4 and x = y. Then k = 4 or 5 since G is not isomorphic to C4 •C4.

So G is isomorphic to the graph obtained by attaching a path of order three to C5 or

C6, and hence G is configurable by Lemma A.1.2.

Case 2: C = C4 and x 6= y. We may assume that y = u3. If k = 3 or 5,

then u1v1v2...vku3u2u1 is a cycle of length six or eight, so it is configurable, and

there is a configuration f on it. Then we can extend f to G by assigning that

f(u3) = f(u1), so G is configurable. If k = 4, then we define a configuration on G by

f(u1) = {1, 2}, f(u2) = {3, 5}, f(u3) = {3, 4}, f(u4) = {2, 5}, f(v1) = {1, 4}, f(v2) =

{3, 5}, f(v3) = {2, 5}, f(v4) = {1, 4}.

Case 3: C = C7 and x = y. We may assume that x = y = u1. If k = 4 or 5, then

G is isomorphic to the graph obtained by attaching a path of order six to C5 or C6, soG

is configurable by Lemma A.1.2. If k = 3, then we can define a configuration on G by

f(u1) = {1, 2}, f(u2) = {3, 4}, f(u3) = {1, 5}, f(u4) = {2, 3}, f(u5) = {1, 4}, f(u6) =

{2, 5}, f(u7) = {3, 4}, f(v1) = {1, 5}, f(v2) = {3, 4}, f(v3) = {2, 5}.

Case 4: C = C7, x = u1 and y = u6. If k = 3 or 5, then G is isomorphic
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to the graph obtained by attaching a path of order four to C6 or C8, so G is con-

figurable by Lemma A.1.2. If k = 4, then we can define a configuration on G by

f(u1) = {1, 2}, f(u2) = {3, 4}, f(u3) = {3, 5}, f(u4) = {1, 2}, f(u5) = {4, 5}, f(u6) =

{3, 4}, f(u7) = {3, 5}, f(v1) = {1, 5}, f(v2) = {3, 4}, f(v3) = {2, 5}, f(v4) = {1, 2}.

Case 5: C = C7, x = u1 and y = u5. If k = 4 or 5, then G is isomorphic

to the graph obtained by attaching a path of order three to C8 or C9, so G is con-

figurable by Lemma A.1.2. If k = 4, then we can define a configuration on G by

f(u1) = {1, 2}, f(u2) = {1, 3}, f(u3) = {4, 5}, f(u4) = {2, 3}, f(u5) = {1, 2}, f(u6) =

{4, 5}, f(u7) = {3, 4}, f(v1) = {1, 5}, f(v2) = {3, 4}, f(v3) = {2, 5}.

Lemma A.1.9 The graph K2,4 is configurable.

Proof. Let V (K2,4) = {x1, x2, y1, y2, y3, y4}, E(K2,4) = {xiyj : 1 ≤ i ≤ 2, 1 ≤ j ≤

4}. We define a configuration on K2,4 by f(x1) = {1, 2}, f(x2) = {3, 4}, f(y1) =

{3, 5}, f(y2) = {4, 5}, f(y3) = {1, 5}, f(y4) = {2, 5}.

Lemma A.1.10 If a graph G is obtained from C4 • C4 or K2,3 by attaching a path,

then G is configurable.

Proof. First, we assume that G obtained from C4 •C4 by attaching a path v1v2...vk,

where v1 is adjacent to x, vk is adjacent to y for some vertices x, y in C4•C4. We write

the vertex set of C4 • C4 as {u1, u2, u3, v, w1, w2, w3}, where vu1u2u3v and vw1w2w3v

are the two cycles in C4 • C4.

Case 1: x = y. By Lemma A.1.3, we may assume that k = 2, 3 or 4. If

x = y = u1, then G can be obtained from C3 or C5 by consecutively attaching a

path of order three when k = 2 or 4, and G has a spanning subgraph which is ob-

tained from two disjoint C4’s by attaching a path of order two when k = 4, so G is

configurable by Lemma A.1.2 and Lemma A.1.4. Similarly, G is configurable if both

x and y are u3, w1 or w3. If x = y = v2 and k = 2 or 4, then G can be obtained
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from C3 or C5 by consecutively attaching a path of order three, so G is configurable

by Lemma A.1.2. If x = y = u2 and k = 3, then we define a configuration on G as

f(v) = {3, 4}, f(w1) = {1, 3}, f(w2) = {2, 5}, f(w3) = {1, 4}, f(u1) = {4, 5}, f(u2) =

{1, 2}, f(u3) = {2, 5}, f(v1) = {1, 3}, f(v2) = {4, 5}, f(v3) = {2, 3}. Similarly, G is

configurable if x = y = w2. If x = y = v and k = 2 or 4, then G can be obtained from

C3 or C5 by consecutively attaching a path of order three. If x = y = v and k = 3, then

we define a configuration by f(v) = {1, 2}, f(u1) = {1, 3}, f(u2) = {4, 5}, f(u3) =

{2, 3}, f(v1) = {1, 4}, f(v2) = {3, 5}, f(v3) = {2, 4}, f(w1) = {1, 5}, f(w2) = {3, 4}, f(w3) =

{2, 5}.

Case 2: x 6= y.By Lemma A.1.3, we may assume that k = 0, 1, 2. When k = 0,

G is obtained by adding an edge xy to C4 • C4, and it is easy to show that G is

configurable. When k = 1, x = v, y = u2, then define a configuration on G by

f(v) = {1, 2}, f(u1) = {4, 5}, f(u2) = {3, 4}, f(u3) = {1, 5}, f(v1) = {2, 5}, f(w1) =

{1, 3}, f(w2) = {4, 5}, f(w3) = {2, 3}. Similarly, G is configurable if k = 1, x = w1

and y = w3. When k = 1 and x, y are not the case mentioned above, G has a spanning

subgraph which is C8, or it can be obtained from either C5 by attaching a path, two

disjoint C4’s by adding an edge, or C5 by attaching paths of order one or two, so G

is configurable by Lemma A.1.2, Lemma A.1.4, and Lemma A.1.5.

Now, we assume that G obtained from K2,3 by attaching a path v1v2...vk, where

v1 is adjacent to x, vk is adjacent to y for some vertices x, y in C4 • C4. We write

V (K2,3) = {u1, u2, w1, w2, w3} and E(K2,3) = {uiwj : i = 1, 2, j = 1, 2, 3}.

Case 3: x = y. By Lemma A.1.3, we may assume that k = 2, 3, 4. Then G has a

spanning subgraph which is obtained from either C3 or C5 by attaching a (3, 0)-star,

or C4 • C4 by attaching a path, or a cycle by attaching a C4, so G is configurable by

Lemma A.1.2, Lemma A.1.4, Case 1 and Case 2.

Case 4: x 6= y. By Lemma A.1.3, we may assume that k = 0, 1, 2. If x = u1, y =

u2 and k = 0, then there is a configuration on G defined by f(u1) = {1, 2}, f(u2) =
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{3, 4}, f(w1) = f(w2) = f(w3) = {1, 5}. For other cases, G contains a subgraph

which is isomorphic to K2,4 or C6, or it can be obtained from either C3 by attaching a

path of order three, C4 •C4 by adding an edge, C5 or C6 by attaching paths of order

one or two, so G is configurable by Lemma A.1.2, Lemma A.1.5, Lemma A.1.9, Case

1 and Case 2.

Lemma A.1.11 For every graph G, there is an orientation of E(G) such that each

vertex v has in-degree at least bdegG(v)/2c.

Proof. We proceed by induction on |V (G)| + |E(G)|. The lemma obviously holds

for the null graph. e if |E(G)| = 0.

If v is an isolated vertex of G, then the lemma follows by induction applied to

G\v. If there is a vertex v in G of degree one, then, letting u be the unique neighbor

of v, there is an orientation of G \ uv such that the in-degree of each vertex x is at

least bdegG\{uv}(x)/2c by the induction hypothesis, and then we can obtain a desired

orientation of G by orienting the edge uv from v to u.

So we may assume thatG has minimum degree at least two, and henceG contains a

cycle C = v1v2...vkv1. By the induction hypothesis, there is an orientation of G\E(C)

such that the in-degree of each vertex x is at least bdegG\E(C) /2c, and then we can

obtain a desired orientation of G by orienting the edges of C to form a directed cycle.

This completes the proof.

It is to be noted that the proof in Lemma A.1.11 gives a linear-time algorithm to

find such an orientation.

Lemma A.1.12 Let H1 and H2 be graphs, let P be a path with at least one vertex,

and let v1 and v2 be vertices of H1 and H2 respectively. Let G be the graph formed by

taking the disjoint union of H1, H2, and P and identifying the first vertex of P with

v1 and the last vertex of P with v2. Assume that H1 and H2 admit configurations f1
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and f2, respectively, and that for i = 1, 2 the configuration fi satisfies every vertex

of Hi except possibly vi. If |⋃u∈N (v1)
f1(u)| ≥ 4 and |⋃u∈N (v2)

f2(u)| ≥ 3, then G is

configurable.

Proof. Let f ′ be the function defined to be f1 on H1 and f2 on H2. Then f ′ is a

configuration for G except on possibly v1 and v2 and P . Suppose |V (P )| ≤ 2. Then

we can permute the colors on f2 so that v1 and v2 are satisfied, so we are done. If

|V (P )| = 3, we may assume f(v1) = {1, 2} and v1 is missing 3 and f(v2) = {4, 5}

and v2 is missing 3. Then we set f(u) = {1, 3} where u is the middle vertex of P .

If |V (P )| = 4, we apply Lemma A.1.1. If |V (P )| ≥ 5, we can reduce to one of the

previous cases by applying Lemma A.1.3.

We are now ready to prove an important special case of Theorem A.0.1.

Lemma A.1.13 Let G be a connected graph of maximum degree at most five and of

minimum degree at least two with no two vertices of degree at least three adjacent. If

G is not C4, C7, C4 • C4 or K2,3, then G is configurable.

Proof. Let there be n vertices in G. Suppose that G is a minimum counterexample;

that is, G is not configurable, but H is configurable for every graph H with |V (H)|+

|E(H)| < |V (G)|+ |E(G)| that satisfies the conditions of the lemma.

We note first that we may assume G is 2-connected since otherwise we apply

Lemma A.1.12, noting that each of the forbidden graphs except C4 has the property

that it admits a configuration except at possibly one vertex, v, with |⋃u∈N (v) f(u)| =

4. Since both graphs can’t be C4 (since C4 • C4 is forbidden and two C4’s joined by

a path are prevented by Lemma A.1.4), we are done.

Claim 1: G contains no C4’s.

Proof of Claim 1: Suppose there is a cycle C = v1v2v3v4v1 of four vertices in G.

If there is only one vertex, say v1, in C of degree at least three in G, then it is a

cut-vertex which is impossible.
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Hence there are two vertices in C of degree at least three. We may assume that

the two vertices are v1 and v3. Let G′ = G \ {v2}. If G′ is configurable, then there

is a configuration f on G′, and we can extend f to G by assigning f(v2) = f(v4),

contradicting the assumption that G is not configurable. So G′ is isomorphic to C4,

C7, C4 • C4 or K2,3.

If G′ is isomorphic to C4, then G is isomorphic to K2,3. If G
′ is isomorphic to C7,

then G is isomorphic to a graph obtained from C4 by adding a path of length five, so

G is configurable by Lemma A.1.8. If G′ is isomorphic to K2,3, then G is K2,4, and it

is configurable by Lemma A.1.9. So G′ is isomorphic to C4 • C4. Since v4 is a vertex

of degree two and it is a common neighbor of v1 and v3, we have that either v1 or v3

is the vertex of degree four in C4 • C4. So G can be obtained from adding a path of

length four to K2,3, so G is configurable by Lemma A.1.10. 2

Claim 2: If P is a path whose ends are of degree at least three in G and whose

internal vertices are of degree two in G, then the number of internal vertices is at

most two.

Proof of Claim 2: If the number of internal vertices of P is at least four, then

consider the graph H which is obtained from G by replacing three consecutive degree

two vertices in P by an edge. If H is configurable, G is also configurable by Lemma

A.1.3. So H is C4, C7, C4 • C4 or K2,3. But in this case, G can be obtained from C4

by attaching a path of order at least three, so G is configurable by Lemma A.1.8. If

the number of internal vertices of P is three, then let H ′ be the graph obtained from

P by deleting all internal vertices of P . Again, G is configurable by Lemma A.1.2 if

H ′ is configurable. So H ′ is C4, C7, C4 • C4 or K2,3. However, G is configurable by

Lemma A.1.8 and Lemma A.1.10 in this case. 2

Claim 3: There are no induced (α, β)-stars S in G, where α + β ≥ 3, and

α + 3β ≤ 9 or (α, β) = (1, 3), such that G \ S has minimum degree at least two.

Proof of Claim 3: Suppose there is an induced (α, β)-star S, where α + β ≥ 3,
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and α+ 3β ≤ 9 or (α, β) = (1, 3), such that G \ S has minimum degree at least two.

Subject to this constraint, assume that α+ β is as small as possible. Let G′ = G \ S,

and M1,M2, ...,Mk be components of G′. If every component of G′ is configurable,

then G is configurable by Lemma A.1.2. So there is a component of G′ which is not

configurable, and hence this component is isomorphic to C4, C7, C4•C4 or K2,3 by the

minimality of G. But G contains no C4’s by Claim 1, so the component is isomorphic

to C7. Without loss of generality, we may assume that M1 is isomorphic to C7 and

write M1 = v1v2...v7v1.

If M1 contains exactly one vertex of degree at least three in G, then G is con-

figurable by Lemma A.1.4, a contradiction. If M1 contains exactly two vertices of

degree at least three in G, then there is a path of length at least four whose ends

are of degree at least three in G and whose internal vertices are of degree two in G,

contradicting Claim 2. Hence there are three vertices in M1 of degree at least three

in G, and we may assume that they are v1, v3, v5. Furthermore, if all v1, v3, v5 have

degree at least four in G, then α + β ≥ 6 and G contains a C4, contradicting Claim

1. Therefore, at least one of v1, v3, v5, say x, has degree three in G. Note that there

is an (α, β)-star with center x and α+β = 3 such that the graph obtained from G by

deleting this (α, β)-star is still of minimum degree at least two, so S must also have

that α+ β = 3 by the minimality of α+ β. So G′ is C7 as α+ β = 3. In other words,

(α, β) = (0, 3), (1, 2), (2, 1) or (3, 0).

If (α, β) = (3, 0), then G can be obtained from C6 by attaching a (2, 1)-star, so G

is configurable by Lemma A.1.2. So this is not a (3, 0)-star. If (α, β) = (0, 3), then G

is configurable since it can be obtained from C8 by attaching a (1, 2)-star. If (α, β) =

(1, 2), then G is configurable since G can be obtained from C8 by attaching either a

(2, 1)-star or (3, 0)-star. So (α, β) = (2, 1). Let V (S) = {a, b, c, d1, d2} and E(S) =

{ab, ac, ad1, d1d2}. If d2 is adjacent to v1 or v5, then G is configurable since it can be

obtained from C6 by attaching a (1, 2)-star. Thus, d2 is adjacent to v3. Hence, there is
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a configuration on G defined as f(v1) = {1, 2}, f(v2) = {4, 5}, f(v3) = {1, 3}, f(v4) =

{4, 5}, f(v5) = {1, 2}, f(v6) = {3, 4}, f(v7) = {3, 5}, f(a) = {1, 3}, f(b) = f(c) =

{4, 5}, f(d1) = {2, 5}, f(d2) = {2, 4}. This proves Claim 3. 2

Claim 4: G contains no C6’s with exactly two diagonal vertices of degree at least

three.

Proof of Claim 4: Let C = v1v2...v6v1 be a cycle of order six with v1 and v4 the

two vertices of degree at least three in G. Since G has no adjacent vertices whose

degrees are at least three, v5 and v6 have degree two in G. Let G′ be the graph

obtained by deleting v5, v6 from G, so G′ is a graph of minimum degree at least two,

maximum degree at most five, and there are no adjacent vertices whose degrees are

at least three. If G′ is not configurable, then G′ is C4, C7, C4 • C4 or K2,3 by the

minimality of G. However, G contains no C4’s, so G′ is C7 and it contains at most

two vertices whose degrees in G are at least three. Hence, there is a path of order

at least five whose internal vertices are of degree two, which contradicts to Claim 2.

Consequently, G′ is configurable and there is a configuration f on G′, and we can

extend f to G by defining f(v5) = f(v3) and f(v6) = f(v2). 2

We now construct a configuration on G. Contruct a graph H as follows: the

vertices of H are the vertices of degree at least three in G, and xy is an edge in H if

x and y have a common neighbor in G.

Claim 5: The maximum degree of H is at most two.

Proof of Claim 5: Suppose there is a vertex x of degree at least three in H . Let

x1, x2, ..., xk be the vertices of degree at least three such that there exist x-xi paths

of length two or three. Then the internal vertices of those x-xi paths together with

x form an (α, β)-star S with α ≥ 3. On the other hand, β is at most two since G is

of maximum degree at most five. So S is an (α, β)-star with α + 3β ≤ 9. By Claim

3, G \ S is not of minimum degree at least two. Therefore, the degree of xi in G \ S

is at most one, for some i = 1, 2, ..., k. Since G contains no C4’s and C6 with exactly
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two diagonal vertices of degree at least three in G, the degree of xi is exactly three.

Thus, there is an (α′, β ′)-star S ′ centered at xi with α′+3β ′ ≤ 9 such that G\S ′ is of

minimum degree two since α ≥ 3, which contradicts Claim 3. Hence, the maximum

degree of H is at most two. 2

By Claim 5, H is a disjoint union of isolated vertices, paths and cycles. Let

H2 be the graph obtained by adding edges xy to H for each pair of two vertices

x, y which have distance exactly two between them in H , and then deleting multiple

edges and loops. Therefore, H2 has maximum degree at most four. Let H ′ be the

graph that is obtained by deleting an edge which is in H2 but not in H from each

component of H2 isomorphic to K5. Hence, H ′ is 4-colorable by Brooks’ Theorem.

Let c : V (H ′) → {1, 2, 3, 4} be a proper 4-coloring of H ′ such that c(v) = 1 for each

isolated vertex v in H . Note that H2 contains a component which is isomorphic to

K5 if and only if the component in H is isomorphic to C5.

Define a function f : V (H) → [5]2 as f(v) = {c(v), 5} for every vertex v in H .

Let U be the set of vertices u such that u is a common neighbor of two vertices of

degree at least three in G. Since no two vertices of degree at least three are adjacent,

every vertex in U is of degree two in G. Now, we shall extend f to V (H) ∪ U by

defining f(u) = {1, 2, 3, 4, 5} \ (f(x) ∪ f(y)) for each vertex u in U , where x, y are

the two neighbors of u in G. Note that if x, y are the two neighbors of a vertex u

in U , then c(x) 6= c(y) since H ′ contains all edges in H , so |f(x) ∪ f(y)| = 3, and

f is well-defined on V (H) ∪ U . It is clear that
⋃

w∈N [u] f(u) = {1, 2, 3, 4, 5} for each

u ∈ U . Furthermore, if v is a vertex with degree at least 2 in H , and v is not in a

component of H isomorphic to C5, then neighbors of v in H receive different colors

under c, so u is satisfied. Similarly, for each component of H which is isomorphic to

C5, there is a vertex w such that |⋃u∈N [w]∩(V (H)∪U) f(u)| = 4 and each other vertex

is satisfied.

Let W be the set of vertices w that are not satisfied. So each vertex in W is either
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an isolated vertex in H , an end of a maximal path in H , or a vertex in a component

of H which is isomorphic to C5. Let X = {w ∈ W : w is an isolated vertex in H},

and let Y be the set W \X . Notice that |⋃u∈N [w]∩(V (H)∪U) f(u)| = 4 when w is in Y .

Now construct a graph L, where V (L) is equal to V (H), and two vertices x, y in L

are adjacent if there is a x-y path of length three in G. Note that since no vertices

of degree at least three are adjacent, the internal vertices of every x-y path of length

three in G are of degree two for each xy ∈ E(L).

Claim 6: If w is in X , then the degree of w in L is at least four. If w is in Y ,

then the degree of w in L is at least two.

Proof of Claim 6: Let w be a vertex in X ∪ Y . Let x1, x2, ..., xk be vertices of

degree at least three in G such that there are w-xi paths in G of length two or three

for each i = 1, 2, ..., k. Then the internal vertices of those w-xi paths together with

w form an (α, β)-star S.

Suppose w ∈ X . Then α = 0 and there is at most one path between w and each

xi since otherwise we violate Claim 4. But then G\S has minimum degree 2, so by

Claim 3, β ≥ 4, so the degree of w in L is at least four.

Suppose w ∈ Y and that β ≤ 1. If w was not in a C5 in H , then α = 1, so the

degree of w is only 2. So we must have that w was in a C5 in H , so α = 2. Removing

S must create a vertex of degree 1 by Claim 3, say x1. So x1 must have degree 3 and

be part of a 5-cycle with w, C. Since w is in a C5 in H , we must have that x1 has

a path of length two to another vertex of degree at least three and that the graph

H obtained by removing C and the two adjacent degree 2 vertices is connected and

of minimum degree 2. If it were configurable, then by Lemma A.1.7, G would be as

well, so H must be C7 which is impossible since it has at least one degree 3 vertex

since G has at least 5 degree 3 vertices since w is in a C5 in H . 2

By Lemma A.1.11, L then has an orientation in which each vertex of X has in-

degree at least 2 and every vertex in Y has in-degree at least 1. We use this to extend
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f to satisfy every vertex in G. Each edge in L corresponds to a path of length 3,

x, v1, v2, y in G (where x is the tail of the edge in L). For each of these paths, let a, b

be two colors not in
⋃

u∈N (x) f(u) (if that many colors exist, otherwise arbitrarily add

colors not in f(x)). Then assign f(v1) = (a, b) and f(v2) as given by Lemma A.1.1.

At the end of this process each vertex of degree 2 is satisfied. Each vertex not in

X or Y was already satisfied. Each vertex in X was the tail of two edges in L, so

sees up to 4 new colors, so is certainly satisfied. Each vertex in Y was only missing

at most 2 colors, but was the tail of at least one edge in L, so is now satisfied.

A.2 Main Theorems

Now, we prove Theorem A.0.1 (thus, proving Theorem 2.3.2).

A.2.1 Proof of Theorem A.0.1.

We proceed by induction on |V (G)|+ |E(G)|. If the order of G is 3, then G is C3 and

G is configurable. If the order of G is 4, 5, 6 or 7, but G is not C4, C7, C4 • C4 or

K2,3, then G is configurable by Lemmas A.1.6, A.1.8, and A.1.10. So we may assume

that G at least 8 vertices.

Suppose there is a vertex v of degree two in G such that v is in a C4 = vabcv

with degree of b also two. If the degree of a is also 2, then G is obtained by adding a

four-path to a forbidden graph which is impossible by Lemmas A.1.8 and A.1.10. So

we may assume that a and c have degree at least 3.

So we consider G \ v. If it has a configuration f , then G is configurable since we

may extend f to V (G) by assigning f(v) = f(b). As the order of G is at least 8, G\ v

is not configurable only if G \ v is C7 or C4 • C4. However, it is not hard to see that

if G \ v is C7 or C4 • C4, then G can be obtained either from C5 or C6 by attaching

paths of order one or two, or from C3 by consecutively attaching a path of order at

least three, so G is configurable by Lemmas A.1.5 and A.1.8. Hence, we may assume

that no four cycle has two vertices of degree two opposite one another.
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Suppose there were three vertices x, y, z in G such that x, y, z forms a triangle in

G and the degree of y and z were exactly two. By the induction hypothesis, Lemma

A.1.5 and Lemma A.1.10, G is configurable if G \ {y, z} is not C4 or C7. But if

G\{y, z} is C4 or C7, then G can be obtained from C3 by attaching a path with order

at least three, so G is still configurable by Lemma A.1.8. Hence, we may assume that

G has no triangles with two vertices of degree three.

Let G′ be a spanning subgraph of G such that the minimum degree of G′ is at

least two and satisfies the following:

1. |E(G′)| is as small as possible,

2. subject to that, the number of triangles in G′ is as small as possible, and

3. subject to that, the number of components in G′ which are isomorphic to C4•C4

or K2,3 is as small as possible.

We shall prove the following claims.

Note that by the minimality of E(G′), there are no two vertices of degree at least

three adjacent to one another.

Claim 1: The maximum degree of G′ is at most five.

Proof of Claim 1: Suppose that there is a vertex v of degree at least six in G′.

As G is K1,6-free, there are two vertices x, y adjacent to v in G′ with x adjacent to y

in G. Since the degree of v is at least three, x and y must have degree two in G′. If

xy 6∈ E(G′), then the graph obtained by deleting xv, yv from G′ and then adding xy

into G′ is still a spanning subgraph of G with minimum degree at least two, but it has

fewer edges. So xy ∈ E(G′), in other words, v, x, y form a triangle in G′. Since x, y, v

form a triangle in G and the degree of v is at least three, at least one of x and y has

degree at least three in G. We may assume that the degree of x in G is at least three,

and u is a neighbor of x in G other than y and v. As xy, vx ∈ E(G′) and the degree
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of x is two in G′, xu 6∈ E(G′). So the graph obtained by deleting xv and adding xu

has the same number of edges but it has fewer triangles than G′, a contradiction. 2

Claim 2: Let Q be a component of G′ isomorphic to C4 · C4 or K2,3. Let u be a

vertex of degree two adjacent to a vertex of degree at least three in Q, v. Then there

are no edges between u and V (G) \ V (Q).

Proof of Claim 2: Let e = uv. Then the graph obtained by deleting e and adding

uv to G′ is still of minimum degree two, and it has the same number of edges and the

same number of triangles as G′, but it has fewer components isomorphic to C4 ·C4 or

K2,3, contradicting the minimality of G′. 2

Since every component of G′ is a connected graph of minimum degree at least two

and of maximum degree at most five, and no vertices of degree at least three in G′

are adjacent to one another, every component of G′ is configurable except those that

are isomorphic to C4, C7, C4 ·C4, or K2,3 by Lemma A.1.13. Also, it is clear that if a

graph contains C4, C7, C4 ·C4 or K2,3 as a spanning subgraph but not as an induced

subgraph, then it is also configurable.

Let R1, R2, ...Rk be components which are not configurable. Then the subgraph

of G induced by each V (Ri) is C4, C7, C4 • C4 or K2,3. By Claim 2, edges incident

to a degree two vertex of Ri must be incident to another vertex in the same Ri, so

every vertex of degree two in Ri is also of degree two in G. But we already assume

that no C4 contains two opposite vertices of degree two, so Ri must be isomorphic to

C4 or C7.

Now, we show that G is configurable. Let H be the maximum configurable sub-

graph of G induced by the union of components of G′. If H 6= G, then let C be a

component of G′ not in H . Then C is either C4 or C7 and has an edge either to H or

to another C4 or C7. In either case it is easy to extend the configuration to include

C (and possibly an additional cycle) which contradicts the maximality of H . So G is

configurable.
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Note that our proof gives a polynomial time algorithm to find a configuration of

an n-vertex graph G if G is a K1,6-free graph of minimum degree at least two, and

no component of G is isomorphic to C4, C7, C4 • C4, or K2,3.
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APPENDIX B

PROOF OF THEOREM 6.2.2

In order to prove Theorem 6.2.2, we need to prove the following preliminary Lemmas

B.1.1 – B.1.9.

B.1 Preliminary Lemmas

Lemma B.1.1 Let G = (F3)
k, then,

Kf(G) =
2

21
k(92k − 19) (84)

Proof. Let us label the vertices in (F3)
k as shown in the Fig. B.1(a). Here, ra,α =

rd,α = 13/21 and rb,α = rc,α = 10/21. Also, we can write Kf(G) as

Kf(G) =(k)Kf(F3) +

(
∑

i∈F3,j∈F3

ri,j

)

(1 + 2 + · · ·+ (k − 1))

=(k)Kf(F3) +

(
∑

j∈F3

ra,j +
∑

j∈F3

rb,j +
∑

j∈F3

rc,j +
∑

j∈F3

rd,j

)

(1 + 2 + · · ·+ (k − 1))

=(k)Kf(F3) + 2

(
∑

j∈F3

ra,j +
∑

j∈F3

rb,j

)

(1 + 2 + · · ·+ (k − 1))

=(k)Kf(F3) + k(k − 1)

(
98

21
+

86

21

)

Since, Kf(F3) = 146/21, so, we get,

Kf (G) =
146k

21
+

184

21
k(k − 1)

=
2

21
k(92k − 19)
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Lemma B.1.2 Let H = (F1)
k • (F3)

`, then,

Kf (H) =
2

21
`(92`− 19) +

2

3
k(4k − 1) +

204

21
k` (85)

Proof. Let us label the vertices in (F1)
k as shown in the Fig. B.1(b). Here, ra,α =

rb,α = 2/3. Also,

Kf(H) = Kf ((F1)
k) + Kf((F3)

`) +
∑

i∈(F1)k,j∈(F3)`

ri,j

= Kf ((F1)
k) + Kf((F3)

`) + k`




∑

j∈(F3)`

ra,j +
∑

j∈(F3)`

rb,j





= Kf ((F1)
k) + Kf((F3)

`) + 2k`

[

4(
2

3
) + 2(

13

21
) + 2(

10

21
)

]

Now, using (46) and (84), we get,

Kf (H) =
2

21
`(92`− 19) +

2

3
k(4k − 1) +

204

21
k`

(F3)
`

(F1)
k

a

b

α

a

b
c d

α

(F3)
k

(a) (b)

Figure B.1: (a) Labeling of (F3)
k for the proof of Lemma B.1.1. (b) Labeling of

H = (Fk
1 ) • (F3)

`, for the proof of Lemma B.1.2.

Lemma B.1.3 Let H = ((F1)
k • (F3)

`) • F7, then,

Kf (H) =
2

21
`(92`+ 332.0612) +

2

3
k(4k + 26.9336) +

204

21
k` + 27.7994 (86)

156



Proof. Let us label the vertices in H as shown in the Fig. B.2. Also, we can write

the Kf(H) as below,

Kf(H) = Kf ((F1)
k • (F3)

`)) + Kf(F7) + +
∑

i∈F7,j∈(F1)k

ri,j +
∑

i∈F7,j∈(F3)`

ri,j (87)

Firstly, we will compute
∑

i∈F7,j∈(F1)k
ri,j. Note that for F7, we have, ra,α = rh,α,

rb,α = rg,α, rc,α = rf,α, rd,α = re,α. Also, rx,j = rx,α + rα,j , where x ∈ {a, b, c, d, e, f, g, h}

and j is a vertex from (F1)
k. So,

∑

i∈F7,j∈(F1)k

ri,j = 2




∑

j∈(F1)k

ra,j +
∑

j∈(F1)k

rb,j +
∑

j∈(F1)k

rc,j +
∑

j∈(F1)k

rd,j





Noting that rα,j = 2/3, where j is in (F1)
k. Also using rx,α values, where x ∈

{a, b, c, d}, we get,

∑

i∈F7,j∈(F1)k

ri,j = 2




∑

j∈(F1)k

1.2847 +
∑

j∈(F1)k

1.1388 +
∑

j∈(F1)k

1.1176 +
∑

j∈(F1)k

1.1145





Since, there are 2k vertices in (F1)
k, thus, we get,

∑

i∈F7,j∈(F1)k

ri,j = 2(2k) [1.2847 + 1.1388 + 1.1176 + 1.1145] = (18.6224)k (88)

Now, we compute
∑

i∈F7,j∈(F3)`
ri,j

∑

i∈F7,j∈(F3)`

ri,j = `

[

2
∑

j∈F3

ra,j + 2
∑

j∈F3

rb,j + 2
∑

j∈F3

rc,j + 2
∑

j∈F3

rd,j

]

= 2` [4.6625 + 4.0789 + 3.9941 + 3.9817]

= (33.4344)`

(89)

Now, using Kf(F7) = 27.7994, and inserting (85), (88) and (89) in (87), we get,
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Kf (H) =
2

21
`(92`+ 332.0612) +

2

3
k(4k + 26.9336) +

204

21
k` + 27.7994

a

b

c
d e f

g
h

α

(F3)
`

(F1)
k

F7

F7 • ((F3)
`
• (F1)

k)

a

b
c

d e f
g

h

α

F7

Figure B.2: (a) Labeling of ((F1)
k • (F3)

`) • F7 for the proof of Lemma B.1.3.

Lemma B.1.4 Let H = ((F1)
k • (F3)

`) • F5, then,

Kf (H) =
2

21
`(92`+ 248.5033) +

2

3
k(4k + 20.2502) +

204

21
k` + 15.5833 (90)

Proof. Kirchhoff index of given H can be written as,

Kf (H) = Kf((F1)
k • (F3)

`)) + Kf(F5) +
∑

i∈F5,j∈(F1)k

ri,j +
∑

i∈F5,j∈(F3)`

ri,j (91)

Using exactly the same procedure as in Lemma B.1.3, we compute,

∑

i∈F5,j∈(F1)k

ri,j = (14.1668)k (92)

and,
∑

i∈F5,j∈(F3)`

ri,j = (25.4765)` (93)
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Now using Kf(F5) = 15.5833, and inserting (85), (92), and (93) in (91), we get

Kf (H) =
2

21
`(92`+ 248.5033) +

2

3
k(4k + 20.2502) +

204

21
k` + 15.5833

Thus, we get the desired result. H = ((F1)
k • (F3)

`)•F5 is shown in the Fig. B.3.

a
b

c d
e

f

α

(F3)
`

(F1)
k

F5

F5 • ((F3)
`
• (F1)

k)

a
b

c d
e

f

α

F5

Figure B.3: H = ((F1)
k • (F3)

`) • F5 for the Lemma B.1.4.

Lemma B.1.5 Let M1 be a graph as shown in the Fig. B.4, and H = ((F1)
k •

(F3)
`) •M1, then,

Kf (H) =
2

21
`(92`+ 333.3653) +

2

3
k(4k + 27.0262) +

204

21
k` + 28.0779 (94)

Proof. We can write Kf (H) as,

Kf(H) = Kf((F1)
k • (F3)

`) + Kf (M1) +
∑

i∈(F1)k ,j∈M1

ri,j +
∑

i∈(F3)`,j∈M1

ri,j (95)

Let us label the vertices in M1 as shown in the Fig. B.4. Then, we compute the

following,
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ra,α = 0.6147; rb,α = 0.4589; rc,α = 0.3680; rd,α = 0.5920;

re,α = 0.4361; rf,α = 0.4491; rg,α = 0.4719; rh,α = 0.6180;

This gives us
∑

j∈M1

rj,α = 4.0087. Now, we will calculate
∑

i∈(F1)k ,j∈M1

ri,j,

∑

i∈(F1)k ,j∈M1

ri,j = k

(
∑

i∈F1,j∈M1

ri,j

)

= 2k

[

8

(
2

3

)

+
∑

j∈M1

rj,α

]

= (18.684)k

(96)

Similarly, we calculate
∑

i∈(F3)`,j∈M1

ri,j as following,

∑

i∈(F3)`,j∈M1

ri,j = `

(
∑

i∈F3,j∈M1

ri,j

)

= 2`

[

(8)

(
13

21

)

+
∑

j∈M1

rj,α + (8)

(
10

21

)

+
∑

j∈M1

rj,α

]

= (33.5586)`

(97)

After calculating Kf (M1) = 28.0779, and inserting (85), (96), and (97) in (95),

we get

Kf(H) =
2

21
`(92`+ 333.3653) +

2

3
k(4k + 27.026) +

204

21
k` + 28.0779

Let us define graphs,M2, M3, M4, M5 as shown in the Fig. B.5.

Now, using exactly the same procedures as in Lemma B.1.3, Lemma B.1.5, fol-

lowing Lemmas can be proved.

Lemma B.1.6 Let H =M2 • ((F1)
k • (F3)

`), as shown in the Fig. B.6. Then,

Kf (H) =
2

21
`(92`+ 334.8522) +

2

3
k(4k + 27.1323) +

204

21
k` + 28.3972 (98)
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a

b

c
d e f

g
h

α

(F3)
`

(F1)
k

M1

(

(F1)
k) • (F3)

`
)

•M1

M1

a

b
c

d e
f

g

h

α

Figure B.4: M1 graph, and H = ((F1)
k • (F3)

`) • M1, as defined in the Lemma
B.1.5.

M2

a

b

c
d e

f
g

α

M3

a
b c

d

α

M4

a
b c

d

α

M5

a

b
c d

e
f

α

Figure B.5: M2,M3,M4, andM5 graphs.

Similarly, we can prove the following result,

Lemma B.1.7 Let H =M3 • ((F1)
k • (F3)

`), as shown in the Fig. B.6. Then,

Kf (H) =
2

21
`(92`+ 154.9) +

2

3
k(4k + 12.85) +

204

21
k` + 5.75 (99)

Also,

Lemma B.1.8 Let H =M4 • ((F1)
k • (F3)

`), as shown in the Fig. B.6. Then,

Kf(H) =
2

21
`(92`+ 151.4055) +

2

3
k(4k + 12.6004) +

204

21
k` + 5.333 (100)

Finally, we state the following result.
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Lemma B.1.9 Let H =M5 • ((F1)
k • (F3)

`), as shown in the Fig. B.6. Then,

Kf(H) =
2

21
`(92`+ 249.6662) +

2

3
k(4k + 20.3333) +

204

21
k` + 15.7778 (101)

a

b

c
d e f

g
h

α

(F3)
`

(F1)
k

M2

M2 • ((F3)
` • (F1)

k)

a
b c

d

α

(F3)
`

(F1)
k

M3

M3 • ((F3)
` • (F1)

k)

a
b c

d

α

(F3)
`

(F1)
k

M4

M4 • ((F3)
` • (F1)

k)

a
b

c d
e

f

α

(F3)
`

(F1)
k

M5

M5 • ((F3)
` • (F1)

k)

Figure B.6: Various graphs used in Lemmas B.1.6 – B.1.9

B.2 Main Theorem

Now using the Lemmas B.1.1 – B.1.9, we prove Theorem 6.2.2.

Let H be a graph obtained by adding an edge between any two non-adjacent

vertices in G = (F1)
k • (F3)

`. Then, H is isomorphic to one of the following graphs,
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(1) H1 = (F1)
k−2 • F`+1

(2) H2 = ((F1)
k • (F3)

`−2) • F7

(3) H3 = ((F1)
k−1 • (F3)

`−1) • F5

(4) H4 = ((F1)
k • (F3)

`−2) •M1

(5) H5 = ((F1)
k • (F3)

`−2) •M2

(6) H6 = ((F1)
k • (F3)

`−1) •M3

(7) H7 = ((F1)
k • (F3)

`−1) •M4

(8) H8 = ((F1)
k−1 • (F3)

`−1) •M5

whereM1, M2, M3, M4 andM5 are shown in the Fig B.4 and Fig. B.5.

Now using, (86) and (85), we get,

Kf (H2)−Kf(H1) = (0.2916)` + (0.1461)k + 0.0735 > 0 (102)

using, (90) and (85), we get,

Kf(H3)−Kf (H1) = (0.1431)` + (0.0714)k + 0.03539 > 0 (103)

Similarly, from (94) and (85), we get,

Kf (H4)−Kf(H1) = (0.4157)` + (0.2079)k + 0.1036 > 0 (104)

Also, from (98) and (85),

Kf (H5)−Kf(H1) = (0.5565)` + (0.2792)k + 0.1397 > 0 (105)

(99) and (85) gives,

Kf(H6)−Kf (H1) = (0.9428)` + (0.4714)k + 0.23579 > 0 (106)

Using (100) and (85), we get,

Kf (H7)−Kf(H1) = (0.6103)` + (0.3047)k + 0.1485 > 0 (107)
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Finally, (101) and (85) gives,

Kf(H8)−Kf (H1) = (0.2539)` + (0.1269)k + 0.06358 > 0 (108)

From (102) – (108), it can be seen thatH1 has minimum Kf among all possible graphs

that can be obtained by adding a single edge to G = (F1)
k • (F3)

`, thus proving the

required result.
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