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SUMMARY

During the design process for an aerospace vehicle, decision-makers must have an ac-

curate understanding of how each choice will a�ect the vehicle and its performance. This

understanding is based on experiments and, increasingly often, computer models. In gen-

eral, as a computer model captures a greater number of phenomena, its results become more

accurate for a broader range of problems. This improved accuracy typically comes at the

cost of signi�cantly increased computational expense per analysis.

Although rapid analysis tools have been developed that are su�cient for many design

e�orts, those tools may not be accurate enough for revolutionary concepts subject to grueling

�ight conditions such as transonic or supersonic �ight and extreme angles of attack. At such

conditions, the simplifying assumptions of the rapid tools no longer hold. Accurate analysis

of such concepts would require models that do not make those simplifying assumptions, with

the corresponding increases in computational e�ort per analysis. As computational costs rise,

exploration of the design space can become exceedingly expensive. If this expense cannot be

reduced, decision-makers would be forced to choose between a thorough exploration of the

design space using inaccurate models, or the analysis of a sparse set of options using accurate

models. This problem is exacerbated as the number of free parameters increases, limiting the

number of trades that can be investigated in a given time. In the face of limited resources, it

can become critically important that only the most useful experiments be performed, which

raises multiple questions: how can the most useful experiments be identi�ed, and how can

experimental results be used in the most e�ective manner?

This research e�ort focuses on identifying and applying techniques which could address

these questions. The demonstration problem for this e�ort was the modeling of a reusable

booster vehicle, which would be subject to a wide range of �ight conditions while returning to

its launch site after staging. Contour-based sampling, an adaptive sampling technique, seeks
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cases that will improve the prediction accuracy of surrogate models for particular ranges of

the responses of interest. In the case of the reusable booster, contour-based sampling was

used to emphasize con�gurations with small pitching moments; the broad design space

included many con�gurations which produced uncontrollable aerodynamic moments for at

least one �ight condition. By emphasizing designs that were likely to trim over the entire

trajectory, contour-based sampling improves the predictive accuracy of surrogate models for

such designs while minimizing the number of analyses required.

The simpli�ed models mentioned above, although less accurate for extreme �ight condi-

tions, can still be useful for analyzing performance at more common �ight conditions. The

simpli�ed models may also o�er insight into trends in the response behavior. Data from

these simpli�ed models can be combined with more accurate results to produce useful sur-

rogate models with better accuracy than the simpli�ed models but at less cost than if only

expensive analyses were used. Of the data fusion techniques evaluated, Ghoreyshi cokriging

was found to be the most e�ective for the problem at hand.

Lastly, uncertainty present in the data was found to negatively a�ect predictive accuracy

of surrogate models. Most surrogate modeling techniques neglect uncertainty in the data and

treat all cases as deterministic. This is plausible, especially for data produced by computer

analyses which are assumed to be perfectly repeatable and thus truly deterministic. However,

a number of sources of uncertainty, such as solver iteration or surrogate model prediction

accuracy, can introduce noise to the data. If these sources of uncertainty could be captured

and incorporated when surrogate models are trained, the resulting surrogate models would

be less susceptible to that noise and correspondingly have better predictive accuracy. This

was accomplished in the present e�ort by capturing the uncertainty information via nuggets

added to the Kriging model.

By combining these techniques, surrogate models could be created which exhibited better

predictive accuracy while selecting the most informative experiments possible. This signif-

icantly reduced the computational e�ort expended compared to a more standard approach

using space-�lling samples and data from a single source. The relative contributions of each

technique were identi�ed, and observations were made pertaining to the most e�ective way
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to apply the separate and combined methods.

xvii



CHAPTER I

INTRODUCTION

As an aerospace vehicle design project progresses, a variety of decisions must be made

which range from the very large-scale - should the vehicle be �xed-wing, rotary-wing, or

lighter-than-air? - to the very small-scale - where should each rivet be placed? In order

to make these decisions, designers rely on information from a variety of sources such as

experience, intuition, direct experimentation, and simulation. All this information serves

one ultimate purpose: aiding the decision-maker by revealing the consequences of his or

her decisions. E�ective decision-making requires accurate knowledge of how each decision

will a�ect the overall vehicle and its performance. Without accurate knowledge of these

consequences, a decision-maker risks making bad choices which can lead to poor vehicle

performance, program delays, or complete project failure. Care should be taken to ensure

that the consequences of a decision are accurately understood before a choice is made.

1.1 Phases of the Design Process

As the design process moves forward, the vehicle in question is progressively de�ned and

re�ned. In aerospace applications, the stages of the design process are typically referred to

as Conceptual, Preliminary, and Detailed Design.[162]

During conceptual design, the widest possible design space is explored. Extremely rapid

analysis techniques are used to evaluate as many options as possible. An analysis is any

approach that quanti�es performance given a set of input values, and may be as simple as

an equation or as complex as a full-scale �ight test. In conceptual design, the analyses will

mostly be simpli�ed models that can quickly estimate the performance of possible designs.

The objective of this phase is to identify one or more promising vehicle options. The degree of

concept de�nition at the end of this phase may vary from program to program: Li et al.[104]

�xed the planform of the wing (i.e. span, taper, sweep) by the end of conceptual design,

leaving only the airfoil undecided, while Hutchins et al.[84] carried all of these parameters
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into preliminary design to perform further trade studies. During this phase, the geometry

of the vehicle is de�ned using a few parameters, typically less than ten or �fteen.[104] In

general, however, conceptual design focuses on broad de�nitions such as initial vehicle sizing

and con�guration selection.

During the next stage, preliminary design, the concept or concepts selected during con-

ceptual design are further re�ned using more accurate analysis methods. If analyses captur-

ing multi-disciplinary e�ects such as aeroelasticity were not included during the conceptual

phase, they must be performed now. This phase emphasizes the use of higher-�delity models

for more accurate estimation of concept performance, with an associated increase in compu-

tational cost per analysis. The geometry of the vehicle is de�ned in greater detail, increasing

the number of shape parameters to a few dozen or as many as a few hundred.[104] Most or

all of the vehicle's geometric shape is frozen by the end of this phase.[89]

Finally, detailed design emphasizes individual components of the vehicle such as ribs or

fuel tanks. Each component is sized to meet its expected requirements and de�ned at the

level of detail required for manufacturing. The �nal, most highly re�ned estimates of weight

and vehicle performance are made, and prototypes are constructed. This is the longest phase

of a design project.

Each phase of the design process is marked by an increase in the available information

about the design. Early on, very rough analyses may be performed with only a few details

about the concept, such as take-o� weight, maximum thrust, and wing area. Conversely, by

the end of detailed design there may be thousands of components, each de�ned via tens or

hundreds of parameters, which must be included in order to assess the performance of the

vehicle as a whole.

The use of rapid, simpli�ed models in the early phases of the design process introduces

some element of risk. If the models do not capture all the phenomena that signi�cantly

a�ect vehicle performance, there is a chance that later on, when more accurate analyses are

conducted (such as wind tunnel tests) the selected vehicle will be found to have poor per-

formance. If poor performance is discovered, the design must be modi�ed until performance

improves, a process which may cause overruns of schedule or budgetary goals. It is in the
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designer's interest to address the risk of de�cient performance when making decisions.

This research e�ort focuses on conceptual & preliminary design, when decisions are made

to �x parameters at particular values and a baseline con�guration is selected. The potential

for mistakes introduced by low-�delity modeling may be addressed in a number of ways:

• Trade studies to quantify how decisions might a�ect predicted performance;

• Repeating experiments at one level of �delity to assess the uncertainty of predictions

at that level of �delity; and,

• Repeating experiments at di�erent levels of �delity to assess the degree to which the

change in �delity level a�ects the performance predictions

�Level of �delity� can have di�erent meanings depending on the context, although in

general it can be taken to mean the degree to which the analysis matches reality.[8] When

describing physical experiments, an experiment that matches �ight Mach number is of lower

�delity than one that matches both Mach number and Reynolds number. Computational

models have a wider range of �delity; some models assume that viscous e�ects are negligible,

or that only linear e�ects are signi�cant.

1.2 Trade Studies & Optimizations

At each stage of the design process, the available design space is explored to determine how

decisions might a�ect vehicle performance. The design space is de�ned by the parameters

being investigated and the allowable ranges of those parameters. Exploring the design space

may take the form of trade studies or optimizations. Put brie�y, optimization progressively

(and in some cases, automatically) modi�es a design to maximize or minimize some user-

selected response function; in contrast, trade studies are used to generate data about various

potential designs which will be used to support decision-making.[41]

In both processes, multiple designs are analyzed to evaluate performance. The results

are used to learn how the design parameters a�ect the response(s) of interest. In an opti-

mization, the results will be converted into a score using an explicit quantitative objective

function, de�ned at the beginning of the process. One or more new candidates will then be
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generated based on the observations and analyzed to determine objective function scores.

This objective may be a direct output of the analyses, such as vehicle weight or operating

costs, or it may be a combination of multiple responses, each given a particular weight to

re�ect the importance of improvement in that response. The optimization process will be

repeated until an optimum is identi�ed or the allotted resources have been expended. In

essence, an optimization may be considered to be a repeated trade study with a known,

quanti�able objective.

In a trade study, this information may be used to support a decision directly, or used as

the foundation for another trade study to investigate any interesting behavior observed. The

System Engineering Manual for the Federal Aviation Administration's National Aerospace

System states that a trade study is used, �to identify the most balanced technical solutions

among a set of proposed viable solutions.�[53] The Manual also states that use of trade

studies �prevents program/project management from committing too early to a design that

may not be cost e�ective or meets [sic] all system requirements.� These trade studies

are performed at all stages of the design process,[41, 42, 46] and are used to investigate

the design space. By investigating the results, the e�ects of various design parameters

on response behavior may be inferred. This allows the decision-maker to identify which

parameters signi�cant a�ect the responses of interest. If a parameter does not signi�cantly

a�ect any responses of interest, it may be set to some reasonable default value and omitted

from future trade studies, simplifying the e�ort.

Decision makers are faced with con�icting motivations when setting up a trade study.

There is incentive to include as many parameters as possible in a trade study so that ev-

ery e�ect can be investigated, including interactions between design variables. Hutchins

et al.[84] cite �the often strong coupling between the variables and the highly multidisci-

plinary nature of the design� as motivation to include as many parameters as possible in

an aero-structural tool for wing trade studies. Furthermore, as the project moves forward

some design parameters are frozen;[104] the decision-maker must take care not to freeze a

parameter before its e�ects are known with con�dence, or else risk costly backtracking if the

frozen value is later found to be detrimental.[84, 166] These factors provide the incentive to
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perform large trade studies with many parameters.

On the other hand, a trade study seldom can include every variable of interest. These

studies must take place within an ongoing design e�ort, and thus will not have unlimited

resources. As the number of design variables in a study increases, the simulation e�ort

required to complete that study increases very rapidly,[72, 99] an e�ect known as the �curse

of dimensionality.� As a result, trade studies often must be carefully designed to ensure

they can be completed using the experimental resources available, and without taking an

excessive amount of time.[89] Careful selection of experiments can ease such constraints to

some degree, but they cannot be ignored altogether. Thus, these constraints may limit the

analysis tools that may be used in a given trade study.

1.3 Speed & Fidelity of Analyses

�It can be scarcely be denied that the supreme goal of all theory is to make the

irreducible basic elements as simple and as few as possible without having to

surrender the adequate representation of a single datum of experience.� -Albert

Einstein[125]

Every computational analysis tool makes certain simplifying assumptions in its represen-

tation of the world, even if only through spatial and/or temporal discretization. Jameson[89]

estimated that modeling the air�ow around a typical aircraft with discretization �ne enough

to capture boundary layer behavior over all active length scales would require on the order

of ten billion mesh points within the boundary layer alone. Capturing the evolution of that

�ow �eld through time would further require roughly �fteen thousand time steps per second.

This degree of resolution would put modeling well out of reach at present. Jameson goes

on to note, however, that the amount of information produced by such an analysis is far in

excess of what is required for typical engineering e�orts.

Most engineering analysis focuses on large-scale responses, such as the total drag on a

vehicle. If precision is not critical, these responses can be estimated using lower-�delity

methods which make simplifying assumptions. These assumptions usually posit that cer-

tain factors have insigni�cant e�ects relative to the precision required, and thus may be
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neglected. Although these simpli�ed methods are of lower �delity, they can be very useful

if the dominant e�ects are still captured. For example, the Newtonian theory of gravity

produces a very good approximation of orbital motion. Based on observations of the seven

known planets, the position and existence of the planet Neptune was predicted in 1846 using

Newtonian theory. However, despite astronomers' best e�orts, the theory could not account

for the observed precession of Mercury's orbit, and for years astronomers searched for a new

planet to explain the inconsistencies.[191] When Einstein published his theory of general

relativity,[101] its ability to accurately model Mercury's orbit was a major achievement and

a strong argument in favor of the new theory. Still, the Newtonian theory of gravity was

used to correctly predict the existence and position of Neptune, demonstrating that a model

may be useful and informative even when it is not a perfect reproduction of reality.

There exist a variety of levels of modeling �delity for aerodynamics.[169] Among the

most accurate are computational �uid dynamics (CFD) simulations that capture, to varying

degrees, viscous e�ects. Di�erent approaches make di�erent simplifying assumptions to

reduce the large computational demands imposed by viscous �ow interactions. These viscous

models range in complexity from Large Eddy Simulation, which constrains the lower limit

of the length scale of the viscous behaviors captured, to Reynolds-Averaged Navier-Stokes

(RANS) simulations which only attempt to model time-averaged behavior of the turbulent

motion. Euler �ow models, the next level of simpli�cation, neglect viscous e�ects but retain

other non-linear e�ects. Making the additional assumption that rotational �ow e�ects are

insigni�cant yields the potential �ow equations, which may be linearized for an even simpler

model. Some models intended to analyze fairly slow �ight speeds may also neglect the e�ects

of compressible �ow.

The modeling approaches in the previous paragraph were developed from analytical

descriptions of �uid behavior using a series of assumptions as to which �uid behaviors

would signi�cantly a�ect the desired outputs, such as the resulting lift of the vehicle. The

loss of accuracy resulting from each simpli�cation depends on the response being modeled

and the problem being analyzed � assuming incompressible �ow at hypersonic conditions

will introduce more error than the same assumption at Mach 0.1. Incompressible potential
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�ow models may give a good approximation of lift on a vehicle at slow speeds, but the

vehicle drag will be vastly underestimated.

An alternative approach to estimating aerodynamic responses is to draw upon known

�ight performance of existing aircraft. By its nature, this data captures all relevant �uid

behaviors because it is compiled from actual �ight test data rather than simulations. With

data from enough aircraft, trends and patterns can be identi�ed and correlated with design

parameters. Tail volume coe�cients are an example of the application of such a trend.[162]

Using these trends and some aerodynamic theory, the performance of a new aircraft design

can be estimated.[47] This type of model is known as a semi-empirical or handbook method,

and it can be very powerful when applied to a concept similar to those used as references for

the model. However, the relations in the model are only indirectly based on �ow physics,

and if the model is applied to a con�guration that is not similar to those in the underlying

data set its predictions may not be accurate.

Most analysis tools will adequately capture simple responses such as normal force, but

a complex result like the center of pressure on a body will highlight any inaccuracies of

lower-�delity tools.[129] The center of pressure must be predicted accurately if aerodynamic

moments are important. Handbook methods often predict centers of pressure that are not

as accurate as those from Euler simulations, which in turn are less precise than viscous

predictions. Unfortunately, the superior prediction accuracy of viscous calculations comes

at a greatly increased computational cost.

In general, the simpler the analysis, the faster it will execute. OVERFLOW[137] is a

RANS model that, depending on the complexity of the analysis and the amount of resources

allocated, can complete a viscous analysis of a con�guration at one �ight condition in perhaps

a few hours on a parallel computing cluster. Cart3D,[6] an Euler-level �ow solver, can reach

an inviscid solution in roughly half an hour on a single computing node of eight cores.

The Uni�ed Distributed Panel (UDP) program, the subsonic/low-supersonic portion of the

Aerodynamic Preliminary Analysis System (APAS),[181] is a potential �ow solver and can

estimate the aerodynamic performance of an aircraft at one �ight condition in a fraction of

a second on a desktop computer.
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Furthermore, tools that capture more complex phenomena may require more information

before an analysis can be performed. De�ning a con�guration for APAS typically requires

a few dozen cross-sections; de�ning a con�guration for Cart3D requires a full water-tight

surface mesh describing the entire vehicle, including joints between components. This re-

quires a more detailed description of the vehicle which may not be available early on in the

design process, particularly if the con�guration is not de�ned in a parametric environment

and changes have to be made manually. As an added complication, vehicle performance

may be a�ected by geometric details as small as the blending between two wing sections,[65]

or the doors covering payload or landing gear bays.[183] Lee demonstrated that small-scale

nacelle details can cause shock waves strong enough to a�ect the entire upper surface of the

wing, drowning out many other e�ects of interest.[103] Using a high-�delity tool and making

unfortunate choices for default settings may make it di�cult or impossible to carry out a

trade study e�ectively.

Oberkampf & Roy[138] agree that it may be inappropriate to use the highest possible

level of physics modeling for every computational study. A highly detailed simulation of the

�ow �eld around an aircraft can be extremely computationally intensive, and the resulting

level of solution detail may vastly exceed what is necessary. Such in-depth modeling can

produce results with very good con�dence but at such high cost that the approach becomes

infeasible. Trade studies are usually conducted as part of a larger design e�ort and therefore

must be completed within a budget of allocated resources. These resources may take the

form of time, manpower, computational e�ort, �nancial budget, or other factors. If the study

takes too long to complete it may be ended prematurely, or the rest of the design process

may be delayed. The program managers will have to choose between moving forward with

insu�cient information to support their decisions, or with fewer resources available for later

work. To avoid these negative outcomes, trade studies should be carefully planned to balance

the worth of the information gained against the cost of providing that information.

One key technique for �nding this balance is to pay attention to prediction con�dence.

The predictions of high-�delity, high-complexity models are accompanied by tight con�dence

intervals. Those tight con�dence intervals indicate that the true value of the quantity being
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simulated, such as lift or drag, is likely to be very close to the predicted value. However,

such con�dence intervals usually come at the expense of time, manpower, and computational

e�ort. As models are simpli�ed, prediction con�dence may be reduced and the con�dence

intervals grow larger. When a designer de�nes the prediction con�dence required for a study,

he or she thus constrains the minimum level of model complexity that can still meet the

objectives of the study.

These con�dence interval requirements will vary as the design process moves forward.

Early studies have relatively broad con�dence intervals because they describe the aircraft

using only a handful of major design parameters such as wing reference area. Many other

aspects of the vehicle, such as the precise shape of the fuselage, are unde�ned or roughly

approximated at that stage. Using the results of such a study, desirable values for this

�rst set of parameters may be identi�ed. Later studies will re�ne the vehicle concept by

incorporating more parameters, such as airfoil selection and control surface sizes. This cycle

is repeated until the entire vehicle is de�ned to a degree that manufacturing may begin.

Each trade study must be carefully planned according to its objectives and resources.

1.4 Planning a Trade Study

As described in Section 1.2, the simulation e�ort for a study increases rapidly as more

parameters are included in the study.[72] This provides the motivation to incorporate only

the parameters which are likely to signi�cantly a�ect the results. To quantitatively identify

important parameters out of a pool of candidates, screening tests may be performed.[193]

Screening tests can be used to identify the parameters that most a�ect the behavior of

the response, and the magnitude of their e�ect. They may also identify important second-

order interactions between parameters, although this typically requires more testing than a

screening test for �rst-order e�ects only. These screening tests are performed by running

the computational model for particular sets of input values and investigating the results

with statistical techniques. A screening test requires some investment of e�ort, but may

identify parameters that may safely be omitted from trade studies, reducing the overall

e�ort required without sacri�cing the quantity & quality of information produced.
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In addition to screening tests, the set of active parameters in a study may be reduced by

eliminating variables that have previously been investigated. For example, after a conceptual

design study has identi�ed a particular value of wing sweep angle as being most bene�cial

to vehicle performance, that value may be used as the default for later studies. A design

with multiple parameters that have been �xed may be considered the baseline con�guration

for future studies. This simpli�es those future studies by reducing the number of free

parameters. When Boeing was designing the 777, the external shape of the vehicle was

�xed, or �frozen,� during preliminary design. Subsequent studies only investigated trades

that would not a�ect this outer mold line.[89]

Although defaulting and/or screening out variables will reduce the expense of a given

study, it will not eliminate the pressure to execute the study within the time and resources

allotted by the project schedule. The trade study designer is still responsible for balancing

the information gained against the costs of generating that information.[89] The Pegasus

booster, developed in the late 1980s, relied entirely on computer simulations using a variety of

analysis tools.[131] Due to the limitations of the processing capabilities available at the time,

almost all of the analysis was done using potential �ow solvers and impact methods. Euler-

and RANS-level models were applied only a handful of times, principally for con�rmation or

correction of the lower-�delity tools. In particular, the more-accurate models were used to

investigate the possibility of plume-induced �ow separation and interactions between shock

waves and boundary layers, e�ects that could not be captured using simpler tools. For the

most part, full-scale �ight testing con�rmed the performance predictions.

This example demonstrates more than one important concept. First, �ow behaviors

that were, or might be, important were identi�ed by the team in advance. Tests were

done using tools of appropriate �delity to determine whether those �ow behaviors would

signi�cantly a�ect the vehicle's performance. Secondly, these high-�delity tools were applied

intelligently, with emphasis on conditions which would be the most di�cult for lower-�delity

tools to capture accurately, such as high angle-of-attack �ight. This aided the team in

estimating an upper bound for error in the lower-�delity performance predictions. Finally,

the modeling tools for the primary e�ort were selected based on the �ow phenomena that
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were expected to be signi�cant as well as the resources available for the e�ort. Because

complex phenomena were not found to be signi�cant, lower-�delity tools could be applied

safely without introducing much error. These tools executed more quickly, allowing a larger

number of analyses to be performed over the �ight conditions of interest. Ordinarily, such

a study would use wind tunnel testing to substantiate the predictions of computational

models. In the case of the Pegasus booster program, no commercial wind tunnel time was

available for nearly a year, a delay that was incompatible with the project schedule.[129]

The project team instead applied multiple independent analysis tools across the trajectory

space of interest in order to estimate the con�dence in each prediction.

When setting up a trade study, designers must account for multiple factors: the number

of parameters to be investigated, the amount of resources available, and the level of �delity

of the analysis or analyses that will be used. Using simpler analyses may greatly reduce the

resource cost per experiment, but designers must take care to ensure that the analyses will

capture all relevant e�ects and behaviors. Using inadequate tools may expose the project

to signi�cant risks.

1.5 The Cost of Inadequate Analysis Fidelity

Unless the signi�cant phenomena are identi�ed, it may be impossible to determine the

amount of error or uncertainty introduced by simplifying assumptions. A design e�ort

lacking this information is at risk of selecting a concept with de�cient performance; this de-

�ciency will then go unrecognized until higher-�delity tools are applied later in the project,

potentially leading to backtracking and/or repetition of previous studies. Dorsey et al.[46]

described a sizing trade study for a reusable launch vehicle that captured propellant tank

and intertank structure, including detailed tank shape & arrangement parameters. Prior

parametric weight estimation tools did not capture these factors, and �[a]s a result major

perturbations have been made to the vehicle structure� which led to the �erroneous result

of no apparent impact on the vehicle total weight was obtained.�. When the tank & inter-

tank parameters were investigated with more accurate modeling tools, it was observed that

structural weight was a�ected quite strongly by design parameters such as vehicle half body
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angle and payload carriage location. For example, moving the oxygen tanks from the rear to

the front of a vehicle changed the structural loads, causing an 18% increase in the required

structural mass; this e�ect was not captured using lower-�delity tools, and decisions which

would signi�cantly a�ect the performance of the vehicle might have been made without

accurately understanding the consequences.

Other examples of the hazards of insu�cient model �delity may be found in the liter-

ature. Aeroelasticity is the complex interaction between aerodynamic loads on a body, its

structural response, and the e�ect of that response on the body's aerodynamics. Capturing

this behavior requires knowledge of the local aerodynamic loads on vehicle components as

well as a representation of component structures. The detailed information required, along

with the feedback loop inherent in the phenomenon, may preclude this analysis until late

in the preliminary design phase when much of the proposed vehicle has been de�ned; this

decision carries with it the unstated assumption that aeroelastic e�ects will not signi�cantly

in�uence the design. Werner-Westphal et al.[192] demonstrated that for rearward-swept

wings, neglecting aeroelastic e�ects may be a conservative assumption - that is, aeroelastic

e�ects reduce wingtip loads and by extension wing structural requirements. However, this

e�ect is reversed for vehicles with forward-swept wings: for such vehicles, aeroelastic e�ects

increase wingtip loads, and accounting for the higher loads may drive up wing structural

weight of the example aircraft by roughly eight percent.

The incentive for high-�delity modeling is not only an issue for multi-disciplinary anal-

yses: Collier et al.[35] investigated the degree to which di�erent structural requirements

drove wing box structure weight. When damage initiation and damage tolerance (i.e., crack-

growth) constraints were taken into account, a design that previously appeared su�cient

was found to have negative margin. Modifying the design to satisfy the violated constraints

resulted in an increase of the required structural mass of the wing by 12%. Unless these

modi�cations can be identi�ed and executed relatively early in the design process, the de-

signers may be forced to repeat many analyses to understand the e�ects of these changes on

the performance of the overall vehicle. This consequence carries the choice between a dual

penalty of lost time and increased modeling e�ort, or a loss of knowledge about the vehicle.
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It bears mentioning that the risk introduced by insu�cient modeling �delity is not solely

a problem for computer models. The Lockheed C-141 Starlifter was designed in the early

1960s with experimental support from wind tunnel testing. When full-scale �ight testing

began, the handling characteristics were signi�cantly worse than predicted. Experiments

identi�ed the source of the discrepancy: although some shock-induced �ow separation was

expected, the �ow separation at �ight Reynolds number di�ered from what was observed in

the wind tunnel experiments by as much as 20% of the local wing chord.[23] Furthermore it

was found that, given the knowledge at the time, only simulations at the full �ight Reynolds

number would have adequately predicted the Starlifter's in-�ight behavior.[17]

The Space Shuttle development program provides another example: after the �rst �ight

test, it was found that hypersonic trim at high angle of attack required a signi�cantly larger

de�ection of the body �ap than was planned. Although the di�erence in pitching moment

coe�cient was only 0.03, correcting the discrepancy required 16◦ of de�ection rather than

7◦, leaving less than one-third of the expected control margin for maneuvering or controlling

dispersions. Later testing indicated that real gas e�ects, which were not investigated before

the �ight, accounted for the majority of the discrepancy.[86, 133]

Any study conducted with inadequate �delity may lead to a concept which will later be

revealed as infeasible or de�cient. These shortfalls may signi�cantly impact the design e�ort.

Given that such de�ciencies would only be identi�ed by higher-�delity modeling, they will

not be captured until later - possibly much later - in the design process. Once discovered,

reactionary changes can begin, but the impact of these changes on the state of the design

may be very large if more than a few analyses have been performed using the old design. It

may be less costly, then, to ensure that the analysis tools are adequate for their purpose in

the study; this may be di�cult to achieve without a separate investment of e�ort.

1.6 Determining Su�cient Fidelity

Researchers have identi�ed a variety of techniques for assessing the ability of computational

tools to support a particular analysis. This process is known as validation. The AIAA

Guide for the Veri�cation and Validation of Computational Fluid Dynamics Simulations[8]
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de�nes validation as �the process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of the model.�

This de�nition emphasizes that, while validation does compare model predictions to the

�real world,� it is important to focus on the intended uses of the model. Put another way, a

previously-validated tool may need to be re-validated if it is to be applied to a substantially

di�erent problem, and the similarity of validation tests to the planned application of the

tool is critical.

One approach to tool validation, used in the development of the Pegasus booster,[129] is

to repeatedly analyze a vehicle at some important �ight conditions, such as cruise and land-

ing, using di�erent computational tools. These tools should be independent; any common

code shared between tools will make it more di�cult to identify inaccuracies in the results.

The selection of tools should represent not just various analysis programs, but di�erent lev-

els of �delity in order to capture the errors introduced by simpli�cations. The higher the

�delity of the tools included in the e�ort, the greater the likelihood that the results re�ect

reality, although this cannot be guaranteed without recourse to physical experiments.

This method must not be applied recklessly. A group of handbook methods, applied to

the same unconventional vehicle, may all produce similar results; this should be taken as an

indication that there is not a substantial di�erence in accuracy between those codes, but not

an indication that the codes all produce accurate results. Accuracy can only be determined

by comparing the handbook estimates against higher-�delity models. When an empirical

method is applied to con�gurations and �ight conditions similar to those used to build the

tool, it may be highly accurate. This pedigree is lost, however, when the method is applied

to unconventional designs or unusual �ight conditions. To better capture the prediction

uncertainty, multiple levels of �delity should be used. The tools should be applied to a

problem as similar as possible to the topic of the planned trade study. It does little good to

verify a code's accuracy when applied to a subsonic large transport if the goal is an accurate

performance estimate of a hypersonic missile.

Validation experts[138, 141] prefer to validate analysis tools against experimental data.

Data from wind tunnel experiments (or better yet, �ight tests) will naturally capture most
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or all relevant phenomena. This reduces the risk of neglecting important e�ects, creating

greater con�dence when a computational tool matches experimental results well. In a sense,

full-scale physical experiments may be considered the highest-�delity analysis. This �delity

comes at the expense of data availability.

Readily-available validation data may come from institutional memory, or it may be

in the public domain: NATO's Advisory Group for Aerospace Research and Develop-

ment (AGARD) has published sets of data intended for use in validating computational

tools.[11, 188] Unfortunately, this data is necessarily of limited scope. The AGARD reports

include only one set of experimental data to validate full-vehicle supersonic analyses - a com-

bat aircraft research model with a forward-swept wing and a canard. Unless this matches

the expected application of the code, it may be di�cult to accurately assess prediction un-

certainties. When the objective is to model a vehicle that is similar to those for which data

is available, tool validation is relatively straightforward; for revolutionary designs, it may be

di�cult or impossible to �nd pre-existing experimental data for tool validation.

The problem becomes more complicated when experimental uncertainty is included. A

wide variety of uncertainties are present in any experimental data, such as the precise wind

speed, the exact angle of the model, and the accuracy of the sensors used. Behavior such

as hysteresis may also a�ect the measurements at each condition depending on the prior

experiments run.[12] This information should be included with the nominal data set for

accurate uncertainty estimation, but most published data sets neglect to include some or all

of it. The cited AGARD reports are exemplary in the level of uncertainty documentation, but

those reports were explicitly designed to be used for validation; it is rare to �nd that degree

of documentation in ordinary experimental reports. For this reason, even if experiments

were performed using con�gurations and conditions similar to those desired, it may still

be di�cult to accurately estimate tool prediction accuracy without documentation that is

unusually thorough.

The �nal option for tool validation is the use of ad hoc experimental data. Wind tunnel

or �ight test experiments may be designed and executed with the objective of assessing tool

prediction accuracy for one or more scenarios. Although this produces high-quality data
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that is directly relevant to the problem(s) of interest, it is also the most expensive tactic.

Physical models must be built and instrumented, time in wind tunnels reserved, and data

taken. Each data point may need to be sampled repeatedly in order to quantify experimental

variation and path-dependent e�ects. Raymer estimates the cost of wind tunnel experiments

at �several hundred thousand dollars per model.�[161]

To its credit, this option does allow the user to specify which uncertainties should be

quanti�ed, and allows the user to guarantee that the con�guration and �ight conditions are

relevant to the intended application of the tools. If time and resources are available, this is

the approach that will best characterize the prediction con�dence of the modeling codes for

the scenarios of interest. Not every program has the resources to perform such experiments.

Mendenhall[129] stated that the Pegasus booster program was executed without validation

from physical experiments, not by preference, but due to a constrained program schedule

and the unavailability of wind tunnels.

Once validation data and all tool predictions are in hand, comparisons can be made.

The breadth of the predictions will give the user some idea of the overall prediction un-

certainty. If predictions are scattered widely, the simplifying assumptions of the models

signi�cantly a�ect the calculations, and care should be taken to select the appropriate tool.

If all predictions agree closely, the choice of tool is not likely to introduce signi�cant error

to the results. This procedure must be repeated at all �ight conditions of interest until the

dependability of each model at every relevant �ight condition has been established. This

produces an estimate of prediction uncertainty for each tool when applied to each scenario

of interest, i.e. each combination of �ight condition and vehicle con�guration.

The question of how to de�ne �acceptable� prediction uncertainty is an important one,

and one which varies with the application. If the pitching moment is of interest, a designer

might require a level of uncertainty smaller than the expected control surface authority.

More generally, acceptable uncertainty can refer to a level of prediction con�dence su�cient

to discriminate accurately between the options being considered. This degree of discrimi-

nation will change as the design process evolves, becoming progressively more precise. An
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example of such an acceptable uncertainty is a rule of thumb, such as: if the pitching mo-

ment coe�cient for a vehicle with unde�ected control surfaces falls within ±0.1, it is likely

that some set of feasible control surface de�ections can be found to negate that pitching

moment.[24] This rule of thumb allows designers evaluate multiple con�gurations without

having to tweak control surface de�ections to trim the vehicle for each �ight condition being

analyzed.

Modeling in the early stages of design may be somewhat imprecise without causing

much concern, because most design parameters have yet to be given values. As the concept

is re�ned, smaller-scale changes are investigated, and more precision is required to support

decisions.

1.7 When Requirements Con�ict

Note that the requirement for prediction uncertainty is independent of the computational

tools being considered. There is no guarantee that any tool will o�er the required con�-

dence at a feasible cost. This is especially true if the objective is an investigation of many

parameters at once, which can be necessary to capture interactions between parameters. As

Raymer says, �[t]he choice of code for a given design problem depends on the nature of the

problem and the available budget (and not always in that order!).�[161] What can be done

if tool validation reveals that a desired trade study can not be completed without violating

either con�dence requirements or resource limits?

The designers are then faced with a con�ict. One option is to exceed the resources

allocated to the study or request additional support. This is seldom an attractive option,

and may not be a viable choice if the resource limits (whether �nancial, computational or

temporal) are �rm limits.

Another option is to relax the prediction con�dence constraints. This would allow simpler,

faster tools to be used in the trade study, and may reduce the resource cost enough that the

study could be completed within the given constraints. On the negative side, this introduces

risk: with the relaxed con�dence requirement, decision makers might select a con�guration

that is predicted to safely meet performance requirements, but in fact violates them instead.
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This de�ciency will not be recognized until a more-accurate analysis is done sometime after

the current trade study. This is what occurred during the development of a �y-back booster

by DLR, the German Aerospace Center: a lower-�delity aerodynamics tool was used to

optimize the design of a canard. Later, when higher-�delity modeling was performed, it was

found that the canard shed vortices that negatively a�ected wing performance, resulting in

de�cient performance.[52]

It may be possible to improve the de�cient performance using the remaining un�xed

variables, although this suggests that the performance of the vehicle could have been even

better if the original de�ciency were not present. If it is not possible to ameliorate the

design problems, the decision makers will have to roll back the design process to address

the source of the trouble. Any decisions that were made after the relevant parameters were

frozen may have to be revisited. This can be an expensive process with respect to both

e�ort and time. When DLR identi�ed poor performance in their �y-back booster design,

high-�delity analyses � in the form of Euler simulations and wind tunnel experiments � had

to be used to identify the source of the error, which was found to stem from canard tip

vortices a�ecting the air�ow over the main wing. These analyses were costly, but simpler

models demonstrably did not capture the �ow phenomenon of interest. Once the canard tip

vortices were identi�ed as the source of the discrepancy, the canard was modi�ed to reduce

this e�ect and the results were con�rmed using Euler CFD.[176]

If neither the resource limit nor the con�dence requirement can be relaxed, the designer's

�nal option is to change the scope of the trade study. This may take the form of reducing the

ranges of the variables being investigated, eliminating some variables from the study entirely,

or both. Reducing variable range simpli�es the problem somewhat by limiting the portions

of the design space that will be explored. This can be an e�ective technique to improve

e�ciency, but there is a risk that interesting portions of the design space might be ignored.

Removing variables from consideration can be even more powerful: Section 1.2 described the

Curse of Dimensionality, a pithy shorthand for the observation that the computational cost

of a study increases extremely rapidly as the number of parameters grows. Correspondingly,

the cost will decrease rapidly as parameters are removed.
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In many engineering problems, most outputs are signi�cantly a�ected by only a handful

of inputs, a phenomenon known as �e�ect sparsity� or the Pareto principle.[193] Although

a computer model may have dozens of input parameters, it is likely that most only have

minor e�ects on a particular output. To determine which parameters are important to a

given response, screening tests may be performed. Screening tests use a relatively sparse

sampling of the design space to identify major linear and nonlinear e�ects, including any

interactions between variables. Thus, a screening test incurs some cost, but may result in

an overall savings of resources by identifying parameters which do not signi�cantly a�ect

the results.

For some problems, this principle does not hold, especially if many responses are to be

investigated simultaneously. Although each response depends mostly on a handful of inputs,

there is no guarantee that every response will depend on the same handful of inputs. The

more responses that must be captured, the worse are the chances that any given parameter

has negligible e�ect on all responses. Furthermore, the parameters that signi�cantly a�ect

aerodynamic responses will change with the speed and angle of �ight: nose shape has a

much greater e�ect at supersonic conditions than it does for subsonic �ight. Thus, as the

number of important �ight conditions for a vehicle increases, the designer can expect that a

greater number of geometric parameters to be signi�cant for vehicle aerodynamics. In such

situations, designers will not easily be able to omit variables without omitting portions of

the relevant design space.

What can be done in this situation? Constraints on resources encourage rapid evaluations

or fewer analyses, while constraints on prediction con�dence drive the user toward methods

with high con�dence but slow evaluation speeds. If the study cannot be captured in a small

number of analyses, the designer must investigate techniques that can reduce the cost of

performing the trade study. An example of such a scenario is investigated in detail in the

next chapter.
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CHAPTER II

MOTIVATING EXAMPLE

The con�icting objectives of highly accurate data and a�ordable analysis costs can be illus-

trated by a recent research e�ort. The Air Force Research Laboratory (AFRL) sponsored

research into modeling the aerodynamics of a reusable booster system (RBS). In partic-

ular, the AFRL expressed interest in a hybrid system, such that the �rst stage was reusable

while the upper stage or stages would be expendable. For this concept, the �rst stage would

lift the upper stages to a particular altitude, orientation, and speed, and then the �rst stage

would be jettisoned. The upper portions of the launcher would continue toward orbit while

the �rst stage would reverse its course and returned to the original launch site. The maneu-

ver by which the vehicle reversed its course is referred to as a return to launch site (RTLS)

maneuver.[19, 71]

Such a system has been the subject of research by various other entities, including

NASA[144] and DLR.[176] Hellman[79] gives an overview of some studies on the topic. The

research sponsored by the AFRL focused on vehicles which employ the main rocket engines

to o�set the downrange velocity of the booster after staging, an operational concept known

as �rocketback.� After the engines cease �ring, the vehicle executes a gliding return to the

launch site.

Previous studies by Masse[118] and Sippel[176] highlight one of the major design chal-

lenges for a winged reusable booster: stability and control. The booster must have su�cient

control authority to achieve trim along the entire RTLS trajectory. The gliding portion of

the RTLS trajectory, which was the main subject of this e�ort, can include �ight conditions

from nearly hypersonic reentry speeds down to low-subsonic landing speeds, and angles of

attack that stretch from single digits up to 30-40◦. Identifying a vehicle that can trim at

such a broad variety of �ight conditions is a demanding design task.

Further complicating matters is the complexity of the aerodynamics across the various
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�ight regimes. Some rapid computer models, such as APAS,[181] neglect nonlinear e�ects

which have been shown to be important for reusable boosters by Pamadi et al.[144] In

addition, APAS is known to be somewhat inaccurate when predicting pitching moment

coe�cients for con�gurations with long fuselages or aft center-of-gravity locations,[143] both

of which may be the case for a winged reusable booster vehicle. To increase con�dence in the

analysis results, Cart3D,[6] an Euler CFD model, was selected as a good balance of �delity

and speed. The results of Pamadi et al. demonstrated that Cart3D could match the available

wind tunnel data for the Langley Glide-Back Booster fairly well. Eggers demonstrated that

TAU, another Euler solver, showed good agreement with the wind tunnel results for another

reusable booster con�guration after sting and Reynolds number e�ects were subtracted.[50]

These results indicate that Cart3D would have su�cient �delity to capture the dominant

e�ects and �ow behaviors. Note that, as an inviscid model, Cart3D would not capture

viscous e�ects like skin friction drag or boundary layers. This was deemed an acceptable

loss, as the viscous modeling required to capture those e�ects would increase computational

costs by roughly another order of magnitude. Using 8 processors, Cart3D can typically

analyze a vehicle's performance at a given �ight condition in 30-60 minutes. Details about

the way that Cart3D was applied for this work, including default �ow solver settings, are

given in detail in Appendix B.

The objective of the RBS research project was to create surrogate models which captured

the aerodynamics of rocketback vehicle designs. Those surrogate models could then rapidly

evaluate the performance of any con�guration within the design space. The surrogate models

would be functions of geometric parameters, such as the fuselage radius or wing root chord.

A parametric vehicle geometry model was created in the PaceLab Engineering Suite[142, 175]

which included 42 geometric variables. Certain design characteristics were considered to be

�xed: the forward fuselage was cylindrical, transitioning smoothly to a �at bottom in the

rear. The wing would be mounted at or near the rear of the vehicle, low on the fuselage.

Rather than a dorsal vertical tail, vertical �ns would be located on the wing tips, similar to

the X-20 �Dyna-Soar�.[90] For a more detailed explanation of the geometry model and the

meaning of each parameter, see Garmendia et al.[61]
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Figure 1: An Illustration of the Breadth of the Design Space

In general, model parameters were selected such that the user could not specify an

impossible vehicle. For example, if the independent variables included the leading and

trailing edge sweep angles, the root chord, and the half-span of the wing, it would be possible

to select a set of incompatible parameter values: if the leading edge sweeps aft while the

trailing edge sweeps forward, the two edges might intersect at a half-span distance smaller

than what was speci�ed. Thus, if that parameterization were used, individual parameter

values which were within the allowed ranges could be combined to de�ne a geometry that

was infeasible. To avoid this, the parameters were chosen in such a way that geometrically

infeasible vehicles were not possible. One drawback to this approach is that vehicles which

would have very poor aerodynamic, structural, or operational characteristics are possible

within the design space � for example, the vehicle in the third row, third column of Figure 1

might be expected to have structural challenges, and could be at risk of striking the wingtips

during landing.

The aerodynamic surrogate models would relate the geometric parameters to the forces

and moments acting on the vehicle. Because the dominant �ow behaviors would change

signi�cantly with �ight condition, it was decided that the e�ort would initially attempt

to model the aerodynamics at individual �ight conditions separately. If good results were
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obtained, further research would seek to expand the models to capture the e�ects of changing

�ight conditions, as well.

The vehicle model included 7 control surfaces � a pair of elevons on each wing, a rudder

on each vertical �n, and a body �ap at the rear of the fuselage. Each control surface

could be de�ected independently to more accurately capture the control interactions. When

the de�ection angles for all control surfaces were combined with the rest of the geometric

parameters, the resulting design space had forty-nine dimensions. Screening tests were

performed to identify any parameters which did not signi�cantly a�ect the responses of

interest.

2.1 Screening Tests

A second-order screening design was used to build 129 con�gurations for testing. A set of 16

�ight conditions was selected as representative of the overall envelope of the vehicle: Mach

0.3, 0.8, 1.2 and 4.0; α 10◦ and 30◦; sideslip 0◦ and 5◦. After simulating all geometries at

each combination of �ight condition parameter values, a sensitivity study was performed

using JMP analysis software.[91]

The study results led to several observations. First, the Pareto Principle, which states

that a small number of variables will often account for a large majority of the response

behavior,[193] was not the behavior observed in this case. Instead, although individual

responses were more strongly a�ected by some parameters than others, enough responses

were strongly a�ected by di�erent parameters that almost all of the design variables would

have to be retained to capture the bulk of the response variation. Secondly, because all

aerodynamic forces and moments were considered important to capture, it was observed

that every design variable contributed signi�cantly to at least one response at some �ight

condition. Given these observations, it was decided that all 49 design variables would be

included in the subsequent modeling e�orts in order to capture the most knowledge about

the design space as possible.
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2.2 Identifying Similar Studies

Previous studies that were identi�ed during initial research o�ered little guidance when a

sampling approach was being selected.

The Computerized Environment for Aircraft Synthesis and Integrated Optimisation

Methods (CEASIOM) is a conceptual design tool intended to improve designers' ability

to capture stability & control responses during the conceptual phase of design. The aero-

dynamics tool incorporates high-�delity modeling, up to Euler or Navier-Stokes, to increase

con�dence in the results.[63] Multiple levels of analysis �delity and adaptive sampling are

used to identify the minima and maxima of the responses. Note that this tool was intended

to be applied to a single, �xed con�guration at a time, producing Euler-level aerodynam-

ics for that con�guration overnight. Thus, it is not well-suited for the large number of

con�gurations considered during design space exploration.

Scharl & Mavris investigated the use of surrogate models for aerodynamic modeling

of a subsonic transport.[171] Surrogate models were trained to reproduce the simpli�ed

aerodynamic model HASC, a potential �ow model with a semi-empirical vortex lift model,

to enable analysis of stability & control. This would allow e�cient design of the empennage

and control surfaces based on analysis rather than historical analogues. The design space

included 21 parameters, such as Mach number, sideslip angle, angle of attack, and altitude.

3,500 random samples were used for training and validation of the surrogate models, which

were built with arti�cial neural networks. Although this e�ort did incorporate parametric

geometry, the sampling techniques used were somewhat simplistic. Additionally, due to the

relative simplicity of the aerodynamic model, the results were not necessarily applicable to

a study using higher-�delity tools.

Masse & Wilhite[118] investigated the design of a reusable �rst-stage booster similar to

the concept behind the RBS study. The concept was described using 11 geometric parame-

ters, and APAS[45] was used to model the aerodynamics. The aerodynamic responses were

sampled using a 3- or 4-level full factorial scheme, and a quadratic response surface equa-

tion was used to represent the results. The relatively low level of model �delity, the sparse

sampling scheme, and a lack of reporting regarding the accuracy of the resulting surrogate
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models limit the similarity to the project at hand.

No studies attempting to model high-�delity aerodynamics as a function of many ge-

ometric parameters were identi�ed during the literature search. Lacking such guidance,

experiments were designed to assess the e�ectiveness of di�erent possible sampling plans.

2.3 Preliminary Experiments

2.3.1 Sampling Experiments

First, an I-Optimal Design of Experiments of 2,048 cases was constructed. The I-

Optimal design distributes samples in such a way that, when a surrogate model is created

from those samples, the average predictive variance is minimized.[91] Note that this design

does not take any of the sampling results into account, and thus is an a priori sampling

design. This DOE tends to emphasize the corners and edges of the space, which serves to

minimize or eliminate the amount of design space for which the surrogate model would have

to extrapolate.

In addition, a 2,500 case Latin hypercube[126] was generated. With this sampling

approach, the user selects the number of samples to be performed, N , and the range of

each design variable is divided into N equal portions, or �bins�. Samples are then selected

so that no two samples fall into the same bin for any input variable, which e�ectively

creates a uniform sampling over each variable. The process of selecting these samples may

be performed in multiple ways, such as maximin sampling which maximizes the minimum

distance between any two sample points.[132]

To evaluate the accuracy of surrogate models, an additional set of test points were

generated. These test points consisted of 2,000 random con�gurations. Each surrogate model

would be used to make predictions for the response values at each point; these predictions

would then be compared against the true values to determine which sampling & modeling

approaches would be most e�ective.

Both designs were used to sample the design space at two �ight conditions. One condition

represented a plausible landing scenario at Mach 0.3, α 10◦. The other condition represented

an earlier phase in the gliding trajectory at Mach 3.0, α 30◦. Both �ight conditions had 0◦
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of sideslip. All 6,000 vehicles were modeled at each �ight condition and the results compiled.

A variety of surrogate models were created using these data sets in order to identify the best

approach.

2.3.2 Surrogate Modeling Experiments

A number of di�erent techniques exist for creating surrogate models. One of the most direct,

known as response surface methodology (RSM), uses polynomial equations to describe

the behavior of the response.[33] RSM can be very e�ective when applied to engineering

problems, as the responses of many physical systems can be captured with second-order

models. RSM models are commonly �tted using least squares methods to �nd the coe�cients

that best match the observed data.[91] If the response is more complex, higher-order terms

may be incorporated, but this may be limited by the quantity of data available: there must

be at least as many data points as coe�cients to be estimated. Thus, it may be di�cult to

obtain su�cient data to �t a third- or fourth-order RSM model, especially if there are many

design variables. Stepwise regression, in which higher-order terms are added iteratively to

the model when they appear to be bene�cial to model accuracy, was performed to investigate

whether a partial increase in model order would improve the �t of the RSM models. Even

when considering terms up to �fth order, model accuracy was still very poor.

Another common modeling technique is Kriging. Kriging is a statistical modeling

method that represents the response behavior as a combination of some underlying mean

function and a stochastic function that has a mean of zero which describes deviations from

this mean.[170] Kriging is an exact interpolator, which means that it will exactly reproduce

the known response values at the training points.[39] Fitting a Kriging model requires the

inversion of a matrix of dimension n, where n is the number of training data points. As

a result, �tting the model typically involves a computational burden of order O
(
n3
)
and a

memory burden of order O
(
n2
)
, which can become signi�cant as n becomes large (on the

order of a few thousand).[136] The DACE toolbar for Matlab[107] was used in an attempt

�t Kriging models, but memory requirements exceeded the available resources when applied

to this problem. As a result, Kriging was not used for this portion of the e�ort.
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Arti�cial neural networks are a third technique for surrogate modeling that have been

used for aerospace applications.[171] Neural networks consist of one or more hidden layers

and an output layer. Each layer has a number of nodes, known as neurons, and each neuron

has an activation function which combines values from the previous layer with weighting

terms. Once the speci�c form of the activation function is chosen, the weighting terms are

optimized to best �t the training data.[91] Hornik demonstrated that neural networks with

a single hidden layer can act as universal approximators, reproducing any function to an

arbitrary degree of accuracy, for su�ciently large networks.[82] This ability to match any

function is o�set by the problem of �tting the network; for n input values, each neuron in

the hidden layer will have n + 1 free terms, and for m neurons the output layer will have

m+ 1 free terms. Fitting a network of m nodes to a problem with n input dimensions thus

requires the optimization of 1 +m× (2 + n) weights, which can be time-consuming.

Each of these methods was applied to the initial data set to determine the accuracy

of the resulting model. One surprising result was that models trained using the I-Optimal

points tended to perform worse than those that were not. A rule of thumb is that models

trained using larger data sets tend to be more accurate; in this case, models trained using the

combination of the Latin hypercube and I-Optimal data sets performed worse than models

trained using only hypercube points. Recall that the I-Optimal DoE tends to sample the

edges and corners of the design space; this result suggests that samples closer to the middle

of the space provide better information about the behavior of the responses throughout the

space. This opinion was bolstered by using a training set trained to �t points from the

hypercube data set and part of the random data set. This ad hoc model was compared

against a model trained only on hypercube points by applying both models to the unused

random points. The ad hoc model, with a larger training pool of points distributed more

or less evenly throughout the space, demonstrated better accuracy than the model with the

smaller training pool.
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2.3.3 Preliminary Conclusions

The initial experiments aimed to identify the sampling and modeling approaches that pro-

duced the most accurate surrogate models with the fewest samples. Based on the observed

results, neural network models trained with space-�lling samples, such as those from Latin

hypercubes or random distributions, were the best choice. The models created using 2,000�

3,000 points were still less accurate than desired, unfortunately, which indicated that more

samples would be required to create useful aerodynamic surrogates for individual �ight con-

ditions.

2.4 Main E�ort

2.4.1 Sampling Approach

Recall that Latin hypercubes are designed a priori, with the user specifying the desired

number of samples in advance. If, after the experiments are completed, it is discovered that

more data is needed to improve surrogate accuracy, it may be di�cult to add more samples

while still preserving the good space-�lling qualities of the samples. Qian[152] has addressed

this limitation by proposing a modi�ed Latin hypercube approach known as nested Latin

hypercube (NLHC) design.

NLHCs are generated by specifying the smallest hypercube size desired, a growth factor,

and the number of nested levels to be included. Each level serves a space-�lling hypercube.

To illustrate the concept, consider a minimum hypercube of 5 points, a growth factor of

2, and 3 levels. The resulting NLHC will have 20 points, and all 20 points form a Latin

hypercube. This is depicted in Figure 2c. Unlike most hypercubes, however, the �rst 5

points will also be a valid hypercube (Figure 2a), and the �rst 10 points will form a third

hypercube (Figure 2b). This is a very useful quality if the user wishes to sample the space

with a Latin hypercube but there is uncertainty as to the number of cases that should

be analyzed. Due to the in�ll approach used, the levels of nested Latin hypercubes have

geometric growth rates (e.g. the next-larger hypercube will be double, triple, etc. the size

of the previous hypercube).

To sample the RBS design space, a NLHC was generated. Surrogate models trained with
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Figure 2: A Nested Latin hypercube with 3 levels: (a) 5, (b) 10 and (c) 20 points

3,000 points had shown moderately good performance, so it was expected that not many

more points would be required for truly accurate surrogates. Thus, a NLHC was generated

with a base hypercube of 4,000 points and larger hypercubes of 8,000 and 16,000 points.

Based on the �t quality for 3,000 points, it was expected that 16,000 points would be far

more than su�cient.

An additional 2,000 point hypercube was generated with the wing trailing edge �xed

at the rear of the fuselage, as this was expected to a region of the design space where

aerodynamic moments were close to zero. This additional sampling would thus enhance

model accuracy in this region of the design space. An additional 2,000 random cases were

generated to test surrogate model performance throughout the design space. Once all cases

were de�ned, geometry generation with PaceLab began. A small minority of cases, less than

1%, failed to produce viable surface meshes as determined by the Cart3D meshing utility.

This was deemed an acceptable degree of loss. Once built, cases could be analyzed with

Cart3D.

2.4.2 Flight Conditions

Because the preliminary experiments failed to produce su�ciently-accurate surrogates at

either �ight condition, the main experiments also treated �ight conditions as discrete, rather

than continuous, variables. A separate surrogate model would be created for each response

at each �ight condition. Once adequate surrogate performance was demonstrated at each
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Figure 3: Cart3D Lift and Pitching Coe�cients for LGBB (from AIAA 2003�3788)

�ight condition, the surrogates would be expanded to interpolate between �ight conditions

and make predictions over the entire trajectory space.

The three �ight condition parameters � Mach number, angle of attack α, and sideslip

angle β � were discretized to cover the expected trajectory. The �ight conditions that

were selected for analysis were based in part on the Cart3D results for the Langley Glide-

Back Booster published by Chaderjian et al.[26] These results demonstrated smooth, regular

changes in each response for Mach numbers above 2; this contrasted with the relatively large

variations observed at slower speeds. These variations with Mach number dwarfed those due

to angle of attack. The lift coe�cient and pitching moment coe�cient for the Langley Glide-

Back Booster at zero sideslip are displayed in Figure 3.

As a result, Mach number was sampled �nely compared to angle of attack or sideslip,

with particular emphasis on speeds below Mach 2. The �ight conditions that were analyzed

may be found in Table 1. Note that the �ight conditions were combinatorial: each possible

combination of Mach number, angle of attack, and sideslip angle was used. The lone excep-

tion was 15◦ sideslip, which was only used for Mach numbers 0.3 and 0.5. This produced a

set of 48 �ight conditions.

Each con�guration was analyzed at every �ight condition. As a result, even if only the

smallest level of the nested Latin hypercube (4,000 cases) were analyzed, the full analysis

would still require 4, 000×48 = 192, 000 analyses with Cart3D. Despite the relatively sparse

sampling of �ight conditions, this was a 60-fold increase over the 3,000 or so inviscid analysis
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Table 1: Flight Conditions for Main Experiments

Mach number 0.3 0.5 0.8 0.9 1.1 2.5 4.0

Angle of Attack 0 15 40

Sideslip Angle 0 5 15

performed by Chaderjian et al. when a single con�guration was being analyzed. The large

increase in computational e�ort serves to illustrate the potential expense of design space

exploration when higher-�delity models must be used.

2.4.3 Running Analyses

To support this e�ort, students participating in this research project were granted access

to computing resources at Department of Defense High Performance Computing Centers

(HPCCs). These resources could complete a single analysis in thirty to sixty minutes, and

could process hundreds or thousands of cases simultaneously.

These modeling e�orts were terminated according to schedule constraints in order to

leave su�cient time to create & test the surrogates and document the results before the

end of the contract. The �rst 8,000 cases of the nested Latin hypercube were completed

for each �ight condition, as well as 4,000 additional cases for testing predictive accuracy

of the surrogate models. The testing cases varied between �ight conditions depending on

which cases were available. When modeling ended, nearly 579,000 cases had been submitted

for analysis. Some of those cases failed during analysis, or did not converge su�ciently by

the end of simulation. After �ltering out those unusable results, slightly more than 559,000

cases remained. Every �ight condition had at least 10,000 cases, with an average of 11,500

cases per �ight condition. This e�ort took roughly two months and consumed over two and

a half million processor-hours of HPCC resources. If a contemporary quad-core desktop had

been used for the analysis, it would have taken more than 73 years to complete.

2.4.4 Evaluating the Resulting Surrogates

It was something of a surprise to discover, in light of the number of analyses performed, that

the resulting surrogate models still had somewhat poor predictive accuracy. The smallest

31



95% con�dence interval for predicting pitching moment coe�cient was ±0.26, and the aver-

age 95% con�dence interval was ±0.83. These are very broad con�dence intervals, given that

the Langley Glide-Back Booster pitching moment coe�cient never exceeded ±0.1 through-

out its entire �ight envelope.[26]

A variety of techniques were applied in an attempt to improve model accuracy. The

scale of the task � 6 coe�cients at each of 48 �ight conditions, for a total of 288 responses

� precluded the development of a custom approach for each surrogate. Instead, one �ight

condition (Mach 0.5, α 0◦, β 0◦) was selected as a test case to identify strategies that might

improve all of the surrogate models.

Because the ranges of the design variables could produce aircraft with very large or very

small wings, the reference areas by which the forces and moments were normalized could vary

greatly across the design space. Models were �t to force and moment values that were only

normalized by dynamic pressure to remove the e�ects of reference area, but no improvement

in model accuracy was observed. Transformations of the responses � including squaring,

square root, exponential and natural log operators � were applied, without improvement

in accuracy. Outliers, identi�ed by Mahalanobis distance calculations[115] in the statistical

analysis software JMP,[91] were removed before �tting models, without any increase in

accuracy.

One technique was found to be helpful. Surrogate models of pitching moment coe�cient

were more accurate if predictions for lift and drag coe�cients were included in the training

data for each point. This did not a�ect the accuracy of the lateral moment models, but the

95% prediction con�dence interval for pitching moment at the test �ight condition shrank

from ±0.5 to ±0.4. This was considered to be su�cient improvement that it was worth the

e�ort, and was used as the model training method for moments at all �ight conditions.

As previously stated, the most accurate surrogate model for pitching moment coe�cient

had a 95% prediction con�dence interval of ±0.26. This model was at a �ight condition

of Mach 2.5, α 0◦, & β 5◦. With a prediction con�dence interval that large, even if a

certain con�guration is predicted to have exactly zero net pitching moment, there is so much

prediction uncertainty that there is a 44% chance that if the con�guration were analyzed
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Figure 4: Prediction Error for Models Trained on (a) 4,000 samples, (b) 8,000 samples, &
(c) 16,000 samples

with Cart3D it would be found to have a pitching moment coe�cient so large it would be

uncontrollable. Pitching moment models for other �ight conditions had larger uncertainties,

which corresponded to lower con�dence in predicted performance.

In light of the observed model performances, it was decided to analyze all available

con�gurations at a single �ight condition to estimate the number of cases necessary for

some particular model con�dence. Twenty thousand con�gurations were analyzed at Mach

0.5, α 0◦, β 0◦. These con�gurations included all 16,000 cases in the NLHC, along with the

2,000 random cases and the 2,000 cases with the wing aligned to the rear of the fuselage.

Surrogates were trained using each level of the NLHC, i.e. 4,000, 8,000, and 16,000 cases,

and the predictive accuracy of those surrogates was tested using the non-NLHC cases. The

prediction error distributions of the three surrogates are plotted in Figure 4.

The 95% prediction con�dence interval for the 4,000 point model was ±0.73. For the

8,000 point model, the same interval was ±0.56, and for 16,000 points the interval was ±0.42.

The residual, which is the discrepancy between surrogate prediction and true response value,

grew smaller as the pool of training data was enlarged. However, it shrank relatively slowly;

the increase in accuracy between the second and third model was less than between the �rst

and second, despite adding twice as many samples to the training pool. This suggested that

a highly accurate surrogate model would require a very large number of samples.

A very rough estimate was made of the rate of convergence relative to the number of
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training points. Linear, exponential, and logarithmic regressions were made of the data

points, with the logarithmic regression matching the most closely (R2 = 0.997, which in-

dicated that less than 1% of the variation in the response was not being captured). The

results suggested that as a loose approximation, 60,000 samples would be required at this

�ight condition to achieve a 95% prediction con�dence of ±0.15. At this prediction con�-

dence, if a con�guration were predicted to have zero net pitching moment, the chance that

Cart3D analysis would reveal a true pitching moment larger than ±0.1 was less than 1 in 3.

Analyzing that number of cases at each of 48 �ight conditions would amount to nearly

2.9 million analyses, i.e. roughly �ve times the expense invested in the RBS project. Such

an e�ort, using the same high-performance computing resources, would take a year to com-

plete. This would require such an investment of time and e�ort that it might be considered

impractical; on lesser computing systems, it was almost assuredly infeasible.

The research objective � accurate aerodynamic surrogate models for a large, multi-

dimensional design space and many �ight conditions � appeared to be out of reach unless a

superior approach could be developed.

2.5 Research Questions

Eggers[50] and Chaderjian et al.[26] each demonstrated that Euler-level aerodynamic models

were moderately successful at capturing the performance of reusable-booster-type vehicles.

In addition, Pamadi et al. demonstrated that lower-�delity analysis tools, such as APAS,

had signi�cant di�culty modeling a reusable booster vehicle, in part due to the nonlinear

behavior of pitching moment at α > 15◦ for that vehicle.[144] This was a critical shortcoming,

as a substantial portion of the RTLS trajectory may take place at such angles.[79, 98, 144]

This suggested that for vehicles like reusable boosters, where nonlinear e�ects are likely

to be signi�cant, Euler aerodynamics may be the minimum level of �delity capable of ad-

equately capturing vehicle performance. Simpler, faster models exist, but are known to be

de�cient for conditions which may constitute a large portion of the return trajectory. As

a result, using those faster models to support design decisions introduces the risk that the
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con�guration(s) selected for further simulation will later be found to have de�cient perfor-

mance, as occurred during the DLR reusable booster e�ort described in Section 1.7.[52]

This creates a strong incentive to use higher-�delity tools early in the design process, before

parameter values are �xed.

However, higher-�delity modeling may be too expensive for use early in the design pro-

cess. The execution time required to analyze each concept with a highly accurate model,

at minutes or hours per con�guration, can be prohibitive. The example of the RBS project

illustrates how, although surrogate modeling enables the rapid estimation of the results of

said highly accurate model, the training of useful surrogate models may also require ex-

cessively large quantities of data. Thus, no matter how desirable it may be to incorporate

higher-�delity tools in the early stages of a design project, the current state of the art makes

this unlikely or impossible.

This leads to the primary research question:

Research Question 1 How can high-�delity modeling be feasibly applied ear-

lier in the design process, despite the computational

expense?

The RBS project illustrated some of the critical technical challenges that must be ad-

dressed before high-�delity modeling can be used for design space exploration. The sampling

of �ight conditions used by the RBS project was relatively sparse. Referring back to the

aerodynamic results for the Langley Glide-Back Booster depicted in Figure 3 on page 30,

both the lift coe�cient and the pitching moment coe�cient exhibit variations with Mach

number and angle of attack that would not be captured by the sampling used for RBS. This

is especially true for the variations in pitching moment at subsonic speeds.

Yet despite the coarse sampling, the computational e�ort expended during the RBS

project was extremely large. Finer sampling would drive the required e�ort up even fur-

ther. In addition, the computational work took place on multiple state-of-the-art parallel

computing systems simultaneously; improved computational resources for faster processing

are not likely for most near-future design programs. If improved resources are not likely to

be available, the cost to generate the data must be reduced.
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Figure 5: Partial Distribution of Pitching Moments at Mach 0.5, α 0◦, β 0◦

2.5.1 Emphasizing Useful Regions of the Design Space

A great deal of e�ort was expended analyzing con�gurations throughout the design space.

If the goal is to reduce computational expense, the question might be raised: are all results

of equal value? If some results are more useful than others, the computational expense of

the e�ort might be reduced by increasing the proportion of informative, valuable samples.

Although the performance of every vehicle is di�erent, rules of thumb can be a useful way

to capture trends or patterns in behavior common to many vehicles. Carpenter[24] suggested

that, for the range of �ight conditions relevant to reusable booster systems, con�gurations

with pitching moment coe�cients within ±0.1 should be considered likely to trim given

reasonably-sized control surfaces. Vehicles exhibiting larger moments may have di�culty

achieving trim. When the data from the RBS study was investigated, it was found that

a large majority of the con�gurations exhibited pitching moment coe�cients beyond that

range, sometimes by a large margin. The distribution of pitching moment coe�cients at

Mach 0.5, α 0◦, β 0◦ (the �ight condition with the largest number of available results) is

shown in Figure 5.

More than 90% of the con�gurations tested experienced pitching moments so large that

they were not likely to be a feasible vehicle. This suggests that much of the design space

is of little interest to vehicle designers. Analyzing so many con�gurations with such poor
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performance was directly contrary to the goal of maximizing the amount of useful informa-

tion gained from each experimental analysis. Furthermore, if it were known that a certain

region of the design space had poor performance � i.e., designs in that region were unlikely

to trim � that region could be sampled less intensively, which in turn could reduce the overall

modeling cost.

Although a surrogate model that is highly accurate throughout the entire design space

is intellectually satisfying, the RBS e�ort demonstrated that it may also be unacceptably

costly. A simpler solution may be available: surrogate models are more accurate for cases

similar to those used to create the surrogate.[92] By selectively placing samples in promising

regions (i.e., those with aerodynamic moments close to zero), models trained to �t the

resulting data set could exhibit improved prediction accuracy in those regions. Regions

with poor performance need only be sampled enough to identify them as uninteresting.

This sampling strategy would attempt to emphasize con�gurations with good perfor-

mance. Surrogate models trained on the resulting data pool would have high accuracy in

well-sampled regions, and lower accuracy in sparsely-sampled regions. If the sampling strat-

egy is successful, the result would be a surrogate model that has good prediction accuracy

with regard to regions where the moments are close to zero, and su�cient prediction ac-

curacy in the other regions of the design space that those regions could be identi�ed as

unattractive. This falls short of a surrogate that is very accurate across the entire design

space, but it does promise a surrogate that is very accurate in regions of interest to the

designer.

The �eld of adaptive sampling, which chooses the next experiment based on previous

results, is well-established, and an overview will be given in the next chapter. Most of the

literature focuses on maximizing or minimizing some response value, however. This may be

of little use for an e�ort such as this, when the goal is to �nd the regions of the design space

where the response or responses take values within certain ranges.

This leads to the next research question:
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Research Question 2 When �good performance' refers to responses within

desirable ranges rather than maxima or minima, how

can regions of good performance be identi�ed and em-

phasized during the sampling process?

Such a sampling process would minimize the number of expensive analyses that must be

performed before a surrogate of useful accuracy could be trained, by restricting the regions

of useful accuracy to only those likely to contain feasible designs. However, the reduction in

modeling expense that would be necessary to bring high-�delity surrogates into the realm

of feasibility is likely to be of an order of magnitude or more. It may be overly optimistic

to expect that an improved sampling plan alone would be su�cient.

A large factor in the overall cost is the per-analysis cost of Cart3D. If this cost could

be brought down, or the dependence on Cart3D analyses mitigated, the total modeling cost

could be reduced by a signi�cant margin.

2.5.2 Reducing Dependence on Expensive Models

Pamadi et al compared the aerodynamic accuracy of linear aerodynamics, Euler CFD, and

wind tunnel data for the Langley Glide-Back Booster.[144] Figure 6 displays this comparison

near Mach 0.3. Similar results for Mach 1.2 and 4.5 may be found in the source document.

Although the linear aerodynamics predictions diverged from the other data for α > 10◦ or

so, the results at smaller α all agreed well. The running time of APAS, the low-�delity

tool used by Pamadi et al., is less than one second on a contemporary quad-core desktop

computer. That is orders of magnitude faster than the hour or so to complete a Cart3D

analysis on the same number of processors. While APAS may not be su�ciently accurate at

high α to act as the only source of aerodynamic data over the �ight envelope, the signi�cant

cost reduction and relative accuracy for APAS makes it attractive as a source of data if the

results of di�erent levels of �delity can be combined.

This raises the second research question:
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Figure 6: Comparison of APAS, Cart3D, and Wind Tunnel Results for LGBB near Mach
0.3
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Research Question 3 How can cheaper analyses be integrated with high-

�delity models to reduce the overall cost of design

space exploration or exploitation?

If less-expensive sources of data can be incorporated, cheaper APAS samples can be used

to reduce the costs of data generation. Those samples can form the bulk of the training data

set. A set of samples will also be analyzed with Cart3D to evaluate the agreement between

the two sets of results. At best, the APAS results will agree closely with the Cart3D results,

and few Cart3D analyses will be required. It seems prudent to expect that this will not

always be the case.

Remember, however, that discrepancies between the two models are unlikely to be ran-

dom; instead, for the most part the discrepancies are likely to result from the phenomena

captured (or neglected) by each model. As a result, it seems plausible that patterns in the

discrepancies could also be captured by surrogate models, allowing the correction of results

obtained via APAS to values similar to those that would be obtained via Cart3D.

In the worst-case scenario, APAS results will o�er no insight into the behavior of the

more expensive Cart3D results. In this case, the computational burden would be almost

unchanged from what would be expected without the use of multiple analysis tools: the cost

per execution of APAS is orders of magnitude smaller than that of Cart3D, so hundreds or

thousands of APAS results could be obtained for the amount of e�ort required to analyze a

single extra case with Cart3D.

2.5.3 Uncertain Data

The �nal observation made from the RBS project results was the poor quality of the sur-

rogates for lateral responses. One of the measures of accuracy for surrogate models is R2,

which quanti�es the amount of response variation that is captured by the surrogate; a per-

fect surrogate would have an R2 value of 1.0.[134] Many of the surrogates created in the

RBS project had R2 values above 0.95. The average R2 value for α 40◦, β 0◦ rolling moment

surrogates was 0.25, which is extremely low. This suggests that the surrogates are not able

to capture very much of the observed behavior of those responses.
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Upon closer inspection, the solution history for some Cart3D cases was found to exhibit

an oscillatory behavior, even after the solution had essentially converged. This oscillatory

behavior is illustrated in Figure 7. This �gure plots the aerodynamic moments acting on

a notional business jet model, which was included as a test problem with Cart3D. For

this demonstration the angle of attack was increased over that of the test problem, from

3◦ to 40◦, and the Mach number was increased from 0.84 to 0.9. This produces a large

region of separated �ow over the wing similar to what was observed in some sample booster

con�gurations during the RBS study. This is not likely to be an important �ight condition

for a business jet. Instead, this example mimics an experiment performed late in the RBS

study.

A cursory review of the time history of the three moments, depicted in Figure 7a, shows

that they have essentially converged long before the simulation is terminated. Closer inspec-

tion, however, reveals small variations or �jitters� � the solution becomes mildly oscillatory

near iteration 300. This is of particular interest since the response values presented as out-

put by Cart3D are simply the last values calculated for those responses; if the solution is

exhibiting noisy behavior rather than being perfectly converged, that noise will be present

in the response values that are reported. For the pitching moment coe�cient (shown in

Figure 7b) the magnitude of the oscillations is roughly 10% of the average value of the

response. For yawing moment coe�cient (Figure 7c) the variations are of equal or larger

order of magnitude as the average response value. Rolling moment exhibited similar behav-

ior to yaw and is omitted for visual clarity. The two lateral responses can be considered

comparatively noisy, resulting in poor surrogate model accuracy.

An investigation identi�ed that this oscillatory behavior was the likely culprit for the

poor accuracy of the lateral surrogate models. The oscillations appeared to stem from the

large-scale �ow separation that most or all vehicles experienced at high angles of attack

and/or transonic conditions.

There was some concern that the oscillatory solver behavior was being caused by some

aspect of the custom PaceLab tool that was used to create the surface meshes of the con-

�gurations being analyzed. To determine whether this was the case, an example problem
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Figure 7: Oscillatory Solution Behavior

included with Cart3D � the business jet model mentioned earlier � was analyzed at one of

the conditions with poor surrogate behavior. The oscillatory solution was again observed,

suggesting that the oscillations stem from the juxtaposition of an inviscid �ow solver and

�ow conditions that are strongly dependent on viscous e�ects.

When the reported response is a�ected by some characteristic of the model used, the

e�ect can take two forms: a bias e�ect or a random e�ect. Bias-type e�ects often result from

the simplifying assumptions in a model, and may have a consistent sign or even a predictable

magnitude. Many multi-�delity modeling techniques take advantage of such predictability

to �correct� the responses from a simpler model to match the results from a more complex

model. For example, by neglecting viscous e�ects, Cart3D does not capture drag due to

skin friction, and so its estimated drag coe�cients are likely to be less than what would be

measured in �ight testing. If designers are aware of this characteristic, however,corrections

can be made: by adding a constant CD0 to inviscid Cart3D results, Aftosmis et al. were

able to closely match much of the drag polar computed by viscous models for a RAE 2822

wing.[7] Less-accurate results were obtained when the same approach was applied to the

DLR�F4 wing-body con�guration. Scharl & Mavris observed similar results.[172]

E�ects that are more random in character, on the other hand, are harder to account for.

This is particularly true for models that must iterate to reach a solution, as the �nal result

may have some degree of oscillatory behavior. When the responses are of di�erent orders of
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magnitude, oscillatory behavior that is negligible for one response may signi�cantly a�ect

another. If those oscillations are large enough relative to the magnitude of the response, the

reported response value could be overshadowed by the noisy e�ects of the oscillations. A

surrogate model which treats those cases as deterministic � that is, as a precise representation

of the response value for that case � may attempt to reproduce the noisy component as well,

with negative consequences for its predictive accuracy. It is believed that this is what

occurred for some surrogates for lateral responses during the RBS project.

Arti�cial neural networking, the surrogate modeling approach used in the RBS project,

approximates the data rather than exactly interpolating it. Small-scale variations, such as

the iteration noise described above, might not a�ect the resulting model if the magnitude

is small. The poor R2 values observed in the RBS project indicate that for many lateral re-

sponses, the variations were large enough to have a negative e�ect on the predictive accuracy

of the models.

Rather than treating all data as deterministic and precise, it may be possible to estimate

the amount of uncertainty present in the data. For example, in addition to the force and

moment summaries produced by Cart3D after an analysis, the iteration histories of those

responses are recorded in a separate �le. Using these histories, the amount of uncertainty in

the responses can be calculated. However, even if such information were available, it could

not be incorporated into the neural network model, leading to the �nal research question:

Research Question 4 How can information about uncertainty in the data

be captured and incorporated e�ectively?

The scripts used to run Cart3D can parse the force and moment iteration histories

and report the average and standard deviation values of each. This information is already

used to ensure that any case which did not adequately converge could be discarded. The

information is then retained but not used during the modeling, as the neural network tools

that were used could not incorporate the uncertainty data. Modeling techniques which can

incorporate uncertainty data would have a ready source of noise estimates.
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2.6 Review

The RBS research project undertaken by the AFRL and ASDL illustrated one of the major

reasons why extensive design space exploration is seldom undertaken using expensive models:

the computational e�ort required to explore the space is enormous. While the project was

not successful at creating true aerodynamic surrogate models, it did highlight particular

aspects of the problem that were particularly troublesome. If these di�cult aspects could

be addressed, the cost of such an e�ort might be reduced su�ciently to make the e�ort

feasible. A set of research questions have been formulated to guide the e�orts to address

those di�culties. These research questions directed the literature search, which is presented

in the next chapter.
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CHAPTER III

REDUCING THE COST OF INFORMATION

The previous chapter demonstrated how design e�orts could bene�t if the cost of information

could be reduced. A variety of approaches have been proposed toward this end. The simplest

and most obvious is the increase in computing power that occurs over time. The tools

that had been cutting edge are becoming cheaper to use. APAS, an analysis tool with

over 30 years' pedigree, took 45 seconds per analysis on a mainframe in 1981,[45] while

today a similar analysis can be performed on a common desktop computer in less than one

hundredth of that time. If a desired trade study is too expensive to be performed with

the given resources, the simplest response would be simply to wait. After enough time, the

infeasible becomes the feasible, and the feasible becomes the commonplace.

While true, this is more of a trivial solution than an e�ective strategy. Programs have

deadlines and opportunities can be missed. What is needed is an e�cient approach to obtain

trustworthy information, particularly when many design variables must be considered. Such

an approach could be particularly valuable if it were general and not bound to a particular

tool. Once developed, the approach could be used to investigate the design space and identify

important trends and interactions in the response behaviors. That knowledge could then

be used in support of future project decisions, such as selecting the appropriate parameters

and ranges for a future trade studies.

There are two predominant families of techniques for gaining information about a prob-

lem when the cost per function evaluation is not negligible: optimization and surrogate

modeling. Both have long pedigrees in engineering analysis, and each has strengths and

weaknesses that make it more or less appropriate for certain applications.

3.1 Summary of Optimization & Surrogate Modeling

Optimization is the process of identifying the �best� values for input parameters. The

quanti�cation of �goodness� for a set of input values is made using some objective function,
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which is often a weighted combination of the analysis outputs. The process may be consid-

ered a directed search of the design space; points with poor objective scores are considered

to be uninteresting, and knowledge about the entire space is only considered useful to the

extent that it helps to identify cases with better scores. This is an iterative process, relying

on results from previous analyses to select the next point for evaluation. Techniques for

selecting the next case may be as simple as random selection, or may incorporate detailed

information such as the local gradient of the objective function.

Gradient-based optimization uses information about how the optimization objective

varies with small changes in the input settings. This information identi�es the direction

of maximum improvement in the objective function, and can be used to very quickly �nd

an optimum solution. An optimum is a point where any small change in the inputs would

negatively a�ect the objective score. Such an optimization scheme can be rapid and e�cient

if the calculation of local gradient is not expensive.[72] Complex objective functions may

have more than one local optimum, though, and gradient-based optimization risks becoming

trapped at a point which is better than those around it but not the best point possible � a

local optimum rather than the global optimum.

This risk may be addressed through the use of repeated optimizations starting from

di�erent points throughout the space, or even stochastic methods like genetic algorithms, but

there is no guarantee that those techniques will identify the global optimum. Optimizations

may still be constrained by resources and running time, and it may be too expensive for an

extensive design space search.

No matter what optimization technique is used, the results will depend on the choice of

objective function. Crucially, the results of an optimization cannot tell the investigator what

the optimum might be for a di�erent objective. Should another response be included or the

relative weights of objectives be changed, the point selected by the previous optimization

is unlikely to be the optimum for the new objective function. The optimization process

will have to be repeated every time the objective is altered, making it di�cult to play

�what if� analyses unless the optimizations are both rapid and inexpensive. For this reason,

optimization methods are seldom used for design space exploration unless the objective is
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known and unlikely to change, such as maximizing lift-to-drag ratio.

The other primary approach to acquiring and leveraging knowledge about a problem

through experimentation is through the use of surrogate models. Surrogate modeling

methods are a collection of techniques for interpolating or curve-�tting experimental results

in order to estimate the value of responses at other, unsampled points.[156] Surrogate model-

ing also has a long history of use in engineering analyses, with an increase in the complexity

of techniques used over time. A major strength of surrogate models is the execution time:

once a model has been developed, predictions can made extremely rapidly. This can lead to

large savings when the original model requires substantial time to complete an analysis.

Many surrogate modeling techniques place strong emphasis on reproducing the entire

range of the response than on regions deemed to be �good.� This allows the model to be

applied with equal con�dence to any point in the design space. As a result, the data points

used to build the surrogate may be selected in advance. Research into the best methods for

selecting which data points to run is often collected under the title, �Design of Experiments�

or DoE. A shortcoming of surrogate models is that the amount of data required to train

them may grow large, especially if the response behavior is complex or there are many input

parameters.[72] Many experimental design techniques have been developed in the quest to

gain the most knowledge about the response for the least cost.

Note that the two approaches described here, optimization and surrogate modeling, are

not mutually exclusive and have been blended in various fashions. One popular technique

is to create a surrogate model of the outputs of an analysis tool and, during an optimiza-

tion, use hat surrogate to estimate objective function values instead of using the analysis

tool itself. This can signi�cantly reduce the computational expense of each function call,

particularly when evaluation-heavy optimization techniques such as genetic algorithms or

gradient evaluation through �nite di�erencing are used.

Other researchers have used optimization techniques to select the sample that would be

most informative for training a surrogate model. The process of selecting the next sample

based on prior results is known as adaptive sampling. The optimization process may aim

to identify the points with the maximum prediction uncertainty, points that produce a
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maximum or minimum response value, or points that produce a particular response value.

This topic will be revisited in greater detail in Section 3.4.1.

Despite all the work that has been done in these �elds, designers still encounter problems

� like the RBS study � which are constrained by computational costs. Problems involving

complex features, such as transonic �ow, typically require high-�delity modeling to accu-

rately capture response behavior. Those high-�delity models may be very computationally

expensive. Secondly, if a vehicle must operate at a wide variety of �ight conditions, it may

not be possible to eliminate many design variables through screening tests, as was the case in

the RBS study; the variables that are unimportant for one response or �ight condition may

strongly a�ect another, resulting in a large number of dimensions which must be considered.

Problems with many dimensions are typically expensive to address through surrogate mod-

eling and certain optimization techniques. Finally, some investigations cannot adequately

be captured by the objective function of an optimizer. An investigation of how trailing edge

sweep angle might a�ect adverse yaw behavior, for example, might be di�cult to express as

a maximization or minimization of some objective function.

Faced with challenges such as these, it can be di�cult for designers to investigate the

design space in a cost-e�cient manner. Surrogate models can be very expensive to train,

especially as the necessary prediction accuracy increases, and while some optimization strate-

gies may be cheaper to execute they o�er no indication of how the result might change if

the objective function were altered. If designers address the problem ine�ciently, they may

expend their resources without collecting enough information to support future decisions,

and the project would be exposed to the risk of dead ends, backtracking or even failure.

This provides the incentive to research techniques that might address some of the factors

which make these problems so di�cult. These techniques include:

• methods to combine data at multiple levels of �delity to reduce the need for high-

�delity modeling wherever possible;

• adaptive sampling to reduce sampling in uninteresting regions of the design space;

• techniques to estimate the uncertainty of a response to quantify con�dence in each
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data point; and,

• techniques to incorporate information about uncertainty present in the data when a

surrogate model is trained.

The next section will address the �rst of these topics, methods to combine data from

multiple levels of analysis �delity.

3.2 Multi-Fidelity Methods

Multi-�delity methods, also called data fusion techniques, are techniques which combine

data from multiple separate sources into a uni�ed whole. For the most part, those data

sources are models with di�erent levels of complexity, and therefore with di�erent costs

per analysis. Although it is usually trivial to extend a data fusion method to handle any

number of contributing models, this description will assume that two models will be used;

this assumption is made for the sake of descriptive simplicity. Additionally, the description

will assume that all analyses are computational models, but it should be noted that the

methods are equally e�ective for experimental data sources such as wind tunnel or �ight

testing.

Typically, the cheaper data source achieves its cost savings by simplifying or neglecting

one or more phenomena important to the scenario at hand, making it too inaccurate for

use alone. Surrogate models may also replace the cheaper data source, further reducing the

per-analysis cost without a�ecting accuracy. Conversely, the costlier source captures these

phenomena accurately but the per-experiment expense makes it undesirable or impossible

to generate all the training data required for an accurate surrogate model. By combining

the two, an accurate surrogate may be trained at less expense than if the more accurate

source were used alone.

If the execution time of the low-�delity data source is not trivial, it may be worthwhile

to create a surrogate model of the low-�delity results. This surrogate model, rather than

the original source, is then used as the low-�delity data source thanks to its more rapid

execution time.
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3.2.1 Additive & Proportional Correctors

The simplest approaches to combining data of di�erent �delity levels are the bias and pro-

portional corrections. These approaches are most useful when the high-�delity analysis is

so expensive it cannot be performed more than a handful of times. The low-�delity model

is used to explore the entire region of interest and the predictions are recorded. The high-

�delity analysis is then applied to a few of the same cases and the results compared.

If an additive corrector (also called a bias corrector) is used, the di�erence between the

two is treated as a bias error in the low-�delity model, and a �high�-�delity approximation

can be obtained by adding this bias estimate to each low-�delity result. This method is most

e�ective when the bias is not expected to vary within the design space. For example, many

simple aerodynamic models neglect viscous e�ects and thus cannot capture skin friction drag;

because skin friction drag is not strongly a�ected by angle of attack, a more accurate drag

polar can be obtained by calculating the skin friction contribution for one case with a higher-

�delity tool and adding it to the drag polar produced by the low-�delity analysis.[7, 172]

An alternative approach is to treat the discrepancy as proportional � that is, to assert

that the low-�delity result is always some fraction of the high-�delity result. To correct for

this, rather than being augmented by some constant value, the low-�delity predictions are

multiplied by some constant value. These two approaches to correcting the less-accurate

predictions encompass a majority of multi-�delity methods in the literature.

Naturally, these corrections are not restricted to constant values. If multiple high-�delity

analyses are possible, a proportional correction may be calculated. This proportional cor-

rection is a linear function of the input variable(s), and helps to capture errors in the

lower-�delity analysis that are not constant. This is helpful when the low-�delity trend is

in the correct direction but of an incorrect magnitude. Higher order corrections, in which

the Taylor series approximation is extended to include additional terms, have also been

described;[60] these corrections may require large quantities of data and thus become very

costly.

The complexity of the correction is limited only by the quantity of data available for

comparison. Researchers sometimes create surrogate models of the discrepancies between
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the data sources to more accurately estimate the high-�delity result, treating the low-�delity

contribution as cheap or trivial. This approach is often cheaper than creating a surrogate

model of the high-�delity result directly, given that the low-�delity predictions will capture

some or most of the high-�delity behavior.

Examples of e�orts incorporating one or both of these approaches abound, primarily

focusing on two levels of �delity.[28, 36, 48, 73, 155, 194] Some variations on these methods

are of particular interest and shall be described in greater detail.

Huang et al.[83] creates a separate surrogate model for each level of �delity, capturing

the deviations between the current level and the next-simpler level. These models are �t-

ted sequentially rather than simultaneously, simplifying the task of parameter estimation.

Kennedy and O'Hagan[94] combine the additive and proportional correctors, building a lin-

ear model for the proportional corrector and �tting a Gaussian Process to the remaining

discrepancy for use as an additive corrector. They refer to this process as Bayesian cali-

bration of computer models. Note that �tting such surrogate models requires the inversion

of covariance matrices which incorporate all training data points rather than only those at

a single level of �delity. As a result, this method can become computationally arduous for

large data sets.

Qian and Wu[154] and Xiong et al.[194] expand on this approach, replacing the simple

linear model with another Gaussian Process which allows the proportional factor to vary as

a function of input settings. Gano et al.[60] demonstrated a hybrid corrector, constructed as

a weighted sum of additive and proportional correctors. The weighting function evaluates

nearby data samples to determine the utility of each correction style, eliminating the need

for the user to choose one or the other a priori.

Although the additive or proportional correction methods are far and away the most

common in the literature, they are not the only methods possible. Research indicates that,

rather than training models to transform the output of the inexpensive models, useful high-

�delity surrogates may be developed via a scaling of the inputs of the models. Robinson et

al.[167] proposed an optimization algorithm which utilizes space mapping, a technique for

transforming the inputs of the lower-�delity model in such a way that the model outputs
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match the higher-�delity results to at least the �rst order.

3.2.2 Cokriging

Other multi-�delity methods exist as well. The surrogate modeling technique known as

Kriging has been expanded to incorporate data from multiple sources. Regular Kriging

calculates the covariance between each data point, de�ned with one covariance equation

and one vector of model parameter values. The user may capture the relationships within

and between multiple sets of data, by expanding the model to include multiple covariance

equations. This family of similar techniques is known as cokriging.[182] Due to the extra

covariance equations, the model has more parameters which must be estimated, making the

�tting of a model a more complicated endeavor.

Additionally, multi-�delity e�orts often incorporate a large quantity of lower-�delity data

due to its relative cheapness. The estimation of optimal values for cokriging model param-

eters requires the inversion of the covariance matrix, which carries a computational cost of

order O
(
N3
)
where N is the number of data points. As a result, when a model is trained

on a large data set, the training process may become very memory- and computationally-

intensive.[136] This may become infeasible for data sets larger than a few thousand cases.

To simplify the problem somewhat, some researchers[56, 184] make the assumption that

the lower-�delity data is independent of the higher-�delity results. A Kriging model is then

trained to reproduce the lower-�delity data. After that, the discrepancy between the higher-

and lower-�delity responses at each high-�delity sample point is calculated, and another

Kriging model is trained to �t the discrepancy behavior. This reduces the number of model

parameters being simultaneously optimized, and blurs the distinction between cokriging and

the additive/proportional correctors described above. However, note that even after the

model has been �t, applying it to predict the response value or prediction variance at some

point would require the inversion of a covariance matrix that incorporates all data points at

all levels of �delity, although if the inverted matrix is saved it need not be re-inverted to make

subsequent predictions. This is similar to the method proposed by Kennedy & O'Hagan[94]

mentioned earlier, and like that method can become computationally expensive when applied
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to large data sets.

Ghoreyshi et al.[63] uses a variant of cokriging to combine low- and high-�delity data

to reduce the cost of building an aerodynamic database for a new con�guration. In this

approach, the Kriging surrogate model is �rst trained to reproduce the low-�delity data.

Next, that surrogate is used to make predictions for the response value at each of the sites

of the high-�delity data. The low-�delity predictions are then treated as an extra input

dimension, and a Kriging model of the high-�delity data is �t to the combined input data.

This form of cokriging, which will hereafter be referred to as �Ghoreyshi cokriging,� does

not require cross-covariance terms, and has computational expense O
(
N3
lowfi+N3

hifi

)
rather

than O
(
(Nlowfi +Nhifi)

3
)
.

Yamazaki and Mavriplis[195] use an expanded version of cokriging to construct their

variable-�delity model, combining up to three sources of data simultaneously. Gradient in-

formation is generated using adjoint calculations or automatic di�erentiation of the analysis

tool and may also be incorporated in the surrogate model through additional covariance

terms. This gradient information may be used in a Taylor series approximation to estimate

response values at other points close to a known point; these estimated values are treated

as lower-�delity data because the response values are estimated, not known.

3.2.3 Data Harmonization

Whereas cokriging attempts to model responses that are nominally di�erent but correlated,

Baume et al.[14] propose an approach which combines multiple sources for a single response

which they call �data harmonization.� Unlike cokriging, which implicitly assumes that

the responses being modeled are correlated but not identical, data harmonization aims to

combine disparate sources of information about a single response. This philosophy lends it-

self more easily to the prediction of aerodynamic responses using multiple models of di�erent

�delity.

The motivation for this approach was the creation of a uni�ed model of environmental

data across national boundaries, using data sets collected by European nations. After select-

ing gamma ray dosage as a test data set, clear biases and variations were identi�able between
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sensor results from di�erent countries. If these biases and variations were not addressed,

predictions for gamma ray dosage from the resulting models would exhibit low prediction

con�dence.

To account for these factors, Baume et al. introduce the data harmonization approach to

modeling. This approach is similar to universal Kriging, in which a polynomial mean func-

tion is �t to the data while discrepancies from this mean are captured through a covariance

matrix. In the gamma ray example, the e�ects of altitude were subtracted as a known factor,

soil composition was treated as an unknown e�ect, and a country code was introduced as

a bias term, Gβ , to capture variations between sets of data provided by the contributing

nations. The data harmonization results demonstrated better agreement across national

boundaries, all other parameters being equal, as well as increased prediction con�dence.

Data harmonization has some commonality with cokriging, in that multiple sources

of data are modeled using a Kriging-based approach. Data harmonization is set apart

from cokriging by its introduction of bias variables, both known and unknown. A more

mathematically-focused description will be given in Section 5.1.5.

3.2.4 Summary of Multi-�delity Techniques

In general, researchers have found multi-�delity methods to be useful techniques for reduc-

ing computational cost when high-�delity predictions are desired. Simpler, faster analyses

provide overall trends and general behavior, while slower but more accurate tools provide

corrections. The utility of a multi-�delity approach will vary somewhat with the problem.

The methods are at their most e�ective when the lower-�delity analysis is less expensive

than the higher-�delity analysis. This e�ect is enhanced if the simpler analysis can be easily

reproduced via surrogate models. The degree of agreement between the two analyses is

also a factor � the closer the agreement between the two levels of analysis, the more easily

a corrective model can be trained. Lastly, the expense of problem formulation should be

considered: e�ort may be required to ensure that both analyses are applied to the same

problem, e.g. that vehicle geometry representations match as well as possible. Di�erences

in the input and output data requirements between analyses may require extra preparation
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e�ort.

The data harmonization technique of Baume et al.[14] appears to lend itself directly to

the task at hand. Multiple computer models will be applied, but each will be estimating the

same response instead of separate responses which are correlated. There is some cause for

concern when applying data harmonization to problems with large design spaces; typically

such problems require a large number of training points to �t accurately, and as a result

the matrix inversion required to �t the model may become exorbitantly computationally

expensive. If this proves to be the case, research into sparse methods may be of use.

As for other multi-�delity techniques, true cokriging in the style described by geo-

statisticians[93] is beyond the scope of the current e�ort, as no implementation of cokriging

could be identi�ed that could incorporate more than three input dimensions.[145, 164] Other

multi-�delity methods will also be assessed to determine which of them is the most e�ective

for the current problem. These methods were selected on the basis of conceptual simplic-

ity and relative ease of implementation. Additive correction, proportional correction, and

Ghoreyshi cokriging will all be assessed.

Unlike data harmonization, all three of the other techniques treat each source of data

independently. A surrogate model is trained to match the lowest-�delity data source, and

this model is combined with higher-�delity data to train a surrogate model for the next data

source. These methods need not handle every data point from every source simultaneously,

and as a result they will be much less vulnerable to the expense that comes with �tting

Kriging models to very large sets of data. Despite this, if the quantity of data in use does

grow large, sparse methods may be of use here as well. Sparse methods were therefore the

next line of research to be conducted.

3.3 Sparse Methods

The simplest approach for limiting the computational e�ort required to �t a model would

be to select a covariance function that decays to zero quickly, resulting in a very sparse

covariance matrix if the data set is spread out throughout the design space.[128] This would

produce a model that is heavily dependent on the underlying mean function, diverging from
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this mean only in the very close neighborhood of the training data points. Such a decision

would be risky without high con�dence in the choice of the mean function. Alternatively,

many di�erent mean functions could be tested to identify the one or ones that best �t the

data. This testing process would have to be repeated for each response being modeled.

The largest objection to this approach is that the region of in�uence given to a training

point by a covariance model is de�ned by the model parameters, which are estimated from

the data when the model is �t. If training points are found to correlate with sites relatively

far away, optimal model parameters will re�ect this behavior and the covariance matrix will

not be sparse. Bounds on allowable model parameter values could be set to enforce this

approach to sparsity, but such sparsity might come at the price of surrogate accuracy.

A di�erent approach to minimizing computational e�ort through sparse methods is the

�Subset of Data� (SoD) approach.[157] Rather than utilizing every sample that is available for

training, the SoD approach trains a model using a subset of the available data. This reduces

the scale of the problem by discarding information. Information loss can be minimized

by the intelligent selection of the subset. The best subset of m points, chosen from the

N points available, will be that which produces the most accurate surrogate model. The

accuracy of a surrogate is tested by assessing its ability to correctly predict response values

for the unused training samples. Selecting the best subset of samples can itself become

computationally intensive. However, the e�ort to invert a matrix of dimension m can grow

as quickly as O
(
m3
)
,[136] and since m < N , a moderate amount of e�ort may be spent on

subset selection before this approach becomes more costly than the brute force approach.

A third technique found in the literature is that of using pseudo-inputs.[179] This tech-

nique is conceptually similar to the Subset of Data approach, in that m training points are

used to build the model rather than the full N points of the available data pool. The critical

distinction is that pseudo-input methods are not restricted to the points in the pool. Instead,

the locations of the control points are considered to be extra model parameters that must

be estimated. If m control points are desired with each point having dimension d (equal to

the number of input parameters being modeled), the number of parameters to be estimated

is increased by m× d. As Snelson[179] points out, this may result in an intractable problem
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if the dimensionality of the problem is large, and in response they suggest projecting the

input space into a lower-dimensional space, asserting that signi�cant dimensional reduction

can often be achieved for real problems.

In general, when creating a surrogate model of a large data set, most strategies for

reducing the cost of �tting the model emphasize using only the most informative points (or

pseudo-points). A large portion of the available samples are therefore used only indirectly

(during selection of the best subset or pseudo-set) or not at all. If the model used to produce

those data points is expensive to run, this may be a very ine�cient use of resources. In order

to make the best use of available resources, it may be worthwhile to apply a more iterative

sampling process that aims to identify only the most informative data points. With respect

to the motivating problem of predicting RBS aerodynamics, if such an iterative sampling

method could identify points with near-zero pitching moments it would dovetail nicely with

the research objective of emphasizing cases with good performance.

3.4 Selection of Experiments

The second of the four approaches from the list on page 49 was the selection of samples

to emphasize interesting regions of the design space. Many approaches exist for choosing

interesting cases to analyze. The �best� case will depend on the user's objectives. If prior

knowledge of response behavior is not available, it may be necessary to do an initial round

of experiments to investigate the response characteristics. This is sometimes referred to as

a �warm start�. Options for selecting this warm start will be reviewed before true adaptive

sampling techniques are discussed.

The process of a priori experiment selection, whether for a warm start or not, is typically

known as the Design of Experiments, or DoE. Some classical designs, such as Full Fac-

torial, sample the design space at regular intervals and explicitly capture the corners of the

design space, where input variables take their minimum or maximum values.[33] Including

all corner points in a training set for surrogate models eliminates the risk of extrapolation,

which can improve con�dence in surrogate predictions. As the size and complexity of a

problem increase, however, response behavior in the interior of the design space may take
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on a larger role in surrogate model uncertainty, and it may be more e�cient to perform

experiments which �ll the space e�ectively rather than sampling the extremes. This was

noted in Section 2.3 as part of the RBS e�ort with the Latin hypercube & I-Optimal samples

acting as the interior and extreme samples, respectively.

Latin hypercube sampling is a common space-�lling DoE.[126] Latin hypercubes uni-

formly sample each design variable, distributing points throughout the space. Unlike the

Full Factorial DoE, Latin hypercubes are not guaranteed to sample the corners of the de-

sign space, which may lead to extrapolation. Latin hypercubes with more points will �ll the

space more densely, which will better resolve the space and reduce potential prediction errors

due to extrapolation by the surrogate model. This sampling approach has the advantages

of accommodating any number of samples for a given design space and resolving response

behavior in the central regions of the space, but has the disadvantage of poor resolution

near the edges of the space.

There is a trade-o� between the number of �warm start� samples and the number of

adaptive samples: a larger warm start will result in more information about response be-

havior, which leads to more accurate identi�cation of interesting regions for later sampling.

On the other hand, if the experimental budget is �nite, a larger warm start means fewer

adaptively-selected samples may be evaluated. The user will have more information, but

less opportunity to apply it. Once some knowledge about the response behavior is obtained,

adaptive sampling can begin.

3.4.1 Overview of Adaptive Sampling

Adaptive sampling is the process of choosing new samples based on prior observations.

Once regions of interest have been identi�ed, these regions are sampled more extensively

to improve understanding of nearby response behavior. This process is then repeated until

the response is considered to be understood su�ciently accurately, or until the experimental

budget is consumed. Selection of the next sample point is based on some algorithm which

evaluates points and identi�es the one that is �most interesting� according to some criterion.

The choice of selection criterion is what distinguishes di�erent adaptive sampling approaches.
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Many adaptive sampling approaches make use of Kriging models. Kriging models, as a

subset of Gaussian Process models, allow the user to not only predict the response value at

any point, but also estimate the uncertainty of that prediction without arduous calculations.

This uncertainty typically goes to zero for deterministic (i.e., noiseless) training points and

increases for points farther from the training data.

If the objective is to create a surrogate model with the highest possible prediction con-

�dence, the simplest approach would be to place samples where the prediction uncertainty

is largest. After this point is sampled, the response value there is known for certain and

nearby predictions can be made with more con�dence. This is an attempt to maximize the

information gained per experiment.[110] Another approach would be to identify the point

that best improves the average prediction con�dence throughout the design space; this av-

erage con�dence can be approximated by evaluating how the con�dence would change at

a large number of test points throughout the space.[18, 34] Kleinjen and van Beers[97] de-

scribe a variation on that metric, called Integrated Mean Squared Error, which multiplies

the variance at each test point by some weighting function. However, the weighting function

is left uniform in that work.

For some applications, it may be worthwhile to focus on particular regions of the design

space rather than improving global knowledge. If uninteresting regions can be identi�ed,

they may be sampled sparsely so that more promising areas may be investigated more

thoroughly. Once infeasible regions are identi�ed, later samples can avoid those regions.[103]

Alternatively, if the objective is to optimize a response value, adaptive sampling can be used

to identify the sample point that would most improve knowledge of the response near certain

values. Such sampling approaches o�er improved model accuracy in the attractive regions

while minimizing the cost to sample unattractive regions. The question then becomes how

to identify these attractive regions.

3.4.2 Adaptive Sampling for Optimization

The most common goal for localized sampling is the optimization of a response, such as

minimizing wing weight or maximizing lift-to-drag ratio. The simplest approach would be
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to sample the point which is predicted to have the optimum response value, but this may

have undesirable consequences: if samples are clustered too closely together, some surrogate

modeling techniques such as Kriging may encounter numerical problems. To avoid this, the

adaptive sampling algorithm can be designed to encourage a certain degree of design space

exploration.

The most popular strategy that combines exploration with exploitation is the Expected

Improvement function,[173] which can be interpreted as the likelihood that a given point will

have a better response value than the current best observation. This likelihood is calculated

for a candidate point based on the predicted response value and uncertainty of the prediction

at that point. This prediction uncertainty is typically assumed to be zero at sampled points

and to grow for points farther from samples. As a result, the EI function has incentive to

select points in poorly-sampled regions. This approach is sometimes called E�cient Global

Optimization, or EGO.

Cox and John[38] propose the Sequential Design for Optimization (SDO) method, which

also utilizes the prediction and uncertainty at each point. This algorithm also calculates

the prediction and con�dence interval at each candidate point. The candidate with the

best con�dence bound is selected as the next sample point. This may be a point with a

very desirable predicted value and small uncertainty, or a point with a moderate predicted

value and large uncertainty. Xiong et al.[194] expanded this approach, varying the number

of standard deviations used for the con�dence interval to encourage the algorithm to ex-

plore regions with high uncertainty or to emphasize regions expected to have good response

behavior.

Huang et al.[83] extend the EI function to allow sampling at di�erent �delity levels. The

function is modi�ed using three multiplicative terms which capture the reduced con�dence

associated with a lower-�delity result, the bene�t of repeated samplings for noisy functions,

and the relative costs of sampling at each �delity level.
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3.4.3 Adaptive Sampling for Other Objectives

Although optimization of some response is the most common application of adaptive sam-

pling, algorithms have been developed which sequentially choose samples based on other

criteria as well. Farhang-Mehr and Azarm[55] de�ne a characteristic certainty width (CCW)

parameter, which is used to represent the regularity of the response behavior in a local re-

gion. Large values suggest the response changes slowly and simply over a broad region, while

small values indicate large or rapid shifts in the response over a small distance. Large values

thus indicate regions which may not require many samples to capture response behavior,

while small values indicate regions where additional sampling may be bene�cial.

Mackman and Allen[111] score candidates for sampling according to the predicted local

nonlinearity of the response. Nonlinearity is quanti�ed using the diagonal of the Hessian

matrix, i.e. the Laplacian. To dissuade the algorithm from clustering points too closely

together, a separation function was incorporated that grows with increasing distance from

existing sample locations, improving the scores of points far from the current training set

and reducing the scores of points too close to previous samples.

It is also possible that the objective might not be to identify points with maximum or

minimum response values, but to �nd points where the response has a particular value. This

may occur in reliability modeling, when the objective is to identify whether or not a case

exceeds speci�ed constraints; model performance is better served by accurately capturing

this failure contour than by seeking the maximum response value.

Ranjan et al.[159] describe a sampling criterion to best improve knowledge about the

response behavior near the contour of interest. This criterion includes multiple factors to

balance the sampling style between sampling points predicted to fall near the contour and

sampling points predicted to be farther from the contour but with enough uncertainty that

the contour may be closer than expected. A clustering penalty term is used to dissuade the

algorithm from placing samples in regions of low uncertainty, i.e. close to existing samples.

Picheny et al.[149] propose an alternative contour sampling algorithm based on the

Integrated Mean Squared Error approach described by Kleijnen et al.[97] The prediction

uncertainty at a multitude of test points is combined to quantify the global prediction
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con�dence as in Kleijnen et al., but in this formulation a non-uniform weighting function

is applied. This weighting function is a measure of the likelihood that the response at the

current test point is close to the contour of interest. Test points predicted to have responses

close to the target will have their uncertainty more heavily weighted. The algorithm will

then select the candidate point which most decreases the IMSE value, i.e. the candidate

which most improves prediction con�dence for points near the threshold.

3.4.4 Summary of Adaptive Sampling Techniques

Many sampling algorithms have been documented that promise to leverage current knowl-

edge about the response(s) of interest when selecting the next experiment to be run. Depend-

ing on the user's goals, sampling algorithms exist to improve global model con�dence, �nd

global maxima or minima, identify local nonlinear behavior, or accurately capture response

behavior near some desirable threshold.

Given the context of aircraft design and the concept of design-for-trim, the contour

sampling approaches described by Ranjan et al. and Picheny et al. are the most promising.

Contour estimation may be used to focus samples in the region of interest, i.e. con�gurations

that are expected to experience small moments at likely �ight conditions. In addition, both

selected approaches incorporate factors which dissuade clustering of points. Clustered points

are informative when the goal is to �nd an optimum response value, but when the goal is to

�t an useful surrogate model throughout a design space, clustered points are likely redundant

and potentially a waste of e�ort.

Note that the selected sampling techniques, as well as many others, incorporate pre-

diction uncertainty in the evaluation criterion. This uncertainty is not a function of the

accuracy of the data points, but rather stems from the estimation of model parameters.

Each data point in the training set is considered to be a precise representation of the true

response for the appropriate input values. When applying adaptive sampling to data at

multiple levels of �delity, knowledge of the likely accuracy of each data point can a�ect sam-

pling behavior. For example, linear aerodynamics tools are moderately trustworthy at low

angles of attack, but neglect the nonlinear e�ects that become important at higher angles of
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attack. Both low and high angles of attack would have to be sampled repeatedly to identify

this pattern, as it may not be possible to exactly quantify the discrepancy in advance.

Having addressed both adaptive sampling techniques and multi-�delity methods, two of

the topics of interest remain: quanti�cation of uncertainty inherent in the data, and means

of incorporating that knowledge when creating a surrogate model. These topics will both

be addressed in the next section.

3.5 Quantifying & Incorporating Uncertainty

To understand how uncertainty can be quanti�ed and addressed, the most obvious source of

information is the way that it has been addressed in the past. Two case studies, the Space

Shuttle and the X-33, were used to illustrate how vehicle design programs evaluated and ac-

counted for uncertainty in the data. These case studies will provide an initial understanding

of the subject.

3.5.1 Case Study: Space Shuttle

The Space Shuttle was the �rst large-scale e�ort to quantify and document pre-�ight un-

certainty with respect to vehicle performance measures. The extensive public-record docu-

mentation of that e�ort makes the Shuttle program an excellent resource. Unlike previous

programs, the Shuttle did not pursue a development program based on a gradual expan-

sion of the vehicle's envelope. Instead, the program leapt from low-speed glide tests to a

manned orbital mission and reentry. This challenging program was driven by incentives to

minimize testing costs and duration. Instead of �ight testing, understanding of the Shuttle's

performance relied on one of the most extensive wind tunnel testing regimens in history.[199]

In order to prepare for the initial orbital mission and subsequent reentry, NASA needed

to quantify the uncertainty in the aerodynamic data base for the vehicle. Aerodynamic

uncertainty, coupled with the proposed vehicle �ight control system, could be used to identify

conditions at which the vehicle had minimal or negative control margin. When aerodynamic

uncertainty resulted in a risk of compromised mission performance, the design team had the

choice of either requesting additional ground testing (to reduce prediction uncertainty) or

adjusting the reentry trajectory to avoid the troubling �ight conditions. Through use of this
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process, Shuttle engineers were able to increase con�dence in mission performance.

The Shuttle aerodynamic uncertainty was quanti�ed in a number of ways. The �rst and

most direct was the repetition of certain tests using multiple facilities, models, and sets of

instrumentation. Such repetition helped the analysts to estimate the variation in responses

that was related to the testing equipment and procedures rather than true vehicle behavior.

Those variations were between performance results at similar levels of �delity, and were

called tolerances. The Shuttle had to be able to cope with prediction errors of this scale

without a�ecting overall vehicle performance.[198]

In addition to determining tolerances, Shuttle aerodynamicists had to estimate the mag-

nitude of the discrepancies between wind tunnel predictions and in-�ight behavior; those

discrepancies referred to as variances. Variances would be known with con�dence af-

ter �ight testing, but early approximations were required to identify risky conditions and

plan accordingly.[198] These approximations were drawn from previous �ight test experience

available in the public literature. No single vehicle matched the Shuttle's con�guration or

wide range of �ight regimes. Instead, estimates of variances were drawn from the published

pre-�ight and post-�ight aerodynamic comparisons for a number of vehicles, selected to

match particular aspects of the Shuttle such as a delta wing planform, the use of wing �aps

for longitudinal control, the use of elevons for lateral control, a single vertical tail, and a

relatively large fuselage.[59] No one vehicle satis�ed all similarity characteristics.

Vehicles were chosen based on the degree of similarity and the availability of both pre-

and post-�ight performance data. These vehicles included commercial aircraft (Concorde),

military service aircraft and prototypes (B�58, XB�70, YF�12), and research vehicles (X�15,

X�24B, M2�F3, HL�10). Although the X�15 was not thought to share many geometric char-

acteristics with the Orbiter, it was included as a reference due to the paucity of hypersonic

data.[190] The comparisons between the aerodynamic performance estimated before �ight

and the data collected during �ight testing and operation of the vehicles provided insight

into the likely accuracy of the Shuttle pre-�ight database.

Weil[190] uses the M2�F3 lifting body to illustrate the process of estimating variations.

At Mach 1.1, the predicted values of Cnβ were compared over a range of angles of attack.
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The maximum deviation between predicted and �ight-measured values was identi�ed after

any clear outliers are removed. A trend in deviation behavior was discernible, growing

larger as angle of attack increased. Weil cautions that �care must be exercised to limit this

variation in regions of rapidly changing characteristics� but does not go into detail how this

might be accomplished. This process was repeated for other Mach numbers and for other

vehicles. The resulting discrepancies were grouped by Mach number only � the e�ects of

angle of attack or sideslip were aggregated � and then uncertainty limits were de�ned based

on engineering judgment, rather than statistical analysis.

Expert opinion played a large role in the development of the variances: it directed the

selection of characteristics that would de�ne useful reference vehicles, it directed decisions

as to whether individual vehicles were su�cient similar to serve as references, and it was the

foundation for the �nal variance values in the uncertainty model.

Test �ights of the Shuttle demonstrated that even conservative variance estimates did

not always encompass the true vehicle performance. After the �rst �ight test, it was found

that hypersonic trim at high angle of attack required a signi�cantly larger de�ection of the

body �ap than was planned. Although the discrepancy in pitching moment coe�cient was

only approximately 0.03, correcting the discrepancy required 16◦ of de�ection rather than 7◦,

leaving less than one-third of the expected control margin for maneuvers or controlling dis-

persions. Later testing suggested that real gas e�ects, which were not extensively simulated

pre-�ight, were responsible for the majority of the discrepancy.[86, 133] This supports the

expectation that gaps in the set of reference vehicles � in this case, a lack of lifting con�gura-

tions with data at double-digit Mach numbers � may result in an insu�cient understanding

of likely variances.

3.5.2 Case Study: X�33

A similar approach to variance estimation was used in the modeling of aerodynamic uncer-

tainty of the X�33 vehicle, a proposed single-stage-to-orbit demonstrator.[32] The Shuttle,

along with six lifting-body vehicles, were selected as reference vehicles due to similarity of

geometry and/or �ight regimes. All selected vehicles also o�ered su�cient documentation of
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the comparisons between pre-�ight aerodynamic predictions and �ight test data. The X�33

aerodynamic uncertainty model focused on variances rather than tolerances, and e�ort was

taken to make the model applicable to any lifting body vehicle. Note that the estimated

uncertainty is again a one-dimensional function: the uncertainty associated with other pa-

rameters, such as angle of attack, is aggregated into a quantity that is purely a function of

Mach number.

Despite the quantity of data available, expert opinion once again played a large role in

the �nal X�33 uncertainty model. First, expert opinion once again drove the process of

selecting vehicles to serve as references. In addition to having publicly documented pre-

and post-�ight aerodynamic databases, the chosen vehicles were believed to experience �ow

behaviors similar to what the X�33 would encounter, such as nonlinear �ow and vortex

shedding. Expert knowledge was required to identify �ow behaviors that will be relevant to

the con�guration, as well as selecting existing vehicles which were subjected to those �ow

phenomena.

Secondly, decisions were made to incorporate some data points from the reference pro-

grams, modify others, and exclude some entirely. Because the Shuttle had the bene�t of an

extensive wind tunnel testing regimen, its pre-�ight predictions had less uncertainty than

would be likely for a smaller program. To account for this, parts of the X�33 uncertainty

envelope were enlarged relative to Shuttle variances. Similarly, the X�33 uncertainty enve-

lope was made to encompass some of the lifting body data points while excluding others,

signifying a decision that the excluded data points were in some way inaccurate or unimpor-

tant. Both the choice of values to be modi�ed and the degree to which they were modi�ed

were decisions made by X�33 aerodynamicists.

3.5.3 General Approach: Estimation of Uncertainty

The uncertainty quanti�cation described in the case studies were based on two considera-

tions. First, the tolerances were the estimated uncertainty at a particular level of �delity

� based on CFD results, how accurately can other CFD results be predicted? Secondly,

the variances were the potential discrepancies between di�erent levels of �delity � based on
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CFD results, how accurately can �ight performance be predicted?

For this application, the estimation of aerodynamic tolerances would depend on a number

of data sources. First, data that is generated by an iterative solver can be interrogated to

determine solution convergence. For this particular problem, the iteration history from

Cart3D may be used as a measure of the variation in each response. Rather than de�ning a

response as the value of a certain coe�cient after the �nal iteration, it may be more e�ective

to observe the mean value over some number of iterations, and use the standard deviation

over those iterations as a measure of the noise for that case. The scripts currently in use

to run Cart3D could be easily modi�ed in this manner. This would provide an individual

estimate of uncertainty for each Cart3D data point.

Secondly, for the three multi-�delity techniques which handle each source of data sep-

arately, the low-�delity data itself will be a source of uncertainty. For this e�ort, the low-

�delity data will be produced by APAS. APAS runs fairly rapidly, on the order of 1�2

seconds per case, but even that could add hours to the time required to select a sample if

many options are considered. Instead, a surrogate model of APAS results will be generated

so that thousands of low-�delity response values can be estimated in the time it would take

to run APAS once.

This additional surrogate model, unless it is a perfect representation, will only ap-

proximate the low-�delity results. The goodness-of-�t checks which quantify a surrogate

model's performance include Model Representation Error (MRE), a measure of how well the

surrogate predicts response values for cases that were not part of the training process.[36]

MRE can be considered an estimate of how accurate the surrogate will be when used to

predict response values at points where the true analysis has not been run. It is typically

cited as a mean and a standard deviation of prediction error. The standard deviation can be

squared to produce the error variance, which can then be treated as the prediction variance

of the low-�delity surrogate model in the absence of more precise estimates. These two

sources of data � the iteration noise from Cart3D analysis and the prediction uncertainty

from the surrogate model of APAS results � shall make up the aerodynamic tolerances for

the purposes of these experiments.
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The process for estimating aerodynamic variances � the uncertainty introduced when

using results at one level of �delity to estimate response behavior at some other level of

�delity � is more complex. For both the Space Shuttle and X�33, expert opinion was used

to select vehicles which could o�er useful comparisons. The Shuttle is an especially good

example of the potential di�culties. None of the reference vehicle satis�ed all �ve of the

similarity criteria. Additionally, some reference vehicles only had data available for a limited

set of �ight conditions. This was not unexpected; the Shuttle was signi�cant departure from

what had been done before, and thus a comprehensive suite of reference vehicles was not

likely to exist.

Although the X�33 uncertainty database was intended to be applied to both wind tunnel

and computational model results, it did not specify the type of computational model that

is expected. This may be considered a shortcoming, as the prediction accuracy of computa-

tional models will vary greatly with model �delity. This type of knowledge would be useful

when designing the experimental plan: if it is known that a simple model will have su�cient

prediction accuracy at a particular �ight condition, the designer will not need to apply more

expensive models for con�rmation. Such an approach would rest on the ability to accurately

and dependably quantify the accuracy of a given model at various �ight conditions.

Recall again from Section 1.6 the calls for treating model validation as an ongoing pro-

cess, one that is repeated and extended as necessary each time the too is applied to a di�erent

application.[8, 138] If each computational model is validated over the relevant ranges of �ight

conditions, the user will have obtained a pool of data which can be used to estimate each

model's likely accuracy across the proposed vehicle's �ight regime. This pool of data quan-

ti�es the accuracy for each validation case; carefully chosen validation cases will therefore

allow the estimation of variances for the con�guration of interest.

Note that the Shuttle and X�33 uncertainty databases modeled the variance as a single

value per Mach number. This re�ects the assumption that aerodynamic data would come

from wind tunnel testing and possibly computer modeling at an equivalent level of �delity.

Early in the design process, aerodynamic data may have many sources due to the variety

of analysis tools available. Each source may have di�erent prediction con�dence at each
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�ight condition of interest. If each data source is validated against relevant cases, the likely

accuracy of each data point may be estimated.

For this particular e�ort, variances would be less important. The scope of the research

did not o�er the opportunity to acquire �ight test data for a reusable booster system, so CFD

analyses would be the highest-�delity data source available. As a result, it was not consid-

ered necessary to estimate how well the CFD results would match physical measurements.

Instead, the CFD results would act as �truth� data for these experiments. Furthermore,

it was already established that the discrepancies between the lower-�delity APAS results

and the CFD results would be accounted for as part of the tolerances. Thus, variances

would not play a signi�cant role in this e�ort, although they are certainty important to take

into account when designing a revolutionary vehicle. Still, variances were investigated to a

reasonable degree during the course of this research.

The uncertainty databases as described were intended for use in low-risk trajectory

design and the testing of �ight control software. If such information were available earlier

in the design process, it would reduce the risk of selecting a de�cient design by quantifying

the con�dence of performance predictions. Knowledge of the prediction con�dence at each

�ight condition would also increase computational e�ciency by focusing the use of expensive

simulations on cases which most bene�t from the increased prediction con�dence.

3.5.4 Incorporating Uncertainty

The �nal topic to be addressed is the incorporation of the uncertainty information into

the analysis process. Given that the adaptive sampling methods which are best-suited to

the problem at hand are Kriging-based, it would seem reasonable to focus the search on

techniques to incorporate uncertainty into Kriging models. Recall from Section 3.4.1 that

prediction variance goes to zero at the training points if those points are deterministic.

If the training points are not deterministic, i.e. there is some uncertainty as to the exact

value of the response at each point, a �nugget� parameter may be used to quantify the

response uncertainty at that point.[93] The nugget parameter is a scalar or vector of values

that are added to the diagonal of the covariance matrix when �tting a Kriging model; the
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nugget magnitude controls how closely the Kriging model will reproduce the training data,

with larger nuggets corresponding to looser �ts of the data. Nuggets were included in some

of the earliest Kriging formulations,[119] and were intended to capture measurement error

and small-scale variations in the response as part of geostatistical modeling.[93] Even when

modeling the output of deterministic (i.e. noiseless) computational tools, some researchers

advocate the addition of small nugget terms to covariance matrices to improve numerical

stability and reduce the risk of a poorly conditioned covariance matrix.[67, 107, 160, 197]

One consequence of adding a nugget to the covariance matrix is that the resulting Kriging

model will no longer be an exact interpolator: it will not exactly reproduce the training data

set when used to predict the response at a known point.[39] Very small nuggets, on or close to

the order of machine precision, will not a�ect the interpolation behavior signi�cantly.[107]

Gramacy and Lee also argue that nuggets improve the statistical properties of the emu-

lator in cases of sparse data or when modeling assumptions such as the correlation type

are incorrect.[68] The larger the nugget values, the more closely the model will follow the

estimated mean function.[182]

Overall, the ability of a vector of nuggets to capture any uncertainty that varies between

samples, as well as the compatibility of nuggets with the Kriging formulations that support

many adaptive sampling approaches in the literature, made the use of nuggets very attractive

as a means of incorporating uncertainty into the surrogate modeling process.

3.6 Review of Research Questions & Formulation of Hypotheses

As a result of the literature search that was driven by the research questions, multiple

techniques have been identi�ed that may improve designers' ability to apply high-�delity

modeling earlier in the preliminary design phase. The major factor which stymied earlier

attempts was the signi�cant increase in modeling expense when more complex data sources

are used. A research e�ort was undertaken to identify alternative techniques and methods

which would help to reduce this expense and bring such modeling into the realm of feasibility.

The �rst focused research question was:
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Research Question: When �good performance� refers to responses within

desirable ranges rather than maxima or minima, how

can regions of good performance be identi�ed and

emphasized during the sampling process?

In light of the described adaptive sampling approaches, the contour-based sampling ap-

proaches described by Picheny et al.[149] and Ranjan et al.[159] should allow the preferential

selection of cases with near-zero moments. This is the basis for the �rst hypothesis:

Hypothesis 1 Contour-based sampling will balance the selection of cases

with good performance and the reduction of prediction un-

certainty in promising regions, identifying samples that ef-

�ciently improve surrogate accuracy for con�gurations with

small aerodynamic moments.

The savings in computational e�ort from contour-based sampling alone is not expected

to reduce modeling costs su�ciently to enable large scale application of expensive models.

For further reduction in cost, low-�delity data will be used as a source of cheaper data,

providing estimates for the responses of interest that will be corrected by more accurate

models.

The next focused research question spurred the investigation of techniques that would

allow the low-�delity estimates to be blended with data from the more trusted models:

Research Question: How can cheaper analyses be integrated with high-

�delity models to reduce the overall cost of design

space exploration or exploitation?

After a review of the available techniques, a number of possible methods were identi-

�ed that might improve predictive performance and reduce dependence on expensive data

sources. Multi-�delity modeling is abundant in the literature, but it remains to be seen

which of the methods identi�ed, if any, will be e�ective for the problem at hand. Rather

than selecting one now, the choice will be deferred until comparisons between the meth-

ods can be made for one or more representative problems. Thus, the second supporting
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hypothesis is couched in more general terms:

Hypothesis 2 Data fusion techniques will allow results from high-�delity

analyses to be augmented with cheaper sources of data to

produce surrogate models that are more accurate yet require

less computationally-expensive data.

The last focused research question highlighted uncertainty in the data and sought to

determine how that knowledge might be incorporated:

Research Question: How can information about uncertainty in the data

be captured e�ectively?

It was noted that one of the multi-�delity techniques that had been identi�ed, data har-

monization, serendipitously also included an explicit mechanism to incorporate uncertainty:

the Kriging nugget. If Kriging models are used to implement the other data fusion tech-

niques as well, nuggets can be used to extend each of those methods in turn so that each one

can integrate data from multiple sources and capture any uncertainty in those data points.

This leads to the next hypothesis:

Hypothesis 3 When creating a Kriging model, the use of nuggets will cap-

ture uncertainty in the data, improving predictive accuracy

for noisy responses.

Supporting this goal are the various techniques which may be used to quantify the

uncertainty in data points. These techniques include interrogation of response history for

iterative models, the use of validation experiments to assess expected model accuracy, and

targeted validation experiments to quantify the likely discrepancies between di�erent sources

of data.

Together, the selected techniques should serve to produce more accurate surrogate models

while reducing the cost necessary to generate the required data, addressing the primary

research question:
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Research Question: How can high-�delity modeling be feasibly applied

earlier in the design process, despite the computa-

tional expense?

The three previous hypotheses come together to address this, the overarching goal of the

research, with a �nal hypothesis:

Hypothesis 4 By placing samples intelligently, reducing dependence on the

expensive models, and accounting for any uncertainty in the

data, the selected methods will enable improved surrogate

model accuracy with signi�cantly reduced data requirements,

such that high-�delity modeling becomes a feasible option

earlier in the design process.

This hypothesis represents a proposed procedure for sample selection and surrogate

model creation. The �rst three hypotheses will provide guidance as how certain steps of

the process might best be carried out. The �nal hypothesis asserts that, by approaching

each step of the method with appropriate techniques, the result � surrogate models for cases

of interest � will have quanti�ably better predictive accuracy than what is currently pos-

sible with standard techniques. In essence, the �nal hypothesis corresponds to a proposed

approach to the problem.

The approach being proposed is intended for problems for which standard sampling

and surrogate modeling techniques would result in excessive costs, particularly in the form

of execution time and/or computational e�ort. In particular, the proposed approach will

improve e�ciency by maximizing the information gained from each expensive analysis while

minimizing the number of such analyses that will be required.

3.6.1 Steps in the Method

The method being proposed will assume that the user has already set up the problem. That

process entails a number of activities, such as identifying the independent and dependent

variables that will be included, selecting appropriate data sources, and validating each data
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source against �truth data� to quantify its expected accuracy. This description will also

assume that two data sources will be used, one being more accurate but having much higher

per-analysis costs, and the other being less costly but lacking the necessary accuracy for

use as the only data source. Depending on this cheaper data source's speed of execution,

the user may wish to replace it with a surrogate model. Given these stipulations, a general

description of the procedure for creating surrogate models is as follows:

Step 1: Generate an initial set of samples to be analyzed.

Prior knowledge about the behavior of the responses to be modeled may indicate that

certain regions of the response space are of greater interest than others. The initial sam-

ples may then be distributed to emphasize those regions. Barring such prior knowledge,

space-�lling sample distributions such as Latin hypercubes or Sobol sequences are often

appropriate.

Step 2: Analyze the samples using the appropriate data sources.

Step 3: Train Kriging surrogate models using the resulting data.

It should be noted that the e�ectiveness of a data fusion technique will depend on the

problem being addressed. Some of the experimental e�ort in this research will be dedicated

to identifying which of the selected data fusion techniques is best suited for the intended

application of modeling reusable booster aerodynamics.

Step 4: Evaluate the resulting surrogate models to quantify the predictive ac-

curacy.

There are two primary ways to quantify the predictive accuracy of a surrogate model.

The �rst method is to set aside a number of cases.[88] These cases are not used to train

surrogate models. Instead, the surrogate models are used to predict the response values for

those cases, and then the predicted values are compared against the observed values. The

discrepancy between the predicted and actual values is then used to assess the prediction

error.
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Figure 8: Baseline Process for Sample Selection & Surrogate Model Creation
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The other alternative is to use cross validation.[148] When performing cross validation,

all of the available data is used to create the main surrogate models. The training data

is then split up into subsets and a number of temporary surrogates are trained, each of

which is trained using all but one of the subsets. Each temporary surrogate is then used

to predict the response values for the subset of data that was not used in its training.

Again, the discrepancy between the predicted and actual values is used to assess prediction

error. Depending on the amount of data available and the level of e�ort required to train a

surrogate model, the subsets may be as large as 20% of the data set or as small as one data

point.[58, 75, 100] This approach has the bene�t of using all available data when training the

�nal surrogate models, but may under-estimate the predictive accuracy of those surrogates.

Steps 5a & 5b: If the surrogate models are su�ciently accurate or the project

resources have been consumed, terminate the process.

Step 6: Otherwise, select new samples for analysis and go to Step 2.

The process of selecting new samples can be thought of as an optimization: the samples

that are selected will be those that are the most useful. The exact de�nition of �most

useful,� and thus the behavior of the sample-selection algorithm, will depend on the choice

of objective function. Hypothesis 1 asserts that contour-based sampling will be e�ective for

the problem at hand; this hypothesis must be tested before being accepted.

For the purposes of this work, it will be assumed that the cost of obtaining the low-

�delity response at any point is negligible. The sample selection process will therefore only

be concerned with the selection of high-�delity samples. If the per-analysis cost of the low-

�delity data source is not negligible, it is recommended that the low-�delity data source be

replaced with a separate surrogate model, which would allow the low-�delity response to be

predicted without the associated analysis costs. If that is impossible or too labor-intensive,

the reader is referred to the work of Huang et al.,[83] who describe an adaptive sampling

approach that also selects the best data source to use for each new sample based on the

relative costs and bene�ts of each data source.
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With respect to the overall focus of this research � i.e., the creation of surrogate models

& the selection of subsequent samples to improve surrogate accuracy � the generic process is

laid out graphically in Figure 8. The �rst three hypotheses of this research e�ort pertain to

how speci�c steps in the process are performed. Hypothesis 1 addresses Step 6, asserting that

a particular adaptive sampling approach will yield better results than spending the full set

of resources on space-�lling samples. Hypotheses 2 and 3 address Step 4, emphasizing how

the data (including validation results for each data source) will be used to create surrogates.

The �nal and most important hypothesis, Hypothesis 4, asserts that when the process is

carried out using the recommended techniques, the performance of the resulting surrogate

models will be better than the surrogates produced by the baseline approach of single-�delity

modeling and space-�lling samples.

Although each hypothesis was constructed based on known research and evidence, further

experiments must be performed to determine whether the evidence supports or undermines

these hypotheses. Experimental results which support the �rst three hypotheses, due to

the hierarchical style of construction, also support the fourth hypothesis. The experimental

plan was designed to test each hypothesis in turn.
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CHAPTER IV

EVALUATING CONTOUR-BASED SAMPLING

The expense of each Cart3D analysis is not negligible, so e�orts were made to maximize the

re-use of results. To this end, experiments were designed so that the cases for one experiment

would be useful for another. This is particularly true of the space-�lling sample designs that

exemplify the baseline approach. Points selected by adaptive sampling were expected to

vary from experiment to experiment, with little chance of commonality. Examples of this

will be highlighted in the description of the experiments as appropriate.

The �rst hypothesis to be evaluated asserts that contour-based sampling would allow

accurate surrogate models to be trained using fewer samples. The null hypothesis in this

case took the form of a space-�lling sampling design. Using the results from the RBS study,

three �ight conditions were selected as having unusually poor �ts for pitching moment

relative to the other models. These conditions were: Mach 0.3, α 15◦, β 0◦; Mach 0.8, α

0◦, β 0◦; and Mach 2.5, α 0◦, β 0◦. This trio of conditions posed the most di�culty for the

space-�lling sampling approach, and thus these models were most in need of improvement.

The overall objective is the generation of surrogate models with good predictive accuracy

for vehicles with desirable performance, i.e. small aerodynamic moments. If only one �ight

condition were being considered, the problem would be simple, as only three responses must

be addressed. For a more general problem, it is possible that each of the three responses

might exhibit very di�erent behavior: a vehicle with near-zero pitching moment at a small

angle of attack might exhibit a large pitching moment at larger angles of attack. However,

the problem at hand only included cases with no sideslip, and so the two lateral responses

were expected to be close to zero. It was therefore expected that a concept's ability to

trim for these conditions would be dominated by its pitching moment, and so the primary

focus of the experiment was to demonstrate accurate & e�cient modeling of vehicle pitching

moment.
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4.1 Conceptual Description of Sampling Algorithm

The sampling algorithm was derived from the one proposed by Picheny et al.[149] in 2010.

That algorithm was intended for problems with one response. As part of this research

e�ort, the method was expanded to handle multiple responses. The expanded algorithm is

as follows:

1. Create Kriging models of the current data points and the response values at those

points.

2. Generate a set of candidate points.

3. Generate a set of test points.

4. Use the current Kriging model to estimate the response values and the prediction

variances for the candidate and test points.

5. For each candidate point, calculate how adding that point to the training data set

would change the Kriging prediction variance at each test point. Combine the resulting

test point prediction variances in a weighted sum. The value of the weighting function

will vary based on the likelihood that the test point has a response near the threshold

of interest.

6. Repeat step 5 for each response.

7. Normalize the weighted sums for each response. The candidate point's �score� is the

average of its normalized weighted sum results.

8. Select the candidate with the lowest score as the next case to be sampled.

Steps 1�8 are repeated until the Kriging model is su�ciently accurate or all resources

have been consumed. The speci�cs of this algorithm rely on the mathematical details of the

Kriging technique, which shall be reviewed brie�y. More detailed information may be found

in Journel & Huijbregts,[93] Sacks et al.[170], or Lophaven et al.[108]
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4.2 Review of Kriging Mathematics

This work was based on the form of Kriging known as �universal Kriging,� which models

as a combination of a set of basis functions and a zero-mean Gaussian process. The basis

functions describe the overall behavior of the response in a manner similar to response

surface equations,[134] while the zero-mean Gaussian process captures any departures from

the large-scale behavior captured by the basis functions. The best linear unbiased predictor

for the response y(x) at some unsampled point x, given a set of n other observations Y

de�ned by p input parameters, can be calculated as:

mn(x) = f(x)T β̂ + c(x)TC−1
(
Y − Fβ̂

)
(1)

Here, f(x) is a (p+ 1)× 1 vector of basis functions, β̂ is a (p+ 1)× 1 vector of estimated

coe�cients, c(x) is an n× 1 vector of covariance, C is an n× n covariance matrix, and F is

an n× (p+ 1) experimental matrix. The vector of estimated coe�cients β̂ is calculated by

a generalized least-squares estimate:

β̂ =
(
F TC−1F

)−1
F TC−1Y (2)

The second set of terms to the right of the equality in Equation 1 is a function which

estimates how much deviation from the underlying behavior can be expected at a particular

point. This deviation is calculated based on the estimated correlation between the point in

question and nearby �known� data points. A number of di�erent correlation functions may

be used as part of Kriging models, with the Gaussian function seemingly the most common

selection.[107, 170] The Gaussian correlation function is given as:

k(u, v) =

n∏
i=1

exp

[
−
(
|ui − vi|

θi

)2
]

(3)

Here, i refers to the dimension of the vectors u and v. If distance in each dimension is

weighted equally, every θi has the same value and this becomes the isotropic Gaussian

correlation function. The more general case of an anisotropic function, where each dimension

is weighted independently, will be assumed for the following work.
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Using the correlation function, the Kriging prediction variance at any point x may be

calculated as

s2n(x) = k (x, x) − c(x)TC−1c(x)

+
[ (

f(x)T − c(x)C−1F
) (

F TC−1F
)−1 (

f(x)T − c(x)TC−1F
)T ] (4)

In this equation, k (x, x) is σ2, the process variance; c(x) is a vector of covariances between

the point x and the points used to build the model; C−1 is the inverse of the matrix of

covariances between points used to build the model; f(x) is a vector of basis functions

describing the point x; and F is the experimental matrix of basis functions which describe

the points used to build the model. The covariance function is equal to the correlation

function multiplied by the process variance. Basis functions refer to the variables chosen

to describe the relevant model factors. For example, for a typical two-dimensional linear

model, the basis functions would be 1, x1, and x2 to capture a constant mean and the linear

e�ect due to each input dimension.

The process variance is a measure of how well the underlying trend, f(x)T β̂, accounts for

the observed data. When the trend is a good representation of the response behavior, the

process variance will be small because the observed responses are close to the expected trend.

Once the trend coe�cients β̂ have been calculated, the process variance can be estimated

using the observed data points[117]:

σ2 =
1

n

(
Y − Fβ̂

)T
R−1

(
Y − F β̂

)
(5)

Note that the second set of terms to the right of the equality in Equation 4 captures

the degree to which any nearby �known� data points decrease the prediction variance at the

desired point x. This term will be maximized (and prediction variance minimized) when the

covariance vector c(x) is maximized. Looking back at the Gaussian correlation function in

Equation 3, c(x) will be large when the point x is very close to the known points used to

build the model. Essentially, Kriging prediction variance will be smallest when x is close to

those used to build the model and larger for x farther away. This feature of Kriging forms

the foundation of the contour-based sampling algorithm.
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4.3 Mathematical Formulation of Sampling Algorithm

The sampling algorithm seeks to identify the point that will most reduce the prediction

variance of the Kriging model in regions where the response is near some value of interest.

For the planned application of this method, the value of interest is a pitching moment

coe�cient of zero and with a range of interest of ± 0.1. Con�gurations outside this range

are not expected to be able to trim, and are thus likely to be infeasible from a vehicle control

standpoint.

The algorithm proceeds in the following manner: �rst, a Kriging model is �t to each

response of interest. There will be at least one response of interest (pitching moment coef-

�cient) for every �ight condition that will be evaluated. The second and third steps are to

generate a set of candidate points and a set of test points. These points may be generated

using a space-�lling method such as a Latin hypercube,[126] or may be distributed accord-

ing to the preferences of the user. The space-�lling distribution, being the more general

approach, was assumed throughout this work. One of the candidate points must be chosen

as the next point to be sampled. As the number of candidate points increases, the algorithm

will have more options to choose from; as the number of test points increases, the algorithm

can more accurately assess each candidate. Enlarging either set comes at a cost of increased

analysis time.

The �fth step is to calculate the change in prediction variance due to sampling a particular

candidate point using a technique known as weighted integrated mean squared error, or

wIMSE.[97, 149] This technique leverages the ability of a Kriging model to estimate the

expected response value and prediction variance at each test point. Once the �fth step

has been repeated for each response of interest, the �nal step is to normalize the scores of

all candidates for every response and select the candidate which promises the best average

improvement over all responses. This �fth step is clearly the heart of the algorithm, and

must be explained in more detail.
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4.3.1 Quantifying How Candidate Points A�ect Prediction Variance

First, the n data points making up the original model are temporarily augmented with one

of the candidate points. The n × n symmetric covariance matrix C is thus expanded to

size (n+ 1) × (n+ 1) to capture the covariance of this candidate point with each of the n

existing samples.

Recall from Equation 4 that the Kriging prediction variance depends on the inverse of

the covariance matrix. Inverting the full covariance matrix once for each candidate point is

possible but ine�cient: because only the n + 1th row and column of C are changing, most

of the matrix to be inverted will remain constant no matter which candidate is considered:

Cn+1 =


σ2 cTnew

cnew Cn

 (6)

Picheny et al. recommend that the inverse of the enlarged matrix be calculated using

Schur's complement formula,[201] resulting in the following equation:

C−1
n+1 =


1 0

−C−1
n cnew In




1
σ2−cTnewC

−1
n cnew

0

0 C−1
n




1 −cTnewC−1
n

0 In

 (7)

Because C−1
n can be computed once and re-used for every candidate evaluation, this approach

replaces a matrix inversion operation with a series of matrix multiplication operations, re-

ducing the computational cost signi�cantly. To quantify the cost reduction, notional data

was generated. This data had forty-nine input dimensions, similar to the problem of inter-

est. Using progressively larger sets of notional data, the contour-based sampling algorithm

was used to evaluate 10 candidates using 300 test points. For a large parameter space such

as this, many more test points would be required to accurately evaluate a given candidate;

given that this test was purely to assess numerical speed, it was su�cient that the number

of candidate and test points be consistent.

The �rst algorithm used Schur's complement, as recommended in Picheny et al., while

the second algorithm explicitly �t a new Kriging model every time a new candidate was
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evaluated. The time to evaluate all candidates and select the best option was recorded. This

was repeated 10 times for each data set. The average time required for the two methods

to select a sample is given in Table 2. For models of the size and complexity expected in

this e�ort, the use of Schur's complement was found to reduce the sample selection time by

approximately 90%, or a full order of magnitude.

Table 2: Average Sample Selection Speed With & Without Schur's Complement (in seconds)

200

Cases

400

Cases

600

Cases

800

Cases

1,000

Cases

Using Schur's

Complement
22 66 133 229 342

Direct Matrix

Inversion
196 674 1,418 2,405 3,592

Ratio 9.03 10.3 10.7 10.5 10.5

Using this approach, the inverse covariance matrix C−1
n+1 can be obtained just as if the

Kriging model had been re-trained to include the candidate point. The covariance vector

cn+1(x) for a test point x captures the covariance of x with each of the samples as well as

with the current candidate point.

The �nal step in assessing the e�ect of a candidate on the surrogate is to append the

basis function representation of the candidate point to the experimental matrix F . Selection

of basis functions is left up to the user. This e�ort used a linear model, with each input

parameter forming one basis function and an extra column to account for the mean value of

the response. For a problem with normalized input parameters x1 and x2, the linear basis

function values for sample k would be [1 x1(k) x2(k)].

The new C−1
n+1 and Fn+1 matrices are then plugged into Equation 4, which in turn allows

the calculation of prediction variance as if the current candidate point had been sampled and

added to the model. This updated variance equation is then used to calculate the prediction

variance at each test point.

84



Before these variances are combined, however, a weighting factor is applied. This weight-

ing factor is large for test points with responses close to the target value and small for test

points with responses far from the target value. Thus � and this is the heart of the algorithm

� the candidate with the smallest weighted sum of variances (i.e. prediction uncertainty)

can be considered the one that most reduces prediction variance for cases with responses

close to the target value.

4.3.2 Weighting Function Calculations

Picheny et al. suggest two alternatives for the weighting function, one using an indicator

function and one using a Gaussian density function. Because the problem at hand features a

response region of interest with clearly-de�ned bounds (e.g., 0± 0.1), the indicator function

was selected. This weighting function is calculated via:

W (x) = Φ

(
T + ε−mn(x)

sn(x)

)
− Φ

(
T − ε−mn(x)

sn(x)

)
(8)

Here, Φ is the cumulative distribution function (CDF) of the standard normal distri-

bution; T is the target response value (0); ε is the half-width of the range of interest (0.1);

mn(x) is the predicted response value at point x; and sn(x) is the prediction variance at

point x. This prediction variance is calculated using only the n known samples; candidate

points are not included. In e�ect, this weighting function is equal to the probability that

the response at point x has a value between T − ε and T + ε.

Because Kriging prediction variance is assumed to have a Gaussian distribution, the

CDF may be calculated analytically. Zelen & Severo provide a method for calculating the

CDF for x > 0:[1]

Φ(x) = 1− φ(Z)
(
b1t+ b2t

2 + b3t
3 + b4t

4 + b5t
5
)

+ ε(Z), t =
1

1 + b0Z
(9)

Here, φ(Z) is the probability density function (PDF) of the standard normal distribu-

tion, and b0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782, b3 = 1.781477937,

b4 = −1.821255978, and b5 = 1.330274429. ε(x) is the discrepancy between this approxima-

tion and the true CDF value, with ‖ε(x)‖ < 7.5× 10−8. The PDF of a normal distribution
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is given as:

φ(y) =
1√

2πσ2
exp

[
−(y − µ)2

2σ2

]
(10)

The standard normal is a special case of the Gaussian, or normal, distribution for which µ,

the mean, is equal to zero and σ2, the variance, is equal to one. This is commonly written

as N (0, 1). Any normal distribution N
(
µ, σ2

)
can be transformed into a standard normal

distribution using the following equation:

Z =

(
y − µ√
σ2

)
(11)

Using this transformation, Equation 10 becomes:

φ(Z) =
1√

2π(1)2
exp

[
−(Z − 0)2

2(1)2

]
(12)

In order to calculate the probability that the response at point x is less than the upper

bound of the response target region (0.1 for pitching moment), y in Equation 11 would

be replaced with T + ε. Likewise, mn(x) would replace µ and sn(x) would replace σ. The

resulting Z is plugged into Equations 9 & 12 to calculate the CDF of the normal distribution.

The CDF value which results is the probability on a zero-to-one scale that the true response

at point x is less than T + ε, i.e. Φ
(
T+ε−mn(x)

sn(x)

)
.1Once the calculation is repeated with

T −ε instead of T +ε, the results can be substituted into Equation 8 to obtain the weighting

function value for the test point x.

4.3.3 Application of Mathematical Framework

The necessary mathematical tools to evaluate a candidate point have now been collected.

Equation 2 captures how the candidate will a�ect the inverse covariance matrix and thus the

prediction variance (via Equation 4) at each test point. This prediction variance is weighted

by Equation 8, which emphasizes test cases where the response value is expected to be close

to the value of interest. The weighted prediction variances are then summed to produce a

1Remember that Equation 9 is only valid for Z > 0, i.e. if (T + ε) > mn(x). If the response at point x
is expected to be less than T + ε, for example, and thus Z < 0, Equation 9 will produce nonsensical results.
Whenever Z < 0, Z should be replaced by −Z to stay within the applicable range for Equation 9. This
transforms Φ(x) from the likelihood that Z > 0 (P (Z > 0)) into the likelihood that Z < 0 (P (Z < 0)). This
can be easily accounted for by use of the identity P (Z > 0) = 1 − P (Z < 0)
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weighted Integrated Mean Squared Error (wIMSE) score. This wIMSE score quanti�es the

amount of prediction variance, or uncertainty, that would be present if the candidate point

were added to the model.

If the problem only features one response, the algorithm simpli�es to the form proposed

by Picheny et al., and the candidate with the lowest wIMSE score would be selected as

the next sample because that candidate is expected to produce the largest reduction in

prediction variance for that response.

If the problem features multiple responses, further steps are required before the best

candidate can be identi�ed. First, because the prediction variance of each response may di�er

by multiple orders of magnitude, the wIMSE scores for each response must be normalized.

This is accomplished using the mean and standard deviation of the wIMSE scores for that

response, µwIMSE and σwIMSE . The normalized wIMSE score for the ith candidate is thus:

wIMSEi,norm =
wIMSEi − µwIMSE

σwIMSE
(13)

Once wIMSE scores have been normalized for all responses, the average wIMSE score for

each candidate is calculated based on its wIMSE score for each response. The candidate

with the smallest average wIMSE score is chosen as the next point to be sampled.

4.4 Use of Alternative Surrogate Modeling Methods

It should be noted that Kriging is not necessarily required for this algorithm. Strictly

speaking, the algorithm requires only (a) a method of predicting the response value at some

new point, and (b) a way of estimating the prediction variance or uncertainty at that point.

Any surrogate modeling technique should allow the prediction of response values, and cross-

validation o�ers a way to estimate prediction uncertainty at any given point.[148] However,

cross-validation requires the generation of many additional surrogate models, which may

become very demanding in terms of time and computational e�ort. The attractiveness of

Kriging for this e�ort stems from the fact that with a Kriging model, prediction variance may

be calculated directly with relatively low computational e�ort, and the prediction variance is

known to have a Gaussian distribution. If Kriging were to become excessively expensive, such

as if a very large data set became necessary, cross-validation and an alternative surrogate
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modeling method should still allow this sampling algorithm to be applied with minimal

modi�cations � albeit at what is expected to be signi�cantly increased computational e�ort

& time.

4.5 Veri�cation of Sampling Algorithm

Before any implementation of an algorithm may be applied, it should �rst be tested to

verify that the algorithm as coded performs as intended. This serves to con�rm that the

implementation accurately reproduces the intended algorithm, and that the results produced

by the implementation adequately re�ect the performance of the algorithm.[8, 139] Once

the sample-selection code is veri�ed to be performing as intended, its performance could be

assessed with greater con�dence.

Toward this end, four veri�cation experiments were conducted. The �rst three veri�ca-

tion experiments would feature two input parameters and one output parameter, similar to

a demonstration given by Picheny et al.,[149] to assess the basic behavior of the algorithm

and its subroutines. The �nal veri�cation experiment would feature two input parameters

and three output parameters to verify algorithm behavior for multiple responses.

Cart3D data would be used for the �rst and last veri�cation experiments so that the

algorithm could be demonstrated for a response representative of the intended application.

To select the 2 free parameters from the 49 parameters used in the RBS e�ort, a sensitivity

study was performed to quantify the relative e�ect of each free parameter excluding control

de�ections. This study indicated that for the three �ight conditions analyzed, the wing root

chord fraction and the fuselage radius fraction had the largest average impact on vehicle

pitching moment.

Using these two parameters as independent variables, the �rst veri�cation experiment

would apply the contour-based sampling algorithm to one �ight condition. This would

allow the comparison of the behavior of the implemented algorithm against the behavior

described by Picheny et al. Two other veri�cation tests were developed based on standard

test functions used in the optimization �eld due to the similarity between adaptive sampling

algorithms and optimization algorithms.
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Figure 9: Pitching Moment Coe�cient at Mach 2.5, α 0◦

The �nal veri�cation experiment would assess the performance of the algorithm when

applied to three �ight conditions simultaneously. This experiment would investigate how the

algorithm would behave when applied to a problem with multiple responses. This represents

an extension beyond what has been described in the literature for this algorithm.

Before these experiments could commence, default values for the other 47 geometric

parameters had to be selected. An iterative approach was used to identify a set of default

values such that the two-dimensional design space would include con�gurations with small

pitching moments at all three �ight conditions. The values that were selected have been

documented in Appendix B. Department of Defense High Performance Computing Cen-

ter resources allowed this approach to be performed in a rapid, massively-parallel fashion,

signi�cantly reducing the time required.

4.6 First Sampling Veri�cation Experiment: Two Inputs, One Response

This veri�cation experiment served to con�rm that the algorithm proposed by Picheny et al.

had been implemented correctly. It was expected that the test problem was simple enough

that any aberrant behavior could be identi�ed relatively easily. The Mach 2.5, α 0◦ �ight

condition was chosen for this test because at this condition, the test problem exhibits fairly

simple response behavior, as seen in Figure 9.

A large fraction of the design space produced pitching moment coe�cients (CM ) within
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the region of interest, i.e. less than |0.1|, with the exception of cases with a large fuselage

radius fraction (RadF ) and a small root chord fraction (RC). Such cases exhibited a pitching

moment that was more negative than desired. It was expected that, once this trend was

identi�ed, the algorithm would avoid placing samples in the undesirable region and instead

emphasize the region where the pitching moment is close to zero.

4.6.1 Contributing Analyses: Prediction Variance

Before verifying the overall behavior of the algorithm, a number of intermediate checks were

performed to build con�dence in the underlying calculations. Because the algorithm depends

on the accuracy of the estimated variances, the prediction variance values produced by the

implemented algorithm were evaluated �rst.

From a conceptual standpoint, the prediction variance was expected to be small near

existing samples where the response value was known exactly and grow larger for points

farther from the existing samples.[182] Applying these calculations to a two-dimensional

problem allowed the output to be evaluated visually. This evaluation would serve as the

�rst check on the calculated values: if this behavior was not observed, there was likely a

problem with the implementation.

The DACE toolbox by Lophaven et al.[107] for Matlab[123] has become a popular utility

for the creation of Kriging models.[54, 62, 187, 203] In addition, the toolbox o�ers the

option to estimate prediction variance at any point. These estimates would be compared

to those produced by the algorithm; this comparison would serve as the second check on

the calculated values. If good agreement was found, this would be taken as a sign that the

variance estimation portion of the algorithm was working as intended.

A 50 × 50 grid of con�gurations was generated, spanning the ranges of the wing root

chord fraction and the fuselage radius fraction, and these con�gurations were analyzed with

Cart3D at Mach 2.5, α 0 ◦. A �ve-point Latin hypercube was generated and the pitching

moment for each point was estimated by interpolating the grid results. These cases and

the respective pitching moment for each were then used to train a Kriging model via the

DACE toolbox. That Kriging model was the source of the baseline inverse covariance matrix
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Figure 10: Comparison of Prediction Variance Estimates Produced by (a) DACE and (b)
the Implemented Algorithm

(C−1 in Equation 7) which was then used to calculate the augmented covariance matrix if

a particular candidate point were added to the model. The results of this test may be seen

in Figure 10.

In this �gure, the triangles represent the �ve points used to create the Kriging model. In

Figure 10b, the square in the lower left represents the candidate point that is being added

to the model (assuming that the response value at that point does not signi�cantly a�ect

the estimated model weights).

Note that in both Figures 10a and 10b, the prediction variance is smallest in the neigh-

borhood immediately around each point. Additionally, the prediction variance is relatively

low in the center of the space where all samples are somewhat nearby, and grows to large

values in the corners of the space, which are the farthest from the sample points.

In Figure 10b, the new sample point clearly reduces the nearby variance values. The

close agreement between the two images (both visually and numerically) as well as with the

expected behavior indicates that this aspect of the algorithm is functioning correctly.

4.6.2 Contributing Analyses: Weighting Function

After prediction variance, the next set of calculations to be veri�ed were those supporting

the weighting function. The weighting function was used to identify regions where additional
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experiments would best improve the Kriging model; errors in the calculation of the weighting

function would be harmful to the accuracy and e�ciency of the method.

The weighting function can be thought of as the probability that the value of the re-

sponse at a given test point falls within the region of interest. Equation 8 stated that the

weighting function is equal to the probability that the response will be less than the upper

threshold, minus the probability that the response will be less than the lower threshold.

Using Equations 9, 11, and 12, those probabilities can be calculated using only values for

the response and variance at that point, both of which can be calculated by the Kriging

surrogate model.

Conceptually, it was expected that the weighting function might exhibit a variety of

behaviors. If at some point the estimated response was between the two cuto� values and

the prediction variance was small, the weighting function at that point should be close to

1, which would indicate that there was a very high likelihood that the true response at that

point fell within the range of interest. As the variance grew larger (i.e., the con�dence in the

estimate decreased) there was an increasing chance that the actual response at that point

was outside the range of interest, and thus the weight would decrease. Alternatively, as the

predicted response moved farther from the region of interest the weight would decrease as

it became less likely that the actual response still fell within the region of interest.

Figure 11a depicts the predicted responses throughout the space based on the initial

space-�lling cases. In this example, the Kriging model uses a linear underlying model.

Recall from Equation 1 that the predicted response is a combination of the underlying

model, which captures the general trends of the response, and the covariance matrix which

accounts for deviations from that trend. In this case there are relatively few samples, and

the response predictions are dominated by the linear model. The covariance e�ects may be

seen only in the close vicinity of the sample points. The prediction variance for this example

may be seen in Figure 10a. In essence, the variance was small near the samples and large

near the edges of the space.

The calculated weights throughout the space are plotted in Figure 11b. The weights are

primarily driven by the predicted response: high weights are observed where the response
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Figure 11: Examples of Predicted CM & Weighting

is expected to fall within the range of interest, and low weights where the response is

far from the range of interest. The weight value smoothly tapers between those regions,

indicating points which are unlikely to have good response values, but with enough prediction

uncertainty that they cannot be ruled out entirely.

It is critical to note that the weighting function depends on the estimated response and

variance at each point. Comparing the actual response in Figure 9 and the predicted response

in Figure 11, it is clear that with only �ve samples, the initial Kriging model achieves only

a rough approximation of the response behavior. As a result, the algorithm may at �rst

select sub-optimal candidates due to imperfect information. The model is re-generated after

each sample, however, and will progressively improve itself as more information becomes

available.

Based on this qualitative assessment, the implementation of the weighting function ap-

pears to be functioning as intended.

4.6.3 Contributing Analyses: wIMSE Calculation

Having veri�ed the performance of various components of the algorithm, the behavior of the

algorithm as a whole could be assessed. The intent was to evaluate candidate points and

identify the one which most reduced prediction uncertainty (i.e. variance) in regions where
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the response value was within the desired range. It had been qualitatively demonstrated that

the algorithm correctly modeled how a new sample would a�ect nearby prediction variance.

It had also been qualitatively demonstrated that the algorithm could assign proper weights

to cases based on estimated response and variance values. It only remains to combine the

two features into a single scoring metric.

Weighted Integrated Mean Squared Error, or wIMSE, was the metric used to

rank candidates. The unweighted form, IMSE, was used by Kleijnen and Van Beers[97]

as an approximation of the overall prediction uncertainty in the design space. Integrating

the variance analytically would be di�cult at best; Kleijnen and Van Beers use numerical

integration, by way of adding up the variance at each point in a representative set of samples.

The candidate point that most reduced the unweighted IMSE could be thought of as the

point which best reduced overall prediction uncertainty.

The use of a weighting factor allowed certain regions to be emphasized and others down-

played. In this case, the weighting factor was large in regions with desirable response

performance � for example, regions where the vehicle pitching moment was close to zero �

and small in regions with poor response performance. Thus, the candidate with the smallest

wIMSE value was the case expected to most reduce prediction variance for the region or

regions of interest.

If the algorithm was functioning as intended, it should select candidates which promised

the largest reduction for prediction variance in regions of interest. It should, therefore, select

candidates in regions of large variance and/or in regions where the weighting function, as a

proxy for level of interest, was also large.

The algorithm was presented with a 23 × 23 grid of candidates and a 40 × 40 grid of

test points. Pitching moment coe�cient values at each of those points were calculated

by interpolating the 50 × 50 grid of Cart3D results. Grid sampling could quickly become

uneconomical for large real-world problems,[193] but for the problem at hand it o�ered the

signi�cant advantage of repeatability.

Given those candidates and test points, the variation of wIMSE score throughout the

design space could be calculated and depicted visually. Figure 12 shows wIMSE scores
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Figure 12: wIMSE Demonstration

for the grid of candidates. The most attractive candidate was the one that produced the

largest reduction in weighted variance, which corresponded to the smallest wIMSE score. In

Figure 12 this candidate is marked as a white solid circle.

Comparing this image with the estimated variance values in Figure 10a and the weights

in Figure 11b, a few observations can be made. The wIMSE values indicated samples in

the top-right and bottom-left corners were attractive, which matched the relatively high

prediction variances in those regions. Candidates close to existing samples were rated as

unattractive, which agreed with the observation that prediction variance in those regions was

already low; there was more room for improvement elsewhere. Finally, the upper-left corner

was considered to be signi�cantly more desirable than the lower-right corner even though

both had roughly equal levels of variance. This showed the in�uence of the weighting factor,

which favored candidates in the upper-left based on the high probability that those cases

had desirable response values.

Qualitatively, the algorithm appeared to be functioning as expected. The �nal test in

the set was to evaluate the performance of the algorithm quantitatively.
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4.6.4 Evaluation of Accuracy

Given the initial set of �ve space-�lling data points, the algorithm was used to select �fteen

adaptive samples. Kriging surrogates were created after each sample selection and used to

predict the pitching moment at candidate and test points throughout the space, once again

using the 23× 23 grid of candidates and 40× 40 grid of test points. In each round, after a

candidate was selected as the next sample, the actual pitching moment for that point was

determined by interpolating the 50× 50 grid of Cart3D analyses.

The distribution of the samples appears in Figure 13a & 13b. These images show the

initial �ve space-�lling cases (triangles), and �fteen samples selected by contour-based sam-

pling (circles). Figure 13b denotes the order of the samples chosen, laying them over a full

contour plot of the estimated response. The next point to be sampled is marked by a �lled

circle in Figure 13a and by the point labeled 16 in Figure 13b.

Based on the response values for the cases that had been sampled, the response behavior

throughout the space was estimated. Figure 13a shows the estimated region of interest,

based on the Kriging model, which is bounded by the smooth solid contour line marked

�−0.1�. The actual region of interest is bounded by the somewhat more erratic dotted line.

There is fairly good agreement between the two.

The next notable observation was the overall distribution of the samples selected by the

algorithm. Samples were clustered tightly together in the region of interest. The lower-right

area, where cases are highly unlikely to be of interest, was untouched except for the initial

space-�lling cases. If the samples were evenly distributed throughout the design space, more

samples would have been placed in this region in the lower-right. Instead, the algorithm

correctly identi�ed the region as being of low interest and did not place samples there.

Another observation deserving emphasis was the order of the samples. Figure 11 on page

93 shows the initial prediction of response behavior; the lower-left corner was also expected

to be of little interest. As seen in Figure 13b, the exploratory sampling which identi�ed this

region as interesting did not occur until the eighth or ninth round. Prior to that round, the

algorithm determined that interior samples would improve prediction variance more than

exploration of the edges of the estimated region of interest.
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Figure 13: Distribution of Samples & Order of Sample Selection

This is re�ected in Figure 14, which shows how the 2.5% and 97.5% prediction error

quantiles for the model changed as each new sample was selected and incorporated. Error

here was de�ned as Ypredicted − Yactual so that negative errors indicated too-low predictions

and positive errors indicated too-high predictions. The 2.5% and 97.5% quantiles represented

some of the most-negative and most-positive prediction errors made by the model. Note

that the 2.5% and 97.5% quantiles encompassed 95% of the prediction errors. The average

prediction error was between the two values.

For comparison, for each number of samples, equivalent-sized Latin hypercubes were

generated and used to build models. To minimize the chance that lucky or unlucky sample

distributions might skew the comparison, many hypercubes were generated for each sample

size. The number of hypercubes was increased until the average metric value displayed

relatively smooth trend behavior rather than erratic noisy behavior. To produce the results

illustrated below, three hundred2Latin hypercubes were generated for each sample size.

Note that after the �fteenth sample (i.e., the tenth adaptive sample plus the �ve initial

cases), the lower quantile for adaptive sampling improved markedly. This corresponded to

2The goal of hypercube sampling was to estimate the performance of an average space-�lling sample
design. Three hundred repetitions at each hypercube size gave fairly smooth average results without requiring
excessive analysis time.
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Figure 14: 2.5% & 97.5% Prediction Error Quantiles for Adaptive & Space-Filling Sampling:
Entire Space

a shift from predictions which were previously too low and were now closer to the correct

value. Prior to the tenth sample being placed there, the response in that region was expected

to be more negative than it truly was; after the tenth sample, the algorithm appeared to

have a �rm grasp on the interesting regions of the problem.

From Figure 14, the reader might conclude that the sampling algorithm and the aver-

age space-�lling sample distribution are roughly evenly matched for this problem. Before

drawing that conclusion, however, bear in mind that the main objective of this algorithm

was to maximize prediction con�dence and accuracy only for cases where the response value

is within some range of interest. To this end, the prediction error quantiles were again

calculated, but this time only for points where the response fell within the speci�ed range

of |CM | ≤ 0.1. Those quantiles, calculated for both the sampling algorithm and the Latin

hypercubes, are plotted in Figure 15.

When only the cases of interest are evaluated, the sampling algorithm was found to be

signi�cantly more accurate than the average Latin hypercube. After the tenth sample, the

sampling algorithm had successfully identi�ed and sampled all regions of interest within the

design space. The prediction error quantiles then became tightly grouped around the line

of zero error, in contrast to the quantiles for space-�lling samples.
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Figure 15: 2.5% & 97.5% Prediction Error Quantiles for Adaptive & Space-Filling Sampling:
Region of Interest Only

Unlike the previous image, here the quantiles for the average hypercube-based model did

not bracket zero, but rather both were below zero. Because the average error commonly

lies between the two quantiles, this result suggested a bias in the predictions of hypercube-

based models: the responses at interesting cases were being consistently under-predicted, a

behavior that was not observed in the adaptive sampling results.

4.7 Second Sampling Veri�cation Experiment: Perm Function

The Perm function is a test function used to evaluate the performance of optimization

algorithms.[196] This function can be generated with n dimensions where n is any integer;

for this application only two dimensions were used. The equation for the function is:

f (x) =

n∑
j=1

{
n∑
i=1

(
ij + β

) [(xi
i

)j
− 1

]}2

(14)

In this function, β can be varied which a�ects how closely the local minima approximate

the global minimum. The function is evaluated over the range −n ≤ xi ≤ n and the global

minimum is f (x) = 0 at xi = i where i = 1 · · ·n. For this experiment, β was set to 0.5 on

the recommendation of Hedar.[77] For this value of β, the function produces values from 0

to slightly over 100.
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The behavior of the function is plotted in Figure 16a. The function generally increases

toward the low end of each variable, and a hump is present in the center of the space. Due

to the interplay of these two behaviors, many of the points in the lower-left quadrant have

similar f (x) values. Selecting 60 ± 5 as the �range of interest� for this function results

corresponds to the region plotted in Figure 16b. This area has nonlinear edges and is mildly

concave.

Figure 16: Perm Function & Region of Interest

The sampling algorithm was applied to this test problem for the stated range of interest.

A 5-point Latin hypercube was used to initialize the algorithm, after which 15 samples were

selected. After each selection, a new Kriging model was trained and used to predict the

response values for the region shown in Figure 16b. The predictions were compared to the

actual response values for those points, and the prediction error and Root Mean Squared

Error (RMSE) for the predictions were calculated.[85]

RMSE =

√√√√√ N∑
i=1

(Ypred,i − Yactual,i)2

N
(15)

Additionally, 1,000 Latin hypercubes were generated for each sample size (e.g., 6, 7, ...).

A new Kriging model was trained for each hypercube and the model was used to predict

response values for the cases of interest. The average prediction RMSE for each sample size
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was recorded. The RMSE values produced by Latin hypercubes and contour-based sampling

are compared in Figure 17.

Figure 17: Comparing Predictive Accuracy for Perm Function Region of Interest

The model that used contour-based sampling started out with worse performance, and at

�rst it did not improve very rapidly compared to space-�lling samples. After 15 samples, the

model based on adaptive sampling had identi�ed the region of interest and had reduced its

prediction error by an order of magnitude compared to the average hypercube performance

with an RMSE of 0.160 versus 1.86 for hypercubes.

4.8 Third Sampling Veri�cation Experiment: Sphere Function

The Sphere function is another test function from the �eld of numerical optimization.[146]

It is a fairly simple function:

f (x) =
n∑
i=1

x2i (16)

This function can also take any number of dimensions; once again two dimensions will be used

for the sake of simplicity. The search domain for this function was set to −5.12 ≤ xi ≤ 5.12

based on the recommendation of Hedar.[78] This function has a global minimum of 0 when

xi = 0 for all i. The behavior of the function is shown in Figure 18a.

It was decided to make this evaluation more challenging than the previous tests. Rather

than choosing a convex region centered about the minimum value, the range of interest
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Figure 18: Sphere Function & Region of Interest

was de�ned to be 5 ≤ f(x) ≤ 15. Cases which met this criterion are marked with small

circular icons in Figure 18b. These cases were spread across a large portion of the design

space and the grouping was non-convex. Furthermore, the linear underlying trend of the

Kriging models was not a good match for this function, which meant that the estimated

response values used for the adaptive sampling algorithm might be signi�cantly inaccurate.

Once again, the predictive accuracy of the model which used contour-based sampling was

compared against the average prediction RMSE of 1,000 Latin hypercubes at each sample

size. The results of this comparison can be seen in Figure 19.

Models using the space-�lling samples once again showed smooth improvement, and after

15 samples reached diminishing returns as the response behavior was fairly well understood.

The model based on adaptive sampling, on the other hand, could at best be said to struggle

with this problem. The �rst 4 samples produced signi�cant decreases in predictive accuracy.

Subsequent samples showed a gradual improvement at a rate slower than the rate exhibited

by hypercube sampling. Only in the �nal 2 samples did the model based on adaptive

sampling identify the true form of the response and react accordingly.

The large vertical scale required to include all the data points precluded a detailed visual

comparison of the two methods at the end of sampling. It was found that after 20 samples,
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Figure 19: Comparing Predictive Accuracy for Sphere Function Region of Interest

the average space-�lling model could claim a prediction RMSE of 0.109 while the model

based on adaptive sampling produced an RMSE of 0.151. Although the adaptive model

showed substantial improvement, that does not excuse the poor performance which was

demonstrated for the bulk of the experiment.

The contour-based sampling algorithm was shown to perform well for problems which

have simple regions of interest, but the algorithm could be applied to other problems with

some accompanying loss of e�ectiveness. In addition, because a surrogate model is used when

evaluating candidate points, the accuracy of that surrogate model can signi�cantly a�ect the

e�ectiveness and e�ciency of the sample selection process. Even when the Kriging model is

a poor representation of the response behavior, continued sampling can eventually correct

this shortcoming. Unfortunately, there was no obvious way to know how many more samples

will be required before the algorithm would correct itself.

These experiments served to verify that the sample selection algorithm performed as

expected. Encouragingly, the algorithm had in many cases been shown to provide better

predictive capability for cases of interest compared to hypercube-based results. On the

strength of these results, the algorithm was extended to handle multiple responses simulta-

neously.
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4.9 Fourth Sampling Veri�cation Experiment: Two Inputs, Three Re-
sponses

The evidence so far, both as part of this e�ort and in the literature, had only demonstrated

contour-based sampling for a single response. With regard to the problem at hand, the

aerodynamic moments on vehicles must be controllable at all expected �ight conditions,

not one. The algorithm would thus be modi�ed to identify cases which were bene�cial

for multiple responses (i.e., cases which improved prediction accuracy for small pitching

moments at multiple �ight conditions) simultaneously.

This was accomplished by creating an overall sampling criterion which incorporated the

performance of a given candidate at all �ight conditions. For each candidate, the wIMSE

score is calculated at every �ight condition as detailed above. Once all wIMSE scores have

been calculated, the scores for each �ight condition are normalized (as given in Equation 13

on page 87) and then the average normalized wIMSE score is calculated for each candidate.

The combined score shall henceforth be referred to as joint wIMSE. This synthesizes the

wIMSE information and allows easy ranking of candidates. Before this approach can be

adopted, however, it must be demonstrated as e�ective.

To minimize data generation requirements, the data pool from the �rst sampling veri�-

cation experiment was retained. Additional data was generated for the same design space

at the other two �ight conditions, Mach 0.3, α 15◦, β 0◦ and Mach 0.8, α 0◦, β 0◦. The

response behavior for these two �ight conditions may be seen in Figure 20. Note the sharp

variations observed at Mach 0.8. Although the pitching moment was converged3 for all

cases or interpolated from nearby converged results, these sharp variations in response were

still observed. At the present time it is believed that they result from the transonic �ight

condition, a condition which the Euler CFD tool may be hard pressed to model.

Using the 50×50 grid of samples, cases of interest for each �ight condition are highlighted

in Figures 21a, 21b, and 21c. Figure 21d illustrates the cases which have |CM | ≤ 0.1 at all

three �ight conditions simultaneously. The jaggedness of the transonic response behavior

3Convergence for these e�orts was de�ned as a standard deviation of less than 0.05 and less than 5% of
the average response value when evaluated over the �nal twenty iterations of the �ow solver.
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Figure 20: Pitching Moment Coe�cient at Mach 0.3, α 15◦ and Mach 0.8, α 0◦

105



Figure 21: Cases of Interest at Each Flight Condition & At All Flight Conditions

could be inferred from the erratic distribution of cases of interest in 21b. The Mach 0.3

�ight condition was clearly the most restrictive, although there were cases which produced

an acceptable CM at Mach 0.3 but an overly-negative CM at Mach 2.5.

Once the algorithm was modi�ed to evaluate all three �ight conditions, sampling began.

The same �ve initial space-�lling samples were used for this experiment so that any devia-

tions from the previous sample selections may be attributed to the inclusion of additional

responses. The resulting distribution of samples is shown in Figure 22a. Comparing the
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samples selected against the regions of interest in Figure 21 suggests that instead of reduc-

ing prediction variance where all responses fall within the ranges of interest, the algorithm

selected cases where any response fell within the range of interest. Put another way, al-

though sample 2 was not expected to fall in or near the region of interest for Mach 0.3 or

0.8, it was of great interest for the Mach 2.5 model.

The resulting prediction accuracy for each response for cases of interest (i.e., the cases

in Figure 21d) are shown in Figures 22b, 22c & 22d. Note that after the ninth & tenth

samples � i.e., the fourth and �fth adaptive samples after the �ve initial space-�lling cases �

the prediction accuracy for each response improved dramatically. The �fth sample was very

close to the region of interest, resulting in drastic reductions for prediction error.

The distribution of samples was still much more scattered than might have been ex-

pected given the relatively few cases which were of interest for all responses. If the purpose

of the sampling were to identify cases of interest for any response, this behavior would be

acceptable. For the purpose of e�ective vehicle design, however, the algorithm must empha-

size the intersection of the regions of interest rather than the union. A research engineer[49]

suggested a strategy of excluding candidate points based on a probability of interest score.

At a particular candidate point, the probability that the response value would fall within

the range of interest could be calculated; this was already done for test points as part of

the weighting function, but was not necessary for candidate points for the one-response

problem. Calculating this probability for candidate points provided an estimation of how

likely the candidate was to fall within the region of interest for each response. Once this

probability had been calculated for all responses, the minimum value was referred to as the

�Probability of Interest� or POI for that candidate.

The user may then specify a required POI value before the algorithm begins. Any

candidate point with a POI less than the required value will be ignored and assigned an

wIMSE score equal to the highest observed value. This assigned wIMSE score designates

such points as uninteresting to the algorithm, ensuring that those points will not be selected

for sampling in that round.

Care must be taken when specifying a required POI value. Although POI calculations
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Figure 22: Initial Sampling (a) & 95% Prediction Error Quantiles for Cases of Interest at
(b) Mach 0.3, (c) Mach 0.8, & (d) Mach 2.5

108



are based on the best available Kriging surrogates at the time, those surrogates may not ac-

curately capture the true response behavior, especially when very few samples are available.

The estimated response in Figure 11 has only passing similarities to the actual response in

Figure 9. Furthermore, this sampling approach is intended for use when resources will only

allow a limited number of analyses, increasing the risk that the surrogate models may be

inaccurate in the early stages of sampling.

It is tempting to demand a high POI value for each sample to be sure that every point

falls in or near the region of interest. As the number of responses grows or the regions of

interest shrink � compare the region of interest at Mach 2.5 in Figure 21c to that at Mach

0.3 in Figure 21a � it becomes less likely that any candidate will meet the requirements,

especially for large design spaces. For this veri�cation problem, a POI requirement of 25%

is enough to disqualify every point in the 23× 23 grid of candidates.

If no candidate meets the required POI, the algorithm will select the candidate with

the maximum POI, i.e. the candidate that is the most likely to be in a region of interest

for every response. This is not necessarily a bad result, given that the point is likely to be

in a promising location, but if no candidates meet the required POI then their e�ects on

prediction variance are not considered. As a limiting case, a candidate might fall very close

to a previous sample which was in the region of interest. This candidate will probably have

a very high POI, but may be so close that it will not provide much new information about

response behavior. Another candidate, farther away, might have a lower POI but would

provide a much larger reduction in prediction variance.

This was demonstrated with a side experiment, in which the POI requirement was set

to 25%. Results are depicted in Figure 23. For the �rst adaptive sample selection, the

candidate with the highest POI was the one closest to the upper-left space-�lling point.

This candidate had a high POI value because that training point was the closest to having

good performance in all three responses, and because prediction variance was relatively

low in the region around the training point. The candidate point which was selected, being

extremely close to an existing sample, did not provide much new information about response

behavior which made it di�cult for the algorithm to learn from its mistake. This is shown
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Figure 23: Sampling For Required POI of 25% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5
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clearly in Figure 23a, where the algorithm primarily selected samples that were quite close

to the existing data set.

As a result, the prediction error for cases of interest improved very gradually. The

average space-�lling set of samples produced a surrogate which was approximately just as

good as the surrogate trained on contour-based samples, with the exception of the Mach

2.5 case (Figure 23d) where contour-based sampling still o�ered an improvement. In fact,

the model based on contour-based sampling with a POI requirement of 25% in this scenario

was less accurate than when no POI requirements were used at all (Figure 22). A more

tolerant POI setting would allow the algorithm to spread its samples out, and as a result

the accuracy of the Kriging models would improve much more rapidly.

The demonstration was repeated with a small POI requirement (1%), as shown in Fig-

ure 24. This time, most of the samples were clustered in the region of interest, with occa-

sional forays into other regions that might be promising. The prediction accuracy for all

three responses improved more rapidly than the other two cases shown.

In general, a low POI requirement would favor the selection of candidates which would

have a large e�ect on prediction variance, but might not lie in a region of interest for all

responses. A high POI requirement would encourage the selection of cases that were more

likely to lie in the region of interest, but might be less bene�cial from the perspective of

variance reduction. Essentially, the POI requirement can be thought of as a means for the

user to express a preference between exploration and exploitation.

Other POI requirement values were examined for this problem as well. The results

illustrated the e�ect of the POI requirement in greater detail. The three examples given

here should be su�cient to illustrate how the parameter a�ects the behavior of the algorithm;

the other results may be found in Appendix C.

4.9.1 Evaluation of Accuracy

The results of these veri�cation experiments indicated that the sample-selection algorithm

was functioning properly. Based on the available information, it estimated the predicted

responses and variances throughout the input space and selected samples which would reduce
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Figure 24: Sampling For Required POI of 1% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5
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prediction variance in speci�ed regions of interest. This reduction in prediction variance

corresponded to increased prediction con�dence and accuracy in those regions.

For problems with multiple responses, the Probability of Interest parameter was intro-

duced. This parameter allows the behavior of the algorithm to be tuned according to the

user's tolerance for samples which may not be of interest for all responses. Using this pa-

rameter, the algorithm was demonstrated to e�ectively and e�ciently select samples which

greatly improved prediction accuracy in the region of interest compared to space-�lling sam-

pling.

The demonstrations thus far have been done for a two-dimensional test problem. Prob-

able applications for this method in the �eld of vehicle design will likely feature many more

free parameters. The �nal test of the sampling algorithm, and by extension the �nal test of

Hypothesis 1, would feature multiple responses as well as a larger number of free parameters.

4.10 Larger Multi-Response Experiment: Nine Inputs, Three Responses

4.10.1 Selection of Additional Free Parameters Using Sensitivity Analysis

The free parameters for this experiment were selected using a series of sensitivity studies

based on the nested Latin hypercube cases that were analyzed in the original Reusable

Booster System e�ort by ASDL and AFRL. The data sets analyzed included at least eleven

thousand space-�lling samples at each �ight condition. The sensitivity studies were per-

formed in JMP, a statistical analysis program by SAS Software.[91] Each study attempted

to identify the e�ects of the forty-nine input parameters on the behavior of the vehicle

pitching moment.

The results of the sensitivity study were expressed as fractional contribution, the portion

of the observed variation in the response was expected to be due to variation of each input

parameter. These fractions were then averaged together to identify the parameters that had

the most in�uence on pitching moment for these �ight conditions. The top ten parameters

and the average sensitivity are listed in Table 3.

Scale was a parameter that set the overall size of the vehicle. Its presence in this list

was unexpected because the pitching moment coe�cient had already been normalized by the
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Table 3: Partial Sensitivity Study Results

Parameter Name
Sensitivity

Rank

Fractional

Contribution

Root Chord Fraction 1 15.82%

Fuselage Radius Fraction 2 9.69%

Nose Droop 3 8.53%

Nose Fineness Ratio 4 6.31%

Wing Airfoil

Maximum Camber
5 6.19%

Wing Half-Span Fraction 6 3.66%

Scale 7 3.62%

Area Ratio of

Vertical Tail to Wing
8 3.47%

Top Curvature 1 9 3.44%

Top Curvature 2 10 2.99%

reference area. A change in the Scale parameter was equivalent to a photographic scaling

of the vehicle, which should not a�ect the pitching moment coe�cient.

The magnitude of the sensitivity results held the solution. The parameters could be

grouped according to sensitivity values: parameters 2 & 3, parameters 4 & 5 and parameters

6 through 10. Many other parameters (not shown) had values close to 3%. It was inferred

that, because most of the parameters had approximately the same e�ect on the response

variation, the sensitivity test was not able to clearly di�erentiate between those parameters

given the data set used. A larger data set would have been able to better distinguish

sensitivity e�ects, but further data was not available.

In light of prior knowledge of how vehicle scale a�ects the response, it was decided after

consultation with AFRL to omit the Scale parameter and perform the sensitivity study using

the other nine parameters listed in Table 3. The ranges for the seven new variables which

will be included are given in Appendix B.
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4.10.2 Infeasibility of Grid Sampling for Test Data

Unlike the experiments with 2 free parameters, a grid search was not feasible over nine

parameters. For the two-parameter experiments, each variable was sliced into 50 equal

spaces, resulting in 2,500 cases for the full factorial analysis. Achieving the same resolution

over nine free parameters would require 1.95×1015 analyses. Even a three-level full factorial

sampling would require 39, or nearly twenty thousand, samples, almost ten times as many

as were used for the two-parameter experiments. Any grid search that could be executed

in a feasible time would necessarily have very low resolution. It was therefore decided that

for this experiment, it would be too computationally expensive to pre-run all the data that

might be necessary. Instead, each case would be analyzed as it was required.

As before, the algorithm was intended to preferentially sample cases in the region of

interest, where pitching moments were close to zero at all �ight conditions. Because the

default settings for the seven new parameters were all within their current ranges, it was

known that some cases of interest exist within the nine-dimensional space. Sixteen such

cases were already identi�ed for the two-dimensional experiments, all tightly clustered. More

cases of interest were desired, however: the more cases of interest available, the better the

prediction accuracy of various surrogate models can be evaluated.

4.10.3 Alternative Approach: Genetic Algorithms

At this stage of the research e�ort, time was considered more valuable than computing e�ort.

HPCC systems were available to analyze a large number of cases in parallel, and it had been

indicated that more resources could be allocated to the e�ort if necessary. Essentially, the

per-analysis cost on HPCC systems was negligible. The ability to run dozens or hundreds of

cases simultaneously allows a large population of cases to be evaluated in a timely fashion,

making genetic algorithms (GAs) an attractive option.

As Grefenstette states, �[w]hile classical gradient search techniques are more e�cient for

problems which satisfy tight constraints, GAs consistently outperform both gradient tech-

niques and various forms of random search on more di�cult (and more common) problems,
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such as optimizations involving discontinuous, noisy, high-dimensional, and multimodal ob-

jective functions.�[69] Although the response was expected to be continuous, the plot of CM

behavior at Mach 0.8 in Figure 20 (see Figure 20 on page 105) indicated that the pitching

moment at that �ight condition may be noisy. The relatively complex behavior observed

in the two-dimensional response at Mach 0.3, α 15◦ (see again Figure 20) indicated that

multi-modal behavior could not be ruled out. The 9 active input parameters here did not

unambiguously make the problem �high-dimensional,� but this application could be con-

sidered a warm-up: if the genetic algorithm method performed well in this case, the same

method would likely be used to identify test cases for the full-scale problem which has

49 dimensions. In light of these observations, a genetic-algorithm-based approach seemed

plausible.

Although GA optimization can be powerful, the method has its share of drawbacks. One

of the negative aspects of the genetic algorithm approach, the inability to guarantee that

a true optimum has been found, was immaterial in this case: it need only �nd cases with

small objective functions, not a global minimum. Another negative is that the technique

often requires a high number of function calls relative to other optimization techniques. This

was of no consequence when the per-analysis cost was considered minimal in light of HPCC

resources. The drawbacks of genetic algorithms were relatively minor for this application.

A review of the method is therefore appropriate.

4.10.4 Review of Genetic Algorithms

There are many di�erent approaches under the umbrella of Genetic Algorithm optimization,

and spatial limitations prevent them all from being discussed in depth in this document. For

a more thorough review, see chapter six of Holland's Adaptation in Natural and Arti�cial

Systems.[81]

The typical GA formulation will discretize each variable into a binary string. The number

of bits in the string describing that variable will determine the resolution for that variable. A

variable represented by one bit has two possible values (typically the minimum and maximum

values allowed); two bits allows the encoding of four values, and so on. The binary strings for
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each variable were concatenated to produce a single binary string, called a �chromosome,�

that described a particular case.

Most GA algorithms apply two operations to the nth population in order to generate the

(n+ 1)th population: reproduction and mutation. During reproduction, one or more �par-

ent� population members are selected and their objective function scores, or �tness values,

evaluated. The member with the better score continues on to the next step, which may

involve direct descent, genetic crossover, or a combination of the two. Direct descent adds

the member to the (n+ 1)th population as a �child� without any changes, which ensures that

good-scoring cases will remain as �breeding stock� in the next round. Genetic crossover, on

the other hand, usually takes two �parent� members and swaps a portion of the �genes� which

de�ne each case. In most applications, crossover is a probable but not certain occurrence.

The user determines the likelihood that crossover will occur, with typical values in the range

of 50�90% depending on the population size.[69]

Mutation is the �nal stage before a �child� becomes a member of the (n+ 1)th population.

If mutation occurs, a single bit in the child's chromosome is selected and �ipped. If the bit

had been a zero, it becomes a one and vice-versa. The mutation rate is also selected by the

user. As Raczynski describes it, mutation is applied �to introduce traits into a population

that otherwise would not exist... [s]ince reproduction only produces o�spring that are based

on the parents, if a certain value in the chromosome is not found anywhere in the parent

population, then it will not be anywhere in the o�spring.�[158] A larger mutation rate will

increase the genetic diversity of the population at the cost of a reduced convergence rate

due to the randomness that is introduced. Common mutation rates are in the neighborhood

of 3�5%.[69]

Before a GA-based approach could be applied, however, the objective function by which

population members would be ranked had to be speci�ed.

4.10.5 De�ning the Objective of the Genetic Algorithm

When multiple responses are important, an overall objective function may be constructed,

such as by a weighted sum.[29] This overall objective function allows each population member
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to be described by a single ��tness� score that quanti�es its desirability. In this case, a simple

additive objective function was constructed:

ObjFunc =
N∑
i=1

wi|CM,i| (17)

Here, wi is the individual weighting function for �ight condition i, and |CM,i| is the

absolute value of the pitching moment coe�cient at �ight condition i. N is the total number

of �ight conditions being considered.

The goal was to promote cases with |CM | ≤ 0.1; once this was achieved it was not

important to drive the pitching moment at that �ight condition to be smaller. Toward this

end, a conditional weighting was applied:

wi =


10 if |CM,i| > 0.1

1 otherwise

(18)

As |CM | decreases, this weighting function results in large objective function reductions

(i.e. improvements). This holds true until |CM | falls below the threshold of interest (0.1),

after which any further reduction in that pitching moment produces only a fraction of the

previous rewards. The weighting function was applied equally to every �ight condition.

4.10.6 Tailoring a Genetic Algorithm for the Current Application

A custom GA was synthesized for this application. Most GAs retain a �memory� of only one

or two populations. It was expected that any desirable population members will be retained

in the active population, and indeed direct descent explicitly tries to make sure that the best

population members appear in the next population. For this application, it was decided that

it was not worthwhile to spend time re-evaluating a case that had previously been analyzed.

Instead, a history of observed �tness scores was maintained.

Each time a population was analyzed, its members and their associated objective function

scores would be added to this population history. This population history would then be

sorted by objective function, and the �ve hundred cases with the best objective scores would
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be pulled out as �breeding stock.� These cases would then be subjected to crossover and

mutation to produce the next population for analysis.

For every CFD analysis, there was a small but non-zero risk that the analysis would fail

to produce a result. The geometric utility might not build the outer mold line properly,

the �ow solver might not converge adequately, or it might converge to a nonsensical result.

E�orts were made to mitigate these risks, as described in Appendix B, but the chance of

a failed case could not be entirely negated. This risk was compounded by the fact that

each case was simulated for multiple �ight conditions. If a case failed to converge to a

plausible result at any �ight condition, that case was omitted from the list of results. To

avoid re-running such a case, a list of attempted cases was maintained, separate from the

list of �nished cases.

Thus, the GA implemented for this application proceeded as follows: First, the total set

of observed results was sorted based on objective function value, and the best �ve hundred

results were used as �breeding stock.� Two members from this set were selected and their

objective functions compared. The member with the better objective score was retained. A

random number was generated on the range from 0 to 1, and if the value was less than the

likelihood of crossover (70%), crossover occurred.

When crossover occurred, another population member was selected from the population,

and �starting� and �stopping� locations on the chromosome were picked via random number

generation. The genes between these two indices on parent A were transposed to the same

locations on parent B, while the same genes on parent B were moved to parent A. This

produced two new cases, each of which continued the process.

Whether or not crossover occurs, there was a chance for each case to experience mutation.

For this application, a wide variety of results was more desirable than a rapid convergence of

the method; additionally, although excessive mutation might in some applications introduce

so much randomness that progress is impossible, the retention of every observed result

mitigated this concern. A relatively large mutation rate of 10% was therefore used. A

random number was generated on the range from 0 to 1 and compared to the mutation rate.

If the random number was less than the speci�ed mutation rate, mutation occurred and one
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random bit in the chromosome was �ipped.

After the mutation operator, the case was �nished and ready to enter the new population.

Before this happens, it was compared against the list of cases that had been attempted

previously, as well as the cases that were already in the new population. If the case matched

a pre-existing one, it was discarded; if not, it was added to the new population.

This process was repeated until the new population contained �ve hundred new, unique

cases. All members of the new population were then added to the list of pre-existing cases to

ensure that they would not be duplicated in a future population. Note that ordinarily, there

would be some chance that an old population member could be added to the new population

unchanged (27% chance, for the speci�ed probability values). All such cases were rejected by

this formulation, and only population members which experienced crossover and/or mutation

would enter the new population. As a result, the proportion of �children� which experienced

crossover or mutation was higher than 70% and 10%, respectively. In tests, these proportions

were commonly closer to 95% and 13%. Once again, these crossover and mutation rates

were signi�cantly higher than the recommended values cited by Grefenstette.[69] However,

Grefenstette assumes an algorithm that has no memory beyond the current population, and

in particular warns that high mutation rates risk introducing so much noise that progress

could be lost between generations. In the current application, each new generation was based

on not only the generation immediately preceding it but the best results ever observed, so

the risk of losing a good �bloodline� was not present.

4.10.7 Results of Genetic Algorithm Search

Each of the nine parameters was described using an eight-bit string, allowing 256 possible

values for each parameter. The algorithm was initialized with a �ve hundred point space-

�lling design. Once those cases had been analyzed at each �ight condition using Cart3D,

the overall objective function de�ned by Equations 17 & 18 was used to calculate a score

for each case. The cases were then subjected to the GA algorithm, which produced a set of

�ve hundred new cases for analysis. A total of twenty-�ve batches were selected by genetic

algorithm. Those batches plus the initial space-�lling set totaled 13,000 cases, of which 1,470
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had |CM | ≤ 0.1 at every �ight condition, a success rate just over 11%. This was deemed a

su�cient quantity of test data.

Now that a block of cases of interest was available, the sampling experiment could begin.

The hypothesis being tested was that:

Contour-based sampling will balance the selection of cases with good

performance and the reduction of prediction uncertainty in promising

regions, identifying samples that e�ciently improve surrogate accu-

racy for con�gurations with small aerodynamic moments.

To test this hypothesis, a set of space-�lling samples and a set of samples selected by

contour-based sampling (CBS) were collected and surrogate models trained using each. The

accuracy of the resulting models were then compared. The test would depend on prediction

accuracy for cases of interest. This test would quantify the prediction error using the

cases of interest identi�ed by the genetic algorithm as detailed above. This prediction error

would be quanti�ed using Root Mean Square Error.[85]

It should be emphasized that this hypothesis did not claim some absolute level of perfor-

mance, but rather a relative improvement in performance. The expected result was that the

CBS-based surrogates would produce smaller RMSE values for a given number of samples

and/or equal RMSE values for a smaller number of samples. If the CBS-based surrogates

were found to achieve this objective, this hypothesis would be considered to be supported.

Before contour-based sampling could be applied, an initial set of samples was required to

create the initial surrogate models for candidate evaluation. It was decided that this initial

set of samples would be used by both the space-�lling and the adaptively-sampled approaches

to eliminate the risk that one or the other method might bene�t from a particularly lucky

or unlucky sample distribution. A initial sample size of �ve hundred cases was selected as

being large enough to roughly approximate the behavior of the response while still leaving

ample room for improvement. All Kriging models in this experiment, both for space-�lling

and adaptively-sampled cases, would use quadratic �ts and Gaussian correlation models.

In order to generate a small space-�lling set of cases that could be augmented without
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losing the space-�lling properties, a nested Latin hypercube[152] was selected to generate

the space-�lling sample set.

4.10.8 Null Hypothesis: Space-Filling Samples

The nested hypercube for this e�ort contained multiple space-�lling subsets ranging from

500 to 16,000 cases, progressively doubling in size. The maximum size was intended to be

substantially more than the experiment would require to minimize the risk that additional

space-�lling cases would be needed. It was expected that this experiment would use Kriging

models, which become unwieldy when applied to a pool of more than a few thousand points,

so the null hypothesis would primarily depend on the hypercubes of size 500, 1,000, 2,000 and

4,000 cases. The remaining cases would be available if larger sample sizes became necessary.

This was not considered likely, but the marginal cost for the extra capacity was negligible

and would be a useful resource if experimentation revealed that more samples would be

necessary. Of these prepared cases, only 4,000 were deemed necessary and analyzed.

Because these samples could be selected simultaneously without any knowledge of the

response behavior, these analyses were comparatively simple to prepare. Parameter values

for each case were passed to the PaceLab tool,[61, 142] which de�ned the vehicle outer

mold line (OML) using a triangular mesh that could be interpreted by the �ow simulation

software. Because all cases for this set were selected in advance, the analysis required little

oversight by the experimenter.

Although samples were quite easy to select, not every case ran successfully. Cases were

excluded from the �nal data sets for a variety of reasons. These reasons included di�culties

creating the surface mesh, a lack of convergence in the �ow solver results, or very rarely

convergence to nonsensical results such as negative drag. More information about these

di�culties, as well as e�orts to mitigate them, may be found in Appendix D. If a case did

not produce well-behaved, numerically-converged results at every �ight condition, that case

was excluded from the �nal data set. As a result, roughly 70% of the space-�lling cases were

included in the �nal data set.

Once the analysis results for the common core of space-�lling data were available,
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contour-based sampling commenced.

4.10.9 Alternative Hypothesis: Contour-Based Sampling

The 500 space-�lling points from the nested Latin hypercube were used as the initial data

set for the contour-based sampling algorithm. Of those 500 cases, 370 converged successfully

at all �ight conditions. Before the sampling algorithm could be applied in earnest, a handful

of technical decisions had to be made.

4.10.9.1 Rate of Model Updates

In the adaptive-sampling literature, it is typically assumed that after the most desirable

sample is selected, that response value or values for that sample are available immediately.

To facilitate this, researchers demonstrating adaptive sampling algorithms often either use

analytical functions as responses or generate a large pool of data in advance.[113, 149,

159] In the present application, the aerodynamic analysis was being performed on remote

computing systems, and the authentication procedures required to access those systems did

not allow automated login or �le-transfer without an authorized human in the loop.[200]

This limitation made it impractical to analyze each sample as it was selected. As for pre-

generated data, although that approach was used for the two-dimensional demonstrations

of contour-based sampling, the present nine-dimensional space was deemed too large for full

a priori sampling.

An alternative was sought to analyzing each case as it was identi�ed. Mackman and

Allen describe a modeling approach in which multiple samples are taken without updating

the surrogate model.[112] This approach was adopted and modi�ed slightly to re�ect di�er-

ences in the sampling objectives: Mackman and Allen seek samples in regions of response

nonlinearity and regions of low sample density. Their decision to not update the surrogate

model a�ects the calculation of nonlinearity but not sample density, and so even without

updating their surrogate there is no risk that any sample would be placed too close to the

others.

Contour-based sampling, on the other hand, used Kriging models to estimate the re-

sponse and prediction variance at a given point; if a sample was not added to the model, the
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estimate for prediction variance would not re�ect the e�ects of that sample, and there was a

risk that multiple samples would be selected in the same region � samples which might have

been more e�ectively placed elsewhere. To avoid this, each sample had to be added to the

Kriging model once selected so that later calculations would properly estimate prediction

variance. There was a mild complication due to the fact that the actual response value at

that point could not be known until after it was analyzed; this was addressed by estimat-

ing the response at that point using the current Kriging model, adding the point and its

estimated response to the Kriging model, and updating the Kriging model once the actual

response value was known. A set of cases selected between CFD analyses was referred to as

a �batch.�

This decision raised a new question: how many samples should be selected before they

are uploaded for analysis? Whenever new analysis results were added to the data pool,

surrogate models could be re-trained to re�ect the most up-to-date information. Analyzing

each sample immediately would mean that all subsequent sample selection would be based

on the best information possible. Conversely, delaying sample analysis and using the current

surrogate models as stand-ins meant that the surrogates would not be updated as often, and

thus would not be as accurate as they might have been. As a result, later sample selections

would be based on information that was not as accurate as it might have been.

A larger number of samples per batch would result in decreased human workload but

might reduce the overall e�ectiveness of the sampling algorithm. For this experiment, it

was decided that batches of 50 cases ought to be an e�ective compromise between human

workload and losses due to imperfect information. In light of the 70% success rate observed

with the space-�lling cases, selecting 70 cases per batch was expected to result in 50 useful

results. Each batch would therefore be comprised of 70 cases. Attention then turned to

selecting values for the free parameters of the algorithm.

4.10.9.2 Setting Values for Algorithm Parameters

The sampling algorithm has various free parameters that can be adjusted to match the

user's preference. These free parameters include the required Probability of Interest (POI),
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the number of candidate points being evaluated in each round, and the number of test

points used in the evaluations. These parameters interact to determine the behavior of the

algorithm.

As mentioned in Section 4.3, a larger number of test points would give the algorithm

a larger set of options from which to choose the next point, but would result in increased

computational e�ort per selection. A larger number of test points would provide a more

complete understanding of how each candidate would a�ect prediction variance throughout

the space, but would also result in increased computational e�ort. A higher POI requirement

would exclude more candidates from consideration, reducing the e�ort required to select a

new point, but might handicap the algorithm's ability to explore the design space (as shown

in Section 4.9). If the computing resources are �xed, it might be more useful to translate

the required computational e�ort per sample selection into terms of time elapsed per sample

selection. The processing times that are cited in this section were from tests using two

parallel quad-core Intel 2.83 GHz processors and 4 gigabytes of RAM.

Each case was selected from an 800-point Latin hypercube of candidate points; the

candidates were evaluated using a separate 1,200-point Latin hypercube. New hypercubes

were generated each time a new point was selected, as suggested in the original paper by

Picheny et al.[149] to reduce the risk that any important portion of the design space is

neglected during the sampling process.

Within each batch, the required POI was varied. In particular, a more-restrictive re-

quired POI was used for early samples, encouraging the algorithm to prioritize the most

promising regions, and this value was progressively reduced to allow a wider variety of can-

didates to be considered. This approach was intended to maximize the e�ectiveness of the

batch as a whole. In Section 4.9 it was demonstrated that when the POI requirement is

high, the algorithm tended to select cases closer to regions that it had already sampled.

4.10.9.3 Early Observation: Low POI Values

In the initial batches, the �rst 5 rounds were given a required POI of 10%. The required POI

was then progressively reduced to a minimum of 1%. The per-case selection times ranged
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from around 3 minutes for the highest POI to around 2 hours for the lowest POI. When the

e�ects of these settings were investigated, it was found that even for repeated samplings, no

candidates were found to have a POI value exceeding 9%.

A set of candidates was investigated in order to determine the reason for these low

probability of interest scores. Recall that to calculate POI score for a candidate, all predicted

responses for that candidate were considered. Based on the predicted response values and

the prediction variance in each response, it was possible to calculate the likelihood that

the actual response values for that candidate fell within the speci�ed ranges of interest.

This likelihood was calculated for each response, and the lowest likelihood value was the

probability of interest for that candidate.

It was found that the Mach 0.3 pitching moment was the response least likely to fall

within the region of interest for almost every candidate that was investigated. The candidate

with the highest POI score (8.56%) was predicted to have a CM at Mach 0.3, AoA 0◦ of -0.06,

which is de�nitely within the range of interest. The estimated variance for that prediction,

however, was 0.86 � very large compared to the range of interest, which had a width of

0.2. Thus, even though candidates were predicted to have attractive response values, the

prediction con�dence was so low that every candidate received low POI scores.

There were two possible interpretations for this behavior. The �rst interpretation was

that the Kriging surrogate for Mach 0.3 had low con�dence in the region of interest because

it had not yet sampled those regions adequately yet, and candidates with higher POI scores

could not be generated until more analysis was completed. The second interpretation was

that the candidate points that were being analyzed were sampling the space too sparsely,

and more-attractive candidates could be identi�ed by a denser sampling.

To determine which interpretation was correct, the number of candidate points was

increased from 800 to 3,000 for the �fth batch of samples. The number of test points

remained 1,300. Once again, no candidates were identi�ed to have POI scores above 10%.

To avoid a four-fold increase in sample selection time, the POI requirements were increased

until roughly the same number of candidates would meet the requirements. The number of

candidates was brie�y increased to 9,000, and again no candidates were found to have high
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POI values.

Based on this evidence, it appeared that high prediction variance for the Mach 0.3 �ight

condition was driving the low POI scores, even for relatively dense distributions of samples.

In universal Kriging models, the prediction variance is in part driven by the ability of the

underlying linear or quadratic model used in the predictor to replicate the data points.

When the underlying model captures response behavior well, the prediction variance will be

low; when the observed data is not well-matched by the underlying model, the prediction

variance will be high, indicating that the response is more likely to be far from the prediction

of the underlying model.

Going back to Equation 4 on page 81, it should be noted that the process variance is an

important factor in the estimation of prediction variance. This is particularly clear when

it is known that c(x) and C, the covariance vector and matrix, may also be written as the

product of the process variance and the correlation vector and matrix, respectively. Thus,

the prediction variance estimate is directly proportional to the process variance. This process

variance is estimated by the DACE toolbox when �tting a model to each response. When

the estimated process variance was investigated for the space-�lling and CBS-based models,

it was found that the average estimated process variance value for Mach 0.3 CM models was

1.36, while for Mach 0.8 and 2.5 CM models the values were 0.13 and 0.30, respectively.

This indicated that the Kriging models for Mach 0.3 CM were signi�cantly more dependent

on correlation e�ects to match the observed responses, rather than the underlying quadratic

model, and thus only candidates very close to existing samples would have small prediction

variances.

After these observations were made, it was accepted that increasing the number of can-

didates evaluated was not likely to result in more attractive candidates, and the number of

candidate and test points were left at 3,000 and 1,300, respectively. Ultimately, 10 batches of

adaptive sampling cases were selected and analyzed. The results were then �t with Kriging

models and the predictive accuracy of those models quanti�ed.
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4.10.10 Evaluation of Accuracy

The various models would be evaluated using the cases of interest identi�ed via genetic

algorithm, as described in Section 4.10.6. This data set was comprised of 1,471 cases, each

of which exhibited pitching moments within ±0.1 at all 3 �ight conditions. The hypothesis

being tested was that:

Contour-based sampling will balance the selection of cases with good perfor-

mance and the reduction of prediction uncertainty in promising regions, identi-

fying samples that e�ciently improve surrogate accuracy for con�gurations with

small aerodynamic moments.

In order to consider this hypothesis supported, then, the Kriging models based on sam-

ples selected by contour-based sampling should be more accurate � that is, should have less

prediction error � than models based on space-�lling cases.

To test this, Kriging models were created using the di�erent sets of points. After ten

rounds of contour-based sampling, the adaptive data set contained a total of 913 cases: the

initial 500-point space-�lling design, of which 363 or 73% met all convergence requirements,

plus 550 adaptive points, or 79% of the selected cases. As for the nested Latin hypercube

which served as the space-�lling sampling, a number of training data sets were available.

The �rst set which was larger than the largest adaptive set was the 2,000-point hypercube,

of which 1,387 cases or 69% met all convergence criteria.

As a result, the space-�lling data sets used to test this hypothesis were the 1,000- and

2,000-point hypercubes. The 500-point hypercube was shared by both methods as common

ground. The adaptive data sets included the shared hypercube points, and each adaptive

data set was added in turn to illustrate how each batch of samples a�ected prediction

accuracy. Kriging models were built using each data set in turn, and then the predictive

accuracy of every model was tested.

4.10.10.1 Using Root Mean Squared Error

To evaluate the accuracy of each surrogate model, it was used to predict the three response

values (i.e. pitching moments) for every case of interest in the test set. The actual values
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were then subtracted from the predicted values to obtain prediction errors. The prediction

errors for each response were then used to calculate the Root Mean Squared Error, or RMSE,

for that response using Equation 15.[85]

Figure 25 shows the RMSE scores for each combination of model and response. The

models based on contour-based sampling (CBS) are represented with circular icons, while

models based on the space-�lling nested Latin hypercube (NLHC) samples are represented

with square icons.

Figure 25a shows the RMSE values for the �rst �ight condition, Mach 0.3 α 0◦. It is

clear that models based on CBS cases have improved predictive accuracy compared to the

models based on NLHC cases. For an equal number of samples contour-based sampling

could produce an RMSE 10% less than the 1,000-point NLHC training set. Alternatively,

to achieve equivalent prediction accuracy for this response, contour-based sampling required

only one batch of samples, producing an RMSE of 0.630 using 416 cases versus the space-

�lling RMSE of 0.643 using 710 cases. This would be a savings of 41% of the space-�lling

sample evaluations.

Note, however, that the last few CBS models exhibited a shallower slope than that of

the NLHC models. If this trend were to hold constant, the 2,000-point NLHC model would

out-perform a equally-sized CBS model. Twice in the early rounds � during the �rst and

fourth rounds, speci�cally � the prediction accuracy increased relatively sharply. No such

jumps occurred after the fourth round of sampling.

Interestingly, the �fth round of adaptive sampling was when both the number of can-

didates and the required POI were increased. This is suggestive, especially in light of the

observation from Section 4.9 that the POI requirement sometimes causes the algorithm to

stay close to known points rather than exploring the space. It is possible that in this case, the

increased POI requirements which were intended to keep the sample selection time within

acceptable limits had a secondary e�ect: those requirements may also have constrained the

algorithm to only evaluate relatively conservative candidates, those which fell quite close

to existing samples. These candidates had a high likelihood of falling within the region of

interest, indicated by their high POI scores, but because they were close to known cases the
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algorithm's understanding of response behavior did not progress very rapidly. This is an

intriguing idea, and further study may be worthwhile.

In the meantime, Figure 25b shows the second �ight condition, Mach 0.8 α 0◦. In this

case, the 1,000-case NLHC model was less accurate than the 500-case model. It would seem

that, by attempting to model this set of training cases as accurately as possible, the resulting

Kriging model actually did a worse job of predicting the region of interest. The 2,000-case

NLHC model o�ered predictive accuracy that is better than both smaller NLHC models.

The CBS models showed an even faster rate of improvement than for the previous re-

sponse. After ten rounds, the prediction RMSE score had improved by one-third compared

to the original 500-point NLHC model. This is not to say the progress was smooth: the third

CBS model actually had slightly worse prediction accuracy than the preceding model. This

hiccup is quickly recti�ed though. Note that again, after the fourth batch of samples, the

improvement in the CBS models was consistent but somewhat slow relative to the progress

that was made by the earlier batches.

After the fourth batch of adaptive cases, the CBS models were more accurate than the

2,000-point NLHC model despite using only 556 samples compared to the 1,387 of the NLHC

set. Put another way, equivalent accuracy � CBS RMSE of 0.463 compared to NLHC RMSE

of 0.471 � was achieved using less than half the number of samples.

Lastly, Figure 25c illustrates the third �ight condition, Mach 2.5 α 0◦. The NLHC

models exhibited smooth, steady improvement as the number of samples was increased. The

CBS models, on the other hand, exhibited behavior that was somewhat less than intuitive.

The very �rst batch of samples resulted in a markedly worse predictive accuracy, and it

took 3 batches of samples until the predictive accuracy was as good as before contour-

based sampling began. It is believed that the �rst batch of CBS cases, while demonstrably

bene�cial for the accuracy of the other models, resulted in a less-accurate model for the

third response. It was gratifying to see that the algorithm was error-tolerant, rectifying the

early inaccurate models and still o�ering better accuracy.

The space-�lling models showed approximately linear improvement as more cases were

included. The adaptive models showed what was roughly a linear trend with a steeper
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Figure 25: Prediction Accuracy for Cases of Interest: RMSEs at (a) Mach 0.3, α 15◦; (b)
Mach 0.8, α 0◦; & (c) Mach 2.5, α 0◦
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slope, but some suggestion of becoming less steep in the later rounds. There was a slightly-

larger-than-average improvement between the �fth and sixth batches. This indicated that

increased POI requirements for these batches did not negate the chance of a breakthrough,

although those chances might have been restricted somewhat.

4.10.10.2 Summarizing the RMSE Observations

�That which is overdesigned, too highly speci�c, anticipates outcome; the antic-

ipation of outcome guarantees, if not failure, the absence of grace.� � William

Gibson[64]

In general, it was seen that contour-based sampling did indeed produce surrogate models

that had better predictive accuracy than those based on a priori space-�lling sampling. For

a given number of space-�lling samples, contour-based sampling was shown to o�er the user

the choice between achieving the same performance (quanti�ed here by prediction accuracy)

using fewer samples, or achieving better performance using the same number of samples.

In essence, the proposed sampling method created the opportunity for interplay between

the observed responses and the samples that are selected, often producing a more e�ective

sample distribution than could have been selected a priori.

The hypothesis that was being tested was that:

Contour-based sampling will balance the selection of cases with good

performance and the reduction of prediction uncertainty in promising

regions, identifying samples that e�ciently improve surrogate accuracy

for con�gurations with small aerodynamic moments.

The preceding evidence has shown that contour-based sampling did in fact improve

surrogate accuracy for con�gurations with small aerodynamic moments. In light of this

evidence, Hypothesis 1 was considered to be supported.
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CHAPTER V

EVALUATING MULTI-FIDELITY MODELING & UNCERTAINTY

The previous chapter evaluated the �rst supporting hypothesis, which addressed the process

of selecting the most useful data points. The best way to leverage those data points has not

yet been addressed. That is the purpose of this chapter.

Section 3.2 described a number of alternative multi-�delity techniques which would allow

the user to estimate a response value using multiple sources of data. These techniques

included data harmonization, additive correction, proportional correction, and Ghoreyshi

cokriging. Eventually the predictive accuracy of these techniques will be compared; �rst,

though, each method needed to be implemented

5.1 Implementing the Methods Under Consideration

Most of the methods are fairly straightforward variations on a single-�delity Kriging model

once the low-�delity response values are available. The most challenging aspect of their

implementation was the modi�cation of the DACE Kriging toolbox to incorporate user-

de�ned uncertainty estimates in the form of nuggets.

5.1.1 Kriging With Nuggets

This description of Kriging with nuggets is based on the work of Gramacy & Lee.[66] To add

a nugget to the Kriging mathematics (given in Section 4.2) is fairly straightforward. The

covariance matrix C, which describes how the existing training data points relate to each

other, is augmented by an extra term along its diagonal. Put more precisely, the entries of

C are calculated as:

C∗ (xj , xk|g) = C (xj , xk) + δj,k
g

σ2
(19)

Here, C (xj , xk) is the covariance between any two points xj and xk, calculated using

a user-selected covariance function such as the Gaussian function (given in Equation 3 on
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page 80). σ2 is the process variance of the response, which � if not known in advance �

is commonly estimated while �tting the Kriging model to the data. g is the nugget, an

expression of the inherent uncertainty in the measured response values. This uncertainty

may stem from measurement errors or �micro-variations� operating at scales too small to

be captured by the available data, either of which would manifest as �white noise� in the

response behavior.[67, 93] Note that g is always > 0 and has the same units as the process

variance. δj,k is the Kronecker delta function,[165] which is given as:

δj,k =


1 if j = k

0 otherwise

(20)

The DACE Kriging toolbox already adds a small nugget, with a value on the order of

machine precision, to the covariance matrix; see Section 5.1 in Lophaven et al.[108] for more

details. This nugget is intended to regularize the system of equations and increase numerical

stability for ill-conditioned problems. The DACE function dace�t.m contains the code which

�ts a Kriging model to data points. For reference, the nugget is added to the covariance

matrix on lines 127�129 of this function.

This application of a nugget adds a constant value to every diagonal term of the covari-

ance matrix. This is a common approach, especially when the nugget is intended to improve

numerical stability (as in the DACE toolbox) or when measurement error is considered to be

constant for every measurement.[93, 95, 182] However, it is also possible to apply a di�erent

nugget value to each diagonal term, as described by Yin et al.[197] Such an approach would

capture any variances which were not constant throughout the design space, such as that

stemming from the iterative solver of Cart3D.

Once the portion of DACE code which applied the stabilization nugget was identi�ed,

modi�cations were made so that other nugget values could be speci�ed. The dace�t function

was extended to allow the user to pass an extra vector of inputs which contained nugget

values for each data point. This extension was relatively simple since, as previously noted,

dace�t already generated the machine precision nugget as a vector and added it to the covari-

ance matrix. The only change that needed to be made was to add the user-speci�ed vector
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to the existing vector of nuggets, and to modify the function input-output speci�cations so

that the extra input parameter would not cause an error message.

Note that in Equation 19 the nugget is scaled by the process variance, which is unlikely

to be known in advance. To obtain this value, DACE is �rst used to �t the model as if the

data were noiseless. The resulting model includes an estimate for the process variance. The

desired nugget may then be divided by the process variance so that it is in the format that

the modi�ed dace�t function expects. Casual tests indicated that the addition of a custom

nugget in this manner does not signi�cantly alter the estimated process variance value.

This modi�cation was necessary to implement data harmonization; conveniently it was

the only change necessary to allow the other multi-�delity methods to incorporate uncer-

tainty via nuggets as well. Due to their relatively simple formulations, these other methods

will be described in detail before data harmonization is treated.

5.1.2 Additive Correction

An additive correction model is conceptually the simplest. One may be constructed by

taking the di�erence between the high-�delity (Yhigh) and low-�delity (Ylow) results for a

set of training data (X):

Ydiff = Yhigh − Ylow (21)

A Kriging model would then be �t to this di�erence, Ydiff . To estimate the response of

the high-�delity code at some new point x, predictions are made for the low-�delity response

value and the value of the di�erence. These predictions are then added together to estimate

the high-�delity response:

ˆYhigh = Ylow + ˆYdiff (22)

The symbolˆdenotes a value that is estimated rather than obtained from a data source.
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5.1.2.1 Using Surrogate Models for Low-Fidelity Data

If the low-�delity source of data runs quickly enough, it can be used directly to calculate

the low-�delity response whenever required. Typically this would include every point in the

training data set, as well as every point for which a high-�delity response must be predicted.

In the case of contour-based sampling, the category of points for which the high-�delity

response must be predicted would include all candidate and test points in every round.

For large problems incorporating thousands of candidates and test points, unless the low-

�delity analysis runs exceedingly quickly � much faster than a second per case � it may be

worthwhile to create a surrogate model of the low-�delity analysis rather than waiting for

the low-�delity model to process all the necessary cases.

By replacing the low-�delity data source with a surrogate, another source of uncertainty

is introduced: the discrepancy between the response estimated by the surrogate and the

response calculated by the low-�delity data source. The process of estimating this uncer-

tainty will depend on the type of surrogate model that is used. If a response surface or

arti�cial neural network is used, the prediction variance may be estimated from the Model

Representation Error (MRE) standard deviation, calculated as part of the goodness-of-�t

checks.[36] Alternatively, a Kriging model of the low-�delity response can analytically cal-

culate the prediction variance at any given point. Either way, this uncertainty should then

be included as a nugget when �tting a Kriging model to Ydiff , as that value depends on the

low-�delity prediction.

Uncertainty data pertaining to individual high-�delity data points, such as solution

convergence, would also be included in the nugget for the Ydiff Kriging model. Uncertainty

due to model limitations, which would be considered aerodynamic variances in Section 3.5.3

on page 66, would not be included in the nugget. This is because additive correction is

intended to produce a surrogate model that matches the response from a particular source

� such as the pitching moment calculated by Cart3D � rather than trying to estimate the

�true� response � such as the pitching moment measured by a full-scale �ight test vehicle.

This di�erence is crucial and will be revisited in later sections.
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5.1.3 Proportional Correction

The proportional correction approach is also conceptually straightforward. These models

are constructed by taking the ratio between the high-�delity and low-�delity results:

Yratio =
Yhigh
Ylow

(23)

A Kriging model is �t to this ratio, Yratio. To estimate the response of the high-�delity

code at some new point x, predictions are made for the low-�delity response value and the

ratio at that point. These predictions are then multiplied to produce a prediction for the

high-�delity response:

ˆYhigh = Ylow × ˆYratio (24)

This approach is very similar to the additive corrector, but is better suited to problems

where the discrepancy between the low- and high-�delity response values are proportional to

the magnitude of the response, rather than being a constant bias. It may not be possible to

know in advance which formulation will result in better predictions, so some experimentation

may be necessary.

5.1.4 Ghoreyshi Cokriging

Ghoreyshi cokriging is conceptually less intuitive than the two previous methods, but equally

easy to implement. As described by Ghoreyshi et al.,[63] a Ghoreyshi cokriging model

is almost identical to a standard Kriging model with the exception that the low-�delity

response value is treated like an extra input variable to the surrogate model for the high-

�delity response.

For example, consider a problem with two input variables, x1 & x2. The matrix of inputs

F for a single-�delity Kriging model with a linear underlying trend would be expressed as:
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

1 x1,1 x2,1

1 x1,2 x2,2

1 x1,3 x2,3

1 x1,4 x2,4

1 x1,5 x2,5



(25)

In contrast, the matrix of inputs F for a Ghoreyshi cokriging model with a linear under-

lying trend would take the form:



1 x1,1 x2,1 ˆYlow,1

1 x1,2 x2,2 ˆYlow,2

1 x1,3 x2,3 ˆYlow,3

1 x1,4 x2,4 ˆYlow,4

1 x1,5 x2,5 ˆYlow,5



(26)

where Ylow,i represents the low-�delity response for point i. Thus, if the problem of interest

has k input dimensions, the Ghoreyshi cokriging model will have k+1 input dimensions. The

process of �tting the Kriging model (or any other form of surrogate model) is unchanged.

5.1.5 Data Harmonization

Data harmonization is unique among these methods for a number of reasons. First, while the

other three methods �t separate surrogate models to each type of data (e.g., one surrogate

model is �t to the low-�delity data, and then a second surrogate is �t to the discrepancy

between the low- and high-�delity data), data harmonization accounts for all data simul-

taneously. This method is therefore more vulnerable to the increasing modeling costs of

Kriging for large data sets. This vulnerability stems from its conceptual heritage, being
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intended to capture the behavior of a single response as described by multiple observers.

Secondly, data harmonization has a di�erent conceptual objective. The other three

methods, by �tting each source of data separately, are explicitly attempting to model the

response as understood by that source of data. Data harmonization, on the other hand, has

some �exibility in this regard. The pre-analysis e�ort includes the subtraction of any known

e�ects, as seen in Equation 32. In the gamma radiation example by Baume et al., the e�ect

of elevation on the radiation measurements is removed from the data using an analytical

relation before the Kriging model is trained.[14] Because this e�ect has been removed from

the data, elevation is not included as a dimension in the Kriging model. It falls to the user

to recognize any predictable e�ects and account for them.

5.1.5.1 Mathematical Formulation

Like in universal Kriging, the response at some point, Z(s), is taken to be the sum of a

mean function m and a stochastic residual δ:

Z(s) = m(s) + δ(s) (27)

The notation in this section is based on the work of Baume et al.[14] The mean function

m is considered to be a combination of known e�ects and e�ects which must be estimated:

m(s) = Fa(s) a+ Fα(s) α (28)

Here, Fa represents the components for which the coe�cients, a, are known, while Fα

represents the components for which the coe�cients, α, must be estimated. Categorical

variables, such as country code in the demonstration given by Baume et al., are handled by

adding binary column vectors to the set of input parameter values.[13, 15] For example, if

the country code can take one of three values, three binary column vectors are introduced.

Cases for which the country code takes the �rst value will have a one in the �rst binary

column and zeros in the other two, and so on. Bias values that correspond to each categorical

variable value may be known in advance, appearing in the model as part of Fa(s) a, or they

may be estimated as part of the model �tting process, appearing as part of Fα(s) α.
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Baume et al.[13] noted that the use of binary vectors for categorical variables results in

an over-determined problem, which here would take the form of an ill-conditioned matrix of

basis functions during the creation of a Kriging model (written as F in equation 2 in Section

4.2, not to be confused with Fα or Fa above). Two solutions are described by Baume et

al.: either the least-squares coe�cients for the binary vectors are subject to the additional

constraint that they must sum to zero, or one bias is assumed to be zero and omitted from

the model. This latter option is enacted by eliminating the binary column corresponding to

the bias in question from the matrix of basis functions, F .

Note that the use of a binary vector for each option in a category is equivalent to making

the assumption that data from each source will have a constant bias error. More complex

relationships between data sources can be described if more basis functions are included for

each categorical variable. A constant-bias data harmonization model for m parameters and

p data sources would add p columns; a linear-bias data harmonization model, in which the

discrepancy between data sources is a linear function of the input dimensions, would add

(m+ 1)× p columns to the Kriging model.

Returning to Equation 27, the stochastic residual δ accounts for any variations from the

mean trend. It is modeled as a random process with a mean of zero and a user-speci�ed

covariance function.[170] Often, the covariance function includes free parameters such as

dimensional weights; we again assume that most or all of these parameters are unknown

and must be estimated while �tting the surrogate model.

Baume et al. then go beyond the traditional Kriging formulation that is used for most

applications by addressing the idea of uncertain data. Rather than assuming that response

values are known exactly, the observations are treated as a combination of the true response

at each point, Z(s), and some measurement error term ε(s):

Y (s) = Z(s) + ε(s) (29)

This measurement error can be split into known biases, unknown biases (which must be es-

timated), and random measurement error or noise. These biases correspond to discrepancies

between data sources. For our purposes, this can be written as:

140



ε(s) = Gb(s) b+Gβ(s) β + ζ(s) (30)

Gb(s) is a vector of biases for which the coe�cients, b, are known and �xed. Gβ(s) is a

vector of measurement biases at location s for which the coe�cients, β, must be estimated,

while ζ is a random process representing the measurement error, which is assumed to have

zero mean.

Lastly, Baume et al. assume that the stochastic residual δ and random measurement

error ζ are normally distributed and mutually uncorrelated. The covariance matrices of δ

and ζ for the given set of observations are denoted as

V = V ar(δ)

W = V ar(ζ)

(31)

W is a diagonal covariance matrix of random measurement errors. Baume suggests that

W be set by repeating a measurement multiple times using the device or method in question.

Alternately, expert knowledge may be used to set one or more values in W . If the likely

noise behavior of data points is not uniform for all data points, each entry in W may have

a di�erent value to re�ect the noise at that point. Essentially, W acts as matrix of nugget

values for each data point.

After any known mean or bias e�ects have been subtracted from the observations, the

result is the expression:

U = Y − (Fa a+Gb b) = Fα α+Gβ β + δ + ζ (32)

The two random processes can be combined into a single process, φ, while the mean and

bias functions can be combined into a vector of functions to obtain:

U = X θ + φ (33)

where X = [Fα Gβ] and θ = [ αβ ].
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As a result, the expected value of the model (i.e., the Kriging mean) is given by X θ while

the variance is V +W . Fitting the model requires the inversion of a covariance matrix with

dimension equal to the total number of data points, similar to cokriging or the autoregressive

model of Kennedy & O'Hagan. As was the case with those methods, �tting the model can

become expensive or infeasible for large data sets.

As mentioned earlier, Baume et al. demonstrated their model using gamma ray dose

measurements from multiple European countries. The elevation of the sample location was

treated as a known bias using an analytical relation. Soil composition served as the unknown

e�ect in Fα, and a country code was introduced as a bias term, Gβ , to capture variations

between sets of data provided by the contributing nations. The results of data harmonization

demonstrated better agreement across national boundaries compared to regular Kriging, as

well as increased prediction con�dence.

5.1.5.2 Implementation of the Method

Baume et al.[13] suggest two possible ways to construct the data harmonization model in

order to avoid an over-determined system of equations: either an additional constraint can

be added to the least-squares bias estimates so that all biases sum to zero, or one of the

biases can be assumed to be zero. The latter approach removes one of the binary columns

from the matrix of samples. For the problem at hand, the source of each data point was

thus represented in a single binary column, which took a one if the case in question was

from Cart3D or a zero if the case was from APAS. This was equivalent to assuming that

the Cart3D data had no bias, which was reasonable when the surrogate would be used to

estimate Cart3D results.

As mentioned earlier, the single-binary-column formulation of data harmonization is

equivalent to an assumption that the discrepancy between APAS and Cart3D is best repre-

sented by a constant o�set. More complex representations of the discrepancy are possible, al-

beit at the expense of a larger number of supplemental columns. Consider a two-dimensional

problem with inputs x1 and x2 and two data sources S1 and S2. If a linear trend is used and

the discrepancy between the two data sources is treated as a constant value, �tting a Kriging
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model will require least-squares calculations for four coe�cients: one for the overall mean,

one to weight x1, one to weight x2, and one to weight the binary column which captures the

discrepancy between the two data sources. The matrix of basis functions would look like

the following:



1 x1,1 x2,1 b1

1 x1,2 x2,2 b2

1 x1,3 x2,3 b3

1 x1,4 x2,4 b4

1 x1,5 x2,5 b5


The b column contains the binary entries which indicate whether a given row is from

data source S1 or S2.

If instead the discrepancy is considered to be linearly dependent on x1 and x2, the least-

squares calculations must estimate values for six coe�cients: one for the overall mean, one

to weight x1, one to weight x2, and three to weight the discrepancy columns, which now

take the following form:



1 x1,1 x2,1 b1 b1 × x1,1 b1 × x2,1

1 x1,2 x2,2 b2 b2 × x1,2 b2 × x2,2

1 x1,3 x2,3 b3 b3 × x1,3 b3 × x2,3

1 x1,4 x2,4 b4 b4 × x1,4 b4 × x2,4

1 x1,5 x2,5 b5 b5 × x1,5 b5 × x2,5


One extra column is added for each dimension that will be incorporated into the dis-

crepancy calculations. Recall that the bias for one data source was assumed to be 0; cases
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from this source will have bi = 0. As a result, cases from this source will have only zeros in

the extra data harmonization columns:



1 x1,1 x2,1 0 0 0

1 x1,2 x2,2 0 0 0

1 x1,3 x2,3 0 0 0

1 x1,4 x2,4 1 x1,4 x2,4

1 x1,5 x2,5 1 x1,5 x2,5


For comparison, when �tting an additive correction model, the �rst step is to model the

data from the low-�delity source. For this model, the matrix of basis functions is as follows:



1 x1,1 x2,1

1 x1,2 x2,2

1 x1,3 x2,3


Once this model is available, its predicted values are subtracted from the response values

from the high-�delity source, and another model is trained to capture the linear trend in

the high-�delity data using a similar matrix of basis functions:


1 x1,4 x2,4

1 x1,5 x2,5


These matrices of basis functions are used when estimating the various model parameters,

such as the coe�cients of the underlying trend model and the parameters of the correlation

function (e.g. θi in equation 3). If the model parameters for the low-�delity model and the

correcting model were �t simultaneously, the matrices of basis functions would be combined:
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

1 x1,1 x2,1

1 x1,2 x2,2

1 x1,3 x2,3

0 0 0

0 0 0

0 0 0

1 x1,4 x2,4

1 x1,5 x2,5

1 x1,4 x2,4

1 x1,5 x2,5


The terms in the upper-left correspond to a surrogate model that �ts the low-�delity

data only, hence the zeros in the upper-right: high-�delity data does not directly a�ect

this process. Once these coe�cients have been �t, the terms in the lower left capture the

predicted low-�delity results at the high-�delity data sites. The discrepancies between the

predicted low-�delity results and the high-�delity results are then modeled using the terms

in the bottom right.

It now becomes more clear that when data harmonization is extended to capture more

complex discrepancy behavior, the method begins to resemble additive correction. The two

methods di�er in that additive correction �ts a model to one data source �rst (i.e. �tting a

model only to the rows where b = 0) before �tting a separate model to the discrepancy values.

In contrast, data harmonization �ts all model parameters simultaneously, and thus must take

all available data points into account at the same time. Huang et al.[83] and Kennedy &

O'Hagan[95] both address the question of whether to �t these parameters simultaneously or

separately; both conclude that �tting two separate models is signi�cantly easier and �very

little is lost in this simpli�cation�.1 E�ectively, additive correction is equivalent to a linear

data harmonization model, although data harmonization �ts all aspects of the surrogate

simultaneously while additive correction �ts them separately.

Data harmonization also explicitly captures uncertainty in the data by using nuggets.

1Curiously, both sets of authors express this sentiment in almost exactly the same words, although the
text surrounding each statement varies greatly.
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The modi�cations to DACE toolbox functions that were necessary to implement data har-

monization would allow any Kriging model to capture uncertainty via nuggets; thus, once

nuggets had been implemented for data harmonization, they were available for use by every

other modeling approach.

Data harmonization is still unique among these methods in that it handles all sources

of data simultaneously. A trial application of the method was developed in order to gain

familiarity with its behavior. For the sake of simplicity, this trial was based on the two-

dimensional data set that was used for early contour-based sampling tests in Section 4.9.

5.2 Two-Dimensional Test

The data set for the pitching moment coe�cient at Mach 0.3, α 15◦ was used because the

response had low levels of noise, but was still di�cult to model using only Cart3D data and

a linear or quadratic underlying trend. A response with linear or quadratic behavior could

be modeled with relatively few samples; more complex behavior would require more data to

improve the prediction accuracy of a surrogate model.

5.2.1 Selecting Samples

Relatively few high-�delity data points would be used in this test in order to determine

what improvement, if any, a multi-�delity approach (and in particular data harmonization)

could o�er over the single-�delity approach. For the results presented in this section, 6

high-�delity samples were used; this test was repeated for as few as 4 and as many as 9

high-�delity samples without qualitative changes in the results.

Those 6 high-�delity samples would be selected using the Matlab function lhsdesign, part

of the Statistics Toolbox.[120] This function generates a Latin hypercube for a user-speci�ed

number of samples and dimensions. These hypercube cases would be mapped to the design

space. Recall that the space had been sampled with a 50× 50 grid of Cart3D samples; the

hypercube cases were replaced with the nearest sampled Cart3D case. Although this does

a�ect the distribution of samples, the sampling resolution ensured that the replacement cases

would di�er from the hypercube cases by no more than 1% of the range of each variable.

This was considered a negligible discrepancy.
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Low-�delity samples were selected from the available APAS results, which were also

generated via a 50 × 50 grid of samples. The ratio of low-�delity samples to high-�delity

samples was varied from 1 to 15, and so the total number of low-�delity samples for the

results depicted here ranged from 6 to 90.

The distribution of Latin hypercube samples is to some degree random, so the sampling

process was repeated multiple times for each ratio value. Because the number of high-�delity

samples would be a constant in this test, the single-�delity results were used to determine

the number of repetitions necessary for the average results to converge to some average

value. The single-�delity results did not depend on the low-�delity samples, so the number

of repetitions was increased until the average prediction accuracy of the single-�delity models

remained essentially constant when the number of low-�delity samples was varied. For the

results presented here, the sampling was repeated 700 times for each data pool size.

5.2.2 Modeling Approaches

The baseline approach was to train the surrogate using only Cart3D samples, as was done

in the motivating study. The assertion under consideration was that if a cheaper source of

data such as APAS could be incorporated, the resulting surrogate models would have better

predictive accuracy.

Although e�orts were undertaken to ensure that the con�gurations analyzed by Cart3D

and APAS were as similar as possible, certain aspects of the vehicle geometry were not

represented in the APAS model. Whereas in the PaceLab environment (and consequently

in Cart3D) the vertical tails at the wingtips could be oriented in three dimensions using a

cant angle and toe-in angle, the vertical tails described to APAS were held to be vertical

and aligned with the vehicle x-axis. Control surfaces generated by PaceLab could not be

accurately reproduced for APAS due to the low granularity of the cross-sections used by the

latter tool; the smallest control surfaces that could be represented in APAS might be many

times larger than the same surfaces as de�ned in PaceLab. In light of this, control surface

de�ections were omitted entirely. Lastly, the body �ap at the rear of the fuselage was also

omitted.
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The low-�delity samples from APAS, although much less expensive than high-�delity

samples, might be considered something of an unfair �head start� for the multi-�delity meth-

ods: the multi-�delity methods will bene�t from the extra computational e�ort, however

slight, that went into generating the low-�delity data. To address this, an additional single-

�delity approach was tested where the number of high-�delity samples was increased from 6

to 7. Each high-�delity analysis took on the order of 2,000 times the computational e�ort of

the corresponding low-�delity analysis, far more than the maximum amount of low-�delity

data used by the multi-�delity methods, so one extra high-�delity sample was more than

equal to the extra computational investment in the low-�delity samples.

Data harmonization was the most interesting modeling approach in this test, as it ap-

peared in the literature only in the original author's publications. There was some uncer-

tainty as to what (if any) �noise� should be captured. The model was intended to reproduce

Cart3D data as precisely as possible and the iteration noise was negligible relative to the

magnitude of the response, so the high-�delity cases were considered to have zero noise. The

low-�delity data source was deterministic, with no obvious uncertainty in its results.

The low-�delity samples would easily outnumber the high-�delity samples, which led to

some concern that the low-�delity data might skew the data harmonization model in favor

of matching APAS data rather than Cart3D. To test this, two data harmonization models

were created. The �rst treated both the high- and low-�delity samples to be deterministic,

with no noise or uncertainty. The second applied a constant nugget, equal to 5% of the

range of the observed low-�delity response values, to all low-�delity cases. This meant that

the data harmonization model would interpolate every high-�delity sample exactly without

having to do the same for the low-�delity samples.

Additive correction, as arguably the most popular multi-�delity method described in

the literature, would also be applied as a further point of comparison to determine the

e�ectiveness of data harmonization. The predictive accuracy of each modeling approach

would be evaluated using Root Mean Squared Error, as de�ned in Equation 15 on page 100.
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Figure 26: Prediction RMSE for All Multi-Fidelity Methods at Mach 3, AoA 15◦

5.2.3 Evaluating the Results

The results of this study are depicted in Figure 26. The triangular icons pointing down and

those pointing to the right, which represented the single-�delity models with and without an

extra case respectively, maintained a consistent RMSE value as the number of low-�delity

samples was varied. This served as con�rmation that su�cient repetitions were performed

and the results were adequate representations of the average performance of each method.

The two data harmonization approaches � one including a nugget for low-�delity data

and one treating all data as deterministic � track each other closely, which indicates that the

low-�delity nugget did not signi�cantly a�ect prediction accuracy for high-�delity response.

In fact, the data harmonization models with noise often performed slightly worse than the

noiseless models, which suggested that the quantity of noise included (equal to 5% of the

observed range of the low-�delity data) was excessive for this problem, acting to �wash out�

useful information rather than downplaying misleading e�ects.

The data harmonization models demonstrated improved predictive accuracy compared

to the single-�delity methods; the prediction error as quanti�ed by RMSE was reduced by

10�20% when su�cient low-�delity data was available. However, data harmonization was

out-performed by the additive correction model, which tended to o�er roughly twice as much
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improvement in prediction accuracy.

These results con�rmed that multi-�delity modeling could enhance prediction accuracy

relative to a single-�delity approach. Although additive correction out-performed data har-

monization in this case, the relatively simple nature of the test did not allow either method

to be declared �best� for the large-scale problem. Additional testing with a more complex

data set was required. Furthermore, there still existed some question as to which sources

of uncertainty were useful to capture and which could be neglected. The next section is a

review of the sources of uncertainty under consideration.

5.3 Selecting Sources of Uncertainty

Numerous uncertainty sources have been identi�ed and detailed in the literature.[43, 95,

186, 202] A full description of every source of uncertainty in computational analysis is far

beyond the scope of this work. Entire books could be written on the subject of estimating

the uncertainty in a computational result � and have been.[138] Instead, a few uncertainty

sources were identi�ed as being of particular interest based on observations made during the

research e�ort described in Chapter 2. These sources are:

• Uncertainty resulting from �nite precision and discretization during analysis, such as

measurement or numerical iteration;[163]

• Uncertainty resulting from the use of a surrogate model rather than the original anal-

ysis, i.e. imperfect emulation;[95] and,

• Uncertainty due to use of a data source which does not perfectly emulate the response,

i.e. imperfect �delity.[44]

The �rst source of uncertainty, discretization and iteration e�ects, was directly observed

during the motivating e�ort (see Figure 7 on page 42). Cart3D uses an iterative simulation

process to converge to a solution. Responses such as the force and moment coe�cients were

calculated for every iteration step and written to an output �le, and thus the convergence

history of each response can be investigated. It was found that most cases exhibited iteration

noise which was on the rough order of 0.001 to 0.01, which could be considered negligible
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relative to the observed pitching moment coe�cients (which were often on the rough order

of 1 or 10) but that same noise was signi�cant relative to the observed rolling and yawing

moment coe�cients (which were on the rough order of 0.001 to 0.1). It is plausible that cap-

turing this iteration noise during the training of surrogate models might improve prediction

accuracy for lateral responses.[109]

The second source of the uncertainty, imperfect emulation, is introduced when a data

source is replaced by a surrogate model. It was mentioned in Section 3.5.3 that, despite

the relatively rapid execution time of APAS, a second or two per case is still too long when

thousands of candidate and test points must be evaluated by the contour-based sampling

algorithm before a sample can be selected. A surrogate model could estimate low-�delity

response values at those points more quickly, signi�cantly reducing the time required to select

each sample, but would introduce additional uncertainty due to small prediction errors.[202]

If this surrogate is Kriging-based, the prediction uncertainty can be calculated analytically;

if another surrogate model type is used, the standard deviation of the Model Representation

Error can be used to calculate the prediction variance. Model Representation Error is

calculated as part of the �Goodness of Fit� tests.[134]

The third source of uncertainty, imperfect model �delity, is introduced whenever mod-

eling is used. This occurs for all experiments short of full-scale testing under operational

conditions, as evidenced by the Lockheed C-141 Starlifter mentioned in Section 1.5.[23] Al-

though that e�ort included wind tunnel testing of the wing design at appropriate Mach

numbers, there was su�cient discrepancy between the viscous �ow behavior over the sub-

scale test article and the full-scale vehicle that the designers were forced to modify the control

schedules and reinforce the wing and fuselage to avoid exceeding the structural limits of the

design.

For this research e�ort, di�erent surrogate models would be used at each �ight condition.

The independent variables for each surrogate model would be geometric parameters, unlike

other e�orts which �xed the geometric shape of the vehicle and varied the �ight condition.[63]

Given the low probability that multiple sources of validation data will fall within any given

design space (described in Section 3.5.3), it was unlikely that enough information would be
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available to describe how the uncertainty due to imperfect �delity would vary with respect

to the free parameters. Instead, this uncertainty would be modeled as a uniform value for

each �ight condition.

Two hurdles remained before uncertainty could be integrated into this modeling frame-

work. First, methods must be available to quantify or estimate the contribution to overall

uncertainty that stems from each source. And secondly, although uncertainty could be cap-

tured by a Kriging model via the nugget parameter, and uncertainty present in Kriging

model predictions could be estimated via prediction variance, it had yet to be demonstrated

that the uncertainty de�ned via nugget is preserved and represented in variance estimates.

5.3.1 Quanti�cation of Uncertainty

Of the three sources of uncertainty considered in this research � uncertainty due to discretiza-

tion, uncertainty due to imperfect emulation, and uncertainty due to imperfect �delity � two

could be quanti�ed in a straightforward manner. The scripts used to extract results from

Cart3D output �les were modi�ed to extract response values over the �nal 30 solver itera-

tions. The average and standard deviation of the series were calculated for each response

and reported as part of the solution data set. This provided a quantitative assessment of

the uncertainty due to discretization.

Uncertainty due to imperfect emulation is estimated once a surrogate model has been

trained, during the Model Representation Error test.[36] This test uses the surrogate model

to predict the response at a set of test points for which the true response is known. Thus, if a

surrogate model has been subjected to Goodness of Fit tests, an estimate of the uncertainty

due to imperfect emulation should already be in hand.

Only uncertainty due to imperfect �delity remained. As discussed in Section 3.5, the

literature indicates that this uncertainty is quanti�ed similar to the process of validating

a tool: the analysis tool is applied to one or more analyses for which high-�delity results

are available. Sponsors at the Air Force Research Laboratory provided wind tunnel data

and surface meshes for three variants of the XCOR Lynx suborbital vehicle.[127, 177] One

variant of this vehicle is displayed in Figure 27.
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Figure 27: XCOR Lynx Suborbital Vehicle Variant

The data set included force and moment measurements taken at various �ight condi-

tions. The reported data also included measurements of factors such as local pressure and

temperature, factors which are not of importance when running an inviscid tool such as

Cart3D but would be required information if this data set were used for validation of a vis-

cous tool. If such data were not recorded, the analyst would have to select a value for those

parameters; values might be chosen to maximize agreement with the experimental data, a

process closer to calibration than validation and one that is strongly advised against by

validation experts.[140] Instead, the analysis should be done in ignorance of the high-�delity

result values whenever possible to avoid accidental or deliberate calibration.

The wind tunnel data set was parsed to match each surface mesh with the �ight condi-

tions for which data was available. Mach number varied from 0.29 to 4.5 and angle of attack

varied from -1.7◦ to 43.5◦. Sideslip angle was set to 0◦ for most cases, but 20 of the 71 param-

eter sweeps �xed the Mach number & angle of attack and varied sideslip angle. The �ight

conditions in the data set are plotted as angle of attack versus Mach number in Figure 28.

Some sweeps re-sampled a previous range; it is thought that these repetitions were intended

to estimate the variability in the results as recommended by Aeschliman & Oberkampf.[3]
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Figure 28: Flight Conditions for XCOR Data

In all, 632 data points were available for the surface meshes that were obtained.

Cart3D was used to analyze each vehicle variant at �ight conditions which matched the

wind tunnel data. Note that some model comparison e�orts prefer to match lift coe�cient

rather than angle of attack.[102] Such an approach was rejected here due to the e�ort

required to match the observed lift coe�cient for each of the 632 data points. Instead, the

vehicle variants were assessed using a once-through approach identical to that used for all

other Cart3D analyses in this e�ort. The reference wing area, mean aerodynamic chord,

and wing span were obtained by scaling the values recorded in the wind tunnel data set to

match the dimensions of the surface triangulations; the best match between the dimensions

speci�ed for the wind tunnel model and the observed dimensions in the triangulation was a

factor of 63, so the reference lengths were multiplied by 63 and the reference area by 632. A

center of gravity at 70% of the vehicle's length was assumed.

It should be noted that decisions on the part of the analyst concerning appropriate

parameter settings, such as grid resolution or turbulence model, can have a very signi�cant

e�ect on the analysis results, at times even larger than the selection of the analysis tool

itself.[80] Any discrepancies between wind tunnel measurements and Cart3D calculations

that are presented in this document should not be construed as inherent limitations of

Cart3D; it is quite possible that the tool was applied in a sub-optimal manner by the
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author, and that better agreement with the data might be achieved by applying Cart3D in

a di�erent manner.

With that caveat given, the Cart3D results were compared against the wind tunnel

data. The results presented here will emphasize pitching moment coe�cient, as this was the

response that most signi�cantly restricted the feasible design space in the RBS study. As

in the X�33 uncertainty database, discrepancies between code prediction and experimental

measurement were plotted versus Mach number.[32] The discrepancies were calculated as:

δ = YCart3D − YWindTunnel (34)

When the discrepancies are calculated in this manner, an overly-positive prediction by

Cart3D results in a positive discrepancy. These discrepancies are plotted in Figure 29. Fig-

ure 29a shows the data for Mach numbers less than 0.6, Figure 29b shows results between

Mach 0.6 and 1.35, and Figure 29c shows the data for Mach numbers above 1.35.

Figure 29: Comparison of Cart3D Results to Wind Tunnel Data, Grouped by Mach Number

The Mach numbers analyzed are clearly identi�able, but with respect to the magnitude

of the discrepancy, the icons are more or less continuous. This may not be surprising given

the relatively �ne resolution of the experimental plan shown in Figure 28. Although the

X�33 uncertainty database was grouped by Mach number, for these results that grouping

did not o�er any insights into the accuracy of Cart3D.

No obvious trends were discernible when the discrepancies were plotted against angle of

attack, aside from a general upward trend with increasing angle of attack. It was found that
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after the results were grouped by Mach number as in Figure 29, clear trends with respect

to angle of attack could be seen within the group. Those results are visible in Figure 30.

Figure 30: Comparison of Cart3D Results to Wind Tunnel Data, Grouped by AoA for (a)
Mach < 0.6; (b) 0.6 < Mach < 1.35; (c) Mach > 1.35

In Figure 30a, which shows results for Mach < 0.6, the discrepancies show a fairly clear

trend: they are small close to 0◦ angle of attack and grow larger as the angle of attack

increases to 20◦. This trend appears to reverse itself for higher angles, but since only one

sweep was performed for angles of attack greater than 20◦ in this speed regime, the author

is hesitant to generalize from that data.

Figure 30b shows results for Mach numbers between 0.6 and 1.35. Here the trend resem-

bles what was observed in Figure 30a, with discrepancies increasing for larger angles. These

results exhibit more spread, even at lower angles of attack, which is not surprising given the

known limitations of Euler methods at transonic speeds.[7]

Finally, Figure 30c shows the results for Mach numbers greater than 1.35. At these

speeds, the discrepancies at 10◦ are less than for the subsonic data set, but the discrepancies

for supersonic �ight conditions steadily grow with angle of attack. For a given angle of

attack, a higher Mach number corresponds to a smaller discrepancy.

In every speed regime, the discrepancies between Cart3D and wind tunnel results in-

creased with angle of attack. This indicated that, for larger angles of attack, Cart3D would
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over-predict the pitching moment by progressively larger amounts. It may be that the ef-

fective center of mass of the wind tunnel model was closer to the nose of the vehicle than

the point at 70% of body length that was used for Cart3D calculations. The 70% position

was based on the best available information; barring additional information, the remainder

of this work will assume that the results of this section are representative of the discrepancy

between Cart3D estimates produced by the author and experimental data.

These results could be used to estimate the likely bias and random errors in Cart3D

predictions that were due to model �delity limitations. The bias error would be estimated as

the average prediction error. The predictions would then be corrected by this bias estimate,

and the new prediction errors calculated. The variance of the new prediction error could

be used as an estimate of the random error variance. These two estimates, along with the

estimates for uncertainty due to iteration noise and imperfect �delity, would enable the user

to compute the e�ects of all three uncertainty sources relevant to this e�ort.

5.3.2 Categorizing Sources of Uncertainty

Note that not all the uncertainty sources have the same implications with respect to the data.

The �rst two sources, uncertainty due to discretization and uncertainty due to imperfect

emulation, pertain to the simulated response. They describe uncertainty with respect to the

response at the current level of �delity (e.g. the response as calculated by APAS or Cart3D).

Uncertainty due to model �delity limitations, on the other hand, describe the di�erence

between the response produced by the simulation � e.g., pitching moment as calculated

by Cart3D � and the response being simulated. By capturing the �rst two uncertainty

sources, surrogate models will be more accurate with regard to the training data. If the

last uncertainty source can also be captured e�ectively, the uncertainty predictions of the

resulting surrogate model might be used to estimate the accuracy of the surrogate compared

to the data used to estimate model limitation error.

Using the validation results, the uncertainty due to model �delity limitations can be

estimated. The estimated values can be added to the nugget when training the Kriging

surrogate. However, because uncertainty due to inadequate �delity re�ects the probable
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discrepancy between that level of �delity and the �true� value of the response being simu-

lated, it is imperative that this quantity be preserved.

Although it was demonstrated that uncertainty information can be passed into a Kriging

model via the nugget, and all Kriging models are capable of estimating the predictive vari-

ance for the predictions that come out of the model, it had not yet been demonstrated that

uncertainty information is preserved during this process. Preservation of this information is

required if uncertainty due to model �delity limitations is to be captured in this manner. A

small-scale test was therefore devised to determine whether this information is preserved.

5.3.3 Preservation of Uncertainty In Kriging Models

A set of �truth� data was derived from wind tunnel tests for a reusable booster con�guration

published by Post et al.[150] The 16-case data set corresponding to the 78% center-of-

gravity location was selected. This selection was arbitrary. The exact shape of the vehicle

was not available, precluding analysis with other tools. Instead, a notional lower-�delity

data set was created using only the points with small angles of attack where the relationship

between angle of attack and pitching moment was approximately linear. The rate of change

of pitching moment in this region was approximately -0.01 per degree. Pamadi et al.[144]

showed that for the Langley Glide Back booster, the low-�delity tool estimated this slope

fairly well but failed to capture nonlinear e�ects at higher angles of attack. Bias o�sets were

also sometimes present in the low-�delity data. This behavior is illustrated in Figure 6 on

page 39. Here, a bias o�set of -0.04 was added for visual clarity.

The uncertainty due to simplifying assumptions � in this case, linear aerodynamics �

could not be estimated in a general form based on this information. Instead, a very rough

estimate of uncertainty was made: the discrepancy between the linear results and the wind

tunnel results was used as the standard deviation of this uncertainty. If the error introduced

by use of a linear method is normally distributed, the true result would fall within ±1

standard deviation, or 1σ, of the linear estimate around 68% of the time. A ±2σ range would

encompass the true result roughly 95% of the time. Figure 31 shows the relative distribution
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Figure 31: Data Points & De�ned Uncertainty Ranges

of wind tunnel results, low-�delity linear results, and uncertainty bounds around the low-

�delity data points. The uncertainty bounds were interpolated for ease of representation.

The uncertainty ranges, particularly the ±2σ bounds, enclosed a broad swath of possible

values. This re�ected the potentially large discrepancies present at higher angles of attack

where the linear approximation was the least accurate.

A Kriging model was trained using the 16 low-�delity data points. A linear underlying

trend was used in the Kriging model, and the standard deviation at each data point was

squared to produce variances. These variances were incorporated into the Kriging model

via nuggets. This Kriging model was then used to estimate the response and prediction

variance for 1,000 points interpolating the existing data set in order to assess how well

the new surrogate could reproduce the uncertainty that was described using nuggets. The

prediction variance values were converted back to standard deviation for plotting purposes.

The data points, ±1σ bounds, and ±2σ bounds are plotted in Figure 32, just as they were

in Figure 31.

It was immediately apparent that the uncertainty bounds that were obvious in Figure 31

were not visible in Figure 32. The presence of the uncertainty ranges on the legend indicated

that the bounds are being plotted. A closer inspection of the black line indicating the

predicted response values, seen in Figure 33 held the answer. Figure 33 is a highly-zoomed
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Figure 32: Data Points & Estimated Uncertainty Ranges

view of Figure 32. The ±1σ and ±2σ bounds were present in Figure 32, but were multiple

orders of magnitude smaller than the uncertainty which was described using nuggets.

This behavior was explained by referring back to the mathematical formulation of Kriging

given in Section 4.2 on page 80. In particular, note that the estimated process variance

appears both explicitly and implicitly in the equation for prediction variance estimation

(Equation 4); remember that the covariance function is the product of the process variance

and the correlation function. The estimated process variance (Equation 5) depends on the

quantity
(
Y − Fβ̂

)
, which is the di�erence between each observed response and the value

of the underlying trend at that point.

From these equations it was inferred that, when the observed response behavior is approx-

imated well by the trend, the estimated process variance (and by extension the prediction

variance) would be close to zero, no matter how much uncertainty was present in the original

data set. As a result, uncertainty information that is fed into a Kriging model may not be

preserved in the predictions of that Kriging model.

This loss of information is of little concern when it comes to the e�ects of �nite precision

or surrogate model imperfections; both of those uncertainties relate only to the quantity

being estimated, i.e. pitching moment as calculated by Cart3D (in this case). Uncertainty

due to model �delity limitations, on the other hand, describes the possible discrepancies
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Figure 33: Zoomed Region of Data Points & Estimated Uncertainty Ranges

between the quantity being simulated (e.g., pitching moment as estimated by Cart3D) and

the actual quantity of interest (e.g., pitching moment experienced by a full-scale vehicle at

representative conditions).

As with the Space Shuttle and X�33, knowledge of the uncertainty due to model �delity

limitations could be used to identify where further analysis is needed, and � if the present

data set had inherent �delity limitations � where a better analysis method would be needed

as well. Such knowledge could be critical for risk-reduction operations.

More to the point, the loss of such information could lead to dangerous over-con�dence

on the part of the designers, who might think that the Kriging prediction variance was

accurately capturing all relevant sources of uncertainty. To avoid this situation, it is recom-

mended that uncertainty due to model limitations not be included during Kriging modeling,

and instead that such information be applied as a sort of �error bar� after the modeling is

completed.

The two remaining sources of uncertainty still had to be assessed to determine their

e�ect on prediction accuracy. In addition to determining which multi-�delity method would

produce the best prediction accuracy, di�erent combinations of uncertainty sources would

be investigated to determine the e�ect on model accuracy. Multiple versions of each multi-

�delity method would be applied to the same set of data, di�erentiated by the uncertainty
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information being captured via nugget:

• No uncertainty (deterministic results);

• Only uncertainty due to surrogate model prediction error;

• Only uncertainty due to solver iteration e�ects; or,

• Both surrogate prediction error and solver iteration e�ects.

The results would determine which types of uncertainty should be incorporated and which

multi-�delity method would be selected for this application.

5.4 Comparing Prediction Accuracy: Pitching Moment

Unlike the tests of contour based sampling, tests of multi-�delity methods would not empha-

size any particular response range. Instead, prediction accuracy would be quanti�ed using

the Root Mean Squared Error[85] of the predictions and the 95% con�dence quantiles of the

prediction error.[105]

Prior work[40] showed that the lateral responses exhibited much more iteration noise at

40◦ angle of attack than at 0◦ angle of attack. Both angles were of interest for the present

application, so data from both angles of attack were used to evaluate the multi-�delity

methods and uncertainty sources. It was expected that, due to the increased iteration

noise at high angles of attack, models which captured this iteration noise would have better

prediction accuracy at that �ight condition than models which did not.

Data was generated at Mach 4.0, α 0◦, β 0◦ and Mach 4.0, α 40◦, β 0◦. Cases from

the nine-dimensional space-�lling nested Latin hypercube, described in Section 4.10, were

analyzed at these new �ight conditions to see how the methods fared when applied to a

problem with a moderately large design space.

Of the space-�lling nested Latin hypercube cases, 6,000 were evaluated. This completed

the 4,000-case level of the NLHC, plus half of the cases needed to �ll the 8,000-case level of

the NLHC. Although the partial data set could not be guaranteed to be space-�lling, this was

not expected to a�ect the present test. The objective was to evaluate the relative accuracy
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of each method, and thus the supporting data pool need not be perfectly space-�lling to be

of service.

Five alternatives were tested:

• Mono-�delity data (only Cart3D cases);

• Additive correction;

• Proportional correction;

• Ghoreyshi cokriging; and,

• Data harmonization.

Of these methods, all but the �rst required low-�delity data. APAS acted as the low-

�delity data source for this research e�ort. In the interest of expediency, surrogate models

were created to estimate aerodynamic response values more quickly than if APAS were run

directly.

5.4.1 Surrogate Models of Low-Fidelity Data

The 16,000-case nested Latin hypercube described in Section 4.10 was analyzed with APAS

at Mach 4, α 0◦ and Mach 4, α 40◦. Neural networks were chosen as the surrogate modeling

technique for this demonstration due to the ability of neural networks to incorporate many

thousands of cases during the training process,[74] whereas a Kriging model attempting to

include the same number of cases was likely to be intractable due to memory limitations

and excessive computational requirements.

BRAINN, which stands for �Basic Regression Analysis for Integrated Neural Networks,�

is a software utility used to train the neural networks and an internal tool at the Aerospace

Systems Design Laboratory developed by Carl Johnson and Je� Schutte.[20] BRAINN in-

terfaces with utilities from Matlab's Neural Network Toolbox and automates the process

of �tting neural networks of various sizes to the data. The user speci�es a minimum and

maximum network size to consider, as well as the error de�nition, and the software will cycle
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through those network sizes and retain the network that best �ts the data without over-

�tting. Over-�tting occurs when the model being trained becomes progressively better at

reproducing the training data set while in turn becoming progressively worse at estimating

the response at other data points.[74] The surrogate models of the pitching moments were

both of good quality as determined by goodness-of-�t checks.[36]

BRAINN includes the option to export the best-performing neural network in a format

that can be easily interpreted by Matlab. Those exported �les were adapted into functions

so that any other Matlab script or function could submit the values of the independent

variables to the function and receive estimated response values in return. The functions

were vectorized so that multiple predictions could be performed simultaneously.[122]

Once the surrogate models were accessible by Matlab, the tests could begin.

5.4.2 Execution of Analysis

For this analysis, certain factors were held constant. The Kriging models used anisotropic

Gaussian correlation functions and linear underlying trends. The �rst 6,000 of the 16,000-

case nested Latin hypercube cases had been analyzed previously and sorted according to

�ight condition. The appropriate data set was loaded and divided into two sets. The cases

which made up the 4,000-case hypercube became the �rst set, as this set of cases was known

to be space-�lling. The remaining cases went into the second set.

Some number of cases would be randomly selected from the �rst set using the function

randsample from the Matlab Statistics Toolbox and, based on those cases, one surrogate

model would be trained using each multi-�delity technique. The surrogates would then be

used to predict response values at all the cases in the second set; the error of these predictions

would be quanti�ed via RMSE.

The number of cases selected varied from 100 to 1,000 cases in increments of 100 to assess

how rapidly the accuracy of each method improved when more training data was available.

Most multi-�delity methods needed to have both the high- and low-�delity response for

each case in the training set; the high-�delity response came from Cart3D analysis, while

the low-�delity response was estimated with the neural networks trained to replicate APAS
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results.

Because data harmonization �ts a model to both high- and low-�delity data simulta-

neously, the cases selected as described above were used as the high-�delity samples, while

a separate set of 1,000 random cases were randomly selected in the same manner for use

as low-�delity samples. The constant size of the low-�delity data pool was chosen based

on a desire to balance method e�ectiveness � the two-dimensional results (see Figure 26)

indicated that the method became more accurate as more low-�delity data was included,

but attempting to include 15 low-�delity points for each of the 1,000 high-�delity cases at

the high end of the range would be computationally devastating. A constant set of 1,000

low-�delity cases would equate to a data source ratio between 10 (for 100 high-�delity cases)

and 1 (for 1,000 high-�delity cases). The two sets of data were then combined and modeled

jointly, as described in Section 5.1.5. If data harmonization performance degraded relative

to the other methods as more high-�delity samples were included, the experiment could be

repeated with a constant proportion of low-�delity samples.

All cases in this study were randomly selected, and case selection would a�ect the perfor-

mance of the model. To account for this random e�ect, the sampling-and-prediction process

was repeated at least 500 times for each training data set size � i.e., 500 repetitions with 100

Cart3D samples, 500 repetitions with 200 Cart3D samples, etc. � and the resulting RMSE

scores averaged.

5.4.3 Relative Speed of Each Method

The reader may recall from Section 3.3 that the time required to �t a Kriging model increased

as the number of points in the data set increased. In general, for a set of m points, the

e�ort to �t the Kriging model grows as O
(
m3
)
.[136] All surrogate models evaluated in these

experiments used Kriging, and thus the training time would increase as more points were

considered.

As the number of high-�delity samples ranged from 100 to 1,000, the amount of time

required to build and evaluate each model grew. The time required to create a surrogate

and evaluate its predictive accuracy was averaged over the 500 repetitions performed; the
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results are reported in Table 4. Most methods demonstrated similar time requirements.

The exception here was data harmonization, which required almost two orders of magnitude

more time to train models and evaluate predictive accuracy.

Table 4: Average Time To Build & Evaluate a Surrogate (in seconds)

Number

of Points

Single

Fidelity

Additive

Correction

Proportional

Correction

Ghoreyshi

Cokriging

Data

Harmonization

100 1 2 1 1 95

200 2 3 2 3 96

300 4 5 4 5 116

400 7 8 7 9 141

500 12 12 11 14 175

600 18 20 18 21 204

700 26 28 27 31 233

800 35 39 36 42 279

900 44 49 44 54 300

1,000 56 63 57 69 336

As stated earlier, data harmonization surrogate models for these tests were trained using

the speci�ed number of high-�delity samples and 1,000 low-�delity data points. Even when

only 100 high-�delity samples were used, the full data pool contained 1,100 samples � much

more than the 100 samples being modeled by the other methods. Furthermore, data harmo-

nization sometimes threw out-of-memory errors when attempting to predict response values

for all test points simultaneously. As a work-around, the response was predicted for each

test point individually, which reduced the memory burden but increased execution time.

The bulk of the processing in support of these experiments was done on High Performance

Computing clusters. Jobs were submitted for processing using a queue system wherein the

user speci�ed the number of computing nodes needed for the job, as well as the expected

job duration. The queue system limited jobs to a maximum duration of 7 days. Running in

parallel on 12 cores, the full data harmonization test with 500 repetitions at each size would

166



Figure 34: Prediction RMSE for All Multi-Fidelity Methods at Mach 4, AoA 0◦

have required over 11 days, compared to around 1.4 days for the full Ghoreyshi cokriging

test. The computational investment required for data harmonization was clearly much larger

than for the other methods.

5.4.4 Results of Mach 4, AoA 0◦ Test

The average RMSE of the prediction error was tracked for each modeling method; the results

may be seen in Figure 34. Curiously, the single-�delity approach was competitive in this

case, being on average more accurate than additive or proportional correction.

Unlike the other methods, proportional correction behaved somewhat erratically; note

that there were multiple instances where the accuracy of proportional correction did not

increase as more training data was made available. The smooth increase in accuracy dis-

played by the other methods suggested that the accuracy of proportional correction was

more capricious than the others, with substantially more variability in the quality of the

surrogates. This was not a desirable quality.

Data harmonization and additive correction exhibited similar performance, which was

unsurprising given the similarity between the two methods that was identi�ed in Sec-

tion 5.1.5.2. Ghoreyshi cokriging exhibited very good predictive accuracy, even when rel-

atively few high-�delity samples were available. As seen in Table 4, this method did take
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slightly longer than most of the other methods (commonly 10-20% longer). The improve-

ment in accuracy for this �ight condition was considered su�cient to justify the increased

processing time.

Note that the e�ects of uncertainty information were not called out in these results. It

was observed that, for this response, the choice of uncertainty data had a much smaller e�ect

than the choice of multi-�delity technique. Given the scale of the ordinate axis in Figure 34,

if the results for each of the Ghoreyshi cokriging models (no uncertainty, iteration noise

e�ects, surrogate approximation noise e�ects, and both noise e�ects) were plotted, all of the

resulting icons would appear to be coincident.

5.4.5 Results of Mach 4, AoA 40◦ Test

The four multi-�delity methods were then applied to the Mach 4, α 40◦ data set. Once again,

each method was applied using four di�erent noise types which were captured via nugget:

zero noise, noise from the iterative solution process, noise from low-�delity prediction error,

and noise from both the iterative solution process and the low-�delity prediction error. The

results are plotted in Figure 35.

Unlike the previous test, in this case the proportional corrector demonstrated very good

performance. Proportional correction and Ghoreyshi cokriging had e�ectively the best pre-

dictive accuracy as judged by RMSE. Once again, the single-�delity method out-performed

the additive corrector. The data harmonization predictive accuracy gradually improved,

approaching that of the additive corrector, as more high-�delity cases were included in the

data set. Given the lackluster performance of data harmonization and the very large compu-

tational expense associated with the method as noted in Table 4, tests of data harmonization

were curtailed before the full analysis was complete.

As with the α 0◦ results, the choice of uncertainty information did not signi�cantly a�ect

the predictive accuracy of the surrogates. The choice of multi-�delity technique had a much

larger e�ect on predictive accuracy.
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Figure 35: Prediction RMSE for All Multi-Fidelity Methods at Mach 4, AoA 40◦

5.5 Observations & Further Inquiry

Given the strong performance of Ghoreyshi cokriging for both sets of test data, it was

selected as the most e�ective multi-�delity technique for this application. It served as the

default modeling approach for subsequent experiments.

A number of curious observations were made in the course of these tests, such as the

highly variable performance of proportional correction and the negligible e�ect of incorpo-

rating uncertainty. The next section will address those observations in greater depth.

5.5.1 Discrepancy in Proportional Correction Performance

Qualitatively, most of the results for Mach 4, α 40◦ resemble those observed for Mach 4,

α 0◦ with the exception of proportional correction. Proportional correction had the worst

performance at the low angle of attack but extremely good performance at the high angle

of attack.

A few statistical details about the data points used to test predictive accuracy � 1,719

points for α 0◦ and 1,693 for α 40◦ � are given in Table 5. Critically, note the very large

variation in ratios between the low- and high-�delity CM values for α 0◦, and the very small

range of variation for the same ratio at α 40◦.

Proportional correction �ts a surrogate model to the ratio of the high-�delity response
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Table 5: Distribution of CM For Both Flight Conditions

Mach 4, α 0◦ Mach 4, α 40◦

Cart3D

CM

APAS

CM

Ratio of

Cart3D to

APAS

Cart3D

CM

APAS

CM

Ratio of

Cart3D to

APAS

Minimum -12.2 -33.1 -113 0.02 0.88 0.02

Maximum 2.99 6.14 61.7 27.4 72.3 0.60

Average -0.63 -1.93 0.22 5.10 12.8 0.41

Standard

Deviation
1.13 3.05 4.17 3.61 9.46 0.06

Within ±1 79% 52% � 0.1% 0.0% �

to the low-�delity response (as seen in Equation 24 on page 137). When the response values

are close to zero, especially the low-�delity response, small absolute changes in the values

may produce large variations in the ratio. This was observed in the α 0◦ results. These large

variations can be di�cult for a surrogate model to �t e�ectively. As a result, proportional

correction models may have poor accuracy when the ratio varies rapidly, such as when the

low-�delity response is often close to zero.

Conversely, at α 40◦, neither the low- or high-�delity data encompassed zero, and very

few of those cases fell within ±1. The ratio values which result were much less volatile and

therefore easier to predict. This led to the excellent predictive accuracy demonstrated by

the method in Figure 35.

5.5.2 Modeling Uncertainty in Pitching Moment Coe�cient

At both �ight conditions, the four options for incorporating uncertainty resulted in very

small e�ects with respect to pitching coe�cient prediction RMSE, on the order of 1�2%.

This is very small relative to the di�erences in predictive accuracy between multi-�delity

methods, which were on the order of 80% or larger. Given the scale of the vertical axis

in Figure 34, if every variant of a given multi-�delity method were plotted, the set would

appear to be coincident.
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Modeling uncertainty did not improve the prediction of pitching moment coe�cient at

either �ight condition. However, pitching moment coe�cient had relatively low levels of

iterative noise. In fact, the pitching moment was the most highly-weighted factor for the

adaptive grid re�nements of Cart3D (see Appendix D.1.3.2 for more details). As a result,

the pitching moment was often well-converged.

The use of nuggets was primarily intended to improve the accuracy of surrogate models

for lateral responses, which were more susceptible to noise. Although this improvement was

not observed for pitching moment (a longitudinal response), it could still occur when mod-

eling lateral responses. The nine-dimensional experiments were therefore repeated, using

yawing moment coe�cient as the response of interest rather than pitching moment coe�-

cient.

5.6 Comparing Prediction Accuracy: Yawing Moment

To review from Section 4.10, the data set featured 9 independent variables � nose droop, nose

�neness ratio, two nose spline shape parameters, wing half-span fraction, wing airfoil camber,

vertical-tail-to-wing area ratio, wing root chord fraction and fuselage radius fraction � all

of which a�ected the vehicle outer mold line (OML) in a symmetric fashion. Additionally,

the available data points were for �ight conditions with zero sideslip. The �ow solver does

not capture viscous e�ects, so e�ects such as vortex shedding,[16] which might introduce

oscillating lateral forces and moments, were not present in the simulations.

In short, the mechanisms that would introduce real lateral forces or moments � asym-

metric OML, asymmetric �ight condition, viscous e�ects, etc. � were not present, and thus

any such forces or moments which appear in the data set could be assumed to be spurious,

resulting from the simulation itself rather than the phenomena being simulated. A similar

conclusion could be made for the low-�delity data from APAS.

The Uni�ed Distributed Panel analysis (UDP), which acts as the subsonic and transonic

analysis tool for APAS, consistently estimated asymmetric e�ects for symmetric cases to be

zero. The Supersonic Hypersonic Arbitrary Body Program (S/HABP) is used for supersonic

and hypersonic analyses in APAS and may predict small but nonzero lateral responses for
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symmetric cases. The �ight conditions included in this study were Mach 4, α 0◦ and Mach

4, α 40◦, and both the high-�delity and low-�delity data demonstrated some degree of noise.

When a con�guration is analyzed using Cart3D, the program discretizes the volume

around the con�guration into cells and repeatedly solves the three-dimensional Euler equa-

tions for a perfect inviscid gas within each cell until the solver converges to a steady-state

solution.[6] Because the equations are solved on a grid of cells rather than a continuum,

some small errors may be introduced. As the mesh is re�ned, this discretization or �trunca-

tion error� is reduced;[165] this also corresponds to increasing computational e�ort, as more

calculations must be performed for each iteration. The discretized nature of the analysis

can lead to oscillatory behavior, as shown in Figure 7 on page 42.

Because both data sources included some degree of noise � iteration noise for Cart3D

data, surrogate prediction error for estimated APAS data � it was expected that this study

would test whether the inclusion of uncertainty information via the Kriging nugget would

improve model prediction accuracy for noisy or uncertain data. For each of the four modeling

techniques (additive correction, proportional correction, Ghoreyshi cokriging, and single-

�delity modeling)2, four variants were tested. Each variant was de�ned by the uncertainty

data which was incorporated using nuggets. The options for uncertainty were:

• No uncertainty, i.e. all data points are deterministic;

• Uncertainty from solver iteration, which is unique to each high-�delity data point;

• Uncertainty from surrogate model prediction error, which is a constant value for every

low-�delity data point; and

• Uncertainty from both solver iteration and surrogate model prediction error, which

would be a combination of unique and constant values.

As in the previous study, random points from the �rst 4,000 space-�lling data points

were selected and used to build a surrogate model. That surrogate model was then used

2Data harmonization was not included in this experiment in light of the excessive computational e�ort
required and its poor performance in the previous test.
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Figure 36: Ghoreyshi Cokriging Prediction RMSE for Yaw at Mach 4, AoA 0◦

to estimate the response values for a separate set of roughly 1,700 data points, and the

discrepancies between predicted and recorded values were used to calculate the prediction

RMSE for that method and form of uncertainty.

5.6.1 Results of Mach 4, AoA 0◦ Study

For each multi-�delity method, the same pattern was observed. Variant #1, the noiseless

variant, had the largest (i.e. worst) prediction RMSE. Variants #2 & 4, the former using

iteration uncertainty only and the latter using both iteration and surrogate prediction un-

certainty, would have the smallest prediction RMSE. Curiously, the performance of variant

#3, which included only surrogate prediction uncertainty, di�ered between multi-�delity

methods. For additive correction and single-�delity modeling, variant #3 performed equally

well as variants #2 & 4. For Ghoreyshi cokriging and proportional correction, variant #3

had equivalent performance to variant #1, the noiseless case. Figure 36 shows the results

for Ghoreyshi cokriging. As noted above, these results are for the most part indicative of

the results for the other multi-�delity methods with the exception of variant #3.

The actual-by-predicted plots for two types of Ghoreyshi cokriging models, a noiseless

model and a model which included iteration noise, may be seen in Figures 37a & 37b,

respectively. In an actual-by-predicted plot, a perfect �t would appear as a straight line

173



Figure 37: Actual-By-Predicted Plots for Yaw at Mach 4, AoA 0◦ For (a) Noiseless Model,
and (b) Model Incorporating Iteration Noise

from the lower-left corner to the upper-right corner. Since all data came from steady-

state symmetric models, the �true� yawing moment was expected to be zero for all cases.

The bounds on the graphs were selected as a balance between capturing the range of the

deterministic predictions and showing details of the �noisy� model's predictions.

As expected, the deterministic model attempted to reproduce the training data exactly.

The strong horizontal spread in the data indicated that this model would over-predict yawing

moments compared to the calculated values. In fact, the left and right bounds on this graph

cut o� 19% of the data points, while the upper and lower bounds cut o� only 2.6% of the

points.

Conversely, the model which incorporated iteration noise (the �noisy� model shown Fig-

ure 37b) had a strong vertical trend. This indicated that the predicted yawing moments

were smaller than those calculated by Cart3D. Given that the �ight condition and vehi-

cle were symmetric, it was plausible that the predicted results might actually be a better

representation of the results than the raw Cart3D results.

Lastly, it should be noted that, while the actual-by-predicted plot gives a decent sketch

of the relationship between the actual and predicted response values, it lacks precision:

points lay atop one another, making it di�cult to convey the true distribution of results.
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Figure 38: Ghoreyshi Cokriging Prediction RMSE for Yaw at Mach 4, AoA 40◦

It is worth stating that 94% of the Cart3D results exhibited yawing moments within ±

0.005. Of the predictions by the noisy model, 99.6% fell within that range; the deterministic

model predicted that only 33% of the cases had yawing moments within that range. This

highlighted the degree to which the deterministic model over-�t the response behavior.

5.6.2 Results of Mach 4, AoA 40◦ Study

The results at the higher angle of attack were qualitatively similar to those at 0◦: variants

which included uncertainty due to iteration consistently had smaller RMSE values (i.e. more

accurate predictions) than the noiseless variants, while the e�ect of each uncertainty variant

depended on the multi-�delity method being applied. The results for Ghoreyshi cokriging

are shown in Figure 38. Unlike the previous �ight condition, the relative di�erence between

variants was much smaller in this study. In fact, the worst prediction RMSE at this �ight

condition by any method (0.081) was better than the best prediction RMSE at α 0◦ by any

method (0.155). Although capturing uncertainty due to iteration noise improved surrogate

accuracy, this improvement was smaller at this �ight condition.

The results for this �ight condition showed less variation between options. Qualitatively,

both actual-by-predicted plots in Figures 39a & 39b have moderate scatter. Each exhibits

a pattern which is more strongly horizontal than vertical, indicating that both models were
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Figure 39: Actual-By-Predicted Plots for Yaw at Mach 4, AoA 40◦ For (a) a Deterministic
Model, and (b) a Model Incorporating Iteration Noise

over-�tting the data to some degree. This was re�ected in the distribution of predictions:

93% of the Cart3D results had yawing moments within ± 0.005, whereas 82% of the �noisy�

model's predictions and 70% of the deterministic model's predictions fell outside that range.

At �rst glance, the distribution of the Cart3D results were roughly equivalent, but the

noiseless model had much better agreement. The data sets were investigated to determine

the cause of the di�erences in performance.

JMP statistical software[91] was used to analyze the yaw data at each �ight condition.

The �rst analysis was to evaluate the distributions of the yaw and iteration noise values.

Unexpectedly, the iteration noise at 40◦ was typically an order of magnitude less than at

0◦, not greater. This was in stark contrast to what was observed in the motivating example

(Section 2.5.3) which evaluated iterative noise at Mach 0.9. The reduced iteration noise

would indicate that the high-α results at Mach 4 are less subject to random e�ects; this

may be the reason for the smaller RMSE values observed for even the deterministic models

when applied to the 40◦ data.

The second step was to analyze the correlation between the variables. Given a set of

data, the correlation between two parameters can be estimated with the sample correlation
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coe�cient,[76] also known as the Pearson product moment correlation coe�cient:

r =

n∑
i=1

xiyi − nx̄ȳ√
n∑
i=1

x2i − nx̄2
√

n∑
i=1

y2i − nȳ2
(35)

Here, r is the correlation coe�cient, n is the total number of samples in the data set, xi

and yi are the individual observations of variables x and y respectively, and x̄ and ȳ are the

average values of x and y over the n samples.

If two variables behave similarly, e.g. when one increases the other tends to increase,

they are said to be correlated. The sample correlation coe�cient quanti�es this relationship.

A correlation coe�cient value of 1 indicates perfect positive correlation, i.e. when x increase,

y will always increase. A value of -1 indicates negative correlation: when x increases, y will

always decrease. A value of 0 indicates no correlation, i.e. knowledge of x tells you nothing

about the behavior of y.

Table 6 displays the correlation between the absolute value of the yaw response calculated

by Cart3D, the standard deviation of the Cart3D yaw solution over the last 20 iterations

of the analysis, and the absolute value of the APAS yaw solution. Note the negligible

correlation between the Cart3D and APAS yaw values. This was unsurprising given that

both values were expected to be spurious.

In the AoA 0◦ data, there was a moderate positive correlation between the yaw response

and the observed iteration noise, 0.45. The standard deviation cannot take a value less than

zero, so taking the absolute value of yaw would indicate whether there was more observed

noise for cases that were reported to be farther from zero, which seemed to be the case.

Iteration noise being larger for cases farther from zero suggested two things: �rst, that

those cases were more likely to be spurious and thus negligible; and second, the Kriging

models which capture that iteration noise via nugget would be more likely to disregard

those cases and tailor the model to the cases with less noise (and likely smaller yaw values).

The AoA 40◦ results showed much less correlation between the iteration noise and the

Cart3D yaw result. That observation would indicate that even when iteration noise was
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Table 6: Correlation of Yaw Data

Mach 2.5, α 0◦ Mach 2.5, α 40◦

|Yaw|

(Cart3D)
σY aw

|Yaw|

(APAS)

|Yaw|

(Cart3D)
σY aw

|Yaw|

(APAS)

|Yaw| (Cart3D) 1.00 0.45 0.04 1.00 0.16 0.00

σY aw 0.45 1.00 0.05 0.16 1.00 -0.02

|Yaw| (APAS) 0.04 0.05 1.00 0.00 -0.02 1.00

taken into account, the resulting models would not be as e�ective at screening out that noise

to identify the underlying response behavior. This matched the results seen in Figure 39

where both modeling approaches were approximately equally accurate. A small correlation

was still present, however, and capturing iteration noise did result in a mild improvement

in prediction accuracy. This indicated that, although capturing uncertainty with nuggets

did improve prediction accuracy, this improvement was to some degree proportional to the

extent that the data exhibited signi�cant noise.

5.6.3 Discrepancy Between Expectations & Observations

In light of observations made during the Reusable Booster System project, the AoA 0◦ �ight

condition was expected to exhibit relatively low noise, while the AoA 40◦ �ight condition

would exhibit around an order of magnitude greater noise. The data obtained during this

research e�ort showed those behaviors to be exactly reversed.

Fortunately, the data sets still presented the opportunity to test the methods on responses

with varying degrees of iteration noise, and the results did in fact con�rm the expectations:

capturing uncertainty via nuggets had greater e�ect when the degree of noise in the response

was larger. This outcome did little to address the question: why did the observed behavior

di�er from expectation?

The changes in the way that Cart3D was operated were investigated to determine which,

if any, produced the unexpected solver behavior. First, most analyses during the Reusable

Booster project ran Cart3D in �robust� mode,[4] which forced the �ow solver to calculate
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the solution gradients at every stage of the Runge-Kutta iteration scheme, rather than just

at the �rst stage. Robust mode was used to address cases which were failing to run to

completion. It was not found to be necessary for the current analyses. Running cases in

robust mode at Mach 4.0, α 0◦ and 40◦ did not produce a discernable change in iteration

noise.

Secondly, the convergence tolerance de�ned in the aero.csh script (see Appendix D for

more details) was set to a more restrictive default value in the current version of Cart3D

(1.4.7) than in the version used for RBS tests (1.4.3). During the RBS tests, the functional

error tolerance was set to 0.005 by default, and this value was reduced to 0.001 after consul-

tation with the software developers.[135] In version 1.4.7, the default value is 0.000001, or

10−6, a di�erence of three orders of magnitude. Cases run with the relaxed error tolerance

did not produce any discernable e�ect on the iteration noise.

The expectation of iteration noise increasing with angle of attack was drawn from ob-

servations made during the RBS study. Those observations were made at Mach 0.9. It

was possible that the increasing iteration noise was speci�c to the transonic �ight regime.

When the distribution of iteration noise with respect to angle of attack was investigated for

Mach 2.5 using the RBS data set, it was found that those observations matched the ones

described in this chapter. Rather than being a general characteristic, it would appear that

the iteration noise was strongly dependent on the speed regime being simulated.

5.7 Observations & Conclusions

The yawing moment study showed that the use of nuggets to capture uncertainty resulted

in improved prediction accuracy at both �ight conditions. Speci�cally, representation of un-

certainty due to solver iterations was found to signi�cantly improve the prediction accuracy

of all modeling techniques evaluated. Representation of uncertainty due to surrogate model

prediction errors improved prediction accuracy for some modeling techniques but not others.

The degree of improvement depended on the degree to which iteration noise corresponded

to extreme results.
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Uncertainty due to surrogate prediction error was estimated when the low-�delity surro-

gate was trained and tested, which means that this information was e�ectively free. Including

this source of uncertainty did not uniformly improve prediction accuracy, but it was never

observed to degrade accuracy either. Because the information cost nothing to quantify and

could possibly improve model accuracy, it was decided that uncertainty due to solver iter-

ation and uncertainty due to surrogate prediction error would both be retained for use in

future uncertainty calculations.

Hypothesis 3 asserted that:

When creating a Kriging model, the use of nuggets will capture uncer-

tainty in the data, improving predictive accuracy for noisy responses.

In light of the fact that models which capture response uncertainty using nuggets were

shown to have better prediction accuracy than those which did not, Hypothesis 3 could be

considered supported.

In a similar vein, Hypothesis 2 asserted that:

Data fusion techniques will allow results from high-�delity analyses to

be augmented with cheaper sources of data to produce surrogate models

that are more accurate yet require less computationally-expensive data.

Experiments in this chapter demonstrated that the use of data fusion techniques for

multi-�delity modeling improved prediction accuracy over what could be achieved with only

one source of data. This result indicated that Hypothesis 2 could also be considered sup-

ported. This concluded the evaluation of the lower-tier hypotheses, and cleared the way for

the testing of the main hypothesis in the next chapter.
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CHAPTER VI

INTEGRATED MODELING & SAMPLING PROCEDURE

�Cuius rei demonstratioem mirabilem sane detexi hanc marginis exiguitas non

caperet.�

�I have a truly marvelous demonstration of this proposition which this margin is

too narrow to contain.� � Pierre de Fermat[116]

The two preceding chapters illustrated how the selected methods produced the desired

e�ects: contour-based sampling improved prediction accuracy for a particular response range

of interest in Chapter 4; Chapter 5 illustrated that capturing uncertainty using nuggets

resulted in better accuracy for lateral responses, while leveraging cheaper data sources using

Ghoreyshi cokriging improved prediction accuracy for the longitudinal response.

Although these enhancements were individually signi�cant, further bene�ts could be

derived by combining the techniques. The e�ectiveness of contour-based sampling depends

on its ability to accurately estimate response values at various points in the design space.

Combining contour-based sampling with multi-�delity modeling would improve the accuracy

of response estimates, allowing a more accurate assessment of candidates. This was expressed

by the primary hypothesis:

By placing samples intelligently, reducing dependence on the expensive

models, and better quantifying the level of con�dence in each data point,

the selected methods will reduce the computational expense of high-

�delity modeling to su�cient extent that it becomes a feasible option

earlier in the design process.

A relatively modest demonstration was desired to determine what degree of improvement

the integrated methods could o�er. The nine-dimensional design space, �rst described in

Section 4.10, was chosen for this demonstration as it would allow the results obtained to

be compared against those from both space-�lling samples and single-�delity contour-based
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sampling.

6.1 Simpli�ed Test: Nine Input Dimensions, Three Responses

6.1.1 Creating an Integrated Algorithm

The scripts and functions created for the contour-based sampling exercise in Chapter 4 were

augmented to use Ghoreyshi cokriging in place of single-�delity modeling. The generic steps

to implement the multi-�delity sample-selection method will be given in boldface, while

details about the author's implementation of the method will be given in plaintext.

First, the source of low-�delity data is identi�ed. In this case, APAS was used.

Secondly, the user must decide whether this data source can be applied directly

(i.e. analyzing each case directly) or if a surrogate model is necessary. Due to

the number of evaluations required by contour-based sampling and the non-negligible time

required for each APAS solution, surrogate models were used for this implementation.

To generate these surrogate models, the 16,000-case nested Latin hypercube was analyzed

at each �ight condition using APAS. BRAINN was then used to create neural networks for

the responses of interest (CM at each �ight condition), as described in Section 5.4.1. Not

all 16,000 cases were used in training: 20% of the cases were used for validation and 15%

were used as test cases. The neural networks passed all goodness-of-�t tests with excellent

performance. The neural networks were then formatted as Matlab functions which would

take inputs, in the form of the geometric parameters which made up the nine-dimensional

design space, and return estimates for the response for each input case. The functions were

vectorized so that many cases could be assessed with a single function call.

Next, whether the data source is applied directly or surrogates are used, the

low-�delity response values are calculated for each high-�delity training case.

Once high- and low-�delity responses are available for each training case, multi-

�delity Kriging models are �t to the training data, incorporating the low-�delity

responses as extra input dimensions as described in Section 5.1.4.

During implementation, the question arose whether it was more e�ective to �t models to

Yhigh, the high-�delity responses, or (Yhigh − Ylow), the discrepancies between the high- and
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low-�delity responses. The latter option might be considered a hybrid of Ghoreyshi cokriging

and additive correction. When tested, it was found that the two methods produced predicted

response values that di�ered by no more than 10−14. Given that the two alternatives were

indistinguishable with regard to predictions, it was decided to �t models to Yhigh directly,

since the alternative would require additional arithmetical operations for every model trained

or response estimated.

Just as in single-�delity sample selection, the updated Kriging models are

used to select the next sample. The di�erence between the new algorithm and single-

�delity contour-based sampling (described in Section 4.1) is that multi-�delity adaptive

sampling requires that both low- and high-�delity responses be estimated for all candidate

and test points, because the multi-�delity Kriging models need the low-�delity responses

to estimate the high-�delity responses. Otherwise, the process of evaluating and selecting

candidates remains the same.

6.1.2 Applying the Integrated Algorithm

When single-�delity contour-based sampling was applied to the 9-dimensional problem in

Section 4.10.9, the 500-case level of a nested Latin hypercube was used as the initial data set.

This same data set was used to initialize multi-�delity contour-based sampling to elucidate

the e�ects of the extra data source. Each sample was selected using a fresh set of candidate

and test points.

A tapering probability-of-interest (POI) requirement was used: the �rst �ve selection

rounds required POI values to exceed 25%, while the next �ve rounds required POI to be

greater than 15%. Rounds 11�35 required POI values above 5%, and rounds 36�70 simply

excluded any candidates with POI values equal to zero. This POI schedule was intended

to place early samples in regions that were expected to have very good performance while

allowing later samples to explore regions of lower prediction con�dence. If no candidate

met the POI requirements, the candidate with the best POI value was selected as the next

sample.

Once 70 new cases had been selected, their surface meshes were built in PaceLab and
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Figure 40: Prediction RMSE at Mach 0.3, α 15◦

their aerodynamics analyzed using Cart3D. The results were added to the training data set.

Kriging models were �t to each response based on the available data, and those models

were used to predict response values for the set of independent test data. As described in

Section 4.10.7, these test cases were a set of 1,470 con�gurations within the nine-dimensional

space that produced pitching moment coe�cients within ±0.1 at all three �ight conditions

(Mach 0.3, α 15◦; Mach 0.8, α 0◦; and Mach 2.5, α 0◦). The prediction error for the Kriging

models was quanti�ed using root mean squared error (RMSE).

6.1.3 Evaluation of Accuracy

Figures 40a & b show the results for Mach 0.3, α 15◦. The black square icons represent the

models based only on nested Latin hypercube sampling for 500, 1,000 & 2,000 cases. As

stated in Chapter 4, roughly 70% of the con�gurations analyzed produced well-converged

results at all �ight condition. Surrogate models based on these space-�lling samples produce

a smooth trend of improvement as more samples are included. Together, these images

demonstrate not only the performance of the proposed approach compared to the baseline,

but also the relative contributions of each technique.

In contrast to the single-�delity modeling of space-�lling samples, the results from apply-

ing single-�delity contour-based sampling (i.e., selecting new samples based only on Cart3D
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data) are represented by grey triangles in Figure 40a. These results were previously shown

in Section 4.10 on page 113. The downward-pointing triangles represent the use of a low

probability-of-interest (POI) requirement for the sample selection algorithm, which allowed

it to explore the design space more freely. This series is labeled �CBS 1�.

As a review from when these results were �rst presented in Section 4.10, the initial

batch of samples for the low POI requirement actually worsened the predictive accuracy

for this �ight condition, although the second batch almost balanced that out. Progress was

somewhat slow but steady as the model learned about the response behavior. For this �ight

condition, the rate of improvement was approximately equal to space-�lling sampling.

The upward-pointing triangles, labeled �CBS 2,� represent the use of a higher POI re-

quirement, which resulted in the selection of new cases that were fairly close to existing data

points. This series showed slow but steady improvement in predictive accuracy. The rate of

improvement was roughly equal to that of the later rounds of the low-POI series. However,

because the high-POI series did not su�er from early missteps, the overall performance of

the high-POI approach was better than the low-POI approach, at least for this particular

response.

Figure 40b compares the baseline and the combined techniques against the use of data

fusion with space-�lling samples. For the 500-case space-�lling data set at this �ight con-

dition, using multi-�delity modeling negatively a�ected predictive accuracy, resulting in an

RMSE value (1.29) that was signi�cantly larger than the RMSE value for the single-�delity

model of the same data (0.704). The diamond icons show that data fusion, when applied

to space-�lling samples, had mixed results for this response. It produced a mild improve-

ment for the 1,000-case data set, a mild degradation for the 2,000-case set, and a sharp

degradation for the 500-case set.

In contrast, the black circles denote models based on the full proposed method, which

leveraged both Goreyshi cokriging and contour-based sampling. The series starts with the

same performance as the space-�lling multi-�delity surrogate, representing the performance

of the combined techniques before adaptive sample selection began. Because the combined

techniques were initialized using the multi-�delity surrogate of the 500-case data set, the
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Figure 41: Prediction RMSE at Mach 0.8, α 0◦

same poor initial accuracy was observed. Despite this, the proposed approach showed its

worth quickly, and more than made up for the initial degradation after a single batch of

adaptive samples. Model accuracy continued to improve with further sampling until the

fourth and �fth rounds. Recall that in each round, half the samples were selected using a

minimum POI of zero, allowing the algorithm to select cases which might be of interest to any

response rather than only those expected to be of interest to all responses. It is possible

that samples were selected in the fourth and �fth rounds that were in regions with poor

performance at this �ight condition, and when the Kriging model was updated to capture

those samples, its ability to model the actual region(s) of interest for this �ight condition

was negatively a�ected. After one or two batches, the predictive accuracy once again began

to improve at a rate faster than that of the space-�lling or single-�delity approaches.

The RMSE results for Mach 0.8, α 0◦ are displayed in Figures 41a & b. The 1,000-case

level of the NLHC appeared to contain misleading results for this �ight condition, based on

the observation that the associated surrogate model was less accurate than the one based on

the smaller 500-case NLHC set. The 2,000-case set produced a marked improvement over

both smaller sets.

The two single-�delity adaptive sampling approaches, marked as grey triangles in Fig-

ure 41a, showed a gradual improvement as more samples were selected by the adaptive

186



sampling algorithm. This held true for both the high-POI-requirement series (denoted

by upward-pointing triangles) and the low-POI-requirement series (denoted by downward-

pointing triangles). No matter which POI approach was used, single-�delity adaptive sam-

pling out-performed space-�lling sampling for this response. In fact, the single-�delity adap-

tive sampling approaches out-performed the space-�lling approach even when almost twice

as many space-�lling samples were available.

The use of space-�lling samples and multi-�delity modeling, marked with grey diamonds

in Figure 41b, once again produced mixed results. The initial gain in predictive accuracy

for surrogates trained with the 500-case data set (from an RMSE of 0.61 for single-�delity

modeling to 0.50 for multi-�delity modeling) became a loss of accuracy for the 1,000-case

data set; there was minimal di�erence in predictive accuracy between single-�delity and

multi-�delity surrogates trained on the 2,000-case data set.

The black circles, on the other hand, denote the results of using the proposed approach,

multi-�delity modeling and adaptive sampling. The �rst batch of samples selected by the

combined techniques produced a substantial improvement in prediction accuracy, reducing

RMSE from 0.50 to 0.34. Later batches continued to produce improvements, although none

so substantial as the �rst batch. Some evidence of diminishing returns was observed. Overall,

the proposed approach was very e�ective at improving surrogate model predictive accuracy

for this response, out-performing single-�delity models based on either adaptive sampling

or space-�lling sampling.

Lastly, Figures 42a & b depict the results at Mach 2.5, α 0◦. The space-�lling cases

exhibited a more-or-less linear trend of improving accuracy as the training data pool grew,

although at a more gradual rate than was observed for Mach 0.3.

The single-�delity adaptive sampling approaches, denoted by grey triangular icons in

Figure 42a, had very di�erent initial behavior. The series with the low POI requirement,

which was more tolerant of exploratory sampling, initially produced a sharp reduction in

prediction error, but lost some of those gains after a few rounds. Still, even after that

reduction in accuracy, this series out-performed both other single-�delity approaches. The

more restrictive single-�delity adaptive sampling approach, with the high POI requirement,
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Figure 42: Prediction RMSE at Mach 2.5, α 0◦

initially became less accurate but then improved rapidly. In fact, despite the initial misstep

this series outperformed the space-�lling approach when both approaches had an equal

quantity of data available.

The grey triangles in Figure 42b illustrate the e�ects of space-�lling samples and multi-

�dleity modeling, incorporating APAS data through the use of Ghoreyshi cokriging. A

substantial improvement was observed for all space-�lling data sets, and in most cases,

prediction error was halved. For example, for the 500-case data set, RMSE was reduced

from 0.81 for single-�delity modeling to 0.43 for multi-�delity modeling of the same samples.

The black circles in both Figures 42a & b show the predictive performance for surrogates

made with both multi-�delity modeling and contour-based sampling. Even though prediction

error had already been reduced substantially by the use of multi-�delity modeling alone, the

�rst batch of multi-�delity contour-based samples provided almost an equal improvement.

This brought the prediction RMSE below 25% of the original space-�lling value. This result

suggests a relatively simple relationship between the behavior of the low- and high-�delity

responses. Later rounds also improved performance slightly, although for the most part the

predictive accuracy appeared to be steady.

Overall, the combination of multi-�delity modeling and contour-based sampling produced

signi�cant improvements in prediction accuracy for all three �ight conditions. At Mach 2.5,
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using only 210 samples the integrated algorithm achieved a level of prediction accuracy that

would likely require thousands more space-�lling cases to match. This appears to be strong

support for the hypothesis that these methods will enable the use of high-�delity modeling

earlier in the design process than was previously possible.

This test problem with its 9 free parameters was still fairly simple compared to a typical

design problem. Before the primary hypothesis of this research could be con�rmed, the

method must be applied to a more challenging problem: the complete design space of the

Reusable Booster System study.

6.2 Full-Scale Test: Forty-Nine Input Dimensions, Twelve Responses

This experiment was intended to test the e�ectiveness of the proposed method for a repre-

sentative engineering problem. The design of a Reusable Booster System (RBS) was di�cult

because of the relatively large number of input dimensions and the complexity of the re-

sponse. Such a vehicle must �y a very demanding trajectory, with a broad range of attitudes

and speed regimes.[71] Planned trajectories for such vehicles include angles of attack up to

and including 40◦, much larger than most air vehicles.[19, 25, 98] Pamadi et al.[144] showed

that a minimum of Euler CFD would be required for some of the �ight conditions, particu-

larly the higher angles of attack where lower-�delity analysis tools become less accurate.

Higher-�delity modeling such as Euler CFD or viscous simulation would entail signi�-

cantly increased computational e�ort per analysis. Additionally, the many input parameters

made for a large design space; if the response behavior was even moderately complex with

respect to the input parameters, understanding the response at a resolution adequate for

decision-making purposes could require a very large number of analyses. At the present

time, creating an accurate surrogate model for a large design space would require tens or

hundreds of thousands of analyses, with correspondingly daunting computational costs.

The wide range of �ight conditions meant the analyst must simulate a potential con-

�guration at numerous conditions to evaluate its e�ectiveness � a con�guration which has

tolerable aerodynamic moments at one �ight condition might be unmanageable at another,

and a useful RBS design must be controllable over its entire return-to-launch-site trajectory.
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However, this challenge held the seeds of success: by modeling only the design space regions

which were likely to be controllable for all �ight conditions, the computational requirements

might be reduced signi�cantly. Incorporating a cheaper source of data would further dimin-

ish the number of high-�delity analyses required. These observations led to the proposed

method that was the subject of this research.

6.2.1 Flight Conditions of Interest

The �ight conditions for the full-scale experiment were selected based on likely trajectories.

The Fly-Back Booster designed by DLR[51, 98] was expected to �y a return-to-launch-site

(RTLS) trajectory from a reentry speed just under Mach 6, with an angle of attack schedule

that peaked at 35◦ at Mach 6 and fell below 10◦ at Mach 4. This vehicle featured a secondary

turbine propulsion system for powered subsonic �ight, enabling higher staging speeds. At

the other end of the spectrum, the Langley Glide-Back Booster[26, 144] did not include

a secondary propulsion system. Instead, its reference trajectory featured an unpowered

aerodynamic turn and gliding return to the launch site. This trajectory placed an upper

limit on the staging Mach number: if the booster staged much faster than Mach 2, it would

travel too far from the launch site to glide back. The nominal trajectory featured a peak

speed of Mach 2 at an angle of attack of 48◦, with the angle of attack falling rapidly to

below 20◦ at speeds below Mach 1.4.

The present e�ort focuses on the �rocketback� RTLS maneuver,[79] in which the main

propulsion system of the reusable booster would be used to decelerate the vehicle after stag-

ing. This extinguishes the horizontal velocity of the vehicle, limiting the downrange distance

traveled before the vehicle can perform an atmospheric turn and begin its unpowered �ight

back to the launch site. This maneuver would also drastically reduce the heating experienced

by the vehicle during its descent.[19] Reference trajectories started with reentry at angles of

attack up to 40◦ and reached peak speeds between Mach 2.5�3. The angle of attack would

then be reduced to roughly 10◦, dipping close to 0◦ as the booster fell below the speed of

sound and then returning to 5�10◦.

To approximate these reference trajectories, four �ight conditions were selected from the
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RBS modeling e�ort described in Chapter 2:

• Mach 2.5, α 40◦, β 0◦;

• Mach 2.5, α 15◦, β 0◦;

• Mach 0.8, α 0◦, β 0◦; and

• Mach 0.3, α 15◦, β 0◦.

These �ight conditions sketched out a rocketback RTLS trajectory, including each of the

various �ow regimes such a vehicle would experience. Table 7 details the performance of the

neural networks produced during the RBS e�ort, each of which was trained using roughly

10,000 cases. The test R2 values indicated that the neural networks are capturing almost

all of the variability observed in the data; this showed that the overall variability in the

data set was also large, supporting the conclusion reached in Section 2.5.1 that many of the

con�gurations being analyzed had poor aerodynamic qualities. Although the R2 values for

test data were high, which is one indication of a good �t, the prediction error had a fairly

large standard deviation.

Table 7: Neural Network Prediction Accuracy for CM

Croll

Test R2

Croll

σError

Cpitch

Test R2

Cpitch

σError

Cyaw

Test R2

Cyaw

σError

Mach 0.3

α 15◦
0.838 0.066 0.992 0.395 0.801 0.043

Mach 0.8

α 0◦
0.949 0.076 0.961 0.264 0.915 0.044

Mach 2.5

α 15◦
0.959 0.017 0.997 0.262 0.929 0.015

Mach 2.5

α 40◦
0.956 0.028 0.999 0.456 0.925 0.015

These large standard deviation values indicated that any prediction made with these

surrogates would have signi�cant uncertainty. Error bars could be used to quantify the
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magnitude of that uncertainty. For example, the standard deviation for Cpitch at Mach 0.3,

α 15◦ was 0.395; if a prediction were made with this neural network, a set of error bars that

would have 95% con�dence of enclosing the actual response (as calculated by Cart3D) would

have to extend ±2σ, or ±0.79. This would be a very large range, especially compared to

the stated response range of interest (±0.1), and could make the di�erence between a viable

design and one that cannot be controlled. Given that range, it was unlikely that a designer

could use those surrogate models for design purposes with any con�dence

The full-scale experiment was therefore intended to determine whether the combined

methods � contour-based sampling, multi-�delity modeling, and incorporating uncertainty �

would o�er any improvement in performance relative to the previous results. The objective

had changed somewhat from what the RBS project attempted to do: whereas that e�ort

attempted to produce surrogate models which would be equally accurate throughout the

design space, the present objective was to be as accurate as possible for regions where

moments are close to zero, and su�ciently accurate in other regions that those regions could

be identi�ed as having moments far from zero. Testing the e�ectiveness of each method

would require a pool of test cases with moments close to zero. These test cases �rst had to

be identi�ed.

6.2.2 Selecting Test Cases

Acceptable test cases for this experiment had to have good performance at all �ight con-

ditions, representing a set of vehicle designs which were likely to be controllable along the

return-to-launch-site (RTLS) trajectory. The same genetic algorithm approach which was

used to identify test cases for the 9-dimensional problem (see Section 4.10.6) was applied

to the current set of 49 free parameters. Although ultimately there were 12 responses of

interest � the 3 aerodynamic moments at each of the 4 �ight conditions � it was expected

that the pitching moment coe�cient at each �ight condition would be the primary factor

which determined whether a given con�guration would be feasible. Thus, although there

were 12 responses to be modeled, it was expected that test cases need only be selected on

the basis of 4 of those responses: the pitching moment coe�cient at each �ight condition.
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All data points from the previous RBS study which were analyzed at all 4 �ight condi-

tions relevant to the present study, and which met all the convergence criteria detailed in

Appendix D, were included in the initial data set for the genetic algorithm sampling. A

total of 7,371 such cases were found. As before, each variable was represented with an 8-bit

string, e�ectively transforming continuous variables into discrete variables with 256 possible

settings. Each case was mapped to the binary settings which mostly closely approximated

its parameter values. A full factorial sampling of the space at this resolution would require

somewhat more than 10118 cases.

The �tness function used was the same as for the 9-dimensional example:

ObjFunc =
N∑
i=1

wi|CM,i|

wi =


10 if |CM,i| > 0.1

1 otherwise

A record of every case ever analyzed, and the associated results, was kept. The best

500 cases were selected and subjected to the genetic algorithm operators � tournament

selection, crossover, and mutation � to create new cases for the next population. As before,

the crossover rate was 70% and the mutation rate was 10% to encourage exploration of the

design space. The case-creation process would continue until 500 new cases, which did not

match any previous cases, had been generated. Those 500 new cases would then be analyzed

using Cart3D and the results added to the case records.

Forty iterations of this process were performed, requiring the evaluation of 20,000 cases

at each of 4 �ight conditions. 2,370 of the cases analyzed, roughly 12%, had pitching moment

coe�cients within ±0.1 for all 4 �ight conditions. The algorithm took quite a few rounds

to �nd useful test cases, but as more good cases were identi�ed the rate increased. No test

cases were found in the �rst 13 batches (6,500 cases); the �nal 5 rounds averaged just over

185 new test cases per batch of 500, or 37%. The search for test cases was curtailed after

40 batches because the 2,370 cases available at that point were felt to be su�cient.
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Figure 43: Partial Scatterplot for Selected Cases

6.2.2.1 Investigation of Test Cases

The accumulated test cases were investigated using JMP as a sanity check. Scatterplot

matrices, which are a method of visually identifying trends and patterns in a data set, were

generated for all 49 variables to see what deductions could be from the distribution of test

cases. A partial scatter plot showing 4 variables is given in Figure 43.

A scatterplot is a set of 2-variable distributions. For example, the uppermost block

in Figure 43 displays cases with the Fuselage Loft End value as the abscissa or horizontal

component and Nose Droop as the ordinate or vertical component. Each black dot in this

block represents a single con�guration. Each con�guration is plotted in every block. The

distribution of dots can reveal trends in the data, such as regions with unusually dense or

sparse sampling.

For example, for cases in the test set � i.e., cases which were found to have small pitching

moments at all �ight conditions � it was likely that the Nose Droop value was at the high end

of the range: 1,908 of the 2,370 test cases have Droop values of 0.8 or above, which indicates

that for most of these test con�gurations the tip of the nose was close to the bottom of the

vehicle. Likewise, most of the selected test cases had small Wing Span Fraction values and

large Wing Root Chord Fraction values. In contrast, there was no trend visible with respect
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Figure 44: Partial Scatterplot for All Evaluated Cases

to the Fuselage Loft End parameter.

Because genetic algorithms were used to select these test cases, the cases were not inde-

pendent, so it was possible that clustering behavior might appear that stemmed from the

way cases were selected rather than the underlying behavior of the response. To determine

whether such spurious clustering was likely to be a problem in this manner, another scatter-

plot was generated using the full set of 20,000 cases which were evaluated during the genetic

algorithm search. A partial scatter plot showing the same 4 variables is given in Figure 44.

Each black dot represents a single con�guration; each con�guration is represented in every

box.

In Figure 44, the design space is shown to be sampled fairly thoroughly. No regions

were left unsampled, although some regions were sampled more thoroughly than others. For

example, in the lower-left scatterplot, it can be seen that there were more cases with high

Wing Root Chord Fraction values than with low Wing Root Chord Fraction values. This is

indicated by the dense distribution of black dots in the upper region of the scatterplot, with

almost no white space visible, and mild increase in white space visible in the lower region

of the scatterplot.

The thorough sampling observed in Figure 44 suggested that the cases which were eval-

uated sampled the design space fairly thoroughly, and thus that inferences about the design
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space could be safely drawn from the distribution of test cases. Parameters which tended

to take high values included Nose Top Curvature 2, Nose Bottom Curvature 2, Nose Droop,

Wing Root Chord Fraction, Wing Outboard Taper Ratio, Wing Dihedral, Wing Maximum

Camber Location, Wing Airfoil Thickness-to-Chord Ratio, and Wing Leading Edge Ra-

dius Parameter. Parameters which tended to take low values included Vehicle Scale, Wing

Span, Wing Twist, Wing Incidence, Wing Camber, Wing Maximum Thickness Location,

and Vertical Tail Leading Edge Sweep.

Curiously, there were two strong clusters of cases observed for Nose Spatularity Ratio;

one group had values at or near the minimum of the range, while another cluster had values

near the midpoint of the range. Using JMP, when points are selected within one scatterplot

those points are highlighted in all other scatterplots, allowing the user to see the distribution

of those points with regard to other parameters without having to generate a new set of

plots. When the cases with larger Spatularity values were highlighted, it was revealed that

these cases almost exclusively have very low Nose Fineness Ratios. Conversely, cases with

small Spatularity values tended to have higher Nose Fineness Ratios, although some cases

with both small Spatularity values and small Fineness Ratios were observed as well.

6.2.3 Generation of Low-Fidelity Data

Before sampling began, a decision had to be made as to whether APAS could be used di-

rectly as the low-�delity data source, or if it had to be replaced with a surrogate model.

Section 5.1.2.1 established that when multi-�delity methods are used, contour-based sam-

pling required such a large quantity of low-�delity estimates that supplementary surrogate

modeling could be a necessity. As in the 9-dimension example given earlier in this chapter

(Section 6.1.1), a large space-�lling set of cases was analyzed with APAS and a neural net-

work �t to the results. Because the per-evaluation cost of APAS was so low, a very large

space-�lling data set was generated. However, it was uncertain whether all of the data would

be necessary. Furthermore, the portion of the data that might be used was unlikely to be a

regular fraction of the whole. To account for this, a sampling approach was sought such that

even arbitrary fractions of the sample set would still have good space-�lling characteristics.
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Figure 45: Subsets of a Sobol Sequence

This search led to the use of Sobol sequences.

6.2.3.1 Sobol Sequence for Space-Filling Samples

To allow a subset of the data to be used without sacri�cing the space-�lling qualities, the

Matlab function sobolset from the Statistics Toolbox was used to generate data using a

Sobol sequence. A Sobol sequence is a series of quasi-random numbers that have good

space-�lling properties.[21, 114, 180] The sequence can be generated for relatively little com-

putational e�ort and subsets of the sequence also have relatively good space-�lling properties.

Figure 45 shows how a Sobol sequence can be sampled sequentially without loss of space-

�lling characteristics. Figure 45a depicts the �rst 100 samples from the sequence. Figure 45b

plots the �rst 200 samples, and Figure 45c plots the �rst 300 samples. Thus, samples from

a Sobol sequence can be added progressively.

Note, however, that in all three sample sets, a gap is left unsampled near (0.6, 0.3) and the

upper region is somewhat more heavily sampled than the lower. These results demonstrate

that the sobolset function requires some degree of oversight by the user. In addition to the

number of dimensions desired, the user can input values for two free parameters (�skip� and

�leap�) which control which numbers in the sequence are used to create samples. By varying

these free parameters, new sequences can be generated, but these sequences sometimes have

poor space-�lling characteristics. A few sample Sobol sequences were generated using the

commands:
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Figure 46: Distribution of Points from Sobol Sequences

• p = sobolset(2,'skip',skip,'leap',leap);

• p = scramble(p,'MatousekA�neOwen');

• POINTS = net(p,500);

Here, skip and leap are user-de�ned Matlab variables. Once Matlab has generated the

sequence, it will skip the �rst skip points in the sequence and then use every leapth point as

a sample.[121]

Three Sobol sequences are demonstrated in Figure 46. Figure 46a uses a skip value of

66 and a leap value of 32 to select 500 points; these are the same parameters that were used

to generate the sample sets in Figure 45. Figure 46b is based on a skip value of 36 and a

leap value of 16. The samples from this sequence exhibited signi�cant clumping, and the

lower edge of the space was sampled heavily while other regions were neglected. Figure 46c

is based on a skip value of 42 and a leap value of 29. Once again, clumping was observed; in

this example, however, the samples did not address the full horizontal range of the space.

These observations were the reason why Sobol sequences were not selected for most

space-�lling sampling in this research: there was too much risk that the Sobol sequence that

was generated would have poor space-�lling characteristics, which would adversely a�ect

the experiment. However, this risk was considered acceptable for generating training data

from APAS when the per-analysis cost was cheap and only a portion of the total samples
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would be used. Checks were added to ensure that the sequence sampled the full range of

each parameter.

6.2.3.2 Fitting Surrogate Models to APAS Data

After the Sobol sequence was created, APAS was used to analyze the points. The results

were then modeled using the neural network tool BRAINN (described in Section 5.4.1). At

�rst, the tool was applied to the full set of 500,000 cases, which made the �tting process

quite slow and time-consuming. It was found that networks trained on 100,000 cases were

equally accurate and could be trained much more quickly.

Because the APAS model would not include control surface de�ections and only zero-

sideslip �ight conditions were being simulated, it was expected that once again any lateral

responses estimated by APAS would be spurious. No surrogate models were trained to re-

produce lateral responses from APAS. Instead, the primary goal of the low-�delity surrogate

models was to accurately predict pitching moment. A partial list of the goodness-of-�t met-

rics for the CM models at each �ight condition is given in Table 8. These metrics included

the distribution of the Model Fit Error (MFE), which measured how well the model �t the

training data, and the distribution of the Model Representation Error (MRE), which mea-

sured how well the model �t new data points that were not used in training. These error

distributions were described by the mean (µ) and standard deviation (σ) of the observed

prediction errors.

The two supersonic surrogates had good performance for the most part. Both the training

and test R2 values were very close to 1. The Model Fit Error, which quanti�ed how well

the surrogate model reproduced its training data, had a mean close to zero and a standard

deviation that was not overly large, if a bit larger than might be desired. The same was true

for the Model Representation Error, which quanti�ed how well the surrogate reproduced a

separate set of test data which was not used in its training.

The subsonic surrogates were not quite as accurate. The test R2 values were below

0.9, which may be cause for concern, and the standard deviations of both the Model Fit

Error and Model Representation Error were signi�cantly larger. It was decided to proceed
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Table 8: Goodness of Fit Metrics for Surrogates of APAS Data

R2

Training

R2

Test

MFE

µ

MFE

σ

MRE

µ

MRE

σ

Mach 0.3

α 15◦
0.927 0.844 -2.1×10−6 0.581 0.0160 0.901

Mach 0.8

α 0◦
0.946 0.812 3.2×10−8 0.317 0.00846 0.648

Mach 2.5

α 15◦
0.997 0.995 1.6×10−8 0.114 0.00130 0.140

Mach 2.5

α 40◦
0.998 0.998 5.8×10−8 0.242 0.00338 0.255

with these surrogates rather than trying to improve the models; this would serve as a test to

determine the sensitivity of the method with respect to the accuracy of the low-�delity data.

In e�ect, a less-accurate source of data was being used for the two subsonic conditions.

Once the low-�delity surrogates were completed, the main e�ort of this experiment could

begin in earnest.

6.2.4 Null Hypothesis: Space-Filling Samples

The null hypothesis for this experiment was that space-�lling sampling would result in the

most accurate surrogate models for the given test points. Space-�lling sampling in general,

and Latin hypercube sampling in particular, has been known to be an e�ective approach

for understanding and modeling response behavior.[126] Such sampling is particularly useful

when, as Cioppa and Lucas put it, �there may be multiple responses of interest and little a

priori knowledge about the forms that the response function may take.�[30]

As addressed in Section 2.4.1, space-�lling methods usually select all samples simultane-

ously, forcing the user to decide in advance how many samples would be necessary. Qian's

method of nested Latin hypercubes[152] allows some �exibility in this regard: a nested Latin

hypercube (NLHC) contains multiple space-�lling subsets, referred to as levels, which give
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the user a variety of potential sample set sizes without losing the space-�lling quality. How-

ever, the number of cases in each space-�lling subset grows at a geometric rate, with the

smallest possible growth rate being a doubling of size at each level. If more than a handful

of levels are required, the rate of growth can quickly become signi�cant. This was high-

lighted during the initial RBS e�ort described in Chapter 2: when the 8,000-case subset was

insu�cient with regard to model accuracy, the researchers had to run another 8,000 cases

to produce another space-�lling data set, doubling the computational e�ort.

Consider the nested Latin hypercube results depicted in Figures 40, 41 & 42. The plotted

results include sample sets of 500, 1,000 & 2,000 cases; the next level of that NLHC would

be 4,000 cases, a signi�cant increase compared to the number of cases in the competing data

sets. It would be preferable if the step size between space-�lling sets was more uniform,

since this would allow the user a greater degree of granularity with respect to sampling size.

6.2.4.1 Sliced Latin Hypercubes

Qian has also proposed Sliced Latin Hypercube designs,[153] which are intended for

problems with one or more discrete variables. For the purpose of clarity, the following

discussion will assume that only one discrete variable is present.

For each possible setting of the discrete variable, one hypercube is generated. This hyper-

cube, referred to as a �slice,� has good space-�lling qualities with respect to the continuous

variables. When all slices are combined, the resulting sample design is also a true hypercube,

with good strati�cation over every dimension.

To illustrate the concept, consider sampling along a single continuous variable with 4

slices, each slice consisting of 4 samples. Each input variable would be split into 16 equal

�bins�. The combined hypercube would place 1 sample in each bin. The bins would be

grouped into sets of 4, and each slice would put a single sample in each group.

For example, one group would consist of bins 1, 2, 3 & 4; another group would consist

of bins 5, 6, 7 & 8, etc. The �rst slice (i.e., the �rst hypercube in the set) would include one

bin from each group, such as (3, 5, 11, 13). The second slice would also include one bin from

each group, such as (1, 6, 9, 16). No bin would appear in more than one slice, and each slice
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would include only one bin per group.

After the algorithm to create sliced Latin hypercubes was implemented, a number of two-

dimensional sliced Latin hypercubes were generated and investigated visually, with regard

to both the distribution of points in each slice and the distribution of points in the combined

set. Based on this admittedly qualitative examination, it was observed that some hypercubes

exhibited a tendency toward clumping, with some regions being sampled more densely than

others.

To reduce the risk of clumping and sample the space more evenly, a variation of sliced

Latin hypercubes was devised. This variation would combine independently generated

hypercubes rather than permutations of a common core. Because the overall sample set

was composed of multiple unrelated hypercubes, it was referred to as a �stacked Latin

hypercube.�

6.2.4.2 Stacked Latin Hypercubes

By now, the reader should be aware that, due to the computational resources available

to this e�ort, there was low emphasis placed on �nding elegant solutions. It was likely

that, by the time a complex approach could be implemented, a simpler brute-force method

might already have accomplished the task at hand. This mindset informed the method of

generating stacked Latin hypercubes.

To create a stacked Latin hypercube, the user �rst determines the desired step size and

total number of cases. The total number of cases should be an integer multiple of the step

size. For this e�ort, it was decided that a step size of 500 cases would be a good compromise

between granularity and simplicity; the total number of cases was set to 8,000, which was

expected to be close to or in excess of the largest viable data set for Kriging models. Thus,

16 hypercubes, each with 500 cases, would be combined to create the overall set of 8,000

cases. The challenge was to select a set of 16 hypercubes such that the combination of all

cases was well-spaced.

A pool of 800 Latin hypercubes was generated, each of which included 500 cases of 49

dimensions. This pool size might seem small to researchers more accustomed to Monte
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Carlo analyses using tens of thousands of cases, but such instincts can be misleading. The

pool was set at 800 hypercubes because that value o�ered 50 hypercubes for each 1 being

selected.

A selection of k members from a pool of n options, when the order of selection is unim-

portant, is known in probability theory as a �combination.�[76] The number of possible

combinations, given n and k, can be calculated by:

Cnk =
n!

(n− k)! k!
(36)

Here, ! indicates the factorial of the number, calculated as:

n! = n (n− 1) (n− 2) · · · (1) (37)

By convention, 0! is equal to 1. The number of possible combinations can grow much faster

than might be expected. For example, if the objective was to select 3 options from a pool

of 10, the number of possible combinations would be
10!

3!× 7!
which is equal to

3, 628, 800

6× 5, 040

or 120 combinations. Due to the nature of factorials, the number of combinations increases

very rapidly with the size of the pool.

Although the direct calculation of 800! in common programs like Microsoft Excel 2007

or Matlab R2010b returns an answer of in�nity � factorials grow very rapidly, and 100! is

on the order of 10157 � the inspection of Equation 37 shows that when n is much larger

than k, many of the terms in n! and (n− k)! will cancel out, resulting in a numerator and

denominator that are much less elegant but far more computationally tractable:

C800
16 =

800!

784!× 16!
=

785× 786× · · · × 799× 800

16!
= 1.16× 1033 (38)

Thus, even a pool of 800 hypercubes will o�er a very large number of possible combinations.

Genetic algorithms had been used for other portions of this research e�ort (see Sec-

tion 4.10.6). The generation of a stacked Latin hypercube lent itself directly to the use of

genetic algorithms. The �chromosome� for this problem consists of a binary string 800 bits

long, with one bit for each hypercube in the pool. A 1 would indicate that that hypercube

was included, while a 0 would indicate that the hypercube was excluded. The number of

hypercubes included was constrained sum to 16, i.e. there must be 16 hypercubes for each
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population member so that the total number of points in the stacked Latin hypercube would

be 8,000.

As described on page 115, genetic algorithms are well-suited for problems which are

discontinuous, highly-dimensional, noisy and/or multimodal. The creation of a stacked

Latin hypercube was known to be highly-dimensional, since there were 800 dimensions, and

discontinuous: each member of the pool of hypercubes had to be either included in its

entirety or excluded, and could not be partially included.

The population size for this optimization was 500 members, with a probability of cross-

over of 70% and a probability of mutation of 5%. Rather than recording the performance of

every population member ever analyzed, as in Section 4.10.6, the 10 best members of each

population were carried over to the following population unchanged. Tournament selec-

tion, crossover, and mutation operations were then used to create the other 490 population

members.

The �tness function for the GA was the Euclidean maximin distance, which is the

smallest Euclidean distance between any two points in the set. This distance is a common

metric to assess how well-spaced a set of cases are,[30, 132, 147, 185] and in fact the function

lhsdesign from the Matlab Statistics Toolbox, which generates Latin hypercubes, attempts

to maximize this metric.[120]

The Euclidean distance between two points x1 and x2 in P dimensions is calculated as

follows:

d (x1, x2) =

√√√√ P∑
i=1

(
x
(i)
1 − x

(i)
2

)2
(39)

Here, x
(i)
1 is the ith component of x1.[132]

Each member of the population was a particular combination of 16 hypercubes from the

pool. The members were evaluated with the Euclidean maximin distance; the larger this

value, the farther apart the two closest points in that set of cases, and the better those cases

were spread out throughout the space.

After 100 iterations, the best stacked hypercube had a maximin distance of 1.68. To

evaluate this result, a comparison was made using Latin hypercubes. A set of 50 Latin
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hypercubes, each of which had 49 dimensions and 8,000 cases, was generated using Matlab's

lhsdesign function and evaluated using the maximin metric. The average maximin distance

for these hypercubes was 1.56 and the best hypercube had a maximin score of 1.61. These

results showed that the stacked Latin hypercube approach could produce a combined set

with better space-�lling characteristics than a single Latin hypercube designed to have good

maximin spacing. In light of this performance, the genetic algorithm was curtailed at that

point. The entire optimization took roughly 17 hours on a shared computing resource with

four 2.66 GHz processors and 4 gigabytes of RAM, although there is no way to determine

whether any other users were accessing the resource at the time.

Good performance was demonstrated for the full stacked set, but as yet there was not

evidence that a subset of the full stacked set would also have desirable space-�lling char-

acteristics. A sorting algorithm was developed which took the 16 hypercubes which make

up the stacked Latin hypercube and determined the best order in which to use them to

maximize the maximin distance at each level. Thus, the �rst hypercube would be the one

that has the largest maximin score out of the 16 hypercubes in the stack. The remaining

15 hypercubes were one-by-one combined with the �rst; the one which produced the best

2-hypercube maximin score was designated the second hypercube. The third hypercube is

selected by combining the 14 remaining hypercubes with the �rst and second, and so on.

6.2.4.3 Evaluating the Quality of Competing Space-Filling Approaches

The resulting stacked Latin hypercube was then compared against standard Latin hyper-

cubes and nested Latin hypercubes. Each space-�lling approach was assessed for various

numbers of cases, from 500 up to 8,000 cases, in steps of 500. For each number of cases,

at least 500 standard Latin hypercubes were generated using Matlab's lhsdesign function

and assessed using the Euclidean maximin distance. The standard deviation of the resulting

distances was less than 0.025 for all levels.

The nested Latin hypercube cases had a minimum size of 500 cases and grew by a factor

of 2, so each NLHC had space-�lling levels of 500, 1,000, 2,000, 4,000, & 8,000 cases. At

least 500 NLHCs were generated; each NLHC was then assessed at each level of cases. If a
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particular number of cases did not correspond to a space-�lling set, such as 1,500 cases, no

assessment was made. The average Euclidean maximin distance at each level was calculated.

Table 9 gives the Euclidean maximin distance for the stacked Latin hypercube at each

level, as well as the average results for the standard and nested Latin hypercubes. The

most obvious aspect of this table is the gaps that result from the geometric growth of

NLHCs, which are relatively small at �rst but become more signi�cant at higher levels.

Another interesting observation is the degree of similarity between the nested & sliced Latin

hypercubes. Unlike the other methods, these two had maximin distances consistent to at

least two decimal places for every point of comparison. It is believed that these results stem

from the fact that both methods use random permutations of the smallest space-�lling set to

generate larger data sets. The use of permutations, rather than the creation of independent

& unique hypercubes, may limit the potential of the designs with respect to optimal space-

�lling characteristics. It must be said, however, that both methods generate sample sets

quite rapidly.

To determine the time required to generate a given sample design, each method was

used to generate a set of 8,000 cases over 49 dimensions; this was repeated 1,000 times for

each method, with the exception of the stacked Latin hypercube. The average time per

standard Latin hypercube was 8.8 seconds, while the average sliced Latin hypercube time

was a mere 0.38 seconds. Nested Latin hypercubes were generated in an average of 5.3

seconds. It was curious that the nested Latin hypercubes could be generated more rapidly

than standard hypercubes despite the complexity of the nesting method. Upon review of

the function description for lhsdesign, used to create the standard hypercubes, it was found

that the function may iterate up to �ve times to improve the distribution of points according

to the space-�lling criterion, which by default is the Euclidean maximin distance. This may

also explain why the standard hypercubes have a larger maximin distance than the NLHC

cases, even at the smallest pool size.

Lastly, it was observed that the stacked Latin hypercube did in fact o�er better space-

�lling characteristics as measured by Euclidean maximin distance. This indicated that the
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Table 9: Minimum Spacing of Hypercubes (HCs) of Various Sizes

500

Cases

1,000

Cases

1,500

Cases

2,000

Cases

2,500

Cases

3,000

Cases

3,500

Cases

4,000

Cases

Latin

HC
1.83 1.76 1.72 1.69 1.67 1.65 1.63 1.62

Nested

Latin

HC

1.77 1.70 � 1.63 � � � 1.57

Sliced

Latin

HC

1.77 1.70 1.66 1.63 1.61 1.59 1.58 1.57

Stacked

Latin

HC

1.87 1.84 1.81 1.77 1.77 1.74 1.73 1.73

4,500

Cases

5,000

Cases

5,500

Cases

6,000

Cases

6,500

Cases

7,000

Cases

7,500

Cases

8,000

Cases

Latin

HC
1.61 1.60 1.59 1.59 1.58 1.57 1.57 1.56

Nested

Latin

HC

� � � � � � � 1.51

Sliced

Latin

HC

1.56 1.55 1.54 1.54 1.53 1.52 1.52 1.51

Stacked

Latin

HC

1.70 1.69 1.69 1.69 1.69 1.69 1.68 1.68

stacked Latin hypercube had very good space-�lling characteristics while enabling progres-

sive sampling with a linear rate of data set growth. The negative aspect of this approach

was evident in the amount of e�ort required to assemble a good stacked Latin hypercube.
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Although a stacked Latin hypercubes was computationally intensive to generate, the e�ort

was rewarded with a set of samples that allowed smooth linear growth while retaining good

space-�lling qualities. This technique would form the null hypothesis, which asserted that

space-�lling samples would be the most e�ective sample distribution method for surrogate

modeling.

6.2.4.4 Applying the Stacked Latin Hypercube

The cases from the stacked Latin hypercube were analyzed using Cart3D and grouped into

the appropriate data pools. Recall that roughly 70% of the cases that were analyzed for

the nine-dimensional problem were suitable for modeling, i.e. had converged for all 3 �ight

conditions. For this larger problem, roughly 90% of the analyses were found to be converged

for all �ight conditions, which suggests one of two primary explanations: either the Mach

2.5, α 0◦ �ight condition accounted for the bulk of unconverged cases, since it was replaced

by the Mach 2.5, α 0 & 40◦ conditions for this experiment, or the default values used to

reduce the design space to 9 dimensions produced con�gurations that were more likely to

exhibit poor computational convergence.

The various data pools were used to train Kriging models with linear trends and aniso-

tropic Gaussian correlation functions. These surrogates were then evaluated using the test

cases identi�ed in Section 6.2.2. By comparing the predicted CM values against Cart3D

results, the Root Mean Squared Error (RMSE) would be calculated for each model. Those

RMSE values are presented in Figure 47. For the most part, the results showed very limited

improvement or mild degradation with increasing data pool size, which was unexpected. The

model for CM at Mach 2.5, α 15◦ showed an 11% improvement in RMSE for 4,000 cases

compared to 500 cases, as seen in Figure 47c; all other CM models became less accurate as

more cases were added, at least with respect to the test cases.

The CM surrogate models for the Mach 0.3 �ight condition were investigated to identify

why model improvement was minimal or negative. For those models, the β̂ values for the

underlying trend model � which are similar to the coe�cients in a response surface model

� showed mild convergence behavior as the available data pool grew, but no signi�cant
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Figure 47: Prediction RMSE for Stacked Latin Hypercube Sampling

changes overall. Some weights progressively approached zero, indicating that as more data

is available, the corresponding parameters were found to be less important in determining

the response, but those weights were small to begin with and thus did not strongly a�ect the

models. This observation indicated that the underlying trend that was �t to the training

data remained approximately constant as more training data was added.

Recall that Kriging predictions depend on two components: the underlying trend model,

which is similar to a response surface model, and the correlation-based correction term. The

correction term is used to capture divergences from the underlying trend based on the degree

to which other nearby data points deviated from that trend. When the Kriging surrogate

model is �t to the training data, the coe�cients for the trend and the correction term are

optimized to best �t the observations.[108] The Kriging surrogate produced by the DACE

toolbox utility dace�t is represented by a data structure which includes the trend model

209



coe�cients as well as various other parameters relevant to the Kriging model.

When the coe�cients for the correlation term were investigated, they were found to be

unchanged from the initial guess values. This can occur when the algorithm which optimizes

the correction coe�cients could not identify any new values that would improve the model

accuracy. It was believed that this behavior was due to the relative sparsity of the overall

sampling. Even for the larger data pool sizes, the points may not have been close enough

together that the correction term is producing any consistent improvement.

This was tested by evaluating the correlation between the test cases and the training

data sets. The Kriging models in this study all used an anisotropic Gaussian correlation

function, which was previously de�ned in Equation 3 on page 80. The implementation of

this function within the DACE toolbox uses a slightly di�erent notation:

k(u, v) =
n∏
i=1

exp
[
−θi (|ui − vi|)2

]
(40)

In this version, the θi term, which indicates the correlation coe�cient for dimension i, is

multiplicative rather than divisive. ui and vi represent the i
th component of points u and

v, respectively. When the Kriging models were �t to the data, the θi values were initialized

at a value of 10 and allowed to vary between 0.1 and 20. Smaller θi values would indicate

that there is correlation between cases which are father away.

It should be noted that the points u and v must be normalized before correlation can be

calculated. The DACE toolbox function dace�t transforms the input cases and responses

so that the normalized variables have a mean of 0 and a standard deviation of 1.[108] Each

variable is normalized by subtracting the mean of the known values for that variable and

then dividing by the observed standard deviation of that variable:

S:,j =

(
S̄:,j − µ

(
S̄:,j
))

σ
(
S̄:,j
) j = 1, · · · , n (41)

Here, S̄:,j is the set of observed values for the jth variable in the set of points S. µ
(
S̄:,j
)

and σ
(
S̄:,j
)
represent the mean and standard deviation of the observed values, respectively.

The response values are normalized in the same manner.

Once the test cases had been normalized, the correlation between each test case and the

training cases could be calculated. These correlation values can range from 0 to 1, with 0
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indicating no correlation and 1 indicating perfect correlation. For the 500-case data set, the

largest correlation value between any test case and any training case was 1.6×10−170. When

the 4,000-case set is used instead, this correlation increases to 4.2× 10−151. E�ectively, the

training data did not provide any knowledge about how far the test cases were likely to

deviate from the underlying trend. As a result, the correlation term of the Kriging model

went to zero for all test cases, and the surrogate became a simple least-squares linear �t.

Based on these results, it appears that the sampling is too sparse for the correlation term

to a�ect the Kriging prediction. This reduces the Kriging model to the underlying trend

model which is �t to the data using the generalized least-squares solution.[108]

Note that this observation did not invalidate the alternative hypothesis that the proposed

approach would improve model accuracy. When a model is �t using a least squares method,

it attempts to �t every data point equally well. If the model is �t to space-�lling samples, the

entire design space is given equal weight. Conversely, if regions of desirable response behavior

can be identi�ed and emphasized by adaptive sampling, the resulting models would exhibit

better accuracy in those regions because the over-representation of such cases arti�cially

weights those regions as being more important. The evaluation of the alternative hypothesis

therefore went ahead as planned.

6.2.5 Alternative Hypothesis: Multi-Fidelity contour-based Sampling

Opposing the null hypothesis in this experiment was the alternative hypothesis, which as-

serted that the multi-�delity contour-based sampling approach would produce surrogate

models with better predictive accuracy for the cases of interest. Once again, a linear under-

lying trend model and an anisotropic Gaussian correlation function were used. This illumi-

nated the e�ects of increased space-�lling sampling while ensuring that both the space-�lling

and adaptively-sampled methods began from an equal footing.

As previously mentioned, the time and computational e�ort required to train or apply

a Kriging model grows geometrically as the number of data points increases.[136] In the

previous experiment, Kriging models were trained using no more than 1,000 cases. In

deference to the larger data sets that would be modeled for this study, the number of
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cases per batch was reduced: whereas for the nine-dimensional study 70 cases were selected

per batch, here only 15 cases would be selected per batch. This decision was intended to

reduce the amount of time per batch. Smaller batches also meant that the algorithm would

be updated more often, potentially leading to better selection of samples as each response

was modeled more accurately.

To evaluate how the size of the warm start would a�ect the performance of the proposed

approach, the algorithm was initialized using various levels of the stacked Latin hypercube,

which contained space-�lling sets of data in multiples of 500 cases. The �rst 6 of these sets,

up to a maximum of 3,000 cases, were used to investigate how the integrated algorithm

would be a�ected by increasing the quantity of data available. It was expected that the

integrated algorithm would be progressively more e�ective as more space-�lling data were

used, due to the greater information about response behavior.

6.2.5.1 E�ects of Initial Sampling Size

A simple study was performed to determine how the size of the initial data pool, or �warm

start,� would a�ect the performance of the adaptive sampling algorithm. A larger initial

data pool might improve the surrogate model that would be used by the adaptive sampling

algorithm, leading to a better assessment of the available candidates and thus a larger

improvement in predictive accuracy. However, a larger data pool corresponds to higher

surrogate model training costs. As a result, evaluating a set of candidates would take

longer. This study was intended to determine the point at which the increased evaluation

costs began to outweigh the improved candidate selection performance.

Five di�erent sizes of warm start were investigated. The sizes were based on the �rst 5

levels of the stacked Latin hypercube, and corresponded to training data sets of around 500,

1,000, 1,500, 2,000 and 2,500 cases. Using each warm start, 30 new samples were selected

(in batches of 15). To ensure a fair comparison, all warm starts were provided with the same

candidates and test points. New candidates and test points were used for each round.

The adaptive sampling algorithm featured 3 parameters that could be adjusted by the

user: the number of candidates to be evaluated, the number of test points to be used in
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the evaluation, and the required probability of interest (POI) that would be used to screen

out uninteresting candidates. Each of these parameters a�ected the computational e�ort

required to select a new sample. Identifying optimum settings for these parameters was

left for future research, especially as the �optimum� settings were likely to be problem-

dependent. Instead, 3 di�erent sets of values were selected for use with the 49-dimensional

problem. Each set of values would be used to select 5 samples out of every batch of 15

points.

The �rst 5 points out of every batch were intended to be exploratory while still keeping

sample selection times low: 1,000 candidates, 1,500 test points, and a required POI of 0%.

Because the POI criteria was a �greater-than� and not a �greater-than-or-equal,� a POI

of 0% would still eliminate some candidates. The number of candidates eliminated would

depend strongly on the estimated prediction uncertainty: when uncertainty was larger, more

candidates would have a POI value greater than zero.

The second 5 points were selected from a larger set of candidates (3,500), which would

be evaluated with a greater number of test points (3,500). If the POI requirement were not

adjusted, this would have led to a signi�cant increase in analysis time. To mitigate this

e�ect, a higher POI requirement (1%) was used. Depending on the prediction uncertainty,

this POI requirement would typically disqualify 65-85% of the candidates for this problem,

so the time required per sample selection did not increase excessively.

The �nal 5 points in each batch were also selected using 3,500 candidates and 3,500 test

points. The 1% POI requirement of the previous 5 selections was fairly restrictive, so that

requirement was relaxed partially to 0.5% for these selections. This reduced POI requirement

would still disqualify 55-80% of the candidates, again depending on the estimated prediction

uncertainty.

Beginning with each warm-start set, these parameter schedules were used to select

batches of 15 samples at a time. Those samples would be analyzed, and the new sam-

ples would be appended to the associated warm-start set. This procedure was repeated

twice for each warm start, augmenting the initial space-�lling cases with a total of 30 new

samples. The sample selections were performed in Matlab 2011b on a shared computing
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Table 10: E�ects of Data Pool Size on Time Per Sample Selection (in minutes)

500

Cases

1,000

Cases

1,500

Cases

2,000

Cases

2,500

Cases

1,000 Candidates

1,500 Test Points

POI 0%

31 74 165 220 332

3,500 Candidates

3,500 Test Points

POI 1%

48 103 233 265 392

3,500 Candidates

3,500 Test Points

POI 0.5%

62 130 296 332 475

resource with 4 gigabytes of RAM and two Intel Xeon E5440 2.83 gigahertz processors, each

of which had 4 cores. It should be noted that the computing resource was shared and other

users may have been active during this e�ort, reducing the resources that were used for this

e�ort.

The �rst quantity evaluated was the average time per sample selection. The reader may

recall that the computational cost to build a Kriging surrogate model grows as O
(
N3
)
,

where N is the number of training data points. As a result, larger sets of warm-start data

were expected to take longer to select each sample. The time required to select a sample was

grouped based on the associated settings for the algorithm parameters (number of candidate

points, number of test points, & POI requirement). The average time required to select a

sample under each set of algorithm parameters was then calculated for each warm start size.

The results are displayed in Table 10.

As Table 10 shows, the average time required to select each new sample increased drasti-

cally as the size of the warm start grew. There was something of an aberration: the increases

in average sample selection times between the �1,500 Cases� and �2,000 Cases� columns are
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much smaller than the increases between any other pair of consecutive columns. It is possi-

ble that other users were accessing the shared computing resource during part of this study.

A surge in competition for resources during the 1,500-case portion of the calculation and

reduced competition during the 2,000-case portion could explain the observed results; how-

ever, the distribution of resources at any given time was not recorded, limiting the author's

ability to substantiate this theory. In general, however, the observed results did show that

the time & e�ort required to select a new sample grew rapidly.

The other aspect that was being investigated was whether the extra information led to

better sample-selection behavior, evidenced by surrogates with improved predictive accuracy.

A better initial surrogate would evaluate candidates more accurately and thus might do a

better job of selecting candidates, resulting in more rapid improvement in surrogate model

accuracy.

After 2 batches of points were selected using each of the initial data sets, the resulting

Kriging models were evaluated using the test cases in order to assess their predictive ac-

curacy. The resulting RMSE values are compared in Table 11. It was found that, as with

the stacked Latin hypercube, there was not a strong or consistent relationship between the

number of space-�lling cases and the predictive accuracy of the model for sets of up to 2,500

cases.

More importantly, new samples could be selected more rapidly for the smallest data

set than for the larger sets, which more than compensated for the reduction in available

information. For example, the surrogate models based on 1,000 space-�lling cases and

two adaptively-selected batches had better predictive accuracy for the 2 supersonic �ight

conditions than those based on 500 cases and 2 adaptive batches. However, in the time

required to select 2 batches of adaptive cases for the 1,000-case set (roughly 38 hours for

2 batches), it was possible to select 4 batches for the 500-case set (roughly 35 hours for 4

batches); when the extra 2 batches were included, models based on the 500-case set had

better predictive accuracy. In light of these results, the larger data sets were abandoned and

future sampling e�orts would use the set of 500 space-�lling samples as the warm start.
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Table 11: Prediction Accuracy (RMSE) After Two Batches of Adaptive Samples

500

Cases

1,000

Cases

1,500

Cases

2,000

Cases

2,500

Cases

Mach 0.3

α 15◦
0.395 0.412 0.412 0.410 0.433

Mach 0.8

α 0◦
0.793 0.886 0.754 0.717 0.675

Mach 2.5

α 15◦
0.252 0.235 0.256 0.263 0.264

Mach 2.5

α 40◦
0.925 0.719 0.800 0.805 0.791

6.2.6 Probability of False Positives

Although Root Mean Squared Error, or RMSE, is a relatively easy way to quantify the

predictive accuracy of each surrogate, the result may be di�cult to interpret beyond �smaller

is better.� To more clearly illustrate the accuracy of a surrogate, a new metric was developed.

This metric uses RMSE to calculate the likelihood that a poorly-performing con�guration

will be mistakenly predicted to have good performance. This likelihood shall be referred to

as the �probability of a false-positive� or POFP.

Root Mean Squared Error is an approximation of the variance of the observed predic-

tion error. The �true� response for a given con�guration, as calculated by Cart3D, can be

approximated by a normal distribution with the predicted response value (0 in this case) as

its mean and the RMSE of the surrogate as its standard deviation. Using the mathematical

technique presented in Section 4.3.2, the portion of the distribution that lies outside of ±0.1

can be calculated. Speci�cally, the user can calculate the likelihood that, if the surrogate

predicts that some con�guration has a pitching moment coe�cient of exactly 0, the true

pitching moment coe�cient as calculated by Cart3D would be found to fall outside the

range of −0.1 < CM < 0.1. In other words, POFP estimates the likelihood that the
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Figure 48: Probability of a False Positive for |CM |<0.1

surrogate model would evaluate an uncontrollable con�guration and pronounce it control-

lable. It stands to reason that smaller POFP values would correspond to better predictive

accuracy.

The relationship between prediction RMSE and POFP for a constraint of |CM | < 0.1 is

shown in Figure 48. For prediction RMSE values below 0.05, the POFP is e�ectively zero.

There is a large increase in POFP as RMSE grows, although the rate of increase is reduced

once RMSE exceeds roughly 0.3. Clearly the objective would be to minimize POFP, and

by extension minimize prediction RMSE. Large gains can be made once prediction RMSE

falls below 0.3. As predictive accuracy increases, the likelihood of a false positive � that a

poorly-performing con�guration will be identi�ed as having good performance � is reduced.

It must be noted that POFP will depend, not only on RMSE, but on the response range of

interest, and as a result Figure 48 is only valid for the current problem.

6.2.7 Evaluation of Accuracy for Pitching Moment

6.2.7.1 Mach 0.3, α 15◦

Once the predictive accuracy was quanti�ed for models of pitching moment coe�cient, the

results for each �ight condition were plotted for visual comparison. The results for Mach 0.3,

α 15◦ are plotted in Figure 49. The black squares mark the predictive accuracy of single-

�delity Kriging models that were trained using the space-�lling stacked Latin hypercube.
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Figure 49: Predictive Accuracy for Pitching Moment at Mach 0.3, α 15◦

Note that predictive accuracy did not improve as more samples were included; instead, as

the size of the training data pool increased from 500 to 7,000 points, the predictive RMSE

got worse, from 0.53 to 0.61.

The grey squares denote Kriging models that were trained using the same stacked Latin

hypercube cases, but which also made use of APAS data via Ghoreyshi cokriging. Like the

single-�delity results, the accuracy of the models did not improve when more space-�lling

cases were included. The predictive RMSE values for the smallest and largest training sets

were 0.42 and 0.49, respectively. On average, the incorporation of cheaper data reduced

RMSE by about 0.13, or 25%.

The grey circles mark the performance of surrogate models trained with the adaptively-

selected samples; these models were single-�delity, trained only with Cart3D results. Note

that the samples were selected using multi-�delity contour-based sampling. The single-

�delity models were trained solely for the purpose of comparison. Initial rounds of sampling

did demonstrate improved accuracy, from 0.53 to 0.46, although this improvement leveled

o� after six or seven rounds of sampling.

Lastly, the models produced by the proposed method are marked with black circles.

These models showed some variation in behavior, but overall the results were the same as the

space-�lling cases: predictive accuracy degraded slightly as the training data set grew larger.
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Table 12: Predictive Accuracy for Pitching Moment Coe�cient at Mach 0.3, α 15◦

Number of

Converged Cases
RMSE POFP

Stacked LHC

500-Case Design
458 0.533 85%

Proposed Method

725 Samples
651 0.432 81%

Stacked LHC

1,000-Case Design
922 0.549 86%

Stacked LHC

7,000-Case Design
6,430 0.612 87%

Neural Network

with Nested Latin

Hypercube Design

11,417 1.47 95%

Over 15 rounds of adaptive sampling, the training data set grew from 500 to 725 samples and

the prediction RMSE grew from 0.42 to 0.43. To translate this RMSE value into probability

of false positive, if the latest surrogate model predicted some untested con�guration to have

a pitching moment coe�cient of exactly 0 at this �ight condition, there would be a 81%

chance that an analysis with Cart3D would reveal the actual pitching moment coe�cient

to be > ±0.1. This is larger than would be preferred, but still an improvement over the

space-�lling approach: after 7,000 samples, the stacked Latin hypercube approach achieved

an RMSE of 0.612 and the POFP would be 87%.

The prediction RMSE and POFP scores for a number of surrogate models are given in

Table 12 to allow quick comparisons. The proposed method had smaller RMSE and reduced

chance of a false positive. In contrast, single-�delity surrogate models trained using stacked

Latin hypercube cases grew mildly less accurate as larger data sets were used.

These results illustrated how the POFP metric could at times behave in an un-intuitive

manner: although the prediction error was reduced by 15-20%, the POFP was only reduced
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by 5-6%. The prediction error was large compared to the response range of interest, and

so even a relatively large reduction in error did not correspond to a large impact on POFP.

For smaller RMSE values, a similar reduction in RMSE would produce a larger reduction

in POFP.

The neural network that was trained to emulate this response during the previous RBS

e�ort[40] was also evaluated. This network was trained using results from a nested Latin

hypercube, and was based only on Cart3D data. It was interesting to note that the neural

network produced a prediction RMSE of 1.47 for these test cases � a value much larger than

the prediction RMSE of 0.395 when the surrogate was tested with space-�lling cases. This

suggested that the neural network �t other regions of the space much more accurately than

the current region of interest.

Overall, the results were mixed. The inclusion of cheaper data did produce a consis-

tent improvement in predictive accuracy of roughly 25%. However, with regard to sample

selection, neither space-�lling nor adaptive samples were clearly more e�ective. Both ap-

proaches produced reduced accuracy as more samples were added. No matter which sampling

approach was used, the DACE toolbox was unable to identify correlation weights which im-

proved model accuracy over that of the underlying trend alone.

6.2.7.2 Mach 0.8, α 0◦

Like Mach 0.3, the surrogate model that stood in for APAS at this �ight condition had

fairly large prediction error. The standard deviation of the Model Representation Error was

roughly 0.65, which was large with respect to the width of the response region of interest.

The single-�delity space-�lling approach, using 7,000 cases, produced a prediction RMSE

of 0.864 and a POFP of 91%. Combining space-�lling samples and data fusion produced

a mild improvement, particularly for larger data sets, but it was not as e�ective as it

was for Mach 0.3, α 15◦. Likewise, single-�delity surrogates trained with the adaptively-

sampled cases were almost indistinguishable from those trained with the adaptive samples

and Ghoreyshi cokriging. After the end of sampling, the �nal surrogate model created by

the proposed method had a prediction RMSE of 0.762, which corresponds to a POFP of
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Figure 50: Predictive Accuracy for Pitching Moment at Mach 0.8, α 0◦

Table 13: Predictive Accuracy for Pitching Moment Coe�cient at Mach 0.8, α 0◦

Number of

Converged Cases
RMSE POFP

Stacked LHC

500-Case Design
458 0.615 87%

Proposed Method 651 0.724 90%

Stacked LHC

1,000-Case Design
922 0.695 91%

Stacked LHC

7,000-Case Design
6,430 0.864 96%

Neural Network

with Nested Latin

Hypercube Design

11,159 0.688 88%
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Figure 51: Predictive Accuracy for Pitching Moment at Mach 2.5, α 15◦

90%. Note that as the number of samples increased, both sampling approaches became

markedly less accurate. For further comparison, the RBS neural network used 11,159 cases

and produced an RMSE of 0.688 for these test cases; for space-�lling test cases, the RMSE

was 0.274. These values are presented for easier comparison in Table 13.

The surrogates based on 2,000-4,000 cases, which demonstrated a sharp increase and

plateau of prediction error, were investigated to determine the source of this degradation.

A few patterns were observed: the trend coe�cients for Loft Start and Loft End shifted

from O
(
10−4

)
to O

(
10−2

)
, while those for Vertical Tail Maximum Thickness Location and

the Inboard Starboard Elevon De�ection decreased from O
(
10−2

)
to O

(
10−4

)
and O

(
10−3

)
,

respectively. It should be noted that the magnitudes of these coe�cients remained small at

all times, and that identi�cation of these coe�cients as the cause for the change in predictive

accuracy was tentative at best.

6.2.7.3 Mach 2.5, α 15◦

The prediction accuracy results for Mach 2.5, α 15◦ are given in Figure 51. Here, data fusion

made a very signi�cant di�erence with regard to predictive accuracy, reducing the RMSE

value from 0.935 to 0.384. Adaptive sampling improved the results from there, bringing the

RMSE down to 0.262. The rate of improvement due to additional sampling was not as rapid

as for Mach 0.3.
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Surrogates trained with space-�lling samples and Ghoreyshi cokriging are marked with

grey squares. It was clear that data fusion made a powerful contribution for this response,

reducing RMSE by roughly 60% in many cases. The grey circles denote single-�delity

surrogates trained with adaptively-selected samples. It bears repeating that these samples

were selected using multi-�delity contour-based sampling; the single-�delity surrogates were

only trained for performance comparison. The resulting surrogates did improve in accuracy

much more rapidly than those trained with space-�lling samples, reducing prediction error

by about 30%.

The proposed approach, combining both data fusion and adaptive sampling, was the most

e�ective for this response. With an RMSE value of 0.262, the probability of a false positive

(POFP) for the proposed approach was 70%. The space-�lling model based on 7,000 samples

produced a prediction RMSE value of 0.810, resulting in a POFP value of 90%, while the

surrogate based on 7,000 space-�lling samples and Ghoreyshi cokriging produced a prediction

RMSE of 0.274 (equal to a POFP of 72%). This was a much larger improvement in RMSE

than at Mach 0.3, although most of the improvement appears to be due to the incorporation

of APAS data. The neural network generated during the RBS project was trained with

10,458 space-�lling cases and exhibited a prediction RMSE of 0.887 when applied to the test

cases with small pitching moment coe�cients. When evaluated for space-�lling test cases,

the RMSE of that neural network was 0.262. These results are given in Table 14.

6.2.7.4 Mach 2.5, α 40◦

The prediction accuracy results for Mach 2.5, α 40◦ are given in Figure 52. Data fusion

was very powerful for this �ight condition as well, improving prediction RMSE from 3.15

to 1.23 for the 500-case training set as shown by the grey squares. There was still ample

room remaining for improvement. The grey circles show the performance of single-�delity

surrogates trained using adaptively-sampled cases; improvement was much more rapid than

for space-�lling cases, although these models did not attain the predictive accuracy of the

multi-�delity surrogates. When both techniques were combined (indicated by the black

circles), the prediction RMSE of a model incorporating data fusion was improved to 0.724
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Table 14: Predictive Accuracy for Pitching Moment Coe�cient at Mach 2.5, α 15◦

Number of

Converged Cases
RMSE POFP

Stacked LHC

500-Case Design
458 0.935 91%

Proposed Method 651 0.262 70%

Stacked LHC

1,000-Case Design
922 0.841 91%

Stacked LHC

7,000-Case Design
6,430 0.810 90%

Neural Network

with Nested Latin

Hypercube Design

10,458 0.887 91%

Figure 52: Predictive Accuracy for Pitching Moment at Mach 2.5, α 40◦
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Table 15: Predictive Accuracy for Pitching Moment Coe�cient at Mach 2.5, α 15◦

Number of

Converged Cases
RMSE POFP

Stacked LHC

500-Case Design
458 3.15 97%

Proposed Method 651 0.724 89%

Stacked LHC

1,000-Case Design
922 2.99 97%

Stacked LHC

7,000-Case Design
6,430 3.28 96%

Neural Network

with Nested Latin

Hypercube Design

10.991 1.98 91%

after �fteen rounds of samples.

The �nal prediction RMSE for the proposed method using 710 cases was 0.724, which

corresponded to a POFP of 89%. Using 7,000 cases, the space-�lling approach produced a

prediction RMSE of 3.28, which was equivalent to a POFP of 98%. Similar to the Mach 2.5,

α 15◦ �ight condition, the incorporation of multi-�delity modeling produced a substantial

improvement in predictive accuracy. Note that for space-�lling sampling, the predictive

accuracy stagnated quickly and did not improve as more samples were added. In contrast,

surrogates based on the adaptive sampling approach using fewer than 800 samples out-

performed surrogates based on nearly ten times as many space-�lling samples.

For comparison, the neural network for this �ight condition from the RBS project used

10,991 cases and, when applied to the present set of test cases with small pitching moment

coe�cients, produced an RMSE value of 1.98; its RMSE for space-�lling samples was 0.456.

These results are organized for easier comparison in Table 15.
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Table 16: Evaluating E�ects of Low-Fidelity Surrogates On Overall Accuracy

Prediction RMSE

Using Surrogates

Prediction RMSE

Using APAS Directly

Mach 0.3

α 15◦
0.535 0.525

Mach 0.8

α 0◦
0.356 0.394

Mach 2.5

α 15◦
0.277 0.245

Mach 2.5

α 40◦
0.979 0.794

6.2.7.5 Evaluation of Surrogate Models as the Low-Fidelity Data Source

The very poor performance for the method at the Mach 0.8 �ight condition was investigated

to determine the likely cause of the error. Given the relatively poor accuracy of the surrogate

model for APAS at that �ight condition (the prediction error had a standard deviation of

around 0.65), it seemed possible that the poor behavior stemmed from bad low-�delity

estimates. To test this possibility, multi-�delity surrogates were trained using data directly

from APAS rather than from surrogates of APAS data. Multi-�delity surrogates were trained

based on the 500-case level of the stacked Latin hypercube. One set of surrogates was trained

using surrogate model predictions of APAS results as the low-�delity data source, while the

other set was trained using actual APAS results as the low-�delity data source. Both sets

of models were then tested to assess predictive accuracy. The results of these tests are

presented in Table 16. When APAS was used directly, there were slight improvements at

Mach 0.3, α 15◦ and Mach 2.5, α 15◦, as well as a more substantial improvement at Mach

2.5, α 40◦. Unfortunately, there was no improvement at the Mach 0.8 �ight condition, which

was the motivation for this test.

It would appear that a linear model, even when augmented by the low-�delity response

value, was a poor match for the behavior of the pitching moment coe�cient at Mach 0.8,
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Table 17: Overall Comparison of Predictive Accuracy for Longitudinal Responses

Error Reduction

Vs. Space-Filling

Single-Fidelity

Error Reduction

Vs. Space-Filling

Multi-Fidelity

Reduction In

No. of Analyses

Mach 0.3,

α 15◦
29% 11% 90%

Mach 0.8,

α 0◦
12% 4.4% 90%

Mach 2.5,

α 15◦
68% 4.4% 90%

Mach 2.5,

α 40◦
78% 20% 90%

α 0◦. Based on the example of the two-dimensional Sphere function in Section 4.8, it is

expected that if enough samples were available the algorithm would eventually achieve an

accurate understanding of the response. However, there is no way of knowing whether that

accuracy would be obtained after 10 samples or 10,000.

Note that the pitching moment coe�cient at Mach 0.8, α 0◦ was predicted well by a

multi-�delity model with a linear underlying trend, as shown earlier in this chapter. In

that demonstration, the dace�t utility was able to identify correlation parameters which

improved the prediction accuracy of the model. When those parameters can be identi�ed,

Kriging can better estimate how the response diverges from the linear underlying trend.

Although dace�t was unsuccessful at identifying useful correlation parameters in this en-

larged problem, it was expected that once such parameters could be identi�ed, the predictive

accuracy of the Kriging model would increase substantially � at least in the neighborhood

of the observed samples.

6.2.7.6 Review of Performance for Longitudinal Responses

The relative gains of the proposed method against space-�lling sampling � using either

single-�delity or multi-�delity surrogates � are presented in Table 17. For most of the
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responses, multi-�delity modeling produced the lion's share of the accuracy improvement.

This was unsurprising given that the adaptive sampling algorithm depends on a reasonably

accurate understanding of the behavior of each response; samples are selected based on

this understanding, so if the understanding is poor, the samples may not be very helpful.

Adaptive sampling still produced 5-20% improvement over the use of multi-�delity modeling

alone.

Overall, although the gains were substantial, more progress would be necessary before

such surrogate models could be used for design space exploration with con�dence: none of

the surrogates, whether based on the null or alternative hypotheses, achieved a prediction

RMSE score below 0.1, which would be equivalent to a POFP less than 33%.

For most responses, the proposed approach was moderately e�ective, producing signi�-

cant reductions in prediction RMSE. The proposed approach was also much more e�cient

with respect to high-�delity analyses: the improved predictive accuracy was obtained with a

reduction in the number of expensive analyses by almost 90% compared to the space-�lling

approach (725 analyses per �ight condition compared to 7,000). Despite these achievements,

further improvements would still be required before surrogate models such as these could be

used for engineering purposes.

6.2.8 Evaluation of Accuracy for Lateral Moments

Although the RBS project found that pitching moments were di�cult to model accurately,

there were also substantial di�culties in modeling the lateral responses. Because the four

�ight conditions evaluated for this e�ort only included symmetric conditions, all of the

lateral responses were likely to be near zero. However, asymmetric de�ections of control

surfaces would still produce nonzero lateral responses that should be modeled as accurately

as possible.

Recall from Section 5.6 that the APAS geometry de�nition did not capture control sur-

face de�ections, and thus the low-�delity model could not capture any asymmetric e�ects.

Any lateral responses calculated by APAS would therefore be known in advance to be spu-

rious. Although it was shown in Section 5.6.1 that multi-�delity models with nuggets could
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Table 18: Correlation Between Uncertainty & Response Magnitude: Rolling Moments

Mach 0.3,

α 15◦

Mach 0.8,

α 0◦

Mach 2.5,

α 15◦

Mach 2.5,

α 40◦

Correlation Between

Mean µ and Standard

Deviation of Uncertainty σ

-0.021 0.16 0.047 0.036

Table 19: Correlation Between Uncertainty & Response Magnitude: Yawing Moments

Mach 0.3,

α 15◦

Mach 0.8,

α 0◦

Mach 2.5,

α 15◦

Mach 2.5,

α 40◦

Correlation Between

Mean µ and Standard

Deviation of Uncertainty σ

-0.097 0.23 0.12 -0.012

overcome unhelpful low-�delity data, it was decided that APAS results would not be used in

these tests. Without low-�delity surrogate models, the only remaining source of uncertainty

in the data was the iteration noise produced by Cart3D. This uncertainty was tracked and

incorporated via nuggets when Kriging models were trained.

In Section 5.6.2, it was shown that capturing uncertainty via nuggets was most e�ective

when the uncertainty in the response value was correlated with the magnitude of that

response. The correlation values for the lateral responses for the 49-dimension problem

were calculated to determine how e�ective nuggets were likely to be at reducing prediction

error for those responses. The results for rolling moments are presented in Table 18, and

the results for yawing moments are presented in Table 19.

For the most part, the correlation between response magnitude and uncertainty was

small. The exception to this was at Mach 0.8, α 0◦, where the correlation coe�cient was

0.16 for the rolling moment coe�cient and 0.23 for the yawing moment coe�cient. These

correlation values were still relatively small but indicated that some moderate degree of noise

was present in the data. Incorporating this noise using nuggets could therefore improve
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Table 20: Correlation Between Lateral Responses & Control Surface De�ections

Outboard

Elevon

(Starboard)

Outboard

Elevon

(Port)

Rudder

(Starboard)

Rudder

(Port)

Mach 0.3, α 15◦ CRoll -0.86 0.78 -0.37 -0.27

Mach 0.8, α 0◦ CRoll -0.88 0.73 -0.38 -0.23

Mach 2.5, α 15◦ CRoll -0.78 0.83 -0.31 -0.36

Mach 2.5, α 40◦ CRoll -0.85 0.77 -0.26 -0.36

Mach 0.3, α 15◦ CY aw 0.51 -0.75 0.52 0.15

Mach 0.8, α 0◦ CY aw 0.54 -0.76 0.53 0.14

Mach 2.5, α 15◦ CY aw 0.50 -0.85 0.33 0.35

Mach 2.5, α 40◦ CY aw 0.66 -0.87 0.28 0.41

the accuracy of surrogate models for those two responses. In general, though, these results

indicated that the bulk of the observed response behavior was due to actual �ow phenomena

and not spurious.

To determine whether the observed response behavior was due to legitimate aerodynamic

e�ects or numerical noise, additional tests were performed to determine the correlation

between rolling and yawing moments and the design variables. It was found that the lateral

responses were strongly correlated with the control surface de�ections, as shown in Table 20.

Such de�ections would in fact produce nonzero rolling and yawing moments, suggesting that

the observed behavior was driven by legitimate e�ects rather than by noise in the data.

Two sets of models were trained: the �rst set embodied the null hypothesis and was made

up of the �rst 4,000 points of the stacked Latin hypercube. These models were �t with no

nuggets, treating all observed response values as perfectly deterministic. The second set

embodied the alternative hypothesis and consisted of the �rst 500-point space-�lling level

of the stacked Latin hypercube plus 9 batches of adaptive samples which had been selected

to improve the pitching moment surrogates. These surrogates were trained using nuggets

based on the observed iterative noise in each response. Both sets of models were �t using
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Figure 53: Predictive Accuracy for Rolling Moment at Mach 0.3, α 15◦

only Cart3D results.

These models were not evaluated using POFP, the probability of false positives, because

unlike pitching moment coe�cient, there was no rule of thumb available to set bounds on

the lateral control authority of a reusable booster vehicle.

6.2.8.1 Results for Rolling Moment

The prediction accuracy for rolling moment at Mach 0.3, α 15◦ is shown in Figure 53.

Figure 53a shows the full range of results, indicating that the space-�lling sampling produced

diminishing returns after perhaps 2,000 samples. A cropped view is shown in Figure 53b to

more clearly illustrate the behavior of the models based on adaptive sampling. After the

most recent set of adaptive cases, the proposed approach with nuggets produced a prediction

RMSE of 0.0711 using 725 cases. The space-�lling cases produced prediction RMSE values

of 0.112 and 0.636 based on 500 and 1,000 cases, respectively.

These results indicated that for this response, incorporating noise did not substantially

reduce prediction error. This agreed with the observation that iteration noise had minimal

correlation with the response magnitude. For this response, the proposed method was

approximately equivalent to the baseline approach.

The results for rolling moment coe�cient prediction accuracy at Mach 0.8, α 0◦ appear

in Figures 54a & 54b. At this �ight condition, the space-�lling approach started out with a
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Figure 54: Predictive Accuracy for Rolling Moment at Mach 0.8, α 0◦

prediction RMSE of 0.0839 based on 500 cases but improved to 0.0591 for 1,000 space-�lling

cases. For larger numbers of cases, the average prediction RMSE was 0.0588.

The surrogate models based on the proposed approach demonstrated rapid initial im-

provement, similar to the noiseless surrogates, and appeared to show more rapid improve-

ment than the baseline as the training data pool grew larger. After �fteen rounds of adaptive

sampling (725 samples total), the prediction RMSE was 0.0605. The prediction RMSE after

fourteen rounds of sampling (710 cases) was 0.0547, better than any noiseless model that

was trained with fewer than 6,500 cases.

In general, there was mild evidence that the proposed method might have produced more-

accurate surrogates if sampling had continued; based only on the available evidence the two

approaches are e�ectively neck-and-neck. These results were consistent with the calculated

correlation between the iteration noise for this response and the response magnitude (0.16),

which would suggest mild improvements at best.

Figure 55 shows the results for Mach 2.5, α 15◦. As was observed for Mach 0.8, the

space-�lling approach did not obviously improve for sampling sizes above 1,000 cases. The

average prediction RMSE for those models was 0.0177, while the RMSE for the model based

on 500 cases was 0.0279.
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Figure 55: Predictive Accuracy for Rolling Moment at Mach 2.5, α 15◦

Figure 56: Predictive Accuracy for Rolling Moment at Mach 2.5, α 40◦

Once again, the proposed approach with nuggets appeared to improve prediction accu-

racy slightly more e�ciently than the space-�lling approach, but the surrogate models based

on the proposed approach were never clearly superior. The prediction RMSE values after

the fourteenth and �fteenth rounds of adaptive sampling were 0.0187 and 0.0240, respec-

tively. The correlation coe�cient between iteration noise and response magnitude for this

response was 0.047, which suggested that capturing iteration noise would not produce much

improvement - a deduction consistent with the numerical results.

Lastly, the prediction performance for rolling moment coe�cient at Mach 2.5, α 40◦
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Figure 57: Predictive Accuracy for Yawing Moment at Mach 0.3, α 15◦

may be seen in Figure 56a & 56b. As with the other �ight conditions, models based on

the proposed approach appeared to reduce RMSE using fewer cases than the space-�lling

approach, but �fteen batches were not su�cient to demonstrate this one way or the other.

The average RMSE for models based on at least 1,000 space-�lling cases was 0.0256. The

RMSE values after the fourteenth and �fteenth batches of adaptive samples were 0.0321 and

0.0418, respectively.

With respect to rolling moment coe�cient, the proposed approach did not produce

surrogate models that were signi�cantly more accurate than the baseline approach. This

was not entirely surprising, as the correlation calculations in Table 18 indicated that iteration

noise was not strongly a�ecting those responses. The strongest correlation between iteration

noise and a lateral response, 0.23, was for the yawing moment coe�cient at Mach 0.8, as

noted in Table 19. The following section will quantify the e�ects of nuggets when predicting

yawing moment coe�cients.

6.2.8.2 Results for Yawing Moment

Figure 57 illustrates how prediction RMSE for the yawing moment at Mach 0.3, α 15◦ varied

with sampling and modeling approach. The space-�lling approach seemed to converge to

an RMSE value of around 0.024 after roughly 1,500 cases. The models using nuggets did

demonstrate slightly improved performance � RMSE for the 500-case set when nuggets
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Figure 58: Predictive Accuracy for Yawing Moment at Mach 0.8, α 0◦

are used was 0.0300, versus 0.0353 without nuggets � but the results did not demonstrate

consistent improvement as more samples were added. After the �fteen sets of samples, the

prediction RMSE for models with nuggets was 0.0307, slightly worse than the surrogate

trained with 500 samples.

The results for yawing moment at Mach 0.8, α 0◦ are shown in Figure 58. For noiseless

models trained with the space-�lling samples, there was a clear improvement as more samples

are used: the model based on the set of 500 samples had a prediction RMSE of 0.0847, while

the one based on 2,000 samples had a prediction RMSE of 0.065 and that based on 4,000

samples produced a value of 0.0464. This improvement leveled o� when more than 4,000

samples are available.

For this response, there was a clear bene�t to the use of nuggets. Incorporating uncer-

tainty due to iteration for the 500-case sample set reduced prediction RMSE from 0.0847 to

0.0554. Models based on later data sets produced prediction RMSE values between 0.0481

and 0.0661. Even the least-accurate surrogate that used nuggets was more accurate than

every noiseless surrogate trained on fewer than 2,000 samples.

The use of nuggets allowed a surrogate trained with 725 samples to out-perform a noise-

less surrogate trained with more than twice as much data. The correlation between response

magnitude and iteration noise was 0.23, which had led to the expectation that surrogates
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Figure 59: Predictive Accuracy for Yawing Moment at Mach 2.5, α 15◦

using nuggets would be more accurate for this response. These observations supported that

conclusion.

All surrogate models for yawing moment coe�cient at Mach 2.5, α 15◦ had very simi-

lar performance. Surrogates without nuggets based on space-�lling samples demonstrated

slight improvement as more cases were added, starting at a prediction RMSE of 0.0255 and

averaging an RMSE of 0.0191 when more than 1,500 samples were incorporated. Surrogates

which incorporated nuggets did not perform any better: the prediction RMSE values ranged

from 0.0235 to 0.0276. The correlation coe�cient between response magnitude and iteration

noise for this response was 0.12, indicating that iteration noise was unlikely to be a major

factor in prediction error.

Finally, the results for yawing moment predictions at Mach 2.5, α 40◦ are depicted

in Figure 60. These results were very similar to those for Mach 2.5, α 15◦. Noiseless

surrogates based on space-�lling samples showed mild improvement as more samples were

added, eventually settling down to an average RMSE of 0.0205 when more than 1,500 cases

were available.

The proposed method produced a slight improvement for the initial sample set of 500

cases, reducing prediction RMSE from 0.0226 to 0.0209, but subsequent sets of data pro-

duced worse prediction RMSE values than were produced by the noiseless models. The
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Figure 60: Predictive Accuracy for Yawing Moment at Mach 2.5, α 40◦

correlation coe�cient between response magnitude and iteration noise was 0.012, which had

indicated that nuggets would not substantially improve prediction error for this response.

In general, the proposed method � and in particular the use of nuggets to capture data

uncertainty � demonstrated only minor improvements at best compared to noiseless models

for most �ight conditions. However, at Mach 0.8 a signi�cant bene�t was observed for the

yawing moment coe�cient, and noiseless surrogates required 4-5 times as many samples to

equal the performance of the surrogates which captured uncertainty via nuggets. It was

found that the impact of nuggets closely matched the degree of correlation between the

response magnitude and the iteration noise, which indicates that the user may only wish

to use nuggets when that correlation is relatively large (>0.2). The causes for the observed

behaviors will be discussed in the next section.

6.2.9 Interpretation of Longitudinal & Lateral Results

With regard to pitching moment, the proposed method was quite e�ective for most �ight

conditions. After 15 batches of adaptive samples, the prediction RMSE at Mach 0.3 was

30% smaller than the single-�delity surrogate trained with 7,000 space-�lling samples. At

Mach 0.8, the surrogate based on 15 batches of adaptive samples was 12% more accurate

than the baseline approach. For the two Mach 2.5 �ight conditions (α 15 & 40◦), RMSE

was reduced by 67% and 78% respectively. Note that these improvements in accuracy were
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achieved while reducing the number of training samples by nearly 90% compared to the

single-�delity, space-�lling approach.

The pitching moment coe�cient at Mach 0.8, α 0◦ proved to be the most di�cult to

predict accurately. At this �ight condition, the use of multiple sources of data provided

marginal improvements at best, and it appeared that the response behavior could not be

easily modeled with a linear underlying trend. As more training data was used, the model's

performance became progressively worse. It was expected that this trend would reverse

itself eventually, as was observed with the two-dimensional Sphere Function example in

Section 4.8, but it was not known when that reversal might occur.

The proposed method demonstrated no signi�cant improvements when used to predict

rolling moment coe�cients. When applied to yawing moment coe�cients, the proposed

method produced clear improvements for Mach 0.8 but was approximately equivalent with

the baseline approach at other �ight conditions. The proposed method primarily distin-

guished itself for lateral responses through its use of nuggets. The other specialized aspects

of the proposed method � use of lower-�delity data and an iterative sampling strategy �

were not relevant because the cheaper APAS data did not capture the phenomena which

drove the lateral responses observed in Cart3D, and the iterative strategy focused purely on

the pitching moment coe�cients. This left the use of nuggets as the distinguishing feature

between the standard method and the proposed method.

Section 5.6.1 showed that the use of nuggets produced signi�cant improvements in �t

accuracy when the response was correlated with the amount of noise in that response �

in essence, when any large values that were observed were more likely to be spurious than

representative of actual response behavior. Observations from this demonstration mirrored

those results. The lateral response with the strongest correlation between the response

magnitude and iteration noise was the yawing moment coe�cient at Mach 0.8, α 0◦, and

it was this response that showed the largest improvement in predictive accuracy when the

proposed method was applied.
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6.2.10 Shortcomings of Full-Scale Test

The biggest shortcoming of the full-scale test was the inability of the Kriging surrogate mod-

els � all the Kriging surrogate models � to identify useful correlation coe�cients. Lacking

such coe�cients, the Kriging surrogates would only deviate from the underlying linear trend

models in the very close vicinity to training points. Given that the response behaviors were

unlikely to be linear over all 49 input parameters, this led to relatively surrogates.

In Section 3.3, it was noted that a sparse correlation matrix would lead to a heavy

dependence on the underlying trend model. That generalization was made in the context of

applying sparse methods to the problem in the event that the correlation matrix became so

large and ungainly that it approached the memory limits of Matlab, the program being used

to create the Kriging surrogates. Although no sparse methods were applied to the problem at

hand, the same e�ect � surrogate models which depended strongly on the underlying trend,

with correlation parameters a�ecting the predictions only rarely � was observed in the results.

This indicated that sparseness e�ects might have played some role in the di�culties that

were experienced in the full-scale test. To test this possibility, another study was designed

to determine whether the di�culties were related to sample sparseness.

6.3 Investigation of Sparsity E�ects

Investigating this possibility for the full-scale problem was daunting: the most direct ap-

proach would have been to increase the sample density, and by extension increase the number

of samples. This was a di�cult proposition, since training sets of up to 7,000 cases had dif-

�culty identifying useful correlation coe�cients; training sets with more than 7,000 cases

produced �Out of Memory� errors from Matlab. Instead, based on the recommendations

of the research committee, the smaller 9-dimensional problem was used. Instead of pro-

gressively increasing the sample density for the larger problem, the sample density would

be progressively decreased for the smaller problem. As surrogate models were trained with

smaller and smaller data sets, it was expected that they would eventually behave in the

same manner as the surrogates for the large-scale test.

A stacked Latin hypercube was generated using eighty 25-case Latin hypercubes for a
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Figure 61: Change in Predictive Accuracy as Training Set Grows

total of 2,000 cases. When every dimension was normalized to a zero-to-one range, the

maximin distance between two points was 0.272. For comparison, �fty 2,000-case standard

Latin hypercubes were generated; the best-spaced hypercube had a maximin distance of

0.233, indicating that the stacked Latin hypercube cases were well spread out throughout

the design space.

Surface meshes for the cases in the stacked Latin hypercube were generated with the

PaceLab geometry tool and analyzed with Cart3D at the three relevant �ight conditions:

Mach 0.3, α 15◦; Mach 0.8, α 0◦; and Mach 2.5, α 0◦. Single-�delity surrogate models

were trained to emulate the pitching moment coe�cient at every �ight condition using

progressively larger levels of the stacked Latin hypercube (SLHC), starting with the smallest

set of 25 space-�lling points. All Kriging models were trained using an anisotropic Gaussian

correlation function and a linear underlying trend. This was di�erent than the previous

surrogate models made of these responses (in Section 6.1.1), which used quadratic underlying

trends. The change was made because a lower-order trend would require fewer samples � a

9-dimensional quadratic trend would require 91 samples to �t a model, while a linear trend

would only require 10 � and the objective was to investigate e�ects related to sparsity.

The predictive accuracy of the resulting surrogate models was then evaluated using the

test cases from Section 4.10.6. The results are plotted in Figure 61. Figure 61a shows the

results when predicting CM at Mach 0.3, α 15◦; Figure 61b shows the results for Mach
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Figure 62: Maximum Correlation Between Any Training Case & Any Test Case

0.8, α 0◦; and Figure 61c shows the results for Mach 2.5, α 0◦. Note that for all three

responses, the predictive accuracy improves rapidly until 100-125 cases are included, and

then the improvement is more sedate. This change in behavior indicates that a di�erent

phenomenon is at play for the smaller training sets.

To further investigate this behavior, the correlation between training points and test

points was calculated for each training set. The correlation was calculated with the same

anisotropic Gaussian correlation function used in the Kriging models, while the correlation

coe�cients were estimated when the Kriging surrogate model was trained. The maximum

correlation between any one training case and any one test case is plotted in Figure 62.

Figure 62a shows this maximum correlation at the Mach 0.3 �ight condition, Figure 62b

shows the maximum correlation at the Mach 0.8 �ight condition, and Figure 62c shows the

maximum correlation at the Mach 2.5 �ight condition.

The largest correlations between training and test points for the surrogates trained on

the four smallest data sets were less than 1−5 for all responses. This is similar to the

behavior observed in the large-scale test problem where there was minimal correlation be-

tween training and test data, resulting in a total dependence on the underlying trend when

predicting responses for the test data points. When the correlation coe�cients for these

Kriging models were investigated, the surrogates trained on the smallest data sets were un-

able to identify any coe�cient values that would improve surrogate model accuracy, which
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was also observed in the large-scale test problem. These lines of evidence indicated that the

phenomenon which caused such trouble in the large-scale test problem was present in this

investigation, a�ecting the surrogate models trained on the smallest data sets.

The DACE toolbox was �rst able to identify useful correlation coe�cients for the 125-

case level of the SLHC. For this data set, 125 cases were analyzed at each �ight condition.

After stripping out cases which did not converge at all �ight conditions, 74 cases were left in

the data set. This would have been too few to �t a quadratic underlying trend, supporting

the decision to use a linear trend for this investigation.

It was hypothesized that the DACE toolbox was having di�culty identifying useful

correlation coe�cients because the training data points were too far apart. If this were

the case, the model-�tting utility would not �nd any useful di�erence between di�erent

coe�cient values because no two training points would be close enough to each other to

have a non-negligible correlation over the ranges being evaluated. To test this hypothesis,

a number of new data points were analyzed at various distances from one of the training

points in the smallest, 25-case level of the SLHC. This �seed point� was selected from the

available converged data set.

6.3.1 Generating Nearby Samples

New data points were generated using a user-speci�ed distance-limiting parameter and a set

of random numbers to perturb the new point away from the initial point. Each new point

was perturbed in every dimension from the initial point. To perturb the new point, the user

would set a value for the distance-limiting parameter, between 0 and 1, which indicated how

far the new point was allowed to move from the initial point in each dimension. Two random

numbers on the range 0�1 were then drawn for each of the 9 dimensions. If the �rst random

number in each pair was greater than 0.5, the new point would have a higher value in that

dimension than the initial point; otherwise, it would have a lower value. The second random

number was used to determine the magnitude of the perturbation in that dimension.
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posneg =


−1 if R1 < 0.5

1 otherwise

δi = posneg ×R2 ×Rangei × Limit (42)

Here, δi is the perturbation that is applied in the ith dimension; posneg is a parameter

that determines whether the perturbation will be in the positive or negative direction; R1

and R2 are the �rst and second random numbers that were generated between 0�1; Rangei

is the size of the design space in the ith dimension (i.e., if the ith parameter ranged from 5 to

25, Rangei would be 20); and Limit is the user-speci�ed distance limit. A small value for

Limit would produce new samples that were very close to the initial point, while a larger

Limit value would allow the new point to move farther away. This perturbation process

was repeated for every dimension to make each new point. If the new point lay beyond the

edge of the design space in any dimension, it was moved to the edge of the design space in

that dimension.

6.3.2 Evaluating the Use of Nearby Samples

Twelve groups, each with 20 new points, were generated and analyzed with Cart3D. The

results were combined with the results for the �rst level of the SLHC, and new Kriging

surrogates were trained. Each of the new samples was added to the training set separately,

and the combination of the original training set and this new sample were used to train

a new surrogate model. These surrogates were then inspected to determine whether the

DACE toolbox had been able to identify useful correlation coe�cients.

It was observed that, when Limit values were small, adding even a single nearby sample

to the training set led to Kriging surrogates with non-trivial correlation coe�cients. For

larger values of Limit, it became less likely that one new sample would be so useful. For

each Limit value, the fraction of samples that led to useful correlation coe�cients was

calculated; the results are shown in Figure 63.

For Limit values larger than 0.2, it became progressively less likely that the new sample

will lead to useful correlation coe�cients, indicating that the closeness of the training data
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Figure 63: Fraction of Samples That Led To Useful Correlation Coe�cients

� or at least, the closeness of two or more points within the training data � was of great

importance when the DACE toolbox is attempting to �t a Kriging model. It should also

be noted that, by deliberately placing a single new sample close to an existing sample,

useful correlation coe�cients could be identi�ed using only the 25-case level of the SLHC.

In contrast, when space-�lling samples were added instead (i.e., using larger levels of the

SLHC), no useful coe�cients were identi�ed until the 125-case level.

This suggested that, although spreading samples out through the design space is helpful

for developing an understanding of the overall response behavior, some amount of clustering

is desirable when training Kriging models. If the samples are spread out far from each other �

as was the case in these experiments, where an optimizer was used to maximize the distance

between any two points � the DACE toolbox may not be able to �t a useful model to the

data. It would appear that stacked Latin hypercubes are therefore inappropriate for use

with Kriging models, particularly for large design spaces or when only a limited number of

samples will be used.

6.4 Review & Summary

In general the proposed method was successful: through use of data fusion and adaptive

sampling, surrogate models for pitching moments were more accurate even when trained
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with fewer cases, a result that was very clear in the 9-dimensional test problem. For lateral

responses, the use of nuggets improved the accuracy of surrogates when iteration noise was

an important factor.

Some shortcomings were observed, however. Neither the proposed method nor the base-

line approach performed well when applied to the full-scale test problem. The surrogate

models for pitching moment coe�cient for CM at Mach 0.8 grew increasingly and rapidly

inaccurate as more samples were added to the training data, indicating that the e�ectiveness

of the proposed approach is dependent on the di�culty of modeling the response. When

the estimated behavior of the response is inaccurate, the samples that are selected may not

improve the accuracy of the model. Evidence indicated that the sheer amount of distance

between samples was a major reason why surrogate models failed to identify useful correla-

tion coe�cients; for future e�orts using Kriging, less e�ort should be spent maximizing the

space-�lling characteristics of the sampling plan. Instead, some mild clustering was shown

to be bene�cial in cases of sparse data sets, as it led to improved estimation of correlation

coe�cients. If the initial set of samples is too sparse, the adaptive sampling algorithm can

be directed to cluster samples by setting the POI requirement very high (as in Section 4.9),

although the e�ectiveness of this strategy will depend on how close the candidate samples

are to existing training samples.

Additionally, nuggets were introduced as a response to the relatively large iteration noise

that was observed in the data during the RBS project. For responses where the response

magnitude was strongly correlated with the standard deviation of the iteration noise, the use

of nuggets was shown to improve predictive accuracy. However, when the uncertainty was

not well-correlated with the amount of uncertainty in the data, no signi�cant improvement

was observed.

The resulting surrogate models, although often improved with respect to the baseline

approach, were not su�ciently accurate for engineering purposes. However, su�cient evi-

dence was gathered to assess the e�ectiveness of the proposed approach. The e�ectiveness

of this approach was found to increase under certain conditions:

• When the responses being modeled could be approximated e�ectively with simple
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surrogates despite a limited quantity of data;

• When the cheaper data source provided useful insight into the behavior of the response

as calculated by the high-�delity, expensive data source; and

• When uncertainty was correlated with response magnitude.

For problems which did not meet one or more of these conditions, the e�ectiveness of

the proposed approach was reduced or negated. In addition, when samples were too spread

out from one another, sparsity e�ects could prevent the identi�cation of useful correlation

parameters for Kriging models. This limited the ability of the Kriging surrogate models

to �t the responses well, which in turn handicapped the adaptive sampling algorithm and

the overall performance of the approach. These sparsity e�ects could be mitigated by mild

clustering, which could be achieved in the initial set of samples or by setting high POI

requirements for some of the adaptive samples. Investigations into the degree of clustering

required for good performance was left for future work.
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CHAPTER VII

SUMMARY, CONTRIBUTIONS & CONCLUSIONS

This dissertation attempted to identify, evaluate and demonstrate a new sampling and sur-

rogate modeling procedure to help users to create accurate surrogate models of expensive,

high-�delity analysis tools at a more reasonable cost than was previously possible. Such

surrogate models would allow users to have greater con�dence in the decisions made during

a design e�ort, reducing the risk that inadequate modeling �delity would lead to dead ends

and backtracking. Previous e�orts demonstrated that, although valuable, such surrogate

models could be exceedingly expensive to train to a useful level of accuracy.

The proposed approach therefore emphasized e�ciency, using an adaptive sampling al-

gorithm to identify the experiments that would best improve the surrogates, in order to

minimize the number of analyses required while maximizing the improvement produced by

each analysis. In addition, cheaper sources of data were leveraged when possible, and uncer-

tainty in data values was quanti�ed to reduce the likelihood of over-�tting a noisy response.

At the end of Chapter 3, this research e�ort was framed in the context of a sampling

and modeling methodology. The methodology included multiple steps, from the initial

exploratory analyses to the evaluation of surrogate models. In particular, the research ques-

tions and hypotheses that drove this research were formulated to identify the most e�ective

ways to carry out each step of the methodology. Note that the methodology was deliber-

ately designed to be agnostic with respect to the analysis tools used. The following section

will review the research questions and the hypotheses that were formulated to address these

research questions. After that review, it will show how the experimental results addressed

the hypotheses and the research questions in turn.

7.1 Review of Research Questions & Hypotheses

The primary research question that drove this e�ort was:
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How can high-�delity modeling be feasibly applied earlier in the design

process, despite the computational expense?

Based on observations made from the �rst attempts to create aerodynamic surrogate

models of reusable boosters (Chapter 2), three factors (adaptive sampling, multi-�delity

modeling, and capturing uncertainty) were identi�ed that were expected to be a more e�ec-

tive way to approach the problem. These factors led to focused research questions, which

scoped the problem and drove the literature search (Chapter 3). The literature search, in

turn, identi�ed methods which could address those focused research questions; these expec-

tations were expressed in the form of hypotheses, and experiments were designed to test

those hypotheses.

7.1.1 First Focused Research Question & Hypothesis

The �rst observation was that the pitching moment coe�cient for many con�gurations was

so extreme for at least one �ight conditions that they were unlikely to be feasible designs.

If samples could be placed to emphasize feasible con�gurations, surrogate models could be

created that were accurate for the feasible regions of the design space while minimizing the

number of infeasible con�gurations analyzed. The fact that the objective was a particular

range of each response, rather than a maximum or minimum, meant that common sample

selection approaches were not appropriate. This led to the �rst focused research question:

When �good performance� refers to responses within desirable ranges

rather than maxima or minima, how can regions of good performance be

identi�ed and emphasized during the sampling process?

A review of available sample selection methods led to the identi�cation of contour-

based sampling as a promising approach. This formed the �rst contributing hypothesis,

Hypothesis 1:

Contour-based sampling will balance the selection of cases with good

performance and the reduction of prediction uncertainty in promising re-

gions, identifying samples that e�ciently improve surrogate accuracy for

con�gurations with small aerodynamic moments.
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Chapter 4 detailed the implementation of the method and the experiments that tested the

hypothesis. A number of test problems were used, each of which had one or more responses

for which only a particular range of response values were of interest. Surrogate models were

then trained with data sets generated with both the proposed approach (using contour-based

sampling to augment a set of initial space-�lling samples) and with the baseline approach

(using only space-�lling samples).

In most cases, contour-based sampling led to surrogate models that were more accurate

than those based on space-�lling samples. The exception to this rule was when the underlying

trend of the Kriging surrogate model was a poor representation of the response behavior,

such as the Sphere Function in Section 4.8. In that case, contour-based sampling had

relatively poor performance due to a mismatch between the perceived response behavior

(in the form of the surrogate model used by the sample-selection algorithm) and the actual

response behavior. In general, however, the tests demonstrated that contour-based sampling

did lead to surrogate models that were more accurate, even when based on smaller training

sets.

Section 4.10 demonstrated contour-based sampling for multiple �ight conditions. Surro-

gate model accuracy was evaluated using test cases that had small aerodynamic moments

at each �ight condition. Creating a training data set with contour-based sampling led to

surrogate models that were more accurate than if only space-�lling samples were used, even

if a larger number of space-�lling samples were available. Thus, contour-based sampling was

shown to �e�ciently improve surrogate accuracyfor con�gurations with small aerodynamic

moments,� supporting this hypothesis.

Contour-based sampling e�ectively identi�ed regions of good performance (i.e., regions

with response values within a speci�ed range) and placed samples in those regions. This

behavior produced surrogate models that were more accurate over that speci�ed response

range. In fact, contour-based sampling was so e�ective that in most cases, surrogate model

prediction accuracy could be improved while reducing the number of cases used to train

the surrogates. In light of those results, the research question was considered to have been

addressed satisfactorily.
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7.1.2 Second Focused Research Question & Hypothesis

The second observation was that, although simpler analysis methods such as APAS were

not su�ciently adequate to be the sole source of data, such methods could still shed light

on the overall trends in response behavior. If so, this could substantially reduce the number

of expensive analyses necessary to train accurate surrogate models. This led to the second

focused research question:

How can cheaper analyses be integrated with high-�delity models to re-

duce the overall cost of design space exploration or exploitation?

The process of combining information from multiple data sources is known as data fusion

or, in situations where some data sources are more accurate than others, multi-�delity

modeling. Many alternative methods for data fusion exist; it can be di�cult to know which

one is best-suited for the problem at hand. The second focused hypothesis, therefore, did

not identify one data fusion method in particular:

Data fusion techniques will allow results from high-�delity analyses to

be augmented with cheaper sources of data to produce surrogate models

that are more accurate yet require less computationally-expensive data.

This hypothesis was tested in Chapter 5. Four data fusion methods � additive correction,

proportional correction, Ghoreyshi cokriging, and data harmonization � were implemented

and applied to various test problems that were similar to the intended application of reusable

booster aerodynamics. Based on those tests, one of those techniques (Ghoreyshi cokriging)

was selected since it produced the most accurate surrogate models for the test problems.

Here, the experiments served two purposes: they compared data fusion techniques

against each other to identify the most e�ective approach, and they compared those tech-

niques against the standard single-�delity approach to con�rm that data fusion would pro-

duce better surrogates. To be precise, the hypothesis was tested by the latter comparison;

the evaluation of Ghoreyshi cokriging against other data fusion techniques served simply to

determine which technique was the most promising.

Surrogates created using Ghoreyshi cokriging were more accurate than the standard

single-�delity surrogates for all test problems. Those results supported the hypothesis
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that data fusion would lead to surrogates that were �more accurate� yet required �less

computationally-expensive data.� In particular, surrogates created with Ghoreyshi cok-

riging were more accurate than single-�delity surrogates that had been trained with much

more data from the expensive data source. These results were strong enough that the sec-

ond focused hypothesis was considered to be supported. The results also demonstrated that

data from multiple sources were being blended together to produce surrogate models that

were more accurate while requiring fewer expensive analyses, allowing design space explo-

ration and exploitation to be conducted at reduced cost. Thus, the second focused research

question had been addressed satisfactorily.

7.1.3 Third Focused Research Question & Hypothesis

The third observation was that predictive accuracy for lateral responses was very poor, and

this poor accuracy was due in part to the relatively noisy behavior of the responses. By

ignoring that noise and treating the responses as deterministic, the surrogate models were

actually less accurate than if the surrogate were replaced with the response mean. Identifying

which data points were accurate and which were spurious might lead to a more accurate

surrogate. However, most surrogate modeling techniques could not take such information

into account, leading to third focused research question:

How can information about uncertainty in the data be captured e�ec-

tively?

Although most engineering applications of Kriging assume that the training data is

deterministic, an alternative formulation using nuggets was identi�ed that could account

for uncertainty in the data. Critically, this approach allowed the user to specify a di�erent

uncertainty magnitude for each data point. This led to the third hypothesis:

When creating a Kriging model, the use of nuggets will capture uncer-

tainty in the data, improving predictive accuracy for noisy responses.

This hypothesis was also tested in Chapter 5, particularly Section 5.6. The experiment

demonstrated that predictive accuracy for yawing moment coe�cient could be substantially

improved when sources of uncertainty (especially iteration noise) were captured via nuggets
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when training the Kriging model. This e�ect was signi�cant for noisy data but was negligible

when there was not much uncertainty present in the data.

The results showed that the use of nuggets did in fact improve predictive accuracy

for noisy responses, giving support to the hypothesis. This indicated that nuggets serve

to answer the focused research question, allowing the user to capture uncertainty in the

response in an e�ective manner, such that the resulting surrogate models would be more

accurate than the deterministic surrogates that are common in engineering.

7.1.4 Primary Research Question & Final Hypothesis

Each of the three research questions were formulated to address a factor that made it di�cult

to make surrogate models of expensive high-�delity data sources, and thus each question

addressed an aspect of the primary research question:

How can high-�delity modeling be feasibly applied earlier in the design

process, despite the computational expense?

Each supporting hypothesis highlighted a technique to address this primary research

question: contour-based sampling optimized the selection of samples; data fusion incorpo-

rated cheaper data sources; and nuggets captured noise or uncertainty in the observed data.

It was asserted that, by combining these techniques into a coherent approach, the primary

research question might be answered. This assertion was itself the �nal hypothesis of the

research e�ort:

By placing samples intelligently, reducing dependence on the expen-

sive models, and accounting for any uncertainty in the data, the selected

methods will enable improved surrogate model accuracy with signi�cantly

reduced data requirements, such that high-�delity modeling becomes a fea-

sible option earlier in the design process.

This hypothesis was tested by applying it to a series of representative problems of in-

creasing complexity. These tests were described in depth in Chapter 6. In the �rst test,

the combined techniques were applied to a problem with 3 responses (all of which were

used for adaptive sampling) and 9 free parameters. This test focused on predicting pitching
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moment coe�cient, which exhibited relatively low uncertainty; as a result, only data fusion

and adaptive sampling were used. The combined techniques were shown to be quite e�ective

at improving predictive accuracy for this problem, supporting the hypothesis.

As a �nal test, the combined techniques were applied to a problem with 12 responses (4

of which were used for adaptive sampling) and 49 free parameters. This test would quantify

how the combined techniques performed when applied to the motivating problem of reusable

booster design. The test showed that all Kriging models � whether produced by the baseline

approach or by the proposed approach � had di�culty �tting the responses. Evidence indi-

cated that this was due to the large distances between the samples. When surrogates were

�t to the lateral responses, the proposed approach out-performed the baseline approach for

responses where noise was signi�cant, but had roughly equivalent performance where noise

did not signi�cantly a�ect the response value. With regard to the longitudinal responses,

data fusion provided the bulk of the observed improvements, which was unsurprising given

that the e�ectiveness of contour-based sampling was shown to depend on the accuracy of

the available surrogate models when evaluating new samples.

The large-scale problem gave weak evidence to support the �nal hypothesis: although

the combined techniques out-performed the baseline approach, countour-based sampling was

not particularly e�ective since it was di�cult for the algorithm to assess candidates with any

accuracy. However, the smaller-scale problem did demonstrate that when the Kriging models

were moderately accurate, the combined techniques could produce signi�cant improvements

in predictive accuracy. The combined techniques were shown to improve predictive accuracy

while reducing dependence on the expensive data source, supporting the �nal hypothesis

and in turn addressing the primary research question: the selected techniques reduced the

computational expense of high-�delity modeling by a substantial margin, enabling design

space exploration or optimization at a more reasonable cost than was possible before.

The speci�c steps of the proposed method will be reviewed in the next section.
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7.2 Review of Steps in the Method

Section 3.6.1 described the generic approach to creating surrogate models. This section

will review those steps in light of the experimental results that have been observed, clearly

identifying the way that certain steps have been updated in light of observations made during

this research. The updated steps are illustrated in �owchart form in Figure 64.

Step 1: Generate an initial set of samples to be analyzed.

The use of data fusion will a�ect the way that the initial samples should be selected,

as well as the way that the surrogate models are trained. Sample distributions such as

nested Latin hypercubes,[152] sliced Latin hypercubes,[153] and stacked Latin hypercubes

(Section 6.2.4.2) allow the user to generate sample distributions that can �ll multiple roles

simultaneously: the overall set of samples is large and space-�lling, suitable for the data

source that has low per-analysis costs, while subsets are identi�ed that are much smaller yet

still retain good space-�lling characteristics, suitable for the higher-�delity data source with

its greater per-analysis costs.

Step 2: Analyze the samples using the appropriate data sources.

Step 3: Train Kriging surrogate models using the resulting data. Nuggets can

be used to capture the relevant uncertainties in the data, while Ghoreyshi

cokriging will produce surrogates which are more accurate but require less

investment in training data.

It should be noted that the e�ectiveness of a data fusion technique will depend on the

problem being addressed. For the applications described in this work, Ghoreyshi cokriging

produced the largest improvement in predictive accuracy, but this may not be the case for

every application.

Step 4: Evaluate the resulting surrogate models to quantify the predictive ac-

curacy.
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Figure 64: Updated Methodology for Sample Selection & Surrogate Model Creation
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In these experiments, a separate set of test samples were used to evaluate the predictive

accuracy. Cross validation was not used because data was (relatively) cheap, allowing some

of it to be used purely for test purposes, and because of the particular characteristics of the

problems being addressed: for some responses, predictive accuracy was only important for

cases with response values within a certain range. Had cross validation been used with the

data sets that were available, only a handful of points would have been fallen within that

range, leading to large uncertainty in the error estimates.

Steps 5a & 5b: If the surrogate models are su�ciently accurate or the project

resources have been consumed, terminate the process.

Step 6: Otherwise, select new samples for analysis using contour-based sampling

and go to Step 2.

Contour-based sampling was selected as the adaptive sampling method of choice in light

of the experimental results. Before applying contour-based sampling, the user should refer

to validation test results for all data sources to determine what the response range(s) of

interest may be, accounting for any observed biases or uncertainty in the results.

The method de�ned by these steps was shown to perform well for problems which match

the conditions for which it was designed: design spaces which are large but contain only a

small feasible space constrained by the allowable values of one or more responses; responses

which can be approximated moderately well using a cheaper source of data; and responses

with a degree of uncertainty that is large relative to the scale of the response being modeled.

When one or more of those qualities is not present, the proposed method may not have an

advantage over the baseline approach of space-�lling samples and deterministic single-�delity

modeling.

In the course of developing and demonstrating this method, a number of contributions

to the �eld of advanced design methods were made. These contributions will be reviewed in

the next section.
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7.3 Contributions

The contributions that resulted from this research e�ort may best be expressed by grouping

them by topic. On the topic of sample selection techniques:

• Contour-based sampling has been extended to address multiple responses simultane-

ously.

• The Probabiliy of Interest (POI) requirement was introduced to allow the user to

determine the algorithm's behavior and balance exploration of regions that may be of

interest against exploitation of regions that are known to be of interest.

• The e�ects of varying the POI requirement were demonstrated for a representative

aerospace problem, illustrating the changes in algorithmic behavior that resulted.

• The computational savings produced by the use of Schur's Complement rather than

direct matrix inversion were quanti�ed for a problem with dozens of variables.

• Stacked Latin hypercubes were proposed and demonstrated. Tests showed them to

have superior space-�lling qualities when compared against other progressive sampling

approaches found in the literature, although the costs of creating the sample design

were much higher.

• It was shown that these well-spread-out sample sets could be di�cult to �t using

Kriging models; when the design space is large or very few samples will be available,

it may be preferable to allow moderate clustering so that the Kriging surrogate can

better identify correlation in the data.

On the topic of the creation of surrogate models:

• Data harmonization was demonstrated for the �rst time for a problem outside its �eld

of origin, geostatistics.

• A variant of Ghoreyshi cokriging, in which all low-�delity response values were in-

corporated rather than only the one which corresponded to the high-�delity response

257



being modeled, was implemented and evaluated. It was not found to o�er improved

performance.

• Although the use of nuggets to capture uncertainty for Kriging models was shown to

improve the accuracy of those models when �tting noisy responses, it was demonstrated

that such information is not preserved in the prediction variance of the model.

7.4 Future Work

The work presented in this document was intended to be thorough, but by no means exhaus-

tive. There are a number of avenues for further work through which the proposed method

might be improved or augmented:

Most importantly, at the present time the user must set values for the probability of

interest (POI) requirement, the number of candidate points to evaluate, and the number of

test points to use for evaluation when using contour-based sampling. The values selected can

signi�cantly a�ect the behavior of the algorithm, as shown in Section 4.9 and Appendix C,

but at present it is di�cult to determine what the most e�ective values should be.

In addition, it is expected that as the number of candidate and test points are increased,

some point of diminishing returns would be encountered � for example, beyond some density

of test points, adding an additional test point might not increase the accuracy of the algo-

rithm. Although the e�ectiveness of the additional test point would be reduced or negated,

there would still be an incremental cost to evaluate how that test point is a�ected by each

candidate point. Similarly, although a larger number of candidates would be expected to

increase the chance that a highly informative candidate might be identi�ed, a similar point

of diminishing returns without diminishing costs might be expected.

Also of interest is the other end of the spectrum: how few test points is too few? At

what point does the decreased accuracy when evaluating candidates outweigh the computa-

tional savings? How small can the pool of candidates become before the e�ectiveness of the

sampling algorithm becomes handicapped?

It is possible that the optimal value (or schedule of values) for each of these parameters

could be highly problem-dependent. For example, in Section 4.9 it was shown that POI
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requirements much above 10% served to make the algorithm overly-cautious, limiting its

ability to identify the region of interest. This behavior stemmed from the fact that, especially

early on, the surrogate models were poor representations of the responses being emulated. As

a result, cases which appeared promising were of little interest and vice versa. Without low

POI requirements, the algorithm could not do the exploration necessary to build an accurate

understanding of the responses. Once the models had improved, a higher POI requirement

might have led to sampling that better clustered cases near the region of interest. If this

behavior could be anticipated, an e�cient schedule of POI requirements and candidate &

test pool sizes could be developed, whether that schedule be universal or tunable to various

types of problems.

Lastly, it was shown that sparse sample sets led to di�culty in �tting accurate Kriging

surrogates, and that clustering helped to address that di�culty. However, the details of that

clustering have yet to be addressed rigorously. Presently the only way that an overly-sparse

data set may be identi�ed is when the DACE Kriging toolbox fails to �nd useful correlation

coe�cients. After this occurs, any attempts to address the problem � typically by clustering

more samples near existing samples, whether manually or by setting a high POI requirement

for the sampling algorithm � would be by their nature reactive rather than proactive. An

investigation into the e�ects of sparsity, as well as ways to predict and/or mitigate those

e�ects, would be greatly bene�cial when the data set may be sparse.

7.5 Final Remarks

If more accurate information could be made available to decision-makers early in the design

process, trade studies and optimizations could be carried out with greater con�dence. By en-

suring that decisions are made using su�ciently accurate understanding of all consequences,

the risk that later analysis will reveal a previously-unsuspected de�ciency in the design may

be reduced or eliminated.

The process of selecting experiments to acquire the most useful data is a perennial

problem, and often a thorny one. It becomes even more challenging when resources are in

short supply and no analysis can be wasted. In such situations, special care must be taken
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to ensure that each analysis that is performed is as informative as possible. This process

can be complicated when several responses must be taken into account at once.

This research e�ort attempted to contribute to those goals by identifying: techniques

for selecting the minimum set of samples while maximizing the useful information obtained;

techniques for leveraging cheaper sources of data to reduce dependence on accurate-but-

expensive analyses; and techniques for identifying, tracking and capturing any uncertainty

present in the data being modeled. The resulting approach to sampling and modeling was

shown to be e�ective for the most part, improving predictive accuracy while reducing the

number of expensive analyses required.

The proposed method is not a silver bullet � for example, the time & e�ort required

to select each sample may be non-negligible. This method is most e�ective when the per-

evaluation cost of the primary data source is high compared to the costs of the sample

selection process. Although the problem of expensive analyses is not entirely negated, it

is hoped that this e�ort has contributed a useful step, however small, toward bringing the

problem down to manageable size.
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APPENDIX A

A PRACTICAL GUIDE FOR EFFICIENT SURROGATE MODELING

�The result is statements of undue length whose persuasive power is attributable

solely to their strangeness and which impress the reader only by the abstract

quality of their vocabulary, which moreover is ill-de�ned.� � André Breton[22]

A.1 Overview

The goal of this work is to create accurate surrogate models while minimizing the cost of

the necessary data. The surrogate models will emulate analysis methods such as computa-

tional tools or physical measurements. The method described in this guide combines three

techniques � adaptive sampling, data fusion, and Kriging nuggets � which serve to improve

predictive accuracy and/or reduce the cost of acquiring the data required to train useful

surrogate models.

This guide will help the reader apply the method. The guide assumes that the reader

has already set up the problem, i.e. that reader has already identi�ed the independent and

dependent parameters (e.g., the inputs & responses).[96] If possible, screening tests should

be performed to minimize the number of independent parameters. The user should also have

selected appropriate sources of data (e.g., CFD models or physical measurements) based on

the level of accuracy that is required: greater accuracy typically requires more expensive

sources of data. The guide will assume that the reader is familiar with advanced design

methods such as surrogate modeling and design space exploration; readers unfamiliar with

these topics may wish to review the survey articles of Shan & Weng[174, 189] and the text

Response Surface Methodology by Myers, Montgomery, and Anderson-Cook.[134]

This method may not be appropriate for problems that are highly resource-constrained.

A common rule of thumb for the amount of data necessary for accurate surrogate model is

at least 10d applications of each data source, where d is the number of dimensions (i.e. free
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parameters) being investigated simultaneously.[58, 106] If resource limits will not allow the

user to carry out the recommended 10d analyses using the desired data source, it is unlikely

that an accurate surrogate model can be trained. There are exceptions � if the response

behavior is very simple, if the ranges of the input parameters are very small, etc. � but any

problem which requires such expensive analyses is unlikely to be so accommodating. If the

problem is resource-constrained in this manner, a surrogate model may be trained to match

cheaper data sources, while the expensive data source is used directly for veri�cation and/or

correction of the cheaper data in a manner similar to the Pegasus booster design process.

During the design of the Pegasus booster in the early '90s, project resource limitations

meant that only a few expensive Navier-Stokes simulations could be performed. The de-

signers used cheaper sources of data to design the vehicle & trajectory. The expensive

simulations were used to investigate phenomena that the cheaper simulations wouldn't cap-

ture, such as interactions between shock waves and boundary layers, to determine whether

those phenomena would signi�cantly a�ect the vehicle's performance. The expensive results

were also used to con�rm some of the predictions of the cheaper data sources. This gave

the designers con�dence in the cheaper simulations while minimizing the use of expensive

simulations.[130] If such an approach is not acceptable, the user is urged to reduce the scope

of the problem by eliminating free parameters (thus reducing the 10d samples recommended)

or using an alternative, cheaper data source.

This remainder of this guide will assume that the problem at hand has at least enough

resources to perform 10d analyses with each data source. This guide describes a method for

making the best use of those analyses. The steps of the method are given in detail beginning

in Section A.3. In some sections, example commands are given to clarify how to accomplish

certain tasks, such as creating a surrogate model that combines multiple sources of data.

These example commands are written for Matlab, as this was the environment used for the

original implementation.

The method being described was developed for predicting aerodynamics, so the descrip-

tion will be in those terms. Note that, although it was developed for an aerodynamics

problem, the method is not restricted to that �eld and can be applied to any problem that
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has the appropriate characteristics. Those characteristics are speci�ed in the next section.

A.2 Intended Applications

First, the problem of interest must be complex enough that rapid analysis methods, such as

handbook methods or panel methods, are not su�ciently accurate. Instead, more complex

methods, such as computational �uid dynamics (CFD), are necessary to capture all the

relevant phenomena. Use of these complex methods means increased e�ort per analysis,

whether physical or computational. Due to the increased cost of data, it may not be possible

to construct adequate surrogate models using standard techniques. For simple problems,

where phenomena such as viscous or nonlinear e�ects are insigni�cant, there is no incentive

to use any special techniques to reduce the computational e�ort. Simple problems can often

be analyzed by quick-to-execute tools in less than a second. It is usually more e�ective to

analyze a large number of than it is to spend time calculating which single sample would be

the most informative to obtain.

The term sample in this context refers to the combination of inputs to, and outputs from,

one analysis. If a computational tool is used, a sample is obtained when the data source is

used to determine the response(s) for a particular set of input values. The term analysis

refers to the process of determining the response values that correspond to a particular set of

input values. An analysis may be the application of a computer model or the measurement

of a physical system. Part of the goal of the technique is to identify the most e�ective &

informative samples to analyze.

Secondly, this technique is most e�ective when only a certain range of the response

is of interest. The technique seeks to improve predictive accuracy for samples likely to

have a response value within that range. If there are multiple responses, the technique

seeks to improve predictive accuracy for samples which fall within the speci�ed ranges for

all responses.

As an example, the technique was developed to create accurate models of vehicle per-

formance at multiple �ight conditions. It was found that the pitching moment coe�cient

was a critical response when evaluating a possible design: if the pitching moment coe�cient
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at any �ight condition was too large , the design would probably not be controllable. As

a result, this technique helped to identify designs that were likely to have small pitching

moment coe�cients at all �ight conditions. Those designs, once analyzed, could be used to

improve the surrogate models. In this case, the response values of interest were de�ned as

a range.

Alternatively, this technique has been used for predicting structural failure. The user

would de�ne the response threshold(s) of interest, e.g. the limit strength of a beam, and

the technique would identify analyses that would enhance the surrogate model's accuracy

when predicting whether or not the response for a given sample would exceed the speci�ed

limit. By performing those analyses and adding them to the data set used to train the

surrogates, the surrogate models became better predictors of system reliability than when

this technique was not applied. In that case, the response values of interest were de�ned

using one threshold value for each response.

Thirdly, this technique is intended for problems where multiple sources of data are

available. Typically the sources of data will have di�erent levels of expense associated with

them: a computational model might take a few minutes or hours to complete one analysis,

while a �ight test might require months of preparation and millions of dollars. When there

is a large discrepancy in the expense associated with the available data sources, a well-

designed set of analyses can o�er signi�cant savings over a more haphazard approach. It is

possible to incorporate any number of data sources,[83] but for the sake of simplicity this

guide will assume that only two sources of data are available and that one data source has

much greater per-analysis costs than the other.

Most likely, the cheaper data source is a computational model. This data source is

unlikely to be accurate enough for use as the main source of data (or else why use the more

expensive source at all?). Still, the cheaper source should be accurate enough to capture

trends in the response behavior. For an aerodynamics analysis, the main source of data

might be wind tunnel analyses while the cheaper source of data might be a computational

tool based on the Euler or Navier-Stokes equations.

Lastly, the technique is intended for problems where signi�cant uncertainty may be
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present in one or more responses. This uncertainty can stem from many sources, such as

di�culty in measuring the response, random noise, or errors introduced by the numerical

solver of a computational tool.

The technique can be applied to problems which do not have all four of the characteristics

described in this section. If one or more characteristics are not present, the technique can

be adjusted to take advantage of that fact; likely adjustments will be called out during as

needed in the following sections.

A.3 Setting Up the Problem

As previously stated, this guide assumes that the user has already identi�ed appropriate

data sources, input variables and responses. A number of techniques exist to help the

user minimize the number of input variables, such as screening, parameter mapping, and

decomposition.[174] If the data sources have not been validated for the problem at hand,

validation tests should be performed to quantify the accuracy of each data source for the

relevant applications: in vehicle aerodynamics, for example, validation tests should be per-

formed at each �ight condition of interest, as aerodynamics analysis tools may be accu-

rate for some �ight conditions yet perform poorly for others. In a sense, validation may

be considered Step Zero, as it must be completed before the technique can be applied.

Validation compares the response values predicted by the data source in question against

the �true� values, which come from some higher-�delity data source such as physical mea-

surements. This validation data may be purpose-generated or compiled from the available

literature.[32, 59, 188, 190]

�Fidelity� in this context refers to �the degree to which a model is an accurate represen-

tation of the real world for the intended uses of the model�.[8] For an aerospace vehicle, the

highest-�delity data source would be a full-scale test of the vehicle at every relevant �ight

condition. Naturally, generating that data can be quite expensive. Instead, simpler data

sources such as wind tunnels may be used, although it is important to make sure that the

simpli�cation does not leave out any important e�ects such as those dependent on Reynolds

number.[17]
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A.4 Selecting Initial Analyses

Once the data sources have been validated, it is time to choose the analyses that will be

performed. This selection of the initial analyses constitutes Step One. The process of

selecting these analyses will depend heavily on the number of analyses that will be performed

using each data source.

This guide is intended for the situation where each data source can provide dozens or

hundreds of analyses. In such a situation, a common rule of thumb for the number of

initial analyses is 10d for each data source, where d is the number of dimensions (i.e. free

parameters) being investigated simultaneously.[58, 106]

Once the number of initial analyses has been selected, the user must determine which

analyses to run. The analyses should be chosen to maximize the knowledge gained. If expert

knowledge is available for the problem at hand, it may be easy to identify the most useful

analyses. On the other hand, if the response behavior is not known well, it may be better

to take a more universal approach: space-�lling sampling.[170]

Space-�lling sampling is a way of choosing analyses which attempts to spread those

analyses out as much as possible. This approach will roughly illustrate how the response

varies throughout the design space. Latin hypercubes are the most common form of space-

�lling sampling, but other techniques such as Sobol sequences are becoming more popular.

Reviews of many available techniques can be found in the works of Chen et al. and Shan &

Weng.[27, 174, 189]

If multiple data sources will be available and the user plans to apply a multi-�delity

method (see Section A.5.3), it may be worthwhile to take this into account when selecting

the analyses to be performed. Researchers have proposed a variety of ways to design an set

of samples to make it highly compatible with multi-�delity modeling. These approaches to

analysis design include methods such as nested or sliced Latin hypercubes.[95, 151, 152, 153]

Alternatively, it may not be plausible to expect dozens or hundreds of results from each

data source. This is common when physical measurements are made, as acquiring those

results is often much more expensive than a computational analysis. In this case, another

approach is necessary. Instead of spreading the expensive samples out, emphasis should be
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placed on identifying the most useful samples to be analyzed. The process of identifying

useful analyses will depend on two sources of knowledge: validation results, and data from

cheaper analyses.

The results from the validation tests in Step Zero are useful for a number of reasons.

First, the user can identify the situations where the cheaper data source can meet the user's

accuracy requirements. In those situations, the more expensive data source may not be

necessary at all. Conversely, the user can identify situations where the cheaper source of

data is expected to have particularly poor accuracy, and thus where the cheaper source

should not in�uence the selection of expensive analyses. Expert knowledge � in particular,

knowing which phenomena a�ect the response in each situation and comparing those against

the phenomena that each data source can capture � may also help in this regard.

The validation results can also help the user to identify any consistent biases that may

be present in the predictions of the cheaper data source. These biases are then used to

partially �correct� the predictions of the cheaper data source. Once this is done, the cheaper

data source is used to explore the design space and identify promising regions. For example,

if the goal is to �nd regions of the design space where the �true� response is close to zero,

and the cheap data source over-estimates the response by an average of 5 units, the �rst

few expensive analyses should be placed in regions where the cheap data source predicts the

response is close to 5. This is a very rough approach to sample selection, but it can be a

good way to get started.

A.5 Training Surrogate Models

Step Two is to train one or more surrogate models. Surrogate modeling is way to

estimate the behavior of a response using mathematical techniques. Once a surrogate model

is trained, it is very computationally cheap to predict the value of the response for some

new set of input values. This is particularly important for design space exploration, which

is the process of investigating the response value for di�erent combinations of input values,

as exploration can require a large number of analyses.
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A number of di�erent surrogate modeling techniques have been described in the litera-

ture, including Response Surface Methods, Kriging, Arti�cial Neural Networks, Radial Basis

Functions, and Gaussian Process Models. Reviews of many available techniques and their

relative merits can be found in the works of Chen et al. and Shan & Weng.[27, 174, 189]

This guide will assume the use of Kriging. DACE, a useful Kriging toolbox for Matlab, can

be downloaded from http://www2.imm.dtu.dk/~hbni/dace/.

Kriging is used in this guide primarily because it can explicitly account for uncertainty

in the data. When �tting a Kriging model, a covariance matrix is used to represent the

relationships between the training samples. If uncertainty is present in the data, that un-

certainty can be captured by adding �nuggets� to the diagonal of the covariance matrix.

The DACE toolbox presently does not allow user-de�ned nugget values, but that is easy to

remedy.

If there is no signi�cant uncertainty present in the data, the reader can skip Sections A.5.1

and A.5.2.

A.5.1 Implementing Nuggets in DACE

This implementation allows the user to specify nugget values while minimizing changes to

the existing DACE functions. As a result, the command sequence to make a Kriging model

with nuggets is inelegant but functional, as will be demonstrated in Section A.5.2.

First, create a duplicate copy of dace�t.m named dace�tNugget.m. Change line 1 of

dace�tNugget.m from

function [dmodel, perf] = dacefit(S, Y, regr, corr, theta0, lob, upb)

to

function [dmodel, perf] = dacefitNugget(S, Y, regr, corr, theta0, lob, ...

upb, nug)

This tells the modi�ed function to expect an extra input parameter, which will be the nugget

value or values. Next, change line 93 from

`D', D, `ij',ij, `scS',sS);
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to

`D', D, `ij',ij, `scS',ss, `nuggets',nug);

This incorporates the nugget parameter into the structure par which contains the data

necessary to evaluate how well the Kriging model �ts the data. Next, modify line 114 from

`C',fit.C, `Ft',fit.Ft, `G',fit.G);

to

`C',fit.C, `Ft',fit.Ft, `G',fit.G, `nuggets',nug);

This adds the nugget values to the structure dmodel, which is the trained Kriging model that

is returned by the function. Adding the nugget values that were used to train the model

is not strictly necessary, but may be helpful when documenting the Kriging model. Lastly,

change line 129 from

[r(idx); ones(m,1)+mu]);

to

[r(idx); ones(m,1)+mu+par.nuggets]);

This adds the nugget values to the diagonal elements of the covariance matrix. No other

functions need to be changed, as nuggets only have a direct e�ect on the surrogate training

process. Predictions made with the resulting Kriging model will take the nuggets into

account without any further modi�cations.

A.5.2 Using the Modi�ed DACEFIT Function

With the standard dace�t.m function, the user can �t a model using the command

dmodel = dacefit(S, Y, TrendType, Correlation, theta, lob, upb);

Here, S is the matrix of input values; Y is the vector or matrix of response values; TrendType

speci�es whether the underlying trend of the model is constant, linear or quadratic (or in

terms of the functions supplied with the DACE toolbox, @regpoly0, @regpoly1 or @regpoly2 );
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and Correlation speci�es the desired correlation model (e.g. exponential, Gaussian, linear,

etc., again referring to the functions included with DACE such as @correxp). The remaining

parameters represent the initial guess for correlation coe�cient values (theta) and the limits

on those coe�cients: lob is the lower bound while upb is the upper bound.

The �rst step of creating a Kriging model using nuggets is to determine the value of the

nugget. The nugget can be a scalar or a vector. If the uncertainty is constant for every

training sample, the nugget will be a scalar equal to the variance of that uncertainty. If the

uncertainty is di�erent for each training sample, the nugget will be a vector of size (n× 1),

where n is the number of training samples, and the ith entry will be the variance of the

uncertainty in the response for the ith training sample.

Note that before it can be used to �t a Kriging model, the nugget must be scaled by the

process variance of the Kriging model. The process variance is calculated by DACE, so the

set of commands that �t a Kriging model using nuggets is almost recursive:

dmodel_noiseless = dacefit(S, Y, TrendType, Correlation, theta, lob, upb);

scaled_nugget = original_nugget/dmodel_noiseless.sigma2;

dmodel = dacefitNugget(S, Y, TrendType, Correlation, theta, lob, upb, ...

scaled_nugget);

The resulting dmodel is a Kriging model which captures the uncertainty speci�ed in the

nugget value(s). The commands to use dmodel to estimate response values and prediction

con�dence are identical to those for a nugget-less Kriging model, and are given in the manual

that is included with the DACE toolbox download.

A.5.3 Multi-Fidelity Surrogate Modeling

If the reader will only be using one data source, this section may be safely skipped. If

multiple data sources will be available, it may be possible to combine data from each source

into a single surrogate model. This new surrogate is often more accurate than if only the

cheaper data source were available, yet less expensive than if only the more expensive data

source were used. The methods used to create such surrogates are known as multi-�delity

methods.
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Multi-�delity methods enable the user to train surrogate models that emulate the more

expensive data source while reducing the number of expensive analyses necessary to achieve

the desired accuracy. Rather than having to infer response behavior purely from the results

of expensive analyses, multi-�delity methods use cheaper analyses to learn how the response

varies throughout the design space. Those results are then �corrected� using results from

the more accurate (but more expensive) data source.

For example, consider the problem of predicting the lift coe�cient of a vehicle at multiple

angles of attack. Simple linear aerodynamics tools can often estimate how the lift coe�cient

changes with angle with good accuracy (at least for small angles) but may be less accurate

when predicting the lift coe�cient at any one particular angle. More complex methods like

computational �uid dynamics (CFD) o�er better predictions of lift coe�cient but require

a much larger computational e�ort. Multi-�delity methods would use the cheaper tools to

estimate how the response (e.g., lift coe�cient) changes with angle, and correct the response

at each angle based on one or two results from the more accurate CFD analysis.

The savings o�ered by multi-�delity methods will depend on how much similarity there

is between the behavior of the response as estimated by the two data sources. If there is

very little similarity, multi-�delity methods will not o�er much bene�t � but if there is so

little similarity, there may be no point in using the cheaper source of data at all.

A number of multi-�delity techniques have been developed and used for engineering

purposes. Some create two surrogate models, one to emulate the cheaper source of data

(fcheap)
1 and one to �correct� the cheaper result to match the more expensive source of

data. This type of multi-�delity technique is very popular, but assumes that there will be

enough expensive results (fexpensive) to create a surrogate model (preferably > 10d, where

d is the number of independent parameters). This family of methods includes:

• Additive correction: one surrogate is trained to emulate fcheap, another is trained

to emulate (fexpensive − fcheap), and the predictions of both are added together to

estimate fexpensive.[73]

1If the cheaper source of data is very cheap, it may be possible to use it directly instead of creating a
surrogate model.
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• Proportional correction: one surrogate is trained to emulate fcheap, another is

trained to emulate
(
fexpensive
fcheap

)
, and the predictions from both surrogates are multiplied

together to produce an estimate of fexpensive.[9]

• Hybrid correction: a combination of additive and proportional correction.[94, 155]

• Ghoreyshi cokriging: one surrogate is trained to emulate fcheap; the estimated

fcheap value is then treated as an extra input parameter when �tting a surrogate to

fexpensive.[63]

Alternatively, some multi-�delity techniques create only one surrogate model, using all

the available data at once. Because the e�ort of training a surrogate model increases as more

data is used, these methods may become quite computationally-intensive for large data sets.

On the other hand, if the user will not have the resources to run > 10d analyses with the

expensive data source, these methods can still produce a surrogate that incorporates all

available data. These techniques include:

• Cokriging: a form of Kriging that can handle multiple responses (or the same

response calculated by multiple data sources).[182] Some software tools are avail-

able that can perform cokriging, but most can only handle up to three independent

parameters.[145, 164]

• Data harmonization: similar to additive correction, data harmonization attempts

to capture any biases between data sources. The source of each sample is identi�ed

using binary columns.[13, 14, 15]

A.5.4 Demonstrating Ghoreyshi Cokriging

Ghoreyshi cokriging was selected for a more in-depth demonstration, as it produced the

most accurate surrogate models for a particular test problem. Note that the e�ectiveness of

each multi-�delity method is strongly problem-dependent, and although Ghoreyshi cokriging

produced the most accurate surrogate model for one application, another method might

be superior for a di�erent application. If possible, the user should do comparison tests
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to determine which method is best for the problem at hand. The process of evaluating

surrogate model accuracy is the subject of the next section of this guide.

To understand the implementation of Ghoreyshi cokriging, consider a problem with two

input variables, x1 & x2. The matrix of inputs for a standard (non-multi-�delity) Kriging

model with a linear underlying trend would resemble:

S =



x1,1 x2,1

x1,2 x2,2

x1,3 x2,3

x1,4 x2,4


(1)

Here, x2,1 represents the value of x2 for the �rst training sample. The matrix of inputs for

a Ghoreyshi cokriging model with a linear underlying trend, on the other hand, would take

the form:

S =



x1,1 x2,1 ˆfcheap,1

x1,2 x2,2 ˆfcheap,2

x1,3 x2,3 ˆfcheap,3

x1,4 x2,4 ˆfcheap,4


(2)

where ˆfcheap,i represents the estimated response (as determined by the cheaper data source)

at the ith sample. Thus, a problem with d input dimensions becomes one with d+ 1 input

dimensions. The process of �tting the Kriging model (or any other form of surrogate model)

is otherwise unchanged. When using the DACE toolbox for Matlab, a Ghoreyshi cokriging

model may be created using the following commands:

First, assuming the per-analysis cost of the cheaper data source is not negligible, a

surrogate model may be trained to emulate the cheaper data source. Analyses are performed

using that data source and a Kriging surrogate model is trained to match the results:
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dmodel_cheap = dacefit(S_cheap, f_cheap, TrendType, Correlation, ...

theta, lob, upb);

Here, S_cheap is the matrix of input values that were analyzed with the cheaper data

source, while fcheap is the vector or matrix of response values from the cheap data source.

TrendType speci�es whether the underlying trend of the model is constant, linear or

quadratic. Correlation speci�es the desired correlation model (e.g. exponential, Gaussian,

linear, etc.). The remaining parameters represent the initial guess for correlation coe�cient

values (theta) and the limits on those coe�cients: lob is the lower bound while upb is the

upper bound.

Next, a smaller set of analyses (S_expensive) is performed using the more expensive

data source, and the surrogate model of the cheap data source (dmodel_cheap) is used to

estimate the response values that would be obtained if the same smaller set of analyses were

performed using the cheaper data source. The estimated cheaper response values (fcheap_-

pred) are obtained with the command:

fcheap_pred = predictor(S_expensive, dmodel_cheap);

Finally, a Ghoreyshi cokriging model is created using both the cheap and expensive data

by including the cheaper response values as an extra input parameter:

dmodel_expensive = dacefit( [S_expensive fcheap_pred], f_expensive, ...

TrendType, Correlation, theta_extra, lob_extra, upb_extra);

Note that, because there is one more input parameter, the vectors for theta, lob, and upb

must each be enlarged by one entry. theta_extra, lob_extra and upb_extra represent those

enlarged vectors.

To predict the expensive response for some new sample using this Ghoreyshi cokriging

model, the user must also predict the cheap response for that sample:

fcheap_newsample = predictor(S_new,dmodel_cheap);

fexpensive_newsample = predictor( [S_new fcheap_newsample], ...

dmodel_expensive);
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Here, fexpensive_newsample is the prediction of the Ghoreyshi cokriging model for the

response value for the new sample.

At this point in the process, initial samples have been selected and analyzed using the

various data sources. Using the results from those analyses, surrogate models have been

trained to estimate the response(s) of interest. The question may then be raised: are those

surrogate models accurate enough?

A.6 Evaluating Surrogate Model Accuracy

Step Three is to quantify the predictive accuracy of the surrogate models that have been

trained. Evaluation of surrogate model accuracy is typically done in one of two ways: cross

validation or test samples.[88, 148]

A.6.1 Test Samples

Evaluation using test samples is simpler conceptually, but requires more data than cross

validation. To evaluate surrogate model accuracy using test samples, some number of anal-

ysis results are set aside and not used to train the surrogate model. The more test samples

available for this purpose, the more con�dence the user can have in the prediction error

estimate for the surrogate. If the user is only concerned with the predictive accuracy for

samples with response values within a certain range, only samples with responses within that

range should be used for testing; obtaining useful test samples in this scenario may require

extra e�ort, such as a separate optimization process.

Once a surrogate has been trained, it is used to predict the response value for each of the

test samples. These predictions are then compared with the observed results to calculate

the prediction error for the test set. For each sample in the test set, the prediction error (ei)

is the discrepancy between the observation (yi) and the prediction (ŷi):

ei = (yi − ŷi) (3)

Once the prediction errors for all n samples in the test set have been calculated, they

can be used to evaluate the overall accuracy of the surrogate model. First, the average

275



prediction error (ēts) is calculated:

ēts =
1

n

n∑
i=1

ei (4)

This value indicates whether there is any consistent bias in the predictions of the surrogate,

and ideally should be close to zero.

Next, the spread of the prediction errors, εts, is calculated to determine how precise the

surrogate model is, i.e. how much variability is present in the prediction error.[10] A model

with some bias that is consistently within 5% of the correct value may be more useful than

a model that has no average bias but is occasionally o� by 50%. To assess this, the spread

of the error is �rst calculated:

εts =
1

n

n∑
i=1

(ei)
2 (5)

Here, εts has units of variance, i.e. the units of the response squared, which may be di�cult

to interpret. The square root of εts may be easier to work with:

RMSEts =

√√√√ 1

n

n∑
i=1

(ei)
2 (6)

This term, RMSEts, is the Root Mean Squared Error and has the same units as the response

of interest. A small RMSEts value indicates that the surrogate model prediction errors did

not exhibit large variations.

By combining the average prediction error (ēts) and the deviation of the prediction error

(RMSEts), the user can estimate a con�dence interval for a future prediction ˆy(x) . First,

the expected bias is accounted for:

ˆy(x)unbiased = ˆy(x) + ēts

= ˆy(x) +

n∑
i=1

(yi − ŷi)

n

(7)

Next, assuming the prediction error is normally distributed, a 95% con�dence interval

can be estimated:

ˆy(x)lower95% = ˆy(x)unbiased − 2×RMSEts

ˆy(x)upper95% = ˆy(x)unbiased + 2×RMSEts

(8)
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These values let the user estimate how much uncertainty is present in the predictions of

the surrogate model. The user may assume that, in light of the available data, there is

a 95% likelihood that the actual response y(x) falls somewhere between ˆy(x)lower95% and

ˆy(x)upper95%.

The argument against the use of test samples for accuracy evaluation is that some an-

alytical e�ort � the e�ort required to analyze the test samples � does not contribute to

improving the surrogate model. If the per-analysis cost is very high, this may be considered

too wasteful. Iooss proposed a way to distribute the test samples throughout the design

space so that the user can get the most accurate assessment of surrogate model accuracy

for the least possible number of test samples, although it is di�cult to know in advance how

many test samples will be required.[87]

A.6.2 Cross Validation

The alternative to using separate test samples is cross validation. In cross validation, all

the available data is used to create the primary surrogate model. This primary surrogate is

then set aside. Then, the available data is split up into k groups, where k is some integer.

All but one group of data are used to train a new surrogate model, and that surrogate is used

to predict the response values for the samples that were omitted. The resulting predictive

errors are used to infer the predictive accuracy of the original surrogate model. This process

is known as �k-fold cross-validation�.

As with the test-samples approach, if the user is trying to quantify the predictive ac-

curacy of the surrogate for samples where the response value lies within a speci�ed range,

the cross validation procedure may be performed by progressively omitting only the sam-

ples which have response values in that range. If most of the training samples do not have

response values in the range of interest, the estimate for prediction error may itself have low

con�dence.

The best group size to use is a matter of some debate in the literature. The limiting case

is to leave out one sample each time. For a data set of N samples, N new models would be

have to be created, each of which omits the ith training sample and then attempts to predict
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the response at that omitted sample. The prediction error for the ith cross validation model

� which omitted the ith sample from its training data set � would be:

ei = (yi − ŷi) (9)

Here yi is the actual response value for the i
th sample, and ŷi is the predicted response

using the ith cross validation model. The overall cross validation error, εcv, is calculated as:

εcv =
1

n

n∑
i=1

(ei)
2 (10)

Like εts, εcv has units of variance, so another calculation is done to make the results easier

to interpret:

RMSEcv =

√√√√ 1

n

n∑
i=1

(ei)
2 (11)

This term, RMSEcv, is the Root Mean Squared Error and has the same units as the response

of interest. A small RMSEcv value indicates that the surrogate model prediction errors were

consistently small and did not exhibit large variations.

As with the test samples approach, the user can estimate a con�dence interval for a future

prediction ˆy(x) using the average prediction error (ēcv) and the deviation of the prediction

error (RMSEcv). First, the expected bias is accounted for:

ˆy(x)unbiased = ˆy(x) + ēcv

= ˆy(x) +

n∑
i=1

(yi − ŷi)

n

(12)

Next, assuming the prediction error is normally distributed, a 95% con�dence interval

can be estimated:

ˆy(x)lower95% = ˆy(x)unbiased − 2×RMSEcv

ˆy(x)upper95% = ˆy(x)unbiased + 2×RMSEcv

(13)

As before, the user may assume that, in light of the available data, there is a 95% likelihood

that the actual response at x, y(x), falls somewhere between ˆy(x)lower95% and ˆy(x)upper95%.

This approach can provide a reasonably good estimate of the prediction error of the

surrogate trained with all the samples, but there are three points of concern. First, the
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user must train N extra surrogate models, which may become very time-consuming for

larger data sets.[58] Secondly, if certain training samples have a large e�ect on the surrogate

model, there may be a large spread in the cross validation prediction errors, which means

there may be a lot of uncertainty in the cross validation error estimate. Finally, cross

validation only evaluates the accuracy of surrogate models trained with some of the data,

so the true predictive accuracy of the model may be under-estimated.

In some cases, splitting the data up into 5 or 10 larger groups may address some of those

concerns. By omitting each group one at a time for cross validation instead of each sample

individually, the number of extra surrogate models that must be trained is reduced from

N to 5 or 10. If the data pool is large enough this may also result in a smaller spread of

prediction errors, reducing the uncertainty in the cross validation error estimate.[100]

However, if the amount of data is limited, the removal of 10-20% of the data for k-

fold cross validation may signi�cantly a�ect the resulting surrogate models, leading to a

substantial over-prediction of surrogate error.[75] The user may screen for this e�ect during

cross validation by tracking the model parameters, such as correlation coe�cients (e.g., the

theta parameters used by the DACE toolbox), for each new surrogate produced. If these

parameters vary signi�cantly, the user may wish to reduce k to split the data into smaller

groups.

A.6.3 Emphasizing Certain Response Value Ranges

If the user is not attempting to create a surrogate model that is accurate over the entire

range of the response, but rather wishes to emphasize a certain range of response values, the

estimation of predictive accuracy becomes slightly more complex. This was noted brie�y in

the previous sections.

In order to quantify the predictive error of the surrogate model for samples with response

values within a certain range, the user should only use samples that fall within the range of

interest when selecting test samples or cross validation groups. By using only those samples,

the user ensures that the estimated con�dence intervals are as relevant as possible to the

expected use of the surrogate. Depending on the behavior of the response and the size of
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the design space, however, there may not be many samples available which fall within the

desired range.

In such a scenario, the user is faced with tough options:

• Work With What's Available. The user may simply go ahead and use the available

samples within the range of interest. If very few such samples are available, this

approach may result in error estimations that have high uncertainty. However, if the

uncertainty of the error estimates are reported along with the predictions, that result

may be good enough.

• Use �Close-Enough� Data. If samples are available that have response values close

to the range of interest, the user may also include those samples when performing

the predictive accuracy calculations. If the extra samples are close to the range of

interest, this may be a very e�ective option. However, there is no guarantee that good

predictive accuracy for samples close to the range of interest will correspond to good

accuracy for samples within the range of interest: picture a zoologist learning about

lions by studying housecats.

• Get More Data. The user may attempt to gather more results in hopes some of the

new data will fall within the range of interest. This may be expensive or infeasible,

depending on the time and e�ort that would be required.

If the user has the time and resources to obtain more data, the third option is preferable

as it o�ers the greatest reduction in uncertainty. If separate test samples are used for

accuracy evaluation, an optimization approach may be the best way to accumulate samples

within the range of interest. On the other hand, if cross validation is used, any technique

that identi�es samples within the range of interest can be used, as those samples will bene�t

both the accuracy estimation process and the accuracy of the surrogate model itself. One

such technique is described in Section A.7.
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A.6.4 Stopping Criteria

There are multiple reasons for the user to decide that the surrogate model is �good enough�

and end the process. The trivial reason is that all resources have been expended � there is

no more time or budget left to run more analyses or train new surrogate models. This result

probably would not be satisfying for anyone involved.

The literature mostly assumes that the user will know what �good enough� means for

themselves for each application. Most of the stopping criteria that have been published

are intended for use with optimizations, such as stopping when the expected improvement

is less than some threshold or when no improvements have been made after some number

of cycles. Fortunately, some guidelines for surrogate model accuracy for non-optimization

purposes have been identi�ed.[57]

As stated in the previous section, Root Mean Squared Error has the same units as the

response being modeled. The calculated RMSE value can be normalized by the useful range

of the response being modeled. This quanti�es the prediction error relative to the range

of the response. If the user is interested in the global behavior of the response, this range

may be calculated using the largest and smallest observed response values. For example, if

the response has a maximum value of 20 and a minimum value of 7, the RMSE would be

normalized by a factor of 13. If, on the other hand, only a certain range of the response is of

interest (for example, the user is only interested in pitching moment coe�cients between -0.1

and 0.1), the RMSE would be normalized using this range of interest (0.2, in this example).

Note that when normalizing by a range of interest, the RMSE should be calculated using

only samples that fall within that range of interest.

This normalized RMSE value can give the user a rough estimate of the predictive accu-

racy of the surrogate. As a guideline, a model with normalized RMSE of less than 10% is

considered to be �reasonable,� while one with normalized RMSE of less than 2% is considered

�very good.�[57] These guidelines can help the user determine whether the current model is

acceptable or if it will require additional investment, such as the acquisition of more training

data. Such acquisition is the subject of the next step in this guide.

281



A.7 Selecting New Analyses Based On Previous Results

This step in the method, Step Four, assumes that the available surrogates are not accurate

enough, and that there are su�cient resources available to perform new analyses to acquire

more data. To be most e�ective, the analyses will be selected based on the results of previous

analyses, allowing them to emphasize portions of the design space that are of interest to

the user. This process of selecting the most useful new analyses based on previous

results is known as �adaptive sampling.�

Most of the research that has been done with adaptive sampling has done so in the

context of optimization, i.e. maximizing or minimizing some objective function.[38, 83,

111, 173] The present technique is intended for problems where a certain range of response

values is of interest, as opposed to maximizing or minimizing something, so a less-common

approach to sample selection is necessary. The preferred approach in this case is contour-

based sampling.[149]

Contour-based sampling evaluates potential new samples, known as �candidates,� by es-

timating how each candidate would a�ect the predictive con�dence of the surrogate model if

it were added to the data pool. Speci�cally, the contour-based sampling algorithm attempts

to identify the candidate which would produce the largest reduction in prediction uncertainty

for samples with responses within the speci�ed ranges of interest.

To quantify the reduction in prediction uncertainty, test samples are used. Unlike in

model validation, the test samples do not need to be analyzed in contour-based sampling.

Instead, the surrogate model is modi�ed as if the candidate had been added to the training

pool, and then the modi�ed surrogate is used to estimate the prediction uncertainty at each

test sample. These uncertainties are then combined in a weighted sum. If a test sample has

a high likelihood of having a response value within the speci�ed range of interest, it will be

weighted heavily (on the order of 1); if the test sample is unlikely to fall within the range of

interest, it will be weighted lightly (on the order of 0). The algorithm is based on Kriging,

since that surrogate modeling approach allows the user to quickly and easily estimate the

predictive con�dence at any sample in the design space.

For this guide, it will be assumed that there are multiple responses of interest, and the
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user wishes to accurately identify samples for which the value of every response falls within

some user-de�ned range of interest. This section will use the symbol Q to refer to the

total number of responses that are being taken into account when selecting new samples to

analyze.

A.7.1 Generating Candidate & Test Samples

The �rst step in choosing a new sample with contour-based sampling is to generate candidate

samples. This is done in the same way that the initial samples were chosen in Section A.4: a

space-�lling distribution is probably the simplest and most universal approach. The number

of candidates generated is left up to the user. Evaluating more candidates means that the

selection algorithm will have more options to choose from, but will increase the amount of

computational e�ort required to choose a new sample. A good starting value may be 10d

candidates, where d is the number of free parameters.

Next, a set of test samples is generated. These test samples will be used to evaluate the

candidates based on the estimated response values and prediction uncertainties. Most likely,

the test samples will also be evenly distributed throughout the design space. The more test

samples that are used, the more accurately the algorithm will assess the candidates, but

the longer the selection process will take. As a rough guide, 15d may be a good number

of test samples, although the actual best value will depend strongly on the problem being

investigated.

A.7.2 Filtering Candidates

If desired, the user may speed up the sample selection process by ignoring candidates that

have a low likelihood of having responses within the speci�ed ranges of interest. To accom-

plish this, the user must calculate the likelihood that each candidate falls within the range

of interest for a given response. This is done by using the surrogate models to estimate the

response value (y) and the prediction uncertainty (yMSE) for each candidate.

The Kriging prediction uncertainty indicates, roughly, how close to the prediction is

expected to be to the actual response value. This distribution is assumed to be a Gaussian

distribution. As a result, the probability that the response is larger than some target value

283



may be calculated analytically. Using that relationship, the likelihood that the response (y)

falls within certain limits (ylower & yupper) can be calculated as:

P (yupper > y > ylower) = P (y > ylower)− P (y > yupper) (14)

P (y > ylower) is the likelihood that the predicted value y is larger than some speci�ed

threshold ylower. Zelen & Severo[1] provide a method for calculating such likelihoods for a

standard normal distribution. To use this method, the prediction from the Kriging model

must be translated into a standard normal distribution.

The standard normal is a special case of the Gaussian, or normal, distribution for which

µ, the mean, is equal to 0 and σ2, the variance, is equal to 1. This is commonly written

as N (0, 1). Any normal distribution N
(
µ, σ2

)
can be transformed into a standard normal

distribution using the following equation:

Z =

(
yinterest − µ√

σ2

)
(15)

Here, yinterest is the threshold value, such as ylower; µ is the predicted response value from

the surrogate model; and σ2 is the prediction uncertainty.

To calculate the probability that yinterest is larger than µ, Z is plugged into the equation:

Φ(x) ≈ 1− φ(Z)
(
b1t+ b2t

2 + b3t
3 + b4t

4 + b5t
5
)
,

t =
1

1 + b0Z

(16)

Here, φ(Z) is the probability density function (PDF) of the standard normal distribution,

which expresses the probability that a random draw from the distribution would produce a

value of Z. The b coe�cients each take a di�erent value: b0 = 0.2316419, b1 = 0.319381530,

b2 = −0.356563782, b3 = 1.781477937, b4 = −1.821255978, and b5 = 1.330274429. This

approximation for Φ(x) is accurate to within < 7.5× 10−8 as long as yinterest > µ.

The PDF of a normal distribution, φ(Z), can be calculated by:

φ(Z) =
1√

2π(1)2
exp

[
−(Z − 0)2

2(1)2

]
(17)

Note that this relation for Φ(x) is only valid when yinterest is greater than µ, the predicted

response. If yinterest is less than µ, this set of equations will give nonsense answers. In
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these situations, the user should replace yinterest with −yinterest and µ with −µ, which will

calculate the probability that yinterest is less than µ (P (yinterest < µ)). This must then be

converted back to P (yinterest > µ):

P (yinterest > µ) = 1− P (yinterest < µ) (18)

Using the predicted response value (y) and prediction uncertainty (yMSE) for a candidate

sample, the limits of the range of interest for the response (ylower and yupper), and Equa-

tions 14-18, the user can calculate the likelihood that the true response being emulated by

the surrogate falls within the range of interest. If there are multiple responses, this process

is repeated for every response, and the minimum value is retained as the likelihood score,

referred to as the �probability of interest� or POI. This is then repeated for the rest of

the candidates. The user may then choose not to analyze the candidates with too low of a

likelihood score, saving time and computational e�ort.

This raises the question: what constitutes �too low� of a POI score? There is a natural

impulse to demand high values, such as 75% or even 90%. This seems reasonable, but may

be too restrictive: if the prediction uncertainty is large relative to the response range of

interest, it is possible that no candidate will meet the requirement. Instead, the user should

review the likelihood scores of the candidates and choose a requirement that makes sense in

light of those scores.

Higher POI requirement values will eliminate more candidates, reducing the necessary

computational e�ort to select a new sample. This may have the side-e�ect of eliminating

the candidates with higher uncertainties, i.e. those farther away from existing samples,

which could result in a very conservative approach that does not explore the design space

much. Alternatively, lower requirement values allow more exploration of the design space,

but increase the time and e�ort required to select each sample, resulting in a slower sample

selection process. It is recommended that a POI requirement of at least 0.01-0.1% be used

to screen out any candidates that are extremely unlikely to fall within the range of interest.
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A.7.3 Analyzing a Candidate

The next step is to evaluate how much the predictive uncertainty of the surrogate model

would be reduced if a particular candidate were analyzed. Ordinarily, this would require

estimating the responses for the candidate sample, adding the sample to the training data

set, and re-training the surrogate model to include the new sample. This can quickly become

computationally expensive if more than a handful of candidate samples must be evaluated.

For Kriging, the computational expense is primarily due to the need to invert a correlation

matrix each time a surrogate is trained. However, most of the training data set will be

unchanged; only the candidate sample will vary. This simpli�es the problem signi�cantly,

as will be demonstrated shortly.

The calculations and example code given in this section are for a single-�delity model,

not the Ghoreyshi cokriging model that was described in Section A.5.3. This is because the

choice of multi-�delity approach will depend on the problem being addressed; any multi-

�delity approach could be substituted into this sample selection algorithm.

Some of the terms in the calculations depend only on the current surrogate model, not on

any of the candidates. These terms can be calculated before any candidates are evaluated:

Cinv = cell(1,Q);

F = cell(1,Q);

for q = 1:Q

daceCholesky = full(dmodel{q}.C);

daceCinv = inv(daceCholesky);

Cinv{q} = daceCinv' * daceCinv;

F{q} = full(dmodel{q}.C) * dmodel{q}.Ft;

% From DACE manual, equation 3.10

end

IMSE = zeros(number_of_candidates, Q);

Note that there is a change in notation that occurs in those lines of code: the DACE model

uses dmodel{q}.C to refer to the Cholesky factorization of the correlation matrix, R, for the
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qth surrogate in dmodel. However, Cinv{q} is the inverse of the correlation matrix, not the

inverse of the Cholesky factorization. This change was done to align with the notation used

by Picheny et al.[149]

IMSE is a matrix that will contain the weighted uncertainty values that are calculated

for each candidate. Q is the number of responses that are being modeled; the meaning of

number_of_candidates should be clear.

All operations after this point must be repeated for each candidate sample � or at least,

each candidate sample that meets or exceeds the probability of interest requirement described

in Section A.7.2, if such requirements were set. The variable j will be used as the index

denoting a particular candidate sample from the set of options.

Because DACE normalizes the data when creating a Kriging model, the jth candidate

sample must be normalized in the same manner:

[n,o] = size(S);

mS = mean(S);

sS = std(S);

Snorm = (S - repmat(mS,n,1)) ./ repmat(sS,n,1);

candidate_norm = (candidateSet(j,:) -mS) ./ sS;

Snorm_can = [candidate_norm; Snorm];

Here, n is the number of training samples that are available, and o is the number of free

parameters included in the model.

Next, the normalized distances from the candidate sample to the existing training data

are calculated, and those results are used to determine cnew, the correlations between the

candidate and the training data:

newS = Snorm;

D_temp = repmaat(candidate_norm,n,1) - newS(1:n,:);

c_new = feval(correlationModel, dmodel{q}.theta, D_temp);

Here, correlationModel indicates the correlation model that was used to build the Kriging

surrogate, such as Gausssian (�@corrgauss�), exponential (�@correxp�), etc. The correlation

287



model names correspond to the correlation models included with the DACE toolbox.

To evaluate how the candidate would a�ect the prediction con�dence, the new correlation

matrix (which includes the candidate sample) must be calculated and inverted. Rather than

using brute force, Schur's complement[201] calculates the new inverted correlation matrix

(C−1
n+1) in terms of inverted correlation matrix without the candidate sample (C−1

n ).

C−1
n+1 =


1 0

−C−1
n cnew In




1
σ2−cTnewC

−1
n cnew

0

0 C−1
n




1 −cTnewC−1
n

0 In

 (19)

Here, In is the n×n identity matrix, and σ2 is the estimated process variance of the surrogate

model. 0 and 1 represent blocks of all zeros and all ones, respectively. cnew is a n× 1 vector

containing the correlation between the candidate sample and each existing training data

samples.

The augmented F matrix must be calculated as well:

f_candidate = feval(dmodel{q}.regr, candidate_norm);

F_nplusone = [f_candidate; F{q}];

to_be_inverted_term = (F_nplusone' * C_nplusone_inv * F_nplusone);

The dmodel{q}.regr term indicates the underlying trend model that was used for the Kriging

surrogate dmodel{q}. These trend models, such as �@regpoly1,� are included with DACE.

The rest of the calculations depend on the test samples as well as the candidate sample.

The variable k will be used as an index to denote individual test samples. First, each test

sample must be normalized, just like the training data and the candidates:

test_norm = (testSet(k,:) - mS) ./ sS;

Then, using the normalized test sample, the distances to the training data (including

the current candidate) and the correlation between the test sample and the training data

are calculated:

D_test = repmat(test_norm, n+1, 1) - Snorm_can(1:n+1,:);

c_test = feval(correlationModel, dmodel{q}.theta, D_test);
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Next, the f value for the test sample is calculated, which is the last term required to

calculate the prediction uncertainty for that sample:

f_test = feval(dmodel{q}.regr, test_norm);

Res_MSEs(k,q) = dmodel{q}.sigma2 * (1 - c_test' * C_nplusone_inv * ...

c_test + (f_test - c_test' * C_nplusone_inv * F_nplusone) * ...

(to_be_inverted_term \ (f_test - c_test' * C_nplusone_inv * ...

F_nplusone)' ) );

Once the new prediction uncertainty has been estimated, the weighting value for that test

sample can be evaluated. Like the probability of interest calculations, the weighting function

depends on the cumulative distribution function of the normal distribution (Equation 16),

so �rst some logic is introduced to make sure that the predicted response value for the test

sample (µ) is less than the threshold of interest (ylower or yupper):

predictedValue1 = predictor(testSet(k,:),dmodel{q});

predictedValue2 = predictedValue1;

rev1 = 0;

if predictedValue1 > y_upper

predictedValue1 = predictedValue1 - 2*(predictedValue1 - y_upper);

rev1 = 1;

end

rev2 = 0;

if predictedValue2 > y_lower

predictedValue2 = predictedValue2 - 2*(predictedValue2 - y_lower);

rev2 = 1;

end

After making sure that the requirements for Equation 19 have been satis�ed, P (y >

ylower) and P (y > yupper) can be calculated:

Znorm1 = (y_upper-predictedValue1) / sqrt(Res_MSEs(k,q)+0.0000000001);
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t1 = 1 / (1 + b0 * Znorm1);

standard_normal1 = (1/sqrt(2*pi*1^2)) * exp( -((Znorm1-0)^2) / (2*1^2));

prob1 = 1 - standard_normal1*( b1*t1 + b2*t1^2 + b3*t1^3 + b4*t1^4 ...

+ b5*t1^5);

if rev1 == 1

prob1 = 1 - prob1;

end

Znorm2 = (y_upper-predictedValue2) / sqrt(Res_MSEs(k,q)+0.0000000001);

t2 = 1 / (1 + b0 * Znorm2);

standard_normal2 = (1/sqrt(2*pi*1^2)) * exp( -((Znorm2-0)^2) / (2*1^2));

prob2 = 1 - standard_normal2*( b1*t2 + b2*t2^2 + b3*t2^3 + b4*t2^4 ...

+ b5*t2^5);

if rev2 == 1

prob2 = 1 - prob2;

end

Note that some division operations include an extra factor of 10−10. These additions were

made to account for situations where the uncertainty at a test sample is close to zero, which

may be the case if the test sample is very close to a sample in the training set. By adding

this factor of 10−10, the division operation avoids any divide-by-zero errors.

The weighting function is equal to P (yupper > y > ylower), which can be transformed

using Equation 18 into:

W(k,q) = (prob1-prob2);

Lastly, the contribution of this test sample to the overall weighted uncertainty for the

current (jth) candidate is calculated as a weighted sum:

IMSE(j,q) = IMSE(j,q) + W(k,q) * Res_MSEs(k,q);

This sequence is repeated for each test sample. Then, the (j+1)th candidate is evaluated

in the same manner. This continues until all candidates have been evaluated. If necessary,
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the algorithm then moves on to the next response (from q to q + 1) and the analysis begins

again.

If the sample-selection algorithm is evaluating only one response, the best sample can

be selected at this point. The sample that will most reduce predictive uncertainty in the

response range of interest is the one with the lowest IMSE value.

If more than one response has a speci�ed range of interest, it is likely that the IMSE values

for each response will have very di�erent magnitudes. Unless this is addressed, the response

with the largest IMSE values will dominate the sample selection process. To account for

this factor, the IMSE values for each response are normalized to have a mean value of 0 and

a standard deviation of 1:

avgIMSE = ones(Q,1);

stdIMSE = ones(Q,1);

norm_IMSE = zeros(size(IMSE));

for q = 1:Q

avgIMSE(q) = mean(IMSE(:,q));

stdIMSE(q) = std(IMSE(:,q));

norm_IMSE(:,q) = ( IMSE(:,q)-avgIMSE(q) ) / stdIMSE(q);

end

The normalized IMSE values for each candidate are averaged to quantify the overall

e�ect that is expected if that candidate were to be analyzed. The results are then sorted

and the most e�ective sample is identi�ed:

net_IMSE = zeros(number_of_candidates,1);

for j = 1:number_of_candidates

net_IMSE(j) = mean(norm_IMSE(j,:));

end

results = sortrows([net_IMSE candidateSet]);

new_sample = results(1, 2:number_of_dimensions+1);
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The sample that is selected, new_sample, is the candidate that is expected to be the most

useful new sample to analyze.

This algorithm is not infallible. It can only select one of the candidates that are presented

to it; it does not choose the best sample possible within the design space. Additionally, the

algorithm assumes that the current surrogate model is fairly accurate with respect to the

behavior of the response. If the surrogate model is poor, the candidates will not be evaluated

accurately, and it is unlikely that the best candidate will be selected.

Once the new set of inputs has been selected, it can be analyzed to determine the true

response values. Once the response values are available, an updated surrogate model should

be trained and evaluated � essentially, returning to Step Two of this guide. The process

continues until the surrogate models are deemed acceptable or the available resources run

out, as described in Section A.6.4.

A.7.3.1 Non-Sequential Analyses

The strategy of analyzing each new sample as soon as it is selected may not be the most

e�cient one. This is especially true if some or all of the analysis (including both the setup

and the analysis) can be done in parallel. In such a scenario, it may be more e�cient to

select a batch of samples and analyze them all at once before updating the surrogate model.

Selecting multiple samples introduces the risk that the second sample in a batch might

be very close to the �rst, reducing its usefulness. To avoid this, each sample is added

to the training data pool (using the response values estimated by the current surrogate

models) before subsequent samples are selected. This has the e�ect of reducing the prediction

uncertainty around the �new� sample, diminishing the incentive to place later samples in

the same region of the design space.

Because estimated response values are used rather than true response values, the later

sets of input values in the batch will be chosen based on information that is not entirely

up-to-date. This may lead to sub-optimal selections in some cases. Still, if the analysis time

is signi�cant and multiple samples can be analyzed in parallel, the overall execution time

may be substantially reduced by this approach.
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To select multiple cases without executing the analysis, the user should run the sample

selection algorithm repeatedly, adding the selected sample to the model after each round.

The augmented data set is then used when selecting the next sample. By taking this ap-

proach, subsequent samples in each batch will naturally spread out, with no risk of clumping

or clustering.

After a batch of samples is selected, they can then be analyzed all at once, taking

advantage of any opportunities to perform the analyses in parallel. This approach can

signi�cantly reduce the total time to select and analyze a given number of samples, while

reducing the negative consequences of not analyzing each sample immediately.
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APPENDIX B

GEOMETRIC PARAMETER RANGES AND DEFAULT VALUES

A full description of the geometric parameters which de�ne the outer shape of a reusable

booster vehicle may be found in the work of Garmendia et al.[61] The details should not

a�ect the validity of the methods described herein, and thus were not reproduced within

this document.

Two parameters, Fuselage Radius Fraction and Wing Root Chord Fraction, were inde-

pendent variables in every experiment and thus default values were not assigned for these

parameters. Additionally, some of the experiments featured 9 independent parameters rather

than 2. For these experiments, the variables Top Curvature 1, Top Curvature 2, Nose Droop,

Nose Fineness Ratio, Wing Half�Span Fraction, Wing Airfoil Camber, and Area Ratio of

Vertical Tail to Wing were allowed to vary alongside Fuselage Radius Fraction and Wing

Root Chord Fraction. These variables are bolded and marked with the symbol 1.

When selecting default values for the parameters that would be inactive in the smaller�

scale experiments, the objective was to identify values that would produce consistent and/or

interesting response behavior for the purposes of the experiments. In some cases, the default

value selected was outside the nominal range for that parameter. This was considered to

be acceptable because these default values were used as part of smaller experiments but

never as part of the larger�scale experiments, and thus the pre�existing space��lling data

sets which were constrained to those limits were still usable as the �null hypothesis� for the

larger�scale e�orts. Parameters for which defaults lie outside the nominal range are marked

with the symbol 2.
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Parameter
Default

Value

Min.

Value

Max.

Value

Units

Scale 50 40 100 Feet

LoftStart 0.6 0.40 0.95 Fraction of Scale

LoftEnd 0.15 0.05 0.20 Fraction of Scale

Fuselage

Radius Fraction

� 0.05 0.25 Fraction of Scale

Flare Factor 1.07 1.00 1.15
Fraction of

Fuselage Radius

Top

Curvature 11

0.1 0 1 Unitless

Top

Curvature 21

0.6 0 1 Unitless

Bottom

Curvature 1

0.1 0 1 Unitless

Bottom

Curvature 2

0.6 0 1 Unitless

Nose Droop1 0.57 0.5 1
Fraction of

Fuselage Height
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Parameter
Default

Value

Min.

Value

Max.

Value

Units

Nose Spatularity 0.15 0 1 Unitless

Nose Fineness

Ratio1

1.7 1 3 Unitless

Inboard Wing

Sweep Angle2

75 40 70 Degrees

Outboard Wing

Sweep Angle

45 10 60 Degrees

Wing Root

Chord Fraction

� 0.3 0.7 Fraction of Scale

Inboard

Taper Ratio

0.6 0.5 0.7 Unitless

Outboard

Taper Ratio

0.35 0.25 0.95 Unitless

Wing

Half�Span

Fraction1

0.34 0.1 1.5 Fraction of Scale
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Parameter
Default

Value

Min.

Value

Max.

Value

Units

Wing Crank

Location

0.17 0.1 0.5
Fraction of

Wing Half�Span

Wing Tip

Twist Angle

0 -5 0 Degrees

Wing Incidence

Angle

0 0 3 Degrees

Wing Dihedral

Angle

0 0 12 Degrees

Wing Airfoil

Camber1

0.07 0 6

Fraction of

Local Chord

(in 10% Increments)

Wing Airfoil

Position of

Maximum Camber

5 2 6

Fraction of

Local Chord

(in 10% Increments)

Wing T/C Ratio 7 3 8

Fraction of

Local Chord

(in 10% Increments)
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Parameter
Default

Value

Min.

Value

Max.

Value

Units

Wing Location

of Max.

Thickness

3 2 8

Fraction of

Local Chord

(in 10% Increments)

Leading Edge

Radius Factor

6 2 8 Unitless

Area Ratio of

Vertical Tail

to Wing1

0.4 0.1 0.5 Unitless

Vertical Tail

Cant Angle

10 0 30 Degrees

Vertical Tail

Toe�In Angle

5 0 10 Degrees

Vertical Tail

Leading Edge

Sweep Angle

45 20 55 Degrees

Vertical Tail

Aspect Ratio

1.25 0.5 2.0 Unitless
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Parameter
Default

Value

Min.

Value

Max.

Value

Units

Vertical Tail

Taper Ratio2

0.4 0.5 0.8 Unitless

Vertical Tail

Airfoil Camber

0 0 6
Fraction of

Local Chord

Vertical Tail

Position of

Maximum Camber2

0 2 6

Fraction of

Local Chord

(in 10% Increments)

Vertical Tail

T/C Ratio

7 3 8 Unitless

Vertical Tail

Location of

Max. Thickness

3 2 8

Fraction of

Local Chord

(in 10% Increments)

Inboard Elevon

Depth

30 10 40 Unitless

Outboard Elevon

Depth

30 10 40 Unitless

Rudder Depth 30 10 40 Unitless
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Parameter
Default

Value

Min.

Value

Max.

Value

Units

Body Flap Size 0.10 0.08 0.015 Fraction of Scale

Inboard Elevon

De�ection

(Starboard)

0 -30 30 Degrees

Outboard Elevon

De�ection

(Starboard)

0 -30 30 Degrees

Inboard Elevon

De�ection (Port)

0 -03 30 Degrees

Outboard Elevon

De�ection (Port)

0 -30 30 Degrees

Rudder

De�ection

(Starboard)

0 -30 30 Degrees

Rudder

De�ection (Port)

0 -30 30 Degrees
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Parameter
Default

Value

Min.

Value

Max.

Value

Units

Body Flap

De�ection

0 -20 30 Degrees

Wing

Longitudinal

Position

-0.1 -0.15 0 Fraction of Scale
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APPENDIX C

ADDITIONAL RESULTS FROM �PROBABILITY OF INTEREST�

STUDIES

This appendix presents the results from the experiment in Section 4.9 in greater depth. This

experiment featured 2 free parameters, the Fuselage Radius Fraction and the Wing Root

Chord Fraction, and 3 responses. The responses were the pitching moment coe�cient of the

vehicle at three �ight conditions: Mach 0.3, α 15o, β 0o; Mach 0.8, α 0o, β 0o; and Mach

2.5, α 0o, β 0o. Default settings for the remaining geometric parameters are recorded in

Appendix B.

The contour-based sampling algorithm, which drew only on results from Cart3D for this

experiment, was tasked with reducing prediction variance for cases likely to have pitching

moment coe�cients within ± 0.1 at every �ight condition. A 50 × 50 grid of cases spanning

the design space was analyzed with Cart3D. Based on the results of those analyses, the cases

which met the pitching moment criterion at each �ight condition can be seen in Figures 65a,

65b & 65c. The cases which met the pitching moment criterion at every �ight condition are

shown in Figure 65d. These cases will be henceforth referred to as the �cases of interest.�

The analysis results were interpolated so that sampling experiments could be conducted

without having to analyze each selected case as it is requested. This allowed experiments

to be conducted quite rapidly, although the time required for the contour-based sampling

algorithm to select the next sample was not insigni�cant. The algorithm used a 23×23 grid

of candidates and a 40×40 grid of test points. The same candidates and test points were

used in every round of sampling.

The contour-based sampling algorithm for one response as described by Picheny et

al.[149] was extended to identify samples that would improve prediction con�dence for mul-

tiple responses at once. When this extended algorithm was applied to the two-input, three-

response problem described above, it was found that the algorithm would select samples
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Figure 65: Cases of Interest at All Flight Conditions
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Figure 66: Sampling For Required POI of 0% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5

that improved prediction con�dence for any response, even if the selected sample did not

bene�t every response. The samples selected, and the resulting prediction accuracy for the

cases of interest, may be seen in Figure 66.

The algorithm was modi�ed to emphasize regions that were likely to contain cases of

interest (e.g. cases for which all responses lie within the range of interest) based on the

expected Probability of Interest, or POI. This quantity captures the likelihood that every

response for a particular sample would fall within the speci�ed range(s) of interest. See

Section 4.9 for more information on this topic. After modi�cation, the algorithm would not
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Figure 67: Sampling For Required POI of 1% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5

evaluate candidates which had POI values lower than the user-de�ned requirement. If no

candidates met the requirement, the algorithm would select the candidate with the highest

POI value.

A minimum POI requirement of 1% � that is, only candidates with better than a 1%

likelihood of falling in the region of interest for all three responses � produced the sample

distribution seen in Figure 67a. The samples exhibited signi�cantly more clustering in

the region of interest, which was the desired e�ect. Additionally, the 95% error quantiles

converged more quickly than in the previous case.

305



Figure 68: Sampling For Required POI of 5% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5

Increasing the required POI value to 5% produced the results shown in Figure 68. Im-

portantly, in this scenario the algorithm did not identify the region of interest as quickly

as before: the third sample for 1% POI was in or near the region of interest, while at 5%

POI the region was not identi�ed until the �fth sample. The prediction accuracy results for

cases of interest also showed convergence behavior that was delayed relative to the 1% case,

although it was still an improvement compared to the 0% case.

Figure 69 shows the e�ects of a 10% POI requirement. The samples were even more

tightly clustered than in previous scenarios. Of particular importance was the order of
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samples: note that the �rst 5 samples gradually progressed down the left edge of the space.

The POI requirement restricted the candidates which the algorithm could consider, allowing

only those with higher likelihoods to be sampled.

It should be noted that a low POI value did not necessarily indicate that a given candi-

date was expected to be far from the region of interest. The POI was estimated using the

cumulative distribution function of a normal distribution; even if the predicted response was

exactly centered in the region of interest, the POI might still be low if the prediction uncer-

tainty was large relative to the integration limits. Responses that were poorly represented

by a linear trend model would have high estimated process variance, and in turn would have

high estimated prediction uncertainty. See Section 4.10.9.3 for more details on this topic.

With respect to prediction accuracy, the 10% POI results showed slightly delayed conver-

gence relative to the previous scenarios, although the convergence for the Mach 0.3 response

was signi�cantly more smooth than for other scenarios.

A 15% POI requirement produced the results shown in Figure 70. The e�ect of POI

requirements on sample selection was even more obvious here than it was for the case of

10% POI. Because the prediction uncertainty was small in the region around each original

sample (represented by triangular icons), the algorithm selected cases close to those sam-

ples. This process repeated as the samples march through the space in search of desirable

response behavior. After the seventh sample, there was enough con�dence in the estimated

model behavior to make the jump to the region of interest, which was correctly identi�ed.

Subsequent samples remained close to this region for the most part.

Once again the prediction error quantiles converged more slowly than in previous sce-

narios. The �nal 95% quantiles for the Mach 0.8 response were actually slightly wider than

for the 10% scenario, indicating that after 15 samples the model produced by the 15% POI

requirement was slightly less accurate for that response.

Finally, the experiment was repeated with a POI requirement of 25%. The e�ects of

a high POI value are clearly visible in the results, displayed in Figure 71. The sample

progression showed tight clustering with occasional jumps; although the left side of the

region of interest was sampled by the eighth sample, the extent of that region was not
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Figure 69: Sampling For Required POI of 10% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5
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Figure 70: Sampling For Required POI of 15% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5
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Figure 71: Sampling For Required POI of 25% (a) & 95% Prediction Error Quantiles for
Cases of Interest at (b) Mach 0.3, (c) Mach 0.8, and (d) Mach 2.5

discovered until the thirteenth sample.

The slow exploration process that resulted from the high POI requirement is evident

in the convergence history of prediction error for each response, as seen in Figures 71b,

71c & 71d. After 15 adaptive samples, contour-based sampling out-performed space-�lling

sampling only for the Mach 2.5 response.

The results in this Appendix should serve to demonstrate the e�ect of the POI require-

ment. Experiments revealed that even an ostensibly reasonable POI requirement such as

15% could handicap the sampling algorithm compared to a more lenient setting. This was

due to the way that POI was calculated: candidates which are expected to have desirable
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response values might exhibit low POI values if the prediction variance was large. Thus,

particularly in the early stages of sampling, it may be best to use a relatively low POI

requirement to allow the sampling algorithm to explore and gain a better understanding

of response behavior. This requirement could be raised later on in the sampling process

when there was more con�dence that each response can be approximated with reasonable

accuracy.
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APPENDIX D

DESCRIPTION OF SCRIPTS FOR OPERATION OF CART3D AND

COMPUTING RESOURCES

This appendix will provide details about the way that Cart3D and the High Performance

Computing systems were run.

D.1 Preprocessing

This research e�ort focused on the aerodynamics of reusable booster vehicles during the

unpowered return-to-launch-site phase of operation, and in particular the static moments.

The aerodynamics were calculated based on the �ight condition and the outer geometric

shape, or Outer Mold Line (OML), of the vehicle. This shape, including control surfaced

de�ections, could be de�ned via a set of parameters using the PaceLab vehicle de�nition

tool.[61, 142] For the purposes of this research, the vehicle de�nition tool was only used to

generate a triangular surface mesh, which could then be analyzed using Cart3D, and a text

�le which identi�ed the hinge axis of each control surface.

D.1.1 Generation of Surface Meshes

The PaceLab tool generated the wing and fuselage as a halfbody, as well as each control

surface in its de�ected state. The wing and half-fuselage were converted from .STL format

to .TRI format using the stl2tri.pl and o�2tri.pl utilities (packaged with Cart3D) and

ADMesh, a utility which processes solid triangular meshes.[2] The two TRI �les were then

intersected using Cart3D's intersect utility to produce a single, watertight triangular surface

mesh for half the vehicle. Almost invariably, any failures at this stage were found to be

problems with the STL �les. Most commonly, the STL �le would not describe a closed

surface (commonly referred to as �watertight�) and when ADMesh was run, that program

would attempt to create a closed surface if possible. The resulting triangulation could be of

poor quality � i.e., very long thin triangles � and still might not produce a closed surface.
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The cubes utility, which generates a volumetric grid around the shape, was used to test

whether the triangulation for the wing & half-fuselage were of su�cient quality for Cart3D

analysis. This was done by generating a volumetric mesh of roughly the resolution that

would be used in later analyses, with approximately 2�3 million cells. Any de�ciency in

the surface triangulation would produce an error message and the triangulation would be

considered to have failed. If the triangulation passed this test, it would then be mirrored

about its centerline to create a full fuselage and wing using a Matlab-based utility created by

Jonathan Sharma. The seven control surfaces would then be intersected with the fuselage

and wing, and cubes would once again be used to test for gaps or other de�ciencies in the

mesh.

When a particular case failed to build properly, the root of the problem was sometimes

to be found in the wing control surfaces. The PaceLab tool �cuts� control surfaces from the

�xed wing using the nearest available surface nodes; a wing mesh with higher resolution was

more likely to result in a viable TRI �le, but this also produced relatively large �les. The

Matlab script which drove the geometry generation process was written so that the wing

mesh resolution was started relatively low � ncs, the number of chordwise cross-sections

between the wing root and the wing tip was usually set to 130 and pcs, the number of

vertices per cross-section, was often set to 140 � and then, if any cases failed to build, these

two parameters were increased by 20 and the process repeated. If ncs exceeded 290, any

cases which had not been built successfully were abandoned.

D.1.2 De�ning Cart3D and HPCC Settings

Aside from the surface mesh, a number of other �les had to be generated before each analysis

could be done. A number of scripts were created which automated the generation these other

�les.

D.1.2.1 Master Job Description File

A centralized data �le was created which encapsulated all of the data required to set up a

case. This master data �le included:

• Batch name and case number;
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• Flight condition ID number;

• Mach number, angle of attack, and sideslip angle;

• Orientation of vehicle within local coordinate frame;

• Reference area, mean aerodynamic chord, and wing half�span for normalization of

forces & moments into coe�cients;

• Center of mass position in the local coordinate frame, based on mass-estimating rela-

tionships developed by Lockheed Martin Space Systems;

• Number of nodes on the HPCC system to be requested for each case;

• Length of time these nodes should be reserved;

• Cart3D baseline CFL setting; and

• De�nition of control surface hinge lines, for the calculation of hinge moments.

Most of these items are straight-forward, but some may deserve further explanation.

The batch name and case number uniquely identi�ed each case and connected it to

the input settings used to generate the surface mesh.

The �ight condition ID number was a two-digit value which corresponded to partic-

ular values of Mach number, angle of attack and sideslip angle.

The local orientation of the vehicle told Cart3D how the vehicle was oriented with

respect to its internal numerical conventions. The surface mesh generated by PaceLab had

its origin at the lower corner of the fuselage rear surface, where the engine assembly or

assemblies would attach, and the nose extended in the negative-X direction. The right wing

of the vehicle was in the positive-Y direction, and the upper surface of the vehicle was in the

positive-Z direction. The native orientation of Cart3D is to have the nose of the vehicle be

the most positive X-coordinate, and the top of the vehicle be in the negative-Z direction, so

any deviation from that orientation must be noted or else the condition simulated may not be

the one intended. In Cart3D terms, the PaceLab orientation is described as (−Xb, Y b,−Zb).
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The reference area & lengths were calculated using the geometric planform of the

wing, which was composed of two trapezoidal panels. These values were expressed in mil-

limeters since that was the length scale used by PaceLab when exporting the surface mesh.

The CFL setting for Cart3D acts as a sort of pseudo-�time step� similar to the forward-

Euler method for initial value problems.[70] Cart3D is a static rather than dynamic analysis

so this is something of a false analogy, but the �ow solver arrives at a solution by iterating

until the �ow behavior throughout the space has converged to some steady-state solution.

The CFL value determines how much the �ow can change between iterations.[37] The larger

the CFL value, the more the state of the simulation will change after each iteration. Smaller

values correspond to a smaller change per iteration, which slows convergence to a solution

but reduces sensitivity to numerical instabilities, such as may occur in transonic or highly-

separated �ow. The default value in Cart3D is 1.1 and the minimum value used in Cart3D's

adaptive grid re�nement script aero.csh is 0.2. If convergence problems are identi�ed during

an analysis, the minimum value is used. CFL numbers used in this e�ort occasionally ranged

as high as 1.3 if the problem was expected to be well-behaved numerically.

Once created, the master job description �le would be uploaded to a High Performance

Computing system, along with the surface triangulations. Additional scripts would then be

used to set up each case to be run.

D.1.3 Setting Up Cases on HPC Systems

An assortment of �les were used to de�ne and run each Cart3D analysis. Perl scripts were

written to customize these �les to the case being run and the desired Cart3D behavior.

D.1.3.1 Con�g.xml

This �le, expressed in XML, gives names to each of the numbered components in the surface

mesh. The component numbers are derived from the order they are listed in the intersect

command during geometry generation. Although not strictly necessary for use of Cart3D,

the con�guration name in this �le is set using the batch name, case number, and �ight

condition ID from the master job description �le.
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D.1.3.2 Input.cntl

This is the primary �le which controls Cart3D. Information from the master job description

�le is used to set values for the Mach number, alpha (angle of attack) and beta (sideslip

angle). A CFL number is de�ned here using the speci�ed baseline value, although this value

may be overridden by a similar entry in aero.csh. The orientation of the vehicle is de�ned

in this �le as well, along with the reference area and one reference length. Only one reference

length can be speci�ed in this �le, so the mean aerodynamic chord is commonly used for

normalization of the pitching moment. The reference length for lateral moments will come

into play in the CLiC �les, described below.

The objective function for the adaptive gridding logic of aero.csh is also speci�ed in this

�le. Although the objective function can incorporate any combination of the aerodynamic

forces, it can only include one of the aerodynamic moments at a time. For these e�orts,

the pitching moment coe�cient and drag coe�cient were given weights of 1, while the lift

coe�cient was given a weight of 0.5. For �ight conditions with nonzero sideslip angles, the

side force coe�cient was also given a weight of 0.5. No rigorous evaluation of the e�ect of

these values on Cart3D behavior was undertaken.

This �le is created based on information from the master job description �le during the

job creation process using the script batch_adjoint_multiple.pl, which in turn calls the

script c3d_input_maker.pl.

D.1.3.3 clic.cntl

CLiC is a post-processing module which takes as input an annotated triangulation of a body

or vehicle (a TRIQ �le) and produces force and moment coe�cients for the entire con�gura-

tion and/or for individual components.[31] The module also requires an input script, named

clic.cntl by default, which de�nes the relevant parameters. These parameters include the

local vehicle orientation, the angle of attack, the sideslip angle, the reference area and refer-

ence length, the location of the center of mass, and (if desired) the component number and

reference axis for component-level moments. Such component-level moments can be used

to calculate the hinge moments necessary to de�ect the control surfaces to the speci�ed
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positions.

Two sets of CLiC input �les are generated for each analysis using Perl scripts. One set

uses the mean aerodynamic chord as the reference length for accurate calculation of the

pitching moment coe�cient, while the other set uses the half-span for calculation of the

rolling and yawing moment coe�cients. Each set also includes four center-of-mass (C.O.M.)

locations. The �rst location is the one calculated by the mass estimating relationships,

and serves as the best guess of the true C.O.M. location of the vehicle. The other three

locations are derived by nudging the C.O.M. one meter along each Cartesian axis. The

resulting changes in the aerodynamic moments can be used to determine the e�ect of shifting

the C.O.M. of the vehicle, such as di�erent distributions of internal components such as

batteries or RCS propellant tanks. The change in aerodynamic moments due to a change

in the C.O.M. of the vehicle can also be calculated using the angle of attack, sideslip angle,

reference lengths, and aerodynamic force coe�cients; data from the extra CLiC results serve

as a con�rmation and double-check of the analytically-derived results.

These CLiC input �les are generated during the job creation process that is carried out by

the Perl script batch_adjoint_multiple.pl, which in turn calls the scripts clic_input_

maker.pl, clic_input_maker_perturbx.pl, clic_input_maker_perturby.pl, and

clic_input_maker_perturbz.pl, which in turn would instruct CLiC to calculate the

baseline forces and moments plus the e�ects of a 1-meter C.O.M. change in the x-, y-, and

z-directions respectively.

D.1.3.4 aero.csh

This script was included as part of the Cart3D distribution. It executed both the adaptive

gridding logic and the �ow solver, cycling between the two to re�ne the volumetric mesh

in the regions which most a�ected the solution, as calculated using the weighting function

from the input.cntl �le. Most parameters were left unchanged from the default settings,

aside from the CFL value (speci�ed in the master job description �le) and the spanwise

orientation �ag (changed to indicate that the Y dimension corresponded to the wingspan of

the vehicle).
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Additionally, the mesh growth rates would be tweaked for each �ight condition. These

rates would be adjusted, following the trend in the default aero.csh �le of larger rates

in later rounds, until the script produced grids with roughly two or three million cells,

as evaluated with one or two dozen con�gurations. Typically, supersonic �ight conditions

required higher growth rates to produce that number of cells; it is believed that the shock

waves present at those conditions resulted in a more rapid convergence of surface pressure

distribution.

It is quite possible that volumetric grids with fewer cells would produce results that were

equally accurate at those �ight conditions. Testing this possibility would require a series

of mesh sensitivity studies, repeated for di�erent portions of the design space and di�erent

�ight conditions. Given the high availability of computing resources, it was concluded that

those studies were unlikely to identify su�cient potential savings to justify their execution.

Perl scripts were written to allow the settings in aero.csh to be adjusted based on the

master job description �le. The job creation script batch_adjoint_multiple.pl would

�rst call the Perl utility aeroCSH_maker.pl, which would write the initial section of

aero.csh which contained the user-controlled settings. This initial section would then be

joined with the remainder of the default aero.csh �le which was not intended to be modi�ed

by the user.

D.1.3.5 setBoxRunAero.pl

This Perl script was created as a wrapper for the actual command to run Cart3D (./aero

.csh). Although most failed cases resulted from improper geometry triangulations, occa-

sionally a case would fail even though the triangulation was watertight. Watertightness

was tested during the building phase, as described in Section D.1.1. Review of the Cart3D

User's Group identi�ed other users who had occasionally encountered this problem. One

user suggested that a perturbation of the outer mesh boundary settings might address

the problem.[168] Another user indicated that Cart3D would sometimes behave poorly if

the volumetric domain boundary aligned exactly with the edge of the con�guration being

analyzed.[178] In light of these suggestions, it was hypothesized that, if a case were found
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to fail during Cart3D analysis, it might run successfully if the outer volumetric boundary

were shifted.

The Cart3D utility autoInputs was used to de�ne the outer volumetric boundary. This

utility initializes the volumetric mesh at a certain distance, which is proportional to the

maximum Cartesian dimension of an axis-aligned bounding box that encloses the object

being analyzed.[124] In short, the representative length L is the maximum extent of the

object in any one Cartesian direction, and the volumetric mesh is de�ned as a cube with sides

of length (n× L), where n is a user-controlled scaling parameter. Cart3D documentation

indicates that for subsonic �ow, the value of n should be roughly 20�30; this value can be

reduced for supersonic �ow.[5]

Initially, setBoxRunAero.pl runs autoInputs with an n value, or box size, of 24. If

the case does not run to completion � i.e., it does not generate a �le named �entire.dat� in

the �adapt08� folder � the setBoxRunAero.pl script will increment the box size by 1 and

re-run autoInputs and aero.csh. If the box size exceeds 30, attempts to run the case are

aborted and an empty �entire.dat� �le is generated in the adapt08 directory to avoid any

future attempts to re-analyze the case.

When setBoxRunAero.pl is run, it �rst searches for �entire.dat� in the folder �adapt08�.

The existence of this �le would indicate that the current analysis has already been completed,

and thus Cart3D does not need to be run again. If the �entire.dat� �le does not exist but

�adapt##� folders are present, it is assumed that a previous run ended unsuccessfully. This

is also true if a �STOP� �le is found in the working directory. If the case did not complete

successfully but �adapt##� folders or a �STOP� �le is present, the setBoxRunAero.pl

script will purge all �adapt##� folders and the �STOP� �le and re-run Cart3D.

Consultation with HPC systems help desks led to the modi�cation of this script: the

�lfs setstripe� command was used to change the number of object storage targets (OSTs)

that would be used to write the �les to disk. The default value is 6, but due to the large

number of (relatively) small �les generated by Cart3D, the help desks requested that the

OST settings be changed so that only 1 OST was used for each directory to mitigate system

loads.
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D.1.3.6 PBS_maker.pl

This PBS �le creation script would be called by the job creation script batch_adjoint_-

multiple.pl. It would draw upon information in the master job description �le to create

the PBS job scripts that would be submitted to the queue. These job scripts included PBS

commands that controlled the number of processors requested, the duration of the request,

and the HPC account which should be charged for the resources used.

Additionally, the scripts contained the commands which would be executed when the

job was run. Typically these commands included changing the current directory to that of

a case to be analyzed, running setBoxRunAero.pl to analyze the case if necessary, and

running the aero_archive.csh script after completing a job to clean up unnecessary �les.

Often a single PBS job �le would include 10�25 cases. This simpli�ed the bookkeeping of

job resources, as it reduced the overall number of jobs submitted to the queue and simpli�ed

the workload of the queue control software.

D.1.3.7 submit.pl

This script was fairly simple compared to the others. It would check the current directory

for any PBS job �les and submit them sequentially with a 10�20 second delay between

submissions so as not to overload the queue software. A subdirectory, �submittedPBS,�

would also be created if it did not exist; after each PBS job was submitted, the job �le

was moved to �submittedPBS� so that it would not be re-submitted if the script were called

again.

D.1.3.8 refreshQueue.pl

This script was used primarily on the U.S. Army Engineer Research & Development Center

(ERDC) system called Diamond. That system o�ered high throughput of Cart3D cases

compared to other systems, and it was di�cult to manage the queue to maximize the

number of analyses completed without negatively impacting the experience of other users

of the system. Virtually unlimited jobs could be submitted to the queue at a time, but

too many jobs would make it di�cult for other users to �nd their jobs within the queue.
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Conversely, if too few jobs were submitted at a time, they might all �nish before the next

time the author checked the queue, re�ecting lost chances to complete more analyses.

Rather than checking the status of the queue every few hours, this script was written

to automate the process. When run, the script would query the number of jobs waiting in

the queue that belonged to the author. That number was compared against a minimum

limit de�ned in the script (typically 20). If the author had fewer than 20 jobs in the queue

waiting to start, the script would query the number of running jobs that belonged to the

author. If this number were less than a cuto� (e.g. 50), the script would submit a new PBS

�le to the queue.

If a new PBS �le was to be submitted, the script would move to a folder which con-

tained PBS scripts to be submitted and select one to submit. Because many jobs could

be running simultaneously, each of which might call refreshQueue.pl at around the same

time, the script could not simply select the �rst �le in that folder. Such a strategy resulted

in the same job being submitted multiple times before it could be moved to a di�erent

folder. Instead, one of the �rst 50 jobs in that folder was selected at random for submission.

The refreshQueue.pl script would then pause for a random duration between 45 and 115

seconds before re-checking the status of the queue.

This script drastically reduced the user e�ort required to ensure that an appropriate

number of jobs were in the queue on Diamond at all times. The user needed only to log

in sporadically to collect �nished results and to add more PBS job �les to the appropriate

folder.

D.1.3.9 batch_adjoint_multiple.pl

This script performed all the tasks necessary to set up a set of cases for analysis. It would

read the master job description �le and call other scripts to generate the various �les required

by Cart3D. A directory for the case at hand would then be created in the scratch space,

and all necessary �les moved to that directory. This script would also run the script which

created the PBS job �le to run the analysis.
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D.1.3.10 pullCase.pl

This script was used to collect �nished cases. The user de�ned a batch name, a range of case

ID values, and a �ight condition number. All cases which matched the description would

then be moved to a separate folder in the scratch space corresponding to that particular

batch and �ight condition. Once this move was completed, the collator_adj.pl script was

copied to the new folder and run in order to parse the output of the analyses.

D.1.3.11 collator_adj.pl

This script parsed the Cart3D output �les for useful data and recorded it in a convenient

set of �les. In each case directory, it used multiple �les to accumulate the desired data sets.

First, the script would read the �input.cntl� �le and record the Mach number, angle of

attack, sideslip angle and reference area. Secondly, it would read the �clic_lat.cntl� and

�clic_lon.cntl� and record the lateral and longitudinal reference lengths, respectively.

Next, it would open the �entire.dat� �le, which contains the iteration history of the

forces and moments on the vehicle, and parse the �nal 30 lines to evaluate convergence. The

average and standard deviation of each response was calculated. Because the forces were in

the body-aligned frame, those forces were transformed using the angle of attack and sideslip

angle to determine the lift, drag and side forces.

The next step was to read the various CLiC output �les. Those �les detailed the center

of mass that was used for the moment calculations, as well as the �nal force and moment

values. Additionally, those �les included the calculated hinge moment acting on each control

surface about its hinge line. Using the di�erence between the whole-body moments about the

perturbed and unperturbed center of mass, the change in moment with respect to changing

center of mass could be calculated. This quantity could be determined analytically as well;

these calculations were used primarily as a sanity check.

The results were written to a set of output �les. One �le contained the forces and

moments in the form of lift, drag, side force, roll, pitch, etc, as well as the convergence data

and the e�ects of C.O.M. changes on the aerodynamic moments. Another �le contained the

same results but in axial-normal-lateral format. A third �le contained the hinge moments
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for each case. The fourth �le contained only the convergence results. These �les were then

renamed according to the current batch name and copied to the user's home directory for

easy collection.

D.1.4 Post-Processing

Once the results had been downloaded from the High Performance Computing systems, they

were processed to link each set of results to the corresponding input values and �lter out any

cases which did not run correctly. Because the goal was to model multiple �ight conditions,

if a case did not run correctly for every �ight condition, it was discarded from all data sets.

The parsing script would read in the various output �les that had been created by

collator_adj.pl and the input deck that had been used to generate the cases. A line was

read from each data �le and parsed for case ID; if this ID was not the same for every data

�le, the script would throw an error and halt operation.

If all ID numbers matched, the corresponding case was read from the input deck, and

the current data line in each �le would be fully parsed for details such as �ight condition,

reference scale values, and force & moment results. The convergence data � including average

response value, standard deviation of the response, and the ratio of the standard deviation

to the average � was also parsed.

An unexpected quirk of Cart3D was the fact that the iteration history for the aerody-

namic moments was calculated as if the C.O.M. were at (0, 0, 0) rather than the speci�ed

value. The post-processing script corrected the iteration data to match the speci�ed value,

along with the reference length, the average force values, and the angle of attack and sideslip

angle.

A number of �goodness� checks were then performed to ensure that no nonsensical results

were included in the �nal data set:

• If any drag coe�cient was less than or equal to zero, the case would be rejected;

• if the absolute value of the lift coe�cient was greater than 20, this was taken as an

indication that Cart3D had converged to a nonsensical answer, and the case would be

rejected;
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• if the absolute value of the pitching moment coe�cient was greater than 50, the case

was considered to be nonsensical and rejected; and

• if the standard deviation of the pitching moment coe�cient CM and the ratio of the

standard deviation of CM to the average value of CM were both larger than 0.05, the

case was considered to be insu�ciently converged, and was rejected.

This �nal requirement deserves more attention. Either criterion alone would not be

su�cient: a case could have a larger standard deviation and still be converged if the response

value was large with respect to the standard deviation. Conversely, a converged case might

have a larger ratio of standard deviation to average and still be converged if the average

value were close to zero. By combining the two criteria, the only rejected cases would be

those which exhibited both signi�cant absolute variability (i.e. large standard deviation)

and signi�cant relative variability (i.e. large ratio of standard deviation to average).

Cases which were not rejected were included in the combined output data set. This data

set combined the input settings for each case with the aerodynamic responses at each �ight

condition for ease of reference.
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APPENDIX E

EXAMPLE SCRIPTS FOR CONTOUR-BASED SAMPLING &

GHOREYSHI COKRIGING

This appendix will document the actual code used to choose new cases for analysis. The

author freely admits that programming e�orts focused more on functionality than grace, and

requests the indulgence of the reader whenever the implementation is ine�cient or ungainly.

E.1 Contour-Based Sampling with Ghoreyshi Cokriging

This is the utility that identi�es the most promising candidate for analysis. This Matlab im-

plementation of the utility uses the bounded-range weighting function described by Picheny

et al.[149] It calls several functions from the DACE toolbox,[107] which can be downloaded

for free from the Technical University of Denmark at http://www2.imm.dtu.dk/~hbni/

dace/.

E.1.1 Input Parameters

When calling this utility, the user must provide a variety of input data:

• S: the matrix of input values for the existing samples, with each row corresponding to

a di�erent sample;

• Y: the vector or matrix of response values for the existing samples, with each row

corresponding to a di�erent sample and each column being a di�erent response;

• modeltype: the function handle for the underlying trend type for the Kriging model,

such as �@regpoly1�;

• correlationtype: the function handle for the correlation type that will be used for

the Kriging model, such as �@corrgauss�;
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• numPoints: the number of samples that will be selected in this round (recommended

value is 1);

• threshold: a scalar or vector, containing the target value for each response that will

be included in the adaptive-sampling e�orts;

• ErrorBounds: a scalar or vector, indicating the breadth of the �region of interest�

around the target value(s) (for example, to target Y = 0 ± 0.1, threshold would be 0

and ErrorBounds would be 0.1);

• candidates: a matrix of input values for the candidate points;

• testpoints: a matrix of input values for the test points that will be used to evaluate

the candidates;

• min_chance: a scalar that indicates the minimum probability-of-interest (POI) re-

quirement that will be used to �lter out poor candidates � see Section 4.9 for more

details;1

• surrogates: a cell vector of function handles for low-�delity data;

• su�x: a string that will be used to identify the output data �les generated by this

script (a di�erent su�x should be used for each batch of samples being selected);

• round: an integer that will be used to identify the particular execution of the script

within a batch of samples; and,

• plotPOI: a �ag that tells the code whether or not to plot the observed probability-of-

interest values for each response. These plots may be useful when selecting a reasonable

min_chance value. A �ag value of 1 will tell the code to make the plots and save them

to the working directory; any other value for this �ag will omit these plots.

1If none of the candidates has a probability-of-interest (POI) value greater than or equal to this require-
ment, the sample-selection utility will select the candidate(s) with the largest POI value(s).
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E.1.2 Output Parameters

Two output parameters are returned to the script or function that calls this utility:

• dmodel: a structure (or cell array of structures) containing the Kriging surrogate

model(s) created by the DACE Kriging toolbox for Matlab; and

• np: a vector (or matrix, if numPoints>1) with each row corresponding to a sample

that was identi�ed as promising.

In addition, the utility will write data �les to the local directory. These data �les may be

used to review the performance of the utility and document its calculations.

In the �rst data �le, named �sampling_size_vs_num_candidates_< suffix >.csv�

(where < suffix > is the string given as an input parameter), each row corresponds to one

execution of the utility. The row contains:

• The number of data points already in the training data set;

• the min_chance value that was speci�ed by the user;

• the number of candidates which had POI values greater than min_chance;

• the total number of candidates available;

• the amount of time elapsed during that execution of the utility (expressed in minutes);

• the POI value for the candidate that was selected as the best sample; and,

• the number of candidates that were not chosen as the best sample which had POI

values higher than that of the selected candidate.

Some of these values are primarily useful for documentation, such as the number of

existing data points and the required POI value for that round. The number of candidates

with POI values greater than min_chance can help the user decide whether the current

min_chance value should be changed: if no candidates are meeting the requirement, the

sample that is selected may be very conservative (i.e. close to an existing sample), which

may not be desirable.
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The total number of available candidates, the number that exceeded the min_chance

requirement, and the elapsed time will all help the user decide whether to increase or decrease

the number of candidates being submitted. Using more candidates will lead to increased

analysis time, but may result in better options for the sample-selection algorithm. A lower

min_chance value will �lter out fewer candidates, leading to increased analysis time but

allowing the algorithm to choose candidates that are more exploratory. If very few candidates

are exceeding the min_chance requirement, the user may wish to increase the total number

of candidates or decrease themin_chance requirement to avoid the very conservative sample-

selection behavior mentioned in the previous paragraph.

The second data �le, �variance_records_< suffix >.csv�, is typically much larger but

more complete. This data �le includes:

• The normalized weighted integrated mean squared error (wIMSE) score, averaged

across all responses, for the sample that was selected for analysis;

• the normalized wIMSE score for each response;

• the maximum likelihood that the selected point will not fall within the range of interest

for any one response;

• the input settings for the selected point;

• the selected point's un-normalized wIMSE scores for each response; and,

• the average and standard deviation of all wIMSE scores for each response.

This data allows the user to investigate how the selected sample compared to the other

samples that were considered. Comparing the wIMSE score of the selected point against the

average and standard deviation of all candidate samples for each response will indicate why

the sample was chosen, and may shed some light on the behavior of the algorithm: does the

selected sample o�er large wIMSE gains in a single response, or is it expected to produce

moderate improvements across multiple responses?
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E.1.3 Matlab Code

function [dmodel,np]=...

krigfit(S, Y, modeltype, correlationtype, numPoints, threshold, ...

ErrorBounds, candidates, testpoints, min_chance, suffix, ...

surrogates, round, plotPOI)

tic

Q = length(Y(1,:)); % Number of responses to be modeled.

acceptable_distance = 0.00001; % Can be changed - see about allowable

% proximity of candidate points below.

number_of_dimensions = length(S(1,:));

num_candidatepoints = length(candidates(:,1));

num_testpoints = length(testpoints(:,1));

rejected = 0;

% % Set constants for later use in Cumulative Distribution Function

% % calculations.

b0 = 0.2316419;

b1 = 0.31938153;

b2 = -0.35656378;

b3 = 1.78147794;

b4 = -1.82125598;

b5 = 1.33027443;

% Initialize some variables

numvars = length(S(1,:))+1; % The extra variable will be the

% cheap response estimate used by

% Ghoreyshi cokriging.

theta = 10*ones(1,numvars);

lob = 1e-1*ones(1,numvars);
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upb = 20*ones(1,numvars);

predVal = zeros(num_candidatepoints,Q);

candidate_mse = zeros(num_candidatepoints,Q);

predVal_test = zeros(num_testpoints,Q);

W = zeros(num_testpoints,Q);

already_included = zeros(num_candidatepoints,1);

% Generate low-fidelity estimates for the existing training data points.

ypred = zeros(length(S(:,1)),Q);

for q = 1:Q

ypred(:,q) = feval(surrogates{q},S);

end

% Create initial Ghoreyshi cokriging models for all responses based on

% the available training data.

dmodel = cell(Q,1); perf = dmodel;

for q = 1:Q

[dmodel{q}, perf{q}] = dacefit([S ypred(:,q)], Y(:,q), modeltype,...

correlationtype, theta, lob, upb);

end

% Make predictions for the response value & uncertainty at each

% test point.

W_nocand=zeros(num_testpoints,1);

saveprob1 = W_nocand;

saveprob2 = W_nocand;

Res_MSEs_nocand=zeros(num_testpoints,Q);

% Estimate the low-fidelity response values for each test and
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% candidate point.

ypredtest = zeros(num_testpoints,Q);

ypredcand = zeros(num_candidatepoints,Q);

for q = 1:Q

ypredtest(:,q) = feval(surrogates{q},testpoints);

ypredcand(:,q) = feval(surrogates{q},candidates);

end

% Using Ghoreyshi cokriging and the estimated low-fidelity response

% values, predict the high-fidelity response values for the test points.

for q = 1:Q

[predVal_test(:,q), Res_MSEs_nocand(:,q)] = predictor([testpoints ...

ypredtest(:,q)],dmodel{q});

end

% Initialize variables that will be used to predict response values

% for the candidate points, as well as their likelihood of having

% response values within the range of interest.

predVal_cand = zeros(num_candidatepoints,Q);

predMSE_cand = zeros(num_candidatepoints,Q);

prob_interest = zeros(num_candidatepoints,Q);

saveprob1c = zeros(num_candidatepoints,Q);

saveprob2c = zeros(num_candidatepoints,Q);

for q = 1:Q

[predVal_cand(:,q), predMSE_cand(:,q)] = predictor([candidates ...

ypredcand(:,q)],dmodel{q});

for cindex = 1:num_candidatepoints

% Calculate standard normal cumulative distribution functions.

% These will be used to estimate the probability that the response
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% at the point in question falls within the stated bounds of

% interest.

% First, calculate the likelihood that the response value is larger

% than the upper bound of interest.

predVal1c = predVal_cand(cindex,q);

mse_herec = predMSE_cand(cindex,q);

reverse1 = 0;

% This probability method only works for testValue < threshold;

% if this is not the case, reverse the calculation.

if predVal1c > (threshold(q)+ErrorBounds(q))

predVal1c = predVal1c - ...

2*(predVal1c-(threshold(q)+ErrorBounds(q)));

reverse1 = 1;

end

% Next, calculate the likelihood that the response value is larger

% than the lower bound of interest.

predVal2c = predVal_cand(cindex,q);

reverse2 = 0;

if predVal2c > (threshold(q)-ErrorBounds(q))

predVal2c = predVal2c - ...

2*(predVal2c-(threshold(q)-ErrorBounds(q)));

reverse2 = 1;

end

% Boundary 1: threshold + tolerance

Z_norm1c = (threshold(q) + ErrorBounds(q) - ...

predVal1c)/sqrt(mse_herec+0.0000000000001);

t1c = 1/(1+b0*Z_norm1c);

standard_normal1c = (1/sqrt(2*pi*1^2))*exp( -((Z_norm1c ...

-0)^2)/(2*1^2));
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% Boundary 2; threshold - tolerance

Z_norm2c = (threshold(q) - ErrorBounds(q) - ...

predVal2c)/sqrt(mse_herec+0.0000000000001);

t2c = 1/(1+b0*Z_norm2c);

standard_normal2c = (1/sqrt(2*pi*1^2))*exp( -((Z_norm2c ...

-0)^2)/(2*1^2));

% Using the Abramowitz & Stegun (1964) approximation for CDF(x)

% of a normal distribution

% - wikipedia says abs. error <7.5e-8?

% This method calculates the cumulative probability that the

% predicted response value is less than the threshold value.

% This method is ONLY valid when predicting the likelihood that

% a response is less than the threshold!

prob1c = 1-standard_normal1c*(b1*t1c + b2*t1c^2 + b3*t1c^3 + ...

b4*t1c^4 + b5*t1c^5);

prob2c = 1-standard_normal2c*(b1*t2c + b2*t2c^2 + b3*t2c^3 + ...

b4*t2c^4 + b5*t2c^5);

if reverse1 == 1

% If the predicted value was actually greater than the lower

% bound, the correction means we calculated the chance that

% the predicted response is GREATER than the threshold. In

% that case, we need to reverse it back to P(y<t).

prob1c = 1-prob1c;

end

if reverse2 == 1

% If the predicted value was actually greater than the upper

% bound, we need to reverse this one too.

prob2c = 1-prob2c;

end
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saveprob1c(cindex,q) = prob1c;

saveprob2c(cindex,q) = prob2c;

% The chance that the candidate point has good performance is

% equal to prob1c (the probability that the case has a response

% value greater than the lower bound) minus prob2c (the

% probability that the case has a response value greater than

% the upper bound)

prob_interest(cindex,q) = prob1c-prob2c;

end % closing ''for cindex = 1:num_candidatepoints''

end % closing ''for q = 1:Q''

% Reproduce some of the DACE normalization functions so that we can

% also normalize our test points.

% Normalizing data:

[m n] = size(S);

mS = mean(S); sS = std(S);

j = find(sS == 0);

if ~isempty(j), sS(j) = 1; end

Snorm = (S - repmat(mS,m,1)) ./ repmat(sS,m,1);

% End of DACE normalization functions.

IMSE = zeros(num_candidatepoints,Q);

% Set up the portions that don't depend on the candidate point.

% This includes the matrix inversion, which'll be one of the more

% intensive operations.

Cinv = cell(1,Q);

F = cell(1,Q);

for q = 1:Q

% Convert DACE outputs to the format given in Picheny
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% ('Adaptive Designs of Experiments for Accurate Approximation

% of a Target Region', Journal of Mechanical Design, 2004)

% In DACE, C is the Cholesky factorization of the correlation

% matrix R.

% In Picheny, C is the correlation matrix itself.

daceCholesky = full(dmodel{q}.C);

daceCinv = inv(daceCholesky);

% Create inverse of correlation matrix from Cholesky factorization

% provided by DACE toolbox

Cinv{q} = daceCinv' * daceCinv;

% Cholesky factorization is triangular and thus easy to invert

% than the original matrix

F{q} = full(dmodel{q}.C) * dmodel{q}.Ft;

% from DACE manual, equation 3.10

end

% If the plotPOI flag is set to one, create plots of the calculated

% POI values to help the user select a reasonable min_chance value.

if plotPOI == 1

if round ==1

rez = 900;

for q = 1:Q

close all

f1=figure(1);

plot(prob_interest(:,1),'o')

xlabel('Candidate Number')

ylabel('Calculated POI values')

title(['Probability of Interest Results for Response #' ...

sprintf('%d',q)])
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print(f1,[suffix '_Response' sprintf('%d',q) '.png'], ...

'-dpng', ['-r',num2str(rez)], '-opengl')

end

end

end

factor1 = zeros(num_testpoints); factor2 = factor1;

for j = 1:num_candidatepoints

% Only evaluate candidate points that exceed the required POI

% value set in min_chance

if min(prob_interest(j,:)) > min_chance

% Start a clean variable to hold MSE estimates for each

% test point.

Res_MSEs = zeros(num_testpoints,Q);

% If a candidate point is too close to a training data point,

% the resulting Kriging correlation matrix becomes close to

% singular and extreme or imaginary numbers are produced. These

% calculations & conditional statement attempt to avoid that

% possibility by skipping candidate points that are very close

% to training points.

standins = repmat(candidates(j,:),m,1);

R1dist = 0;

for d = 1:number_of_dimensions

R1dist = R1dist + (S(:,d)-standins(:,d)).^2;

end

R1dist = min(R1dist);

% Only evaluate candidate points that are sufficiently far

% from the training data points to avoid singularity problems.

if (R1dist >=acceptable_distance)
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% Cycle through all surrogate models to estimate MSEs

for q = 1:Q

mS = mean([S ypred(:,q)]); sS = std([S ypred(:,q)]);

Snorm = ([S ypred(:,q)] - repmat(mS,m,1)) ./ repmat(sS,m,1);

% Normalize the candidate point according to the DACE

% rules defined above.

mSj = mS; sSj = sS;

newS = ([S ypred(:,q)]- repmat(mSj,m,1)) ./ repmat(sSj,m,1);

candidate_norm = ([candidates(j,:) ypredcand(j,q)] - mS)...

./ sS;

% Calculate the normalized distances for correlation

% calculations.

% Distance calculations modified from DACE:

% Calculate distances D between points

D_temp = repmat(candidate_norm, m, 1) - newS(1:m, :);

% differences between points

% End of distance calculations from DACE.

% Compute c_new to be used in easier matrix inversion

c_new = feval(correlationtype,dmodel{q}.theta,D_temp);

C_kplusone_inv = [1 zeros(1,m); -Cinv{q}*c_new eye(m)] * ...

[ 1/(1-c_new'*Cinv{q}*c_new) zeros(1,m); ...

zeros(m,1) Cinv{q}] * ...

[ 1 -c_new'*Cinv{q}; zeros(m,1) eye(m)];

Snorm_can = [candidate_norm; Snorm];

% Compute f(x_candidate) and use it to calculate F_k+1

[f_can ~] = feval(dmodel{q}.regr, candidate_norm);

F_kplusone = [f_can;F{q}];

to_be_inverted_term = ...

(F_kplusone'*C_kplusone_inv*F_kplusone);
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% The default approach would be to training a whole new

% Kriging model to include each candidate point, build

% the new correlation matrix C from the Choleski

% factorizations, and then invert that new C matrix when

% calculating MSE. The method described in Picheny reduces

% the effort involved in that process by re-using most of

% the old C matrix, since it won't change. We still had to

% invert a matrix, but it's PxP instead of MxM or so.

% For every test point, evaluate uncertainty &

% weighting values.

for k = 1:num_testpoints

%Normalize according to the DACE rules above.

test_norm = ([testpoints(k,:) ypredtest(k,q)] - mSj)...

./ sSj;

D_test = repmat(test_norm, m+1, 1) - Snorm_can(1:m+1,:);

% Distances between points

% Compute c(xt), f(xt) for each test point xt

c_test = feval(correlationtype,dmodel{q}.theta,D_test);

[f_test ~] = feval(dmodel{q}.regr, test_norm);

% Compute MSE at each test point

% for each surrogate model.

factor1(k,q) = c_test'*C_kplusone_inv*c_test;

factor2(k,q) = (f_test ...

- c_test'*C_kplusone_inv*F_kplusone)* ...

(to_be_inverted_term \ ...

(f_test-c_test'*C_kplusone_inv*F_kplusone)');

Res_MSEs(k,q) = dmodel{1}.sigma2*(1 - ...

c_test'*C_kplusone_inv*c_test + ...
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(f_test -c_test'*C_kplusone_inv*F_kplusone)* ...

(to_be_inverted_term \ ...

(f_test-c_test'*C_kplusone_inv*F_kplusone)') );

end % for k = 1:num_testpoints

% This ends the loop that estimated what the MSE for

% each test point WOULD be, if the current candidate

% point were added to the model (and therefore reduced

% MSE for any test points close to the candidate point).

% This loop was for a single response.

end % for q = 1:Q

for q = 1:Q

IMSE(j,q) = 0;

% Assign reasonable values to IMSEs that haven't been

% calculated yet - they'll be updated later, but right

% now we need a rough average IMSE value.

for splots = j+1:num_candidatepoints

IMSE(splots,q) = mean(IMSE(1:(j-1),q));

end

for k = 1:num_testpoints

standins = repmat(testpoints(k,:),(m),1);

R2dist = 0;

for d = 1:number_of_dimensions

R2dist = R2dist + (S(:,d)-standins(:,d)).^2;

end

R2dist = min(R2dist);

if R2dist<acceptable_distance

W(k,q) = 0;

else
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% Calculate cumulative distribution functions for normal

% distributions. These will be used to estimate the

% probability that the response at the test point in

% question is within the stated bounds of interest.

% That probability will then be used to calculate the

% weighting function value for that test point.

predVal1 = predVal_test(k,q);

rev1 = 0;

if predVal1 > (threshold(q)+ErrorBounds(q))

predVal1 = predVal1 - ...

2*(predVal1-(threshold(q)+ErrorBounds(q)));

rev1 = 1;

end

predVal2 = predVal_test(k,q);

rev2 = 0;

if predVal2 > (threshold(q)-ErrorBounds(q))

predVal2 = predVal2 - ...

2*(predVal2-(threshold(q)-ErrorBounds(q)));

rev2 = 1;

end

% Boundary 1: threshold + tolerance

Z_norm1 = (threshold(q) + ErrorBounds(q) - ...

predVal1)/sqrt(Res_MSEs(k,q)+0.0000000000001);

t1 = 1/(1+b0*Z_norm1);

standard_normal1 = (1/sqrt(2*pi*1^2)) * ...

exp( -((Z_norm1 -0)^2)/(2*1^2));

% Boundary 2; threshold - tolerance

Z_norm2 = (threshold(q) - ErrorBounds(q) - ...

predVal2)/sqrt(Res_MSEs(k,q)+0.0000000000001);
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t2 = 1/(1+b0*Z_norm2);

standard_normal2 = (1/sqrt(2*pi*1^2)) * ...

exp( -((Z_norm2 -0)^2)/(2*1^2));

% Using the Abramowitz & Stegun (1964) approximation

% for CDF(x) of a normal distribution again

% This method calculates the cumulative probability

% that the predicted response value is less than the

% threshold value.

% This method is ONLY valid when predicting the

% likelihood that a response is less than the

% threshold!

prob1 = 1-standard_normal1*(b1*t1 + b2*t1^2 + ...

b3*t1^3 + b4*t1^4 + b5*t1^5);

% If the response is greater than the threshold,

% reverse the calculations so that the approximation

% is still valid.

if rev1 ==1

prob1 = 1-prob1;

end

prob2 = 1-standard_normal2*(b1*t2 + b2*t2^2 + ...

b3*t2^3 + b4*t2^4 + b5*t2^5);

if rev2 ==1

prob2 = 1-prob2;

end

% Compute the weighting function for the k^th test

% point with respect to the q^th response:

W(k,q) = (prob1-prob2);

end % elseif R2dist > acceptable_distance
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% Add contribution of this test point to the running

% total wIMSE value for this candidate & response.

IMSE(j,q) = IMSE(j,q) + W(k,q)*Res_MSEs(k,q);

end % for k = 1:num_testpoints

end % for q = 1:Q

else % if R1dist < acceptable_distance

% This section of code is activated if the candidate point is

% too close to a training point.

already_included(j) = 1;

end % if R1dist < acceptable_distance

else % min(prob_interest(j,:))

% Code in this section is applied when a candidate point has

% too low of a POI score, i.e. is too unlikely to fall within

% the specified ranges of interest for all response values.

rejected = rejected + 1;

already_included(j) = 2;

if min(prob_interest(j,:)) < 0

prob_interest(j,:)

error('badPOIcalcs',['At least one Probability of Interest' ...

'value is nonsensical (<0).'])

end

end % min(prob_interest)

% Determine an IMSE value that's reasonable but unattractive. This

% value will be assigned to all candidates that either were too

% close to training data points, or had unacceptably low POI scores.

for minij = 1:j

342



if already_included(minij) > 0

for q = 1:Q

IMSE(minij,q) = max(IMSE(:,q));

end

end

end

end % j=1:num_candidatepoints

% Prepare to normalize each column of the IMSE matrix.

avgIMSE = ones(Q,1);

stdIMSE = ones(Q,1);

for q = 1:Q

avgIMSE(q) = mean(IMSE(:,q));

stdIMSE(q) = std(IMSE(:,q));

if avgIMSE(q) < 1e-3

IMSE(:,q) = zeros(length(IMSE(:,q)),1);

avgIMSE(q) = 0;

stdIMSE(q) = 1;

end

end

% Determine normalized IMSE values

norm_IMSE = zeros(size(IMSE));

for q = 1:Q

norm_IMSE(:,q) = (IMSE(:,q)-avgIMSE(q)) / stdIMSE(q);

end

% Calculate a net IMSE score for each candidate by averaging the

% IMSE scores of all responses.
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net_IMSE = zeros(num_candidatepoints,1);

for j = 1:num_candidatepoints

net_IMSE(j) = mean(norm_IMSE(j,:));

end

% Sort the results to find the best-performing candidate.

results = sortrows([net_IMSE norm_IMSE (1-min(prob_interest,[],2)) ...

candidates IMSE])

% This sort operation will put the candidate with the smallest (i.e.,

% best) net_IMSE value on top of the results matrix. If ALL candidates

% had POI values that were too low, the net_IMSE and norm_IMSE columns

% will all be identical, and the sort operation will then sort the

% matrix by the (1-min(prob_interest,[],2)) column.

% This column is the complement of the POI score for each candidate,

% and is equal to the probability that the candidate DOES fall within

% the range of interest for all responses. In effect, if none of the

% candidates meet the POI requirement specified by min_chance, this

% operation causes the algorithm to select the candidate with the

% highest POI score as the next sample.

% Identify the input settings for the selected point(s).

np = results(1:numPoints,1+Q+2:(number_of_dimensions+Q+2));

% Write the first output file.

sampletime = toc/60;

outputrecordsfile = ['sampling_size_vs_num_candidates_' suffix '.csv'];

list = [];

if exist(outputrecordsfile,'file')

list = csvread(outputrecordsfile);
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end

list = [list; length(S(:,1)) min_chance (num_candidatepoints-rejected) ...

num_candidatepoints sampletime results(1,1+Q+1) ...

sum(results(:,1+Q+1)>results(1,1+Q+1))];

csvwrite(outputrecordsfile,list);

% Prepare to write the second output file.

VARIANCESAVER = ['variance_records_' suffix '.csv'];

list = [];

if exist(VARIANCESAVER,'file')

list = csvread(VARIANCESAVER,1,0);

end

LTT = fopen(VARIANCESAVER,'w');

titlestring = ['Average Normalized wIMSE Score,'];

% Create column labels for each response wIMSE value.

titlestring_wIMSE = '';

for q = 1:Q

titlestring_wIMSE = [titlestring_wIMSE ...

'Normalized wIMSE Score for Response ' sprintf('%d',q) ','];

end

% Append the next column label.

titlestring = [titlestring titlestring_wIMSE ...

'Probability of Interest Score,'];

% Create column labels for each input dimension.

inDim = '';

for x = 1:number_of_dimensions

inDim = [inDim 'Input Parameter ' sprintf('%d',x) ','];
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end

titlestring = [titlestring inDim];

% Create column labels for the unnormalized wIMSE score

% for each response

unnorm = '';

for q = 1:Q

unnorm = [unnorm 'Unnormalized wIMSE Score for Response ' ...

sprintf('%d',q) ','];

end

titlestring = [titlestring unnorm];

% Create column labels for the average values and standard deviations

% of each set of wIMSE scores.

avgs = '';

for q = 1:Q

avgs = [avgs 'Average wIMSE Score for Response ' ...

sprintf('%d',q) ','];

end

standarddevs = '';

for q = 1:Q

standarddevs = [standarddevs 'Average wIMSE Score for Response ' ...

sprintf('%d',q) ','];

end

titlestring = [titlestring avgs standarddevs];

% Write the second output file.

fprintf(LTT,'%s\r\n',titlestring);

fclose(LTT);
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list = [list; results(1,:) avgIMSE' stdIMSE' ];

% csvwrite(VARIANCESAVER,list);

dlmwrite(VARIANCESAVER,list,'-append','delimiter',',','newline','pc');

end

E.2 Wrapper for Contour-Based Sampling/Ghoreyshi Cokriging Func-
tion

This wrapper, also written for Matlab, serves as an example of how the sample-selection

function may be called.

E.2.1 Input Parameters

The wrapper is written as a script, so there are no �input parameters� per se, but there are

a number of user-controlled parameters that will a�ect the behavior of the script and the

sample-selection utility.

• inputFile: This tells the script where to �nd the existing training data, i.e. the �warm

start.� The training data should be organized with each row denoting a di�erent case

and each column capturing a di�erent input or output variable. Later in the script,

the user must de�ne which of the columns are inputs (S) and which are responses (Y).

• su�x: A unique string used to identify individual runs.

• surrogates: A cell array of strings, corresponding to functions that will be called as

low-�delity data sources. The order of these data sources must match the order of the

responses in inputFile.

• restarting: A �ag that indicates whether any other points have already been selected,

but not analyzed or added to the training data set in inputFile. If this �ag is a 1, the

script will read the already-selected points from the output �le and incorporate them

into the sample-selection process.

• num_candidatepoints: The number of candidate points that will be used.

• num_testpoints: The number of test points that will be used.
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• threshold: A vector containing the central value for the range of interest for each

response. Again, the order must match that in inputFile.

• threshold_range: A vector containing the half-width of the range of interest for each

response. For example, if for the �rst response threshold is 0 and threshold_range is

0.1, the algorithm will target regions of the design space where the �rst response is

likely to be between -0.1 and 0.1.

• samples: The total number of samples that will be selected by the wrapper.

• samples_per_round: The number of samples that will be selected in each round

of adaptive sampling. If this number is greater than one, the algorithm will select the

best samples_per_round out of the available candidates in each round.

• ranges: The ranges of the input parameters; used to make sure the candidates and

test points �ll the design space.

• correlation: A string that indicates which of the available correlation functions (de-

�ned in allcorrelations) should be used when making the Kriging model.

• KrigingType: A string that indicates which of the options for underlying trend

functions should be used when making the Kriging model.

• min_chance: A value between 0 and 1 that indicates what Probability of Interest

(POI) value the candidates will have to achieve to be considered.

The script is currently written so that multiple min_chance values can be de�ned; the

value that is passed to the sample-selection utility will depend on how many samples have

already been selected. If desired, the user may also wish to modify the script so that the

number of candidates and/or test points changes throughout the sampling process.

E.2.2 Output Parameters

The wrapper will write all selected cases to the text �le indicated by the variable outputFile.

Note that that �le will be over-written by the script; if that �le contains information that
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must be preserved, the user may wish to set restarting to 1 so that the information in

outputFile is read into the script and retained.

The wrapper will leave all variables in system memory, including the multi-�delity Krig-

ing models for each response that are contained in the cell array dmodel.

E.2.3 Matlab Code

close all

clear all;

% Read in the training data.

inputFile = 'inputs_and_outputs.csv';

dataPile = csvread(inputFile,1);

S = dataPile(:,1:9);

Y = dataPile(:,10:12);

% Define a text string to identify this run.

suffix = 'appendixTest02';

% Identify the low-fidelity data source for each response.

surrogates = { 'job01_CM_9D_oneVar', 'job02_CM_9D_oneVar', ...

'job03_CM_9D_oneVar'};

% Define the output file name where the selected samples will be written.

outputFile = ['exampleCasesToBuild_' suffix '.csv'];

% Initialize the parameters that will be used to set up and execute

% the adaptive sample selection.

restarting = 0;

num_candidatepoints = 500;

num_testpoints = 600;

threshold = [0 0 0];
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threshold_range = [0.1 0.1 0.1];

samples = 10;

samples_per_round = 1;

ranges = [0.05 0.25; ... % fuserad

0 1; ... % top1

0 1; ... % top2

0 1; ... % droop

1 3; ... % fineness

0.3 0.7; ... % root chord

0.1 1.5; ... % span

0 6; ... % camber

0.1 0.5; ... % vt-wing area ratio

];

number_of_dimensions = length(ranges(:,1));

Q = length(Y(1,:));

% --list of available correlation models--

allcorrelations = {@correxp @corrgauss @corrlin @corrspherical ...

@corrspline};

correlation = allcorrelations{2};

% --list of available Kriging model types--

allKrigingTypes = {@regpoly0 @regpoly1 @regpoly2};

KrigingType = allKrigingTypes{3};

% Initialize other parameters for DACE toolbox.

numvars = length(ranges(:,1));

theta = 10*ones(1,numvars+1);

lob = 1e-1*ones(1,numvars+1);

upb = 20*ones(1,numvars+1);
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if restarting==1

% Read in any points that had already been selected.

newPile = csvread(outputFile);

dmodeltemp = cell(Q,1);

newS = newPile;

% Estimate the low-fidelity response values for training points

% and selected points.

S_pred = zeros(length(S(:,1)),Q);

newS_pred = zeros(length(newS(:,1)),Q);

for q = 1:Q

S_pred(:,q) = feval(surrogates{q},S);

newS_pred(:,q) = feval(surrogates{q},newS);

end

% Based on the training data, create a multi-fidelity surrogate

% model to estimate the high-fidelity response values for the

% selected points.

newY = zeros(length(newPile(:,1)),Q);

roundstart = 1+length(newPile(:,1))

for q = 1:Q

[dmodeltemp{q}] = dacefit([S S_pred], Y(:,q), KrigingType, ...

correlation, theta, lob, upb);

newY(:,q) = predictor(newS,dmodeltemp{q});

end

% Add the selected points to the training data.

S = [S; newS];

Y = [Y; newY];

roundstart = length(newS(:,1))+1;

else

roundstart = 1;
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end

newCases = [];

times = zeros(samples,1);

rejected = zeros(samples,2);

rejected_fraction = zeros(samples,1);

for round = roundstart:samples

% Define the POI requirement for each round.

if round <= 5

min_chance = 0.07;

elseif round <= 7

min_chance = 0.06;

elseif round <= 9

min_chance = 0.05;

else

min_chance = 0.00;

end

% Create the sets of candidates and test points for this run.

candidates = lhsdesign(num_candidatepoints,number_of_dimensions);

for i = 1:number_of_dimensions

candidates(:,i) = candidates(:,i)*(ranges(i,2)-ranges(i,1)) + ...

ranges(i,1);

end

testpoints = lhsdesign(num_testpoints,number_of_dimensions);

for i = 1:number_of_dimensions

testpoints(:,i) = testpoints(:,i)*(ranges(i,2)-ranges(i,1)) + ...

ranges(i,1);

end

352



tic

np = zeros(length(S(1,:)),1);

plotPOI = 0;

% Run the adaptive sampling algorithm.

[dmodel,np]= krigfit(S,Y,KrigingType, ...

correlation, samples_per_round, threshold, threshold_range, ...

candidates, testpoints, min_chance, suffix, surrogates, round, ...

plotPOI);

times(round) = toc;

elapsedthistime = times(round)

% Estimate the low-fidelity response values for the new sample(s).

np_pred = zeros(length(np(:,1)),Q);

for q = 1:Q

np_pred(:,q) = feval(surrogates{q},np);

end

% Using the estimated low-fidelity responses and the most recent

% surrogate model, estimate the high-fidelity response values

% for the new sample(s).

Ynew = zeros(1,Q);

for q = 1:Q

Ynew(q) = predictor([np np_pred(:,q)],dmodel{q});

end

% Add the new sample to the training data.

S = [S; np];

Y = [Y; Ynew];

% Prepare to write the new samples to the output file.

% If necessary, include any previous samples.
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if ((restarting ==1) && (round ==roundstart))

np = [newS; np];

end

newCases = [newCases; np];

% Write the samples to the output file.

csvwrite(outputFile,newCases);

end
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