

Vlist and Ering:

Compact Data Structures for Simplicial 2-Complexes

A Thesis

Presented to

The Academic Faculty

by

Xueyun Zhu

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2013

Copyright © Xueyun Zhu 2013

Vlist and Ering:

Compact Data Structures for Simplicial 2-Complexes

Approved by:

Dr. Jarek Rossignac, Advisor

School of Interactive Computing

College of Computing

Georgia Institute of Technology

 Dr. Monson H. Hayes

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. Greg Turk

School of Interactive Computing

College of Computing

Georgia Institute of Technology

 Dr. Ghassan AlRegib

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Date Approved: Nov 14, 2013

iii

ACKNOWLEDGEMENTS

 I would like to express my deepest appreciation and gratitude to my advisor, Dr.

Jarek Rossignac, for his patient guidance and mentorship he provided all the way from

when I first attended Georgia Tech as a MS student, through my completion of this

degree. I would never have been able to finish it without his abundant help and support.

I would also like to thank my committee members, for the friendly guidance and

thought-provoking suggestions.

Finally, I would like to thank my parents and my boyfriend for your moral

support. You are always there for me encouraging me and cheering me up.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS AND ABBREVIATIONS viii

SUMMARY iv

CHAPTER

1 Introduction 1

2 Foundations 6

2.1 Type of complexes 6

2.2 Entities used for access and traversal S2Cs 8

3 RAT operators 12

3.1 Triangle and wedge operators 12

3.2 Corner operators 12

3.3 Implementation of prime operators 17

4 Vlist for connected-stars triangle complex 20

4.1 Representation and storage cost of connected-stars triangle complexes

 20

4.2 Vlist construction algorithm 22

4.3 Operator implementation 22

5 Ering for connected-stars triangle complex 26

5.1 Representation and storage cost of connected-stars triangle complexes

 26

5.2 Ering construction algorithm 27

v

5.3 Operator implementation 28

6 Vlist and Ering extension to S2C 30

6.1 Adding ghost triangles to a triangle complex 30

6.2 Sticks 34

6.3 Implement ‘.k’ and ‘.e’ operator 35

6.4 Supporting operator 36

7 Conclusion 39

REFERENCES 40

vi

LIST OF TABLES

Page

Table 1: Generating the L table and updating the H table 22

Table 2: Code to retrieve incident vertex ID of wedge w 23

Table 3: from corner c, get the next corner by swing in the clock wise order from view

point 25

Table 4: Generating the R table 28

Table 5: Using Ering to implement the swing operator: from corner c, get the next corner

by swing in the clock wise order from view point 29

Table 6: Adding ghost triangles within every cone without sticks 33

Table 7: Adding ghost triangles within every cone with consideration of sticks 35

Table 8: Implementation of .k operator 36

Table 9: Implementation of .e operator 36

Table 10: Implementation of .e operator 38

vii

LIST OF FIGURES

Page

Figure 1: Example of a S2C 1

Figure 2: Example of non-manifold edge 4

Figure 3: Example of side-respecting traversal 7

Figure 4: Example of a star-connecting vertex 7

Figure 5: Examples of Simplicial 2-Complexes (S2Cs) 8

Figure 6: Example of triangle entities 8

Figure 7: Example of wedge corner numbering 10

Figure 8: Example of stick entities 11

Figure 9: Example of swinging around the incident vertex 14

Figure 10: Examples of Ball B(v) that intersects with different components 15

Figure 11: Example of different cones 17

Figure 12: Examples of operator .e, .k and .s 18

Figure 13: Examples of traversing with operators 18

Figure 14: Example of Vlist representation 21

Figure 15: Example of computing swing 24

Figure 16: Example of Ering representation 27

Figure 17: Configuration summaries for swing operator 29

Figure 18: Example of ghost triangle 30

Figure 19: Example of adding ghost triangles within cone 32

Figure 20: Example of decomposing model with components and associated loops 32

Figure 21: Example of performing jump with ghost triangles 36

Figure 22: Example of point classification 37

viii

LIST OF SYMBOLS AND ABBREVIATIONS

V number of vertices

T number of triangles

S number of sticks

C number of edge-connected components

N number of star-connecting vertices

A number of triangles incident at non-manifold edges

M number of loops incident to a vertex

ECT Extended Corner Table

CAT Constant Amortized Time

RAT Random Access and Traversal

S2Cs Simplicial 2-Complexes

ix

SUMMARY

Various data structures have been proposed for representing the connectivity of manifold

triangle meshes. For example, the Extended Corner Table (ECT) stores V+6T references,

where V and T respectively denote the vertex and triangle counts. ECT supports Random

Access and Traversal (RAT) operators at Constant Amortized Time (CAT) cost. We

propose two novel variations of ECT that also support RAT operations at CAT cost, but

can be used to represent and process Simplicial 2-Complexes (S2Cs), which may

represent star-connecting, non-orientable, and non-manifold triangulations along with

dangling edges, which we call sticks. Vlist stores V+3T+3S+3(C+S-N) references, where

S denotes the stick count, C denotes the number of edge-connected components and N

denotes the number of star-connecting vertices. Ering stores 6T+3S+3(C+S-N)

references, but has two advantages over Vlist: the Ering implementation of the operators

is faster and is purely topological (i.e., it does not perform geometric queries). Vlist and

Ering representations have two principal advantages over previously proposed

representations for simplicial complexes: (1) Lower storage cost, at least for meshes with

significantly more triangles than sticks, and (2) explicit support of side-respecting

traversal operators which each walks from a corner on the face of a triangle t across an

edge or a vertex of t, to a corner on a faces of a triangle or to an end of a stick that share a

vertex with t, and this without ever piercing through the surface of a triangle.

1. INTRODUCTION

 3D models of human made materials, of physical or organic structures, or of

human anatomies can comprise watertight shells, surface membranes, and attached

chords, which we call sticks, that are defined as edges that do not bound a triangle. Those

models can even be non-orientable. We propose two simple and compact data structures

for representing the connectivity of a piecewise linear approximation of these models.

We use the term simplicial 2-complex (abbreviated S2C) when referring to such models.

An S2C is a connected simplicial complex with cells of dimension 0, 1, and 2. It may be

used to represent non-orientable surfaces and combinations of surfaces and networks of

one-dimensional (piecewise linear) curves in three dimensions. An example of an S2C is

shown in Figure 1.

Figure 1: Example of a S2C with dangling edges (sticks) and a star connecting, i.e., several fans of

incident triangles and several incident sticks that connect through v.

 In this thesis, we provide two simple and compact data structures supporting time-

efficient operators for accessing, traversing and editing S2C. One is called VList and

stores V+3T+(3+k)S references, where V, T, and S respectively denote the count of

vertices, triangles, and sticks and k denotes the number of sticks with both ends

connected to triangles, as shown in Figure 5. The other one is called Ering and stores

V+6T+ (3+k) S references. Both support Random Access and Traversal (RAT)

2

operations with a space and time cost that is a function of the local valence, which is the

number of cells incident upon a vertex or edge. Furthermore, both Vlist and Ering support

editing (local connectivity changes) at constant cost, assuming that the maximum valence

of a cell is negligible compared to the total number of cells.

 Although Ering uses more storage then Vlist, it supports a faster implementation

of the RAT operations than Vlist and guarantees a Constant Amortized Time (CAT) cost.

Furthermore, Ering supports a purely topological implementation of these operators,

while operators that work on Vlist use geometry to query the order of triangles around a

non-manifold edge. Therefore we propose an extended set of side-respecting RAT

operators that work on S2Cs and support walking on reachable triangle faces, piercing a

triangle, and also jumping between triangles and sticks and from one stick to the next,

without traversing across a triangle surface. Piercing a triangle can be visualized as going

through the triangle surface from one side to the other.

 Although we claim that, under for a certain class of simplicial complexes, Vlist

and Ering are more compact than previously proposed representations, this is only true

when we consider data structures that support RAT operators at CAT costs. Indeed,

significantly more compact representations of connectivity may be achieved through

compression. For example, Topological Surgery guarantees 3T bits, but typically

achieves close to 2T bit connectivity storage [1]. EdgeBreaker [2] guarantees 2T bits, but

in practice achieves about 1T bit for most meshes. Unfortunately, compressed formats

cannot be used directly for mesh access and traversal. Formats that support partial

decompression of desired mesh subsets offer a good compromise, but impose a

performance overhead especially for decompression of each chunk.

 Only a few prior publications deal with the transmission of simplicial complexes.

For example, the Progressive Simplicial Complex (PSC) [3] and their variation [4] are

extensions of a progressive formats for triangle meshes [5]. They start with a simplicial

complex, coarsen it with edge collapses and vertex merges, and record the compressed

3

form of the information necessary for performing the reverse of operations. A model

with adaptive resolution can be reconstructed by starting from the coarse mesh and

applying a subset of the vertex splits. In [3], storing the coarse mesh and the vertex splits

information of a S2C with V vertices uses 3V*16+V(logV+7) bits. The 3V*16 bits are

used for storing the vertex coordinates and Vlog(V+7) bits are used for storing the vertex

split information. Still, as mentioned before, this compressed information only describes

how to reconstruct the S2C. It doesn’t support direct access to the cells or traversal

operators directly. Hence, another data structure must be used to represent the

decompressed model for processing.

 Recently produced compact data structures for triangle meshes include SOT [6]

which stores 3T references, SQuad [7], which stores about 2T references, LR [8], which

stores about T references, and Zipper [9], which stores about .18T references with an

average of 6 bits per triangle. These representations do not support local editing

operations at constant time cost, but instead must be constructed for the entire mesh. The

ESQ [10] variations of SQuad support local editing, including vertex insertion, mesh flip,

and valence-3 vertex deletion, in constant time. Grouper [11] proposes a fixed file

format/data structure for SQuad, interleaving geometry and connectivity information in a

fixed format and supports streaming creation from a streamed input and both streamed

and random access processing, even for high span meshes (meshes with large index

differences between the triangles incident on the same vertex). Most of prior art on

triangle mesh compression or on its compact representations deal with manifold or at

least water tight meshes, for which there is no need to pierce through a surface, to jump

to sticks, or to define side-respecting traversal operators.

 A few prior publications describe data structures that deal with simplicial

complexes. The prior art most related to our contribution offers a compact data structure

for S2Cs [12]. In that data structure, each vertex v has two linked lists: (1) a linked list of

references to every neighboring vertex w if edge (v, w) is a stick; and (2) a linked list of

4

references to one triangle in each group of edge-connected component incident on v.

Furthermore, for each triangle t, the indices to its three vertices v1, v2 and v3 are stored

along with between 3 and 6 references to its adjacent triangles. These references define,

for each non-manifold edge of this triangle, the next and previous triangle around the

edge and, for each manifold edge, a reference to the only adjacent triangle. Figure 2

shows an instance of t1, t2 as the next and the previous neighbors of triangle t around the

non-manifold edge (v,w).

Figure 2: Non-manifold edge vw has 4 incident triangles. For triangle t, its adjacent triangle of edge

(v, w) is t1 and t2.

 Let V be the number of vertices, T be the number of triangles, S be the number of

sticks, C be the number of star-connecting components that incident at non-manifold

vertices and A be the number of triangles incident at non-manifold edges. The space used

by the data structure of [2] is 4V+6T+6S+2C+A references plus 2V+3T bits.

Furthermore, the traversal operators proposed in [2] do not distinguish between triangle

piercing operators and side-respecting traversal. This distinction is important, in

algorithms that identify the faces and sticks that bound a chamber, i.e., a connected 3D

component of the complement of the S2C, such as a ventricle in an anatomical model of a

heart, with 2D surfaces representing valves and 1D curves representing chords.

5

 Thus, the Vlist and Ering representations proposed here and the definition and

implementation of the associated operators provide an important improvement over these

prior contributions to the representation and processing of S2Cs:

 Definition and implementation of a simple set of RAT operators that support side-

respecting traversal, and

 More compact representation for S2Cs with a relatively low stick/triangle ratio

Vlist may be trivially constructed in linear time and space from an indexed format

representation of the S2C, which for example lists the vertex coordinates and then list the

triangles and sticks, each defined by the integer references to its vertices.

The implementation of the RAT operators on Vlist and of the construction of Ering from

Vlist requires testing side-respecting accessibility between faces and sticks. This test is

performed to decide whether they are locally reachable from one to another by walking

over an edge or vertex, but not piercing through any surface. An important contribution

reported here is an elegant formulation and a simple implementation of this test, which is

related to the problem of classifying a point with respect to a vertex neighborhood [13]

and uses parity ideas similar to those used for cell-to-cell occlusion tests [14].

6

2. FOUNDATIONS

 To provide a broad context to our work, we list here various topological classes of

simplicial complexes. In the following chapters, we will start explain our data structure

with simple complex and then the extension to the complex ones. Also, we defined

different entities associated with triangles and sticks. Those entities are used for

accessing and traversing S2Cs.

2.1 Type of complexes

We classified several different types of complexes as below. Staring from simple

components, we add handles, boundaries, non-manifold edges, vertices and sticks one by

one. How to deal with simple meshes for clarity and extend then to S2Cs will be

discussed in the data structure section.

1. Simple complex: A zero-genus orientable manifold without boundary, i.e., a mesh

homeomorphic to a triangulation of a sphere.

2. Manifold complex: An orientable manifold without boundary, but possibly with

handles or higher genus.

3. Manifold complex with boundary: An orientable manifold with boundary.

4. Connected-stars triangle complex: A complex with no sticks that may have non-

manifold edges, but does not have star-connecting vertices. A star-connecting vertex

is a vertex with more than one connected component in their star, which comprises

the incident triangles and sticks.

An example is shown in Figure 3, where a side-respecting traversal is illustrated: a bug

on one of these faces (a) can walk across that non-manifold edge to the proper face of an

adjacent triangle (b). Our side-respecting traversal operator called swing identifies the

proper triangle and face. Results of iterating the swing operator are shown as the image

sequence from (a) to (e) until the bug returns to its original face. The instantaneous

position of the bug is identified by a corner, which is defined in the next section.

7

Figure 3: Example of side-respecting traversal.

5. Triangle complex: A simplicial complex with only triangles and no sticks that

contains star-connecting vertices. An example is shown in Figure 4. A fan of incident

triangles and a single incident triangle are connected only by v. A bug on one face of

the triangle from the fan cannot reach a face of the isolated triangle by walking over

an edge. It must jump from the current fan to the isolated triangle.

Figure 4: Example of a star-connecting vertex v marked in red.

6. Simplicial 2-Complex (S2C): A connected simplicial complex of dimension 2 with

dangling edges (sticks). Note that an S2C is connected, then it does not have isolated

vertices. Figure 5 shows examples of several different S2Cs. The S2C in (a) has a

single stick, and the one in (b) has a more complex (wireframe) structure of sticks.

8

The S2C in (c) is obtained by joining two manifold complexes with boundary by a

stick. Hence, the k constant discussed above is 1 for this S2C.

Figure 5: Examples of a Simplicial 2-Complex (S2C).

2.2 Entities used for access and traversal S2Cs

We discuss here entities that can be accessed by application algorithms or that are

used by our implementation of the RAT operators or by our Vlist to Ering conversion

algorithm. We discuss entities for the triangles first and then address those for sticks.

2.2.1 Triangle entities

From each triangle, we can access several entities shown in Figure 6. Every

triangle has 3 vertices and 3 edges bounding it. Vertices are shown in magenta and edges

are shown in gray.

Figure 6: A triangle with its front face shown in cyan), its 3 wedges shown in yellow, and 3 of its 6

corners shown in green.

In addition to vertices and edges, we use wedge, corner and face. These are

defined as follows. A triangle has three wedges shown in yellow in Figure 6. A wedge is

the tuple associating the triangle with one of its vertices. In several prior publications

9

mentioned above, this tuple was called a corner. To support our side-respecting traversal,

we distinguish the two faces of a triangle and define 3 corners on each face. Hence, we

use a different name, a wedge, for the triangle/vertex tuple when there is no need to

distinguish one of the faces of the triangle.

As mentioned above, each triangle has two faces. Think of the triangle as a piece

of cardboard. Each side or face of it can be painted in a different color. We call one of

them the front face and the other one the back face. The order in which the references to

the three vertices of the triangle are listed defines which face is front and which one is

back. By convention, when a front face is visible, the vertices in the order in which they

are referenced by the triangle appear clockwise in Figure 6, the center of the front face is

painted cyan. We only paint the center part for clear representation.

With each triangle, we associate 6 corners, two per wedge as one on each face.

The 3 corners of the front face are shown in Figure 6 as green disks, positioned close to

the corresponding wedge.

Let V denote the vertex count, i.e., the total number of vertices in the S2C, and let

T be the triangle count. Clearly, the wedge count W equals 3T. As in several recently

proposed data structures, in order to reduce storage, we do not use heap records and

pointers. Instead, we assign consecutive integers in [0,V-1] to the vertices, in [0, T-1] to

the triangles, in [0, 3T-1] to the wedges, in [0, 2T-1] to the faces, and in [0, 6T-1] to the

corners and we store integer references to these entities in tables that are indexed by these

integers.

We do not assume any particular order for the vertices or the triangles. This is an

important advantage over some previously proposed data structures that reorder triangles,

vertices, or both, because the original order may have been defined by algorithms that

strive to reduce the span of the mesh, so as to enable streamed processing. We also do not

assume any consistent orientation of the triangles. Indeed, a consistent orientation can be

10

defined for water-tight non-manifold meshes without boundary, but there is no consistent

orientation for a more general S2C, such as the one shown in Figure 3.

In the Vlist and Ering representations proposed here, the wedges of a triangle t

are associated with the consecutive wedge IDs: 3t, 3t+1 and 3t+2. The front face of t is

the one for which the vertices referenced by wedges 3t, 3t+1, and 3t+2 appear clockwise

to those seeing it; similarly, the back face of t is the one corresponding to 3t, 3t+1 and

3t+2 appeared in counter-clockwise. We assign to the front face of triangle t the face ID

2t and, to the back face, the face ID 2t+1.

The corners on the front face of t are associated with corner IDs 6t, 6t+1 and 6t+2

and correspond to wedges 3t, 3t+1 and 3t+2 respectively. The corners on the back face of

t are associated with corner IDs 6t+5, 6t+4 and 6t+3 and correspond to wedges 3t, 3t+1

and 3t+2. In Figure 7, triangle t is shown as an artificially thickened slab for clarity. On

the left, t has its 3 wedges identified by color: 3t (red), 3t+1 (orange) and 3t+2 (yellow).

Hence, its front face is the top one. Right: the IDs of the 6 corners are marked: 6t (red

disc in solid), 6t+1 (orange disc in solid), 6t+2 (yellow disc in solid), 6t+3 (yellow disc in

dash), 6t+4 (orange disc in dash) and 6t+5 (red disc in dash). This numbering ensures

that, the corners of a visible face always appear in clockwise order.

Figure 7 : Example of triangle face ID, wedge ID and corner ID.

2.2.2 Stick entities

We use the term stick when referring to the dangling edges that do not bound a

triangle. Because the S2C is connected, a stick must share at least one of its vertices with

at least on stick or with at least one triangle. From a stick we can access its two vertices,

shown in red in Figure 8. We also identify its two ends shown in yellow. Each end is

11

associated to the corresponding vertex. Note that an end of a stick plays the role of a

wedge and of a corner, since the stick does not have faces. Hence, we will often use the

term corner when referring to a stick end, so as to simplify explanations.

Figure 8: A stick with its 2 vertices shown in red and its two ends/corners shown in yellow.

12

3. RAT OPERATORS

 In this chapter, we propose a set of Random Access and Traversal (RAT)

operators for accessing and traversing S2Cs. We believe that the operators of practical

value to application developers are those that apply to or produce corners. However, we

also define other operators on wedges and on faces because these help us specify the

corner operators and may be of value to some application developers. We use the object

oriented syntax, where for example c.x.y means that we start with a corner c, apply the x

operator, and then apply the y operator to the result. In practice, this cascading is

implemented as y(x(c)), but we believe that the notation c.x.y is more intuitive and easier

to follow.

3.1 Triangle and wedge operators

We use a single triangle associated operator t.w.

 t.w returns the ID of the first wedge of triangle t.

Triangle-to-corner and triangle-to-vertex access is achieved by combining this triangle

operator with operators defined below.

We also propose three wedge operators as follows:

 w.t returns the triangle of wedge w.

 w.n returns the next wedge with respect to w around w.t. w.n is defined as the

next wedge after w in clockwise order when looking at the front face of w.t.

 w.v returns the ID of the vertex of wedge w. Its computation depends on the data

structure used and will be discussed in the next sections.

3.2 Corner operators

We propose several corner operators, where a corner c may refer to a triangle

corner or the end of a stick.

 c.w returns the wedge of corner c, and c.f returns the face of corner c.

13

 c.n returns the next corner on face c.f. The term “next” is defined so that corners

c, c.n, and c.n.n appear clockwise to a viewer that sees the face c.f. Note that, if c

lies on the back face of the triangle, the wedge c.n.w of c.n is not the c.w.n. We

made this semantic choice so that, from the application perspective, our corner

operations on a shell correspond to the standard corner operators on a manifold

triangle mesh [15].

 c.x returns the corner that is on the other side of the triangle c.t at the same wedge,

i.e., the corner on the opposite face of the triangle. The mnemonic ‘x’ stands for

“cross” since this operator crosses or pierces the surface of the triangle.

 c.s returns the swing corner obtained by swinging around c.v and crossing over

one edge of c.t to access a face on the same side, i.e., not piercing through any

triangle. For example, in Figure 9 corners c0, c1,… c5 are incident on the tip

vertex of a closed loop fan of triangles. The tip vertex is marked in red. The loop

may be traversed in order using swing: c0.s=c1, c1.s= c2, … c5.s= c0. Note that

the loop of corners visited by swinging, when visible appears clockwise.

Note that the c.v operator that returns the ID of the vertex of corner c needs not be

defined explicitly, since it may be achieved as the combination c.w.v. Similarly, c.t,

which returns the triangle of corner c is achieved by c.w.t. The reverse of c.n is the

previous corner operator c.p. The reverse of c.s is the unswing operator c.u achieved by

performing c.n.s.n.

14

Figure 9: Swinging around the incident vertex shown in red: c0.s=c1, c1.s= c2, … c5.s= c0.

Consider a vertex v that has several incident triangles and sticks. Its star, v*, may

have several connected components. We call them the incident components of v. Some of

these components are individual sticks. Others are edge-connected sets of triangles

incident upon v. We define the ball B(v) of v as a ball around v that does not contain any

other vertex. The connected components of the intersection of the S2C with B(v)-v are

called the cones of v. The boundary of each cone of v comprises some of the faces and

some of the sticks of v. More specifically, the boundary of a cone of v may contain a

triangle t. One or both faces of t may be exposed to the interior of that cone. For example,

in Figure 4, there are 2 cones. One formed by the faces of the triangle fan that face

downwards; another is sandwiched in between two boundaries: faces of the triangle fan

that face upwards and faces of the isolated triangle. The front face and back face of the

isolated triangle form the boundary. And both faces are exposed to that cone. To simplify

the formulation, we say that all the sticks in the boundary and all the faces exposed to the

interior of the cone are in the cone. We also say that a corner c is in a specific cone of c.v

and is contained in a face or stick of that cone. We say that that cone is the cone of c.

 Figure 10 shows the ball around v that has several incident triangles and sticks

incident upon it. Figure 10(a)(b) and (d) are the same structure seen from different points.

Figure 10(c) shows the intersections viewed from (b), and (e) shows intersection viewed

from (d). The boundary of cones separates the ball to several parts that are colored

differently.

(a)

(b)

(c)

15

(d)

(e)

Figure 10: Examples of Ball B(v) that intersects with different components. Sticks map to an isolated

point and triangles map to edges on B(v)’s surface. The intersection generates 5 cones colored in

different colors.

 Let us consider the triangle corners that are incident upon v. They form the swing

loops of v that are traversed by iterating the swing operator, as explained above. For

example, a component of v* that contains a single triangle has a swing loop of v that

contains only two corners: a corner c and the corner c.x on the opposite side. As another

example, consider the S2C of Figure 3. The central vertex has 2 swing loops: the one on

the top crosses over the non-manifold edge twice; the one on the back crosses each edge

of the fan spoke once. Each loop is contained in a single cone of v.

 A good intuition of these two concepts may be obtained by considering the

mapping of these entities onto their intersections with the sphere S that bounds B(v). The

incident components of v each map to an isolated point on S for the sticks of v and to

connected edge graphs for the incident triangles of v. These isolated points and the

connected edge graphs decompose S into spherical faces. These spherical faces are the

connected portions of the difference between S and the S2C, which is the complement of

the isolated points and edge graphs with respect to S. Each cone of v maps to a different

spherical face. We think of the edges as streets and of the swing loops as sidewalks along

the streets. Each swing loop of v maps onto a closed-loop of sidewalks around some

portion of a connected edge graph. Here, we define operators that jump from one closed-

loop of sidewalks or isolated point to another closed-loop of sidewalks or isolated point

that are accessible from the same spherical face.

16

 In a subsequent section of this thesis, we explain how our representation adds

auxiliary triangles incident upon v that map into golf cart paths on S through faces. We

add a minimum set of golf cart paths to connect all the closed-loop of sidewalks and

isolated points of a spherical face. Now consider the union of the golf cart paths and the

streets. Each spherical face has a single closed-loop of sidewalks that visits them. Hence,

all corners and all sticks of a cone can now be traversed by a single walk by using the

swing operator.

 We have already defined a swing operator and shown how to use it to visit the

corners of a swing loop of v. Below, we define other operators for accessing the sticks

and other swing loops in the boundary of the cone that contains a given corner c. To do

so, we organize the corners of v, i.e., the corners c such that v=c.v, into ordered sets,

which we call cycles. Each cycle is on the boundary of a unique cone of v. All the sticks

in a cone form an ordered list or cycle. We will call it a stick cycle of vertex v. Each

swing loop of v is a different entry in the swing loops cycle of a cone of v. Hence, each

cone of v has a stick cycle and a swing loops cycle. Each of these may be empty. We

define below a method for jumping from one element of a cycle to the next element in

that cycle and a method for jumping to an element of the other cycle. We chose the

following syntax.

 c.e jumps to an end of the stick cycle of the cone of c, when one exists. If c is a

stick-end, the result of c.e is the next stick end in the same stick cycle. Otherwise,

it is the first stick end in the stick cycle of the cone of c. c.e returns c when c is a

triangle corner and the stick cycle of the cone of c is empty and when c is the only

stick end in the stick cycle of that cone.

 c.k returns a triangle corner of the swing loops cycle of the cone of c, when one

exists. If c is a triangle corner, then c.k returns a corner in the next swing loop

cycle of c. Otherwise, when c is an end, c.e returns a triangle corner of the first

group in that list. When the corner of c has no swing loops, c.k returns c.

17

Figure 11 demonstrates a start-connecting vertex having two cones incident to it. Each

cone has a stick and 3 faces. Stick1 and stick2 are separated and belong to different

cones.

Figure 11: The vertex v in S2C has 3 incident components and 2 cones. Each cone has one stick and 3

faces.

Figure 12 shows a star-connecting vertex with 7 incident components. In Figure

12(a), starting from a triangle corner c of v, we can use c.s to reach the swing corner in

the same swing loop, c.k to reach a corner on the next swing loop of the cone of c, and c.e

to reach the first corner (stick end) of the cone of c. In Figure 12(b), starting from a stick

end c, we can reach the next stick in the stick cycle of c.v using c.e and a triangle corner

on the first swing loop of the swing cycle of the cone of c using c.k. These side respecting

operators do not pierce any triangle surface, hence they cannot reach the partly visible

cone of incident triangles that appears at the bottom of the figure. Figure 13 shows an

example of traversing with those provided operators. Starting from corner c, we can get

access other corners of the chamber of c.

18

(a)

(b)

Figure 12: Illustration of operator .e, .k and .s from corner c. (a) c is a corner on the triangle and (b)

c is a corner / end on a stick.

Figure 13: Starting from c, we can access n=c.n, p=c.p; s=c.s, l=s.p, z=s.n; u=c.u, w=u.p, l=u.n; d=n.u,

f=d.n, g=p.s; h=d.x.u, o=h.n; v=c.v=u.v=s.v;v1=l.v; v2=z.v=p.v=g.v; v3=o.v; v4=w.v=n.v=d.v=h.v;

v5=r.v;

Some RAT operators we discussed about do not depend on specific data structure.

We list the implementation of some primitive RAT operators that are common for both

our Vlist and Ering representations.

t.w is implemented as {return 3t;}

w.t is implemented as {return w/3;}

w.n is implemented as {return 3*(w/3)+(w+1) mod 3;}

c.w is implemented as {return 6*(c/6) + c mod 3;}

c.t is implemented as {return c/6;}

c.f is implemented as {return (c/3) mod 2;}

c.n is implemented as {return 3*(c/3)+(c+c.f+1) mod 3; }

19

c.x is implemented as {if(c.f==0) return c + 5– 2*(c mod 3); else return c -2*(c mod 3)-1;

}

20

4. VLIST FOR CONNECTED-STARS TRIANGLE COMPLEX

In this chapter, we explain the Vlist data structure for the special case of

connected-stars triangle complexes. In these models, using our terminology on the sphere

bounding B(v), each spherical face is bounded by a single closed-loop of sidewalks.

Hence, all the corners of a cone of a vertex can be traversed by a single cycle of swings.

Remember that such a S2C does not have sticks. The extension to more general S2Cs is

discussed in chapter 6.

4.1 Representation and storage cost of connected-stars triangle complexes

Our Vlist data structure maintains three tables: a G table, an H table and an L

table:

 The G table stores the location of 3D point G[v] of vertex with index v. Hence, it

has V entries.

 The H table stores the head H[v] of the list of all wedges incident upon vertex v.

Hence, it has V entries.

 The L table stores the ID L[w] of the next reference in the list of wedges of v.

Hence, it has 3T entries, one per wedge.

When the list is empty, H[v] stores the ID of vertex v. Otherwise, the last entry in the list

stores the ID of v. Thus the list is circular and contains v as one of its elements. As

explained below, we exploit the fact that w.v can be reached from w by following the list

stored in L. To know whether L[w] stores the ID of a wedge or of the vertex w.v, we use

the leading bit and set it to 1 when L[w] references a vertex.

To be consistent with our object-oriented notation, instead of writing G[v], H[v],

and L[w], we will write v.g, v.h, and w.l. We use the Boolean function isVertex(w),

21

which returns true when w references a vertex and flase when it is a wedge. Its

implementation simply tests whether w<0.

Hence, the total storage costs for the connectivity of a connected-stars triangle

mesh is V+3T: V entries for H, and 3T entries in L. Note that this cost is nearly half of

the connectivity cost of the ECT representation mentioned above, and yet it provides the

same functionality. Furthermore, it is close to the cost of the SOT representation, which

is 3T. In a simple complex, T=2V–4, hence Vlist stores 3.5T references while SOT stores

only 3T references.

For connected-stars triangle complexes, the advantage of the Vlist over SOT and

other compact data structures discussed above is that Vlist does not require reordering the

triangles and supports constant cost editing, assuming that the maximum number of

triangles incident on a triangle is small compared to the triangle count.

A simple example of a connected-stars triangle complex and the details of its

Vlist representation is shown in Figure 14. The wedge ID is labeled in the mesh shown

on left. As we can see, we do not assume any consistent orientation of the triangles.

Figure 14: The wedge IDs (left) for a manifold complex with boundary, and the contents of the H, L

and V tables stored in its Vlist representation (right).

22

4.2 Vlist construction algorithm

For a connected-stars triangle complex, we assume that the input to our Vlist

construction is an indexed representation, which contains two parts:

 The geometry part lists the three Cartesian coordinates or any other chosen

representation for each vertex. It is assumed that the vertices are associated with

integer IDs, 0, 1, 2, … V-1 and that they match the order in which the vertices are

listed.

 The connectivity part that lists the three integer IDs of the vertices associated with

each triangle. It stores the incident information. Triangles are assigned integer

IDs, 0, 1, … T-1, based on their order in this list.

In the example shown in Figure 14, the connectivity description is the list of triples

{{0,1,2},{1,2,4},{1,3,4},{2,5,6},{2,4,6},{4,7,6}}. Triangle 0 has vertices {0,1,2},

triangle 1 has vertices {1,2,4} and so on. The Vlist construction algorithm proceeds as

follows.

 Read the geometry part and fill the G table.

 Initialize the H table so that H[v]=v, but flip the first bit of each entry to produce a

negative number.

 Read the connectivity data and, for each entry, update the H and L tables to insert

the new wedge at the head of the wedge list associated with its vertex.

For example, when we read triplet {i,j,k} for triangle t, the following assignments are

performed:

L[3t] = H[i]; H[i] = 3t;

L[3t+1] = H[j]; H[jj] = 3t+1;

L[3t+2] = H[k]; H[k] = 3t+2;

Table 1: Generating the L table and updating the H table.

4.3 Operator implementation

23

In this subsection, we provide the details of our implementation of operators for

the Vlist representation

4.3.1 Vertex operator

For wedge w, the vertex operator w.v (implemented as v(w)) returns the ID of the

vertex of w. Since Vlist does not store this information explicitly, it must be retrieved by

traversing a portion of the wedge list that contains w, until we reach a negative entry,

from which we extract the desired vertex ID. The complexity of this search is

proportional to the number of wedges of w.v. Our implementation of the vertex operator,

v(w), is shown in Table 2. v(w) returns the result of ANDing v with a mask that has ones,

except for the leading bit.

int v(int w){

 int v=L[w];

 while(v>=0) v=L[v];

 return v&&’8FFF;

}

Table 2: Code to retrieve incident vertex ID of wedge w

For corner c, we implement c.v as c.w.v.

4.3.2 Swing operator

Here, we explain how to compute the swing c.s of a corner c. To reach c.s from c,

we will cross over the oriented edge (v,u), where v=c.v. The wedges of v are ordered

around edge (v,u) clockwise when looking from vertex v towards vertex u. Note that it is

not necessary to compute the entire circular ordering. It is only necessary to compute the

next wedge x after c.w. Once we have the ID of x, we can compute c.s. The result

depends on whether we are walking onto the front or the back face of x.

Figure 15 shows a vertex v0 with one incident non-manifold edge marked in red

joining it to vertex v3. For corner c of w0 on the visible face, three steps are taken to

compute c.s. The first is to identify triangle {a, b, c} of corner c and edge {u, v} that c is

24

about to cross. For corner c, the triangle is {v0, v1, v2} and the edge is {v0, v2}. The

second step is to identify the wedge we we are walking onto. Candidate wedge w should

be incident on c.v with its next or previous wedge incident onto c.p.v. From all those

candidate wedges, we find the next wedge x after c.w when they are in clockwise order.

The third stop is to identify the face of the triangle x.t and return the result. If we are

looking at the front face of x.t, then c.s is the corner of x on the front face. If, on the other

hand, we are looking at the back face of x.t, then c.s is the corner of x on the back face.

The code for our implementation is given below.

Figure 15: Illustration showing a corner c and the results of c.s, c.s.s, c.s.s.s, and c.s.s.s.s.

int getSwingCorner(int c) {

ww=c.w; u=w.v; v=c.p.v; z=c.n.v;

maxAngle = 2 ; x=ww;

w=u.h;

while(!isVertex(w)){

 if(w!=ww){

if(w.n.v==v || w.p.v==v){ // find candidate wedge w satisfying condition w.t

and c.t sharing edge (u, v) , assign p to the other vertex of w.t

 if(w.n.v==v) p=w.p.v; else p=w.n.v;

 planeAngle= angle(z.g, u.g, v.g, p.g);

 if(planeAngle <maxAngle) {maxAngle = planeAngle; x=w;}

}

}

25

w=w.l;

}

if(x==ww) return c.x; // there is no other triangle sharing edge (u,v) with c.t, return the corner on

the other side of c.w

if(clockWise(E, x.v.g, x.n.v.g, x.p.v.g)) // function cw(E, A, B, C) check if vertex A, B, C appear

clockwise from viewpoint E

return getCorner(x, true); //function getCorner(x, isFrontface) returns corner of x on the

front face if isFrontface=true or on the back face if isFrontface=false

else return getCorner(x, false);

}

int getCorner(int w, bool isFrontface){

 if(isFrontface) return (w/3*6+w%3);

 else return (w/3*6+5-2*(w%3));

}

float angle(point A, point B, point C, point D) {

 vector U= BA.crossProduct(BC).normalize; vector V=BD.crossProduct(BC).normalize;

//A.crossProduct(B) performs cross product A×B

return acos(U.innerProduct(V)); //A.innerProduct(B) performs dot product A•B

}

bool clockWise (point A, point B, point C, point D) {

 vector U=EA, V=EB, W=EC;

return U.innerProduct(V.crossProduct(W))>=0;

}

Table 3: From corner c, the code for getting the next corner by swinging in the clock wise order from

view point

26

5. ERING FOR CONNECTED-STARS TRIANGLE COMPLEX

 In this section, we present our Ering representation for a connected-stars triangle

complex. We discuss the data structure and its storage cost, its construction, and the

implementation of operators, where it differs from those discussed above. In chapter 6,

we extend Ering to general S2Cs.

5.1 Representation and storage cost of connected-stars triangle complexes

The Ering data structure that is proposed here supports RAT operations and CAT

cost. In addition to the geometry table G, it maintains two connectivity tables: a V table

and an R table.

 The V table stores the index V[w] of the vertex of wedge w and it has 3T entries.

 The R table stores the index R[w] to the next wedge in the circularly ordered list

of wedges that are facing facingEdge(w), which is the edge of w.t that is not

bounded by w.v. If there is no wedge that is facing the facingEdge(w), then R[w]

contains w. The table R has 3T entries.

An example of this representation is shown in Figure 16. Note that wedge w faces edge

(u, v) if (w.n.v= =u && w.p.v= =v) || (w.p.v= =u and w.n.v= =v). When edge (u, v) is a

border edge, it has only a single incident triangle, and R[w] contains only w. Similarly,

when edge (u,v) it is a manifold edge, then it has exactly two incident triangles and R[w]

contains only the other wedge that is facing (u,v). When the edge (u,v) is non-manifold,

then we compute the clockwise cyclic order of all wedges that face (u,v). To define

clockwise, we identify which vertex, v or u, has the smallest integer ID. If u<v, then the

triangles are listed in a clockwise order around the oriented edge (u,v). Otherwise, a

counterclockwise order is used.

Ering stores 2 references, V[w] and R[w], of each wedge w for connectivity.

Therefore, the total storage cost is 6T references.

27

Figure 16 shows an example of a connected star triangle complex and the

correspoinding Ering representation. We see that four wedges, w2, w4, w6 and w10 face

the same edge v0v1. Assuming that v0<v1, these wedges are arranged clockwise as seen

from v0 to v1. Thus, since the next wedge of w2 that facing edge (v0, v1) is w10, then

R[w2]= w10. Similarly, we have R[w10] = w6, R[w6] = w4 and R[w4] = w2.

Figure 16: A triangle mesh for Ering data structure demonstration and the tabular representation of

Ering’s encoding data.

5.2 Ering construction algorithm

Since the input to our Ering construction is a Vlist representation, described

earlier, it is necessary to compute the V and R tables. To fill the Ering V table, for each

wedge w, we set V[w]=w.v, using the Vlist implementation of w.v described above.

Alternatively, table V may be filled directly from the indexed format as follows. When

the triplet {i,j,k} of vertex indices is read for triangle t, we set V[3t]=vi, V[3t+1]=vj and

V[3t+2]=vk.

28

The algorithm of computing R[w] can be constructed by using the swing operator.

Specially, for each corner c, we consider the triangles c.t and c.s.t, identify the wedges, u

and w, of each that is not incident upon a vertex common to both triangles, and set

R[u]=w or R[w]=u, depending on whether or not w.n.v<w.p.v. The algorithm is given in

Table 4.

void computerR (int c){

 w=c.n.w; v=c.v; u=c.p.v; //trying to find R[w] for wedge w with facingEdge(w)=(v,u)

 if(v<u){ rw=c.s.p.w; } //seeking R[w] in clockwise order

 else {rw=c.x.u.n.w;} //seeking R[w] in counter-clockwise order

 R[w]=rw;

}

Table 4: Generating the R table

5.3 Operator implementations

In this section, we described how to implement these prime operators that depend

on the data structure. The ‘.v’ operator of wedge w can be simply referred to as V[w].

Using the explicit information stored in the R table, the swing operator can be

implemented as follows.

We distinguish eight configurations shown in Figure 17 as follows. For corner c,

let nw denote c.n.w, va denote c.v and vb denote c.p.v. By testing (1) whether va and vb

are in ascending order, we get w2 from R table, and (2) whether we are viewing the front

face of w2.t, we get the correct corner we walk on to. An implementation of this

algorithm is given in Table 5.

29

Figure 17: Configuration summaries for swing operator. Those configuration are different by (1) va

and vb’s value, (2) the face info of c and (3) the orientation consistency of c.t and w2.t.

int getSwingCorner(int c){

va=c.n; vb=c.p.v; nw = c.n.w; nv=c.n.v;

if(R[nw]==nw) return c.x;

else{

 rw=R[nw]; //if R table is clockwise ordered viewed from va to vb, R[nw] is the next

wedge with facingEdge(nw) and R[nw].t ==nw.s.t

 if(va>vb) while(R[rw]!=nw) rw=R[rw]; //if R table is counterclockwise ordered viewed

from va to vb, iterating the R table to find the ‘previous’ wedge with facingEdge(nw)

if(rw.n.v=va) return getCorner(rw.n, true); //function getCorner(x, isFrontface) returns

corner of x on the front face if isFrontface=true or on the back face if isFrontface=false

 else return getCorner(rw.p, false);

}

}

Table 5: Using Ering to implement the swing operator. From corner c, get the next corner by

swinging in the clock wise order from the view point.

30

6. VLIST AND ERING EXTENSION TO S2C

A general S2C has vertices with disconnected stars and may contain sticks. We

use the same Vlist and Ering data structures as those presented below for representing the

S2C. The difference is that we introduce a set of stiffener triangles, as briefly mentioned

above. Once these are in place, the new S2C does not contain any sticks or disconnected

star vertices. Still, we need to alter the implementation of the operators so as to hide these

stiffener triangles from the application, so that, for example, a swing operator does not

return a corner on one of the stiffener triangles.

We first explain how to add stiffener triangles to convert a triangle complex to a

connected star triangle complex. Then, we explain how to add stiffener triangles for the

sticks. Finally, we explain how to modify the operators to distinguish stiffener triangles

from the original ones and how to identify those used for sticks.

6.1 Adding ghost triangles to a triangle complex

Assume that we are given a triangle complex that has star-connected vertices. For

instance, Figure 18 shows a stiffener triangles in green added to connect two triangle

components that have swing loops in the same cone. We insert a stiffener triangle shown

in green to join two swing loops in the same cone. After insertion, the cone has a single

swing loop, which may be traversed by swinging. However, from the application’s

perspective, the official swing operator should not reach a corner on the green triangle.

Figure 18: Example of adding ghost triangle to connect loops inside a cone.

31

Hence, for each star-connecting vertex v of k components, we need to add k-1

stiffener triangles. These triangles must link all of the corner cycles of each cone of v.

We proceed as follows. We identify the corner loops of v by tracing them one by

one. Using the Vlist, we visit all corners incident upon v. For each corner c in that list, if

c is not marked, we mark it with the ID of the next corner cycle and perform a walk using

a series of swings until we return to c. During that walk, we mark all corners with the

new cycle ID. Then, for each pair of swing cycle, we pick an edge on each and consider

the triangle t that joins these two edges which share v as a vertex as a candidate for a

support triangle. Now, we will explain how we test whether t is a support triangle.

Let the link be the border ring of the triangles in a swing loop. It is shown in red

in Figure 19. Let e be the edge of t that is not incident upon v. For each swing loop, we

compute the parity p of the number of intersections between e and the triangles of the

swing loop and between t and the link of the swing loop. If that parity is even, then t is a

support triangle and we insert it. If we are using the Ering representation, the insertion

requires modifying the R table of the two edges where the triangle is attached.

In Figure 19, we take an example of 4 triangle groups and show how those ghost

triangles are added. Note: we cannot add ghost triangles between two triangle groups if

they don’t share any face of the same chamber. An instance is that a ghost triangle cannot

be added between the innermost 3-face cone and the outermost 3-face cone. As the

figures shown above, the ghost triangles are painted in green and connecting every

triangle group which shares some faces of the same chamber. Thus a bug can crawl all

over the mesh through those ghost triangles.

32

Figure 19: Top left and top right: 4 different triangle groups incident to vertex v. Bottom left and

bottom right: 3 ghost triangles shown in green are added to connect triangle groups that have faces

from the same chamber.

 Here are the details of the algorithm. For every unvisited startCorner that

satisfying startCorner.v=v, let c=startCorner, mark c as visited and keep updating c as

c=c.s. In this way, c will swing around v and end up back at startCorner again. The faces

c traversed form a loop. Different triangle group topology has different loop numbers.

For examples, a triangle group as an open fan has only one loop; a cone structure has 2

loops; while a group with non-manifold edges can have even more. In the structure

above, loop1 and loop2 belong to one triangle group thus they are glued together.

Similarly, loop3, loop4 and loop5 are glued together; loop 6 and loop7 are glued together;

loop 8 and loop 9 are glued together. Figure 20 decomposes the structure in Figure 19

with 4 triangle groups and 9 loops in total.

Figure 20: Decomposition of the structure shown in Figure 19 with 4 triangle groups

33

Imagine there is a ball centered at v. All loops are projected on the ball’s surface.

Every loop separates the ball’s surface to two parts: area inside the loop and the area

outside the loop. Denote M as the number of loops and l0, l1…, lm-1 as those loops. If

group A and group B are reachable, then loop li belonging to group A and loop lj

belonging to group B will have the same status, i.e., inside or outside, with regard to

other loops. In other word, for any vertex vi on li and any vertex vj on lj, if vi is outside of

lk then vj must also be outside of lk. Draw a line to connect vi and vj. For every loop lk

which is not li and lj and those glued to li or lj, every time the line intersects with lk, the

status flips either from inside to outside or from outside to inside. In order to keep vi and

vj in the same status, the times of intersection must be kept in even number of times. This

rule needs to be applied to every loops other than li, lj and those glued to them. If there is

one loop lk with odd number of intersections, vi and vj can be diagnosed as separated by

loop lk, thus group A and group B are not reachable.

The algorithm can be expressed as below:

for every loop i {

for every loop j {

for every loop k {

if(i<j and i!=k and j!=k and !isGlued(i,j) and !isGlued(i,k) and !isGlued(j,k)) {

 pick vi from loop i, pick vj from loop j;

status=true;

 for every edge (vk, vk+1) from loop k{

if(triangle(v, vi, vj) intersects edge(vk, vk+1) or triangle(v, vk, vk+1) intersects edge(vi, vj))

status=!status;

 }

}

if(!status) break;

}

if(k==componentNumber) addGhostTriangle(v, vi, vj);

}

}

}

Table 6: Adding ghost triangles within every cone without sticks

34

We add those ghost triangles to the end of the list and keep track of their counts.

6.2 Sticks

The input information that defines the sticks may be defined in the indexed format

as a list of vertex ID pairs, one pair per stick. Each pair is represented by 2 vertex IDs and

associated with the integer stick ID defined by the order of appearance. We unify the

representation of sticks and triangles to make it simpler for development. The sticks

information is stored the same way as triangles with the third vertex ID the same as the

first one. To be specific, when we read (vi, vj) as the vertex IDs of stick s, the stick end

IDs will be 3s, 3s+1 and 3s+2 with respect to vi, vj and vi. The third element serves as a

flag indicating this is a stick. For example, given an corner/end ID number i, isStick(i)

will return true if i is on a stick or false otherwise by performing i.t.w.v==(i.t.w.p.v).

When the stick is attached to another swing loop and reachable, we add a support

triangle. The support triangle is made of the stick and of an edge of that swing loop. The

process of testing which swing loop to attach it to is similar to the case between triangle

complexes. We identify the corner loops of v the same way as described above. But in

this case, we treat every stick incident to v as a single loop. As a triangle loop has the

border ring consisting of several vertices, the border ring of stick loop only has one

vertex. Then we take no difference between triangle loop and stick loop. The same parity

test is performed for testing the proper candidate.

For each vertex v with a star-connecting vertex of k components (including

triangle complexes and sticks), we need to add k-1 stiffener triangles. Let V be the

number of vertices, T be the number of triangles, S be the number of sticks, C be the

number of edge-connected components that incident upon non-manifold vertices and N

be the number of disconnected star vertices. The Vlist stores V+3T+3S+3(C+S-N)

references and Ering stores 6T+3S+3(C+S-N) references.

The modified algorithm with stick extension can be expressed as below:

35

for every loop i{

 for every loop j{

 for every loop k{

 if(i<j and i!=k and j!=k and !isStick(k) and !isGlued(i,j) and !isGlued(i,k) and

!isGlued(j,k)) { //if loop k is a stick loop, there is no need for parity test.

 pick vi from loop i, pick vj from loop j;

 status=true;

 for every edge (vk, vk+1) from loop k{

 if(triangle(v, vi, vj) intersects edge(vk, vk+1) or triangle(v, vk,

vk+1) intersects edge(vi, vj)) status=!status;

 }

 If(!status) break;

}

 }

 If(k==componentNumber) addGhostTriangle(v, vi, vj);

 }

}

Table 7:Adding ghost triangles within every cone with consideration of sticks

6.3 Implement ‘.k’ and ‘.e’ operator

As ghost triangles are added, faces and sticks that are in the same chamber are

connected together. So a bug on corner c’, can crawl to all triangle faces and sticks of the

chamber of c’. For instance, in Figure 21, the non-manifold vertex v marked in red has v*

of two triangle groups: an isolated triangle and a triangle fan. The ghost triangle shown in

green is added to connect these two groups. Then a bug on the corner c’ of the isolated

triangle with c’.v=v can reach the corner of the fan triangle on the visible face: c’.s will

swing to the ghost triangle and c’.k=c’.s.s will land on the triangle fan. The ghost triangle

serves as an ‘invisible’ bridge for swinging around to different triangle faces and sticks

that are in the same cone but not connected.

36

Figure 21: example of ‘jump’ from one triangle group to another by performing swing.

The algorithm can be expressed as:

int k(int c){

 int startC=c;

 c=c.s;

 ghostFlag=false;

 while(c!=startC) { if(ghostFlag && !isStick(c)) break; if(isGhost(c.t)) ghostFlag=true; c=c.s;}

 return c;

}

Table 8: Implementation of .k operator

Similarly, the ‘.e’ operator can be implemented as:

int e(int c){

 int startC=c;

 c=c.s;

 ghostFlag=false;

 while(c!=startC) { if(ghostFlag && isStick(c)) break; if(isGhost(c.t)) ghostFlag=true; c=c.s;}

 return c;

}

Table 9: Implementation of .e operator

6.4 Supporting operator

We provide the implementation of point justification as supporting operator. It

does not require additional reference vertex and is at the time cost linear to the vertex

valence. It is useful for implementing prime operators and may be of value to some

application developers.

For a closing fan which separates the space into two halves, the two sides of the

fan will face each half-space respectively. Given an arbitrary point in space, the

algorithm classifies which half-space this point is in without taking a reference point.

Figure 22 shows a ball B(v) cut by a fan shown in yellow centered at v. The ball is

colored with green in one half-space and red in the other. The coloring is achieved by

sampling the ball surface and repeat performing the classfyX function described below.

37

Figure 22: Example of point classification by shown points on the surface of a ball in different colors.

Let v be the center of the closing fan, and v0, v1, … vn are vertices that form the

rim of the fan. For point p, the idea of classifying p with regard to the closing fan can be

expresses as:

1. Initial the point p status by checking if p is in the cone (v, vn, v0, v1) or not. Cone

(va, vb, vc, vd) is a structure formed by vertex va, vb, vc and vd resembling

tetrahedron without the surface formed by vb, vc and vd.

2. For every vi from v0 to vn-1. check if edge pv0 intersects with triangle vvivi+1 or

edge vivi+1 intersects with triangle vv0p. One intersection means the point crosses

the fan’s wall once. Flip the value of the initial status for each intersection.

3. After looping round the rim, point p is classified by status.

The algorithm can be expressed as:

bool classifyX(point P){

 bool status=isInCone(v, vn, v0, v1, P); // isInCone(V, A, B, C, P) will return true if P is inside

cone(V, A, B, C) emanating from V

 for(i=0;i<n;i++)

 if(edgeIntersectsTriangle(v0, P, v, vi, vi+1) || edgeIntersectsTriangle(vi, vi+1, v, v0,P)) //

edgeIntersectsTriangle (E1, E2, A, B, C) will return true if edge E1E2 intersects triangle ABC

 status=!status;

 return status;

}

bool isInCone(point V, point A, point B, point C, point P){

 bool a = clockWise(V, A, B, C); // clockWise (point A, point B, point C, point D) returns true if

point B, point C, point D appear as clockwise seen from point A

38

 bool b = clockWise (V, P, B, C);

 bool d = clockWise (V, A, B, P);

return a && b && d || !a && (b || d);

}

bool edgeIntersectsTriangle(pt P, pt Q, pt A, pt B, pt C) {

 vector PA=V(P,A), PQ=V(P,Q), PB=V(P,B), PC=V(P,C), QA=V(Q,A), QB=V(Q,B),

QC=V(Q,C);

 bool p= clockWise (PA,PB,PC), q= clockWise (QA,QB,QC), a= clockWise (PQ,PB,PC), b=

clockWise (PA,PQ,PC), c= clockWise (PA,PB,PQ);

 return (p!=q) && (p==a) && (p==b) && (p==c);

 }

Table 10: Implementation of point classification

39

7. CONCLUSION

A simplicial 2-complex (S2C) can represent combinations of manifold / non-

manifold, orientable/non-orientable meshes with wire-frame (networks of sticks) attached

to them. We propose two data structures for S2C: Vlist and Ering. They are both simple

and compact. Vlist stores V+3T+3S+3(C+S-N) references and Ering stores

6T+3S+3(C+S-N) references, where V, T, S, C and N respectively define the vertex,

triangle, stick, edge-connected component and disconnected star vertex counts. Vlist can

be trivially constructed from an indexed format and supports mesh access and traversal at

a time cost proportionally to the vertex valence. The Ering data structure, although

requiring more storage than Vlist, support faster access and traverse operators.

Furthermore, their implementation is purely topological, ie., not requiring geometric

tests.

Both data structures support Random Access and Traversal (RAT) operators at

Constant Amortized Time cost (CAT). They support side-respecting traversal operators

that do not pierce the triangle surface. For models like human heart, where many vessels

are attached to the inside of a ventricle and some other vessels are grown out from the

heart’s outer skin, side-respecting operators can tell which vessels share the same space

and which are separated by the heart skin.

40

REFERENCES

[1] G. Taubin and J. Rossignac, “Geometric compression through topological surgery,”

ACM Trans Graph, vol. 17, no. 2, pp. 84–115, Apr. 1998.

[2] J. Rossignac, “Edgebreaker: connectivity compression for triangle meshes,” IEEE

Trans. Vis. Comput. Graph., vol. 5, no. 1, pp. 47–61, 1999.

[3] J. Popović and H. Hoppe, “Progressive simplicial complexes,” in Proceedings of the

24th annual conference on Computer graphics and interactive techniques, New

York, NY, USA, 1997, pp. 217–224.

[4] P.-M. Gandoin and O. Devillers, “Progressive lossless compression of arbitrary

simplicial complexes,” in Proceedings of the 29th annual conference on Computer

graphics and interactive techniques, New York, NY, USA, 2002, pp. 372–379.

[5] H. Hoppe, “Progressive meshes,” in Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, New York, NY, USA, 1996, pp. 99–

108.

[6] T. Gurung and J. Rossignac, “SOT: compact representation for tetrahedral meshes,”

in 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, New

York, NY, USA, 2009, pp. 79–88.

[7] T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac, “SQuad: Compact

Representation for Triangle Meshes,” Comput. Graph. Forum, vol. 30, no. 2, pp.

355–364, 2011.

[8] T. Gurung, M. Luffel, P. Lindstrom, and J. Rossignac, “LR: compact connectivity

representation for triangle meshes,” in ACM SIGGRAPH 2011 papers, New York,

NY, USA, 2011, pp. 67:1–67:8.

[9] T. Gurung, M. Luffel, P. Lindstrom, and J. Rossignac, “Zipper: A compact

connectivity data structure for triangle meshes,” Comput.-Aided Des., vol. 45, no. 2,

pp. 262–269, Feb. 2013.

[10] L. C. Aleardi, O. Devillers, and J. Rossignac, “ESQ: Editable SQuad Representation

for Triangle Meshes,” in 2012 25th SIBGRAPI Conference on Graphics, Patterns

and Images (SIBGRAPI), 2012, pp. 110–117.

[11] M. Luffel, T. Gurung, P. Lindstrom, and J. Rossignac, “Grouper: A Compact,

Streamable Triangle Mesh Data Structure,” IEEE Trans. Vis. Comput. Graph., vol.

Early Access Online, 2013.

[12] L. De Floriani, P. Magillo, E. Puppo, and D. Sobrero, “A multi-resolution

topological representation for non-manifold meshes,” Comput.-Aided Des., vol. 36,

no. 2, pp. 141–159, Feb. 2004.

[13] R. Juan-Arinyo, àLvar Vinacua, and P. Brunet, “CLASSIFICATION OF A POINT

WITH RESPECT TO A POLYHEDRON VERTEX,” Int. J. Comput. Geom. Appl.,

vol. 06, no. 02, pp. 157–167, Jun. 1996.

[14] I. Navazo, J. Rossignac, J. Jou, and R. Shariff, “ShieldTester: Cell-to-Cell Visibility

Test for Surface Occluders,” Comput. Graph. Forum, vol. 22, no. 3, pp. 291–302,

2003.

[15] J. Rossignac, A. Safonova, and A. Szymczak, “Edgebreaker on a Corner Table: A

Simple Technique for Representing and Compressing Triangulated Surfaces,” in

Hierarchical and Geometrical Methods in Scientific Visualization, G. Farin, B.

Hamann, and H. Hagen, Eds. Springer Berlin Heidelberg, 2003, pp. 41–50.

